
Design patterns. Behavioural software design pattern

Template method pattern

1. Design pattern description

The aim of the Template Method is to define the skeleton of an algorithm in an operation,

deferring some steps to subclasses. Template Method lets subclasses redefine certain steps of

an algorithm without changing the algorithm's structure.

Problems that the Template method pattern solves

 How can the invariant parts of a behaviour be implemented once so that subclasses

can implement the variant parts?

 How can subclasses redefine certain parts of a behaviour without changing the

behaviour’s structure?

What solution does the Template method design pattern describe?

 The key idea in this pattern is to control subclassing. Subclasses do no longer control

how the behaviour of a parent class is redefined. Instead, a parent class controls how

subclasses redefine it. This is also referred to as inversion of control. "This refers to

how a parent class calls the operations of a subclass and not the other way around."

[GoF, p327].

 Inversion of control is a common feature of frameworks. When using a library

(reusable classes), we call the code we want to reuse. When using a framework

(reusable application), we write subclasses and implement the variant code the

framework calls.

 Template methods are a fundamental technique for code reuse to implement the

common (invariant) parts of a behaviour and to eliminate code duplication, by

factoring out invariant behaviour among classes and localizing (generalizing) it in a

common class.

2. Design pattern example

worker1 = Postman();
worker1.doDailyRoutine();

worker2 = Manager();
worker2.doDailyRoutine();

classdef Worker < handle
 properties
 end
 methods
 function doDailyRoutine(obj)
 fprintf("#########\n")
 obj.getUp();
 obj.eatBreakfast();
 obj.goToWork();
 obj.work();
 obj.returnToHome();
 obj.relax();
 obj.sleep();
 fprintf("#########\n\n")
 end
 end

 methods (Static)
 function getUp()
 fprintf("Getting up \n")
 end
 function eatBreakfast()
 fprintf("Eating breakfast \n")
 end
 function goToWork()
 fprintf("Going to work \n")
 end
 function returnToHome()
 fprintf("Returning to home \n")
 end
 function relax()
 fprintf("Relaxing 1 hour\n")
 end
 function sleep()
 fprintf("Sleeping\n")
 end
 end
 methods (Abstract,Static)
 work()
 end
end

classdef Postman < Worker
 properties
 end
 methods (Static)
 function work()
 fprintf("Delivering letters \n")
 end
 end
end

classdef Manager < Worker
 properties
 end
 methods (Static)
 function work()
 fprintf("Managing \n")
 end
 function relax()
 fprintf("Relaxing for 2 hours \n")
 end
 end
end

3. Existing pattern in SWAN?

Yes!

FemTests:

