Design Patterns: Private Class Data

Structural Pattern

Protecting class state by minimizing the visibility of its attributes (data)

1.Design Pattern Description

Intent

Control write access to class attributes

Separate data from methods that use it
Encapsulate class data initialization

Providing new type of final - final after constructor (*)

“Final” explanation
(*) final is keyword used in some languages meaning (ref. Java):

Final Variable )
Final Methods m——)
Final Classes mn——)




Structure

DataClass is initializing
in constructor

MainClass uses getiers
to get their values.

All aftributes are private.

”~

MainClass

-attribute
-attribute?
-attribute3

MainClass

-data : DataClass

+MainClass(in afir1, in aftr2, in atir3) : MainClass

k-

DataClass

-attribute
-attributez
-attributed

+ getAttribute 1)
+ getAttribute2()
+ getAttributed()
+DataClass(in atir1, in attr2, in atir3) : DataClass




2.Design Pattern Example

Before

Attributes radius, color and origin:
e should not change after constructor.
e private access limits visibility but they can still be modified by internal methods.
e since they have to be set once, const or final/ReadOnly attributes cannot be set.

public class Circle {
private double radius;
private Color color;
private Point origin;
public Circle (double radius, Color color, Point origin) {

this.radius = radius;
this.color = color;
this.origin = origin;

}
public double Circumference {
get { return 2 * Math.PI * this.radius; }
}
public double Diameter ({
get { return 2 * this.radius; }
}
public void Draw (Graphics graphics) {

YV

After

public class Circle {
private double radius;
private Color color;
private Point origin;
public Circle (double radius, Color color, Point origin) {

this.radius = radius;
this.color = color;
this.origin = origin;

}
public double Circumference {
get { return 2 * Math.PI * this.radius; }




public double Diameter ({
get { return 2 * this.radius; }

}

public void Draw (Graphics graphics) {
S/

}

3.Existing example in SwanLab?

Closest example: Mesh_Uniftted_Properties
But it was intended to remove a large list of properties from a “fat” class.

Interesting concept considered in Swan (because of size, users, purpose, etc.):

PROTECT PROPERTIES ALONG THE INTERNAL WORKFLOW

| think the relevance of “final” properties grows with:
e Number of developers working in a common area of code.
e Size of the class.

4.Design Proposal for SwanlLab?

Don’t if it’s a good practice in Swan, at least not a good common one for regular or small
classes since it is desirable to have their properties explicitly defined in the class file.

Maybe it could be useful to protect the “mesh”, “backgroundMesh” properties along the
workflow of the different UnfittedMeshes, since they can be easily and unconsciously
mutated and might be interesting to prevent it.



