
The Ultimate Guide to… 

Unit Testing  
part 1

David Christiandy



Why?



Why Unit Test?
• Maintain correctness 

- Automatic regression tests.


• Develop faster 
- No need to wait for simulators.  
- Move fast and break things unit tests. 
- Builds developer confidence. 
- Understand context faster by reading expectations/tests.


• Better, faster review 
- If code styling can be handled by linters, then code correctness can be 
handled by unit tests. 
- More time to focus on design decisions. 
- Verify expected business logic by reviewing the tests.



Principles
in Unit Testing

TODO (P2): Find a more suitable image.



Principle #1: 
Everything you write is testable.

• That includes: 
 
Models,  
Helpers,  
View controllers,  
Custom objects,  
Library overrides,  
Categories,  
…and so on.



Principle #1: 
Everything you write is testable.

• Not including machine-
generated files (plist files, etc.) 
and XIBs. 
 
Cover XIB files via UI test.



Principle #1: 
Everything you write is testable.

• Utilize 80/20 rule.  
Prioritize which are the most 
important ones to test first. 



Principle #2: 
Don’t test other people’s code.

• Always assume that third-
party and built-in libraries are 
already covered by their 
owners.


• Assumption works by 
mocking implementations of 
other people’s code.  
 
Example: 
No need to test whether a certain API 
returns the correct structure.

You don’t need to write tests for code that you didn’t (or won’t) write. 


Of course, most of the time our code intersects with other components. To write the proper tests for this, we should always assume that other people’s code will work as 
expected. One way to achieve this is via mock implementations.


Mocking will be explained in later slides.



• Code that you didn’t or won’t 
write.


• Code outside your team’s 
domain.


• Third-party libraries. 
including library that you wrote.


• System libraries.

Principle #2: 
Don’t test other people’s code.

How do you know which code belongs to other people?




Principle #3: 
Test one thing at a time.

• Focus on one unit to test.


• Assume everything else that we 
wrote works.

Now that we’ve taken other people’s code out of the way – it’s time to focus on the code that we should write tests for.

When testing a class, assume that all of its dependencies just work. 

Likewise, when testing a method that calls other method in the same class, assume that other method just works. 


Note: The difference with previous principle: this focuses more about limiting the scope of thought when writing tests for the code that you actually wrote / will write.



• There’s no right or wrong approach.


• The end result should be the same: all components unit tested.


• Which one is easier to think in?

Some approach to write 
unit tests

Bottom up: Write tests for smallest units first, and begin moving upwards.

Top down: Write tests for the highest units first, and begin moving downwards.


- There’s no right or wrong here – it’s all about which one is easier to think in.

- It all comes down to mindset, the end result should look the same: all components unit tested.



• Focus on one unit, ignore all 
others.


• Assume each dependencies 
behave correctly.


• Everyone will eventually get 
their own turn.

Principle #3: 
Test one thing at a time.

Each node represents one unit. Ignoring its dependencies doesn’t mean there’s a hole in the unit test; the dependencies, if we wrote them ourselves, will have their own 
unit tests.



Principle #4: 
Test each behavior once.

As analogy, here’s a puzzle to better explain this principle.



Principle #4: 
Test each behavior once.

Behaviors /

Code Paths

The doors represent your behaviors (also known as code paths), but we’ll get to that later. The objective of the puzzle is to pass each doors with a single line.



Principle #4: 
Test each behavior once.

Your Unit Tests

The line represents the unit tests. Try to pass all the doors (behaviors) once. More than once is considered redundant (will discuss more on later slides).


Note: this puzzle is actually mathematically proven impossible, though! 



Code Path Explained

• Code path represents a single, 
unique run.


• How many code paths does 
this method have?

- (NSString *)booleanToString:(BOOL)input {
    if (input) {
        return @"true";
    }
    else if (!input) {
        return @"false";
    }
    else {
        return @"nil";
    }
}

Now we’re getting into code paths, or behaviors.

A code path essentially represents a single unique run. Can you guess the number of code path in this method?



Code Path Explained

• Number of code paths 
determine number of test 
cases.


• Craft your input to reach the 
desired code path.

Example objective:

- Show what a code path is.

- Show how not to do redundant testing



Code Path Explained

• Number of code paths 
determine number of test 
cases.


• Craft your input to reach the 
desired code path.

Example objective:

- Show what a code path is.

- Show how not to do redundant testing



• Helps us to think about our 
code.


• If code path is unreachable, 
can we remove the code?

Code Path Explained

Of course, the example is oversimplified and the real case might not be as obvious. But how else would you realize a certain code path is unreachable unless you write a 
unit test for it?


Why do we need to keep a code that would never get executed?




• It’s not just if/else.


• Method parameter adds to the 
code path variation.

Code Path Explained

[self stringToBool:@"Objective-C"];
[self stringToBool:@"Foo"];
[self stringToBool:nil];

- (BOOL)stringToBool:(NSString *)inputString {
    if (inputString.length > 5) {
        return YES;
    }
    else {
        return NO;
    }
}

How many code paths are in this method?



Redundancy in Unit Tests

• Tests are redundant if they go 
through exactly the same 
code path.


• Quality over quantity.
[self stringToBool:@"Objective-C"];

[self stringToBool:@“Traveloka"];

- (BOOL)stringToBool:(NSString *)inputString {
    if (inputString.length > 5) {
        return YES;
    }
    else {
        return NO;
    }
}

These 2 method calls go through exactly 

the same code paths!

Writing redundant test code wastes time on:

- Writing tests,

- Adjusting for behavior changes.



Principle #4: 
Test each behavior once.

• Prioritize quality (code coverage %) over quantity (# of tests). 
Code Coverage = Tested LoC / Total LoC 

• Do it once, do it right. 
Avoid writing redundant tests

To recap:


- Redundant tests have no benefits. Also, if your code changes, you’ll also have to change all your redundant tests.



Principle #5: 
Test for negative cases.

Murphy’s Law
“Anything that can go wrong, will go wrong.” 

- Test possible negative cases (remember last principle!)

- Tighter code leads to less unit tests (maybe next slide).

- Refer to Rob’s talk on UIKonf 2017.



Principle #5: 
Test for negative cases.

• Happy examples so far.


• We also need to pay attention 
to negative cases.

- (BOOL)stringToBool:(NSString *)inputString {
    if (inputString.length > 5) {
        return YES;
    }
    else {
        return NO;
    }
}

[self stringToBool:@"Objective-C"];
[self stringToBool:@"Foo"];

[self stringToBool:nil];

Most of the examples we’ve seen are considered “happy cases”, although there’s one example that tests negatively. Let’s revisit the stringToBool example.


All of the tests are performing as expected.



Principle #5: 
Test for negative cases.

+ (NSInteger)boolToInteger:(BOOL)input {
    return (NSInteger)input;
}

#if OBJC_BOOL_IS_BOOL
    typedef bool BOOL;
#else
#   define OBJC_BOOL_IS_CHAR 1
    typedef signed char BOOL; 
    // BOOL is explicitly signed so @encode(BOOL) == "c" rather than "C" 
    // even if -funsigned-char is used.
#endif

[self boolToInteger:YES];
[self boolToInteger:NO];

objc.h
[self boolToInteger:(unsigned char)100];

Of the same size as char, but 
guaranteed to be signed. Capable of 
containing at least the [−127, +127] 
range;

– Wikipedia

#if defined(__OBJC_BOOL_IS_BOOL)
    // Honor __OBJC_BOOL_IS_BOOL when available.
#   if __OBJC_BOOL_IS_BOOL
#       define OBJC_BOOL_IS_BOOL 1
#   else
#       define OBJC_BOOL_IS_BOOL 0
#   endif
#else
    // __OBJC_BOOL_IS_BOOL not set.
#   if TARGET_OS_OSX || (TARGET_OS_IOS && !__LP64__ && !__ARM_ARCH_7K)
#      define OBJC_BOOL_IS_BOOL 0
#   else
#      define OBJC_BOOL_IS_BOOL 1
#   endif
#endif

Go deeper: 
https://reviews.llvm.org/D26234

https://reviews.llvm.org/D28349

https://reviews.llvm.org/D29768


(Yes, LLVM uses Phabricator)

BOOL is signed char on everything, 
except 64-bit iOS and ARMv7k (watch).

Let’s try another one. Consider a very simple boolToInteger function. Maybe this is in a helper function somewhere.


There’s no end to this since we can go deeper and try to look for limitations. But I hope you get the point.

https://reviews.llvm.org/D26234
https://reviews.llvm.org/D28349
https://reviews.llvm.org/D29768


Principle #5: 
Test for negative cases.

• The rabbit hole goes deeper.


• Prioritize. Remember the 
80/20 rule.

BOOL state = (BOOL)256;
if (state) {
    NSLog(@"YES");
}
else {
    NSLog(@"NO");
}

YES on 32-bit iOS,

NO on 64-bit iOS. 😂

Most of the examples we’ve seen are considered “happy cases”, although there’s one example that tests negatively. Let’s revisit the stringToBool example.


All of the tests are performing as expected.



Principle #5: 
Test for negative cases.

• Prefer nonnull over nullable.


• Avoid loose types.


• Be specific with your types.


• Be careful with your inputs!

Here’s a good rule of thumb when writing negative cases:

- Prefer nonnull over nullable as it can reduce your number of test cases.

- Talking about id, Class, NSObject, NSDictionary (refer to Rob’s talk on UIKonf 2016).

- If we can pass the object, why pass an NSDictionary?



Principle #6: 
Mock things that takes time.

• We want unit tests to be as fast as possible.


• Things that should be mocked: network requests, database 
operations, file operations, UIViewController lifecycle, etc.

- Techniques used here should also be applicable to principle #2

- Cue the testing pyramid?



• No need to verify that the currency is actually saved in 
NSUserDefaults.

Principle #6: 
Mock things that takes time.

Simple method that saves to NSUserDefaults.





Principle #7: 
Refactor as needed

• Unit testing drives you to 
design loosely-coupled 
objects.


• Focus more on how 
components interact.


• The more bloated your class, 
the more painful it is to unit 
test.


• Don’t be Refactorman.  
Be mindful of the amount you 
refactor, and don’t tangle 
yourself!



To Recap:
• Everything you write is testable.


• Don’t test other people’s code.


• Test one thing at a time.


• Test each behavior once.


• Consider negative cases.


• Mock things that takes time.


• Refactor as needed.



Thanks!

David Christiandy


