Custom Swift Formatter
A takeaway from iOS Conf SG 2019

Introduction

Current State of the Art

SourceKit

and SourceKitten

SwiftLint

lib/Syntax

e Structured editing

e Granular parsing

SwiftSyntax

Source File

l l

Code Block ltem Code Block ltem

} I

Access Class Decl
Path

l Attribute
Access List
Path J

Component l Token: Token:
class AppDelegate

Attribute

|
. .

Token: Token:
@ UlApplicationMain

Abstract Syntax Tree

SwiftRewriter

Potentials

* Assisting code review
* Pre-review automatic editing

 Clintegration

Challenges

Evaluating
SwiftSyntax for use

In SwiftLint

tl;dr; Implementing SwiftLint using
SwiftSyntax instead of SourceKitten would
make it run over 20x slower @

Swift Syntax and Structured Editing Library

Welcome to lib/Syntax!

This library implements data structures and algorithms for dealing with Swift syntax, striving to be safe, correct, and
intuitive to use. The library emphasizes immutable, thread-safe data structures, full-fidelity representation of source, and
facilities for structured editing.

What is structured editing? It's an editing strategy that is keenly aware of the structure of source code, not necessarily its

representation (i.e. characters or bytes). This can be achieved at different granularities: replacing an identifier, changing a
call to global function to a method call, or indenting and formatting an entire source file based on declarative rules. These

kinds of diverse operations are critical to the Swift Migrator, which is the immediate client for this library, now developed in
the open. Along with that, the library will also provide infrastructure for a first-class swift-format tool.

Eventually, the goal of this library is to represent Swift syntax in all of the compiler. Currently, lib/AST structures don't make
a very clear distinction between syntactic and semantic information. Long term, we hope to achieve the following based on
work here:

e Adoption throughout the compiler
Clear separation of syntactic and semantic information
Greater stability with immutable data structures
Lower high-water memory use due to reference counting without the need for leak-forever memory contexts
Incremental re-parsing

Incremental, lazier re-type-checking, helped by separating syntactic information

This library is a work in progress and should be expected to be in a molten state for some time. Don't integrate this into
other areas of the compiler or use it for anything serious just now.

You can read more about the status of the library's implementation at the Syntax Status Page. More information about
opportunities to get involved to come.

36 lines (94 sloc) 4.86 KB Raw Blame History []

SwiftSyntax

SwiftSyntax is a set of Swift bindings for the libSyntax library. It allows for Swift tools to parse, inspect, generate, and
transform Swift source code.

Note: SwiftSyntax is still in development, and the APl is not guaranteed to be stable. It's subject to change without
warning.

Usage

Add this repository to the Package.swift manifest of your project:

// swift-tools-version:4.2
import PackageDescription

let package = Package(
name: "MyTool",
dependencies: |

Let’s discuss!

