Simplified implementations of deep learning related works
Switch branches/tags
Nothing to show
Clone or download
Pull request Compare This branch is 124 commits behind exacity:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
BM
GAN
function-approximation
sgd-comparison
.gitignore
README.md

README.md

Simplified DeepLearning

Simplified implementations of some interesting works related to deep learning.

SGD Comparison

Comparison of various SGD algorithms on logistic regression and MLP. The relation of these algorithms is shown in the following figure, please refer to sgd-comparison for the details.

Function Approximation

Use neural network to approximate functions. The approximated functions are shown in the following figures, please refer to function-approximation for the details.

Generative Adversarial Networks

A simple demonstration of Generative Adversarial Networks (GAN), maybe problematic.

According to the [paper](https://arxiv.org/abs/1406.2661), we also use GAN to generate Gaussian distribution which shown in the left figure. Then we try to generate digits based on MNIST dataset, however, we encouter "the Helvetica scenario" in which G collapses too many values of z to the same value of x. Nevertheless, it is a simple demonstration, please see the [details](https://github.com/SwordYork/simplified-deeplearning/tree/master/GAN).