
🧪 Hands off
deployments in Kotlin

Mat Johnson

You have raised a pull request

How many people do you need to deploy a
change to production?

You have raised a pull request

How many people do you need to deploy a change
to production?

2
Someone to approve your pull request and yourself

🤯

How?

The pipeline has the controls and
ensures quality

How?

The pipeline has the controls and
ensures quality **

** 🚁 Escape clause: Incubating
features should be feature
flagged off in production

How?

The technique to be shared is
to utilise the acceptance
criteria as automated tests to
test the artefact, as a control
to ensure artefact is the
highest quality

Why?

Acceptance criteria is living
requirements

Why?

Acceptance tests can be
shared with Product, Sales
and Managers!

Why?

Acceptance tests help to build
the right thing!

Why?

Acceptance tests allow for
rapid change by ensuring that
key user journeys are tested

Acceptance Test Anatomy

● Microservice under test

● Supporting services like databases &

kafka represented as docker containers

● Cumbersome services mocked using

wiremock docker container

● Set of tests written in BDD style

Acceptance Test Overview

● Send requests as if consumer of

service under test

● Assert that the output meet

expected customer outcomes

● Supporting services are containers

Why Behaviour Driven Design (BDD)?

Problem

● You need to make a change

● You open a test

● It is over 1,000 lines long

● Test methods have no naming standard

● Technical tests

Why Behaviour Driven Design (BDD)?

● Can be written in JUnit5 or

Cucumber

● Abstracts nuance and

complexity

● Business focused

How big is a Acceptance Test?

● Bigger than an Unit test

● Bigger than an Integration test

How big is a Acceptance Test?

● Smaller than an End to End test

● Less frail than an End to End test

● More focused on the artefact

under test that E2E

Acceptance Test Variants

● Container based Acceptance Test

● Evolved integration test - Acceptance

Test

● Just the acceptance criteria -

Acceptance Test

1st Variant
Container
Based
Acceptance
Test

Container Based Acceptance Test

Advantages

● Exactly same artefact tested across all

environments (killer feature).

● Makes library upgrades trivial. Including and

especially library upgrades to deal mitigate

security vulnerabilities (killer feature).

Container Based Acceptance Test

Disadvantages

● Mocking is more difficult and complex
● You will need to deal with security (JWT auth,

encryption, etc)
● Can be difficult to run in CI due to docker-in-docker

complexity
● Will need to pull or produce container locally for

building the tests

Coding Demo Part 1a

Container based Acceptance test

Testcontainers

https://github.com/mathewdj/paper-scissors-ROCK-accepta

nce-tests

https://github.com/mathewdj/paper-scissors-ROCK-acceptance-tests
https://github.com/mathewdj/paper-scissors-ROCK-acceptance-tests

Coding Demo Part 1b

Container based Acceptance test

Cucumber and Kotlin

Use the same container that is going to be deployed to

production

https://github.com/mathewdj/paper-scissors-ROCK-accepta

nce-tests

https://github.com/mathewdj/paper-scissors-ROCK-acceptance-tests
https://github.com/mathewdj/paper-scissors-ROCK-acceptance-tests

Segue: Why Test Containers?

● Faster to start than docker compose

● Better orchestration and service

availability strategies

2nd Variant
The
Evolved
Integration
Test -
Acceptance
Test

The Evolved Integration Test -
Acceptance Test
Advantages

● Easy to mock external services

● Easy to run in CI

● Quick to write

● User stories are updated as the artefact

changes 🤯
● Mocking & spying is easy

The Evolved Integration Test -
Acceptance Test
Disadvantages

● Risk: artefact might start in integration tests but

might not start in a real environment, due to test

mocking

● Risk: Security related ingress might be skipped

● Not testing actual deployed artefact ie docker

container

Coding Demo Part 2

The Evolved Integration Test - Acceptance Test

JUnit5 BDD Test written in Kotlin

https://github.com/mathewdj/paper-scissors-R
OCK-acceptance-tests

Bonus tip: If you want to start using Kotlin, start
writing your tests in Kotlin

https://github.com/mathewdj/paper-scissors-ROCK-acceptance-tests
https://github.com/mathewdj/paper-scissors-ROCK-acceptance-tests

3rd variant - Just the acceptance
criteria
● Small step to automated acceptance tests

● Acceptance criteria lives with the code 🤯
● Mark acceptance tests

@under-development to be ignored while

feature is being developed

Horizon

● Run acceptance tests against a real

environment

● Run acceptance tests against many

environments (dev, staging and even

production 🤯)

Summary

● Acceptance tests are a control to ensure the

system does exactly what is meant to do

● Treat any acceptance criteria like gold

● Learned three different ways of doing

acceptance tests
○ Evolved integration test

○ Container based

○ Just the acceptance criteria

Summary

● Write some automated acceptance tests

● Run in CI

● Change code aggressively

● Reduce toil

Questions

