
Peter Wall – Tyro Payments – 2023-07-19

Streaming REST
Responses with
Kotlin and Ktor

I would like to pay my respects to the Gadigal people of the Eora nation, as
the traditional owners of the land on which we are meeting today.

First of all…

2

My name is Peter Wall, and my pronouns are he/him.

I am an engineer in the Banking division of Tyro (I have been here for 4 years)
working mainly on the server systems that support Tyro’s banking operations.

Earlier in my career I spent 6 years as a Senior Java Architect with Sun
Microsystems, both here in Australia and in the US, but despite previously
being a strong advocate for Java, I am now a total convert to Kotlin, since first
encountering it about 5 years ago.

About me…

3

First I will give a quick introduction to Kotlin. I am assuming that the
audience at a Java Meet-Up will have Java as your first language, but you will
probably also have investigated Kotlin to some extent, so this will just focus
on the language features relevant to the demos.

Next, I will give an introduction to Ktor, the framework that we will be using
for the topic that all this has been leading up to:

Streaming JSON objects in Kotlin and Ktor.

About this presentation…

4

Some basic Kotlin syntax:

fun getCustomer(id: String): Customer {

val customer = client.getCustomer(id)

return customer

}

• Functions are introduced by fun, variables by var and values by val
• Types are specified following the name, or the parameter list of the fun
• Functions, variables and values are public by default
• No semicolons!

Kotlin Basics

5

Extending that example:

fun getCustomer(id: String): Customer {

val customer: Customer? = client.getCustomerOrNull(id)

return customer ?: Customer(id)

}

• If the type name is followed by question mark, the value may be null

• The ?: operator takes the left side if it is not null, otherwise the right side
• No new operator; the constructor just uses the class name

Kotlin Types and Nullability

6

Kotlin allows functions to be declared as members of an existing class:

fun Customer.getDisplayName(): String {

return nickname ?: fullName

}

• Extension functions do not allow access to private class members
• They are not polymorphic – you can not declare an extension function on a

base class and expect the derived class version to be used

Kotlin Extension Functions

7

A function that takes a lambda parameter:

fun select(list: List<Customer>, predicate: (Customer) -> Boolean):
Customer { /* select customer from list */ }

May be called with:

val customer = select(list, { customer -> customer.balance < 0 })

But the convention is to place the lambda outside the parentheses:

val customer = select(list) { customer -> customer.balance < 0 }

Kotlin Lambdas

8

Kotlin includes a coroutine mechanism, which allows a large number of
lightweight processes to run concurrently, with relatively low resource
consumption.

launch {

val customer: Customer = remoteClient.getCustomer(id)

displayCustomer(customer)

}

The lambda supplied to the launch function will be executed in a new
coroutine, and the functions in that lambda must be non-blocking.

Kotlin Coroutines

9

A Kotlin function may be labelled a suspend fun to indicate that it is a non-
blocking function.

suspend fun findCustomer(id: String): Customer {}

Such functions may only be invoked within a coroutine context, and they may
not perform any blocking operations.

Traditional I/O functions, for example REST client calls or database lookups,
are blocking operations, so special non-blocking versions must be used
within a suspend fun.

Kotlin Non-Blocking Functions

10

Consider this function.

suspend fun forEachCustomer(consumer: suspend Customer.() -> Unit) {

/* loop over list of customers, invoking "consumer" for each one */

}

The lambda parameter is invoked as a non-blocking extension function:

forEachCustomer {

if (balance < 0) /* "this" is a "Customer" */

sendToExceptionReport()

}

Combining several of these concepts…

11

Ktor is a framework for the creation of server and client applications, built
around the Kotlin coroutine mechanism.

fun main() {

embeddedServer(Netty, port = 8080) {

routing {

get("/") {

call.respondText("Hello, world!")

}

}

}.start(wait = true)

}

Ktor

12

Ktor is a product of JetBrains, the company behind IntelliJ IDEA and Kotlin
itself.

For more information, see:

https://ktor.io/

Ktor Information

13

https://ktor.io/

When serialising a JSON response from a REST call, the conventional
approach requires serialising the internal form of the response into a JSON
string, and then returning the entire string:

Conventional JSON Output Serialisation

14

JSON

the cloud

serialise transmit

For the purposes of these demonstrations, we are imagining a system that
has a Party Service which holds information on parties (individuals or
organisations) and a Customer Service that retrieves party information from
the Party Service, combines it with account information and returns the
combined Customer details.

The Demonstration Application

15

Customer
Service

Party
Service

request request

Customer
Data

Party
Data

REST
Requests

In Ktor, the code for a “get list” endpoint (in a Routing block) would look
something like:

get("/party/list/{ids}") {

val ids = call.parameters["ids"] ?:

throw IllegalArgumentException("No ids")

log.info { "GET /party/list/$ids" }

val list: List<Party> = config.partyService.getList(ids.split('.'))

call.respond(list)

}

The Endpoint Definition in Ktor

16

And the service code is simple, but there may be a lot of complexity hidden
behind the “getParty” function in this example (multiple database accesses,
or REST client calls):

suspend fun getList(ids: List<String>): List<Party> {

return ids.map { id ->

delay(3000) // to simulate a slow data acquisition process

getParty(id)

}

}

With This Service

17

Demonstration 1

18

For anyone trying to reproduce this demonstration:

1. Download the project https://github.com/pwall567/ktor-demo-2

2. Build and run the project (will start a server on port 8102).

3. In a terminal window, run: curl -N http://localhost:8102/party/list/1.2.3.4

4. The server log will show when each record is retrieved, but the JSON output will be displayed

only when all results are available.

https://github.com/pwall567/ktor-demo-2

We used a list in that example, and under normal circumstances, we would
assemble the entire list and hand it over for serialisation.

But what if each item in the list took a long time to create (multiple database
accesses, for example)? With this approach, we would have to wait until the
last item in the list was completed before the first was sent to the caller.

Kotlin has coroutines – can we make use of this mechanism to make the data
available sooner?

Can We Improve On That?

19

get("/party/flow/{ids}") {

val ids = call.parameters["ids"] ?:

throw IllegalArgumentException("No ids")

log.info { "GET /party/flow/$ids" }

val flow = flow { // this lambda is executed in a new coroutine

config.partyService.getStream(ids.split('.')) {

log.info { "Sending ${it.id}" }

emit(it)

}

}

call.respond(flow) // the "Flow", even though it's still being filled

}

Using a Kotlin “Flow”

20

The service for this approach is simple:

suspend fun getStream(ids: List<String>, consumer: suspend (Party) -> Unit) {

for (id in ids) {

delay(3000)

consumer(getParty(id))

}

}

Each “Party” object will be added to the “Flow” as it becomes available, and
will be serialised and sent in the response immediately.

And in the Service

21

Demonstration 2

22

For anyone trying to reproduce this demonstration:

1. Download the project https://github.com/pwall567/ktor-demo-2

2. Build and run the project (will start a server on port 8102).

3. In a terminal window, run: curl -N http://localhost:8102/party/flow/1.2.3.4

4. The server log will show when each record is retrieved, and JSON output will be displayed as

each party record arrives.

https://github.com/pwall567/ktor-demo-2

The ability to deserialise and stream data asynchronously is not part of the
standard Ktor library; it comes from “kjson-ktor”:

https://github.com/pwall567/kjson-ktor

This library provides adapters allowing the use of the “kjson” library with
Ktor, and also allows the streaming of asynchronous data as shown here.
Kotlin has two mechanisms for passing data asynchronously between
coroutines: “Channel” and “Flow”. Either mechanism can be used for the
serialised output. The terminology and the functions differ, but the principles
are the same.

The “kjson-ktor” Library

23

https://github.com/pwall567/kjson-ktor

The “kjson-ktor” library also includes the function “respondStream” to help
with the streaming output of non-JSON data. For example, if an endpoint
wants to output an opaque token:

get("/token/{id}") {

val id = call.parameters["id"] ?: throw IllegalArgumentException("No id")

val token: String = tokenisationService.getToken(id)

call.respondStream(contentType = ContentType.Text.Plain) {

output(token)

}

}

Output of Non-JSON Data

24

In most circumstances, JSON input must be read completely into a string, and
then parsed into its eventual form:

Serialisation is Easy; Deserialisation is Harder

25

JSON

receive deserialise

The Ktor code for the client call in this simple case is straightforward:

suspend fun getList(ids: String): List<Party> {

val response = client.get("$PARTY_SERVER_BASE_URI/party/list/$ids")

when (response.status) {

HttpStatusCode.OK -> return response.body()

else -> throw IllegalStateException("Something went wrong")

}

}

Client Code in Ktor

26

Streaming input is more complicated. It requires that each byte be decoded
from its transmission encoding, parsed into JSON and deserialised into the
business object form, all on the fly:

Streaming Input

27

byte

Decode
from UTF-8

char

Parse JSON
JSON

structure
Business

object

Deserialise Process

Potentially
many-to-one

Many-to-one One-to-one

The nature of JSON means that we must always wait until we see the closing
brace of an object before we consider the object to be complete. But when
the JSON input consists of an array, each item in the array may be processed
as soon as that item is completed:

Streaming Array Input

28

byte

Decode
from UTF-8

char

Parse JSON
JSON
array

Business
object

Deserialise
array item

Process
array
item

Potentially
many-to-one

Many-to-one One-to-one

The reading of asynchronous array input requires an additional function:

suspend fun getFlow(ids: String, consumer: suspend (Party) -> Unit) {

client.receiveStreamJSON<Party>("$PARTY_BASE_URI/party/flow/$ids") {

log.info { "Received ${it.id}" }

consumer(it)

}

}

The “receiveStreamJSON” function is part of the ”kjson-ktor” library; it
expects the input stream to be a JSON array, deserialises each array item to
the required type and passes the object to a lambda function in real time.

Streaming Asynchronous Input

29

The full function signature of receiveStreamJSON is as follows (note that
most parameters have appropriate defaults):

suspend inline fun <reified T : Any> HttpClient.receiveStreamJSON(

urlString: String, // the URL

method: HttpMethod = HttpMethod.Get, // the HTTP method

body: Any = EmptyContent, // a possible POST or PUT body

headers: Headers = Headers.Empty, // request headers

expectedStatus: HttpStatusCode = HttpStatusCode.OK, // the expected status

config: JSONConfig = JSONConfig.defaultConfig, // config for JSON conversion

noinline consumer: suspend (T) -> Unit // lambda to take each item

)

receiveStreamJSON

30

Demonstration 3

31

For anyone trying to reproduce this demonstration:

1. Download the project https://github.com/pwall567/ktor-demo-2

2. Build and run the project (will start a server on port 8102).

3. Download the project https://github.com/pwall567/ktor-demo-1

4. Build and run the project (will start a server on port 8101).

5. In a terminal window, run: curl -N http://localhost:8101/customer/flow/1.2.3.4

6. The server log in each window will show when each record is retrieved, and the JSON output

will be displayed as each customer record arrives.

https://github.com/pwall567/ktor-demo-2
https://github.com/pwall567/ktor-demo-1

The JSON Lines specification allows multiple JSON values to be specified in a
single stream of data, separated by newline characters. For example, events
may be logged as a sequence of objects on separate lines:

{ "time":"2023-06-24T12:24:10.321+10:00", "eventType":"ACCOUNT_OPEN", "accountNumber":"123456789” }

{ "time":"2023-06-24T12:24:10.321+10:00", "eventType":"DEPOSIT", "accountNumber":"123456789",
"amount":"1000.00” }

The “kjson-ktor” library includes functionality to output a stream of data in
JSON Lines form.

JSON Lines

32

The “kjson-ktor” library includes functionality to output a stream of data in
JSON Lines form:

get("/party/flow/{ids}") {

val ids = call.parameters["ids"] ?: throw IllegalArgumentException("No ids")

log.info { "GET /party/flow/$ids" }

val flow = flow {

config.partyService.getStream(ids.split('.')) {

log.info { "Sending ${it.id}" }

emit(it)

}

}

call.respondLines(flow) // this is the only line that differs from the array output form

}

JSON Lines Output

33

The function for asynchronous array input has a form that accepts input in
JSON Lines form:

suspend fun getFlow(ids: String, consumer: suspend (Party) -> Unit) {

client.receiveStreamJSONLines<Party>("$PARTY_BASE_URI/party/flow/$ids") {

log.info { "Received ${it.id}" }

consumer(it)

}

}

Only the function name changes from the array input form.

JSON Lines Input

34

Demonstration 4

35

For anyone trying to reproduce this demonstration:

1. Download the project https://github.com/pwall567/ktor-demo-2

2. Build and run the project (will start a server on port 8102).

3. Download the project https://github.com/pwall567/ktor-demo-1

4. Build and run the project (will start a server on port 8101).

5. In a terminal window, run: curl -N http://localhost:8102/party/lines/1.2.3.4

6. The server log in each window will show when each record is retrieved, and the JSON output

will be displayed in JSON Lines form as each record arrives.

https://github.com/pwall567/ktor-demo-2
https://github.com/pwall567/ktor-demo-1

Remember the “respondStream” function to output non-JSON data in a
streaming context?
If we connect a Mustache template processor to that function, we can:
• read a stream of Customer objects from one server, which causes
• a streaming read of Party objects from a second server, and
• each Party object received from the second server is deserialised and used

to create a Customer object, which
• is passed to a Mustache processor, which formats the Customer into HTML

using a template, so that
• the first Customer object is displayed, formatted, as it arrives, before the

last object has been sent from the Party server.

Putting It All Together

36

Demonstration 5

37

For anyone trying to reproduce this demonstration:

1. Download the project https://github.com/pwall567/ktor-demo-2

2. Build and run the project (will start a server on port 8102).

3. Download the project https://github.com/pwall567/ktor-demo-1

4. Build and run the project (will start a server on port 8101).

5. In a browser window, go to: http://localhost:8101/display-lines/1.2.3.4

6. The server log in each window will show when each record is retrieved, and the formatted

output will be displayed as each customer record arrives.

https://github.com/pwall567/ktor-demo-2
https://github.com/pwall567/ktor-demo-1

get("/display/{ids}") {

val ids = call.parameters["ids"] ?: throw IllegalArgumentException("No ids")

log.info { "GET /display/$ids" }

val count = Counter(units = "customer")

val flow = flow {

config.customerAccountService.getAccountFlow(ids.split('.')) {

emit(it)

count.increment()

}

}

val mustacheContext = mapOf("list" to flow, "count" to count)

call.respondStream {

config.mustacheTemplate.coRender(mustacheContext, this)

}

}

And the Code to Achieve This…

38

The code for the libraries and the demo projects is available on GitHub, for
anyone who wants to explore these concepts further:

https://github.com/pwall567/ktor-demo-1 (the Customer server)

https://github.com/pwall567/ktor-demo-2 (the Party server)

https://github.com/pwall567/kjson-ktor (kjson-ktor library)

https://github.com/pwall567/kjson (kjson library)

Further Exploration

39

https://github.com/pwall567/ktor-demo-1
https://github.com/pwall567/ktor-demo-2
https://github.com/pwall567/kjson-ktor
https://github.com/pwall567/kjson-ktor

Questions?

40

Thank you

41

