Quicode Final Report

Helio Dong, Sylvie Dyer, Prarthana Gajjala,
Nivita Patri, Ana Pérez Céspedes, Kim Tran

1 Introduction
1.1 Purpose
1.2 Background
1.2.1 Use Cases
1.3 Description
1.4 Limitations
1.5 Differentiation from Similar Applications
2 Requirements
2.1 Scope
2.1.1 Scope of Features
2.1.2 Out of Scope (Future Releases)
2.2 Software Requirements
3 Backend Design Description
3.1 Login and Authentication
3.2 Users and User Progress
3.3 Modules, Blocks, Questions, and Content
4 Frontend Design Description
4.1 Overview of Pages
4.1.1 Login and User Pages
4.1.2 Home Page
4.1.3 Module Page
4.1.4 Block Page
4.1.5 Questions
5 Results
5.1 Achieved Functionality
5.2 Compliance with Initial Specifications
5.2.1 User Login/Authentication
5.2.2 Modules Consisting of Computer Science Concepts
5.2.3 User progress tracking
5.3 Modified Specifications
5.4 Services and Packages

O W 0 0 00 60 N N O ooy L1 L1t LT Lt L » B B BB W WNDNMNDNMDNMNNDN

5.5 Visual Overview



1 Introduction

1.1 Purpose

This document provides an overview of the finalized initial release of the Quicode
application. It includes background information for the project, outlines the initial scope
and functionality, and describes the technical specifications for the application’s frontend
and backend. Using these designs, it examines the results of the project, including its
compliance with the requirements, and achieved functionality.

1.2 Background

As coding becomes a necessary skill for an increasing number of fields, providing access to
intuitive, lightweight computer science education becomes increasingly important. This
mobile application attempts to address this through short, systematic, gamified practice
questions.
By providing bite-sized lessons to users, this application will cater to audiences in a few
manners:
e Users who don't have large amounts of free time can practice for short periods of
time, while building intuition towards computer science.
o Commitment to the app, and learning to code, is not intimidating.
e Gamification will increase engagement, especially for users who are new to
computer science
e Content will be an easy, and not intimidating to new learners
Quicode grants its users the freedom to invest as much time as they want into learning,
with the flexibility of learning anywhere at any time. Furthermore, we aim to empower
individuals to take control of their own learning, and mitigate the friction commonly
associated with the first few steps into the world of computer science.

1.2.1 Use Cases

Anticipated use cases fall into three categories:

1. Users who have some limited exposure to programming (i.e. through a prior class)
and want to maintain and build upon previous knowledge.

2. Users completely new to computer science, who want a gradual introduction to
computer science without a rigorous, high-commitment curriculum.

a. This could be especially useful for middle school aged kids.

3. Users actively enrolled in an introductory programming course who want some sort

of supplemental learning.

1.3 Description



This application aims to integrate incremental learning with the computer science
fundamentals to make computer science more accessible to audiences of varying skill sets.
It will be gamified through the use of a point tracking system, earned after finishing short
lessons. These lessons will be categorized by module, with each module having an
overarching topic it is meant to teach. Within each of these modules, topics will be broken
down into subcategories, called blocks, and once more into questions 3 difficulty levels:
easy, medium, and hard. Each of these sections will involve a series of short, interactive
questions that encapsulate important computer science concepts. Users will have targeted
questions alike to ones they recently missed from other lessons, and their progress will be
reflected in the UL.

1.4 Limitations

While developing Quicode for mobile platforms provides benefits for users who would like
to code on-the-go, it also limits the amount of features that the application can provide for
the users’ learning experience. For instance, providing a code editor as a learning sandbox
is not feasible for a mobile application as compared to a computer-based web application.
Additionally, due to the diversity of modern programming languages, keeping content
consistent across programming languages gets more complicated for users as the modules
dive deeper into the specifics of these concepts. Resultantly, because most languages share
the core foundations of computer science, the initial release of Quicode focuses on these
basics and fundamentals (i.e. iteration, sequences, conditionals, data types, etc.). Finally,
targeting this application towards beginning users as a way to practice their computer
science skills limits the application’s target audience. In the future, we hope to extend this
application to be a comprehensive platform for computer science such that anyone, from a
beginner or a computer science major, could benefit from using Quicode.

1.5 Differentiation from Similar Applications

There are many pre existing applications and platforms that focus on computer science
education, such as CodeAcademy, FreeCodeCamp, and Khan Academy. Quicode stands
apart from these programs by providing a hands-on learning experience through the use of
short questions, gamification, and decreasing the amount of time needed to learn. These
pre existing platforms tend to involve long articles with detailed descriptions, with less of
an emphasis on practice questions. Similarly Quicode is accessible on the go, unlike
desktop applications such as Scratch: it allows users to quickly brush up on their coding
skills without having to devote time to sit down in front of a computer and run code, or
read through long paragraphs of content. Focusing first on basics, fundamentals, and
pseudocode before going onto language-specific examples, Quicode allows users to



develop a foundation for their computer science intuition. This will then allow them to later
learn multiple languages easily due to its interchangeable curriculum, rather than other
applications which give users language-specific tracks and examples. In short, Quicode’s
accessibility to those with busy schedules, and prioritization of applying knowledge over
reading content make it unique to any alternatives.

2 Requirements
2.1 Scope
2.1.1 Scope of Features

For the initial release, the project scope consists of three main categories: user login and
authentication, module content, and user progress tracking.

When it comes to user login and authentication, Quicode requires users to provide
credentials in order to create an account and store their information. These accounts are
linked to the progress users make: modules they are completing, and the questions they
need to answer.

The first module, called the Foundational CS Module, will contain blocks which consist of
the following topics: data types and variables, operators, conditionals, arrays, and iteration.
Each of these blocks will include short conceptual summaries in bite-sized
lessons,interactive questions such as multiple choice, multi-select, and drag and drop, and
language-specific examples, if applicable. Users will be able to choose any lessons they
want to review, or start a new lesson, but must complete one module or block in order to
move on to the following one.

User progress tracking will ensure that users complete any necessary lessons required for
consequential lessons. This progress tracking will be associated with the user's account,
and will be used to enforce the user's completion of one module or block before moving
onto the next one.

2.1.2 Out of Scope (Future Releases)

For subsequent releases, granted more time for this project, the scope includes the
following:
e Support for multiple coding languages
e Implementing a coding sandbox, for users to compile code and receive feedback
e Implementing incremental learning: questions building upon user’s weak points (ML)
e Allow the user to interact with other users (send direct messages, share progress,
etc.)



e Implementing notifications such as daily reminders, timers, and goal setting and
tracking in order to improve gamification

e Give users access to more detailed and technical information about concepts rather
than short overviews

e Provide support for other operating systems like Android

e Curated content with more sophisticated algorithms, potentially Al backed

2.2 Software Requirements

Quicode will be developed for use on iOS mobile devices. We chose iOS as the target
because iOS offers better uniformity. The standardization, documentation, and simplicity of
iOS will benefit our development. We will use iPhones with the latest iOS software for
testing, and Apple's Xcode for development.

Discussed further in the following sections, our application design will involve a backend
component for user authentication, question storage, and user progress tracking. We plan
to use a mix of Amazon Web Services' S3 bucket, DynamoDB, and Apple’s UserDefaults for
these purposes.

3 Backend Design Description

This section outlines the requirements for the backend. Our backend will be implemented
using Swift and AWS S3's storage solutions.

3.1 Login and Authentication

To login, users will have to use their ApplelD. Quicode will leverage Apple’s built-in
authentication system to ensure the highest level of security. Once an account is created,
the user's metadata is sent to be stored in DynamoDB. The information is also stored
locally using UserDefaults.

3.2 Users and User Progress

To keep track of users, we will use S3 to store each user as a file within the bucket. On
DynamoDB, the user id will be affiliated with a progress marker that will allow tracking user
progress. Locally, this id will be saved through UserDefaults.

3.3 Modules, Blocks, Questions, and Content

Information regarding modules, blocks, questions, and all curriculum related content will
be stored in an AWS S3 bucket. AWS S3 will provide a high-performance and cost-effective
way to store and retrieve content. This choice allows us to efficiently manage and deliver
curriculum-related content while ensuring its accessibility, durability, and scalability.



Similarly, requesting this information only when it is needed, we can mitigate the size of
this application, and maintain high performance for Quicode.

4 Frontend Design Description
This section outlines the various requirements for the frontend, and the design for
different pages the application will include.

4.1 Overview of Pages

4.1.1 Login and User Pages

These pages will be used to enable users to log into their account on the app, and view
stats regarding their progress on each module.

4.1.2 Home Page

This page will be the first page users will see after they log in, displaying a list of modules
they can complete lessons within. As a user progresses through modules, they will unlock
more. In the future, as depicted in the diagram, there will be an option to complete a mini
lesson, curated to the user's weaknesses.

4.1.3 Module Page
Within each module, there will be lesson blocks that fall under the overarching module.
4.1.4 Block Page

Each lesson block contains navigation to easy, medium, and hard questions that will test
the user on the current topic. These blocks also contain an optional, brief overview of the
current topic for users who are unfamiliar with the content.

4.1.5 Questions

Following the difficulty selection on the block page, the user will be faced with various types
of questions about the current topic. These questions will be presented in one of the
following categories: multiple choice, multi-select, or drag and drop. Users can submit their
answer, and will be given an unlimited number of attempts to submit the correct answer.

5 Results
Source code can be found in our project submission, or within the following git repository.

5.1 Achieved Functionality

5.1.1 Diversified Curriculum

Curriculum was designed to target users with limited to no exposure to Computer Science.
It involves multiple modules, topic blocks, and questions of varying difficulty.


https://github.com/SylvieDyer/SeniorProject/tree/main

5.1.2 User Progress Tracking

Users earn stars for completing modules, and curriculum is locked if the prerequisites are
not met; progress tracking is stored on an AWS DynamoDB table that is organized by user
ID.

5.1.3 Different Styles of Questions

Multi-select, multiple choice, drag and drop with varying difficulties are utilized; each
question type is developed separately within our repository and applied to the question
data files.

5.1.4 Question Validation

Incorrect answers are highlighted on next attempts in order for the users to learn from
their mistakes.

5.1.5 Topic Overviews

Each module and block contains a brief overview of the topic to cater to users who are new
to computer science.

5.1.6 Question of the Day

daily extra practice to help users remember previous topics they have completed.
5.1.7 User Profile

users can see account information, total progress, and log out of their account.
5.1.8 Integrated AWS S3 Storage for Curriculum

module and block names, content overviews, questions are saved here on the AWS S3
bucket and pulled at appropriate locations in the application. This allows for easy
modification and scaling in the future.

5.1.9 Apple UserDefaults

Saves user information between sessions to keep users logged in and pick up where they
left off.

5.1.10 Sign in with Apple

Streamlined user login and authentication.

5.2 Compliance with Initial Specifications

The following details the compliance of the final app with initial specifications. Ultimately,
our team was able to comply with all initial requirements, though the scope of these
changed a small amount through the development process. Additionally, we were able to



achieve some stretch functionality. The following section refers to the specifications
outlined in the CSDS 293 Initial Project Proposal Quicode document.

5.2.1 User Login/Authentication
e Initial specifications required users to be able to login, and have new accounts
created on the backend. Furthermore, specifications required accounts to be

affiliated with app module progress.
o All of this functionality was achieved.

5.2.2 Modules Consisting of Computer Science Concepts

e Initial specifications required development of a Foundational CS module, containing
learning blocks: data types and variables, operators, boolean expressions,
conditionals, sequences, iteration and binary numbers.

o All of this functionality was achieved.
o Furthermore, additional modules were created that delve into specific
programming languages.

e Initial specifications required short conceptual summaries for each module,
pseudocode examples and language-specific examples, and multiple interactive
question types. Specifications called for ability to review previous lessons.

o All functionality was achieved.

5.2.3 User progress tracking

e Initial specifications required a point system to gamify the application. Furthermore,
specifications called for module progress tracking, where modules are locked until
prerequisite modules are completed.

o All of this functionality was achieved.

o We used a star system rather than a point system. Furthermore, not just
module progress was tracked. Block and sub-block (difficulty) data was
tracked, locking appropriate sections, and assigning stars as necessary

5.3 Modified Specifications

While the vast majority of the scope of this application has stayed the same, we have added
some technologies and changed the scope of some features. Namely, we:
e Added use of DynamoDB for user progress tracking, due to ease of data
manipulation when compared to S3
e Changed from using Apple’s CoreData to Apple’s UserDefaults, due to technical
difficulties in accessing user data after the first login
e Modified curriculum and associated topics based on determined need and further
analysis on content
e Implemented a question of the day. A similar feature was considered a stretch goal.
e Added user progress information in User view



Please note, this may cause discrepancies between this document and previous versions.

5.4 Services and Packages
Services Used: AWS S3, AWS DynamoDB, Apple Authentication, Apple UserDefaults
Packages Used: Soto, WrappingHStack

5.5 Visual Overview

Application
Icon:

Welcome to

QUICODE

Login to get started!

& Sign in with Apple

" GEED -

Hello, Sylvie

Welcome to Quicode, are
you ready for some quick
practice?

PEGEIE

we QD -
QUICODE

Hi Sylvie! *8
Question of the Day

€S Foundations.
* ok k%

@ User Profile

Sylvie Dyer

sylvieruii@gmail.com
% You've eamed 8 total stars! ¥

Your Progress:

S Foundations

* ki

Java Basics.

AR R S g

Data Structures

Yo %k Wk

@ User Profile

S Foundations

K ki

Java Basics.

R R 8 g

Data Structures

AR B R RS

Python Basics.

R4

Logout

v GEEED =
o
QUICODE

CS Foundations ?

* kY A
Data Types
andVariables ¥ X %

Operators % *

Conditionals % % vr

Login

StartUp

Home Page

User (1)

User (2)

Module Page

< Back
QUICODE
CS Foundations »
Conditionals ‘
* ki
Easy *
Medium *
Hard %

o GEED -

QUICODE

Which one of the following is
of integer type?

"Hello"

True

.

QUICODE

Select all the values which
are NOT integers.

“Hello"

51

o G -
QUICODE

1is of data type.

and'A'is of data type.

Next

QUICODE

You've completed
Conditionals
Difficulty: Easy

Let's try something a little harder!

Data Types and Variables
ABrief Overview:

Data types and variables are crucial
compnents of any programming language.
Data types are different categories in which
data can be stored. More specifically, they.
define a specific set of values, and the rules of
what can be applied 1o those values. Variables.
o the other hand, are used to reference these
data types. More specificall, they are a
memory location that can hold values for a
specific type. In most programming
languages, these two terms are used hand in
hand: a variable wil hold some value, and this
value wil have an assoclated data type. Think
of atoy bin, for example. Within this bin, we
can store different types of toys: cars, blocks,
board games, etc. In this scenario, the bin
would be fimited to one type of toy. So, if we
have a bin designated to hold blocks, the bin
would be a variable and the block would be
the data type.

Furthermore, there are multple categories of
types: integers, floating-points, characters,
strings, booleans, and primitives. Following is
a short overview of these types:

Integers: Store whole numbers (eg. -1, 0,1,
100). These types include int, long, short.
Floating Point: Store decimal values (eg.
-314, 0.0, 1.2). These types include foat,
double.

Characters: Store individual letters or
Symbols (eg. ‘semFhesemtypes include

Block Page

Multiple
Choice
Question

Multi-Select
Question

Drag and
Drop
Question

Block
Completion
Page

Brief
Overview
Pop-Up



https://github.com/soto-project
https://github.com/dkk/WrappingHStack

