

Symplectic Elements Harvester for VIVO:

Installation Guide

Symplectic, 4 Crinan Street, London,

N1 9XW, United Kingdom.

2

Contents

Contents

Introduction

Connector Description

Harvester

Fragment Loader

Installation Prerequisites

File System Permissions

Performance Considerations

Disk IO

Memory

Installation

Clean up

Initialisation

Configuration

Configuring the Harvester

Configuring the Mapping Scripts

Configuring the Fragment Loader

Additional Configuration

Configuring Tomcat to Display Images

Configuring VIVO to Understand Elements Label Schemes

Running the Processes

Running the Harvester

Initial run advice

Fragment Loader Daemon

User accounts

Loading Large Volumes of Data (e.g. initial load)

Web Interface

symplectic.co.uk

http://symplectic.co.uk/

3

Configuring for regular updates

Example crontabs:

Setting the “HARVEST_ORIGIN”

Appendix A : VIVO server specification and configuration.

Performance Concerns

Recommended Specifications

Server Configuration

Security Concerns

Database Configuration

Security Concerns

Tomcat Configuration

Webapp deployment

VIVO Configuration

List View Config Configuration

Proxy Server Configuration

Security Concerns

Appendix B : Harvester configuration options

Undocumented Parameters

symplectic.co.uk

http://symplectic.co.uk/

4

Introduction

This document describes the Elements VIVO Harvester and how to install it from a binary

tar archive. It covers a variety of Installation and general configuration tasks and issues, but

is not intended to be exhaustive documentation of the connector and its configuration

options, nor is it intended to cover how to develop or alter the XSLT mapping scripts used

by the connector.

There is also an appendix which covers our recommendations with regard to how you

should configure your VIVO server to ensure that the integration with the Harvester works

smoothly.

Connector Description

The connector fundamentally consists of two components:

1. The Harvester

2. The Fragment loader

Harvester

The Harvester performs several functions:

● Harvesting data from the Elements API.

● Translating the harvested data to a VIVO compatible RDF representation (triples).

● Loading those triples into a temporary triple store (Jena TDB).

● Creating change-sets (diffs) by comparing the current temporary triple store to the

temporary triple store from the previous run (if present).

● Turning those change-sets into small fragment files (by default <2MB).

The Harvester is designed to minimize the load placed on the Elements API by making use

of delta updates when pulling data from the Elements API (i.e. it will try to only pull data

that has changed since the last time the Harvester was run). There are, however, various

areas where this is not possible (e.g. Elements group/group membership information).

Note: If you are connecting to an Elements API running an API Endpoint Specification

earlier than v5.5 there can be some issues using delta updates. A small fraction of changed

items can be missed and these will never appear in Vivo until a full refetch of all the data in

Elements is run (these issues typically occur when data is being modified in Elements whilst

a delta harvest is being run).

The Harvester has multiple modes it can be run in by passing arguments on the command

line:

● Default (No argument) : This mode will run a full harvest on the first run and a delta

on subsequent runs

● --full : Forces the harvester to perform a full re-harvest, refetching all the data from

symplectic.co.uk

http://symplectic.co.uk/

5

Elements

● --skipgroups : Instructs a delta run not to re-process the Elements group/group

membership structures. Instead the harvester relies on a cache of group

membership information from the previous run.

● --reprocess : Reprocesses the existing cached data against the current XSLT

mappings without touching the Elements API (useful when developing custom

mappings).

It is expected that these different modes will be combined to create a harvest schedule

using cron or another scheduling utility. e.g:

● Run a --skipgroups delta every 3 hours.

● Run a normal delta every day at 4 am.

● Run a --full on the last Sunday of each month.

Fragment Loader

The Fragment Loader meanwhile has just one function - to load any fragments generated

by the Harvester into VIVO via VIVO’s Sparql update API. The fragment files generated by

the Harvester are time-stamped and indexed, so they effectively form a queue which the

Fragment Loader works through one by one. Note that the Fragment Loader is designed to

be run as a daemon process and as such there are example files for integrating it with

SystemD.java run

Installation Prerequisites

● A Java runtime environment on your server.

● The “flock” utility

● Access to and credentials for the source Elements API.

● Access to and credentials for the target VIVO instance (these credentials must

correspond to a user who can use the Sparql update API, which by default is only

available to the VIVO root user.

IMPORTANT: It has been found that Oracle’s JDK 1.7.0 (runtime build 1.7.0-b147) has a

problem with the concurrency methods used. Please ensure that a more recent JDK is used

(1.7.0_03 and upwards have been tested with no apparent issues).

File System Permissions

Neither the Harvester nor the Fragment Loader generally require any special permissions to

run. They need to be able to read and write files within the connector’s installation folder,

but that is all.

Note: There is typically just one exception to this rule if you choose to have the connector

write processed image files directly into the deployed webapp within tomcat. This is

discussed in the section “Configuring Tomcat to Display Images”.

symplectic.co.uk

http://symplectic.co.uk/

6

If you choose to run the connector components as a user other than root then for

convenience it is useful to pick that user account ahead of time, change the ownership of

the install archive [chown] to that user and perform all the installation steps below using

that user account.

Note:

● You will need to specify the selected user when configuring the FragmentLoader to

run via SystemD.

● You should ensure that you are editing the selected user’s crontab when configuring

an automated harvest schedule. There may be additional steps to enable cron for

non root users (e.g. cron allow/deny) – this is outside the scope of this document

If you choose to install and run the connector as root, you should ensure that the Fragment

Loader’s SystemD integration is configured so that the process is run as root. When setting

up an automated harvest schedule meanwhile, you should just add a file to /etc/cron.d to

specify the system’s cron schedule (which is run as root). You can still edit the root user’s

crontab file if you wish, but using the system cron directories is simpler and cleaner.

Performance Considerations

Disk IO

The Harvester can be disk intensive. The disk is constantly being read from and written to

during various harvester operations:

● Harvesting raw data.

● Writing translated data.

● Populating temporary triple store.

● Writing Change sets and fragments.

This is particularly true during loading of the temporary triple store where, for a typically

sized institution, several gigabytes of data will be read from the internal cache of translated

triples and written into an on disk TDB triple store. As this process has to be performed

every time the Harvester is run (even on a delta update) disk IO is critical to the overall

performance of the harvester. We therefore very strongly recommend that you use SSD

based storage and ensure that you have adequate storage capacity on your server.

Memory

The Harvester can also be very memory intensive, this is particularly true during the diff

operation where the current temporary triple store is compared to the equivalent

temporary store from the previous run. This process can result in both copies of the triple

store being loaded into ram. To accommodate this the default elementsfetch.sh script

ensures that the Java Virtual Machine (JVM) being used to run the process has access to up

to 10 gigabytes of ram.

If your datasets ends up being significantly larger than 5Gb you may end up with poor

performance (paging) or crashes during the diff operation (e.g. taking longer than 5-10

symplectic.co.uk

http://symplectic.co.uk/

7

minutes). If you experience issues of this nature then you may need to increase the amount

of RAM assigned to the JVM for the FetchAndTranslate operation. Similarly if your dataset is

much smaller than 5Gb you may be able to reduce the amount of RAM being assigned to

the JVM in the elementsfetch.sh file.

Installation

Copy the connector install media elements-vivo-harvester-(**version-info**).tar.gz to

your VIVO server.

The following assumes you have placed it in the logged in user’s home folder “~”, it also

assumes you are installing as a user with appropriate file system permissions (e.g. root).

Note: if you install via “sudo” commands, be aware that when invoking the Harvester

applications from the command line you will need to use sudo or they will not have the

necessary permissions to read and write to the install directory.

By convention we recommend installing in a “harvester” directory located alongside VIVO's

home directory (the home directory, not the webapp), e.g:

mkdir /usr/local/vivo/harvester

Change directory to your new Harvester directory

cd /usr/local/vivo/harvester

Copy the archive containing the Harvester code into your newly created directory

cp ~/elements-vivo-harvester.tar.gz .

Extract the Harvester code from the tarball

tar -xvzf elements-vivo-harvester.tar.gz

at this point you should have a folder with a structure similar to this:

drwxrwxrwx. 4 root root 85 Feb 15 13:12 examples

drwxrwxrwx. 2 root root 4096 Feb 15 13:12 init

drwxrwxrwx. 2 root root 4096 Feb 15 13:12 lib

Clean up

Delete or otherwise backup the tar archive, by convention we usually create a “downloads”

folder alongside the examples, init and lib folders and keep any harvester tar-balls there

rm elements-vivo-harvester.tar.gz

Initialisation

symplectic.co.uk

http://symplectic.co.uk/

8

If this is the first deployment of the Harvester on this box, navigate into the init folder and

run initialise.sh, then return to the main install folder.

cd init

./initialise.sh

cd ..

This step copies the configuration properties files (from the examples/example-config)
folder and the shell scripts (from the examples/example-bin folder) for both the harvester

and the fragment loader into the main Harvester install folder. It also copies the example

xslt translation scripts from the examples/example-scripts folder into a newly created

scripts folder.

At this point your harvester installation folder should have the following contents (new files

highlighted in red):

● elementsfetch.properties

● elementsfetch.sh

● examples

● fragmentloader.properties

● fragmentloader.sh

● init

● lib

● scripts

Configuration

There are three primary areas that need to be configured before running the connector:

1. The Harvester.

2. The Mapping Scripts.

3. The Fragment Loader.

You may also need to make some minor configuration changes to VIVO and its hosting

platform tomcat.

Configuring the Harvester

Edit the elementsfetch.properties file using the text editor of your choice, e.g.

sudo nano elementsfetch.properties

At a minimum you will need to configure how to connect to the Elements API:

● apiEndpoint (Elements API URL).

● apiVersion (set to the version of Elements API that the URL above represents).

● apiUsername/apiPassword

 (the credentials needed to access the above API - relevant if endpoint is https).

symplectic.co.uk

http://symplectic.co.uk/

9

If you have custom crosswalks you may need to alter the xslt pipeline being used for the

translation to VIVO's data structure

● xslTemplate (path to the entry point of the xsl mapping script being used).

You may also wish to configure which data is to be fetched from Elements and how it is

transferred to VIVO, please see Appendix B or the inline comments in the

elementsfetch.properties config file for details.

Note: Appendix B contains a listing of the configuration options for the Harvester.

Configuring the Mapping Scripts

Note: If you have custom crosswalks then this information may not directly apply, but you

will generally still need to customise your mapping scripts to some degree to ensure that

the output is suitable for your VIVO system.

To configure the default crosswalks you will want to edit the file

scripts/example-elements/elements-to-vivo-config.xml using the text editor of your choice.

nano scripts/example-elements/elements-to-vivo-config.xml

Note: it is the .XML file not the .XSL file you want to edit.

At a minimum you will need to configure:

● defaultBaseURI:
The base URI that should be used when generating identifiers to represent items in

VIVO (this should usually match the URI configured in the target VIVO’s

runtime.properties file).

Note: Alternatively you can configure the baseURI externally to the crosswalks by

adding the parameter “xsl-param-baseURI” to elementsFetch.properties.
The default crosswalks are explicitly set up to enable this.

WARNING: Make certain that you have configured the base URI correctly before

running the initial harvest as altering it will mean that the URI’s of all the data created

by the Harvester will change, resulting in a very large change set to be transferred to

VIVO.

You often also want to configure:

● internalClass

The class that internal users and groups should be tagged with to allow filtering in

browse pages within VIVO.

Note: The internalClass can also be configured externally using the parameter

xsl-param-internalClass in elementsFetch.properties

symplectic.co.uk

http://symplectic.co.uk/

10

● Label-schemes

How should label schemes be treated by the mappings.

You can also alter:

● record-precedences/data-exclusions

Which Elements record is used as the selected source of data for VIVO if several are

present.

● Journal-precedences

Which type of journal information should be used to create publication venue

information.

● Publication-types

How Elements publication types are mapped to VIVO classes.

● Organization-types

How specific organisations are represented as VIVO classes.

Please refer to the inline comments within the XML config file for more details.

More extensive changes to the mapping scripts may of course be necessary to meet your

particular needs.

Configuring the Fragment Loader

Edit the fragmentloader.properties file using a text editor of your choice, e.g.

nano fragmentloader.properties

At a minimum you will need to configure how to connect to VIVO's sparql API:

● sparqlApiEndpoint

 A URL where the target VIVO application can be reached (usually something like

localhost:8080/vivo or similar). Note that the process will append the correct

relative path to the sparql API if it is omitted.

● sparqlApiUsername/sparqlApiPassword

(the credentials of the VIVO user with permission to access the update API - in a

default VIVO installation, this will just be the VIVO root user (see the

rootUser.emailAddress property in VIVO's runtime.properties file).

WARNING: When the Fragment Loader uploads data, it passes the configured

username and password over the network. If the sparql API endpoint being targeted is

not secure (e.g. if it is plain http) then there is a risk that those credentials could be

compromised. To avoid this ensure that either the endpoint is protected by SSL (e.g.

using an Apache reverse proxy server) or that you only access the endpoint via

localhost or an SSH tunnel.

Additional Configuration

symplectic.co.uk

http://symplectic.co.uk/

11

Configuring Tomcat to Display Images

If the Harvester is processing user photos from Elements (which it will be unless you have

set elementsImageType to “NONE” in elementsfetch.properties) it will generate user

images suitable for use with VIVO on disk. These images need to be made available to the

Java servlet container (e.g. Tomcat) hosting VIVO in a specific manner, so that they will

display correctly.

By default the harvester will store the processed images in the folder

data/harvestedImages.

These images need to be made available within the Tomcat application hosting VIVO at the

appropriate relative path (“/harvestedImages” by default) e.g:

http://localhost:8080/vivo/harvestedImages

There are two main ways to achieve this:

1. Create a symlink named harvestedImages within the deployed VIVO webapp

pointing to the folder where the Harvester places the processedImages, e.g (if VIVO

is deployed as the “ROOT” webapp):

cd /usr/share/tomcat/webapps/ROOT

ln –s harvestedImages

/usr/local/vivo/harvester/data/harvestedImages

2. Copy/Sync the files so that they are physically stored within a folder named

harvestedImages within the VIVO webapp.

If you choose to take the symlink option then you will also need to update the deployed

VIVO webapp’s context to specify that symlinking is allowed. To do this either update the

context.xml file within the webapps META-INF directory or the ROOT.xml file within the

/conf/Catalina/localhost directory depending on how you have deployed the webapps.

Once you have located the relevant file:

On Tomcat 7: Edit the main "Context” element to ensure that an allowLinking

attribute is present and set to true e.g :

<Context allowLinking="true" ↩

docBase="/usr/share/tomcat/manually-deployed-webapps/vivo">

On Tomcat 8+: Add a “Resources” elements within the main “Context” element:

<Context>

 <Resources allowLinking="true" />

 ...

</Context>

symplectic.co.uk

http://symplectic.co.uk/

12

Note: The … represents the remainder of the “Context” element,
which should not be altered.

Note: You will also need to ensure that the user account running the Tomcat application

has read access to the image files within the linked directory.

If instead you choose to use option 2 then it is easiest to edit elementsFetch.properties

and specify the vivoImageDir parameter to point directly to the harvestedImages folder

within tomcat.

Note: In this case you will need to ensure that the account being used to run the Harvester

has write access to the target folder.

Configuring VIVO to Understand Elements Label Schemes

If you are using the ability of the default crosswalk to generate VIVO Subject/Research

Areas from Elements label schemes, you generally want to configure VIVO so that it knows

how to describe the “scheme”.

To achieve this you need to add “triples” to VIVO's vocabularySource.ns file (found in the

home/rdf/abox/filegraph directory). Each label scheme being mapped to VIVO should be

assigned a unique URI in the “defined-by” attribute of the crosswalk config xml file.

nano /usr/local/vivo/home/rdf/abox/filegraph/vocabularySource.ns

The value of these URI’s is up to you, provided it is a valid URI format, but something

descriptive added to the end of the baseURI is standard practice for any mapped custom

label schemes.

To allow VIVO to know how to represent the scheme this “defined-by” URI should be

assigned an rdf:type of Thing and an rdfs:label representing the name of the scheme as it

should be presented in VIVO, by adding the two relevant lines to vocabularySource.ns.

The file addToVocabularySource.ns in the crosswalk scripting directory is an example of

what needs to be done. It contains examples for the mesh, fields of research (for) and

science-metrix label-schemes.

Running the Processes

Running the Harvester

Once you have completed the configuration of elementsfetch.properties file you can run

the Harvester by running the script ./elementsfetch.sh within the main installation

folder. You can pass the Harvester options (--full, --skipgroups or --reprocess) to this script

on the command line.

symplectic.co.uk

http://symplectic.co.uk/

13

The Harvester can run for a long time, so we recommend running it in a terminal

multiplexing system such as “screen” or “tmux” so that you can leave your shell without

terminating the program.

You can monitor the process by inspecting the relevant time-stamped log file in the “logs”

directory.

Initial run advice

Your VIVO instance should be empty prior to the first run of ./elementsfetch.sh .
Subsequent executions of elementsfetch.sh will then perform differential updates, unless

you request otherwise, but ONLY if you retain the state.txt file and the 'data’ directory

created by the process. If either of these gets removed, you should ideally start again with a

clean, empty VIVO instance.

If you wish to clear down your VIVO instance and start again from scratch, you should

remove the state.txt file and the 'data’ directory and start again with an empty VIVO

instance.

Fragment Loader Daemon

To transfer the fragments generated by running the Harvester to VIVO you should run the

./fragmentloader.sh script once you have configured the fragmentloader.properties

file.

Generally, however, you will want to run the fragmentloader as a constantly running

daemon process, if your Linux distribution uses systemd, you will find advice and example

integration files to assist you in doing this in examples/example-integrations/systemd.

To use these, first edit the fragmentloader.service file in the editor of your choice:

nano examples/example-integrations/systemd/fragmentloader.service

Replace %HARVESTER_INSTALL_DIR% with the path where you have installed the

Harvester (e.g. /usr/local/vivo/harvester)

Copy the systemd unit file into systemd's library, then enable the new unit:

● cp examples/example-integrations/systemd/fragmentloader.service

/lib/systemd/system

● systemctl enable fragmentloader

You should now be able to control the loader with normal systemctl commands:

● sudo systemctl start fragmentloader

● sudo systemctl stop fragmentloader

● sudo systemctl status fragmentloader

You can monitor the process through both the systemctl status command or by inspecting

the fragment-loader.log file in the logs directory that should appear beneath your

symplectic.co.uk

http://symplectic.co.uk/

14

"harvester" install directory

User accounts

To alter the user running the Fragment Loader you will need to make appropriate changes

to the “.service” file to add the desired User and or Group to the [Service] section of the

systemD unit file prior to deploying and enabling it.

Loading Large Volumes of Data (e.g. initial load)

Note that when performing the initial load the re-inferencing and re-indexing processes

within VIVO can be a significant bottleneck that increase the load time of the initial dataset

by several days. To work around this we recommend the following order with regard to

loading fragments for an initial load:

1. Turn off the Fragment Loader daemon. [systemctl stop fragmentloader]
2. Disable inferencing in your VIVO server:

Edit WEB-INF/resources/startup_listeners.txt within your deployed VIVO web app within

tomcat’s webapps folder and comment out the line

"edu.cornell.mannlib.vitro.webapp.servlet.setup.SimpleReasonerSetup".

3. Restart tomcat. [systemctl restart tomcat]
4. Log into VIVO as an Admin, Enable developer mode and disable indexing of

changed triples:

Developer mode is enabled by clicking the “Activate developer panel” link on the Site Admin

page. To disable indexing of changed triples click on the yellow bar below the header to

expand the panel, switch to the search tab, tick “Suppress the automatic indexing of

changed triples” and click save settings.
5. Start the Fragment loader. [systemctl start fragmentloader]

Ensure that all fragments have been processed before continuing.

You can monitor the progress of the loader via systemctl status commands or via the log file.

6. Re-enable inferencing (i.e. reverse step 2).

7. Restart tomcat. [systemctl restart tomcat]
Note: This will disable developer mode and therefore re-enable indexing.

8. Log into VIVO and re-compute the inferences (this will also re-index all the

data).

You should adopt a similar procedure if you deploy mapping changes that generate a

particularly large change set, resulting in a large number of fragments to be loaded (i.e. 100

– 1000s)

Web Interface

The Harvester ships with a set of perl-CGI scripts that can generate a simple “Web

interface” from which you can: monitor the current status of the Harvester and Fragment

loader; view log files of previous harvests; browse the data held within the harvester’s

internal caches; etc.

symplectic.co.uk

http://symplectic.co.uk/

15

Note: With suitable additional configuration, it is also possible to initiate harvests through

this interface.

The interface scripts, and details of how to deploy them (e.g. to Apache), secure access, etc

can be found within the folder examples/example-integrations/web-interface.

Configuring for regular updates

Typically you will want to schedule runs of elementsfetch.sh using cron. A fairly normal

update schedule would be to run a differential update once a day. If you are connecting to

an Elements API using an Elements API Endpoint Specification prior to v5.5 we recommend

running a full re-harvest (--full) fairly regularly (e.g. once a month). If your API is using an

endpoint specification > v5.5 we still recommend running full re-harvests, but you should

be able to schedule them less frequently (e.g. once every few months), as the v5.5 API

symplectic.co.uk

http://symplectic.co.uk/

16

results are more reliable for “differential” updates.

Note: The elementsfetch.sh script, used to launch the harvester, uses the "flock" utility to

acquire an exclusive lock on a file, before proceeding. This ensures that we don’t spawn

multiple concurrent harvester processes (e.g. if a previous harvest is taking a long time to

complete, and the next scheduled harvest attempts to start whilst it is still running).

To edit the crontab for the current user use the command : crontab -e

Alternatively (if running the harvester as the “root” user) you can simply create a Vivo

specific text file within /etc/cron.d/ and enter the relevant cron scheduler there.

Example crontabs:

You can find advice and an example crontab file in the folder

examples/example-integrations/cron/. The information below is repeated and expanded

on there.

Note: You will need to remove the # at the start of each line to enable that schedule:

Run a delta at 4 am every Mon-Sat, Run a full at 3 am on a Sunday

00 04 * * 1-6 /usr/local/vivo/harvester/elementsfetch.sh

00 03 * * 0 /usr/local/vivo/harvester/elementsfetch.sh --full

Run a skipgroup delta every 3 hours at 5 past the hour between 7am and 11pm, Run a non

group skipping every day at 4am and run a full once every month on the 1st Sunday of each

month.

05 7-23/3 * * * /usr/local/vivo/harvester/elementsfetch.sh --skipgroups

00 04 * * * /usr/local/vivo/harvester/elementsfetch.sh

00 03 * * 0 test $(date +\%d) -lt 8 && /usr/local/vivo/harvester/elementsfetch.sh --full

Note: Pay attention to how the “test” and “date” utilities to check the date lies in the first

week of the month in the final schedule. Also be aware that the ‘%’ character must be

escaped with a preceding “\” as it has special meaning in crontab files.

Setting the “HARVEST_ORIGIN”

It is worth setting the environment variable “HARVEST_ORIGIN” to the value “CRON”

whenever an automated harvest is run. This ensures that the “harvests_run” log will report

the origin of the harvest correctly. This can usually be achieved by simply adding a line like:

HARVEST_ORIGIN=CRON

To the top of your crontab.

If this approach is not supported on your system you will need to prepend the command on

each active schedule line with “export HARVEST_ORIGIN=CRON &&”

symplectic.co.uk

http://symplectic.co.uk/

17

Appendix A : VIVO server specification
and configuration.

This appendix covers our recommendations for how to set-up a linux server to host VIVO

when you are planning to populate it via the Elements harvester. It is not intended to cover

how to install VIVO (for which we recommend consulting the Duraspace documentation)

and instead focuses on how best to configure the environment VIVO is running in to ensure

smooth operation.

Performance Concerns

Recommended Specifications

Both VIVO and the Harvester can be both cpu and memory hungry and the Harvester in

particular makes heavy use of disk both in terms of high IOPS and overall volume.

Therefore For a typical institution we would recommend a server similar to :

● i7\Xeon family 4 core hyperthreaded (8 thread) desktop/server class CPU

● 64 Gb of RAM

● 500Gb of SSD disk

Server Configuration

You should ensure that you have set up Tomcat and any reverse proxy server (e.g. apache)

to be able to use a reasonable number of threads. On most distributions this is done by

editing the file /etc/security/limits.conf and adding the following lines:

apache hard nproc 400

tomcat hard nproc 1500

You may also want to tweak the connection timeout and maxthreads properties of both

Tomcat and apache.

Security Concerns

You should ensure that if your distro uses SELinux that it is configured so that it does not

prevent any of the processes (across both VIVO and the harvester) from running correctly

(how to do this is outside the scope of this document).

Database Configuration

symplectic.co.uk

http://symplectic.co.uk/

18

Most institutions will host VIVO using an SDB triplestore backed by either a MySQL or a

MariaDB database engine. Under these circumstances, we recommend that the database

engine is configured with these options:

[mysqld]

innodb_buffer_pool_size=16G

innodb_flush_log_at_trx_commit=2

tmp_table_size=512M

max_heap_table_size=512M

query_cache_size=64M

thread_cache_size=16

performance_schema=0

innodb_log_file_size=2G

The exact configuration file where these belong can vary between Linux distributions, but

typically they belong in /etc/my.cnf.d/server.cnf .

Note : Altering innodb_log_file_size is much easier to do before you ever start the

database engine on your server. Changing it after you have used the database engine can

be quite involved, see:

● https://dev.mysql.com/doc/refman/5.6/en/innodb-data-log-reconfiguration.html

● https://dev.mysql.com/doc/refman/5.6/en/innodb-data-log-reconfiguration.html

Security Concerns

We recommend that you run mysql_secure_installation to ensure that your

server’s mysql configuration is appropriately secure.

Tomcat Configuration

In order to ensure that VIVO has enough memory we recommend configuring it so that the

JVM running Tomcat is started with these Java options:

-Xms2G -Xmx24G -XX:MaxPermSize=128m

The exact configuration file where these should be entered can vary depending on both

your distribution and how you have installed tomcat. Typically, for a system where Tomcat

is integrated with SystemD it will be /etc/sysconfig/tomcat , where you should add

the above to the JAVA_OPTS being used.

symplectic.co.uk

https://dev.mysql.com/doc/refman/5.6/en/innodb-data-log-reconfiguration.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-data-log-reconfiguration.html
http://symplectic.co.uk/

19

Webapp deployment

One area where you should make a decision whilst installing VIVO is how you want the

server to appear to the outside world in terms of its URL address space. If your server’s

DNS is http://institution.com are you comfortable with the pages of your VIVO instance

being.

http://institution.com/vivo/display/publication186656

Or would you prefer to keep it as clean as possible and just have :

http://institution.com/display/publication186656

If you are happy with the former then you can install your VIVO application, in the typical

manner as an application named “vivo” (or indeed whatever other name you prefer) in

tomcat. In this model, If you would prefer people to still reach your VIVO instance when

landing directly on http://institution.com your simplest option is to employ a reverse proxy

server and add a redirect from “/” to “/vivo”.

Alternatively if you prefer the latter option you need to deploy your VIVO application at the

root (“/”) path within tomcat. There are three ways to achieve this:

1. Edit tomcat’s server.xml file (e.g. /usr/share/tomcat/conf/server.xml).
This method has been deprecated by Tomcat’s developers.

2. Manually deploy the webapp (keep it outside of the webapps folder) and add an

external context fragment file to deploy it named “ROOT.xml”.

3. Name the webapp “ROOT” instead of “vivo”.

Option 3 is the simplest and the only real consequences are that your Tomcat log file

names will be unusually named (ROOT.all.log and ROOTsolr.log), and you will need to

update the path to VIVO's Solr server in VIVO's runtime.properties files (as you always do if

you use any name other than “vivo” during installation).

VIVO Configuration
Once you have decided how to deploy your webapp you should ensure that your VIVO's

runtime.properties file has its Vitro.defaultNamespace configured appropriately.

If the initial part of this value matches the URL where your VIVO server is deployed then you

will be able to download the underlying RDF data directly from the server. Whether this is

desirable or not is entirely the choice of the institution, but if you wish to make this possible

you must use the correct value:

If you do want to allow direct access to the underlying RDF data and assuming your

server’s DNS is http://institution.com then the Vitro.defaultNamespace value should

be:

http://institution.com/vivo/individual

symplectic.co.uk

http://institution.com/vivo/individual
http://symplectic.co.uk/

20

If deployed as “vivo”, or

http://institution.com/individual

If deployed at the root path.

If you do not want to allow direct access to the underlying RDF data you may as well leave

Vitro.defaultNamespace at its default value, unless the default happens to match the

URL where you have deployed your VIVO server.

Note: Once you have configured Vitro.defaultNamespace you should ensure that the

defaultBaseURI used by the harvester’s mapping scripts matches exactly.

List View Config Configuration

When creating "context" objects (e.g. authorships/editorships/roles), the default crosswalks

make use of "VCard" objects, to represent people that do not have a profile in Vivo (e.g. any

co-authors of an academic paper from another institution).

(vcard<--authorship-->publication) Vs (user<--authorship-->publication)

In fact, the default crosswalks deliberately create a VCard connected to the context object

regardless of whether there is also a link to an actual Vivo user:

 (vcard<--authorship-->publication) Vs (user + vcard <--authorship-->publication)

This is done to ensure that all authors/editors/etc are listed even if a particular user's

relationship with a publication is marked as "hidden". It also allows for situations where the

published name, as listed on the paper, does not match the user's name as it appears on

their profile.

Unfortunately Vivo's out of the box support for "VCard" objects in context objects is not as

complete as it might be, for example, it does not list "VCard's" in "editorship" objects at all.

Additionally, not all aspects of Vivo cope well with context objects containing links to both

a user object and an equivalent Vcard representation of the linked user.

These issues mostly relate to how various "listViewConfigs" process data:

● listViewConfig-informationResourceInEditorship.xml

this does not handle "VCard" data at all.

● listViewConfig-informationResourceInAuthorship.xml

this always list the user's "label" rather than the VCard name, potentially hiding the

published name.

● listViewConfig-relatedRole.xml

the behaviour here is buggy and inconsistent in terms of which names gets listed

and which profiles get linked.

The "example-integrations/vivo-list-view-configs" directory contains some example

symplectic.co.uk

http://institution.com/vivo/individual
http://symplectic.co.uk/

21

updated list view configs for Vivo v1.9.3 that can be used to address these issues.

Proxy Server Configuration

If Apache or a similar web server (e.g. nginx) is being used as a reverse proxy in front of

Tomcat you should ensure that the appropriate paths are being forwarded onto tomcat.

If your app is deployed as “vivo” or similar in Tomcat then you can simply proxy that path,

otherwise you should proxy the root path.

From here on we will assume you are using apache. The location of apache’s configuration

files varies between Linux distributions. You will usually either be editing the main Apache

config file (e.g. /etc/httpd/conf/httpd.conf) or adding a new break out file specific to your

use case in the appropriate directory e.g. (/etc/httpd/conf.d/vivo.conf).

To setup proxying you should start with a simple VirtualHost definition something like this:

<VirtualHost *:*>

ProxyPreserveHost On

SSLProxyEngine On

SSLProxyCheckPeerCN off

SSLProxyCheckPeerName off

ServerName localhost

</VirtualHost>

To this you will need to add configuration . (within the <VirtualHost> section)to perform

re-directs and proxy requests to tomcat as appropriate:

You can use a tomcat’s AJP proxy connector by adding:

ProxyPass "/vivo" "ajp://localhost:8080/vivo"

Or if deployed at root:

ProxyPass "/" "ajp://localhost:8080/"

Alternatively you can use a more traditional proxy config by adding something like:

ProxyPass /vivo/ http://0.0.0.0:8080/vivo/

ProxyPassReverse /vivo http://0.0.0.0:8080/vivo/

Or if deployed at root:

ProxyPass / http://0.0.0.0:8080/

ProxyPassReverse / http://0.0.0.0:8080/

If your webapp is deployed at “/vivo” within Tomcat but you want to forward any requests

to your plain server DNS to the VIVO home page you should add a redirect rule, e.g. :

RewriteEngine on

symplectic.co.uk

http://symplectic.co.uk/

22

RewriteCond %{REQUEST_URI} ^/$

RewriteRule / /vivo [R]

Add this ahead of the ProxyPass directives (i.e. earlier in the file).

Note : Apache configuration is beyond the scope of this document. The above is just

general advice.

Timeouts

If you configure your Fragment Loader process so that it accesses your VIVO server’s Sparql

update API via the proxy server, you will need to ensure that the proxy timeout is set to a

high value (e.g. 600s), at least for the path to VIVO's sparql update API (relative path

/api/sparqlUpdate) to minimise the chance that data imports will time out, e.g.:

ProxyPass / http://0.0.0.0:8080/ timeout=600

If you are using the AJP connector to proxy to Tomcat you may wish to alter tomcat’s

server.xml to increase that connectors timeout value:

https://wiki.duraspace.org/display/VTDA/Running+VIVO+behind+an+Apache+server

Security Concerns

There is a risk that VIVO user credentials may be passed in the clear during both VIVO login

and sparql update operations. You can remain secure in two ways:

1. Ensure that these operations only ever occur via localhost or SSH tunnel

 e.g. by configuring the Fragment Loader to use a localhost URL to access the Sparql

API.

2. By deploying SSL certificates and protecting the appropriate paths in apache.

This is outside the scope of this document.

Note: There are example apache configuration files (for both plain http and https

deployments) in the folder examples/example-integrations/apache-proxy.

symplectic.co.uk

https://wiki.duraspace.org/display/VTDA/Running+VIVO+behind+an+Apache+server
http://symplectic.co.uk/

23

Appendix B : Harvester configuration
options

The various parameters that can be set within the harvester’s “elementsfetch.properties”

config file are listed below:

Those highlighted in grey are rarely used, those highlighted in orange should only normally

be used in a test environment.

Parameter Name

 Data Type

Description Default

ELements API Configuration

apiEndpoint

 String

Required

The URL where the Elements API can be

reached.

N/A

apiUsername

 String

Required for secure apiEndpoints

The username of the Elements ApiAccount

being used to access the apiEndpoint.

N/A

apiPassword

 String

Required for secure apiEndpoints

The password of the Elements ApiAccount

being used to access the apiEndpoint.

N/A

apiVersion

 String (e.g. “v5.5)

Optional

The version of the Elements API Endpoint

Specification used by the configured

apiEndpoint. Will be verified if provided.

null

rewriteMismatchedPaginati

onUrls

 Boolean

Optional

If the apiEndpoint is returning data containing

self referential links (e.g. nextPage) that do

not match the configured apiEndpoint, should

the program error out (false) or rewrite the

urls to use the baseURL configured in

apiEndpoint (true).

true

ignoreSSLErrors

 Boolean

Optional

Should the system error out if apiEndpoint is

protected by an insecure SSL chain (e.g. self

signed, expired or otherwise invalid SSL

certificate).

false

apiRequestDelay

 Integer

Optional

Number of ms to wait between requests to

250ms

symplectic.co.uk

http://symplectic.co.uk/

24

the API.

apiSocketTimeout

 Integer

Optional

Number of ms to wait for a response from the

API before timing out

300000ms

(5 mins)

refDetailPerPage

 Integer

Optional

Number of items to request per page when a

request is made to retrieve items from the API

in "ref" detail level.

100

fullDetailPerPage

 Integer

Optional

Number of items to request per page when a

request is made to retrieve items from the API

in "full" detail level.

Note: effective maximum is 25 as the elements API will

never return more than 25 items in "full" detail.

25

Data to be Retrieved From the API

queryObjects

 String{,}

comma separated list of strings

Required

List of Elements objects categories to be

processed by the harvester, e.g:

“users, publications, grants”

Note: The supplied category names must be valid.

N/A

elementsImageType

 Enum

(profile|thumbnail|original|none)

Optional

Which version of the Elements user profile

photo should be used to generate the Vivo

user photo?

“profile”

visibleLinksOnly

 Boolean

Optional

Should invisible Elements relationships ever

be sent to Vivo.

This represents a hard block implemented by the

Harvester itself as opposed to relying on the crosswalks

to produce appropriate output.

false

repullRelsToCorrectVis

 Boolean

Optional

Should relationships be re-pulled from the

Elements API if any contained non-user

objects are modified, this ensures "visibility" is

tracked correctly

true

relTypesToReprocess

 String{,}

comma separated list of strings

Optional

List of Elements relationship-type names.

Specifying the types of relationships that

need to be "reprocessed" if either of the

contained objects are modified.

Note: These are the types of relationships for which

“extraObjects” data is passed into the crosswalks when

“activity-user-

association,

user-teaching-

association,

publication-user-

authorship”

symplectic.co.uk

http://symplectic.co.uk/

25

they are translated.

Translation Process Configuration

xslTemplate

 String (Path)

Required

Path to the entry point of the XSLT

crosswalks.

N/A

zipFile

 Boolean

Optional

Should intermediate files held in the

harvester’s internal cache be “gzipped” to

preserve space?

false

changeProtectionEnabled

 Boolean

Optional

Whether the harvester should error out if the

number of user or non-user objects being sent

to Vivo changes by a fraction greater than

specified (see below).

Note: This should typically be set to false if

you are running an “opt in” process, as user

numbers can vary dramatically between

harvests, particularly during initial roll out.

true

 allowedUserChangeFrac

tion

 Number

decimal fraction

between 0 and 1, e.g. 0.5

Optional

The percentage change (e.g 0.5 = 50%) by

which the number of users being sent to Vivo

is allowed to change.

0.2 (20%)

allowedNonUserChange

Fraction

 Number

The percentage change (e.g 0.5 = 50%) by

which the number of non-user objects being

sent to Vivo is allowed to change.

0.3 (30%)

 vivoImageDir

 String (Path)

Optional

The directory where the harvester will store

processed photos suitable for use with Vivo.

data/harvestedIma

ges/

vivoImageBasePath Optional

The URL path fragment (beneath the Vivo

base path) where you will arrange for the

generated photos to be made available in

your web hosting environment.

/harvestedImages/

Who data to include in Vivo

paramUserGroups

 Integer {.}

Optional

List of Elements group ids. For any group

null

Corresponds to

“all users”

symplectic.co.uk

http://symplectic.co.uk/

26

comma separated list of integers

listed here (or selected by one of the sibling

regex parameters below), all “implicit” users

of that group are candidates for being sent to

Vivo, unless otherwise excluded (e.g. by

excludeUserGroups, publicStaffOnly, etc)

 paramUserGroupRegexe

s

 CSV Fragment

comma separated list of strings,

with special characters (e.g. “,)

encoded as per csv spec

Optional

List of regex patterns. Any Elements group

whose “name” matches one of the patterns is

considered selected.

null

paramUserGroupDescrip

tionRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

patterns, is considered selected.

null

excludeUserGroups

 Integer {,}

comma separated list of integers

Optional

List of Elements group ids. For any group

listed here (or selected by one of the sibling

regex parameters below), all “implicit” users

of that group are excluded from being sent to

Vivo.

null

 excludeUserGroupRegex

es

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “name” matches one of the patterns is

considered selected.

null

excludeUserGroupDescri

ptionRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

patterns, is considered selected.

null

currentStaffOnly

 Boolean

Optional

Should the harvester only transfer "current"

staff to Vivo?

true

academicsOnly

 Boolean

Optional

Should the harvester only transfer "academic"

staff to Vivo?

true

publicStaffOnly

 Boolean

Optional

Should the harvester only transfer "public"

staff to Vivo?

true

Elements Group Translation

 Optional null

Corresponds to

symplectic.co.uk

http://symplectic.co.uk/

27

paramGroups

 Integer {.}

comma separated list of integers

List of Elements group ids. For any group

listed here (or selected by one of the sibling

regex parameters below), that group and all

its child groups (recursively down the tree)

will be represented as internal organisations

in Vivo unless they are explicitly excluded.

“all groups”

 paramGroupRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “name” matches one of the patterns is

considered selected.

null

paramGroupDescription

Regexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

patterns, is considered selected.

null

 includeChildGroupsOf

 Integer {.}

comma separated list of integers

Optional

List of Elements group ids. For any group

listed here (or selected by one of the sibling

regex parameters below), all its child groups

(recursively down the tree) will be

represented as internal organisations in Vivo

unless they are explicitly excluded.

The selected group itself, however, will NOT

be included in Vivo.

null

 includeChildGroupRegex

es

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “name” matches one of the patterns is

considered selected.

null

includeChildGroupDescri

ptionRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

patterns, is considered selected.

null

 excludeGroups

 Integer {.}

Optional

List of Elements group ids. For any group

listed here (or selected by one of the sibling

regex parameters below), that group and all

its child groups (recursively down the tree)

will be excluded from Vivo unless they are

explicitly included.

Group memberships of “Excluded groups” are

rewired (where possible) to the nearest

ancestral group that is being included in Vivo

null

 excludeGroupRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

null

symplectic.co.uk

http://symplectic.co.uk/

28

whose “name” matches one of the patterns is

considered selected.

excludeGroupDescriptio

nRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

patterns, is considered selected.

null

excludeChildGroupsOf

 Integer {.}

Optional

List of Elements group ids. For any group

listed here (or selected by one of the sibling

regex parameters below), all its child groups

(recursively down the tree) will be excluded

unless they are explicitly included.

The selected group itself, however, will NOT

be excluded from Vivo.

Group memberships of “Excluded groups” are

rewired (where possible) to the nearest

ancestral group that is being included in Vivo.

null

excludeChildGroupRege

xes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “name” matches one of the patterns is

considered selected.

null

excludeChildGroupDescr

iptionRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

patterns, is considered selected.

null

exciseGroups

 Integer {.}

Optional

List of Elements group ids. For any group

listed here (or selected by one of the sibling

regex parameters below), all its child groups

(recursively down the tree) will be excluded

unless they are explicitly included.

The selected group itself, however, will NOT

be excluded from Vivo.

Group memberships of “Excised groups” are

excluded from Vivo entirely.

null

 exciseGroupRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “name” matches one of the patterns is

considered selected.

null

exciseGroupDescription

Regexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

null

symplectic.co.uk

http://symplectic.co.uk/

29

patterns, is considered selected.

exciseChildGroupsOf

 Integer {.}

Optional

List of Elements group ids. For any group

listed here (or selected by one of the sibling

regex parameters below), all its child groups

(recursively down the tree) will be excluded

unless they are explicitly included.

The selected group itself, however, will NOT

be excluded from Vivo.

Group memberships of “Excised groups” are

excluded from Vivo entirely.

 exciseChildGroupRegexe

s

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “name” matches one of the patterns is

considered selected.

null

exciseChildGroupDescrip

tionRegexes

 CSV Fragment

Optional

List of regex patterns. Any Elements group

whose “description” matches one of the

patterns, is considered selected.

null

 includeEmptyGroups

 Boolean

Optional

Should Elements groups containing no users

be represented in Vivo?

true

Undocumented Parameters

The list below is a set of additional parameters that should not typically be altered.

They are included here for completeness but should only ever be used by people who are

very familiar with the harvester.

Parameter Name Default Value

rawOutput

 String (Path)

“data/raw-records/”

rdfOutput

 String (Path)

“data/translated-records/”

tdbOutput

 String (Path)

"data/tdb-output/"

otherOutput

 String (Path)

"data/other-data/"

useFullUTF8 false

symplectic.co.uk

http://symplectic.co.uk/

30

 Boolean

maxXslThreads

 Integer

0

maxResourceThreads

 Integer

0

maxFragmentFileSize

 Integer

1228800

 eligibilityFilterType

 Enum

(label-scheme|generic-field)

null

 eligibilityFilterName

 String

null

eligibilityFilterInclusionValue

 String

null

eligibilityFilterExclusionValue

 String

null

symplectic.co.uk

http://symplectic.co.uk/

