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1. Framework development 

1.1. Flux balance analysis: Quick recap 

Flux balance analysis (FBA) has been reviewed elsewhere1 and is based on the pseudo-steady state 

assumption, i.e. that under short timescales there is no accumulation of intracellular metabolites. 

Therefore a mass balance of all metabolites yield 

S ∙ v = 0               [Eq. S1] 
Where S is the stoichiometric matrix, which contains the stoichiometric coefficients for all 

reactions (as columns) and metabolites (as rows), and v is the vector of all metabolic fluxes 

(mmol/gDWh). Because the matrix S usually has more columns than rows, equation S1 has 

multiple solutions, so additional constraints are needed to solve the system. The fluxes can be 

constrained if reversibility/irreversibility of reactions are known, and if some uptake/production 

rates are measured. These constraints are represented as: 

LB ≤ v ≤ UB               [Eq. S2] 
Where LB and UB are the lower and upper bound vectors containing the constraints for each flux. 

Equations S1 and S2 define a subspace of feasible solutions, and if an objective function is 

assumed, an optimal solution can be found. 

 

1.2. Constraints connecting enzymes with reactions 

Our aim in this study is to model with proper constraints the relationship between enzymes and 

reactions in the cell, to further constrain flux vector v. For this, we will start with the simplest 

scenario: an enzyme E� which catalyzes only one reaction R� (i.e. no promiscuity), reaction which 

is in turn only catalyzed by enzyme E� (i.e. no isozymes). For this pair enzyme/reaction (assuming 

that the reaction is irreversible), it holds true that: 

v� ≤ k����� ∙ [E�]               [Eq. S3] 
Here v� is the flux through reaction R� (mmol/gDWh), k�����

 is the turnover number (i.e. maximum 

specific rate; h-1) and  [E�] is the concentration of the enzyme (mmol/gDW). Note that the right side 



of the equation is the maximum flux (v���). Also note that k�����
 will depend on both the enzyme 

and the reaction, because the binding enzyme-substrate could be different. 

Equation S3 is the simplest scenario, but more complicated relationships are quite common in 

metabolism. For isozymes, i.e. several enzymes that can catalyze the same reaction, the relationship 

would be: 

v� ≤ � k����� ∙ [E�]
�

               [Eq. S4] 
For a promiscuous enzyme, i.e. an enzyme that can catalyze several different reactions: 

� v�
k�����

�
≤ [E�]               [Eq. S5] 

Finally, for a complex, i.e. a set of subunits that together work as a whole enzyme: 

v� ≤ k����� ∙ Min" #[U�"]
s�" %               [Eq. S6] 

Where s�" is the stoichiometry and [U�"] the concentration (mmol/gDW) of subunit U�", part of 

enzyme E�. Even more complicated relationships emerge if some of this rules are combined; for 

instance, a promiscuous enzyme could catalyze one reaction that is also catalyzed by an alternative 

isozyme. Therefore, an approach in which this relationships can be decomposed is needed. 

 

1.3. Including enzymes in reactions 

In our approach, we include enzymes as part of the reactions in the model. For a generic reaction 

such as the following: 

R�:    A + B *+, C + D               [Eq. S7] 
Which is catalyzed by enzyme E�, we transform it to: 

R�:    n��E� + A + B , C + D               [Eq. S8] 



With a reaction/enzyme specific stoichiometric coefficient n�� to be determined. Note that even 

though enzymes are not consumed in reactions (because they are catalysts), for a short period of 

time they are being occupied, so one should interpret the enzyme “consumption” in equation S8 as 

the usage of an amount of enzyme at a specific time to catalyze the flux going through reaction R�. 
Therefore, the enzyme in the reaction is treated as a pseudo-metabolite and does not affect the mass 

balance of the reaction. 

Because mass balances of enzymes should also be respected, by including E� in the reaction (that 

will be used if the reaction carries flux), we should include an overall enzyme usage pseudo-

reaction EU� that supplies the cell with the corresponding amount of enzyme: 

EU� :     , E�               [Eq. S9] 
If we call e� the “flux” carried by this pseudo-reaction, then it can be constrained with the enzyme’s 

concentration (mmol/gDW): 

0 ≤ e� ≤ [E�]               [Eq. S10] 
Note that the units here do not correspond with the typical units of flux (mmol/gDWh), and this is 

because EU� is not a real reaction but just a mathematical construct to represent the enzyme’s usage 

in the model. Additionally, because we are working under a steady state assumption, we are just 

observing a specific time point of metabolism, therefore we do not take into account production 

and degradation of the enzyme, but only the enzyme usage for catalyzing the corresponding 

reactions. We can then define a mass balance for enzyme E� (considering equations S8 and S9): 

−n�� ∙ v� + e� = 0               [Eq. S11] 
Combining equations S10 and S11 and rearranging we get: 

v� ≤ 1
n�� ∙ [E�]               [Eq. S12] 

Comparing this equation to equation S3 we conclude that the stoichiometric coefficient for the 

enzyme E� in reaction R� should be: 

n�� = 1
k�����                [Eq. S13] 



Therefore, the modifications that should be performed to account for an enzymatic constraint in 

FBA should be (a) include the enzyme as a metabolite in the corresponding reaction with the 

inverted k��� as the stoichiometric coefficient, (b) include an enzyme usage pseudo-reaction for the 

enzyme, and (c) define an upper bound for the enzyme usage equal to the measured concentration 

of that enzyme. 

Some additional considerations should be taken in specific cases: 

• Reversible reactions: The transformation shown in equation S8 only works if all reactions 

are defined as irreversible. Therefore, in the case that the reaction shown in equation S7 

was a reversible reaction, 2 reactions should be instead defined, one in the forward direction  

(R�/5) and one in the backward direction  (R�/6), both with the same enzyme as substrate, 

but possibly with different k��� values, depending on the substrate affinity: 

R�/5 :    1
k�����/5 E� + A + B , C + D               [Eq. S14] 

R�/6 :    1
k�����/6 E� + C + D , A + B               [Eq. S15] 

• Isozymes: In the case of isozymes, because all isozymes would be equally capable of 

catalyzing the corresponding reaction, 1 reaction for each enzyme should be defined. For 

instance, if the reaction shown in equation S7 had 2 isozymes (E7 and E8), then the new 

reactions would be: 

R�/7 :    1
k���7� E7 + A + B , C + D               [Eq. S16] 

R�/8 :    1
k���8� E8 + A + B , C + D               [Eq. S17] 

Note that the k��� values can be different (because the enzyme is different). Also, in order 

to keep the same original upper bound in the reaction, we must introduce an “arm reaction”2: 

we create a pseudo-metabolite M�9� that acts as an intermediate between the substrates and 

the products. The final formulation for isozymes then would consist of 3 reactions: 1 



reaction from the substrates to the intermediate metabolite (R�/�:�), and 2 going from the 

intermediate product to the products, each using a different enzyme (R�/7 and R�/8). The 

original upper bound can that way still be respected by imposing it on reaction R�/�:�. 

R�/�:�:    A + B , M�9�               [Eq. S18] 
R�/7 :    1

k���7� E7 + M�9� , C + D               [Eq. S19] 

R�/8 :    1
k���8� E8 + M�9� , C + D               [Eq. S20] 

• Promiscuous enzymes: For promiscuous enzymes there is no additional action needed: If a 

given enzyme takes part of 2 different reactions, then the same enzyme should be a substrate 

in both reactions. Note that only one enzyme usage pseudo-reaction will be defined, so both 

reactions will “share” the amount of enzyme available. Also note that the k��� values can 

be different (because the substrate is different). 

• Complexes: Finally, in the case of complexes all proteins are part of the same group that 

has the catalytic activity. The reaction then uses all proteins and shares the same k��� value, 

but multiplied by the corresponding stoichiometry. As an example, if the reaction shown in 

equation S7 was catalyzed by a complex of 2 subunits (E7 and E8), then the reaction would 

be: 

R� :    s7
k����� E7 + s8

k����� E8 + A + B , C + D               [Eq. S21] 
Where s7 and s8 are the corresponding stoichiometry of the subunits. 

 

  



1.4. Example with a toy model 

In the following we present an example on how our approach of additional constraints will work 

for a small network. Figure S1 shows the chosen model; it includes 3 exchange reactions (2 

consumptions and 1 production) and 3 metabolic reactions. There is 1 reversible reaction, 1 

complex (E; and 2E>), 1 reaction catalyzed by 2 possible enzymes (E7 or E8) and 1 promiscuous 

enzyme (E7). 

 

Figure S1: Toy model used for the example. 

The 6 reactions (and the corresponding bounds for each flux) are the following: 

R7 :  , M7 

R8 :  , M8 

R;:  M7 + M8
*A, M; 

R>:  M;
*A B: *CDEEEEF M> 

RG:  M8
*H �9I 8*JKEEEEEEF M> 

RL:  M> , 

0 ≤ v� ≤ 1000   ;    i = N1, 2, 3, 4, 6P 

−1000 ≤ vG ≤ 1000 



As stated previously, all reactions should be irreversible, therefore we first have to replace reaction 

RG by two irreversible reactions RG/5 and RG/6. Note that now all fluxes should be positive: 

R7 :  , M7 

R8 :  , M8 

R;:  M7 + M8
*A, M; 

R>:  M;
*A B: *CDEEEEF M> 

RG/5:  M8
*H �9I 8*JDEEEEEEF M> 

RG/6:  M>
*H �9I 8*JDEEEEEEF M8 

RL:  M> , 

0 ≤ v� ≤ 1000   ;    i = N1, 2, 3, 4, 5/f, 5/b, 6P 

Additionally, reaction R> has isozymes, therefore should be replaced by an arm reaction (R>/�:�) 

and 2 parallel reactions (R>/7 and R>/8): 

R7 :  , M7 

R8 :  , M8 

R;:  M7 + M8
*A, M; 

R>/�:�:  M; , PM7 

R>/7:  PM7
*A, M> 

R>/8:  PM7
*C, M> 

RG/5:  M8
*H �9I 8*JDEEEEEEF M> 

RG/6:  M>
*H �9I 8*JDEEEEEEF M8 



RL:  M> , 

0 ≤ v� ≤ 1000   ;    i = N1, 2, 3, 4/arm, 4/1, 4/2, 5/f, 5/b, 6P 

Now we can perform the conversion of enzymes to metabolites, by adding them as substrates to 

the reactions and including the corresponding enzyme usage pseudo-reactions:  

R7 :  , M7 

R8 :  , M8 

R;:  M7 + M8 + 1
k���7; E7 , M; 

R>/�:�:  M; , PM7 

R>/7:  PM7 + 1
k���7> E7 , M> 

R>/8:  PM7 + 1
k���8> E8 , M> 

RG/5:  M8 + 1
k���G/5 E; + 2

k���G/5 E> , M> 

RG/6:  M> + 1
k���G/6 E; + 2

k���G/6 E> , M8 

RL:  M> , 

ER� :  , E7   ;    i = N1, 2, 3, 4P 

0 ≤ v� ≤ 1000   ;    i = N1, 2, 3, 4/arm, 4/1, 4/2, 5/f, 5/b, 6P 

0 ≤ e� ≤ [E�]   ;    i = N1, 2, 3, 4P 

We now have 13 reactions (3 metabolite exchange reactions, 6 metabolic reactions and 4 enzyme 

usage pseudo-reactions) and 9 metabolites (4 real metabolites, 1 pseudo-metabolite and 4 

enzymes). Note that k���7>  and k���8>  are different, because they are different enzymes, but there is just 



one k���G/5
, because both subunits in RG/5 act together as the same enzyme. The same can be said 

about k���G/6
. 

We can now proceed to formulate the mass balances for all 9 metabolites: 

M7:   v7 − v; = 0 

M8:   v8 − v; − vG/5 + vG/6   = 0 

M;:   v; − v>/�:� = 0 

M>:   v>/7 + v>/8 + vG/5 − vG/6 − vL   = 0 

PM7:   v>/�:� − v>/7 − v>/8 = 0 

E7 :   − 1
k���7;  v; − 1

k���7> v>/7 + e7 = 0 

E8 :   − 1
k���8> v>/8 + e8 = 0 

E; :   − 1
k���G/5  vG/5 − 1

k���G/6  vG/6 + e; = 0 

E> :   − 2
k���G/5  vG/5 − 2

k���G/6  vG/6 + e> = 0 

Note that if one combines the enzymes’ mass balances together with the upper bounds of the 

enzymes’ usage, one obtains the correct constraints relating fluxes and enzymes: 

E7 :   1
k���7;  v; + 1

k���7> v>/7 ≤ [E7] 

E8 :   1
k���8> v>/8 ≤ [E8] 

E; :   1
k���G/5  vG/5 + 1

k���G/6  vG/6 ≤ [E;] 



E> :   2
k���G/5  vG/5 + 2

k���G/6  vG/6 ≤ [E>] 
Which was our original objective. Also, note that all mass balances can be formulated using matrix 

notation: 
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This equation, of the same format as equation S1, together with the previously shown lower and 

upper bounds for all 13 fluxes, can be used in any constrained-based approach for predicting 

phenotype. Finally, note that in this representation the equivalent of the original stoichiometric 

matrix is maintained in the upper-left corner of the matrix (see the highlighted submatrix). 

 

1.5. Going genome-scale 

In this study we applied the previously described framework to the latest version of the consensus 

genome-scale model of yeast3. Figure 1 in the manuscript shows a summary of the approach for 

constructing the new S matrix. It is a generalization of the approach used in the toy model example, 

but for a model that has n reactions and m metabolites, and in which p enzymes will be introduced. 

Note that the yellow lines divide the new stoichiometric matrix in 4 submatrices: the upper left 

submatrix is the original stoichiometric matrix (but modified to account for only irreversible 

reactions with no isozymes, as described previously), the upper right submatrix has only zeros, the 

lower left submatrix has the kinetic information and the lower right submatrix is an identity matrix. 



It is important to mention that the lower left submatrix is not a diagonal matrix; as shown in section 

0 it can have several coefficients in the same row (i.e. promiscuous enzyme) or column (i.e. 

complex), representing the substrate specific enzyme activities. 

It is also relevant to notice that as any other stoichiometric matrix, the columns indicate each 

reaction’s stoichiometry and the rows indicate mass balances for each metabolite (or enzyme). In 

particular, combining the enzyme usage’s upper bound and its mass balance we can arrive to 

equation S3, which was the goal of this approach. 

We have shown the mathematical basis for our approach; we will proceed therefore in the next 

section to detail how was this approach implemented. 

 

  



2. Description of the method 

The GECKO toolbox (Genome-scale model enhancement with Enzymatic Constraints, accounting 

for Kinetic and Omics data) can be found in the GitHub repository 

https://github.com/SysBioChalmers/GECKO/releases/tag/v1.0. Its main function is to transform a 

genome-scale model to account for enzymatic constraints. It is mainly written in MATLAB with a 

small section written in Python (for querying the BRENDA database). For running it, the only thing 

that should be done (beside updating the data from BRENDA, SWISS-PROT and KEGG) is run 

the function enhanceGEM.m, which has as an input the genome-scale model, the used toolbox 

(COBRA4 or RAVEN5) and the new name for the model. In the following we will review how 

GECKO works, by 1) describing how kcat values and other enzyme data was collected, 2) how the 

model is processed to a format suited to apply our approach, 3) how kcat values are matched to the 

corresponding enzymes/reactions 4) how the enzymes are added to the model, and 5) how enzyme 

levels can be constrained in the model. 

 

2.1. Retrieving enzyme data 

2.1.1. Retrieving kcat values: querying BRENDA 

The BRaunschweig ENzyme DAtabase (BRENDA)6 gathers enzymatic information, and can be 

queried by enzyme commission (EC) number and organism. A small package for automatically 

querying it was developed using Python as the scripting language, which can be found inside the 

GECKO toolbox. The following scripts should be ran (in the presented order) to obtain files with 

all enzymatic data: 

1. retrieveBRENDA.py: Access the web client and retrieves all EC data from BRENDA. 

Creates files with the raw BRENDA output for each EC number for which there is data, 

with the file name ‘ECX.X.X.X_FEATURE.txt’, where X.X.X.X is the EC number and 

FEATURE is one of the following 6: KCAT (kcat values), KM (km values), MW (molecular 

weights), PATH (associated metabolic pathways), SEQ (sequences) or SA (specific 

activities. Note that each files contains the available information for all organisms. 

 



2. createECfiles.py: Reads the previously generated raw files and creates easy to read EC 

files, with the file name ‘ECX.X.X.X.txt’, where X.X.X.X is the EC number. These files 

have 5 columns: feature (one of the 6 previously mentioned), organism, value (value of the 

feature), substrate (when relevant) and comments (if any). Missing information is replaced 

with a *. Note that only the KCAT field is used onwards by the method, but the other fields 

are anyways added for manually checking consistency. 

 

3.  findMaxKcats.py: Reads the previously generated EC files and finds the maximum kcat for 

each substrate for a chosen microorganism. Writes a table with the following columns (from 

left to right):  EC number, substrate, maximum kcat value for the organism (s-1), kcat standard 

deviation for the organism (in case of several measurements), maximum kcat value for the 

rest of the organisms (s-1), and kcat standard deviation for the rest of the organisms. The 

generated table is stored in a file named ‘ORGANISM_max_kCATs.txt’, where 

ORGANISM is the name of the organism chosen. As a general rule the maximum kcat value 

(i.e. the highest turnover rate) was chosen to avoid over-constraining the model later on7. 

  

All results shown in this study were attained using the kcat values gathered with these scripts (ran 

on August 26th 2015), choosing S. cerevisiae as the organism in findMaxKcats.py. 

 

2.1.2. Retrieving other enzyme data: querying SWISS-PROT and KEGG 

All other enzyme data besides the kcat values was retrieved from SWISS-PROT8 and KEGG9. Both 

databases were manually accessed online (SWISS-PROT on April 30th 2015, KEGG on April 30th 

2014), and all available information for S. cerevisiae was downloaded as text files. The script 

updateDatabases.m (available in the GECKO toolbox) processes these files, and creates a file 

named ‘ProtDatabase.mat’, which contains 2 relevant structures: 

• swissprot: A table with 6 columns: UNIPROT code of protein, protein name, associated 

genes, associated EC numbers (if any), molecular weight of protein (calculated from the 

sequence using calculateMW.m) and full sequence. 

 



• kegg: A table with 7 columns: UNIPROT code of protein, protein name, associated genes, 

associated EC numbers (if any), molecular weight of protein (calculated from the sequence 

using calculateMW.m), associated pathways (if any) and full sequence. 

 

2.2. Genome-scale model pre-processing 

The latest version of the consensus genome-scale model of yeast3 was used in this work. The 

downloaded release from the project’s repository (https://sourceforge.net/projects/yeast/) was 

Yeast 7.6, on July 9th 2015. Before adding the enzymes to the model, a series of modifications were 

performed, which are detailed in the following. 

 

2.2.1. Model corrections 

The script modelCorrections.m (available in the GECKO toolbox) contains a set of modifications 

made to the model to fix some issues. Namely: 

• Correct glucan coefficients in biomass pseudo-reaction: 

Checking the biomass composition of the model we noticed that the total fraction of carbohydrates 

added up to 0.59 g/gDW (Table S1), which is an 45% overestimation of the literature value of 0.41 

g/gDW10. Specifically, we found that in the downloaded model there are two types of glucan being 

used as components in the biomass pseudo-reaction (reaction code r_4041 in the model): (1->3)-

beta-D-glucan in the cytoplasm (metabolite code s_0002 in the model) and (1->6)-beta-D-glucan 

in the cell envelope (code s_0004). Even though both of these components should add up to 1.135 

mmol/gDW together10, each of them had a value of 1.135 mmol/gDW, hence doubling the amount 

of glucan and creating the aforementioned error (Table S1). To correct this issue we set at zero the 

composition of (1->3)-beta-D-glucan in the cytoplasm and distributed the 1.135 mmol/gDW of (1-

>6)-beta-D-glucan in the cell envelope together with (1->3)-beta-D-glucan also in the cell envelope 

(s_0001), in a proportion of 25% - 75% respectively11. With these modifications we achieved the 

correct carbohydrate composition of 0.41 g/gDW in yeast (Table S1). 

 

  



Table S1: Original and corrected coefficients in the carbohydrate composition of the biomass pseudo-reaction 

of Yeast 7. 

Metabolite name in 

model 

Metabolite 

code 

Molecular 

weight 

[g/mol] 

Composition [mmol/gDW] Composition [g/gDW] 

Original Corrected Original Corrected 

(1->3)-beta-D-glucan 
[cytoplasm] 

s_0002 180.2 1.1348 0 0.184 0 

(1->3)-beta-D-glucan 
[cell envelope] 

s_0001 180.2 0 0.8506 0 0.138 

(1->6)-beta-D-glucan 
[cell envelope] 

s_0004 180.2 1.1348 0.2842 0.184 0.046 

chitin [cytoplasm] s_0509 221.2 1E-6 1E-6 2.03E-7 2.03E-7 

glycogen [cytoplasm] s_0773 180.2 0.5185 0.5185 0.084 0.084 

mannan [cytoplasm] s_1107 180.2 0.8079 0.8079 0.131 0.131 

trehalose [cytoplasm] s_1520 342.3 0.0234 0.0234 7.59E-3 7.59E-3 

TOTAL - - - - 0.59 0.41 

 

• Correct extracellular membrane potential: 

When preliminary testing the model’s capabilities, we realized that protons could be 

exported out of the cell using a transport (r_1824) with no ATP cost. This is inaccurate; the 

extracellular pH is usually orders of magnitude higher than the intracellular pH, so proton 

diffusion is very unlikely to occur from the inside out, and instead it typically occurs with 

the help of the cytoplasmic ATPase, representing therefore a significant energy expenditure 

associated to yeast growth. In order to fix this problem, we blocked the reversibility of this 

transport, allowing it only to uptake protons freely, and also blocked the free export of 

putrescine and spermidine (r_1250 and r_1259, respectively), in order to avoid together 

with putrescine/H+ and spermidine/H+ antiporters unfeasible loops that were still allowing 

free excretion of protons. After these 3 modifications proton excretion had an associated 

ATP cost as expected. 

 

• Correct coefficients in oxidative phosphorylation: 

Three main changes were made in the model’s oxidative phosphorylation pathway: 

1. The proton pumping of complexes III (r_0439) and IV (r_0438) was assumed to 

have a 63.3% efficiency. This was done to represent a 63.3% efficiency of the 



mechanistic value of the P/O ratio, value observed in experimental data of yeast 

growing on glucose12. 

2. The stoichiometry in complex IV was normalized by the number of 

ferrocytochromes c (s_0710), to have a correct stoichiometry enzyme to 

ferrocytochrome. 

3. The stoichiometry of ATP synthase (complex V; r_0226) was changed to correctly 

represent the ratio H+/ATP of 3/1 common in yeast, not the original 4/1 which 

applies to organisms that have complex I present13. 

 

• Delete blocked reactions: 

4 reactions that had upper and lower bound equal to zero were removed: putrescine and 

spermidine excretions (r_1250 and r_1259, respectively), and previous biomass pseudo-

reactions for models yeast 5 and yeast 6 (r_2110 and r_2133, respectively). 

 

• Correct reversibility vector: 

The model’s field model.rev was corrected to indicate whether a reaction is reversible (can 

carry both positive and negative flux) or irreversible (can only carry positive flux). An 

exception was made for exchange reactions: they remained as reversible even if they could 

only carry positive flux, in order to have the possibility to supply the model with different 

media. 

 

• Remove unused field: 

Some fields of the model were removed, whether because they were empty or not relevant 

for our analysis: model.metCharge, model.subSystems, model.confidenceScores, 

model.rxnReferences, model.rxnECNumbers, model.Notes, model.metChEBIID, 

model.KEGGID, model.metPubChemID and model.metInChIString. 

 

2.2.2. Standardization of model 

In order to have an easier to visualize model in posterior analysis, some additional changes were 

performed, mainly including additional fields with information about the compartment of each 



metabolite. Those are detailed in standardizeModel.m (available in the GECKO toolbox) and in 

the following: 

• Removal of any compartment reference in the field model.MetNames; if a metabolite is 

called ‘metabolite_X [compartment]’ then the name is replaced by ‘metabolite_X’ and the 

compartment stored elsewhere. 

• Creation of an additional field named model.metComps, which is a numerical vector that 

indicates in which compartment each metabolite is. 

• Creation of an additional field named model.compNames, which is a cell array that 

denotes the full name of each compartment. The numbers in model.metComps correspond 

to the position of the compartment in this field. 

• Creation of an additional field named model.comps, which is of the same size of 

model.compNames and contains abbreviated names for each compartment. 

 

2.3. Matching kcat data to the model 

Before adding enzymes to the model, we need to first find which enzyme (or groups of enzymes) 

catalyze(s) each reaction, and for each pair enzyme/reaction find an appropriate kcat value. This is 

done using the databases created previously (see sections 2.1 and 2.1.2) and is detailed in the 

following. 

 

2.3.1. Matching reactions to enzymes 

The first necessary step is, for each reaction, to find the enzymes (or complexes) that can catalyze 

it in the SWISS-PROT or KEGG constructed databases (section 2.1.2). This is attained with the 

following functions (all available in the GECKO toolbox): 

• getEnzymeCodes.m: Main loop that goes through all reactions of the model. First will try 

a match in SWISS-PROT, and if not found will try a match in KEGG. Returns a matrix 

with the associated proteins (both uniprot codes and EC numbers) for each reaction as rows. 

If isozymes are present they will be shown in different columns. Also returns the substrates 

for each reaction (and the products if the reaction is reversible), for later kcat matching in 

BRENDA. 



 

• getAllPath.m: Simplifies a given gene-reaction rule in terms of the isozymes. Receives a 

rule and returns the decomposed rule as an array, in which each row will have one possible 

isozyme. This can be done for single enzymes but also if complexes are also present. As an 

example, consider the rule RR�: 

RR�:   WG7 OR G8Z AND WG; OR G>Z 

These point out that there are 4 possible “isozyme” combinations, and those 4 

combinations will be returned by this function: 

RR�\7:   G7 AND G; 

RR�\8:   G7 AND G> 

RR�\;:   G8 AND G; 

RR�\>:   G8 AND G> 

 

• findInDB.m: Matches each specific reaction gene rule to proteins in a database (SWISS-

PROT or KEGG). First uses getAllPath.m to decompose the rule into different 

combinations, and then for each combination will try to find a match in the database for all 

genes. In the case of complexes, it will later check if there is an intersection between all 

matches and if so will return that one as associated protein. If not, it will return the union 

of all. The information that this function returns is the UNIPROT code, the EC number and 

the molecular weight. 

 

2.3.2. Automatic kcat matching criteria 

Once we have all enzyme associations to each reaction, we attempt to match each protein/reaction 

pair to a kcat measurement in BRENDA. This is done by the script matchKcats.m (available in the 

GECKO toolbox), which for each reaction (in both directionalities in the case of reversible 

reactions) will attempt a match, based on the following criteria: 



• As a first option, it will try to match the EC number, the organism (in this case S. cerevisiae) 

and the corresponding substrate to some kcat annotation in the BRENDA database. 

• If no match is found, it will try to match the EC number and the substrate, but with any 

organism available. 

• If still no match is found, it will try to match the EC number and the organism, but with any 

substrate available. 

• If still no match is found, it will just try to match the EC number, with any substrate or 

organism available. 

• If still no match is found, then it will introduce one wildcard to the EC number and attempt 

all previous 4 steps again. For example, if for the EC number EC1.2.3.4 no match was found 

with the previous 4 options, it will repeat all 4 options in the same order but for EC1.2.3.X 

(meaning that any EC number starting with EC1.2.3 will be considered a match). If still no 

match is found, it will repeat all 4 options with EC1.2.X.X and so on, until a match is found. 

In all cases, if more than one match is found, the maximum value of all matches will be used 

(following the same consistence as when querying the BRENDA database). 

 

2.3.3. Further manual curation of enzyme data 

After running preliminary simulations it was clear that additional manual curation on the retrieved 

values was needed. For central carbon metabolism enzymes we replaced all values with previously 

manually curated data7. Additional changes are detailed in the following; most of them were 

annotation problems or lack of measurements. Each time specific activity was used, it was 

correspondingly multiplied by the molecular weight, to have the appropriate units (given 

that k���  =  s. a.  ×  M. W.). 
• Aconitase (P19414/EC4.2.1.3): The associated reactions in the model are represented as 

two-step reactions (r_0280 and r_0302 in the mitochondria, r_0303 and r_2305 in the 

cytoplasm), so each of the 4 kcat values was multiplied by 2. 

• Fatty Acid Synthase (P07149+P19097/EC2.3.1.86): No kcat value was available in 

BRENDA, so instead  S. cerevisiae’s FAS maximum specific activity for NADPH in 

BRENDA was used (3 µmol/min/mg 14), divided by the stoichiometry of NADPH in the 

associated reactions in Yeast 7.6; 0.214 µmol/min/mg was used for producing palmitoyl-



CoA (14 NADPH molecules in r_2140) and 0.188 µmol/min/mg for producing stearoyl-

CoA (16 NADPH molecules in r_2141). 

• Glycogen Synthase (P27472/EC2.4.1.11): No kcat value was available in BRENDA, so the 

value was corrected using 90.5 µmol/min/mg, S. cerevisiae’s glycogen synthase maximum 

specific activity for glucose (r_0510) in BRENDA 15. 

• Ketol-acid Reductoisomerase (P06168/EC1.1.1.86): This enzyme participates in two 

pathways in the model: the biosynthesis of L-valine (reaction r_0096) and L-isoleucine 

(reaction r_0669). In the former reaction, the substrate had a different identifier in 

BRENDA (2-acetolactate) and in the model (2-acetyllactic acid), therefore no substrate 

match was found by the algorithm. Hence, the kcat value was manually changed to 18.3 s-1 

16. The same happened in the latter reaction; the identifier in BRENDA was 2-aceto-2-

hydroxybutyrate but in the model was (S)-2-acetyl-2-hydroxybutanoate. The value was 

therefore also changed manually, to 78.3 s-1 16. 

• Phosphoribosylformylglycinamidine synthase (P38972/EC6.3.5.3): The only kcat value 

available in BRENDA was for NH4 (not a substrate in reaction r_0079) in Escherichia coli. 

The value was therefore corrected using the enzyme’s maximum specific activity available 

for any organism (the measurement for S. cerevisiae was not available), equal to 2 

µmol/min/mg 17. 

• HMG-CoA reductase (P12683-P12684/EC1.1.1.34): The only kcat value available in 

BRENDA was for Rattus Norvegicus, so the value was corrected using 0.027 µmol/min/mg, 

S. cerevisiae’s specific activity of the enzyme (reaction r_0558)18. 

• FPP synthase (P08524/EC2.5.1.1): The EC number is out of use; the recommended one is 

instead 2.5.1.10. The kcat value was therefore corrected using 2.33 µmol/min/mg, S. 

cerevisiae’s specific activity of the enzyme (reactions r_0355 and r_0462) 19. 

• Amino-acid N-acetyltransferase (P40360-Q04728/EC2.3.1.1): The only kcat value 

available in BRENDA was for Mycobacterium tuberculosis. The value was therefore 

corrected using the specific activity in E. coli from BRENDA, equal to 133 µmol/min/mg 

20 (this was done for both isozymes in reaction r_0761). 

• Glutamate N-acetyltransferase (Q04728/EC2.3.1.1): The EC number was missannotated 

(should be 2.3.1.35), but then no kcat values were found for the correct EC number. The 



value was hence corrected with the specific activity for S. cerevisiae in BRENDA, equal to 

22 µmol/min/mg 21 (reaction r_0818). 

• α,α-trehalase (P32356/EC3.2.1.28): The available kcat values were not for S. cerevisiae. 

The value was hence corrected with the specific activity for S. cerevisiae, equal to 22 

µmol/min/mg 22 (reaction r_0194). 

• Ribose-phosphate pyrophosphokinase (Q12265/EC2.7.6.1): The substrate had a 

different identifier in BRENDA (D-ribose 5-phosphate) than in the model (ribose-5-

phosphate), so it was using instead ATP as substrate (100 times lower). Hence, the kcat value 

was manually changed to 60.68 s-1 23 (reaction r_0916). 

• Glutamine synthetase (P32288/EC6.3.1.2): No data was available in BRENDA for yeast 

or fungi. A manual search yielded a value of 236 µmol/min/mg for the specific activity in 

S. cerevisiae 24 (reaction r_0476). 

• Chorismate synthase (P28777/EC4.2.3.5): No kcat values available in BRENDA for S. 

cerevisiae. The value was therefore corrected using the specific activity in E. coli from 

BRENDA, equal to 14.8 µmol/min/mg25 (reaction r_0279). 

• Homoaconitase, mitochondrial (P49367/EC4.2.1.36): No kcat values were available in 

BRENDA for S. cerevisiae (reactions r_0027 and r_0542). We therefore used aconitase’s 

kcat value (143.3 s-1 7 multiplied by two, as mentioned previously) together with a study in 

yeast26 that shows that aconitase (P19414/EC4.2.1.3) is 0.062/0.005 = 12.4 times faster than 

homo-aconitase (0.062 and 0.005 are the specific activities of aconitase and homo-

aconitase, respectively, measured in ∆OD/min/mg at 0-30% saturation with their 

corresponding substrates). 

• Formyltetrahydrofolate synthetase (P07245/EC6.3.4.3): The kcat value for S. cerevisiae 

in BRENDA was hidden as 'additional information'. The value was manually checked to be 

200 s-1 27 (reaction r_0446). 

• Methenyltetrahydrofolate cyclohydrolase (P07245/EC6.3.4.3): The EC number was 

missannotated (should be 3.5.4.9). The value was hence corrected with the only wildtype 

kcat value available in BRENDA, equal to 134 s-1 28 (reaction r_0725). 

• Methylenetetrahydrofolate dehydrogenase (P07245/EC6.3.4.3): The EC number was 

missannotated (should be 1.5.1.5), but then no kcat values were found for the correct EC 



number for S. cerevisiae. The value was correspondingly corrected using the specific 

activity for S. cerevisiae in BRENDA, equal to 259 µmol/min/mg29 (reaction r_0732). 

• Phosphoserine transaminase (P33330/EC2.6.1.52): The only kcat values in BRENDA 

were for E. coli using fusion proteins. The value was hence changed using a specific activity 

found with a manual search30, equal to 78 µmol/min/mg (reaction r_0918). 

• Succinate-semialdehyde dehydrogenase (P38067/EC1.2.1.16): The retrieved kcat value 

from BRENDA was from E. coli under extreme conditions. The value was corrected by 

using the specific activity for S. cerevisiae in BRENDA, equal to 0.66 µmol/min/mg31 

(reaction r_1023). 

• 1,3-beta-glucan synthase component FKS1 (P38631/EC2.4.1.34): The retrieved kcat 

value from BRENDA was from Staphylococcus aureus and excessively low. The value was 

corrected by using the specific activity for S. cerevisiae in BRENDA, equal to 4 

µmol/min/mg32 (reaction r_0005). 

• Fructose-bisphosphate aldolase (P14540/EC4.1.2.13): The protein was removed from 

missannotated reactions (r_0322 and r_0990). 

• Golgi apyrase (P40009/ EC3.6.1.5): The protein was removed from a missannotated 

reaction (r_0227). 

Manual curation was performed to the pathway data as well, removing any KEGG classification 

for which there is no literature of its presence in yeast. These include pathway codes sce00591 

(linoleic acid metabolism), sce00590 (arachidonic acid metabolism), sce00592 (alpha-linolenic 

acid metabolism), sce00565 (ether lipid metabolism), sce00460 (cyanoamino acid metabolism) and 

sce00680 (methane metabolism). 

 

2.4. Adding enzymes to the model 

After collecting all enzymatic data, pre-processing the genome-scale model and matching all 

reactions in the model with an associated enzyme to a corresponding kcat value, the procedure can 

now create a new model which includes enzymes as metabolites, as described in section 1.3. This 

is done by scripts contained in the GECKO toolbox (the main call being to the function 

readKcatData.m), and consists of the following steps: 



1. Converting the pre-processed model to an irreversible model, by using the RAVEN5 

adapted function convertToIrreversibleModel.m (available in the same folder as the rest of 

the functions). Reverse direction reactions are hence created named r_XXX_REV. All 

reactions are therefore converted to irreversible (i.e. LB = 0). 

2. Going through all reactions with enzyme association (in both directions when possible) and 

one by one creating new reactions that include the enzymes as substrates. The main loop is 

done by the function convertToEnzymeModel.m and each addition is performed by 

addEnzymesToRxn.m. 

3. In each new reaction creation, the only two things that are modified from the original 

reaction are the substrates (given that a new substrate, the enzyme, is added) and the 

corresponding stoichiometric coefficients in the S matrix (to match the inverse of the kcat 

value, as previously shown). All other fields (LB, UB, obj, other stoichiometric 

coefficients) remain untouched. The reaction ID is redefined as r_XXXNo1. 

4. In the case of isozymes, more than one reaction is created, each for a different enzyme, and 

therefore the IDs are redefined as r_XXXNo1, r_XXXNo2, etc. Additionally, an arm reaction 

named arm_r_XXX is created in these cases, as previously detailed (section 1.3) 

5. In the case of promiscuous enzymes, the same enzyme is added in different reactions and 

no further action is needed. 

6. In the case of complexes, several proteins are added at the same time to the new reaction. 

If no further manual data is known, the stoichiometry is assumed to be 1:1 in all cases. 

7. After adding the new reaction(s), the original reaction r_XXXX is removed from the model. 

8. After modifying all reactions in the model, all enzymes added to the new model’s reactions 

(not counting repetitions) are collected in a single vector and for each one an enzyme usage 

pseudo-reaction is created, with the ID prot_XXXXXX_exchange (with XXXXXX being the 

UNIPROT number). This is done by the function addProtein.m. 

9. Other fields in the model added by addProtein.m for each protein are: model.enzymes 

(containing the uniprot numbers from SWISS-PROT), model.MWs (containing the 

molecular weights calculated from the protein sequence), model.sequences (containing the 

protein sequences from SWISS-PROT), model.genes2 (containing the gene associated to 

each enzyme from KEGG), model.geneNames (containing the common gene name from 

KEGG) and model.pathways (containing the KEGG associated pathways to the enzymes). 



10. Finally, all previously mentioned manual curations performed in section 2.3.3 are included 

in the model, by the function manualModifications.m. 

 

2.5. Constraining enzyme levels in the model 

As a final step, we have included a module in the GECKO toolbox called limit_proteins, which has 

as main function constrainEnzymes.m. As input it requires the previously created model (section 

2.4), the total measured protein content [g/gDW], an average saturation constant for unmeasured 

proteins, and an optional set of absolute protein abundances [mmol/gDW] with their corresponding 

UNIPROT IDs. It then performs the following transformations to the model: 

1. Check all included enzymes in the model and define as upper bound of the corresponding 

enzyme usage the measured value (if the respective protein is part of the dataset). 

2. Calculate Pmeasured, the aggregated mass of all matched enzymes, using the experimental 

values and the respective molecular weights. 

3. Calculate fm, the mass fraction of measured proteins in the model from the total: 

f� = P�_�`a:_IP�B��b                 [Eq. S22] 
Where Ptotal is the total amount of proteins, measured experimentally. 

4. Calculate f, the mass fraction of unmeasured proteins in the model from all proteins not 

matched to the model (either because they were unmeasured or they were not part of the 

model to begin with): 

f = f91 − f�                 [Eq. S23] 
Where fn is the summed mass fraction of all unmeasured proteins included in the model, 

calculated with data from PaxDB33 (Accessed April 7th 2015). 

5. For all unmeasured enzymes still accounted in the model, create a constraint that represents 

the added sum of them, which should be less than the difference between P and Pmeasured, 

multiplied by f and a saturation factor (see section 2.5.1). 

Note that in case of no proteomic data available, steps 1 and 2 will be skipped, fm will be equal to 

zero, f will be equal to fn, and the global constrain will be imposed on all enzymes. Some final 

modifications are also performed to the constrained model: 



• The aminoacid composition in the model is scaled to reflect the total measured protein 

content by multiplying by fP all aminoacid stoichiometric coefficients in the biomass 

pseudo-reaction (which were originally based on the biomass composition of chemostats at 

a dilution rate of 0.1 h-1 10): 

fc = P�B��bP6�`_                 [Eq. S24] 
Where Pbase is the protein content at 0.1 h-1, equal to 0.4005 g/gDW10. 

• To maintain an equivalent amount of mass in the biomass pseudo-reaction, it is assumed 

that the increase/decrease in aminoacid composition is compensated with a corresponding 

decrease/increase in the carbohydrate composition (something that is observed to a large 

extent experimentally34). Therefore all carbohydrate coefficients are multiplied by fC: 

fd = C6�`_ + P6�`_ − P�B��bC6�`_                 [Eq. S25] 
Where Cbase is the carbohydrate content in yeast at a dilution rate of 0.1 h-1, equal to 0.4067 

g/gDW10. 

• The growth associated maintenance (GAM), previously fitted for yeast to 59.276 

mmol/gDW10, comprises to a large extent polymerization costs, both for polymerizing 

aminoacids into proteins  (16.965 mmol/gDW) and monosaccharides  into polysaccharides 

(5.210 mmol/gDW). Because the composition of these two groups is changing in our model, 

the polymerization cost should change accordingly. Therefore, we fragment the model’s 

GAM value into three amounts: one depending on the aminoacid composition, one 

depending on the carbohydrate composition and a third one to account for everything else, 

fitted manually for both aerobic and anaerobic conditions: 

GAM�B��b = 16.965 ∙ P5���B: + 5.210 ∙ C5���B: + GAM5���_I        [Eq. S26] 
After the fitting procedure, GAMfitted was equal to 31 mmol/gDW for aerobic conditions 

and 16 mmol/gDW for anaerobic conditions. 

• Finally, the non-growth associated maintenance (NGAM) is set constant at 0.7 

mmol/gDWh for aerobic conditions and 0 mmol/gDWh for anaerobic conditions. 



2.5.1. In case of no protein data: the ‘pool’ assumption 

For a large part of our study we had a lack of proteomic data, therefore instead of limiting each 

enzyme separately by its concentration, we limited the total amount of enzyme and let the model 

choose which amount of each enzyme should be used instead. As mentioned previously, this 

assumption is also used in case of partial proteomic data only with the unmeasured protein set. The 

following steps are performed: 

1. Introducing an additional metabolite called ‘prot_pool’. This metabolite will represent an 

aggregated sum of all unmeasured enzymes present in the model. 

2. Adding an usage pseudo-reaction for prot_pool: 

EReBBb :   , EeBBb               [Eq. S27] 
Note that this usage has units of protein mass per biomass dry weight [g/gDW]. 

3. Limiting this total usage with the unmeasured amount of protein: 

eeBBb ≤ WP�B��b − P�_�`a:_IZ ∙ f ∙ σ               [Eq. S28] 
Here Ptotal is the total protein fraction in cell, which unless stated otherwise was assumed 

0.4005 g/gDW10, and Pmeasured is the aggregated sum of measured proteins accounted in the 

model (equal to zero in case of no proteomic data). This difference is then multiplied by f, 

the mass fraction of proteins that are accounted in the model out of all proteins according 

to PaxDB33 (Accessed April 7th 2015). In the case of no proteomic data, this value is equal 

to 0.4461 g/g for Yeast 7.6 (which indicates that 44.61% of yeast proteins mass-wise are 

included in our model). Finally, σ is a fitted parameter that represents the average saturation 

in vivo of enzymes. 

4. Removing all other enzyme usage pseudo-reactions from the model and replacing them 

with a pseudo-reaction that draws from the enzyme pool towards each corresponding 

enzyme: 

ER�:   MW� EeBBb , E�               [Eq. S29] 
Note that this pseudo-reaction “flux” has units of protein amount per biomass dry weight 

[mmol/gDW]. Also note that the stoichiometric coefficient for the substrate (the enzyme 

pool) is the molecular weight [kDa = g/mmol] of the corresponding enzyme; this is done so 



because the enzyme pool should be distributed in terms of mass [g/gDW] but the reactions 

use enzymes molar-wise [mmol/gDW]. 

 

It is worthy to notice that the mass balance for any enzyme (Equation S11) does not change, with 

the exception that the flux e� now refers to the transformation from prot_pool to enzyme E�, instead 

of the usage of E�. Even more interesting is the mass balance for prot_pool (obtained from equations 

S27 and S29): 

eeBBb − � MW� e�
c

�
= 0                [Eq. S30] 

Combining equations S28 and S30 and rearranging, we get: 

� MW� e�
c

�
≤ σ ∙ f ∙ WP�B��b − P�_�`a:_IZ                [Eq. S31] 

Which is conceptually equivalent to the approach known as metabolic modeling with enzyme 

kinetics (MOMENT)35, an extension of FBA with molecular crowding (FBAwMC)7,36, but limited 

to only unmeasured proteins. Our proposed framework is therefore flexible enough to constrain 

enzyme levels individually and/or constrain the total enzyme mass. 

 

  



3. Additional methodology caveats 

3.1. Visualization caveats 

3.1.1. Classification of enzymes by metabolic group 

Enzymes in the model were classified in metabolic groups in order to see differences in their 

distributions (Figures 2B and 2C in the manuscript). For achieving this, the pathway information 

available in KEGG was used, and KEGG pathways were classified in one out of three metabolic 

groups according to Table S2 (based on previous criteria37). Intermediate and secondary 

metabolisms were considered together as one metabolic group because there were too few enzymes 

belonging to secondary metabolism. 

 

Table S2: KEGG pathways classified by three metabolic groups: Carbohydrate and energy primary metabolism (CE), 

aminoacid, fatty acid and nucleotide primary metabolism (AFN), and intermediate and secondary metabolism (IS). 

 

Pathway Classification

sce00010  Glycolysis / Gluconeogenesis CE

sce00020  Citrate cycle (TCA cycle) CE

sce00030  Pentose phosphate pathway CE

sce00040  Pentose and glucuronate interconversions CE

sce00051  Fructose and mannose metabolism CE

sce00052  Galactose metabolism IS

sce00061  Fatty acid biosynthesis AFN

sce00062  Fatty acid elongation AFN

sce00071  Fatty acid degradation AFN

sce00072  Synthesis and degradation of ketone bodies IS

sce00100  Steroid biosynthesis IS

sce00130  Ubiquinone and other terpenoid-quinone biosynthesis IS

sce00190  Oxidative phosphorylation CE

sce00230  Purine metabolism AFN

sce00240  Pyrimidine metabolism AFN

sce00250  Alanine, aspartate and glutamate metabolism AFN

sce00260  Glycine, serine and threonine metabolism AFN

sce00270  Cysteine and methionine metabolism AFN

sce00280  Valine, leucine and isoleucine degradation AFN

sce00290  Valine, leucine and isoleucine biosynthesis AFN

sce00300  Lysine biosynthesis AFN

sce00310  Lysine degradation AFN

sce00330  Arginine and proline metabolism AFN

sce00340  Histidine metabolism AFN

sce00350  Tyrosine metabolism AFN

sce00360  Phenylalanine metabolism AFN

sce00380  Tryptophan metabolism AFN

sce00400  Phenylalanine, tyrosine and tryptophan biosynthesis AFN

sce00410  beta-Alanine metabolism IS

sce00430  Taurine and hypotaurine metabolism IS



Table S2 (cont.): KEGG pathways classified by three metabolic groups: Carbohydrate and energy primary metabolism 

(CE), aminoacid, fatty acid and nucleotide primary metabolism (AFN), and intermediate and secondary metabolism 

(IS). 

 

 

3.1.2. Connectivity of model 

The metabolite network was constructed for both the original metabolic model and the enzyme-

constrained model, in which nodes are metabolites and there is an edge between 2 nodes if they are 

present in the same reaction. The following connectivity metrics were computed for both the 

original metabolite network and the enzyme-constrained metabolite network: 

• Global clustering coefficient: Scalar. Denotes the fraction of closed triplets in a network, 

in which a triplet is any three nodes sharing two connections and a closed triplet is a set of 

Pathway Classification

sce00450  Selenocompound metabolism IS

sce00480  Glutathione metabolism IS

sce00500  Starch and sucrose metabolism IS

sce00510  N-Glycan biosynthesis IS

sce00513  Various types of N-glycan biosynthesis IS

sce00514  Other types of O-glycan biosynthesis IS

sce00520  Amino sugar and nucleotide sugar metabolism IS

sce00561  Glycerolipid metabolism IS

sce00562  Inositol phosphate metabolism IS

sce00563  Glycosylphosphatidylinositol(GPI)-anchor biosynthesis IS

sce00564  Glycerophospholipid metabolism IS

sce00600  Sphingolipid metabolism IS

sce00620  Pyruvate metabolism CE

sce00630  Glyoxylate and dicarboxylate metabolism CE

sce00640  Propanoate metabolism IS

sce00650  Butanoate metabolism IS

sce00670  One carbon pool by folate IS

sce00730  Thiamine metabolism IS

sce00740  Riboflavin metabolism IS

sce00750  Vitamin B6 metabolism IS

sce00760  Nicotinate and nicotinamide metabolism IS

sce00770  Pantothenate and CoA biosynthesis IS

sce00780  Biotin metabolism IS

sce00790  Folate biosynthesis IS

sce00860  Porphyrin and chlorophyll metabolism CE

sce00900  Terpenoid backbone biosynthesis IS

sce00909  Sesquiterpenoid and triterpenoid biosynthesis IS

sce00910  Nitrogen metabolism IS

sce00920  Sulfur metabolism IS

sce00970  Aminoacyl-tRNA biosynthesis IS



three nodes sharing three connections. Represents how much the network clusters as a 

whole. 

• Local clustering coefficient (LCC): Vector. For each node, denotes how well clustered is 

its vicinity (i.e. the fraction of connected nodes in its vicinity), in which a vicinity is all 

nodes that share a connection with the original node. 

• Average local clustering coefficient: Scalar. The average of LCC. 

• Node degree (ND): Vector. For each node, counts the amount of connections to other 

nodes. Represents how well connected is the specific node. 

• Average node degree (AND): Scalar. The average of ND. 

• Shortest path matrix (SPM): Matrix. For each pair of nodes, shows the length of the 

shortest path between those two nodes. The shortest path was computed with the Dijkstra 

algorithm38. 

• Characteristic Path Length: Scalar. The average of SPM. 

• Diameter (D): Scalar. The highest value in SPM. 

• Path Diversity Matrix (SPD): Matrix. For each pair of nodes, indicates the amount of 

paths that are equally short to the shortest path. 

• Average Path Diversity: Scalar. The average of SPD. 

• Betweenness Centrality (BC): Vector. For each node, denotes the average fraction of 

times that the node is present in shortest paths between all other nodes. 

• Average Betweenness Centrality: Scalar. The average of BC. 

All of these metrics were computed both with and without currency metabolites (which consisted 

of water, protons, carbon dioxide, oxygen, phosphate, diphosphate, ammonium, ATP, ADP, AMP, 

NAD(+), NADH, NADP(+) and NADPH) and are further detailed elsewhere39. 

 

 



3.2. Simulation caveats 

3.2.1. Chemostat growth 

Unless stated otherwise, the following procedure was followed to simulate chemostat growth: 

1. Fix the specific growth rate at the dilution rate value (h-1). 

2. Remove constraints on any substrate uptake [mmol/gDWh]. 

3. Limit the total unmeasured enzyme mass [g/gDW] by 0.4005 g/gDW10, f = 0.4461 g/g, and 

a saturation level of either σ = 0.46 for simulations of the CEN.PK113-7D strain (fitted to 

aerobic chemostats40) or σ = 0.51  for other strains (also fitted to aerobic chemostats41). 

4. Minimize substrate uptake. 

5. Fix substrate uptake to optimal value, allowing a 0.1% flexibility to avoid numerical errors. 

6. Minimize enzyme usage, i.e. reaction ERpool (equation S27). This to obtain the most 

efficient solution, similar to what is done in parsimonious FBA (pFBA)42. 

If proteomic data was available, then additionally each enzyme usage was limited with measured 

concentrations [mmol/gDW], and f was recalculated as mentioned in section 2.5. 

Under chemostat conditions 5 exchange reactions were limited to physiological levels: production 

of pyruvate (reaction r_2033), acetate (reaction r_1634), (R,R)-2,3-butanediol (reaction r_1549), 

acetaldehyde (reaction r_1631) and glycine (reaction r_1810). The following criteria was followed: 

• CEN-PK strain: Acetate was unconstrained and the other 4 exchange fluxes (unmeasured 

experimentally40,43) were limited (setting only the upper bound) by 1e-5 mmol/gDWh. 

• DS28911 strain: Both acetate and pyruvate were limited by the maximum experimentally 

detected flux (0.62 mmol/gDWh and 0.05 mmol/gDWh, respectively41), and the other 4 

exchange fluxes (unmeasured experimentally41) were limited by 1e-5 mmol/gDWh. 

Additionally, in chemostat simulations, the L-serine transport between cytoplasm and mitochondria 

(reaction r_2045) was blocked to only operate forward, i.e. from the cytoplasm to the mitochondria, 

and the conversion of isocitrate to 2-oxoglutarate in the cytoplasm via NADPH (reaction r_0659) 

was blocked, as suggested previously for proper NADPH utilization44. 

 



3.2.2. Batch growth 

Unless stated otherwise, the following procedure was followed to simulate batch growth: 

1. Remove constraints on the corresponding carbon source uptake [mmol/gDWh]. 

2. Change the media accordingly to either minimal, with amino acids or complex, i.e. with 

amino acids and nucleotides. In the latter two cases, an upper bound of 2 mmol/gDWh was 

used for all exchange reactions. 

3. Limit total unmeasured enzyme mass by 0.5 g/gDW, f = 0.4461 g/g, and a saturation level 

of σ = 0.44 (fitted to batch growth on glucose and minimal media45). 

4. Maximize growth. 

5. Fix growth at optimal value, allowing a 0.1% flexibility to avoid numerical errors. Minimize 

total sum of fluxes 

In simulations of either fructose or mannose as sole carbon source, facilitated transport of the 

corresponding sugar was allowed, as low affinity transporters of glucose can equally accept 

fructose or mannose46. 

 

3.2.3. Flux variability analysis 

The reduction in flux variability from the unconstrained model to the enzyme-constrained model 

was computed using Flux Variability Analysis (FVA)47, both in the increasing dilution rate 

experiments under aerobic conditions (Section 2.3.1 in the manuscript) and in the integration of 

proteomic data (Section 2.4 in the manuscript). In the following we detail the procedure: 

1. For each condition, the exchange fluxes of glucose, oxygen, CO2, ethanol, acetate, glycerol 

and pyruvate, together with the dilution rate (growth), were fixed at the values predicted by 

the enzyme constrained model when minimizing for glucose at a fixed dilution rate, for 

both the original model and the enzyme-constrained model. To avoid numeric issues, a 

±0.1% of flexibility was introduced to all mentioned exchange fluxes, i.e.: 

LB = 0.999 ∙ ve:_I\ghd        [Eq. S32] 
UB = 1.001 ∙ ve:_I\ghd        [Eq. S33] 

2. Afterwards, for each reaction of each model 2 optimization problems were ran; one 

maximizing said reaction and one minimizing it. If the reaction was reversible, or had 



several isozymes that could run it, the corresponding reactions were blocked, in order to 

avoid infinite loops. If any of the latter reactions turned essential for growth, then instead 

of blocked they were fixed at their natural value (taken from a minimization of glucose 

uptake with the constraints mentioned in step 1). 

3. For each reaction, if the maximum flux predicted by the original model was more than a set 

threshold (1E-06 mmol/gDWh) over the minimum flux predicted by the original model, a 

reduction score was computed as follows: 

reduction = j1 − Maxghd − Minghd
MaxB:� − MinB:�

l ∙ 100%        [Eq. S34] 
 

3.2.4. Random sampling 

Both Yeast7 and ecYeast7 were simulated under random conditions in Section 2.4 of the 

manuscript in order to get a collection of flux distributions. For this a convex basis random 

sampling algorithm48 was implemented for models in irreversible format: 

1. The method starts by fixing the dilution rate of the model to 0.1 h-1 and the exchange fluxes 

of glucose, oxygen, CO2, ethanol, acetate, glycerol and pyruvate to the values predicted by 

minimizing for glucose at the fixed dilution rate, accounting in the latter for a 10% variation. 

2. Step 2 of the flux variability analysis shown in Section 3.2.3 is performed, to detect 

reactions that have a high variation (vmax - vmin > 999 mmol/gDWh). Those are not included 

in the random sampling, as they can take any value. 

3. The random sampling is then performed in order to obtain 10,000 samples. Each sample is 

computed by the following procedure: 

3.1.Choose 3 fluxes in the network at random. The fluxes mentioned in step 2 are 

avoided in this random selection. 

3.2. Assign a random value between -1 and +1 (from a uniform distribution) to each of 

the chosen fluxes, and set this as a linear combination for the model’s objective 

function. 



3.3. If any of the 3 chosen reactions is reversible, or has several isozymes that can run it 

(in the case of the enzyme constrained model), the corresponding reactions are 

blocked, in order to avoid infinite loops. 

3.4. Solve the optimization problem. If the problem turns unfeasible, i.e. at least one of 

the blocked reactions in step 3.3 is essential for growth, then a new optimization 

problem is run where instead of blocking those reactions they are fixed at their 

natural value (taken from the simulation performed in step 1). 

3.5.Fix the values of the 3 chosen fluxes with the solution of the optimization problem, 

adding a ±0.1% of flexibility to avoid numerical issues. 

3.6.Minimize the total flux sum in the network, to avoid loops among reversible 

reactions in the network. The solution of this final optimization problem is the 

sample saved for posterior analysis. 

As shown in the final step of this method, this random sampling generates parsimonious samples, 

as all fluxes are minimized after fixing the chosen fluxes at the optimized values. This is 

unconventional in random sampling48, however it is necessary given the irreversible format of the 

studied models. 

 

3.2.5. Anaerobic growth in glucose-limited chemostats 

In order to enforce anaerobic conditions in the model when needed, the following modifications 

were performed: 

1. Oxygen uptake (r_1992) was blocked. Additionally, all reactions consuming oxygen 

(s_1275 in the cytoplasm, s_1276 in the endoplasmic reticulum, s_1277 in the extracellular 

media, s_1278 in the mitochondrion, s_1279 in the peroxisome and s_2817 in the 

endoplasmic reticulum membrane) were blocked as well. 

2. The following exchange reactions were unblocked, in order to properly simulate anaerobic 

media (with fatty acids and sterols): ergosterol uptake (r_1757), lanosterol uptake (r_1915), 

zymosterol uptake (r_2196), 14-demethyllanosterol uptake (r_2134), ergosta-

5,7,22,24(28)-tetraen-3beta-ol uptake (r_2137), oleate uptake (r_2189) and palmitoleate 

uptake (r_1994). 



3. Heme a (s_3714) was removed from the biomass pseudo-reaction (r_4041), given that is 

needed for respiration, which is not active in anaerobic conditions, and 3 reactions involved 

in its synthesis require oxygen (r_0304, r_0942 and r_0530). 

4. Glycerol production should be present in anaerobic growth of yeast, acting as a NADH sink. 

For this to occur, the directionality of some reactions that were consuming NADH was 

fixed, including: 

o Malate dehydrogenase was fixed to not operate backwards. This was done both in 

the mitochondrion (r_0713_REV) and cytosol (r_0714_REV). 

o Glycerol dehydrogenase (r_0487) was fixed to not operate forward. 

o Glutamate synthase (r_0472) was also fixed to not operate forward. 

5. Finally and as already stated in section 2.5, the growth associated ATP maintenance (GAM) 

was set to 16 mmol/gDW, and the non-growth associated ATP maintenance (NGAM) was 

set at 0 mmol/gDWh. 

 

3.2.6. Proteomic integration 

Absolute proteomic data was acquired from a recent study49 of yeast growing aerobically in 

chemostats at 0.1 h-1 (triplicates), in the form of molecules/pgDW. The following transformations 

were sequentially applied to the proteomic dataset: 

1. All measurements were transformed to mmol/gDW. 

2. All zero values in the dataset were considered unmeasured data (NaN). 

3. All enzyme entries that had 2 or 3 unmeasured values (NaN) were removed from the dataset. 

4. For all remaining entries averages and standard deviations were calculated. 

5. Each measurement was defined as the sum of the average and standard deviation, to allow 

flexibility in case of variable measurements. In total 0.025 g/gDW was included as this way. 

6. Subunit measurements belonging to complexes II, III, IV and V in the model were forced to be 

proportional to their stoichiometry, given that some subunits were unmeasured, leading to an 

unfeasible model. In each case, as baseline for the proportions the subunit with the average 

relative abundance was chosen. In total 0.0016 g/gDW was added after these corrections. 



After these transformations, the module constrainEnzymes.m was used to overlay protein 

measurements on the model (Section 2.5). Unmeasured enzymes were constrained using equation 

S31, with the following values: Ptotal = 0.448 g/gDW (according to experimental data49), Pmeasured = 

0.283 g/gDW (sum of all measured proteins in model, without the additional mass introduced for 

standard deviation and complex correction), f = 0.2154 g/g (fraction from Ptotal – Pmeasured that is 

accounted in the model according to PaxDB) and σ = 0.46 (value optimized for CEN.PK113-7D, 

the strain used in this study). 

 

3.2.7. Flux control coefficient analysis 

Flux control coefficients (FCCs) were calculated as previously proposed7, as a way of studying the 

effect on the simulation output of varying each enzyme’s specific activity. For each enzyme, the 

corresponding kcat value was increased in 0.1% and the model was simulated under batch 

conditions, to observe the percentage increase in the flux of interest v (specific farnesene 

production rate or specific growth rate). If a specific enzyme was promiscuous, the kcat values of 

all associated reactions were increased by 0.1%. The FCC was defined as a relative sensitivity: 

FCC� = Δv
v6

Δk���
��

k���
��p         [Eq. S35] 

Which can be expanded to 

FCC� = vae − v6
v6

1.001k���
�� − k���

��

k���
��p         [Eq. S36] 

And by simplifying we arrive to 

FCC� = 1000 vae − v6
v6

        [Eq. S37] 

Where vb is the original flux value and vup is the new flux value due to the change in the kcat value. 

  



4. Supplementary results 

4.1. Description of the model  

Table S3 shows how many kcat values were obtained from different criteria by applying the GECKO 

algorithm to a GEM of S. cerevisiae3. Overall our method extracted 3249 values from BRENDA, 

from which more than 90% come from using at most 1 wild card, and more than 50% are values 

from S. cerevisiae. Figure S2 on the other hand shows histograms of complexes, isozymes and 

promiscuous enzymes. It can be seen that most complexes have 2 subunits (Figure S2A), most 

reactions that have isozymes have 2 (Figure S2B) and most promiscuous enzymes catalyze 2 types 

of reactions (Figure S2D). Finally, it is interesting to notice that according to the model, there are 

some promiscuous enzymes that are able to catalyze more than 20 and up to 192 different types of 

reactions (Figure S2C), something that is unlikely to happen in vivo. However, going through those 

reactions we saw that all of them are part of lipid metabolism, particularly of the synthesis of 

triglycerides, phospholipids and/or sphingolipids. Because these lipids have all 3 fatty acid chains, 

which can vary independently in length, Yeast 7.6 includes reactions for multiple combinations of 

them, and therefore the promiscuity of the associated enzymes is much higher. 

 

Table S3: Number of kcat values obtained by using different criteria with the GECKO toolbox. 

 No wild 
cards 

1 wild 
card 

2 wild 
cards 

3 wild 
cards 

4 wild 
cards 

Total 

Match found for substrate and S. cerevisiae 168 82 0 11 0 261 

Match found for substrate and any organism 506 225 10 10 0 751 

Match found for any substrate and S. cerevisiae 110 1125 14 168 0 1417 

Match found for any substrate and any organism 648 172 0 0 0 820 

Total 1432 1604 24 189 0 3249 

 

 



 

Figure S2: Histograms of the model. (A) Number of subunits per complex. (B) Number of isozymes per reaction 

with isozymes. (C) Number of reactions per promiscuous enzyme. (D) Number of reactions per promiscuous enzyme 

(zoom). 

 

  



4.2. Enzyme features 

Figure S3 displays how all 764 enzymes included in the model distribute in their molecular weights 

and average kcat values. As expected37, molecular weights (Figure S3A) have much less variation 

than kcat values (Figure S3C) in terms of orders of magnitude; molecular weights span 3 orders of 

magnitude (the smallest being the plasma membrane ATPase proteolipid 1 with 4.5 kDa and the 

largest being acetyl-CoA carboxylase with 259.2 kDa), whereas k��� values span 11 orders of 

magnitude (the slowest being serine/threonine-protein kinase with 1.6e-04 s-1 and the fastest being 

catalase T with 2.8e06 s-1). Additionally, it is interesting to notice that there is no significant 

correlation between both variables (Figure S3B), i.e. between the size and speed of enzymes in our 

model. 

 

Figure S3: Overview of enzymatic data in model. (A) Histogram of enzymes’ molecular weights. (B) Semi-

logarithmic plot between enzymes’ molecular weights and enzymes’ kcat values, showing that there is no strong linear 

correlation between both variables (red line, R2 = 0.010). (C) Logarithmic histogram of enzymes’ kcat values. 

 



Figures 2B and 2C in the manuscript show the cumulative distributions of kcat values and molecular 

weights, respectively, of the model’s enzymes separated by metabolic functions. All 3 groups are 

significantly different (p < 0.05 with a non-parametric Wilcoxon Rank-Sum test) both by kcat value 

and molecular weight, as shown in Table S4. 

 

Table S4: p-values across metabolic groups, for both kcat values and molecular weights. CE = carbohydrate and 

energy primary metabolism. AFN = amino acid, fatty acid and nucleotide primary metabolism. IS = intermediate and 

secondary metabolism. 

 kcat values Molecular weights 
 AFN IS AFN IS 

CE 0.01 1.6E-07 0.01 1.3E-08 

AFN - 0.03 - 4.7E-04 

 

Figure S4A shows the cumulative distribution of average kcat values for all model’s enzymes, with 

a median value of 70.9 s-1. Figure S4B compares proteins that are part of complexes (in total 173) 

versus proteins that operate as standalone enzymes (591). We see that the median of the former 

group (188.3 s-1) is much higher (p = 9.4e-08 with a non-parametric Wilcoxon Rank-Sum test) than 

the median of the latter group (56.4 s-1), suggesting that complexes tend to operate faster than single 

enzymes. Figure S4C shows enzymes catalyzing reactions with other isozymes (269) versus 

enzymes catalyzing reactions with no isozymes (495). In this case there is no significant difference 

(p = 0.38) between the median values (both of 70.9 s-1), implying that reactions with isozymes or 

without isozymes tend to have similarly fast catalyzers. Finally, Figure S4D displays promiscuous 

enzymes (315) versus non-promiscuous enzymes (449), which also shows a significant difference 

(p = 0.03) between medians (100.0 s-1 Vs 70.9 s-1, respectively), indicating that promiscuous 

enzymes tend to be faster than non-promiscuous enzymes. 

Lastly, we can see the cumulative distribution of all molecular weights in Figure S5A, with a 

median value of 47.4 kDa. Also, we observe that proteins part of complexes (median MW = 39.7 

kDa) are usually smaller (p = 2.4e-07) than standalone enzymes (median MW = 50.8 kDa) (Figure 

S5B), enzymes catalyzing reactions with isozymes (median MW = 53.9 kDa) are larger (p = 1.8e-

06) than enzymes catalyzing reactions with no isozymes (median MW = 44.0 kDa) (Figure S5C), 

and that promiscuous enzymes (median MW = 50.8 kDa) are larger (p = 0.02) than non-

promiscuous enzymes (median MW = 47.0 kDa) (Figure S5D). 



 

Figure S4: Cumulative distributions of kcat values of the model’s enzymes. Note that the scale is logarithmic. (A) All 

enzymes in model. (B) Proteins part of complexes (blue) Vs standalone enzymes (grey). (C) Enzymes catalyzing 

reactions with isozymes (red) Vs enzymes catalyzing reactions with no isozymes (grey). (D) Promiscuous enzymes 

(green) Vs non-promiscuous enzymes (grey). 

 



 

Figure S5: Cumulative distributions of molecular weights of the model’s enzymes. (A) All enzymes in model. (B) 

Proteins part of complexes (blue) Vs standalone enzymes (grey). (C) Enzymes catalyzing reactions with isozymes 

(red) Vs enzymes catalyzing reactions with no isozymes (grey). (D) Promiscuous enzymes (green) Vs non-

promiscuous enzymes (grey). 

 

  



4.3. Connectivity of model 

Figure S6 displays the node degree of the metabolite networks of both the original metabolic 

model and the enzyme-constrained model. It can be seen that the enzyme constrained model 

shows a higher node degree in general than the original model. 

  

Figure S6: Node degree histograms of original metabolic model (blue) and enzyme-constrained model (green), (A) 

with and (B) without currency metabolites. 

 

4.4. Chemostats with varying dilution rate 

Figure S7 displays the flux predictions of the model compared to experimental data for both 

aerobic41 and anaerobic34 chemostats at different dilution rates. As expected, the original metabolic 

model performs poorly at high specific growth rate and fails to capture the overflow metabolism 

strategy (Figure S7A). On the other hand, the enzyme-constrained model shows enzyme limitation 

between the critical dilution rate of 0.3 h-1 and the maximum feasible dilution rate simulated of 

0.45 h-1 (the latter not shown), and successfully predicts a Janusian region together with the 

production of ethanol and acetate (Figure S7B). A small Janusian region is observed as well at high 

growth rates under anaerobic conditions (Figure S7D), in which the ethanol production rate 

decreases and instead the glycerol production rate increases. This occurs between the dilution rates 

of 0.37 and 0.40 h-1; once the latter dilution rate is reached the model is not able to grow anymore. 

None of the above mentioned behavior is captured by the original metabolic model, which instead 

predicts linear growth at all dilution rates (Figure S7C). 



 

Figure S7: Model predictions (lines) and experimental values (points) for exchange fluxes from glucose-limited 

chemostats: glucose (green circles) and oxygen (blue squares) consumption, and CO2 (purple diamonds), ethanol (red 

triangles), acetate (orange inverted triangles) and glycerol (yellow right-pointing triangles) production. (A) Yeast7; 

aerobic conditions. (B) ecYeast7; aerobic conditions (the light blue area denotes the region of both glucose and 

protein limitation). (C) Yeast7; anaerobic conditions. (D) ecYeast7; anaerobic conditions. 

 

  



Figure S8 on the other hand shows 10,000 simulations of the enzyme-constrained model with 

randomly assigned kcat values and 10,000 simulations with randomly assigned molecular weights, 

from gamma distributions fitted from the corresponding data. It can be seen that if either kcat values 

or molecular weights are assigned randomly to the model, most of the times the model will not be 

able to predict the critical dilution rate (Figure S8B), the final oxygen consumption rate (Figure 

S8C) nor the final ethanol production rate (Figure S8D), overall fitting quite badly to the 

experimental data (Figure S8A). 

 

Figure S8: Performance of enzyme-constrained models with random kcat values (blue) and molecular weights (green). 

In yellow the original selection for ecYeast7 is shown. (A) Overall fitting error to the experimental data (aerobic 

chemostats at increasing dilution rate41). (B) Dilution rate at which the protein content becomes limited. (C) Oxygen 

consumption rate at a dilution rate of 0.4 h-1. (D) Ethanol production rate at a dilution rate of 0.4 h-1. 

 

  



Finally, Figure S9 shows the flux variability analysis (FVA) performed to both the original 

metabolic model Yeast7 (transformed to irreversible for a fair comparison) and the enzyme-

constrained model ecYeast7, at a low growth rate (0.025 h-1) and a high growth rate (0.4 h-1). At 

low growth rates, 3286 reactions of Yeast7 have non-zero variability, which corresponds to 66.1% 

of the reactions of said model. In turn, ecYeast7 has 3958 reactions with non-zero variability, which 

is 58.7% of the model’s reactions. Even though the medians are similar (Figure S9A), the 

distributions are significantly different (p = 1.7e-32 with a non-parametric Wilcoxon Rank-Sum 

test). At high growth rates on the other hand, 3304 reactions (66.5%) of Yeast7 have non-zero 

variability, which is higher than the 3847 reactions (57.1%) of ecYeast7. The distributions here are 

even further apart (Figure S9B), with a median ~34 times smaller and a significant difference 

among distributions (p = 1.5e-229). In conclusion, in both cases the enzyme-constrained model has 

considerably lower variability. 

 

Figure S9: Cumulative distribution of fluxes with non-zero variability for Yeast7 (red) and ecYeast7 (blue), under 

(A) low specific growth rate = 0.025 h-1 and (B) high specific growth rate = 0.4 h-1. 

 

  



4.5. Growth under temperature stress 

Figure S10 shows simulations of both Yeast7 and ecYeast7 with an unmodified NGAM = 0.7 

mmol/gDWh. It can be seen that both models predict a very low glucose uptake and corresponding 

O2 consumption and CO2 production. Additionally, no ethanol production is observed. This points 

to the fact that under high temperature conditions additional maintenance energy is needed to cope 

with the stress, which causes the increase in glucose uptake. 

 

Figure S10: Both Yeast7 and ecYeast7 miss predict temperature stress experimental data when NGAM is unchanged. 

  



4.6. Proteomic integration 

Figure S11 displays the experimental exchange fluxes of both the purely metabolic model and the 

enzyme-constrained model under aerobic glucose-limited chemostat conditions, D = 0.1 h-1. It can 

be seen that both models give similar predictions. Table S5 on the other hand shows, for both 

models as well, the internal distribution of some central carbon metabolism flux ratios, i.e. fluxes 

normalized by the glucose uptake. The predicted values are displayed together with experimental 

values obtained with 13C metabolic flux analysis (13C-MFA) from a previous study50. Even though 

for some reactions Yeast7 performs better and for some ecYeast7 does so, overall both models have 

similar predictive performance, as it can be seen in Figure S12. 

 

Figure S11: Flux predictions of the original metabolic model (Yeast7) and the enzyme constrained model (ecYeast7) 

compared to experimental data of yeast grown at 0.1 h-1 aerobically limited on glucose. 

  



Table S5: Comparison of predicted flux ratios by Yeast7 and ecYeast7 to experimental values attained by 13C-MFA 

from a previous study50. The predicted values were calculated by adding up the fluxes corresponding to the reaction 

sets shown in the 4th column. If a reaction had a reversible counterpart the corresponding flux was subtracted, except 

for the OAA transport (as both directions are present in the study). The metabolite sets G3P/3PG, Ru5P/Ro5P/X5P 

and OAA/MAL (the latter both in cytoplasm and mitochondria) were considered as one metabolite each, in order to 

adapt to the model proposed in the study with the experimental data50. 

Type of 
reaction 

Reaction code 

(Jouthen et al. 
2008) 

Reaction(s) 
Reactions matched from 

model 

Average 

experimental 
flux ratio 

Yeast7 

flux 
ratio 

ecYeast7 

flux 
ratio 

Cytoplasmic 

x1 glucose → G6P r_0534 1.00 1.00 1.00 

x2 G6P → F6P r_0467 0.49 0.49 0.64 

x3 G6P →→→ Ru5P + CO2 r_0466 0.27 0.37 0.22 

x4 
F6P →→ G3P + DHAP r_0886 + r_0887 0.63 0.63 0.69 

DHAP → G3P r_1054 0.63 0.63 0.69 

x5 Ro5P + X5P → S7P + G3P r_1049 0.09 0.12 0.07 

x6 E4P + X5P → F6P + G3P r_1050 0.06 0.09 0.04 

x7 S7P + G3P → F6P + E4P r_1048 + r_0887 0.09 0.12 0.07 

x8 3PG →→ PEP r_0893 1.26 1.30 1.35 

x9 PEP → PYR r_0962 1.28 1.24 1.30 

x24 PYR → ACA + CO2 r_0959 0.07 0.02 0.20 

x18 ACA → AC r_0173 + r_2116 0.07 0.02 0.20 

x17 AC + CoA → AcCoA r_0112 0.07 0.02 0.21 

x16 PYR + CO2 → OAA 
r_0958 + r_2117 + 

r_2119_REV 
0.33 0.28 0.14 

x15 OAA → PEP + CO2 r_0884 0.08 0.00 0.00 

Mitochondrial 

x10 PYR + CoA → AcCoA + CO2 r_0961 0.74 0.82 0.89 

x11 OAA + AcCoA → CIT + CoA r_0300 0.71 0.75 0.81 

x12 CIT →→→ AKG + CO2 r_0658 + r_2131 0.71 0.75 0.63 

x13 
AKG  →→→ SUCC + CO2 r_0832 0.60 0.64 0.52 

SUCC →→ MAL r_1021 0.60 0.65 0.72 

x14 MAL →  PYR + CO2 r_0719 + r_0718 0.03 0.02 0.07 

Transport 

x25 glucose uptake (extra→cyt) r_1166 1.00 1.00 1.00 

x23 PYR transport (cyt→mit) r_2034 + r_1138_REV 0.88 0.95 0.96 

x21 OAA transport (cyt→mit) 
r_1239 + r_2132 + 

r_1126_REV + r_1226 
0.65 0.13 0.41 

x22 OAA transport (mit→cyt) r_1126 + r_2132_REV 0.50 0.00 0.00 

Sink 

x29 G6P (cytoplasm) r_0195 + r_0758 + r_0888 0.24 0.15 0.14 

x30 Ro5P (cytoplasm) r_0916 0.03 0.03 0.03 

x31 E4P (cytoplasm) r_1708 0.03 0.03 0.03 

x32 3PG (cytoplasm) r_0891 0.07 0.07 0.07 

x33 PEP (cytoplasm) r_0065 - r_1127 0.05 0.06 0.06 

x34 OAA (cytoplasm) - r_0216 0.10 0.14 0.09 

x35 AcCoA (cytoplasm) 
r_0109 + r_0549 + r_0760 

+ r_2140 + r_2141 
0.07 0.02 0.02 

x36 AcCoA (mitochondria) 
r_0025 + 2 • r_0104 + 

r_0560 + r_1838 
0.03 0.07 0.07 

x37 PYR (mitochondria) r_0016 + 2 • r_0097 0.18 0.14 0.14 

x38 AKG (mitochondria) 
r_1838 - r_0118 - r_1099 + 

r_1088 - r_1112 - r_0217 + 

r_0664 

0.11 -0.02 0.11 

Abbreviations: G6P: glucose 6-phosphate. F6P: fructose 6-phosphate. Ru5P: ribulose 5-phosphate. G3P: glyceraldehyde 3-
phosphate. DHAP: dihydroxyacetone phosphate. X5P: xylulose 5-phosphate. Ro5P: ribose 5-phosphate. S7P: sedoheptulose 7-
phosphate. E4P: erythrose 4-phosphate. 3PG: 3-phosphoglycerate. PEP: phosphoenolpyruvate. PYR: pyruvate. ACA: acetaldehyde. 
AC: acetate. AcCoA: acetyl-CoA. OAA: oxaloacetate. CIT: citrate. AKG: α-ketoglutarate. SUCC: succinate. MAL: malate. 



 

Figure S12: Performance of both Yeast7 (red) and ecYeast7 (blue) predicting intracellular flux ratios from central 

carbon metabolism. Experimental values obtained from a published 13C-MFA study50. 

 

Finally, Figure S13A shows that increased flux variability by including enzyme constraints only 

affected a minority of fluxes, and the increase was no more than 2 mmol/gDWh. Figure S13B on 

the other hand shows all 3177 reduced fluxes, showing that most of them are reduced in over 90%. 

 

Figure S13: Histogram of reactions with (A) increased and (B) decreased flux variability. 



 

4.7. NDI1 knockout study 

Figure S14 shows the exchange flux predictions of ecYeast7 for aerobic glucose limited chemostats 

of CEN.PK113-7D, for both the wild-type (Figure S14A) and the NDI1 knockout (Figure S14B). 

Compared to the experimental data40, we see that the enzyme-constrained model adequately 

predicts a change in the critical growth rate. 

 

Figure S14: Model predictions (lines) and experimental values (points) for exchange fluxes from glucose-limited 

chemostats: glucose (green circles) and oxygen (blue squares) consumption, and CO2 (purple diamonds), ethanol (red 

triangles) and glycerol (yellow right-pointing triangles) production. The light blue area denotes the region of both 

glucose and protein limitation. (A) Wild-type strain. (B) NDI1 knockout.  



4.8. Flux control coefficients for farnesene production 

As Figure S15 shows, the 2 most influential enzymes on the production of farnesene are HMG-

CoA reductase (HMG1) and farnesene synthase (AFS1). Both of those enzymes are acting as major 

bottlenecks in the system, and therefore are interesting candidates to improve activity in order to 

increase farnesene production. The FCC of HMG-CoA reductase is approximately 3 times higher 

than the FCC from farnesene synthase given that they have approximately the same properties 

(molecular weight and kcat value), but HMG-CoA reductase is needed 3 times for every farnesene 

molecule produced, whereas farnesene synthase is needed only once. 

 

Figure S15: Flux control coefficients of the top 10 most influential enzymes in the model. 
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