set trace onto (ry, z9) subspace. The system starts evolving in time in free-flow mode from a
set of initial conditions at + = (), whose boundary is shown in magenta. The free-flow reach set
evolving from t = () to £ = 100 is shown in blue. Between ¢ = 18 and t = 68 the free-flow
reach set crosses the guard. The guard is shown in red. For each nonempty intersection of the
free-flow reach set and the guard, the congested mode reach set starts evolving in time until
t = 100. All the congested mode reach sets are shown in green. Observe that in the congested
mode, the density T2 in the congested part decreases slightly, while the density T1 upstream of
the congested part increases. The blue set above the guard is not actually reached, because
the state evolves according to the green region.

LMI-based three-vehicle platoon

A platoon of vehicles includes typically a leader and a number of followers. In a controlled
platoon the controllers are designed to maintain constant relative distances between
autonomous vehicles by tracking the trajectory of the leader. The latter is manually driven and
can be considered as a reference input to the whole system. We are concerned with the
longitudinal control of a platoon of vehicles engaged in following each other longitudinally by
exchanging information via a wireless local area network (WLAN) (see Fig.1).

. _platoonfig1:

b b iR =

]
- - P R S T A - A

3 i & . ; : i

<> Each vehicle 7 sends ¢,.¢..a, and receives via WLAN

P e..é..q. where J#1i .
3 G o petes el -
" e d™ : reference distance (minimum safe distance).
alt: platoon

width: 50 %
Platoon struture and notations.

The spacing errors :math: e i are defined as the difference between the actual distance to the
predecessor and a (fixed) reference distance: :math: e _i(t) = d_i(t) - dref_i. Bounds for these
reference distances will be stipulated by the result of our safety verification. The effective
acceleration ai of each vehicle within the platoon is governed by the drivetrain
dynamics.According to Fig. 1 and with the further approximation the resulting platoon model is
given by:

t =100

label: platoon1
ddot{e} i & =a {i-1}-a_i.
t = 100

label: platoon2
a_i & = -1frac{1}{tau_ila_i + 1frac{1}{tau_i}v_i

where Ti is the time constant of the drivetrain considered here to be constant and vi the input
signal. The dynamics of the whole platoon with a state vector :math: x =[... e i, dot{e} i, a_i
...JAT can be expressed in state space form as follows:

t =100

label: platoon3
dot{x} & = A_sx+B_1a_L+B _2v.

where the leading vehicle’s acceleration aL enters the dynamics as a disturbance. The goal
thereby is to stabilize the platoon and realize a good disturbance rejection in terms of small
spacing errors at reasonable control effort. These constraints comprise in particular maximum
(absolute) spacing errors to prevent collisions among platoon members but also maximum
amplification of velocity or acceleration values to account for the existing saturation effects that
arise due to force limitation between road and tire. This optimal control problem is applied to a
state feedback structure assuming that each vehicle has information access to all other
vehicles states. We obtain as result an optimal matrix K verifying:

t = 100
label: platoon4
v&=Kx
The closed loop system is hence given by:

t = 100

label: platoon5
dot{x} & = Ax + Bu. where :math: A=(A_s+B 2K), B=B 1and:math:u=a L.

The main goal of this work, is to investigate the impact of disturbances of the communication
network on the performance of the cooperative platoon. We are particularly interested in worst
cases, in which a loss of communication between two/many or all vehicles occurs. The theory
of hybrid systems offers a convenient framework to model this kind of systems. A hybrid
automaton consists of states described by continuous dynamics and discrete events which
trigger transitions between these states. Our application can be modeled by a hybrid
automaton. The controlled platoon dynamics constitute thereby the continuous states and the
communication breakdowns trigger the discrete switches from one continuous state to another.
The interconnection topology within the platoon is modeled with a directed graph G = (V,E),
defined by vertices V and edges E. The ith vertex represents the ith vehicle and the edge (i, j)
indicates that vehicle j receives information from vehicle i. This graph is represented by the
adjacent matrix :math: R = [r_{ij}] referred to as the communication matrix of the platoon.

To take into account the communication failures in the controller design, the loss of information
is expressed by forcing zeros in K. Depending on the topology and the configuration of the
communication between vehicles given by the matrix R, many communication scenarios are
possible. Consequently, the hybrid automaton modeling this kind of system will be complex. We
focus our study on safetycritical worst case scenarios.We consider the worst case in Fig.2, in
which the system switches from a full to a total dropout of the communication between the
vehicles within the platoon. In general, our controlled hybrid automaton has continuous states.

. _platoonfig2:
alt: automat
width: 50 %

Hybrid automata modeling the worst case scenario.

To each continuous state g corresponds a new K_q and consequently new matrices A_q and
B_q verifying the equation .. math:: :label: platoon6 dot{x}(t) = A_gx(t) + B_qu(t)

where :math: x(f) in R"9 denotes the state vector, :math: u(t) =a LinRis

the input vector and :math: q in {1, 2} is the mode described by :math: (A_q,B_q) in R"9
multiply 9} multiply R*9.

%%

%LMI-based three-vehicle platoon

%system parameters

%elltool.setconf('default');

elltool.conf.Properties.setNTimeGridPoints(150);

%elltool.conf.Properties.setRelTol(le-3);

%initial conditions(1)

% define system 1

%In case of no communication problems, these matrices are given as follows

firstAMat = [0 1 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0

1.6050 4.8680 -3.5754 -0.8198 0.4270 -0.0450 -0.1942 0.3626 -0.0946

(4] 0 (4] 0 1 0 (<) (4] 0

(4] 0 1 0 (4] -1 0 0 0

0.8718 3.8140 -0.0754 1.1936 3.6258 -3.2396 -0.5950 0.1294 -0.0796

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 -1

0.7132 3.5730 -0.0964 ©0.8472 3.2568 -0.0876 1.2726 3.0720 -3.1356];

firstBMat = [0 1 © 0 0 00 0 0]";

%if we want to specify the interval [a, b]
%for control constraints a L

a = 2;
b = 9;

firstUBoundsEllObj = ellipsoid((b+a)/2,(b-a)/2);
% define system 2

%In case of total disruption of the communication, the matrices describing
%the system are given by

secAMat = [0 1.0000 (4] 0 (4] 0 0 (4] 0
0 0 -1.0000 0 0 0 0 0 0

1.6050 4.8680 -3.5754 0 0 0 0 0 0

0 0 0 0 1.0000 0 0 0 0

0 0 1.0000 0 0 -1.0000 0 0 0

0 0 @ 1.1936 3.6258 -3.2396 0 0 0

(4] 0 (4] 0 0 (4] 0 1.0000 0

(4] 0 (4] 0 0 1.0000 0 0 -1.0000

0.7132 3.5730 -0.0964 ©.8472 3.2568 -0.0876 1.2726 3.0720 -3.1356];

secBMat = [0 1 9000 0 0 0]";

%if we want to specify the interval [a, b]
%for control constraints a_L

secUBoundsEl10bj = ellipsoid((b+a)/2,(b-a)/2);
%time options
% time horizon T after which the controlled system reaches a stable state

T =1.2;

%switching time from the first discrete state

switchTimeFirst = 0.1;
switchTimeSec = 1;

%e_i options

D M M
W N R
o
[RNS]
[

%vector that shows that we start without collisions
% set of initial conditions

VecIn = [20 0200 20 0];

language: matlab
linenos:

%%
% programm

firstSys = elltool.linsys.LinSysContinuous(firstAMat, firstBMat,firstUBoundsEl1l0bj);

X0E110bj = ellipsoid(VecIn',eye(9));

% columns of L specify the directions

dirsMat = [1 © 00 0 0 0 0 0
010000000
001000000
000100000
00010000
00001000
©Oo00o0OOO100

©000000O0
000000 O0

H OO

10

@ 1]';

irstRsObj = elltool.reach.ReachContinuous(firstSys, x@E11l0bj, dirsMat,..
[0 switchTimeFirst], 'isRegEna
'regTol’, 1le-5,'absTol’',le-6,"

% solve collision with same times
secSys = elltool.linsys.LinSysContinuous(secAMat, secBMat,secUBoundsE11l0bj);
if switchTimeSec == switchTimeFirst
thRsObj = firstRsObj.evolve(T, firstSys);
else
secRsObj = firstRsObj.evolve(switchTimeSec, secSys);
thRsObj = secRsObj.evolve(T, firstSys);

end

basisMatl = [1 © 0000000
00010000 0];

basisMat2 = [1 0 0 0 0 00 0 0
00000010 0];

basisMat3 = [0 00 100000
00000010 0];

thPsObjl = thRsObj.projection(basisMatl);

thPsObj2 = thRsObj.projection(basisMat2);

thPsObj3 = thRsObj.projection(basisMat3);

% external approximation
plObj=smartdb.disp.RelationDataPlotter('figureGroupKeySuffFunc',

@(x)sprintf('_forward_reach_set proj%d',x));
thPsObjl.plotByEa('r',plObj);

%%

language: matlab
linenos:

. _platoonfig3:

alt: automat
width: 50 %

. _platoonfig4:

alt: automat
width: 50 %
<h2>References</h2>

[SUN2003] (7, 2) L.Mufioz, X.Sun, R.Horowitz, and L.Alvarez. 2003. Traffic Density
Estimation with the Cell Transmission Model. In Proceedings of the American
Control Conference, 3750-3755. Denver, Colorado, USA.

