
Vol.:(0123456789)

Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-019-00668-6

1 3

The Swiss army knife of time series data mining: ten useful
things you can do with the matrix profile and ten lines
of code

Yan Zhu1 · Shaghayegh Gharghabi1 · Diego Furtado Silva2 · Hoang Anh Dau1 ·
Chin‑Chia Michael Yeh1 · Nader Shakibay Senobari1 · Abdulaziz Almaslukh1 ·
Kaveh Kamgar1 · Zachary Zimmerman1 · Gareth Funning1 · Abdullah Mueen3 ·
Eamonn Keogh1

Received: 29 August 2018 / Accepted: 9 December 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
The recently introduced data structure, the Matrix Profile, annotates a time series by
recording the location of and distance to the nearest neighbor of every subsequence.
This information trivially provides answers to queries for both time series motifs
and time series discords, perhaps two of the most frequently used primitives in time
series data mining. One attractive feature of the Matrix Profile is that it completely
divorces the high-level details of the analytics performed, from the computational
“heavy lifting.” The Matrix Profile can be computed using the appropriate computa-
tional paradigm for the task at hand: CPU, GPU, FPGA, distributed computing, any-
time computation, incremental computation, and so forth. However, all the details
of such computation can be hidden from the analyst who only needs to think about
her analytical need. In this work, we expand on this philosophy and ask the follow-
ing question: If we assume that we get the Matrix Profile for free, what interesting
analytics can we do, writing at most ten lines of code? As we will show, the answer
is surprisingly large and diverse. Our aim here is not to establish or compete with
state-of-the-art results, but merely to show that we can both reproduce the results of
many existing algorithms and find novel regularities in time series data collections
with very little effort.

Resposible editor: Panagiotis Papapetrou.

 * Yan Zhu
 yzhu015@ucr.edu

 Eamonn Keogh
 eamonn@cs.ucr.edu

1 University of California, Riverside, Riverside, USA
2 Federal University of São Carlos, São Carlos, Brazil
3 University of New Mexico, Albuquerque, USA

http://orcid.org/0000-0002-5952-2108
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-019-00668-6&domain=pdf

 Y. Zhu et al.

1 3

Keywords Time series · Joins · Motif discovery · Anomaly detection

1 Introduction

The recently introduced time series data structure, the Matrix Profile, annotates a
time series by recording the location of and distance to the nearest neighbor of every
subsequence (Yeh et al. 2016b; Zhu et al. 2016). This means that it encodes all the
information needed to answer both time series motif and time series discord que-
ries, perhaps two of the most frequently used primitives in time series data min-
ing (Li et al. 2015; Mueen et al. 2009; Yankov et al. 2007; Yeh et al. 2016b; Zhu
et al. 2016). Both of these primitives can be discovered in other ways; however, the
Matrix Profile can be computed very efficiently, regardless of the length of the sub-
sequences considered (i.e., the dimensionality). This is a useful property because
all other algorithms that compute these primitives suffer greatly from the curse of
dimensionality (Li et al. 2015; Mueen et al. 2009; Yankov et al. 2007). For exam-
ple, before the invention of the Matrix Profile, no one attempted to discover motifs
longer than 900 datapoints long (Li et al. 2015; Mueen et al. 2009; Yankov et al.
2007). In contrast, Yeh et al. (2016b) demonstrates a successful experiment in
bioinformatics that requires finding motifs of length 60,000. Similarly, before the
Matrix Profile, the longest dataset searched for exact motifs was a million datapoints
long (Li et al. 2015; Mueen et al. 2009; Yankov et al. 2007), but Zhu et al. (2016)
increases that record one-hundred fold.

While the scalability of the Matrix Profile is an attractive and enabling property,
it is not its most interesting feature. The original Matrix Profile paper concludes
with the sentence, “There are many avenues for future work, and we suspect that the
research community will find many uses for the matrix profile.” (Yeh et al. 2016b).
Recently this claim has been borne out in a series of papers to show that the Matrix
Profile can be used to support a host of analytic tasks including: semantic segmenta-
tion (Gharghabi et al. 2017), the discovery of evolving patterns (time series chains)
(Zhu et al. 2017), and finding predictive patterns in weakly labeled data (Yeh et al.
2017). It is the extraordinary generality of the Matrix Profile that is its most impor-
tant and useful feature. To support this somewhat subjective claim, in this work we
make a more concrete claim. Given just the Matrix Profile, and at most ten lines of
additional code (in a high-level language, here we use Matlab), one can perform a
host of analytic tasks, as well as reproduce the results of much more complicated
algorithms.

Philosophically, we would like the community to regard the Matrix Profile much
like most programmers regard the sort subroutine in their favorite language. A
casual programmer does not care or need to know how it is implemented (quick-sort,
merge-sort, heap-sort etc.), she regards it as computationally “free1,” and she uses it

1 We will revisit the idea of computationally “free” for the Matrix Profile in Sect. 4. For the case of sort-
ing numbers, most invocations of sorting are on less than one million numbers, and it is possible to sort
a million 32-bit numbers on a modern machine in 20 ms with essentially no space overhead. Thus, for
most applications/users, it makes sense to think of sorting as a no-cost resource. Clearly, sorting can be a
bottleneck for some applications, but these are rare enough that we think our claim is self-evident.

1 3

The Swiss army knife of time series data mining:

to solve many problems. In a similar spirit, a data analyst does not need to know how
the Matrix Profile is computed (It could be by STAMP (Yeh et al. 2016b), STOMP
(Zhu et al. 2016), STOMPI (Yeh et al. 2018), SCRIMP++ (Zhu et al. 2018), etc.),
she can typically regard it as computationally “free” and use it to solve many time
series data mining problems. We regard this simple abstraction as game changing.
Analysts are much more likely to try out a new idea if they could get the first results
in a few minutes, including both coding time and computational time. A tentative
idea that take hours or days to produce may never get past the idea stage.

The rest of this paper is organized as follows. After a brief review of the Matrix
Profile in Sect. 2, in Sect. 3 we will show ten case studies that support our claim
that many interesting problems can be solved using the Matrix Profile and at most
ten lines of additional code. In Sect. 4, we will offer conclusions and directions for
future work.

2 General related work and background

In the following section we briefly review the notion and definitions necessary to
understand the Matrix Profile (Yeh et al. 2016a, b, 2017, 2018; Zhu et al. 2016,
2017, 2018). Readers familiar with this material can skip ahead to Sect. 3.

2.1 Definitions and notation

We begin by defining the data type of interest, time series:

Definition 1 A time series T ∈ ℝ
n is a sequence of real-valued numbers ti ∈ ℝ :

T = [t1, t2,…, tn] where n is the length of T.

We are not interested in the global, but the local properties of a time series. A
local region of a time series is called a subsequence:

Definition 2 A subsequence Ti,m ∈ ℝ
m of time series T is a continuous subset of

the values from T of length m starting from position i. Formally, Ti,m = [ti, ti+1,…,
ti+m−1], where 1 ≤ i ≤ n − m + 1, and m is a user-defined subsequence length.

We can extract all the subsequences from a given time series by sliding a window
of size m across the time series. This is called an all-subsequence set:

Definition 3 An all-subsequence set A of a time series T is an ordered set of all the
subsequences of T: A = {T1,m, T2,m,…, Tn−m+1,m}. We use Ai to denote Ti,m.

Note the all-subsequence set is defined purely for notational purposes. In our
implementation, we do not actually extract the subsequences in this form as it would
require significant time overhead, and explode the memory requirements.

 Y. Zhu et al.

1 3

We can take any subsequence from a time series and compute its distance to all
the sequences in an all-subsequence set. We store these distance values in a vec-
tor called the distance profile:

Definition 4 A distance profile D is a vector of the Euclidean distances between a
given query subsequence and every subsequence in the all-subsequence set.

We assume the distance is measured as the Euclidean distance between the
z-normalized subsequences (Bayardo et al. 2007).

The first four definitions are illustrated in Fig. 1.
Note the query subsequence and the all-subsequence set may or may not

belong to the same time series. By definition, if the query subsequence and the
all-subsequence set belong to the same time series, the distance profile must be
zero at the location of the query, and close to zero just before and after (assum-
ing only that the time series is somewhat smooth). Such matches are called triv-
ial matches in the literature (Mueen et al. 2009), and are avoided by ignoring an
exclusion zone (shown as a gray region) of m/2 before and after the location of
the query. Practically, we set the distance values in the exclusion zone to infinity.

The minimum value of a distance profile indicates the nearest neighbor (i.e.,
1NN) of the given query subsequence within the all-subsequence set. We are
interested in finding the nearest neighbor of every subsequence; this constitutes a
similarity join set:

Definition 5 Similarity join set: given two all-subsequence sets A and B, a similar-
ity join set JAB of A and B is a set containing pairs of each subsequence in A with its
nearest neighbor in B: JAB = {〈Ai, Bj〉|θ1nn (Ai, Bj)}. Here θ1nn (Ai, Bj) is a Boolean
function which returns “true” only if Bj is the nearest neighbor of Ai in the set B. We
denote the similarity join set formally as JAB = A⋈θ1nnB.

We use two vectors, the matrix profile and the matrix profile index, to store the
nearest neighbor information of a similarity join set. The matrix profile stores the
distances between all the subsequences and their nearest neighbors:

T, a snippet of a synthetic
time series

2,0000 m/2m/2

Q, query of length m

D, a distance profile Note that |D| = |T|-|Q|+1

Fig. 1 A subsequence Q extracted from a time series T is used as a query to every subsequence in T. The
vector of all distances is a distance profile

1 3

The Swiss army knife of time series data mining:

Definition 6 A matrix profile PAB is a vector of the Euclidean distances between
each pair in JAB, where the ith element of PAB is the distance between Ai and its
nearest neighbor in B.

We call this vector a matrix profile since it could be computed by using the full
distance matrix of all pairs of subsequences in time series T, and evaluating the
minimum value of each row (although this method is naïve and space-inefficient).
Figure 2 shows the matrix profile of our running example.

The ith element in the matrix profile P indicates the Euclidean distance from
subsequence Ti,m to its nearest neighbor in time series T. However, it does not
indicate the location of that nearest neighbor. This information is recorded in a
companion data structure called the matrix profile index:

Definition 7 A matrix profile index IAB of a similarity join set JAB is a vector of
integers where the ith element of IAB is j if {〈Ai, Bj〉} ∈ JAB.

By storing the neighboring information in this manner, we can efficiently
retrieve the nearest neighbor of query Ai by accessing the ith element in the
matrix profile index.

In general, the function which computes the similarity join set of two input
time series is not symmetric: JAB ≠ JBA, PAB ≠ PBA, and IAB ≠ IBA, except in the
special case where A = B.

We can regard the matrix profile as a meta time series annotating the time
series T if the matrix profile is generated by joining T with itself (i.e., A = B).
This profile has a host of interesting and exploitable properties. For example,
the highest point on the profile corresponds to the time series discord (Chandola
et al. 2009), the (tying) lowest points correspond to the locations of the best time
series motif pair (Mueen et al. 2009), and the variance can be seen as a measure
of the T’s complexity.

We call this special case of similarity join set (Definition 5) a self-similarity join
set, the corresponding matrix profile a self-similarity join matrix profile, and the
corresponding matrix profile index a self-similarity join matrix profile index.

Definition 8 A self-similarity join set JAA is the similarity join of an all-subse-
quence set A with itself. We denote this formally as JAA = A⋈θ1nn A. We denote the

2,0000

P, a matrix
profile

T, a snippet of a synthetic
time series

Note that |P| = |T|-|Q|+1

Fig. 2 A time series T, and its self-join matrix profile P

 Y. Zhu et al.

1 3

corresponding self-similarity join matrix profile as PAA, and the corresponding self-
similarity join matrix profile index as IAA.

For clarity of presentation, we have confined this work to the single dimensional
case; however, nothing about our work intrinsically precludes generalizations to
multidimensional data. In the multidimensional data, we would still have a single
matrix profile, and a single matrix profile index; the only change needed is to replace
the one-dimensional Euclidean Distance with the b-dimensional Euclidean Dis-
tance, where b is the number of dimensions the user wants to consider.

2.2 Summary of the previous section

Since the previous section was rather dense, here we summarize the main takeaway
points. We can create two meta time series, the matrix profile and the matrix profile
index, to annotate a time series A with the distance to and location of all its subse-
quences’ nearest neighbors in itself or another time series B. These two data objects
explicitly contain the answers to the time series data mining tasks of motif discovery
and discord discovery (Yeh et al. 2018). Moreover, as we will show below, we can
easily perform many other kinds of analytics using the matrix profile and the matrix
profile index as primitives.

To make the contributions of this work more concrete, we will occasionally show
the actual code we use to solve various problems. The two basic tools that perform
the key operations explained above are:

[MP, MPindex] = computeMatrixProfile(T,m); % Def 8

[JMP, JMPindex] = computeMatrixProfileJoin(A,B,m); % Def 6-7

Once again, a key assumption of this work is that these operations can be com-
puted very fast, by any one of half a dozen algorithms optimized for various compu-
tational paradigms. Thus we simply take these operations as given, and see what we
can do with them with just a tiny amount of extra coding effort.

3 Ten useful things you can do with the matrix profile and ten lines
of code

In this section, we show the eponymous ten useful things you can do with the matrix
profile and ten lines of code. In every case we make the data available (Supporting
Webpage 2019). The code to compute the matrix profile can be found at The UCR
Matrix Profile Page (2017) and the remaining code is placed inline in this work.
Note that we see these as ten demonstrations. We do not expand any section with the
rigor one might expect if it were a single idea being presented in a paper.

1 3

The Swiss army knife of time series data mining:

3.1 Discovering motifs under uniform scaling

The utility for motif discovery under uniform-scaling invariance was first considered
in Yankov et al. (2007). We revisit the motivation with a simple and visually com-
pelling example. We took two exemplars from the same class from the MALLAT
dataset (Chen et al. 2015) and imbedded them into a random walk dataset. As Fig. 3
top shows, even without the color-coded clue brushed onto the data by the Matrix
Profile discovery tool (The UCR Matrix Profile Page 2017), the repeated pattern is
visually obvious.

We then took the second half of the time series and linearly stretched it by 5%.
By any standard, such a change is a trivial difference and essentially visually imper-
ceptible. Nevertheless, as Fig. 3 bottom shows, the pair of imbedded patterns are no
longer the top-1 motif, an unexpected and disquieting result. Before we show how
to address this within this paper’s “the Matrix Profile plus ten-lines-of-code frame-
work,” we note the following facts that mitigate the issue.

• For the rescaled version, the pair of imbedded patterns was the second-best motif
and only just nudged out by the spurious random walk pair.

• If, instead of searching with a motif length of 1024, the original length of the
imbedded pattern, we had searched for a shorter length, say 500, then the best
motif would have been a subsequence of the imbedded pattern. The user could
then have examined the shorter motif and realized it could be extended signifi-
cantly while maintaining its similarity.

• We deliberately chose this dataset, from the 85 in the UCR archive, knowing it
would be very sensitive to changes in linear scaling. This is because complex
time series (see Batista et al. 2014) with very sharp rises and falls are particularly
sensitive to having features out of phase. For most datasets, motif discovery is
much more robust to small amounts of uniform scaling.

Despite all these mitigating facts, Fig. 3 bottom clearly shows that there may be some
situations in which there is a need to find motifs with invariance to uniform scaling. To

1 10,048

1 10,313

100%

105%

1 10,048

1 10,313

�me series matrix profile

�me series (stretched) matrix profile (stretched)

Fig. 3 (Top left) A random walk time series with two exemplars from the MALLAT dataset imbedded
at locations 2001 and 5025. The color highlighting indicates the top-1 motif, which unsurprisingly are
exactly the imbedded patterns. (Top right) The matrix profile corresponding to the random walk time
series. The minimum values correspond to the top-1 motif in the time series. (Bottom left) The same
time series, but with the second half linearly stretched by 5%. This causes the top-motif to change to
snippets of random walk. (Bottom right) The matrix profile corresponding to the stretched time series.
We can see that the minimum points changed (Color figure online)

 Y. Zhu et al.

1 3

the best of our knowledge, there is only one research effort that has addressed this.
However, this method is approximate, requires many parameters to be set, and is only
able to support a limited range of scaling (Yankov et al. 2007). In contrast, we can eas-
ily and exactly solve this problem under our simple assumptions.

For the moment, assume that we know the scaling factor we want to be invariant to
happens to be 1.64. We can take the dataset T and copy a stretched version of it into T2,
simply by using:

T2 = T(1: 100/164: end); % Unofficial Matlab way to resample

If we now call:

[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,500);

Now, the resulting Matrix Profile will discover the motifs with the appropriate
uniform scaling invariance. In fact, we did exactly this on a 6,106,456 length trace of
household electrical demand to discover the motif shown in Fig. 4.

The motif pattern appears to be the three elements of a dishwasher cycle (clean,
rinse, dry), which can take different amounts of time due to the use of the optional
half-load feature (LG Dishwasher Owners Manual 2017). In this case, we knew from
some first principle physics how to set the scaling factor, but that may not always be the
case. Given our assumptions, we can simply iterate over all possible scaling factors in
a given range. For example, to discover motifs that are similar after scaling one pattern
by 150–180%, we can use the following code snippet.

326,100 327,100 367,000 367,400

0

1000

2000 January 14 January 18

The January 14th pattern is a near perfect
match the January 18th pattern, after the
latter is uniformly stretched to 164% of its
original length.

Fig. 4 (Top) Two non-contagious snippets from the ElectriSense dataset (Gupta et al. 2010). While
semantically similar, they have a very large Euclidian distance because they are of different lengths.
(Bottom) After stretching the January 18th pattern by 164%, the two patterns are almost identical

1 3

The Swiss army knife of time series data mining:

minJMP=inf(1,length(T)), minScale=ones(1,length(T));
minJMPindex=zeros(1,length(T));
for scale_factor = 150 : 180

T2 = T(1: 100/scale_factor: end);
[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,500);
locs = JMP < minJMP;
minJMP(locs)=JMP(locs), minScale(locs)=scale_factor/100;
minJMPindex(locs)=JMPindex(locs);

end

This example perfectly elucidates the philosophy driving this paper. For many
time series data mining tasks, we may not need to spend significant human time
designing, implementing and tuning new algorithms. The Matrix Profile and ten
lines of code may be sufficient.

3.2 Discovering time series semordnilaps

Consider the sentence fragment we discovered in Wikipedia, “… the longest-lived
Tasmanian devil recorded was Coolah…” (Tasmanian devil 2017). This snippet
contains a Semordnilap pair (Puder 2000), the mirrored words “lived” and “devil”.
Semordnilaps are easy to find in arbitrary text strings, and indeed have an important
role in molecular biology. For example, many restriction enzymes recognize spe-
cific palindromic sequences and cut them. As a concrete example, the restriction
enzyme EcoRI recognizes the following palindromic pair, “GAA TTC ” and “CTT
AAG ” (Kurpiewski et al. 2004).

Because the original definition of time series motifs was directly inspired by
the analogy to DNA, it is natural to ask if there is a natural time series analogy to
semordnilaps, and if so, can they be efficiently discovered? From the previous exam-
ple, the reader will readily see that this is trivial, we can simply use:

T2 = fliplr(T); % returns T reversed
[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,m);

The only question remaining is: are there natural domains that contain time series
semordnilaps? The answer is affirmative.

To demonstrate the utility of Semordnilap discovery, we consider Joseph Haydn’s
Symphony No. 47 in G major, written in 1772. In particular, we examined a perfor-
mance by the Tafelmusik Orchestra, directed by Bruno Weil in 1993 (Music Per-
formance 2017). The performance is 21 min and 2 s long. As shown in Fig. 5 top,
we converted it to Mel-frequency cepstral coefficients (MFCC) using windows with

 Y. Zhu et al.

1 3

0.5 s and 50% of overlap (standard music processing settings). We set m to 150, or
37.5 s.

At 14 min and 53 s, there is a Semordnilap of a passage we encountered at 14 min
and 16 s.

Figure 5 bottom explains the presence of such a perfectly conserved Semord-
nilap. As noted in Bonds (1998), “The most extraordinary of all canonic movements
from this time is of course from Symphony No. 47. Here Haydn writes out only one
reprise of a two-reprise form, and the performer must play the music ‘backward’ the
second time around”.

While this example is clearly contrived, there may be Semordnilaps waiting to be
discovered in dance, travel trajectories, medical data, industrial processes, and a host
of domains that have yet to occur to us.

3.3 Discovering time series reverse complements

Our success in finding Semordnilaps immediately suggests another specialized type
pattern we could search for. Are there examples of patterns which repeat, but in
which one pattern is the inverse of the other? That is to say, unlike Semordnilaps,
which are “flipped” in the time axis, are there patterns that are flipped upside-
down in the value axis? We call such patterns Time Series Reverse Complements
(TSRCs).

0 21:02

0 seconds 40

minutes:seconds

MFC8”Symphony
No. 47

0 seconds 40

14:16

14:53

al roverso

Fig. 5 (Top) Haydn’s Symphony No. 47 converted to MFCC. (Center left) Two snippets found by
Semordnilap discovery appear unrelated until we flip one backwards in time (center right). (Bottom) The
sheet music for the relevant section explains this unexpected discovery

1 3

The Swiss army knife of time series data mining:

For example, El Nino Southern Oscillation (ENSO) is a phenomenon that is char-
acterized by intermittent negative correlations between the surface temperatures
observed in the Central and Eastern Ocean (Kao and Yu 2009). However, there are
much more quotidian examples. Consider the 2-min snippet of time series shown in
Fig. 6. It shows the y-axis from a hip-worn accelerometer from the USC-HAD Data-
base (Zhang and Sawchuk 2012). As shown in Fig. 6 bottom, left, the best motif of
length 20-s is not well conserved, and almost looks like two random subsequences.
This is unsurprising, apart from dance or athletic performances, we would not
expect human behavior to faithfully repeat over such an extended time scale. How-
ever, we also searched for the best TSRC pattern of the same length, and as shown in
Fig. 6 bottom center and bottom right it is stunningly well conserved.

What is the mechanism that produced this pattern? At about 22 s into the
recording, the user stepped into an elevator. The first bump is the “jolt” of the
elevator ascending, followed by the “dip-and-recover” as the elevator decelerated
the desired floor. After about 1 min, the user took a return trip, descending the
same number of floors.

The reader will readily appreciate that discovering TSRCs with the matrix pro-
file is trivial, we simply used:

T2 = T*(-1); % returns T flipped upside down
[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,m);

Note that in this case, the discovered TSRC also happens to be a Semordnilap.
However, this need not be the case in general.

0 1 minute 2 minutes

1 20 1 20 1 20seconds secondsseconds

The red pattern has
been inverted

Fig. 6 (Top) Approximately 2 min from a dataset from a hip-worn accelerometer of quotidian activity.
(Bottom left) The best motif of length 20-s is not well conserved, however, if we generalize the search
to consider TSRC motifs (bottom center) we find a highly conserved pattern. To better see how well
conserved it is, in (bottom right) we show the patterns with one element inverted, and both patterns
smoothed. However, we note that we discovered this pattern in the original noisy space

 Y. Zhu et al.

1 3

3.4 Segmenting repetitive exercises

In recent years, there have been dozens of papers published on the task of segment-
ing repetitive exercises—such as weight training and calisthenics—via body worn
sensors. See Morris et al. (2014) and the references therein and thereof. As Morris
et al. (2014) forcefully argues, this problem is more difficult than it may seem at
first glance. Many of the proposed methods use Hidden Markov Models, a powerful
technique, but one that typically requires a lot of training data and careful parameter
tuning. While we do not claim to be able to reproduce all the features of systems
such as RecoFit (Morris et al. 2014), we note that at least in some cases, the Matrix
Profile and a single line of extra code can segment repetitive exercises with high
accuracy. Consider the following two lines of code.

[MP, MPindex] = computeMatrixProfile(T,m);

regions_of_repetition = MP < 2/3 * (min(MP)+max(MP));

We tested this code snippet on the Pamap Dataset (Reiss and Stricker 2012), a
dataset frequently used by the relevant community. Figure 7 shows the result.

Why does this simple idea work so well? Note that activities such as ascending
stairs and descending stairs correspond to very well-conserved, periodic movements

Raw
accelerometer
data

Ground
Truth

MP
Segmentation

0 50000

MP
Threshold

Ascending
stairs

Descending
stairs

Transitional

Fig. 7 (Top to bottom) A snippet of accelerometer data from Pamap Dataset-Subject 1, shoe-Acc X-axis,
with its ground truth segmentation, into ascending stairs, descending stairs and transitional activities.
The MP segmentation we predicted largely agrees, and was computed simply by thresholding the Matrix
Profile. After casting the ground truth segmentation in a Boolean vector of {Transitional | other} we find
out predicted segmentation agrees with it 93% of the time

1 3

The Swiss army knife of time series data mining:

of the person, so such data would have a low matrix profile value. In contrast, the
transitional activities are more at random, generating very noisy patterns with high
matrix profile values. Therefore, in this dataset, a single threshold is enough for us to
segment the activities.

3.5 Robust distance functions

Distance functions are at the heart of much of data mining, especially time series
data mining (Batista et al. 2014). We can characterize distance functions by the
invariances they achieve. For example (here we illustrate with text, the discrete ana-
logue of time series):

• Euclidian distance is invariant to noisy data, and able to discover the similarity
between cat and rat.

• Dynamic Time Warping is invariant to local misalignments in the data and dif-
fering data lengths, and able to discover the similarity between concat and
cooncat.

• Cross Correlation is invariant to phase alignment, and can discover the similarity
between cathouse and housecat.

• Longest Common Subsequence is invariant to minor insertions/deletion in the
data and able to discover the similarity between genome and gene.

While there are many such distance measures to handle various distortions in
short time series, long time series provide greater challenges. Consider the follow-
ing phrases:

A = we can sequence the genome of the cat
B = the cats genome was sequenced in 2014
C = xe hes jlvoeqee kjsw eaqwe oqawe acea

Here the hamming distance (the discrete analogue of Euclidean Distance)
between A and B is 31, but the distance between A and C is only 26. This is an
unintuitive result, given that we immediately see the common structure in A and B.
What we want is a distance measure that can reward A and B for sharing many sub-
sequences, even if they are out of order. This issue also occurs for time series. To see
this, we consider pairs of 10-s snippets extracted from four individuals experiencing
cardiac issues. As shown in Fig. 8 left, we clustered them using a Euclidean distance
average-linkage hierarchical clustering.

Here the disappointing results of Euclidean distance could be mitigated by very
careful beat extraction and alignment. However, we want to be able to use distance
functions with minimum human effort and knowledge. There are some distance
functions that can achieve the required invariances. Their names, bag-of-patterns
(Lin et al. 2012), bag-of-words (Wang et al. 2013), and so on suggest both their
source of inspiration and their approach. While these methods may produce better

 Y. Zhu et al.

1 3

results for our task at hand, they all have at least three parameters and require sig-
nificant implementation effort. In the spirit of this work, can we reproduce at least
some of their effort with the MP and a few lines of code? To answer this question,
consider the following lines of code:

[JMP, dummy] = computeMatrixProfileJoin(A,B,m);
MSMD = min(JMP);

Using this MSMD distance measure, we produced the clustering shown in Fig. 8
right. Note that MSMD is symmetric: we can reverse the order of A and B in the
pseudo code and obtain the same result. Assume SA is a set of all subsequences
extracted from time series A, and SB is a set of all subsequences extracted from time
series B, then MSMD is simply the minimum among all pairwise distances between
subsequences from SA and subsequences from SB.

We can further test the utility of the MSMD distance measure, using classifica-
tion. Almost all time series classification comparisons are based on the UCR archive
(Batista et al. 2014; Ding et al. 2008). However most of the datasets in that archive
are extracted from larger datasets with an extraction tool based on the Euclidian dis-
tance. Given that, it is hardly surprising that Euclidian distance (and DTW, which
subsumes Euclidian distance as a special case) will be hard to beat (Ding et al.
2008). However, the newest release of the archive contains three related datasets that
were processed in a different way. The source dataset is data from fifty-two pigs
having three vital signs monitored, before and after an induced injury (Guillame-
Bert and Dubrawski 2017). The data are vital signs measured at high frequency
(250 Hz) using a bed-side hemodynamic monitoring system, much like a setup that
one might expect to see in a modern ICU. The collected measurements are arterial

1

2

3

5

8

4

6

7

7

8

5

6

1

2

3

4

Euclidean
Distance

Minimum
Shared
Motif
Distance

Fig. 8 (Left) Eight 10-s snippets of time series, from four individuals, clustered using Euclidean distance
single-linkage hierarchical clustering. (Right) The same snippets clustered using a Matrix Profile based
distance measure

1 3

The Swiss army knife of time series data mining:

blood pressure, central venous pressure, and airway pressure. Critically for our pur-
poses, the authors note “Unlike in the (pre-2018) UCR data sets, the vital signs are
not temporally aligned: the starting point of observation is effectively arbitrary”.
We compared MSMD, Euclidian distance and DTW on the three pig datasets. We
used the predefined train/test splits, learning MSMD’s best value for m, and DTW’s
best value for w (the warping window width) with cross validation on just the train-
ing data. Table 1 summarizes the results.

The results show that while both Euclidian distance and DTW struggle to beat
the default rate, the MSMD can achieve a very low error rate. It is possible that
we could improve DTW by using endpoint invariance DTW, and we could improve
Euclidian distance by doing circular shift Euclidian distance. However, these results
strongly support our basic claim: you can get good results with the Matrix Profile
and a handful of lines of code.

3.6 Meter‑swapping detection

Electricity theft is a multi-billion-dollar problem worldwide (Sreenivasan 2016).
There are dozens of ways to steal power, but some modern wireless meters offer a
surprisingly easy method with little chance of detection (Kate and Rana 2015). Sup-
pose customer A is a heavy consumer of electricity; perhaps he has several electric
cars, or a machine shop, or a marijuana nursery in his garage. Further suppose that
he notes that one of his neighbors, customer B, an elderly widow living alone, con-
sumes very little power. It is possible for A to surreptitiously switch his meter with
B, and thus only have to pay for her meager consumption, while she unwittingly gets
lumbered with paying for his extravagant consumption. This crime is called meter-
swapping, and has become increasingly prevalent as power companies have reduced
meter reading staff in favor of wireless meter reading (Sreenivasan 2016).

It might be imagined that this would be easy for the power company to detect, as
there would be a significant change in the average power consumed by two houses.
However, as Fig. 9 top hints at, power consumption is often bursty anyway. For
example, families take vacations, welcome a new baby, or have children return from
college for a few weeks.

Our intuition to solve this problem is to note that while volume of consumption is
not a good feature, some households may have a unique “shape” of the consumption
over a day. Note that we do not expect all days to be conserved and unique, it is suf-
ficient for our purposes that the household occasionally produces a well-conserved

Table 1 A comparison of the holdout error rates of one-nearest neighbor with three distance measures.
In each dataset, the default rate is 0.980, because each of the 52 pigs is equally likely

Dataset MSMD (m) Euclidian distance DTW (w)

PigAirwayPressure 0.134 (425) 0.944 0.903 (1)
PigArtPressure 0.000 (140) 0.875 0.802 (1)
PigCVP 0.105 (200) 0.918 0.841 (11)

 Y. Zhu et al.

1 3

pattern, perhaps correspond to a low-power use on the Sabbath for an orthodox fam-
ily, or (as in one of the authors’ experience) an all-day obligation to wash and dry
the soccer kits for the entire team once every 7 weeks.

We consider a dataset of household electrical power demand collected from
twenty houses in the UK in 2013 (Murray et al. 2015). To simulate a meter-swap-
ping event, we randomly chose two of these time series, and swapped their traces
starting at November 10th. As we can see in Fig. 9 top this change is not readily
visually obvious.

To find the swapped time series pair, we propose the following simple algorithm.
We divide all the time series into two sections: the “Head,” prior to November 10th
and the “Tail,” subsequent to November 10th. We join all possible combinations of
Heads and Tails, and record the pair Hi, Hj that minimizes the following score:

Swap-Score(i, j) = min(HeadHi ⋈ θ1nnTailHj)∕(min(HeadHi ⋈ θ1nn TailHi) + epsilon)

Jan 1st Nov 10th Dec 31th

H1

H2

H3

H4

H11

::

::

0 24

0 24

Head Tail

min(HeadH11 θ1nn TailH11)

min(HeadH11 θ1nn TailH4)
Nov 8th at 4:12pm

Dec 17th at 3:44pm

Euclidean Distance = 9.56

Euclidean Distance = 2.85

Hours

Fig. 9 (Top) Five time series from the set of 20 we consider for this demonstration, spanning from Jan-
uary 1st to December 23rd. A randomly chosen pair of time series had their “tails” (the region after
November 10th) swapped to simulate a meter-swapping event. (Middle) If we join the head and tail of
H11, the 1st motif pair has a mutual distance of 9.56, slightly lower than the mean of the motif distance
for all 20 houses. (Bottom) If we join the head and tail pair from any of the 400 such combinations, the
1st motif pair from the join of HeadH11 and TailH4 produce the smallest mutual distance, of just 2.85; the
motif patterns look strikingly similar

1 3

The Swiss army knife of time series data mining:

In our simple experiment, this score was minimized by i = H11 and j = H4, which
as it happens, are our swapped pair. As Fig. 9 bottom shows, the motif spanning
these two apparently distinct traces time series is suspiciously similar, perhaps simi-
lar enough to warrant a visit by a meter reader/fraud prevention officer.

As before, the code to do this is trivial given the Matrix Profile:

[MP,MPindex] = computeMatrixProfileJoin(Head(i),Tail(i),m);

minMP = min(MP) + eps % eps is Matlab’s built-in epsilon

for j=i+1:5 % Produce all pairs of Heads and Tails

[JMP,JMPindex]=computeMatrixProfileJoin(Head(i),Tail(j),m);

Score = min(JMP) / minMP ;

<trivial code to maintain the minimum Score so far>

end

end

for i=1:5

Note that in our simple example we assumed we knew the date of the swap,
removing that assumption would simply require expanding our search space.

3.7 Shapelet discovery

Time series shapelets are time series subsequences that best represent a class (Ye
and Keogh 2009). The Matrix Profile can help us quickly identify good shapelet
candidates. This idea was mentioned in passing in Yeh et al. (2016b) but was not
fully developed and evaluated due to lack of space.

We demonstrate our approach with the GunPoint dataset. This dataset has two
classes, Gun and NoGun (NoGun is also known as Point, hence the name GunPoint).
As shown in Fig. 10, we construct time series TA by concatenating all the instances
of the Gun class, and construct time series TB by concatenating all the instances
of the NoGun class. We insert an NaN value in between every two concatenated
instances to avoid introducing artificial patterns that are not present in the original
time series. We then compute two matrix profiles, PBB and PBA. For simplicity, we
use a subsequence length of 38, which is the length of the best shapelet reported for
this dataset (Ye and Keogh 2009).

Intuitively, PBB will be smaller than PBA because we would expect subsequences
within the same class to be more similar than those of different classes. The differ-
ence between PBA and PBB (we denote it as P = PBA − PBB), as shown in Fig. 10 bot-
tom, generally agrees with this intuition.

We propose the peak values in P are indicators of good shapelet candidates,
because they suggest patterns that are well conserved in their own class but are
very different from their closest match in the other class. We pick the top-10

 Y. Zhu et al.

1 3

candidates from TB (analogously, we can find the top-10 candidates from TA if we
consider the difference between PAB and PAA). The code snippet is as follows.

[PBB, dummy] = computeMatrixProfileJoin(B, B, m);
[PBA, dummy] = computeMatrixProfileJoin(B, A, m);
MPdiff = PBA – PBB;
indicesOfTopShapelet = topTen(MPdiff); % trivial code to
implement topTen (extracting the top 10 peaks from the matrix
profile) omitted

In Fig. 11 left, we can see that all the top-10 shapelets give very high classifi-
cation accuracy on both the train and test data. Among them, we choose the one
that renders the highest classification accuracy on the training set (the 6th shape-
let) and show it in Fig. 11 right. This shapelet gives 93.33% accuracy on the test
data, which is higher than the 91.33% accuracy of One-Nearest-Neighbor with
DTW distance measure, with a bonus advantage of significantly less classifica-
tion time. The shapelet learned reflects a distinct characteristic of the class that
it represents (NoGun), as discussed by Ye and Keogh (2009): “the NoGun class
“has a “dip” where the actor put her hand down by her side, and inertia carries
her hand a little too far and she is forced a correct it…a phenomenon known as
‘overshoot’”. In contrast, in the opposite Gun class, the actor carries a gun. She

0 500 1000 1500 2000 2500 3000 3500 4000
-2
-1
0
1
2
3

TA: Concatenationof class 1 (Gun)

0 500 1000 1500 2000 2500 3000 3500 4000
-4
-2
0
2
4

TB: Concatenation of class 2 (NoGun)

P = PBA - PBB

0 500 1000 1500 2000 2500 3000 3500 4000
-2

0

2

4

6

Fig. 10 (Top and middle) Two time series A and B formed by concatenating instances of each class of
GunPoint dataset. (Bottom) The difference between PBA and PBB. The top-10 peak values (highlighted
with red circles) are suggestive of good shapelet candidates (Color figure online)

1 3

The Swiss army knife of time series data mining:

needs to put the gun back in the holster and then bring her hand to a complete rest
position, generating a different pattern.

In hindsight, this shapelet also achieves the same classification accuracy on the
test data as the original shapelet algorithm (Ye and Keogh 2009). However, in con-
trast to the classic shapelet algorithm, which exhaustively evaluates the classification
power of every possible shapelet candidate in the dataset, the MP readily provides
the top shapelet candidates for free.

3.8 Detecting and locating low frequency earthquakes

Low frequency earthquakes (LFEs), which recur episodically, could “potentially
contribute to seismic hazard forecasting by providing a new means to monitor slow
slip at depth” (Shelly et al. 2006). As such, detecting and locating LFEs are of great
importance to the seismology community.

The waveforms of a recurring LFE recorded at the same seismic station are nor-
mally very similar to each other, as they reflect the unique signature of the wave
reflecting and refracting through the local substrate. Thus, we can detect them by
extracting the top motifs from the Matrix Profile of the continuous seismograph
recording time series (e.g., Zhu et al. 2016). However, as indicated in Zhu et al.
(2016), this can result in a lot of false positives since the sensor recording of a single
seismic station often contains many repeating sensor artifacts or instrument noise.
Though such false positives are easy to filter out by human eye (Zhu et al. 2016),
this becomes untenable when the data is long enough to contain hundreds or thou-
sands of false positive events. Figure 12 shows the matrix profile corresponding to
a 24-h seismic recording of the FROB station near the central San Andreas fault at
Parkfield, CA on Oct. 9th, 2007. The data is sampled at 20 Hz (1.728 million data-
points in total). The matrix profile contains hundreds of deep valleys, but only less
than 10% of them are corresponding to true LFEs.

Is there a way to automatically filter out all the undesirable events (i.e., false posi-
tives)? Note that sensor artifacts or instrument noise are local (i.e., they will only be

1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Train accuracy

Test accuracy

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Shapelet candidates
0 80 160

Best shapelet

An instance from the NoGun class

Fig. 11 (Left) Classification accuracy of the top-ten shapelet candidates. All the candidates render high
classification accuracy on both train and test data. (Right) The best shapelet found in training. Classifica-
tion with this shapelet on test data gives 93.33% accuracy, higher than the 91.33% accuracy of One-Near-
est-Neighbor DTW. This 93.33% accuracy is also the best accuracy achieved with the classic shapelet
search approach (Ye and Keogh 2009)

 Y. Zhu et al.

1 3

detected by a single seismic station), while recurring LFEs can be detected by mul-
tiple stations at similar times. Correspondingly, we would expect the matrix profiles
of multiple stations to show low values at the time when an LFE occurs. In contrast,
when a false positive event occurs, only one of the matrix profiles would show low
values and the others will show high values. This renders a simple solution to our
problem: all we need to do is get the element-wise maximum of the matrix profiles
corresponding to multiple nearby stations.

In Fig. 13 top we zoom in a 15-s snippet of the matrix profile shown in Fig. 12 at
around 3am when an LFE occurs, and compare it with the same snippet taken from
the matrix profile of a nearby seismic station JCNB (shown in Fig. 13 bottom). As
expected, both snippets contain a valley.

However, note that the two valleys are slightly misaligned. This is because the
source of the LFE locates slightly closer to the JCNB station than to the FROB sta-
tion, and earthquakes travel at a finite speed. Thus, if we simply take the element-
wise maximum of the two matrix profiles, the valley will become shallow. Fortu-
nately, this misalignment (denoted as tdiff in Fig. 13 bottom) has physical limits: the
two stations are about 10 km away, and the velocity of seismic waves near the sur-
face of the earth is around 3–4 km/s, so tdiff cannot be more than 5 s (i.e., 100 data
points). As such, we slightly adjust our “element-wise maximum” strategy to the
following: we match the ith element of MPFROB (1 ≤ i ≤ |MPFROB|) to the minimum

0 24 hours

2

10

Fig. 12 The matrix profile of the FROB station on Oct 9th, 2007 contains a lot of deep valleys, a vast
majority of which are false positives

4

10

431600 431900
4

10

MPFROB

MPJCNB

tdiff

Fig. 13 (Top) A 15-s snippet of the matrix profile shown Fig. 12 at around 3 am. (Bottom) The same
snippet of the matrix profile corresponding to the seismic recording of the nearby station JCNB. Both
snippets contain a deep valley, but they are a little bit misaligned as the two stations receive the earth-
quake signal at slightly different times

1 3

The Swiss army knife of time series data mining:

element within the range [max(i − 100, 1), min(i + 100, |MPJCNB|)] of MPJCNB, then
take their maximum. The pseudo-code is as follows.

[MPfrob,dummy]=computeMatrixProfile(DATAfrob,m); %FROB station

[MPjcnb,dummy]=computeMatrixProfile(DATAjcnb,m); %JCNB station

Lfrob = length(MPfrob), Ljcnb = length(MPjcnb);

for i = 1 : Lfrob

[minVal,minIdx]=min(MPjcnb(max(i-100,1):min(i+100,Ljcnb)));

MPfrob(i) = max(MPfrob(i),minVal), Index(i) = minIdx;

end

Figure 14 top shows the resulting matrix profile MPfrob, which is much
“cleaner” than the one shown in Fig. 12. We presented the top 10 motifs extracted
from this matrix profile to a seismologist (Shakibay-Senobari 2018) (the top 3 are
shown in Fig. 14 bottom), and he verified that they are all true LFEs.

Besides detecting true LFEs, note that our simple strategy also provides extra
implications for locating the LFEs. The time difference tdiff shown in Fig. 13 can be
found from the Index vector in our pseudocode, and if we know such time differ-
ence between 3 pairs of nearby seismic stations in the area, the exact location of the

2

10

0 24 hours

0 7000 700 0 700
1st motif 2nd motif 3rd motif

Fig. 14 (Top) The deep valleys in the resulting matrix profile all correspond to true events (compare to
Fig. 12). (Bottom) The top 3 motifs extracted from the resulting matrix profile

 Y. Zhu et al.

1 3

source of the LFE can be calculated. We reserve detailed analysis and further dem-
onstration of such considerations for future work.

3.9 Automatically clustering time series motifs

Building on our previous example we consider applications of the Matrix Profile to
clustering of seismic data. Seismic waveform clustering has been applied to earth-
quake relocation (Trugman and Shearer 2017; Waldhauser and Ellsworth 2000;
Richards-Dinger and Shearer 2000), repeating earthquake source identification (Gel-
ler and Mueller 1980; Nadeau et al. 1995; Vidale et al. 1994; Nadeau and McE-
villy 1999; Beeler et al. 2001; Shelly et al. 2006; Wisely et al. 2008) and volcano
monitoring (Sherburn et al. 1998; Lahr et al. 1994; Bardainne et al. 2006), helping
to improve earthquake and volcanic hazard assessments. The seismology commu-
nity has adopted various methods to cluster the seismic waveforms (time series sub-
sequences corresponding to a seismic event) (Bardainne et al. 2006; Trugman and
Shearer 2017). However, these methods take discrete, phase-aligned seismic wave-
forms of the same length as their input; extracting such waveforms from a long con-
tinuous seismic recording requires a lot of human effort. Here we introduce a simple
method based on the Matrix Profile and ten lines of code, that can automatically
discover earthquake pattern clusters from the continuous seismic recording.

To allow verification of the correctness of our result, we constructed a seismic
time series by embedding twelve earthquake patterns into a 1000-s-long snippet of
seismic background noise, as shown in Fig. 15a. The 12 embedded patterns are gen-
erated by four different earthquake sources (patterns of the same source are marked
with the same color). The patterns corresponding to the same source normally look
very similar to each other, while those corresponding to different sources are dis-
similar. Our goal is to automatically discover the four natural clusters within the
time series.

Before introducing our proposed solution, we would like to first dismiss some
apparent solutions. Given the problem setting, the reader might consider finding the
top-k motifs (Mueen et al. 2009) here. Note that the top-k motifs normally refer to the
top-k most similar pairs of subsequences in the time series. However, from Fig. 15a
we can see that a natural motif cluster can contain more than two occurrences of
similar subsequences (e.g., the three red patterns are mutually similar); the classic
top-k motif definition would separate them into different motif clusters, which is
undesirable. The reader might also consider finding the range motifs (Mueen et al.
2009) instead of top-k motifs. However, discovering range motifs requires setting a
threshold parameter r: the maximum distance between any two subsequences in a
motif cluster must not be larger than 2r. We argue that such threshold is very dif-
ficult to set and needs very careful tuning. For example, if two subsequences have
a Euclidean distance of three, are they similar enough to be considered as a motif?
The answer is not that obvious even for a domain expert who knows the data well.

Our solution can automatically find the natural number of motif clusters in the
data (i.e., we do not need to specify how many clusters we would like to find), and
requires only the setting of a much less critical parameter. The code is as follows:

1 3

The Swiss army knife of time series data mining:

2000

0

50

0

1

0

1

0

1

0 100000
0

1

MP

time series

(b)

(c)

(d)

(e)

(f)

RelMP1

RelMP2

RelMP3

RelMP4

-2000

0
(a)

Fig. 15 (a) A seismic time series with 12 earthquake patterns. These earthquakes are generated by four
different sources. Patterns corresponding to the same source are marked in the same color. (b) The matrix
profile of the seismic time series. (c) The relative matrix profile after the 1st motif pattern is removed.
The deep valleys corresponding to the three red patterns disappeared. (d) The relative matrix profile after
the 2nd motif pattern is removed. The deep valleys corresponding to the four green patterns disappeared.
(e) The relative matrix profile after the 3rd motif pattern is removed. The deep valleys corresponding to
the two blue patterns disappeared. (f) The relative matrix profile after the 4th motif pattern is removed.
The deep valleys corresponding to the three orange patterns disappeared (Color figure online)

 Y. Zhu et al.

1 3

[MP, dummy] = computeMatrixProfile(T, m);

RelMP = MP, i = 1, DissMP = inf(1, length(MP));

while i == 1 || min(RelMP) < 0.2

[minVal(i), minIdx(i)] = min(RelMP);

DissmissRange = T(minIdx-m+1 : minIdx+2*m-2);

[JMP, dummy] = computeMatrixProfileJoin(T,DissmissRange,m);

DissMP = min(DissMP,JMP); %dismiss all motifs discovered so far

RelMP = MP ./ DissMP;

i = i + 1;

end

We first compute the matrix profile MP corresponding to the input time series T,
as shown in Fig. 15b. We can see deep valleys in the vicinity of all the embedded
earthquake patterns, as they all have close matches from the same source. We use
the following iterative process to find the motif clusters one by one:

1. We find the minimum value in the current relative matrix profile RelMP (in the
first iteration, we set RelMP = MP). This corresponds to a motif pattern (Fig. 16
shows the motif pattern discovered at each iteration).

2. We wish to avoid finding the same motif pattern in the next iteration. As such, we
specify a DissmissRange which is a section of time series T that includes the
current discovered motif pattern and its trivial matches, then compute the AB-join
matrix profile JMP between the original time series T and DissmissRange.

56500 58000 26000 27500

10000 11500 80500 82000

Fig. 16 (Top left) The 1st motif pattern discovered, corresponding to the minimum point of the matrix
profile MP in Fig. 15b (top right). The 2nd motif pattern discovered, corresponding to the minimum
point of the relative matrix profile RelMP1 in Fig. 15c (bottom left). The 3rd motif pattern discovered,
corresponding to the minimum point of the relative matrix profile RelMP2 in Fig. 15d (bottom right) The
4th motif pattern discovered, corresponding to the minimum point of the relative matrix profile RelMP3
in Fig. 15e

1 3

The Swiss army knife of time series data mining:

JMP measures how similar each subsequence is to the current discovered motif
pattern.

3. We use a vector DissMP to store the distance between every subsequence and its
closest match among all the motif patterns discovered so far. DissMP is initial-
ized as infinity, and once we have computed JMP, we update DissMP with the
element-wise minimum of DissMP and JMP.

4. We evaluate a “relative” matrix profile RelMP by dividing the original matrix
profile MP with DissMP. Our intuition is that, if a subsequence has a very close
nearest neighbor, but is very different from any of the discovered motifs (and
their trivial matches), then its RelMP value should be low. Note that the values
in RelMP are always between 0 and 1.

5. If min(RelMP) < 0.2, go to step 1 and start the next iteration. Otherwise
terminate the process.

From Fig. 15b–f, we can see how RelMP changes through this iterative process
(we use RelMPi to denote the status of RelMP at the end of the ith iteration). After
each iteration, several deep valleys corresponding to the earthquake patterns in the
same color disappeared from RelMP. The process terminates after the 4th iteration,
when there are no more valleys apparent in RelMP.

The reader might wonder how we define “apparent valleys” here. We set a ter-
mination threshold as min(RelMP) = 1/5. Recall that RelMP(j) measures the
relative ratio between MP(j), the distance from the jth subsequence to its near-
est neighbor and DissMP(j), the distance from the jth subsequence to its closest
match among all the discovered motif patterns. If the jth subsequence belongs to a
new cluster, then it should be much more similar to its nearest neighbor than any of
the discovered patterns. As such, we require that MP(j) cannot be more than 1/5 of
DissMP(j).

From Fig. 16, we can see that the discovered motifs at different iterations corre-
spond to different earthquake sources (different colors), and the process terminates
right after we have discovered all the four embedded earthquake clusters.

3.10 Quantifying Parkinson disease

Parkinson Disease (PD) is a neuro-degenerative disease which affects gait and
mobility. To assess the severity of the disease, clinicians use the Hoehn and Yahr
scale (Afsar et al. 2018). The original scale published in 1967 (Hoehn and Yahr
1967) ranges from 1 to 5, with the scores 1.5 and 2.5 added in a later revision to
allow doctors to describe the progression of the disease.

In a recent paper, the authors propose exploiting the “recurrence” of gait time
series as a method to automatically score patients on the Hoehn and Yahr scale
(Afsar et al. 2018). They use a mathematically sophisticated definition of recurrence
based on an embedding in a phase space, showing that various heuristic complexity
measures of the recurrence quantification analysis correlate to the Hoehn and Yahr
scale.

 Y. Zhu et al.

1 3

The phase “recurrence” in the title of this paper caught our attention. Time series
motifs are simple recurring subsequences. It is natural to ask if the Matrix Profile could
be used for this task. Our intuition here is simple. Imagine a person could walk with a
near perfectly repeated gait cycle. If we computed the matrix profile of their gait telem-
etry, we would expect the matrix profile values to be very small, as every subsequence
would have a near perfect match somewhere. In contrast, if a person has an irregularity
to their gait (caused by a tremor, a hesitation, or stumble), we would expect that these
movements will add unique elements to each gait. As such, these unique gaits cycle
will not find such close matches among their neighbors and therefore the matrix profile
will be higher. In Fig. 17 we find some evidence to support the idea that people with
more advanced PD have less well conserved gaits, at least on two randomly selected
individuals.

To see if this observation is more generally true, we experimented with the Parkin-
son Disease (PD) dataset provided by Hausdorff group (Hausdorff et al. 1995), which
is publicly available in “PhysioBank Database” (Goldberger et al. 2000). The data con-
sists of gait force profiles of 93 patients with idiopathic PD (disease severity levels 2,
2.5 and 3 in terms of Hoehn–Yahr scale) and 73 healthy control individuals (who we
would expect to score at level 1). The data consists of vertical ground reaction force of
subjects when walking normally at their own pace. The ground reaction force is the
force exerted by the ground on an object in contact with it, in this case, the object is the
foot.

We propose using the median of MP of sensor data as a proxy for the severity level
of PD. We use the median rather than the maximum or sum, as the latter two functions
would be brittle to a single unusual step. By visual inspection it appears that, for all par-
ticipants, the 20th step is vastly different for the rest, presumably as the patient reached
the end of the apparatus and turned around.

We can compute the score for each patient with just:

1000 2000
0N

ew
to

ns 1500

0

1500

1

Hoehn - Yahr scale: 3

Hoehn - Yahr scale: 1

N
ew

to
ns

Fig. 17 A comparison of gait force profiles from two individuals walking for 20 s. One individual (top)
was assessed by clinicians as being ‘3’ on the Hoehn and Yahr scale. His gait cycles are not repeated per-
fectly, we have highlighted some of the most least conserved adjacent cycles. In contrast, another indi-
vidual (bottom) who was assessed as ‘1’ on the Hoehn and Yahr scale has a more conserved gait

1 3

The Swiss army knife of time series data mining:

for i=1:size(1,patients)

[MP,MPindex] = computeMatrixProfile(patients(i),100);

HoehnYahrProxy = median(MP);

end

In Fig. 18 we show how well this proxy score models the Hoehn–Yahr scale.
It is important for us to disclaim that we are not making any medical claims for

this experiment (we do not have such expertise), and we have not performed the
type of statistical test that would pass muster in medical journal. Our point here, as
always, is simply that the Matrix Profile and a few lines of code allow you to quickly
test ideas that may be fruitful.

3.11 Scalability

Because the time taken for the Matrix Profile depends only on n, and not on the
motif length m or the structure of the data, we can summarize the time complexly
for all experiments with a single table as shown in Table 2. This is another very
useful property of the Matrix Profile, which stands in contrast to almost all other
methods. For example, Quick-Motif may be able to process a million datapoints on
smooth data in about 4 min on a standard desktop (Li et al. 2015). But for noisier
data, the time required could balloon by a factor of ten or more (Zhu et al. 2016).

The three computational approaches considered were: a standard desktop, a
72-core c5.18xlarge spot instance (Intel Skylake architecture), and an Amazon Web
Service p3.2xlarge (1 Tesla V100) which cost about 3.06 USD/hour at the time of
writing.

Note that the time taken for the desktop version does get prohibitive for large
datasets. However, note that the if the data discussed in Sect. 3.1 was sampled at

Fig. 18 The median of the
Matrix Profile versus the
Hoehn–Yahr scale (red horizon-
tal bar) plotted within classic
box and whisker plots. Note that
the median does increase with
the severalty of the Hoehn–Yahr
scale (Color figure online)

0
1

0.5

2 2.5 3
M

ed
ia

n
of

 M
at

rix
 P

ro
fil

e

Hoehn-Yahr Scale

 Y. Zhu et al.

1 3

1 Hz, then the 6,106,456 datapoints would represent about 70 days. Thus, even if we
use a standard desktop, we can compute the Matrix Profile about 1000 times faster
than real-time for this problem. Moreover, recall that this is for the fully converged
Matrix Profile. As Zhu et al. (2018) shows, we can typically closely approximate in
the Matrix Profile in about 1/100th of the time to complete convergence.

4 Conclusion

We have presented ten time series data mining case studies in which interesting and
actionable results can be obtained given just a handful of lines of code. Moreover,
these results can be obtained essentially instantaneously, given our assumption that
the computation of the Matrix Profile is free. That last assumption needs a little
qualification. The existing Matrix Profile algorithms, STAMP (Yeh et al. 2016b),
and STOMP (Zhu et al. 2016) are effectively instantaneously for many end users,
who have only tens of thousands of data points. For example, the Parkinson Disease,
music processing, and classification (shapelet) examples all have this property. For
users with say one-hundred thousand to one million datapoints, they may need to
wait minutes for their results. Our meter-swapping example is of this scale. Note,
however, that the minutes of computation time are dwarfed by the full year of time
it took to collect the data. For users with datasets in the many millions, computa-
tion time becomes more of an issue, but even here there is hope on the horizon. In a
recently published paper we introduced a novel algorithm called SCRIMP++ (Zhu
et al. 2018) that can approximate the Matrix Profile even faster than STAMP, allow-
ing a user with say a million datapoints to obtain a high quality approximate Matrix
Profile in “interactive” time (a handful of seconds), and in an upcoming work we
will show that a GPU cluster optimized algorithm called SCAMP can scale up to

Table 2 Time taken to compute a Matrix Profile for datasets ranging from 218 to 223 using three compu-
tational paradigms

Note that for small datasets a standard desktop can beat HPC due to setup costs, but that advantage disap-
pears as we see larger datasets

Input size Instance type

Experiments of that size Desktop CPU
seconds

c5.18xlarge
(72 cores)
3.06 USD/h
seconds

p3.2xlarge (1 Tesla
V100) 3.06 USD/h
seconds

218 3.2, 3.3, 3.4, 3.7, 3.9, 3.10 6.4 7 0.28
219 3.5 25.3 14 0.68
220 3.6 99.9 32 2.00
221 3.8 397.8 76 7.00
222 1584.8 252 25.80
223 3.1 6333.3 933 96.80

1 3

The Swiss army knife of time series data mining:

billion length time series. Moreover, we suspect that others in the community will
find ways to accelerate the Matrix Profile that did not occur to us.

Acknowledgements We gratefully acknowledge funding from NSF IIS-1161997 II, NASA award NNX-
15AM66H, USGS G16AP00034, MERL Labs and Samsung, and all the data donors.

References

Afsar O, Tirnakli U, Marwan N (2018) Recurrence Quantification Analysis at work: quasi-periodicity
based interpretation of gait force profiles for patients with Parkinson disease. Sci Rep 8(1):9102

Bardainne T, Gaillot P, Dubos-Sallée N, Blanco J, Sénéchal G (2006) Characterization of seismic wave-
forms and classification of seismic events using chirplet atomic decomposition. Example from the
Lacq gas field (Western Pyrenees, France). Geophys J Int 166(2):699–718

Batista GEAPA, Keogh EJ, Tataw OM, De Souza VMA (2014) CID: an efficient complexity-invariant
distance for time seriem. Data Min Knowl Discov 28(3):634–669

Bayardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: Proceedings of the 16th
international conference on World Wide Web (WWW), pp 131–140

Beeler NM, Lockner DL, Hickman SH (2001) A simple stick-slip and creep-slip model for repeat-
ing earthquakes and its implication for microearthquakes at Parkfield. Bull Seismol Soc Am
91(6):1797–1804

Bonds ME (1998) Haydn’s’ Cours complet de la composition’ and the Sturm und Drang. Haydn studies,
pp 152–176

Chandola V, Cheboli D, Kumar V (2009) Detecting anomalies in a time series database. UMN TR09-004
Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classifi-

cation archive. http://www.cs.ucr.edu/~eamon n/time_serie s_data/
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh EJ (2008) Querying and mining of time series

data: experimental comparison of representations and distance measures. Proc VLDB Endow
(VLDB) 1(2):1542–1552

Geller RJ, Mueller CS (1980) Four similar earthquakes in central California. Geophys Res Lett
7(10):821–824

Gharghabi S, Ding Y, Yeh CCM, Kamgar K, Ulanova L, Keogh E (2017) Matrix profile VIII: domain
agnostic online semantic segmentation at superhuman performance levels. In: Proceedings of the
2017 IEEE international conference on data mining (ICDM), pp 117–126

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng
CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research
resource for complex physiologic signals. Circulation 101(23):e215–e220

Guillame-Bert M, Dubrawski A (2017) Classification of time sequences using graphs of temporal con-
straints. J Mach Learn Res 18(1):4370–4403

Gupta S, Reynolds MS, Patel SN (2010) ElectriSense: single-point sensing using EMI for electrical event
detection and classification in the home. In: Proceedings of the 12th ACM international conference
on ubiquitous computing, pp 139–148

Hausdorff JM, Ladin Z, Wei JY (1995) Footswitch system for measurement of the temporal parameters of
gait. J Biomech 28(3):347–351

Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442
Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim

22(3):615–632
Kate PG, Rana JR (2015) ZIGBEE based monitoring theft detection and automatic electricity meter read-

ing. In: Proceedings of the 2015 International conference on energy systems and applications, pp
258–262

Kurpiewski MR, Engler LE, Wozniak LA, Kobylanska A, Koziolkiewicz M, Stec WJ, Jen-Jacobson L
(2004) Mechanisms of coupling between DNA recognition specificity and catalysis in EcoRI endo-
nuclease. Structure 12(10):1775–1788

Lahr JC, Chouet BA, Stephens CD, Powers JA, Page RA (1994) Earthquake classification, location, and
error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990
eruptions at Redoubt Volcano, Alaska. J Volcanol Geotherm Res 62:137–152

http://www.cs.ucr.edu/%7eeamonn/time_series_data/

 Y. Zhu et al.

1 3

LG Dishwasher Owners Manual (2017) http://www.lg.com/us/suppo rt/produ cts/docum ents/Owner s%20
Man ual.pdf. Accessed 2 Dec 2017

Li Y, Yiu ML, Gong Z (2015) Quick-motif: An efficient and scalable framework for exact motif discov-
ery. In: Proceedings of the 2015 IEEE 31st international conference on data engineering (ICDE), pp
579–590

Lin J, Khade R, Li Y (2012) Rotation-invariant similarity in time series using bag-of-patterns representa-
tion. J Intell Inf Syst 39(2):287–315

Morris D, Saponas TS, Guillory A, Kelner I (2014) RecoFit: using a wearable sensor to find, recognize,
and count repetitive exercises. In: Proceedings of the 2014 SIGCHI conference on human factors in
computer systems, pp 3225–3234

Mueen A, Keogh E, Zhu Q, Cash S, Westover B (2009) Exact discovery of time series motif. In: Proceed-
ings of the 2009 SIAM international conference on data mining (SDM), pp 473–484

Murray D, Liao J, Stankovic L, Stankovic V, Hauxwell-Baldwin R, Wilson C, Coleman M, Kane T, Firth
S (2015) A data management platform for personalised real-time energy feedback. In: Proceed-
ings of the 8th international conference on energy efficiency in domestic appliances and lighting
(EEDAL), pp 1–15

Music Performance (2017) Joseph Haydn’s symphony no. 47 in G major, by the Tafelmusik Orchestra.
www.youtu be.com/watch ?v=yeB_Ohpsm 64. Accessed 2 Dec 2017

Nadeau RM, McEvilly TV (1999) Fault slip rates at depth from recurrence intervals of repeating micro-
earthquakes. Science 285(5428):718–721

Nadeau RM, Foxall W, McEvilly TV (1995) Clustering and periodic recurrence of microearthquakes on
the San Andreas Fault at Parkfield, California. Science 267(5197):503–507

Puder J (2000) Seventeen synonyms of Semordnilap. Word Ways 33(1), article 9
Reiss A, Stricker D (2012) Introducing a new benchmarked dataset for activity monitoring. In: Proceed-

ings of the 16th international symposium on wearable computers (ISWC), pp 108–109
Richards-Dinger KB, Shearer PM (2000) Earthquake locations in southern California obtained using

source-specific station terms. J Geophys Res Solid Earth 105(B5):10939–10960
Shakibay-Senobari N (2018) Personal correspondence. June 14, 2018
Shelly DR, Beroza GC, Ide S, Nakamula S (2006) Low-frequency earthquakes in Shikoku, Japan, and

their relationship to episodic tremor and slip. Nature 442(7099):188–191
Sherburn S, Scott BJ, Nishi Y, Sugihara M (1998) Seismicity at White Island volcano, New Zea-

land: a revised classification and inferences about source mechanism. J Volcanol Geoth Res
83(3–4):287–312

Sreenivasan G (2016) Power theft. PHI Learning Pvt. Ltd, New Delhi
Supporting Webpage (2019) https ://sites .googl e.com/site/matri xprofi leto pten/
Tasmanian devil (2017) Wikipedia, the free encyclopedia. https ://en.wikip edia.org/wiki/Tasma nian_devil
The UCR Matrix Profile Page (2017) www.cs.ucr.edu/~eamon n/Matri xProfi le.html. Accessed 2 Dec 2017
Trugman DT, Shearer PM (2017) GrowClust: a hierarchical clustering algorithm for relative earthquake

relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequences.
Seismol Res Lett 88(2A):379–391

Vidale JE, ElIsworth WL, Cole A, Marone C (1994) Variations in rupture process with recurrence inter-
val in a repeated small earthquake. Nature 368(6472):624–629

Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and
application to the northern Hayward fault. Bull Seismol Soc Am 90(6):1353–1368

Wang J, Liu P, She MF, Nahavandi S, Kouzani A (2013) Bag-of-words representation for biomedical
time series classification. Biomed Signal Process Control 8(6):634–644

Wisely BA, Schmidt DA, Weldon II RJ (2008) Compilation of surface creep on California faults and
comparison of WGCEP 2007 deformation model to Pacific-North American plate motion (No.
2007-1437-P). Geological Survey (US)

Yankov D, Keogh E, Medina J, Chiu B, Zordan V (2007) Detecting time series motifs under uniform
scaling. In: Proceedings of the 2007 ACM SIGKDD international conference on knowledge discov-
ery and data mining, pp 844–853

Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 2009
ACM SIGKDD international conference on knowledge discovery and data mining, pp 947–956

Yeh CCM, Herle HV, Keogh E (2016a) Matrix profile III: the matrix profile allows visualization of sali-
ent subsequences in massive time series. In: Proceedings of the 2016 IEEE international conference
on data mining (ICDM), pp 579–588

http://www.lg.com/us/support/products/documents/Owners%20Manual.pdf
http://www.lg.com/us/support/products/documents/Owners%20Manual.pdf
http://www.youtube.com/watch%3fv%3dyeB_Ohpsm64
https://sites.google.com/site/matrixprofiletopten/
https://en.wikipedia.org/wiki/Tasmanian_devil
http://www.cs.ucr.edu/%7eeamonn/MatrixProfile.html

1 3

The Swiss army knife of time series data mining:

Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Silva DF, Mueen A, Keogh E (2016b) Matrix
profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and
shapelets. In: Proceedings of the 2016 IEEE international conference on data mining (ICDM), pp
1317–1322

Yeh CCM, Kavantzas N, Keogh E (2017) Matrix profile IV: using weakly labeled time series to predict
outcomes. Proc VLDB Endow (VLDB) 10(12):1802–1812

Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Zimmerman Z, Silva DF, Mueen A, Keogh
E (2018) Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix
profile. Data Min Knowl Disc 32(1):83–123

Zhang M, Sawchuk A (2012) USC-HAD: a daily activity dataset for ubiquitous activity recognition
using wearable sensors. In: Proceedings of the 2012 ACM conference on ubiquitous computing, pp
1036–1043

Zhu Y, Zimmerman Z, Senobari NS, Yeh CCM, Funning G, Mueen A, Brisk P, Keogh E (2016) Matrix
profile II: exploiting a novel algorithm and GPUS to break the one hundred million barrier for time
series motifs and joins. In: Proceedings of the 2016 IEEE international conference on data mining
(ICDM), pp 739–748

Zhu Y, Imamura M, Nikovski D, Keogh E (2017) Matrix profile VII: time series chains: a new primitive
for time series data mining. In: Proceedings of the 2017 IEEE international conference on data min-
ing (ICDM), pp 695–704

Zhu Y, Yeh CCM, Zimmerman Z, Kamgar K, Keogh E (2018) Matrix profile XI: SCRIMP++: time
series motif discovery at interactive speeds. In: Proceedings of the 2018 IEEE international confer-
ence on data mining (ICDM), pp 837–846

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	The Swiss army knife of time series data mining: ten useful things you can do with the matrix profile and ten lines of code
	Abstract
	1 Introduction
	2 General related work and background
	2.1 Definitions and notation
	2.2 Summary of the previous section

	3 Ten useful things you can do with the matrix profile and ten lines of code
	3.1 Discovering motifs under uniform scaling
	3.2 Discovering time series semordnilaps
	3.3 Discovering time series reverse complements
	3.4 Segmenting repetitive exercises
	3.5 Robust distance functions
	3.6 Meter-swapping detection
	3.7 Shapelet discovery
	3.8 Detecting and locating low frequency earthquakes
	3.9 Automatically clustering time series motifs
	3.10 Quantifying Parkinson disease
	3.11 Scalability

	4 Conclusion
	Acknowledgements
	References

