
Exploiting Reduced Precision for GPU-based
Time Series Mining

Yi Ju∗, Amir Raoofy†, Dai Yang‡, Erwin Laure∗, Martin Schulz†
∗Max Plank Computing and Data Facility {yi.ju, erwin.laure}@mpcdf.mpg.de
†Technical University of Munich {amir.raoofy, martin.w.j.schulz}@tum.de

‡NVIDIA GmbH {daiy}@nvidia.com

Abstract—The mining of multi-dimensional time series is a
crucial step in gaining insights into data obtained from physical
systems and from monitoring infrastructures. A widely accepted
approach for this challenge is the matrix profile, which, however,
is computationally very expensive. It relies on calculating large
correlation matrices coupled with sort operations across all
dimensions of the data, as well as on performing inclusive
scans. All of these steps are inherently data parallel and can,
therefore, benefit from execution on GPUs, and even more so
from horizontal scaling on multiple GPUs. In addition, the nature
of the matrix profile calculation allows the exploitation of reduced
precision on GPUs. This offers further improvements to enable
the analysis of ever growing data sets in real-world scenarios.

Based on these motivations, we introduce the first parallel
algorithm for multi-dimensional matrix profile on multiple GPUs
exploiting reduced precision modes and provide a highly opti-
mized implementation using novel optimization techniques. On
one NVIDIA A100 GPU, our implementation achieves a 54x
performance improvement in comparison to an optimized single-
node execution on a state-of-the-art CPU-based implementation
relying on double-precision computation and an additional factor
of 1.4x when switching to reduced precision while maintaining
sufficient accuracy. We study the accuracy and performance
trade-offs for our proposed algorithm in detail and present
synthetic and real-world case studies to demonstrate how the
reduced precision improves the performance, while accomplish-
ing sufficiently accurate results.

Index Terms—Multi-GPU algorithms, data mining, reduced
precision, multi-dimensional time series, matrix profile.

I. INTRODUCTION

Never in history have data, and hence data analytics played,
a more significant role in human life and knowledge as today.
Modern monitoring infrastructures provide scientists, analysts
and developers with large amounts of data, which must be
analyzed using big data and high performance data analytics
(HPDA) techniques to better understand physical systems
and phenomena. A collection of real-valued numbers with
time-stamps, called time series, is one of the most common
forms of data and is used in many domains. Specifically,
multi-dimensional time series, which capture multiple sensor
sources, have a significant importance, as they include col-
lective information about many components at the same time
and with that enable cross-sensor correlations. Therefore, effi-
cient algorithms for the exploration of the complex similarity
patterns in such multi-dimensional time series are crucial in
extracting the needed insights.

The Matrix profile approach [3], [22] long serves as a
fundamental data mining method to investigate time series,
and provides a way to detect similar structures (patterns)
when comparing two input time series. Matrix profile is
widely accepted in the data science community and has been
successfully applied to various application domains, including
the investigation of earthquake foreshock [15], analysis of
power system events in synchrophasor data [16], music infor-
mation retrieval (MIR) [17], similarity searching of bacteria’s
DNA [21], and others.

Previous studies in the literature show that for large time
series datasets, the matrix profile requires a high compu-
tational power to evaluate the large distance or correlation
matrices [12], [13], [24]. The multi-dimensional case, which
targets synchronously sampled time series, where each dimen-
sion corresponds to a separate data source, imposes more
computational costs: this increase for one comes from the
fact that the computational costs scales with dimensionality as
each dimensions requires the calculation of a separate distance
matrix. Additionally, in the multi-dimensional case we require
extra repeated sort and inclusive scan operations to connect the
dimensions, which increases the computational cost further.

While the state-of-the-art approach for computing multi-
dimensional matrix profiles targets CPU-based systems [13],
exploiting GPU systems for this workload is promising: pre-
vious studies show that this workload is memory-bound [12],
suggesting that leveraging the High Bandwidth Memory
(HBM) of GPUs promises performance improvements. Ad-
ditionally, as this workload is not communication bound, the
throughput is expected to scale with multiple GPUs. However,
the use of GPU requires redesigning the parallelization scheme
and data layout. While a GPU-based multi-dimensional matrix
profile benefits from parallelization method used in the state-
of-the-art GPU-based solution [27] for single-dimensional
case, due to the extra computational costs and the resulting
bottleneck shifts, development of a parallelization scheme for
multi-dimensional case requires significant redesign.

On top of that, the problem of finding similar (and not nec-
essarily exactly identical) patterns offers the door to reduced
precision calculations, which has not been investigated before.
Reduced-precision computations, aside from improving perfor-
mance, can also reduce the memory footprint, resulting in an
even more efficient usage of the GPU memory bandwidth and
the ability to support larger problems. However, it does natu-

124

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00021

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

02
1

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

rally lead to more numerical errors and hence new challenges
to preserve acceptable numerical accuracy.

In order to address both computational costs and accuracy
aspects of computing multi-dimensional matrix profile on
GPUs we, therefore, need 1) a careful design of kernels
including the data layout, and data management design, ef-
ficient sorting and scalable tiling for efficient multi-GPU
parallelization, and 2) suitable arithmetic approach for efficient
and sufficiently-accurate reduced precision computation.

In this paper, we extend the state-of-the-art iterative ap-
proach for the multi-dimensional matrix profile, and introduce
a new algorithm for GPUs that addresses the mentioned data
management, kernel and arithmetic design challenges. Our
algorithm targets multiple GPUs, and efficiently utilizes the
GPU hardware features. We design novel reduced-precision
computation modes with improved arithmetics to support a
sufficiently accurate single and half-precision computation. We
exploit a new tiling scheme in our algorithm, which not only
enables parallelization of the workload on multiple GPUs, but
also improves the accuracy of computation in the reduced
precision modes by bounding the numerical error propagation.

In particular, we make the following contributions:

- we present the first algorithm and its implementation to
compute matrix profile for multi-dimensional time series
on a single and multiple GPU(s);

- we introduce several reduced-precision modes for com-
puting multi-dimensional matrix profile;

- we develop a novel tiling scheme for multi-GPU par-
allelization, limiting the numerical errors in reduced-
precision modes;

- we conduct a detailed performance evaluation using
our implementation, including scaling experiments and
demonstrate that multi-dimensional time series can be
efficiently deployed on multi-GPU systems;

- we analyze the effect of reduced-precision computation
on GPUs and use three real-world use cases to demon-
strate the sensitivity of the reduced precision for pattern
mining and classification.

Our approach offers a 54x performance improvement for
double precision computation on one NVIDIA A100 GPU
in comparison to the parallel execution of the state-of-the-art
optimized matrix profile implementation on an Intel Skylake
16-core CPU. Our implementation with reduced precision
introduces an additional advantage of a factor of 1.4x on the
A100 compared to the double precision for common problem
settings. Our tiling scheme allows the parallelization on mul-
tiple GPUs and improves the accuracy in reduced precision.
Specifically, the tiling scheme on four A100 GPUs offers 3.8x
faster performance than one, which equals a parallel efficiency
of 95%, and enables over 80% numerical relative accuracy
of reduced precision computation in comparison to reference
FP64 CPU code in accuracy stress test, and reaches over 95%
accuracy in real-world cases studies.

II. RELATED WORK AND BACKGROUND

We first briefly review the related work and then provide a
short theoretical background of the matrix profile.

A. Related work

History of matrix profile: Matrix profile was introduced by
Yeh et al. [22] as a generic tool for the analysis of single-
dimensional time series. Since then, various algorithms for
efficient computation of matrix profiles were proposed, includ-
ing STAMP [22], STOMP [26] and SCRIMP++ [25], which all
introduced novel algorithmic and arithmetic manipulation of
the kernels for efficient computation. However, none of these
approaches directly targets multi-dimensional cases.
Multi-dimensional matrix profile analysis: In 2017, Yeh
et al. [23] introduced matrix profile analysis for multi-
dimensional time series and developed the mSTAMP algo-
rithm. mSTAMP is built on top of previous algorithms and
is an iterative method involving mean-centered streaming dot
products (inherited from STOMP) to reduce the computational
and memory requirements. mSTAMP is also included in
the powerful and scalable python library, STUMPY [8]. To
scale the computation of multi-dimensional matrix profile,
Raoofy et al. [13] proposed Multi-dimensional Parallel Matrix
Profile,(MP)N , targeting large-scale CPU-based HPC systems.
However, none of these approaches targets computation on
GPUs and reduced precision computation.
GPU deployment of matrix profile: Zhu et al. [26] introduced
GPU-STOMP, which enabled the matrix profile computation
on GPUs for the first time. Later, Zimmerman et al. introduced
SCAMP [27], which improved and extended GPU-STOMP
for Cloud deployment. SCAMP stands as the state-of-the-
art GPU-based solution for single-dimensional matrix profile
computation. Recently, Romero et al. [14] introduced a new
approach called ScrimpCo for matrix profile computation on
heterogeneous systems. However, none of these approaches
addresses multi-dimensional time series.
Reduced-precision computation of matrix profile: Zimmer-
man et. al. [27] investigate single-precision computation for
single-dimensional time series, and Fernandez [5] investigated
matrix profile computation using FlexFloat [18]. However,
there is no study on reduced-precision of matrix profile for
multi-dimensional time series, especially for half-precision.

In summary, to the best of our knowledge, there are neither
multi-GPU nor reduced-precision solutions targeting multi-
dimensional matrix profile algorithms in the literature. No
comprehensive studies on these aspects exist either. This paper
overcomes this research gap.

B. Background

Matrix profile analyzes the similarities of an input time
series, query time series, to a second time series, reference
time series: the reference time series is often a well-known
historical time series dataset and is used to characterize the
motifs and patterns in an unknown query time series. During
the matrix profile analysis, a distance (or correlation) matrix
among all the segments (or subsequences)—which are local

125

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

Segments

D
im

ensions

Coarse-grained synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Grid-stride loop with coalesced accessesDimension-wise layout

+ +

R
eference Segm

ents

Dim
en

sio
ns

Query Segments

+

Precalculation

Update matrix profile
and index

Distance calculation

Sorting distance and
inclusive scan

Main iteration loop

+

FP64 mode FP32 mode FP16 mode Mixed mode FP16C modePrecision Mode

Precalculation

Main loop

FP64

FP64

FP32

FP32

FP16

FP16

FP32

FP16

FP16 with compensator

FP16

Fig. 1. An overview of our design for deploying matrix profile computation to multiple GPUs with reduced precisions.

chunks of the input series consisting of consecutive samples—
of the two input time series is computed. The segments with
maximum correlations, corresponding to best matches of the
query segments in the reference time series, are determined. In
multi-dimensional time series, segments are multi-dimensional
requiring the computation of multiple distance matrices, one
for each dimension. Collection of all these matrices can be
interpreted as a 3d matrix. This 3d matrix is calculated, and
then sorted to enable a connection between the dimensions,
and progressively averaged along the dimensions. This way,
best matching 1- to d-dimensional sets of segments with the
most similarities across all dimensions are determined.

To formally introduce matrix profile, we need to provide
the following definitions: for the d-dimensional reference and
query time series Tr ∈ Rnr×d and Tq ∈ Rnq×d with length nr

and nq (n = nr = nq)1 and segment (subsequence) length m,
the matrix profile, P ∈ R(nq−m+1)×d, is a set of d real-valued
distance vectors (equivalently correlation vectors), where ith

vector corresponds to the (Z-normalized Euclidian) distance
of i-dimensional segments in Tq to their nearest neighbor
segments in Tr. The matrix profile index, I ∈ Z(nq−m+1)×d,
is a set of d indices vectors indicating the location of the
aforementioned nearest neighbor of segments in Tq .

As the core part in computation of I and P, the 3d distance
matrix, D ∈ R(nr−m+1)×(nq−m+1)×d, represents the distances
of all the segments of Tr and Tq in all the d dimensions.
To evaluate it, state-of-the-art solutions use the mean-centered
streaming dot product, Eq. (1), and indirectly computate the
Euclidean distance D from Pearson correlations (QT) of
segments separately in each dimension. This formulation com-
putes Pearson’s correlation factors corresponding to a row of
the distance matrix iteratively from the top-left element in the
previous row Eq. (1). Although this update scheme introduces
diagonal-wise dependencies, it only requires four floating-
point operations (FLOPs) per dimension in each iteration.
However, this small number of FLOPs, combined with the
following sorting step, results in memory-bound performance.

QT i,j,k =QT i−1,j−1,k + dfr
i,k · dg

q
j,k + dfq

j,k · dg
r
i,k

Di,j,k =
(
2 ·m · (1−QT i,j,k · dr −1

i,k · dq −1
j,k)

)0.5 (1)

This iterative method relies on an earlier precalculation
step to prepare the intermediate set of matrices, includ-
ing dfr, dgr, dr −1 ∈ R(nr−m+1)×d and dfq, dgq, dq −1 ∈
R(nq−m+1)×d in a single pass over the two input datasets.
As this computation can be implemented very efficiently

1Without losing generality, we use the number of segments in the reference
and query time series in kth dimension, n = nr −m+ 1 = nq −m+ 1.

in comparison to the rest, we do not repeat the equations
here [13], but discuss its impacts on overall precision later.

After the computation of the 3d distance matrix, similar
to (MP)N , it is sorted along dimensions (2) and is followed
by inclusive averaging based on inclusive scan of D′

along
the dimensions [23] to consider multi-dimensional segments.

D
′

i,j,k = sort(Di,j,k); D
′′
= inclusive_scan(D

′
) (2)

Then matrix profile is computed by applying a column-wise
minimum on the results of inclusive scan D′′

Eq. (3).
Pj,k = min(D

′′

∗,j,k); Ij,k = argmin(D
′′

∗,j,k) (3)

III. GPU-BASED APPROACH WITH REDUCED PRECISION

We target high-end data analytics systems with multiple
GPUs, which are common in HPDA. Our approach accelerates
the computation with the efficient exploitation of GPU hard-
ware, the multi-GPU parallelization and the reduced precision.

We use Eq. (1), (2) and (3) for GPU deployment to take
the advantage of partial storage of distance matrix D in GPU
memory and highly efficient arithmetic for the evaluation
of distances between segments. However, this formulation
introduces arithmetic challenges in accuracy for the reduced
precision, which we address in our solution.

Fig. 1 provides an overview of our solution, including
the illustration of our parallelization scheme on GPUs, the
tiling scheme, and optimizations. We exploit an optimized
data layout to enable coalesced memory accesses, and highly-
optimized sort kernels. Additionally we efficiently exploit the
hardware features in modern GPUs to to achieve high perfor-
mance. Specifically, we tune the utilization of GPU Streaming
Multiprocessors (SMs) and scratchpad memory to achieve high
bandwidth and low latency in kernels. Our solution enables
various reduced-precision configurations efficiently by exploit-
ing hardware support for reduced-precision computation in
modern GPUs. Additionally, we introduce a tiling scheme that
extends the state-of-the-art to exploit multiple tiles and GPUs
and to limit the propagation of numerical errors.

A. Single-Tile Algorithm

Pseudocode 1 describes our base algorithm that targets a sin-
gle tile and single GPU. It starts with an asynchronous copy of
input data from the CPU (host) to the GPU (device), followed
by invocation of the compute kernels. precalculation
kernel prepares the correlations QT associated with the first
row of the distance matrix using a naive (non-streaming) dot
product formulation. Additionally this kernel computes the
variables df , dg, . . . , used for the next n iterations using
cumulative summations. In more details, each thread computes

126

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

Pseudocode 1 Overview of Single-Tile Algorithm

Input: The reference and query time series T cpu
r and T cpu

q .

Configuration: sblock and sgrid.

Output: The matrix profile P cpu and index Icpu.

Note: All data resides on GPU unless marked otherwise.

1: Tr , Tq ← input_async_cpy (T cpu
r , T cpu

q , H2D)

2: QTr , QTq , dfr , dgr , . . . ← precalculation (Tr , Tq)

3: for i← 0 to (n− 1) do
4: D ←dist_calc<<<sgrid,sblock>>>(QTr , QTq , dfr , dgr , . . .)

5: D′′ ←sort_&_incl_scan<<<sgrid,sblock>>> (D)

6: P , I ←update_mat_prof<<<sgrid,sblock>>> (D′′)

7: end for
8: P cpu, Icpu ← output_async_cpy (P , I , D2H)

one dot product (QT) and the corresponding cumulative
summations for each element, illustrated in Fig. 1 in purple.

In the ith iteration, only one row (plane) of the distance
matrices with size of O(n · d) is computed (the highlighted
red plane in Fig. 1). In more details, the matrix profile is
computed as follows on the GPU:

1) dist_calc uses Eq. (1) to compute ith row of the
distance matrix D. Each thread computes one element of
the next row (plane) of the distance matrix using Eq. (1),
which is parallelized in i (or j) and k (thread assignment
is illustrated in Fig. 1 in magenta).

2) sort_&_incl_scan sorts the distances in ascending
order along dimensions. For this kernel, multiple sorts
(one for each dimension) are performed in parallel,
and multiple threads cooperate on these sort operations.
Therefore each individual sort operation is assigned to
a group of threads. Additionally this kernel calculates
multiple inclusive scans (Eq. (2)) in parallel along the
dimensions. For this, threads in each group cooperatively
perform an inclusive scan (thread and group assignment
in this kernel is illustrated in Fig. 1 in blue).

3) update_mat_prof merges the computed distances in
the ith iteration to the results in previous iterations using
Eq. (3). This kernel uses a similar thread assignment as
in the precalculation, where all the threads update
the elements of the resulting matrix profile (e.g., a plane)
in an embarrassingly parallel fashion.

To achieve high efficiency on GPUs, we introduce the
following optimizations in the above steps:
Data Layout: We use a dimension-wise data layout for storing
the active rows (planes) in device memory, i.e., consecutive
elements of each dimension reside next to each other in
memory (shown in Fig. 1), for all the data involved in the
computations of the different kernels.
Grid-Stride Loops: We structure the iterations in kernels to
exploit grid-stride loops to ensure coalesced memory access.
Moreover, the grid-stride loops enable more flexibility by
supporting arbitrary kernel launch configurations, i.e., sblock
and sgrid. Through this flexibility, our design promises a high
performance by tuning kernel launch configurations (i.e., the

configuration settings in Pseudocode 1) that match the GPU
hardware architecture.
Coarse-Grained Synchronization: In sort & incl scan, we
use the O(log2 d) parallel sorting scheme (based on Bitonic
sort) and O(log d) parallel fan-in approach of inclusive scan,
where many threads cooperatively sort and calculate the scans.
Compared to the more intuitive batch-based parallelization,
where only one thread performs a single sort and scan, our
choice results in better utilization of the GPU resources, hence
achieves a higher performance. However, our parallelization
requires nested synchronization, which can potentially lead to
large overheads. To minimize the overhead, we apply coarse-
grained synchronizations among threads.

B. Multi-Tile Algorithm Targeting Multi-GPU Systems

To exploit parallelization on multiple GPUs and to bound
the numerical error propagation, we introduce a novel tiling
scheme that extends the state-of-the-art scheme in (MP)N .
This tiling scheme (shown in the left in Fig. 1) is motivated by
task-based programming models: It decouples the size of the
distance matrix running on devices from the actual size of the
input series and the corresponding distance matrix, therefore,
despite the limited device memory, our algorithm can process
arbitrary large (in sense of both the number of segments and
the number of dimensions) problems on a single or multiple
devices. Additionally, this design aims at limiting the excessive
propagation of numerical errors of the iterative computation,
as the precalculation step is repeated in each tile and breaks
the error propagation in Eq. (1).

We describe this tiling scheme in Pseudocode 2.
We first partition the distance matrix into smaller tiles
(compute_tile_list), where each smaller tile is later
executed on a GPU as a standalone matrix profile (task)
with a smaller problem size (i.e., tile size). We statically
assign these tiles (assign_tile) to ngpus GPU(s) in a
Round-robin fashion enabling maximum balance for parallel
execution on multiple GPUs. The tiles are asynchronously
computed (run_tilegpu) on GPUs using the same scheme
in Pseudocode 1, and after the execution of each tile, its
results are merged (merge) on the CPU using min and

Pseudocode 2 Multi-Tile Algorithm

Input: The reference and query time series T tile
r , T tile

q stored on CPU.

Configuration: sblock , sgrid, ntiles, and ngpu.

Output: The matrix profile P and its indexes I .

Note: All data resides on GPU unless marked otherwise.

1: tile list← compute_tile_list (ngpu, ntiles)

2: for each tile ∈ tile list do in parallel with implicit synchronization
3: dev ← assign_tile (tile)

4: P tile, Itile ← run_tilegpu (Trtile, Tctile, sgrid, sblock , dev)

5: end for
6: for each tile ∈ tile list do with implicit synchronization
7: PCPU , ICPU ← merge (P tile, Itile)

8: end for

127

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

argmin operations. Data transfer and kernel execution for
tiles benefit from implicit synchronization (CUDA Streams),
to exploit maximal concurrency (i.e., through configuring
number of streams) in kernel execution as well as to hide
the communication latencies between CPU and GPU.

In addition to the kernel launch configuration itself, the
number of GPUs (ntiles) and tiles (ntiles) are used as con-
figuration parameters (i.e., the configuration settings in Pseu-
docode 2) for performance tuning. Additionally, this design
simplifies tuning for accuracy through careful selection of the
number of tiles ntiles.

C. Reduced-Precision Computation

Our GPU-based approach for multi-dimensional matrix pro-
file natively exploits double-precision (FP64) floating-point
data format. To further improve the performance while en-
suring the accuracy on a certain level, we introduce four
additional reduced-precision modes including the single-, half -
precision arithmetic, a mixture of both and half -precision with
improved arithmetic in the precalculation step.
Single precision (FP32): In this mode, we use FP32 for both
storage and arithmetic, as it is widely used in ML and HPDA.
Half precision (FP16): For the half-precision mode, we store
all the data and conduct all the computation in FP16. This
mode promises the fastest computation, but the numerical
errors in this mode are the most severe.
Mixed precision (Mixed): We also explore a mixed-precision
mode that uses FP16 for storage and computation similar
to the FP16 mode; however, it benefits from performing
precalculation in higher precision using FP32 arith-
metic. This combination is promising for achieving results
with higher accuracies, while enabling the performance ben-
efits of half-precision computation, as the performance over-
head of precalculation in a higher precision is a negli-
gible portion of total runtime.
Half precision with improved arithmetics (FP16C): Finally, we
explore another variation of half-precision computation, which
again exploits a higher precision mode in precalculation
with an improved variation of arithmetic that uses Kahan’s
compensated summation [7] in precalculation. The rest
of the steps use FP16 similar to mixed- and half-precision
scenarios. With this compensated summation, we prevent the
error propagation from severe cancellations that arises in the
precalculation in FP16 mode. Despite the additional
computation, it does not result in any significant overhead as
again the precalculation contributes very little to the
overall runtime. This variation also promises similar accuracy
and performance benefits to the Mixed mode.

IV. IMPLEMENTATION

We use C++ for our implementation, and our code is freely
available in Zenodo2. We are aiming for NVIDIA GPUs as
our target devices, and use GCC compiler v.8.0, together with
CUDA v.11.2, which supports all the required functionalities
we need to realize our algorithm.

2DOI: 10.5281/zenodo.5827200

We choose our customized GPU implementation of Bitonic
sort in the sorting step over the popular libraries, such as
CUB [10] or Modern GPU [11], as it provides much higher
performance for sorting operations. For the same reason, we
customized our inclusive scan operations instead of using
CUB. We exploit NVIDIA’s cooperative groups API for
coarse-grained synchronization in Bitonic sort and inclusive
scan and exploit shared memory in thread block for storage.

For grid-stride loops, we use the kernel launch configuration
that matches the hardware architecture: on V100 we use 64
as grid size and 2560 as block size; on A100 we use 64 as
grid size and 3456 as block size. Our experiments validate that
these configurations provide the best performance.

We rely on the Stream Management API in CUDA for
implicit synchronization (especially in the multi-tile code):
all the data transfers and kernel executions rely on CUDA
streams. We use maximal 16 non-blocking streams on one
GPU to avoid memory consumption limits while keeping a
high concurrency.

For FP64 and FP32, we only adopt the data format and
simply use the same native mathematical operators in C++.
However, FP16, Mixed, and FP16C use __half data type
and corresponding intrinsics from CUDA Math API, for there
are no native half-precision data types and operators in C++.

V. EVALUATIONS

Before the investigation of the case study on real world data
(details in Section VI), we conduct stress tests and investigate
accuracy and performance aspects and their tradeoff in various
precision modes on synthetic datasets.

A. Experimental Setup

System Setup: We use two multi-GPU systems: a DGX-1 at
Leibniz Super-computing Centre [1] and the Raven supercom-
puter from Max Planck Computing and Data Facility [2]. The
DGX-1 system includes 8 NVIDIA Tesla V100 GPUs, each
providing 7.8 TFLOP/s double-precision performance, 32 GB
device memory capacity, 900 GB/s memory bandwidth and
80 Streaming Multiprocessors (SMs). Each node of Raven
system includes 4 NVIDIA Tesla A100 GPUs, each providing
9.7 TFLOP/s double-precision performance, 40 GB device
memory, 1,555 GB/s memory bandwidth and 108 SMs.

We tune and use optimal configurations to launch all
the kernels, which match the corresponding GPU hard-
ware architectures: we launch 163,840 threads on V100
(163,840 = 80 SMs · 64 warps · 32 threads), and 221,184
threads on A100 (221,184 = 108 SMs · 64 warps · 32 threads).
Dataset Description: We use a synthetic dataset of multi-
dimensional time series with 80 groups of parameter set-
tings (different n, m, and d) for performance and accuracy
evaluation (stress tests). This dataset includes random noise
combined with randomly-located injected repeating patterns,
providing a reliable basis for pattern detection when we use
practical accuracy analysis (we introduce practical accuracy
in the following paragraph). We use eight different shapes
(as illustrated in left side of Fig. 3) for the injected patterns

128

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

with different complexity, which helps to cover a sufficiently
diverse set of patterns.
Accuracy Metrics: To better quantify and understand the level
of accuracy that can be achieved with the different reduced
precision settings, we introduce two accuracy metrics.

The first set of accuracy metrics represent the numerical ac-
curacy of results, where we compare the numerical difference
of results of our implementation (e.g., with reduced precision)
to the CPU-based reference:

• Recall rate (R) [4]: We consider the ratio of the number
of matching matrix profile indices to the total number of
indices as recall rate.

• Relative accuracy (A) [25]: The relative discrepancy
between the matrix profile computed with reduced preci-
sion and the reference FP64 calculation is considered as
relative error, E . We define A = 1 − E as the relative
accuracy measure and report it in percentage.

The second set of accuracy metrics provide the means
for a practical accuracy evaluation. This accuracy evaluation
scheme aims at presenting the practical use of our approach,
despite possible numerical errors, where we can successfully
detect patterns and develop accurate classifiers, as presented
below. We specifically consider a specific use case of the
matrix profile, e.g., motif discovery or nearest neighbor-based
classification of time series data. In these cases, we focus
on the actual accuracy in detecting the target patterns or
classification accuracy.

• Recall for embedded motif detection (Rembedded) [25]:
For pattern detection cases, we quantify the number of
successful matches of a specific pattern retrieved by the
matrix profile, e.g., when computed using our implemen-
tations with reduced precision.

• Relaxed recall rate for for embedded motif detection
(Rr

embedded): In practice, the equivalency of matrix pro-
file index in reduced precision is a strict requirement, and
for some use cases, e.g., pattern detection, an approxima-
tion of the location of patterns is sufficient. Therefore, we
also can consider a relaxed recall rate allowing a tolerance
in computing the numerical accuracy: in case the resulting
matrix profile index from the position determined by a
reference calculation is within a predefined range, it is
considered as a successful detection. We define the ratio
of this extended range to the length of the segments as the
relaxation factor (r) and consider it as a hyperparameter
for tuning the accuracy in reduced precision.

• F-score for classification (Fclassification) [19]: Also, for
classification, we look at the overall accuracy, F-score
(F-score, i.e., the harmonic mean of precision and recall
accuracy metrics), of the classification when we use
matrix profile indices computed with reduced precision.

Performance Metrics: For performance evaluation of our im-
plementations, we rely on the total execution time and kernel
execution time. We also measure the kernel performances
with NVIDIA Nsight Compute. For multi-GPU evaluation, the
additional performance metric is the parallel efficiency, which

is defined as the ratio of speedup (with respect to single GPU
execution) and number of GPUs used.
Reproducibility and Stability of Results: To guarantee cred-
ibility of our experiments, we repeat each experiment five
times and analyze the arithmetic average of the accuracy
and performance metrics. Our experiments show that our
implementation has a stable accuracy regardless of the GPU
generation (Volta or Ampere) and the same execution time
regardless of individual datasets. Therefore, we only report
the averages of measured metrics in our evaluations.

B. Accuracy Evaluation

Numerical accuracy: We analyze the numerical accuracy of
our implementation in Fig. 2.

The FP64 mode on the GPU can generate identical results
as the CPU-based implementation. The FP32 mode also results
in a high accuracy of roughly 100%, and the Mixed and
FP16C modes result in almost the same accuracy and double
the accuracy than FP16; the accuracy of FP16, Mixed and
FP16C modes decreases and then stabilizes as the number
of subsequences in the input time series increases; with an
increasing dimensionality in the input time series, the numer-
ical accuracy of FP16, Mixed and FP16C modes decreases
and then increases; with increasing length of subsequences
in the input time series, in Mixed and FP16C modes, the
accuracy of the matrix profile increases, while the accuracy
of the index decreases and stabilizes and in FP16 mode, the
numerical accuracies stay unchanged at around 5%.

20000 40000 60000

Number of subsequences n

0

20

40

60

80

100

R
el

at
iv

e
ac

cu
ra

cy

(%
)

d=26,m=26

20000 40000 60000

Number of subsequences n

0

20

40

60

80

100

R
ec

al
l r

at
e

(%
)

d=26,m=26
FP64 FP32 FP16 Mixed FP16CPrecision mode

20 40 60

Dimensionality d

0

20

40

60

80

100

R
el

at
iv

e
ac

cu
ra

cy

(%
)

n=216,m=26

20 40 60

Dimensionality d

0

20

40

60

80

100

R
ec

al
l r

at
e

(%
)

n=216,m=26

20 40 60

Length of subsequence m

0

20

40

60

80

100

R
el

at
iv

e
ac

cu
ra

cy

(%
)

n=216,d=26

20 40 60

Length of subsequence m

0

20

40

60

80

100

R
ec

al
l r

at
e

(%
)

n=216,d=26

Fig. 2. Numerical accuracy (A and R) of single-tile implementation in
processing synthetic dataset compared to the CPU-based implementation.

129

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

As the FP16, Mixed and FP16C modes cannot generate
identical results as the CPU-based code in sense of numerical
accuracy, we trace the inaccuracies in results to limited numer-
ical accuracy of the half precision for storage and arithmetic,
and briefly discuss this in the following:

the condition number of the distance computation in Eq. (1)
implies an ill-conditioned formulation for the flat regions in
input time series. On the other hand, the regions with large
deviations are prone to overflow as the variables used in
Eq. (1), are limited by the maximal representable numbers,
in particular in half precision.

We further have a look at the propagation of error in
computing QT . We can describe the iterative computation of
QT in Eq. (1) as a large dot product and analyze its sensitivity
to rounding errors, based on the analysis provided by Yang et.
al. [20]. In this analysis, the error abounds for dot-product
are proportional to the length of input vectors and machine
precision (e ∝ (n × ε)). Therefore, we trace the numerical
inaccuracies in matrix profile computation in reduced precision
to machine error and tile size.

• Machine error: the single precision (ε32 = 2−23) and the
half precision (ε16 = 2−10) provide less accurate com-
putation compared to the double precision (ε64 = 2−52).
As similar segments have distances closer to zero, large
machine errors can prevent finding accurate distances
among similar segments with the repeated patterns.

• Tile size: using smaller tiles bounds the propagation of
the numerical error for computing the matrix profile with
reduced precision.

Practical Accuracy for Pattern Detection: We further focus
on the practical accuracy of pattern detection, we rely the
evaluation scheme used by Zhu et al. [25]. For this we
embed patterns on predefined random locations and inspect the
recall value (Rembedded), when reduced precision is used for
matrix profile computation. We use a diverse set of primitive
patterns for embedding, which are marked with P0 − 7 in
Fig. 3. In this case, with the except of the 98% accuracy
achieved in the detection of Patterns 2 and 3 (P2 and P3)
with FP16, Mixed and FP16C modes, all the reduced-precision
modes can achieve exact 100% practical accuracy to detect all

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

95 96 97 98 99 100

Recall for embedded motif detection embedded (%)

FP64 FP32 FP16 Mixed FP16CPrecision mode

Fig. 3. Practical accuracy (Rembedded) of single-tile implementation for
pattern detection. We plot the patterns with time as x-axis (x ∈ [0,m)) and
the normalized values as y-axis (y ∈ [−1, 1])

213 214 215 216

Number of subsequences n

0

5

10

15

E
xe

cu
ti

on
 ti

m
e

(s
ec

on
ds

)

Performance (d=26,m=26)

23 24 25 26

Dimensionality d

0

5

10

15

E
xe

cu
ti

on
 ti

m
e

(s
ec

on
ds

)

Performance (n=216,m=26)

precalculation & others

dist_calc

sort_&_incl_scan

update_mat_prof
Kernel precalculation & others

dist_calc

sort_&_incl_scan

update_mat_prof

Fig. 4. Kernel execution time of multi-tile implementation with one tile on
A100 GPU.

injected patterns as with FP64 mode. Despite the numerical
inaccuracies, our implementations with reduced precision is
delivering precise pattern detection.

C. Performance Evaluation

Kernel Profiling: As shown in Fig. 4, the execution time of
all the kernels increases with the number of subsequences and
the dimensionality. The number of subsequences has more
influence on the execution time and the dimensionality decides
which kernel has the dominant influence. For the small dimen-
sionality, dist_calc is the dominant kernel; for the big di-
mensionality, sort_&_incl_scan is the dominant kernel.
Theoretically, the time complexity of precalculation is
O(n·d); dist_calc and update_mat_prof is O(n2 ·d);
and sort_&_incl_scan is O(n2 · log2 d). The synchro-
nization overhead of sort_&_incl_scan causes a slow-
down with large dimensionality. However, it still outperforms
alternative sorting approaches by preventing underutilization
of GPU hardware.
Reduced Precision Performance: Fig. 5 shows the perfor-
mance improvements by using reduced precision. As expected,
lower precision modes show higher performance, however,
the performance is not scaled linearly with the number of
bits used in corresponding data types. All kernels scale

051015

Kernel execution time on one GPU (seconds)

Breakdown of executio
n tim

e

1 2 3 4 5 6 7 8
Number of GPU(s)

Number of GPU(s)

0

5

10

15

20

25

30

35

40

E
xe

cu
ti

on
 ti

m
e

(s
ec

on
ds

)

Precision mode FP64 FP32 FP16 Mixed FP16C

Kernel
precalculation & others

dist_calc

sort_&_incl_scan

update_mat_prof

Kernel

precalculation & others

dist_calc

sort_&_incl_scan

update_mat_prof

1 2 3 4 5 6 7 8
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
ff

ic
ie

nc
y

E
p

Fig. 5. Execution time and efficiency of multi-tile implementations with 16
tiles on DGX-1 (n=216, d=28).

130

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

2
12

2
13

2
14

2
15

2
16

Number of subsequences n

10
1

10
0

10
1

10
2

10
3

E
xe

cu
ti

on
 ti

m
e

t (
se

co
nd

s)

Performance(d=26,m=26)

2
3

2
4

2
5

2
6

Dimensionality d

10
1

10
0

10
1

10
2

10
3

E
xe

cu
ti

on
 ti

m
e

t (
se

co
nd

s)

Performance(n=216,m=26)

2
3

2
4

2
5

2
6

Length of subsequences m

10
1

10
0

10
1

10
2

10
3

E
xe

cu
ti

on
 ti

m
e

t (
se

co
nd

s) Performance(n=216,d=26)

Machine

Intel 16-core CPU

NVIDIA V100 GPU

NVIDIA A100 GPU

Machine (Architecture)

Intel 16-core CPU

NVIDIA V100 GPU

NVIDIA A100 GPU

Fig. 6. Performance of multi-tile implementation with one tile across different generations of NVIDIA GPUs in comparison to the CPU-based (MP)N .

almost linearly with the data type as expected, except for
sort_&_incl_scan, which is mainly dominated by re-
peating synchronization overheads and the performance im-
provements in reduced precision modes is minimal. More-
over, the performance for FP16, Mixed and FP16C modes
is similar, as their performance difference—mainly from
precalculation—is negligible.
Resource Utilization: We also provide an analysis on the GPU
utilization by running our implementation on a single A100
GPU: All of the kernels are still memory bound on GPUs. For
the large tiles (n = 216, d = 26, m = 26), dist_calc and
update_mat_prof use over 80% DRAM and around 70%
L2 cache throughput; sort_&_incl_scan uses over 80%
L1/TEX cache throughput and around 70% compute (SM).

In the FP32 mod, dist_calc uses around 60% and
update_mat_prof uses around 70% DRAM throughput
and L2 cache throughput; sort_&_incl_scan uses around
40% L1/TEX cache throughput and around 70% compute
(SM). In other modes, dist_calc uses around 30% and
update_mat_prof uses over 50% DRAM and L2 cache
throughput; sort_&_incl_scan uses around 20% L1/TEX
Cache throughput and around 70% Compute (SM).
Scalability: We analyze the scalability of our implementation,
starting with the DGX-1 in Fig. 5: we observe linear scalability
of our implementation with the number of GPUs, however,
we see inefficiencies when using odd numbers of GPUs. This
inefficiency is due to our tiling scheme in Pseudocode 2,
which works best when the number of GPUs is a factor of
the tile number. However, this inefficiency can be mitigated
by increasing the number of tiles assigned to all GPUs.

When 1, 2, 4 and 8 GPUs are used in double precision,
our implementation reaches over 90% parallel efficiency. The
around 80% parallel efficiency of reduced precision shows that
high scalability can be achieved across all precision modes.
Our implementation also shows a similar strong scalability on

Raven, where it achieves over 95% efficiency on 1, 2 and 4
GPUs with all precisions (graphs are not presented here).
Performance Across Different Generations of GPUs: We
further examine the performance of our implementation across
different generations of NVIDIA GPUs with Tesla architec-
tures in Fig. 6. Specifically, we compare the performance on
V100 and A100 GPUs of our implementation in FP64 mode to
the state-of-the-art CPU-based implementation with full usage
of an Intel 16-core Skylake CPU.

Our GPU-based implementation in all configurations, with
various parameter settings, provides much faster execution
times. Overall, our implementation can achieve about 41.6x
and 54.0x performance boost in double precision on a V100
and an A100 GPU, respectively, in comparison to the CPU.

Additionally, the performance behavior of our implementa-
tion is similar to the reference CPU-based code, preserving
its suitable complexity features: the execution time scales
quadratically with the number of subsequences and linear with
dimensionality. Moreover, the execution time is independent
of the subsequences’ length, preserving the flexibility of the
family of matrix profile algorithms.

D. Accuracy-Performance Tradeoff

We conduct an experiment to study the Accuracy-Perfor-
mance tradeoff (Fig. 7) by increasing the number of tiles from
1 to 1,024 (and reduce the tile size accordingly).

Using more tiles increases the numerical accuracy for FP16,
Mixed and FP16C modes. This experiment is also in accor-
dance with the analysis we introduced earlier regarding direct
relation between the numerical error bounds and tile sizes. At
the same time, despite the initial performance boost from 1
tile to 256 tiles (thanks to the concurrency invoked by using
multiple streams in implicit synchronization), increasing the
number of tiles has a slight negative impact on the execution
time. The main reason for this performance drop is that the

20 25 30
Execution time (seconds)

0

20

40

60

80

100

R
ec

al
l f

or
 e

m
be

dd
ed

 m
ot

if
de

te
ct

io
n

em
be

dd
ed

 (%
)

FP64

20 25 30
Execution time (seconds)

0

20

40

60

80

100

FP32

20 25 30
Execution time (seconds)

0

20

40

60

80

100

FP16

20 25 30
Execution time (seconds)

0

20

40

60

80

100

Mixed

20 25 30
Execution time (seconds)

0

20

40

60

80

100

FP16C

Fig. 7. Accuracy-Performance tradeoffs of multi-tile implementations on one A100 GPU with increasing number of tiles. (n=216, d=26, m=26). The size of
the markers indicate the number of tiles ntile. We annotate arrows next to the data to indicate the direction of increase in number of tiles.

131

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

final merging of tiles in our implementation is executed by
the CPU (see Pseudocode 2), which results in an overhead
increasing with the number of tiles. However, in a special
configuration, using 256 tiles allows FP16, Mixed and FP16C
modes to have 2x accuracy and even shorter total execution
time compared to a one tile run. With this configuration, Mixed
and FP16C modes reach almost 80% accuracy with 256 tiles.

Overall, using more tiles is a plausible setting, due to
the accuracy boost and the insignificant performance drop.
Further, the overhead of the merging step is negligible for large
problems, leading us to an overall more efficient configuration.

VI. CASE STUDIES

While the synthetic data used in the previous section allows
us to provide a detailed and targeted analysis of our approach,
it does not show how realistic the use of reduced precision is
in real world scenarios. In the following, we therefore apply
our techniques to three real-world case studies and analyze the
applicability of reduced precision for these use cases.

A. Application Classification using HPC-ODA

The classification of applications running on data or su-
percomputing centers based on monitored characteristics is
a highly relevant topic for the center operators. It enables
performance optimizations, e.g., via improved scheduling,
allows the detection of unwanted application, just to name
a few. One such approach to classify application relies on
gathered performance metrics, such as resource hardware
counters or utilization patterns, which are often stored as
large multi-dimensional time series (see Fig. 9). To apply our
implementation, we construct a simple application classifier
and investigate the effect of reduced precision computation on
both classification accuracy and analysis runtime.

We exploit the Application Classification segment of a pub-
lic HPC dataset [9]. This dataset includes labeled performance
data collected while running different benchmarks (HPL,
AMG, etc.) on 16 compute nodes for one day with 1 HZ sam-
pling rate. We select 16 distinct sensors (performance metrics)
on different nodes (e.g., cache miss rates, branch instructions)
for the multi-dimensional matrix profile analysis, and split
the dataset along time into two portions, a reference set and
a query set, each of which includes continuous operational
data for half a day. We conduct the matrix profile analysis
with different precision modes using our implementation, and

0.80

0.85

0.90

0.95

1.00

FP64 FP32 FP16 Mixed FP16C
0.00

Precision mode

F
-s

co
re

1.5

2.0

2.5

3.0

FP64 FP32 FP16 Mixed FP16C
0.0

Precision mode

R
un

ti
m

e
(s

)

Fig. 9. Accuracy (Fclassification) and performance of nearest neighbor
classifier with respect to various precision modes.

build a simple classical nearest neighbor classifier on top of
the matrix profile analysis: it uses the labels of the matching
(based on matrix profile index) segments in reference set to
determine the application class of the segments in query set.
Fig. 8 illustrates a partial timeline as an example of the query
data and the classification scheme we use.

As shown in Fig. 9, while the accuracy of the classifier is
reduced slightly with reduced precision modes, for the Mixed
and FP16C modes it is still over 95% and even FP16 also
reach almost 90%. And slight performance increase is visible
when exploiting reduced precision despite the small size of
the HPC-ODA dataset.

B. Genome in a Bottle

The Genome in a Bottle (GIAB) Consortium [28] aims
at the translation of whole human genome sequencing in
clinical practice. It offers public access to genome variants
and reference calls to facilitate the human genome analysis,
which, e.g., provides information to inherited diseases. As
matrix profile can also be used as a general pattern detection
approach by interpreting the timestamp as a simple index, we
use it here for the analysis of genome sequences by encoding
the genomic elements and storing them in a time series like
fashion. Especially reduced precision computation can boost
this analysis, due to its limited number of element types that
are encoded, and with that facilitate the analysis of large
amount of data, as it can be found in this case study.

We generate six input 16d time series pairs from the data
of Chinese trio with respect to GRCh37 reference genome in
GIAB. We use the following transformation relation to encode
the genome sequences into a data series/sequence: Adenine
(A) to 1; Cytosine (C) to 2; Thymine (T) to 3; Guanine (G)

0

2.0e8
Branch Instructions

0

3.5e6Branch Misses

Application Classes

None
Kripke
LAMMPS
linpack
AMG
PENNANT
Quicksilver

0

2.0e7Cache Misses

0

4.0e4cntx

02:46 hour 03:46 hour 04:46 hour 05:28 hour

Reference Lables

Fig. 8. A timeline of HPC-ODA data color-coded with the classes determined from the nearest neighbor classifier. We are only presenting a subset of data
used in this case study, both in the sense of sensors involved and the time span. The sensor data (in the top four rows) are color-coded with the classifier’s
predicted labels, and we use a color-bar (lowest row) to annotate the ground-truth labels in the HPC-ODA dataset.

132

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

2
0

2
2

2
4

2
6

2
8

2
10

Number of tile(s)

80

85

90

95

100

R
ec

al
l r

at
e

(%
)

2
0

2
2

2
4

2
6

2
8

2
10

Number of tile(s)

50

60

70

80

90

100

E
xe

cu
ti

on
 ti

m
e

t (
se

co
nd

s)

Precision mode FP64

FP32

FP16

Mixed

FP16C

Fig. 10. Numerical accuracy (R) of the matrix profile index and execution
time of multi-tile implementations on GIAB dataset when increasing number
of tiles (n=218, d=24, m=27).

to 4. For the sake of simplicity, we choose the continues
data from 16 chromosome and encode them into the time
series with the following parameter setting: the number of
subsequence n = 218, the dimensionality d = 24 and the
length of subsequence m = 27—as this length of subsequence
reaches the shortest gene length in practice [6].

We execute the numerical accuracy and performance tests
with tiling scheme on both V100 and A100 and observe similar
behavior. The numerical accuracy of the matrix profile index
increases with the number of tiles in FP16, Mixed and FP16C
modes. FP16 reaches 75% accuracy with one tile and over 95%
with 1024 tiles; Mixed and FP16C reach over 95% accuracy
with any number of tiles. The execution time also changes
with the increasing number of tiles in the same way as in the
previous experiments despite the larger problem size.

Overall, the reduced precision computation works well for
DNA data mining with multi-dimensional matrix profile and
shows promise for further scaling.

C. Heavy-Duty Gas Turbines

In the final case study we look at relaxed recall rate
(Rr

embedded) as accuracy metric when applying our approach
to pattern detection (e.g., to inspect anomalies) in actually
existing large-scale industrial systems with all its real-world
limitations, in particular to the surveillance of large-scale
heavy-duty gas turbines. Especially with the increasing growth
of renewable energy sources in power grids, heavy-duty gas
turbines are often operated as a backup source for power
generation. Consequently, they are exposed to more dynamic
operation settings and therefore to multiple startups and
shutdowns cycles. In order to detect and later predict them,
we investigate turbine speed data, collected directly from the
machine as a high-frequent time series and especially focus
on the detection of startup events. This case study is a special
case where the dimensionality of input time series, d is one,
but reduced precision is still the key for scaling the analysis.

We exploit a dataset derived from the actual operation of
two instances of gas turbines, GT1 and GT2, installed and
operated by a large municipal power provider. Fig. 11 illus-
trates examples of the startup events (annotated with P1 and
P2) in our dataset; each corresponding to a specific operation

Time (sec)

Pattern 2 (P2)Pattern 1 (P1)

N
or

m
al

iz
ed

 S
pe

ed 100

80

60
40
20
0

0 500 1000 1500 2000
Time (sec)

0 500 1000 1500 2000

Fig. 11. Startup patterns in heavy-duty turbine datasets. We apply min-max
normalization to avoid overflow in reduced precision computation.

initiation mode. We prepare 65 single time series (n = 216,
m = 211 and d = 1) that include either P1 or P2 respectively,
and 5 single time series that include both. In our experiments
we use matrix profile on the combinations (pairs) of these time
series (i.e., P1 and P2) to detect the the corresponding startup
events in these pairs, which are categorized in four classes (i.e.,
P1-P1 and P2-P2, ... in Table I). This is sufficiently diverse
to analyze the pattern detection accuracy (Rr

embedded) within
one or across the two turbine instances. The numbers of input
time series pairs in each class are listed in Table I.

We apply the methodology for practical accuracy
Rr

embedded of pattern detection. However, here we allow for a
tolerance (a.k.a., relaxation factor) in detecting the location of
detected patterns. This tolerance allows for considering fairly
close detections (e.g., with 5% of window size deviation)
as successful, which is a reasonable consideration for the
constraints of this use case. Fig. 12 shows the Rr

embedded of
detecting pattern with 5% relaxation factor. Both FP64 and
FP32 exhibit 100% accuracy and Mixed and FP16C provide
higher accuracy than FP16.

With higher relaxation factors (not shown in Fig. 12), the
corresponding startups are all successfully detected: In all
the experiments, the mismatching nearest neighbors are not
located at the positions range from 10% to 50% tolerance of
the startup event. This shows that our algorithm is able to
accurately detect the patterns.

In all the tests, the accuracy to detect patterns in P-P1 and
P2-P2 classes is similar to both-P1 and both-P2, indicating
that the resulting accuracy is independent of the data sources.
In addition, as shown in Fig. 11, despite the difference of the
two patterns (e.g., the blue pattern is more complex), they are
detectable to the almost same degree with Mixed or FP16C.
This demonstrates that the accuracy of Mixed and FP16C
modes is orthogonal to the complexity of patterns, which is
in accordance to the presented experiments in Fig. 3 on the
synthetic datasets.

VII. CONCLUSIONS

In this paper, we proposed the first GPU-based algorithm
to accelerate multi-dimensional matrix profile computation.
We provided an implementation that exploits GPU hardware
features through an optimized data layout, coarse-grained syn-

TABLE I
CATEGORIES OF TIME SERIES PAIRS, AND THE NUMBERS OF INPUT TIME

SERIES PAIRS IN EACH CATEGORY IN GAS TURBINE CASE STUDY.
P1-P1 P2-P2 both-P1 both-P2

GT1 4160 4160 325 325
GT2 4160 4160 325 325

GT1-GT2 4225 4225 650 650

133

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

P1 vs P
1

P2 vs P
2

both vs P
1

both vs P
2

0

20

40

60

80

100

R
el

ax
ed

 r
ec

al
l r

at
e

fo
r

fo
r

em
be

dd
ed

m

ot
if

 d
et

ec
ti

on

r=
5%

em
be
dd
ed

(%
)

Signals from turbine GT1

P1 vs P
1

P2 vs P
2

both vs P
1

both vs P
2

0

20

40

60

80

100
Signals from both turbines

FP64

FP32

FP16

Mixed

FP16CFP64

FP32

FP16

Mixed

FP16CPrecision mode

Fig. 12. Relaxed recall rate (Rr
embedded) of single-tile implementations with

various relaxation factors for detecting rising-edge patterns in the time series
derived from two turbines.

chronization and efficient sort and inclusive scans. We further
provided a solution to utilize multiple GPUs on one node.
We introduced various reduced precision modes for multi-
dimensional matrix profile computation and demonstrated a
novel tiling scheme to prevent the propagation of errors. In
the future, our implementation could be further extended to
multiple nodes (e.g., using MPI or a Cloud-based solution) as
well as using TF32 execution mode or BFLOAT16.

We conducted extensive accuracy and performance mea-
surement experiments using synthetic and real-world data,
and showed that our approach achieves high accuracy and
performance as well as achieves good strong scalability.
Our final solution (multi-GPU + reduced precision + tiling)
demonstrates a complete and novel solution for efficient and
accurate data mining with reduced precision. Our solution is
a significant step towards more efficient HPDA for time series
analysis and pushes the limits of state-of-the-art significantly.

ACKNOWLEDGMENT

This work is partially funded by Bayerische Forschungss-
tiftung under the research grants Optimierung von Gastur-
binen mit Hilfe von Big Data (AZ-1214-16), and Von der
Edge zur Cloud und zurück: Skalierbare und Adaptive Sen-
sordatenverarbeitung (AZ-1468-20). The authors gratefully
acknowledge the Max Plank Computing and Data Facility
(MPCDF: www.mpcdf.mpg.de) and Leibniz Supercomputing
Centre (LRZ: www.lrz.de) for funding this project by pro-
viding compute time on the Raven Supercomputer, BEAST
(Bavarian Energy Architecture & Software Testbed), and LRZ
AI systems.

REFERENCES

[1] DGX-1 v100 at LRZ AI Systems. [Online]. Available: https:
//doku.lrz.de/display/PUBLIC/LRZ+AI+Systems

[2] Supercomputer Raven at Max Plank Computing and Data
Facility. [Online]. Available: https://www.mpcdf.mpg.de/services/
supercomputing/raven

[3] The UCR matrix profile page. [Online]. Available: https://www.cs.ucr.
edu/∼eamonn/MatrixProfile.html

[4] F. Cheng, R. J. Hyndman, and A. Panagiotelis, “Manifold learning with
approximate nearest neighbors,” ArXiv, vol. abs/2103.11773, 2021.

[5] I. Fernandez, “scrimp-flexfloat,” https://github.com/ivanfv/
scrimp-flexfloat, 2019.

[6] V. Grishkevich and I. Yanai, “Gene length and expression level shape
genomic novelties,” Genome research, vol. 24, pp. 1497–1503, 2014.

[7] W. Kahan, “Pracniques: Further remarks on reducing truncation errors,”
Commun. ACM, vol. 8, no. 1, p. 40, Jan. 1965.

[8] S. M. Law, “STUMPY: A powerful and scalable python library for time
series data mining,” The Journal of Open Source Software, vol. 4, no. 39,
p. 1504, 2019.

[9] A. Netti, “HPC-ODA dataset collection,” Sep. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3701440

[10] NVIDIA. CUB library, release: 1.14.0. [Online]. Available: https:
//nvlabs.github.io/cub

[11] NVIDIA-Corporation. Modern GPU library, release: 2.0. [Online].
Available: https://github.com/moderngpu/moderngpu/wiki

[12] G. Pfeilschifter, “Time series analysis with matrix profile on HPC
systems,” 2019.

[13] A. Raoofy, R. Karlstetter, D. Yang, C. Trinitis, and M. Schulz, “Time
series mining at petascale performance,” in International Conference on
High Performance Computing. Springer, 2020, pp. 104–123.

[14] J. C. Romero, A. Vilches, A. Rodrı́guez, A. Navarro, and R. Asenjo,
“Scrimpco: scalable matrix profile on commodity heterogeneous pro-
cessors,” The Journal of Supercomputing, pp. 1–22, 2020.

[15] N. S. Shakibay Senobari, G. Funning, Z. Zimmerman, Y. Zhu, and E. J.
Keogh, “Using the similarity matrix profile to investigate foreshock
behavior of the 2004 parkfield earthquake,” AGUFM, vol. 2018, pp.
S51B–03, 2018.

[16] J. Shi, N. Yu, E. Keogh, H. K. Chen, and K. Yamashita, “Discovering and
labeling power system events in synchrophasor data with matrix profile,”
in 2019 IEEE Sustainable Power and Energy Conference (iSPEC).
IEEE, 2019, pp. 1827–1832.

[17] D. F. Silva, C.-C. M. Yeh, G. E. Batista, E. J. Keogh et al., “Simple:
Assessing music similarity using subsequences joins.” in ISMIR, 2016.

[18] G. Tagliavini, A. Marongiu, and L. Benini, “Flexfloat: A software library
for transprecision computing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, pp. 145–156, 2020.

[19] A. Tharwat, “Classification assessment methods,” Applied Computing
and Informatics, 2020.

[20] L. Yang, A. Fox, and G. Sanders, “Rounding error analysis of mixed
precision block householder qr algorithms,” SIAM J. Sci. Comput.,
vol. 43, pp. A1723–A1753, 2021.

[21] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau,
Z. Zimmerman, D. F. Silva, A. Mueen, and E. Keogh, “Time series
joins, motifs, discords and shapelets: a unifying view that exploits the
matrix profile,” Data Mining and Knowledge Discovery, vol. 32, no. 1,
pp. 83–123, 2018.

[22] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh, “Matrix profile I: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets,” in 2016 ICDM. IEEE, pp. 1317–1322.

[23] C.-C. M. Yeh, N. Kavantzas, and E. Keogh, “Matrix profile VI: Mean-
ingful multidimensional motif discovery,” in 2017 ICDM. IEEE, pp.
565–574.

[24] Y. Zhu, Z. Schall-Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. J.
Funning, A. A. Mueen, P. Brisk, and E. J. Keogh, “Exploiting a novel
algorithm and GPUs to break the ten quadrillion pairwise comparisons
barrier for time series motifs and joins,” Knowledge and Information
Systems, vol. 54, pp. 203–236, 2017.

[25] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh,
“Matrix profile XI: Scrimp++: time series motif discovery at interactive
speeds,” in 2018 ICDM. IEEE, pp. 837–846.

[26] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh, “Matrix profile II: Exploiting a novel
algorithm and gpus to break the one hundred million barrier for time
series motifs and joins,” in 2016 ICDM. IEEE, pp. 739–748.

[27] Z. Zimmerman, K. Kamgar, N. Senobari, B. Crites, G. Funning, P. Brisk,
and E. Keogh, “Matrix profile XIV: Scaling time series motif discovery
with GPUs to break a quintillion pairwise comparisons a day and
beyond,” in Proceedings of the ACM Symposium on Cloud Computing,
2019, pp. 74–86.

[28] J. M. Zook, J. McDaniel, N. D. Olson, J. Wagner, H. Parikh, H. Heaton,
S. A. Irvine, L. Trigg, R. Truty, C. Y. McLean et al., “An open resource
for accurately benchmarking small variant and reference calls,” Nature
biotechnology, vol. 37, no. 5, pp. 561–566, 2019.

134

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 20,2022 at 12:56:18 UTC from IEEE Xplore. Restrictions apply.

