M 3

Logistic Regression
16.07.2014

Markus Holzemer
Jonas Traub
Timo Walther



4 )

Motivation

. J

4 )

Logistic Regression Algorithm

e \

Parallelization Strategy

. J

e \

Implementation in Stratosphere and Spark

. J

[ Experiment Results ]




Logistic Regression is for Classification
Typically binary classification

o Is this mail spam?

o Did he/she pass the exam?

source: coursera/Stanford Machine Learning by Andrew Ng



e Logistic Regression is for Classification
e Typically binary classification
o Is this mail spam?
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e Logistic Regression is for Classification
e Typically binary classification
o Is this mail spam?
o Did he/she pass the exam? T
P ha(x)=06 " x
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e Inexample: h 4(x) <0 and h 4(x) > 1 are possible
e With Logistic Regression: O=h,x) =1

IM 3 source: coursera/Stanford Machine Learning by Andrew Ng



Hypothesis and Cost Representation
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wolframalpha.com: plot g(z)=(1/(1+e”(-z))) from z = -5

to +5
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Hypothesis and Cost Representation

1.0F

Sigmoid Function = Logistic Function =

=g(® "x)

g(2) = ——= with h4(x)

= h G(X) = 1_6T

X

..........

1+e _4.._2X...

wolframalpha.com: plot g(z)=(1/(1+e”(-z))) from z = -5
to +5
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=1
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—log(1=h¢(x)) i y =0

=> \We want to minimize cost J
=> Gradient Descent, repeat:

— AJ(O)
6, =0, - 035
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source: coursera/Stanford Machine Learning by Andrew Ng



X=[m,n] //training set of features
y =[m] /[ vector of classification
alpha = 1 // learning rate

theta =[n]->all 0

Gradient descent:
for 7:number _iterations

fori=1:n
grad(i) = 0; derivative of cost function
forj=7m l |

grad(i) += (sigmoid(X(j,:)*theta)-y(j))*X(j,));

end ' l '
grad(i) = grad(i)/m; "™

end

theta = theta - alpha * grad;

end

Very naive way,
can be vectorized



Stochastic Gradient Descent (for large training sets)

0.5
AN \ \
X=[m,n] //training set of features 04\

y =[m] /] vector of classification
alpha = 1 // learning rate
theta =[n]->all 0

0

Stochastic Gradient Descent:

L 0.4 (Batch) Gradient Descent\e
Randomly Shuffle _Training_Set(X,y) | Stochastic Qradient Descent
. . . 3
repeat until theta converges %00 500 0 500 1000 1500 2000
. o,
forJ _ 7:m different cost function but same derivative
fori=1nn |

grad(i) = (sligmoid(X(j,:)*theta)—y(j))*X(j,i)); |

end h(x) => make progress in each iteration
theta = theta - alpha * grad; (modify the parameters to fit the training
end set a little bit better)

end
=> generally, move the parameters in
the direction of the global minimum



Parallelization

e Stochastic Gradient Descent
o Inherently not parallelizable (theta needs to be adjusted after
every point)
o Parallelization over different alphas or different distributions of
the training set and averaging? Research is ongoing.

e Batch Gradient Descent
o Parallel computation of the average gradient over all points
possible (see next slide)
o But: Not clear if it is profitable in comparison to a local SGD

=> Both SGD and BGD has been implemented in Scala

=> We use Batch Gradient Descent for Stratosphere and Spark
to enable parallel performance measures
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Parallel Batch Gradient Descent

Point = (Label, Features)
BC Variable

/ :

.7 BC Variable :

//
- Bulk lteration

Repeat iteration n times




Comparison of Implementations

1. EXxplicit iteration operator

StratoSphere 2 Usage of broadcast variables

Above the Clouds

«

3. Data represented as POJOs extending from Tuple

1. lteration as Java for-loop

Spor‘lgz 2.

Lightning-Fast Cluster Computing

Operator output represented by Java variables

3. Data represented as POJOs



Issues during the Project

1.

StratoSphere

Above the Clouds

«

Spa

Lightning-Fast Cluster Computing

IM 3
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Issues reported to Jira/Git

a. GIT #905 - Using broadcast variables in UDFs within
iterations leads to CompilerException
==> Solved with 0.5.1-SNAPSHOT

b. FLINK-929 - Impossible to pass double with
configuration
==> Solved with Pull Request #13

c. FLINK-1018 - Logistic Regression deadlocks
==> Work in progress / Workaround is present

==> Needs stability and robustness

Java 6 on the cluster sucks!
a. No JDKG6 from Oracle available any more
b. No Lambda Rules...



Performance Test Setup

Cluster

O

O
O
©)
O

4 Nodes a 16 Cores, 32 GB RAM

Hadoop 1.2.1

Stratosphere 0.5.1

Spark 1.0

Java(TM) SE Runtime Environment (build 1.6.0_26-b03)

Testruns

O
©)
O

Every experiment repeated 7 times
Run with different datasize

Datasets

O O O O O

We used the Higgs Dataset from the UCI Repository
binary classified (0/1)

28 dimensions with double numbers

S size: subsample of ~75MB

XL size: full dataset of ~7.5GB



Hyperparameter Finding

Goal: Find good learning rate alpha and reasonable number of iterations
Approach: Test and print costs of different rates locally by using a sample
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Test Results Stratosphere

Higgs S Dataset
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Runtime in Seconds
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Test Results Stratosphere
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System

Test Results

General
Impressions

IM 3

StratoSphere SpQr‘I,(\Z

Above the Clouds

C

+ Well Sca”ng observed Run with the XL dataset for 1h and then

+ Huge speedup through BC vars aborted.

- bad performance on small data Only the master node was used for the
. . computation.

- sometimes unreliable

Lightning-Fast Cluster Computing

Further investigations are necessary

=> Stratosphere gives good results! For Spark we don’t know...

+ Fast support via Jira/Git + really nice Java API

+ Easy to use data model + Easy to use data model

- Several bugs found - Java 8 dependent documentation
- Hard to get it running - Even harder to get it running

=> Both tools provide a nice programming abstraction
=> but the runtime needs to get more stable



Questions?




