M 3

Logistic Regression
16.07.2014

Markus Holzemer
Jonas Traub
Timo Walther

4)

Motivation

. J

4)

Logistic Regression Algorithm

e \

Parallelization Strategy

. J

e \

Implementation in Stratosphere and Spark

. J

[Experiment Results]

Logistic Regression is for Classification
Typically binary classification

o Is this mail spam?

o Did he/she pass the exam?

source: coursera/Stanford Machine Learning by Andrew Ng

e Logistic Regression is for Classification
e Typically binary classification
o Is this mail spam?
o Did he/she pass the exam? T
P ha(x)=06 " x

A v

(Yes) 14 X X;X X

X

——————— Threshold at 0.5

Passed exam? | -----------------2
0: “Negative Class”

ye {O’ 1} 1: “Positive Class”

(No) O
Points in exam

source: coursera/Stanford Machine Learning by Andrew Ng

IM 3

e Logistic Regression is for Classification
e Typically binary classification
o Is this mail spam?
o Did he/she pass the exam? T
P ha(x)=06 " x

A v

(Yes) 1+ X XX X

X

——————— Threshold at 0.5
y € {0,1}

Passed exam? | -----------------2

0: “Negative Class”
1: “Positive Class”

(No) O

|
|
|
:
|
|
1] 1] I
Points in exam

e Inexample: h 4(x) <0 and h 4(x) > 1 are possible
e With Logistic Regression: O=h,x) =1

IM 3 source: coursera/Stanford Machine Learning by Andrew Ng

Hypothesis and Cost Representation

. . . .y . Loy X
Sigmoid Function = Logistic Function =
giz) = — with h 4(x) = g(0 'x)
14e ~° o
1
— = .
h e(x) -0 Tx - X P P S S
1+e -4 -2 2 4
wolframalpha.com: plot g(z)=(1/(1+e”(-z))) from z = -5

to +5

IM 3 source: coursera/Stanford Machine Learning by Andrew Ng

Hypothesis and Cost Representation

. . . - . Loy X
Sigmoid Function = Logistic Function =
giz) = — with h ,(x) = g(® "x)
1+e ¢ o
:he(x)= 1_6Tx A
1+e -4 -2 2 4
wolframalpha.com: plot g(z)=(1/(1+e”(-z))) from z = -5
to +5

m _ ; —log(h .(x fy=1
7(0) = % Zi Cost(h e(x(z)),y()) Cost(h 4(x),y) = { _;;i((lfgz)(x)) %:o
-

IM 3 source: coursera/Stanford Machine Learning by Andrew Ng

Hypothesis and Cost Representation

1.0F

Sigmoid Function = Logistic Function =

=g(® "x)

g(2) = ——= with h4(x)

= h G(X) = 1_6T

X

..........

1+e _4.._2X...

wolframalpha.com: plot g(z)=(1/(1+e”(-z))) from z = -5
to +5

7(0) = L5 Cost(h o(x),yD) Cost(h y(x),y) = {"0g<h o)
=1

ify=1

—log(1=h¢(x)) i y =0

=> \We want to minimize cost J
=> Gradient Descent, repeat:

— AJ(O)
6, =0, - 035
IMPRO3

with A‘](e)

Zi (h, (D) = yD) xj(i)

source: coursera/Stanford Machine Learning by Andrew Ng

X=[m,n] //training set of features
y =[m] /[vector of classification
alpha = 1 // learning rate

theta =[n]->all 0

Gradient descent:
for 7:number _iterations

fori=1:n
grad(i) = 0; derivative of cost function
forj=7m l |

grad(i) += (sigmoid(X(j,:)*theta)-y(j))*X(j,));

end ' l '
grad(i) = grad(i)/m; "™

end

theta = theta - alpha * grad;

end

Very naive way,
can be vectorized

Stochastic Gradient Descent (for large training sets)

0.5
AN \ \
X=[m,n] //training set of features 04\

y =[m] /] vector of classification
alpha = 1 // learning rate
theta =[n]->all 0

0

Stochastic Gradient Descent:

L 0.4 (Batch) Gradient Descent\e
Randomly Shuffle _Training_Set(X,y) | Stochastic Qradient Descent
. . . 3
repeat until theta converges %00 500 0 500 1000 1500 2000
. o,
forJ _ 7:m different cost function but same derivative
fori=1nn |

grad(i) = (sligmoid(X(j,:)*theta)—y(j))*X(j,i)); |

end h(x) => make progress in each iteration
theta = theta - alpha * grad; (modify the parameters to fit the training
end set a little bit better)

end
=> generally, move the parameters in
the direction of the global minimum

Parallelization

e Stochastic Gradient Descent
o Inherently not parallelizable (theta needs to be adjusted after
every point)
o Parallelization over different alphas or different distributions of
the training set and averaging? Research is ongoing.

e Batch Gradient Descent
o Parallel computation of the average gradient over all points
possible (see next slide)
o But: Not clear if it is profitable in comparison to a local SGD

=> Both SGD and BGD has been implemented in Scala

=> We use Batch Gradient Descent for Stratosphere and Spark
to enable parallel performance measures

IM 3

Parallel Batch Gradient Descent

Point = (Label, Features)
BC Variable

/ :

.7 BC Variable :

//
- Bulk lteration

Repeat iteration n times

Comparison of Implementations

1. EXxplicit iteration operator

StratoSphere 2 Usage of broadcast variables

Above the Clouds

«

3. Data represented as POJOs extending from Tuple

1. lteration as Java for-loop

Spor‘lgz 2.

Lightning-Fast Cluster Computing

Operator output represented by Java variables

3. Data represented as POJOs

Issues during the Project

1.

StratoSphere

Above the Clouds

«

Spa

Lightning-Fast Cluster Computing

IM 3

1.
'S

Issues reported to Jira/Git

a. GIT #905 - Using broadcast variables in UDFs within
iterations leads to CompilerException
==> Solved with 0.5.1-SNAPSHOT

b. FLINK-929 - Impossible to pass double with
configuration
==> Solved with Pull Request #13

c. FLINK-1018 - Logistic Regression deadlocks
==> Work in progress / Workaround is present

==> Needs stability and robustness

Java 6 on the cluster sucks!
a. No JDKG6 from Oracle available any more
b. No Lambda Rules...

Performance Test Setup

Cluster

O

O
O
©)
O

4 Nodes a 16 Cores, 32 GB RAM

Hadoop 1.2.1

Stratosphere 0.5.1

Spark 1.0

Java(TM) SE Runtime Environment (build 1.6.0_26-b03)

Testruns

O
©)
O

Every experiment repeated 7 times
Run with different datasize

Datasets

O O O O O

We used the Higgs Dataset from the UCI Repository
binary classified (0/1)

28 dimensions with double numbers

S size: subsample of ~75MB

XL size: full dataset of ~7.5GB

Hyperparameter Finding

Goal: Find good learning rate alpha and reasonable number of iterations
Approach: Test and print costs of different rates locally by using a sample

0.7 0.7 07
0.69
0.68 0.68
0.68
0.66 0.66
067 \
0.66 \ 0.64 0.64 ~
065
0.62 0.62
0.64
06 06
063
0.62 0.58 058
ﬁﬁ
mmm
mmmmmmmm WO =N~ ® O~OONMIWWOWOWOA NI M~ Mg O~ ONMN OO SN0~
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
alpha = 0.01 alpha = 0.05 alpha = 0.1
0.7 0.9
08
068
07
0.66 06
05
=> alpha = 0.4
\k 04 — —
n
0.62 03
n | |
=> /50 iterations
0.6
: 01
058 °

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
mmmmmmmmmmmmmmm
NNNNNN

ﬁﬁﬁﬁﬁﬁﬁﬁ
mmmmmm

mmmmmmmmmmm
ﬁﬁﬁﬁﬁﬁ

alpha=0.5

Test Results Stratosphere

Higgs S Dataset

240
230 -
m \ //.
2 220
o) / /./
(&)
Q
(7,]
£ 210
Q
E
=
5 200
] /
190
180 T T I T |
0 16 32 48 64

Degree of Parallelism

IM 3

80

Runtime in Seconds

7000

6000

5000

4000

3000

2000

1000

Higgs XL Dataset

Test Results Stratosphere

N\

16 32 48 64

Degree of Parallelism

80

Test Results Stratosphere

0,002

0,0015

0,001

Runtime / Point in Seconds

0,0005

Average Runtime per Data Point

W Higgs S
M Higgs XL

System

Test Results

General
Impressions

IM 3

StratoSphere SpQr‘I,(\Z

Above the Clouds

C

+ Well Sca”ng observed Run with the XL dataset for 1h and then

+ Huge speedup through BC vars aborted.

- bad performance on small data Only the master node was used for the
. . computation.

- sometimes unreliable

Lightning-Fast Cluster Computing

Further investigations are necessary

=> Stratosphere gives good results! For Spark we don’t know...

+ Fast support via Jira/Git + really nice Java API

+ Easy to use data model + Easy to use data model

- Several bugs found - Java 8 dependent documentation
- Hard to get it running - Even harder to get it running

=> Both tools provide a nice programming abstraction
=> but the runtime needs to get more stable

Questions?

