
Logistic Regression
16.07.2014

IMPRO3

Markus Holzemer
Jonas Traub
Timo Walther

Agenda

IMPRO3 • Logistic Regression

Motivation

Logistic Regression Algorithm

Parallelization Strategy

Implementation in Stratosphere and Spark

Experiment Results

Motivation

IMPRO3 • Logistic Regression source: coursera/Stanford Machine Learning by Andrew Ng

● Logistic Regression is for Classification
● Typically binary classification

○ Is this mail spam?
○ Did he/she pass the exam?

Motivation

IMPRO3 • Logistic Regression source: coursera/Stanford Machine Learning by Andrew Ng

Points in exam

Passed exam? Threshold at 0.5

● Logistic Regression is for Classification
● Typically binary classification

○ Is this mail spam?
○ Did he/she pass the exam?

Motivation

IMPRO3 • Logistic Regression source: coursera/Stanford Machine Learning by Andrew Ng

Points in exam

Passed exam? Threshold at 0.5

● In example:

● With Logistic Regression:

● Logistic Regression is for Classification
● Typically binary classification

○ Is this mail spam?
○ Did he/she pass the exam?

Hypothesis and Cost Representation

IMPRO3 • Logistic Regression

wolframalpha.com: plot g(z)=(1/(1+e^(-z))) from z = -5
to +5

Sigmoid Function = Logistic Function =
x x x

xx

source: coursera/Stanford Machine Learning by Andrew Ng

Hypothesis and Cost Representation

IMPRO3 • Logistic Regression

wolframalpha.com: plot g(z)=(1/(1+e^(-z))) from z = -5
to +5

Sigmoid Function = Logistic Function =
x x x

xx

source: coursera/Stanford Machine Learning by Andrew Ng

Hypothesis and Cost Representation

IMPRO3 • Logistic Regression

wolframalpha.com: plot g(z)=(1/(1+e^(-z))) from z = -5
to +5

Sigmoid Function = Logistic Function =

=> We want to minimize cost J
=> Gradient Descent, repeat:

x x x

xx

source: coursera/Stanford Machine Learning by Andrew Ng

Pseudocode

IMPRO3 • Logistic Regression

X = [m, n] // training set of features
y = [m] // vector of classification
alpha = 1 // learning rate
theta = [n] -> all 0

Gradient descent:
for 1:number_iterations
 for i = 1:n
 grad(i) = 0;
 for j = 1:m
 grad(i) += (sigmoid(X(j,:)*theta)-y(j))*X(j,i));
 end
 grad(i) = grad(i)/m;
 end
 theta = theta - alpha * grad;
end

Very naive way,
can be vectorized

h(x)

derivative of cost function

Stochastic Gradient Descent (for large training sets)

IMPRO3 • Logistic Regression

X = [m, n] // training set of features
y = [m] // vector of classification
alpha = 1 // learning rate
theta = [n] -> all 0

Stochastic Gradient Descent:

Randomly_Shuffle_Training_Set(X,y)
repeat until theta converges
 for j = 1:m
 for i = 1:n
 grad(i) = (sigmoid(X(j,:)*theta)-y(j))*X(j,i));

 end
 theta = theta - alpha * grad;
 end
end

h(x) => make progress in each iteration
(modify the parameters to fit the training
set a little bit better)

=> generally, move the parameters in
the direction of the global minimum

different cost function but same derivative

(Batch) Gradient Descent
Stochastic Gradient Descent

Parallelization

IMPRO3 • Logistic Regression

● Stochastic Gradient Descent
○ Inherently not parallelizable (theta needs to be adjusted after

every point)
○ Parallelization over different alphas or different distributions of

the training set and averaging? Research is ongoing.

● Batch Gradient Descent
○ Parallel computation of the average gradient over all points

possible (see next slide)
○ But: Not clear if it is profitable in comparison to a local SGD

=> Both SGD and BGD has been implemented in Scala

=> We use Batch Gradient Descent for Stratosphere and Spark
 to enable parallel performance measures

Parallel Batch Gradient Descent

IMPRO3 • Logistic Regression

DataSource
(Read Text

File)

Reduce
(Count
Points)

DataSource
(Theta initialized

with zeros)

Reduce
(Sum up for

Average Gradient)

Map
(Build Gradient,

Divide by #Points)

Bulk Iteration

BC Variable

DataSink
(Write New Theta

to Test File)

Point = (Label, Features)

Map
(Emit 1 for
each Point)

Map
(Parse Lines

to Points)

Cross
(Sum up all
Gradients)

Repeat iteration n times

BC Variable
theta

Comparison of Implementations

1. Explicit iteration operator

2. Usage of broadcast variables

3. Data represented as POJOs extending from Tuple

IMPRO3 • Logistic Regression

1. Iteration as Java for-loop

2. Operator output represented by Java variables

3. Data represented as POJOs

Issues during the Project

1. Issues reported to Jira/Git

a. GIT #905 - Using broadcast variables in UDFs within
iterations leads to CompilerException
==> Solved with 0.5.1-SNAPSHOT

b. FLINK-929 - Impossible to pass double with
configuration
==> Solved with Pull Request #13

c. FLINK-1018 - Logistic Regression deadlocks
==> Work in progress / Workaround is present

 ==> Needs stability and robustness

IMPRO3 • Logistic Regression

1. Java 6 on the cluster sucks!
a. No JDK6 from Oracle available any more
b. No Lambda Rules...

Performance Test Setup

IMPRO3 • Logistic Regression

● Cluster
○ 4 Nodes á 16 Cores, 32 GB RAM
○ Hadoop 1.2.1
○ Stratosphere 0.5.1
○ Spark 1.0
○ Java(TM) SE Runtime Environment (build 1.6.0_26-b03)

● Testruns
○ Every experiment repeated 7 times
○ Run with different datasize
○

● Datasets
○ We used the Higgs Dataset from the UCI Repository
○ binary classified (0/1)
○ 28 dimensions with double numbers
○ S size: subsample of ~75MB
○ XL size: full dataset of ~7.5GB

Hyperparameter Finding

IMPRO3 • Logistic Regression

Goal: Find good learning rate alpha and reasonable number of iterations
Approach: Test and print costs of different rates locally by using a sample

alpha = 0.01 alpha = 0.05 alpha = 0.1

alpha = 0.4 alpha = 0.5

=> alpha = 0.4
=> 750 iterations

Test Results Stratosphere

IMPRO3 • Logistic Regression

Test Results Stratosphere

IMPRO3 • Logistic Regression

Test Results Stratosphere

IMPRO3 • Logistic Regression

Resume

System

Test Results

+ Well scaling observed
+ Huge speedup through BC vars
- bad performance on small data
- sometimes unreliable

General
Impressions

IMPRO3 • Logistic Regression

+ Fast support via Jira/Git
+ Easy to use data model
- Several bugs found
- Hard to get it running

Run with the XL dataset for 1h and then
aborted.

Only the master node was used for the
computation.

Further investigations are necessary

+ really nice Java API
+ Easy to use data model
- Java 8 dependent documentation
- Even harder to get it running

=> Stratosphere gives good results! For Spark we don’t know...

=> Both tools provide a nice programming abstraction
=> but the runtime needs to get more stable

Questions?

IMPRO3 • Logistic Regression

