Random Forest Classifiers

IMPRO-3

Goals/Features

- Competitive accuracy
- Scalable / Fast
- Generalizes
- Easy evaluation
- Few hyper parameters

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Decision Tree (typical Example)

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - ii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Hyper parameters

- m: Quantity of variables selected
 - Between ½√p and 2√p
- B: Quantity of trees
 - Limited gain
- N: Bootstrap Samples
 - ²/₃ of the data set

Growing a random tree

- 0) Create first node
- 1) Sample features
- 2) Assign to node 0
- 3) Iterate
 - a) Create child nodes
 - b) Find splits
 - c) Assign tuples
 - d) Clean

```
Tuples: (data, label)
```

```
((0.1, 0.2, ...), A)
((0.1, 0.5, ...), A)
((0.3, 0.7, ...), B)
((0.3, 0.9, ...), C)
```

0) Create first node

(1)

```
Tuples: (data, label)

((0.1, 0.2, ...), A)
((0.1, 0.5, ...), A)
((0.3, 0.7, ...), B)
((0.3, 0.9, ...), C)

Nodes: (node, feature, split, labels)
(1, , , [ ])
```

1) Sample features

1

```
Tuples: (data, label)

((0.1, 0.2), A)
((0.1, 0.5), A)
((0.3, 0.7), B)
((0.3, 0.9), C)

Nodes: (node, feature, split, labels)
(1, , , [ ])
```

2) Assign to node 0

1 [A,B,C]

```
Tuples: (node, data, label)
```

```
(1, (0.1, 0.2), A)
(1, (0.1, 0.5), A)
(1, (0.3, 0.7), B)
(1, (0.3, 0.9), C)
```

```
(1, , , [A, B, C])
```

a) Create child nodes

Tuples: (node, data, label)

```
(1, , , [A, B, C])
(2, , ,[])
(3, , ,[])
```

b) Find splits

Tuples: (node, data, label)

```
(1, 1, 0.2, [A, B, C])
(2, , ,[])
(3, , ,[])
```

c) Assign tuples

Tuples: (node, data, label)

```
(1, 1, 0.2, [A, B, C])
(2, , , [A ])
(3, , , [B, C])
```

d) Clean

Label: A

Tuples: (node, data, label)

a) Create child nodes

Tuples: (node, data, label)

b) Find splits

Tuples: (node, data, label)

c) Assign tuples

Tuples: (node, data, label)

d) Clean

[A,B,C](1, >0.2)(1, ≤0.2) [B, C] Nodes: (node, feature, split, labels) (2, >0.8) $(2, \leq 0.8)$ (1, 1, 0.2, [A, B, C]) Label: A (2, , ,[A]) (3, 2, 0.8, [B, C]) 6 (6, , ,[B]) (7, , ,[C]) Label: C Label: D

Tuples: (node, data, label)

- 0) Create first node
- 1) Sample features
- 2) Assign to node 0
- 3) Iterate
 - a) Create child nodes
 - b) Find splits
 - c) Assign tuples
 - d) Clean

Work Set: Data and node assignment

[(node, data, label)]

Solution Set: Nodes

- 0) Create first node → 1
- 1) Sample features
- 2) Assign to node 0
- 3) Iterate
 - a) Create child nodes
 - b) Find splits
 - c) Assign tuples
 - d) Clean

Work Set: Data and node assignment

[(node, data, label)]

Solution Set: Nodes

- 0) Create first node → 1
- 1) Sample features
- 2) Assign to node 0
- 3) Iterate → Step function
 - a) Create child nodes
 - b) Find splits
 - c) Assign tuples
 - d) Clean

Work Set: Data and node assignment

[(node, data, label)]

Solution Set: Nodes

- 0) Create first node \rightarrow 1
- 1) Sample features -
- 2) Assign to node 0 \vdash 1
- 3) Iterate → Step function
 - a) Create child nodes-
 - b) Find splits
 - c) Assign tuples-
 - d) Clean
- 4) If empty work set \rightarrow 4

Work Set: Data and node assignment

[(node, data, label)]

Solution Set: Nodes

3

How to actually find Splits?

Using Gini Index selection (splitting) measure

The Gini index considers a binary split for each attribute

It forces any tree to be binary

What are possible Splits?

Assume <, =, > are applicable on each attribute/feature

→ **K-1** possible splits (*K distinct values in feature set*)

What are possible Splits?

For discrete categorizable data:

We will assume non-categorical

2^N - 2

2^N: all possible combinations

2: the full and the empty sets

What is a good Split?

- 3 common measures
- All based on heuristic arguments
 - Missclassification (Breiman)
 - Information Gain (ID.3/C4.5)
 - Gini Impurity (CART)

Best choice of method is not generalizable [5] - we use Gain for scala- and Gini for stratosphere- version.

Common for all of them

- For each possible 2-split:
 - Calc class-distributions
 - Derive heuristic measure

Choose best by measure

Common for all of them

Gini Index

The gini for the whole data

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$

Gini for each possible split

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2).$$

Gini for each attribute

$$\Delta Gini(A) = Gini(D) - Gini_A(D).$$

Example

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	$middle_aged$	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	$middle_aged$	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini(D) =
$$1 - \sum_{i=1}^{m} p_i^2$$
,
Gini(D) = $1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	$middle_aged$	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	$middle_aged$	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	$middle_aged$	medium	no	excellent	yes
13	$middle_aged$	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$
 $Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459.$

Possible splits:

{low, medium, high},
{low, medium}, {low, high}, {medium, high},
{low}, {medium}, {high},
{}

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	$middle_aged$	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini(D) =
$$1 - \sum_{i=1}^{m} p_i^2$$
,
Gini(D) = $1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$.

Possible splits:

```
{low, medium, high},
{low, medium}, {low, high}, {medium, high},
{low}, {medium}, {high},
{}
```

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	$middle_aged$	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$
 $Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459.$

Possible splits:

{low, medium}, {low, high}, {medium, high}, {low}, {medium}, {high},

RID	age	income	student	credit_rating	Class: buys_compute
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$
 $Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459.$

Possible splits:

{low, medium}, {low, high}, {medium, high}, {low}, {medium}, {high},

$$Gini_A(D) = rac{|D_1|}{|D|}Gini(D_1) + rac{|D_2|}{|D|}Gini(D_2).$$

$$\begin{split} & \textit{Gini}_{\textit{income}} \in \{\textit{low,medium}\}(D) \\ & = \frac{10}{14} \textit{Gini}(D_1) + \frac{4}{14} \textit{Gini}(D_2) \\ & = \frac{10}{14} \left(1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2 \right) \\ & = 0.450 \\ & = \textit{Gini}_{\textit{income}} \in \{\textit{high}\}(D). \end{split}$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	$middle_aged$	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	$middle_aged$	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	$middle_aged$	medium	no	excellent	yes
13	$middle_aged$	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini(D) =
$$1 - \sum_{i=1}^{m} p_i^2$$
,
Gini(D) = $1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$.

Possible splits:

{low, medium}, {low, high}, {medium, high}, {low}, {medium}, {high},

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2).$$

Gini index for the possible splits:

{low, medium} or {high} = 0.450{low, high} or {medium} = 0.315{medium, high} or {low} = 0.300

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	$middle_aged$	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	$middle_aged$	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	$middle_aged$	medium	no	excellent	yes
13	$middle_aged$	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gini(D) =
$$1 - \sum_{i=1}^{m} p_i^2$$
,
Gini(D) = $1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$.

Possible splits:

{low, medium}, {low, high}, {medium, high}, {low}, {medium}, {high},

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2).$$

Gini index for the possible splits:

{low, medium} or {high} = 0.450{low, high} or {medium} = 0.315{medium, high} or {low} = 0.300

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	$middle_aged$	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	$middle_aged$	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	$middle_aged$	medium	no	excellent	yes
13	$middle_aged$	high	yes	fair	yes
14	senior	medium	no	excellent	no

Overall Gini index for all attributes:
{age} with {youth, senior} = 0.375
{income} with {medium, high} = 0.300
{student} = 0.367
{credit_rating} = 0.429

$$Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459.$$

$$\Delta Gini(A) = Gini(D) - Gini_A(D).$$

Gini impurity (splitting criterion):
{age} with {youth, senior} = 0.084
{income} with {medium, high} = 0.159
{student} = 0.092
{credit_rating} = 0.03

Splits In Stratosphere

For each Delta-Iteration (Tree-Layer):

- calc local histograms for each node ->
- combine local histograms ->
- group by (node, dim) ->
- based on histograms, locally calc Gini-Idx for every possible Split and find best split for (node, dim)
- aggregate best dim-splits to find best splits of each (node)
- yield the best Splits

Problem?

Yes! Too many distinct values to hold histograms in memory

Solution: somehow reduce the # of distinct values / number of possible Splits

Optimization for Gini-Index (1)

try to reduce number of possible splits with global presorting

Optimization for Gini-Index (2)

based on MLib implementation of DecisionTrees [6,7]:

- infer possibly adequate quantization-intervals using downsampling
- use the intervals to bin values

→ We will give this variant a shot

References

- [1] Hastie, T.; Tibshirani, R.; Friedman, J.: The Elements of Statistical Learning. New York, NY, USA: Springer New York Inc., 2001.
- [2] Hastie, T.; Tibshirani, R.; Witten, D; and James, G.: An Introduction to Statistical Learning. New York, NY, USA: Springer New York Inc., 2013.
- [3] Breiman, L.: Random forests. Machine learning 45, no. 1 (2001): 5-32.
- [4] ETH Zurich: Random forests. Applied Multivariate Statistics Spring 2012.
- [5] Raileanu; Elena L.; Stoffel K.:Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence 41.1 (2004): 77-93.
- [6] http://spark.apache.org/docs/latest/mllib-decision-tree.html
- [7] https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spark/mllib/tree