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Goals/Features

Competitive accuracy
Scalable / Fast
Generalizes

Easy evaluation

Few hyper parameters
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Algorithm

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}P.
To make a prediction at a new point z:
Regression: fB(z) = + N2 Ty(x).

Classification: Let Cy(x) be the class prediction of the bth random-forest
tree. Then C& (z) = majority vote {Cy(z)}7.
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Decision Tree (typical Example)

old young

diseased healthy

tall short

healthy diseased
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Hyper parameters

e m: Quantity of variables selected
O Between 1/2\/p and 2\/p California Housing Data

e B: Quantity of trees
o Limited gain :  GBM deptr-o
e N: Bootstrap Samples ; ®
o % of the data set A

Number of Trees



Growing a random tree

Tuples: (data, label)
0) Create first node ((0.1,02, ..), A)
((0.1, 0.5, ...), A)
1) Sample features (03,07, ...), B)
] ((0.3,0.9, ...), C)
2) Assign to node 0
3) |terate Nodes: (node, feature, split, labels)

a) Create child nodes
b) Find splits

c) Assign tuples

d) Clean



0) Create first node

Tuples: (data, label)
((0.1,0.2, ...), A)
@ ((0.1,0.5, ...), A)
((0.3,0.7, ...), B)
((0.3,0.9, ...),C)

Nodes: (node, feature, split, labels)

(1., I 1)



1) Sample features

Tuples: (data, label)

((0.1,0.2), A)
@ ((0.1, 0.5), A)
((0.3, 0.7), B)

((0.3, 0.9), C)

Nodes: (node, feature, split, labels)

(1., I 1)



2) Assign to node 0

Tuples: (node, data, label)

(1, (0.1,0.2), A)
@ [A.B.C] (1. (0.1, 0.5), A)
(1. (0.3, 0.7), B)

(1. (0.3, 0.9). C)

Nodes: (node, feature, split, labels)

(1. . [ABC])



a) Create child nodes

Tuples: (node, data, label)

(1,(0.1,0.2), A)
[A,B,C] (1, (0.1, 0.5), A)
(1, (0.3, 0.7), B)
(1,(0.3,0.9), C)

Nodes: (node, feature, split, labels)
(1, , ,[AB,C])
(2, , I 1)
(3, , I 1)



b) Find splits

Tuples: (node, data, label)

(1,(0.1,0.2), A)
(1, (0.1, 0.5), A)
(1, (0.3,0.7), B)
(1, (0.3, 0.9), C)

Nodes: (node, feature, split, labels)

(1,1,0.2,[A B, C]
(2, , I

)
1)
(3, ., I 1)



c) Assign tuples

Tuples: (node, data, label)

(2, (0.1, 0.2), A)
(2, (0.1, 0.5), A)
(3, (0.3, 0.7), B)
(3, (0.3, 0.9), C)

[A] [C, D]

Nodes: (node, feature, split, labels)

(1,1,0.2,[A,B,C])
(2, , [A 1)
(3, ., [ BCI)



d) Clean

Tuples: (node, data, label)

[A,B,C]

(1, <0.2)

[B, C] Nodes: (node, feature, split, labels)

Label: A (1,1,0.2,[A, B, C])

(2, , [A 1)
(3, ., [ BCI])



a) Create child nodes

Tuples: (node, data, label)

3,0.7), B)
(3, (0.3, 0.9), C)

Nodes: (node, feature, split, labels)

(1,1,0.2,[A,B,C1])

(2, , [A 1)
(3, ., [ BCI])
(6 [

N N



b) Find splits

Tuples: (node, data, label)

Nodes: (node, feature, split, labels)

(1,1,0.2,[A,B,C1])

(2, , ,[A 1)
(3,2,08,[ B,Cl)




c) Assign tuples

Tuples: (node, data, label)

3,0.7), B)
(7, (0.3, 0.9), C)

Nodes: (node, feature, split, labels)
(1,1,02,[A,B,C])

(2, , ,[A 1)
(3,2,08,[ B,Cl)

N N



d) Clean

Tuples: (node, data, label)

Nodes: (node, feature, split, labels)

(1,1,0.2,[A,B,C1])

(2, , ,[A 1)
(3,2,08,[ B,Cl)

Label: C Label: D (6, , ,[ B

N N



Delta Iterations

0) Create first node
1) Sample features
2) Assign to node 0
3) lterate
a) Create child nodes
b) Find splits
c) Assign tuples
d) Clean

o Next Workset
Initial (
Workset > Step Function
@
o P Update o
Initial Solution | . Solution Set
SolutionSet | —| get | Iteration Result
» »
Delta Iterate
Work Set: Data and node assignment
[(node, data, label)]
Solution Set:  Nodes

[(id, [label, quantity], label)]



Delta Iterations

0) Create first node — 1
1) Sample features

2) Assign to node O} 1
3) lterate

a) Create child nodes
b) Find splits

c) Assign tuples

d) Clean

o Next Workset
Initial (
Workset > Step Function
@
o P Update o
Initial Solution | . Solution Set
SolutionSet | —| get | Iteration Result
» »
Delta Iterate
Work Set: Data and node assignment
[(node, data, label)]
Solution Set:  Nodes

[(id, [label, quantity], label)]



Delta Iterations

0) Create first node — 1 .ot. —— Next Workset
1) Sample features , Workeot ;0 Step Function
2) ASSIgn to nOde O 9“' Solution | So:::':i(:::\t;et o
. SolutionSet | —| get | Iteration Result
3) lterate — Step function _— >
a) Create child nodes |
_ _ 3 Work Set: Data and node assignment
b) Find splits [(node, data, label)]

Solution Set:  Nodes
[(id, [label, quantity], label)]

c) Assign tuples 3
d) Clean



Delta Iterations

0) Create first node — 1 @ —
1) Sample features workset | | | qun runcton
2) Assign to node 0 [~ 1 o [O— o
. Initial olution | Solution Set
3) Iterate — Step fu nctlon Solution Set _:s s:t D lteration Result
a) Create child nodes DA
b) Flnd SpIItS 3 Work Set: Data and node assignment

. [(node, data, label)]
c) Assign tuples

d) Clean 3 Solution Set:  Nodes
[(id, [label, quantity], label)]

4) If empty work set — 4



How to actually find Splits?

Using Gini Index selection (splitting) measure
The Gini index considers a binary split for each attribute

It forces any tree to be binary



What are possible Splits?

Assume <, =, > are applicable on each attribute/feature
— K-1 possible splits (K distinct values in feature set)

[/007’0171)27 . '7’UK]
Vi < Vi+1



What are possible Splits?

For discrete categorizable data: oy il
S,

2"N - 2

2"N: all possible combinations
2: the full and the empty sets



What is a good Split?

e 3 common measures

e All based on heuristic arguments
o Missclassification (Breiman)
o Information Gain (ID.3/C4.5)
o @Gini Impurity (CART)

Best choice of method is not generalizable [5] - we use
Gain for scala- and Gini for stratosphere- version.



Common for all of them

e For each possible 2-split:
o Calc class-distributions
o Derive heuristic measure

e Choose best by measure



Common for all of them

Example:

z,y) € D
Missclassification: @) |

[(Z,y) € D|z, < splitval] [(Z,y) € D|z, > splitval]
Left Class Distribution Right Class Distribution
- I - I
1T || T
R R e R -




Gini Index

The gini for the whole data
Gini(D) =1 — 2 P,
Gini for each possible split :

Giniy (D) = MGim'(z)l) + @Gini(z)z).

|D| D

Gini for each attribute

AGini(A) = Gini(D) — Ginia (D).



Example

RID age income | student credit_rating Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middle_aged | high no fair yes
4 senior medium | no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7  middle-aged | low yes excellent yes
8 youth medium | no fair no
9 youth low yes fair yes

10 senior medium | yes fair yes

11 youth medium | yes excellent yes

12 middle_aged | medium | no excellent yes

13 middle_aged | high yes fair yes

14 senior medium | no excellent no

Gini(D) =1 —

Gini(D) =1— E

Ms

pi

%) - (—)2 = 0.459.

[
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Example

m

RID age income | student credit_rating Class: buys_computer Gini(D) =1 - lez ’

1 youth high no fair no B 9 2

2 youth high no excellent no Gini(D) =1 — (_4) - (_) = 0.459.

3 middle_aged | high no fair yes

4 senior medium | no fair yes Possible Sp“tSZ

5 i 1 fai . . . .

semior oW yes ar yes {low, medium}, {low, high}, {medium, high},

6 senior low yes excellent no | Ji hiah

7  middle-aged | low yes excellent yes {low}, {medium}, {high},

8 youth medium | no fair no | | | 2|

9  youth low yes fair yes Ginig (D) = |Dl| Gini(Dy) + —— D| Gini(D3).

10 senior medium | yes fair yes

11 youth medium | yes excellent yes Gintjy ome < {low,medium} (D)

12 middle_aged | medium | no excellent yes _ 10 Gini(D1) + — 4 Gini(D2)

13 middle_aged | high yes fair yes 14 14
10 6\> [4\% 4 1\* /3\?

14  senior medium | no excellent no ——(1=-(=) == +—l1=(=) =(=
14 10 10 14 4 4

=0.450

= Gini;

income < {htgh}( )-



Example
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Example

RID age income  student credit_rating Class: buys_computer Overall Gini index for all attributes:

1 youth high no fair no {age} with {youth, senior} = 0.375

2 youth high no excellent no {income} with {medium, high} = 0.300
3 middle_aged high no fair yes {student} =0.367

4 senior medium no fair yes {credit rating} = 0.429

5 senior low yes fair yes -

6 senior low yes excellent no 9\2 512

7  middleaged low yes excellent yes Gini(D) =1- (E) - (E) = 0.459.
8 youth medium no fair no

9 youth low  yes  fair yes AGini(A) = Gini(D) — Ginia(D).
10 senior medium  yes fair yes

11 youth medium  yes excellent yes Gini impurity (splitting criterion):

12 middle.aged medium no excellent yes ) )

13 middleaged high s fair Jes {age} with {youth, senior} = 0.084

14 senior medium no excellent no {income} with {medium’ high} =0.159

{student} = 0.092
{credit_rating} = 0.03



Splits In
Stratosphere

For each Delta-lteration (Tree-Layer):

calc local histograms for each node ->

combine local histograms ->

group by (node, dim) ->

based on histograms, locally calc Gini-ldx for every possible Split and find
best split for (node, dim)

aggregate best dim-splits to find best splits of each (node)

e Yyield the best Splits



Problem?

Yes! Too many distinct values to hold histograms in
memory

Solution: somehow reduce the # of distinct values / number
of possible Splits



Optimization for Gini-Index (1)

try to reduce number of possible splits with global pre-
sorting

’Uo,’Ul,’Ug,...,’UK] Up, y U2,U3,. ..,Uk,

Vi < Vi41 Vi < Vi41
C = {red, ,blue ...}



Optimization for Gini-Index (2)

based on MLib implementation of DecisionTrees [6,7]:

e infer possibly adequate quantization-intervals using
downsampling
e use the intervals to bin values

— We will give this variant a shot
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