
Hierarchical
Agglomerative Clustering

Sebastian Kunert, Bastian Köcher,
Sascha Wolke, Tobias Brandt

Algorithm

● Clustering of datapoints
● agglomerative = each datapoint starts in a

cluster
● each iteration, the two nearest clusters are

merged

Algorithm (2)

● Input:
Datapoints,
distance metric

● Output:
History of cluster
merges

Stratosphere Implementation

1. Compute initial distances (similarities)
between all clusters

2. Find minimum distance
3. Merge clusterpair with minimum distance
4. Jump back to step 2 until required number of

clusters is reached

Initial Similarity Computation
● Bag-of-Words dataset: docId wordId count
● Similarity Metric1:

○ words that appear only in one document are ignored
○ words that appear often in both are weighted heavily

1http://www.umiacs.umd.edu/~jimmylin/publications/Elsayed_etal_ACL2008_short.pdf

Initial Similarity Computation (2)

Iteration

Iteration

Iteration

Scalability of HAC

● overall scalability is not great
● computation of similarity takes a while

○ we only use the upper triangle: pairs
○ number of pairs rises exponentially with documents
○ but is done only once at initialization phase

● in each iteration we have to find the
minimum/maximum similarity
→ ungrouped reduce

Spark Implementation - Initialization
 // docID, termID, term count

 val docTermCounts = sc.textFile(inputFile).map(line => {...})

 // initialize documents with cluster id = document id as (clusterID, docID) tuples

 var documents = docTermCounts.map(_.docID).distinct.map(docID => (docID, docID))

 // calculate similarity matrix with ((firstDocID, secondDocID), similarity) tuples

 val termCount = docTermCounts.map(dtc => (dtc.termID, (dtc.docID, dtc.count))).groupByKey()

 var similarities = termCount.flatMap { case (termID, counts) =>

 counts.flatMap { case (leftClusterID, leftTermCount) =>

 counts.flatMap { case (rightClusterID, rightTermCount) =>

 if (leftClusterID < rightClusterID)

 Some((leftClusterID, rightClusterID), leftTermCount*rightTermCount)

 else

 None

 }

 }

 }.reduceByKey(_+_)

Works like a cross

Only process one triangle

Spark Implementation - Iteration
 for(i <- 1 to iterationCount) {

 // similarity: ((cluster1, cluster2), similarity) tuples

 val clusterToMerge = similarities.reduce((a,b) => if (a._2 > b._2) a else b)

 // extract cluster id’s

 val (removedClusterID, mergedClusterID) = clusterToMerge._1

 // move documents into new clusters

 documents = documents.map { case(clusterID, docID) =>

 if (clusterID == removedClusterID)

 (mergedClusterID, docID)

 else

 (clusterID, docID)

 }

 // ...

 }}

Spark Implementation - Iteration
 for(i <- 1 to iterationCount) {

 // …

 similarities = similarities.flatMap { case ((firstClusterID, secondClusterID), similarity) =>

 if (firstClusterID == removedClusterID && secondClusterID == mergedClusterID) {

 None

 } else if (firstClusterID == removedClusterID) {

 if (mergedClusterID < secondClusterID)

 Some((mergedClusterID, secondClusterID), similarity)

 else

 Some((secondClusterID, mergedClusterID), similarity)

 } else if (secondClusterID == removedClusterID) {

 if (firstClusterID < mergedClusterID)

 Some((firstClusterID, mergedClusterID), similarity)

 else

 Some((mergedClusterID, firstClusterID), similarity)

 } else

 Some((firstClusterID, secondClusterID), similarity)

 }.reduceByKey(math.max)

 }}

Drop pair

Replace removed
cluster ID with
cluster1’ < cluster2’

Don’t change pair

Status

● stratosphere implementation (done)
● spark implementation scala (done)
● spark implementation java (done)
● stratosphere on cluster (done for small data

set)
● spark on cluster (tbd)

HAC on Cluster

● dataset: nytimes, 2000 documents, 2.4mb

Problems during development

1. HAC is not meant for parallel execution
2. Bugs in stratosphere
3. Missing features in stratosphere

Bugs
● [922] coGroup on solutionset lead to a NullPointerException
● [940] Missing exception lead to incorrect usage of a coGroup in a

Deltaiteration
● [941] Deadlock after using bigger dataset
● [1000] Job failed after some time because of an

IndexOutOfBoundException

● Also added 2 ideas to simplify the usage of stratosphere

Future Improvements
● merge multiple clusters in one iteration

● move away more from the standard algorithm, more approximation

● more spark tests and optimizations on cluster -> was not finished due to
time limitations

Questions?

Thank you for your attention!

