K-Means++ Clustering Algorithm Introduction

Yuwen Chen Mingliang Qi Mingyuan Wu

29.04.2014

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means Algorithm Problem

K-Means++ Motivation Algorithm Example Comparison Problems K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means Algorithm

Data: a set of observations $\mathcal{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \subset \mathbb{R}^d$, number of clusters k, Convergence Delta ξ **Result**: a set of clusters $\mathcal{C} = {C_1, C_2, \dots, C_k}$

Initialization:

select uniformly k data points $C = {c_1, c_2, ..., c_n}$ as the centroids of clusters

Compute:

repeat

Form *k* clusters by assigning each point to its closest centroid;

Recompute the center of each cluster; until $\Delta C < \xi$;

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means ||

K-Means Algorithm Problem

C-Means++ Motivation Algorithm Example Comparisor Problems K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

Problem: Poor Initial Centroids

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

Problem

Problem: Poor Initial Centroids

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□▼ ● ●

Problem: Poor Initial Centroids

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means Algorithm Problem

K-Means++ Motivation Algorithm

Example Comparisor Problems K-Means

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means+-

Motivation

Algorithm Example Comparison Problems K-Means

Motivation: Better Seeding

 Increased accuracy Potential to obtain smaller SSE (i.e. BETTER Result)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 目目 ● の ()

Faster Convergence

Terminates faster than poor initialized K-means

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation

Algorithm Example Comparison Problems K-Means||

K-Means Algorithm Problem

K-Means++ Motivation Algorithm Example Comparison Problems K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means

K-Means++ Algorithm

Data: a set of observations $\mathcal{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \subset \mathbb{R}^d$, number of clusters k, Convergence Delta ξ **Result**: a set of clusters $\mathcal{C} = {C_1, C_2, \dots, C_k}$ **Target Function**: $\phi = \min \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} D(\mathbf{x})^2$

Initialization:

Take a centroid \mathbf{c}_1 , chosen uniformly at random from \mathcal{X} repeat Take a new center \mathbf{c}_i , choosing $\mathbf{x} \in \mathcal{X}$ with

probability $\frac{D(\mathbf{x})^2}{\sum_{\mathbf{x}\in\mathcal{X}}D(\mathbf{x})^2}$ until k centroids generated ;

Compute:

Proceed as with the standard k-means algorithm

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

<ロト 4回ト 4回ト 4回ト 4回ト 900</p>

K-Means Algorithm Problem

K-Means++

Motivation Algorithm

Example

Comparison Problems K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm **Example** Comparison Problems K-Means

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

Example

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

Example

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

Example

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

Example

K-Means Algorithm Problem

K-Means++

Motivation Algorithm Example

Comparison

Problems K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example

Comparison

Problems K-Means||

Comparison of Time & Space Complexity

- n number of data points
- d dimension
- k number of target clusters
- I number of iterations

	k-means	k-means++
Time Complexity	O(lknd)	O(knd) + O(lknd)
Space Complexity	O((n+k)d)	O((n+k)d)

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems

Comparison of Experimental Results

$$\phi$$
 - min $\sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathcal{C}_i} D(\mathbf{x})^2$

T - Execution Time

	Average ϕ		Minimum ϕ		Average T	
k	k-means	k-means++	k-means	k-means++	k-means	k-means++
10	7553.5	6151.2	6139.45	5631.99	0.12	0.05
25	3626.1	2064.9	2568.2	1988.76	0.19	0.09
50	2004.2	1133.7	1344	1088	0.27	0.17

Figure: Experimental Results with data set n = 1024, d = 10 [2]

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example

Comparison

⊃roblems ≺-Means∥

K-Means Algorithn Problem

K-Means++

Motivation Algorithm Example Comparison **Problems** K-Means

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison **Problems** K-Means||

Existing Problems

Scalability

O(knd) + O(lknd)

extra k iterations over all data points recompute distance distribution in each iteration

Confusion From Outliers

```
Outliers get chosen more easily \downarrow
Converges slower
```

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison **Problems** K-Meansll

K-Means Algorithn Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means||: Improvement of K-Means++

pick more than one centroid **independently** in each round with a larger probability

- Reduce the number of iterations
- Less computation cost of Distance distribution
- Cover more data points

 \downarrow

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means

きょう きょう きょう きょう きょう

K-Means || Algorithm

Data: a set of observations $\mathcal{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \subset \mathbb{R}^d$, number of clusters k, Convergence Delta ξ , Oversampling Factor f, number of iterations R

Result: a set of clusters $C = \{C_1, C_2, \dots, C_k\}$

Initialization:

Take a centroid c_1 , chosen uniformly at random from \mathcal{X} for *R* rounds do

Sample each data point independently with probability $f \frac{D(\mathbf{x})^2}{\sum_{\mathbf{x} \in \mathcal{X}} D(\mathbf{x})^2}$

Add all sampled points to $\ensuremath{\mathcal{C}}$

end

Recompute C to k clusters, use the centroid of each cluster as the initial centroid for k-means

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□≥ ◇◇◇

Compute:

Proceed as with the standard k-means algorithm

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Means

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means||

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

K-Means||

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

K-Means||

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

K-Means||

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

K-Means||

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

K-Means||

K-Means++ Clustering

Yuwen Chen. Mingliang Qi, Mingyuan Wu

K-Means||

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

K-Mean

Algorithm Problem

K-Means++

Motivation Algorithm Example Comparison Problems K-Means

Thank You

For Further Reading I

- Kumar, Vipin, Pang-Ning Tan, and Michael Steinbach. "Cluster analysis: basic concepts and algorithms." Introduction to data mining (2006): 487-586.
- Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 2007.
- Bahmani, Bahman, et al. "Scalable k-means++." Proceedings of the VLDB Endowment 5.7 (2012): 622-633.

K-Means++ Clustering

Yuwen Chen, Mingliang Qi, Mingyuan Wu

Appendix

For Further Reading