Skip to content

TalhaAlvi1/Encryption-and-Decryption-Using-RSA-Algorithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

Objective

RSA is a widely used public-key cryptographic algorithm that relies on mathematical properties of prime numbers and modular arithmetic.

Algorithm

Key Generation:

1.Choose two large prime numbers, ppp and qqq.

2.Compute n=p×qn = p \times qn=p×q. This will be part of the public and private keys.

3.Calculate ϕ(n)=(p−1)×(q−1)\phi(n) = (p-1) \times (q-1)ϕ(n)=(p−1)×(q−1), where ϕ(n)\phi(n)ϕ(n) is Euler's totient function.

4.Choose an encryption key eee such that 1<e<ϕ(n)1 < e < \phi(n)1<e<ϕ(n) and eee is coprime with ϕ(n)\phi(n)ϕ(n).

5.Calculate the decryption key ddd such that d×e≡1 (mod ϕ(n))d \times e \equiv 1 \ (\text{mod} \ \phi(n))d×e≡1 (mod ϕ(n)). This ensures ddd is the modular multiplicative inverse of eee.

Encryption:

1.Convert the plaintext into numerical form.

2.Compute the ciphertext c≡me (mod n)c \equiv m^e \ (\text{mod} \ n)c≡me (mod n), where mmm is the numerical form of the plaintext.

Decryption:

1.Compute the plaintext m≡cd (mod n)m \equiv c^d \ (\text{mod} \ n)m≡cd (mod n), where ccc is the ciphertext.

Explanation

1.Key Generation: Uses two prime numbers ppp and qqq to generate public and private keys.

2.Encryption: Applies the RSA encryption formula c≡me (mod n)c \equiv m^e \ (\text{mod} \ n)c≡me (mod n), where mmm is the plaintext.

3.Decryption: Reverts ciphertext to plaintext using m≡cd (mod n)m \equiv c^d \ (\text{mod} \ n)m≡cd (mod n), ensuring only the private key holder can decrypt the message

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages