
Feat 103: Acting bot users 1

Feat 103: Acting bot users
Issue: https://github.com/Team-TAU/tau/issues/103

Tables
New table to support this. Can be ChatUser for table chat_users or BotUser :

bot_users as model BotUser

access_token : String

refresh_token : String

username : String

user_id : String or Number

Bot Authentication
Expose an additional Twitch callback endpoint /twitch-bot-callback with handler def
process_twitch_bot_callback_view .

Endpoint to copy: https://github.com/Team-TAU/tau/blob/main/tau/urls.py#L81

Handler to copy: https://github.com/Team-TAU/tau/blob/main/tau/core/views.py#L256-L259

Changes to above mentioned functionality:

Instead of Constance use a model backed by the table bot_users , i.e. BotUser to be able to perform an
operation as follows to save data received from the Twitch callback success:

BotUser.create!(
 access_token: request[:access_token],
 refresh_token: request[:refresh_token],
 username: request[:username],
 user_id: request[:user_id]
)

Developers can express intent to perform actions on behalf of their bot by providing an extra header, e.g.
x-tau-on-behalf-of: techydrrroid alongside their existing Authorization: Token {token} header.

Using bot actors for Twitch passthrough endpoints
A method can be used before evaluating which user to perform an action on behalf of:

https://github.com/Team-TAU/tau/issues/103
https://github.com/Team-TAU/tau/blob/main/tau/urls.py#L81
https://github.com/Team-TAU/tau/blob/main/tau/core/views.py#L256-L259

Feat 103: Acting bot users 2

def my_helix_passthrough_handler
 if not request.user.is_authenticated:
 return JsonResponse({'error': 'You must be logged into access this endpoint.'})

 actor_user = get_bot_user_from_request(request) || request.user
 # Alternatively some kind of middleware that can evaluate request.user based on the auth token plus tau header

 TwitchClient.get('/path/to/whatever', headers: {
 'Authentication': "Bearer #{actor_user.token}"
 })

Before performing actions, if we have a bot user, we can use that user’s token instead. We can check the
headers and use the x-tau-on-behalf-of header as a secondary criteria.

def get_bot_user_from_request(request)
 raise Unauthorized unless request.user.is_authenticated
 return nil unless request[:headers]['x-tau-on-behalf-of'].present?

 bot_username = request[:headers]['x-tau-on-behalf-of']
 bot_user = BotUser.find_by(username: bot_username)

 raise NotFound unless bot_user.present?

 return bot_user
end

Notes:

header acts as secondary criteria combined with existing auth checks

if no bot found for the TAU header, throw because you should only try to make requests for bots that
are authorized (rather than fallback to your own user)

Using bot actors for IRC
TBD (I’m not familiar with the IRC protocols)

