
Feature: EventSub forwarding 1

📩
Feature: EventSub forwarding

Summary
As a TAU user, it would be great if I could add a webhook URL into a dashboard to
forward specific webhooks I’m subscribed to.

Github URL:

Why is this useful
This feature would be useful in the following cases:

Web sockets is not possible

Devs want to leverage always-on, cost-saving infrastructure like cloud functions to
handle events

Cloudflare Workers, Vercel, Netlify, etc. allow you to deploy cloud functions for
cheap or free

Summary
Why is this useful
Design
Data Modelling
Auth
On New Event
Flow

Feature: EventSub forwarding 2

Design
It could be added to the current Event Subscriptions section as a “Forward” button.

The Forward button could pop open a modal:

Feature: EventSub forwarding 3

The modal could contain:

Field to Add a new URL

A list of URLs for that subscription, with a delete button

Data Modelling
Assuming the table where we store the canonical reference to the webhooks is
twitch_twitcheventsubsubscription , we can create a separate table that references this

Feature: EventSub forwarding 4

with a foreign key.

❗ Note: It looks like the Event Subscriptions data is partially dynamic from
Twitch so an alternative solution may be required.

A new table, e.g. event_forwarding could be added, where we reference
twitch_twitcheventsubsubscription.id as the foreign key to the event, and a new field url
as the URL to forward to:

event_id → UUID (foreign key to the existing local events table, e.g.
twitch_twitcheventsubsubscription.id)

url → URL to post to

Auth
Endpoints need to trust a webhook event from TAU and should verify. We can do this
with JWT verification where the user auth token is the secret used for signature
verification.

tau_header = JWT.encode(
 { service: 'tau' }, # the contents of this token data is not important
 secret: EnvironmentVariables.get("user_auth_token")
)

On New Event
When a new event is received from Twitch, TAU could go through all the events. For
example, in pseudo-code/ActiveRecord-like syntax:

triggered_event would be the local webhook event stored in the TAU DB

forwarding_urls = EventForwarding.where(event_id: triggered_event.id)

forwarding_urls.each do |url|
 RestClient.post(url,

Feature: EventSub forwarding 5

 data: triggered_event.event_data,
 headers: {
 "X-Tau-Token": tau_header # see Auth above
 }
)
end

The consumer, e.g. a cloud function, would also have the auth token stored in an
environment variable, and would do signature verification on the provided token:

const tauToken = request.headers['X-Tau-Token']
if (!tauToken) {
 return res.status(401).json({ error: 'unauthorized' })
}

try {
 const tokenData = jwt.verify(tauToken, { secret: process.env.TAU_USER_TOKEN })
 // at this point, tokenData.service should be "tau"

 // Do whatever needs to be done with this event
 console.log('event forwarded from TAU', request.body)

} catch (e) {
 // check the type of exception
 return res.status(401).json({ error: 'unauthorized' })
}

Flow
1. TAU receives an event from Twitch

2. TAU queries the new event_forwarding table to find all forwarding URLs for the
specific event

3. TAU iterates through each event in order to forward the event

a. TAU creates a JWT token signed with the user auth token and puts it in a
custom header, e.g. X-Tau-Token

b. TAU makes a post request with the data to the URL and includes the JWT token

4. The registered URL receives the request, e.g. a cloud function.

Feature: EventSub forwarding 6

5. The cloud function verifies the request is authentic from TAU by using the user auth
token it has stored in its environment variables to do a JWT signature verification on
the header.

6. The cloud function can now safely use the data that was forwarded

