

Tutorial:

MongoDB and MongoDB

integration with Java
(MongoDB Java driver and Spring Data for MongoDB)

Revisions:

First Edition 10.11.2017

Table of Contents
About the tutorial ... 4

Mongo DB Overview ... 4

General information .. 4

Layers of data ... 4

Key Features ... 5

Getting started with MongoDB ... 5

The packages of MongoDB ... 5

Installation ... 6

Amazon Linux 64bit ... 6

Service Management and Monitoring .. 6

Integration with Java ... 6

Direct mode – Working with the Java Driver ... 6

Download ... 6

Maven .. 6

Gradle... 6

Connecting the MongoDB ... 7

Creating/Getting a DB .. 7

Getting a Collection ... 7

Creating a Document and Saving It in a Collection ... 7

Convert Domain Object into a DBObject Design Pattern ... 8

Querying... 8

Retrieving a Document ... 8

Query Operators .. 9

Geolocation Querying ... 10

Creating 2dsphare index .. 10

Querying for Locations Near a GeoJSON Point.. 10

Querying Subdocuments ... 10

Updating Values ... 11

Updating Multiple Documents ... 11

Update-or-Insert .. 11

Remove .. 11

Indexes ... 11

Abstract mode – Working with Spring Data MongoDB ... 12

General .. 12

Layers ... 12

Download ... 14

Maven .. 14

Gradle... 14

Querying... 14

1. Defining Repository Interface 14

2. Defining Query Methods 15

3. Setup Spring to

create proxy instances for those interfaces. 16

4. Get the repository instance

injected and use it. 17

Custom Querying ... 17

1. Define a Custom Interface 17

2. Implement Your Method 17

3. Let

your standard repository interface extend the custom one 17

4. Configuration .. 18

Query Methods Operators .. 18

Querying Geolocation Data ... 19

Usage Example .. 20

Available Annotations ... 21

About the tutorial
The tutorial is a combined collection of articles, examples and other published posts found

on the web while trying to understand the DB architecture and the integration of the DB

with the Java programming language. The tutorial contains material (mostly copy-pasted)

about

• MongoDB

• MongoDB Java driver

• Spring Data MongoDB.

The tutorial covers the core ideas of the above issues alongside practical information

relevant to our interests (e.g handling geolocation data, installing on Amazon Linux

platform…)

Mongo DB Overview

General information
MongoDB is a free and open-source cross-platform document-oriented database program.

Classified as a NoSQL database program, MongoDB uses JSON-like documents with schemas.

MongoDB is developed by MongoDB Inc., and is published under a combination of the GNU

Affero General Public License and the Apache License.

Layers of data
• First layer – database: the database is spread out among several files and holds as a

physical container for collections.

• Second layer - collection: Collection is the equivalent of table in the traditional

RDBMS, but opposed to that it does not enforce a fix schema. Documents within a

collection can have different fields (useful?).

• Third layer - Document: a set of key-value pairs, equivalent of RDBMS' row.

The data is saved in JSON format and documents in the same collection do not need to have

the same structure.

For example, a collection of apartments:

{
 _id: APARTMENT_ID
 author: USER_1
 picture: 'house.jpg'
 price: 1500
 address:
 {
 city: 'HAIFA',
 street: 'TRUMPELDOR'
 number: 10
 }
 description: 'looking for another friendly roommate for the best
apartment in town!'
 likes: 2
 tags: [AIR_CONDITION, NO_SMOKING, NO_PETS]
 comments: [
 {
 User: USER_2
 Message: 'how far is it from the closest market?'
 },
 {

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/MongoDB_Inc.
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://en.wikipedia.org/wiki/Apache_License

 User: USER_1,
 Message: '2 minutes by foot'
 }
]
}

Key Features
• High Performance - MongoDB provides high performance data persistence. In

particular, Support for embedded data models reduces I/O activity on database

system.Indexes support faster queries and can include keys from embedded

documents and arrays.

• Rich Query Language - MongoDB supports a rich query language to support read and

write operations (CRUD) as well as: Data Aggregation and Text

Search and Geospatial Queries.

• High Availability - MongoDB’s replication facility, called replica set, provides:

automatic failover and data redundancy. A replica set is a group of MongoDB servers

that maintain the same data set, providing redundancy and increasing data

availability.

• Horizontal Scalability - MongoDB provides horizontal scalability as part of

its core functionality: Sharding distributes data across a cluster of machines.

MongoDB 3.4 supports creating zones of data based on the shard key. In a balanced

cluster, MongoDB directs reads and writes covered by a zone only to those shards

inside the zone. See the Zones manual page for more information.

• Support for Multiple Storage Engines: MongoDB supports multiple storage engines,

such as: WiredTiger Storage Engine and MMAPv1 Storage Engine.

Getting started with MongoDB

The packages of MongoDB

Package Name
Description

mongodb-org A metapackage that will automatically install the four

component packages listed below.

mongodb-org-server Contains the mongod daemon and associated configuration

and init scripts. The mongodb-org-server package provides an

initialization script that starts mongod with

the /etc/mongod.conf configuration file.

mongodb-org-mongos Contains the mongos daemon.

mongodb-org-shell Contains the mongo shell.

mongodb-org-tools Contains the following MongoDB

tools: mongoimport bsondump, mongodump, mongoexport, m

https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/manual/text-search/
https://docs.mongodb.com/manual/text-search/
https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/#sharding-introduction
https://docs.mongodb.com/manual/core/zone-sharding/#zone-sharding
https://docs.mongodb.com/manual/reference/glossary/#term-shard-key
https://docs.mongodb.com/manual/core/zone-sharding/#zone-sharding
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos
https://docs.mongodb.com/manual/reference/program/mongo/#bin.mongo
https://docs.mongodb.com/manual/reference/program/mongoimport/#bin.mongoimport
https://docs.mongodb.com/manual/reference/program/bsondump/#bin.bsondump
https://docs.mongodb.com/manual/reference/program/mongodump/#bin.mongodump
https://docs.mongodb.com/manual/reference/program/mongoexport/#bin.mongoexport
https://docs.mongodb.com/manual/reference/program/mongofiles/#bin.mongofiles

ongofiles, mongooplog, mongoperf, mongorestore, mongostat,

and mongotop.

Installation

Amazon Linux 64bit
1. Configure the package management system:

Create a /etc/yum.repos.d/mongodb-org-3.4.repo file so that you can install

MongoDB directly, using yum e.g. for the latest stable release use:

[mongodb-org-3.4]

name=MongoDB Repository

baseurl=https://repo.mongodb.org/yum/amazon/2013.03/mongodb-

org/3.4/x86_64/

gpgcheck=1

enabled=1

gpgkey=https://www.mongodb.org/static/pgp/server-3.4.asc

2. Install the packages and associated tools:

sudo yum install -y mongodb-org

Service Management and Monitoring
Description Command/Action

Start/stop/restart the mongod service. sudo service mongod start/stop/restart

verify that the mongod process has
started successfully.

check the contents of the log file
at /var/log/mongodb/mongod.log

Ensure that MongoDB will start
following a system reboot.

sudo chkconfig mongod on

Integration with Java

Direct mode – Working with the Java Driver

Download

Maven

<dependencies>

<dependency>

<groupId>org.mongodb</groupId>

<artifactId>mongodb-driver</artifactId> <version>3.5.0</version>

</dependency>

</dependencies>

Gradle

dependencies { compile 'org.mongodb:mongodb-driver:3.5.0' }

https://docs.mongodb.com/manual/reference/program/mongofiles/#bin.mongofiles
https://docs.mongodb.com/manual/reference/program/mongooplog/#bin.mongooplog
https://docs.mongodb.com/manual/reference/program/mongoperf/#bin.mongoperf
https://docs.mongodb.com/manual/reference/program/mongorestore/#bin.mongorestore
https://docs.mongodb.com/manual/reference/program/mongostat/#bin.mongostat
https://docs.mongodb.com/manual/reference/program/mongotop/#bin.mongotop
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod

Connecting the MongoDB
MongoClient mongoClient = new MongoClient(new MongoClientURI("mongodb://localhost:27017"))

If you’re connecting to a local instance on the default port, you can simply use:

MongoClient mongoClient = new MongoClient();

Note! it is important to limit the number of MongoClient instances in your application,

hence we suggest a singleton. Using a single MongoClient (and optionally configuring its

settings) will allow the driver to correctly manage your connections to the server.

This MongoClient singleton is safe to be used by multiple threads.

One final thing you need to be aware of: you want your application to shut down the

connections to MongoDB when it finishes running. Always make sure your application or

web server calls MongoClient.close() when it shuts down.

Creating/Getting a DB
Creating and getting a database or collection is extremely easy in MongoDB:

DB database = mongoClient.getDB("TheDatabaseName");

 If the database doesn’t already exist, it will be created automatically the first time you insert

anything into it, so there’s no need for null checks or exception handling on the off-chance

the database doesn’t exist.

Getting a Collection
Getting the collection you want from the database is simple too:

DBCollection collection = database.getCollection("TheCollectionName");

Creating a Document and Saving It in a Collection
DBObject person = new BasicDBObject("_id", "jo").append("name", "Jo Bloggs")

 .append("address", new BasicDBObject("street", "123 Fake St")

.append("city", "Faketon")

.append("state", "MA")

.append("zip", 12345))

.append("books", books);

At this point, it’s really easy to save it into your database:

MongoClient mongoClient = new MongoClient();

DB database = mongoClient.getDB("Examples");

DBCollection collection = database.getCollection("people");

http://api.mongodb.org/java/2.12/com/mongodb/MongoClientOptions.Builder.html
http://api.mongodb.org/java/2.12/com/mongodb/MongoClientOptions.Builder.html
http://docs.mongodb.org/ecosystem/drivers/java-concurrency/

collection.insert(person);

Will result with the following doc:

{
 "_id" : "jo",
 "name" : "Jo Bloggs",
 "age": 34,
 "address" : {
 "street" : "123 Fake St",
 "city" : "Faketon",
 "state" : "MA",
 "zip" : "12345"
 },
 "books" : [
 27464,
 747854
]
}

Convert Domain Object into a DBObject Design Pattern
you can see the similarities between the Document that’s stored in MongoDB, and your

domain object. In your code, that person would probably be a Person class, with simple

primitive fields, an array field, and an Address field.

So rather than building your DBObject manually like the above example, you’re more likely

to be converting your domain object into a DBObject. It’s best not to have the MongoDB-

specific DBObject class in your domain objects, so you might want to create a PersonAdaptor

that converts your Person domain object to a DBObject:

Public static final DBObject toDBObject(Person person){

return new BasicDBObject("_id", person.getId()).append("name", person.getName())

.append("address", new BasicDBObject("street", person.getAddress().getStreet())

.append("city",person.getAddress().getTown())

.append("phone", person.getAddress().getPhone()))

.append("books", person.getBookIds());

{

Querying

Retrieving a Document

using SQL to ing to bey the fact that MongoDB is a document database that we’re not goB

query. Instead, we query by example, building up a document that looks like the document

we’re looking for. So, if we wanted to look for the person we saved into the database, “Jo

Bloggs”, we remember that the _id field had the value of “jo”, and we create a document

that matches this shape:

DBObject query = new BasicDBObject("_id", "jo");

DBCursor cursor = collection.find(query);

the find method returns a cursor for the results. Since _id needs to be unique, we know that

if we look for a document with this ID, we will find only one document, and it will be the one

we want:

DBObject jo = cursor.one();

If we wanted to look at the fields of the document we got back from the database, we can

get them with:

(String)cursor.one().get("name");

Note that you’ll need to cast the value to a String, as the compiler only knows that it’s

an Object.

Find documents by a not unique field –

DBCursor results = collection.find(new BasicDBObject("name", "The name I want to find"));

And than we can iterate over the results with a for loop: for (DBObject result : results).

passing a second parameter into the find method that’s another DBObject defining the fields

you want to return.

DBCursor results = collection.find(new BasicDBObject("name", "SomeName"), new

BasicDBObject("name", 1));

You can also use this method to exclude fields from the results:

DBCursor results = collection.find(new BasicDBObject("name", "SomeName"), new

BasicDBObject("name", 0));

Query Operators

Numeric greater than operator:

DBCursor results = collection.find(new BasicDBObject("numberOfOrders", new

BasicDBObject("$gt", 10)));

Available operators (examples):

Name Description

$eq Matches values that are equal to a

specified value.

$gt

Matches values that are greater than a

specified value.

$gte Matches values that are greater than or

equal to a specified value.

$in Matches any of the values specified in an

array.

$lt Matches values that are less than a

specified value.

$lte

Matches values that are less than a

specified value.

$ne Matches all values that are not equal to a

specified value.

$nin Matches none of the values specified in an

array.

Full list can be found here: https://docs.mongodb.com/manual/reference/operator/query/

Geolocation Querying

To support geospatial queries, MongoDB provides various geospatial indexes as well

as geospatial query operators (documented in the list above).

Creating 2dsphare index

To create a 2dsphere index, use the Indexes.geo2dsphere helper to create a specification for

the 2dsphere index and pass to MongoCollection.createIndex() method.

The following example creates a 2dsphere index on the "contact.location" field for

the restaurantscollection.

MongoCollection<Document> collection = database.getCollection("restaurants");

collection.createIndex(Indexes.geo2dsphere("contact.location"));

Querying for Locations Near a GeoJSON Point

MongoDB provides various geospatial query operators. To facilitate the creation of

geospatial queries filters, the Java driver provides the Filters class and

the com.mongodb.client.model.geojsonpackage.

The following example returns documents that are at least 1000 meters from and at most

5000 meters from the specified GeoJSON point com.mongodb.client.model.geojson.Point,

sorted from nearest to farthest:

Point refPoint = new Point(new Position(-73.9667, 40.78));

collection.find(Filters.near("contact.location", refPoint, 5000.0, 1000.0)).forEach(printBlock);

Querying Subdocuments

we might want to query for values in a subdocument - for example, with our person

document, we might want to find everyone who lives in the same city. We can use dot

notation like this:

DBObject findLondoners = new DBObject("address.city", "London");

collection.find(findLondoners));

https://docs.mongodb.com/manual/reference/operator/query/
http://docs.mongodb.org/manual/reference/operator/query-geospatial/
http://docs.mongodb.org/manual/core/2dsphere
http://mongodb.github.io/mongo-java-driver/3.4/javadoc?com/mongodb/client/model/Indexes.html#geo2dsphere-java.lang.String...-
http://mongodb.github.io/mongo-java-driver/3.4/javadoc?com/mongodb/client/MongoCollection.html#createIndex-org.bson.conversions.Bson-
http://mongodb.github.io/mongo-java-driver/3.4/javadoc?reference/operator/query-geospatial.html
http://mongodb.github.io/mongo-java-driver/3.4/javadoc?com/mongodb/client/model/Filters.html
http://docs.mongodb.org/manual/reference/method/db.collection.find/#query-subdocuments
http://docs.mongodb.org/manual/core/document/#document-dot-notation
http://docs.mongodb.org/manual/core/document/#document-dot-notation

Updating Values

Firstly, by default only the first document that matches the query criteria is updated.

Secondly, if you pass in a document as the value to update to, this new document will

replace the whole existing document.

DBObject jo = …// get the document representing jo

jo.put("name", "Jo In Disguise"); // replace the old name with the new one

collection.update(new BasicDBObject("_id", "jo"), // find jo by ID jo); // set the document in

the DB to the new document for Jo

But sometimes you won’t have the whole document to replace the old one, sometimes you

just want to update a single field in whichever document matched your criteria.

Let’s imagine that we only want to change Jo’s phone number, and we don’t have

a DBObject with all of Jo’s details but we do have the ID of the document. If we use

the $set operator, we’ll replace only the field we want to change:

collection.update(new BasicDBObject("_id", "jo"), new BasicDBObject("$set", new

BasicDBObject("phone", "5559874321")));

Updating Multiple Documents

As I mentioned earlier, by default the update operation updates the first document it finds

and no more. You can, however, set the multi flag on update to update everything.

collection.update(new BasicDBObject(), new BasicDBObject("$set", new

BasicDBObject("country", "UK")), false, true);

The query parameter is an empty document which finds everything; the second boolean (set

to true) is the flag that says to update all the values which were found.

Update-or-Insert

This will search for a document matching the criteria and either: update it if it’s there; or

insert it into the database if it wasn’t.

collection.update(query, personDocument, true, false);

Remove

you pass a document that represents your selection criteria into the remove method. So, if

we wanted to delete jo from our database, we’d do:

collection.remove(new BasicDBObject("_id", "jo"));

Unlike update, if the query matches more than one document, all those documents will be

deleted

Indexes

We can programmatically create indexes via the Java driver, using createIndexes. For

example:

collection.createIndex(new BasicDBObject("fieldToIndex", 1));

http://docs.mongodb.org/manual/reference/operator/update/set/

Abstract mode – Working with Spring Data MongoDB

General
Spring Data is a high level SpringSource project whose purpose is to unify and ease the

access to different kinds of persistence stores, both relational database systems and NoSQL

data stores. Spring Data provides generic interfaces (CrudRepository,

PagingAndSortingRepository) for the aspects of: CRUD (Create-Read-Update-Delete)

operations on single domain objects, finder methods, sorting and pagination. Spring Data

MongoDB comes with tons of features for the Java developers working with MongoDB:

database and collection management, lightweight object-document mapping, and dynamic

repositories are some of these features.

rsLaye

• MongoDB – the MongoDB itself

• MongoDB Java Driver – the official Java Driver of MongoDB (the one discussed in the

previous part of the tutorial).

Spring Data MongoDB

Spring Data MongoDB

 MongoRepository

MongoTemplate

Mongo Java Driver

MongoDB

CrudRepository

PagingAndSortingRepository

Spring Data

http://www.springsource.org/spring-data/mongodb
http://www.springsource.org/spring-data/mongodb

• MongoTemplate - A template interface called MongoTemplate is a high-level

abstraction for storing and querying documents and its super interface called

MongoOperations. You will find this approach familiar if you have been using the

JDBC support in the Spring framework. MongoTemplate is the central support class

for Mongo database operations. It provides:

o Basic POJO mapping support to and from BSON

o Convenience methods to interact with the store (insert object, update

objects) and MongoDB specific ones (geo-spatial operations, upserts, map-

reduce etc.)

o Connection affinity callback

o Exception translation into Spring's technology agnostic DAO exception

hierarchy.

• MongoRepository - interface acts as a marker place to capture the document model,

thus, providing a convenient way to derive DB statements directly from the field

name of your documents. To simplify the creation of data repositories Spring Data

MongoDB provides a generic repository programming model. It will automatically

create a repository proxy for you that adds implementations of finder methods you

specify on an interface.

• CrudRepository - The central interface in Spring Data repository abstraction

is Repository. It is typeable to the domain class to manage as well as the id type of

the domain class. Beyond that there's CrudRepository which provides some

sophisticated functionality around CRUD for the entity being managed.

public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {

 T save(T entity);

 T findOne(ID primaryKey);

 Iterable<T> findAll();

 Long count();

 void delete(T entity);

 boolean exists(ID primaryKey);

 // … more functionality omitted.
}

• PagingAndSortingRepository - On top of the CrudRepository there is

a PagingAndSortingRepository abstraction that adds additional methods to ease

paginated access to entities.

public interface PagingAndSortingRepository<T, ID extends Serializable> extends
CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions

}

Download

Maven

<dependencies>

 <dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-mongodb</artifactId>

 <version>2.0.1.RELEASE</version>

 </dependency>

</dependencies><repositories>

 <repository>

 <id>spring-libs-release</id>

 <name>Spring Releases</name>

 <url>https://repo.spring.io/libs-release</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

</repositories>

Gradle

dependencies {

 compile 'org.springframework.data:spring-data-mongodb:2.0.1.RELEASE'

}repositories {

 maven {

 url 'https://repo.spring.io/libs-release'

 }

}

Querying

Next to standard CRUD functionality repositories are usually queries on the underlying
datastore. With Spring Data declaring those queries becomes a four-step process:

1. Defining Repository Interface

Declare an interface extending Repository or one of its sub-interfaces and type it to
the domain class it shall handle.

public interface PersonRepository extends Repository<User, Long> { … }

As a very first step you define a domain class specific repository interface. It's got to

extend Repository and be typed to the domain class and an ID type. If you want to

expose CRUD methods for that domain type, extend CrudRepository instead

of Repository. Usually you will have your repository interface

extend Repository, CrudRepository or PagingAndSortingRepository. If you don't like

extending Spring Data interfaces at all you can also annotate your repository

interface with @RepositoryDefinition. Extending CrudRepository will expose a

complete set of methods to manipulate your entities. If you would rather be

selective about the methods being exposed, simply copy the ones you want to

expose from CrudRepository into your domain repository.

2. Defining Query Methods

Declare query methods on the interface.

List<Person> findByLastname(String lastname);

With Spring Data’s repositories, you need only to write an interface with finder

methods defined according to a given set of conventions (which may vary depending

on the kind of persistence store you are using). Spring Data will provide an

appropriate implementation of that interface at runtime.

The query builder mechanism built into Spring Data repository infrastructure is

useful to build constraining queries over entities of the repository. We will strip the

prefixes findBy, find, readBy, read, getBy as well as get from the method and start

parsing the rest of it. At a very basic level you can define conditions on entity

properties and concatenate them with AND and OR e.g:

List<Person> findByEmailAddressAndLastName(EmailAddress ea, String lastname);

The actual result of parsing that method will of course depend on the persistence

store we create the query for, however, there are some general things to notice. The

expressions are usually property traversals combined with operators that can be

concatenated. As you can see in the example you can combine property expressions

with And and Or. Beyond that you also get support for various operators

like Between, LessThan, GreaterThan, Like for the property expressions. As the

operators supported can vary from datastore to datastore please consult the

according part of the reference documentation.

Property expressions can just refer to a direct property of the managed entity (as

you just saw in the example above). On query creation time we already make sure

that the parsed property is at a property of the managed domain class. However,

you can also define constraints by traversing nested properties. Assume Persons

have Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

will create the property traversal x.address.zipCode. The resolution algorithm starts

with interpreting the entire part (AddressZipCode) as property and checks the

domain class for a property with that name (uncapitalized). If it succeeds it just uses

that. If not it starts splitting up the source at the camel case parts from the right side

into a head and a tail and tries to find the according property,

e.g. AddressZip and Code. If we find a property with that head we take the tail and

continue building the tree down from there. As in our case the first split does not

match we move the split point to the left (Address, ZipCode).

Although this should work for most cases, there might be cases where the algorithm

could select the wrong property. Suppose our Person class has

an addressZip property as well. Then our algorithm would match in the first split

round already and essentially choose the wrong property and finally fail (as the type

of addressZip probably has no code property). To resolve this ambiguity you can

use _ inside your method name to manually define traversal points. So our method

name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

Special parameters –

To hand parameters to your query you simply define method parameters as already

seen in the examples above. Besides that we will recognize certain specific types to

apply pagination and sorting to your queries dynamically.

e.g:

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

The first method allows you to pass a Pageable instance to the query method to

dynamically add paging to your statically defined query. Sorting options are handed

via the Pageable instance too. If you only need sorting, simply add a Sort parameter

to your method. As you also can see, simply returning a List is possible as well. We

will then not retrieve the additional metadata required to build the

actual Page instance but rather simply restrict the query to lookup only the given

range of entities (To find out how many pages you get for a query entirely we have

to trigger an additional count query. This will be derived from the query you actually

trigger by default.).

3. Setup Spring to create proxy instances for those interfaces.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/jpa
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />
</beans>

4. Get the repository instance injected and use it.

public class SomeClient {

 @Autowired
 private PersonRepository repository;

 public void doSomething() {
 List<Person> persons = repository.findByLastname("Matthews");

Custom Querying

Often it is necessary to provide a custom implementation for a few repository

methods. Spring Data repositories easily allow you to provide custom repository

code and integrate it with generic CRUD abstraction and query method functionality.

To enrich a repository with custom functionality you have to define an interface and

an implementation for that functionality first and let the repository interface you

provided so far extend that custom interface. E.g:

1. Define a Custom Interface

interface UserRepositoryCustom {

 public void someCustomMethod(User user);
}

2. Implement Your Method

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {
 // Your custom implementation
 }
}

Note that the implementation itself does not depend on Spring Data and can be a

regular Spring bean. So you can use standard dependency injection behavior to

inject references to other beans, take part in aspects and so on.

3. Let your standard repository interface extend the custom one

public interface UserRepository extends CrudRepository<User, Long>,
UserRepositoryCustom {

 // Declare query methods here
}

Let your standard repository interface extend the custom one. This makes CRUD and

custom functionality available to clients.

4. Configuration

If you use namespace configuration the repository infrastructure tries to autodetect

custom implementations by looking up classes in the package we found a repository

using the naming conventions appending the namespace element's attribute

repository-impl-postfix to the classname. This suffix defaults to Impl.

<repositories base-package="com.acme.repository">
 <repository id="userRepository" />
</repositories>

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar">
 <repository id="userRepository" />
</repositories>

The first configuration example will try to lookup a

class com.acme.repository.UserRepositoryImpl to act as custom repository

implementation, where the second example will try to

lookup com.acme.repository.UserRepositoryFooBar.

Query Methods Operators

Keyword Sample Logical result

GreaterThan
findByAgeGreaterThan(int
age)

{"age" : {"$gt" : age}}

LessThan findByAgeLessThan(int age) {"age" : {"$lt" : age}}

Between
findByAgeBetween(int from,
int to)

{"age" : {"$gt" : from, "$lt" : to}}

IsNotNull, NotNull findByFirstnameNotNull() {"age" : {"$ne" : null}}

IsNull, Null findByFirstnameNull() {"age" : null}

Like
findByFirstnameLike(String
name)

{"age" : age} (age as regex)

Keyword Sample Logical result

(No keyword) findByFirstname(String name) {"age" : name}

Not
findByFirstnameNot(String
name)

{"age" : {"$ne" : name}}

Near
findByLocationNear(Point
point)

{"location" : {"$near" : [x,y]}}

Within
findByLocationWithin(Circle
circle)

{"location" : {"$within" : {"$center" :
[[x, y], distance]}}}

Within
findByLocationWithin(Box
box)

{"location" : {"$within" : {"$box" : [
[x1, y1], x2, y2]}}}

Querying Geolocation Data

As you've just seen there are a few keywords triggering geo-spatial operations within a
MongoDB query. The Near keyword allows some further modification. Let's have look at some
examples:

public interface PersonRepository extends MongoRepository<Person, String>

 // { 'location' : { '$near' : [point.x, point.y], '$maxDistance' : distance}}
 List<Person> findByLocationNear(Point location, Distance distance);
}

Adding a Distance parameter to the query method allows restricting results to those within

the given distance. If the Distance was set up containing a Metric we will transparently

use $nearSphere instead of $code.

Point point = new Point(43.7, 48.8);
Distance distance = new Distance(200, Metrics.KILOMETERS);
… = repository.findByLocationNear(point, distance);
// {'location' : {'$nearSphere' : [43.7, 48.8], '$maxDistance' : 0.03135711885774796}}

As you can see using a Distance equipped with a Metric causes $nearSphere clause to be
added instead of a plain $near. Beyond that the actual distance gets calculated according to
the Metrics used.

public interface PersonRepository extends MongoRepository<Person, String>

 // {'geoNear' : 'location', 'near' : [x, y] }
 GeoResults<Person> findByLocationNear(Point location);

 // No metric: {'geoNear' : 'person', 'near' : [x, y], maxDistance : distance }
 // Metric: {'geoNear' : 'person', 'near' : [x, y], 'maxDistance' : distance,
 // 'distanceMultiplier' : metric.multiplier, 'spherical' : true }
 GeoResults<Person> findByLocationNear(Point location, Distance distance);

 // {'geoNear' : 'location', 'near' : [x, y] }
 GeoResults<Person> findByLocationNear(Point location);
}

Usage Example

We will demonstrate the usage with an example:

public class Person {

 @Id private String id;
 // not annotated as it is assumed that they will be mapped
 // onto db fields that have the same name as the properties
 private String firstName;
 private String secondName;
 private LocalDateTime dateOfBirth;
 private String profession;
 private int salary;

 public Person(
 final String firstName,
 final String secondName,
 final LocalDateTime dateOfBirth,
 final String profession,
 final int salary) {
 this.firstName = firstName;
 this.secondName = secondName;
 this.dateOfBirth = dateOfBirth;
 this.profession = profession;
 this.salary = salary;
 }

The only actual Spring Data annotation in this class is the @Id annotation that represents the

unique Id of the object which maps to _id and is generated when it is persisted to the

database. The annotation can also be left off if the field is named id or _id, therefore in the

example above the annotation is not necessary. If the annotation or a correctly named

property is not included when persisted an _id field will be created when saved as MongoDB

requires the field to be populated.

Available Annotations

• @Id – applied at the field level to mark the field used for identiy purpose.

• @Document – applied at the class level to indicate this class is a candidate for

mapping to the database. You can specify the name of the collection where the

database will be stored.

• @DBRef – applied at the field to indicate it is to be stored using a

com.mongodb.DBRef.

• @Indexed – applied at the field level to describe how to index the field.

• @CompoundIndex – applied at the type level to declare Compound Indexes

• @GeoSpatialIndexed – applied at the field level to describe how to geoindex the

field.

• @Transient – by default all private fields are mapped to the document, this

annotation excludes the field where it is applied from being stored in the database

• @PersistenceConstructor – marks a given constructor – even a package protected

one – to use when instantiating the object from the database. Constructor

arguments are mapped by name to the key values in the retrieved DBObject.

• @Value – this annotation is part of the Spring Framework. Within the mapping

framework it can be applied to constructor arguments. This lets you use a Spring

Expression Language statement to transform a key’s value retrieved in the database

before it is used to construct a domain object. In order to reference a property of a

given document one has to use expressions like: @Value(“#root.myProperty”)

where root refers to the root of the given document.

• @Field – applied at the field level and described the name of the field as it will be

represented in the MongoDB BSON document thus allowing the name to be

different than the fieldname of the class.

The other properties are left without annotations and when persisting or saving to the

database it is assumed that they will map to fields that share the same name within the

database.

The next step is creating a repository that will perform all the database operations to do

with the Person object.

public interface PersonRepository extends MongoRepository<Person, String> {

List<Person> findBySalary(final int salary);

}

Normally we would need to create a implementation of the interface that was just created

but instead Spring will create this for us when the application is started. Ok, but what about

the method that we just defined on the interface surely that needs to know what it’s doing?

By using the name of the definition Spring infers the implementation,

therefore findBySalary will find Personobjects stored in the database

by salary, getBySalary could also be used. To execute these queries Spring Data uses

the MongoTemplate.

No need implementation, just one interface, and you have CRUD, thanks Spring Data.

Extends MongoRepository, you have CRUD function automatically.

Now to tie all the code together and to show it in action we need to create the main

application that has the @SpringBootApplication annotation.

@SpringBootApplication

// needed because the repository is not in the same package or a sub package of the

SpringBootApplication

@EnableMongoRepositories(basePackageClasses = PersonRepository.class)

Important thing to notice is the @EnableMongoRepositories annotation, which is required

as the PersonRepository is not found in the same package or sub-package as

the @SpringBootApplication class. Therefore the annotation is necessary to specify that the

repository should be injected into the application.

More information:

https://docs.spring.io/spring-data/data-document/docs/current/reference/html/#preface

