Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Zigicoin #1

Open
sabirad opened this Issue Aug 31, 2018 · 0 comments

Comments

Projects
None yet
1 participant
@sabirad
Copy link

sabirad commented Aug 31, 2018

pragma solidity ^0.4.4;

contract Token {

/// @return total amount of tokens
function totalSupply() constant returns (uint256 supply) {}

/// @param _owner The address from which the balance will be retrieved
/// @return The balance


function balanceOf(address _owner) constant returns (uint256 balance) {}

/// @notice send `_value` token to `_to` from `msg.sender`
/// @param _to The address of the recipient
/// @param _value The amount of token to be transferred
/// @return Whether the transfer was successful or not
function transfer(address _to, uint256 _value) returns (bool success) {}

/// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from`
/// @param _from The address of the sender
/// @param _to The address of the recipient
/// @param _value The amount of token to be transferred
/// @return Whether the transfer was successful or not
function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {}

/// @notice `msg.sender` approves `_addr` to spend `_value` tokens
/// @param _spender The address of the account able to transfer the tokens
/// @param _value The amount of wei to be approved for transfer
/// @return Whether the approval was successful or not
function approve(address _spender, uint256 _value) returns (bool success) {}

/// @param _owner The address of the account owning tokens
/// @param _spender The address of the account able to transfer the tokens
/// @return Amount of remaining tokens allowed to spent
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {}

event Transfer(address indexed _from, address indexed _to, uint256 _value);
event Approval(address indexed _owner, address indexed _spender, uint256 _value);

}

contract StandardToken is Token {

function transfer(address _to, uint256 _value) returns (bool success) {
    //Default assumes totalSupply can't be over max (2^256 - 1).
    //If your token leaves out totalSupply and can issue more tokens as time goes on, you need to check if it doesn't wrap.
    //Replace the if with this one instead.
    //if (balances[msg.sender] >= _value && balances[_to] + _value > balances[_to]) {
    if (balances[msg.sender] >= _value && _value > 0) {
        balances[msg.sender] -= _value;
        balances[_to] += _value;
        Transfer(msg.sender, _to, _value);
        return true;
    } else { return false; }
}

function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {
    //same as above. Replace this line with the following if you want to protect against wrapping uints.
    //if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && balances[_to] + _value > balances[_to]) {
    if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && _value > 0) {
        balances[_to] += _value;
        balances[_from] -= _value;
        allowed[_from][msg.sender] -= _value;
        Transfer(_from, _to, _value);
        return true;
    } else { return false; }
}

function balanceOf(address _owner) constant returns (uint256 balance) {
    return balances[_owner];
}

function approve(address _spender, uint256 _value) returns (bool success) {
    allowed[msg.sender][_spender] = _value;
    Approval(msg.sender, _spender, _value);
    return true;
}

function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
  return allowed[_owner][_spender];
}

mapping (address => uint256) balances;
mapping (address => mapping (address => uint256)) allowed;
uint256 public totalSupply;

}

contract Zigicoin is StandardToken { // CHANGE THIS. Update the contract name.

/* Public variables of the token */

/*
NOTE    

*/
string public name; // Token
uint8 public decimals; // How many decimals to show. To be standard complicant keep it 18
string public symbol; // An identifier: ..
string public version = 'H1.0';
uint256 public ZIGICOIN ; // How many units of your coin can be bought by 1 ETH?
uint256 public totalEthInWei; // WEI is the smallest unit of ETH (the equivalent of cent in USD or satoshi in BTC). We'll store the total ETH raised via our ICO here.
address fundsWallet; // Where should the raised ETH go?

 // This is a constructor function 
// which means the following function name has to match the contract name declared above
function Zigicoin() {
    balances[msg.sender] = 1000000000000000000;               // Give the creator all initial tokens. This is set to 1000 for example. If you want your initial tokens to be X and your decimal is 5, set this value to X * 100000. (CHANGE THIS)
    totalSupply = 1000000000000000000;                        // Update total supply (1000 for example) 
    name = "Zigicoin";                                   // Set the name for display purposes 
    decimals = 8;                                               // Amount of decimals for display purposes 
    symbol = "zigi";                                             // Set the symbol for display purposes 
                                          // Set the price of your token for the ICO 
    fundsWallet = msg.sender;                                    // The owner of the contract gets ETH 
}

/* Approves and then calls the receiving contract */
function approveAndCall(address _spender, uint256 _value, bytes _extraData) returns (bool success) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);

    //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this.
    //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData)
    //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead.
    if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; }
    return true;
}

}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.