Skip to content
PyTorch implementations of dense and sparse U-ResNet
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
bin
uresnet
.gitignore
LICENSE
README.md

README.md

uresnet_pytorch

PyTorch implementations of dense and sparse UResNet

This README is very rough and will be completed soon. Stay tuned!

Software containers

Singularity containers are available on https://www.singularity-hub.org/containers/6596.

Dataset

LArTPC simulation dataset are publicly available on https://osf.io/9b3cv/.

Run

All options can be found in uresnet/flags.py.

To train sparse U-ResNet you can use for example:

python bin/uresnet.py train -chks 500 -wp weights/snapshot -io larcv_sparse -bs 1 --gpus 0 -nc 5 -rs 1 -ss 512 -dd 3 -uns 5 -uf 16 -dkeys data,fivetypes -mn uresnet_sparse -it 10 -ld log -if your_data.root

To run the inference:

python bin/uresnet.py inference --full -mp weights/snapshot-1000.ckpt -io larcv_sparse -bs 1 --gpus 0 -nc 5 -rs 1 -ss 512 -dd 3 -uns 5 -uf 16 -dkeys data,fivetypes -mn uresnet_sparse -it 10 -ld log -if your_data.root

Main command-line parameters:

  • -mn model name, can be uresnet_dense or uresnet_sparse
  • -io I/O type, can be larcv_sparse or larcv_dense
  • -nc number of classes
  • -chks save checkpoint every N iterations
  • -wp weights directory
  • -bs batch size
  • --gpus list gpus
  • -rs report every N steps in stdout
  • -ss spatial size of images
  • -dd data dimension (2 or 3)
  • -uns U-ResNet depth
  • -uf U-ResNet initial number of filters
  • -dkeys data keys in LArCV ROOT file
  • -it number of iterations
  • -ld log directory
  • -if input file
  • -mp weight files to load for inference

Authors

Laura Domine & Kazuhiro Terao

You can’t perform that action at this time.