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Abstract— Infinite-horizon, nonlinear, optimal, feedback con-
trol is one of the fundamental problems in control theory. In
this paper we propose a solution for this problem based on
recent progress in real-time optimal control. The basic idea
is to perform feedback implementations through a domain
transformation technique and a Radau based pseudospectral
method. Two algorithms are considered: free sampling fre-
quency and fixed sampling frequency. For both algorithms, a
theoretical analysis for the stability of the closed-loop system is
provided. Numerical simulations with random initial conditions
demonstrate the techniques for a flexible robot arm and a
benchmark inverted pendulum problem.

I. INTRODUCTION

We consider the problem of seeking feedback solutions to
the following optimal control problem,

(B)



















Minimize J [x(·), u(·)] =
∫ ∞

t0

F (x(t), u(t)) dt

Subject to ẋ(t) = f(x(t), u(t))
x(t0) = x0
h(x(t), u(t)) ≤ 0

where t 7→ (x, u) ∈ R
Nx ×R

Nu is the state-control function
pair, and F : R

Nx × R
Nu → R, f : R

Nx × R
Nu → R

Nx and
h : R

Nx × R
Nu → R

Nh , are continuously differentiable with
respect to their arguments. Except for special cases, such
as linear-quadratic problems, no analytical solutions have
been found for Problem B. The difficulties in solving this
problem stem from the difficulties in solving the associated
Hamilton-Jacobi-Bellman (HJB) equation. An alternative to
solving the HJB equation is to seek real-time open loop
solutions to Problem B. This simple and intuitive concept
circumvents the difficulties associated with the HJB equation
but relies heavily on modern computational capabilities to
generate real-time solutions. In an effort to circumvent the
computational burden, and other issues arising in online
solutions to Problem B, receding horizon control strategies
have been proposed and constitute an active area in control
theory [10], [11]. These methods basically approximate the
infinite horizon problem by a sequence of sub-optimal reced-
ing finite-horizon problems. The main issue in such methods
is the stability of the closed-loop system. Among many, one
of the reasons the stability problem takes center stage in
such methods is due to the use of a finite-horizon predictive
control over an infinite horizon. In addition, computational
delay, sampling time, control quantization and a host of other
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issues are prominent in receding horizon control theory [10],
[11]. In this paper, we propose a far simpler approach to
feedback control. The idea is still based on online optimiza-
tion, but instead of receding the horizon, we move the origin
while keeping the horizon fixed at infinity. This concept
is facilitated by a time-domain transformation technique
[1], [3] that preserves the notion of the infinite horizon.
The accuracy issue is addressed by using pseudospectral
(PS) methods that are increasingly popular, particularly in
aerospace applications; see for example, [2], [5], [7], [13],
[16], [18], [19] and the references therein. Since PS methods
are capable of generating optimal solutions in fractions of a
second [14], [15], [19], feedback through real-time optimal
control is possible by way of non-analytical output-to-input
maps.

Based on these results, we explore two algorithms: one
is a free-sampling frequency approach [17] that maximally
exploits the computational power, and another based on
a fixed sampling frequency [4] that maximally exploits
prediction with online optimization to reduce the effects of
computational delay. In the absence of computational error,
stability is guaranteed by Bellman’s Principle of Optimality.
Preliminary theoretical analysis ensures practical stability in
the presence of computational error and disturbances.

II. PSEUDOSPECTRAL METHODS FOR INFINITE-HORIZON
OPTIMAL CONTROL

In this section, we summarize the computational methods
from [3] for solving Problem B. The key idea is to use
domain transformation to map the semi-infinite domain to
the half-open, finite interval, [−1, 1), and then use the
appropriate PS discretization scheme. In the following, we
focus on the rational mapping and the Legendre PS method.
Similar ideas apply to other domain transformations and
orthogonal polynomials.

For t ∈ [0,∞) and τ ∈ [−1, 1) let

t =
1 + τ

1− τ ⇔ τ =
t− 1

t+ 1
(1)

Using (1) and its derivative,
dt

dτ
=

2

(1− τ)2 := r(τ)

we reformulate Problem B on the finite interval [−1, 1). For
the purpose of simplicity, we abuse notation in not distin-
guishing between t(τ) and τ for functional dependencies
and state the transformed problem as: determine the state-
control function pair [−1, 1] 3 τ 7→ {x ∈ R

Nx , u ∈ R
Nu} that

minimizes the cost functional,

J [x(·), u(·)] =

∫ 1

−1

F (x(τ), u(τ))r(τ) dτ



subject to the dynamics,

dx

dτ
= r(τ)f(x(τ), u(τ))

initial conditions x(−1) = x0 and path constraints
h(x(τ), u(τ)) ≤ 0. It should be emphasized that in this
formulation, all functional evaluations at τ = 1 which
corresponds to the value of the original function at t = ∞
is taken in the sense of a limit [3].

As presented in [3], in the Radau-based Legendre PS
method, we approximate the trajectory by N -th order
Lagrange interpolating polynomials over Legendre-Gauss-
Radau (LGR) nodes, i.e.

x(τ) ≈ xN (τ) :=
∑N

k=0 x
N (τk)φk(τ),

where φk(τ) are the Lagrange interpolating polynomials
satisfying φk(τj) = 1, if k = j and φk(τj) = 0, if
k 6= j. The LGR nodes, τk, are defined by the initial point,
τ0 = −1, and as zeros of LN + LN+1 where LN is the
Legendre polynomial of degree N. For these points which
are distributed over [−1, 1), evaluation at the right-hand point
(which for the mapped domain corresponds to ∞) is at
τN = 1 − ε, where the size of ε depends inversely on N ;
that is, ε → 0 as N → ∞. It is worth mentioning that the
distribution of the LGR nodes on [−1, 1) is much denser
near the −1 end than near the +1 end. This feature favors
closed-loop control since only the control signal close to the
initial node is implemented. This point will be clearer later.

The derivative of the i-th state xi(τ) at the LGR node τk

is approximated by

ẋi(τk) ≈ ẋN
i (τk) =

∑N

j=0Dkjx
N
i (τj), i = 1, 2, . . . , Nx

where the (N + 1) × (N + 1) differentiation matrix D is
defined by Dkj = φ̇j(τk). Let x̄k = xN (τk), k = 0, 1, . . . , N .
The continuous differential equation is approximated by the
following nonlinear algebraic equations

N
∑

i=0

x̄iDki = r(τk)f(x̄k, ūk), k = 0, 1, . . . , N (2)

The initial conditions and constraints are approximated in a
similar fashion

x̄0 = x0 (3)
h(x̄k, ūk) ≤ 0, k = 0, 1, . . . , N (4)

Finally, the cost functional J [x(·), u(·)] is approximated by
the Gauss-Radau integration rule,

J [x(·), u(·)] ≈ J̄N (X̄, Ū) =
∑N

k=0 F (x̄k, ūk)r(τk)wk

where wk are the LGR weights given by

w0 =
2

(N + 1)2
, wj =

1

(N + 1)2
1− τj

[LN (τj)]2

and X̄ = [x̄0, . . . , x̄N ], Ū = [ū0, . . . , ūN ]. Thus, the
optimal control Problem B is approximated to a nonlinear
programming problem with J̄N as the objective function and

(2), (3) and (4) as constraints; this is summarized as:
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Minimize J̄N (X̄, Ū) =

N
∑

k=0

F (x̄k, ūk)r(τk)wk

Subject to
N
∑

i=0

x̄iDki − r(τk)f(x̄k, ūk) = 0

k = 0, 1, . . . , N
h(x̄k, ūk) ≤ 0,
x̄0 = x0

This problem can now be solved by a robust, spectral
algorithm [6]. These ideas are implemented in an α-version
of the software package, DIDO [12]. All of the computations
reported in this paper were based on this version of DIDO,
programmed in MATLAB on a Pentium 4, 2.4GHz PC with
256MB of RAM.

III. FEEDBACK DESIGN BASED ON PS METHODS

A closed-loop controller is constructed as follows: At
every sampling instant, a measurement is taken. Based on
this measurement, an open loop optimal control is computed
using the PS method. This control is applied to the sys-
tem over some period. The procedure is repeated over the
next measurement. Note that this is not a sample-and-hold
technique. In accounting for the computational delay, two
closed-loop control designs are proposed.

A. Free Sampling Frequency

In this section we propose a feedback strategy when
the sampling frequency of the system is not fixed, i.e, the
measurement can be taken at any time instant. The basic
idea is to apply the computed open loop optimal controller
as soon as it is available.

Denote ti as the current time and x(ti) as the current
state. Based on measurement x(ti), an optimal open-loop
control trajectory, u∗i (x(ti), t), is calculated. Suppose that
after time ti + ∆ti, the controller u∗i (x(ti), t) is available.
Therefore, we can only apply this control to the system after
ti +∆ti. It implies that the next sampling time is chosen as
ti+1 = ti + ∆ti; and correspondingly, we denote ∆ti+1 as
the computational time to get u∗i+1(x(ti +∆ti), t). With this
notation, the closed-loop system can be written down as

ẋ = f(x, u(t))

u(t) = u∗i−1(x(ti−1), t), ∀t ∈ [ti, ti+1]

ti+1 = ti +∆ti

for all i = 1, 2, . . .. Initially, the control is set to

u(t) = u∗0(x0, t), ∀t ∈ [t0, t1],

where t1 is a fixed constant. The closed-loop controller
design is summarized in the following algorithm.

Algorithm I (Free Sampling Frequency)

Initialization:
1. Choose discretization parameter N and the first sam-

pling time t1.
2. Collect the initial state x0 = x(t0).
3. Use the PS method to calculate the optimal controller

u∗(x0, t) and apply it to the system till t = t1. Let
i = 1.



Main Algorithm:
1. Collect the new measurement x(ti).
2. Use the PS method to calculate the optimal controller

u∗(x(ti), t) and set ∆ti equal to the computation time.
3. Set ti+1 = ti +∆ti. During the time period [ti, ti+1],

apply the controller u∗(x(ti−1), t).
4. Set i = i+1 and go to step 1.
In this feedback architecture, the sampling period is not a

fixed number. It depends on the computational time at each
iteration. In this way, the computational power is maximally
explored; and the computational delay is minimized. In the
ideal situation where there is no computational error, no
model mismatch and no disturbance/noise, by the Principle
of Optimality the closed-loop control and the trajectory
should exactly follow the open-loop ones. Therefore, the
stability of the controlled system can be guaranteed as long
as the open loop optimal control can stabilize the system.
Note that in the ideal case, we do not need to assume the
computational time to be zero. Indeed, the computational
delay ∆ti can be arbitrarily large.

Example 1: Consider the one-link robot arm with a
flexible joint [8], [14]. The system is modelled by

ẋi = xi+1, i = 1, 2, 3

ẋ4 = (β cosx1 − 2)x3 − β(x22 − 1) sinx1 + u

where β = −0.049. The problem is to minimize

J [x(·), u(·)] =
∫ ∞

0

4
∑

i=1

x2i (t) + u2(t) dt

subject to the control constraint |u| ≤ 1. The closed-loop
performance of Algorithm I with a discretization parameter
N = 24 is shown in Figure 1. The initial condition is
x(0) = [1, 0,−1, 0]T . An analytic solution to this problem is
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Fig. 1. The closed-loop control and state with 24 nodes. The dotted line in
the right figure is the open loop optimal control generated using 100 nodes.

unavailable; hence, a discrete optimal solution with a large
number of nodes (N=100) is shown in Figure 1 for reference.
Clearly, the closed-loop controller follows the open loop
optimal control very well although a substantially smaller
number of nodes is used. The average running time for each
iteration is 0.09 second.

B. Stability Analysis

In this section, we present some preliminary analysis on
the stability of the proposed controller under computational
errors.

Assumption 1: The nonlinear vector field f(x, u) satis-
fies f(0, 0) = 0 and is Lipschitz continuous, i.e., there are
constants L1 > 0, L2 > 0, such that

‖f(x, u)− f(y, v)‖ ≤ L1‖x− y‖+ L2‖u− v‖
Assumption 2: For any initial condition x(t0) = x0,

Problem B has an optimal solution u∗(x0, t). Moreover, for
the nonlinear system

ẋ = f(x, u∗(x0, t)),

there is a Lyapunov function V (x) ∈ C1, satisfying

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2 (5)
∂V

∂x
f(x, u∗(x0, t)) ≤ −c3‖x‖2 (6)

∣

∣

∣

∣

∣

∣

∣

∣

∂V

∂x

∣

∣

∣

∣

∣

∣

∣

∣

≤ c4‖x‖ (7)

where ci, i = 1, . . . , 4, are all positive constants.
Remark 1: The Lyapunov function is not used in the

control algorithm. We only need the existence of V (t, x) for
the proof of stability. Assumption 2 basically requires the
nonlinear system to be uniformly exponentially stable under
the open loop optimal control. Furthermore, the Lyapunov
function is independent of the initial condition. Indeed, from
(5)-(6)-(7) and the Comparison Lemma [9], it is easy to show

V (x(t)) ≤ e
−

c3
c2
(t−t0) · V (x(t0)) (8)

On the other hand, if the optimal control can be written down
in a feedback form, u∗(·) = u∗(x) with u∗(0) = 0, and the
equilibrium x = 0 of the closed-loop system is exponentially
stable, by the Lyapunov Converse Theorem, there must exist
a Lyapunov function V (x) satisfying (5)-(6)-(7) [9].

Assumption 3: Given any two initial conditions x(t0) =
z1 and x(t0) = z2, let us denote u∗(z1, t) and u∗(z2, t)
as the optimal controls with the corresponding initial condi-
tions. It is assumed that

‖u∗(z1, t)− u∗(z2, t)‖ ≤ L3‖z1 − z2‖, ∀t ∈ [t0,∞]

where L3 > 0 is a constant.
Remark 2: This assumption requires that the difference

in the optimal controls be linearly bounded by the difference
in the initial conditions. If the optimal control can be written
down in a feedback form, i.e., u∗(t) = u∗(x(t)) and A1 is
satisfied, then Assumption 3 is equivalent to u∗(x) being
Lipschitz continuous in x.

Let x(ti) be the state at the sampling time ti and u∗i (t),
t ∈ [ti, ti+1], be the optimal solution to Problem B with x(ti)
as the initial condition. Let ui(t), t ∈ [ti, ti+1], be the control
applied to the system by way of Algorithm I. Assuming
no computational error, ui(t) = u∗i−1(t). Further, by the
Principle of Optimality, u∗i (t) = u∗i−1(t). However due to
computational errors and disturbances, we have ui(t) 6=
u∗i−1(t). In the following, we assume the computational error
to be uniformly bounded.

Assumption 4: There is a positive constant ε such that
∀ t ∈ [ti, ti+1]

‖ui(t)− u∗i−1(t)‖ ≤ ε

for all i ≥ 0, and u∗−1(t) is defined as u∗−1(t) = u∗0(t).
Figure 2 illustrates the concept. Note that the real control

applied to the system may be discontinuous. We assume the



t t
i
 t

i−1
 t

i+1
 

x(t) 

x(t) 

x(t) r
i−1

(t) 

r
i+1

(t) 

r
i
(t) 

u*
i−1

(t) u*
i
(t) 

u
i
(t) u

i+1
(t) 

(x,u) 

t
i+2

 

Fig. 2. Control, state and their reference trajectories. ri(t) is the optimal
state trajectory starting from x(ti) and driven by the optimal control u

∗
i (t).

state is absolutely continuous and the control to be piecewise
continuous.

Let ∆ti denote the sampling period in step i and ∆tmin,
∆tmax represent the minimum and maximum sampling
periods.

Proposition 1: Let the controller be designed according
to Algorithm I. Under Assumption 1—4, there is a fixed
constant ∆T , such that, if ∆tmax ≤ ∆T , then for any
initial condition x(t0), the state of the closed-loop system
is bounded for all t ∈ [t0,∞). Moreover, there is a pos-
itive constant M depending on the system parameters and
sampling period, such that

lim
t→∞

‖x(t)‖ ≤ ε ·M
Proof: Consider two trajectories x(t) and ri(t), where

x(t) satisfies

ẋ(t) = f(x(t), ui(t)), t ∈ [ti, ti+1]

x(ti) = x(ti)

and ri(t) satisfies

ṙi(t) = f(ri(t), u
∗
i (t)), t ∈ [ti, ti+1]

ri(ti) = x(ti)

In other words, x(t) is the system trajectory under the real
control ui(t), and ri(t) is the optimal trajectory starting from
the same initial condition x(ti) and driven by the optimal
control u∗i (t). The reference trajectory is ri(t) over each
sampling interval [ti, ti+1].

By the Principle of Optimality, u∗i−1(t), t ≥ ti, is the
optimal control with the initial condition x(ti) = ri−1(ti).
Therefore, from A3 and A4, ∀ t ∈ [ti, ti+1]

‖ui(t)− u∗i (t)‖ ≤ ‖ui(t)− u∗i−1(t)‖+ ‖u∗i−1(t)− u∗i (t)‖
≤ ε+ L3‖x(ti)− ri−1(ti)‖

By Assumption 1, it is easy to show

‖x(t)− ri(t)‖ ≤ L2∆ti[ε+ L3‖x(ti)− ri−1(ti)‖]

+L1

∫ t

ti

‖x(τ)− ri(τ)‖dτ, ∀t ∈ [ti, ti+1]. (9)

By Gronwall’s inequality [9], (9) implies that, ∀t ∈ [ti, ti+1]

‖x(t)− ri(t)‖ ≤ L2∆ti[ε+ L3‖x(ti)− ri−1(ti)‖]eL1∆ti

Therefore,

‖x(ti+1)− ri(ti+1)‖ ≤ εL2∆tie
L1∆ti +

L2L3∆tie
L1∆ti‖x(ti)− ri−1(ti)‖

Choose ∆T such that 2L2L3∆Te
L1∆T = 1. Then, for all

∆tmax ≤ ∆T ,

‖x(ti+1)− ri(ti+1)‖ ≤ εL2∆tmaxe
L1∆tmax +

1

2
‖x(ti)− ri−1(ti)‖ (10)

The formula above is true for all i. Recursively applying (10)
leads to

‖x(ti+1)− ri(ti+1)‖ ≤ εL2∆tmaxe
L1∆tmax

i−1
∑

k=0

1

2k

+
1

2i
‖x(t1)− r0(t1)‖

By the initialization step of Algorithm I,

‖x(t1)− r0(t1)‖ ≤ εL2∆tmaxe
L1∆tmax

Hence

‖x(ti+1)− ri(ti+1)‖ ≤ 2εL2∆tmaxe
L1∆tmax (11)

On the other hand, using the Mean Value Theorem and
inequalities (5), (7), it is not difficult to show that

√

V (x)
is Lipschitz continuous in x and satisfies

∣

∣

∣

√

V (x1)−
√

V (x2)
∣

∣

∣
≤ c4√

c1
‖x1 − x2‖

for all x1, x2 ∈ R
n. Therefore,

√

V (x(t)) ≤ c4√
c1
‖x(t)− ri(t)‖+

√

V (ri(t)) (12)

Evaluating (12) at t = ti+1 and applying (8), (11) lead to
√

V (x(ti+1)) ≤
c4√
c1
‖x(ti+1)− ri(ti+1)‖+

√

V (ri(ti+1))

≤ c4√
c1
‖x(ti+1)− ri(ti+1)‖+ e

−
c3
2c2
∆ti
√

V (ri(ti))

≤ εK + e
−

c3
2c2
∆ti
√

V (ri(ti))

where K = 2c4L2√
c1

∆tmaxe
L1∆tmax . Since ri(t) and x(t) are

starting from the same initial condition, i.e., ri(ti) = x(ti),
we have

√

V (x(ti+1)) ≤ εK + e
−

c3
2c2
∆ti
√

V (x(ti)) (13)

Applying (13) recursively to the time intervals [tk−1, tk], k =
i, i− 1, . . . , 1, we have
√

V (x(ti+1)) ≤
εK

1− e−
c3
2c2
∆tmin

+ e
−

c3
2c2

ti+1
√

V (x(t0))

From the formula above and (5), it is apparent that x(tn) are
bounded for all n = 1, 2, · · · . Moreover,

lim
n→∞

‖x(tn)‖ ≤ εK
√
c1 −

√
c1e

−
c3
2c2
∆tmin

Remark 3: Proposition 1 shows that for a sufficiently
small computational delay, the closed-loop system is prac-
tically stable, and the stability error is proportional to the
computational error. If the computation is perfect, i.e., ε = 0,



then the system is asymptotically stable for any computa-
tional delay, in agreement with the Principle of Optimality.

Remark 4: If the computational time is not small enough
to meet the requirement ∆tmax ≤ ∆T , it is quite possible
that the closed-loop system becomes unstable. From (10), it
is easy to see that when ∆ti is too large, the state x(t) will be
pushed away from the reference ri(t) and the distance turns
to infinity as time advances. From the derivation, the value
of ∆T only depends on the system parameters (L1, L2, L3).
It means that, for a given nonlinear control system (Problem
B), there is an inherent time constant. Any computational
delay less than this time constant will not destroy stability.

Example 2: Consider the following LQR problem
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Minimize J [x(·), u(·)] =
∫ ∞

0
x21(t) + 0.5x22(t)

+0.25u2(t) dt
Subject to ẋ1(t) = x2

ẋ2(t) = 2x1 − x2 + u

(x1(0), x2(0)) = (−1, 4)

A feedback controller based on Algorithm I with N = 10
indicates that the solution compares well with a Riccati-
based solution (i.e. errors are within 10−4). The average
run time for our algorithm is 0.075 seconds. A simulation
result is shown in the left plot in Fig. 3; this corresponds
to a deliberate introduction of a computational delay of
∆ti = 0.4 seconds. Clearly, the system continues to be stable
indicating that our algorithm works even if the computation
is sluggish. As illustrated in the right plot in Fig. 3, if
∆ti = 0.46 seconds, the system becomes unstable. This
demonstrates the result of Proposition 1, which indicates the
existence of a stability threshold for computational delay.
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Fig. 3. Closed-loop performance with different computational delays.

C. Fixed Sampling Frequency

In Algorithm I we implicitly assumed that the measure-
ment can be taken at any time. In some applications, the
sampling frequency is fixed and hence, in this section, we
modify the previous design to cope with this situation.

Let ∆t be the fixed sampling period and ti = ti−1 +∆t
be the sampling points. In Algorithm I, over any sampling
interval, [ti, ti+1], the optimal control is calculated from
the previous run with x(ti−1) as the initial condition. This
introduces a computational delay. In the case of a fixed
sampling frequency, we use a prediction of the state to
alleviate the effects of computational delay as follows: At
t = t0 we apply the optimal open-loop controller to the
system for the first sampling period [t0, t1]. At the same

time, we propagate the trajectory under the action of this
control. Thus, the state at t = t1 is predicted. Denote
the predicted state as x̂1. In the ideal case (i.e. without
disturbance and propagation error), x(t1) = x̂1. Let tp be
the computation time for the propagation. Normally tp is
very small; therefore, at time t0 + tp ¿ t1, we already
have a prediction x̂1. Thus, at t = t0 + tp, we begin the
computation of the optimal controller, u∗1(t), with x̂1 as the
initial condition. Let tc be the computational time and tp+tc
be less that ∆t. Then, at t = t1, this control is applied to the
system over the time interval [t1, t2], and the entire process
is repeated.

Assumption 5: During any sampling interval [ti, ti+1], it
is assumed that tp + tc ≤ ∆t. That is, the prediction and the
computation can be done in advance of the next sampling
time.

Under A5, we formulate the following algorithm.

Algorithm II (Fixed Sampling Frequency)

Initialization:
1. Choose the discretization parameter N and the first

sampling time t1.
2. Collect the initial state x0 = x(t0) and set i = 1.
3. Use the PS method to calculate the optimal controller

u0(x0, t) and apply it to the system till t1 = t0+∆t.
Main Algorithm:

1. Propagate the system dynamics with the control ui−1(t)
with x(ti−1) as the initial condition to time t = ti. Let
x̂(ti) be the predicted state at time ti.

2. Use the PS method to calculate the optimal controller
ui(x̂(ti), t) with x̂(ti) as the initial condition.

3. Set ti+1 = ti+∆t. During time period [ti, ti+1], apply
the controller ui(x̂(ti), t).

4. Collect the new measurement x(ti).
5. Set i = i+1 and go to step 1.
Assumption 6: There are positive constants δ, ε, such

that for all i

‖x(ti)− x̂(ti)‖ ≤ δ

‖ui(x̂(ti), t)− u∗i (x̂(ti), t)‖ ≤ ε ∀ t ∈ [ti, ti+1]

where u∗i (x̂(ti), t) is the optimal controller with x̂(ti) as the
initial condition.

Remark 5: As in A4, ε again represents the compu-
tational error in the calculation of the optimal controller
while δ is used to represent the totality of propagation errors,
measurement noise and disturbances that cause a deviation
between the predicted state and the real state.

By a proof similar to that of Proposition 1, the following
stability result can be obtained.

Proposition 2: Let the controller be designed according
to Algorithm II. Under Assumption 1-2-3 and A5-6, for any
initial condition x(t0), the state of the closed-loop system is
bounded for all t ∈ [t0,∞). Moreover,

lim
t→∞

‖x(t)‖ ≤ (ε+ L3δ)B(∆t)

where B(∆t) = c4L2∆teL1∆t

√
c1

(

1−e
−

c3
2c2

∆t

)



Remark 6: A major difference between Algorithm I and
II is that, the stability of Algorithm II does not depend on the
time constant of the system. The prediction step eliminates
the computational delay in Algorithm I, and ensures stability
even when the computation time is longer than the time
constant of the system. In terms of accuracy or stability
error, Algorithm I normally outperforms Algorithm II, since,
given the same computational error ε, Algorithm I provides
a smaller sampling period than Algorithm II.

IV. NONLINEAR STABILIZATION OF AN INVERTED
PENDULUM

We take the nonlinear model of an inverted pendulum [3]

ẋ1 = x2, ẋ2 =
ψ1(x, u)

ψ2(x)
, ẋ3 = x4

ẋ4 =
3

2L

(

cos(x3)

ψ2(x)
ψ1(x, u) + g sin(x3)

)

where ψ2(x) = M + m − 3
4
m cos(x3)

2, ψ1(x, u) = −bx2 −
1
2
mLx24 sin(x3) +

3
4
mg cos(x3) sin(x3) + u and:

M mass of the cart 0.5kg
m mass of the pendulum 0.5kg
b friction on the cart 0.1N/m/sec
L length of the pendulum 0.6m
g gravitational acceleration 9.8/m/sec/sec
u applied force (control) [-10 10]N

The cost function to be minimized is

J [x(·), u(·)] =

∫ ∞

0

4
∑

i=1

x2i (t) + u2(t) dt

For Algorithm I, with N = 15, the closed-loop system is
stable over 100 runs with randomly chosen initial conditions
within an arbitrarily chosen bound of −0.2 ≤ xi(0) ≤ 0.2,
i = 1, . . . , 4. The average stability error over 100 runs, i.e.,
∑100

k=1 limt→∞ ‖xk(t)‖/100, is within 10−5, and the average
run time for each iteration is about 0.08 seconds. A typical
state-control history is plotted in Fig. 4 along with the open-
loop optimal control for the same initial condition. Since an
analytic solution is unavailable, we compare the closed-loop
solution with an open-loop PS solution corresponding to 100
nodes. It is clear from Figure 4 that the difference between
the closed-loop and the open-loop optimal control is very
small. A simulation result for Algorithm II, with a sampling
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Fig. 4. Performance of a inverted pendulum under a controller constructed
by Algorithm I

period of ∆t = 0.2 seconds and N = 15, is shown in Figure
5. An impulse disturbance which instantly changes the state

of the system is added at time t = 11.6. The simulation
shows that the closed-loop controller automatically rejects
this disturbance.
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Fig. 5. Performance of a inverted pendulum under a controller constructed
by Algorithm II. A disturbance is added at t = 11.6.
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