Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
ncnn/examples/yolov5.cpp
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
521 lines (425 sloc)
15.1 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // Tencent is pleased to support the open source community by making ncnn available. | |
| // | |
| // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. | |
| // | |
| // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | |
| // in compliance with the License. You may obtain a copy of the License at | |
| // | |
| // https://opensource.org/licenses/BSD-3-Clause | |
| // | |
| // Unless required by applicable law or agreed to in writing, software distributed | |
| // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | |
| // CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
| // specific language governing permissions and limitations under the License. | |
| #include "layer.h" | |
| #include "net.h" | |
| #if defined(USE_NCNN_SIMPLEOCV) | |
| #include "simpleocv.h" | |
| #else | |
| #include <opencv2/core/core.hpp> | |
| #include <opencv2/highgui/highgui.hpp> | |
| #include <opencv2/imgproc/imgproc.hpp> | |
| #endif | |
| #include <float.h> | |
| #include <stdio.h> | |
| #include <vector> | |
| //#define YOLOV5_V60 1 //YOLOv5 v6.0 | |
| #define YOLOV5_V62 1 //YOLOv5 v6.2 export onnx model method https://github.com/shaoshengsong/yolov5_62_export_ncnn | |
| #if YOLOV5_V60 || YOLOV5_V62 | |
| #define MAX_STRIDE 64 | |
| #else | |
| #define MAX_STRIDE 32 | |
| class YoloV5Focus : public ncnn::Layer | |
| { | |
| public: | |
| YoloV5Focus() | |
| { | |
| one_blob_only = true; | |
| } | |
| virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const | |
| { | |
| int w = bottom_blob.w; | |
| int h = bottom_blob.h; | |
| int channels = bottom_blob.c; | |
| int outw = w / 2; | |
| int outh = h / 2; | |
| int outc = channels * 4; | |
| top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator); | |
| if (top_blob.empty()) | |
| return -100; | |
| #pragma omp parallel for num_threads(opt.num_threads) | |
| for (int p = 0; p < outc; p++) | |
| { | |
| const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2); | |
| float* outptr = top_blob.channel(p); | |
| for (int i = 0; i < outh; i++) | |
| { | |
| for (int j = 0; j < outw; j++) | |
| { | |
| *outptr = *ptr; | |
| outptr += 1; | |
| ptr += 2; | |
| } | |
| ptr += w; | |
| } | |
| } | |
| return 0; | |
| } | |
| }; | |
| DEFINE_LAYER_CREATOR(YoloV5Focus) | |
| #endif //YOLOV5_V60 YOLOV5_V62 | |
| struct Object | |
| { | |
| cv::Rect_<float> rect; | |
| int label; | |
| float prob; | |
| }; | |
| static inline float intersection_area(const Object& a, const Object& b) | |
| { | |
| cv::Rect_<float> inter = a.rect & b.rect; | |
| return inter.area(); | |
| } | |
| static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) | |
| { | |
| int i = left; | |
| int j = right; | |
| float p = faceobjects[(left + right) / 2].prob; | |
| while (i <= j) | |
| { | |
| while (faceobjects[i].prob > p) | |
| i++; | |
| while (faceobjects[j].prob < p) | |
| j--; | |
| if (i <= j) | |
| { | |
| // swap | |
| std::swap(faceobjects[i], faceobjects[j]); | |
| i++; | |
| j--; | |
| } | |
| } | |
| #pragma omp parallel sections | |
| { | |
| #pragma omp section | |
| { | |
| if (left < j) qsort_descent_inplace(faceobjects, left, j); | |
| } | |
| #pragma omp section | |
| { | |
| if (i < right) qsort_descent_inplace(faceobjects, i, right); | |
| } | |
| } | |
| } | |
| static void qsort_descent_inplace(std::vector<Object>& faceobjects) | |
| { | |
| if (faceobjects.empty()) | |
| return; | |
| qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1); | |
| } | |
| static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false) | |
| { | |
| picked.clear(); | |
| const int n = faceobjects.size(); | |
| std::vector<float> areas(n); | |
| for (int i = 0; i < n; i++) | |
| { | |
| areas[i] = faceobjects[i].rect.area(); | |
| } | |
| for (int i = 0; i < n; i++) | |
| { | |
| const Object& a = faceobjects[i]; | |
| int keep = 1; | |
| for (int j = 0; j < (int)picked.size(); j++) | |
| { | |
| const Object& b = faceobjects[picked[j]]; | |
| if (!agnostic && a.label != b.label) | |
| continue; | |
| // intersection over union | |
| float inter_area = intersection_area(a, b); | |
| float union_area = areas[i] + areas[picked[j]] - inter_area; | |
| // float IoU = inter_area / union_area | |
| if (inter_area / union_area > nms_threshold) | |
| keep = 0; | |
| } | |
| if (keep) | |
| picked.push_back(i); | |
| } | |
| } | |
| static inline float sigmoid(float x) | |
| { | |
| return static_cast<float>(1.f / (1.f + exp(-x))); | |
| } | |
| static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects) | |
| { | |
| const int num_grid = feat_blob.h; | |
| int num_grid_x; | |
| int num_grid_y; | |
| if (in_pad.w > in_pad.h) | |
| { | |
| num_grid_x = in_pad.w / stride; | |
| num_grid_y = num_grid / num_grid_x; | |
| } | |
| else | |
| { | |
| num_grid_y = in_pad.h / stride; | |
| num_grid_x = num_grid / num_grid_y; | |
| } | |
| const int num_class = feat_blob.w - 5; | |
| const int num_anchors = anchors.w / 2; | |
| for (int q = 0; q < num_anchors; q++) | |
| { | |
| const float anchor_w = anchors[q * 2]; | |
| const float anchor_h = anchors[q * 2 + 1]; | |
| const ncnn::Mat feat = feat_blob.channel(q); | |
| for (int i = 0; i < num_grid_y; i++) | |
| { | |
| for (int j = 0; j < num_grid_x; j++) | |
| { | |
| const float* featptr = feat.row(i * num_grid_x + j); | |
| float box_confidence = sigmoid(featptr[4]); | |
| if (box_confidence >= prob_threshold) | |
| { | |
| // find class index with max class score | |
| int class_index = 0; | |
| float class_score = -FLT_MAX; | |
| for (int k = 0; k < num_class; k++) | |
| { | |
| float score = featptr[5 + k]; | |
| if (score > class_score) | |
| { | |
| class_index = k; | |
| class_score = score; | |
| } | |
| } | |
| float confidence = box_confidence * sigmoid(class_score); | |
| if (confidence >= prob_threshold) | |
| { | |
| // yolov5/models/yolo.py Detect forward | |
| // y = x[i].sigmoid() | |
| // y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy | |
| // y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
| float dx = sigmoid(featptr[0]); | |
| float dy = sigmoid(featptr[1]); | |
| float dw = sigmoid(featptr[2]); | |
| float dh = sigmoid(featptr[3]); | |
| float pb_cx = (dx * 2.f - 0.5f + j) * stride; | |
| float pb_cy = (dy * 2.f - 0.5f + i) * stride; | |
| float pb_w = pow(dw * 2.f, 2) * anchor_w; | |
| float pb_h = pow(dh * 2.f, 2) * anchor_h; | |
| float x0 = pb_cx - pb_w * 0.5f; | |
| float y0 = pb_cy - pb_h * 0.5f; | |
| float x1 = pb_cx + pb_w * 0.5f; | |
| float y1 = pb_cy + pb_h * 0.5f; | |
| Object obj; | |
| obj.rect.x = x0; | |
| obj.rect.y = y0; | |
| obj.rect.width = x1 - x0; | |
| obj.rect.height = y1 - y0; | |
| obj.label = class_index; | |
| obj.prob = confidence; | |
| objects.push_back(obj); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| } | |
| static int detect_yolov5(const cv::Mat& bgr, std::vector<Object>& objects) | |
| { | |
| ncnn::Net yolov5; | |
| yolov5.opt.use_vulkan_compute = true; | |
| // yolov5.opt.use_bf16_storage = true; | |
| // original pretrained model from https://github.com/ultralytics/yolov5 | |
| // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models | |
| #if YOLOV5_V62 | |
| if (yolov5.load_param("yolov5s_6.2.param")) | |
| exit(-1); | |
| if (yolov5.load_model("yolov5s_6.2.bin")) | |
| exit(-1); | |
| #elif YOLOV5_V60 | |
| if (yolov5.load_param("yolov5s_6.0.param")) | |
| exit(-1); | |
| if (yolov5.load_model("yolov5s_6.0.bin")) | |
| exit(-1); | |
| #else | |
| yolov5.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator); | |
| if (yolov5.load_param("yolov5s.param")) | |
| exit(-1); | |
| if (yolov5.load_model("yolov5s.bin")) | |
| exit(-1); | |
| #endif | |
| const int target_size = 640; | |
| const float prob_threshold = 0.25f; | |
| const float nms_threshold = 0.45f; | |
| int img_w = bgr.cols; | |
| int img_h = bgr.rows; | |
| // letterbox pad to multiple of MAX_STRIDE | |
| int w = img_w; | |
| int h = img_h; | |
| float scale = 1.f; | |
| if (w > h) | |
| { | |
| scale = (float)target_size / w; | |
| w = target_size; | |
| h = h * scale; | |
| } | |
| else | |
| { | |
| scale = (float)target_size / h; | |
| h = target_size; | |
| w = w * scale; | |
| } | |
| ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h); | |
| // pad to target_size rectangle | |
| // yolov5/utils/datasets.py letterbox | |
| int wpad = (w + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - w; | |
| int hpad = (h + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - h; | |
| ncnn::Mat in_pad; | |
| ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f); | |
| const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f}; | |
| in_pad.substract_mean_normalize(0, norm_vals); | |
| ncnn::Extractor ex = yolov5.create_extractor(); | |
| ex.input("images", in_pad); | |
| std::vector<Object> proposals; | |
| // anchor setting from yolov5/models/yolov5s.yaml | |
| // stride 8 | |
| { | |
| ncnn::Mat out; | |
| ex.extract("output", out); | |
| ncnn::Mat anchors(6); | |
| anchors[0] = 10.f; | |
| anchors[1] = 13.f; | |
| anchors[2] = 16.f; | |
| anchors[3] = 30.f; | |
| anchors[4] = 33.f; | |
| anchors[5] = 23.f; | |
| std::vector<Object> objects8; | |
| generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8); | |
| proposals.insert(proposals.end(), objects8.begin(), objects8.end()); | |
| } | |
| // stride 16 | |
| { | |
| ncnn::Mat out; | |
| #if YOLOV5_V62 | |
| ex.extract("353", out); | |
| #elif YOLOV5_V60 | |
| ex.extract("376", out); | |
| #else | |
| ex.extract("781", out); | |
| #endif | |
| ncnn::Mat anchors(6); | |
| anchors[0] = 30.f; | |
| anchors[1] = 61.f; | |
| anchors[2] = 62.f; | |
| anchors[3] = 45.f; | |
| anchors[4] = 59.f; | |
| anchors[5] = 119.f; | |
| std::vector<Object> objects16; | |
| generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16); | |
| proposals.insert(proposals.end(), objects16.begin(), objects16.end()); | |
| } | |
| // stride 32 | |
| { | |
| ncnn::Mat out; | |
| #if YOLOV5_V62 | |
| ex.extract("367", out); | |
| #elif YOLOV5_V60 | |
| ex.extract("401", out); | |
| #else | |
| ex.extract("801", out); | |
| #endif | |
| ncnn::Mat anchors(6); | |
| anchors[0] = 116.f; | |
| anchors[1] = 90.f; | |
| anchors[2] = 156.f; | |
| anchors[3] = 198.f; | |
| anchors[4] = 373.f; | |
| anchors[5] = 326.f; | |
| std::vector<Object> objects32; | |
| generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32); | |
| proposals.insert(proposals.end(), objects32.begin(), objects32.end()); | |
| } | |
| // sort all proposals by score from highest to lowest | |
| qsort_descent_inplace(proposals); | |
| // apply nms with nms_threshold | |
| std::vector<int> picked; | |
| nms_sorted_bboxes(proposals, picked, nms_threshold); | |
| int count = picked.size(); | |
| objects.resize(count); | |
| for (int i = 0; i < count; i++) | |
| { | |
| objects[i] = proposals[picked[i]]; | |
| // adjust offset to original unpadded | |
| float x0 = (objects[i].rect.x - (wpad / 2)) / scale; | |
| float y0 = (objects[i].rect.y - (hpad / 2)) / scale; | |
| float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale; | |
| float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale; | |
| // clip | |
| x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
| y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
| x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
| y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
| objects[i].rect.x = x0; | |
| objects[i].rect.y = y0; | |
| objects[i].rect.width = x1 - x0; | |
| objects[i].rect.height = y1 - y0; | |
| } | |
| return 0; | |
| } | |
| static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) | |
| { | |
| static const char* class_names[] = { | |
| "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", | |
| "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", | |
| "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", | |
| "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", | |
| "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", | |
| "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", | |
| "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", | |
| "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", | |
| "hair drier", "toothbrush" | |
| }; | |
| cv::Mat image = bgr.clone(); | |
| for (size_t i = 0; i < objects.size(); i++) | |
| { | |
| const Object& obj = objects[i]; | |
| fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, | |
| obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); | |
| cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); | |
| char text[256]; | |
| sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); | |
| int baseLine = 0; | |
| cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); | |
| int x = obj.rect.x; | |
| int y = obj.rect.y - label_size.height - baseLine; | |
| if (y < 0) | |
| y = 0; | |
| if (x + label_size.width > image.cols) | |
| x = image.cols - label_size.width; | |
| cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), | |
| cv::Scalar(255, 255, 255), -1); | |
| cv::putText(image, text, cv::Point(x, y + label_size.height), | |
| cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); | |
| } | |
| cv::imshow("image", image); | |
| cv::waitKey(0); | |
| } | |
| int main(int argc, char** argv) | |
| { | |
| if (argc != 2) | |
| { | |
| fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); | |
| return -1; | |
| } | |
| const char* imagepath = argv[1]; | |
| cv::Mat m = cv::imread(imagepath, 1); | |
| if (m.empty()) | |
| { | |
| fprintf(stderr, "cv::imread %s failed\n", imagepath); | |
| return -1; | |
| } | |
| std::vector<Object> objects; | |
| detect_yolov5(m, objects); | |
| draw_objects(m, objects); | |
| return 0; | |
| } |