Skip to content
/ gpt-2 Public
forked from nshepperd/gpt-2

Code for the paper "Language Models are Unsupervised Multitask Learners"

License

Notifications You must be signed in to change notification settings

Tenoke/gpt-2

 
 

Repository files navigation

gpt-2

Code and samples from the paper "Language Models are Unsupervised Multitask Learners".

For now, we have only released a smaller (117M parameter) version of GPT-2.

See more details in our blog post.

Usage

This repository is meant to be a starting point for researchers and engineers to experiment with GPT-2-117M. While GPT-2-117M is less proficient than GPT-2-1.5B, it is useful for a wide range of research and applications which could also apply to larger models.

Some caveats

  • GPT-2-117M robustness and worst case behaviors are not well-understood. As with any machine-learned model, carefully evaluate GPT-2-117M for your use case, especially if used without fine-tuning or in safety-critical applications where reliability is important.
  • The dataset our GPT-2-117M was trained on contains many texts with biases and factual inaccuracies, and thus GPT-2-117M is likely to be biased and inaccurate as well.
  • To avoid having samples mistaken as human-written, we recommend clearly labeling samples as synthetic before wide dissemination. Our models are often incoherent or inaccurate in subtle ways, which takes more than a quick read for a human to notice.

Work with us

Please let us know if you’re doing interesting research with or working on applications of GPT-2-117M! We’re especially interested in hearing from and potentially working with those who are studying

  • Potential malicious use cases and defenses against them (e.g. the detectability of synthetic text)
  • The extent of problematic content (e.g. bias) being baked into the models and effective mitigations

Development

See DEVELOPERS.md

Contributors

See CONTRIBUTORS.md

Fine tuning on custom datasets

To retrain GPT-2 117M model on a custom text dataset:

PYTHONPATH=src ./train.py --dataset <file|directory|glob>

If you want to precompute the dataset's encoding for multiple runs, you can instead use:

PYTHONPATH=src ./encode.py <file|directory|glob> /path/to/encoded.npz
PYTHONPATH=src ./train.py --dataset /path/to/encoded.npz

Gradient Checkpointing

https://github.com/openai/gradient-checkpointing is included to reduce the memory requirements of the model, and can be enabled by --memory_saving_gradients. The checkpoints are currently chosen manually (poorly) by just adding layer 10 to the 'checkpoints' collection in model.py. --memory_saving_gradients is enabled by default for training the 345M model.

Validation loss

Set --val_every to a number of steps N > 0, and "validation" loss against a fixed sample of the dataset will be calculated every N steps to get a better sense of training progress. N around 200 suggested. You can set --val_dataset to choose a separate validation dataset, otherwise it defaults to a sample from the train dataset (so not a real cross-validation loss!).

Multi gpu (out of date)

To do distributed on multiple GPUs or machines using Horovod:

mpirun -np 4 \
    -H localhost:4 \
    -bind-to none -map-by slot \
    -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH \
    -x PYTHONPATH=src \
    -mca pml ob1 -mca btl ^openib \
    /home/jovyan/gpt-2/train-horovod.py --dataset encoded.npz

GPT-2 samples

WARNING: Samples are unfiltered and may contain offensive content.

While we have not yet released GPT-2 itself, you can see some samples from it in the gpt-2-samples folder. We show unconditional samples with default settings (temperature 1 and no truncation), with temperature 0.7, and with truncation with top_k 40. We show conditional samples, with contexts drawn from WebText's test set, with default settings (temperature 1 and no truncation), with temperature 0.7, and with truncation with top_k 40.

Citation

Please use the following bibtex entry:

@article{radford2019language,
  title={Language Models are Unsupervised Multitask Learners},
  author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
  year={2019}
}

Future work

We may release code for evaluating the models on various benchmarks.

We are still considering release of the larger models.

License

MIT

About

Code for the paper "Language Models are Unsupervised Multitask Learners"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%