
1 Pseudo-linear form

Derivation of Peyman Milanfar’s gradient

d[f(x)] = d[A(x)x]

= d[A(x)]x+A(x)dx

= vec{d[A(x)]x}+A(x)dx

= vec{Id[A(x)]x}+A(x)dx

=
(
xT ⊗ I

)
vec{d[A(x)]}+A(x)dx

=
(
xT ⊗ I

)
Dvec[A(x)]dx+A(x)dx

=
[(
xT ⊗ I

)
Dvec[A(x)] +A(x)

]
dx
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Figure 1: Visualization of pseudo-linear gradient.

Note, a third way to derive the gradient is to use index notation:

fi(x) = Aij(x)xj

⇒ dfi =
∂fi
∂xk

dxk

=

(
∂Aij

∂xk
xj +Aijδjk

)
dxk

=

(
∂Aij

∂xk
xj +Aik

)
dxk

2 Chain Rule

Standard chain rule. Here we let f ∈ Rd → R be a scalar function, and v ∈
Rd → Rd be a vector function as used in backprop.
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Figure 2: Visualization of the Chain Rule: Jf◦v(x) = ∇f (v(x))Jv(x).

3 Computation of the Hessian

Derivation of Yaroslav Bulatov’s chain rule for the Hessian. See Figure 3.
In index notation, the Hessian of f(v(x)) is

Hij(x) =

d∑
k=1

d∑
l=1

∂2f

∂uk∂ul
(v(x))

∂vk
∂xi

(x)
∂vl
∂xj

(x) +
∂f

∂uk
(v(x))

∂2vk
∂xi∂xj

(x).

In matrix notation it is

H(x) = Dv(x)T ·D2f(v(x)) ·Dv(x) +

d∑
k=1

∂f

∂uk
(v(x))

∂2vk
∂x∂xT

(x).

Neither of them are terribly legible.

4 Quadratic form

A common gradient from statistics, is the least squares∇x∥Ax−b∥22 = ∇x(Ax)T (Ax)−
2bTAx+ bT b. See Figure 4.

Once the gradient has been derived, we can solve for x to get the usual
solution x = (ATA)−1Ab.

5 Quadratic form 2

In machine learning we sometimes want a “matrix shaped” gradient that we can
easily add to the original matrix for gradient descent. Let’s define a derivative
notation with two edges going out for this purpose. Then we can derive the
gradient with respect to X of ∇X∥Xa− b∥22. See Figure 5.
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Figure 3: Visualization of the Computation of the Hessian: Hf◦v(x) = Dv(x)T ·
D2f(v(x)) ·Dv(x) +

∑d
k=1

∂f
∂uk

(v(x)) ∂2vk
∂x∂xT (x)..
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Figure 4: Least squares gradient, ∇x∥Ax− b∥22 = 2ATAx− 2Ab.
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Figure 5: Least squares gradient, ∇X∥aX−b∥22 = 2a⊗(Xa−b). In step four we
used a small trick, which is that xT (I⊗I)x = (I⊗I)(x⊗x) = (Ix)⊗(Ix) = x⊗x.
In other words, the degree 4 identity matrix splits into the outer product of it’s
constituents.
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