
M A N N I N G

Michael Geers

Micro Frontends
in Action

MICHAEL GEERS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Tricia Louvar
20 Baldwin Road Technical development editor: Louis Lazaris
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Ben Berg
Proofreader: Melody Dolab

Technical proofreader: Mayur Patil
Typesetter and cover designer: Marija Tudor

ISBN 9781617296871
Printed in the United States of America

www.manning.com

contents
preface ix
acknowledgments xi
about this book xiii
about the author xvi
about the cover illustration xvii

PART 1 GETTING STARTED WITH MICRO FRONTENDS 1

1 What are micro frontends? 3
1.1 The big picture 4

Systems and teams 4 ■ The frontend 7 ■ Frontend
integration 10 ■ Shared topics 11

1.2 What problems do micro frontends solve? 12
Optimize for feature development 12 ■ No more frontend
monolith 13 ■ Be able to keep changing 14 ■ The benefits of
independence 16

1.3 The downsides of micro frontends 17
Redundancy 17 ■ Consistency 18 ■ Heterogeneity 18
More frontend code 19

1.4 When do micro frontends make sense? 19
Good for medium-to-large projects 19 ■ Works best on the web 19
Productivity versus overhead 20 ■ Where micro frontends are not a
great fit 20 ■ Who uses micro frontends? 21
iii

CONTENTSiv
2 My first micro frontends project 23
2.1 Introducing The Tractor Store 24

Getting started 24 ■ Running this book’s example code 25

2.2 Page transition via links 27
Data ownership 28 ■ Contract between the teams 28 ■ How to
do it 29 ■ Dealing with changing URLs 32 ■ The benefits 32
The drawbacks 32 ■ When do links make sense? 33

2.3 Composition via iframe 33
How to do it 34 ■ The benefits 35 ■ The drawbacks 35
When do iframes make sense? 36

2.4 What’s next? 36

PART 2 ROUTING, COMPOSITION,
AND COMMUNICATION 39

3 Composition with Ajax and server-side routing 41
3.1 Composition via Ajax 42

How to do it 43 ■ Namespacing styles and scripts 45
Declarative loading with h-include 47 ■ The benefits 48
The drawbacks 49 ■ When does an Ajax integration make
sense? 50 ■ Summary 50

3.2 Server-side routing via Nginx 51
How to do it 53 ■ Namespacing resources 55 ■ Route
configuration methods 56 ■ Infrastructure ownership 57
When does it make sense? 58

4 Server-side composition 59
4.1 Composition via Nginx and Server-Side Includes (SSI) 60

How to do it 61 ■ Better load times 63

4.2 Dealing with unreliable fragments 64
The flaky fragment 65 ■ Integrating the Near You fragment 66
Timeouts and fallbacks 67 ■ Fallback content 68

4.3 Markup assembly performance in depth 69
Parallel loading 69 ■ Nested fragments 70 ■ Deferred
loading 71 ■ Time to first byte and streaming 71

4.4 A quick look into other solutions 73
Edge-Side Includes 73 ■ Zalando Tailor 73 ■ Podium 75
Which solution is right for me? 81

CONTENTS v
4.5 The good and bad of server-side composition 82
The benefits 82 ■ The drawbacks 83 ■ When does server-side
integration make sense? 83

5 Client-side composition 85
5.1 Wrapping micro frontends using Web Components 86

How to do it 87 ■ Wrapping your framework in a Web
Component 92

5.2 Style isolation using Shadow DOM 93
Creating a shadow root 93 ■ Scoping styles 94 ■ When to use
Shadow DOM 96

5.3 The good and bad of using Web Components
for composition 96
The benefits 96 ■ The drawbacks 97 ■ When does client-side
integration make sense? 97

6 Communication patterns 99
6.1 User interface communication 100

Parent to fragment 101 ■ Fragment to parent 104
Fragment to fragment 107 ■ Publish/Subscribe with the Broadcast
Channel API 111 ■ When UI communication is a good fit 112

6.2 Other communication mechanisms 113
Global context and authentication 113 ■ Managing state 114
Frontend-backend communication 115 ■ Data replication 115

7 Client-side routing and the application shell 118
7.1 App shell with flat routing 120

What’s an app shell? 121 ■ Anatomy of the app shell 122
Client-side routing 123 ■ Rendering pages 124 ■ Contracts
between app shell and teams 127

7.2 App shell with two-level routing 128
Implementing the top-level router 129 ■ Implementing team-level
routing 130 ■ What happens on a URL change? 131
App shell APIs 133

7.3 A quick look into the single-spa meta-framework 134
How single-spa works 135

7.4 The challenges of a unified single-page app 140
Topics you need to think about 140 ■ When does a unified single-
page app make sense? 142

CONTENTSvi
8 Composition and universal rendering 145
8.1 Combining server- and client-side composition 147

SSI and Web Components 148 ■ Contract between the teams 152
Other solutions 153

8.2 When does universal composition make sense? 153
Universal rendering with pure server-side composition 153
Increased complexity 154 ■ Universal unified
single-page app? 154

9 Which architecture fits my project? 156
9.1 Revisiting the terminology 157

Routing and page transitions 157 ■ Composition
techniques 158 ■ High-level architectures 159

9.2 Comparing complexity 161
Heterogeneous architectures 162

9.3 Are you building a site or an app? 162
The Documents-to-Applications Continuum 163 ■ Server,
client, or both 164

9.4 Picking the right architecture and integration
technique 165
Strong isolation (legacy, third party) 166 ■ Fast first-page
load/progressive enhancement 167 ■ Instant user
feedback 167 ■ Soft navigation 168 ■ Multiple micro
frontends on one page 168

PART 3 HOW TO BE FAST, CONSISTENT,
AND EFFECTIVE ... 171

10 Asset loading 173
10.1 Asset referencing strategies 174

Direct referencing 174 ■ Challenge: Cache-busting and
independent deployments 175 ■ Referencing via redirect
(client) 176 ■ Referencing via include (server) 178
Challenge: Synchronizing markup and asset versions 180
Inlining 183 ■ Integrated solutions (Tailor, Podium, …) 183
Quick summary 185

10.2 Bundle granularity 186
HTTP/2 186 ■ All-in-one bundle 187 ■ Team bundles 187
Page and fragment bundles 187

CONTENTS vii
10.3 On-demand loading 188
Proxy micro frontends 188 ■ Lazy loading CSS 189

11 Performance is key 190
11.1 Architecting for performance 191

Different teams, different metrics 191 ■ Multi-team performance
budgets 192 ■ Attributing slowdowns 193 ■ Performance
benefits 195

11.2 Reduce, reuse… vendor libraries 196
Cost of autonomy 196 ■ Pick small 197 ■ One global
version 199 ■ Versioned vendor bundles 200 ■ Don’t share
business code 211

12 User interface and design system 213
12.1 Why a design system? 214

Purpose and role 215 ■ Benefits 215

12.2 Central design system versus autonomous teams 216
Do I need my own design system? 216 ■ Process, not project 217
Ensure sustained budget and responsibility 217 ■ Get buy-in from
the teams 218 ■ Development process: Central versus
federated 219 ■ Development phases 221

12.3 Runtime versus build-time integration 222
Runtime integration 222 ■ Versioned package 224

12.4 Pattern library artifacts: Generic versus specific 226
Choose your component format 227 ■ There will be change 230

12.5 What goes into the central pattern library? 231
The costs of sharing components 231 ■ Central or local? 231
Central and local pattern libraries 233

13 Teams and boundaries 236
13.1 Aligning systems and teams 237

Identifying team boundaries 238 ■ Team depth 240
Cultural change 242

13.2 Sharing knowledge 243
Community of practice 243 ■ Learning and enabling 244
Present your work 245

13.3 Cross-cutting concerns 245
Central infrastructure 245 ■ Specialized component team 246
Global agreements and conventions 247

CONTENTSviii
13.4 Technology diversity 247
Toolbox and defaults 247 ■ Frontend blueprint 247
Don’t fear the copy 248 ■ The value of similarity 249

14 Migration, local development, and testing 251
14.1 Migration 252

Proof of concept and building a lighthouse 252 ■ Strategy #1:
Slice-by-slice 254 ■ Strategy #2: Frontend first 255
Strategy #3: Greenfield and big bang 256

14.2 Local development 258
Don’t run another team’s code 258 ■ Mocking fragments 259
Fragments in isolation 260 ■ Pulling other teams micro frontends
from staging or production 262

14.3 Testing 262

index 265

preface
I’ve been developing applications for the web for over 20 years now. On this journey,
I’ve seen a variety of different-sized projects. I’ve built tiny side-projects all by myself,
have been part of smaller projects with a couple of people, and have also worked on
larger projects that involved more people than can comfortably fit around our kitchen
table.

 In 2014, my colleagues at neuland Büro für Informatik and I had the task of
rebuilding an e-commerce system for a department store chain. The existing mono-
lithic shop not only suffered from performance issues. The major pain-point was an
organizational one: adding new features took a long time and often broke unrelated
parts of the system. Increasing the development team made this even worse. Our client
not only wanted a cleaner-structured new software, but they also wanted to architect
the new system so that multiple teams could work on it independently without step-
ping on each other’s toes. This parallel feature development was crucial to their plan
of digitally expanding their business. We opted for an architecture we called verticaliza-
tion: the establishment of different cross-functional teams that build and evolve a spe-
cific area of the shop from database to user interface. The individual team applications
were able to work autonomously and only integrated in the frontend. This frontend
integration looked easy on paper, but we had to learn a lot to do it effectively. In later
projects, we had the chance to refine our techniques and learn from this experience.

 At the same time, other companies were already building their software this way.
However, there was no unique name for this architecture. What search term should I
use if I want to learn about the challenges involved in building a web application with
multiple autonomous teams? In November 2016, the ThoughtWorks Technology
Radar changed this by coining the term micro frontends. The introduction of this name
ix

PREFACEx
made it possible for the development community to share best practices, techniques,
and tools around this architecture.

 The following summer, I was able to dedicate some time to write down our experi-
ences. I distilled the techniques we were using into standalone sample projects and
published the content at https://micro-frontends.org. From that point, things took on
a life of their own: people from across the internet invited me to speak at their confer-
ences. Magazines asked me to write articles. Developers from the community volun-
teered to translate the site into different languages.

 To top things off, I was approached by Nicole and Brian from Manning at the
beginning of last year. They asked if I could see myself writing a book on this topic. My
first thought was, “What a hilarious idea—I’m not a book writer! I don’t even enjoy
reading texts. I much prefer listening, writing code, building systems, and solving
problems.” But since this seemed like a once-in-a-lifetime opportunity, I gave my reply
some thought. I had long consultations with friends and family and some sleepless
nights, but in the end, I accepted the challenge. After all, I like explaining things.
Doing it in book form, with diagrams (I love good diagrams) and code examples
would be a venture where I could learn a lot. In retrospect, I’m happy with this
decision—and the final result you are looking at right now.

https://micro-frontends.org

acknowledgments
The cover of the book prominently features my name as the author. But this is not a
single-person effort. It takes a village to create a book like this. I would like to thank

 Emma, Noah, and Finn for your patience and understanding. In the last year, I
spent much less time with you than I’d like.

 Sarah, my wonderful wife, for your repeated encouragement and your fresh
perspectives. You jumped in when I did long evenings or worked through week-
ends. You rock!

 Tricia Louvar, my editor at Manning. You guided me through this journey,
aggregated feedback, challenged my decisions, and pointed me to sections that
needed more clarity.

 Dennis Reimann, Fabricius Seifert, Marco Pantaleo, and Alexander Knöller for
bouncing ideas, reading my drafts, and iterating on graphics.

 The team at Manning who worked with me to plan, develop, review, edit, pro-
duce and promote this book. Thanks to Ana Romac, Brian Sawyer, Candace
Gillhoolley, Christopher Kaufmann, Ivan Martinović, Lana Klasic, Louis Lazaris,
Matko Hrvatin, Mayur Patil, Nicole Butterfield, Radmila Ercegovac, Deirdre
Hiam, Ben Berg, and Melody Dolab.

 My folks at neuland Büro für Informatik for giving me the ability to continu-
ously learn on new projects and providing space to create this book. Thank you,
Jens and Thomas, and thanks to all the others who encouraged me to do this.

 All book reviewers who read my manuscript in various stages. Your feedback
helped me to improve my chapters and adjust the focus. Thanks to Adail Reta-
mal, Alan Bogusiewicz, Barnaby Norman, David Osborne, David Paccoud,
Dwight Wilkins, George Onofrei, Ivo Sánchez Checa Crosato, Karthikeyarajan
xi

ACKNOWLEDGMENTSxii
Rajendran, Luca Mezzalira, Luis Miguel Cabezas Granado, Mario-Leander
Reimer, Matt Ferderer, Matthew Richmond, Miguel Eduardo Gil Biraud, Mladen
Đurić, Potito Coluccelli, Raushan Jha, Richard Vaughan, Ryan Burrows, Tanya
Wilke, and Tony Sweets.

 All MEAP readers. Receiving encouragement from good friends is one thing.
Seeing that people from all over the world put in real money to get early access
felt remarkable. You motivated me to pull through this, even if I’d sometimes
rather have spent the evening on the couch.

 Samantha, macOS’s text-to-speech voice, for relentlessly reading back every ver-
sion of every paragraph I’ve written. Take that, dyslexia! A toast to accessibility.

about this book
I’ve written Micro Frontends in Action to explain the concepts and motivations for
adopting a micro frontends architecture. You’ll learn a series of practical techniques
to accomplish frontend integration and communication. Since the landscape is pretty
new and use cases can be very different, I decided not to go with one specific micro
frontends library, tool, or platform. Instead, you’ll learn the fundamental mechanisms
by building directly on existing web standards wherever possible. At the end of the
book, we’ll address overarching topics like how to ensure good performance, coher-
ent design, and knowledge sharing in a distributed team structure.

Who should read this book

This book has the word frontend in its title, and in most chapters, we work at some
aspect of the user interface. However, this is not only a book for frontend developers.
If your expertise is more on the backend-side, or you are a software architect, you
won’t be lost. As long as you have a basic understanding of HTML, CSS, JavaScript,
and networking, you’re good to go. You don’t need to be familiar with specific librar-
ies or frontend frameworks to understand the techniques described in this book.

How this book is organized: a roadmap

This book has three parts and a total of 14 chapters.
 Part 1 explains what micro frontends are and when it’s a good idea to use them:

 Chapter 1 paints the big picture. It explains what micro frontends are and goes
through the benefits and drawbacks of this architecture.

 Chapter 2 walks you through your first micro frontends project. We’ll start sim-
ply and won’t use fancy techniques—just plain old links and iframes. In this
chapter, we create a solid basis to iterate upon.
xiii

ABOUT THIS BOOKxiv
Part 2 focuses on frontend integration techniques. It gives answers to the question
“How do user interfaces from different teams come together in the browser?” You’ll
learn approaches for routing and composition for server- and client-rendered
applications:

 Chapter 3 illustrates how to do composition using Ajax calls and implement
server-based routing with a shared Nginx web server.

 Chapter 4 dives deep into server-side composition. You’ll learn how to compose
markup from different applications via Nginx’s SSI feature. We’ll shine a light
on some techniques to ensure proper performance even if something goes
wrong. We’ll also discuss some alternative implementations like ESI, Tailor, and
Podium.

 Chapter 5 addresses composition for client-rendered applications. You’ll learn
how to compose UIs written in different technologies into a single view by lever-
aging the power of Web Components.

 Chapter 6 covers communication strategies. We focus on in-browser communi-
cation between different micro frontends. At the end of the chapter, we also
address topics like backend communication and how to share information like
a login status across teams.

 Chapter 7 introduces the concept of the application shell. The shell enables you
to build a full client-rendered user experience that consists of single-page appli-
cations built by different teams. You learn how to develop an application shell
from scratch, and we finish by taking a look at the popular single-spa library.

 Chapter 8 describes how you can accomplish universal rendering in a micro
frontends architecture. We do this by combining server- and client-side integra-
tion techniques you’ve already learned in the preceding chapters.

 Chapter 9 rounds off the second part by putting the learned techniques into
context. It provides you with a set of questions and tools to decide which micro
frontend architecture is the best one for your project.

Part 3 explains practices to ensure good end-user performance and a consistent user
interface. It guides how to organize your teams to get the most value out of the micro
frontends architecture:

 Chapter 10 dives into asset-loading strategies to deliver the required JavaScript
and CSS code to the customer’s browser in a performant way without introduc-
ing inter-team coupling.

 Chapter 11 describes how techniques like performance budgets can work even
if code from multiple teams are active on a single page. We discuss methods to
reduce the amount of vendor code like framework runtimes.

 Chapter 12 illustrates how to design systems that can help to deliver a consistent
user interface to your customers, even if different teams build it. You’ll learn
some organizational patterns that have proven valuable. We compare different
ways of integrating a pattern library with the micro frontends and discuss their
technical implications.

ABOUT THIS BOOK xv
 Chapter 13 focuses on the organization. It answers the questions “How cross-
functional should my teams be?” and “How do I identify good system boundar-
ies?” You’ll learn about ways to effectively share knowledge and organize cross-
cutting concerns and shared infrastructure components.

 Chapter 14 highlights some migration strategies for moving from a monolithic
application to a micro frontends architecture. It also addresses the challenges
of local development and testing.

About the code

All source code in the book is presented in a monospaced typeface like this, which
sets it off from the surrounding text. In many listings, the code is annotated to point
out key concepts, and numbered bullets are used in the text to provide additional
information about the code. Throughout this book, we’ll build an e-commerce appli-
cation. We start small and expand on it chapter by chapter. Most listings are shortened
[…] to avoid repeating code.

 The full source code is available for download from the publisher’s website at
https://www.manning.com/books/micro-frontends-in-action and GitHub at https://
github.com/naltatis/micro-frontends-in-action-code. I recommend downloading and
running the code on your machine as you move through the chapters. You can also
find a hosted version at https://the-tractor.store. There you can interact with all book
examples and look at the associated code directly in your browser.

 The applications in this book are built using static files. You don’t need to know a
specific backend language like Java, Python, C#, or Ruby. To start the applications we
use ad hoc web servers which require Node.js to be installed on your machine. In the
chapters that cover server-side routing and composition, we use Nginx. You’ll find the
installation instructions in the first chapter that requires it.

Online resources

Purchase of Micro Frontends in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/book/micro-frontends-in-action. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print

https://www.manning.com/books/micro-frontends-in-action
https://github.com/naltatis/micro-frontends-in-action-code
https://github.com/naltatis/micro-frontends-in-action-code
https://livebook.manning.com/book/micro-frontends-in-action
https://the-tractor.store
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

about the author
MICHAEL GEERS is a software developer specializing in building user interfaces. He has
written software for the web since he was a teenager. In the last few years, he has
worked on various customer projects with verticalized architectures. He shares his
experiences on this topic at international conferences, and in a series of magazine
articles, and runs the site https://micro-frontends.org.

xvi

https://micro-frontends.org

about the cover illustration
The figure on the cover of Micro Frontends in Action is captioned “Habitante de la Cal-
abre,” or a Woman from Calabria. The illustration is taken from a collection of dress
costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810),
titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely
drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just 200
years ago. Isolated from each other, people spoke different dialects and languages. In
the streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xvii

ABOUT THE COVER ILLUSTRATIONxviii

Part 1

Getting started with
micro frontends

Frontend development has evolved a lot over the last decade. The web appli-
cations we are building today have to load quickly, run on a broad range of
devices, and should react swiftly to user interactions. For a lot of businesses, the
web frontend is the prime interaction surface for their users. So it’s natural to
put a lot of thought and attention to detail into its development.

 When your project is small, and you’re working with a handful of developers,
building a nice web application is a straightforward task. However, if your busi-
ness has a large web application and wants to improve and add new features con-
tinually, a single team will quickly be overwhelmed. This is where the micro
frontend architecture comes in. There we slice the application into pieces that
multiple teams can work on independently. In chapter 1, you’ll learn the core
concepts, understand the reasoning behind this architecture, and know what
types of projects can benefit the most from it. In the second chapter, we’ll jump
right into the code and build a minimal viable micro frontends project from
scratch: The Tractor Store. This e-commerce project functions as the basis for
the more advanced techniques you’ll unlock later in the book.

2 CHAPTER

What are micro frontends?
I’ve worked as a software developer on many projects over the last 15 years. In this
time, I’ve had multiple chances to observe a pattern that repeats itself throughout
our industry: working with a handful of people on a new project feels fantastic.
Every developer has an overview of all functionality. Features get built quickly. Dis-
cussing topics with your coworkers is straightforward. This changes when the proj-
ect’s scope and the team size increases. Suddenly one developer can’t know every
edge of the system anymore. Knowledge silos emerge inside your team. Complexity
rises—making a change on one part of the system may have unexpected effects on

This chapter covers
 Discovering what micro frontends are

 Comparing the micro frontends approach to other
architectures

 Pointing out the importance of scaling frontend
development

 Recognizing the challenges that this architecture
introduces
3

4 CHAPTER 1 What are micro frontends?
other parts. Discussions inside the team are more cumbersome. Before, team mem-
bers made decisions at the coffee machine. Now you need formal meetings to get
everyone on the same page. Frederick Brooks described this in the book The Mythical
Man-Month back in 1975. At some point, adding new developers to a team does not
increase productivity.

 Projects often are divided into multiple pieces to mitigate this effect. It became
fashionable to divide the software, and thereby also the team structure, by technology.
We introduced horizontal layers with a frontend team and one or more backend
teams. Micro frontends describes an alternative approach. It divides the application
into vertical slices. Each slice is built from the database to the user interface and run
by a dedicated team. The different team frontends integrate in the customer’s
browser to form the final page. This approach is related to the microservices architec-
ture. But the main difference is that a service also includes its user interface. This
expansion of the service removes the need for a central frontend team. Here are the
three main reasons why companies adopt a micro frontends architecture:

 Optimize for feature development—A team includes all skills needed to develop a fea-
ture. No coordination between separate frontend and backend teams is required.

 Make frontend upgrades easier—Each team owns its complete stack from frontend
to database. Teams can decide to update or switch their frontend technology
independently.

 Increase customer focus—Every team ships their features directly to the customer.
No pure API teams or operation teams exist.

In this chapter, you’ll learn what problems micro frontends solve and when it makes
sense to use them.

1.1 The big picture
Figure 1.1 is an overview of all the parts that are important when implementing micro
frontends. Micro frontends are not a concrete technology. They’re an alternative orga-
nizational and architectural approach. That’s why we see a lot of different elements in
this chart—like team structure, integration techniques, and other related topics. We’ll
go through the complete figure step by step. We start with the three teams above the
dashed line and work our way up. When we reach the magic lamp at the top, we’ll dis-
cuss frontend integration. At the bottom of this diagram, you can see the contents of this
box zoomed in. It illustrates the three different aspects we need to address to create an
integrated application. Our diagram journey ends at the three shared topics at the right.

1.1.1 Systems and teams

The three boxes with Teams A, B, and C demonstrate the vertically arranged software
systems. They form the core of this architecture. Each system is autonomous, which
means it can function even when the neighboring systems are down. Every system has
its own data store to achieve this. Additionally, it doesn’t rely on synchronous calls to
other systems to answer a request.

5The big picture
Figure 1.1 Here is the big picture overview of the micro frontends approach. The vertically arranged
teams at the bottom are the core of this architecture. They each produce features in the form of pages
or fragments. You can use techniques like SSI or Web Components to integrate them into an assembled
page that reaches the customer.

One system is owned by one team. This team works on the complete stack of the soft-
ware from top to bottom. In this book, we will not cover the backend aspects like data
replication between these systems. Here, established solutions from the microservices
world apply. We’ll focus on organizational challenges and frontend integration.

A B
C

C

 Frontend integration

Team A

Thunder.js

Mission

 Team B

Wonder.js
v1.3

Mission

Team C

Wonder.js
v1.4

Mission

C
ro

ss
 fu

nc
tio

na
l t

ea
m

Design
system

Sharing
knowledge

Web
performance

Shared topics

PageFragment Fragments

Vertically arranged
systems and teams

Routing and page transitions Composition Communication

A B B
C

A

B

C

CA

Integrated application

 Frontend integration (server-side and/or client-side)

6 CHAPTER 1 What are micro frontends?
TEAM MISSIONS

Each team has its area of expertise in which it provides value for the customer. In fig-
ure 1.2 you see an example for an e-commerce project with three teams.

Figure 1.2 An e-commerce example with three teams. Each team
works on a different part of the e-commerce shop and has its mission
statement that clarifies their responsibility.

Every team should have a descriptive name and a clear user-focused mission. In our
projects we align the teams along the customer journey—the stages a customer goes
through when buying something.

 Team Inspire’s mission, as the name implies, is to inspire the browsing customer and
to present products that might be of interest.

 Team Decide helps in making an informed buying decision by providing excellent
product images, a list of relevant specs, comparison tools, and customer reviews.

 Team Checkout takes over when the customer has decided on an item and guides
them through the checkout process.

 A clear mission is vital for the team. It provides focus and is the basis for dividing
the software system.

CROSS-FUNCTIONAL TEAMS

The most significant difference between micro frontends and other architectures is
team structure. On the left side of figure 1.3 you see specialist teams. People are
grouped by different skills or technologies. Frontend developers are working on the
frontend; experts in handling payment work on a payment service. Business and oper-
ations experts also form their own teams. This structure is typical when using a
microservices approach.

 It feels natural at first sight, right? Frontend developers like to work with other
frontend developers. They can discuss the bugs they are trying to fix or come up with
ideas on how to improve a specific part of the code. The same is true for the other
teams which specialize in a specific skill. Professionals strive for perfection and have

Team
Inspire

Team
Decide

Team
Checkout

Mission
Helps the customer
to discover products

Mission
Helps to make the

buying decision

Mission
Guides through the

checkout process

7The big picture
an urge to come up with the best solution in their field. When each team does a great
job, the product as a whole will also be great, right?

 This assumption is not necessarily valid. Building interdisciplinary teams is becom-
ing more and more popular. You have a team where frontend and backend engineers,
but also operations and business people, work together. Due to their different per-
spectives, they come up with more creative and effective solutions for the task at hand.
These teams might not build the best-in-class operations platform or frontend layer,
but they specialize in the team’s mission. For example, they are working on becoming
experts in presenting relevant product suggestions or building a seamless checkout
experience. Instead of mastering a specific technology, they all focus on providing the
best user experience for the area they work on.

 Cross-functional teams come with the added benefit that all members are directly
involved in feature development. In the microservice model, the services or opera-
tions teams are not involved directly. They receive their requirements from the layer
above and don’t always have the full picture of why these are important. The cross-
functional team approach makes it easier for all people to get involved, contribute,
and, most importantly, self-identify with the product. Now that we’ve discussed teams and
their individual systems, let’s move to the next step.

1.1.2 The frontend

Now we’re getting to the aspect that makes the micro frontends approach different
from other architectures. It’s the way we think about and build features. Teams have
end-to-end responsibility for a given functionality. They deliver the associated user

Frontend

Payment
service

Content
service

Operations
platform

Business

Attributes
service

Specialist teams

Team
Inspire

Team
Decide

Team
Checkout

Grouped around a skill or technology

Cross-functional teams

Grouped around a use case or customer need

Figure 1.3 Team structure of a microservice-style architecture on the left compared with micro
frontends teams on the right. Here the teams are formed around a customer need and not based
on technologies like frontend and backend.

8 CHAPTER 1 What are micro frontends?
interface as a micro frontend. A micro frontend can be a complete page or a fragment
that other teams include. Figure 1.4 illustrates this.

 A team generates the HTML, CSS, and JavaScript necessary for a given feature. To
make life easier, they might use a JavaScript library or framework to do that. Teams
don’t share library and framework code. Each team is free to choose the tool that fits
best for their use case. The imaginary frameworks Thunder.js and Wonder.js illustrate
that.1 Teams can upgrade their dependencies on their own. Team B uses Wonder.js
v1.3, whereas Team C already switched to v 1.4.

PAGE OWNERSHIP

Let’s talk about pages. In our example, we have different teams that care about differ-
ent parts of the shop. If you split up an online shop by page types and try to assign
each type to one of the three teams, you might end up with something like figure 1.5.

Figure 1.5 Each page is owned by one team.

1 Yes, I’m aware that there probably is a JavaScript framework for all dictionary words registered on npmjs.org,
including Thunder and Wonder. But since both projects have over six years of inactivity and single-digit weekly
downloads, let’s stick to them. :)

Team A

Thunder.js

Team B

Wonder.js
v1.3

Team C

Wonder.js
v1.4

Features as isolated
user interfacesA B

C

C

PageFragment Fragments

Figure 1.4 This is the middle portion of the big picture as detailed in its entirety in figure
1.1. Each team builds its own user interface as a page or a fragment.

2

33 $

66 $

99 $ buy

21

66 $

11

ListHome Detail Basket Payment Confirm

$ $ %%

Team
Inspire

Team
Decide

Team
Checkout

Customer journey

9The big picture
Because the team structure resembles the customer journey, this page-type mapping
works well. The focus of a homepage is indeed an inspiration, and a product detail
page is a spot where the customer makes their buying decision.

 How could you implement this? Each team could build their own pages, serve
them from their application, and make them accessible through a public domain. You
could connect these pages via links so that the end-user can navigate between them.
Voilà—you are good to go, right? Basically, yes. In the real world, you have require-
ments that make it more complicated. That’s why I’ve written this book! But now you
understand the gist of the micro frontends architecture:

 Teams can work autonomously in their field of expertise.
 Teams can choose the technology stack that fits best for the job at hand.
 The applications are loosely coupled and only integrate in the frontend (e.g.,

via links).

FRAGMENTS

The concept of pages is not always sufficient. Typically you have elements that appear
on multiple pages, like the header or footer. You do not want every team to
re-implement them. This is where fragments come in.

 A page often serves more than one purpose, and might show information or
provide functionality that another team is responsible for. In figure 1.6, you see the
product page of The Tractor Store. Team Decide owns this page. But not all of the func-
tionality and content can be provided by them.

 The Recommendations block on the right is an inspirational element. Team
Inspire knows how to produce those. The Mini Basket at the bottom shows all selected
items. Team Checkout implements the basket and knows its current state. The
customer can add a new tractor to the basket by clicking the Buy button. Since this
action modifies the basket, Team Checkout also provides this button as a fragment.

Figure 1.6 Teams are responsible for pages and fragments. You can think of fragments as
embeddable mini applications that are isolated from the rest of the page.

Team Inspire

Team Decide

Team Checkout

Page

Fragments

Fragment

buy for $66

10 CHAPTER 1 What are micro frontends?
 A team can decide to include functionality from another team by adding it some-
where on the page. Some fragments might need context information, like a product
reference for the Related Products block. Other fragments like the Mini Basket bring
their own internal state. But the team that is including the fragment in their code
does not have to know about state and implementation details of the fragment.

1.1.3 Frontend integration

Figure 1.7 shows the upper part of our big-picture diagram. In this part, it all comes
together.

Figure 1.7 The term frontend integration describes a set of techniques you use to assemble the user
interfaces (pages and fragments) of the teams into an integrated application. You can group these
techniques into three categories: routing, composition, and communication. Depending on your
architectural choices, you have different options to solve these categories.

Frontend integration describes the set of tools and techniques you use to combine the
team’s UIs into a coherent application for the end user. The zoomed-in Frontend Inte-
gration box at the bottom of the diagram highlights three integration aspects. Let’s go
through them one by one.

ROUTING AND PAGE TRANSITIONS

Here we are talking about integration on page level. We need a system to get from a
page owned by Team A to a page owned by Team B. The solutions can be straight-
forward. You can achieve this by merely using an HTML link. If you want to enable

A B
C

C

 Frontend integration

PageFragment Fragments

Routing and page transitions Composition Communication

A B B
C

A

B

C

CA

Integrated application

 Frontend integration (server-side and/or client-side)

11The big picture
client-side navigation, which renders the next page without having to do a reload, it
gets more sophisticated. You can implement this by having a shared application shell or
using a meta-framework like single-spa. We will look into both options in this book.

COMPOSITION

The process of getting the fragments and putting them in the right slots is performed
here. The team that ships the page typically does not fetch the content of the frag-
ment directly. It inserts a marker or placeholder at the spot in the markup where the
fragment should go.

 A separate composition service or technique does the final assembly. There are dif-
ferent ways of achieving this. You can group the solutions into two categories:

1 Server-side composition, for example with SSI, ESI, Tailor or Podium
2 Client-side composition, for example with iframes, Ajax, or Web Components

Depending on your requirements, you might pick one or a combination of both.

COMMUNICATION

For interactive applications, you also need a model for communication. In our exam-
ple, the Mini Basket should update after clicking the Buy button. The Recommenda-
tion Strip should update its product when the customer changes the color on the
detail page. How does a page trigger the update of an included fragment? This ques-
tion is also part of frontend integration.

 In part two of this book, you’ll learn about different integration techniques and the
benefits and drawbacks they provide. In chapter 9 we’ll round off this part with some
guidance to help you make a good decision.

1.1.4 Shared topics

The micro frontends architecture is all about being able to work in small autonomous
teams that have everything they need to create value for the customer. But some
shared topics are essential to address when working like this (figure 1.8).

Figure 1.8 To ensure a good end result and avoid redundant work, it’s important to address
topics like web performance, design systems, and knowledge sharing from the start.

Team
Inspire

Frontend

Team
Decide

Frontend

Team
Checkout

Frontend

Design
system

Sharing
knowledge

Web
performance

Shared topics

12 CHAPTER 1 What are micro frontends?
WEB PERFORMANCE

Because we assemble a page from fragments made by multiple teams, we often end up
with more code that our user must download. It’s crucial to have an eye on the perfor-
mance of the page from the beginning. You’ll learn useful metrics and techniques to
optimize asset delivery. It’s also possible to avoid redundant framework downloads
without compromising team autonomy. In chapters 10 and 11 we dive deeper into the
performance aspects.

DESIGN SYSTEMS

To ensure a consistent look and feel for the customer, it is wise to establish a common
design system. You can think of the design system as a big box of branded LEGOTM

pieces that every team can pick and choose from. But instead of plastic bricks, a
design system for the web includes elements like buttons, input fields, typography, or
icons. The fact that every team uses the same basic building blocks brings you a con-
siderable way forward design-wise. In chapter 12 you’ll learn different ways of imple-
menting a design system.

SHARING KNOWLEDGE

Autonomy is essential, but you don’t want information silos. It’s not productive when
every team builds an error-logging infrastructure on their own. Picking a shared solu-
tion or at least adopting the work of other teams helps you to stay focused on your
mission. You need to create spaces and rituals that enable information exchange regu-
larly between teams.

1.2 What problems do micro frontends solve?
Now you have an idea of what micro frontends are. Let’s take a closer look at the orga-
nizational and technical benefits of this architecture. We’ll also address the most prev-
alent challenges you have to solve to be productive with this approach.

1.2.1 Optimize for feature development

The number one reason why companies choose to go the micro frontend route is to
increase development speed. In a layered architecture, multiple teams are involved in
building a new feature. Here is an example: suppose the marketing department has
the idea to create a new type of promotion banner. They talk to the content team to
extend the existing data structure. The content team talks to the frontend team to dis-
cuss changes to their API. Meetings are arranged, and the specification is written.
Every team plans its work and schedules it in one of the next sprints. If everything
works as planned, the feature is ready when the last team finishes implementing it. If
not, more meetings are scheduled to discuss changes.

Reducing waiting time between teams is micro frontends' primary goal.

With the micro frontends model, all people involved in creating a feature work in the
same team. The amount of work that needs to be done is the same. But communica-
tion inside a team is much faster and less formal. Iteration is quicker—no waiting for
other teams, no discussion about prioritization.

13What problems do micro frontends solve?
Figure 1.9 This diagram shows what it takes to build a new feature. On the left side, you see a layered
architecture. Three teams are involved in building it. These teams have to coordinate and potentially wait
for each other. With the micro frontends approach (right), one team can build this feature.

Figure 1.9 illustrates this difference. The micro frontend architecture optimizes for
implementing features by moving all necessary people closer together.

1.2.2 No more frontend monolith

Most architectures today don’t have a concept for scaling frontend development. In
figure 1.10 you see three architectures: the monolith, frontend/backend-split, and

Team
Checkout

Team
Decide

Frontend

Payment
service

 Content
 service

Operations
platform

Business

Attributes
service

Layered architectures

Team
Inspire

Micro frontends

Adding a new feature
Inter-team

communication
 waiting time�

The monolith

Frontend team

Front and back Microservices

Backend team

Frontend team

P
ro

du
ct

 s
er

vi
ce

Aggregation layer / gateway

P
ay

m
en

t s
er

vi
ce

C
on

te
nt

 s
er

vi
ce

B
as

ke
t s

er
vi

ce

F
ro

nt
en

d
B

ac
ke

nd
D

at
ab

as
e

Project team

Monolithic frontend

Frontend

Figure 1.10 In most architectures, the frontend is a monolithic system.

14 CHAPTER 1 What are micro frontends?
microservices. They all come with a monolithic frontend. That means the frontend
comes from a single codebase that only one team can work on sensibly.

 With micro frontends, the application, including the frontend, gets split into
smaller vertical systems. Each team has its own smaller frontend. Compared to a front-
end monolith, building and maintaining a smaller frontend has benefits. A micro
frontend

 Is independently deployable
 Isolates the risk of failure to a smaller area
 Is narrower in scope and thereby easier to understand
 Has a smaller codebase that can help when you want to refactor or replace it
 Is more predictable because it does not share state with other systems

Let’s go into detail on a few of these topics.

1.2.3 Be able to keep changing

As a software developer, constant learning and the adoption of new technologies is
part of the job. But when you work in frontend development, this is especially true.
Tools and frameworks are changing fast. Sophisticated frontend development started
in 2005, the web 2.0 era, with Ruby on Rails, Prototype.js, and Ajax, which were essen-
tial to bringing interactivity to the (at that time) mostly static web.

 But a lot has changed since then. Frontend development transformed from “mak-
ing the HTML pretty with CSS” to a professional field of engineering. To deliver good
work, a web developer nowadays needs to know topics like responsive design, usability,
web performance, reusable components, testability, accessibility, security, and the
changes in web standards and their browser support. The evolution of frontend tools,
libraries, and frameworks enabled us to build higher-quality and more capable web
applications to meet the rising expectations of our users. Tools like Webpack, Babel,
Angular, React, Vue.js, Stencil, and Svelte play a vital role today, but, likely, we haven’t
reached the end of this evolution yet. Being able to adopt a new technology when it
makes sense is an essential asset for your teams and your company.

LEGACY

Dealing with legacy systems is also becoming a more prevalent topic in the frontend. A
lot of developer time gets spent on refactoring legacy code and coming up with migra-
tion strategies. Big players are investing a considerable amount of work in maintaining
their large applications. Here are three examples:

 GitHub did a multi-year migration to remove their dependency on jQuery.2

 Trivago, a hotel search engine, made an enormous effort with Project Ironman
to rework their complex CSS to a modular design system.3

2 See “Removing jQuery from GitHub.com frontend,” The GitHub Blog, https://github.blog/2018-09-06-removing
-jquery-from-github-frontend/.

3 See Christoph Reinartz, “Large Scale CSS Refactoring at trivago,” Medium, http://mng.bz/gynn.

https://github.blog/2018-09-06-removing-jquery-from-github-frontend/
https://github.blog/2018-09-06-removing-jquery-from-github-frontend/
http://mng.bz/gynn

15What problems do micro frontends solve?
 Etsy is getting rid of their JavaScript legacy baggage to reduce bundle size and
increase web performance. The code has grown over the years, and one devel-
oper can’t have an overview of the complete system. To identify dead code,
they’ve built an in-browser code coverage tool that runs in the customer’s
browser and reports back to their servers.4

When you are building an application of a specific size and want to stay competitive,
it’s essential to be able to move to new technologies when they provide value for your
team. This freedom does not mean that it’s wise to rewrite your complete frontend
every few years to use the currently trending framework.

LOCAL DECISION MAKING

Being able to introduce and verify a technology in an isolated part of your application
without having to come up with a grand migration plan for everything is a valuable asset.
The micro frontends approach enables this on a team level. Here is an example: Team
Checkout is experiencing a lot of JavaScript runtime errors lately, due to references to
undefined variables. Since it’s crucial to have a checkout process that’s as bug-free as
possible, the team decides to switch to Elm, which is a statically typed language that com-
piles to JavaScript. The language is designed to make it impossible to create runtime
errors. But it also comes with drawbacks. Developers have to learn the new language and
its concepts. The open source ecosystem of available modules or components is still
small. But for the use case of Team Checkout, the pros outweigh the cons.

 With the micro frontends approach, teams are in full control of their technology
stack (micro architecture). This autonomy enables them to make the decision and switch
horses. They don’t have to coordinate with other teams. The only thing they have
to ensure is that they stay compatible with the previously agreed upon inter-team
conventions (macro architecture). (See figure 1.11.) These might include adhering to

4 See “Raiders of the Fast Start: Frontend Perf Archeology, http://mng.bz/5aVD.

F
ro

nt
en

d
B

ac
ke

nd
D

at
ab

as
e

Ruby on
Rails

PostgreSQL

Spring Boot
Java

MongoDB

React Vue.js

GraphQL

S
ca

la
 P

la
y

S
ca

la
 P

la
y

S
ca

la
 P

la
y

MySQL S3

React Elm

Phoenix
Elixir

A
W

S
 L

am
bd

a

Cassandra

Macro architecture Micro architecture

React
Framework

switch

Figure 1.11 Teams can decide about their internal architecture (micro architecture) on
their own as long as they stay in the boundaries of the agreed upon macro architecture.

http://mng.bz/5aVD

16 CHAPTER 1 What are micro frontends?
namespaces and supporting the chosen frontend integration technique. You’ll learn
more about these conventions through the course of the book.

 Doing such a switch for a large application with a monolithic codebase would be a
big deal with lots of meetings and opinions. The risks are much higher, and the
described trade-offs might not be the same in different parts of the application. The
process of making a decision at this scale is often so painful, unproductive, and tire-
some that most developers shy away from bringing it up in the first place. The micro
frontends approach makes it easier to evolve your application over time in the areas
where it makes sense.

1.2.4 The benefits of independence

Autonomy is one of the critical benefits of microservices and also of micro frontends.
It comes in handy when teams decide to make more significant changes as described
in the previous section. But even when you are working in a homogeneous environ-
ment where everyone is using the same tech stack, it has its advantages.

SELF-CONTAINED

Pages and fragments are self-contained. That means they bring their own markup,
styles, and scripts, and should not have shared runtime dependencies. This isolation
makes it possible for a team to deploy a new feature in a fragment without having to
consult with other teams first. An update may also come with an upgraded version of
the JavaScript framework they are using. Because the fragment is isolated, this is not a
big deal. (See figure 1.12.)

 At first sight, it sounds wasteful that every team brings their own assets. This is par-
ticularly true when all teams are using the same stack. But this mode of working
enables teams to move much faster and deliver features more quickly.

Figure 1.12 Fragments are self-contained and upgradeable independently of the page
they are embedded in.

F
ro

nt
en

d
B

ac
ke

nd
D

at
ab

as
e

Spring Boot
Java

PostgreSQL

Spring Boot
Java

PostgreSQL

Wonder.js
v1.3

Wonder.js
v1.3

Spring Boot
Java

PostgreSQL

Spring Boot
Java

PostgreSQL

Wonder.js
v1.3 v1.4

Wonder.js
v1.3

Version
upgrade

1.3

1.4

Page

Fragment

1.4

17The downsides of micro frontends
TECHNICAL OVERHEAD

Backend microservices introduce overhead. You need more computing resources to,
for example, run different Java applications in their own virtual machine or container.
But the fact that the backend services are themselves much smaller than a monolith
also comes with advantages. You can run a service on smaller and cheaper hardware.
You can scale specific services by running multiple instances of it and don’t have to
multiply the complete monolith. You can always solve this with money and buy more
or larger server instances.

 This scaling does not apply to the frontend code. The bandwidth and resources of
your customer’s devices are limited. However, the overhead does not scale linearly
with the number of teams. It heavily depends on how teams build their applications.
In chapter 11, we will explore metrics to qualify and learn techniques to mitigate these
effects. But it’s safe to say that the team isolation comes with an extra cost.

 So, why do we do this at all? Why don’t we build a large React application where
every team is responsible for different parts of it? One team only works on the compo-
nents of the product page; the other team builds the checkout pages. One source
code repository, one React application.

SHARED NOTHING

The reasoning behind this is the realization that communication between teams is
expensive—really expensive. When you want to change a piece that others rely on, be
it just a utility library, you have to inform everyone, wait for their feedback, and maybe
discuss other options. The more people you have, the more cumbersome this gets.

 The goal is to share as little as possible to enable faster feature development. Every
shared piece of code or infrastructure has the potential for creating a non-trivial
amount of management overhead. This approach is also called shared nothing architec-
ture. The nothing sounds a bit harsh, and in reality, it’s not that black and white. But in
general, micro frontend projects have a strong tendency to accept redundancy in
favor of more autonomy and higher iteration speeds. We’ll touch on this principle at
various points in this book.

1.3 The downsides of micro frontends
As stated earlier, the micro frontends approach is all about equipping autonomous
teams with everything they need to create meaningful features for the customer. This
autonomy is powerful but does not come for free.

1.3.1 Redundancy

Everyone who studies computer science is trained to minimize redundancy in the sys-
tems they create, be it the normalization of data in a relational database or the extrac-
tion of similar pieces of code into a shared function. The goal is to increase efficiency
and consistency. Our eyes and minds have learned to find redundant code and come
up with a solution to eliminate it.

18 CHAPTER 1 What are micro frontends?
 Having multiple teams side by side that build and run their own stack introduces a
lot of redundancy. Every team needs to set up and maintain its own application server,
build process and continuous integration pipeline, and might ship redundant Java-
Script/CSS code to the browser. Here are two examples where this is an issue:

 A critical bug in a popular library can’t be fixed in one central place. All teams
that use it must install and deploy the fix themselves.

 When one team has put in the work to make their build process twice as fast,
the other teams don’t automatically benefit from this change. This team has to
share this information with the others. The other teams have to implement the
same optimization on their own.

The reasoning behind this shared-nothing architecture is that the costs associated
with these redundancies are smaller than the negative impacts that inter-team depen-
dencies introduce.

1.3.2 Consistency

This architecture requires all teams to have their own database to be fully indepen-
dent. But sometimes one team needs data that another team owns. In an online store,
the product is a good example of this. All teams need to know what products the shop
offers. A typical solution for this is data replication using an event bus or a feed sys-
tem. One team owns the product data. The other teams replicate that data regularly.
When one team goes down, the other teams are not affected and still have access to
their local representation of the data. But these replication mechanisms take time and
introduce latency. Thus changes in price or availability might be inconsistent for brief
periods of time. A promoted product with a discount on the homepage might not
have this discount in the shopping cart. When everything works as expected, we are
talking about delays in the region of milliseconds or seconds, but when something
goes wrong, this duration can be longer. It’s a trade-off that favors robustness over
guaranteed consistency.

1.3.3 Heterogeneity

Free technology choice is one of the most significant advantages that micro frontends
introduce, but it’s also one of the more controversial points. Do I want all develop-
ment teams to have a completely different technology stack? That makes it harder for
developers to switch from one team to another or even exchange best practices.

 But just because you can does not mean that you have to pick a different stack. Even
when all teams opt to use the same technologies, the core benefits of autonomous ver-
sion upgrades and less communication overhead remain.

 I’ve experienced different levels of heterogeneity in the projects I’ve worked on.
From “Everyone uses the same tech,” to “We have a list of proven technologies. Pick
what fits best and run with it.” You should discuss the level of freedom and tech-
diversity that is acceptable for your project and company up front to have everyone on
the same page.

19When do micro frontends make sense?
1.3.4 More frontend code

As stated earlier, sites that are built using micro frontends typically require more
JavaScript and CSS code. Building fragments that can run in isolation introduces
redundancy. That said, the required code does not scale linearly with the number of
teams or fragments. But it’s extra essential to have an eye on web performance from
the start.

1.4 When do micro frontends make sense?
As with all approaches, micro frontends are not a silver bullet and won’t magically solve
all your problems. It’s essential to understand the benefits and also the limitations.

1.4.1 Good for medium-to-large projects

Micro frontends architecture is a technique that makes scaling projects easier. When
you are working on an application with a handful of people, scaling is probably not
your main issue. The Two-Pizza Team Rule suggested by Amazon CEO Jeff Bezos is an
indicator for a good team size.5 It says that a team is too big when two large pizzas
can’t feed it. In larger groups, communication overhead increases, and decision mak-
ing gets complicated. In practice, this means that the perfect team size is between 5 to
10 people.

 When the team exceeds 10 people, it’s worthwhile considering a team split. Doing
a vertical micro frontend-style split is an option you should look into. I’ve worked on
different micro frontends projects in the e-commerce field with two to six teams, and
10 to 50 people in total. For this project size, the micro frontends model works pretty
well. But it’s not limited to that size.

 Companies like Zalando, IKEA, and DAZN use this end-to-end approach at a much
larger scale, where every team is responsible for a more narrow set of features. In addi-
tion to the feature teams, Spotify introduced the concept of infrastructure squads. They
act as support teams that build tools like A/B testing for the feature teams to make
them more productive. In chapter 13, we’ll dive deeper into topics like this.

1.4.2 Works best on the web

Though the ideas behind micro frontends are not limited to a specific platform, they
work best on the web. Here the openness of the web plays to its strength.

NATIVE MONOLITH

Native applications for controlled platforms like iOS or Android are monolithic by
design. Composing and replacing functionality on the fly is not possible. For updating
a native app, you have to build a single application bundle that’s then submitted to
Apple’s or Google’s review process. A way around this is to load parts of the applica-
tion from the web. Embedded browsers or WebViews can help to keep the native part

5 See Janet Choi, “Why Jeff Bezos' Two-Pizza Team Rule Still Holds True in 2018,” I Done This Blog, http://
blog.idonethis.com/two-pizza-team/.

http://blog.idonethis.com/two-pizza-team/
http://blog.idonethis.com/two-pizza-team/

20 CHAPTER 1 What are micro frontends?
of the app to a minimum. But when you have to implement native UI, it’s hard to have
multiple end-to-end teams working on it without stepping on each other’s toes.

 It is of course always possible that every vertical team could have a web frontend
and also expose their functionality through a REST API. You could build other user
interfaces like native apps on top of these APIs. A native app would then reuse the
existing business logic of the teams. But it would still form a horizontal monolithic
layer that sits on top. So, if the web is your target platform, micro frontends might be
a good fit. If you have to target native as well, you have to make some sacrifices. In this
book, we will focus on web development and not cover strategies to apply micro front-
ends for building native applications.

MULTIPLE FRONTENDS PER TEAM

A team is also not limited to only one frontend. In e-commerce, it’s common to have a
front-office (customer-facing) and a back-office (employee-facing) side of your shop.
The team that builds the checkout for the end user will, for example, also make the
associated help desk functionality for the customer hotline. They might also build the
WebView-based version of the checkout that a native app can embed.

1.4.3 Productivity versus overhead

Dividing your application into autonomous systems brings a lot of benefits, but does
not come for free.

SETUP

When starting fresh, you need to find good team boundaries, set up the systems, and
implement an integration strategy. You need to establish common rules that all teams
agree on, like using namespaces. It’s also important to provide ways for people to
exchange knowledge between teams.

ORGANIZATIONAL COMPLEXITY

Having smaller vertical systems reduces the technical complexity of the individual sys-
tems. But running a distributed system adds its complexity on top.

 Compared to a monolithic application, there is a new class of problems you have to
think about. Which team gets paged on the weekend when it’s not possible to add an
item to the basket? The browser is a shared runtime environment. A change from one
team might have negative performance effects on the complete page. It’s not always
easy to find out who’s responsible.

 You will probably need an extra shared service for your frontend integration.
Depending on your choice, it might not come with a lot of maintenance work. But it’s
one more piece to think about.

 When done right, the boost in productivity and motivation should be more signifi-
cant than the added organizational complexity.

1.4.4 Where micro frontends are not a great fit

But of course, micro frontends are not perfect for every project. As stated earlier,
they are a solution for scaling development. If you only have a handful of developers

21Summary
and communication is no issue, the introduction of micro frontends won’t bring
much value.

 It’s crucial to know the domain you are working in well to make good vertical cuts.
Ideally, it should be obvious which team is responsible for implementing a feature.
Unclear or overlapping team missions will lead to uncertainty and long discussions.

 I’ve spoken to people working in startups that have tried this model. Everything
worked fine up until the point the company needed to pivot its business model. It is of
course possible to reorganize the teams and the associated software, but it creates a lot
of friction and extra work. Other organizational approaches are more flexible.

 If you need to create a lot of different apps and native user interfaces to run on
every device, that might also become tricky for one team to handle. Netflix is famous
for having an app for nearly every platform that exists: TVs, set-top boxes, gaming con-
soles, phones, and tablets. They have dedicated user interface teams for these plat-
forms. That said, the web gets more and more capable and popular as an application
platform, which makes it possible to target different platforms from one codebase.

1.4.5 Who uses micro frontends?

The concepts and ideas described here are not new. Amazon does not talk a lot about
its internal development structure. However, several Amazon employees reported that
their e-commerce site has been developed like this for many years now. Amazon also
uses a UI integration technique that assembles the different parts of the page before it
reaches the customer.

 Micro frontends are indeed quite popular in the e-commerce sector. In 2012 the
Otto Group,6 a Germany-based mail-order company and one of the world’s largest
e-commerce players, started to split up its monolith. The Swedish furniture company
IKEA7 and Zalando,8 one of Europe’s biggest fashion retailers, moved to this model.
Thalia,9 a German bookstore chain, rebuilt its e-reader store into vertical slices to
increase development speed.

 But micro frontends are also used in other industries. Spotify10 organizes itself in
autonomous end-to-end teams called Squads. SAP published a framework11 to inte-
grate different applications. Sports streaming service DAZN 12 also rebuilt their mono-
lithic frontend as a micro frontends architecture.

Summary
 Micro frontends are an architectural approach and not a specific technique.
 Micro frontends remove the team barrier between frontend and backend devel-

opers by introducing cross-functional teams.

6 See “On Monoliths and Microservices,” http://mng.bz/6Qx6.
7 See Jan Stenberg, “Experiences Using Micro Frontends at IKEA,” InfoQ, http://mng.bz/oPgv.
8 Project Mosaic | Microservices for the Frontend, https://www.mosaic9.org/.
9 See Markus Gruber, “Another One Bites the Dust” (written in German), http://mng.bz/nPa4.
10 See “Spotify engineering culture,” http://mng.bz/vx7r.
11 SAP Luigi, https://luigi-project.io.
12 See “DAZN—Micro Frontend Architecture,” http://mng.bz/4ANv.

http://mng.bz/6Qx6
http://mng.bz/oPgv
https://www.mosaic9.org/
http://mng.bz/nPa4
http://mng.bz/vx7r
https://luigi-project.io
http://mng.bz/4ANv

22 CHAPTER 1 What are micro frontends?
 With the micro frontends approach, the application gets divided into multiple
vertical slices that span from database to user interface.

 Each vertical system is smaller and more focused. It’s therefore easier to under-
stand, test, and refactor than a monolith.

 Frontend technology is changing fast. Having an easy way to evolve your appli-
cation is a valuable asset.

 Setting the team boundaries along the user journey and customer needs is a
good pattern.

 A team should have a clear mission like “Help the customer to find the product
they are looking for.”

 A team can own a complete page or deliver a piece of functionality via a fragment.
 A fragment is a mini-application that is self-contained, which means it brings

everything it needs with it.
 The micro frontends model typically comes with more code for the browser. It’s

vital to address web performance from the start.
 There are multiple frontend integration techniques. They work either on the

client or the server.
 Having a shared design system helps to achieve a consistent look and feel across

all team frontends.
 To make good vertical cuts it’s important to know your company’s domain well.

Changing responsibilities afterward works but creates friction.

My first micro frontends project
Being able to work on a complex application with multiple teams in parallel is the
essential feature of micro frontends. But the end user of such an application does
not care about the internal team structure. That’s why we need a way to integrate
the user interfaces these teams are creating. As you learned in chapter 1, there are
different ways of assembling separate UIs in the browser.

 In this chapter, you’ll learn how to integrate UIs from different teams via links
and iframes. From a technology standpoint, these techniques are neither new nor
exciting. But they come with the benefit that they are easy to implement and
understand. The key point from a micro frontends perspective is that they intro-
duce minimal coupling between the teams. No shared infrastructure, libraries, or
code conventions are required. The loose coupling gives the teams the maximum
amount of freedom to focus on their mission.

This chapter covers
 Building the micro frontends example application

for this book

 Connecting pages from two teams via links

 Integrating a fragment into a page via iframes
23

24 CHAPTER 2 My first micro frontends project
 In this chapter, we’ll also build the foundation of our example project The Tractor
Store. We’ll expand on this project throughout the book. You will learn different inte-
gration techniques and their benefits and drawbacks. Spoiler alert: there is no “gold
standard” or “best integration technique.” It’s all about making the right trade-offs for
your use case. But this book will highlight the different aspects and properties you
should look for when picking a technique. We’ll start with simple scenarios in this
chapter and work our way through more sophisticated ones after that.

2.1 Introducing The Tractor Store
Tractor Models, Inc., an imaginary startup, manufactures high-quality tin toy models
of popular tractor brands. Currently, they are in the process of building an e-com-
merce website: The Tractor Store. It allows tractor fans from all over the world to pur-
chase their favorite models.

 To cater to their audience as best as possible, they want to experiment and test dif-
ferent features and business models. The concepts they plan to validate are offering
deep customization options, auctions for premium material models, regionally lim-
ited special editions, and booking private in-person demos in flagship stores in all
major cities.

 To achieve maximum flexibility in development, the company decided to build the
software from scratch and not go with an off-the-shelf solution. The company wants to
evaluate their ideas and features quickly. That is why they decided to go with the
micro frontends architecture. Multiple teams can work in parallel, independently
build new features, and validate ideas. They are starting with two teams.

 We’ll set up the software project for both Team Decide and Team Inspire. Team
Decide will create a product detail page for all tractors that displays the name and
image of the model. Team Inspire will provide matching recommendations. In the
first iteration, each team displays its content on a separate page from its own domain.
They connect the pages via links. So we have a product page and a recommendation
page for every model.

2.1.1 Getting started

Now both teams start setting up their applications, deployment processes, and every-
thing that is required to get their pages ready.

FREEDOM OF CHOOSING TECHNOLOGY

Team Decide chooses to go with a MongoDB database for their product data and a
Node.js application, which renders HTML on the server side. Team Inspire plans to
use data science techniques. They’ll implement machine learning to deliver personal-
ized product recommendations. That’s why they picked a Python-based stack.

 Being able to choose the technology that’s best for the job is one of the benefits
of micro frontends. It takes into account that not all tasks are the same. Building a
high-traffic landing page has different requirements than developing an interactive
tractor configurator.

25Introducing The Tractor Store
INDEPENDENT DEPLOYS

Both teams create their own source code repository and set up a continuous integra-
tion pipeline. This pipeline runs every time a developer pushes new code to the
central version control system. It builds the software, runs all kinds of automated tests
to ensure the software’s correctness, and deploys the new version of the application
to the team’s production server. These pipelines run independently. A software
change in Team Decide will never cause Team Inspire’s pipeline to break. (See
figure 2.1.)

Figure 2.1 Teams work in their own source code repository, have separate integration
pipelines, and can deploy independently.

2.1.2 Running this book’s example code

For the integration techniques in the following chapters, the server-side technology
stack is irrelevant. In our sample code, we’ll focus on the HTML output the applica-
tions generate. We’ll create a folder for every team which contains static HTML, JS,
and CSS files, which we will serve through an ad hoc HTTP server.

Technology diversity and blueprints
Just because you can does not mean you must use different technology stacks for
each team. When teams use similar stacks, it’s easier to exchange best practices,
get help, or move developers between teams.

It can also save up-front costs because you could implement the basic application
setup, including folder structure, error reporting, form handling, or the build process
once. Every team can then copy this blueprint application and build on it. This way,
teams can get productive a lot quicker, and the software stacks are more similar. In
chapter 13, we’ll go deeper into this topic.

Team Decide

Team Inspire

Version control Continuous delivery

Application server

Application server

Production

Build Test Deploy

Dev team

Separate pipelines Separate deploysNo shared code

26 CHAPTER 2 My first micro frontends project

1

TIP You can browse the source code of this book on GitHub1 or download a
ZIP from the Manning website2. If you don’t want to run the code locally, you
can go to https://the-tractor.store. There you can see and inspect all exam-
ples directly in your browser.

DIRECTORY STRUCTURE

The examples all follow the same structure.
Inside of each example folder like 01_pages
_links, you’ll find a folder for each team like
team-[name]. Figure 2.2 shows an example.
 A team folder represents a team’s applica-
tion. Code from one team folder never
directly references code from another team’s
folder.

NODE.JS REQUIRED

Static assets like JS and CSS will go into the
static folders later. You’ll need to have
Node.js installed to run the ad hoc server. If
you haven’t already, go to https://nodejs.org/
and follow the installation instructions. All
examples run with Node.js v12. Higher ver-
sions should also work.

NOTE We are not assuming a specific terminal or shell throughout this book.
The commands work in Windows PowerShell, Command Prompt, or Termi-
nal on macOS and Linux.

INSTALL DEPENDENCIES

Navigate your terminal into the root directory for the sample code. There’s a package
.json file that contains a start script for each example project. Install the required
dependencies:

npm install

STARTING AN EXAMPLE

You can start each example from the root directory by running npm run [name_of
_example]. Try this for our first example by typing this into your terminal:

npm run 01_pages_links

1 Sample code on GitHub: http://mng.bz/QyOQ.
2 Micro Frontends in Action, http://mng.bz/XPjp.

Figure 2.2 The directory structure of the
example code bundle. The main directory
(shown as /) contains a sub-folder for each
example project. The top-level package
.json file contains the run commands for
all examples.

the-tractor.store/#

https://the-tractor.store
https://nodejs.org/
http://mng.bz/QyOQ
http://mng.bz/XPjp
http://www.the-tractor.store/#1

27Page transition via links
Each run command performs three actions:

1 It starts a static web server for each team directory. It uses ports 3000 to 3003 for this.
2 It opens the example page in your default browser.
3 It shows an aggregated network log for all applications in the terminal.

NOTE Make sure ports 3000 to 3003 are not occupied by other services on
your machine. If a port is blocked, the start script will not fail, but will start
the application on another random port. Check the log if you’re experienc-
ing issues.

Running the command for our first example should have started two servers on ports
3001 and 3002. Your browser should show the product page with a red tractor at
http://localhost:3001/product/porsche.

 Your terminal output should look like this:

$ npm run 01_pages_links

> code@1.0.0 01_pages_links [...]
> concurrently --names 'decide ,inspire' "mfserve --listen 3001
01_pages_links/team-decide" "mfserve --listen 3002 01_pages_links/team-inspire"
"wait-on http://localhost:3001/product/porsche && opener

http://localhost:3001/product/porsche"

[decide] INFO: Accepting connections at http://localhost:3001
[inspire] INFO: Accepting connections at http://localhost:3002
[2] wait-on http://localhost:3001/product/porsche && opener

http://localhost:3001/product/porsche exited with code 0"
[decide] :3001/product/porsche
[decide] :3001/static/page.css)
[decide] :3001/static/outlines.css

NOTE The ad hoc web server uses the @microfrontends/serve package. It’s
a modified version of the great zeit/serve server. I’ve added some features
like logging, custom headers, and support for delaying requests. We’ll need
these features in the following chapters.

You can stop the web server by pressing [CTRL] + [C].
 With the setup and organizational stuff out of the way, we can start to focus on inte-

gration techniques.

2.2 Page transition via links
In the first iteration of their development, the teams choose to keep it as simple as
possible. No fancy integration technique. Every team builds its feature as a standalone
page. The team’s applications serve these pages directly. Each team brings its own
HTML and CSS.

Started Team Decide’s server
on port 3001 and Team

Inspire’s server on port 3002

Opening the example page
in your default browserShows the three network calls Team Decide’s

application answered for the example page

28 CHAPTER 2 My first micro frontends project
2.2.1 Data ownership

We start with three tractor models. In table 2.1 you see the data necessary for deliver-
ing a product page: a unique identifier (SKU), name, and image path.

Team Decide owns the base product data. They’ll build tools that enable employees to
add new products or update existing ones. Team Decide is also responsible for hosting
the product images. They upload the images to a CDN where other teams can directly
reference them.

 Team Inspire also needs some product data. They must know all existing SKUs and
the associated image URL. That’s why Team Inspire’s backend regularly imports this
data from Team Decide’s data feed. Team Inspire keeps a local copy of the relevant
fields in their database. In the future, they’ll also consume analytics and purchase his-
tory data to improve their recommendation quality. But for now, the product recom-
mendations will be hard-coded. Table 2.2 shows Team Inspire’s product relations.

Team Decide doesn’t have to know anything about these relations. Nor do they need
to know about the underlying algorithms and data sources.

2.2.2 Contract between the teams

In this integration, the URL is our contract between the teams. Teams that own a page
publish their URL patterns. The others can use the patterns to create a link. Here are
the patterns for both teams:

 Team Decide: Product Page
URL-pattern: http://localhost:3001/product/<sku>
example: http://localhost:3001/product/porsche

 Team Inspire: Recommendation Page
URL-pattern: http://localhost:3002/recommendations/<sku>
example: http://localhost:3002/recommendations/porsche

Table 2.1 Team Decide’s product database

SKU Name Image

porsche Porsche Diesel Master 419 https://mi-fr.org/img/porsche.svg

fendt Fendt F20 Dieselroß https://mi-fr.org/img/fendt.svg

eicher Eicher Diesel 215/16 https://mi-fr.org/img/eicher.svg

Table 2.2 Team Inspire’s recommendations

SKU Recommended SKUs

porsche fendt, eicher

eicher porsche, fendt

fendt eicher, porsche

https://mi-fr.org/img/porsche.svg
https://mi-fr.org/img/fendt.svg
https://mi-fr.org/img/eicher.svg

29Page transition via links
Because we’re running this locally, we use localhost instead of a real domain. We
pick ports 3001 (Team Decide) and 3002 (Team Inspire) to differentiate the teams. In
a live scenario, the teams could pick any domain they like.

 When both applications are ready, the result should look like figure 2.3. The prod-
uct page shows the name and image of the tractor, and links it to the corresponding
recommendation page. The recommendation page shows a list of matching tractors.
Each image links to the matching product page.

Figure 2.3 A product and recommendations page connected via links

Let’s take a quick look at the code that’s involved in making this happen.

2.2.3 How to do it

You can find the code for this example in the
01_links_pages folder. Figure 2.4 shows the direc-
tory listing.

 The HTML files represent the server-generated
output of the teams. Each team also brings its own
CSS file.

Figure 2.4 A product and recommendations
page connected via links

Team
Inspire

Recommendation page

http://localhost:3002
 /recommendations/porsche

.layout {…}

Team
Decide

Product page

http://localhost:3001
 /product/porsche

Link

Link

<html>…</html><html>…</html> .layout {…}

30 CHAPTER 2 My first micro frontends project
NOTE The ad hoc web server defaults to an .html extension when looking up a
file. Requests to /product/porsche will serve the ./product/porsche.html file.

MARKUP

Take a quick look at the HTML of a product page. We’ll build on this markup
throughout the examples of this book.

<html>
<head>

<title>Porsche-Diesel Master 419</title>
<link href="/static/page.css" rel="stylesheet" />

</head>
<body class="layout">

<h1 class="header">The Tractor Store</h1>
<div class="product">

<h2>Porsche-Diesel Master 419</h2>

</div>
<aside class="recos">

Show Recommendations

</aside>

</body>
</html>

The markup for the other product pages looks similar. The important thing here is the
Show Recommendations link. It’s our first micro frontends integration technique. Team
Decide generates the link according to the URL pattern provided by Team Inspire.

 Let’s switch to Team Inspire. The markup for a recommendation page looks like
this.

<html>
<head>

<title>Recommendations</title>
<link href="/static/page.css" rel="stylesheet" />

</head>
<body class="layout">

<h1 class="header">The Tractor Store</h1>
<h2>Recommendations</h2>
<div class="recommendations">

Listing 2.1 team-decide/product/porsche.html

Listing 2.2 team-inspire/recommendations/porsche.html

The link to Team Inspire’s
matching recommendation page

Links to Team Decide’s
product pages

31Page transition via links

1

</div>
</body>

</html>

Again, the markup for the other tractors' pages is the same but shows different recom-
mendations.

STYLES

You may have noticed that both teams bring their CSS files. When you compare these
files (team-decide/static/page.css vs. team-inspire/static/page.css), you’ll
find redundancy. Both teams include basic layout, reset, and font styles.

 We could introduce a master CSS file that all teams include. Having centralized
styling might sound like a good idea. However, relying on a central CSS file introduces
a considerable amount of coupling. Since micro frontends is all about decoupling and
maintaining team autonomy, we have to be careful—even with styling.

 In chapter 12, we’ll discuss the coupling aspect in greater detail and illustrate dif-
ferent solutions for shipping a coherent user interface across teams. So, for the exam-
ples in the following chapters, we’ll have to live with this styling redundancy.

STARTING THE APPLICATIONS

Let’s run the example and look at it in the browser. Execute the following command
in the sample codes root folder:

npm run 01_pages_links

It opens http://localhost:3001/product/porsche in your browser, and you see the red
Porsche Diesel Master tractor. The result should look like the screenshot in figure 2.5.

 You can click on the “Show Recommendations” link to see other matching tractors
on Team Inspire’s recommendation page. From there, you can jump back to a prod-
uct page by clicking on another tractor. In the browser address bar, you see the
browser jumping from localhost:3001 to localhost:3002.

Figure 2.5 Team Decide’s product detail page. The team owns everything on this page.

the-tractor.store/#

http://localhost:3001/product/porsche

Link to
Team Inspire’s
recommendation page

Team Decide
owns everything
(data, layout, styling).

http://www.the-tractor.store/#1

32 CHAPTER 2 My first micro frontends project
Congratulations, we’ve created our first e-commerce project that adheres to the micro
frontends principles. The following sections will build on this code so that we can
focus more on the actual integration techniques and care less about the boilerplate.

2.2.4 Dealing with changing URLs

The integration works because both teams exchanged their URL patterns before-
hand. URLs are a popular and powerful concept which we will also see with other inte-
gration techniques. Sometimes URLs need to change because your application
migrated to another server, a new scheme would be better for search engines, or you
want language-specific URLs. You can manually notify all other teams. But when the
number of teams and URLs grows, you’ll want to automate this process.

 A team that wants to change its URL could provide an HTTP redirect to solve this.
However, letting your end users jump through redirect chains is not always optimal. A
more robust mechanism that has proven valuable for the projects we’ve worked on is
that every team provides a machine-readable directory of all their URL patterns. A
JSON file in a known location usually does the trick. This way, all applications can look
up the URL patterns regularly and update their links if needed. Standards like URI
templates,3 json-home,4 or Swagger OpenAPI5 can help here.

2.2.5 The benefits

Though the outcome might not look impressive, the solution we just built has two
properties that are important for running a micro frontends application. The cou-
pling between the two applications is low, and the robustness is high.

LOOSE COUPLING

In this context, coupling describes how much one team needs to know about the
other team’s system to make the integration work. In this example, every team only
needs to implement the other team’s URL pattern to link to them. A team does not
have to care about what programming language, frameworks, styling approach,
deployment technique, or hosting solution the other team uses. As long as the sites
are available at the previously defined URLs, everything works magically. We see the
beauty of the open web in action here.

HIGH ROBUSTNESS

When the recommendation application goes down, the detail page still works. The solu-
tion is robust because the applications share nothing. They bring everything they need
to deliver their content. An error in one system cannot affect the other team’s system.

2.2.6 The drawbacks

The fact that the teams share nothing does come with a cost. An integration via links
only is not always optimal from the user’s point of view. They have to click a link to see

3 See https://tools.ietf.org/html/rfc6570.
4 See “Home Documents for HTTP APIs,” https://mnot.github.io/I-D/json-home/.
5 See the Swagger OpenAPI Specification, https://swagger.io/specification/.

https://tools.ietf.org/html/rfc6570
https://mnot.github.io/I-D/json-home/
https://swagger.io/specification/

33Composition via iframe
the information that is owned by another team. In our case, the user bounces between
the product and the recommendation page. With this simple integration, we have no
way of combining data from two different teams into one view.

 This model also comes with a lot of technical redundancy and overhead. Common
parts like the page header need to be created and maintained by each team.

2.2.7 When do links make sense?

When you are building a somewhat complicated site, an integration that relies on
links only is not sufficient in most cases. Often you need to embed information from
another team. But you don’t have to use links alone. They play well with other integra-
tion techniques.

2.3 Composition via iframe
The whole company staff is pleased about the progress both teams made in this short
amount of time. But everyone agrees that we have to improve the user experience.
Discovering new tractors via the Show Recommendations link works, but is not obvi-
ous enough for the customer. Our first studies show that more than half of the testers
did not notice the link at all. They left the site under the assumption that The Tractor
Store only offers one product.

Figure 2.6 Integrating the recommendation page into the product page via iframe. These
pages don’t share anything. Both are standalone HTML documents with their own styling.

Team
Decide

Team
Inspire

Recommendation page

Product page

http://localhost:3001/product/porsche

http://localhost:3002
 /recommendations/porsche

<html>…</html>
.layout {…}

<html>…</html>
.layout {…}

iframe

34 CHAPTER 2 My first micro frontends project

2

The plan is to integrate the recommendations into the product page itself. We’ll
replace the Show Recommendations link on the right side. The visual style of the rec-
ommendations can stay the same.

 In a short technical meeting, both teams weighed possible composition solutions
against each other. They quickly realized that composition via iframe would be the
fastest way to get this done.

 With iframes, it’s possible to embed one page into another page while maintaining
the same loose coupling and robustness properties that the link integration provides.
Iframes come with strong isolation. What happens in the iframe stays in the iframe.
But they also have significant drawbacks, which we’ll also discuss in this chapter.

 Only a few lines of code have to be changed by each team. Figure 2.6 illustrates
how the recommendations look on the product page. It also shows the team responsi-
bilities. The complete recommendation page gets included on the product page.

2.3.1 How to do it

Ok, off to work. Our first task is to replace the Show Recommendations link. Team
Decide can do that in their HTML, as the following code shows.

...
<iframe src="http://localhost:3002/recommendations/porsche"></iframe>
...

After that, Team Inspire removes the “The Tractor Store” header from the recommen-
dation page’s markup because we don’t need it in the iframe.

 You find the updated example code in the 02_iframe folder. Run it via this
command:

npm run 02_iframe

Your browser shows the recommendations inlined into the product page like you’ve
seen before in figure 2.6.

 There’s one other code change Team Decide had to do to make the iframe compo-
sition work. Iframes have one major drawback when it comes to layout. The outer doc-
ument needs to know the exact height of the iframe’s content to avoid scrollbars or
whitespace. Team Decide added this code to their CSS.

...

.recos iframe {
border: 0;
width: 100%;
height: 750px;

}

Listing 2.3 team-decide/product/porsche.html

Listing 2.4 team-decide/static/page.css

the-tractor.store/#

Remove the browser’s
default iframe border.

Iframe should be as wide
as its parent container.Fixed height to

make enough space
for the content

http://www.the-tractor.store/#2

35Composition via iframe
For static layouts, this might not be an issue, but if you’re building a responsive site, it
can become tricky. The height of the content might change depending on the size of
the device.

 Another issue is that Team Inspire is now bound to the height Team Decide has
defined. They can’t, for example, experiment by adding a third recommendation
image without having to talk to the other team. JavaScript libraries6 exist to automati-
cally update the iframe size when its content changes.

 The contract between the teams has become more complicated. Before, teams
only needed to know the URL. Now they must also know the height of its content.

2.3.2 The benefits

In theory, the iframe is the optimal composition technique for micro frontends.
Iframes work in every browser. They provide strong technical isolation. Scripts and
styles can’t leak in or out. They also bring a lot of security features to shield the team’s
frontends against each other.

2.3.3 The drawbacks

While iframes provide high isolation and are easy to implement, they also have a lot of
negative properties, which has led to the iframe’s lousy reputation in web development.

LAYOUT CONSTRAINTS

As already discussed, the absence of a reliable solution for automatic iframe height is
one of the most significant drawbacks in day-to-day use.

PERFORMANCE OVERHEAD

Heavy use of iframes is terrible for performance. Adding an iframe to a page is a costly
operation from the browser’s perspective. Every iframe creates a new browsing con-
text, which results in extra memory and CPU usage. If you are planning to include
many iframes on a page, you should test the performance impact they introduce.

BAD FOR ACCESSIBILITY

Structuring the content of your page semantically is not only a hygienic factor. It
enables assistive technologies like screen readers to analyze the page’s content and
gives visually impaired users the ability to interact with the content via voice. Iframes
break the semantics of the page. We can style an iframe to blend in with the rest of the
page seamlessly. But tools like screen readers have a hard time conceptualizing what’s
going on. They see multiple documents that all have their own title, information hier-
archy, and navigation state. Be careful with iframes if you don’t want to break your
accessibility support.

BAD FOR SEARCH ENGINES

When it comes to search engine optimization (SEO), iframes also have a bad reputa-
tion. A crawler would index our product page as two distinct pages: the outer page
and the included inner page. The search index does not represent the fact that one

6 See iframe-resizer, https://github.com/davidjbradshaw/iframe-resizer.

https://github.com/davidjbradshaw/iframe-resizer

36 CHAPTER 2 My first micro frontends project
includes the other. Our page would not show up for the search term “tractor recom-
mendations.” The user sees both words in their browser window, but these words do
not exist in the same document.

2.3.4 When do iframes make sense?

These are quite strong arguments against the use of iframes. So when does an iframe
make sense at all? As always, it depends on your use case.

 Spotify, for example, implemented a micro frontends architecture early on for
their desktop application.7 Their integration technique relied on using iframes for
the different parts of the application. Since the overall layout of their application is
quite static, and search engine indexing is not an issue, this was an acceptable trade-
off for them.

 You shouldn’t use iframes if you are building a customer-facing site where loading
performance, accessibility, and SEO matter. But for internal tools, they can be an excel-
lent and straightforward option to get started with a micro frontends architecture.

2.4 What’s next?
In this chapter, we’ve successfully built a micro frontends application. Two teams can
develop and deploy their part of the application autonomously. Both applications are
decoupled. When one application breaks, the other still works.

 Take a look at the integration techniques in figure 2.7. You’ve already seen these
three types of integration in the big-picture diagram in chapter 1.

Figure 2.7 We can divide frontend integration techniques into three categories: routing,
composition, and communication.

We covered the first two groups, transitioning between different teams pages using a link
and using the iframe as a composition technique to include content from another team. We
didn’t need communication yet.

 In the next chapters, we’ll fill our toolbox with more server- and client-side integra-
tion techniques. We’ve arranged the chapters by complexity—starting with the sim-
plest and working our way up to more sophisticated methods.

7 See Mattias Peter Johansson, “How is JavaScript used within the Spotify desktop application?” Quora, http://
mng.bz/Mdmm.

Routing and page transitions Composition Communication

A B B
C

A

http://mng.bz/Mdmm
http://mng.bz/Mdmm

37Summary
 In chapter 9 we’ll zoom out a bit. We discuss different micro frontend high-level
architectures like building server rendered pages or constructing a single page app com-
posed out of other single-page apps (unified SPA).

 If you have a clear project in mind and you’re limited in time, there’s a shortcut. Feel
free to skip to chapter 9 to get an overview and decide which architecture fits best. You
can then selectively jump back to the chapters that discuss its required techniques.

Summary
 Teams should be able to develop, test, and deploy independently. That’s why it’s

crucial to avoid coupling between their applications.
 Integration via links or iframes is simple. A team only needs to know the URL

patterns of the other teams.
 Each team can build, test, and deploy their pages with the technology they like.
 High isolation and robustness—when one system is slow or broken, the other

systems are not affected.
 A page can be integrated into other pages via iframes.
 A page which integrates another page via iframe needs to know the size of its

content. This knowledge introduces new coupling.
 Iframes provide strong isolation between the teams. No shared code conven-

tions or namespacing for CSS or JavaScript are required.
 Iframes are suboptimal for performance, accessibility, and search engine com-

patibility.

38 CHAPTER 2 My first micro frontends project

Part 2

Routing, composition,
and communication

Now you know the basics of the micro frontends architecture. In part 2 of
this book, we’ll do a deep dive into the techniques you’ll need to build a more
sophisticated project. Most of these techniques don’t require special tools.

 Adoption of the micro frontends approach is spreading in the software
industry. That’s why we see a lot of meta-frameworks and helper libraries being
open-sourced by businesses and individuals. These tools address common pain
points and provide additional abstractions to improve the developer experience.
Since this support software landscape is still shifting, we won’t go deep into any
of these solutions. However, we’ll touch on a few of them along our journey.

 Throughout the following chapters, we’ll focus on existing web standards
and leverage native browser features wherever possible. This stick-to-the-
fundamentals approach has proven stable and valuable in the projects I’ve been
a part of over recent years. Understanding the core concepts is vital for building
a successful project—even if you decide to pick up a micro frontends library later.

 In chapters 3–8, you’ll learn techniques for routing, composition, and com-
munication, both for server-side and client-side rendered web applications. I’ve
arranged the chapters by complexity. We start with simple techniques and work
our way up to more sophisticated ones. Chapter 9 is an architecture overview
that puts the learned techniques into context. It helps you to make the right
architectural decision for your next project.

40 CHAPTER

Composition with Ajax
and server-side routing
We covered a lot of ground in the previous chapter. The applications for two teams
are ready to go. You learned how to integrate user interfaces via links and iframes.
These are all valid integration methods, and they provide strong isolation. But they
come with trade-offs in the areas of usability, performance, layout flexibility, accessi-
bility, and search engine compatibility. In this chapter, we’ll look at fragment inte-
gration via Ajax to address these issues. We’ll also configure a shared web server to
expose all applications through a single domain.

This chapter covers
 Integrating fragments into a page via Ajax

 Applying project-wide namespaces to avoid style
or script collisions

 Utilizing the Nginx web server to serve all
applications from one domain

 Implementing request routing to forward incoming
requests to the right server
41

42 CHAPTER 3 Composition with Ajax and server-side routing
3.1 Composition via Ajax
Our customers love the new product page. Presenting all recommendations directly
on that page has measurable positive effects. On average, people spend more time on
the site than before.

 But Waldemar, responsible for marketing, noticed that the site does not rank very
well in most search engines. He suspects that the suboptimal ranking has something
to do with the use of iframes. He talks to the development teams to discuss options to
improve the ranking.

 The developers are aware that the iframe integration has issues, especially when it
comes to semantic structure. Since good search-engine ranking is essential for getting
the word out and reaching new customers, they decide to address this issue in the
upcoming iteration.

 The plan is to ditch the document-in-document approach of the iframe and choose
a deeper integration using Ajax. With this model, Team Inspire will deliver the recom-
mendations as a fragment—a snippet of HTML. This snippet is loaded by Team Decide
and integrated into the product page’s DOM. Figure 3.1 illustrates this. They’ll also
have to find a good way to ship the styling that’s necessary for the fragment.

Figure 3.1 Integrating the recommendations into the product page’s DOM via Ajax

We have to complete two tasks to make the Ajax integration work:

1 Team Inspire exposes the recommendations as a fragment.
2 Team Decide loads the fragment and inserts it into their DOM.

Before getting to work, Team Inspire and Team Decide must talk about the URL for
the fragment. They choose to create a new endpoint for the fragments markup and
expose it under http://localhost:3002/fragment/recommendations/<sku>. The
existing standalone recommendation page stays the same. Now both teams can go
ahead and implement in parallel.

Team
Decide

Team
Inspire

http://localhost:3001/product/porsche

http://localhost:3002/fragment
 /recommendations/porsche

Page

Fragment via Ajax

43Composition via Ajax
3.1.1 How to do it

Creating the fragment endpoint is straightforward for Team Inspire. All data and
styles are already there from the iframe integration. Figure 3.2 shows the updated
folder structure.

Figure 3.2 Folder structure of the Ajax example code 03_ajax.

Team Inspire adds an HTML file for each fragment, which is a stripped-down version
of the recommendation page. They also introduce dedicated fragment styles (frag-
ment.css). Team Decide introduces a page.js, which will trigger the Ajax call.

MARKUP

The fragment markup looks like this.

<link href="http://localhost:3002/static/fragment.css" rel="stylesheet" />
<h2>Recommendations</h2>
<div class="recommendations">

...
</div>

Note that the fragment references its own CSS file from the markup. The URL has to
be absolute (http://localhost:3002/…) because Team Decide will insert this
markup into its DOM, which they serve from port 3001.

Listing 3.1 team-inspire/fragment/recommendations/porsche.html

NEW

Partial HTML

Partial CSS

Ajax call

Reference to the
recommendation styles

44 CHAPTER 3 Composition with Ajax and server-side routing

3

 Shipping a link tag together with the actual content is not always optimal. If a
page included multiple recommendation strips, it would end up with multiple redun-
dant link tags. In chapter 10 we’ll explore some more advanced techniques for refer-
encing associated CSS and JavaScript resources.

AJAX REQUEST

The fragment is ready to use. Let’s switch hats and slip into Team Decide’s shoes.
 Loading a piece of HTML via Ajax and appending it to the DOM is not that com-

plicated. Let’s introduce our first client-side JavaScript.

const element = document.querySelector(".decide_recos");
const url = element.getAttribute("data-fragment");

window
.fetch(url)
.then(res => res.text())
.then(html => {

element.innerHTML = html;
});

Now we have to include this script into our page and add the data-fragment attribute
to our .decide_recos element. The product page markup now looks like this.

...
<aside

class="decide_recos"
data-fragment="http://localhost:3002/fragment/recommendations/porsche"

>

Show Recommendations

</aside>
<script src="/static/page.js" async></script>

</body>
...

Let’s try the example by running the following code:

npm run 03_ajax

The result looks the same as with the iframe. But now the product page and recom-
mendation strip live in the same document.

Listing 3.2 team-decide/static/page.js

Listing 3.3 team-decide/view.js

Finding the element to
insert the fragment in

Retrieving the fragment
URL from an attributeFetching the fragment HTML via

the native window.fetch API

Inserting the loaded markup
to the product page’s DOM

Team Inspire’s
recommendation fragment URL

Link to the recommendation
page. In case the Ajax call

failed or hasn’t finished
yet, the customer can use

this link as a fallback:
Progressive Enhancement.

Referencing the
JavaScript file, which will

make the Ajax request

the-tractor.store/#

http://www.the-tractor.store/#3

45Composition via Ajax
3.1.2 Namespacing styles and scripts

Running inside the same document introduces some challenges. Now both teams
have to build their applications in a way that doesn’t conflict with the others. When
two teams style the same CSS class or try to write to the same global JavaScript variable,
weird side effects can happen that are hard to debug.

ISOLATING STYLES

Let’s look at CSS first. Sadly, browsers don’t offer much help here. The deprecated
Scoped CSS specification would have been an excellent fit for our use case. It allowed
you to mark a style or link tag with the attribute scoped. The effect was that these
styles would only be active in the DOM subtree they’re defined in. Styles from higher
up in the tree would still propagate down, but styles from within a scoped block would
never leak out. This specification did not last long, and browsers which already sup-
ported it pulled their implementation.1 Some frameworks like Vue.js still use the
scoped syntax to achieve this isolation. But they use automatic selector prefixing
under the hood to make this work in the browser.

NOTE In modern browsers2 it’s possible to get strong style scoping today via
JavaScript and the ShadowDOM API, which is part of the Web Components spec-
ification. We’ll talk about this in chapter 5.

Since CSS rules are global by nature, the most practical solution is to namespace all
CSS selectors. Many CSS methodologies like BEM3 use strict naming rules to avoid
unwanted style leaking between components. But two different teams might come up
with the same component name independently, like the headline component in our
example. That’s why it’s a good idea to introduce an extra team-level prefix. Table 3.1
shows what this namespacing might look like.

NOTE To keep the CSS and HTML size small, we like to use two-letter pre-
fixes like de, in, and ch. But for easier understanding, I opted for using lon-
ger and more descriptive prefixes in this book.

1 See Arly BcBlain, “Saving the Day with Scoped CSS,” CSS-Tricks, https://css-tricks.com/saving-the-day-with-
scoped-css/.

2 See “Can I Use Shadow DOM?” https://caniuse.com/#feat=shadowdomv1.
3 BEM, http://getbem.com/naming/.

Table 3.1 Namespacing all CSS selectors with a team prefix

Team name Team prefix Example selectors

Decide decide .decide_headline .decide_recos

Inspire inspire .inspire_headline .inspire_recommendation__item

Checkout checkout .checkout_minicart .checkout_minicart—empty

https://css-tricks.com/saving-the-day-with-scoped-css/
https://css-tricks.com/saving-the-day-with-scoped-css/
https://caniuse.com/#feat=shadowdomv1
http://getbem.com/naming/

46 CHAPTER 3 Composition with Ajax and server-side routing
When every team follows these naming conventions and only uses class-name-based
selectors, the issue of overwriting styles should be solved. Prefixing does not have to be
done manually. Some tools can help here. CSS Modules, PostCSS, or SASS are a good
start. You can configure most CSS-in-JS solutions to add a prefix to each class name. It
does not matter which tool a team chooses, as long as all selectors are prefixed.

ISOLATING JAVASCRIPT

The fragment, in our example, does not come with any client-side JavaScript. But you
also need inter-team conventions to avoid collisions in the browser. Luckily JavaScript
makes it easy to write your code in a non-global way.

 A popular way is to wrap your script in an IIFE (immediately invoked function expres-
sion).4 This way, the declared variables and functions of your application are not
added to the global window object. Instead, we limit the scope to the anonymous func-
tion. Most build tools already do this automatically. For the static/page.js of Team
Decide it would look like this.

(function () {
const element = ...;
...

})();

But sometimes you need a global variable. A typical example is when you want to ship
structured data in the form of a JavaScript object alongside your server-generated
markup. This object must be accessible by the client-side JavaScript. A good alterna-
tive is to write your data to your markup in a declarative way.

 Instead of writing this

<script>
const MY_STATE = {name: "Porsche"};
</script>

you could express it declaratively and avoid creating a global variable:

<script data-inspire-state type="application/json">
{"name":"Porsche"}
</script>

Accessing the data can be done by looking up the script tag in your part of the DOM
tree and parsing it:

(function () {
const stateContainer = fragment.querySelector("[data-inspire-state]");
const MY_STATE = JSON.parse(stateContainer.innerHTML);

})();

4 See http://mng.bz/Edoj.

Listing 3.4 team-decide/static/page.js

Immediately invoked
function expression

Variable is not added
to the global scope

http://mng.bz/Edoj

47Composition via Ajax
But there are a few places where it’s not possible to create real scopes, and you have to
fall back to namespaces and conventions. Cookies, storage, events, or unavoidable
global variables should be namespaced. You can use the same prefixing rules we’ve
introduced for CSS class names for this. Table 3.2 shows a few examples.

Namespacing helps with more than just avoiding conflicts. Another valuable factor in
day-to-day work is that they also indicate ownership. When an enormous cookie value
leads to an error, you just have to look at the cookie name to know which team can
fix that.

 The described methods for avoiding code interference are not only helpful for the
Ajax integration—they also apply for nearly all other integration techniques. I highly
recommend setting up global namespacing rules like this when you’re setting up a
micro frontends project. It will save everyone a lot of time and headaches.

3.1.3 Declarative loading with h-include

Let’s look at a way to make composition via Ajax even easier. In our example, Team
Decide loads the fragment’s content imperatively by looking up a DOM element, run-
ning fetch (), and inserting the resulting HTML into the DOM.

 The JavaScript library h-include provides a declarative approach for fragment load-
ing.5 Including a fragment feels like including an iframe in the markup. You don’t
have to care about finding the DOM element and making the actual HTTP request.
The library introduces a new HTML element called h-include, which handles every-
thing for you. The code for the recommendations would look like this.

...
<aside class="decide_recos">

<h-include
src="http://localhost:3002/fragment/recommendations/porsche">

Table 3.2 Some JavaScript functionalities also need namespacing.

Function Example

Cookies document.cookie = "decide_optout=true";

Local storage localStorage["decide:last_seen"] = "a,b";

Session storage sessionStorage["inspire:last_seen"] = "c,d";

Custom events new CustomEvent("checkout:item_added");
window.addEventListener("checkout:item_added", …);

Unavoidable globals window.checkout.myGlobal = "needed this!"

Meta tags <meta name="inspire:feature_a" content="off" />

5 See https://github.com/gustafnk/h-include.

Listing 3.5 team-decide/product/porsche.html

h-include fetches the HTML from the src
and inserts it into the element itself

https://github.com/gustafnk/h-include

48 CHAPTER 3 Composition with Ajax and server-side routing
</h-include>
</aside>
...

The library also comes with extra features like defining timeouts, reducing reflows by
bundling the insertion of multiple fragments together, and lazy loading.

3.1.4 The benefits

Ajax integration is a technique that is easy to implement and understand. Compared
to the iframe approach, it has a lot of advantages.

NATURAL DOCUMENT FLOW

In contrast to iframe, we integrate all content into one DOM. Fragments are now part
of the page’s document flow. Being part of this flow means that a fragment takes pre-
cisely the space it needs. The team that includes the fragment does not have to know
the height of the fragment in advance. Whether Team Inspire displays one or three
recommendation images, the product page adapts in height automatically.

SEARCH ENGINES AND ACCESSIBILITY

Even though integration happens in the browser and the fragment is not present in the
page’s initial markup yet, this model works well for search engines. Their bots execute
JavaScript and index the assembled page.6 Assistive technologies like screen readers
also support this. It’s essential, though, that the combined markup semantically makes
sense as a whole. So make sure that your content hierarchy is marked up correctly.

PROGRESSIVE ENHANCEMENT

An Ajax-based solution typically plays well with the principles of progressive enhance-
ment.7 Delivering server-rendered content as a fragment or as a standalone page
doesn’t introduce a lot of extra code.

 You can provide a reliable fallback in case JavaScript failed or hasn’t executed yet.
On our product page, users with broken JavaScript will see the Show Recommenda-
tions link, which will bring them to the standalone recommendations page. Architect-
ing for failure is a valuable technique that will increase the robustness of your
application. I recommend checking out Jeremy Keith’s publications8 for more details
on progressive enhancement.

FLEXIBLE ERROR HANDLING

You also get a lot more options for dealing with errors. When the fetch () call fails or
takes too long, you can decide what you want to do—show the progressive enhance-
ment fallback, remove the fragment from the layout altogether, or display a static
alternative content you’ve prepared for this case.

6 For details on the Googlebot’s JavaScript support, see https://developers.google.com/search/docs/guides/
rendering.

7 See https://en.wikipedia.org/wiki/Progressive_enhancement.
8 See https://resilientwebdesign.com/.

https://developers.google.com/search/docs/guides/rendering
https://developers.google.com/search/docs/guides/rendering
https://en.wikipedia.org/wiki/Progressive_enhancement
https://resilientwebdesign.com/

49Composition via Ajax
3.1.5 The drawbacks

The Ajax model also has some drawbacks. The most obvious one is already present in
its name: it’s asynchronous.

ASYNCHRONOUS LOADING

You might have noticed that the site jumps or wiggles a bit when it’s loading. The
asynchronous loading via JavaScript causes this delay. We could implement the frag-
ment loading so that it blocks the complete page rendering and only shows the page
when the fragments are successfully loaded. But this would make the overall experi-
ence worse.

 Loading content asynchronously always comes with the trade-off that the content
pops in with a delay. For fragments that are further down the page and outside the view-
port, this is not an issue. But for content inside of the viewport, this flickering is not
nice. In the next chapter, you’ll learn how to solve this with server-side composition.

MISSING ISOLATION

The Ajax model does not come with any isolation. To avoid conflicts, teams have to
agree on inter-team conventions for namespacing. Conventions are fine when every-
one plays by the book. But you have no technical guarantees. When something slips
through, it can affect all teams.

SERVER REQUEST REQUIRED

Updating or refreshing an Ajax fragment is as easy as loading it initially. But when you
implement a solution that relies purely on Ajax, this means that every user interaction
triggers a new call to the server to generate the updated markup. A server roundtrip is
acceptable for many applications, but sometimes you need to respond to user input
quicker. Especially when network conditions are not optimal, the server roundtrip can
get quite noticeable.

NO LIFECYCLE FOR SCRIPTS

Typically a fragment also needs client-side JavaScript. If you want to make something
like a tooltip work, an event handler needs to be attached to the markup that triggers
it. When the outer page updates a fragment by replacing it with new markup fetched
from the server, this event handler needs to be removed first and re-added to the new
markup.

 The team that owns the fragment must know when their code should run. There
are multiple ways to implement this. MutationObserver,9 annotation via data-* attri-
butes, custom elements, or custom events can help here. But you have to implement
these mechanisms manually. In chapter 5 we’ll explore how Web Components can
help here.

9 See Louis Lazaris, “Getting To Know The MutationObserver API,” Smashing Magazine, http://mng.bz/
Mdao.

http://mng.bz/Mdao
http://mng.bz/Mdao

50 CHAPTER 3 Composition with Ajax and server-side routing
3.1.6 When does an Ajax integration make sense?

Integration via Ajax is straightforward. It’s robust and easy to implement. It also intro-
duces little performance overhead, especially compared to the iframe solution, where
every fragment creates a new browsing context.

 If you are generating your markup on the server-side, this solution makes sense. It
also plays well together with the server-side includes concept we’ll learn in the next
chapter.

 For fragments that contain a lot of interactivity and have local state, it might
become tricky. Loading and reloading the markup from the server on every interac-
tion might feel sluggish due to network latency. The use of Web Components and
client-side rendering we’ll discuss later in the book can be an alternative.

3.1.7 Summary

Let’s revisit the three integration techniques we’ve touched on so far. Figure 3.3 shows
how the links, iframe, and Ajax approach compare to each other from a developer’s
and user’s perspective.

Figure 3.3 Comparison of different integration techniques. Compared to the iframes or
links approach, it’s possible to build more performant and usable solutions with Ajax. But you
lose technical isolation and need to rely on inter-team conventions like using CSS prefixes.

I decided to compare them along four properties:

 Technical complexity describes how easy or complicated it is to set up and work in
a model like this.

 Technical isolation indicates how much native isolation you get out of the box.
 Interactivity says how well this method is suited for building applications that feel

snappy and respond to user input quickly.
 First load time describes the performance characteristics. How fast does the user

get to the content they want to see?

T
ec

hn
ic

al
 c

om
pl

ex
ity

Technical isolation High

H
ig

h

Low

Lo
w

Ajax
iframes

In
te

ra
ct

iv
ity

First load time Fast

H
ig

h

Slow

Lo
w

Ajax

Separate pages

iframes

User experienceDeveloper experience

Separate pages

51Server-side routing via Nginx
Note that this comparison should only give you an impression of how these tech-
niques relate to each other in the defined categories. It’s by no means representative,
and you can always find counterexamples.

 Next, we’ll look at how to integrate our sample applications further. The goal is to
make the applications of all teams available under one single domain.

3.2 Server-side routing via Nginx
The switch from iframe to Ajax had measurable positive effects. Search engine ranking
improved, and we received emails from visually impaired users who wrote in to say that
our site is much more screen-reader-friendly now. But we also got some negative feed-
back. Some customers complained that the URLs for the shop are quite long and hard
to remember. Team Decide picked Heroku as a hosting platform and published their
site at https://team-decide-tractors.herokuapp.com/. Team Inspire chose Google
Firebase for hosting. They’ve released their application at https://tractor-inspirations
.firebaseapp.com/. This distributed setup worked flawlessly, but switching domains on
every click is not optimal.

 Ferdinand, the CEO of Tractor Models, Inc., took this request seriously. He decided
that all of the company’s web properties should be accessible from one domain. After
lengthy negotiations, he was able to acquire the domain the-tractor.store.

 The next task for the teams is to make their applications accessible through
https://the-tractor.store. Before going to work, they need to make a plan. A shared
web server is needed. It will be the central point where all requests to https://the
-tractor.store will arrive initially. Figure 3.4 illustrates this concept.

 The server routes all requests to the responsible application. It does not contain
any business logic besides this. This routing web server is often called a frontend proxy.
Each team should receive its own path prefix. The frontend proxy should route all

Team A

Handles all
incoming traffic

Routing
frontend proxy

Team CTeam B

Browser

Web server

Applications

Forwards requests
to the
responsible team

Figure 3.4 The shared web server is inserted between the browser and the team applications.
It acts as a proxy and forwards the requests to the responsible teams.

https://the-tractor.store
https://the-tractor.store
https://team-decide-tractors.herokuapp.com/
https://tractor-inspirations.firebaseapp.com/
https://tractor-inspirations.firebaseapp.com/
https://the-tractor.store

52 CHAPTER 3 Composition with Ajax and server-side routing
requests starting with /decide/ to Team Decide’s server. They also require additional
routing rules. The frontend proxy passes all requests starting with /product/ to Team
Decide; the ones with /recommendations/ go to Team Inspire.

 In our development environment, we again use different port numbers instead of
configuring actual domain names. The frontend proxy we will set up listens on port
3000. Table 3.2 shows the routing rules our frontend proxy should implement.

Figure 3.5 illustrates how an incoming network request is processed. Let’s follow the
numbered steps:

1 The customer opens the URL /product/porsche. The request reaches the
frontend proxy.

2 The frontend proxy matches the path /product/porsche against its routing
table. Rule #3 /product/ is a match.

Figure 3.5 Flow of a request. The frontend proxy decides which application should handle
an incoming request. It decides based on the URL path and the configured routing rules.

Table 3.3 Frontend proxy routes incoming requests to the teams applications

Rule # Path prefix Team Application

per team prefixes (default)

#1 /decide/ Decide localhost:3001

#2 /inspire/ Inspire localhost:3002

per page prefixes (additional)

#3 /product/ Decide localhost:3001

#4 /recommendations/ Inspire localhost:3002

Team Decide’s
application

Team Inspire’s
application

Product page request

 Frontend proxy (Nginx)

localhost:3000

localhost:3001 localhost:3002

3

1 5

4

/product/porsche

#1 /decide/
#2 /inspire/
#3 /product/

 localhost:3001
#4 /recommendation/

2

Routing rule lookup

Rule #3 is a match.
Forward to Team Decide.

53Server-side routing via Nginx

4

3 The frontend proxy passes the request to Team Decide’s application.
4 The application generates a response and gives it back to the frontend proxy.
5 The frontend proxy passes the answer to the client.

Let’s have a look at how to build a frontend proxy like this.

3.2.1 How to do it

The teams picked Nginx for this task. It’s a popular, easy to use, and pretty fast web
server. Don’t worry if you haven’t worked with Nginx before. We’ll explain the funda-
mental concepts necessary to make our routing work.

INSTALLING NGINX LOCALLY

If you want to run the example code locally, you need Nginx on your machine. For
Windows users, it should work out of the box because I’ve included the Nginx binaries
in the sample code directory. If you’re running macOS, the easiest option is to install
Nginx via the Homebrew package manager.10 Most Linux distributions offer an offi-
cial Nginx package. On Debian- or Ubuntu-based systems you can install it via sudo
apt-get install nginx. There’s no need for extra configuration. The example code
only needs the Nginx binary to be present on your system. The npm script will automat-
ically start and stop the Nginx together with the team’s applications.

STARTING THE APPLICATIONS

Start all three services by running this:

npm run 04_routing

The familiar Porsche Diesel Master should appear in your browser. Check your termi-
nal to find a logging output that looks like this:

[decide] :3001/product/porsche
[nginx] :3000/product/porsche 200
[decide] :3001/decide/static/page.css
[decide] :3001/decide/static/page.js
[nginx] :3000/decide/static/page.css 200
[nginx] :3000/decide/static/page.js 200
[inspire] :3002/inspire/fragment/recommendations/porsche
[nginx] :3000/inspire/fragment/recommendations/porsche 200
[inspire] :3002/inspire/static/fragment.css
[nginx] :3000/inspire/static/fragment.css 200

In this log message, we see two entries for each request—one from the team
([decide] or [inspire]) and one from the frontend proxy [nginx]. You can see that
all requests pass through the Nginx. The services create the log entry when they’ve
produced a response. That explains why we always see the team application first and
then the message from Nginx.

10 Get the Homebrew package manager at https://brew.sh and install Nginx by running brew install nginx.

the-tractor.store/#

https://brew.sh
http://www.the-tractor.store/#4

54 CHAPTER 3 Composition with Ajax and server-side routing
NOTE On Windows, the nginx log messages don’t appear because nginx.exe
doesn’t offer an easy way to log to stdout. If you’re running Windows, you
have to believe it’s working as described (or reconfigure the access_log in
the nginx.conf to write them to a local file of your choice).

Let’s look into the frontend proxy configuration. You’ll need to understand two
Nginx concepts for this:

 Forwarding a request to another server (proxy_pass/upstream)
 Differentiating incoming requests (location)

Nginx’s upstream concept allows you to create a list of servers that Nginx can forward
requests to. The upstream configuration for Team Decide looks like this:

upstream team_decide {
server localhost:3001;

}

You can differentiate incoming requests using location blocks. A location block has a
matching rule that gets compared against every incoming request. Here’s a location
block that matches all requests starting with /product/:

location /product/ {
proxy_pass http://team_decide;

}

See the proxy_pass directive in the location block? It advises Nginx to forward all
matched requests to the team_decide upstream. You can consult the Nginx documen-
tation11 for a more in-depth explanation, but for now we have everything we need to
understand our ./webserver/nginx.config configuration file.

upstream team_decide {
server localhost:3001;

}
upstream team_inspire {

server localhost:3002;
}
http {

...
server {

listen 3000;
...
location /product/ {

proxy_pass http://team_decide;
}
location /decide/ {

proxy_pass http://team_decide;

11 See https://nginx.org/en/docs/beginners_guide.html#proxy.

Listing 3.6 webserver/nginx.conf

Registers Team Decide’s
application as an upstream
called “team_decide”

Handles all request starting with
/product/ and forwards them to
the team_decide upstream

https://nginx.org/en/docs/beginners_guide.html#proxy

55Server-side routing via Nginx
}
location /recommendations {

proxy_pass http://team_inspire;
}
location /inspire/ {

proxy_pass http://team_inspire;
}

}

NOTE In our example, we use a local setup. The upstream points to local-
host:3001. But you can put in any address you want here. Team Decide’s
upstream might be team-decide-tractors.herokuapp.com. Keep in mind
that the web server introduces an extra network hop. To reduce latency, you
might want your web and application servers to be located in the same data
center.

3.2.2 Namespacing resources

Now that both applications run under the same domain, their URL structure mustn’t
overlap. For our example, the routes for their pages (/product/ and /recommenda-
tions) stay the same. All other assets and resources are moved into a decide/ or
inspire/ folder.

 We need to adjust the internal references to the CSS and JS files. But the URL pat-
terns both teams agreed upon (the contract between the teams) also need to be updated.
With the central frontend proxy in place, a team does not have to know the domain of
the other team’s application anymore. It’s sufficient to use the path of the resource.
Now Nginx’s upstream configuration encapsulates the domain information. Since all
requests should go through the frontend proxy, we can remove the domain from the
pattern:

 product page
old: http://localhost:3001/product/<sku>
new: /product/<sku>

 recommendation page
old: http://localhost:3002/recommendations/<sku>
new: /recommendations/<sku>

 recommendation fragment
old: http://localhost:3002/fragment/recommendations/<sku>
new: /inspire/fragment/recommendations/<sku>

NOTE Notice that the path of the recommendation fragment URL received a
team prefix (/inspire).

Introducing URL namespaces is a crucial step when working with multiple teams on
the same site. It makes the route configuration in the web server easy to understand.
Everything that starts with /<teamname>/ goes to upstream <teamname>. Team prefixes
help with debugging because they make attribution easier. Looking at the path of a
CSS file that’s causing an issue reveals which team owns it.

56 CHAPTER 3 Composition with Ajax and server-side routing
3.2.3 Route configuration methods

When your project grows, the number of entries in the routing configuration also
grows. It can get complicated quickly. There are different ways to deal with this com-
plexity. We can identify two different kinds of routes in our example application:

1 Page-specific routes (like /product/)
2 Team-specific routes (like /decide/)

STRATEGY 1: TEAM ROUTES ONLY

The easiest way to simplify your routes is to apply a team prefix to every URL. This way,
your central routes configuration only changes when you introduce a new team to the
project. The configuration looks like this:

/decide/ -> Team Decide
/inspire/ -> Team Inspire
/checkout/ -> Team Checkout

The prefixing is not an issue for internal URLs—ones the customer does not see like
APIs, assets, or fragments. But for URLs that show up in the browser address bar,
search results, or printed marketing material, this may be an issue. You are exposing
your internal team structure through the URLs. You also introduce words (like
decide, inspire) which a search engine bot would read and add to their index.

 Choosing shorter one- or two-letter-prefixes can moderate this effect. This way
your URLs might look like this:

/d/product/porsche -> Team Decide
/i/recommendations -> Team Inspire
/c/payment -> Team Checkout

STRATEGY 2: DYNAMIC ROUTE CONFIGURATION

If prefixing everything is not an option, putting the information about which team
owns which page into your frontend proxy’s routing table is unavoidable:

/product/* -> Team Decide
/wishlist -> Team Decide
/recommendations -> Team Inspire
/summer-trends -> Team Inspire
/cart -> Team Checkout
/payment -> Team Checkout
/confirmation -> Team Checkout

When you start small, this is usually not a big issue, but the list can quickly grow. And
when your routes are not only prefix-based but include regular expressions, it can get
hard to maintain.

 Since routing is a central piece in a micro frontend architecture, it’s wise to invest
in quality assurance and testing. You don’t want a new route entry to bring down other
pieces of software.

57Server-side routing via Nginx
 There are multiple technical solutions for handling your routing. Nginx is only
one option. Zalando open-sourced its routing solution called Skipper.12 They’ve built
it to handle more than 800,000 route definitions.

3.2.4 Infrastructure ownership

The key factors when setting up a micro-frontends-style architecture are team auto-
nomy and end-to-end responsibility. Consider these aspects of every decision you
make. Teams should have all the power and tools they need to accomplish their job as
well as possible. In a micro frontends architecture, we accept redundancy in favor of
decoupling.

 Introducing a central web server does not fit this model. To serve everything from
the same domain, it’s technically necessary to have one single service that acts as a
common endpoint, but it also introduces a single point of failure. When the web
server is down, the customer sees nothing, even if the applications behind it are still
running. Therefore, you should keep central components like this to a minimum.
Only introduce them when there is no reasonable alternative.

 Clear ownership is vital to ensure that these central components run stably and get
the attention they need. In classical software projects, a dedicated platform team
would run it. The goal of this team would be to provide and maintain these shared ser-
vices. But in practice, these horizontal teams create a lot of friction.

 Distributing infrastructure responsibility across the product teams can help to
keep the focus on customer value (see figure 3.6). In our example, Team Decide
could take responsibility for running and maintaining Nginx. They, and the other

12 See https://opensource.zalando.com/skipper/.

Team
A

Frontend proxy

Team
C

Team
B

Product teams

Dedicated infrastructure team
owns shared services

Monitoring
npm

registryLogging

Each team is responsible
for parts of the infrastructure

 PreferAvoid

Error reporting

Infrastructure team

Monitoring
Error

reporting
Frontend

proxy
Logging

npm registry

Team
A

Team
C

Team
B

Product teams

Owns

Figure 3.6 Avoid introducing pure infrastructure teams. Distributing responsibility for
shared services to the product teams can be a good alternative model.

https://opensource.zalando.com/skipper/

58 CHAPTER 3 Composition with Ajax and server-side routing
teams, have a natural interest in this service being well maintained and running stably.
The feature teams have no motivation to make a shared service fancier than it needs
to be. In our projects we’ve had good experiences with this approach. It helped to
maintain customer focus, even when we were working deeper in the stack. In chapters
12 and 13, we’ll go deeper into the centralized vs. decentralized discussion.

3.2.5 When does it make sense?

Delivering the contents of multiple teams through a single domain is pretty standard.
Customers expect that the domain in their browser address bar does not change on
every click.

 It also has technical benefits:

 Avoids browser security issues (CORS)
 Enables sharing data like login-state through cookies
 Better performance (only one DNS lookup, SSL handshake, …)

If you are building a customer-facing site that should be indexed by search engines,
you definitely want to implement a shared web server. For an internal application, it
might also be ok to skip the extra infrastructure and just go with a subdomain-per-
team approach.

 Now we’ve discussed routing on the server side. Nginx is only one way to do it; other
tools like Traefik13 or Varnish14 offer similar functionality. In chapter 7 you’ll learn how
to move these routing rules to the browser. Client-side routing enables us to build a uni-
fied single-page app. But before we get there, we’ll stay on the server and look at more
sophisticated composition techniques.

Summary
 You can integrate the contents of multiple pages into a single document by

loading them via Ajax.
 Compared to the iframe approach, a deeper Ajax integration is better for acces-

sibility, search engine compatibility, and performance.
 Since the Ajax integration puts fragments into the same document, it’s possible

to have style collisions.
 You can avoid CSS collisions by introducing team namespaces for CSS classes.
 You can route the content of multiple applications through one frontend

proxy, which serves all content through a unified domain.
 Using team prefixes in the URL path is an excellent way to make debugging

and routing easier.
 Every piece of software should have clear ownership. When possible, avoid cre-

ating horizontal teams like a platform team.

13 See https://docs.traefik.io.
14 See https://varnish-cache.org.

https://docs.traefik.io
https://varnish-cache.org

Server-side composition
In the previous chapters, you learned how to build a micro-frontends-style site using
client-side integration techniques like links, iframes, and Ajax. You’ve also learned
how to run a shared web server that routes incoming requests to the responsible
team for a specific part of the application. In this chapter, we will build upon these
and look at server-side integrations. Assembling the markup of different fragments
on the server is a widespread and popular solution. Many e-commerce companies
like Amazon, IKEA, and Zalando have chosen this way.

This chapter covers
 Examining server-side composition using Nginx

and SSI

 Investigating how timeouts and fallbacks can help
when dealing with broken or slow fragments

 Comparing the performance characteristics of
different composition techniques

 Exploring alternative solutions like Tailor, Podium,
and ESI
59

60 CHAPTER 4 Server-side composition
Figure 4.1 Composition of fragments happens on the server. The client receives an
already assembled page.

Server-side composition is typically performed by a service that sits between the
browser and the actual application servers, as illustrated in figure 4.1. The most signif-
icant benefit of server-side integration is that the page is already fully assembled when
it reaches the customer’s browser. You can achieve incredibly good first-page load
speeds that are hard to match using pure client-side integration techniques.

 Another essential factor is robustness. Composing the application server-side pro-
vides the foundation for adopting the principles of progressive enhancement. Teams
can decide to add client-side JavaScript to the fragments where it improves the user
experience.

4.1 Composition via Nginx and Server-Side Includes (SSI)
In the last iteration, the teams switched their integration from iframes to an Ajax-
based solution. This improved their search engine ranking noticeably. To validate
their work, Tractor Models, Inc. conducts surveys regularly. Tina, responsible for cus-
tomer service, speaks more than 10 languages. She talks to enthusiasts from around
the world to get their opinions and feedback.

 The overall reaction to our teams' work is stellar. The fans can’t wait to get their
hands on the real tractor models. But a topic that comes up multiple times during
these conversations is the site’s loading speed. Customers report that the-tractor.store
does not feel as snappy as the competitor’s online shop. Elements like the recommen-
dation strip appear with a noticeable delay.

Composition service
Nginx, Varnish, CDN, …

Client

Server

A B
C

C

B

C

CA

B
C

A

Assembled
page

Team B Team CTeam A

Composition
server-side

61Composition via Nginx and Server-Side Includes (SSI)
 Tina organizes an in-person meeting with the development teams to share the
insights from her calls. The developers are surprised by the poor performance
reports. On their machines, all pages load pretty quickly. They can’t even see the
effects that the customers described on their machines. But this might be because
their customers don’t own $3,000 notebooks, aren’t on a fiber connection, and don’t
live in the same country where the datacenter is located. Most of them don’t even live
on the same continent.

 To test the site under suboptimal network conditions, one developer opens his
browser’s developer tools and loads the page with the network throttled to 3G speeds.
He is quite surprised to see it take 10 seconds to load.

 The developers are confident that there is room for improvement. They plan to
move to a server-side integration technique. This way, the first HTML response would
already include the references for all assets the site needs. The browser has a complete
picture of the page much sooner. It can load the needed resources earlier and in
parallel. Since they already have an Nginx in place, the teams choose to use its Server-
Side Includes (SSI) feature to do the integration.

4.1.1 How to do it

Let’s get to work. This time Team Inspire can lean back. They can reuse the recom-
mendation fragment endpoint from the previous chapter (Ajax).

 Team Decide needs to make two changes:

1 Activate Nginx’s SSI support in the web server’s configuration.
2 Add an SSI directive to their product template. The SSI’s URL must point to

Team Inspire’s existing recommendation endpoint.

HOW SSI WORKS

Let’s look at an overview of how SSI processing works. An SSI include directive looks
like this:

<!--#include virtual="/url/to/include" -->

The web server replaces this directive with the contents of the referenced URL before
it passes the markup to the client.

SSI history
Server-Side Includes is an old technique. It dates back to the 1990s. Back in the day,
people used it to embed the current date into an otherwise static page. In this book,
we will focus on SSI’s include directive in the Nginx server.

The specification is stable. It has not evolved over recent years. The implementations
in popular web servers are rock solid and come with little management overhead.

62 CHAPTER 4 Server-side composition
 Figure 4.2 shows how our systems generate and compose the HTML for the prod-
uct page using Server-Side Includes. Let’s follow the arrows from the initial request to
the final response, from top to bottom. All the steps happen in sequential order.

Figure 4.2 SSI processing inside Nginx

1 The client requests /product/porsche.
2 Nginx forwards the request to Team Decide because it starts with /product/.
3 Team Decide generates the markup for the product page, including an SSI

directive where the recommendations should be placed, and sends it to Nginx.
4 Nginx parses the response body, finds the SSI include, and extracts the URL

(virtual).
5 Nginx requests its content from Team Inspire because the URL starts with

/inspire/.
6 Team Inspire produces the markup for the fragment and returns it.
7 Nginx replaces the SSI comment on the product page’s markup with the frag-

ments markup.
8 Nginx sends the combined markup to the browser.

The Nginx serves two roles: request forwarding based on the URL path and fetching and
integrating fragments.

<html>
 <h1>Porsche</h1>
 <!--# include
 virtual="/inspire/recos" -->
</html>

Team
Decide

<div>
 <h2>Recos</h2>
</div>

<html>
 <h1>Porsche</h1>
 <div>
 <h2>Recos</h2>
 </div>
</html>

 SSI include found
/inspire/recos

Nginx

/product/porsche

/product/porsche

Team
Inspire

/inspire/recos

Client Applications

Assembling markup

1

2

3

4

5

6

7

8

63Composition via Nginx and Server-Side Includes (SSI)

5

INTEGRATING A FRAGMENT USING SSI
Let’s go ahead and try this in our example application. Nginx’s SSI support is disabled
by default. You can activate it by putting ssi on; in the server {…} block of your
nginx.conf.

...
server {

listen 3000;
ssi on;
...

}

Now we must add the SSI include directive to the product page’s markup. It follows a
simple structure: <!--#include virtual="[/url-to-include]" -->. We can use the
same URL for the fragment as we did with the Ajax example before.

...
<aside class="decide_recos">

<!--#include virtual="/inspire/fragment/recommendations/porsche" -->
</aside>
...

Start the example by running the following command:

npm run 05_ssi

Your browser now shows the tractor page as we know it. However, we don’t need client-
side JavaScript for the integration anymore. The markup is already integrated when it
reaches your customer’s device. Check this by opening "view source" in your browser.

4.1.2 Better load times

Let’s look at page-load speed. Open the Network tab in your browser’s developer
tools. We activate network throttling to 3G speeds. Figure 4.3 shows the result.

 Loading the Ajax integrated version takes around 10 seconds, compared to only 6
seconds for the SSI solution. The page indeed loads 40% faster. But where did we save
so much time? Let’s take a more in-depth look. The 3G throttling mode limits the
available bandwidth, but also delays all requests by around two seconds. We removed
the need for the separate fragment Ajax call. The recommendations are already bun-
dled into the initial markup. This bundling saves us two seconds. The other factor is
that JavaScript triggered the loading of the Ajax call. The browser had to wait for the
JavaScript file to finish before it was able to load the fragment. This waiting for Java-
Script accounted for another two seconds.

Listing 4.1 webserver/nginx.conf

Listing 4.2 team-decide/product/porsche.html

Activates Nginx’s
server-side include feature

Nginx will replace this SSI directive
with the contents of the URL.

the-tractor.store/#

http://www.the-tractor.store/#5

64 CHAPTER 4 Server-side composition
Figure 4.3 Page-load speed for the product page with client-side and server-side composition. Server-
side integration optimizes the critical paths.

Granted, delaying all requests by two seconds seems harsh and might not accurately
represent the average connectivity of your customer. But it highlights the dependen-
cies of your resources, also called the critical path. It’s essential to give the browser the
information about all crucial parts of the page, like images and styles, as early as possi-
ble. Server-side integration is essential in making this happen.

 The critical difference is that latency inside one data center is magnitudes smaller
and more predictable. We’re talking about single-digit milliseconds for service-to-
service communications, whereas the back and forth over the internet, between data
center and end-user, is much more unreliable. Latency ranges from < 50 ms on good
connections to multiple seconds for bad ones.

4.2 Dealing with unreliable fragments
The developers of Team Decide generated a comparison video showing the real-time
page load before and after the server-side integration1 and posted it to the company’s
Slack channel. As expected, the responses were extremely positive.

1 WebPageTest is an excellent open-source tool for doing this: https://www.webpagetest.org/.

Throttled to 3G network speed

Product page and
recommendations
markup in one request

All other assets are
loaded in parallel.

Visually complete
after ~10s

40% faster

Product page
markup and assets

Recommendations
markup and assets

Visually complete
after ~6s

Client-side markup integration (Ajax, …)

Server-side markup integration (SSI, …)

https://www.webpagetest.org/

65Dealing with unreliable fragments
 But what happens when one of the applications is slow or has a technical problem?
In this section, we’ll dig a bit deeper into server-side integration and explore how
timeouts and fallbacks can help.

4.2.1 The flaky fragment

While Team Decide worked on the server-side integration, Team Inspire was also busy.
They were able to build the prototype of a new feature called “Near You.” It informs
the tractor fan when a real-world version of one of their favorite models is working in
a field nearby. Making this work wasn’t easy—talking to farmer associations, distribut-
ing GPS kits to the farmers, and making the real-time data collection happen.

 When a user visits the site, and the system detects that there is indeed a real version
of the tractor in a 100 km radius nearby, we show a little information box on the prod-
uct page. The first version of this feature will be limited to Europe and Russia, and
locates the user by their IP address. The location is not always accurate, and Team
Decide plans to leverage the browser’s native geolocation and notifications APIs in the
future.

 Both teams sit together and talk about how to integrate this feature. Team Inspire
just needs a second space in the product page’s layout. Team Decide agrees to provide
a slot for the “Near You” fragment as a long banner underneath the header on the prod-
uct page. When Team Inspire’s system can’t find a nearby tractor, it will show no banner.
But Team Decide does not have to know or care about the business logic and concrete
implementation of the fragment. Topics like localization, finding a match, rollout
plans, and so on are handled by Team Inspire. When they are unable to find a match,
they’ll return an empty fragment. Figure 4.4 shows what the banner will look like.

 Team Inspire says that the URL pattern of the fragment will be /inspire/
fragment/near_you/<sku>. But before both teams separate to start working, one of
Team Inspire’s developer raises an issue: “Our data processing stack still has a few

Two fragments
integrated via SSI

This fragment
is slow sometimes

New feature
implemented by

team inspire

Figure 4.4 The “Near You” feature is added as a banner on top of the page.

66 CHAPTER 4 Server-side composition

6

problems. Sometimes our response times go up to over 500 ms for a couple of min-
utes. During our last tests, the servers also crashed and rebooted sometimes.”

 This unreliability, indeed, is an issue. A response time of 500 ms is quite a long
time for a single fragment. It will slow down the markup generation for the complete
product page. But since this feature is not crucial for the site to work, they agree on
leaving it out when it takes too long.

4.2.2 Integrating the Near You fragment

TIP You can find the sample code for this task in the 06_timeouts folder.

Let’s take a look at Team Inspire’s new fragment.

<link href="/inspire/static/fragment.css" rel="stylesheet" />)
<div class="inspire_near_you">

● Real Tractor near you!
An Eicher Diesel 215/16 is paving
a field 24km north east.

</div>

At the moment, only Eicher Diesel 215/16 tractors are GPS-equipped. The fragments
for the other tractors (porsche.html, fendt.html) are just blank files. To display the
fragment, Team Decide inserts the associated SSI directive into their product pages, as
shown in the following listing.

...
<h1 class="decide_header">The Tractor Store</h1>
<div class="decide_banner">

<!--#include virtual="/inspire/fragment/near_you/eicher" -->
</div>
...

But since we are serving static HTML files, the response time for the fragment would
always be fast. Let’s simulate a slow fragment.

 You can find the source code in 06_timeouts. We have three scenarios we can test
with this example:

 Team Inspire has a short delay (~300 ms).
 Team Inspire has a long delay (~1000 ms).
 Team Inspire is down.

I’ve created an npm run script for each scenario. Let’s have a look at the first one: the
300 ms delay. Run the following command:

npm run 06_timeouts_short_delay

Listing 4.3 team-inspire/inspire/fragment/near_you/eicher.html

Listing 4.4 team-decide/product/eicher.html

Fragment
stylesheet

Fragment
content

the-tractor.store/#

http://www.the-tractor.store/#6

67Dealing with unreliable fragments
Now the page takes considerably longer to load. In the 05_ssi example, the HTML
document loaded in single-digit milliseconds. With the slow fragments from Team
Inspire, it takes more than 300 ms before the browser receives any data from the
server. These potential delays are an inherent problem of server-side composition.
The composition service has to wait for all the required fragments.

 In contrast to the Ajax integration, where we fetch fragments asynchronously, one
single fragment can slow down the complete page in a server-side integration. On the
server, the slowest fragment defines the total response time. All teams need to moni-
tor the response times of their fragments to achieve excellent performance. Let’s look
at the other two scenarios: long delays and broken upstream.

4.2.3 Timeouts and fallbacks

Even if everything is fast, most of the time, it’s still a good idea to have a safety net in
place. In a micro frontends architecture, you want to decouple your user interface as
much as possible. An error in one system should not break the others. Nginx comes
with basic mechanisms to define timeouts for upstreams. When an upstream becomes
slow or doesn’t respond at all, Nginx stops waiting and delivers the site without the
includes.

 Let’s look at how Nginx behaves when a team’s application doesn’t respond at all.
Run the following command to simulate what happens if Team Inspire is down:

npm run 06_timeouts_down

Our page loads pretty quickly, but Team Inspire’s fragments are missing. Since Nginx
couldn’t connect to Team Inspire’s application, it did not have to wait.

 But in reality, it’s not always that black and white. Sometimes a server accepts new
connections but responds slowly. With the property proxy_read_timeout, you can
configure a timeout after which Nginx categorizes an upstream as non-functional.
The default timeout is 60s, which is pretty high for our use case. We could set the
proxy_read_timeout to 500ms for all requests starting with /inspire/. The maximum
response time both teams agreed upon earlier is 500 milliseconds. The Nginx configu-
ration looks like the following code.

...
location /inspire/ {

proxy_pass http://team_inspire;
proxy_read_timeout 500ms;

}
...

Listing 4.5 webserver/nginx.conf

Team Inspire’s upstream has a
maximum of 500 ms to produce
an answer for incoming requests.

68 CHAPTER 4 Server-side composition
You need to keep in mind that this setting is per upstream and not per request. When
requests exceed the configured timeouts, Nginx marks the corresponding upstream
as failed and stops even trying to contact it for 10 seconds.2

 Let’s test our configured timeout by running the following command:

npm run 06_timeouts_long_delay

In this scenario, we delay all calls to Team Inspire by 1000 ms. Since this exceeds our
configured timeout, Nginx omits Team Inspire’s fragments. Watch your network view
to see that the HTML document takes ~500 ms to load for the first time. Also, notice
that Nginx answers all subsequent requests to the product detail page instantly
(< 10 ms). Nginx doesn’t even try to contact Team Inspire’s application for at least
10 seconds. After that 10 seconds, Nginx will try again.

NOTE It’s not possible to configure a timeout in Nginx that only aborts spo-
radic long-running requests. When some requests take too long, Nginx marks
the complete upstream as non-functional. Later in this chapter, we’ll look at
alternative server-side integration techniques that provide more flexibility
when it comes to timeouts.

4.2.4 Fallback content

You might have noticed that Nginx omits the Near You fragment when it takes too
long. But the recommendation strip wasn’t completely removed. Instead, the page
shows a Show Recommendations fragment in its place.

 Nginx has a built-in mechanism to deal with failed includes. The SSI command has
a parameter called stub. It lets you define a reference to a block. Nginx uses the con-
tent of the block when something goes wrong with the include. We can define the fall-
back content by wrapping it in block and endblock comments. Here’s the fallback
markup Team Decide has configured for the recommendations.

...
<aside class="decide_recos">

<!--# block name="reco_fallback" -->

Show Recommendations

<!--# endblock -->
<!--#include

virtual="/inspire/fragment/recommendations/eicher"
stub="reco_fallback" -->

</aside>
...

2 You can change this behavior by setting the max_fails and fail_timeout options in an upstream config-
uration. See the Nginx documentation for more details on this: http://mng.bz/aRro.

Listing 4.6 team-decide/product/eicher.html

Defining the fallback
content as reco_fallback

Assigning the reco_fallback block
as fallback/stub to the includes

http://mng.bz/aRro

69Markup assembly performance in depth
But you don’t always have a meaningful fallback. In production, it’s common to use an
empty block for content that is optional for the site to work.

...
<div class="decide_banner">

<!--# block name="near_you_fallback" --><!--# endblock -->
<!--#include

virtual="/inspire/fragment/near_you/eicher"
stub="near_you_fallback" -->

</div>
...

NOTE The placement in the document does not matter. However, you must
define the block before you reference it via the stub.

Thinking about fallbacks and timeouts is crucial when you implement server-side composition.
Otherwise, a misbehaving fragment can harm the complete page. The Nginx way you
just learned is not the only way to deal with it, but the concepts are transferable to
most other solutions.

4.3 Markup assembly performance in depth
In the earlier examples, we’ve seen that one fragment can slow down the complete
page. We’ll now look deeper into the topic of loading multiple fragments at once,
dealing with nested fragments, and how to implement deferred loading. After that,
we’ll explore the response behavior of Nginx and other solutions.

4.3.1 Parallel loading

We already observed how Nginx resolves and replaces an SSI include. But what hap-
pens when there is more than one fragment to fetch? Figure 4.5 shows the network
diagram for our two-fragment product page.

 After Nginx receives the HTML for the product page, it parses the content and
finds two SSI directives (A and B) that it must resolve. Then it goes ahead and
requests all fragments in parallel. When the last fragment arrives, Nginx assembles the
complete markup and sends the response back to the client.

 So SSI processing is a two-step process:

1 Fetching the page markup
2 Fetching all fragments in parallel

The response time for the complete markup, also called time to first byte (TTFB), is
defined by the time it takes to generate the page markup and the time of the slowest
fragment.

Listing 4.7 team-decide/product/eicher.html

Empty fallback content
named near_you_fallback

Assigning the
near_you_fallback
block as a fallback

70 CHAPTER 4 Server-side composition
Figure 4.5 Nginx fetches multiple SSI includes in parallel.

4.3.2 Nested fragments

It’s also possible to nest SSI includes, having a fragment that contains another frag-
ment. Nginx checks all responses, even included ones, for SSI directives and executes
them. In the projects I’ve worked on, we always tried to avoid nesting includes. Every
additional level of nesting adds to the load time. The two-step process quickly
becomes a three-, four-, or five-step process. Whether this nesting is acceptable or not
depends on your performance target and the time it takes to generate a fragment.

 A scenario where nesting always came up was the page header. Many pages include
the header fragment. But the header itself is assembled out of different other fragments;
for example, the mini-cart, navigation, or login status. Figure 4.6 illustrates this nesting.

Figure 4.6 Product page includes the header fragment which includes the mini-cart fragment

Page

Fragment A

Fragment B

A B

Transfer to
browser

Transfer complete

Response

Last fragment arrived

Page markup arrived

Start sending
TTFB / time to first byte

Nginx

Parallel
loading

Product page

Banner

Recos

Page

Fragment A

Fragment B

Page

Fragment A

Fragment B

A

B

Transfer to
browser

Response

Nesting
fragment in fragment

Nginx

Product page

 Header Mini-cart

Page

Fragment A

Fragment B

71Markup assembly performance in depth
Since the parts for the header were either quite static and cacheable (navigation)
or small and quick to produce (mini-cart, login-status), we usually accepted this
indirection.

4.3.3 Deferred loading

Server-side integration is a great tool for improving the load time of your page. But
you have to be careful when creating large pages. It’s often a good practice to use
server-side integration for the essential parts of your page—usually everything in the
upper part (viewport). Additional fragments that are farther down the page or are
optional for your site to work (newsletter signup, promotions) can be lazy-loaded; for
example, via Ajax. Lazy loading reduces the size of the initial markup the client needs
to load and enables the browser to start rendering the page earlier.

 If you want the fragment in the initial markup, you specify it as an SSI directive:

<div class="banner">
<!--#include virtual="/fragment-a" -->

</div>

If you want to lazy-load it, you can omit the include directive and fetch the content
using an Ajax call via client-side JavaScript instead:

const banner = document.querySelector(".banner"):
window

.fetch("/fragment-a")

.then(res => res.text())

.then(html => { banner.innerHTML = html; });

Since the fragment endpoints for an SSI or Ajax-based integration can be the same,
it’s easy to switch between those integrations and test the results.

4.3.4 Time to first byte and streaming

Let’s look at some optimization techniques a composition service can implement to
speed up the page load time. We’ve seen how Nginx works. It loads the main docu-
ment and waits until all referenced fragments have arrived. It sends the response to
the client after it has assembled the page.

 But there are better ways. A composition service could start sending the first
chunks of data earlier. It could, for example, send the beginning of the page template
up until the first fragment and then send the remaining chunks as fragments arrive.
This partial sending would be beneficial for performance because the browser can start
loading assets and rendering the first parts of the page earlier. The ESI mechanism in
Varnish, an Nginx alternative, works like this. You’ll learn more about ESI in the next
section.

 The idea of streaming templates takes this one step further. With this model, the
upstreams generate and send their markup as a stream. The product page would
immediately send out the first parts of its template while looking up the required data
for the rest of the page (name, image, price) in parallel. The composition server can
directly pass this data to the client and start fetching fragments even if the page’s

72 CHAPTER 4 Server-side composition
markup from the other upstream hasn’t completely arrived yet. The two steps (load-
ing page and loading fragments) overlap, which can reduce overall load time and
improves time to first byte significantly. In the next section, we’ll look at Tailor and
Podium, which both support streaming composition.

Figure 4.7 Different ways a server-side integration solution can handle fragment loading and
markup concatenation internally. The partial sending and streaming approach provides a better
time to first byte. This way, the browser receives the content earlier and can start rendering sooner.

Figure 4.7 shows a diagram of the three approaches. There are a few simplifications
made that you need to keep in mind:

 The diagram does not take into account that the user’s bandwidth is limited.
 The streaming model includes the assumption that the response generation is a

linear process. This assumption is only valid if you are serving up static docu-
ments. Most applications usually fetch data from a database before templating is
started. Data fetching typically takes a significant part of the response time.

Page

Fragment A

Fragment B

A B

TTFB

Page

Fragment A

Fragment B TTFB

Page

Fragment A

Fragment B TTFB

Transfer to
browser

Transfer to
browser

Transfer to
browser

Downloaded

Downloaded

Downloaded

Sending after assembly

Partial sending

A B

A B

Streaming response

Server

Client

Response

Wait until all parts are ready.
Nginx

Send parts as they arrive.
Varnish enterprise

Process and forward continuously.
Zalando tailor

73A quick look into other solutions
4.4 A quick look into other solutions
Up until now, we’ve focused on how to integrate using SSI and looked at Nginx’s
implementation specifically. Let’s examine a few alternatives. We’ll focus on their
main benefits.

4.4.1 Edge-Side Includes

Edge-Side Includes, or ESI, is a specification3 that defines a unified way of markup assem-
bly. Content delivery network providers like Akamai and proxy servers like Varnish,
Squid, and Mongrel support ESI. Setting up an ESI integration solution would look sim-
ilar to our example. Instead of putting Nginx between the browser and our applications,
we could swap it with a Varnish server. An edge side include directive looks like this:

<esi:include src="https://tractor.example/fragment" />

FALLBACKS

The src needs to be an absolute URL, and it’s also possible to define a link for a fall-
back URL by adding an alt attribute. This way, you can set up an alternative endpoint
that hosts the fallback content. The associated code would look like this:

<esi:include
src="https://tractor.example/fragment"
alt="https://fallback.example/sorry" />

TIMEOUTS

Like SSI, standard ESI has no way to define a timeout for individual fragments. Aka-
mai added this feature with their non-standard extensions.4 There you can add a max-
wait attribute. When the fragment takes longer, the service will skip it.

<esi:include
src="https://tractor.example/fragment"
maxwait="500" />

TIME TO FIRST BYTE

The response behavior varies between implementations. Varnish fetches the ESI
includes in series—one after another. Parallel fragment loading is available in the
commercial edition of the software. This version also supports partial sending, which
starts responding to the client early—even when it hasn’t resolved all fragments yet.

4.4.2 Zalando Tailor

Zalando5 moved from a monolith to a micro frontends-style architecture with Project
Mosaic.6 They published parts of their server-side integration infrastructure.Tailor 7 is a

3 ESI language specification 1.0, https://www.w3.org/TR/esi-lang.
4 See https://www.akamai.com/us/en/multimedia/documents/technical-publication/akamai-esi-extensions-

technical-publication.pdf.
5 See https://en.wikipedia.org/wiki/Zalando.
6 See https://www.mosaic9.org/.
7 See https://github.com/zalando/tailor.

If the fragment (src) fails to load,
the content from the fallback URL
(alt) will be shown instead.

Fragment is skipped if it takes
longer than 500ms to load

https://www.w3.org/TR/esi-lang
https://www.akamai.com/us/en/multimedia/documents/technical-publication/akamai-esi-extensions-technical-publication.pdf
https://www.akamai.com/us/en/multimedia/documents/technical-publication/akamai-esi-extensions-technical-publication.pdf
https://www.mosaic9.org/
https://github.com/zalando/tailor
https://en.wikipedia.org/wiki/Zalando

74 CHAPTER 4 Server-side composition
Node.js library that parses the page’s HTML for special fragment tags, fetches the ref-
erenced content, and puts it into the page’s markup.

 We won’t go into full detail on how to set up a Tailor-based integration. But here
are some parts of the code to give you an impression. Tailor is available as a package
(node-tailor). You can install it via NPM.

const http = require('http');
const Tailor = require('node-tailor');
const tailor = new Tailor({ templatesPath: './views' });
const server = http.createServer(tailor.requestHandler);
server.listen(3001);

An associated template could look like this.

...
<body>

<h1>The Tractor Store</h1>
...
<fragment src="http://localhost:3002/recos" />

</body>
...

This example is a simplified version of our product page. Team Decide runs the Tailor
service in their Node.js application. Their Tailor server will handle a call to http://
localhost:3001/product. It uses the ./views/product.html template to generate a
response. Tailor replaces the <fragment … /> tag with the HTML content returned by
the http://localhost:3002/recos endpoint. Team Inspire operates this endpoint.

FALLBACKS AND TIMEOUTS

Tailor has built-in support for handling slow fragments. It lets you define a per-
fragment timeout like this:

<fragment
src="http://localhost:3002/recos"
timeout="500"
fallback-src="http://localhost:3002/recos/fallback"

/>

When the loading fails, or the timeout is exceeded, the fallback-src URL gets called
to show fallback content.

Listing 4.8 team-decide/index.js

Listing 4.9 team-decide/views/product.html

Creating a tailor instance and setting its
template folder to ./views. Consult the

documentation for other options.

Attaching tailor to a
standard Node.js
server, which listens
on port 3001

The fragment tag will be
replaced by the content
fetched from the src.

Sets a 500 ms timeout
for this fragment

Tailor loads the fallback
content in case of an
error or timeout.

75A quick look into other solutions
TIME TO FIRST BYTE AMD STREAMING

Tailor’s most prominent feature is the support for streaming templates. They send the
result to the browser as the page template (called the layout) is parsed, and fragments
arrive. This streaming approach leads to a good time to first byte.

ASSET HANDLING

Besides the actual markup, a fragment endpoint can also specify associated styles and
scripts that go with this fragment. Tailor uses HTTP headers for this:

$ curl -I http://localhost:3002/recos
HTTP/1.1 200 OK
Link: <http://localhost:3002/static/fragment.css>; rel="stylesheet",

<http://localhost:3002/static/fragment.js>; rel="fragment-script"
Content-Type: text/html
Connection: keep-alive

Tailor reads these headers and adds the scripts and styles to the document. Transferring
the references alongside the markup is great and enables optimizations like not refer-
encing the same resource twice and moving all script tags to the bottom of the page.

 But Tailor’s implementation makes some assumptions that might not be generally
applicable. Teams must wrap all JavaScript in an AMD module, which will be loaded
by the require.js module loader. You also can’t easily control how the service adds
script and style tags to the markup.

4.4.3 Podium

Finn.no8 is a platform for classified ads and Norway’s largest website, when ranked by
the number of page views. The company is organized into small, autonomous devel-
opment teams that assemble their pages out of fragments, which they call podlets.
Finn.no released its Node.js-based integration library called Podium9 at the beginning
of 2019. It takes concepts from Tailor and improves them. In Podium, fragments are
called podlets, and pages are layouts.

PODLET MANIFEST

Podium’s central concept is the podlet manifest. Every podlet comes with a JSON-
structured metadata endpoint. This file contains information like name, version, and
the URL for the actual content endpoint.

{
"name": "recos",
"version": "1.0.2",
"content": "/",

8 See https://en.wikipedia.org/wiki/Finn.no.
9 See https://podium-lib.io/.

Listing 4.10 http://localhost:3002/recos/manifest.json

Requesting the response
headers of the fragment

Associated assets (CSS, JS) are listed
in the fragment’s Link header.

Endpoint for the
actual HTML markup

https://en.wikipedia.org/wiki/Finn.no
https://podium-lib.io/

76 CHAPTER 4 Server-side composition
"fallback": "/fallback",
"js": [

{ value: "/recos/fragment.js" }
],
"css": [

{ value: "/recos/fragment.css" }
]
...

}

The manifest can also specify where to find cacheable fallback markup and references
to the CSS and JS assets. As you can see in figure 4.8, the podlet manifest acts as a
machine-readable contract between the owner of the podlet and its integrator.

Figure 4.8 Each podlet has its own manifest.json, which contains basic
metadata but can also include references to fallback content and asset files.
The manifest acts as the technical contract between the different teams.

PODIUM’S ARCHITECTURE

Podium consists of two parts:

 The layout library works in the server that delivers the page. It implements every-
thing needed to retrieve the podlet contents for this page. It reads the manifest
.json endpoints for all used podlets and also implements concepts like caching.

 The podlet library is used by the team, which provides a fragment. It generates a
manifest.json for each fragment.

Figure 4.9 illustrates how the libraries work together. Team Decide uses @podium/
layout and registers Team Inspire’s manifest endpoint. Team Inspire implements
@podium/podlet to provide the manifest.

 Team Decide reads the manifest for the recommendation fragment only once to
obtain all metadata needed for integration. Let’s follow the numbered steps to see the
processing of an incoming request:

1 The browser asks for the product page. Team Decide receives the request
directly.

2 Team Decide needs the recommendation fragment from Team Inspire for its
product page. It requests the podlet’s content endpoint.

Cacheable fallback
content

Associated JS
and CSS assets

Podlet content
/recos/

Fallback content
/recos/fallback

Associated assets
/recos/frament.[js|css]

Podlet manifest
/manifest.json

Version
1.0.2

Name
recos

Machine
readable
contract

77A quick look into other solutions
Figure 4.9 Simplified overview of Podium’s architecture. The team that delivers a
page (layout) communicates with the browser. It fetches fragment content (podlet)
directly from the team that generates it. Associated manifest information is only
requested once, not on every request.

3 Team Inspire responds with the markup for the recommendation. The
response is plain HTML like in the Nginx examples.

4 Team Decide puts the received markup into its product page and adds the
required JS/CSS references from the manifest file. Team Decide’s application
sends the assembled markup to the browser.

IMPLEMENTATION

We can’t go into full detail on how to use Podium. But we’ll briefly look at the key
parts required to make this integration work.

 Each of the teams creates its own Node.js-based server. We are using the popular
Express10 framework as a web server, but other libraries also work.

 These are Team Decide’s dependencies.

...
"dependencies": {

"@podium/layout": "^4.5.0",
"express": "^4.17.1",

}
...

10 Express—web framework for Node.js: https://expressjs.com/.

Listing 4.11 team-decide/package.json

Team Decide

Team
Inspire

1

4

2

3

Podlet
recos fragment

Layout
product page

@podium/layout @podium/podlet

Once Manifest

Podlet content

https://expressjs.com/

78 CHAPTER 4 Server-side composition

t
hes
ame
.

e

7

The Node.js code necessary to run the server and configure podiums layout service
looks like this.

const express = require("express");
const Layout = require("@podium/layout");

const layout = new Layout({
name: "product",
pathname: "/product",

});

const recos = layout.client.register({
name: "recos",
uri: "http://localhost:3002/recos/manifest.json"

});

const app = express();
app.use(layout.middleware());

app.get("/product", async (req, res) => {
const recoHTML = await recos.fetch(res.locals.podium);

res.status(200).podiumSend(`
...
<body>

<h1>The Tractor Store</h1>
<h2>Porsche-Diesel Master 419</h2>
<aside>${recoHTML}</aside>

</body>
</html>

`);
});

app.listen(3001);

As said before, we won’t go into full detail on this code. The code annotations should
give you a pretty good idea of what’s happening here. Open up 07_podium in the
example code to see the full applications. You can start them via this command:

npm run 07_podium

The most interesting fact you can observe in this code is that Podium is pretty unopin-
ionated when it comes to templating. You can use your Node.js template solution of
choice. Podium just provides a function to retrieve the markup of a fragment: await
recos.fetch(). How you place the result into your layout is entirely up to you. For
simplicity, we are using a plain template string here. This fetch() call also encapsu-
lates timeout and fallback mechanisms.

Listing 4.12 team-decide/index.js

Configuring the layout service. It’s responsible for
the communication with the podlets. It also sets
HTTP headers and transfers context information.

Registering the recommendation podle
from Team Inspire. The application fetc
metadata from the manifest.json. The n
is for debugging and internal reference

Creating an express instance and attaching
podiums layout middleware to it

Defining the route /product
that delivers the product pag

recos is the reference to the podlet we
registered before. .fetch() retrieves the
markup from Team Inspire’s server. It
returns a Promise and takes a context

object as its parameter. The context
res.locals.podium is provided by the

layout service and may contain
information such as locale, country
code, or user status. We pass this

context to Team Inspire’s podlet server.

Returns the markup for the product
page. The recoHTML contains the plain
HTML returned by the .fetch() call

the-tractor.store/#

http://www.the-tractor.store/#7

79A quick look into other solutions
 Let’s switch teams and look at the code Team Inspire needs to write to implement
their podlet. These are their dependencies.

...
"dependencies": {

"@podium/podlet": "^4.3.2",
"express": "^4.17.1",

}
...

And this is the application code.

const express = require("express");
const Podlet = require("@podium/podlet");

const podlet = new Podlet({
name: "recos",
version: "1.0.2",
pathname: "/recos",

});

const app = express();
app.use("/recos", podlet.middleware());

app.get("/recos/manifest.json", (req, res) => {
res.status(200).json(podlet);

});

app.get("/recos", (req, res) => {
res.status(200).podiumSend(`

<h2>Recommendations</h2>

`);
});

app.listen(3002);

You have to define the podlet information, a route for the manifest.json, and the
/recos route that produces the actual content. In our case, we use express’s standard
app.get method for that.

FALLBACKS AND TIMEOUTS

The way Podium handles fallbacks is quite interesting. With the Nginx approach, we
had to define the fallback in the template of the page. With ESI and Tailor, the page

Listing 4.13 team-inspire/package.json

Listing 4.14 team-inspire/index.js

Defining a podlet. name, version, and
pathname are required parameters.

Creating an express instance and
attaching our podlet middleware to it

Defining the route for
the manifest.json

Implementing the route for the actual content.
podiumSend is comparable to express’s normal
send function, but adds an extra version header
to the response. It also comes with a few
features that make local development easier.

80 CHAPTER 4 Server-side composition
owner can provide a second URL that’s tried when the actual URL does not work. In
Podium it’s a bit different:

 The team that owns the fragment provides the fallback.
 The team including the fragment caches this fallback locally.

These two properties make it much easier to create a meaningful fallback. Team
Inspire could, for example, define a list of "evergreen recommendations" that look
similar to dynamic recommendations. Team Decide caches it and can show it if Team
Inspire’s server does not respond or exceeds a defined timeout. Figure 4.10 shows
how the fallback mechanism works.

Figure 4.10 Podium’s fallback handling. The podlet owner can specify the
fallback content in the manifest. The layout service retrieves the fallback
content once and caches it. When the podlet server goes down, the fallback
is used instead of the dynamic content.

Team
Decide

Team
Inspire

Once

Once

Dynamic content

Manifest

Static fallback

Server caches
manifest and fallback

On req

On request

Normal operation
Team inspire is running

Failure mode
Team inspire is down

Team
Decide

Team
Inspire

Serves fallback
from cache

Server fetches
manifest and fallback

/
No response

layout podlet

layout podlet

81A quick look into other solutions
The code for specifying the fallback in the podlet server looks like this.

...
const podlet = new Podlet({

...
pathname: "/recos",
fallback: "/fallback",

});
...
app.get("/recos/fallback", (req, res) => {

res.status(200).podiumSend(`

Show Recommendations

`);
});
...

You have to add the URL to the Podlet constructor and implement the matching
route /recos/fallback in the application.

 The idea of having a manifest.json that describes everything you need to know a
fragment’s integration is pretty handy. The format is simple and straightforward. Even
if you decide to stop using the stock @podium/* libraries or want to implement a server
in a non-JavaScript language, you can still do it, as long as you can produce/consume
manifest endpoints.

 Podium also includes some other concepts like a development environment for
podlets and versioning. If you want to get deeper into Podium, the official documen-
tation11 is an excellent place to start.

4.4.4 Which solution is right for me?

As you might have guessed, there is no universal answer or silver bullet when it comes
to choosing your composition technique. Tools like Tailor and Podium implement
fragments as a first-party concept, which makes everyday tasks like fallbacks, timeouts,
and asset handling much more comfortable. Teams include the composition mecha-
nism directly into their application. There’s no need for an extra piece of infrastruc-
ture. This approach is especially useful for local development, since you don’t need to
set up a separate web server on every developer machine to make fragments work.
Figure 4.11 illustrates this. But these solutions also come with a non-trivial amount of
code and internal complexity.

Listing 4.15 team-inspire/index.js

11 Podium documentation: https://podium-lib.io/docs/podium/conceptual_overview/.

Adding the fallback
property to the podlets
configuration

Implementing the request handler
for the fallback. This route is called
once by the layout service. The
response is then cached.

https://podium-lib.io/docs/podium/conceptual_overview/

82 CHAPTER 4 Server-side composition

Figure 4.11 Fragment composition in the application or in a central web server

Techniques like SSI and ESI are old, and there is no real innovation happening. But
these downsides are also their biggest strengths. Having an integration solution that is
very stable, boring, and easy to understand can be a huge benefit.

 Picking a composition solution is a long-term decision. All teams will rely on the
chosen software to do their work.

4.5 The good and bad of server-side composition
Now you know the essential aspects of server-side composition. Let’s look at the advan-
tages and disadvantages of this approach.

4.5.1 The benefits

We can achieve excellent first load performance since the browser receives an already
assembled page. Network latency is much lower inside a data center. This way, it’s also
possible to integrate a lot of fragments without putting extra stress on the customer’s
device.

Team DecideTeam Inspire

Composition in central web server
Nginx, Varnish …

Team Checkout

Web server / Caching proxy (SSI, ESI)

Team DecideTeam Inspire

Composition inside application
Tailor, Podium …

Team Checkout

83The good and bad of server-side composition
 This model is a sound basis for building a micro-frontends-style application that
embraces progressive enhancement. You can add interactive functionality via client-
side JavaScript on top.

 SSI and ESI are proven and well-tested technologies. They are not always conve-
nient to configure. But when you have a working system, it runs fast and reliably with-
out needing much maintenance.

 Having the markup generated on the server is good for search engines. Nowadays, all
major crawlers also execute JavaScript—at least in a fundamental way. But having a
site that loads fast and does not require a considerable amount of client-side code to
render still helps to get a good search engine ranking.

4.5.2 The drawbacks

If you are building a large, fully server-rendered page, you might get a non-optimal
time to first byte, and the browser spends a lot of time downloading markup instead of
loading necessary assets like styles and images for the viewport. But this is also true for
server-rendered pages in a non-micro frontends architecture. Use server-side integra-
tion where it makes sense and combine it with client-side integration when needed.

 As with the Ajax approach, server-side integration does not come with technical
isolation in the browser. You have to rely on CSS class prefixes and namespacing to
avoid collisions.

 Depending on your choice of integration technique, local development becomes
more complicated. To test the integrated site, each developer needs to have a web
server with SSI or ESI support running on their machine. Node.js-based solutions like
Podium or Tailor ease this pain a bit because they make it possible to move the inte-
gration mechanism into your frontend application.

 If you want to build an interactive application that can quickly react to user input,
a pure server-side solution does not cut it. You need to combine it with a client-side
integration approach like Ajax or web components.

4.5.3 When does server-side integration make sense?

If good loading performance and search engine ranking are a high priority for your
project, there is no way around server-side integration. Even if you are building an
internal application that does not require a high amount of interactivity, a server-side
integration might be a good fit. It makes it easy to create a robust site that still func-
tions even if client-side JavaScript fails.

 If your project requires an app-like user interface that can instantly react to user
input, server-side integration is not for you. A pure client-side solution might be easier
to implement. But you can also go the hybrid way and build a universal/isomorphic
application using both server- and client-side composition. In chapter 8 you’ll learn
how to do so.

84 CHAPTER 4 Server-side composition
 Figure 4.12 shows the comparison chart introduced in the previous chapter. We’ve
added server-side integration.

Figure 4.12 Server-side integration in comparison to other integration techniques.
Server-side integration introduces extra infrastructure, which increases complexity.
Similar to the Ajax approach, they don’t introduce technical isolation. You still have
to rely on manual namespacing. But they enable you to achieve good page load times.

Summary
 Integrating markup on the server usually leads to better page load performance

because latency inside the datacenter is much shorter than to the client.
 You should have a plan for what happens when an application server goes

down. Fallback content and timeouts help.
 Nginx loads all SSI includes in parallel, but only starts sending data to the client

when the last fragment arrives.
 Library-based integration solutions like Tailor and Podium directly integrate

into a team’s application. Therefore less infrastructure is required, and local
development is more comfortable. But they also are a non-trivial dependency.

 The integration solution is a central piece in your architecture. It’s good to pick
a solution that is solid and easy to maintain.

 Server-side composition is the basis for building a micro-frontends-style site that
uses progressive enhancement principles.

T
ec

hn
ic

al
 c

om
pl

ex
ity

Technical isolation High

H
ig

h

Low

Lo
w

Ajax
iframes

In
te

ra
ct

iv
ity

First load time Fast

H
ig

h

Slow

Lo
w

Ajax

Separate pages

iframes

User experienceDeveloper experience

Separate pages

Server side

Server side

Client-side composition
In the last chapter, you learned about different server-side integration techniques,
including SSI and Podium. These techniques are indispensable for websites that
need to load quickly. But for many applications, the first load time is not the only
important thing. Users expect websites to feel snappy and react to their input
promptly. No one wants to wait for the complete page to reload just because they
changed an option in a product configuration. People spend more time on sites
that react quickly and feel app-like. Due to this fact, client-side rendering with
frameworks like React, Vue.js, or Angular has become popular. With this model,

This chapter covers
 Examining Web Components as a client-side

composition technique

 Investigating how to use micro frontends, built
with different frameworks, on the same page

 Exploring how Shadow DOM can help safely
introduce a micro frontend into a legacy system
without having style conflicts
85

86 CHAPTER 5 Client-side composition
the HTML markup gets produced and updated directly in the browser. Server-side
integration techniques don’t provide an answer to this.

 In a traditional architecture, we would have built a monolithic frontend that’s tied
to one framework in one specific version. But in a micro frontends architecture, we
want the user interfaces from the different teams to be self-contained and indepen-
dently upgradable. We can’t rely on the component system of one specific framework.
This constraint would tie the complete architecture to a central release cycle. A frame-
work change would result in a parallel rewrite of the complete frontend. The Web
Components spec introduces a neutral and standardized component model. In this
chapter, you’ll learn how Web Components can act as a technology-agnostic glue
between different micro frontends. They make it possible for independent frontend
applications to coexist on one page, even if their technology stack is not the same. Fig-
ure 5.1 illustrates this client-side integration.

Figure 5.1 Micro frontend composition in the browser. Each fragment is its own mini-application and
can render and update its markup independently from the rest of the page. Thunder.js and Wonder.js are
placeholders for your frontend framework of choice.

5.1 Wrapping micro frontends using Web Components
Over the last few weeks, Tractor Models, Inc. has made an enormous splash in the
tractor model community. Production is ramping up, and the company was able to
send out first review units. Positive press coverage and unboxing videos from YouTube
celebrities led to an enormous increase in visitor numbers.

 But the online shop is still missing its most important feature: the Buy button. Up
until now, customers have only been able to see the tractors and the site’s recommen-
dations. Recently, the company staffed a third team: Team Checkout. They have been
working hard to set up the infrastructure and write the software for handling pay-
ments, storing customer data, and talking to the logistics system. Their pages for the
checkout flow are ready. The last piece that’s missing is the ability to add a product to
the basket from the product page.

Composition
inside the browser

Client

Server

A B
C

C

B

C

CA

Team B
Wonder.js v1.3

Team C
Wonder.js v1.4

Team A
Thunder.js

87Wrapping micro frontends using Web Components
Figure 5.2 Team Checkout owns the complete checkout flow. Team Decide does not have to know
about how the checkout works. But they need to integrate Team Checkout’s Buy-button fragment in the
detail page to make it work. Team Checkout provides this button as a standalone micro frontend.

Team Checkout chose to go with client-side rendering for their user interfaces.
They’ve implemented the checkout pages as a single page app (SPA). The Buy-button
fragment is available as a standalone Web Component (see figure 5.2). Let’s see what
this means and how we can integrate the fragment into the product detail page. For
the integration, Team Checkout provides Team Decide with the necessary informa-
tion. This is the contract between both teams:

 Buy Button
tag-name: checkout-buy
attributes: sku=[sku]
example: <checkout-buy sku="porsche"></checkout-buy>

Team Checkout delivers the actual code and styles for the checkout-buy component
via a JS/CSS file. Their application runs on port 3003.

 required JS & CSS assets references
http://localhost:3003/static/fragment.js

http://localhost:3003/static/fragment.css

Team Decide and Team Checkout are free to change the layout, look, or behavior of
their user interfaces as long as they adhere to this contract.

5.1.1 How to do it

Team Decide has everything it needs to add the Buy button to the product page. They
don’t have to care about the internal workings of the button. They can place <check
out-buy sku="porsche"></checkout-buy> somewhere in their markup, and a func-
tional Buy button will magically appear. Team Checkout is free to change its imple-
mentation in the future without having to coordinate with Team Decide. Before we go
into the code, let’s look at what the term Web Components means. If you are already

Team
Inspire

2

33 $

66 $

99 $ buy

2

$66

Detail Basket Payment Confirm

Team
Decide

Team
Checkout

ListHome

$ $ %%

New team

Buy-button
fragment

Checkout
pages

Integrating
the Buy button

88 CHAPTER 5 Client-side composition
familiar with Web Components, you can skip the next two sections and continue with
encapsulating business logic through DOM elements.

WEB COMPONENTS AND CUSTOM ELEMENTS

The Web Components spec has been a long time in the making. Its goal is to intro-
duce better encapsulation and enable interoperability between different libraries or
frameworks. At the time of writing this book, all major browsers have implemented
version 1 of the specification. It’s also possible to retrofit the implementation into
older browsers using a polyfill.1

 Web Components is an umbrella term. It describes three distinct new APIs: Cus-
tom Elements, Shadow DOM, and HTML Templates.

 Let’s focus on Custom Elements. They make it possible to provide functionality in
a declarative way through the DOM. You can interact with Custom Elements the same
way you would interact with standard HTML elements.

 Let’s look at a typical button element. It has multiple features built-in. You can set
the text shown on the button: <button>hello</button>. It’s also possible to switch
the button into an inactive mode by setting the disabled attribute: <button
disabled>…</button>. By doing this, the button is dimmed out and does not respond
to click events anymore. As a developer, you don’t have to understand what the
browser does internally to achieve this behavior.

 Custom Elements enable developers to create similar abstractions. You can con-
struct new generic representational elements that are missing from the HTML spec.
GitHub has published a list of such controls under the name github-elements.2 Look
at this “copy-to-clipboard” element:

<clipboard-copy value="/repo-url">Copy</clipboard-copy>

It encapsulates the browser-specific code and provides a declarative interface. A user
of this component just needs to include GitHub’s JavaScript definition for this compo-
nent into their site. We can use this mechanism to create abstractions for our micro
frontends.

WEB COMPONENTS AS A CONTAINER FORMAT

You can also use Web Components to encapsulate business logic. Let’s go back to our
example at The Tractor Store. Team Checkout owns the domain knowledge around
product prices, inventory, and availabilities. Team Decide, owner of the product page,
doesn’t have to know these concepts. Its job is to provide the customer with all prod-
uct information they need to make a good buying decision. The business logic needed
for the product page is encapsulated in the checkout-buy component, as shown in
figure 5.3:

<checkout-buy sku="porsche"></checkout-buy>

1 See https://www.webcomponents.org/polyfills.
2 See https://www.webcomponents.org/author/github.

https://www.webcomponents.org/polyfills
https://www.webcomponents.org/author/github

89Wrapping micro frontends using Web Components
Figure 5.3 A Custom Element can encapsulate business logic and provide the
associated user interface. The Buy button can look different depending on the specified
SKU, but also due to internal pricing and inventory information. A team that uses this
fragment does not have to know these concepts.

DEFINING A CUSTOM ELEMENT

Let’s look at the implementation of the Buy button.

class CheckoutBuy
extends HTMLElement
{

connectedCallback() {
this.innerHTML = "<button>buy now</button>";

}
}
window.customElements.define("checkout-buy", CheckoutBuy);

The preceding code shows a minimal example of a Custom Element. We have to use
an ES6 class for the Custom Elements implementation. This class gets registered via
the globally available window.customElements.define function. Every time the
browser comes across a checkout-buy element in the markup, a new instance of this
class gets created. The this of the class instance is a reference to the corresponding
HTML element.

NOTE The customElements.define call does not need to come before the
browser has parsed the markup. Existing elements are upgraded to Custom
Elements as soon as the definition is registered.

Listing 5.1 team-checkout/static/fragment.js

<checkout-buy sku="..."></checkout-buy>

Inventory

Price Availability

Internal business logic
maintained by Team Checkout

Public interface
via standard DOM

buy for $45 buy for $66
Only 4 tractors left

notify me
New tractors coming soon

discontinued

Defines an ES6 class for
the Custom Element

This function gets called for every Buy
button found in the markup and
renders a simple button element.

Registers the Custom Element
under the name checkout-buy.

90 CHAPTER 5 Client-side composition

8

You can choose any name you want for your Custom Element. The only requirement
specified in the spec is that it has to contain at least one hyphen (-). This way, you
won’t run into future issues when the HTML specification adds new elements.

 In our projects we’ve used the pattern [team]-[fragment] (example: checkout-
buy). This way, you’ve established a namespace, avoiding inter-team naming collisions,
and ownership attribution is easy.

USING A CUSTOM ELEMENT

Let’s add the component to our product page. The markup for the product page now
looks like this.

...
<link

href="http://localhost:3003/static/fragment.css"
rel="stylesheet" />

...
<div class="decide_details">

<checkout-buy sku="porsche"></checkout-buy>
</div>

...
<script

src="http://localhost:3003/static/fragment.js" async>
</script>

Keep in mind that Custom Elements cannot be self-closing. They always need a dedi-
cated closing tag like </checkout-buy>. Since the fragment is fully client-rendered,
Team Checkout only needs to host two files: fragment.css and fragment.js. Team
Inspire has reworked their recommendations micro frontend to work the same way.
See the updated folder structure in figure 5.4.

Figure 5.4 Both teams expose their micro frontends via CSS and JavaScript files that Team
Decide can reference.

Start the applications from all three teams by running this command:

npm run 08_web_components

Listing 5.2 team-decide/product/porsche.html

Including fragment styles

Placing the
Buy button

Including fragment scripts

Contains the
recommendations
micro frontend

Contains the
Buy-button
micro frontend

the-tractor.store/#

http://www.the-tractor.store/#8

91Wrapping micro frontends using Web Components
Opening http://localhost:3001/product/porsche shows you the product page with
the client-side-rendered Buy button like in figure 5.5.

Figure 5.5 The Custom Element renders itself in the browser via JavaScript. It generates its internal
markup and attaches it as children to the tree via this.innerHTML = "…".

PARAMETRIZATION VIA ATTRIBUTES

Let’s make the Buy-button component a bit more useful. It should also display the
price and provide the user with a simple feedback dialog after they have clicked. The
following example shows different prices depending on the specified SKU attribute.

const prices = { porsche: 66, fendt: 54, eicher: 58 };

class CheckoutBuy extends HTMLElement {
connectedCallback() {

const sku = this.getAttribute("sku");
this.innerHTML = `

<button type="button">
buy for $${prices[sku]}

</button>
`;

}
}

For simplicity, we define the prices inside the JavaScript code. In a real application,
you would probably fetch them from an API endpoint, which is owned by the same
team.

 Adding user feedback to the button is also straightforward. We attach a standard
event listener that reacts to click events and shows a success message as an alert.

Listing 5.3 team-checkout/static/fragment.js

Buy button and recommendations
are client-side rendered

Internal markup is attached
inside their custom elements

Script tags
from all team

Link tags
from all team

buy for $54

List of tractor
prices

Reading the SKU from the
Custom Elements attribute

Looking up and rendering
the price on the button

92 CHAPTER 5 Client-side composition

this.innerHTML = "...";
this.querySelector("button")

.addEventListener("click", () => {
alert("Thank you ♥");

});

Again, this is a simplified implementation. In real life, you’d probably persist the cart
change to the server by calling an API. Depending on that API’s response, you would
show a success or error message. You get the gist.

5.1.2 Wrapping your framework in a Web Component

In our examples, we use standard DOM APIs like innerHTML and addEventListener.
In a real application, you would probably use higher-level libraries or frameworks
instead. They often make developing more comfortable, and come with features like
DOM diffing or declarative event handling. The Custom Element (this) acts as the
root of your mini-application. This application has its state and doesn’t need other
parts of the page to function.

 Custom Elements introduce a set of lifecycle methods like constructor, connected-
Callback, disconnectedCallback, and attributeChangedCallback. When you imple-
ment them, you get notified when someone adds your micro frontend to the DOM,
removes it, or changes one of its attributes. It’s straightforward to connect these life-
cycle methods to the (de-)initialization code of the framework or library you are work-
ing with. Figure 5.6 illustrates this. The component hides the implementation details of
the specific framework. This way, its owner can change the implementation without
changing its signature.The Custom Element acts as a technology-neutral interface.

Figure 5.6 Custom Elements introduce lifecycle methods. You need to map these to the
specific technology of your micro frontend.

Listing 5.4 team-checkout/static/fragment.js

Get the reference
to the button. Add a click

handler.

Display a success
message on click.

<checkout-buy sku="..."></checkout-buy>

Custom Elements as a
neutral component format

connectedCallback()

attributeChangedCallback()

disconnectedCallback()

Mapping lifecycle methods
to a specific technology

Your mini application written in
Vue.js, React, Svelte, Angular,
Elm, Wonder.js, Thunder.js, …

93Style isolation using Shadow DOM
Some newer frameworks like Stencil.js3 already use Web Components as their primary
way to export an application. Angular comes with a feature called Angular Elements.4

This feature will automatically generate the code necessary to connect the app with
the Custom Elements' lifecycle methods, and also supports Shadow DOM. Vue.js pro-
vides a similar solution via the official @vue/web-component-wrapper package.5 Since
Web Components are a web standard, there are comparable libraries or tutorials for
all popular frameworks out there.

 This chapter’s example code is deliberately kept simple and doesn’t include a front-
end framework. You can check out the examples 20_shared_vendor_rollup_absolute
_imports from chapter 11 to see a React application wrapped in a Custom Element.

5.2 Style isolation using Shadow DOM
Another part of the Web Components spec is Shadow DOM. With Shadow DOM, it’s
possible to isolate a subtree of the DOM from the rest of the page. We can use it to
eliminate the chance of leaked styles, and thereby increase the robustness of our
micro frontend applications.

 Currently, Team Checkout’s fragment.css file is included globally in the head. All
styles in this file have the potential to affect the complete page. Teams have to adhere
to CSS namespacing rules to avoid conflicts. The concept of Shadow DOM provides
an alternative where no prefixing or explicit scoping is required.

5.2.1 Creating a shadow root

You can create an isolated DOM sub-tree via JavaScript by calling .attachShadow() on
an HTML element. Most people use Shadow DOM in combination with a Custom Ele-
ment, but you don’t have to. You can also attach a Shadow DOM to many standard
HTML elements like a div.6

 Here is an example of how to create and use Shadow DOM:

class CheckoutBuy extends HTMLElement {
connectedCallback() {

const sku = this.getAttribute("sku");
this.attachShadow({ mode: "open" });
this.shadowRoot.innerHTML = "buy ...";

}
}

attachShadow initializes the Shadow DOM and returns a reference to it. The refer-
ence to an open Shadow DOM is also accessible through the shadowRoot property of
the element. You can work with it like any other DOM element.

3 See https://stenciljs.com/.
4 See https://angular.io/guide/elements.
5 See https://github.com/vuejs/vue-web-component-wrapper.
6 See https://dom.spec.whatwg.org/#dom-element-attachshadow for a list of elements that support Shadow

DOM.

Creating an "open"
shadow tree

Writing content to the
newly created shadowRoot

https://stenciljs.com/
https://angular.io/guide/elements
https://github.com/vuejs/vue-web-component-wrapper
https://dom.spec.whatwg.org/#dom-element-attachshadow

94 CHAPTER 5 Client-side composition

9

5.2.2 Scoping styles

Let’s move the styling from the fragment.css into the actual component. We do this
by defining a <style>…</style> block inside the shadow root. Styles that are defined
in the Shadow DOM stay in the Shadow DOM. Nothing leaks out to affect other parts
of the page. It also works the other way around. CSS definitions from the outside
document don’t work inside the Shadow DOM.7 Look at the code for the Buy-button
fragment.

...
class CheckoutBuy extends HTMLElement {

connectedCallback() {
const sku = this.getAttribute("sku");
this.attachShadow({ mode: "open" });
this.shadowRoot.innerHTML = `

<style>
button {}
button:hover {}

</style>
<button type="button">
buy for $${prices[sku]}

</button>
`;
...

}
...

}
...

Run the following command to play with this code in the browser:

npm run 09_shadow_dom

You should see the familiar product page. Have a look at the DOM structure with your
browser’s developer tools. In figure 5.7, you can see that each micro frontend now
renders its internal markup and styles inside its shadow root.

Open versus closed
You can choose between an open and closed mode when creating a Shadow DOM.
Using mode: "closed" hides the shadowRoot from the outside DOM. This guards
against unwanted DOM manipulation via other scripts. But it also prevents assistive
technologies and crawlers from seeing your content. Unless you have special needs,
it’s recommended that you stick to the open mode.

7 Except for a few inherited properties like font-family and root font-size.

Listing 5.5 team-checkout/static/fragment.js

Creating a Shadow DOM for
the Buy-button element

Writing content to the
shadowRoot instead
of directly attaching it
to the Buy button

Defining styles as inline
CSS. They only apply
inside the shadowRoot.

the-tractor.store/#

http://www.the-tractor.store/#9

95Style isolation using Shadow DOM

Figure 5.7 Micro frontends can render their internal markup and styles inside a shadow root.
This improves isolation and reduces the risk of conflicting or leaking styles.

We’ve eliminated the risk of style collisions. Figure 5.8 illustrates the effect of the vir-
tual border the shadowRoot introduces. This border is called shadow boundary.

Figure 5.8 The shadow root creates a border called the shadow boundary. It provides
isolation in both ways. Styles don’t leak out of the component. Styles on the page also
don’t affect the Shadow DOM.

Micro frontends
with style isolation

Markup and styles render
inside Shadow DOM

Script tags
from all team

buy for $54

<style>
 span { font-weight: bold; }
</style>
<div>
 Hello
 <a-world></a-world>
</div>

…
this.attachShadow({ mode: "open" });
this.shadowRoot.innerHTML = `
 <style>
 span {text-decoration: underline;}
 </style>
 World!
`;
…

<a-world> Shadow DOMGlobal HTML

Global styles
font-weight: bold;

Shadow DOM styles
text-decoration: underline;

style

div

span

a-world

style

span

#shadow-root

Generated DOM

No collisions.
Styles don’t cross
shadow boundary.

96 CHAPTER 5 Client-side composition
If you’ve used CSS Modules or any other CSS-in-JS solution, this way of writing CSS
should feel familiar. These tools let you write CSS code without having to worry about
scope. They automatically scope your code by generating unique selectors or inline
styles. Shadow DOM makes it possible to have guaranteed style isolation between the
micro frontends of different teams. No conventions or extra toolchain are required.

5.2.3 When to use Shadow DOM

There are a lot of details you can learn about Shadow DOM.8 Events behave differently
when they bubble from the Shadow DOM into the regular DOM (also called Light
DOM). But since this is a book about micro frontends and not Web Components, we
won’t go deeper into this topic. Here is a list of pros and cons of using Shadow DOM in
a micro frontends context:

 Pros
– Strong iframe-like isolation. No namespacing required.
– Prevents global styles from leaking into a micro frontend. Great when work-

ing with legacy applications.
– Potential to reduce the need for CSS toolchains.
– Fragments are self-contained. No separate CSS file references.

 Cons

– Not supported in older browsers. Polyfills exist but are heavy and rely on
heuristics.

– Requires JavaScript to work.
– No progressive enhancement or server rendering. Shadow DOM can’t be

defined declaratively via HTML.
– Hard to share common styles between different Shadow DOMs. Theming is

possible via CSS properties.
– Does not work with styling approaches that use global CSS classes, like Twit-

ter Bootstrap.

5.3 The good and bad of using Web Components
for composition
Using Web Components for client-side integration is one of many options. There are
meta-frameworks or custom implementations to achieve a similar result. Let’s discuss
the strengths and weaknesses of this approach.

5.3.1 The benefits

The most significant benefit of using Web Components as an integration technique is that
they are a widely implemented web standard. It’s often not very convenient to work with

8 See Caleb Williams, “Encapsulating Style and Structure with Shadow DOM,” CSS-Tricks, https://css-
tricks.com/encapsulating-style-and-structure-with-shadow-dom/.

https://css-tricks.com/encapsulating-style-and-structure-with-shadow-dom/
https://css-tricks.com/encapsulating-style-and-structure-with-shadow-dom/

97The good and bad of using Web Components for composition
browser APIs directly. But abstractions exist that make developing easier. Web stan-
dards evolve slowly and always in a non-breaking, backward compatible way. That’s
why they are an excellent fit for a common basis.

 Custom Elements and Shadow DOM both provide extra isolation features that
were not possible to achieve before. This isolation makes your micro frontends appli-
cations more robust. It’s not required to use both techniques together. You can pick
and choose depending on your project’s needs.

 The lifecycle methods introduced by Custom Elements make it possible to wrap
the code of different applications in a standard way. These applications can then be
used declaratively. Without this standard, teams would have to agree upon home-
grown initialization, deinitialization, and updating schemas.

5.3.2 The drawbacks

One of Web Components' most prominent points of criticism is that they require cli-
ent-side JavaScript to function. You might say that this is also true for most web frame-
works these days. But all major frameworks provide a way to render the content on the
server side. Not being able to server-render is an issue when you need a fast first-page
load and want to develop by the principles of progressive enhancement. There are
some proprietary ways to declaratively render Shadow DOM from the server and
hydrate it on the client, but there is no standard.

 Browser support for Web Components has dramatically improved over the last
years. It’s easy to add Custom Elements support to older browsers. Polyfilling Shadow
DOM is trickier. If you are targeting newer browsers, it’s not an issue. But if your appli-
cation also needs to run on older browsers that don’t support Shadow DOM, you
might consider going with an alternative like manual namespacing.

5.3.3 When does client-side integration make sense?

If you are building an interactive, app-like application where user interfaces from dif-
ferent teams must be integrated on one screen, Web Components are a reliable basis.

 The interesting question is what “interactive” means. We’ll discuss this topic in
chapter 9. Are you building a site or an app?. For simpler use cases like a catalog or a
content-heavy site, a server-rendered approach that uses SSI or Ajax often works fine
and is easier to handle.

 Using Web Components does not mean that you have to go all-in on client-side
rendering. We’ve successfully used Custom Elements as the contract between differ-
ent teams. These Custom Elements implemented Ajax-based updating—fetching gen-
erated markup from the server. When a specific use case required more interactivity, a
team could switch from Ajax to a more sophisticated client-side rendering for this
fragment. Since the Custom Element acts as the point of communication, other teams
didn’t care about the inner workings of this fragment.

 It’s also possible to combine Custom Elements (not Shadow DOM) with a server-
side integration technique. We’ll explore this in chapter 8.

98 CHAPTER 5 Client-side composition
 If your use case requires you to build a full client-rendered application, you should
consider using Web Components as the neutral glue between team UIs.

Figure 5.9 Custom Elements provide a good way to encapsulate your JavaScript
application and make it accessible in a standard way. Shadow DOM introduces an
extra isolation mechanism and lowers the risk of conflicts. You can build highly
interactive, client-side rendered applications using Custom Elements. But since
they require JavaScript to function, a server-rendered solution will usually be
quicker on the first load.

Summary
 You can encapsulate a micro frontend application in a Web Component. Other

teams can interact with it declaratively by using the browser’s DOM API. The
Web Component encapsulates business logic and implementation details.

 Most modern JavaScript frameworks have a canonical way to export an applica-
tion as a Web Component. This makes creating a client-side micro frontend
easier.

 Shadow DOM introduces strong, iframe-like isolation for CSS styles. This
reduces the risk of conflicts between different team UIs.

 Shadow DOM not only prevents styles from leaking out—it also guards against
global styles leaking in. This styling boundary makes it an excellent fit for inte-
grating a micro frontend into a legacy application.

T
ec

hn
ic

al
 c

om
pl

ex
ity

Technical isolation High

H
ig

h

Low

Lo
w

Ajax
iframes

In
te

ra
ct

iv
ity

First load time Fast

H
ig

h

Slow

Lo
w

Ajax

Separate pages

iframes

User experienceDeveloper experience

Separate pages

Server side

Server side

Custom
elements

Custom
elements

Custom elements
and Shadow DOM

Communication patterns
Sometimes user interface fragments owned by different teams need to talk to each
other. When a user adds an item to the basket by clicking the Buy button, other
micro frontends like the mini basket want to be notified to update their content
accordingly. We’ll take a more in-depth look at this topic in the first part of this
chapter. But there are also other forms of communication going on in a micro
frontends architecture, as you can see in figure 6.1.

 In the second part of this chapter, we’ll explore how these types of communica-
tions play together. We’ll discuss how to manage state, distribute necessary context
information, and replicate data between the team’s backends.

This chapter covers
 Examining user interface communication patterns

to exchange events between micro frontends

 Inspecting ways to manage state and discussing
the issues of shared state

 Illustrating how to organize server communication
and data fetching in a micro frontends
architecture
99

100 CHAPTER 6 Communication patterns

Figure 6.1 An overview of different communication mechanisms in a typical micro frontends
architecture. The frontend applications in the browser need a way to talk to each other. We call
this UI communication b. Each frontend fetches data from its own backend c, and in some
cases, it’s required to replicate data between the backends of the teams d.

6.1 User interface communication
How can UIs from different teams talk to each other? If you’ve chosen good team
boundaries, you’ll learn more about how to do it in chapter 13. There should be little
need for extensive cross-UI communication in the browser. To accomplish a task, a cus-
tomer is ideally only in contact with the user interface from one team.

 In our e-commerce example, the process the customer goes through is pretty lin-
ear: finding a product, deciding whether to buy it, and doing the actual checkout.
We’ve aligned our teams along these stages. Some inter-team communication might
be required at the handover points when a customer goes from one team to the next.

 This communication can be simple. We’ve already used page-to-page communication
in chapter 2—moving from the product page to another team’s recommendation
page via a simple link. In our case, we transferred the product reference, the SKU, via the

URL path or the query string. In most
cases, cross-team communication hap-
pens via the URL.
 If you are building a richer user inter-
face that combines multiple use cases on
one page, a link isn’t sufficient anymore.
You need a standard way for the different
UI parts to talk to each other. Figure 6.2
illustrates three common communica-
tion patterns.

Backend Backend

Client

Backend

Team CTeam B Team A

UIUI UI UI UIUI

UI communication
URLs, attributes, events

Server

Frontend-backend
communication
REST, GraphQL

Data replication
feeds, message bus, streams

1

2

3

Page

Fragment Fragment

Fragment

1. Parent to fragment

1

3. Fragment to fragment
3

2. Fragment to parent

2

User interface
communication

Figure 6.2 Three different forms of communication that
can happen between the different teams' UIs inside a page

101User interface communication
We’ll go through all three forms of communication with a real use case on our prod-
uct page. We’ll focus on native browser features in the examples.

6.1.1 Parent to fragment

The introduction of the Buy button on the product page resulted in a considerable
amount of tractor sales over one weekend. But Tractor Model, Inc. has no time to rest.
CEO Ferdinand was able to hire two of the best goldsmiths. They’ve designed special
platinum editions of all tractors.

 To sell these premium edition tractors, Team Decide needs to add a platinum
upgrade option to the detail page. Selecting the option should change the standard
product image to the platinum version. Team Decide can implement that inside their
application. But most importantly, the Buy button from Team Checkout also needs to
update. It must show the premium price of the platinum edition. See figure 6.3.

Figure 6.3 Parent-child communication. A change in the parent page (selection of platinum option)
needs to be propagated down to a fragment so it can update itself (price change in the Buy button).

Both teams talk and come up with a plan. Team Checkout will extend the Buy button
using another attribute called edition. Team Decide sets this attribute and updates it
accordingly when the user changes the option:

 Updated Buy button
tag-name: checkout-buy

attributes: sku=[sku], edition=[standard|platinum]

example: <checkout-buy sku="porsche" edition="platinum"></checkout-buy>

Team CheckoutTeam Decide

edition=
 "platinum"

<checkout-buy
 sku="fendt"
 edition="standard">

<checkout-buy
 sku="fendt"
 edition="platinum">buy for $54

buy for $54

buy for $945

102 CHAPTER 6 Communication patterns

Det
the
IMPLEMENTING THE PLATINUM OPTION

The added option in the product pages markup looks like this.

...
<img class="decide_image"

src="https://mi-fr.org/img/fendt_standard.svg" />
...
<label class="decide_editions">
 <input type="checkbox" name="edition" value="platinum" />
 Platinum Edition
</label>
<checkout-buy sku="fendt" edition="standard"></checkout-buy>
...

Team Decide introduced a simple checkbox input element for choosing the material
upgrade. The Buy-button component also received an edition attribute. Now the
team needs to write a bit of JavaScript glue-code to connect both elements. Changes
to the checkbox should result in changes to the edition attribute. The main image
on the site also needs to change.

const option = document.querySelector(".decide_editions input");
const image = document.querySelector(".decide_image");
const buyButton = document.querySelector("checkout-buy");

option.addEventListener("change", e => {
const edition = e.target.checked ? "platinum" : "standard";
buyButton.setAttribute("edition", edition);
image.src = image.src.replace(/(standard|platinum)/, edition);

});

That’s everything Team Decide needs to do. Now it’s up to Team Checkout to react to
the changed edition attribute and update the component.

UPDATING ON ATTRIBUTE CHANGE

The first version of the Buy-button custom element only used the connectedCallback
methods. But custom elements also come with a few lifecycle methods.

 The most interesting one for our case is attributeChangedCallback (name, old-
Value, newValue). This method is triggered every time someone changes an attribute
of your custom element. You receive the name of the attribute that changed (name),
the attribute’s previous value (oldValue), and the updated value (newValue). For this

Listing 6.1 team-decide/product/fendt.html

Listing 6.2 team-decide/static/page.js

Checkbox for selecting
the platinum option

Buy button has
a new edition
attribute

Selecting the DOM elements that
need to be watched or changed

Reacting to checkbox changes
ermining
 selected

edition

Updating the edition attribute on Team
Checkout’s Buy-button custom elementUpdating the main

product image

103User interface communication

10
to work, you have to register the list of attributes that should be observed up front.
The code of the custom element now looks like this.

const prices = {
porsche: { standard: 66, platinum: 966 },
fendt: { standard: 54, platinum: 945 },
eicher: { standard: 58, platinum: 958 }

};

class CheckoutBuy extends HTMLElement {
static get observedAttributes() {

return ["sku", "edition"];
}
connectedCallback() {

this.render();
}
attributeChangedCallback() {

this.render();
}
render() {

const sku = this.getAttribute("sku");
const edition = this.getAttribute("edition");
this.innerHTML = `

<button type="button">
buy for $${prices[sku][edition]}

</button>
`;
...

}
}

NOTE The function name render has no special meaning in this context. We
could have also picked another name like updateView or gummibear.

npm run 10_parent_child_communication

Now the Buy button updates itself on every change to the sku or edition attribute.
Run the preceding code and then go to http://localhost:3001/product/fendt in your
browser and open up the DOM tree in the developer tools. You’ll see that the edition
attribute of the checkout-buy element changes every time you check and uncheck the
platinum option. As a reaction to this, the component’s internal markup (innerHTML)
of it also changes.

Listing 6.3 team-checkout/static/fragment.js

Added new prices for
platinum versions

Watching for changes to the
sku and edition attribute

Extracted the rendering
to a separate method

Calling render () on
every attribute change Extracted render

method
Retrieves the current SKU and
edition value from the DOM

Renders the price based
on SKU and edition

the-tractor.store/#

Page

Fragment Fragment

Fragment

Parent-to-child communication
via attribute updates

<a-frag say="hello"></a-frag>
world

Figure 6.4 You can achieve parent-
child communication by explicitly
passing needed context information
down as an attribute. The fragment
can react to this change.

http://www.the-tractor.store/#10

104 CHAPTER 6 Communication patterns
Figure 6.4 illustrates the data flow. We propagate changed state of the outer application
(product page) to the nested application (Buy button). This follows the unidirectional
dataflow 1 pattern. React and Redux popularized the “props down, events up” approach.
The updated state is passed down the tree via attributes to child components as needed.
Communication in the other direction is done via events. We’ll cover this next.

6.1.2 Fragment to parent

The introduction of the platinum editions resulted in a lot of controversial discussions
in the Tractor Model, Inc. user forum. Some users complained about the premium
prices. Others asked for additional black, crystal, and gold editions. The first 100 plat-
inum tractors shipped within one day.

 Emma is Team Decide’s UX designer. She loves the new Buy button but isn’t
entirely happy about how the user interaction feels. In response to a click, the user
gets a system alert dialog, which they must dismiss to move on. Emma wants to
change this. She has a more friendly alternative in mind. An animated green check-
mark should confirm the add-to-cart interaction on the main product image.

 This request is a bit problematic. Team Checkout owns the add-to-cart action. Yes,
they know when a user successfully added an item to the cart. It would be easy for
them to show a confirmation message inside the Buy-button fragment, or maybe ani-
mate the Buy button itself to provide feedback. But they can’t introduce a new anima-
tion in a part of the page they don’t own, like the main product image.

 OK, technically they can because their JavaScript has access to the complete page
markup, but they shouldn’t. It would introduce a significant coupling of both user
interfaces. Team Checkout would have to make a lot of assumptions about how the
product page works. Future changes to the product page could result in breaking the
animation. Nobody wants to maintain such a construct.

 For a clean solution, the animation has to be developed by Team Decide. To
accomplish this, both teams have to work together through a clearly defined contract.
Team Checkout must notify Team Decide when a user has successfully added an item
to the cart. Team Decide can trigger its animation in response to that.

 The teams agree on implementing this notification via an event on the Buy button.
The updated contract for the Buy-button fragment looks like this:

 Updated Buy button
tag-name: checkout-buy
attributes: sku=[sku], edition=[standard|platinum]
emits event: checkout:item_added

Now the fragment can emit a checkout:item_added event to inform others about a
successful add-to-cart action. See figure 6.5.

1 See http://mng.bz/pB72.

http://mng.bz/pB72

105User interface communication
Figure 6.5 Team Checkout’s Buy button emits an event when the user adds an item to the
cart. Team Decide reacts to this event and triggers an animation on the main product image.

EMITTING CUSTOM EVENTS

Let’s look at the code that’s needed to make the interaction happen. We’ll use the
browser’s native CustomEvents API. The feature is available in all browsers, including
older versions of Internet Explorer. It enables you to emit events that work the same as
native browser events like click or change. But you are free to choose the event’s name.

 The following code shows the Buy-button fragment with the event added.

class CheckoutBuy extends HTMLElement {
...
render() {

...
this.innerHTML = `...`;
this.querySelector("button").addEventListener("click", () => {

...
const event = new CustomEvent("checkout:item_added");
this.dispatchEvent(event);

});
}

}

NOTE We’ve used a team prefix ([team_prefix]:[event_name]) to clarify
which team owns the event.

Pretty straightforward, right? The CustomEvent constructor has an optional second
parameter for options. We’ll discuss two options in the next example.

Listing 6.4 team-checkout/static/fragment.js

Team CheckoutTeam Decide

2. Buy button emits an event.
checkout:item_added

2

3

3. Page receives the event
and triggers the animation.

1

1. User clicks the button.
Item is added to the cart.

buy for $945

Creates a custom event named
checkout:item_added

Dispatches the event at
the custom element

106 CHAPTER 6 Communication patterns

11
LISTENING FOR CUSTOM EVENTS

That’s everything Team Checkout needed to do. Let’s add the checkmark animation
when the event occurs. We won’t get into the associated CSS code. It uses a CSS key-
frame animation, which makes a prominent green checkmark character (✓) fade in
and out again. We can trigger the animation by adding a decide_product—confirm
class to the existing decide_product div element.

const buyButton = document.querySelector("checkout-buy");
const product = document.querySelector(".decide_product");
buyButton.addEventListener("checkout:item_added", e => {

product.classList.add("decide_product--confirm");
});
product.addEventListener("animationend", () => {

product.classList.remove("decide_product--confirm");
});

Listening to the custom checkout:item_added event works the same way as listening
to a click event. Select the element you want to listen on (<checkout-buy>) and reg-
ister an event handler: .addEventListener("checkout:item_added", () => {…}).
Run the following command to start the example:

npm run 11_child_parent_communication

Go to http://localhost:3001/product/fendt in your browser and try the code yourself.
Clicking the Buy button triggers the event. Team Decide receives it and adds the
confirm class. The checkmark animation starts.

Using the browser’s event mechanism has multiple benefits:

 Custom Events can have high-level names that reflect your domain language.
Good event names are easier to understand than technical names like click or
touch.

 Fragments don’t need to know their parents.

Listing 6.5 team-decide/static/page.js

Selecting the
Buy-button element

Selecting the product block where
the animation should happen

Listening to Team
Checkout’s custom event

Triggering the animation by
adding the confirm class

Cleanup—removing the class
after the animation finished

the-tractor.store/#

Page

Fragment Fragment

Fragment

Child-to-parent communication
via custom events

fragment.dispatchEvent(
 new CustomEvent("hello")
)

Figure 6.6 Child-parent
communication can be
implemented by using the
browser’s built-in event
mechanism.

http://www.the-tractor.store/#11

107User interface communication
 All major libraries and frameworks support browser events.
 It gives access to all native event features like .stopPropagation or .target.
 It’s easy to debug via browser developer tools.

Let’s get to the last form of communication: fragment to fragment.

6.1.3 Fragment to fragment

Replacing the alert dialog with the friendlier checkmark animation had a measurable
positive effect. The average cart size went up by 31%, which directly resulted in higher
revenue. The support staff reported that some customers accidentally bought more
tractors than they intended.

 Team Checkout wants to add a mini-cart to the product page to reduce the num-
ber of product returns. This way, customers always see what’s in their basket. Team
Checkout provides the mini-cart as a new fragment for Team Decide to include on the
bottom of the product page. The contract for including the mini-cart looks like this:

 Mini-Cart
tag-name: checkout-minicart
example: <checkout-minicart></checkout-minicart>

It does not receive any attributes and emits no events. When added to the DOM, the
mini-cart renders a list of all tractors that are in the cart. Later the team will fetch the
state from its backend API. For now, the fragment holds that state in a local variable.

 That’s all pretty straightforward, but the mini-cart also needs to be notified when the
customer adds a new tractor to the cart via the Buy button. So an event in fragment A
should lead to an update in fragment B. There are different ways of implementing this:

 Direct communication—A fragment finds the fragment it wants to talk to and
directly calls a function on it. Since we are in the browser, a fragment has access
to the complete DOM tree. It could search the DOM for the element it’s look-
ing for and talk to it. Don’t do this. Directly referencing foreign DOM elements intro-
duces tight coupling. A fragment should be self-contained and not know about
other fragments on the page. Direct communication makes it hard to change
the composition of fragments later on. Removing a fragment or duplicating
one can lead to strange effects.

 Orchestration via a parent—We can combine the child-parent and parent-child
mechanisms. In our case, Team Decide’s product page would listen to the
item_added event from the Buy button and directly trigger an update to the
mini-cart fragment. This is a clean solution. We’ve explicitly modeled the com-
munication flow in the parent’s system. But to make a change in communica-
tion, two teams must adapt their software.

 Event-Bus/broadcasting—With this model, you introduce a global communication
channel. Fragments can publish events to the channel. Other fragments can sub-
scribe to these events and react to them. The publish/subscribe mechanism
reduces coupling. The product page, in our example, wouldn’t have to know or

108 CHAPTER 6 Communication patterns
care about the communication between the Buy button and the mini-basket frag-
ment. You can implement this with Custom Events. Most browsers2 also support
the new Broadcast Channel API,3 which creates a message bus that also spans across
browser windows, tabs, and iframes.

The teams decide to go with the event-bus approach using Custom Events. Figure 6.7
illustrates the event flow between both fragments.

Figure 6.7 Fragment-to-fragment communication via a global event. The Buy button emits the
item_added event. The mini-cart listens for this event on the window object and updates itself.
We use the browser’s native event mechanism as an event bus.

Not only does the mini-cart need to know if the user added a tractor, it also must know
what tractor the user added. So we need to add the tractor information (sku, edition)
as a payload to the checkout:item_added event. The updated contract for the Buy
button looks like this:

 Updated Buy button
tag-name: checkout-buy
attributes: sku=[sku], edition =[standard|platinum]
emits event:

name: checkout:item_added
payload: {sku: [sku], edition: [standard|platinum]}

WARNING Be careful with exchanging data structures through events. They
introduce extra coupling. Keep payloads to a minimum. Use events primarily
for notifications and not to transfer data.

2 At the time of writing this, Safari is the only browser that hasn’t implemented it: https://caniuse.com/
#feat=broadcastchannel.

3 See http://mng.bz/OMeo.

Team
Checkout

Team
Decide 2. Buy button emits event.

checkout:item_added
{fendt, standard}

1

1. User clicks the button.
Item is added to the cart.

2

3

window

5

3. Event bubbles up the tree.
Arrives at the window object.

4. Mini-cart listens on window.
Looks for item changes.

4

5. Mini-cart receives event.
Displays the new tractor.

buy for $54

https://caniuse.com/#feat=broadcastchannel
https://caniuse.com/#feat=broadcastchannel
http://mng.bz/OMeo

109User interface communication
Let’s look at the implementation of this.

EVENT BUS VIA BROWSER EVENTS

The Custom Events API also specifies a way to add a custom payload to your event. You
can pass your payload to the constructor via the detail key in the options object.

...
const event = new CustomEvent("checkout:item_added", {
 bubbles: true,
 detail: { sku, edition }
}*);
this.dispatchEvent(event);
...

By default, Custom Events don’t bubble up the DOM tree. We need to enable this
behavior to make the event rise to the window object.

 That’s everything we needed to do to the Buy button. Let’s look at the mini-cart
implementation. Team Checkout defines the custom element in the same frag-
ment.js file as the Buy button.

...
class CheckoutMinicart extends HTMLElement {

connectedCallback() {
this.items = [];
window.addEventListener("checkout:item_added", e => {

this.items.push(e.detail);
this.render();

});
this.render();

}
render() {

this.innerHTML = `
You've picked ${this.items.length} tractors:
${this.items.map(({ sku, edition }) =>

``
).join("")}

`;
...

}
}
window.customElements.define("checkout-minicart", CheckoutMinicart);

The component stores the basket items in the local this.items array. It registers an
event listener for all checkout:item_added events. When an event occurs, it reads the
payload (event.detail) and appends it to the list. Lastly, it triggers a refresh of the
view by calling this.render().

Listing 6.6 team-checkout/static/fragment.js

Listing 6.7 team-checkout/static/fragment.js

Enables event
bubblingAttaches a custom

payload to the event

Initializing a local variable
for holding the cart items

Listening to events on
the window object

Reading the event payload
and adding it to the item list

Updating
the view

110 CHAPTER 6 Communication patterns

12
 To see both fragments in action, Team Decide has to add the new mini-cart frag-
ment to the bottom of the page. The team doesn’t have to know anything about the
communication that’s going on between checkout-buy and checkout-minicart.

...
<body>

...
<div class="decide_details">

<checkout-buy sku="fendt" edition="standard"></checkout-buy>
</div>
<div class="decide_summary">

<checkout-minicart></checkout-minicart>
</div>
<script src="http://localhost:3003/static/fragment.js" async></script>

</body>
...

Figure 6.8 shows how the event is bubbling up to the top. You can test the example by
running this command:

npm run 12_fragment_fragment_communication

Figure 6.8 Custom Events can bubble up to the window of the document where
other components can subscribe to them.

DISPATCHING EVENTS DIRECTLY ON WINDOW

It’s also possible to directly dispatch the Custom Event to the global window object:
window.dispatchEvent instead of element.dispatchEvent. But dispatching it to the
DOM element and letting it bubble up comes with a few benefits.

 The origin of the event (event.target) is maintained. Knowing which DOM ele-
ment emitted the event is helpful when you have multiple instances of a fragment on
one page. Having this element reference avoids the need to create a separate naming
or identification scheme yourself.

 Parents can also cancel bubbling events on their way up to the window. You can use
event.stopPropagation on Custom Events the same way you would with a standard

Listing 6.8 team-decide/product/fendt.html

Adding the new mini-cart fragment
to the bottom of the page

the-tractor.store/#

Page

Fragment Fragment

Fragment

Fragment -to-fragment communication
custom events via window

fragment.dispatchEvent(
 new CustomEvent("hello", {bubbles: true})
)

window.addEventListener("hello", () => {…})

http://www.the-tractor.store/#12

111User interface communication

ts
click event. This can be helpful when you want an event to only be processed once.
However, the stopPropagation mechanism can also be a source of confusion: “Why
don’t you see my event on window? I’m sure we’re dispatching it correctly.” So be care-
ful with this—especially if more than two parties are involved in the communication.

6.1.4 Publish/Subscribe with the Broadcast Channel API

In the examples so far, we’ve leveraged the DOM for communication. The relatively
new Broadcast Channel API provides another standards-based way to communicate. It’s
a publish/subscribe system which enables communication across tabs, windows, and
even iframes from the same domain. The API is pretty simple:

 You can connect to a channel with new BroadcastChannel("tractor_channel").
 Send messages via channel.postMessage(content).
 Receive messages via channel.onmessage = function(e) {…}.

In our case all micro frontends could open a connection to a central channel (like
tractor_channel) and receive notifications from other micro frontends. Let’s look at
a small example.

const channel = new BroadcastChannel("tractor_channel");
const buyButton = document.querySelector("button");
buyButton.addEventListener("click", () => {

channel.postMessage(
{type: "checkout:item_added", sku: "fendt"}

);
});

const channel = new BroadcastChannel("tractor_channel");
channel.onmessage = function(e) {

if (e.data.type === "checkout:item_added") {
console.log(`tractor ${e.data.type} added`);
// -> tractor fendt added

}
};

At the time of writing this book, all browsers except Safari support the Broadcast
Channel API.4 You can use a polyfill5 to retrofit the API into browsers without native
support.

Listing 6.9 team-checkout.js

Listing 6.10 team-decide.js

4 Broadcast Channel API—Browser Support: https://caniuse.com/#feat=broadcastchannel.
5 Broadcast Channel API—Polyfill: http://mng.bz/YrWK.

Team Checkout
connects to the central
broadcast channel.

They post an item_added message
when someone clicks the Buy
button. In this example we send an
object, but you can also send plain
strings or other types of data.

Team Decide also connec
to the same channel.

They listen to all messages and
create a log entry every time
they receive an item_added.

http://mng.bz/YrWK
https://caniuse.com/#feat=broadcastchannel

112 CHAPTER 6 Communication patterns
 The biggest benefit of this approach compared to the DOM-based Custom Events
is the fact that you can exchange messages across windows. This can come in handy if
you need to sync state across multiple tabs or decide to use iframes. You can also use
the concept of named channels to explicitly differentiate between team-internal and
public communication. In addition to the global tractor_channel, Team Checkout
could open its own checkout_channel for communication between the team’s own
micro frontends. This team-internal communication may also contain more complex
data structures. Having a clear distinction between public and internal messages
reduces the risk of unwanted coupling.

6.1.5 When UI communication is a good fit

Now you’ve seen four different types of communication, and you know how to tackle
them with basic browser features. You can, of course, also use custom implementa-
tions for communicating and updating components. A shared JavaScript publish/sub-
scribe module which all teams import at runtime can do the trick. But your goal when
setting up a micro frontends integration should be to have as little shared infrastruc-
ture as possible. Going with a standardized browser specification like Custom Events
or the Broadcast Channel API should be your first choice.

USE SIMPLE PAYLOADS

In the last example, we transferred the actual cart line-item ({sku, edition}) via an
event from one fragment to another. In the projects I’ve worked on, we’ve had good
experiences with keeping events as lean and straightforward as possible. Events should
not function as a way to transfer data. Their purpose is to act as a nudge to other parts
of the user interface. You should only exchange view models and domain objects
inside team boundaries.

THE NEED FOR INTENSE UI COMMUNICATION CAN BE A SIGN OF BAD BOUNDARIES

As stated earlier, when you’ve picked your team boundaries well, there shouldn’t be a
need for a lot of inter-team communication. That said, the amount of communication
increases when you are adding a lot of different use cases to one view.

 When implementing a new feature requires two teams to work closely together,
passing data back and forth between their micro frontends, we have a reliable indica-
tor of non-optimal team boundaries. Reconsider your boundaries and maybe increase
the scope, or shift the responsibility for a use case from one team to another.

EVENTS VERSUS ASYNCHRONOUS LOADING

When using events or broadcasting, you have to keep in mind that other micro front-
ends might not have finished loading yet. Micro frontends are unable to retrieve
events that happened before they finished initializing themselves.

 When you use events in response to user actions (like add-to-cart), this is not a big
issue in practice. But if you want to propagate information to all components on the
initial load, standard events might not be the right solution.

113Other communication mechanisms
6.2 Other communication mechanisms
So far, we’ve focused on user interface communication, which happens directly
between micro frontends in the browser. However, there are other types of data
exchange you have to solve when you build a real application. In the last part of this
chapter, we’ll discuss how authentication, data fetching, state management, and data
replication fit into the micro frontends picture.

6.2.1 Global context and authentication

Each micro frontend addresses a particular use case. However, in a non-trivial applica-
tion, these frontends need some context information to do their job.What language
does the user speak, where do they live, and which currency do they prefer? Is the user logged in or
anonymous? Is the application running in the staging or live environment? These necessary
details are often called context information. They are read-only by nature. You can see
context data as infrastructure boilerplate that you want to solve once and provide to
all the teams in an easily consumable way. Figure 6.9 illustrates how to distribute this
data to all user interface applications.

Figure 6.9 You can provide general context information globally to all micro frontends. This puts
common tasks like language detection in a central place.

PROVIDING CONTEXT INFORMATION TO ALL MICRO FRONTENDS

We have to answer two questions when building a solution for providing context data:

1 Delivery—How do we get the information to the teams’ micro frontends?
2 Responsibility—Which team determines the data and implements the associated

concepts?

Let’s start with delivery. If you’re using server rendering, HTTP headers or cookies are
a popular solution. A frontend proxy or composition service can set them to every
incoming request. If you’re running an entirely client-side application, HTTP headers
are not an option. As an alternative, you can provide a global JavaScript API, from
which every team can retrieve this information. In the next chapter, we’ll introduce
the concept of an application shell. When you decide to go that route, putting the con-
text information into the application shell is a typical pattern.

UIUI UI UI UIUI

Team A Team B Team C

Global context information
provided via header, cookie, global API, …
(e.g. lang, country, currency, auth status, env)

Browser

c

cccccc

114 CHAPTER 6 Communication patterns
 Let’s talk about responsibility. If you have a dedicated platform team, it’s also the
perfect candidate to provide the context. In a decentralized scenario with no platform
team, you’d pick one of the teams to do the job. If you already have a central infra-
structure like a frontend proxy and an application shell, the owner of this infrastruc-
ture is a good candidate for also owning the context data.

AUTHENTICATION

Managing language preferences or determining the origin country are tasks that
don’t require much business logic. For topics like authenticating a user, it’s harder. You
should answer the question, “Which team owns the login process?” by looking at the
team’s mission statements.

 From a technical integration standpoint, the team that owns the login process
becomes the authentication provider for the other teams. It provides a login page or
fragment that other teams can use to redirect an unauthenticated user towards. You
can use standards like OAuth6 or JSON Web Tokens (JWT) to securely provide the
authentication status to the teams that need it.

6.2.2 Managing state

If you’re using a state management library like Redux, each micro frontend or at least
each team should have its local state. Figure 6.10 illustrates this.

Figure 6.10 Each team has its own user interface state. Sharing state between teams
would introduce coupling and make the applications hard to change later on.

It’s tempting to reuse state from one micro frontend in another to avoid loading data
twice. But this shortcut leads to coupling and makes the individual applications
harder to change and less robust. It also introduces the potential that a shared state
could get misused for inter-team communication.

6 See https://en.wikipedia.org/wiki/OAuth.

UIUI UI UI UIUI

State State State State

Team A Team B Team C

Browser

State isn’t shared across teams.
Different UIs from one team
can share a state

State container (e.g. Redux)
contains data from APIs,
user input, or validation

https://en.wikipedia.org/wiki/OAuth

115Other communication mechanisms
6.2.3 Frontend-backend communication

To do its work, a micro frontend should only talk to the backend infrastructure of its
team, as shown in figure 6.11. A micro frontend from Team A would never directly
talk to an API endpoint from Team B. This would introduce coupling and inter-team
dependencies. Even more important, you give up isolation. To run and test your sys-
tem, the system from the other team needs to be present. An error in Team B would
also affect fragments from Team C.

Figure 6.11 API communication should always stay inside team boundaries.

6.2.4 Data replication

If your teams should own everything from the user interface to the database, each
team needs its own server-side data store. Team Inspire maintains its database of man-
ually crafted product recommendations, whereas Team Checkout stores all baskets
and orders the users created. Team Decide has no direct interest in these data struc-
tures. They include the associated functionality (like recommendation strip or mini-
cart) via UI composition in the frontend.

 But for some applications, UI composition is not feasible. Let’s take the product
data as an example. Team Decide owns the master product database. They provide
back-office functionality, which employees of The Tractor Store can use to add new
products. But the other teams also need some product data. Team Inspire and Team
Checkout need at least the list of all SKUs, the associated names, and image URLs.
They have no interest in more advanced information like editing history, video files,
or customer reviews.

 Both teams could retrieve this information via API calls to Team Decide at run-
time. However, this would violate our autonomy goals. If Team Decide goes down, the
other teams wouldn’t be able to do their job anymore. We can solve this with data
replication.

Avoid cross-team
API communication

Backend Backend

Client

Backend

Team CTeam B Team A

UIUI UI UI UIUI

Server

Frontend-backend
communicationAPI API

116 CHAPTER 6 Communication patterns
 Team Decide provides an interface that the other teams can use to retrieve a list of
all products. The other teams use this interface to replicate the needed product infor-
mation regularly in the background. You’d implement this via a feed mechanism. Fig-
ure 6.12 illustrates this.

Figure 6.12 Teams can replicate data from other teams to stay independent. This
replication increases robustness. If one team goes down, the others can still function.

When Team Decide’s application goes down, Team Inspire still has its local product
database it can use to serve recommendations. We can apply this concept to other
kinds of data.

 Team Checkout owns the inventory. They know how many tractors are in stock and
can estimate when new supplies arrive. If another team has an interest in this inven-
tory data, they have two options: replicate the needed data to their application, or ask
Team Checkout to provide an includable micro frontend that presents this informa-
tion directly to the user.

 Both are valid approaches that have their benefits and drawbacks. Team Decide
can choose to replicate the inventory data if they want to build business logic that
builds upon it. As an example, they might want to experiment with an alternative
product detail layout for products that will run out of stock soon. To do this, they must
know the inventory in advance, understand Team Checkout’s inventory format, and
build the associated business rules.

 Alternatively, if they just want to show the inventory information as simple text as
part of the Buy button, UI composition is much more comfortable. Team Decide
doesn’t have to understand Team Checkout’s inventory data model at all.

Summary
 Communication between different micro frontends is often necessary at the

handover points in your application. When the user moves from one use case to
the next, you can handle most communication needs by passing parameters
through the URL.

Backend BackendBackend

Team CTeam B Team A

Data replication
via feeds, message bus, streams

Products Inventory

Imports subset

Recos

OwnsOwnsOwns

117Summary
 When multiple use cases exist on one page, it might be necessary for the differ-
ent micro frontends to communicate with each other.

 You can use the “props down, events up” communication pattern on a higher
level between different team UIs.

 A parent passes updated context information down to its child fragments via
attributes.

 Fragments can notify other fragments higher up in the tree about a user action
using native browser events.

 Different fragments that are not in a parent-child relationship can communi-
cate using an event bus or broadcasting mechanism. Custom Events and the
Broadcast Channel API are native browser implementations that can help.

 You should use UI communication only for notifications, not to transfer com-
plex data structures.

 You can resolve general context information like the user’s language or country
in a central place (e.g., frontend proxy or application shell) and pass it to every
micro frontend. HTTP headers, cookies, or a shared JavaScript API are ways to
implement this.

 Each team can have its own user interface state (for example, a Redux store).
Avoid sharing state between teams. It introduces coupling and makes applica-
tions hard to change.

 A team’s micro frontend should only fetch data from its backend application.
Exchanging larger data structures across team UIs leads to coupling and makes
applications hard to evolve and test.

Client-side routing and the
application shell
In the last two chapters, we focused on composition and communication. We inte-
grated user interfaces from different teams into one view. You learned server- and
client-side techniques for doing this. In this chapter, we’ll take a step back and look
at page-level integration.

 In chapter 2 we covered the most basic page-integration technique: the plain
old link. Later, in chapter 3, you saw how to implement a common router that

This chapter covers
 Applying the concepts of inter-team routing to

a single-page app

 Constructing a shared application shell as a
single entry point for the user

 Exploring different approaches to client-side
routing

 Discovering how the micro frontends meta-
framework single-spa can make integration
easier
118

119
forwards an incoming page request to the responsible team. Now we’ll take these con-
cepts and apply them to client-side routing and single-page apps (SPAs).

 Most JavaScript frameworks come with a dedicated routing solution like @angular/
router or vue-router. They make it possible to navigate through different pages of
an application without having to do a full page refresh on every link click. Because the
browser does not have to fetch and process a new HTML document, a client-side page
transition feels snappier and leads to a better user experience. The browser only
needs to rerender the parts of the page that changed. It doesn’t have to evaluate refer-
enced assets like JavaScript and stylesheets again. We’ll use the terms hard navigation
and soft navigation in this chapter:

 Hard navigation describes a page transition where the browser loads the com-
plete HTML for the next page from the server.

 Soft navigation refers to a page transition that’s entirely client-side rendered, typ-
ically by using a client-side router. In this scenario the client fetches its data via
an API from the server.

In a monolithic frontend application, it’s typically a binary decision. Either you build
an application with server-rendered pages, or you choose to implement a SPA. In the
first case, you use hard navigations for everything. In the second case, the SPA, you
have one client-side router that enables soft navigation. In a micro frontends context,
it doesn’t have to be that black and white. Figure 7.1 shows two simple ways to inte-
grate pages.

Figure 7.1 Two different approaches to page transitions in a micro frontends context. The “links only”
model is simple. Page transitions happen via plain links, which result in a full refresh of the page. Nothing
special is needed—Team A must know how to link to the pages of Team B and vice versa. With the
“linked single-page apps” approach, all transitions inside team boundaries are soft. Hard navigation
happens when the user crosses team boundaries. From an architectural perspective, it’s identical to the
first approach. The fact that a team uses a SPA for its pages is an implementation detail. As long as it
responds correctly to URLs, the other team doesn’t have to care.

Team BTeam A

Page
A1

Links only
Hard navigation between all pages

Page
A2

Page
B1

Page
B2

Page
B3

Page
A1

Linked single-page applications
Soft navigation inside the team
Hard navigation between teams

Page
A2

Page
B1

Page
B2

Page
B3

Team BTeam A

SoftHardHard SoftSoftHardHardHard

SPA SPA

120 CHAPTER 7 Client-side routing and the application shell
In these options, the link is the only contract between the teams. There is no other
technical requirement or shared code needed to make it work. However, both ver-
sions include hard navigations. Whether this is acceptable depends on your use case
and especially the number of teams. When your goal is a setup with many teams that
are each responsible for only one page, you end up with a lot of hard navigations. Fig-
ure 7.2 shows a third option where all page transitions are soft.

Figure 7.2 The Unified Single Page App approach introduces a central application
container. It handles page transitions between the teams. Here all navigations are soft.

To remove hard navigations between the teams, we need to establish a new shared
piece of infrastructure: an application shell, or app shell for short. Its job is to map URLs
to the correct team. In this regard, the application shell is similar to the frontend
proxy we covered in chapter 3. From a technology perspective, it’s different. We don’t
need a dedicated server like Nginx. The application shell consists of an HTML docu-
ment and a piece of JavaScript.

 In this chapter you’ll learn how to combine different SPAs into a unified single-
page app using an application shell. We’ll build an application shell from scratch. It
contains a simple router that we later upgrade to a more sophisticated and maintain-
able version. At the end of the chapter, we look at the micro frontends meta-framework
single-spa, which is an out-of-the-box app shell solution.

7.1 App shell with flat routing
The micro frontends architecture has had many great benefits for Tractor Models,
Inc. so far. The company was able to build its online shop in a short amount of time.
The three teams are highly motivated and eager to evolve their slice of the system to
deliver a perfect customer experience.

 In a company-wide meeting, they discussed the idea of moving to a full client-
rendered user interface. Soft navigation should be possible across all pages, not only
inside team boundaries. In a monolithic world, this would be straightforward: use the
router of your favorite JavaScript framework—you’re done. However, they don’t want

Team BTeam A

Page A1

Unified Single-Page App
Soft navigation between all pages
App shell combines single page apps

Page A2 Page B1 Page B2 Page B3

SoftSoft SoftSoft

SPA SPA

App shell

Shared
infrastructure

121App shell with flat routing
to introduce stronger coupling between the teams. Independent deployments and
dependency upgrades should continue to be possible to ensure fast iteration. Moving
to one shared framework would do the opposite.

 The teams are confident that it’s possible to build a technology-agnostic client-side
router to enable page transitions. They know that similar ready-to-use implementa-
tions already exist. However, since this central router would become a fundamental
part of their architecture, they decide to first build a prototype version of it from
scratch. This way, they fully understand how all the moving parts play together.

7.1.1 What’s an app shell?

The app shell acts as a parent application for all micro frontends. All incoming
requests arrive there. It selects the micro frontend the user wants to see and renders it
in the <body> of the document. Figure 7.3 illustrates this.

 Since this container application is a shared piece of code, it’s a good idea to keep it
as simple as possible. It should not contain any business logic. Sometimes topics that affect
all teams, like authentication or analytics, are also built into the app shell. However,
we’ll stick to the basics for now.

Figure 7.3 The app shell acts as a central client-side router. It watches for URL changes,
determines the matching page (micro frontend), and renders it.

2

33 $

66 $

99 $ buy

21

66 $

1

Home Product Basket Payment Success

$ $ %%

Team
Inspire

Team
Decide

Team
Checkout

/product

App shell
1

$66

Listens to URL changes

Renders matching page

Routing
definitions

122 CHAPTER 7 Client-side routing and the application shell

13

s

7.1.2 Anatomy of the app shell

The four essential parts of a micro frontends app shell are

1 Providing a shared HTML document
2 Mapping URLs to team pages (client-side routing)
3 Rendering the matching page
4 (De)initializing the previous/next page on navigation

Let’s build them in this order. Since the
app shell is a central infrastructure, its code
lives next to the team’s applications. You
can see the folder structure of the sample
code in figure 7.4.
 As in the previous chapters, each folder
represents an application that’s developed
and deployed independently. In the exam-
ple, the app shell listens on port 3000, and
the team applications run on ports 3001,
3002, and 3003.
 If you are building a fully client-rendered
application, it’s typical to have a single
index.html file. It acts as the entry point
for all incoming requests. The actual rout-
ing happens in the browser via JavaScript.

 To make this happen, we need to configure our web server to return the
index.html when it encounters an unknown URL. In Apache or Nginx, you can do
this by specifying rewrite rules. Fortunately, our ad hoc web server (mfserve) has an
option to enable this behavior. We add the --single parameter to do the trick. Start
the app shell and the three applications by running this command:

npm run 13_client_side_flat_routing

Now, the server answers all incoming requests like /, /product/porsche, or /cart
with the content of the index.html.

 Let’s look at the markup in the following listing.

<html>
<head>

<title>The Tractor Store</title>
<script src="https://unpkg.com/history@4.9.0"></script>
<script src="http://localhost:3001/pages.js" async></script>
<script src="http://localhost:3002/pages.js" async></script>
<script src="http://localhost:3003/pages.js" async></script>

</head>

Listing 7.1 app-shell/index.html

Figure 7.4 The app shell’s code is located
beside the team’s code. It provides a shared
HTML document. The teams just deliver page
components via JavaScript.

the-tractor.store/#

A dependency we’ll use
in the router code

The application
code for all team

http://www.the-tractor.store/#13

123App shell with flat routing

<body>
<div id="app-content">

rendered page goes here
</div>
<script type="module">

/* routing code goes here */
</script>

</body>
</html>

Now we have our HTML document. It references the JavaScript code of all teams.
These files contain the code for the page components. The document also has a con-
tainer for the actual content (#app-content). That’s pretty straightforward. Let’s get
to the exciting part: the routing.

7.1.3 Client-side routing

There are many ways to build a client-side router. We could use a full-featured existing
routing solution like vue-router. However, since we want to keep it simple, we’ll build
our own that’s based on the history library.1 This library is a thin wrapper around the
browser’s History API. Many higher-level routers like react-router use it under the
hood. Don’t worry if you haven’t used history before. We’ll only use two features:
listen and push.

...
const appContent = document.querySelector("#app-content");

const routes = {
"/": "inspire-home",
"/product/porsche": "decide-product-porsche",
"/product/fendt": "decide-product-fendt",
"/product/eicher": "decide-product-eicher",
"/checkout/cart": "checkout-cart",
"/checkout/pay": "checkout-pay",
"/checkout/success": "checkout-success"

};

function findComponentName(pathname) {
return routes[pathname] || "not found";

}

function updatePageComponent(location) {
appContent.innerHTML = findComponentName(location.pathname);

}

const appHistory = window.History.createBrowserHistory();

1 See https://github.com/ReactTraining/history.

Listing 7.2 app-shell/index.html

Container for the
actual page content

Place for the app
shell’s routing code

Maps a URL path to
the component name

Looks up a component
based on a pathname

Writes the component
name into the
content container

Instantiates the
history library

https://github.com/ReactTraining/history

124 CHAPTER 7 Client-side routing and the application shell
appHistory.listen(updatePageComponent);
updatePageComponent(window.location);

document.addEventListener("click", e => {
if (e.target.nodeName === "A") {

const href = e.target.getAttribute("href");
appHistory.push(href);
e.preventDefault();

}
});
...

KEEPING URL AND CONTENT IN SYNC

The central piece is the updatePageComponent(location) function. It keeps the dis-
played content in sync with the browser’s URL. It’s called once on initialization and
every time the browser history changes (appHistory.listen). The change can be due
to a navigation request through the JavaScript API via appHistory.push() or when
the user clicks the Back or Forward button in the browser. The updatePageComponent
function looks up the page component that matches the current URL. For now it puts
the component name into the div#app-content element via innerHTML. This way, the
browser shows one line of text which contains the matched name. The name acts as a
placeholder for us. We’ll upgrade this to rendering a real component in a minute.

MAPPING URLS TO COMPONENTS

The routes object is a simple pathname (key) to component name (value) mapping.
Here is an excerpt from the code you saw before.

...
const routes = {

"/": "inspire-home",
"/product/porsche": "decide-product-porsche",
...
"/checkout/pay": "checkout-pay",
"/checkout/success": "checkout-success"

};
...

So every page is a component. The component’s name starts with the name of the
responsible team. For the URL /checkout/success, the app shell should render the
checkout-success component, which Team Checkout owns.

7.1.4 Rendering pages

The app shell includes a JavaScript file from each team. Let’s have a look inside
these files. As you might have guessed, we are using Web Components as a neutral

Listing 7.3 app-shell/index.html

Registers a history listener that’s called every time
the URL changes either through a push/replace call
or by clicking the browser’s Back/Forward controls

Calls the update function once on
start to render the first page

Registers a global click listener
that intercepts link clicks, passes
the target URLs to the history,
and prevents a hard navigation

125App shell with flat routing
component format. A team exposes their page as a Custom Element. The app shell
needs to know the name of this component. It doesn’t care what technology the page
component uses internally. We use the same approach as discussed in chapter 5, but
on a page- and not on a fragment-level. The following code shows Team Inspire’s
homepage component.

class InspireHome extends HTMLElement {
connectedCallback() {

this.innerHTML = `
<h1>Welcome to The Tractor Store!</h1>
Here are three tractors:
Porsche
Eicher
Fendt

`;
}

}

window.customElements.define("inspire-home", InspireHome);

This is a simplified example. In a real-world implementation, we would also see data
fetching, templating, and styling here. The connectedCallback is the entry point for
the teams to display their content. The code for the other pages looks similar. Here’s
an example for a product page.

class DecideProductPorsche extends HTMLElement {
connectedCallback() {

this.innerHTML = `
< home -
view cart >
<h1>Porsche-Diesel Master 419</h1>

`;
}

}
window.customElements.define(

"decide-product-porsche",
DecideProductPorsche

);
...

The structure is the same as with Team Inspire’s homepage. Only the content is differ-
ent. Let’s enhance the updatePageComponent implementation so that it instantiates
the correct Custom Element and doesn’t just display the component name.

Listing 7.4 team-inspire/pages.js

Listing 7.5 decide/pages.js

Links to the product page
owned by Team Decide

Adds the Custom
Element to the
global registry

Links to Team
Inspire’s homepage

Links to Team
Checkout’s
cart page

Adds the Custom Element
to the global registry

126 CHAPTER 7 Client-side routing and the application shell

...
function updatePageComponent(location) {

const next = findComponentName(location.pathname);
const current = appContent.firstChild;
const newComponent = document.createElement(next);
appContent.replaceChild(newComponent, current);

}
...

The preceding code is all standard DOM API—creating a new element and replacing
an existing one with it. Our app shell is a straightforward broker that listens to the His-
tory API and updates the page via simple DOM modification. The teams can hook
into the Custom Element’s lifecycle methods to get the right hooks for initialization,
deinitialization, lazy loading, and updating. No framework or fancy code needed.

LINKING BETWEEN MICRO FRONTENDS

Let’s look at navigation. That’s the whole point of this exercise. We want to achieve
fast client-rendered page transitions. You might have noticed that both pages have
links that point to other teams. The app shell handles these links. It contains a global
click listener. Here is an excerpt from the code you saw earlier.

...
document.addEventListener("click", e => {

if (e.target.nodeName === "A") {
const href = e.target.getAttribute("href");
appHistory.push(href);
e.preventDefault();

}
});
...

NOTE This is a shortened version of a global click handler. In produc-
tion, you’d also want to watch for modifier keys to make opening in a
new tab possible. You might also want to detect external links. But you
get the gist.

This click handler intercepts clicks on links that are rendered by the individual micro
frontends. Instead of triggering a full page load, the browser performs a soft navigation:

 The target URL becomes the latest entry in the history stack (appHistory
.push(href)).

Listing 7.6 app-shell/index.html

Listing 7.7 app-shell/index.html

Looks up the component name
for the current location

Reference to the
existing page
component

Instantiates the
Custom Element

Replaces the existing component with the new
one (disconnectedCallback of the old one and

connectedCallback of the new one are triggered)

Adds a click listener to
the complete document Only cares

about “a” tags

Extracts the link
target from href

Pushes the new URL
to the historyStops the browser from

performing a hard navigation

127App shell with flat routing
 The appHistory.listen(updatePageComponent) callback triggers.
 updatePageComponent matches the new URL against the routing table to deter-

mine the new component name.
 updatePageComponent replaces the existing component with the new one.
 The disconnectedCallback of the old component triggers (if implemented).
 The constructor and connectedCallback of the new component trigger.

When you start the example code and open http://localhost:3000/, you can see this
code in action. Click on the links to navigate between the pages. All page transitions
are entirely client-side. The app shell document doesn’t reload at any time. Figure 7.5
illustrates the links between the pages in the example project.

Figure 7.5 The pages in the example project are connected via links. The application shell
intercepts these links and performs a soft navigation to the requested page. Teams expose their
pages as Custom Elements. On navigation, the app shell replaces the existing page component
with the new one.

You should take some time and play around with the code. Add log statements or
debugger breakpoints to the app shell and page component code. It gives you a feel-
ing of how our routing code plays together with the (de)initialization of the pages.

7.1.5 Contracts between app shell and teams

Let’s take a step back and look at the contracts between the teams and the app shell
(see figure 7.6). Each team needs to publish a list of URLs it’s managing. Other teams
can use these URLs to link to a specific page. However, these teams don’t need to
know the other team’s component names. The application shell encapsulates this
information. When a team wants to change the name of a component, it must only
update the app shell.

Team Inspire Team Decide Team Checkout

Application shell intercepts all links

Each page is a custom element.

Link

128 CHAPTER 7 Client-side routing and the application shell
Figure 7.6 Contracts between the systems. Teams need to expose their pages
to the app shell in a defined component format (for example, Web Components).
A team needs to know the URL of another team if it wants to link to it.

7.2 App shell with two-level routing
The teams are happy with their first app shell prototype. It required less code than
expected. However, they already spotted a significant downside. The flat routing
approach requires that the app shell must know all URLs of the application. When a team
wants to change an existing or add a new URL, they also need to adjust and redeploy
the app shell. This coupling between the feature teams and the app shell does not feel
right. The shell should be a piece of infrastructure that’s as neutral as possible. It
shouldn’t need to know every URL that exists in the application.

Figure 7.7 Two-level routing. The app shell looks at the first part of the URL to
determine which team is responsible (top-level routing). The router of the matched
team processes the complete URL to find the correct page inside its single-page
application (second-level routing).

Team A Team B

App shell

Team B

URLs

Page
component

Contract between
app shell and team

Contract between
different teams

/app-b/page-2

Application shell

Top
level
routing

Page B3Page A2Page A1

Single-page app A

Page B2Page B1

Single-page app B

Second
level
routing

/app-b/*

/app-b/page-2

Incoming URL

Shared code

Team A Team B

infrastructure

129App shell with two-level routing
The concept of two-level routing circumvents this. Here the app shell only routes
between teams. Each team can have its own router that maps the incoming URL to a
specific page. It’s the same concept you learned in chapter 3, but moved from the web
server to JavaScript in the browser.

 For this to work, the app shell needs a reliable way to tell which team owns a spe-
cific URL. The easiest way to achieve this is by using a prefix. Figure 7.7 illustrates how
this works.

 With this model, we have multiple single-page apps (per team) wrapped in
another single-page app (app shell). It has the benefit that the routing rules inside the
app shell become minimal. The top router decides which team is responsible. The
actual route definitions move into the responsible team applications. A team can add
new URLs inside its application without changing the app shell. They can add it to
their router. The app shell only needs to change if you want to introduce a new team
or change a team prefix.

 Let’s go ahead and implement these changes.

7.2.1 Implementing the top-level router

The app shell script can stay the same. We only have to change the routing definitions.

...
const routes = {

"/product/": "decide-pages",
"/checkout/": "checkout-pages",
"/": "inspire-pages"

};

function findComponentName(pathname) {
const prefix = Object.keys(routes).find(key =>

pathname.startsWith(key)
);
return routes[prefix];

}
...

The routes object is more compact than before. In the flat routing version, it mapped
specific URLs like /checkout/success to a page-specific component checkout-
success. The new routing combines all routes of a team in one definition and does
not differentiate between pages.

 Before, findComponentName did a simple object lookup via the pathname. Now it
matches the incoming pathname against all prefixes and returns the first component
name that matches. All URLs starting with /checkout/ trigger a render of component
checkout-pages. It’s the job of Team Checkout to process the rest of the pathname
and show the correct page.

 That’s it. The other code we saw in the flat routing model can stay the same.

Listing 7.8 app-shell/index.html

The routes object now
maps a URL prefix to a
team-level component.

To look up a component, the
function compares the route
prefixes against the current
pathname. It returns the
component name of the first
route that matches.

130 CHAPTER 7 Client-side routing and the application shell

tem
the

he
7.2.2 Implementing team-level routing

Let’s look inside the checkout-pages component to see the second-level routing. This
new component takes the role of the checkout-cart, checkout-pay, and checkout-
success components from the previous example. Here is Team Checkout’s code for
handling the pages.

const routes = {
"/checkout/cart": () => `

< home -
pay >
<h1> Cart</h1>
...`,

"/checkout/pay": () => `
< cart -
buy now >
<h1> Pay</h1>`,

"/checkout/success": () => `
home >
<h1> Success</h1>`

};

class CheckoutPages extends HTMLElement {
connectedCallback() {

this.render(window.location);
this.unlisten = window.appHistory.listen(location =>

this.render(location)
);

}
render(location) {

const route = routes[location.pathname];
this.innerHTML = route();

}
disconnectedCallback() {

this.unlisten();
}

}

window.customElements.define("checkout-pages", CheckoutPages);

This code contains the template of all three pages. The connectedCallback method
triggers when the app shell appends the component to the DOM. It renders the pages
based on the current URL. Then it listens for URL changes (window.appHistory
.listen).

Listing 7.9 checkout/pages.js

Contains all of Team
Checkout’s routes Maps the URL of the cart page

to a templating function

The template for
the cart page

Triggers when the app shell
appends the <checkout-pages>
component to the DOM

Renders content based
on the current location

Listens to changes in the history
and rerenders on change (notice
that we are using the appHistory

instance provided by the app shell)

Responsible for
rendering the content

Looks up
the page
plate via

 incoming
pathname

Executes the route
template and writes t
result into innerHTMLTriggers when the app shell removes the

component from the DOM and unregisters
the before added history listener

Exposes the component as
checkout-pages to the global

Custom Elements registry

131App shell with two-level routing

14
 When a location changes, it updates the view accordingly. For simplicity, we use a
simple string-based template. In a real application, you’d probably go for a more
sophisticated option.

CLEANUP IS KING

It’s always good to clean up after you’ve finished. However, it is extra vital in this micro
frontend setup. Running the app shell model is like sharing an apartment with other
people. Global variables, forgotten timers, and event listeners may get in the way of
other teams or cause memory leaks. These problems are often hard to track down.

 It’s essential to do proper cleanup when the component isn’t in use anymore to
avoid issues. That’s why in our example the disconnectedCallback() removes the
history listener via the unlisten() function that was returned by the appHistory
.listen() call.

 Be careful when using third-party code. Older jQuery plugins or frameworks like
AngularJS (v1) are known for lousy cleanup behavior. However, most modern tools
behave well when you unmount them correctly.

 That’s everything we need to make our two-level routing work. In the first level, the
application shell decides which team is responsible. In the second level, the team
selects the appropriate page. Take some time and run the example locally for a more
in-depth analysis:

npm run 14_client_side_two_level_routing

7.2.3 What happens on a URL change?

Let’s examine what happens when a URL changes. We’ll look at three scenarios: first
page load, navigation inside team boundaries, and navigation across boundaries.

SCENARIO 1: FIRST VIEW

Figure 7.8 First page view in a two-level routing approach. The top-level router looks
at the team prefix to determine the responsible team. The team router at the second
level looks at the last part of the URL to render the actual page.

the-tractor.store/#

First page view
-> /product/porsche

Top level app shell

Team level <decide-pages>

2 Initialization
listen to history

3 New team component
decide-pages

4 Initialization
listen to history

5 Render
porsche

Team prefix Team internal

1

http://www.the-tractor.store/#14

132 CHAPTER 7 Client-side routing and the application shell
Figure 7.8 shows the first page load. Beginning with step 2:

2 The app shell code runs first and does everything needed for initialization. It
starts watching the URL for changes.

3 The current URL starts with the team prefix /product/. This prefix maps to
Team Decide’s <decide-pages> element. The app shell inserts this component
to the DOM.

4 The team-level component initializes itself. It also starts listening to the URL.
5 It looks at the current URL and renders the product page for the Porsche tractor.

In short, the app shell picks the team that’s responsible for the current URL, and this
team renders the page. Both have registered a listener to the URL. In the next scenar-
ios, we’ll see the listeners in action.

SCENARIO 2: INSIDE TEAM NAVIGATION

Figure 7.9 shows what happens when the user is on page /product/porsche and clicks
on a link to /product/eicher. The app shell intercepts the link and pushes the new
URL to the front of the history.

Figure 7.9 When the user navigates to another page controlled by the same team,
the app shell has nothing to do. The team-level component needs to update the page
according to the URL.

2 The app shell detects a history change and notices that the team prefix did not
change.

3 The team level component can stay the same. The app shell has nothing to do.
4 The team component registers the URL change too.
5 It updates its content and switches from the Porsche to the Eicher tractor.

Since team responsibility did not change (same team prefix), the app shell has noth-
ing to do. Team Decide handles the page change on its own.

 Now to the exciting part: inter-team navigation.

User navigates inside team boundaries
/product/porsche -> /product/eicher

Top level app shell

Team level <decide-pages>

2 History change
detected

3 Same team component

4 History change
detected

5

Keep decide-pages

Render
eicher

Team internal change

Page changes

No change

1

133App shell with two-level routing
SCENARIO 3: INTER-TEAM NAVIGATION

When the user moves from the product page to the checkout page, they cross a team
boundary. Team Checkout owns the cart page. In figure 7.10 you see how the app
shell handles this transition.

Figure 7.10 On an inter-team navigation, the responsibility changes. The app shell
replaces the existing team component with a new one. This new component takes over
and is in charge of rendering the page.

2 The app shell recognizes a change in history.
3 Since the team prefix changed from /product/ to /checkout/, the app shell

replaces the existing <decide-pages> component with the new <checkout
-pages> component.

4 Team Decide receives the request to deinitialize itself before the app shell
removes it from the DOM. It cleans up behind itself and stops listening for his-
tory events.

5 Team Checkout’s component initializes itself and starts listening to the history.
6 It renders the cart page.

In this scenario, the app shell swaps the team-level components. It hands over control
from one team to another. The team components deal with their initialization and
deinitialization.

7.2.4 App shell APIs

You’ve learned about the app shells most essential tasks:

 Loading the team’s application code
 Routing between them based on the URL

Here is a list of additional topics that an app shell might be responsible for:

 Context information (like language, country, tenant)
 Meta-data handling (updating tag, crawler hints, semantic data)

Team level <checkout-pages>

Top level app shell

User navigates across team boundaries
/product/eicher -> /checkout/cart

Team level <decide-pages>

2 History change
detected

3 Team component change

4 Deinitialization
unlisten

Team prefix change

Remove decide-pages
 Insert checkout-pages

listen to history
6 Render

cart

Team changes

Page changes

1

5 Initialization

134 CHAPTER 7 Client-side routing and the application shell
 Authentication
 Polyfills
 Analytics and tag managers
 JavaScript error reporting
 Performance monitoring

Some of these functionalities are not interesting to the application code. Performance
monitoring, for example, is often done by adding a script in a central place. The mon-
itoring can work without the application knowing about it.

 However, other functionalities can require interaction between the app shell and
the applications. The following code shows how a function for tracking events from
inside an application might look:

window.appShell.analytics({ event: "order_placed" });

The app shell can also pass information to the applications. In a web-component-
based model it can look like this:

<inspire-pages country="CH" language="de"></inspire-pages>

It’s a good idea to keep this API as lean as possible. Having a stable interface reduces
friction. The rollout of breaking API changes comes with inter-team coordination. All
teams need to update their code to keep functioning correctly. Figure 7.11 illustrates
this contract between the application shell and the team’s applications.

Figure 7.11 Adding shared functionality to the app shell leads to tighter coupling. The API between app
shell and team applications acts as a contract between the systems. It should be lean and stable.

Business logic should be in the teams' application code—not in the shared applica-
tion shell. A good indicator for too-tight coupling is this: a feature deployment from a team
should not require the app shell to change.

 Now we’ve created a minimal application shell from scratch. Next up, we’ll take a
quick look into an existing and ready-to-use solution: single-spa.

7.3 A quick look into the single-spa meta-framework
After building and evolving the app shell prototype, Tractor Models, Inc.’s develop-
ment teams have a pretty good understanding of how the pieces work together. They

Team A

App shell

API

Contracts between
the systems

Global API object
window.appShell.track(…)

Context information
{country: CH, lang: de}

135A quick look into the single-spa meta-framework
know for sure that they want to go with the two-level routing model. However, there
are still some features missing. Lazy loading of JavaScript code and proper error han-
dling are two of them.

 To avoid reinventing the wheel, they check for existing solutions that fit their
needs. They come across single-spa,2 which is a popular micro frontends meta-
framework. In essence, it’s an application shell—similar to the application shell we
just built. But it comes with some more advanced features. It has built-in on-demand
loading of application code and comes with a broad ecosystem of framework bindings. You can
find examples and helper libraries to hook up a React, Vue.js, Angular, Svelte, or
Cycle.js application with few efforts. These make it easy to expose an application in a
unified way so that single-spa can interact with them.

 The teams want to take their prototype and migrate it to single-spa. To test out the
limits, each team chooses another JavaScript framework for their part of the shop.
Team Inspire implements the Homepage using Svelte.js, Team Decide renders the
product pages using React, and Team Checkout opts for the Vue.js framework. Figure
7.12 illustrates this. They don’t plan to go to production with this technology mix, but
it’s an excellent exercise to see how the integration works.

Figure 7.12 Single-spa acts as the application shell which routes between the applications.
In our example, all teams have picked a different frontend framework for their application code.

Let’s look at how single-spa works.

7.3.1 How single-spa works

TIP You can find the sample code for this task in the 15_single_spa
folder.

2 See https://single-spa.js.org.

Single-spa app shell

Vue.jsSvelte.js React.js

Team Decide

Team CheckoutTeam Inspire

https://single-spa.js.org

136 CHAPTER 7 Client-side routing and the application shell

w

The basic concepts are the same as in our previous prototype. We have a single HTML
file that acts as the starting point. It includes the single-spa JavaScript code and maps
URL prefixes to the code of a specific application. The main difference is that it does
not use Web Components as the component format. Instead, the teams expose their
micro frontends as a JavaScript object that adheres to a specific interface. We’ll look at
this in a minute. Let’s look at the initialization code first.

<html>
<head>

<title>The Tractor Store</title>
<script src="/single-spa.js"></script>

</head>
<body>

<div id="app-inspire"></div>
<div id="app-decide"></div>
<div id="app-checkout"></div>

<script type="module">
singleSpa.registerApplication(

"inspire",
() => import("http://localhost:3002/pages.min.js"),
({ pathname }) => pathname === "/"

);
singleSpa.registerApplication(

"decide",
() => import("http://localhost:3001/pages.min.js"),
({ pathname }) => pathname.startsWith("/product/")

);
singleSpa.registerApplication(

"checkout",
() => import("http://localhost:3003/pages.min.js"),
({ pathname }) => pathname.startsWith("/checkout/")

);
singleSpa.start();

</script>
</body>

</html>

In this example, the single-spa.js library gets included globally. Notice that you
have to create a DOM element for every micro frontend (<div id="app-inspire"></
div>). The application code of the micro frontend looks for this element in the DOM
and mounts itself underneath this element.

 The singleSpa.registerApplication function maps the application code to a
specific URL. It takes three parameters:

 name must be a unique string, which makes debugging easier.
 loadingFn returns a promise that loads the application code. We are using the

native import() function in the example.

Listing 7.10 app-shell/index.html

Imports the
single-spa library

Each micro frontend has its own DOM
element which acts as the mount point.

Registers a micro frontend
with single-spa

Name of the
application,
hich makes
debugging

easier

Loading function for
the application,

which fetches the
associated JavaScript

code when needed

The activity function receives the
location and determines if the micro
frontend should be active or not.

Initializes single-spa, renders
the first page, and starts
listening for history changes

137A quick look into the single-spa meta-framework
 activityFn gets called on every URL change and receives the location. When
it returns true, the micro frontend should be active.

On start, single-spa matches the current URL against all registered micro frontends. It
calls their activity functions to detect which micro frontends should be active. When an
application becomes active for the first time, single-spa fetches the associated JavaScript
code through the loading function and initializes it. When an active application
becomes inactive, single-spa calls its unmount function, instructing it to deinitialize itself.

 More than one application may be active at the same time. A typical use case for
this is global navigation. It can be a dedicated micro frontend that gets mounted at
the top and is active on all routes.

JAVASCRIPT MODULES AS THE COMPONENT FORMAT

In contrast to our Web Component-based prototype, single-spa uses a JavaScript inter-
face as the contract between app shell and team application. An application has to
provide three asynchronous functions. It looks like this.

export async function bootstrap() {...}
export async function mount() {...}
export async function unmount() {...}

These functions (bootstrap, mount, unmount) are similar to the Custom Elements life-
cycle functions (constructor, connectedCallback, disconnectedCallback). Single-
spa calls bootstrap when a micro frontend becomes active for the first time. It invokes
(un)mount every time the application is (de)activated.

 All lifecycle functions are asynchronous. This fact makes lazy loading and data
fetching inside an application a lot easier. Single-spa ensures that mount is not called
before bootstrap has completed.

 The Custom Elements lifecycle methods are synchronous. Implementing asyn-
chronous initialization with Custom Elements is possible. However, it requires some
extra work on top of what the standard specifies.

FRAMEWORK ADAPTERS

Single-spa comes with a list of framework adapters. Their job is to wire the three lifecy-
cle methods to the appropriate framework calls for (de)initialization. Let’s look at the
code for Team Inspire, which delivers the homepage. They’ve chosen the framework
Svelte.js. Don’t worry if you’ve never used Svelte before. It’s a simple example.

import singleSpaSvelte from "single-spa-svelte";
import Homepage from "./Homepage.svelte";

Listing 7.11 team-a/pages.js

Listing 7.12 team-inspire/pages.js

Imports single-spa’s
Svelte adapter

Imports the Svelte
component for rendering
the homepage

138 CHAPTER 7 Client-side routing and the application shell
const svelteLifecycles = singleSpaSvelte({
component: Homepage,
domElementGetter: () => document.getElementById("app-inspire")

});

export const { bootstrap, mount, unmount } = svelteLifecycles;

First, we import the adapter library single-spa-svelte and the Homepage.svelte
component containing the actual template. We’ll look at the homepage code in a sec-
ond. The adapter function singleSpaSvelte receives a configuration object with two
parameters: the root component and a function that looks up Team Inspire’s DOM ele-
ment. The adapters have different parameters that are specific to the associated frame-
work. In the end, we export the lifecycle methods returned by the adapter function.

NOTE In the example code, each team has a Rollup-based build process to
generate the pages.min.js file in the ES module format. However, there is
nothing Rollup-specific. You can do the same with Webpack or Gulp.

NAVIGATING BETWEEN MICRO FRONTENDS

Let’s look at the homepage component.

<script>
function navigate(e) {

e.preventDefault();
const href = e.target.getAttribute("href");
window.history.pushState(null, null, href);

}
</script>

<div>
<pre>team inspire - svelte.js</pre>
<h1>Welcome Home!</h1>
Here are three tractors:
<a on:click={navigate} href="/product/eicher">Eicher
<a on:click={navigate} href="/product/porsche">Porsche
<a on:click={navigate} href="/product/fendt">Fendt

</div>

In the example, you see three links to product pages. They have a navigate click han-
dler attached that prevents hard navigation (e.preventDefault ()) and writes the
URL to the native history API instead (window.history.pushState). Single-spa moni-
tors the history and updates the micro frontends accordingly.

 Clicking on this product link triggers the termination (unmount) of Team Inspire’s
micro frontend. After that, single-spa loads Team Decide’s application and activates it
(mount). This behavior is similar to the inter-team navigation scenario you saw in the
previous section.

Listing 7.13 team-inspire/Homepage.svelte

Calls the adapter with the root component and a
function that retrieves the DOM element to render it in

Exports the lifecycle functions
returned by the adapter call

Function that intercepts link
clicks by pushing the URL to the
history and preventing a reload

Links to Team Decide’s
product page

139A quick look into the single-spa meta-framework

15
RUNNING THE APPLICATION

You can fire up the sample code by running the following command:

npm run 15_single_spa

It starts four web servers (app shell and three applications) and opens your browser at
http://localhost:3000/. Have a look at the developer tools when navigating through
the shop using the links.

Figure 7.13 With single-spa, each micro frontend has its own DOM node to render its
content. In this example, the micro frontend for Team Decide’s product page is active.
It shows its content inside the #app-decide element. The other micro frontends are
inactive, and their corresponding DOM elements are empty.

 See how the #app-inspire, #app-decide, and #app-checkout DOM nodes of
the app shell come to life. When the user moves from one micro frontend to
the next, the content changes. The old micro frontend removes its markup.
The new micro frontend fills its DOM node with the new content. You can see
this in figure 7.13.

 Open the Network tab and also notice that single-spa loads the JavaScript bun-
dles (pages.min.js) as they are needed and not all up front.

 Have a look at the code of Team Decide’s and Team Checkout’s micro fron-
tends. They both include a framework-level router (react-router and vue
-router). The application code is not special. It’s straight from the respective
“Getting started” guides. Client-side navigation works via the stock <Link>- and
<router-link /> components from the routers.

NESTING MICRO FRONTENDS

In our current example, there is precisely one micro frontend active at a time. The
app shell instantiates the micro frontends at the top level. This is how single-spa gets

the-tractor.store/#

Active

Inactive

Inactive

http://www.the-tractor.store/#15

140 CHAPTER 7 Client-side routing and the application shell
used most often. As I said before, it’s possible to implement some navigation micro
frontend that is always present and sits next to the other applications. However, single-
spa also allows nesting. This concept goes by the name portals. Portals are pretty much
the same as what we called fragments in the last few chapters.

DIVING DEEPER INTO SINGLE-SPA

You’ve seen the underlying mechanisms of single-spa. It offers more functionality than
we’ve covered here. Besides the portals I just mentioned, there are status events, the
ability to pass down context information, and ways to deal with errors.

 The official documentation3 is an excellent place to start to get deeper into single-
spa. They have a lot of good examples showcasing how to use single-spa with different
frameworks.

7.4 The challenges of a unified single-page app
Now you have a good understanding of what’s necessary to build an app shell that
connects different single-page apps. The unified model makes it possible for the user
to move through the complete app without encountering a hard navigation. All page
transitions are client-rendered, which in general results in quicker responses to user
interactions.

7.4.1 Topics you need to think about

However, the improvement in user experience does not come for free. Here are a cou-
ple of topics you need to address when going the unified single-page app route.

SHARED HTML DOCUMENT AND META DATA

The teams have no control over the surrounding HTML document. A micro frontend
may only change the content inside of its root DOM node in the body.

 You almost always want to set a meaningful title for the individual pages. Provid-
ing a global appShell.setTitle() method would be one way of dealing with this.
Each micro frontend could also directly alter the head section via DOM API.

 However, if your site is accessible on the open web, the title is often not enough.
You want to provide crawlers and preview generators like Facebook or Slack with
machine-readable information like canonicals, href langs, schema.org tags, and index-
ing hints. Some of these might be the same for the complete site. Others are highly
specific to one page type.

 Coming up with a mechanism to effectively manage meta tags across all micro
frontends requires some extra work and complexity. Think of Angular’s meta service,4

vue-meta,5 or react-helmet6 but on an app shell level.

3 See https://single-spa.js.org/docs/getting-started-overview.html.
4 See https://angular.io/api/platform-browser/Meta.
5 See https://vue-meta.nuxtjs.org.
6 See https://github.com/nfl/react-helmet.

https://single-spa.js.org/docs/getting-started-overview.html
https://angular.io/api/platform-browser/Meta
https://vue-meta.nuxtjs.org
https://github.com/nfl/react-helmet

141The challenges of a unified single-page app
ERROR BOUNDARIES

If the code from different teams runs inside one document, it can sometimes be tricky
to find out where an error originated. In the composition approach from the last
chapter, we have the same problem. Code from inside a fragment has the potential to
cause unwanted behavior on the complete page. However, the unified single-page app
model widens the debugging area from page level to the complete application. A for-
gotten scroll listener from the homepage can introduce a bug on the confirmation
page in the checkout. Since these pages are not owned by the same team, it can be
hard to make the connection when looking for the error.

 In practice, these types of problems are rather rare. Also, error reporting and
browser debugging tools have gotten pretty good over the last years. Identifying which
JavaScript file caused the error helps in finding the responsible team.

MEMORY MANAGEMENT

Finding memory leaks is more complicated than tracking down a JavaScript error. A
common cause of memory leaks is inadequate cleanup: removing parts of the DOM
without unregistering event listeners or writing something to a global location and then
forgetting about it. Since the micro frontend applications get initialized and deinitial-
ized regularly, even smaller problems in cleanup can accumulate into a bigger problem.

 Single-spa has a plugin called single-spa-leaked-globals which tries to clean up
global variables after a micro frontend is unmounted. However, there is no universal
magic cleanup solution. It’s essential to raise awareness in your developer teams that
proper unmounting is as important as proper mounting.

SINGLE POINT OF FAILURE

The app shell is, by its nature, the single first point of contact. Having a severe error in
the app shell can bring down the complete application. That’s why your app shell
code should be of high quality and well tested. Keeping it focused and lean helps in
achieving this.

APP SHELL OWNERSHIP

Similar to the frontend proxy we talked about in chapter 3, the application shell is a
critical piece of infrastructure that needs a clear owner. However, once you have a
working system, there should not be a high demand for adding features or constantly
evolving the application shell itself. If your app shell is lean, it’s usually perfectly fine
that one of the feature teams takes responsibility for maintaining it. In chapter 13
we’ll dive a little deeper into this topic.

COMMUNICATION

Sometimes micro frontend A needs to know something that happened in micro fron-
tend B. The same communication rules we discussed in chapter 6 also apply here:

 Avoid inter-team communication when possible.
 Transport context information via the URL.

142 CHAPTER 7 Client-side routing and the application shell
 Stick to simple notifications when needed.
 Prefer API communication to your backend.

Don’t move state to the app shell. It might sound like a good idea to not load the same
information twice from the server. However, misusing the app shell as a state con-
tainer creates strong coupling between the micro frontends. In the backend world, it’s
a best practice that microservices don’t share a database. One change in a central
database table has the potential to break another service. The same applies to micro
frontends. Here your state container is equivalent to a database.

BOOT TIME

Code splitting has become best practice in web development. When implementing an
app shell, you should consider this as well. In the single-spa example, you saw how the
library loads the actual micro frontend code on-demand. It’s crucial to think about
optimizations to deliver an excellent overall performance.

7.4.2 When does a unified single-page app make sense?

This model plays to its strength when the user needs to switch frequently between user inter-
faces owned by different teams. In e-commerce, the jump between the search result and
the product details page is a good example. The user looks at a list of products, clicks
on one, jumps back to the list, and repeats the process until they find something they
like. In this case, using a soft navigation makes a noticeable difference in the user
experience.

 For web applications where providing a high amount of interactivity is more important
than initial page load time, the unified single-page app approach is a good fit. Sites that
require the user to log in before using it and classical back-office applications are
prime candidates.

 However, as already discussed, this approach does not come for free and introduces
a considerable amount of shared complexity. If you want to split your existing single-
page application into smaller ones, the unified single-page application approach is not
necessarily the way to go. For many use cases, it’s totally fine to have a hard navigation
between two linked single-page apps.

 Imagine a content management application with an area for writing long-form
articles and another area to moderate comments. These can be two independent
single-page applications. Since a typical user would not always switch from moderating
comments to writing an article, it might be perfectly fine to build this as two distinct
applications that both include the same header fragment via composition.

 Figure 7.14 shows the trade-off between providing the best user experience and
having a simple setup with low coupling.

 As always, there are no right or wrong solutions. Both models have their benefits.
Let’s close this chapter by placing the unified single-page app model into the compar-
ison chart we’ve built over the last few chapters. See the result in figure 7.15.

143Summary

Figure 7.15 Setting up and running a unified single-page app in production is not trivial.
Existing libraries like single-spa make it easy to get started. Since all application code
lives in the same HTML document, there is no technical isolation. We also have the risk
that an error in app A can affect app B. Since a unified single-page application is
client-rendered and needs additional app shell code, it has a longer startup time.
However, if your goal is to create a product with a perfect user experience, the unified
single-page approach is the way to go.

Summary
 Combining multiple single-page apps requires a shared app shell that handles

routing.
 This approach makes it possible to use soft navigations across all pages.

Unified Single-page app

Hard SoftSoft

SPA SPA

 App shell

Soft SoftSoft

SPA SPA

Linked Single-page apps

Easy to implement
low coupling Best user

experience

Figure 7.14 Linked single-page apps are easy to build and introduce low coupling.
However, they require a hard navigation when moving from one app to the other. The unified
single-page app approach solves this and provides a better user experience. But this
enhancement does come with some major complexity.

Custom Elements
and Shadow DOM

T
ec

hn
ic

al
 c

om
pl

ex
ity

Technical isolation High

H
ig

h

Low

Lo
w

Ajax
iframes

In
te

ra
ct

iv
ity

First load time Fast

H
ig

h

Slow

Lo
w

Ajax

Separate pages

iframes

User experienceDeveloper experience

Separate pages

Server side

Server side

Custom
elements

Custom
elements

Unified SPA

Unified SPA

144 CHAPTER 7 Client-side routing and the application shell
 The app shell is a shared piece of infrastructure and should not contain busi-
ness logic.

 Deploying a team feature should never require an app shell deployment.
 Having a two-level routing approach where the app shell performs a simple

team match and the team’s SPA determines the actual page is a useful model
for keeping the app shell lean.

 Teams must expose their single-page applications in a framework-agnostic com-
ponent format. Web Components are a great fit for this. But you can also use a
custom interface like single-spa does.

 It might be necessary to establish additional APIs between the app shell and the
application. Analytics, authentication, or meta-data handling are popular reasons
for this. These APIs introduce new coupling. Keep them as simple as possible.

 With this approach, all applications must deinitialize and clean up correctly.
Otherwise, you risk running into memory leaks and unexpected errors.

Composition and
universal rendering
In the last few chapters, we focused on various integration techniques and dis-
cussed their strengths and weaknesses. We grouped them into two categories:
server-side and client-side. Integration on the server makes it possible to ship a
page that loads quickly and adheres to the principles of progressive enhancement.
Client-side integration enables building rich user interfaces where the page can
react to user input instantly.

 Broad framework support for universal rendering made building applications
that run server- and client-side a lot easier for developers. But what do we need to
do to integrate multiple universal applications into a big one?

This chapter covers
 Employing universal rendering in a micro

frontends architecture

 Applying server- and client-side composition in
tandem to combine their benefits

 Discovering how to leverage the server-side
rendering (SSR) capabilities of modern JavaScript
frameworks in a micro frontends context
145

146 CHAPTER 8 Composition and universal rendering

You’ve already acquired the necessary building blocks. We can combine the client-
and server-side composition and routing techniques from the last few chapters to
make this happen. Figure 8.1 illustrates how our puzzle pieces fit together.

Figure 8.1 Universal composition is the combination of a server- and a client-side
composition technique. For the first request, a technique like SSI, ESI, or Podium
assembles the markup of all micro frontends server-side. The complete HTML
document gets sent to the browser b. In the browser, each micro frontend hydrates
itself and becomes interactive c. From there on, all user interactions can happen
fully client-side. The micro frontends update the markup directly in the browser d.

Terminology: Universal, isomorphic, and SSR
The terms universal rendering,a Isomorphic JavaScript,b and server-side rendering
(SSR) essentially refer to the same concept: Having a single code-base that makes it
possible to render and update markup on the server and in the browser. Their mean-
ing or perspective varies in detail. However, in this book, we’ll go with the term uni-
versal rendering.

a See Michael Jackson, “Universal JavaScript,” componentDidBlog, http://mng.bz/GVvR
b See Spike Brehm, “Isomorphic JavaScript: The Future of Web Apps,” Medium, http://mng.bz/zj7X.

A B
C

C

B

C

A

B

C

A

Team B Team CTeam A

B

C

CA

Server-side
composition

Client-side
composition

+

C

Hydration Update

1

2 3

http://mng.bz/GVvR
http://mng.bz/zj7X

147Combining server- and client-side composition
NOTE In this chapter, we assume that you’re already familiar with the con-
cept of universal rendering and know what hydration is. If not, I recommend
reading this blog post for a quick introduction.1 If you want do dive deeper,
you can also check out the book Isomorphic Web Applications.2

In this chapter, we’ll upgrade our product detail page. We’ll implement universal ren-
dering for all micro frontends and than apply the required integration techniques to
make the site work as a whole.

8.1 Combining server- and client-side composition
Since Team Decide added Team Checkout’s Buy button to the product page, tractor
sales skyrocketed. Now hundreds of orders from all over the world arrive every hour.
The team behind The Tractor Store was pretty overwhelmed by this success. They had
to ramp up their production and logistics capabilities to keep up with the demand.
But not everything has been rosy since then. Over recent weeks, the development
teams struggled with some serious issues. One day Team Checkout shipped a release
of their software that triggered a JavaScript error in all Microsoft Edge browsers. Due
to this bug, the Buy button was missing on the page. Sales for that day were down by
34%. This incident showed a significant quality issue, and the team took measures so
that this kind of problem wouldn’t strike again.

 But this is not the only problem. The product page integrates the Buy button
micro frontend using client-side composition via Web Components. The Buy button is
not part of the initial markup. Client-side JavaScript renders it. While it loads, the user
sees an empty spot where the Buy button will appear after a delay. In local develop-
ment, this delay is not noticeable. But in the real world, on lower-end smartphones
and non-optimal network conditions, it takes a considerable amount of time. Adding
new features to the Buy button made this effect even worse. Figure 8.2 shows how the
product page looks when JavaScript fails or hasn’t finished loading yet.

 The teams decide to switch to a hybrid integration model. Using SSI for server-side
composition and also keeping the Web Components composition. This way, the first-
page load can be fast, and client-side updating and communication is still possible.
Let’s look at this combination.

1 See Kevin Nguyen, “Universal Javascript in Production—Server/Client Rendering,” Caffeine Coding, http://
mng.bz/04jl.

2 Elyse Kolker Gordon, Isomorphic Web Applications—Universal Development with React, http://mng.bz/K2yZ.

http://mng.bz/04jl
http://mng.bz/04jl
http://mng.bz/K2yZ

148 CHAPTER 8 Composition and universal rendering
Figure 8.2 Client-side composition requires JavaScript to work. If it fails or takes a long
time to load, the included micro frontends are not shown. For the product page, this means
that the user can’t buy a tractor. Universal composition makes it possible to use progressive
enhancement in a micro frontends context. That way, the Buy button can render instantly,
and you can make it function even without JavaScript.

8.1.1 SSI and Web Components

In chapter 5, Team Checkout wrapped its Buy button micro frontend into a Custom
Element. The browser receives the following HTML markup.

...
<checkout-buy sku="fendt"></checkout-buy>
...

Since checkout-buy is a custom HTML tag, the browser treats it as an empty inline
element. At first, the user sees nothing. Client-side JavaScript creates the actual con-
tent (a button with a price) and renders it as a child. Then the final DOM structure in
the browser looks like this:

...
<checkout-buy sku="fendt">

<button type="button">buy for $54</button>
</checkout-buy>
...

Listing 8.1 team-decide/product/fendt.html

JavaScript has failed, is blocked, or has not loaded yet …

Universal integrationPure client-side integration

All fragments are missing
User can’t buy

Fragments are visible, but not hydrated
Buying is possible Progressive enhancement

buy for $54

149Combining server- and client-side composition
It would be great if we could ship the
button content already with the initial
markup. Sadly, Web Components don’t
have a standard way to render server-side.3

TIP You can find the sample code for
this task in the 16_universal folder. It
essentially combines the example code
from 05_ssi with 08_web_components.

Since there is no standard way of doing it,
we need to be creative. In this example, we
will use the SSI technique you learned in
chapter 4 for adding server-side composi-
tion to the Web Components approach.
This way, we prepopulate the Web Compo-
nents’ internal markup. Figure 8.3 shows
our folder structure. Team Decide adds an
SSI directive as the child to the Buy but-
ton’s Custom Element.

...
<checkout-buy sku="fendt">

<!--#include virtual="/checkout/fragment/buy/fendt" -->
</checkout-buy>
...

The preceding code of Team Decide’s product page now combines client- and server-
side composition. The Nginx web server replaces the SSI directive with the <button>
markup, which Team Checkout generates when calling the /checkout/fragment/
buy/fendt endpoint. Our example simulates this by serving a static HTML file.

<button type="button">buy for $54</button>

3 There are custom solutions available in projects like Skate.js or Andrea Giammarchi’s project Heresy. But
since the W3C spec defines Shadow DOM as a pure client-side concept, we don’t have a web standard to build
upon for proper hydration.

Listing 8.2 team-decide/product/fendt.html

Listing 8.3 team-checkout/fragment/buy/fendt.html

Figure 8.3 Nginx (webserver/) acts as the
shared frontend proxy and handles the markup
composition on the server side. Note that this
is an excerpt of the complete folder structure.

Client-side Custom Element definition
owned by Team Checkout. The associated
code runs in the browser and renders/
hydrates the micro frontend.

Nginx replaces this SSI directive with the content
that’s returned by the endpoint specified in
virtual. Team Checkout owns this endpoint.

150 CHAPTER 8 Composition and universal rendering
In practice, you’d use a library with server-rendering capabilities to dynamically gener-
ate a response in a Node.js environment. For a React-based application, you’d call
ReactDOMServer.renderToString (<CheckoutBuy />) and return its result. Here
<CheckoutBuy /> would be the React-based micro frontend application. The assem-
bled product page markup that reaches the browser looks like this:

...
<checkout-buy sku="fendt">

<button type="button">buy for $54</button>
</checkout-buy>
...

The browser is now able to show the button instantly. The associated Custom Element
code runs when the JavaScript finishes loading. It hydrates the micro frontend—
making sure that the markup is correct and attaching events for further interaction.

 Team Checkout’s client-side code for the Buy button looks like this.

const prices = {
porsche: 66,
fendt: 54,
eicher: 58

};

class CheckoutBuy extends HTMLElement {
connectedCallback() {

const sku = this.getAttribute("sku");
this.innerHTML = `

<button type="button">buy for $${prices[sku]}</button>
`;
this.querySelector("button").addEventListener("click", () => {

...
});

}
...

}
window.customElements.define("checkout-buy", CheckoutBuy);
...

The code is identical to the examples we used in chapter 5. The component renders
its internal markup inside itself and attaches all required event handlers. We again use
a simplified implementation here. No client-server code reuse, no DOM diffing. But
you get the picture.

 When you use something like React, this is the place where you’d call React-
DOM.hydrate (<CheckoutBuy />, this), where <CheckoutBuy /> is the React applica-
tion for the button and this is the reference to the Custom Element. The call instructs
the framework to pick up the existing server-generated markup and hydrate it.

Listing 8.4 team-checkout/checkout/static/fragment.js

Nginx replaced the SSI directive
with the actual content.

Renders the markup client-side. This is
a “dumb” implementation which

replaces all existing markup even if it
might already be correct. In a real

application, you’d use something more
clever and performant like DOM-diffing.

Adding event listeners to be
able to react to user input

151Combining server- and client-side composition

16
 Figure 8.4 shows the complete process we went through, starting with the server-
side markup generation at the bottom and ending with the initialization of the Buy
button’s Custom Element in the DOM.

Figure 8.4 Prerendering the contents of a Web Component based micro frontend
using SSI. The markup of Team Decide’s product page contains a Custom Element
for Team Checkout’s Buy button. It has an SSI include directive as its content b.
Nginx replaces the include directive with the internal Buy-button markup generated
by Team Checkout c. The browser receives the assembled markup and displays it
to the user d. The browser loads Team Checkout’s JavaScript containing the Custom
Element definition for the Buy button e. The Custom Element’s initialization code
(constructor, connectedCallback) runs. It hydrates the server-generated
markup and can react to user input from this point on f.

The integration works. Run the example with npm run 16_universal on your machine
and open http://localhost:3000/product/fendt in your browser to see it working.

 Notice Team Checkout’s mini-cart and Team Inspire’s recommendation frag-
ment. The integration for these fragments works the same way as for the Buy
button.

 Have a look at the server-logs in the console. You can see how Nginx requests
the individual SSI fragments needed for the page.

 See how the price on the Buy button updates client-side when you select the
platinum edition.

Client

Server

Nginx with SSI

…
<checkout-buy>
 <button />
</checkout-buy>
…

Team Decide Team Checkout

…
<checkout-buy>
 <!-- include -->
</checkout-buy>
…

<button />

…
<checkout-buy>
 <button />
</checkout-buy>
…

1
2

3

DOM

Hydration and
client-rendering

4

Custom Element definition
for checkout-buy

5

the-tractor.store/#

http://www.the-tractor.store/#16

152 CHAPTER 8 Composition and universal rendering
 Clicking the button triggers the checkmark animation and updates the mini-cart.
 Disable JavaScript in your browser to simulate how the page looks when the

client-side code fails or isn’t loaded yet.

8.1.2 Contract between the teams

Let’s take a quick look at the contract for including a fragment from another team.
Here is the definition Team Checkout provides:

 Buy button
Custom Element: <checkout-buy sku=[sku]></…>
HTML endpoint: /checkout/fragment/buy/[sku]

Since we are combining two integration techniques, the team offering the micro fron-
tend needs to provide both: the Custom Element definition and the SSI endpoint,
which delivers the server-side markup. The team using the micro frontend also needs
to specify both. In our example Team Decide uses this code:

<checkout-buy sku="fendt">
<!--#include virtual="/checkout/fragment/buy/fendt" -->

</checkout-buy>

These three lines include a lot of redundancy. To reduce friction, it’s a good idea to
establish a project-wide naming schema. This way, tag names and endpoints all look
alike, and teams can use a generic template for including a fragment. Figure 8.5 shows
how a schema might look.

Progressive enhancement
You’ve noticed that the Buy button now appears even with JavaScript disabled. But
clicking it does not perform any action. This is because we are attaching the actual
add-to-cart mechanics via JavaScript. But it’s straightforward to make it work without
JavaScript by wrapping the button inside an HTML form element like this:

<form action="/checkout/add-to-cart" method="POST">
<input type="hidden" name="sku" value="fendt">
<button type="submit">buy for $54</button>

</form>

In the case of failed or pending JavaScript, the browser performs a standard POST to
the specified endpoint provided by Team Checkout. After that, Team Checkout redi-
rects the user back to the product page. On that page, the updated mini-cart presents
the newly added item.

Building an application with progressive enhancement principles in mind requires a
little more thinking and testing than relying on the fact that JavaScript always works.
But in practice, it boils down to a handful of patterns you can reuse throughout your
application. This way of architecting creates a more robust and failsafe product. It’s
good to work with the paradigms of the web and not reinvent your ones on top of it.

153When does universal composition make sense?
Figure 8.5 This schema shows how you could generate the universal integration
markup in a standardized way. When offering or integrating a fragment, teams
need to know three properties: the name of the team that owns it, the name of
the micro frontend itself, and the parameters it takes.

8.1.3 Other solutions

This is, of course, not the only way to build a universal integration. Instead of SSI and
Web Components, you can also combine other techniques. Integrating server-side
with ESI or Podium and adding your client-side initialization on top would also work.

 Are you looking for a batteries-included solution? Then you could try the Ara
Framework.4 Ara is a relatively young micro frontends framework, but it’s built with
universal rendering in mind. It brings its own SSI-like server-side assembly engine writ-
ten in Go. Client-side hydration works through custom initialization events. Examples
for running a universal React, Vue.js, Angular, or Svelte application exist.

8.2 When does universal composition make sense?
Does your application need to have a fast first-page load? Your user interface should
be highly interactive, and your use case requires communication between the differ-
ent micro frontends. Then there is no way around a universal composition technique
like you’ve seen in this chapter.

8.2.1 Universal rendering with pure server-side composition

But the fact that one team wants to use universal rendering does not mean that you
need a client-side composition technique. Let me give you an example.

 Team Decide owns the product page and includes a header micro frontend (frag-
ment), which Team Inspire owns. The two applications (product page and header) do
not need to communicate with each other. Here a simple server-side composition is suf-
ficient. Both teams can adopt universal rendering inside of their micro frontends if it
helps their goal. But they don’t have to. If the header has no interactive elements, a
pure server rendering is sufficient. They can add client-side rendering later on if their
use case changes. The other team does not have to know about it. From an architectural
perspective, universal rendering inside a team is a team-internal implementation detail.

4 See https://github.com/ara-framework.

<[TEAM]-[NAME] [PARAMS]>
 <!--#include virtual="/[TEAM]/fragment/[NAME]?[PARAMS]" -->
</[TEAM]-[NAME]>

As HTML attributes
sku="fendt" edition="platinum"

As query string
sku=fendt&edition=platinum

Fragment name
buy

Team name
checkout

https://github.com/ara-framework

154 CHAPTER 8 Composition and universal rendering
8.2.2 Increased complexity

Universal composition combines the benefits of server- and client rendering. But it
also comes with a cost. Setting up, running, and debugging a universal application is
more complicated than having a pure client- or server-side solution. Applying this
concept on an architecture level with universal composition doesn’t make it easier.
Every developer needs to understand how integration on the server and hydration on
the client works. Modern web frameworks make building universal applications easier.
Adding a new feature is usually not more complicated. But the initial setup of the sys-
tem and onboarding of new developers takes extra time.

8.2.3 Universal unified single-page app?

Is it possible to combine the application shell model from chapter 7 with universal
rendering? Yes, in this chapter, we combined client- and server-side composition tech-
niques to run multiple universal applications in one view. You could also combine cli-
ent- and server-side routing mechanisms to create a universal application shell. However,
this is not a trivial undertaking, and I haven’t seen production projects that are doing
this right now.

 The single-spa project plans to add server-side rendering support. But at the time
of writing this book, this feature hasn’t been implemented yet.5

 Let’s take a look at our beloved comparison chart in figure 8.6 for the last time. As
stated before, running a universal composition setup is not trivial and introduces

5 See https://github.com/CanopyTax/single-spa/issues/103.

Custom Elements
and Shadow DOM

T
ec

hn
ic

al
 c

om
pl

ex
ity

Technical isolation High

H
ig

h

Low

Lo
w

Ajax
iframes

In
te

ra
ct

iv
ity

First load time Fast

H
ig

h

Slow

Lo
w

Ajax

Separate pages

iframes

User experienceDeveloper experience

Separate pages

Server side

Server side

Custom
Elements

Custom
Elements

Unified SPA

Unified SPA

Universal
composition

Universal composition

Figure 8.6 To run a micro frontends integration that supports universal rendering for all
teams, we need to combine server- and client-side composition techniques. Both have to
work together in harmony. This makes this approach quite complex. Regarding user
experience, it’s the gold standard, since it delivers a fast first-page load while also
providing a high amount of interactivity. It also enables developers to build their features
using progressive enhancement principals.

https://github.com/CanopyTax/single-spa/issues/103

155Summary
extra complexity. Since it builds on the existing client- and server-side composition
techniques, it also does not introduce extra technical isolation. But this approach
shines when it comes to user experience. It’s possible to achieve the page-load speeds
of server-rendered solutions, and it also enables building highly interactive features
that directly render in the browser.

 To keep this chart readable, I’ve omitted the theoretical universal unified SPA
option. It’s by far the most complicated approach, but it would rank even higher on
the interactivity scale since it eliminates all hard page transitions.

Summary
 Universal rendering combines the benefits of server and client rendering: fast

first-page load and quick response to user input. To leverage this potential in a
micro frontends project, you need to have a server- and client-side composition
solution.

 You can use SSI together with Web Components as a composition pattern.
 Each team must be able to render its micro frontend via an HTTP endpoint on

the server and also make it available via JavaScript in the browser. Most modern
JavaScript frameworks support this.

 On the first page load, a service like Nginx assembles the markup for all micro
frontends and sends it to the browser. In the browser, all micro frontends initial-
ize themselves via JavaScript. From that point on, they can react to user input
entirely client-side.

 Currently, there’s no web standard to server-render a Web Component. But
there are custom solutions to define ShadowDOM declaratively. In our exam-
ple, we use the regular DOM to prepopulate the Web Components content on
the server.

 It’s possible to implement a universal application shell to enable client- and
server-side routing. However, this approach comes with a lot of complexity.

Which architecture
fits my project?
In the last seven chapters, you’ve learned different techniques for integrating user
interfaces owned by different teams. We started with simple ones like links, iframes,
and Ajax, but also more sophisticated ones like server-side integration, Web Com-
ponents, and the app shell model. These chapters all ended with a simplified com-
parison chart indicating how the newly learned technique compares to the
previous ones. In this chapter, we’ll put all the puzzle pieces together and also
make a more in-depth comparison. First, we revisit the terminology and highlight
the key advantages of the different techniques and architectures. After that, you’ll
learn about the Documents-to-Applications Continuum, which can help you decide

This chapter covers
 Contrasting different micro frontend architectures

you can build with the learned integration
techniques

 Comparing the benefits and challenges of
different high-level architectures

 Figuring out the best architecture and
composition technique for your project’s needs
156

157Revisiting the terminology
if you should go for a server- or client-side integration. This distinction is crucial
because it determines which architectures and integration patterns are suitable for
your use case. We’ll end this chapter with an architecture decision guide. You’ll learn
how you can make a sound choice based on a handful of questions. These questions
will lead you through the different options.

9.1 Revisiting the terminology
When you are setting up a micro frontends project with different teams, everyone
must use the same vocabulary. That’s why we’re taking a step back and sorting the
terms you’ve learned in the previous chapters. We’ll start with the basic building
blocks: the integration techniques. Then we’ll look at different high-level architectures that
you can build with them.

 We can group them into two categories: routing and page transition and composition.
Figure 9.1 shows all the integration techniques we’ve covered in this book.

Figure 9.1 The integration techniques required for a micro frontend architecture. On
the left, we see two techniques for handling cross-team page transitions. The right
side shows a list of methods of composing different user interfaces onto one page.

Let’s briefly revisit the techniques. We’ll start with routing and page transitions.

9.1.1 Routing and page transitions

When we talk about page transitions as an integration technique, we technically always
mean inter-team page transitions. How does a user get from a page owned by Team A to
a page owned by Team B? From an architectural standpoint, it’s not essential to know
how a team handles transitions between its own pages. This is an implementation detail.

iframe

AjaxServer-side integration
(SSI, TailoTT r, Podium, …)

Client-side composition
(Web Components, …)Links Client routing

(application shell)

Routing and page transitions Composition

A B
C

A

Server routing
(frontend proxy, Nginx, …)

158 CHAPTER 9 Which architecture fits my project?
LINKS

The plain old hyperlink is the most basic form for doing a micro frontends integration.
Each team is responsible for a set of pages. Handing over the user to another part of the
application is as easy as placing a link to the other team’s work. In its cleanest form, no
extra coordination is needed. Teams could even host their part of the applications
under different domains. We covered the link in chapter 2.

APPLICATION SHELL

Clicking on classical hyperlinks forces the browser to fetch the target markup from a
server and then replace the current page with the new one. Having to reload is fine for
a lot of use cases. But the evolution of the browser’s History API and the rise of single-
page app frameworks enabled developers to build entirely client-side page transitions.
Its main benefit is the opportunity to render the layout for the target page instantly.
That way, the user gets a quick response, even if the content data requested from the
server is still pending. Implementing client-side page transitions across team boundar-
ies requires a central piece of JavaScript in the browser. It’s typically called the app shell.
The central app shell acts as a parent application to the single-page applications built
by the different teams. It determines which team’s application should be active based
on the browser’s URL. When the URL changes, it passes the responsibility for the page
from Team A to Team B. You can find more details on this in chapter 7.

9.1.2 Composition techniques

In practice, you often want to show user interface parts from different teams on one
page. A typical example of this is a header or navigation micro frontend. One team
builds and owns it. All the other teams integrate it onto their pages. It could also be
functionality like the Buy button or mini basket on our product page.

 In this book, we’ve often called an includable micro frontend a fragment. To make
the integration happen, we need a shared format. The owner of the fragment must
provide it in a standardized format. The fragment consumer uses this format to inte-
grate the desired micro frontend on their page.

 We can broadly group the composition techniques into two buckets: server-side inte-
gration and client-side integration. We’ve also included the iframe and Ajax technique
since they are a bit of a hybrid between server and client.

SERVER-SIDE INTEGRATION

Implementing a server-side integration technique makes sense when teams generate
their markup server-side. The markup for all fragments of a page gets assembled
before it reaches the customer’s browser. A central piece of infrastructure like a web
server will perform the markup assembly. In chapter 4 we used the SSI technique in
Nginx to perform this task. An alternative approach is that the team owning the page
fetches the required fragments directly from the other teams. The server-side integra-
tion libraries Tailor and Podium work like this.

159Revisiting the terminology
CLIENT-SIDE INTEGRATION

If teams generate their markup in the browser, you need a client-side integration tech-
nique. A solid approach is leveraging the Custom Elements API from the Web Compo-
nents spec. The API defines (de)initialization hooks. The team that owns the
fragment implements them. This way, the integration happens directly through the
browser’s DOM API. No special libraries or custom JavaScript APIs are required.

 An essential part of client-side integration is communication. How can fragment A
inform fragment B about an event that might be interesting? Micro frontends can
communicate via Custom Events or an event bus/broadcasting solution. We covered
this in chapter 6.

IFRAME

The iframe is the weird but somewhat powerful stepchild of web development. It fell
out of favor years ago for various reasons. Using iframes in responsive design doesn’t
work without JavaScript, and having a lot of iframes on a site is resource-intensive. But
its secret superpower is that it provides a high level of technical isolation. In a micro
frontends context, this is a desirable feature. This way, faults in micro frontend A can’t
negatively affect micro frontend B. Communication across iframes is also possible
through the window.postMessage API. We briefly talked about the iframe in chapter 2.

AJAX

Fetching a snippet of markup from a server endpoint via JavaScript is the technique
that enabled the Web 2.0 revolution back in the day. You can also use Ajax as an inte-
gration technique for micro frontends. Client-side JavaScript triggers the actual Ajax
call to fetch server-side generated HTML. Ajax is a bit of a hybrid approach that does
not fit into one of our client- or server-side integration buckets. It is often used in tan-
dem with a server-side integration technique—incrementally updating the markup of
an embedded micro frontend. It does not come with a canonical way to handle
(de)initialization and communication. Using Web Components together with Ajax for
internal updating is also a good fit.

 These are the basic integration techniques you’ve learned so far. Let’s zoom out a
bit and look at different architectural styles.

9.1.3 High-level architectures

One benefit of micro frontends is that teams are free to use the technology that fits
their slice of the application best. However, before you start setting up a micro fron-
tends project, all teams need to be on the same page when it comes to the high-level
architecture. Are we building static pages that integrate solely via links, or is the goal
to create a highly dynamic and tighter-integrated single-page app? You should con-
sciously make this decision together with all teams. Figure 9.2 shows six different
architectures.

 We’ll go through them from top to bottom.

160 CHAPTER 9 Which architecture fits my project?
Figure 9.2 Different architectural styles to build a micro frontends project. This
chart starts with the simplest form, the linked pages approach, and shows how
you can extend this with extra features like single-page applications, universal
rendering, or a shared app shell.

LINKED PAGES

This is the most simple architecture. Every team serves its pages as complete server-
rendered HTML documents. Clicking a link reloads the complete page and shows the
desired content. This hard navigation happens if you are moving between pages from
the same team or if you are navigating across team boundaries. The simplicity of this
approach is its main benefit: no central infrastructure or shared code is required,
debugging is straightforward, and new developers instantly understand what’s going
on. But from a user experience point of view, there’s room for improvement.

SERVER ROUTING

This is identical to the Linked Pages approach, but with the difference that all
requests pass through a shared web server or reverse proxy. This server sits in front of
the team’s applications. It has a set of routing rules to identify which team should han-
dle an incoming request. The routing is often done via URL prefixes associated with a
specific team. We talked about this in chapter 3.

LINKED SPAS

To improve the user experience and react to input faster, a team can decide to switch
from delivering static server-generated pages to implementing a client-rendered
single-page app for the pages they own. This way, all link clicks for pages from this team
result in a fast soft navigation. The transitions between team boundaries are still hard
navigations. Technically the adoption of a single-page app architecture inside one
team can be seen as an implementation detail. As long as linking to a specific page
from the outside still works, teams can decide to change their internal architecture.

Linked pages

Server routing

+ Shared
frontend proxy

Linked SPAs

+ SPA per team

Unified SPA

+ App shell

Linked Universal SPAs

+ Universal
rendering

Unified Universal SPA

+ Universal
rendering+ App shell

+ Universal SPA
per team

How different
high-level architectures

relate to each other

161Comparing complexity
But the distinction between linked pages and linked single-page apps is essential when
we talk about more advanced architectures and suitable integration techniques later.

LINKED UNIVERSAL SPAS

Teams can also decide to adopt universal rendering. The markup for the first request
gets rendered on the server. It enables a pretty fast first-page load experience. From
there on, the application behaves like a single-page app—incrementally updating the
user interface as needed. From a team’s point of view, this is a more complicated setup,
which requires some additional development skills. But from an architectural view, this
approach is identical to the other “linked” architectures. The contract between the
teams is still a set of shared URL patterns. A navigation across team boundaries results
in a reload of the page. But when implemented well, these reloads should be more
seamless compared to a Linked SPA architecture, where the browser needs to execute
a bunch of JavaScript before the user can see the content. Chapter 8 discusses universal
rendering, its benefits, and its challenges.

UNIFIED SPA
The Unified SPA describes a single-page application composed of other single-page
applications. In chapter 7 we introduced this concept. It requires all teams to build
their software as a single-page app. These single-page apps are then unified by a parent
application, which is often called the app shell. The shell typically does not render any
user interface. Its job is to listen to changes in the browser’s address bar and pass con-
trol from one single-page app to another if necessary. With the Unified SPA architec-
ture, all page transitions are soft navigations. This leads to a snappier and more app-like
user interface. However, the app shell is a central piece of code. It introduces a non-
trivial amount of coupling and complexity.

UNIFIED UNIVERSAL SPA
When we take the Unified SPA model and introduce universal rendering, we arrive at
something we call Unified Universal SPA. With this model, each team builds a single-
page app with universal rendering capabilities. To make this work, the parent applica-
tion (app shell) also needs to be universal. It needs to be able to run on the server and
the client. This is a pretty challenging architecture. It promises to combine the best of
all worlds but comes with the most complexity.

9.2 Comparing complexity
The architecture and the level of integration you choose have a considerable effect on
your complexity. This complexity manifests itself in different aspects:

 Initial infrastructure work that’s required to get started.
 Number of moving parts (services, artifacts) that need maintenance.
 Amount of coupling: Which changes require more than one team to become

active?
 Developer skill level: What concepts do new developers need to understand?
 Debugging: How easy is it to attribute a bug to a specific team?

162 CHAPTER 9 Which architecture fits my project?
Figure 9.3 sorts these architectures into four complexity groups, starting from very
simple and ending with very complex. This is, of course, only general guidance. The
real cost associated with an architecture depends on your team’s experience and the
use case. As a rule of thumb, you should always opt for the most simple architecture you can
responsibly get away with. Sure, it’s nice to have a Unified SPA with no hard page transi-
tions, but does the extra work required to achieve and maintain this justify the poten-
tial benefits?

9.2.1 Heterogeneous architectures

In the descriptions so far, we’ve always assumed that all teams use the same architec-
ture. But you can also mix and match to create a heterogeneous architecture. For a
team that builds fast-loading landing pages, the links and pages approach might be
sufficient. But for a seamless browsing experience, you want to create a Unified SPA
that integrates the team which owns the product list and the team managing the prod-
uct pages. These architectures can work side-by-side: some teams are doing links and
pages, whereas some other teams share an app shell to deliver a Unified SPA. This way,
you only increase the complexity in the areas where it’s needed.

 But having a heterogeneous architecture also has drawbacks:

 There is no go-to architecture for a new team. Teams need to analyze and dis-
cuss their use cases beforehand. (This is not necessarily a drawback.)

 Integrating fragments from different teams might get harder. Teams need to
deliver their includable micro frontend in a format that works for the page that
includes it.

9.3 Are you building a site or an app?
As you’ve seen throughout the book so far, it makes a significant difference whether
you render your markup on the client or server. It’s a general question that everyone
who’s setting up a new web project has to answer. But in a micro frontends context,
this decision is essential. It defines which integration techniques are suitable.

Links and pages

Server routing

Linked SPAs

Unified SPA

Linked
Universal SPAs

Unified
Universal SPA

Very simple Very complex

Complexity level
of different architectures

Simple Complex

Figure 9.3 Micro frontend architectures sorted by complexity. The links and pages approach
is the simplest one to build and run. The complexity rises as you move to more sophisticated
architectures. The Unified Universal SPA approach requires a lot of development skills to get it
right. You also need shared infrastructure and code to make it happen.

163Are you building a site or an app?
 In this section, you’ll learn about the Documents-to-Applications Continuum. I’ve
found this concept helpful in architecture discussions. It creates an excellent mental
model that helps you pick the right tools and techniques for the job. It provides a coun-
terweight to the “Let’s use the hot new JavaScript framework!” reflex many developers
(me included) have when they’re confronted with a greenfield project. After explain-
ing the concept, we’ll look at how the high-level architectures fit into this continuum.

9.3.1 The Documents-to-Applications Continuum

What purpose does the project we are building serve? Do people come to our site to
consume content, or do they want to use a specific functionality we provide? For better visu-
alization, it helps to look at extreme examples:

 Content-centric—Imagine a simple blog. A user can browse the list of posts and
read the complete content on a dedicated article page.

 Behavior-centric—Imagine an online drawing application. People can go to the
site and draw beautiful sketches with their fingers and export them as an image.

The first one is a prototypical web site where the content is essential. The second one
is a pure application. It does not bring any content. It’s all about the functionality it
provides to the user.

 In a non-trivial project, it’s typically not that black and white. This is where the
Documents-to-Applications Continuum1 comes in. The idea is that both examples are
at different ends on a spectrum, as illustrated in figure 9.4. Positioning your micro
frontends project on this scale can help you set the right priorities and select an
appropriate high-level architecture.

Figure 9.4 The Documents-to-Applications Continuum provides a mental model to help you
think about whether your project is more of a web site or a web application. It’s a gradual
scale and not a black and white decision.

1 See Aral Balkan, “Sites vs. Apps defined: the Documents-to-Applications Continuum,” Aral Balkan, http://
mng.bz/90ro.

Applications
behavior-centric

Documents
content-centric

Web sites Web apps

Server rendering

Client rendering

Progressive web apps

Universal rendering

Documents-to-Applications Continuum

Is your project content- or behavior-centric?

Is your markup generated on the server or client?

http://mng.bz/90ro
http://mng.bz/90ro

164 CHAPTER 9 Which architecture fits my project?
Let’s look at two examples. Where would amazon.com fit on this scale? They provide a
lot of functionality. You can search, sort, and filter through product lists, rate prod-
ucts, manage your returns, or have a live chat with their customer service. But at its
core, it’s a content-centric site. A good question to ask is, “Would the site still be useful
if we stripped away all behavior?” For amazon.com, we can answer this with a definite
yes. No doubt, the extra functionality is also important, but without products, the fea-
tures would be pretty useless. We would put that site somewhere on the left part of the
continuum. Starting with server-side composition, with the option to upgrade it to a
universal composition, is a safe bet when picking a micro frontends architecture.

 Now to our second example. The site CodePen.io lets web developers and design-
ers put together HTML, CSS, and JS to get a live preview in the browser. Developers
use the online code editor to sketch out ideas or isolate bugs. CodePen also has an
active community of people who showcase their work and share code with others. You
can go to the site and discover new exciting techniques by browsing the public cata-
log. How does CodePen fit on our continuum? It’s a harder question to answer
because it’s strong on both aspects: the online editor (behavior-centric) and the pub-
lic catalog (document-centric). If we stripped away all behavior, the online editor
would vanish. If we removed all content, the catalog would disappear, but the editor
would still be there. That’s why we’d probably put CodePen in the middle of the
spectrum. If we rebuilt CodePen in a micro frontends architecture, we would establish
two teams. Team Editor would pick a client-side approach. Team Catalog would
likely go the server-side route. This is a good starting point. To decide which micro
frontend architecture fits best, we have to go a step further and analyze the use cases.
Does one team need to include content from the other? How does the user move
through the site?

9.3.2 Server, client, or both

Classifying your product onto the continuum is a good starting point to identify if
your templating should live on the server or in the browser. If your product has a
strong content focus, server-side rendering should be your first choice. Using progres-
sive enhancement to add functionality should feel natural.

 If you’re building an application where it’s all about interaction and not about
content, a purely client-rendered solution will be the best fit. Here the concept of pro-
gressive enhancement doesn’t help you at all, because there is no enhanceable con-
tent to begin with.

 For a project that resides in the middle of the spectrum, you need to make a
choice. Server- and client-side templating are valid options. But in this area, both have
their advantages and disadvantages. If you aren’t afraid of the extra complexity, you
can also pick both and go with the universal rendering option.

 Let’s revisit our high-level architectures. Figure 9.5 highlights which of them use
server-side, client-side, and universal rendering.

165Picking the right architecture and integration technique
Figure 9.5 Illustrating which architectures feature server-side, client-side, or universal rendering

Make sure the architecture you choose aligns with the nature of your project and the
business. Templating and complexity considerations are two significant factors in mak-
ing a decision. Next up, we’ll take another angle on this decision using a decision tree.

9.4 Picking the right architecture and integration technique
Now we’ve sharpened our vocabulary and have a mental model to pinpoint what kind
of product we are building. Let’s look at a concrete way to determine which architec-
ture and integration your project needs. Figure 9.6 shows a decision tree that helps
with this question. It’s inspired by Manfred Steyer’s work2 on creating Angular-based
frontend microservices.

 Take some time to understand what’s going on in this diagram. Follow the lines from
top to bottom by answering the questions until you reach your high-level architecture.
From there on, you can follow the dotted line to get to the compatible composition
technique. If your use case does not require you to have different micro frontends to be
active at the same time (fragments or nested micro frontends), you can skip this step.

2 See Manfred Steyer, “A Software Architect’s Approach Towards Using Angular (And SPAs In General) For
Microservices Aka Microfrontends,” Angular Architects, https://www.angulararchitects.io/aktuelles/a-software-
architects-approach-towards/.

Links and pages

Server routing Linked SPAs

Unified SPALinked Universal SPAs

Unified Universal SPA

Universal rendering

Client-side
rendering

Server-side
rendering

https://www.angulararchitects.io/aktuelles/a-software-architects-approach-towards/
https://www.angulararchitects.io/aktuelles/a-software-architects-approach-towards/

166 CHAPTER 9 Which architecture fits my project?

Figure 9.6 The decision tree helps to pick a micro frontends architecture based on your project’s
requirements. It also shows which kind of composition technique is appropriate for your use case.

Let’s look at the questions in this decision tree.

9.4.1 Strong isolation (legacy, third party)

Do you want strong technical isolation between the code of the teams? Of course you
do. Why wouldn’t you? Isolation and encapsulation generally lead to less unforeseen
effects and reduces bugs. But sadly, opting for strong isolation eliminates a lot of other
possibilities. So the right question to ask is, Do you need strong isolation? This is typi-
cally true if you integrate a legacy system that doesn’t respect namespacing rules and

Linked
pages

Linked
Universal

SPAs

Universal
Unified

SPA

Linked
SPAs

Unified
SPA

Linked
pages

Fast first page load? /
progressive enhancement?

NoYes

NoYes

YesNo

YesNo

Server-side
integration

and/or Ajax

Universal integration
(server- and client-side)

Client-side integration
(Web Components, …)iframe

Strong isolation?
(legacy, third party)

Instant user
feedback?

Soft
navigation?

YesNo

Soft
navigation?

Additional composition technique (if you need multiple micro frontends on one page)

High-level architecture

167Picking the right architecture and integration technique
requires global state to work correctly. Another reason is security. If you are integrat-
ing with an untrusted third party solution or one part of your application has high-
security requirements (for example, it handles credit card data), it can be necessary to
better shield the micro frontends against each other.

9.4.2 Fast first-page load/progressive enhancement

This is a double question. If you need either of these properties, you should follow the
yes arrow.

 Having a fast first-page view is always pleasant, but the importance of this property
heavily depends on your business. If you want your site to rank high in search results,
first-page load performance is nothing you can ignore. Search engines like Google
increasingly favor fast-loading sites in their ranking.3 Even if search ranking is not
your primary goal, there are a lot of case studies4 that show how better web perfor-
mance increases business metrics.

 We talked about the benefits of progressive enhancement in chapter 3. If you’d
locate your project on the middle or left side of the Documents-to-Applications Con-
tinuum, I’d highly recommend adopting progressive enhancement practices. You
should encourage all developer teams to learn about this approach. For developers
that started their web career with frameworks like React or Angular, the concepts
might sound strange at first sight. However, architecting features with progressive
enhancement in mind and embracing the primitives of the web will lead to more
maintainable, easier to understand, and more stable software. If you’re on the far
right in the continuum and building a pure web application, there is typically no con-
tent to enhance. Then progressive enhancement won’t help you at all.

9.4.3 Instant user feedback

In the previous question, we talked about the first-page load performance. But how
does your site react to further interactions from the user? The classical “click a link” and
“fetch generated markup from the server” works for a lot of cases, primarily when you
use Ajax techniques to avoid a full page reload. In this model, the complete templat-
ing resides on the server. This means that at least one server roundtrip is necessary to update
the UI in response to a user input.

 If you need to be faster than this, you must adopt client-side rendering. Fetching
data will be a bit faster since JSON data is more compact than rendered HTML, but
the network latency itself stays the same. However, the most significant advantage of
client-side rendering is that it enables us to provide instant feedback. Even if the data
the user wants to see is still in transit, you can update the view and show placeholders
and skeleton screens.5

3 See http://mng.bz/WP9w.
4 See https://wpostats.com/.
5 See Luke Wroblewski, “Mobile Design Details: Avoid The Spinner,” LukeW, https://www.lukew.com/ff/

entry.asp?1797.

https://www.lukew.com/ff/entry.asp?1797
https://www.lukew.com/ff/entry.asp?1797
http://mng.bz/WP9w
https://wpostats.com/

168 CHAPTER 9 Which architecture fits my project?
 It also enables you to adopt optimistic UI patterns.6 With optimistic UI, you try to
increase the perceived performance by instantly rendering the result that’s most
likely. Let’s look at a shopping cart example. When a user wants to delete an item, they
click on the Delete button. The browser calls the associated API on the server, and
when it comes back, the item is deleted from the visual shopping cart list. With opti-
mistic UI, you assume that the delete API call works in most of the cases. That’s why
you remove the line item directly and don’t wait for the API call to return. If this
assumption turns out not to be true (item remove failed), you restore the item in the
user interface and show an appropriate error message. This technique is powerful,
but since you are effectively lying to your user, you should use it with care. These tech-
niques help you render a response to user input instantly, which improves user experi-
ence and makes your site feel more app-like.

9.4.4 Soft navigation

In the “instant user feedback” question, we talked about improving the user experi-
ence inside a micro frontend. Now let’s look at what happens when the user transi-
tions across team boundaries. This question differentiates the linked architectures
from the unified architectures. We talked about this in chapter 7. How important is it
that inter-team page transitions are client-side rendered?

 Answering this question depends heavily on the team boundaries you establish, the
number of teams, and the usage pattern of your application. If you create your team
boundaries along with the user’s tasks and needs, the user doesn’t cross team bound-
aries that often.

 Say you are building a website for a bank. It has two distinct areas developed by two
teams: users can check their account balance (Team A), and they can also calculate
and request a housing loan (Team B). For a good user experience, it might be essen-
tial to provide a high amount of interactivity inside these areas. This is something
Team A and Team B can decide independently. But since users seldom switch between
balance checking and loan requesting in one session, it might be fine to have a hard
navigation between these areas.

 Let’s pick another example. We are building a call-center application. The agents
use the application to manipulate orders (Team A) and make personalized recom-
mendations (Team B). Since the agent switches between these two micro frontends
frequently, it might be a good idea to implement soft navigation. It makes using the
application faster and positively impacts the agent’s workflow.

9.4.5 Multiple micro frontends on one page

If you’ve answered all questions on your way down the tree and arrived at your high-
level architecture, there is one last bonus question: “Do you need composition?”
Answering “yes” brings you straight down to the associated composition technique. If

6 See Denys Mishunov, “True Lies Of Optimistic User Interfaces,” Smashing Magazine, http://mng.bz/8pdB.

http://mng.bz/8pdB

169Summary
you are building a pure SPA, you need to integrate client-side. If you opt for server-
generated pages, you should use a server-side integration.

 Having a composition technique is optional. When we look at our banking exam-
ple from the previous section, we might not need a composition technique at all. The
account area and the housing loan area could be two distinct sections of the site that
link to each other.

 The most common example of a composition is a header and navigation fragment.
Usually, one team owns it, and the others include it on their page.

Summary
 Establishing a shared vocabulary across all teams avoids misunderstandings. Dif-

ferentiating between transition techniques, composition techniques, and your
high-level architecture helps everyone to get a clear picture of what you are
building toward.

 The Documents-to-Applications Continuum is a good mental model for identi-
fying whether your project is more content- or behavior-centric. This distinction
helps you to make good technology choices.

 There are no right or wrong solutions. Whether a solution fits or not depends
on the nature of your project, its usage patterns, the amount of coupling and
complexity you are willing to accept, and your team’s size and experience level.

 Not all teams need to adopt the same architecture. Some parts of your applica-
tion might be document-centric; others more behavior-centric. With micro
frontends, it’s possible to mix and match. But when you need composition, you
must find an integration technique that works for all teams.

 Try to pick the simplest architecture that is reasonable for your business.

170 CHAPTER 9 Which architecture fits my project?

Part 3

How to be fast,
consistent, and effective

You’ve learned the integration techniques to build a micro frontends appli-
cation. However, to make your project successful, there are topics beyond inte-
gration that you need to address. We touched on the aspects of performance,
visual consistency, and team responsibility at various points in the preceding
chapters. In this next part of the book, we will cast a brighter light on these com-
plementary aspects.

 In chapter 10, we start with a technical topic: asset loading. Loading the right
script and style code for the different micro frontends can be surprisingly chal-
lenging—especially if you want to adhere to performance best practices without
sacrificing team autonomy. In chapter 11, we go deeper into the topic of perfor-
mance. You’ll see common pitfalls and learn strategies to build and maintain a
fast-loading site even if the UI comes from different teams. Chapter 12 deals
with one of the biggest criticisms of micro frontends: How can we ensure a con-
sistent look and feel for the end user? Design systems are essential in addressing
this issue. However, establishing a shared design system so that it doesn’t inter-
fere with the autonomy goals of micro frontends is not without challenges. In
chapter 13, we talk about the organizational implications of introducing micro
frontends. You’ll learn how to find sound team boundaries, organize inter-team
knowledge transfer, and deal with shared infrastructure. The last chapter covers
migrating to micro frontends, tips for local development, and some patterns for
effective testing.

172 CHAPTER

Asset loading
In the preceding chapters, we covered a lot of different integration techniques. But
we always focused on the content—integrating markup on the server and in the cli-
ent. A topic we only discussed in passing is this: How to load the assets associated with a
micro frontends? In this chapter, we’ll dive deeper into this significant side topic.
There are at least a handful of aspects that you must consider. How can we ensure
that teams can deploy a micro frontend and the needed assets on their own? How
do you implement cache busting to improve cacheability without introducing tight

This chapter covers
 Solving common asset loading challenges in a

micro frontends context

 Comparing techniques to deal with cacheability
and synchronization when loading assets from
different teams

 Deciding what bundling strategy is appropriate:
many smaller bundles or fewer large ones

 Understanding how on-demand loading can be
effectively used with micro frontends
173

174 CHAPTER 10 Asset loading
coupling? How do you ensure that the loaded CSS and JS always fits the server-gener-
ated markup? How coarse or fine-grained should your bundles be? Do you want one
big bundle for your application, one per team, or even smaller ones? How can on-
demand loading techniques help in reducing the upfront asset data the browser
needs to process?

10.1 Asset referencing strategies
We’ll start with some techniques to integrate the assets into a page. For simplicity, we
will stick to traditional <link> and <script> tags in the following scenarios. Module
loaders like RequireJS1 (AMD) or CommonJS2 are popular and provide programmatic
loading functionality. But nowadays, ES Modules are supported in all significant
browsers.3 They are a web standard that solves most of our JavaScript loading needs
without needing an extra library or a custom module format.

 Later in this chapter, we’ll talk about bundle granularity. For now, let’s assume that
every team that provides an includable micro frontend (a fragment) generates one
JavaScript and CSS file. The including team must add the references for both files to
its page.

10.1.1 Direct referencing

The concept is pretty straightforward. If you want to integrate a micro frontend from
another team, you have to add their references to make it work. You can think of the
associated assets like adding an import at the top of your source code file in languages
like Java, C#, or JavaScript.

 If you are going the app shell route, it’s different. There you have one single
HTML document. It’s the responsibility of the shared app shell to load the code for all
micro frontends. The simplest way is to include all assets from all teams up front. A
smarter way would be to load assets just in time when the user needs them. The meta-
framework single-spa implements on-demand loading. You can flip back to chapter 7
to see the dynamic import()-based JavaScript registration code. We’ll talk more about
on-demand loading later in this chapter.

 Let’s go back to The Tractor Store and revisit how we dealt with asset loading in
the last chapters. There Team Decide referenced the assets directly. The other teams
published the URLs of the associated assets as part of their documentation.

 Here is an example from chapter 5. Team Checkout specifies the Custom Element
details for their Buy button and the files that contain the associated initialization code
and styling:

 Custom Element—<checkout-buy sku="{sku}"></checkout-buy>

 Required assets—/checkout/fragment.js, /checkout/fragment.css

1 See https://requirejs.org.
2 See http://www.commonjs.org.
3 See https://caniuse.com/#feat=es6-module-dynamic-import.

https://requirejs.org
http://www.commonjs.org
https://caniuse.com/#feat=es6-module-dynamic-import

175Asset referencing strategies

.

To ensure fast rendering, it’s best practice4 to include stylesheets in the <head> and
script tags asynchronously at the end of the <body>. Team Decide directly includes
these references in their product page’s markup.

<html>
<head>

<link href="/decide/page.css" rel="stylesheet" />
<link href="/checkout/fragment.css" rel="stylesheet" />

</head>
<body>

<h1>The Tractor Store</h1>
<checkout-buy sku="porsche"></checkout-buy>

<script src="/decide/page.js" async></script>
<script src="/checkout/fragment.js" async></script>

</body>
</html>

10.1.2 Challenge: Cache-busting and independent deployments

One day CEO Ferdinand walks into Team Decide’s office space, laptop under his arm.
He grabs a chair, opens his laptop, and points at his screen. “I’ve read an article about
the importance of web performance in e-commerce. I ran a tool called Lighthouse5

on our product pages. It measures performance and checks if our site uses best prac-
tices. We score 94 points. This score is way better than our competitors! However,
Lighthouse shows one piece of advice. We seem to use an inefficient cache policy on
static assets.”6

 The current best practice for performant asset loading is to ship static assets (JavaS-
cript, CSS) in separate files with a one-year cache header. This way, you ensure that the
browser does not redownload the same file twice. Adding this cache header is not com-
plicated. In most applications, web servers, or CDNs, it’s a simple configuration entry.
However, you need a cache invalidation strategy. If you’ve deployed a new CSS file, you
want all users to stop using their cached version and download the updated one. An
effective invalidation strategy is adding a fingerprint to the filename of the asset. The
fingerprint is a checksum based on the contents of the file. A filename could look like
this—fragment.49.css. The fingerprint only changes when the file is modified.

 We call this cache busting. Most frontend build tools like Webpack, Parcel, or Rollup
support it. They generate fingerprinted filenames at build time and provide a way to

4 See Ilya Grigorik, “Analyzing Critical Rendering Path Performance,” http://mng.bz/rr7e.

Listing 10.1 08_web_components/team-decide/product/porsche.html

5 See https://developers.google.com/web/tools/lighthouse.
6 See https://developers.google.com/web/tools/lighthouse/audits/cache-policy.

Styles for Team
Checkout’s
fragments

Team Decide
includes the Buy
button micro
frontend of Team
Checkout. It relies
on Team Checkout’s
assets to be present

Scripts for Team
Checkout’s fragments

http://mng.bz/rr7e
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse/audits/cache-policy

176 CHAPTER 10 Asset loading

ar
 all

t all
 are
he-
e.
use these filenames in your HTML markup. You might already see the issue. Cache
busting does not play nice with our distributed micro frontend setup.

 In our earlier example, Team Decide needed to know the path to Team Check-
out’s JavaScript and CSS files. Yes, Team Checkout could update their documentation:

 Required assets—/checkout/fragment.a62c71.js, /checkout/fragment.a98749
.css

But with the current process, Team Decide would have to manually update these ref-
erences in their product page’s markup every time Team Checkout deploys a new ver-
sion. In this scenario, a team is not able to deploy without coordinating with another
team. This coordination is the kind of coupling we want to avoid. Let’s explore some
better alternatives.

10.1.3 Referencing via redirect (client)

You can circumvent this problem by using HTTP redirects. The idea is the following:

1 Team Decide references Team Checkout’s assets as before without fingerprint.
The URLs are stable and do not change (e.g., /checkout/fragment.css).

2 Team Checkout responds with an HTTP redirect to the fingerprinted file
(/checkout/fragment.css ➝ /checkout/static/fragment.a98749.css).

This way, Team Checkout can configure the directly referenced file (/checkout/
fragment.css) with a short cache header or set it to no-cache. They can give the fin-
gerprinted file which contains the actual content a long cache lifetime (for example,
one year). The benefit is that the registration code can stay the same, and the user
only downloads the big asset file when it changes.

 In our example, 17_asset_client_redirect, we’ve added a redirect configura-
tion and caching header to the team’s web servers. You can look at the serve.json file
in each team’s folder. The mfserve library picks up this file. In a real application your
build tool or bundler would create the fingerprints and redirect rules for you.

{
"redirects": [

{
"source": "/checkout/fragment.css",
"destination": "/checkout/static/fragment.a98749.css"

},
...

],
"headers": [

{
"source": "/checkout/static/**",
"headers": [

{ "key": "Cache-Control", "value": "max-age=31536000000" }
]

}
]

}

Listing 10.2 team-checkout/serve.json

Configuring a redirect
from the public asset
path to the latest
fingerprinted version

Setting a one ye
cache header to
fingerprinted
assets. By defaul
other resources
served with Cac
Control: no-cach

177Asset referencing strategies

17

Start the application by running npm run 17_asset_client_redirect. The network
requests for Team Checkout’s fragment styles look like this:

Request
GET /checkout/fragment.css

Response (redirect)
HTTP/1.1 301 Moved Permanently
Cache-Control: no-cache
Location: /checkout/static/fragment.a98749.css

Request
GET /checkout/static/fragment.a98749.css

Response (actual content)
HTTP/1.1 200 OK
Content-Type: text/css; charset=utf-8
Content-Length: 437
Cache-Control: max-age=31536000000

Figure 10.1 shows the example code with the network panel of the browser. You can
see that each registration file redirects to the fingerprinted and cacheable version.

 The main benefit compared to the direct referencing approach is the decoupling.
A team that provides a micro frontend can ship versioned assets with long cache
times. They can update their code without having to notify the team that includes it.
It’s also simple to build, and users only have to redownload an asset if it has changed.

Figure 10.1 Shows the network requests for loading the fragments styles and script. There’s a
fragment.css and fragment.js for both Team Checkout and Team Inspire. Each resource
redirects to the latest version of the file.

the-tractor.store/#

Browser requests Team
Checkout’s fragment styles

Team Checkout responds with a 301
redirect to the fingerprinted resource.
The redirect is not cacheable.

Browser requests the
fingerprinted resource

Team Checkout serves
the asset file with a one-
year cache header

Included by the page.
No or short cache.

Stable name.

Referencing assets via a client-side redirect

Actual resource.
Long cache time.

Fingerprinted.

Redirect

buy for $58

http://www.the-tractor.store/#17

178 CHAPTER 10 Asset loading
NOTE It’s possible to achieve similar decoupling and caching results by using
Cache-Control: must-revalidate together with the ETag header. But using
filename based versioning and long cache headers comes with a few other
benefits we’ll discuss later.

But there are drawbacks. The browser can’t cache the initial resource that returns the
redirect. It has to make at least one network request to make sure the redirect still
points to the same resource.

 A second problem is missing synchronization. The redirect always points to the lat-
est version. When you do rolling deployments, you may have different versions of your
software running at the same time. Then you might want to ensure that the CSS,
JavaScript, and HTML are all from the same build. We’ll address the additional net-
work request first and later talk about synchronization.

10.1.4 Referencing via include (server)

The teams are happy with the improved caching. Ferdinand reruns the Lighthouse
test. It shows a 98 score—up 4 points. But a new potential improvement message
appears: Minimize Critical Requests Depth.7

 With the redirect approach, we achieve the decoupling and caching benefits at the
cost of more network requests. The browser has to make an extra lookup request
before it knows the URL of an actual resource. Under poor network conditions, this
can introduce a noticeable delay. Let’s move this lookup request to the server. Server-
to-server communication is much faster. There we talk about latencies on the realm of
single-digit milliseconds.

 If you are already using a server-side markup integration, we can also use this
mechanism to register the assets. The idea is pretty straightforward. At the spot where
Team Decide referenced the other team’s assets using a link or a script tag, they
include a piece of markup that’s generated by the respective team.

 We’ll again use Nginx’s SSI feature in our example. You can look back to chapter 4
for more details on how this works.

 The product page markup looks like listing 10.3.

NOTE For simplicity, we haven’t fingerprinted Team Decide’s page.css and
page.js files.

<html>
<head>

<title>Eicher Diesel 215/16</title>
...
<link href="/decide/static/page.css" rel="stylesheet" />

7 See https://developers.google.com/web/tools/lighthouse/audits/critical-request-chains.

Listing 10.3 team-decide/product/eicher.html

https://developers.google.com/web/tools/lighthouse/audits/critical-request-chains

179Asset referencing strategies
<!--#include virtual="/checkout/fragment/register_styles" -->
<!--#include virtual="/inspire/fragment/register_styles" -->

</head>
<body>

<h1>The Tractor Store</h1>
...
<script src="/decide/static/page.js" async></script>
<!--#include virtual="/checkout/fragment/register_scripts" -->
<!--#include virtual="/inspire/fragment/register_scripts" -->

</body>
</html>

Team Checkout and Team Inspire have to provide the registration endpoints for
scripts and styles. These endpoints are now part of the contract between the teams.
This example shows the content of one of these registration includes.

<link href="/checkout/static/fragment.a98749.css" rel="stylesheet" />

It’s a link tag that points to the fingerprinted asset file. Figure 10.2 illustrates the
assembly process. Nginx replaces the directive with the contents of the registration
include.

Figure 10.2 Team Decide doesn’t reference Team Checkout’s assets directly. Instead it adds an SSI
include directive which is pointing to Team Checkout’s register_style endpoint b. This endpoint
returns HTML markup with the fingerprinted assets. Team Checkout can update the fingerprints on the
fly without having to coordinate with Team Decide c. The browser receives the already assembled
markup with the link to the fingerprinted asset d.

Listing 10.4 team-checkout/checkout/fragment/register_styles.html

SSI directive will resolve into the
link tag markup from the teams

SSI directive will resolve into the
script tag markup from the teams

/checkout/register_styles/tractor

…
<head>
 <!--#include virtual="/checkout/register_styles" -->
</head>
…

<link href="/checkout/fragment.a98749.css">

Team Decide Team Checkout

…
<head>
 <link href="/checkout/fragment.a98749.css">
</head>
…

Server

Browser

Versioned resources.
Included at runtime.

Server-side.

1

2

3

180 CHAPTER 10 Asset loading

18
The markup that reaches the browser already contains the resolved include. The
browser can instantly start to download the asset. If it’s present in the disk cache, the
browser can use its local copy without having to make another network request or reval-
idation. Start the example by running npm run 18_asset_registration_include.
Figure 10.3 shows how a first page visit looks in the browser.

Figure 10.3 Shows the browser’s Network tab with the fragment assets required for this page.
The HTML directly links to the fingerprinted files from the other teams. The assets are cacheable
for a long time.

This approach provides good decoupling. Teams can change their asset URLs without
having to notify another team. Because we don’t need a client-side redirect or a revali-
dation request, this is also a perfect solution from a web performance standpoint.

 If you don’t already have a server-side integration mechanism in place, this
approach requires some extra work and shared infrastructure.

10.1.5 Challenge: Synchronizing markup and asset versions

Registering the assets server-side improved the Lighthouse score significantly. Team
Decide’s product page now scores the full 100 points. The developers and CEO Ferdi-
nand are delighted. They rolled out the change to their production servers.

 A week later, Noah, Team Checkout’s DevOps guy, recognizes a strange pattern
while going through the server logs. From time to time, the application servers report
a 404 error on one of their fingerprinted asset files. It seems like the browser is
requesting a file which the application does not know. First, he suspects a bug, but
after closer examination, he realizes that these issues appear at times when Team
Checkout deploys a new version of their software.

the-tractor.store/#

Fingerprinted resources.
Referenced via HTML.

Long cache time.

Referencing assets via a server-side include

Can be served
from disk cache.

No revalidation.buy for $58

http://www.the-tractor.store/#18

181Asset referencing strategies
 After consulting his teammates, Noah is pretty confident about the cause of these
issues: rolling deployments. To deal with the high amount of traffic, Team Checkout runs
10 instances of their application. The application contains everything from database
communication to rendering markup and shipping the assets. The team uses Kuber-
netes for automatic deployments. During a deployment, Kubernetes incrementally
replaces the old applications with new instances. It does this step by step: creating a
new instance, waiting until it’s operational, redirecting traffic to it, and then killing an
old instance. Kubernetes repeats this process until all 10 applications are updated. A
full deployment can take a few minutes. During this time, old and new versions of the
application run side by side. This running side by side is the cause of the 404 issues.

NOTE The problem gets even worse when you use canary deployments. With
canary deployments, you roll out the new version to a small percentage of
your instances and monitor them for a while. If the new instances perform
well, all instances will be updated. If they have performance issues, the team
rolls back the deployment. With canary deployments, old and new versions
run side by side for a much longer time. The risk of inconsistencies increases.

A load balancer routes an incoming request randomly to one of the 10 application
servers to distribute the work load evenly. Imagine the freshly deployed instance
serves the registration fragment (/checkout/register_styles) but the actual asset
request (/checkout/static/fragment.[new-fingerprint].css) reaches an old
instance which only knows the file with an old fingerprint. This scenario results in a
404 error and an unhappy user who’s looking at a page with an unstyled Buy button.
Figure 10.4 illustrates this.

Figure 10.4 Using fingerprinted asset references can lead to issues during rolling deployments.
When the registration include comes from an application server with a new version and the actual
asset request reaches an old instance that doesn’t know this file, the browser receives a 404 error.

Instance InstanceInstance

Balancer

v4

v4 v4v4 v4 v4 v4 v3 v3 v3

 x 404v4

JS v4 CSS v4 not found

Old instanceNew instances

Team A

Distributes request
between instances

Registration include
contains asset references

182 CHAPTER 10 Asset loading
There are two quick fixes to avoid this issue:

1 Enable sticky sessions in the load balancer to ensure that all requests from one
user go to the same application server.8

2 Serve all assets from a CDN. Teams push new assets to the CDN before an applica-
tion deployment. The CDN contains new and old assets.

These fixes reduce the likelihood of the previously described error, but they aren’t
perfect mitigations. Sticky sessions are not a guarantee. When an application server goes
down due to a fault or redeployment, users must switch to another application.

 The CDN solution also doesn’t solve all problems. Not only do you need to ensure
that all asset files are present, you also have to guarantee that the fragment markup is
compatible with the loaded JavaScript and CSS files. If you ship the new markup with
a fancy Christmas teaser, but an old stylesheet is loaded that doesn’t contain the associ-
ated styles, the site will not look Christmasy but broken. We have to find a way to
ensure that markup and asset references always fit together. Figure 10.5 illustrates how
this mismatch can happen.

Figure 10.5 In this diagram we use a CDN that contains old and new assets. The CDN ensures that
fingerprinted asset requests can always be resolved. However, since the registration include and the
actual server-generated markup are retrieved in two separate requests, a version mismatch can occur.
Here the old instance (v3) serves the registration include but the actual content is generated by a new
version of the application (v4). This results in a version mismatch which may lead to errors in the browser.

NOTE Synchronization is primarily an issue for server-generated markup.
When you run a fully client-rendered application, the HTML template is part
of the JavaScript file. If you are using a CSS-in-JS solution, the styles are most

8 See Zhimin Wen, “Sticky Sessions in Kubernetes,” Medium, http://mng.bz/VgKW.

Version mismatch
New markup

and old assets

InstanceInstance

Balancer

v4

v3

New instanceOld instances

v3

CDN

v3 v3 v4 v4 v3 v4 v4

Server-generated
markup

Registration
include

v3

Contains
all assets

http://mng.bz/VgKW

183Asset referencing strategies
likely also part of the JavaScript bundle. Otherwise, you can ship the script
and link tag via the same registration fragment to ensure that they are com-
patible with each other.

10.1.6 Inlining

The easiest way to ensure synchronization is to embed the tags into the markup of the
fragment itself. Let’s say Team Checkout generates the Buy button markup server-
side. Then they could ship the link and style tags directly into the requests that
respond with the button markup. It could look like this.

<link href="/checkout/static/fragment.a98749.css" rel="stylesheet" />
<button>buy now</button>
<script src="/checkout/static/fragment.a62c71.js" async></script>

Inlining works but comes with a few issues:

 Redundant link/script tags—If you have a page that includes the Buy button five
times, you will get five identical link and script tags. If the resources are cache-
able, browsers are smart and download the files only once.

 More JavaScript execution—Even though the browser would download the Java-
Script once, it would execute it again for every script tag. Double execution may
introduce unforeseen issues and a higher CPU load.

 Works for server-side integration only—Since the style and script references are part
of the server-generated markup, this solution won’t work for client- or universal-
rendered micro frontends.

If these trade-offs are acceptable for you, inlining could be a viable and easy-to-build
option.

10.1.7 Integrated solutions (Tailor, Podium, …)

Most micro frontend libraries come with a solution to deal with assets. In chapter 4 we
introduced Tailor and Podium. Let’s see how they handle JavaScript and CSS.

TAILOR’S ASSET HANDLING

Zalando’s Tailor transfers the asset references via an HTTP header. A team can specify
the associated assets to a piece of server-generated markup via a Link entry. A
response can look like this:

$ curl -v http://.../checkout/fragment/buy-button
HTTP/1.1 200 OK
Link: </checkout/static/fragment.a98749.css>; rel="stylesheet",
</checkout/static/fragment.a62c71.js>; rel="fragment-script"

Content-Type: text/html
Connection: keep-alive

<button>buy now</button>

Listing 10.5 team-checkout/fragment/buy-button.html

List of required
CSS and JS files

The HTML
content

184 CHAPTER 10 Asset loading
Because references and markup are in the same request, we have no synchronization
issues. The Tailor service assembles the page and keeps track of all references. In the
final markup, it creates a link tag for all unique CSS files and loads the JavaScript via
the require.js module loader.

PODIUM’S ASSET HANDLING

With Podium, a team defines its asset references in a manifest.json file. The mani-
fest also contains a version number. Team Checkout’s manifest for the Buy button
could look like this:

$ curl http://.../checkout/fragment/buy-button/manifest.json
{

"name": "buy-button",
"version": "4",
"content": "/checkout/fragment/buy-button",
"css": [

{ value: "/checkout/static/fragment.a98749.css" }
],
"js": [

{ value: "/checkout/static/fragment.a62c71.js" }
]

}

Team Decide would use Podium’s layout library and provide it with the manifest.json
URLs for all micro frontends the product page needs. On startup, Podium downloads
all manifest files to determine the endpoints for the content. These endpoints
respond with plain HTML:

$ curl -v http://.../checkout/fragment/buy-button/
HTTP/1.1 200 OK
Content-Type: text/html
Connection: keep-alive
podlet-version: 4

<button>buy now</button>

The response also includes a podlet-version header. It does not indicate the version
of the Podium library. It is a string that uniquely identifies the deployed version of the
software. The owner of the fragment (or podlet) has to set it explicitly. It can be a
build number or a commit hash. In our example, the version number is "4". It’s the
same number you find in the manifest.json in the previous code.

 Every time Podium fetches the HTML content, it compares the podlet-version
header to the version number in its cached manifest.json file. If the versions match, it
can use the assets files specified in the current manifest. A difference in version num-
bers indicates that the owner of the fragment has deployed a new software version.
Podium will redownload the manifest.json to get a link to the updated assets.

Deployed version of the software.
Typically a build number or commit hash.

Endpoint that
returns the markup

List of
associated
assets

Version number of
the application

The HTML
content

185Asset referencing strategies

or
ise

)

...
const buyButton = layout.client.register({

name: 'buy-button',
uri: 'http://.../checkout/fragment/buy-button/manifest.json'

});

app.get("/product/eicher", async (req, res) => {
const button = await buyButton.fetch(res.locals.podium);
console.log(button);
console.log(button.css);
console.log(button.js);
res.send(`<h1>Eicher<h1>${button}`);

});

The preceding code shows how Team Decide registers Team Checkout’s Buy button
micro frontend and fetches the content. Podium performs the synchronization and
manifest updating under the hood. Team Decide waits for the promise (buyButton
.fetch) to resolve and receives the HTML and the assets in one object (button). This
object contains the HTML as well as the associated asset reference. Team Decide can
use it to construct its page markup.

10.1.8 Quick summary

Now you’ve seen a couple of strategies to pull the required assets for all included micro
frontends into your page. As with the markup integration strategies, there are no right
or wrong solutions. It depends on your use case. How important is performance and
caching? Do you need perfect synchronization, or is it practical to write your CSS and
JS in a backward-compatible manner? For the projects I’ve worked on, we mostly used
the server-side generated registration include approach, and have had few issues so far.
We accepted the fact that markup and assets might get out of sync for brief periods of
time. Table 10.1 summarizes the loading methods and lists their features.

Listing 10.6 team-decide/server.js

Table 10.1 Properties of registration strategies

Method
Independent
deployments

Caching and
performance

Guaranteed
synchronization

Direct no bad no

Redirect (client) yes ok no

Include (server) yes good no

Inlining yes bad yes

Integrated (Tailor, Podium, ….) yes good yes

Registering the manifest file for
Team Checkout’s Buy button

Fetching the content f
the button via a prom

The markup for Team
Checkout’s button
(<button>buy now</button>

Array of the required styles
([{href: "/checkout/static/
fragment.a98749.css", …}])

Array of the required scripts ([{src: "/
checkout/static/fragment.a62c71.js", …}])

186 CHAPTER 10 Asset loading
Whichever concrete solution you choose, it’s essential to define a uniform way that all
teams use. A producer of a micro frontend must be able to count on the fact that the
page owner references their assets correctly. They also need to be able to update their
assets without manually notifying other teams. Table 10.2 shows the technical con-
tracts between a micro frontend owner and user. What does Team A have to know
about Team B’s micro frontend to use it?

10.2 Bundle granularity
We’ve talked about how to load the assets for your micro frontends. Now let’s look at
the files themselves. What granularity should the asset files have? One file per micro
frontend, one file per team, or even a single huge file for the complete project?

10.2.1 HTTP/2

Best practices change over time. Some years ago, it was crucial to load as few resources
as possible to keep the number of network requests down. Bundling up everything in
one file and combining multiple images into one (spriting) was widespread. A couple
of years later, tools like Google PageSpeed heavily rewarded inlining the CSS for the
viewport into the HTML to ship everything needed for the first render in only a few
TCP packets.

 With the introduction of HTTP/2, these best practices became bad practices. The
protocol reduced the overhead cost of loading multiple resources from the same
domain. Its built-in multiplexing and server push features removed the need to manu-
ally inline assets into the page, which reduces complexity in the application and is also
great for cacheability.

 These HTTP/2 features come in handy when you are building a micro-frontends-
style application.

Table 10.2 Contract for loading required assets

Method Inter-team contract Example

Direct Asset file URLs /checkout/fragment.js
/checkout/fragment.css

Redirect (client) Asset file URLs /checkout/fragment.js
/checkout/fragment.css

Include (server) Endpoints with registration markup /checkout/register_scripts
/checkout/register_styles

Inlining None (only for server markup)

Tailor HTTP-Header Link: <fragment.css>;
<fragment.js>

Podium manifest.json /checkout/manifest.json

187Bundle granularity
10.2.2 All-in-one bundle

In 2014 I worked on my first project with vertically organized teams. Back then, we
had lengthy discussions about the necessity of building an overarching asset bundling
process. This bundling service would collect the scripts and styles from all teams to
combine them into one single file for delivery. Luckily we decided not to introduce
such a central service, but I know of other projects that did that.

 A central asset bundler introduces a significant amount of coupling and friction. Someone
needs to build and maintain that service. Deployments have to be synchronized
between the asset service and the applications to ensure that the markup always
matches the delivered assets. Today it’s an anti-pattern to deliver all-in-one bundles for
most use cases:

 The cost of shipping a lot of unused code outweighs the gains of using fewer
requests.

 The chance of cache invalidation is high. The complete bundle needs to be
redownloaded even if only a small part has changed.

But even today, a central bundler can provide one valuable feature: elimination of
redundant code. When two teams use the same JavaScript library or button styling, the
central service could remove one instance of it to make the bundle smaller. In the
next chapter we’ll discuss options for how to remove redundancy without introducing
a shared service.

10.2.3 Team bundles

In our example application, each team has one page and fragment bundle. For the
product page, Team Decide loads their page bundle. If they want to include Team
Checkout’s Buy button micro frontend, they would also need to add Team Checkout’s
fragment bundle.

 Since HTTP/2 makes additional requests very cheap but not free, you should still
use bundling inside your team and not confront the browser with your raw compo-
nent and dependency tree. In the projects I worked on, the bundle-per-team
approach has proven itself a reasonable trade-off between bundle size, overfetching,
and reusability across pages.

 But as always, it depends on your use case. If one team provides a fragment that
requires a lot of CSS code, but only one niche page uses it, it might make sense to cre-
ate a separate bundle for it.

10.2.4 Page and fragment bundles

The one bundle per micro frontend approach takes granularity one step further. There
every fragment or page has its script and style bundle. You can think of this as adding
an import statement to the top of your file before you can use the actual component
in your code.

 This more fine-grained way of bundling ensures that you only download code the
customer needs on the page. But depending on your page structure and the number
of fragments you include, it could lead to quite a few assets that need to be loaded.

188 CHAPTER 10 Asset loading
Figure 10.6 Different asset bundle granularities

Figure 10.6 illustrates the three bundling strategies. Pick the strategy that fits your
needs best.

10.3 On-demand loading
Picking the bundle granularity is essential because it affects the contracts between the
teams. But not all code has to live directly in this bundle.

 A team can adopt techniques like code splitting inside of their bundle to further
improve the loading behavior, reducing initial download size and fetching parts of the
code when the user needs them.

 Say Team Checkout’s Buy button would open a fancy layer that requires a bunch of
JavaScript. The team could take the layer code out of the initial fragment bundle and
fetch it when the user hovers over the button.

10.3.1 Proxy micro frontends

But we could reduce the bundle size even further. Say your asset file contains the code
for five different micro frontends, which are rarely used together on one page.
Instead of putting the code directly into the file, you can set up proxy components
that fetch the real code when it’s needed the first time. If you are using Custom Ele-
ments, the code could look like this.

Team InspireTeam Decide

Team InspireTeam Decide

Team InspireTeam Decide

Asset bundler

Page and fragment bundles

Team bundles

All-in-one bundle

Page Fragment

Central service

189Summary

class CheckoutBuyProxy extends HTMLElement {
constructor() {

import("./real-buy-button.js").then(...);
}

}
window.customElements.define("checkout-buy", CheckoutBuyProxy);

WARNING Proxying a Custom Element is more complex than this example.
It’s currently not possible to update a Custom Element definition solely by
registering a new class, and the lifecycle methods are synchronous. But we
can’t go more in-depth into Web Component land in this book. You’ll find
resources for doing this properly on the internet.

Shipping micro frontend proxies in your asset bundle can reduce initial download,
which is good.

10.3.2 Lazy loading CSS

If you are using plain CSS, lazy loading is not that easy because there is no native
browser support to split and load CSS files dynamically. But many CSS-in-JS solutions,
CSS Modules, and most bundlers come with mechanisms to enable lazy loading for
CSS without a bunch of manual work.

 These are standard performance optimization techniques you would also use in a
monolithic frontend. In a micro frontend architecture, each team can adopt them for
their part of the system.

Summary
 Teams must be able to update their assets without having to coordinate with

other teams.
 The asset paths must be part of the contract between the teams. A team that

uses a micro frontend needs to add the associated assets.
 There are different ways to communicate the asset URLs: via documentation,

through a redirect or registration include, via HTTP headers, or via a machine-
readable manifest file.

 If you render on the server, you need to ensure that the JavaScript and CSS files
match the version of the generated markup. For pure client-side rendering, this
is less of an issue since the template is part of the JavaScript itself.

 The development teams must implement performance optimization tech-
niques like on-demand loading inside their applications. Try to avoid overarch-
ing optimizations like a shared asset bundling service. They introduce extra
coupling and complexity.

Listing 10.7 team-checkout/static/fragment.js

Dynamically loads the real
implementation of the Buy button
when needed for the first time

Performance is key
In 2014 my colleague Jens handed me an article1 written by a company that imple-
mented a vertical style architecture. Back then, the term micro frontends didn’t exist.
Being a frontend developer who takes pride in delivering fast user experiences, my

This chapter covers
 Examining how to measure performance when

multiple micro frontends exist on one page

 How to find regressions and bottlenecks and
attribute them to the right team

 Typical performance drawbacks that are
consequential to the micro frontends architecture

 Reducing the amount of required JavaScript by
sharing larger vendor libraries across teams

 Implementing library sharing without
compromising team independence

1 S. Kraus, G. Steinacker, O. Wegner. “Teile und Herrsche: Kleine Systeme für große Architekturen,”
OBJEKTspektrum 05/2013 (German), http://mng.bz/xWDg.
190

http://mng.bz/xWDg

191Architecting for performance
first gut reaction to this idea was rejection—strong rejection. “Five teams that all roll their
own frontend? This sounds like a lot of overhead. The result will surely be inefficient and slow.”

 Today, when I introduce micro frontends to developers, I often get a similar reac-
tion. They understand the concept and its benefits, but sacrificing performance for
increased development speed can be hard to swallow. Having worked in micro front-
end projects over the last years, my initial worries faded quickly. This does not mean
that my concerns were unfounded or magically resolved themselves. Autonomy inher-
ently comes with the cost of accepting redundancy. But I learned to focus on the bottlenecks
that have a real impact for our users instead of reflexively fighting code duplication.

 The micro frontend projects we built all outperformed the monolith they
replaced. This resulted in faster responses, less code shipped to the browser, and bet-
ter overall load times. One factor these projects had in common was that architecting
for excellent performance was a top priority from the start and not an afterthought.
Another significant benefit I experienced while working with micro frontends was
that the architecture made it easier to optimize the user experience in the places
where it made the most significant difference. But more on this later.

 In this chapter, you’ll learn how to address performance in your micro frontends
project. We’ll start with the “definition of fast.” What does “performant” mean for the
different parts of your project? Measuring performance and acting upon the results is
tricky when the frontend includes code from different teams. I’ll show you some strat-
egies that have proven valuable when architecting for excellent performance. At the
end of the chapter, you’ll learn how to keep your JavaScript overhead to a healthy
minimum, avoiding large redundant framework downloads while still being able to
deploy autonomously.

11.1 Architecting for performance
Early on in the project, Finn, Tractor Models, Inc.'s lead architect, arranged a meeting
with developers from all three teams. Together they defined some performance guide-
lines that act as the default for all pages of the shop. They decided that the total weight
of a page should never exceed 1MB of data. The viewport of a page must render in one
second under good conditions and three seconds under 3G network conditions.

11.1.1 Different teams, different metrics

They arrived at these values by looking at their competitors' websites. The team knows
that excellent performance is vital for e-commerce. Users enjoy sites that feel fast.
They spend more time browsing and have a higher chance of actually buying a tractor.
But what does feel fast actually mean? Figure 11.1 illustrates this. Different parts of the
site have different performance requirements:

 A user that opens the home page for the first time mainly cares about seeing
the content without waiting.

 On the product page, the main image (hero image) is most important and
should be one of the first items to load.

192 CHAPTER 11 Performance is key
 When the user enters the checkout process, it’s all about interaction—trusting
the system while entering personal data. For that, the software must react reli-
ably and swiftly.

Figure 11.1 The metrics a team should optimize to depend on their use case. The performance
expectations of the homepage are not the same as the performance goals for the checkout process.

Having some overarching rules that act as a performance baseline is good. You can see
them as basic hygienic requirements. But if you want to optimize further, the metrics a
team should focus on will vary depending on the context the user is in. Each team
must understand the performance requirements of its subdomain and pick their own
metrics.

11.1.2 Multi-team performance budgets

Picking a metric and defining a concrete limit is also called a performance budget.2 A
performance budget is a perfect tool to establish a performance-oriented culture
inside a team. The mechanism is simple:

 Your team defines a concrete budget for a specific metric. Say, your site should never be
bigger than 1MB.

2 See Tim Kadlec, “Setting a performance budget,” Tim Kadlec, http://mng.bz/VgAW.

2

33 $

66 $

99 $ buy

21

66 $

11

$ $ %%

Team Inspire Team
Decide Team Checkout

Show me a large
product image.

Long lists must
scroll smoothly.

Want to modify
the cart quickly.

Site should
load instantly.

Clicked the button.
Still no response?

Users

The meaning of good performance depends on the task at hand.

 Start render
 Hero image timing
 Visually complete
 First input delay
 Input latency
 Total bytes
 API response time

 Start render
 Hero image timing
 Visually complete
 First input delay
 Input latency
 Total bytes
 API response time

 Start render
 Hero image timing
 Visually complete
 First input delay
 Input latency
 Total bytes
 API response time

The top performance metrics () may not be the same for all teams.
Different micro frontends have different usage patterns and goals.

http://mng.bz/VgAW

193Architecting for performance
 You continuously measure this metric to ensure your site stays in budget. Lighthouse CI,
sitespeed.io, Speedcurve, Calibre, Google Analytics, and so on are useful tools
for that.

 If a new feature breaks your site’s budget, the development stops. Developers investigate
the cause of the degradation. Then the complete team, including product man-
agers, discusses options to get back into budget: rolling back the change, imple-
menting an optimization, or even removing another feature from the page.

Budgets are a powerful mechanism for fostering performance discussions on a regu-
lar basis. But how can budgets work for a site with micro frontends from multiple
teams? Should Team A stop their development because Team B’s micro frontend
slows down the page? Maybe!

 You can address this in different ways:

 Dividing the budget to all micro frontends. This is the analytical approach. This would
mean that a page containing five micro frontends could, for example, use 500KB
for the content of the page itself and grant each included micro frontend a bud-
get of 100KB. Adding everything up will get us to our 1MB (500KB + 5 * 100KB)
size budget. In theory, this works, and for metrics like bytes and server response
times, it’s possible to measure and sum up the pieces like that. But for metrics like
load time, lighthouse score, or time to interactive, it’s not that linear.

 Page owners are responsible. This is the social approach. Here budgets are always
on a page level. A page owner is in charge of staying in that budget. In our
example, Team Decide would be responsible for the product page. The team’s
goal is to provide the user with the best experience possible. Should an
included micro frontend use an unreasonable amount of resources, Team
Decide contacts the owner, explains, and discusses options. You can view an
includable micro frontend as a guest that tries to be as well-behaved as possible.

We’ve had good experiences with the latter approach. It avoids getting into the weeds
with too fine-grained budgets: Should a recommendation strip consume 100KB, or is
150KB more reasonable? The responsibility is very clear. When the product page is
slow, it’s Team Decide that needs to become active. Yes, the team might not have
caused the issue, but it’s their task to get back to a performant state by finding the
cause of the problem and informing the right team.

 For the page-owning team, this might feel cumbersome at first. But in practice, this
has worked well for us. No team that provides an includable micro frontend wants to be
the “slow kid” that’s holding everyone back. Teams started to measure the performance
of their micro frontends in isolation to detect regressions before they go to production.

11.1.3 Attributing slowdowns

Team Decide installed a large dashboard screen in their office area. It shows the per-
formance of their system with live updating charts and big green numbers. One day
the team came back from lunch and noticed that the average load time of the product
page’s main image tripled. Before, the product images rendered in around 300 ms;

194 CHAPTER 11 Performance is key
now it takes nearly a second. The team checked their last commits but didn’t find any
suspicious change that could have caused such an issue. They checked the site in the
browser. It didn’t look broken.

 They figured that an included micro frontend from another team might be
responsible. Since they use server-side integration, this slowdown can be due to a ser-
vice that has issues producing its micro frontend’s markup (see chapter 4). They
opened up the centralized metrics system where they could see the response times of
every endpoint in the platform. None of the endpoints that are used to assemble the
product page’s markup showed anomalies.

 Then they checked their web performance monitoring tool. This tool opens the
product page on a regular basis with a real web browser, recording a video of the pro-
cess and also storing the browser’s network graph. With this tool, the team was able to
compare the product page from before lunch with the current slower version. This
before-and-after comparison highlighted the real issue. Before, the user loaded four
images—Team Decide’s big hero image and three images from the recommendation
strip. Now the network graph shows 13 images. With this information and a bit of
digging, it became apparent that the recommendation strip was the cause of the
slowdown.

 It turned out that Team Inspire implemented a carousel feature for their recom-
mendations. Now users can tap on a small arrow to see more matching products. But
this simple carousel implementation did not feature any lazy loading. Even though
the user only sees three recommendation images at a time, all images from the carou-
sel load up-front. Jeremy, Team Decide’s product owner, walked over to Team Inspire’s
office space and explained the issue. Team Inspire rolled back their carousel feature.
They implemented lazy loading for the images and reintroduced the optimized ver-
sion the next day.

OBSERVABILITY

Debugging a distributed system is a challenging task. The root of a problem is not
always visible. Investing in proper monitoring will make finding issues much more man-
ageable. If you integrate markup on the server, it’s crucial to know how long the differ-
ent parts of the page take to produce. Having a central view with the deployments of all
teams can help to correlate a measured effect to a specific change in the system.

 Monitoring the code that runs in the browser can be tricky. The software from all
teams has to share bandwidth, memory, and CPU resources. Having video recordings,
network graphs, and metrics you can compare over time is a vital first step. Imple-
menting unique team prefixes for all resources the browser loads also helps (see chap-
ter 3). This way, the ownership of a file that looks suspicious is always evident.

ISOLATION

A popular debugging technique is isolating the issue. Imagine you’ve written a piece
of software and notice a mysterious bug that you can’t explain. A good strategy for
finding the root cause is to comment out parts of your code and check if the bug is
still present.

195Architecting for performance
 You can apply the same approach to a micro frontends website. The “Block URL”
feature in the Network tab of your favorite browser is your friend. Block the scripts or
styles from a specific team. This way, you can test your site without the code of Team B
or Team C and measure if the performance degradation or error still exists.

11.1.4 Performance benefits

I often talk about performance challenges the micro frontends concept introduces.
But this approach comes with a couple of positive properties this approach.

BUILT-IN CODE SPLITTING

With the move to HTTP/2, it has become a best practice to split an application’s
JavaScript and CSS code into smaller pieces. We talked about this in chapter 10. Deliv-
ering the code into smaller chunks (per team, per micro frontend) and not into one
monolithic blob has benefits:

 Cacheability—Browsers only need to redownload the parts of the code that
changed. Not everything. Micro frontends are often used in conjunction with
continuous delivery, where teams deploy to production several times a day.

 Fewer long-running tasks—The browser’s main thread becomes unresponsive as it
processes a JavaScript file. Loading multiple smaller files gives it more room to
breathe and accept user input in-between processing the JavaScript resources.

 On-demand loading—Since the assets are often grouped by team or micro front-
end, it’s easy to include only the code a page needs or implement route-based
loading as we saw in the single-spa example. The user doesn’t have to download
the code for the cart page when they visit the homepage.

These benefits are by no means exclusive to micro frontends. You can also achieve
these optimizations in a well-architected monolithic frontend. But the way you think
about and develop features in a micro frontends project naturally guides you toward
this structure.

OPTIMIZING FOR THE USE CASE

Developers working in a micro frontends team have a much narrower scope. A team
focuses on one specific set of use cases to help the customer. It’s in the interest of the
team to optimize this use case as much as possible.

 Let me give you an example. Imagine Team Inspire is responsible for displaying
promotional teasers in different areas of the shop. These images or videos are often
large in size and have a considerable performance impact. Since the team controls the
complete process from teaser creation, uploading, and delivery, it’s easy for them to
experiment with new file formats like WebP, AV1, or H.265 to speed up teaser loading.

 They don’t have to think about what a format switch would mean for product
images or user uploaded review videos. This focus on teasers allows them to move
quicker. No big meetings with everyone who has an opinion about image or video for-
mats. No grand rollout plans. No big business case calculations. No compromises. The
team has everything it needs to improve its teasers.

196 CHAPTER 11 Performance is key
 After the experiment, Team Inspire shares their learnings with the other teams.
They’re helping the other teams to not fall into the same traps when they try some-
thing similar.

 Being able to have this kind of focus and control is the biggest strength of a micro
frontends architecture. Not only can it lead to better web performance of the individ-
ual pieces, but it improves quality and increases user focus.

EASIER CHANGES

The narrower scope makes it possible for a developer to know every aspect of the
software—something that is not possible in sizeable monolithic frontend projects.
Have you ever deleted an old dependency that isn’t in use anymore, only to realize
two days later that you broke an obscure marketing page you didn’t even know
existed? I definitely have.

 Having clearly isolated micro frontends reduces the risk of cleaning up dramati-
cally. This makes it easier to lose old cruft and evolve the software.

11.2 Reduce, reuse… vendor libraries
The most discussed performance optimization topic for micro frontends is how to
deal with libraries that are the same across teams. Downloading the same code twice
triggers the Pavlovian reflex for all frontend developers: “This is inefficient, and we
must avoid it!” But let’s take a step back and question this reflex. We’ll take a more
analytical look at the topic of redundant code.

11.2.1 Cost of autonomy

Tractor Models, Inc.’s three development teams all chose to go with the same Java-
Script framework to build their frontend. Before they started the project, lead archi-
tect Finn and the teams discussed three different options:

1 Alignment —Everyone uses the same framework.
2 No constraints —Every team can choose the framework they want.
3 Some constraints —Free choice, as long as the framework has specific properties,

like having a runtime that’s smaller than 10 KB.

Each option has its benefits and drawbacks. They went for the everyone uses the same
framework option for two reasons. First, teams can help each other because they are all
familiar with the same stack. Second, recruiting is easier: developers switching teams
get up to speed quickly, and human resources can use the same job profile for all teams.

 Although all teams start with the same tech stack, lead architect Finn emphasized
that this decision is not set in stone. It should be possible for a new team to pick another
stack if there are good reasons. The same goes for version upgrades or migration to a
newer, better framework in the future. Teams must maintain their autonomy. All inte-
gration techniques and architecture-level artifacts have to be technology agnostic.

 They use the JavaScript framework to generate server-side markup. However, for
interactive features, the framework also needs to run in the browser. Each team has its
own git repository and a dedicated deployment pipeline. The team’s JavaScript bun-
dler builds an optimized asset file that’s self-contained. It includes everything that the

197Reduce, reuse… vendor libraries
team uses. If teams use the same dependency, the client will download it multiple
times. We can optimize this by providing the large framework code as a separate
download from a central place. See the example in figure 11.2.

Figure 11.2 A team’s JavaScript should be self-contained. It should be able to function on its
own. That’s why bundling all dependencies and vendor libraries is the easiest option (left side).
When all teams use the same framework, it could be a worthwhile optimization to host the
framework code in a central place (right side). This reduces the amount of network traffic
and lowers memory footprint and CPU usage on the user’s device.

The figure shows three teams using the same framework. In our case, the framework
code makes up for 50% of the team’s bundle size. Removing the framework from the
team bundles and providing it from a central place decreases the JavaScript size by
33%. The user saves two framework downloads. This sounds like a good optimization,
but before we go ahead and build this, we should look at real numbers and the proj-
ect’s demands.

11.2.2 Pick small

The amount of overhead obviously depends on the framework and other libraries you
choose. Going with a large framework like Angular will increase the need to centralize
vendor code.3 Even though the major big frameworks have gained a lot of popularity,
you can see a trend toward adopting smaller libraries and frameworks.

3 If you are building an Angular project, you should check out Manfred Steyer’s work on Angular, micro front-
ends, and reducing Angular bundle size at https://www.softwarearchitekt.at/blog/.

Application

Framework

team-a.js

team-b.js

team-c.js

Self-contained
Teams include the framework they use

Self-contained

Application

Framework

Application

Framework

50%

50%

shared/vendor.js

team-a.js

team-b.js

team-c.js

Two frameworks saved
33% less download

Framework

Framework

Application

Framework

Application

Application

Shared vendors
Teams reference the globally provided framework

Requires shared framework

https://www.softwarearchitekt.at/blog/

198 CHAPTER 11 Performance is key
 Picking a stack like Preact, hyperapp, lit-html, or Stencil will reduce framework
overhead. Tools like Svelte go even a step further. They don’t have vendor runtime
code at all. The source code gets transpiled to native DOM operations. This way, your
JavaScript bundle grows proportionally with the features you build. No fixed costs are
introduced by the framework.

 No worries, we won’t go into the “What’s the best framework?” discussion. Compar-
ing a batteries-included framework like Angular to the small templating library like lit-
html is an apples-to-oranges comparison. However, since the individual micro fron-
tends are smaller in scope, it can be a viable option not to pick an almighty framework
that has you covered for everything the future can bring. It might be worth going with
a leaner option that’s better tailored to your use case. If your bundle includes little
vendor code, the overhead of loading it multiple times diminishes.

 The other factor you should take into consideration is the team boundaries. How
much composition does a typical page require? If you don’t use composition at all and
every team manages its own set of pages, there is no overhead when loading a page.
You only have the disadvantage that vendor libraries aren’t cached between the pages
of different teams. But the importance of minimizing redundancy increases with the
number of different teams that run a micro frontend on one page. Figure 11.3 shows
a rough calculation that gives you an idea of how much code we are talking about.

Figure 11.3 The potential savings depend on the portion of vendor code the teams include and
the number of teams that are active on one page. Using small dependencies reduces the
overhead noticeably. If multiple teams include larger libraries, you can save a lot of JavaScript
by centralizing vendor code.

Application

Framework

team-[x].js

50%

50%

Application

Framework

team-[x].js

75%

25%

Application

team-[x].js

90%

10%

Framework

team-[x].js

25%

75%

TinySmallLargeHuge

Potential JavaScript savings depend on the framework size and the number of teams on a page*

* Assuming all teams use exactly the same vendor code

2 teams 3 teams 4 teams 5 teams 6 teams

75 % 38 % 50 % 56 % 60 % 63 %

50 % 25 % 33 % 38 % 40 % 42 %

25 % 13 % 17 % 19 % 20 % 21 %

10 % 5 % 7 % 8 % 8 % 8 %

Portion of vendor code

High savings.
Large framework,
many teams.

Low savings
Small framework, few teams.

.

199Reduce, reuse… vendor libraries
Now we have rough numbers to qualify the overhead in bytes. It’s still essential to mea-
sure the real performance implications for your use case and target audience. Intelligent
on-demand loading and good code splitting can make a more significant difference
than shaving an extra 25 KB off your JavaScript bundle.

11.2.3 One global version

The teams at Tractor Models, Inc. decided that centralizing their framework code is
an optimization worthwhile pursuing. They wanted to start with the most straightfor-
ward implementation possible. When we can assume that all teams are on the same
version of one framework, we can use a low-tech solution:

1 Including the framework as a global script tag.
2 Excluding the framework from the team bundles and referencing it once from

a global location.

The associated HTML code can look like this.

<body>
...
<script src="/shared/react.16.11.0.min.js"></script>
<script src="/shared/react-dom.16.11.0.min.js"></script>

<script src="/decide/static/bundle.js" async></script>
<script src="/inspire/static/bundle.js" async></script>
<script src="/checkout/static/bundle.js" async></script>

</body>

The React script tags attach their code to the window object. Teams can call it via
window.React or window.ReactDOM. All bundlers provide an option to mark a library
as “globally available.” Webpack calls this concept externals. This removes the code
from the bundle and replaces it with a reference to a given variable. The configura-
tion for Webpack can look like this.

const webpack = require("webpack");

module.exports = {
externals: {

react: 'React',
'react-dom': 'ReactDOM'

}
...

};

Voilà! That’s it. We’ve eliminated the redundant framework code.

Listing 11.1 team-decide/index.html

Listing 11.2 team-decide/webpack.config.js

200 CHAPTER 11 Performance is key
 But we’ve created a new central artifact (/shared/…) which someone must main-
tain. Tractor Models, Inc. decided not to instantiate a dedicated platform team.
Instead, one of the feature teams should take over responsibility. Team Checkout vol-
unteers to do the job. This team now ensures that the files get deployed to the correct
location and coordinates version upgrades with their neighbor teams.

11.2.4 Versioned vendor bundles

The centralization worked well and improved performance measurably. Keeping the
React version up-to-date was also not a big issue for Team Checkout. Every time a new
React version came out, they informed all teams they needed to test their software
against it, deployed the new files to the shared folder two days later, and ensured that
the markup references the new script.

 But when React 17, the next major version, was announced, it became compli-
cated. It included breaking changes requiring the teams to restructure parts of their
existing software.

 Team Checkout and Team Decide made the required changes to their codebase in
the first week after the announcement. However, they were not able to deploy their
migration because Team Inspire wasn’t ready. This team was in the middle of a major
rewrite of their recommendation algorithms to bring personalized product suggestions
to the next level. Moving to the next version of React at the same time was not an option
for them. This task had to wait until the algorithm update shipped. So the other teams
had no choice but to park their changes in a git branch and wait for the other team.

 Three weeks later, Team Inspire managed to get their React migration done—
paving the way to finally ship the new framework. The teams agreed on a day and time
for the deployment of all software systems and the updated React library. Otherwise,
the functionality of the site might be faulty if the central framework did not match
with the application code.

 This is what’s often referred to as a lock-step deployment. If you’re operating on a
smaller scale, it might be fine to do such a manually orchestrated deployment from
time to time. It gets extra fun when one team discovers that they need to roll back to
the previous version because they found a severe bug. Then we have a lock-step rollback.
These kinds of activities are exhausting and unsatisfactory. Furthermore, it contradicts
the autonomous deployments paradigm of micro frontends.

 A solution to this problem is to move away from one central framework to a ver-
sioned approach. Figure 11.4 shows a deployment process where two teams upgrade
from Vue.js 2 to Vue.js 3:

1 Before the migration, both teams reference version 2.
2 Vue.js 3 gets published as a shared library.
3 Team B migrates first and deploys their software, which now references the new

framework.
4 Team A migrates as well. Now both teams are on version 3. The old version 2 is

not referenced any more.

201Reduce, reuse… vendor libraries
Figure 11.4 Illustrates a framework upgrade process. Team A and B both reference
Vue.js v2 from a central location. The framework is loaded once. Now Team B migrates to
Vue.js v3. Now the user has to download two Vue.js libraries (v2 and v3). In the last step,
Team A also migrates to the latest version. At this point, both teams use Vue.js v3 and
the user must only download one version.

With this approach, both teams can upgrade at their own pace. They control which
version of the library their code references. Even a rollback is possible without having
to coordinate with another team. The only drawback is that the total download size
increases during the migration phase.

 There are a lot of different ways of achieving this. Let’s explore some possible
solutions.

WEBPACK DLLPLUGIN

TIP You can find the sample code for this in the 19_shared_vendor_webpack
_dll folder.

The Webpack bundler enjoys great popularity. It includes a tool called DllPlugin.4 It
strangely gets its name from the dynamic link library concept Windows users are
familiar with. The plugin works in two steps:

1 You can create a versioned bundle with the shared dependencies. The plugin gen-
erates the JavaScript, which you can host statically, and a manifest file. Think of
the manifest as the table of contents for the vendor bundle.

2 You provide this manifest to the teams (e.g., via an NPM package). The team’s
Webpack configuration reads that manifest, omits all listed vendor libraries
from its own build, and adds references to the versioned libraries of the central
vendor bundle.

4 See https://webpack.js.org/plugins/dll-plugin/.

Everyone on version 2

Team B

Team A

Team B

Team A

Vue.js 3
(shared)

Team B

Team A

Vue.js 3
(shared)

Vue.js 2
(shared)

Vue.js 2
(shared)

Time

Transferred
bytes

Team B migrates

Increased download size
during migration phase

Team A migrates

Everyone on version 3In-between phase

https://webpack.js.org/plugins/dll-plugin/

202 CHAPTER 11 Performance is key
Let’s look at the structure of the sample project in figure 11.5.

The shared-vendor/ folder contains the JavaScript and manifest code for versions 15
and 16.

CREATING THE VERSIONED BUNDLE

We’ll go through the essential pieces required to make this happen. Here is an
excerpt from the vendor bundles package.json.

{
"name": "shared-vendor",
"version": "16.12.0",
"dependencies": {

"react": "^16.12.0",
"react-dom": "^16.12.0"

},
...

}

Here is the Webpack code for generating JavaScript and manifest.

const path = require("path");
const webpack = require("webpack");

Listing 11.3 shared-vendor/package.json

Listing 11.4 shared-vendor/webpack.config.js

Figure 11.5 Folder structure of the Webpack
DllPlugin example project. We’ve introduced a
shared-vendor/ folder that sits beside the
teams. It’s the project that generates the shared
vendor bundles (static/) using the DllPlugin. It
also includes the manifest_[x].json files for
each version. The teams use Webpack for
packaging their application code. You can find the
configuration in webpack.config.js.

Specifying the dependencies
and their version

203Reduce, reuse… vendor libraries
module.exports = {
...
entry: { react: ["react", "react-dom"] },
output: {

filename: "[name]_16.js",
path: path.resolve(__dirname, "./static"),
library: "[name]_[hash]"

},
plugins: [

new webpack.DllPlugin({
context: __dirname,
name: "[name]_[hash]",
path: path.resolve(__dirname, "manifest_16.json")

})
]

};

USING THE VERSIONED BUNDLE

The teams must have access to the desired manifest at build time. Publishing the
shared-vendor project as an NPM module is one option to do this. Here is the pack-
age.json for a team.

{
"name": "team-decide",
"dependencies": {

...
"react": "^16.12.0",
"react-dom": "^16.12.0",
"shared-vendor": "file:../shared-vendor"

},
...

}

The Webpack configuration of the team looks like this.

const webpack = require("webpack");
const path = require("path");

module.exports = {
entry: "./src/page.jsx",
output: {

...
publicPath: "/static/",
filename: "decide.js"

},
plugins: [

Listing 11.5 team-decide/package.json

Listing 11.6 team-decide/webpack.config.js

List of dependencies to include in
the vendor bundle. Here one bundle
called react gets created. It contains
the code of react and react-dom.

Configuring location and
name for the JavaScript code

Adding the DllPlugin
and specifying where to
write the manifest file

Specifying the framework
dependencies

Referencing the shared-vendor package. We use the file:
syntax to make it happen locally. In the real project we

would publish it as a properly named and versioned package
like this: @the-tractor-store/shared-vendor@16.12.0.

Entry point of team
decides application

Configuring where the
generated files should go

204 CHAPTER 11 Performance is key

19
new webpack.DllReferencePlugin({
context: path.join(__dirname),
manifest: require("shared-vendor/manifest_16.json"),
sourceType: "var"

})
]
...

};

This is a pretty standard Webpack configuration. Adding the DllReferencePlugin is
the special part. It performs the magic of omitting the code of all vendor libraries
specified in the manifest.json and replacing it with references to the central bundle.

 Are you curious about the manifest’s content? Let’s have a look inside.

{
"name": "react_a00e3596104ad95690e8",
"content": {

"./node_modules/react/index.js": {
"id": 0,
"buildMeta": { "providedExports": true }

},
"./node_modules/object-assign/index.js": {

"id": 1,
"buildMeta": { "providedExports": true }

},
...

}
}

The last step in our process is adjusting the script tags in the HTML to ensure that the
bundles load in the correct order.

<html>
...
<body>

<decide-product-page></decide-product-page>
<script src="http://localhost:3000/static/react_15.js"></script>
<script src="http://localhost:3000/static/react_16.js"></script>
<script src="http://localhost:3001/static/decide.js" async></script>
<script src="http://localhost:3002/static/inspire.js" async></script>
<script src="http://localhost:3003/static/checkout.js" async></script>

</body>
</html>

It’s crucial that the vendor bundles execute before the team’s code. Run the example
locally (npm run 19_shared_vendor_webpack_dll) and look at the output at
http://localhost:3001/product/fendt. Figure 11.6 shows the result.
You can see that the micro frontends run on different React versions.

Listing 11.7 shared-vendor/manifest_16.json

Listing 11.8 team-decide/index.html

Adding the
DllReferencePlugin and
pointing it to the
manifest_[x].json of the
shared-vendor package

Unique internal name. Ensures that
different DLLs can exist on one page.

List of node modules
that the bundle contains

The bundle also contains
the dependencies of
the dependencies.

Including the bundle
 for both React versions

the-tractor.store/#

http://www.the-tractor.store/#19

205Reduce, reuse… vendor libraries

Figure 11.6 Team Decide’s and Team Checkout’s micro frontends run on React 16. Team
Inspire still uses version 15. The different versions can coexist on the same page.

The DllPlugin has some benefits compared to the “one global version” approach:

 Safe way to globally provide different versions of the same library.
 A vendor bundle can contain more than one library.
 manifest.json is a machine-readable and distributable documentation of the vendor

bundle.
 Works in all browsers.

But there are some drawbacks:

 No on-demand or dynamic loading of vendor assets. The vendor bundle has to be
loaded before the application code that relies on it. The application code does
not automatically pull in the vendor bundle it needs.

 All teams must use Webpack. The vendor bundle uses Webpack’s internal module
loading and referencing code.

NOTE At the time of writing this book, there’s a lot of work going on to
improve Webpack’s code sharing abilities across projects. Webpack 5 will
introduce a technique called module federation5 that addresses many micro
frontend requirements.

Let’s explore a third option that’s based on JavaScript’s new ES Modules standard.

CENTRAL ES MODULES (ROLLUP.JS)
Nowadays, relevant browsers (except Internet Explorer 11)6 support JavaScript’s
native modules system with the import/export syntax. This opens up new possibilities
for sharing dependencies without needing a specific bundler.

5 See Zack Jackson, “Webpack 5 Module Federation: A game-changer in JavaScript architecture,” inDepth.dev,
http://mng.bz/Z285.

6 See https://caniuse.com/#feat=es6-module.

Team Inspire
is still on React 15

Team Decide and
Team Checkout

migrated to
React 16

buy for $54

http://mng.bz/Z285
https://caniuse.com/#feat=es6-module

206 CHAPTER 11 Performance is key
TIP You can find the sample code for this in the 20_shared_vendor_rollup
_absolute_imports folder.

Let’s take a quick look at the capabilities of the import mechanism. The spec calls the
dependency string, a module specifier. Here is a list of different specifier types:

 Relative path (starts with a dot)
import Button from "./Button.js"

 Absolute path (starts with a slash)
 import Button from "/my/project/Button.js"

 Bare specifier (simple string)
import React from "react"

 URL (starts with a protocol)
import React from "https://my.cdn/react.js"

TIP If you want to learn more about ES modules, I recommend this resource7

as a starting point.

In this example, we’ll use the last option: the absolute URL. The concept of this exam-
ple is the same as in the previous Webpack case:

 We have a shared-vendor project that creates versioned bundles containing
react and react-dom. But the files are now standard ES modules.

 We adjust the team projects to reference the vendor bundle by using an abso-
lute URL.

In production, the code that runs in the browser works like this.

export default [...react implementation...];

import React from "http://localhost:3000/static/react_16.js";

The central React JavaScript file is in ES module format, and the teams point to it via
a URL.

 You could ship this code without using a bundler at all. For our example, we use
rollup.js8 to ship react and react-dom in one bundle file and build and optimize our
team’s code for production. Rollup.js recognizes absolute URL dependencies

7 JavaScript for impatient programmers by Dr. Axel Rauschmayer, https://exploringjs.com/impatient-js/ch
_modules.html.

Listing 11.9 shared-vendor/static/react_16.js

Listing 11.10 team-decide/static/decide.js

8 See https://rollupjs.org/.

https://rollupjs.org/
https://exploringjs.com/impatient-js/ch_modules.html
https://exploringjs.com/impatient-js/ch_modules.html

207Reduce, reuse… vendor libraries
(http://..) and leaves them untouched. This is something that isn’t yet possible
with Webpack.

 We won’t go through the full code but will highlight the significant parts. Figure
11.7 shows the folder structure of the sample code.

CREATING THE VERSIONED BUNDLE

Rollup’s configuration is straightforward. We define input and advise it to write the
bundle as an ES module (esm) to the static/ folder.

...
export default {

input: "src/index.js",
output: {

file: "static/react_16.js",
format: "esm"

},
plugins: [...]

};

The src/index.js imports react and react-dom and exposes them as both a default
and named export. This way, Rollup will create one bundle which contains both
libraries.

Listing 11.11 shared-vendor/rollup.config.js

Figure 11.7 The shared-vendor project creates
versioned bundles in ES module format using rollup.js. The
other teams also use rollup.js

Input file specifies what should
go into the vendor bundle

Output defines the target
location of the bundle
and sets its format

208 CHAPTER 11 Performance is key

export { default } from "react";
export { default as ReactDOM } from "react-dom";

That’s everything we need to do to create the vendor bundle. As with the earlier exam-
ple, the generated file will be available at http://localhost:3000/static/react_16.js.
Let’s look at how we configure the team’s React applications to use this bundle.

USING THE VERSIONED BUNDLE

The team’s rollup configuration is basically the same as the one we saw before: config-
uring input, output, and setting the format. It includes a few plugins to deal with JSX,
Babel, and CSS, but these are all straight from the official documentation.

export default {
input: "src/page.jsx",
output: {

file: "static/decide.js",
format: "esm"

},
plugins: [...]

};

Let’s have a look inside the input file src/page.jsx. To use the globally provided ven-
dor bundle, we need to set our imports accordingly. In a traditional React application,
you would use a bare specifier like this:

import React from "react"

The bundler then searches for react in your node_modules and includes it. In our
case, we can specify the absolute URL:

import React from "http://localhost:3000/static/react_16.js";

Rollup.js will treat this as an external resource. Since all components in a React appli-
cation need to import react, it’s a little cumbersome to always write the absolute URL
to the versioned file. In the example, I’ve used Rollup’s alias feature9 to configure this
in a central place. This way, the application code can stay as is, and Rollup replaces all
instances of react with the absolute URL on build.

 The absolute URL approach has two significant benefits:

1 It’s standards-based. Asset sharing is an architecture decision that affects all
teams. Changing it later on in the project will produce a non-trivial amount of
work. Relying on standards makes future changes in tooling or libraries much
more manageable. Want to switch your bundler? No problem, as long as it sup-
ports ES modules.

Listing 11.12 shared-vendor/src/index.js

Listing 11.13 shared-vendor/src/index.js

9 See http://mng.bz/RAYD.

http://mng.bz/RAYD

209Reduce, reuse… vendor libraries

20
2 Dynamic loading of required vendor bundles. The DllPlugin requires you to load the
vendor files before the application code synchronously. With ES modules, the
application code requests the vendor bundle(s) it needs. If it’s already down-
loaded because another micro frontend requested the same module, it reuses
the existing one.

The dynamic loading makes the integration code a lot simpler. Here is Team Decide’s
HTML file.

<html>
...
<body>

<decide-product-page></decide-product-page>
<script src="http://localhost:3001/static/
decide.js" type="module" async></script>

<script src="http://localhost:3002/static/
inspire.js" type="module" async ></script>

<script src="http://localhost:3003/static/
checkout.js" type="module" async ></script>

</body>
</html>

Start the example locally by running npm run 20_shared_vendor_rollup_absolute
_imports. In the first view, it looks exactly like the previous example. Two teams use
React 16. One team is still on React 15. Opening up the developer tools shows a differ-
ence. In the Network tab, you see that the three application bundles load first (small

Listing 11.14 team-decide/index.html

The HTML must only reference
the JavaScript files from the
teams. They download central
bundles when needed.

the-tractor.store/#

Team Inspire
initiates
react_15.js

Team Checkout
initiates
react_16.js

React 15React 16

buy for $58

Figure 11.8 Different framework versions on one page by using ES modules. The Network tab
shows which team initiated the download of a specific vendor bundle. Team Decide and Team
Checkout both reference react_16.js. Team Checkout was the first to request it. Team
Inspire references the react_15.js bundle.

http://www.the-tractor.store/#20

210 CHAPTER 11 Performance is key
parallel downloads). Then they request their associated vendor bundle (large parallel
downloads). You can see this in figure 11.8. The Initiator column shows the team
which first requested the bundle.

IMPORT-MAPS

In the previous example, we used Rollup’s alias plugin to make our life easier. It saved
us the hassle of using an absolute URL in all files that require react. Let’s look at
import-maps. Import-maps is a proposed web standard10 that can simplify our loading
process even further. It provides a declarative way to map bare specifiers to absolute
URLs. An import-map looks like this:

<script type="importmap">
{

"imports": {
"vue": "https://my.cdn/vue@2.6.10/vue.js",
"vue@next": "https://my.cdn/vue@3.0.0-beta/vue.js"

}
}

</script>

The definitions from the import-map apply globally. Teams can reference the current
version of Vue.js by importing vue. They don’t need to know the URL of the shared
bundle. The following example illustrates that:

<!-- Team A -->
<script type="module">

import Vue from "vue";
console.log(Vue.version);
// -> 2.6.10

</script>

<!-- Team B -->
<script type="module">

import Vue from "vue@next";
console.log(Vue.version);
// -> 3.0.0-beta

</script>

MORE ABOUT IMPORT-MAPS

Import-maps are a promising solution but not an official standard yet. Right now, the
preceding code only works in Chrome when you’ve activated a feature flag.

 If you want to use them today, I recommend having a look at SystemJS.11 SystemJS
maintainer and single-spa developer Joel Denning has published a video series12 on
using import-maps and SystemJS with micro frontends.

10 See https://github.com/WICG/import-maps.
11 See http://mng.bz/2X89.
12 See “What are Microfrontends?” http://mng.bz/1zWy.

Introduces the new
script-type importmap Maps the bare specifier

vue to the current version
of the framework

Maps the bare specifier vue@next to the
upcoming version of the framework

http://mng.bz/1zWy
http://mng.bz/2X89
https://github.com/WICG/import-maps

211Summary
 Podium developer Trygve Li has written an introduction to using import-maps in a
micro frontend context.13 He also authored a rollup plugin14 that works similarly to
our alias approach but takes an import-map as an input.

11.2.5 Don’t share business code

Extracting large pieces of vendor code is a powerful technique. You’ve learned a cou-
ple of ways to achieve it. But you should be careful of what you extract.

 It’s tempting to share snippets of code every team uses, like currency formatting,
debugging functions, or API clients. But since this is business code and has a tendency
to change over time, you should avoid that.

 Having a similar piece of code in the codebase of multiple teams feels wasteful.
However, sharing code creates coupling that you shouldn’t underestimate. Someone
has to be responsible for maintaining it. Changes to shared code have to be well
thought-out and appropriately documented. Don’t be afraid of copying and pasting
snippets of code from other teams. It can save you a lot of hassle.

 If you’re confident that it’s a good idea to share a specific piece of code with other
teams, you should instead do it as an NPM package that teams include at build time.
Try to avoid runtime dependencies. They increase complexity and make your applica-
tion harder to test.

 In the next chapter, we’ll talk about code that’s often shared in micro frontends
projects: the design system.

Summary
 Performance budgets are an excellent tool to foster performance discussions

on a regular basis. They also form a shared baseline that all team members can
agree upon.

 Having some project-wide performance targets is valuable. If teams want to
optimize further, they might pick different metrics because they work on differ-
ent use cases. The performance requirements for the homepage are not the
same as the requirements for the checkout process.

 Measuring performance is tricky when micro frontends from multiple teams
exist on one site. Having clear responsibilities helps. The owner of a page can
also be responsible for the overall page performance. If another team’s micro
frontend slows down the page, the page owner informs that team to fix the issue.

 It makes sense to measure the performance characteristics of a micro frontend
in isolation to detect regressions and anomalies.

 Micro frontend teams have a narrower scope that they are responsible for. This
makes it easier for them to optimize performance in the places where it has the
most significant effect on the user.

13 See http://mng.bz/PApg.
14 See http://mng.bz/JyXP.

http://mng.bz/PApg
http://mng.bz/JyXP

212 CHAPTER 11 Performance is key
 The size of your JavaScript framework and the number of teams on a page have
an impact on performance. Because teams have a smaller scope, it might be a
viable solution to pick a lighter framework. This eliminates the need for vendor
code centralization.

 You can improve performance by extracting large libraries from the team’s
application bundles and serving them from a central place.

 Sharing assets introduces extra complexity and requires maintenance.
 You should measure the real impact of redundant JavaScript code for your use

case and target audience.
 Forcing all teams to run the same version of a framework can become compli-

cated for major version upgrades. Teams have to deploy in lock-step to avoid
breaking the page.

 Allowing teams to upgrade dependencies at their own pace is an important fea-
ture and can save a lot of discussion. You can achieve this by implementing ver-
sioned asset files that can work side-by-side. Use Webpack’s DllPlugin or native
ES modules to implement this.

 Only centralize generic vendor code. Sharing business code introduces cou-
pling, reduces autonomy, and can lead to problems in the future.

User interface
and design system
In a micro frontend architecture, every team builds its part of the frontend. A team
can plan, build, and ship new features without talking to its neighbors. But how do
you deliver a consistent look and feel for the user? The different frontends should
use the same color palette, typography, and grid layout. These measures ensure
that the website does not look weird. But it typically doesn’t stop there. There’s also
button styling, spacing rules, breakpoint definitions to support a variety of screen
sizes, and a lot more.

This chapter covers
 Examining how a design system can help deliver a

consistent experience to your users

 Developing a design system and how it can affect
the autonomy of the micro frontends teams

 Technical challenges when building a pattern
library that should be technology-agnostic

 Distinguishing if a component should go into the
central pattern library or stay under a product
team’s control
213

214 CHAPTER 12 User interface and design system
 Classical architecture discussions often dismiss these topics as unimportant. You
hear sentences like, “We’ll find a way to make it pretty afterward.” However, in a dis-
tributed architecture like this, it’s essential to have a proper plan for managing your
design from the start. Throughout the book, you’ve learned techniques to avoid shar-
ing code and keep teams as decoupled as possible. When it comes to design, it’s not
that easy. If you don’t want to alienate your users, you need a system to share your design
building blocks with all teams. A design system enables them to build interfaces that have
a similar look. However, a design system also introduces coupling because every team
has to be compatible with it.

 In the micro frontends projects I’ve worked on, planning and setting up a shared
design system was always among the first and most important tasks. How to integrate a
design system into the team’s code is a much-discussed topic. It has direct implications
on how teams build their frontend features. Changing these architecture decisions
afterward is expensive because all user-facing features rely upon it.

 In this chapter, we’ll briefly introduce the concept of a design system, discuss how
to organize effective development, and look at a variety of technical integration
options and their trade-offs.

12.1 Why a design system?
Creating an overarching design that different teams can use is far from specific to
micro frontends. The term design system has become popular in software development
in recent years. It provides a way to systematically tackle design in an era of growing
web applications that must work on a multitude of devices.

 A design system contains design tokens (fonts, colors, icons …), reusable interface com-
ponents (buttons, form elements …), more advanced patterns (tooltips, layers …), and
most importantly a well-explained set of rules on how to use these individual pieces
together. Figure 12.1 shows some design system examples.1

Figure 12.1 A lot of companies have published their design systems on the web. You can use
them in your project or leverage them as a source of inspiration when creating your own.

1 See https://designsystemsrepo.com/design-systems/.

shopify Polaris Marvel Styleguide Microsoft Fabric

https://designsystemsrepo.com/design-systems/

215Why a design system?
Two other terms often also come up in this context: pattern library and (living) style
guide. They mean the same thing: a way to modularize the complexity of the web with
a component-based system. However, they have a slightly different focus.

 The term pattern library describes a set of concrete building blocks developers can
use. It is a library that contains tangible components like buttons and form inputs. It
focuses more on the components than on the documentation aspect. You can say that
a pattern library is a subset of a design system.

 Style guide is a traditional term from the design world. Before the internet, a style
guide in the form of a well-crafted stack of paper describing all design rules for a com-
pany’s corporate identity. The “living” prefix transferred this concept to the digital
age, where the illustrated components use the real code. In this chapter, we’ll use the
term design system when we talk about the broader concept and use pattern library when
it comes to the technical integration with the team’s applications.

 In this book, we won’t discuss how to build a design system. You can find a lot of
excellent blog posts,2 books,3 and even hands-on checklists4 to get deeper into this
topic. Instead, we’ll focus on the design system aspects that are crucial to get right for
running a successful micro frontends architecture.

12.1.1 Purpose and role

In a micro frontends project, all features the product teams create are directly targeted
to the end user. These features make the user’s life more enjoyable and thus create
value for the company. A centralized design system does not fit into this model.

 No user signs up for Microsoft Office 365 because they think that Microsoft’s Flu-
ent UI Design System is the best. But there’s no question that the existence of the
design system makes Office a more usable product. People who are familiar with using
Word have an easier time understanding PowerPoint or Excel because all teams use
the same UI paradigms and components.

 A design system has an indirect effect that manifests itself through the product
teams. The goal of a design system team should never be to create the most beautiful,
best documented, or most versatile design system on the market. The objective of a
design system team should be supporting the product teams as best as possible. A
design system is a product that serves other products.

12.1.2 Benefits

A sound design system can help product development by providing these benefits:

 Consistency—Making user interfaces from different teams “feel familiar” to the
user.

2 See Vitaly Friedman, “Taking The Pattern Library To The Next Level,” Smashing Magazine, http://mng.bz/
wB7W.

3 See Design Systems, by Alla Kholmatova, http://mng.bz/qM7E.
4 See https://designsystemchecklist.com.

http://mng.bz/wB7W
http://mng.bz/wB7W
http://mng.bz/qM7E
https://designsystemchecklist.com

216 CHAPTER 12 User interface and design system
 Shared language—A design system forces you to create a shared vocabulary that
all involved parties understand. Proper naming is never easy, but having consis-
tent names for your components and patterns improves communication across
teams and avoids misunderstandings.

 Development speed—Having clear guidance and the necessary UI components to
build a new feature makes the developer’s life easier.

 Scaling—The value of a design system increases by the number of teams using it.
New teams have a solid foundation they can build upon. No redundant discus-
sions on “if we should use a custom select box or not.” Hopefully, the authors of
the design system have documented this decision before.

The benefits of a design system are mid- and long-term. Creating a robust system will
take a considerable amount of time. However, if your project is of a particular size,
these efforts will pay off quickly. It will also save you a lot of unsatisfactory design con-
solidations and eliminate chaotic redesign projects.

12.2 Central design system versus autonomous teams
Now you know the basics of a design system and its benefits. Let’s look at some aspects
that are important in a micro frontends architecture. One question that’s frequently
asked is if it’s indispensable to build your own design system.

12.2.1 Do I need my own design system?

Creating a design system is not an easy or cheap task. If you are building an internal
product where branding is not an important aspect, it’s perfectly fine to go with an
off-the-shelf solution. Projects like Twitter Bootstrap,5 Google’s Material Design,6

Semantic UI,7 or Blueprint8 are great candidates. They all bring a set of generic com-
ponents developers can adapt for their use case.

 But you shouldn’t choose a library by its appearance alone. They have different
technical architectures that introduce constraints into your project. Some integrate
solely via CSS classes (Bootstrap, Semantic UI), dictate a specific frontend framework
(Blueprint), or provide a set of framework options (Material Design). Later in this
chapter, we’ll dive deeper into the possible integrations and their pros and cons.

 If your product should convey a unique style and must be in line with your compa-
nies branding, it’s a good idea to develop your own design system from scratch. Such a
system also enables you to incorporate components that are unique to your business
domain. In e-commerce, you want to have a price component that defines how reduc-
tions, sales, or the base price should render. When you are building a messaging appli-
cation, you will want to include primitives like user avatars or chat bubbles.

5 See https://getbootstrap.com.
6 See https://material.io/develop/web/.
7 See https://semantic-ui.com.
8 See https://blueprintjs.com.

https://getbootstrap.com
https://material.io/develop/web/
https://semantic-ui.com
https://blueprintjs.com

217Central design system versus autonomous teams
12.2.2 Process, not project

Having your own design system has some real benefits. We, as developers, like to focus
on its technical aspects. Creating a set of usable components for all teams sounds like
a worthwhile project. But in an otherwise distributed organizational structure, a
design system also introduces an important social aspect. A former co-worker of mine
likes to describe the design system as…

... the campfire around which people from different teams and with different professions
gather regularly.

Dennis Reimann

This quote highlights the fact that a design system is never a finished product. It’s bet-
ter to think of it as a process. A design system should be a living and evolving piece of
infrastructure. The usable components and formalized design rules are the result of
discussions between user experience (UX) and design experts as well as developers
and product owners from the teams. It should be the single source of truth when it
comes to design questions. Figure 12.2 illustrates this.

Figure 12.2 A good design system is a place where all key design decisions
get documented. It’s constantly refined to best meet the needs of its users.

12.2.3 Ensure sustained budget and responsibility

It’s important to set appropriate expectations in management. The bulk of the design
system work will be in the first few months, but the work doesn’t stop then. New use
cases arise, and teams develop new and more sophisticated features. You need free
space to adjust and grow the design system accordingly. It’s crucial to have a sustain-
able budget dedicated to doing this work:

 Extending components
 Questioning existing patterns
 Refactoring areas
 Refining the documentation
 Fixing inconsistencies

Design system

UXDeveloper

Product owner Design

218 CHAPTER 12 User interface and design system
I’ve seen projects with thoroughly crafted design systems that worked pretty well in
the beginning. But when there is nobody who feels responsible or can maintain and
evolve the system, it starts getting out of date. Teams work around existing patterns.
They modify components with custom override styles to adjust them to their needs.
Some components get extended several times and grow in complexity. Documenta-
tion becomes out of date.

 From this point, it usually gets worse pretty quickly. That’s what the community
calls a zombie style guide.9 Don’t let your design system join the zombie army. Rebuilding
and replacing a design system is expensive. The micro frontends architecture opti-
mizes for feature development speed inside team boundaries (vertical). Introducing
substantial changes across teams (horizontal) requires a lot of coordination, creates
friction, and can impair development for a considerable time.

 Make sure to establish proper conditions in the first place. Having a dedicated
budget and strong responsibility is vital.

12.2.4 Get buy-in from the teams

Getting the green light from management is an essential precondition, but it’s even
more important to have a healthy relationship with the product teams. They are the
users of your design system. They are your customers. Take time to explain the design
system and its concepts to them.

THE FIRST SPRINTS

Learn about their development roadmap and discuss wireframes to identify the com-
ponents that are required first. A transparent development process helps the product
teams to know when needed parts are ready. Publishing documentation, examples,
and changelogs supports this.

 In the early stages of a new project, the design system team is usually the bottle-
neck. There’s a lot of technical setup to do. The team needs to build essential compo-
nents for typography and interactions. Giving the design system team a head-start of a
couple weeks is something we’ve had good experiences with. This way, the product
teams can use the pattern library from the start. Nobody needs to wait or use tempo-
rary solutions that cause trouble later on.

ACCEPTANCE

Even though all teams know about the benefits of the design system, it’s often tempt-
ing to work around it. Imagine Team Decide wants to ship a new product review fea-
ture. To build it, they need a new rating-star icon and a new, smaller heading style.
The team is already under pressure because the lead developer broke their arm in a
sporting accident a week ago. To keep the schedule, it would save time to add the icon
directly to Team Decide’s application code. They could take the standard heading and

9 Tweet by @jina: “zombie style guides — style guides that aren’t maintained and part of your process. they die
and rot. they eat your brains,” https://twitter.com/jina/status/638850299172667392.

https://twitter.com/jina/status/638850299172667392

219Central design system versus autonomous teams
just overwrite it with a smaller font size. Yes, other teams wouldn’t be able to use these
components in their features. “But that’s not important right now.” These moves
would save Team Decide time. Bringing the change into the central pattern library
requires more work than building it locally.

 The main benefit of micro frontends is to empower teams to move fast by eliminat-
ing dependencies and waiting for other people. A central design system will get in the
way. Having discussions around reusability and consistency doesn’t help the product
team’s primary mission. Make sure everyone understands this conflict of interest and
recognizes the importance of the design system. Find a way to spot technical debt, and
don’t let it build up.

COMMUNICATION

Establishing proper communication channels between the design system and the
product teams is a crucial factor for success. There are a lot of ways to do this. It
doesn’t have to be regular in-person meetings. Being creative and coming up with
lightweight solutions makes the process leaner and can build up acceptance.

 We’ve experimented with a concept called opening hours. The design team offers
dedicated time slots. Product teams can come in and discuss wireframes for upcoming
features. They don’t need to schedule a meeting. The goal is to identify changes for
the design system in an early phase.

 However, the method we found most effective is to directly involve people from all
teams in the development process itself. Next up, we’ll see how this can work.

12.2.5 Development process: Central versus federated

There’s no single way to organize the development of a design system. Up until now,
we implicitly talked about an organizational form that’s called the central model. We
have a dedicated team that plans and builds the design system and distributes it to the
product teams to use. But there’s another approach that’s gaining popularity and fits
well into our autonomous-teams architecture: the federated model.10 Figure 12.3 shows
both models side by side.

THE CENTRAL MODEL

In the central model, we have a clear division of labor. A group of developers, design-
ers, and UX specialists plan and build the design system. To know what they should
build, they talk to the product teams. The design team has a pretty good overview of
the complete system, can spot inconsistencies quickly, and works efficiently.

 The product teams are only users of the pattern library. They make requests to the
design system team and wait until their components are ready. The central team has
the potential to become a bottleneck. When product teams request more changes
than the design team can implement, it gets ugly. Teams have to delay their schedule
or start working around the design system.

10 See Nathan Curtis, “Team Models for Scaling a Design System,” Medium, http://mng.bz/7XBg.

http://mng.bz/7XBg

220 CHAPTER 12 User interface and design system
Figure 12.3 Two approaches for organizing the development of a design system. In the central model,
a dedicated design team develops the system, and the teams use it. The federated model blurs
the line between the design system and the product team. The members of the product teams
contribute to the system and drive development.

THE FEDERATED MODEL

The federated model changes this. Designers and UX specialists move into the prod-
uct teams. There’s no real central team anymore. Yes, we still need someone who stew-
ards the design system and has an eye on quality and consistency. However, the
product teams now drive the development of the design system themselves. When a
product team needs a new component, they design it, build it, and publish it to the
design system for everyone to use.

 This model gives the team a lot more freedom and autonomy. But since the design
system is a shared project, it’s crucial to properly communicate changes to others.
Running this model requires some skill and experience. Its most significant benefit is
that UX experts and designers now work in the product teams. They bring new per-
spectives to the development team and can help to improve the product directly. This
quote from Nathan Curtis11 brings it to the point:

We need our best designers on our most important products to work out what the system is
and spread it out to everyone else. Without quitting their day jobs on product teams.

Nathan Curtis

11 A series of blog posts on design systems. It’s a goldmine. You should read them all. :) https://medium.com/
@nathanacurtis.

Central model

Design system development team

Product team Product team Product team

Builds

Uses

Federated model

Product team Product team Product team

Builds
and uses

Ensures quality
and consistancy

Core team

https://medium.com/@nathanacurtis
https://medium.com/@nathanacurtis

221Central design system versus autonomous teams
12.2.6 Development phases

You might ask yourself what’s the best model for your project. It’s hard to give a gen-
eral answer to this question. But I’ll share what worked for us.

 First of all, the two models aren’t mutually exclusive. They blend very well. You
don’t have to pick one of the extremes. Running a design system with a strong central
team does not mean that you can’t take contributions from a product team. Figure
12.4 shows the Central-to-Federated Continuum.

Figure 12.4 Central vs. federated is not a binary decision. The models work well together. The
scale at the bottom shows the spectrum. You can run the central model with some federated
aspects (left side). It’s also possible to run the federated model in combination with some
central planning and development (right side).

In our projects, I could observe two phases of design system development: the ramp-up
phase (phase 1) and the production phase (phase 2). Figure 12.5 shows how these
phases vary in focus.

Figure 12.5 What model fits best can depend on the development phase your project is in.

When starting a new project, we’ve had good experiences with the central model. It’s
an efficient way to get a new design system off the ground. In this ramp-up phase,
there’s a lot of work to do—setting up pipelines and tools, making initial decisions,
and creating the first set of standard components. Having a dedicated team that has
no other responsibilities is valuable in this phase.

Central-to-Federated Continuum

Central model.
Planned and
developed by
a strong team.

Federated model.
Teams evolve it
along concrete

use cases.

Potential bottleneck Risk of inconsistency

The models blend well between each other.

Time

Phase 1: Ramp-up

 Technical setup
 Creating awareness
 Defining basics (colors, fonts, grid, …)
 Common components (buttons, typo, …)

Phase 2: Production

 Refining patterns
 Specialized components (ratings, filter, …)
 Extending docs (concrete use cases, …)
 Consolidation

Central model works well Federated model works well

222 CHAPTER 12 User interface and design system
 When the dust has settled, and teams start to get productive, we slowly move
toward the federated model. This way, we ensure that the real use cases drive the
development. We encourage frontend developers from the product teams to learn
about the design system and contribute. Developers and designers from the design
system team move toward the product teams. In this transition phase, it’s common for
people to divide their time between two teams. A designer might spend 50% of their
time on the design system and 50% on the product team. These percentages make
planning easier. They can gradually shift over time.

12.3 Runtime versus build-time integration
You’ve learned a lot about the organizational aspects. Let’s see how we can technically
integrate a pattern library with the team’s applications. First, we’ll talk about different
strategies for rolling out changes.

 Imagine you’ve changed the color of your button component in the central pat-
tern library. What needs to happen so that the user can see it?

 You can find two deployment approaches that people use: runtime integration and
distribution as versioned packages. Figure 12.6 shows both of them side by side.

Figure 12.6 In the Bootstrap model (left), the pattern library deploys its artifacts (JS, CSS, and possibly
images) directly to production. Changes are instantly visible and distributed across teams. With
versioned packages (right), the pattern library offers the components as a package (for example, NPM)
that teams can pull into their application. Teams control when to update to the latest version.

12.3.1 Runtime integration

Twitter Bootstrap is the most famous example of a runtime integration. The concept is
simple. Teams embed a link to a global CSS file that’s maintained by the design system
team. They can style their page by applying CSS classes to the markup. The same goes

1

66 $

Runtime integration aka Bootstrap model Versioned package

Pattern
libraryProduct

team
Product
team

Product
team

CSS
and JS

Production

1

66 $

Pattern
library

Product
team

Product
team

Product
team

v2.0
v2.1

v2.1v2.1v2.0

JS
CSS

template

HTML
JS

CSS
HTML

223Runtime versus build-time integration
for the micro frontends embedded on that page. The CSS classes are globally avail-
able. Here’s a code sample that shows how to embed and use global styles.

<link rel="stylesheet" href="/shared/pattern-library.css">

<button class="btn btn-call-to-action">Buy a tractor</button>

The runtime model is not exclusive to pure styling. If you use client-side rendering,
it’s also possible to provide components that encapsulate styling and internal markup.
Here’s an example of doing it via Web Components.

<script src="/shared/pattern-library.js"></script>

<tractor-store-price reduction="10%" value="$66">

Setting up a pattern library using a runtime integration is pretty straightforward. It’s
simple to develop and easy to use. Another benefit is that the design system team can
roll out changes instantly.

 However, this model has some considerable coupling and autonomy disadvantages:

 Testing in isolation—Micro frontends should be self-contained. With runtime
integration, a team’s user interface doesn’t work in isolation. For it to function,
it’s necessary to include the pattern library’s styles and scripts. Since the design
system team can change these assets at any time, a product team can’t ensure
that its user-interface looks right and is working correctly. They would have to
run their automated test-suite on every pattern library change.

 Single point of failure—With runtime integration, the pattern library becomes a
mission-critical part of the system. An error that slips through can bring down
the complete project, since all teams rely on it.

 No tree shaking or deprecations—Since the design system team cannot know which
components a specific page uses, it’s common practice to include the styling
code for all of them in one big CSS file. This file tends to only grow in size
because there’s no safe way to ensure that an old component is unused. When
you go for the JavaScript components option, you can at least use on-demand
loading strategies to avoid loading unneeded script code.

 Breaking changes—There’s no structured way to handle breaking changes. If the
team wants to refactor the button component in a significant way, they need to

Listing 12.1 /team-decide/product/porsche.html

Listing 12.2 /team-decide/product/porsche.html

Integrating the
pattern library
styles

Using the styles
via CSS classes

Integrating the
pattern library
script which
contains Web
Component
definitions

Using the price component as
markup. It renders the appropriate

styled markup inside its ShadowDOM.

224 CHAPTER 12 User interface and design system
create a new one (for example, .btn_v2) and delete the old one when everyone
has updated their markup.

 Versioning and scoping—It’s hard to establish proper versioning in this model.
There’s also no easy way to prevent leaking styles between different micro
frontends.

The lack of versioning is particularly critical. It means that all teams must use the lat-
est version of the pattern library. You can’t restructure or upgrade the pattern library
in a meaningful way. It would require close coordination and simultaneous deploy-
ments from all teams. The fear of introducing friction incentivizes the design system
team to shy away from making the necessary steps forward. Let’s look at a more flexi-
ble model to distribute a pattern library.

12.3.2 Versioned package

In the versioned model, the pattern library is not a runtime system. Instead, the
design team distributes it as a package that contains all components. The LEGOTM

metaphor works well here. You can think of it as a big box of bricks. The product
teams can grab one of these boxes and take the required bricks out of it. Together
with their own special bricks, they can build features for the customer.

import { Price, Button } from "@the-tractor-store/pattern-library";

function ProductPage() {
return <div>

<Price reduction="10%" value="$66" />
<Button type="call-to-action">Buy a tractor</Button>
...

</div>;
}

INDEPENDENT UPGRADES

The design system team can iterate on the pattern library. They produce new revisions
of the LEGOTM box regularly. An updated revision might include new kinds of bricks
or an updated surface finish. But teams don’t have to upgrade instantly. They can
upgrade at their own pace. An older revision might not look as sweet as the new one,
but it still works fine.

DON’T SHIP UNUSED CODE

With this approach, each team generates its own CSS file. A bundler like Webpack
includes only the pattern library components that a team uses. So if the pattern library
still includes an old component, but no team requires it, the browser won’t have to
download its code. This mechanism leads to quite small CSS files.

Listing 12.3 /team-decide/static/product.jsx

Importing the required components
from the pattern library package

Using the components to
build the product page

225Runtime versus build-time integration
SELF-CONTAINED

You can instruct your bundler to prefix all CSS classes automatically. This way, it’s pos-
sible to achieve proper scoping, and a page can contain micro frontends that use dif-
ferent versions of the pattern library.

 Let’s look at an example. Imagine Team Decide owns the product page, which dis-
plays a price and a button. It also includes a micro frontend from Team Inspire, which
also shows a button:

1 Team Decide uses pattern library version 4 in their applications.
2 The design system team releases a new iteration (v5) in which the buttons have

a new and rounder style.
3 Team Inspire immediately upgrades to this version and deploys its application.
4 Team Decide has other work to do. They’ll update tomorrow.

Here is what the generated production code might look like.

/* based on pattern library v4 */
.decide_price {...}
.decide_button { border-radius: 2px; }
.decide_[...] {}

/* based on pattern library v5 */
.inspire_button { border-radius: 10px; }
.inspire_[...] {}

<div>
only $66 (10% off)
<button class="decide_button">Buy a tractor</button>
<aside>

<button class="inspire_button">Show recommendations</button>
</aside>

</div>

The two buttons on the page have different appearances. Team Inspire’s button is
already on the new rounder style, whereas Team Decide’s button is still on the old
style. Being able to use different versions side by side is an essential step for indepen-
dent deployments. With this approach, a micro frontend is fully self-contained and
doesn’t rely on styles from other teams. The product teams are in control of upgrad-
ing their pattern library and testing the changes before they deploy them.

Listing 12.4 /team-decide/dist/product.css

Listing 12.5 /team-inspire/dist/reco.css

Listing 12.6 h ttps://the-tractor.store/product/porsche

The old button styling
from pattern library v4

The new more rounded button
styling from pattern library v5

Team Decide’s
button references
its own CSS class.

Team Inspire’s button also
references its own CSS class.

226 CHAPTER 12 User interface and design system
THE DRAWBACKS

This approach has a lot of advantages compared to the runtime integration. But it also
has some drawbacks:

 Redundancy —When teams use the same component, the user has to download
the associated code multiple times. You can see this in the preceding example.
We have two versions of the button styling. This redundancy is typically not a
big problem. Since the bundler only includes components that are in use, and
no team uses all components at once, the total CSS file size is usually much
smaller compared to the global Bootstrap model.

 Slower rollouts—Changes in the pattern library take longer to be visible in produc-
tion. The design system team cannot push new updates. They can provide a new
version and inform all the teams. The changes are only visible when all teams
have updated and deployed their application. It might be necessary to encourage
teams to deploy faster to rollout a critical design system bugfix quickly.

 Eventual consistency —Most graphic designers are not comfortable with the idea
that a page can contain different versions of the same component. However,
when teams update on a regular schedule, this is not a pressing issue. Pro tip: In
my last project, we created a dashboard that shows which team is using which
version of the pattern library. Merely showing this information in an aggregated
view leads to faster upgrades by the teams. On another note: Take a look at fig-
ure 12.7. It shows different generations of Amazon’s buttons. These were all
active at the same time in different areas of the site. The fact that Amazon does
it should not be an excuse to discard consistency, but having temporal inconsis-
tencies can be perfectly fine.

Figure 12.7 Screenshot of different Amazon button styles from different parts of the site

12.4 Pattern library artifacts: Generic versus specific
Now let’s take a closer look at the technology of the pattern library. Its output has to
be compatible with the technology stack of the teams. There’s no gold standard for
shipping reusable components. Different options exist, and they all have their bene-
fits and drawbacks. Some don’t support server-side rendering, some require a specific
JavaScript framework, and others support styling but not templating.

Different button generations
on the same site

227Pattern library artifacts: Generic versus specific
12.4.1 Choose your component format

User interface components consist of three parts:

1 Styling in the form of CSS code.
2 Templating to generate the components' internal HTML markup based on the

provided inputs. You can execute the templates on the server and/or client,
depending on its format.

3 Behavior (optional) for components the user can interact with, like tooltips or
modals. They require client-side JavaScript to work.

Let’s explore our options. Look at figure 12.8 and take some time to get an overview.
The diagram shows different formats a pattern library can produce.

Figure 12.8 Different artifacts a pattern library can produce. Some output formats have
technical implications for the team. When the pattern library only exports Vue.js components,
all teams need to use Vue.js to be compatible.

We’ll go through the diagram line by line.

PURE CSS
The pattern library provides its component styling via CSS classes. Twitter Bootstrap is
the role model in this category. Teams need to craft the components markup accord-
ing to the pattern library’s documentation:

Pattern
library

Team A

Team B

Team C

CSS

Pure CSS

Pattern
library

Team A

Team B

Team C

Framework-specific components

Pattern
library

Team A

Team B

Team C

Framework-agnostic components

Vue.js

Web
Components

Pattern
library

Team A

Team B

Team C

Multiple framework components

Vue.js

Angular

Pattern
library

Team A

Team B

Team C

CSS
and JSX

Common templating language (e.g. JSX)

hyperapp

…

JSX compatible

228 CHAPTER 12 User interface and design system
 Benefits
– Easy to implement.
– Works server- and client-side.
– Compatible with all tech stacks that can generate HTML.

 Drawbacks
– Styling only.
– Teams need to know the internal markup.
– Changing the component markup is hard.

FRAMEWORK-SPECIFIC COMPONENTS

The pattern library uses the component format of one specific framework. An open-
source example is Vuetify,12 a component library designed for Vue.js. This model
requires all teams to use the chosen JavaScript framework. The component formats of
the popular frameworks have been pretty stable—even across major versions. This for-
mat stability means that teams have to use the same framework but aren’t required to
run the same version:

 Benefits
– Easy to implement.
– Works server- and client-side.
– Components integrate seamlessly with the team’s code.
– Components can use the full feature-set of the framework.

 Drawbacks
– All teams must use the same framework.

FRAMEWORK-AGNOSTIC COMPONENTS

Web Components integrate well with all modern frameworks.13 You can also use them
on plain old HTML pages. Have a look at the Duet Design System 14 as a useful refer-
ence. The developers built it using Stencil.15 In contrast to the “pure CSS” approach,
Web Components also encapsulate templating and behavior:

 Benefits
– Supported by all browsers
– Future-proof (web standard)
– Compatible with plain HTML and frameworks

12 See https://vuetifyjs.com/.
13 See https://custom-elements-everywhere.com/.
14 See https://www.duetds.com/.
15 Stencil is a toolchain for building reusable, scalable Design Systems. See https://stenciljs.com/.

https://vuetifyjs.com/
https://custom-elements-everywhere.com/
https://www.duetds.com/
https://stenciljs.com/

229Pattern library artifacts: Generic versus specific
 Drawbacks
– Only works client-side16

– JavaScript required (makes progressive enhancement hard)

MULTIPLE FRAMEWORK COMPONENTS

The model is related to framework-specific components. But instead of supporting
one framework, the pattern library exports its components in different formats. Pro-
viding more than one format requires extra work because you will need to implement
the framework-specific parts multiple times. However, the concepts, component list,
and the CSS styling stay the same.

 Google’s Material Design is a large-scale example of this. The design system itself
defines styling, markup documentation, and scripts. Projects like Material UI (React)
or Angular Material take the “generic” design system and transform it into a frame-
work-specific format:

 Benefits
– Works server- and client-side.
– Components integrate seamlessly with the team’s code.
– Components can use the full feature set of the framework.

 Drawbacks
– More work required.

COMMON TEMPLATING LANGUAGE (E.G. JSX)
It doesn’t have to be a specific component format. You can also ship HTML templates
and styling (for example, via CSS Modules). Many JavaScript libraries and frameworks
support the JSX templating format. This way, it’s possible to write the HTML template
once and use it in a Hyperapp, Inferno, Preact, or React application.

 The lifecycle methods and event handling in these frameworks are not the same.
This difference means that you can’t include behavior. Components have to be state-
less. But if your design system mainly includes essential UI components, this is not an
issue.

 Have a look at X-DASH17 from The Financial Times to see a real world example of
this method. We are using the JSX approach in newer projects and are happy with its
trade-offs:

 Benefits
– Works server- and client-side.
– Supports all frameworks compatible with the templating language.

16 Yes, there are ways to render them on the server. But there’s no standardized templating in the current web
components spec (https://github.com/whatwg/html/issues/2254). That’s why all current solutions require
a lot of hacking and fiddling.

17 See https://financial-times.github.io/x-dash/.

https://github.com/whatwg/html/issues/2254
https://financial-times.github.io/x-dash/

230 CHAPTER 12 User interface and design system
 Drawbacks
– You can’t include behavior.
– Implementations might vary and speak different “dialects.”

NOTE You can use this model with any templating language. But be aware
that implementations aren’t always 100% compatible with each other. For
example, we had significant issues with using handlebar templates across lan-
guages like Scala, Python, and JavaScript. Be confident that your model works
and its limitations are well understood. Create technical spikes to verify it
before you roll it out company-wide.

12.4.2 There will be change

As I said before, there’s no clear winner. The right choice for your project or company
depends on your needs.

 However, if you’ve made a choice, you should communicate the contract between
the pattern library and the teams. Does your integration rely on a framework compo-
nent format, is it based on a specific DOM structure that’s documented somewhere,
or do teams need to support a dedicated templating language?

 This decision impacts the team’s autonomy long-term. Switching to another model
later is costly and cumbersome.

BE OPEN FOR CHANGE

A good option for being open to future trends and technologies is to have the “multi-
ple framework components” model in mind from the beginning, even if you decide to
start with Vue.js components. If your concepts are stable and you architect your CSS in
a reusable way, it will be easier to add new output formats like Web Components,
Angular, or Snowcone.js18 later on.

KEEP IT SIMPLE

Another tip is to keep the central components as dumb as possible. Try to keep the
behavioral aspects to a minimum.

 Let’s take a navigational tree component as an example. It’s a vertical list of links
you can expand to see its nested links. The pattern library could provide a fully-
fledged component which includes functions like expand/collapse and text search,
and has hooks for lazy loading subtrees. But getting all of these aspects right and ful-
filling every team’s needs is challenging.

 You could also go the other route and let the pattern library only provide the
building blocks and states this tree component can have: expanded/collapsed items,
active state, and position of a search box. With this approach, the teams have more
work to do because they need to build the mechanics (toggle, search, …) themselves,

18 This might be the hot new thing in a couple of years. You never know :)

231What goes into the central pattern library?
but they also have much more flexibility. They could decide to pick an open-source
tree library that fits their needs and feed it with the styled building blocks from the
pattern library. Focusing on the visual aspects makes your pattern library more flexi-
ble and reduces feedback loops with the teams.

 Finding the right balance between centralized and distributed is not always easy. In
the next section, we’ll dig a little deeper into this question.

12.5 What goes into the central pattern library?
Having all user interface elements visible and documented in the central pattern
library is valuable. The central documentation makes it easy to get an overview. But
sharing a component comes with costs.

12.5.1 The costs of sharing components

Changing a component in a team’s application code is much easier than changing a
component in the central pattern library because central components

 Live in another project. You have to publish a new version to see the change in the
team’s code.

 Might be used by other teams. You need to think about the possible consequences
of these teams.

 Must conform to higher quality standards. You want to ensure that even people
from outside your team understand a component’s capability and the reasoning
behind it.

 Might require code review. Depending on your design system development process,
you might instantiate a dual control principle to guarantee a high standard.

These aspects make changing a component in the central pattern library much harder
than directly changing it in your own code. Putting all components into the pattern
library would slow down the development. That’s why you need to consciously decide
what goes into the central pattern library and what should better be local to a team.

12.5.2 Central or local?

In a lot of cases, the decision whether a component should be central for all or local for
one team is easy to make:

 The definition of the sale color should, of course, be global. The same goes for
an icon set or the styling of an input field.

 Advanced patterns like a payment options box or the concrete layout of the
product page should be controlled by the respective teams.

But there’s a middle-ground where these decisions are not that clear. Is the filter navi-
gation or a product tile a central component? Let’s look at some vectors that help you
make your decisions.

232 CHAPTER 12 User interface and design system
COMPONENT COMPLEXITY

The atomic design methodology19 is quite popular. It uses the chemistry metaphor of
atoms, molecules, and organisms to sort components by their complexity. This meta-
phor also highlights the fact that larger components are a composition of smaller
ones. Figure 12.9 shows the atomic design categories from lowest complexity (design
tokens) to highest complexity (features and pages).

Figure 12.9 The atomic design methodology organizes the design system by complexity. The
central pattern library should include the basic building blocks (tokens, atoms, molecules).
More sophisticated components (organisms, features, entire pages) should be under a team’s
control. The middle ground around molecules and organisms is fuzzy.

This scale maps well to our central vs. local question. A good rule of thumb is to share
simple components and put complex ones under team control.

 But this model is fuzzy in the middle of the scale. Developers like to argue about
whether a particular component is a molecule or an organism, but these discussions
are almost always theoretical and fruitless. Comparing code complexity is not the only
important factor.

REUSE VALUE

The reusability of a component is a reliable indicator. Components that different
teams need might go into the central pattern library, even if they are not simple. Pat-
terns like accordions or carousels are good examples here.

 However, you should be careful with this rule. The focus of larger components
might change over time. Here is an example:

 Team Inspire uses the product tile component for their recommendations. Team
Decide has built a wishlist feature. They use the same product tile on their wishlist
page. The central component worked great at the start, but over time both teams
come up with conflicting requirements. Team Inspire wants the component to be
more compact to fit more tiles in a recommendation slot. Team Decide needs to add
more functions and product details to it. Moving the component out of the central
pattern library and letting each team work on their own version of it might be an
option. Another alternative can be to reduce the product tile component to its
essence. The new component could provide dedicated slots where teams can add
functionality if they need to.

 These conflicts are natural because nobody can foresee the future. It’s essential to
reevaluate your decisions regularly and be open to revising them.

19 See Brad Frost, “Extending Atomic Design,” Brad Frost, https://bradfrost.com/blog/post/extending-atomic-
design/.

ComplexSimple
Design tokens Features / pagesAtoms Molecules Organisms

Central pattern library Team responsibility

https://bradfrost.com/blog/post/extending-atomic-design/
https://bradfrost.com/blog/post/extending-atomic-design/

233What goes into the central pattern library?
DOMAIN SPECIFIC

Domain-specific components are good candidates to be team-owned. To identify this,
you can ask the question: “Which team has the interest in changing this component, and
why?” When there’s a team that frequently updates a component to improve its busi-
ness, it’s a reliable indicator that this component should be local to that team.

 A filter navigation is a good example here. At first sight, a list of filters looks pretty
simple. However, when you have a product team with the mission to “make finding
products easier,” this team will want to change this component frequently. They want
to test different variants, collect feedback, and improve the component. Making this
team jump through hoops by centralizing the component will slow them down and
block innovation.

TRUST IN TEAMS

These three properties (complexity, reusability, and being domain-specific) can give
you a good idea of where a component should live. Don’t be afraid to give up central
control and let teams own and evolve specific components.

 But it’s not just about control. If a component is not part of the global pattern
library, it’s hard for designers to keep an overview. Next up, we’ll look at the concept
of local pattern libraries to mitigate this.

12.5.3 Central and local pattern libraries

It’s not a hard rule that you must have a single design system. There’s the concept of
tiered design systems 20 that perfectly fits into our micro frontend architecture. The idea
is to have a central pattern library that defines the basics, and other pattern libraries
that build on it and add their use case-specific components. In our case, each team
can have its own local pattern library. Figure 12.10 illustrates this.

Figure 12.10 A two-tiered pattern library approach. Each micro frontend team has its
own local pattern library where it develops its domain-specific components.

20 See Nathan Curtis, “Design System Tiers,” Medium, https://medium.com/eightshapes-llc/design-system-tiers-
2c827b67eae1.

Central

Team A

Local

Team B

Local

Team C

Local

Common components
colors, typography, forms, buttons, …

Central and local
pattern libraries

Domain-specific
components
filter navigation,
payment selection,
promotional teasers,
…

https://medium.com/eightshapes-llc/design-system-tiers-2c827b67eae1
https://medium.com/eightshapes-llc/design-system-tiers-2c827b67eae1

234 CHAPTER 12 User interface and design system
A team can only use the components from its own local pattern library. But all teams
can browse the component catalog of the other teams. This visibility is a good starting
point for spotting cross-team inconsistencies. It’s also a solid basis to start a “central vs.
local” discussion.

 The central and local pattern libraries could also use the same tool to develop and
generate the design system documentation site. Popular tools for this are Storybook,21

Pattern Lab,22 and UIengine.23 Using the same tool has the advantage that moving a
component from the central to the local pattern library (or the other way around) is
as easy as moving a component folder.

 Now you’ve learned a lot of aspects that can help you when implementing a design
system in a micro frontends project. In the next chapter, we’ll broaden our view and
look at other organizational implications this architecture introduces to your company.

Summary
 Every micro frontend team develops its own user interface. A central design sys-

tem that all teams can use helps to deliver a consistent user experience across
all micro frontends.

 A shared design system introduces coupling between the teams. All teams must
work with the system and be compatible with its technology.

 All visible features the product teams produce rely on the design system.
Changing the technical architecture of the design system afterward is cumber-
some and costly.

 The design system exists to help the product teams ship features and be more
consistent. It does not create value on its own.

 Developing a design system is a continuous process. Ensure that it’s maintained
properly and doesn’t get out of date. Don’t let it become a zombie design system.

 The design system can become a bottleneck when teams request more changes
than the central team can handle. Product teams might need to wait and delay
features.

 You can develop the design system in a federated way. Developers and designers
from each team contribute to the system. A small core team ensures quality and
has an eye on consistency. This model can scale and works well with the micro
frontend principles.

 The central and federated development models are not mutually exclusive. You
can move between them.

 There are two ways to integrate the pattern library into your project: runtime
integration and via versioned packages.

21 See https://storybook.js.org.
22 See https://patternlab.io.
23 See https://uiengine.uix.space. (This is the tool we are using in most projects.)

https://storybook.js.org
https://patternlab.io
https://uiengine.uix.space

235Summary
 With runtime integration, the design system team deploys directly to produc-
tion, and all product teams must use the latest version. This model has consid-
erable drawbacks for team autonomy, since teams cannot ensure that their
software is always working correctly.

 Distribution via versioned packages enables the product teams to upgrade the
pattern library at their own pace. A team’s micro frontend can be self-contained
because it doesn’t rely on external dependencies at runtime.

 There are different formats (CSS only, framework-specific …) a pattern library
can publish their components in. The format has technical implications for the
team. Some don’t work server-side; others require all teams to use the same
JavaScript framework.

 Frontend tools and libraries change over time. Try to build your design system
in a way that makes adapting to changes easy.

 Sharing components across teams is not free of cost because they require a
higher-quality standard. The central pattern library should include basic build-
ing blocks. More complex and domain-specific components should be local to
the team that needs it.

 A product team can have its own local pattern library. It presents all the compo-
nents this team owns. This is a good way for designers and developers to get an
overview, spot inconsistencies, and start discussions.

Teams and boundaries
Throughout this book, we’ve focused on the technical aspects of micro frontends.
You learned techniques to integrate independent user interfaces that form a
greater whole. We talked about strategies to mitigate architecture-inherent issues
like performance and providing a seamless user interface. But why are we doing all
this?

 Yes, there are some technical benefits that come with this architecture. Smaller
software projects are simpler to build, test, understand, and rebuild than a mono-

This chapter covers
 Structuring your teams to maximize the benefits

of the micro frontends architecture

 Fostering a healthy amount of knowledge-sharing
between the teams

 Identifying common crosscutting concerns and
highlighting different strategies to address them

 Illustrating the challenges a diverse technology
landscape can introduce

 Helping new teams to get up and running quickly
236

237Aligning systems and teams
lith. Being able to use different tech stacks in different areas of the product can also
be a valuable asset.

 However, the most significant benefits our composable frontend architecture unlocks are the
organizational ones. It makes it possible to parallelize development. Properties like hav-
ing real team ownership and local decision making can lead to faster innovations.

 You might have noticed that I’ve used the word team a lot in this book—it occurs
1,723 times if I’ve counted correctly. This is not by accident or lack of creativity. It
would have been perfectly fine to use words like micro frontend application or software
system in most cases to understand the described techniques. But it’s not about the soft-
ware. It’s about the people designing and building it.

 I’ve talked to a lot of smart people who successfully introduced a micro frontends
architecture in their company. In all cases, the motivation to go down this road was
the organizational and not the technical benefits—setting up individual and robust
teams and empowering them to build and improve a specific area of the product.

 That’s what we’ll talk about in this chapter. What organizational and cultural
changes should you make to leverage the full potential of this model? How can you
address cross-cutting concerns without reinventing the wheel in each team? Lastly
we’ll look at the topic of technology diversity. How much freedom should a team have
to pick their stack? Let’s start with a bit of theory.

13.1 Aligning systems and teams
If you have ever explored the concept of microservices before, you’ve probably come
across Conway’s Law.1 In the 1960s, computer programmer Melvin Conway formulated
the hypothesis that the communication structures of an organization are reflected in
the technical systems they create.

 This means that if you let one team build a product, it will likely produce a more
monolithic system. If you give the same task to four teams, they’ll probably come up
with a more modular solution.

 The importance of keeping the structure of the organization and its technical sys-
tems in sync has been well researched2 and understood in modern software develop-
ment. Here’s a quote from the book Organizational Patterns of Agile Software Development,
published in 2004:

If the parts of an organization (e.g., teams, departments, or subdivisions) do not closely
reflect the essential parts of the product […], then the project will be in trouble…
Therefore: Make sure the organization is compatible with the product architecture.

James O. Coplien and Neil Harrison

1 See https://en.wikipedia.org/wiki/Conway%27s_law.
2 See Alan D. MacCormack, et al., “Exploring the Duality between Product and Organizational Architectures:

A Test of the Mirroring Hypothesis,” http://mng.bz/aRyj.

https://en.wikipedia.org/wiki/Conway%27s_law
http://mng.bz/aRyj

238 CHAPTER 13 Teams and boundaries
For a micro frontend architecture, this means that the team boundaries should align
with the boundaries of the vertical applications that form the product. Figure 13.1
illustrates this.

Figure 13.1 Team structure and software structure should align. Having one team working on
multiple applications, or even worse, multiple teams working on the same application, can create
issues. An architecture where one team owns one application will likely be more effective.

13.1.1 Identifying team boundaries

Ok, understood! We should keep team and software structure aligned. But how do we
find out what structure is beneficial for the product we want to create? How do we
identify sound boundaries? Here are three methods that can help you.

DOMAIN-DRIVEN DESIGN (DDD)
Domain-driven design is a popular approach for structuring software. It acknowledges
the fact that it’s hard to create a consistent model for a project of a specific size. It pro-
vides patterns to handle this complexity by creating smaller sub-models that have an
explicit relationship with each other.

 DDD provides a set of concepts and tools to identify and isolate areas in your proj-
ect. It introduces the idea of analyzing the language of different experts and depart-
ments in a company: ubiquitous language.

 By analyzing differences in vocabulary, it’s possible to identify bounded contexts, one
of DDD’s core concepts. You can see a bounded context as a group of business processes
that are related to each other. A checkout process could be viewed as a bounded con-
text. It consists of different sub-topics like delivery and payment which are closely
related to each other. We won’t go into more detail on DDD in this book. Still, there’s
a lot of great content3 you can check out if you want to learn about it. A bounded con-
text is an excellent candidate to become its own micro frontend application and team.

3 See tag domain driven design, http://mng.bz/6Ql6, and Domain-Driven Design, by Eric Evans, 2003, Addison-
Wesley Professional..

App 3App 1 App 2

Te
am

 A

Team
 B

Team C

App 3App 1 App 2

Team A Team B Team C

 PreferAvoidTeams work on
different applications.

Teams only work on
their own application.

http://mng.bz/6Ql6

239Aligning systems and teams
USER-CENTERED DESIGN

Let’s set aside our IT glasses and put on our product management scarf for a minute.
A critical task in product design is to pinpoint user needs. In day-to-day business, it’s
easy to get lost in optimizing our current products.

 If we want a sustainable relationship with our customers, it’s essential to under-
stand their real motivations. What do they want when they come to us? How can we
make their life easier?

 Techniques like design thinking4 or jobs to be done5 provide solid mental models to
reason about a user’s motivation. A famous quote6 from Theodore Levitt highlights
the difference between our current offers and the users' needs:

People don’t want to buy a quarter-inch drill. They want a quarter-inch hole!

Theodore Levitt

Modeling your teams and systems around your customers needs can be a valid choice.
It gives the teams a clear goal that’s focused on what matters most: your user.

 In the example of Tractor Models, Inc., we’ve structured the teams and systems
along the typical buying process of our customers. A customer goes through different
phases like “browsing the site for interesting products” (Team Inspire), “considering if
a specific product would be a good choice” (Team Decide), and finally “doing every-
thing that’s necessary to acquire the desired product” (Team Checkout). The cus-
tomer has different needs in these three phases and the individual teams can
specialize in addressing them.

 You can apply these phases and user needs to other business areas. Let’s look at
another business. You have a company that sells Internet of Things devices like smart
bulbs and sensors. Here you might have a “Which devices do I need?” phase, followed
by a “How do I set it up?” phase. In the third phase, everything is running and the user
wants to interact with the devices—checking measurements or switching the light.
These three phases are good candidates to structure your software around. They don’t
have too much overlap and the user has very different needs in them.

EXAMINING EXISTING PAGE STRUCTURES

A more hands-on method for identifying boundaries is to look at the page structure of
your current project. This method works when you already have a functioning busi-
ness model. Print out all page types on a piece of paper. Gather a group of experi-
enced colleagues and group the pages by using your intuitions.

 In most cases, a page represents a specific use case or task your user needs to do.
Looking at pages is not a perfect solution. Some pages might have more than one pur-
pose. Print a copy of your page and use scissors to cut out parts from it. These cutouts

4 See https://en.wikipedia.org/wiki/Design_thinking.
5 See Clayton Johnson, “The Jobs to be Done” Theory of Innovation,” Harvard Business Review, http://mng.bz/

oP7v.
6 See Clayton M. Christensen, et al., “What Customers Want from Your Products, https://hbswk.hbs.edu/item/

what-customers-want-from-your-products.

https://en.wikipedia.org/wiki/Design_thinking
http://mng.bz/oP7v
http://mng.bz/oP7v
https://hbswk.hbs.edu/item/what-customers-want-from-your-products
https://hbswk.hbs.edu/item/what-customers-want-from-your-products

240 CHAPTER 13 Teams and boundaries
are candidates to become fragments. This method is an excellent entry to start more
in-depth discussions.

 If you’ve established groups, you can try to verify your hypotheses by looking at ana-
lytics data you’ve gathered in the past. Do the usage patterns align with your page groups?

 Now that we have an idea of how to structure the teams, let’s talk about who should
be on the teams.

13.1.2 Team depth

The integration techniques described in this book are all frontend-related. But micro
frontends is not an architecture limited to the frontend—on the contrary. It unfolds
its full potential when it covers the complete stack. Figure 13.2 shows different depths
of integration and their potential benefits.

Figure 13.2 A micro frontend team can be limited to the frontend (left). However, when
you add more disciplines like backend and operations to the team (middle), it becomes
easier to ship features end-to-end. An ideal team also includes business experts and
stakeholders (right). Then it’s able to make all its decisions locally to create customer value.

Let’s look more closely at the three approaches described in the diagram.

FRONTEND ONLY

In this model, you have a backend, be it monolithic or microservices-style. The vertical
micro frontend teams sit on top of this backend. In case of a microservices architec-
ture, each frontend might have its own backend for frontends (BFF)7 to communicate
with the services.

7 See Sam Newman, “Backends For Frontends,” https://samnewman.io/patterns/architectural/bff/.

Frontend only

 Scaling development
 Easier rebuilds

Full-stack team
Frontend, backend, ops

 More creativity
 Less coordination

Full autonomy
Frontend, backend, ops,
business, stakeholder

 Fast trial of ideas
 Adapt to market quickly

And thesePossible benefits And these

TeamTeam Team

https://samnewman.io/patterns/architectural/bff/

241Aligning systems and teams
 This approach has some real benefits compared to, for example, a monolithic
single-page application:

 Scaling development—Here the Two-Pizza Team Rule we talked about in chapter
1 comes into play. Assuming you’ve come up with good boundaries, it’s more
efficient to have three teams with five developers, each working on a dedicated
piece of software, than to have a 15-person team working on a large code base.
It’s easier for developers to understand the part of the system they’re responsi-
ble for. When you’ve established a micro frontends architecture with three
teams, all patterns are in place to create a fourth team that develops an entirely
new part of the application. The other three teams can go on with their regular
business. Integrating the new micro frontend with the existing application is a
small amount of work.

 Easier rebuilds—Modernizing an existing micro frontend is a more straightfor-
ward task. You don’t have to think about the complete application. You can
upgrade and rebuild team-by-team. No all-hands-on-deck, big-bang migrations.

FULL-STACK TEAM

In this model, we make our micro frontends teams go beyond the frontend-backend
line. Each team includes developers from the frontend, backend, operations, or data
science. We form a cross-functional team that combines competences from database
to user interface. Here are the benefits of the full-stack approach:

 More creativity—Cross-functional teams combine people with different back-
grounds who provide different perspectives on a problem. This diversity can
lead to better and more creative solutions.8

 Less coordination—The most significant benefit of the end-to-end team model is
that it reduces waiting time. All features that can be accomplished inside team
boundaries don’t require other teams to become active. This autonomy elimi-
nates the need for organizing meetings with other teams, formalizing require-
ments, and global ticket prioritization.

Moving to this deeply decoupled model introduces some unique challenges: How do
teams share data in the backend when there are no shared services? This is typically
solved by accepting data redundancy and asynchronously replicating data from other
systems. In chapter 6 we talked about different technical solutions to architect this.

FULL AUTONOMY

We can take this one step further by also including domain experts and business peo-
ple in the team. In most companies, these people typically work in departments like
legal, marketing, risk, customer support, logistics, controlling, and so on. These
departments specify requirements that the “IT people” must implement. Breaking up
this traditional boundary and moving these experts closer to the development teams

8 See https://en.wikipedia.org/wiki/Cross-functional_team#Effects.

https://en.wikipedia.org/wiki/Cross-functional_team#Effects

242 CHAPTER 13 Teams and boundaries
is not an easy task. It’s a slow transition that must be encouraged by the top of the
organization.

 Having expertise like marketing, legal, or customer support directly available in a
development team can unlock further benefits:

 Fast trial of ideas—Moving from a formal requirements and prioritization pro-
cess to a basis where you can exchange ideas at eye level can improve your prod-
uct. Here’s a small-scale example: In our last project, the team developing the
checkout system invited people from the call center to its end-of-sprint meet-
ing. A developer presented the new voucher system. A call center employee
interrupted and described the fact that older customers are often stressed by
the minimum order value—especially if their shopping cart total is only slightly
below it. In this meeting, they came up with the idea to make the minimum
value constraint more tolerant: communicating a minimum of $20 but enforc-
ing only $18. This trivial software change had a measurable effect on customer
satisfaction: fewer support calls and a more generous company image. Ideas
and changes like this can make a big difference.

 Adapt to market quickly—The digital services landscape and your user’s expecta-
tions can change fast. New forms of payment methods, integrations with social
platforms, and communications channels emerge. When all people that are
necessary for strategic decisions work on the same team, you can move quicker.

A general rule of thumb is that extending your vertical teams deeper into the organi-
zation will likely increase the speed and quality of these teams' work. If you want to get
deeper into this topic, the Agile Fluency Model is a good starting point. The model
describes four fluency zones an agile team can reach.9 A team in the first zone (Focus-
ing) leverages basic agile practices like scrum to improve its work. Running a micro
frontends architecture with full-stack teams aligns with the second stage: Delivering. The
full autonomy approach maps to the third agile fluency stage: Optimizing.

 A development team can decide to adopt the micro frontends architecture for
technical reasons. But extending this model to the entire development team or even
an organization is a significant management task. Let’s briefly talk about the cultural
changes that come with it.

13.1.3 Cultural change

The vertical architecture plays well with having a user-focused culture. Every team
delivers to the customer directly.

 This mentality is often already part of the DNA of startups. That’s why the pro-
posed vertical team structure might feel like a natural way of growing a startup.

 Large traditional organizations have a harder time moving to a more vertical archi-
tecture. They often think in short-term projects rather than long-term products. Also,
the concept of ownership plays a vital role in running this architecture successfully.

9 See https://www.agilefluency.org.

https://www.agilefluency.org

243Sharing knowledge
 You want teams to identify with the product they create and make it more valuable
for the user. Teams should be empowered to make decisions, conduct experiments,
and learn from failures. Hierarchies and department structures might get in the way. I
think having an open culture based on agile values10 is a prerequisite for getting the
most out of a micro frontend-style architecture.

13.2 Sharing knowledge
The cross-functional team structure optimizes communication along with a business
domain (vertical). This model is good because it helps to focus on the user, but it also
introduces challenges: How do you avoid reinventing the wheel in every team?

 Ok, granted—the majority of the work in these teams is not the same. Developers
building a fast-loading product list are faced with other challenges than the develop-
ers who are architecting a registration form that has to work in all countries around
the world.

 But there are aspects that all teams share. What are the right strategies to automat-
ically test the software? What’s a good way to handle state inside my application? “I’ve
encountered a strange issue. I wonder if anyone else has this problem?”

 Let me give you a real-world example of insufficient cross-team communication. In
my last project, we’ve been developing an e-commerce shop with five teams staffed
from three software companies. Half a year into the project, a co-worker from one of
the other companies gave a talk on debugging Node.js performance at a conference
in Hamburg. I attended his talk because I was curious. On stage, he referred to a mys-
terious problem he’d been tracking down for the past few weeks. He was convinced
that it had to be something in his team’s application code. The behavior he described
was instantly familiar to me because I’d encountered something very similar in our
team’s application. After the talk, we spoke and shared our findings. It became appar-
ent that it had to be an issue with the hosting infrastructure our applications ran on.

 But the fact that we had to meet at a public conference to figure this out was a little
disturbing. We could have saved each other a considerable amount of time and head-
aches if we had spoken to each other earlier.

13.2.1 Community of practice

In the early '90s, the concept of a community of practice (CoP)11 was formulated. It
describes ways to spread knowledge across teams. A CoP is a group of people that
share a craft or profession. In our example, all people doing frontend work could be
part of the same CoP. These groups create their communication channel to exchange
information on a specific technology, ask for help, or share learnings.

 Spotify is famous for its agile and team-focused organization structure. They also
organize in end-to-end teams. They’ve institutionalized communities of practice

10 See https://agilemanifesto.org/.
11 See https://en.wikipedia.org/wiki/Community_of_practice.

https://agilemanifesto.org/
https://en.wikipedia.org/wiki/Community_of_practice

244 CHAPTER 13 Teams and boundaries
called guilds.12 There, like-minded people from different parts of the organization can
exchange knowledge. Figure 13.3 shows some example guilds that form horizontal
channels across our otherwise vertical organization structure.

 Guilds typically have a dedicated communications channel like a Slack group. All
guild members meet regularly. In our projects, short guild meetings happen
(bi)weekly via video call to discuss recent issues. From time to time, the guild also
organizes longer in-person workshops for diving deeper into a specific topic.

 Typical guilds in our projects are frontend, backend, UX/design, analytics, infra-
structure, data-science, coaching, security, and macro-architecture.

13.2.2 Learning and enabling

Having a cross-functional team that’s able to handle the complete stack flawlessly
sounds terrific on paper. In practice, it is rarely possible to assemble a team that is
capable of developing customer features while also mastering all non-functional
requirements such as performance, security, or testing. Being faced with these expec-
tations as a team can be intimidating.

 In some areas, technical developments like cloud hosting play in our favor. A team
can offload tasks like “managing real hardware” to a cloud provider. These services
make a You build it; you run it! approach more realistic.

 But that’s not possible for all topics. Learning and improving is an integral part of
forming a cross-functional team. Having each team identify and formalize its strengths
and weaknesses can speed up the learning process.

 CoPs can play a central role in education. A developer from Team A who has expe-
rience in analytics can teach other guild members and help them to level up their

12 See Darja Smite, et al., “Spotify Guilds,” ACM, March 2020, http://mng.bz/4Awv.

Frontend Guild

Analytics Guild

Kubernetes Guild

Team Inspire Team Decide Team Checkout

Knowledge
exchange

Members
from all teams

Meet
regularly

Figure 13.3 A guild creates a room for people from different teams that share an
interest or profession. Their primary goal is to exchange knowledge.

http://mng.bz/4Awv

245Cross-cutting concerns
skills. For some topics, it might also be a good option to hire an external mentor to
support a guild.

13.2.3 Present your work

Another way to exchange information is by presenting your team’s work. This way,
teams have an idea of what the others are working on. This can be in the form of a
real on-stage presentation where all teams show what they’ve accomplished and
learned in the last month. But it can also be in the form of a small internal blog post.

 Since all teams work in different areas, these presentations usually don’t have much
immediate value for the others. However, they enable moments like, “Wait, hasn’t Team
Inspire also built a feature with Apache Spark? Let’s talk to them first.” Rituals like these
can also strengthen group cohesion and avoid an “us vs. them” mentality.

13.3 Cross-cutting concerns
Let’s dig a little deeper into these cross-cutting concerns. Yes, rituals like guilds can
help to spread knowledge, but let’s look at some concrete examples of how to address
common topics.

13.3.1 Central infrastructure

Some cross-cutting concerns require dedicated infrastructure. Examples of this are
your version control system, continuous delivery pipeline, analytics, dashboards, mon-
itoring, error tracking, hosting setup, and shared services like a load balancer. Each
team could make these choices on its own. However, these are all general topics most
professional software projects need. Having each team figure out a solution might not
be the best use of their time.

 Establishing a shared set of infrastructure all teams can use is a good idea. There
are different ways to organize this.

SOFTWARE AS A SERVICE (SAAS)
For commodity products, it’s often easiest to use an off-the-shelf product like Ama-
zon’s AWS for infrastructure and GitLab for version control and pipelines. Using stan-
dardized services does not introduce inter-team coupling. All teams communicate
directly with the provider of the service. Make sure that each team has its sub-account
or an explicit namespace to avoid conflicts. If a team has a strong need to switch to
another provider, there should be no technical hurdles.

 Sometimes going for a SaaS solution is not an option. The reasons for this might
be the price or lack of functionality. If you need to run an infrastructure component
yourself that all teams can use, you have two options: having it owned by one of the
product teams or introducing a dedicated infrastructure team.

OWNED BY ONE PRODUCT TEAM

In this model, the product teams take responsibility for the self-hosted central ser-
vices. Team A might be responsible for setting up, running, and maintaining the
shared load balancer. Team B might run a private NPM registry that all teams can use.

246 CHAPTER 13 Teams and boundaries
Having clear responsibility is essential to ensure that these services receive the atten-
tion and care they need. By spreading the services among the teams, the burden that
each team has to carry is reduced. This model works well if the number of self-hosted
services is not too high and the services themselves are easy to maintain.

WARNING Share generic infrastructure components only. Avoid sharing busi-
ness logic this way, because it creates coupling and undermines team autonomy.

CENTRAL INFRASTRUCTURE TEAM

If the preceding methods don’t work for you, there’s always the option to create a ded-
icated infrastructure team that takes responsibility for all shared infrastructure
aspects. But this pure infrastructure team does not fit well into our otherwise vertical
and customer-centric architecture. It has the potential to become a bottleneck that
hinders feature development.

13.3.2 Specialized component team

Sometimes there is neither a managed service nor an open source solution that fulfills
our need. This is where the concept of component teams comes in.13 Spotify calls these
teams infrastructure squads.14

 Say different product teams need to talk to a legacy ERP system that does not sup-
port modern APIs. Having a dedicated team that develops a service or an abstraction
library might save the product teams a lot of time. Another example of a component
team is the central design system team we talked about in the previous chapter.

 Component teams don’t provide direct value. Their goal is to enable the product
teams to move faster. Since the introduction of a component team creates friction and
inter-team dependencies, its use should be carefully considered. These two questions
can help with deciding if you should use a component team or not:

 Is the service it provides required by many teams?
 Does building the service require specialized technical expertise that is not present in

the product teams?

If you can answer one, or better both questions with a clear yes, it might be worth
thinking about a component team.

13.3.3 Global agreements and conventions

Not all cross-cutting concerns manifest themselves in a shared service or library. Often
an agreement to which all teams adhere is enough. For topics like currency formatting,
internationalization, search engine optimization, or language detection, it’s often per-
fectly fine to have central documentation.

13 See “Organizing by Feature or Component,” https://www.scaledagileframework.com/features-and-
components/.

14 See http://mng.bz/XPRp.

https://www.scaledagileframework.com/features-and-components/
https://www.scaledagileframework.com/features-and-components/
http://mng.bz/XPRp

247Technology diversity
 All teams agree upon the described canonical way and implement it in their appli-
cations. Yes, this may result in redundant code, but for topics that are not critical or
don’t change frequently, it’s often the most effective way.

13.4 Technology diversity
The micro frontends architecture enables each team to pick and change their tech-
nology stack. We’ve already discussed the benefits this introduces. But just because
you can does not mean you must use a diverse technology stack.

 Having to hand-pick a technology stack can also be a burden. Let’s talk about some
techniques to make these decisions easier.

13.4.1 Toolbox and defaults

The toolbox idea explicitly limits the technology choices by providing a list of vetted
options. It’s a project- or company-wide piece of documentation that may live in the
wiki. The content of the toolbox might read like this: Java or Scala are the backend
programming languages of choice. PostgreSQL is our go-to for relational databases.
You should stick to Webpack for your frontend builds.

 The toolbox should be guidance and not a set of laws. If teams have reasons to
deviate from the norm, they should have the possibility to do so. For most teams, the
toolbox is a source of sensible default options. Need an end-to-end testing framework?
Let’s open the toolbox and see what has worked for other teams.

 Since technology is evolving, the toolbox has to be a living document that’s
updated regularly by adding new technologies that have proven valuable or deprecat-
ing existing ones that went out of date.

13.4.2 Frontend blueprint

When a new team starts fresh, it has to do a lot of setup work, creating its basic applica-
tion, build process, and other tedious tasks that are necessary before it can become
productive.

 We’ve been using the concept of a shared frontend blueprint to ease this pain. The
blueprint is an example project that includes all significant aspects a micro frontend
application needs. We can divide these aspects into two groups: technical and project-
specific.

TECHNICAL ASPECTS

 Directory structure
 Testing (unit, end-to-end)
 Linting and formatting rules
 Code formatting rules
 API communication
 Performance best practices (optimizing assets)
 Build tool configuration

248 CHAPTER 13 Teams and boundaries
These general topics are necessary to have, but they are not that interesting. Most
major JavaScript frameworks have a scaffolding tool that generates an example project
for you. But a stock frontend setup will not be sufficient for a team to get going.

PROJECT-SPECIFIC ASPECTS

Your frontend needs to integrate with the other teams and must adhere to the high-
level architecture guidelines. A new frontend must also cover project-specific aspects.
That’s why our frontend blueprint also includes

 Composition examples
– Including another micro frontend
– Providing an includable micro frontend

 Communication examples
 Team prefixing for CSS and URLs
 Template for documenting your micro frontends
 Integration with the central pattern library
 Setup for the local pattern library
 Wiring for shared services like error tracking or analytics
 CI/CD pipeline

New teams will copy the blueprint over to their project and adjust it to their needs.
Building on the existing work reduces setup time noticeably. But for us, the blueprint
has another, even more, important role. It’s the reference implementation for the
macro architecture decisions.

 It includes running examples of integration patterns and communication strate-
gies. This example code helps all developers to understand high-level topics by seeing
them in action in a real application.

MAKE IT OPTIONAL

Teams are not forced to use the blueprint as is, or even at all. They are free to adapt it
to their needs. It’s explicitly not a shared production code base. The frontend applica-
tions are based on a copy. Making a change to the blueprint will not affect the existing
frontends. Developers communicate improvements to the blueprint via the frontend
guild. If a specific improvement is valuable for a team, that team can look at the
change and apply it manually.

13.4.3 Don’t fear the copy

As you’ve seen with the blueprint, it’s often a good idea to copy and paste from other
applications. For everyday tasks, it’s an easy solution that ensures team autonomy down
the road. Copying the 15-line currency formatting algorithm from your neighbor team
is a good example. This algorithm is not set in stone, but it’s easy to understand and
unlikely to change monthly.

 We, as developers, have a trained tendency to spot and eliminate duplications. But
this elimination is not free—especially when you try to centralize across teams.

249Summary
Maintaining a shared library that six teams depend on is not a trivial job and will come
with a lot of discussions, waiting, and headaches.

 For bigger use cases, the pain a duplication introduces might be greater. Our
poster-child example is the central pattern library. You don’t want to copy and paste it
on every change. There might be other pieces of code you want to share, like a library
that makes talking to a legacy system easier. Sharing these as a versioned library might
be fine, but it should always be a conscious decision and come with the right amount
of dedication. In discussions, I found this quote helpful to create the right mindset:

Only do it if you are willing to run it as a successful (internal) open source project.

Don’t underestimate the organizational overhead a shared library introduces.

13.4.4 The value of similarity

In our projects, teams often picked similar programming languages and frameworks
to build their applications.

 Using the same technologies as your neighbors has advantages. It makes sharing
best practices more accessible. Developers that want to switch teams can get up and
running quickly. The ability to browse other teams' Git repositories and see how
they’ve solved a particular task is also valuable.

 Artifacts like the toolbox and the blueprint can help in forming a shared technical
direction. Finding the right balance between similarity and freedom is never easy.
Technical arguments often drive discussions around this. But taking the business, or
even better, the user perspective can help to maintain focus. Will using Haskell
instead of Scala improve the product in a noticeable way?

Summary
 Running a successful micro frontends architecture is not a technical decision.

The team structure should align with the software systems to be most effective.
 There are different ways to identify team and system boundaries. Domain-driven

design provides tools like analyzing expert language to identify groups of func-
tionality. Bounded contexts are good candidates for a micro frontend team.

 Organizing your teams around user needs can be a good model. Techniques
like design thinking and jobs-to-be-done can help to isolate these use cases.

 The existing page structure of your site might already be a good indicator of
team boundaries. The question “What purpose does this page serve?” can lead
you to groups of functionalities.

 Using micro frontends only on the frontend has technical benefits like parallel-
izing work and easier rebuilds. Rolling it out to the complete development stack
or extending it further also to include stakeholders and business experts can
unlock further benefits, like faster development and a better customer focus.
The vertical team structure aligns well with the upper stages of the Agile Flu-
ency Model.

250 CHAPTER 13 Teams and boundaries
 The vertical architecture optimizes for delivering features inside a team’s scope.
Introducing horizontal groups like communities of practice or guilds helps to
spread knowledge.

 It’s often more efficient or necessary to run a shared infrastructure. Leveraging
SaaS solutions like AWS can be a good option that doesn’t introduce inter-team
coupling. Sometimes the SaaS model doesn’t fit, and you need to self-host. You
can distribute the responsibility for the infrastructure components across the
product teams. Introducing a dedicated infrastructure team is an alternative,
but does not fit well into a vertical architecture.

 Since micro frontends are decoupled, each team can choose its technology
stack freely. Methods like a shared toolbox or a central blueprint can help to
form a common technology direction that ensures room for innovation and
experimentation when needed.

Migration, local
development, and testing
Micro frontends is not the first architecture for most companies. It’s something you
migrate to because the old architecture has trouble keeping up with new demands
like increasing team size or high demand for features.

 If you are a fresh startup that needs to grow quickly, it might be a good idea to
start with micro frontends from scratch. However, most larger companies use micro
frontends to replace a functioning but slow or unmaintainable monolith. If you
find yourself in the latter camp, this chapter will help you by highlighting some
good migration strategies.

This chapter covers
 Migrating a monolithic application to a micro

frontends architecture

 Setting up a local development environment and
examining techniques like micro frontend mocks
to ensure independence

 Implementing automated testing in a micro
frontends architecture
251

252 CHAPTER 14 Migration, local development, and testing
 In the second part of this chapter, we’ll take a closer look at the developers’ day-to-
day life in a micro frontends project. A team only works on its slice of the complete
application. Developing a feature locally without seeing it integrated with the rest of
the software will feel strange at first. You’ll learn techniques and tricks that make
developing and testing easier.

14.1 Migration
Migrating a non-trivial project from one architecture to another is a scary and often
costly task. You can take different roads, which all have their benefits and drawbacks.
On the following pages, we’ll discuss three ways to move to a micro frontends architec-
ture. This chapter will not be the definitive guide for software migrations. Lots of pub-
lications describe the essential parts you should think about when migrating a large
project. Instead, we will focus on the micro frontend-specific aspects.

 Having a somewhat realistic idea of the complexity and effort a migration takes is
vital to set expectations and calculate costs. But when your team doesn’t have experi-
ence with the target architecture, it’s hard to come up with reasonable estimates. Play-
ing around with the technology in a sandbox project helps to reduce the fuzziness.
The examples in this book can be a good starting point for these experiments.

 Micro frontends’ user-interface integration techniques are a valuable asset for
incremental migrations. The micro frontends paradigm and its frontend integration
techniques lend themselves well to building and integrating a proof of concept and
even verifying it in your production application. Before we go into the migration strat-
egies, let’s have a closer look at this proof of concept idea.

14.1.1 Proof of concept and building a lighthouse

You can adopt micro frontends by building a single feature as its own end-to-end sys-
tem and integrating it into your existing application. Figure 14.1 shows a two-part dia-
gram that illustrates this.

A REAL WORLD EXAMPLE

Let’s look at a concrete example. The company Miniature Farming Industries, one of
Tractor Model, Inc’s rivals, has a monolithic e-commerce shop that doesn’t perform
well. They consider moving to a micro frontends architecture. To test out the waters
and avoid losing a lot of time, they decide to develop one of their already planned fea-
tures as a micro frontends application.

 Miniature Farming Industries forms a new team dedicated to building this new fea-
ture: the wishlist. The core user-facing aspect is the wishlist overview page, where the
users can see and manage their favorite products. Also, a user should be able to add
products to the wishlist by clicking a small heart icon button on a product tile. The
new team builds and owns both the wishlist page and the add-to-wishlist button.

 The wishlist page should have the same header and footer as the other pages of
the shop. Since the new team doesn’t want to duplicate the header and footer, they

253Migration
decide to include it from the existing application as a fragment. To make this possible,
the team working on the monolith has to provide the header and footer as standalone
micro frontends. In reverse, the wishlist team provides the add-to-wishlist button as a
fragment for the monolith to include in every product tile.

 The teams must establish a shared integration technique. They go with a server-
side composition using SSI. Therefore they install an Nginx server as a frontend proxy
that sits in front of both applications. This server has two tasks: routing and composi-
tion. All requests starting with /wishlist get routed to the new application; all others
hit the monolith. The web server also handles composition. It replaces the header/
footer SSI directives of the wishlist page with the actual markup from the monolith.

 That’s everything required to make the integration work. Ok, not quite. The teams
also needed to work on some other relevant topics. The frontend developers refac-
tored the CSS code of both systems to ensure that the old and the new application
don’t over-style each other. The backend developers had to build an import for neces-
sary product data like image, name, and price. The data import is necessary to ensure
that the new system has its own data store and doesn’t depend on the monolith at
runtime.

THE ROLE MODEL

If everything goes as planned, this first vertical system can act as a lighthouse for your
migration project. We’ve established a frontend integration mechanism that new sys-
tems can use. The “proof of concept” can become the role model other teams can fol-
low to build new features.

Build a new feature as
an autonomous system.

Building a lighthouse
architecture proof of concept

Monolith

E
nd-to-end feature

Establishing a
frontend integration
mechanism
(Nginx, app shell,
Web Components, …)

Integrate into the monolith.

Monolith

E
nd-to-end feature

End-to-end
responsibility

Own state

Maybe different
tech stack

Figure 14.1 To try out the micro frontends architecture, you build a new feature as a dedicated
application that has its own state but also includes the associated user interface. It’s decoupled
from the existing monolith. That’s why the team responsible for this new feature can build it based
on a new technology stack if it wants to (left). A frontend integration mechanism is established to
integrate this new application with the monolith (right). The frontend integration can be as simple
as using hyperlinks between both applications, but depending on your architecture choice, it might
also be the introduction of a frontend proxy or application shell.

254 CHAPTER 14 Migration, local development, and testing
14.1.2 Strategy #1: Slice-by-slice

The first migration strategy, slice-by-slice, is a natural progression from our earlier
proof-of-concept. Figure 14.2 shows a monolith that’s migrated to a three-team micro
frontend architecture.

Figure 14.2 Migrating a monolithic application (left) to a three-team micro frontends architecture
(right). In this diagram, we create three new applications (Team A-C), which take over functionality
from the monolith step by step until the monolith has vanished (middle). Like in the previous
example, we start with establishing the required frontend integration mechanism that handles
the routing and composition of the different applications.

HOW IT WORKS

First of all, we need a shared plan for what the final team boundaries should look like.
Which team owns which feature? We talked about methods to identify these boundar-
ies in the previous chapter. After these decisions, the teams can go ahead, set up their
new applications, and start migrating functionality from the monolith into their micro
frontend application. They migrate the system feature by feature. The first feature to
extract might be product reviews. One team moves the feature over to their applica-
tion, from user interface to the database.

 The teams establish a frontend integration mechanism that handles routing and
composition. After migrating a feature, the team replaces the associated user interface
in the monolith with the new micro frontend’s UI. Then they tackle the next feature.

 The teams repeat this process until the monolith has vanished. This migration fol-
lows the Strangler Fig Pattern.1 This pattern describes how a new application gradually
replaces the existing one. During the migration phase, both applications are still in
business.

BENEFITS AND CHALLENGES

The main benefit of this incremental migration approach is that it introduces little
risk. The newly created software goes into production regularly. There’s no big-bang

1 See http://mng.bz/yymy.

Migrate first functionality
to end-to-end systems.

M
onolith

Team
A

Team
 B

M
onolith

Slice-by-slice migration
“The Strangler Fig pattern”

Monolith

M
onolith

A B

M
onolith

Establishing
frontend integration

Team
A

Team
 C

Team
 B

Team
 C

Eat up the monolith.
End-to-end-systems grow.

Migration in progress

Micro frontends

Migration is done

http://mng.bz/yymy

255Migration
moment when switching from the old to the new system. The system is always in a
working state. Even if you decide to cancel the migration project in the middle of the
process, you have a functioning application. All software that’s written goes to produc-
tion quickly.

 Projects where legacy code works together with newly created systems are often
called brownfield projects.2 This term is in contrast to greenfield projects, where you build
a new system from scratch on a “clean sheet” without caring about the existing
architecture.

 Compared to a greenfield project, our incremental approach requires more
thought, understanding of the existing system, and coordination. Extracting features
from the monolith does not mean that you have to remove them. However, you will
at least have to adapt the monolith’s user interface along the process to play nice with
the new micro frontends. Depending on the software quality, the CSS code and lack
of proper scoping are often the most significant tasks that you face. Web Components
and Shadow DOM can be of help. Revisit section 5.2 for more details on this.

14.1.3 Strategy #2: Frontend first

The frontend-first approach follows a similar pattern, but avoids mixing the old and
the new frontend code. Not having to care about the “old frontend code” can make
your life easier, especially when you are planning to do a frontend facelift along the
way. Figure 14.3 shows the migration process.

Figure 14.3 We start with a monolith (left). The migration has two phases. In the first phase,
we replace the frontend of the monolith with three new frontend applications, which are each
owned by one team. The frontends communicate via APIs with the old monolith. In the second
phase, we migrate the backend with the slice-by-slice approach, migrating each API endpoint
into the new backend application of the responsible team. After the backend migrations, we’ve
reached our goal: a vertically sliced application (right).

2 See http://mng.bz/aRno.

B

M
onolith

A CB

Frontend first migration
endpoint by endpoint

Monolith

AMonolith

A CB

API

B

M
onolith

C

API API Team
 B

Team
 C

Migration is done.Migrating the frontend Migrating the backend

Eat up the monolith
API by API.

Establish boundaries along
the final system structure.

Micro frontends

Team
 A

http://mng.bz/aRno

256 CHAPTER 14 Migration, local development, and testing
HOW IT WORKS

Here the migration is a two-phase process. We start with the frontend. It’s rebuilt to fit
into the desired vertical structure. You need to plan team boundaries and responsibil-
ities ahead of time. Each team builds its own part of the frontend. Teams integrate
their user interface via the known routing and composition techniques. The new
frontends receive their data from the old monolith. In this process, new APIs are
added to the monolith to serve the data needs of the frontend applications.

 In the second phase, we start splitting up the backend. The APIs we’ve imple-
mented in the previous step define the boundaries and guide the way for the backend.
Each team creates a backend application that’s able to replace the monolith APIs its
frontend relies on. In this phase, we can again apply the slice-by-slice pattern. The
teams replace API after API until the monolith isn’t required any more.

 Now we’ve reached our desired state. The monolith has vanished, and each team
owns a system that reaches from frontend to backend.

BENEFITS AND CHALLENGES

As I said before, the most significant benefit with the frontend-first approach is that
we don’t have a phase where the old and new frontend code mixes. There are no
issues with leaking styles or unexpected side effects because we create a clean, new
frontend landscape in one step. If your frontend does not contain too much business
logic and complexity, this approach also has the benefit of delivering fast results.

 We had good experiences with this approach. However, it has two disadvantages
that you should consider.

 The required frontend and backend work will not be distributed evenly. The first
phase is more frontend-heavy, and in the second phase, the backend work dominates.
You can counteract this by overlapping the phases or, even better, encourage your
teams to work cross-functionally.

 The second aspect you should keep in mind is that visible progress in this model is
non-linear. From an outsider’s or the management’s perspective, the first phase,
rebuilding the frontend, will introduce a lot of improvements. Even if you don’t build
new features, the use of modern technology or the introduction of a new design will
make the site feel faster and fresher. The second phase will, at best, not introduce any
visible change to the user at all. This lack of visual progress might not be a problem,
but you should manage expectations accordingly.

14.1.4 Strategy #3: Greenfield and big bang

The greenfield and big bang approach is the easiest from a conceptual standpoint.
The old system stays as is, and you build a new system in a clean environment in paral-
lel: a greenfield project. When the new system is ready, we switch over to the new sys-
tem: the big bang. Figure 14.4 illustrates this approach.

257Migration
Figure 14.4 We set up our new team structure and system architecture beside the existing
monolith (left). The new and old systems don’t share anything. During the development phase,
all incoming traffic still arrives at the monolith (middle). When the teams finish building the new
system, we direct the incoming traffic to the new system, and the monolith is out of use (right).

HOW IT WORKS

We make a plan for how the new system should look and set it up in a new environ-
ment that’s separate from the existing monolith. The development of the old system is
often halted to avoid extending the migration phase. The teams start building their
slices of the system. When all teams are finished implementing the features that are
necessary for production, we route the incoming traffic to the new system and retire
the old one. The old and the new systems don’t mix at any time. Users are either using
the old or the new system.

BENEFITS AND CHALLENGES

The main benefit of a greenfield approach is the fact that we can start fresh and don’t
have to deal with legacy code. The clean slate makes it easy to adopt techniques like
continuous delivery or introduce a new design system that can be free of hacks and
compromises. Because teams can focus on building the new architecture and don’t
have to wrestle with the legacy system, development will be faster.

 We’ve used this migration strategy in different projects. It’s attractive when it’s hard
to adapt the existing monolith during the migration process. This inflexibility may be
the case when the monolith relies on proprietary technology that you can’t change, or
when it’s on a very long deployment cycle that would slow down your development.

 But as the big bang in the title implies, there’s a considerable amount of risk asso-
ciated with this approach. The teams develop the new system over a long period without
receiving real user feedback. Verifying that the system works in production is extremely
valuable. Consider moving users to your new system as early as possible. Having actual
users reduces risk and increases confidence in the system you’re building. Concepts
like releasing it as a beta version or testing it in smaller markets can be of help.

Team
 A

Team
 B

Team
 C

Greenfield migration

Monolith

Team
 A

Team
 C

Team
 B

Old system
Feature
freeze

New system
Under

development

Users

Monolith

Team
 A

Team
 B

Old system
Feature
freeze

New system
Still under

development
Team

 C

Old system
Out of use

New system
Migration
complete

Big bang
Direct all users to

the new system.

258 CHAPTER 14 Migration, local development, and testing
 Now you’ve seen a couple of strategies for getting from monolith to micro front-
ends. There’s no golden way, and it always depends on the system you have and the
goals you want to reach with the new architecture. But leveraging frontend integra-
tion techniques to gradually replace the old monolith with new micro frontend appli-
cations is a powerful tool that you should consider.

14.2 Local development
Now we’ll leave the architecture level and zoom into the day-to-day life of a developer
working in a micro frontends project. Running and developing a classical monolith is
pretty straightforward. You can check out one source code repository, which contains
everything required to start the complete application on your local machine. Every-
thing should work, and you can try the application in your browser from start to finish.
With a distributed architecture like micro frontends, this gets more complicated.

14.2.1 Don’t run another team’s code

Each team has its source code repository, and teams may have different tech stacks.
Yes, it might be possible for a developer to not only have their team’s repository
checked out but also pull an up-to-date copy of the other team’s source code regularly.
While this might work, it can become cumbersome very quickly. Having to know about
the development environment of other teams introduces friction.

 What do you do if the other team has a bug that prevents their application from
starting? Has Team B upgraded to the latest version of Node.js or are they still on the
old one? You shouldn’t have to care about these kinds of problems to do your job. You
should be able to focus on the code your team owns. So, let’s talk about how we can
develop without running other people’s code.

But what about monorepos ?
When you read about micro frontends on the web, the term monorepoa sometimes
appears as a solution for local development. Monorepo describes a concept where
the code of independent applications or libraries live in one version control reposi-
tory. A monorepo makes it easy to download and update multiple projects at once
and manage shared dependencies.

If you see micro frontends purely as a set of integration techniques for one team to
modularize its frontend, the monorepo approach is reasonable. However, if you want
to take advantage of the organizational benefits of multiple independent teams that
can work side by side without close coordination, the monorepo is an anti-pattern.
The team’s applications should be independent and shouldn’t share code or a
deployment pipeline. Separate repositories guard against unwanted inter-team
dependencies.

a See https://en.wikipedia.org/wiki/Monorepo.

https://en.wikipedia.org/wiki/Monorepo

259Local development

21
14.2.2 Mocking fragments

TIP You can find the sample code for this chapter in the 21_local
_development folder.

Ok, so if I can’t run the code from other teams, how can I develop? On a page level,
the answer is simple: replace other teams' fragments with mock versions of them. Let’s
look at Team Decide’s product page.

 Go into the sample code and run the following command:

npm run 21_local_development

Open up http://localhost:3001/product/porsche to see the product page in local
development mode. Figure 14.5 shows the result.

Figure 14.5 Team Decide’s product page in local development mode. The fragments from
the other teams are replaced by simple mock micro frontends.

We see the product page, but the fragments from the other teams (recommendations,
Buy button, and mini-cart) got replaced with mock versions of these micro frontends.
But the page itself is working as expected. You can toggle the platinum option and the
product image updates accordingly.

 The product page you are seeing does not include any code from other teams. In
development mode, Team Decide omits the script and style tags from the other
teams’ fragment definitions. Not loading these files would lead to empty blocks where
the fragments should be.

the-tractor.store/#

Product page
without real micro frontends
from other teams

Mocked micro frontends
can be static placeholders or contain
testing functionality like emitting
an event or reacting to change.

Team Decide’s development environment

http://www.the-tractor.store/#21

260 CHAPTER 14 Migration, local development, and testing
 To improve this, Team Decide created its simple mock implementations for the
three fragments. You can find the associated code in team-decide/static/mock
-fragments.(css|js). Since we are using Custom Elements for integration, it’s pretty
easy to mock the fragments. Here is the code for one mock.

...
class CheckoutMinicart extends HTMLElement {

connectedCallback() {
this.innerHTML = `<div>minicart dummy</div>`;

}
}
window.customElements.define("checkout-minicart", CheckoutMinicart);
...

This code is a pretty simple mock that just shows a text. But if you expect a fragment
to throw an event, you can get more sophisticated and, for example, add a button that
triggers the event.

NOTE The example uses client-side rendering, but the concepts are also
applicable for a server-generated application. Instead of replacing Custom
Element definitions, you’d route the fragment’s HTTP request to an end-
point that returns mock markup.

Using mock fragments instead of pulling in real components will make development
more straightforward and more robust. You only have to fire up your application, and
if something breaks, you can be sure that it’s the fault of your code.

 Each team that provides a fragment should document its interface. The interface
lists the parameters it understands and the events it can emit. The fragment documen-
tation can be the basis for creating your local mock.

WARNING If you find yourself in a situation that requires building a lot of
sophisticated mocks to develop and test your software, you might have issues
with your team boundaries. Make sure the responsibility for one use case is
not spread across different teams.

14.2.3 Fragments in isolation

Let’s see what developing a fragment looks like. Keep the sample application running
and open your browser at http://localhost:3003/sandbox to find Team Checkout’s
sandbox page, which shows both of their fragments. Team Inspire has a similar page
running on port 3002. Figure 14.6 shows both sandbox pages.

DEVELOPMENT PAGE

The sandbox page acts as the development environment for fragments. It’s an empty
page (in this case with a stripy background) that contains a team’s fragments. The
page itself also includes basic global styles like root font definitions and some CSS

Listing 14.1 team-decide/static/mock-fragments.js

261Local development
resets, since you don’t want every fragment to redefine these styles itself. Tools like
Podium create such a page out of the box,3 but building this page from scratch is also
not complicated. You’d also use your favorite live-reload or hot-code-replacement
solution here to make development more enjoyable.

SIMULATING INTERACTIONS

Now we have an environment to develop our fragments in, but how do you test com-
munication across micro frontends? You might have noticed the “sandbox toggles”
section at the top of our pages. It contains a set of actions our fragments can react to.

 You can, for example, use the “change sku” control to switch from one tractor to
another. Changing the option will toggle the associated sku attribute of the Buy but-
ton fragment, which should then update its price accordingly. In the example, the tog-
gle mechanics are a few lines of plain JavaScript in the sandbox file.

 The mini cart also updates itself when someone clicks the Buy button. You can test
this fragment-to-fragment communication on the sandbox page. Click the button, and
the product will appear in the mini-cart. The mini-cart listens to the checkout:item
_added event on the window, just as it would on a fully integrated page. The sandbox
page also has a dedicated add random product button that triggers such an event.

INDEPENDENCE THROUGH MOCKS

Working with mocks can give you a lot of independence and reduces inter-team fric-
tion. When tests fail, you can be sure that your own code caused the issue. It can’t be
the fault of another team’s script, because they aren’t even included. This approach

3 See https://podium-lib.io/docs/podlet/local_development.

Micro frontends
in isolation to
test and develop

Attribute and event
toggles to simulate
communication

Team Checkout’s dev environment Team Inspire’s dev environment

buy for $66

Figure 14.6 Each team has its own sandbox page where it can develop and test fragments in
isolation. The sandbox page also contains some toggles to simulate communication.

https://podium-lib.io/docs/podlet/local_development

262 CHAPTER 14 Migration, local development, and testing
makes your integration pipeline run reliably. Investing some effort in good mocks will
make your life easier and can save a lot of time down the road.

14.2.4 Pulling other teams micro frontends from staging or production

But in some cases, mocking is not sufficient. If you are trying to reproduce a mysteri-
ous bug, you might want to test with the real code.

 If you’re doing client-side rendering, this can be easy. You don’t have to check out
and build the other team’s code from scratch. Point the associated script and style tags
to your staging or production environment and fetch the code for the other teams'
fragments from there. Now you can debug how your local code plays with the released
code from the others.

 Single-spa even goes a step further. They’ve built a tool called single-spa-
inspector that lets you do it the other way around.4 You can open up a production
page in the browser, and the inspector makes it possible to replace the released ver-
sion of your code with your local development code. Single-spa uses import-maps to
do the trick.

 Pulling in fragments from a remote server is also possible with server-side rendering.
There you’d advise your HTML assembly mechanism to fetch the markup for some
routes directly from production. If you’re using Nginx and SSI, you can achieve this by
changing the upstream configuration for the other teams to the production server but
keeping your upstream pointing to localhost.

14.3 Testing
Automated testing has become the centerpiece of modern software development.
Having good test coverage reduces the need for manual testing and enables you to
adopt techniques like continuous delivery.

 How does testing look in a micro frontends project? It’s not so different from test-
ing in a monolithic project. Every team tests its application on different levels. They’ll
have a bunch of fast-running unit and service tests and a couple of browser-based end-
to-end tests.

 You probably know about the testing pyramid.5 It describes that tests with a low
level of integration (for example, unit tests) are cheap to write and run quickly. Tests
with a high level of integration run slowly and are expensive to maintain. Figure 14.7
shows a variant of the classic testing pyramid.

 In a micro frontends project, we can split the topmost category (UI or end-to-end
tests) into two parts:

1 Isolation (most tests)—A team should perform the largest part of their user inter-
face tests in an isolated environment without the code from other teams. These
tests would run against a version of the software with mocked fragments. The

4 See https://single-spa.js.org/docs/devtools.
5 See Martin Fower, “TestPyramid,” https://martinfowler.com/bliki/TestPyramid.html.

https://martinfowler.com/bliki/TestPyramid.html
https://single-spa.js.org/docs/devtools

263Summary
team’s own fragments are tested in an isolated environment (sandbox), as
shown in the previous section.

2 Full integration (very few tests)—Even if every team tests its fragments and pages
accurately, there is a possibility of errors at the user interface boundaries. You
should test critical transition points in full integration.

Full integration tests are hard to write because they require knowledge about the
markup structure from at least two teams. We didn’t have good experiences with intro-
ducing an overarching integration test-suite that runs against the complete software.
All our attempts ended in brittle solutions with lots of false positives. Also, the ques-
tion “Who owns the overarching integration tests?” is hard to answer if you don’t want
to introduce a horizontal testing team.

 Instead, we go for a distributed approach. Every team can decide to test across the
borders of their direct neighbors. Team Checkout could test if its Buy button micro
frontend works when it’s integrated on Team Decide’s product page. Team Decide
might check if Team Inspire’s recommendation fragment is not empty.

Summary
 You can use the micro frontend’s user interface integration techniques to test

out this architecture with your existing project. These techniques also enable
gradual migrations, where new micro frontends replace the old monolith user
interface slice by slice.

 Replacing a current system slice by slice introduces low risk, because you have a
working application at all times. However, mixing the new frontends with the
monolith’s frontend can be challenging due to leaking styles. Using Shadow
DOM for the new micro frontends can help.

 If mixing user interfaces with the monolith doesn’t work, the frontend-first or a
greenfield approach are good alternatives, but they come with a higher risk.

 It’s a good idea to disable code from other teams in your local development and
testing environment. Eliminating foreign code reduces complexity and makes

Unit tests

Service

E2E

E2E in isolation
testing inside team boundaries

E2E in full integration
testing across team boundaries

High integration
slow / expensive

Low integration
fast / cheap

Figure 14.7 The testing pyramid shows that low-level tests are fast and cheap (bottom).
Tests with a high level of integration, like browser-based end-to-end tests, are slow and
expensive to maintain. In a micro frontends project, we can split the end-to-end test
category (top) into types of tests: those that only run on one team’s UI and those that
run across team boundaries.

264 CHAPTER 14 Migration, local development, and testing
the environment more stable. Creating simple mock micro frontends helps to
get a more realistic impression of the layout.

 Mock micro frontends can be static placeholders, but they can also include sim-
ple functionality like emitting events.

 You can develop fragments on a dedicated sandbox page. It shows the fragment
in isolation. This sandbox page can also contain some custom user interface to
test communication (trigger events) or simulate changes in the environment
(for example, change SKU).

 Nearly all your tests should run against your own team’s code. Test in isolation
where possible. In some cases, it might be necessary to test across team bound-
aries. A central testing team can be responsible for this. Another solution is that
teams test the integration point to the neighboring teams themselves.

index
Numerics

404 error 180–181

A

absolute paths 206
absolute URLs 73, 206, 208, 210
activityFn 137
ad hoc server 26, 30, 122
add random product button 261
add-to-wishlist button 252–253
addEventListener 92
Agile Fluency Model 242
Ajax, composition via 42–51, 159

benefits of 48
declarative loading with h-include 47–48
drawbacks of 49
when to use 50

Akamai 73
Alignment option 196
alt attribute 73
Amazon Web Services (AWS) 245
AMD module 75
Android 19
Angular 14, 85, 135, 140, 153, 167, 197–198
Angular Elements 93
Angular Material 229
@angular/router 119
AngularJS (v1) 131
anonymous function 46
app shell

anatomy of 122–123

APIs 133–134
defining 121
flat routing 120–127

client-side routing 123–124
contracts between app shell and teams 127
page rendering 124–127

ownership of 141
two-level routing 128–134

cleanup 131
implementing 129
implementing team-level routing 130–131
URL changes 131–133

app.get method 79
appHistory.listen 124, 127
appHistory.push() function 124
application shell. See app shell
appShell.setTitle() method 140
Ara Framework 153
architecture

choosing 165–169
fast first-page load/progressive

enhancement 167
instant user feedback 167–168
multiple micro frontends on one page

168–169
soft navigation 168
strong isolation 166–167

comparing complexity 161–162
composition techniques 158–159

Ajax 159
client-side integration 159
iframe 159
server-side integration 158
265

INDEX266
architecture (continued)
heterogeneous architectures 162
high-level architectures 159–161

linked pages 160
linked SPAs 160–161
linked universal SPAs 161
server routing 160
unified SPAs 161
unified universal SPA 161

routing and page transitions 157–158
sites vs. apps 162–165

Documents-to-Applications
Continuum 163–164

server- vs. client-side rendering 164–165
architecture-inherent issues 236
architecture-level artifacts 196
asset loading

asset referencing strategies 174–186
cache-busting and independent

deployments 175–176
direct referencing 174–175
inlining 183
Podium 184–185
referencing via include 178–180
referencing via redirect 176–178
synchronizing markup and asset

versions 180–183
Zalando Tailor 183–184

bundle granularity 186–188
all-in-one bundle 187
HTTP/2 186
page and fragment bundles 187–188
team bundles 187

on-demand loading 188–189
lazy loading CSS 189
proxy micro frontends 188–189

asynchronous loading 49, 112
attachShadow 93
attributeChangedCallback 92, 102
authentication 114
autonomous deployments 200
autonomy 16–17

cost of 196–197
full 241–242
self-contained fragments and pages 16
shared nothing architecture 17
technical overhead 17

AWS (Amazon Web Services) 245

B

Babel 14, 208
backend for frontends (BFF) 240

bare specifier 206, 208
behavior-centric 163
BFF (backend for frontends) 240
Block URL feature 195
blueprints 25
boot time, unified SPAs 142
bootstrap function 137
bounded contexts 238
Broadcast Channel API 111–112
brownfield projects 255
bundle granularity 186–188

all-in-one bundle 187
HTTP/2 186
page and fragment bundles 187–188
team bundles 187

C

cache busting 174–176
cache invalidation strategy 175, 187
Cache-Control 176, 178
cacheability 173, 195
Calibre 193
canary deployments 181
CDN (content delivery network) 175, 182, 185
central design system team 246
central infrastructure team 246
central model 219
Central-to-Federated Continuum 221
change event 105
channel.postMessage 111
checkout-buy attributes 87, 108, 110
checkout-buy element 88–89, 103, 148
checkout-cart component 130
checkout-minicart 110
checkout-pages component 129–130
checkout-pay component 130
checkout-success component 124, 129–130
checkout:item_added event 104, 106, 108–109,

261
client-side composition

combining with server-side 147–153
contract between teams 152
SSI and Web Components 148–152

style isolation using Shadow DOM 93–96
creating shadow root 93–94
scoping styles 94–96
when to use 96

when to use 97–98
wrapping micro frontends using Web

Components 86–93, 96–98
benefits of 96–97
Custom Elements 88–91

INDEX 267
drawbacks of 97
parametrization via attributes 91–92
process for 87–92
Web Components as container format 88
wrapping framework in Web

Components 92–93
client-side integration 158
client-side rendering 97, 164–165, 262
client-side routing

APIs 133–134
app shell with flat routing 120–127

anatomy of app shell 122–123
client-side routing 123–124
contracts between app shell and teams 127
defining app shell 121
keeping URL and content in sync 124
mapping URLs to components 124
page rendering 124–127

app shell with two-level routing 128–134
cleanup 131
implementing team-level routing 130–131
implementing top-level router 129
URL changes 131–133

single-spa meta-framework 134–140
framework adapters 137–138
JavaScript modules as component

format 137
navigating between micro frontends 138
nesting micro frontends 139–140
running application 139

unified SPAs 140–143
app shell ownership 141
boot time 142
communication 141–142
error boundaries 141
memory management 141
shared HTML document and meta data 140
single point of failure 141
when to use 142–143

closed mode 94
cloud hosting 244
code splitting 142, 188, 195, 199
CodePen.io site 164
common design system 12
CommonJS 174
communication

authentication 114
data replication 115–116
frontend-backend communication 115
global context 113–114
managing state 114
unified SPAs 141–142
user interface communication 100–112

fragment to fragment 107–111
fragment to parent 104–107
parent to fragment 101–104
publishing/subscribing with Broadcast

Channel API 111–112
when to use 112

compatible composition technique 165
composition 11, 158–159

client-side 159
style isolation using Shadow DOM 93–96
when to use 97–98
wrapping micro frontends using Web

Components 86–93, 96–98
server-side 158

benefits of 82–83
choosing a solution 81–82
drawbacks of 83
markup assembly performance 69–72
unreliable fragments 64–69
via Edge Side Includes 73
via Nginx and Server-Side Includes 60–64
via Podium 75–81
via Zalando Tailor 73–75
when to use 83–84

universal rendering and
combining server- and client-side

composition 147–153
when to use 153–155

via Ajax 42–51, 159
benefits of 48
declarative loading with h-include 47–48
drawbacks of 49
namespacing styles and scripts 45–47
process for 43–44
when to use 50

via iframe 33–36, 159
benefits of 35
drawbacks of 35–36
process for 34–35

composition technique 36
connectedCallback 92, 102, 125–127, 130, 137,

151
consistency 18, 215, 226
constructor method 92, 127, 137, 151
content delivery network (CDN) 175, 182, 185
content-centric 163
context information 113
contracts

between app shell and teams 127
combining with server- with client-side

composition 152
page transitions via links 28–29
universal rendering 152

INDEX268
cookies 47
CoP (community of practice) 243–244
creativity 241
critical path 64
cross-functional teams 6–7, 244
cross-team communication 100
CSS (cascading style sheets)

lazy loading 189
pattern library 227–228

CSS Modules 46, 189
CSS-in-JS solutions 46, 96, 182, 189
Custom Elements 49, 88, 91, 98, 125–126, 130,

137, 148, 174, 188–189, 260
defining 89–90
using 90–91

Custom Events 47, 49, 108, 112, 159
emitting 105
listening for 106–107

customElements.define 89
CustomEvent constructor 105
CustomEvents API 105
Cycle.js 135

D

data replication 115–116
DAZN 19, 21
decision making, local 15–16
declarative loading 47–48
decoupling 180
deferred loading 71
design system

autonomous teams vs. 216–222
benefits of 215–216
buy-in from teams 218–219

acceptance 218–219
communication 219
early stages 218

central vs. federated process 219–220
central model 219
federated model 220

development phases 221–222
off-the-shelf vs. developing your own 216
pattern library 226–234

central and local 233–234
central vs. local 231–233
change 230–231
component format 227–230
costs of sharing components 231

as process 217
purpose and role of 215
runtime integration vs. versioned

packages 222–226

runtime integration 222–224
versioned packages 224–226

sustained budget and responsibility 217–218
disconnectedCallback() 92, 126–127, 131, 137
DllPlugin 209
DllReferencePlugin 204
DLLs 204
document flow 48
Documents-to-Applications Continuum 163–164
domain-driven design (DDD) 238
Duet Design System 228
dynamic route configuration 56–57

E

element.dispatchEvent 110
Elm language 15
error boundaries 141
error handling, flexible 48
ES Modules 174, 207, 209
ES6 class 89
ESI (Edge Side Includes), server-side composi-

tion via 73
fallbacks 73
time to first byte 73
timeouts 73

ETag header 178
events

asynchronous loading vs. 112
Custom Events

emitting 105
listening for 106–107

dispatching directly on window 110–111
event bus via browser events 109–110

F

fail_timeout option 68
fallbacks, server-side composition

via Edge Side Includes 73
via Nginx and Server-Side Includes 67–69
via Podium 79–81
via Zalando Tailor 74

federated model 219–220
fetch() function 47–48, 78
findComponentName 129
Fluent UI Design System 215
fragment.css file 43, 90, 93–94, 177
fragment.js file 90, 109, 177
fragments 9–10, 158

bundle granularity 187–188
in isolation 260–262

development page 260–261

INDEX 269
independence through mocks 261–262
simulating interactions 261

integrating using SSI 63
mocking 259–262
self-contained 16
unreliable 64–69

fallback content 68–69
flaky fragments 65–66
integrating Near You fragment 66–67
timeouts and fallbacks 67–68

user interface communication
fragment to fragment 107–111
fragment to parent 104–107
parent to fragment 101–104

framework adapters, single-spa meta-
framework 137–138

framework-agnostic components 228–229
framework-specific components 228
frontend first migration approach 255–256

benefits and challenges of 256
process for 256

frontend integration 10–11
communication 11
composition 11
routing and page transitions 10–11

frontend-backend communication 115
full-stack teams 241

G

github-elements 88
global context 113–114
greenfield and big bang migration

approach 256–258
benefits and challenges of 257–258
process for 257

H

h-include library 47–48
heterogeneity 18
heterogeneous architectures 162
high-level architectures 159–161, 165

linked pages 160
linked SPAs 160–161
linked universal SPAs 161
server routing 160
unified SPAs 161
unified universal SPA 161

history library 123
Homepage.svelte component 138
HTTP/2, bundle granularity 186

I

iframe
composition via 33–36, 159

benefits of 35
drawbacks of 35–36
process for 34–35

when to use 36
IIFE (immediately invoked function

expression) 46
import-maps 210–211, 262
import() function 136, 174
include directive 61, 71
inlining 183
innerHTML 92, 103, 124, 130
isolation

fragments in 260–262
development page 260–261
independence through mocks 261–262
simulating interactions 261

isolating JavaScript 46–47
isolating styles 45–46
isolating styles using Shadow DOM 93–96

creating shadow root 93–94
scoping styles 94–96

missing from Ajax 49
slowdowns 194–195
strong 166–167

item_added event 107

J

JavaScript
isolating 46–47
single-spa meta-framework 137

L

layout library 75–76
lazy loading 189
legacy systems 14–15
lifecycle methods 97, 229
Light DOM 96
Link header 75
link tag 44–45, 174, 178–179, 183–184
linked pages 160
linked single-page applications (SPAs) 119,

160–161
linked universal single-page applications

(SPAs) 161
links

page transitions via 27–33
benefits of 32

INDEX270
links (continued)
contract between teams 28–29
data ownership 28
dealing with changing URLs 32
drawbacks of 32–33
process for 29–32
product page markup 30–31
starting applications 31–32
styles 31

when to use 33
listen feature 123
lit-html 198
live-reload 261
loading

asset
asset referencing strategies 174–186
bundle granularity 186–188
on-demand loading 188–189

asynchronous 49, 112
declarative 47–48
deferred 71
lazy 189
on-demand 188–189
parallel 69

loadingFn 136
local development 258–262

fragments in isolation 260–262
development page 260–261
independence through mocks 261–262
simulating interactions 261

mocking fragments 259–260
not running other team's code 258
pulling other teams' micro frontends from

staging or production 262
lock-step deployment 200
loose coupling 23, 32, 34

M

manifest.json file 76, 78–79, 81, 184, 201,
204–205

markup
assembly performance 69–72

deferred loading 71
nested fragments 70–71
parallel loading 69
time to first byte and streaming 71–72

fragment 43–44
product page 30–31
synchronizing markup and asset versions

180–183
Material Design 216, 229
Material UI (React) 229

max_fails option 68
maxwait attribute 73
memory management, unified SPAs 141
mfserve library 176
micro frontends 4–12

downsides of 17–19
consistency 18
heterogeneity 18
more frontend code 19
redundancy 17–18

frontend 7–10
fragments 9–10
page ownership 8–9

frontend integration 10–11
communication 11
composition 11
routing and page transitions 10–11

nesting 139–140
problems solved by 12–17

adapting to new technology 14–16
autonomy 16–17
avoiding frontend monolith 13–14
optimization for feature development

12–13
productivity vs. overhead 20

organizational complexity 20
setup 20

proxy 188–189
shared topics 11–12

design systems 12
sharing knowledge 12
web performance 12

software systems and teams 4–7
cross-functional teams 6–7
team missions 6

when not to use 20–21
when to use 19–21

medium-to-large projects 19
on the web 19–20

who uses 21
@microfrontends/serve package 27
migration 252–258

frontend first approach 255–256
benefits and challenges of 256
process for 256

greenfield and big bang approach 256–258
benefits and challenges of 257–258
process for 257

proof of concept 252–253
real world example 252–253
role model 253

slice-by-slice approach 254–255
benefits and challenges of 254–255
process for 254

INDEX 271
module specifier 206
MongoDB database 24
monolith

avoiding frontend monolith 13–14
native monolith 19–20

monorepos 258
mount function 137–138
multiple framework components 229–230
MutationObserver 49

N

namespacing 45–47
resources 55
scripts 46–47
styles 45–46

navigate click handler 138
Near You fragment 66–68
nested fragments 70–71
nesting micro frontends 139–140
Nginx

installing locally 53
server-side composition via 60–64

better load times 63–64
process for 61–63

server-side routing via 51–58
infrastructure ownership 57–58
namespacing resources 55
process for 53–55
route configuration methods 56–57
when to use 58

No constraints option 196
no-cache setting 176
node_modules 208
node-tailor package 74
Node.js library 26, 74–75, 78
NPM package 201, 203
npm run script 66, 180, 204, 209

O

OAuth standard 114
on-demand loading 135, 174, 188–189, 195, 199,

205
lazy loading CSS 189
proxy micro frontends 188–189

one-year cache header 175
open mode 94
opening hours concept 219
optimization

for feature development 12–13
for use cases 195–196

overhead
performance 35
productivity vs. 20

organizational complexity 20
setup 20

technical overhead 17
ownership

of app shell 141
of data 28
of infrastructure 57–58
by one product team 245–246

ownership concept 47, 242

P

page rendering
app shell with flat routing 124–127
linking between micro frontends 126–127

page transitions 10–11
via links 27–33, 158

benefits of 32
contract between teams 28–29
data ownership 28
dealing with changing URLs 32
drawbacks of 32–33
process for 29–32
product page markup 30–31
starting applications 31–32
styles 31

pages
bundle granularity 187–188
composition 11
examining existing page structures to identify

team boundaries 239–240
linked 160
ownership of 8–9
self-contained 16

parallel loading 69
parametrization, via attributes 91–92
pattern library 215, 226–234

central and local 233–234
central vs. local 231–233

component complexity 232
domain specific 233
reuse value 232
trust in teams 233

change 230–231
being open for change 230
keep it simple 230–231

component format 227–230
common templating language 229–230
framework-agnostic components 228–229
framework-specific components 228

INDEX272
pattern library (continued)
multiple framework components 229
pure CSS 227–228

costs of sharing components 231
Pavlovian reflex 196
performance

architecting for 191–196
attributing slowdowns 193–195
benefits of micro frontends 195–196
different teams, different metrics 191–192
multi-team performance budgets 192–193

vendor libraries 196–211
cost of autonomy 196–197
one global version 199–200
pick small 197–199
sharing business code 211
versioned vendor bundles 200–211

platinum option 102
Podium

asset loading 184–185
server-side composition via 75–81

architecture 76–77
fallbacks and timeouts 79–81
Implementation 77–79
Podlet manifest 75–76

@podium/* libraries 81
@podium/layout 76
@podium/podlet 76
Podlet manifest 75–76
podlets 75–76, 78, 81, 184
productivity, overhead vs. 20

organizational complexity 20
setup 20

progressive enhancement 48, 83, 145, 152, 167
Prototype.js file 14
proxy micro frontends 188–189
proxy_read_timeout property 67
push feature 123

R

react 206–208, 210
react-dom 206–207
react-router 123, 139
ReactDOM.hydrate 150
ReactDOMServer.renderToString 150
recos 78–79, 81
redundancy 17–18, 31, 183, 187, 191, 226
referencing

via include (server) 178–180
via redirect (client) 176–178

register_style endpoint 179
registration file 177

request forwarding 62
require.js module loader 184
RequireJS 174
REST API 20
reusable interface components 214
robustness, of links 32
rolling deployments 181
rollup.js (Central ES modules) 205–210

creating versioned bundle 207–208
using versioned bundle 208–210

routes object 124, 129
routing 10–11

client-side
APIs 133–134
app shell 158
app shell with flat routing 120–127
app shell with two-level routing 128–134
single-spa meta-framework 134–140
unified SPAs 140–143

server-side, via Nginx 51–58
infrastructure ownership 57–58
namespacing resources 55
process for 53–55
route configuration methods 56–57
when to use 58

runtime integration 222–224

S

SaaS (Software as a Service) 245
scoped attribute 45
Scoped CSS 45
scoping styles 94–96
script tag 46, 75, 174, 178, 183, 199, 204, 259
scripts

isolating JavaScript 46–47
no lifecycle for 49

search engines
composition via Ajax 48
iframes and 35–36

security features 35
Semantic UI 216
SEO (search engine optimization) 35–36
server rendered pages 37
server requests, composition via Ajax 49
server routing 160
server-side composition 11, 253

benefits of 82–83
choosing a solution 81–82
combining with client-side 147–153

contract between teams 152
SSI and Web Components 148–152

drawbacks of 83

INDEX 273
markup assembly performance 69–72
deferred loading 71
nested fragments 70–71
parallel loading 69
time to first byte and streaming 71–72

universal rendering with pure 153
unreliable fragments 64–69

fallback content 68–69
flaky fragments 65–66
integrating Near You fragment 66–67
timeouts and fallbacks 67–68

via Edge Side Includes 73
fallbacks 73
time to first byte 73
timeouts 73

via Nginx and Server-Side Includes 60–64
better load times 63–64
process for 61–63

via Podium 75–81
architecture 76–77
fallbacks and timeouts 79–81
Implementation 77–79
Podlet manifest 75–76

via Zalando Tailor 73–75
asset handling 75
fallbacks and timeouts 74
time to first byte and streaming 75

when to use 83–84
Server-Side Includes. See SSI
server-side integration 97, 158, 183
server-side rendering (SSR) 145–146, 262
server-side rendering, client-side vs. 164–165
server-side routing, via Nginx 51–58

infrastructure ownership 57–58
namespacing resources 55
process for 53–55
route configuration methods 56–57
when to use 58

session storage 47
Shadow DOM 88, 96, 149, 255

style isolation using 93–96
creating shadow root 93–94
scoping styles 94–96

when to use 96
shadowRoot property 93–95
shared frontend blueprint 247
shared integration technique 253
shared nothing architecture 17
shared topics 11–12

design systems 12
sharing knowledge 12
web performance 12

shared-vendor folder 202–203, 206

simulating interactions 261
single point of failure 223
single-page applications. See SPAs
single-spa meta-framework 11, 120, 134–140

framework adapters 137–138
JavaScript modules as component format 137
navigating between micro frontends 138
nesting micro frontends 139–140
running application 139

single-spa-inspector 262
single-spa-leaked-globals plugin 141
single-spa-svelte 138
single-spa.js library 136
singleSpa.registerApplication function 136
singleSpaSvelte function 138
sitespeed.io 193
Skate.js 149
skeleton screens 167
slice-by-slice migration approach 254–255

benefits and challenges of 254–255
process for 254

slowdowns 193–195
isolation 194–195
observability 194

soft navigation 168
Some constraints option 196
spa meta-framework 174
SPAs (single-page applications)

linked 160–161
linked universal 161
single-spa meta-framework 134–140

framework adapters 137–138
JavaScript modules as component

format 137
navigating between micro frontends 138
nesting micro frontends 139–140
running application 139

unified 140–143, 161
app shell ownership 141
boot time 142
communication 141–142
error boundaries 141
memory management 141
shared HTML document and meta data 140
single point of failure 141
when to use 142–143

universal unified 154–155, 161
specialist teams 6
specialized component team 246
SSI (Server-Side Includes)

server-side composition via 60–64
better load times 63–64
process for 61–63

universal rendering 148–152

INDEX274
SSR (server-side rendering) 145–146, 262
state management 114
sticky sessions 182
Strangler Fig Pattern 254
streaming templates

via Nginx and Server-Side Includes 71–72
via Zalando Tailor 75

stub parameter 68–69
style guide 215
styles

isolating 45–46, 93–96
links 31
namespacing 45–46

synchronization 178, 182
SystemJS 210

T

Tailor 72–75, 79, 81, 83, 158, 186
teams

architecting for performance
different teams, different metrics

191–192
multi-team performance budgets 192–193

bundle granularity 187
central vs. local pattern libraries 233
contract between teams 28–29
cross-cutting concerns 245–247

central infrastructure 245–246
global agreements and conventions

246–247
specialized component team 246

cross-functional 6–7
cultural change 242–243
depth of 240–242

frontend only 240–241
full autonomy 241–242
full-stack team 241

design system vs. 216–222
identifying boundaries 238–240

domain-driven design 238
existing page structures 239–240
user-centered design 239

missions 6
multiple frontends per team 20
not running other team's code 258
pulling other teams' micro frontends from

staging or production 262
sharing knowledge 243–245

community of practice 243–244
learning and enabling 244–245
presenting your work 245

software systems and 4–7

technology diversity 247–249
frontend blueprint 247–248
not fearing the copy 248–249
toolbox and defaults 247
value of similarity 249

technology diversity 247–249
frontend blueprint 247–248

making optional 248
project-specific aspects 248

not fearing the copy 248–249
toolbox and defaults 247
value of similarity 249

templating language 229–230
test-suite 263
testing 262–263
tiered design systems 233
time to first byte (TTFB) 69
time to first byte, server-side composition

via Edge Side Includes 73
via Nginx and Server-Side Includes 71–72
via Zalando Tailor 75

timeouts, server-side composition
via Edge Side Includes 73
via Nginx and Server-Side Includes 67–68
via Podium 79–81
via Zalando Tailor 74

Tractor Store website 24–27
example code 25–27

directory structure 26
installing dependencies 26
Node.js 26
starting examples 26–27

freedom of choosing technology 24–25
independent deploys 25

TTFB (time to first byte) 69

U

UI communication 100
UIengine 234
unavoidable globals 47
unidirectional dataflow 104
unified single-page apps (SPAs) 140–143, 161

app shell ownership 141
boot time 142
communication 141–142
error boundaries 141
memory management 141
shared HTML document and meta data

140
single point of failure 141
when to use 142–143

INDEX 275
universal application shell 154
universal rendering

combining server- and client-side
composition 147–153
contract between teams 152
SSI and Web Components 148–152

when to use 153–155
increased complexity 154
universal rendering with pure server-side

composition 153
universal unified SPAs 154–155

universal unified single-page apps (SPAs)
154–155, 161

unlisten() function 131
unmount function 137–138
URLs

changes 131–133
first page view 132
inside team navigation 132
inter-team navigation 133

contract between teams 28–29
dealing with changing 32
keeping in sync wth content 124
mapping to components 124
route configuration 56

usage pattern 168
user feedback, instant 167–168
user interface communication 100–112

fragment to fragment 107–111
dispatching events directly on window

110–111
event bus via browser events 109–110

fragment to parent 104–107
emitting Custom Events 105
listening for Custom Events 106–107

parent to fragment 101–104
platinum option 102
updating on attribute change 102–104

publishing/subscribing with Broadcast Chan-
nel API 111–112

when to use 112
bad boundaries 112
events vs. asynchronous loading 112
simple payloads 112

user interface, design system for
as process 217
autonomous teams vs. 216–222
benefits of 215–216
buy-in from teams 218–219
central vs. federated process 219–220
development phases 221–222
off-the-shelf vs. developing your own 216

pattern library 226–234
purpose and role of 215
runtime integration vs. versioned

packages 222–226
sustained budget and responsibility 217–218

user-centered design 239
user-focused culture 242
user-interface integration techniques 252

V

vendor libraries 196–211
cost of autonomy 196–197
one global version 199–200
pick small 197–199
sharing business code 211
versioned vendor bundles 200–211

Central ES modules (rollup.js) 205–210
import-maps 210–211
Webpack DllPlugin 201–205

versioned bundles 201, 206
versioned packages 224–226

avoiding shipping unused code 224
drawbacks of 226
independent upgrades 224
self-contained 225

vue-router 119, 123, 139
Vue.js 14, 85, 93, 135, 153, 200
@vue/web-component-wrapper package 93
Vuetify 228

W

Web Components 86–93, 96–98, 159
as container format 88
benefits of 96–97
Custom Elements 88

defining 89–90
using 90–91

drawbacks of 97
parametrization via attributes 91–92
universal rendering 148–152
wrapping framework 92–93
wrapping micro frontends 87–92

Webpack DllPlugin 201–205
creating versioned bundle 202–203
using versioned bundle 203–205

window object 46, 110, 199
window.customElements.define function 89
window.dispatchEvent 110
window.history.pushState 138
window.postMessage API 159

INDEX276
window.React 199
window.ReactDOM 199
wrapping micro frontends, using Web

Components 86–93, 96–98
benefits of 96–97
defining Custom Elements 89–90
drawbacks of 97
parametrization via attributes 91–92
process for 87–92
using Custom Elements 90–91
Web Components and Custom Elements 88
Web Components as container format 88

wrapping framework in Web Components
92–93

Z

Zalando Tailor
asset loading 183–184
server-side composition via 73–75

asset handling 75
fallbacks and timeouts 74
time to first byte and streaming 75

zombie style guide 218

Michael Geers

ISBN: 978-1-61729-687-1

M
icro frontends deliver the same fl exibility and maintain-
ability to browser-based applications that microservices
provide for backend systems. You design your project

as a set of standalone components that include their own
interfaces, logic, and storage. Then you develop these mini-
applications independently and compose them in the browser.

Micro Frontends in Action teaches you to apply the microser-
vices approach to the frontend. You’ll start with the core mi-
cro frontend design ideas. Then, you’ll build an e-commerce
application, working through practical issues like server-side
and client-side composition, routing, and maintaining a
consistent look and feel. Finally, you’ll explore team workfl ow
patterns that maximize the benefi t of developing application
components independently.

What’s Inside
● Create a unifi ed frontend from independent
 applications
● Combine JavaScript code from multiple frameworks
● Browser and server-side composition and routing
● Implement effective dev teams and project workfl ow

For web developers, software architects, and team leaders.

Michael Geers is a software developer specializing in building
user interfaces.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/micro-frontends-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Micro Frontends IN ACTION

WEB DEVELOPMENT

M A N N I N G

“You can base your Micro
Frontends directly on the
examples in the book!”

—Barnaby Norman
Frontend Developer

“Expert practical advice for
robust frontend development.

The fi nal piece of the
 micro puzzle!”—Adail Retamal

Cubic Transportation Systems

“A very concise
and logically structured

introduction to implementing
a micro frontends team

 infrastructure.”—Tanya Wilke, Sanlam

“A defi nitive guide for
applying micro frontends

architecture to any existing
UI technology.”—Karthikeyarajan Rajendran

Johnson Controls India

See first page

	Micro Frontends in Action
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Online resources

	about the author
	about the cover illustration
	Part 1 Getting started with micro frontends
	1 What are micro frontends?
	1.1 The big picture
	1.1.1 Systems and teams
	1.1.2 The frontend
	1.1.3 Frontend integration
	1.1.4 Shared topics

	1.2 What problems do micro frontends solve?
	1.2.1 Optimize for feature development
	1.2.2 No more frontend monolith
	1.2.3 Be able to keep changing
	1.2.4 The benefits of independence

	1.3 The downsides of micro frontends
	1.3.1 Redundancy
	1.3.2 Consistency
	1.3.3 Heterogeneity
	1.3.4 More frontend code

	1.4 When do micro frontends make sense?
	1.4.1 Good for medium-to-large projects
	1.4.2 Works best on the web
	1.4.3 Productivity versus overhead
	1.4.4 Where micro frontends are not a great fit
	1.4.5 Who uses micro frontends?

	Summary

	2 My first micro frontends project
	2.1 Introducing The Tractor Store
	2.1.1 Getting started
	2.1.2 Running this book’s example code

	2.2 Page transition via links
	2.2.1 Data ownership
	2.2.2 Contract between the teams
	2.2.3 How to do it
	2.2.4 Dealing with changing URLs
	2.2.5 The benefits
	2.2.6 The drawbacks
	2.2.7 When do links make sense?

	2.3 Composition via iframe
	2.3.1 How to do it
	2.3.2 The benefits
	2.3.3 The drawbacks
	2.3.4 When do iframes make sense?

	2.4 What’s next?
	Summary

	Part 2 Routing, composition, and communication
	3 Composition with Ajax and server-side routing
	3.1 Composition via Ajax
	3.1.1 How to do it
	3.1.2 Namespacing styles and scripts
	3.1.3 Declarative loading with h-include
	3.1.4 The benefits
	3.1.5 The drawbacks
	3.1.6 When does an Ajax integration make sense?
	3.1.7 Summary

	3.2 Server-side routing via Nginx
	3.2.1 How to do it
	3.2.2 Namespacing resources
	3.2.3 Route configuration methods
	3.2.4 Infrastructure ownership
	3.2.5 When does it make sense?

	Summary

	4 Server-side composition
	4.1 Composition via Nginx and Server-Side Includes (SSI)
	4.1.1 How to do it
	4.1.2 Better load times

	4.2 Dealing with unreliable fragments
	4.2.1 The flaky fragment
	4.2.2 Integrating the Near You fragment
	4.2.3 Timeouts and fallbacks
	4.2.4 Fallback content

	4.3 Markup assembly performance in depth
	4.3.1 Parallel loading
	4.3.2 Nested fragments
	4.3.3 Deferred loading
	4.3.4 Time to first byte and streaming

	4.4 A quick look into other solutions
	4.4.1 Edge-Side Includes
	4.4.2 Zalando Tailor
	4.4.3 Podium
	4.4.4 Which solution is right for me?

	4.5 The good and bad of server-side composition
	4.5.1 The benefits
	4.5.2 The drawbacks
	4.5.3 When does server-side integration make sense?

	Summary

	5 Client-side composition
	5.1 Wrapping micro frontends using Web Components
	5.1.1 How to do it
	5.1.2 Wrapping your framework in a Web Component

	5.2 Style isolation using Shadow DOM
	5.2.1 Creating a shadow root
	5.2.2 Scoping styles
	5.2.3 When to use Shadow DOM

	5.3 The good and bad of using Web Components for composition
	5.3.1 The benefits
	5.3.2 The drawbacks
	5.3.3 When does client-side integration make sense?

	Summary

	6 Communication patterns
	6.1 User interface communication
	6.1.1 Parent to fragment
	6.1.2 Fragment to parent
	6.1.3 Fragment to fragment
	6.1.4 Publish/Subscribe with the Broadcast Channel API
	6.1.5 When UI communication is a good fit

	6.2 Other communication mechanisms
	6.2.1 Global context and authentication
	6.2.2 Managing state
	6.2.3 Frontend-backend communication
	6.2.4 Data replication

	Summary

	7 Client-side routing and the application shell
	7.1 App shell with flat routing
	7.1.1 What’s an app shell?
	7.1.2 Anatomy of the app shell
	7.1.3 Client-side routing
	7.1.4 Rendering pages
	7.1.5 Contracts between app shell and teams

	7.2 App shell with two-level routing
	7.2.1 Implementing the top-level router
	7.2.2 Implementing team-level routing
	7.2.3 What happens on a URL change?
	7.2.4 App shell APIs

	7.3 A quick look into the single-spa meta-framework
	7.3.1 How single-spa works

	7.4 The challenges of a unified single-page app
	7.4.1 Topics you need to think about
	7.4.2 When does a unified single-page app make sense?

	Summary

	8 Composition and universal rendering
	8.1 Combining server- and client-side composition
	8.1.1 SSI and Web Components
	8.1.2 Contract between the teams
	8.1.3 Other solutions

	8.2 When does universal composition make sense?
	8.2.1 Universal rendering with pure server-side composition
	8.2.2 Increased complexity
	8.2.3 Universal unified single-page app?

	Summary

	9 Which architecture fits my project?
	9.1 Revisiting the terminology
	9.1.1 Routing and page transitions
	9.1.2 Composition techniques
	9.1.3 High-level architectures

	9.2 Comparing complexity
	9.2.1 Heterogeneous architectures

	9.3 Are you building a site or an app?
	9.3.1 The Documents-to-Applications Continuum
	9.3.2 Server, client, or both

	9.4 Picking the right architecture and integration technique
	9.4.1 Strong isolation (legacy, third party)
	9.4.2 Fast first-page load/progressive enhancement
	9.4.3 Instant user feedback
	9.4.4 Soft navigation
	9.4.5 Multiple micro frontends on one page

	Summary

	Part 3 How to be fast, consistent, and effective
	10 Asset loading
	10.1 Asset referencing strategies
	10.1.1 Direct referencing
	10.1.2 Challenge: Cache-busting and independent deployments
	10.1.3 Referencing via redirect (client)
	10.1.4 Referencing via include (server)
	10.1.5 Challenge: Synchronizing markup and asset versions
	10.1.6 Inlining
	10.1.7 Integrated solutions (Tailor, Podium, …)
	10.1.8 Quick summary

	10.2 Bundle granularity
	10.2.1 HTTP/2
	10.2.2 All-in-one bundle
	10.2.3 Team bundles
	10.2.4 Page and fragment bundles

	10.3 On-demand loading
	10.3.1 Proxy micro frontends
	10.3.2 Lazy loading CSS

	Summary

	11 Performance is key
	11.1 Architecting for performance
	11.1.1 Different teams, different metrics
	11.1.2 Multi-team performance budgets
	11.1.3 Attributing slowdowns
	11.1.4 Performance benefits

	11.2 Reduce, reuse… vendor libraries
	11.2.1 Cost of autonomy
	11.2.2 Pick small
	11.2.3 One global version
	11.2.4 Versioned vendor bundles
	11.2.5 Don’t share business code

	Summary

	12 User interface and design system
	12.1 Why a design system?
	12.1.1 Purpose and role
	12.1.2 Benefits

	12.2 Central design system versus autonomous teams
	12.2.1 Do I need my own design system?
	12.2.2 Process, not project
	12.2.3 Ensure sustained budget and responsibility
	12.2.4 Get buy-in from the teams
	12.2.5 Development process: Central versus federated
	12.2.6 Development phases

	12.3 Runtime versus build-time integration
	12.3.1 Runtime integration
	12.3.2 Versioned package

	12.4 Pattern library artifacts: Generic versus specific
	12.4.1 Choose your component format
	12.4.2 There will be change

	12.5 What goes into the central pattern library?
	12.5.1 The costs of sharing components
	12.5.2 Central or local?
	12.5.3 Central and local pattern libraries

	Summary

	13 Teams and boundaries
	13.1 Aligning systems and teams
	13.1.1 Identifying team boundaries
	13.1.2 Team depth
	13.1.3 Cultural change

	13.2 Sharing knowledge
	13.2.1 Community of practice
	13.2.2 Learning and enabling
	13.2.3 Present your work

	13.3 Cross-cutting concerns
	13.3.1 Central infrastructure
	13.3.2 Specialized component team
	13.3.3 Global agreements and conventions

	13.4 Technology diversity
	13.4.1 Toolbox and defaults
	13.4.2 Frontend blueprint
	13.4.3 Don’t fear the copy
	13.4.4 The value of similarity

	Summary

	14 Migration, local development, and testing
	14.1 Migration
	14.1.1 Proof of concept and building a lighthouse
	14.1.2 Strategy #1: Slice-by-slice
	14.1.3 Strategy #2: Frontend first
	14.1.4 Strategy #3: Greenfield and big bang

	14.2 Local development
	14.2.1 Don’t run another team’s code
	14.2.2 Mocking fragments
	14.2.3 Fragments in isolation
	14.2.4 Pulling other teams micro frontends from staging or production

	14.3 Testing
	Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Micro Frontends in Action - back

