
M A N N I N G

Steven van Deursen
Mark Seemann

AMBIENT

CONTEXT

(ch. 5)

TEMPORAL

COUPLING

(ch. 4)

FOREIGN

DEFAULT

(ch. 5)

SERVICE

LOCATOR

(ch. 5)

CONTROL

FREAK

(ch. 5)

COMPOSITION

ROOT

(ch. 4)

SCOPED

(ch. 8)

AUTO-
REGISTRATION

(ch. 12)

CONFIGURATION

AS CODE

(ch. 12)

DI CONTAINER

(ch. 12)

AOP
(ch. 10)

INTERCEPTION

(ch. 9)

AUTO-WIRING

(ch. 12) CROSS-
CUTTING

CONCERNS

(ch. 9)SINGLETON

(ch. 8)

TRANSIENT

(ch. 8)

LIFESTYLE

(ch. 8)

OBJECT

LIFETIME

(ch. 8)

COMPOSER

(ch. 8)

PURE DI
(part 3)

CONSTRAINED

CONSTRUCTION
(ch. 5)

CONSTRUCTOR

INJECTION

(ch. 4)

PROPERTY

INJECTION

(ch. 4)

METHOD

INJECTION

(ch. 4)

LOCAL

DEFAULT

(ch. 4)

references

refactor to

refactor to

refactor to

may understand

relies on

addresses

refactor to

is a

is a

is a

is a

applies

uses

uses

configures

configures

enables

implements

references

causes

causes causes

formalized
by

manages

may enable

Praise for the First Edition

“Realistic examples keep the big picture in focus … A real treat.”

— Glenn Block
Microsoft

“Well-written, thoughtful, easy to follow, and … timeless.”

— David Barkol
Neudesic

“Fills a huge need for .NET designers.”

— Paul Grebenc
PCA Services

“Takes the mystery out of a mystifying topic.”

— Rama Krishna
3C Software

“A uniquely personal way to learn about modern software development principles in
depth. Highly recommended!”

— Darren Neimke
HomeStart Finance

“All you ever need to know about dependency injection ... and more!”

— Jonas Bandi
TechTalk

“A must read on Dependency Injection.”

— Braj Panda
Capgemini India

“This book will be the definitive guide to Dependency Injection for the .NET stack.”

— Doug Ferguson
Improving Enterprises

Dependency Injection Principles, Practices, and Patterns

Dependency Injection
Principles, Practices, and Patterns

STEVEN VAN DEURSEN
MARK SEEMANN

MANN I NG
Shelter ISland

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editor: Mike Stephens
 Development editors: Marina Michaels and

Dan Maharry
 Technical development editor: Karsten Strøbæk
 Review editor: Ivan Martinović
 Production editor: Anthony Calcara
 Copy editor: Frances Buran
 Proofreader: Katie Tennant
 Technical proofreader: Chris Heneghan
 Typesetter: Happenstance Type-O-Rama
 Cover designer: Marija Tudor

ISBN 9781617294730
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

v

brief contents

Part 1 Putting Dependency Injection on the map1
1 ■ The basics of Dependency Injection: What, why, and how 3
2 ■ Writing tightly coupled code 34
3 ■ Writing loosely coupled code 52

Part 2 Catalog ..81
4 ■ DI patterns 83
5 ■ DI anti-patterns 124
6 ■ Code smells 163

Part 3 Pure DI ..209
7 ■ Application composition 211
8 ■ Object lifetime 236
9 ■ Interception 281

10 ■ Aspect-Oriented Programming by design 301
11 ■ Tool-based Aspect-Oriented Programming 341

Part 4 DI Containers ..357
12 ■ DI Container introduction 359
13 ■ The Autofac DI Container 393
14 ■ The Simple Injector DI Container 427
15 ■ The Microsoft.Extensions.DependencyInjection DI Container 466

vii

contents
preface xv
acknowledgments xvii
about this book xix
about the authors xxiii
about the cover illustration xxiv

Part 1 Putting Dependency Injection on the map ... 1

1 The basics of Dependency Injection: What, why, and how 3
 1.1 Writing maintainable code 5

Common myths about DI 5 ■ Understanding the purpose of DI 8

 1.2 A simple example: Hello DI! 14
Hello DI! code 15 ■ Benefits of DI 17

 1.3 What to inject and what not to inject 24
Stable DepenDencieS 26 ■ Volatile DepenDencieS 26

 1.4 DI scope 27
object compoSition 29 ■ object lifetime 30

interception 30 ■ DI in three dimensions 31

 1.5 Conclusion 32

viiiviii contents

 2 Writing tightly coupled code 34
 2.1 Building a tightly coupled application 35

Meet Mary Rowan 35 ■ Creating the data layer 36

Creating the domain layer 39 ■ Creating the UI layer 42

 2.2 Evaluating the tightly coupled application 44
Evaluating the dependency graph 44

Evaluating composability 45

 2.3 Analysis of missing composability 47
Dependency graph analysis 47 ■ Data access interface
analysis 48 ■ Miscellaneous other issues 50

 2.4 Conclusion 50

 3 Writing loosely coupled code 52
 3.1 Rebuilding the e-commerce application 53

Building a more maintainable UI 56 ■ Building an
independent domain model 61 ■ Building a new data
access layer 70 ■ Implementing an ASP.NET Core–specific
IUserContext Adapter 71 ■ Composing the application
in the compoSition root 73

 3.2 Analyzing the loosely coupled implementation 74
Understanding the interaction between components 74

Analyzing the new dependency graph 75

Part 2 Catalog..81

 4 DI patterns 83
 4.1 Composition Root 85

How compoSition root works 87 ■ Using a Di container
in a compoSition root 88 ■ Example: Implementing
a compoSition root using pure Di 89 ■ The apparent
dependency explosion 92

 4.2 Constructor Injection 95
How conStructor injection works 95 ■ When to use
conStructor injection 97 ■ Known use of conStructor
injection 99 ■ Example: Adding currency conversions to
the featured products 100 ■ Wrap-up 102

 ix ixcontents

 4.3 Method Injection 104
How methoD injection works 104 ■ When to use methoD
injection 105 ■ Known use of methoD injection 111

Example: Adding currency conversions to the Product
entity 112

 4.4 Property Injection 114
How property injection works 114 ■ When to use
property injection 115 ■ Known uses of property
injection 118 ■ Example: property injection as an
extensibility model of a reusable library 118

 4.5 Choosing which pattern to use 120

 5 DI anti-patterns 124
 5.1 Control Freak 127

Example: control freak through newing up DepenDencieS 128

Example: control freak through factories 129 ■ Example:
control freak through overloaded constructors 134

Analysis of control freak 135

 5.2 Service Locator 138
Example: ProductService using a SerVice locator 140

Analysis of SerVice locator 142

 5.3 Ambient Context 146
Example: Accessing time through ambient context 147

Example: Logging through ambient context 149

Analysis of ambient context 150

 5.4 Constrained Construction 154
Example: Late binding a ProductRepository 154

Analysis of conStraineD conStruction 156

 6 Code smells 163
 6.1 Dealing with the Constructor Over-injection code smell 164

Recognizing Constructor Over-injection 165 ■ Refactoring from
Constructor Over-injection to Facade Services 168 ■ Refactoring
from Constructor Over-injection to domain events 173

 6.2 Abuse of Abstract Factories 180
Abusing Abstract Factories to overcome lifetime
problems 180 ■ Abusing Abstract Factories to select
DepenDencieS based on runtime data 187

xx contents

 6.3 Fixing cyclic Dependencies 194
Example: DepenDency cycle caused by an SRP
violation 195 ■ Analysis of Mary’s DepenDency
cycle 199 ■ Refactoring from SRP violations to resolve
the DepenDency cycle 200 ■ Common strategies for
breaking DepenDency cycles 204 ■ Last resort: Breaking
the cycle with property injection 204

Part 3 Pure DI ... 209

 7 Application composition 211
 7.1 Composing console applications 213

Example: Updating currencies using the UpdateCurrency
program 214 ■ Building the compoSition root of the
UpdateCurrency program 215 ■ Composing object graphs
in CreateCurrencyParser 216 ■ A closer look at
UpdateCurrency’s layering 217

 7.2 Composing UWP applications 218
UWP composition 218 ■ Example: Wiring up a product-management
rich client 219 ■ Implementing the compoSition root in the
UWP application 226

 7.3 Composing ASP.NET Core MVC applications 228
Creating a custom controller activator 230 ■ Constructing
custom middleware components using pure Di 233

 8 Object lifetime 236
 8.1 Managing Dependency Lifetime 238

Introducing lifetime management 238 ■ Managing
lifetime with pure Di 242

 8.2 Working with disposable Dependencies 245
Consuming disposable DepenDencieS 246 ■ Managing
disposable DepenDencieS 250

 8.3 Lifestyle catalog 255
The Singleton lifeStyle 256 ■ The tranSient
lifeStyle 259 ■ The ScopeD lifeStyle 260

 8.4 Bad Lifestyle choices 266
captiVe DepenDencieS 266 ■ Using leaky abStractionS to
leak lifeStyle choices to consumers 269 ■ Causing concurrency
bugs by tying instances to the lifetime of a thread 275

 xi xicontents

 9 Interception 281
 9.1 Introducing Interception 283

Decorator design pattern 284 ■ Example: Implementing auditing
using a Decorator 287

 9.2 Implementing Cross-Cutting Concerns 290
Intercepting with a Circuit Breaker 292 ■ Reporting exceptions
using the Decorator pattern 297 ■ Preventing unauthorized access
to sensitive functionality using a Decorator 298

 10 Aspect-Oriented Programming by design 301
 10.1 Introducing AOP 302

 10.2 The SOLID principles 305
Single reSponSibility principle (SRP) 306 ■ open/cloSeD
principle (OCP) 306 ■ liSkoV SubStitution principle
(LSP) 307 ■ interface Segregation principle (ISP) 307

DepenDency inVerSion principle (DIP) 308 ■ SoliD
principles and interception 308

 10.3 SOLID as a driver for AOP 308
Example: Implementing product-related features using
IProductService 309 ■ Analysis of IProductService from the
perspective of SoliD 311 ■ Improving design by applying
SoliD principles 314 ■ Adding more croSS-cutting
concernS 327 ■ Conclusion 336

 11 Tool-based Aspect-Oriented Programming 341
 11.1 Dynamic Interception 342

Example: interception with Castle Dynamic Proxy 344

Analysis of dynamic interception 346

 11.2 Compile-time weaving 348
Example: Applying a transaction aspect using compile-time
weaving 349 ■ Analysis of compile-time weaving 351

Part 4 DI Containers .. 357

 12 DI Container introduction 359
 12.1 Introducing DI Containers 361

Exploring containers’ Resolve API 361 ■ auto-Wiring 363

Example: Implementing a simplistic Di container that supports
auto-Wiring 364

xiixii contents

 12.2 Configuring DI Containers 372
Configuring containers with configuration files 373

Configuring containers using configuration aS
coDe 377 ■ Configuring containers by convention using
auto-regiStration 379 ■ Mixing and matching configuration
approaches 385

 12.3 When to use a DI Container 385
Using third-party libraries involves costs and risks 386 ■ pure Di
gives a shorter feedback cycle 388 ■ The verdict: When to use a Di
container 389

 13 The Autofac DI Container 393
 13.1 Introducing Autofac 394

Resolving objects 395

Configuring the ContainerBuilder 398

 13.2 Managing lifetime 404
Configuring instance scopes 405 ■ Releasing components 406

 13.3 Registering difficult APIs 409
Configuring primitive DepenDencieS 409 ■ Registering
objects with code blocks 411

 13.4 Working with multiple components 412
Selecting among multiple candidates 413

Wiring sequences 417 ■ Wiring Decorators 420

Wiring Composites 422

 14 The Simple Injector DI Container 427
 14.1 Introducing Simple Injector 428

Resolving objects 429 ■ Configuring the container 432

 14.2 Managing lifetime 438
Configuring lifeStyleS 439 ■ Releasing components 440

Ambient scopes 443 ■ Diagnosing the container for common
lifetime problems 444

 14.3 Registering difficult APIs 447
Configuring primitive DepenDencieS 448 ■ Extracting primitive
DepenDencieS to Parameter Objects 449 ■ Registering objects with
code blocks 450

 xiii xiiicontents

 14.4 Working with multiple components 451
Selecting among multiple candidates 452
Wiring sequences 454 ■ Wiring Decorators 457
Wiring Composites 459 ■ Sequences are streams 462

 15 The Microsoft.Extensions.DependencyInjection DI Container 466
 15.1 Introducing Microsoft.Extensions.DependencyInjection 467

Resolving objects 468
Configuring the ServiceCollection 471

 15.2 Managing lifetime 476
Configuring lifeStyleS 477 ■ Releasing components 477

 15.3 Registering difficult APIs 480
Configuring primitive DepenDencieS 480 ■ Extracting primitive
DepenDencieS to Parameter Objects 481 ■ Registering objects with
code blocks 482

 15.4 Working with multiple components 483
Selecting among multiple candidates 483 ■ Wiring
sequences 486 ■ Wiring Decorators 489 ■ Wiring
Composites 492

glossary 499

resources 504

index 507

xv

preface
There’s a peculiar phenomenon related to Microsoft called the Microsoft Echo Chamber.
Microsoft is a huge organization, and the surrounding ecosystem of Microsoft Certi-
fied Partners multiplies that size by orders of magnitude. If you’re sufficiently embed-
ded in this ecosystem, it can be hard to see past its boundaries. Whenever you look for
a solution to a problem with a Microsoft product or technology, you’re likely to find an
answer that involves throwing even more Microsoft products at it. No matter what you
yell within the echo chamber, the answer is Microsoft!

When Microsoft hired me (Mark) in 2003, I was already firmly embedded in the
echo chamber, having worked for Microsoft Certified Partners for years—and I loved it!
They soon shipped me off to an internal tech conference in New Orleans to learn about
the latest and greatest Microsoft technology.

Today, I can’t recall any of the Microsoft product sessions I attended—but I do
remember the last day. On that day, having failed to experience any sessions that could
satisfy my hunger for cool tech, I was mostly looking forward to flying home to Den-
mark. My top priority was to find a place to sit so I could attend to my email, so I chose a
session that seemed marginally relevant for me and fired up my laptop.

The session was loosely structured and featured several presenters. One was a
bearded guy named Martin Fowler, who talked about Test-Driven Development (TDD)
and dynamic mocks. I had never heard of him, and I didn’t listen very closely, but some-
thing must have stuck in my mind.

Soon after returning to Denmark, I was tasked with rewriting a big ETL (extract,
transform, load) system from scratch, and I decided to give TDD a try (it turned out to
be a very good decision). The use of dynamic mocks followed naturally, but also intro-
duced the need to manage dependencies. I found that to be a very difficult but very
captivating problem, and I couldn’t stop thinking about it.

xvi prEfaCExvi

What started as a side effect of my interest in TDD became a passion in itself. I did a
lot of research, read lots of blog posts about the matter, wrote quite a few blogs myself,
experimented with code, and discussed the topic with anyone who cared to listen.
Increasingly, I had to look outside the Microsoft Echo Chamber for inspiration and
guidance. Along the way, people associated me with the ALT.NET movement even
though I was never very active in it. I made all the mistakes it was possible to make, but I
was gradually able to develop a coherent understanding of Dependency Injection (DI).

When Manning approached me with the idea for a book about Dependency Injec-
tion in .NET, my first reaction was, “Is this even necessary?” I felt that all the concepts a
developer needs to understand DI were already described in numerous blog posts. Was
there anything to add? Honestly, I thought DI in .NET was a topic that had been done
to death already.

Upon reflection, however, it dawned on me that while the knowledge is definitely
out there, it’s very scattered and uses a lot of conflicting terminology. Before the first
edition of this book, there were no titles about DI that attempted to present a coherent
description of it. After thinking about it further, I realized that Manning was offering
me a tremendous challenge and a great opportunity to collect and systematize all that I
knew about DI.

The result is this book and its predecessor—the first edition. It uses .NET Core and
C# to introduce and describe a comprehensive terminology and guidance for DI, but
I hope the value of this book will reach well beyond the platform. I think the pattern
language articulated here is universal. Whether you’re a .NET developer or use another
object-oriented platform, I hope this book will help you be a better software engineer.

xvii

acknowledgments
Gratitude may seem like a cliché, but this is only because it’s such a fundamental part
of human nature. While we were writing the book, many people gave us good reasons
to be grateful, and we would like to thank them all.

First of all, writing a book in our spare time has given us a new understanding of
just how taxing such a project is on marriage and family life. Mark’s wife Cecilie stayed
with him and actively supported him during the whole process. Most significantly, she
understood just how important this project was to him. They’re still together, and Mark
looks forward to being able to spend more time with her and their kids Linea and Jarl.
Steven’s wife Judith gave him the space needed to complete this immense undertaking,
but she certainly is glad that the project is finally finished.

On a more professional level, we want to thank Manning for giving us this opportu-
nity. Michael Stephens initiated the project. Dan Maharry, Marina Michaels, and Chris-
tina Taylor served as our development editors and kept a keen eye on the quality of
the text. They helped us identify weak spots in the manuscript and provided extensive
constructive criticism.

Karsten Strøbæk served as our technical development editor, read through numer-
ous early drafts, and provided much helpful feedback. Karsten was there when Mark
wrote the first edition and served as the technical proofreader during production at
that time. In this edition, technical proofreading was done by Chris Heneghan, who
caught many subtle bugs and inconsistencies throughout the manuscript.

After we were done writing the manuscript, we entered the production process. This
was managed by Anthony Calcara. During that process, Frances Buran was our copyedi-
tor, while Nichole Beard held a close watch on the book’s graphics and diagrams.

xviiixviii aCkNOwlEdgmENTS

The following reviewers read the manuscript at various stages of development, and
we’re grateful for their comments and insight: Ajay Bhosale, Björn Nordblom, Cemre
Mengu, Dennis Sellinger, Emanuele Origgi, Ernesto Cardenas Cangahuala, Gustavo
Gomes, Igor Kochetov, Jeremy Caney, Justin Coulston, Mikkel Arentoft, Pasquale Zirp-
oli, Robert Morrison, Sergio Romero, Shawn Lam, and Stephen Byrne. Reviewing was
made possible by Ivan Martinovic, the book’s review editor.

Many of the participants in the Manning Early Access Program (MEAP) also pro-
vided feedback and asked difficult questions that exposed the weak parts of the text.

Special thanks go out to Jeremy Caney, who started out as a MEAP participant but
was promoted to reviewer. He supplied us with an immense amount of feedback,
both linguistic and contextual. His deep understanding of DI and software design was
invaluable.

Also special thanks to Ric Slappendel. Ric advised us on how to compose UWP appli-
cations using DI. His knowledge about WPF, UWP, and XAML saved us countless hours
and sleepless nights, and completely shaped section 7.2 and its companion code exam-
ples. Without Ric’s help, we likely would’ve ended up with a book that didn’t discuss
UWP at all.

Alex Meyer-Gleaves and Travis Illig reviewed early versions of chapter 13 and pro-
vided us with feedback on using the new Autofac configuration and Decorator support.
We’re grateful for their participation.

And finally, Mogens Heller Grabe courteously allowed us to use his picture of a hair
dryer wired directly into a wall outlet.

xix

about this book
This is a book about Dependency Injection (DI), first and foremost. It’s also a book
about .NET, but that’s much less important. Although C# is used for code examples,
much of the discussion in this book can be easily applied to other languages and plat-
forms. In fact, we learned a lot of the underlying principles and patterns from reading
books where Java or C++ was used in examples.

DI is a set of related patterns and principles. It’s a way to think about and design
code, more than it is a specific technology. The ultimate purpose of using DI is to create
maintainable software within the object-oriented paradigm.

The concepts used throughout this book all relate to object-oriented programming.
The problem that DI addresses (code maintainability) is universal, but the proposed
solution is given within the scope of object-oriented programming in statically typed
languages: C#, Java, Visual Basic .NET, C++, and so on. You can’t apply DI to procedural
programming, and it may not be the best solution in functional or dynamic languages.

DI in isolation is just a small thing, but it’s closely interwoven with a large complex of
principles and patterns for object-oriented software design. Whereas the book focuses
consistently on DI from start to finish, it also discusses many of these other topics in
the light of the specific perspective that DI can give. The goal of the book is more than
just teaching you about DI specifics: the goal is to make you a better object-oriented
programmer.

Who should read this book?
It would be tempting to state that this is a book for all .NET developers. But the .NET
community today is vast and spans developers working with web applications, desktop
applications, smartphones, RIA, integration, office automation, content management

xxxx abOuT ThiS bOOk

systems, and even games. Although .NET is object oriented, not all of those developers
write object-oriented code.

This is a book about object-oriented programming, so at a minimum readers should
be interested in object orientation and understand what an interface is. A few years of
professional experience and knowledge of design patterns or SOLID principles will
certainly be of benefit as well. In fact, we don’t expect beginners to get much out of the
book; it’s mostly targeted toward experienced developers and software architects.

The examples are all written in C#, so readers working with other .NET languages
must be able to read and understand C#. Readers familiar with non-.NET object-
oriented languages like Java and C++ may also find the book valuable, because the .NET
platform-specific content is relatively light. Personally, we read a lot of pattern books
with examples in Java and still get a lot out of them, so we hope the converse is true as
well.

Roadmap
The contents of this book are divided into four parts. Ideally, we’d like you to first read
it from cover to cover and then subsequently use it as a reference, but we understand if
you have other priorities. For that reason, a majority of the chapters are written so that
you can dive right in and start reading from that point.

The first part is the major exception. It contains a general introduction to DI and is
probably best read sequentially. The second part is a catalog of patterns and the like,
whereas the third and largest part is an examination of DI from three different angles.
The fourth part of the book is a catalog of three DI Container libraries.

There are a lot of interconnected concepts, and, because we introduce them the
first time it feels natural, this means we often mention concepts before we’ve formally
introduced them. To distinguish these universal concepts from more local terms, we
consistently use Small Caps to make them stand out. All these terms are briefly defined
in the glossary, which also contains references to a more extensive description.

Part 1 is a general introduction to DI. If you don’t know what DI is, this is the place to
start; but even if you do, you may want to familiarize yourself with the contents of part 1,
as it establishes a lot of the context and terminology used in the rest of the book. Chap-
ter 1 discusses the purpose and benefits of DI and provides a general outline. Chapter 2
contains a big and rather comprehensive example of tightly coupled code, and chapter
3 explains how to reimplement the same example using DI. Compared to the other
parts, part 1 has a more linear progression of its content. You’ll need to read each chap-
ter from the beginning to gain the most from it.

Part 2 is a catalog of patterns, anti-patterns, and code smells. This is where you’ll
find prescriptive guidance on how to implement DI and the dangers to look out for.
Chapter 4 is a catalog of DI design patterns, and, conversely, chapter 5 is a catalog of
anti-patterns. Chapter 6 contains generalized solutions to commonly occurring issues.
As a catalog, each chapter contains a set of loosely related sections that are designed to
be read in isolation as well as in sequence.

 xxi xxiabOuT ThiS bOOk

Part 3 examines DI from three different angles: Object Composition, Lifetime
Management, and Interception. In chapter 7, we discuss how to implement DI on
top of existing application frameworks—ASP.NET Core and UWP—and how to imple-
ment DI using a console application. Chapter 8 describes how to manage Dependency
lifetimes to avoid resources leaks. Whereas the structure is a little less stringent than
previous chapters, a large part of that chapter can be used as a catalog of well-known
Lifestyles. The remaining three chapters describe how to compose applications with
Cross-Cutting Concerns. Chapter 9 goes into the basics of Interception using Dec-
orators, whereas chapters 10 and 11 dive deep into the concept of Aspect-Oriented
Programming. This is where you harvest the benefits of all the work that came before,
so, in many ways, we consider this to be the climax of the book.

Part 4 is a catalog of DI Container libraries. It starts with a discussion on what DI
Containers are and how they fit into the overall picture. The remaining three chap-
ters each cover a specific container in a fair amount of detail: Autofac, Simple Injector,
and Microsoft.Extensions.DependencyInjection. Each chapter covers its container in a
rather condensed form to save space, so you may want to read about only the one or two
containers that interest you the most. In many ways, we regard these three chapters as a
very big set of appendixes.

To keep the discussion of DI principles and patterns free of any specific container
APIs, most of the book, with the exception of part 4, is written without referencing a
particular container. This is also why the containers appear with such force in part 4.
It’s our hope that by keeping the discussion general, the book will be useful for a longer
period of time.

You can also take the concepts from parts 1 through 3 and apply them to container
libraries not covered in part 4. There are good containers available that, unfortunately, we
couldn’t cover. But even for users of these libraries, we hope that this book has a lot to offer.

Code conventions and downloads
There are many code examples in this book. Most of those are in C#, but there’s also
a bit of XML and JSON here and there. Source code in listings and text is in a fixed-
width font like this to separate it from ordinary text.

All the source code for the book is written in C# and Visual Studio 2017. The ASP.NET
Core applications are written against ASP.NET Core v2.1.

Only a few of the techniques described in this book hinge on modern language fea-
tures. We wanted to strike a reasonable balance between conservative and modern cod-
ing styles. When we write code professionally, we use modern language features to a
far greater degree, but, for the most part, the most advanced features are generics and
LINQ. The last thing we want is for you to get the idea that DI can only be applied with
ultra-modern languages.

Writing code examples for a book presents its own set of challenges. Compared to a
modern computer monitor, a book only allows for very short lines of code. It was very
tempting to write code in a terse style with short but cryptic names for methods and

xxii abOuT ThiS bOOkxxii

variables. Such code is already difficult to understand as real code even when you have
an IDE and a debugger nearby, but it becomes really difficult to follow in a book. We
found it very important to keep names as readable as possible. To make it all fit, we’ve
sometimes had to resort to some unorthodox line breaks. All the code compiles, but
sometimes the formatting looks a bit funny.

The code also makes use of the C# var keyword. In our professional code, where
line width isn’t limited by the size of a book’s page, we often use a different coding style
when applying var. Here, to save space, we use var whenever we judge that an explicit
declaration makes the code less readable.

The word class is often used as a synonym for a type. In .NET, classes, structs, inter-
faces, enums, and so on are all types, but because the word type is also a word with a lot of
overloaded meaning in ordinary language, it would often make the text less clear if used.

Most of the code in this book relates to an overarching example running through
the book: an online store complete with supporting internal management applications.
This is about the least exciting example you can expect to see in any software text, but
we chose it for a few reasons:

¡	It’s a well-known problem domain for most readers. Although it may seem bor-
ing, we think this is an advantage, because it doesn’t steal focus from DI.

¡	 We also have to admit that we couldn’t really think of any other domain that was
rich enough to support all the different scenarios we had in mind.

We wrote a lot of code to support the code examples, and most of that code isn’t in this
book. In fact, we wrote almost all of it using Test-Driven Development (TDD), but as
this isn’t a TDD book, we generally don’t show the unit tests in the book.

The source code for all examples in this book is available from Manning’s
website: www.manning.com/books/dependency-injection-principles-practices-patterns.
The README.md in the root of the download contains instructions for compiling and
running the code.

liveBook discussion forum
The purchase of Dependency Injection Principles, Practices, and Patterns, includes free
access to a private web forum run by Manning Publications, where you can make com-
ments about the book, ask technical questions, and receive help from the authors and
from other users. To access the forum and subscribe to it, point your web browser to
https://livebook.manning.com/#!/book/dependency-injection-principles-practices-
patterns/discussion. You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the authors can take place.
It isn’t a commitment to any specific amount of participation on the part of the authors,
whose contribution to the forum remains voluntary (and unpaid). We suggest that you
ask them some challenging questions lest their interest stray! The book forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

www.manning.com/books/dependency-injection-principles-practices-patterns
https://livebook.manning.com/#!/book/dependency-injection-principles-practices- patterns/discussion
https://livebook.manning.com/#!/book/dependency-injection-principles-practices- patterns/discussion
https://livebook.manning.com/#!/discussion

xxiii

about the authors
Steven van Deursen is a Dutch freelance .NET developer and architect with experience
in the field since 2002. He lives in Nijmegen and enjoys writing code for fun and profit.
Besides writing code, Steven trains in martial arts, likes to go out for food, and certainly
fancies a good whiskey.

Mark Seemann is a programmer, software architect, and speaker living in Copenha-
gen, Denmark. He has been working with software since 1995 and TDD since 2003,
including six years with Microsoft as a consultant, developer, and architect. Mark is cur-
rently professionally engaged with software development and is working out of Copen-
hagen. He enjoys reading, painting, playing the guitar, good wine, and gourmet food.

xxiv

about the cover illustration
On the cover of Dependency Injection Principles, Practices, and Patterns is “A woman from
Vodnjan,” a small town in the interior of the peninsula of Istria in the Adriatic Sea, off
Croatia. The illustration is taken from a reproduction of an album of Croatian tradi-
tional costumes from the mid-nineteenth century by Nikola Arsenovic, published by
the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, itself situated in the
Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s
retirement palace from around AD 304. The book includes finely colored illustrations
of figures from different regions of Croatia, accompanied by descriptions of the cos-
tumes and of everyday life. Vodnjan is a culturally and historically significant town, situ-
ated on a hilltop with a beautiful view of the Adriatic and known for its many churches
and treasures of sacral art. The woman on the cover wears a long, black linen skirt and
a short, black jacket over a white linen shirt. The jacket is trimmed with blue embroi-
dery, and a blue linen apron completes the costume. The woman is also wearing a
large-brimmed black hat, a flowered scarf, and big hoop earrings. Her elegant costume
indicates that she is an inhabitant of the town, rather than a village. Folk costumes in
the surrounding countryside are more colorful, made of wool, and decorated with rich
embroidery.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few miles.
Perhaps we have traded cultural diversity for a more varied personal life—certainly for a
more varied and fast-paced technological life.

 xxvabout the cover illustration xxv

Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part1

Putting Dependency Injection
on the map

Dependency Injection (DI) is one of the most misunderstood concepts
of object-oriented programming. The confusion is abundant and spans termi-
nology, purpose, and mechanics. Should it be called Dependency Injection,
Dependency Inversion, Inversion of Control, or even Third-Party Connect? Is the
purpose of DI only to support unit testing, or is there a broader purpose? Is DI
the same as Service Location? Do we need DI Containers to apply DI?

There are plenty of blog posts, magazine articles, conference presentations,
and so on that discuss DI, but, unfortunately, many of them use conflicting termi-
nology or give bad advice. This is true across the board, and even big and influen-
tial actors like Microsoft add to the confusion.

It doesn’t have to be this way. In this book, we present and use a consistent
terminology. For the most part, we’ve adopted and clarified existing terminol-
ogy defined by others, but, occasionally, we add a bit of terminology where none
existed previously. This has helped us tremendously in evolving a specification of
the scope or boundaries of DI.

One of the underlying reasons behind all the inconsistency and bad advice
is that the boundaries of DI are quite blurry. Where does DI end, and where do
other object-oriented concepts begin? We think that it’s impossible to draw a dis-
tinct line between DI and other aspects of writing good object-oriented code. To
talk about DI, we have to pull in other concepts such as SOLID, Clean Code, and
even Aspect-Oriented Programming. We don’t feel that we can credibly write
about DI without also touching on some of these other topics.

The first part of the book helps you understand the place of DI in relation to
other facets of software engineering — putting it on the map, so to speak. Chap-
ter 1 gives you a quick tour of DI, covering its purpose, principles, and benefits,

2 puTTiNg dEpENdENCy iNjECTiON ON ThE map

as well as providing an outline of the scope for the rest of the book. It’s focused on the
big picture and doesn’t go into a lot of details. If you want to learn what DI is and why
you should be interested in it, this is the place to start. This chapter assumes you have
no prior knowledge of DI. Even if you already know about DI, you may still want to read
it — it may turn out to be something other than what you expected.

Chapters 2 and 3, on the other hand, are completely reserved for one big example.
This example is intended to give you a much more concrete feel for DI. To contrast
DI with a more traditional style of programming, chapter 2 showcases a typical, tightly
coupled implementation of a sample e-commerce application. Chapter 3 then subse-
quently reimplements it with DI.

In this part, we’ll discuss DI in general terms. This means we won’t use any so-called
DI Container. It’s entirely possible to apply DI without using a DI Container. A DI
Container is a helpful, but optional, tool. So parts 1, 2, and 3 more or less ignore DI
Containers completely, and instead discuss DI in a container-agnostic way. Then, in
part 4, we return to DI Containers to dissect three specific libraries.

Part 1 establishes the context for the rest of the book. It’s aimed at readers who don’t
have any prior knowledge of DI, but experienced DI practitioners can also benefit from
skimming the chapters to get a feeling for the terminology used throughout the book.
By the end of part 1, you should have a firm grasp of the vocabulary and overall con-
cepts, even if some of the concrete details are still a little fuzzy. That’s OK — the book
becomes more concrete as you read on, so parts 2, 3, and 4 should answer the questions
you’re likely to have after reading part 1.

3

1The basics of Dependency
Injection: What, why, and how

In this chapter
¡	Dispelling common myths about Dependency

Injection

¡	Understanding the purpose of Dependency
Injection

¡	Evaluating the benefits of Dependency Injection

¡	Knowing when to apply Dependency Injection

You may have heard that making a sauce béarnaise is difficult. Even among people
who regularly cook, many have never attempted to make one. This is a shame,
because the sauce is delicious. (It’s traditionally paired with steak, but it’s also an
excellent accompaniment to white asparagus, poached eggs, and other dishes.)
Some resort to substitutes like ready-made sauces or instant mixes, but these aren’t
nearly as satisfying as the real thing.

A sauce béarnaise is an emulsified sauce made from egg yolk and butter, that’s
flavored with tarragon, chervil, shallots, and vinegar. It contains no water. The big-
gest challenge to making it is that its preparation can fail. The sauce can curdle or
separate, and, if either happens, you can’t resurrect it. It takes about 45 minutes to
prepare, so a failed attempt means that you may not have time for a second try. On

4 ChapTEr 1 The basics of Dependency Injection: What, why, and how

the other hand, any chef can prepare a sauce béarnaise. It’s part of their training and, as
they’ll tell you, it’s not difficult.

You don’t have to be a professional cook to make sauce béarnaise. Anyone learning
to make it will fail at least once, but after you get the hang of it, you’ll succeed every
time. We think Dependency Injection (DI) is like sauce béarnaise. It’s assumed to be diffi-
cult, and, if you try to use it and fail, it’s likely there won’t be time for a second attempt.

DEFINITION Dependency Injection is a set of software design principles and pat-
terns that enables you to develop loosely coupled code.

Despite the fear, uncertainty, and doubt (FUD) surrounding DI, it’s as easy to learn
as making a sauce béarnaise. You may make mistakes while you learn, but once you’ve
mastered the technique, you’ll never again fail to apply it successfully.

Stack Overflow, the software development Q&A website, features an answer to the
question, “How to explain Dependency Injection to a 5-year old?” The most highly
rated answer, by John Munsch, provides a surprisingly accurate analogy targeted at the
(imaginary) five-year-old inquisitor:1

When you go and get things out of the refrigerator for yourself, you can cause problems. You
might leave the door open, you might get something Mommy or Daddy doesn’t want you to
have. You might even be looking for something we don’t even have or which has expired.

What you should be doing is stating a need, “I need something to drink with lunch,” and
then we will make sure you have something when you sit down to eat.

What this means in terms of object-oriented software development is this: collaborat-
ing classes (the five-year-old) should rely on infrastructure (the parents) to provide
necessary services.

NOTE In DI terminology, we often talk about services and components. A service
is typically an Abstraction, a definition for something that provides a service.
An implementation of an Abstraction is often called a component, a class that
contains behavior. Because both service and component are such overloaded terms,
throughout this book, you’ll typically see us use the terms “Abstraction” and
“class” instead.

This chapter is fairly linear in structure. First, we introduce DI, including its purpose
and benefits. Although we include examples, overall, this chapter has less code than
any other chapter in the book. Before we introduce DI, we discuss the basic purpose
of DI — maintainability. This is important because it’s easy to misunderstand DI if you
aren’t properly prepared. Next, after an example (Hello DI!), we discuss benefits and
scope, laying out a road map for the book. When you’re done with this chapter, you
should be prepared for the more advanced concepts in the rest of the book.

To most developers, DI may seem like a rather backward way of creating source code,
and, like sauce béarnaise, there’s much FUD involved. To learn about DI, you must first
understand its purpose.

1 See “How to explain Dependency Injection to a 5-year old?” by John Munsch et al. (2009), https://
stackoverflow.com/questions/1638919/.

https://stackoverflow.com/questions/1638919/
https://stackoverflow.com/questions/1638919/

 5Writing maintainable code

1.1 Writing maintainable code
What purpose does DI serve? DI isn’t a goal in itself; rather, it’s a means to an end. Ulti-
mately, the purpose of most programming techniques is to deliver working software as
efficiently as possible. One aspect of that is to write maintainable code.

Unless you only write prototypes, or applications that never make it past their first
release, you find yourself maintaining and extending existing code bases. To work effec-
tively with such code bases, in general, the more maintainable they are, the better.

An excellent way to make code more maintainable is through loose coupling. As far
back as 1994, when the Gang of Four wrote Design Patterns, this was already common
knowledge:2

Program to an interface, not an implementation.

This important piece of advice isn’t the conclusion, but, rather, the premise of Design Pat-
terns. Loose coupling makes code extensible, and extensibility makes it maintainable. DI
is nothing more than a technique that enables loose coupling. Moreover, there are many
misconceptions about DI, and sometimes they get in the way of proper understanding.
Before you can learn, you must unlearn what (you think) you already know.

1.1.1 Common myths about DI

You may never have come across or heard of DI before, and that’s great. Skip this sec-
tion and go straight to section 1.1.2. But, if you’re reading this book, it’s likely you’ve
at least come across it in conversation, in a code base you inherited, or in blog posts.
You may also have noticed that it comes with a fair amount of heavy opinions. In this
section, we’re going to look at four of the most common misconceptions about DI
that have appeared over the years and why they aren’t true. These myths include the
following:

¡	DI is only relevant for late binding.
¡	DI is only relevant for unit testing.
¡	DI is a sort of Abstract Factory on steroids.
¡	DI requires a DI Container.

Although none of these myths are true, they’re prevalent nonetheless. We need to dis-
pel them before you can start to learn about DI.

laTE biNdiNg

In this context, late binding refers to the ability to replace parts of an application with-
out recompiling the code. An application that enables third-party add-ins (such as
Visual Studio) is one example. Another example is the standard software that supports
different runtime environments.

Suppose you have an application that runs on more than one database engine (for
example, one that supports both Oracle and SQL Server). To support this feature,

2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994), 18.

6 ChapTEr 1 The basics of Dependency Injection: What, why, and how

the rest of the application talks to the database through an interface. The code base
provides different implementations of this interface to access Oracle and SQL Server,
respectively. In this case, you can use a configuration option to control which imple-
mentation should be used for a given installation.

It’s a common misconception that DI is only relevant for this sort of scenario. That’s
understandable, because DI enables this scenario. But the fallacy is to think that the
relationship is symmetric. The fact that DI enables late binding doesn’t mean that it’s
only relevant in late-binding scenarios. As figure 1.1 illustrates, late binding is only one
of the many aspects of DI.

If you thought that DI was only relevant for late-binding scenarios, this is something
you need to unlearn. DI does much more than enable late binding.

uNiT TESTiNg

Some people think that DI is only relevant for supporting unit testing. This isn’t true,
either, although DI is certainly an important part of support for unit testing. To tell you
the truth, our original introduction to DI came from struggling with certain aspects
of Test-Driven Development (TDD). During that time, we discovered DI and learned that
other people had used it to support some of the same scenarios we were addressing.

Even if you don’t write unit tests (if you don’t, you should start now), DI is still rele-
vant because of all the other benefits it offers. Claiming that DI is only relevant for sup-
porting unit testing is like claiming that it’s only relevant for supporting late binding.
Figure 1.2 shows that although this is a different view, it’s a view as narrow as figure 1.1.
In this book, we’ll do our best to show you the whole picture.

If you thought that DI was only relevant for unit testing, unlearn this assumption. DI
does much more than enable unit testing.

Figure 1.1 Late binding is enabled by DI, but to assume that it’s only applicable in late-binding scenarios is to
adopt a narrow view of a much broader vista.

Figure 1.2 Perhaps you’ve been assuming that unit testing is the sole purpose of DI. Although that assumption is
a different view than the late-binding assumption, it, too, is a narrow view of a much broader vista.

 7Writing maintainable code

aN abSTraCT faCTOry ON STErOidS

Perhaps the most dangerous fallacy is that DI involves some sort of general-purpose
Abstract Factory that you can use to create instances of the Dependencies needed in
your applications.

Abstract Factory
An Abstract Factory is typically an AbstrAction that contains multiple methods, where
each method allows the creation of an object of a certain kind.3

A typical use case for the Abstract Factory pattern is for user interface (UI) toolkits or
client applications that must be run on multiple platforms. To achieve a high degree of
code reusability on all platforms, you could, for example, define an IUIControlFactory
AbstrAction that allows the creation of certain kinds of controls like text boxes and but-
tons for consumers:

public interface IUIControlFactory
{
 IButton CreateButton();
 ITextBox CreateTextBox();
}

For each operating system (OS), you could have a different implementation of this
IUIControlFactory. In this case, there are only two factory methods, but depending
on the application or toolkit, there could be many more. An important point to note is
that an Abstract Factory specifies a predefined list of factory methods.

In the introduction to this chapter, we wrote that “collaborating classes should rely on
infrastructure to provide necessary services.” What were your initial thoughts about this
sentence? Did you think about infrastructure as some sort of service you could query
to get the Dependencies you need? If so, you aren’t alone. Many developers and archi-
tects think about DI as a service that can be used to locate other services. This is called
a Service Locator, but it’s the exact opposite of DI.

A Service Locator is often called an Abstract Factory on steroids because, com-
pared to a normal Abstract Factory, the list of resolvable types is unspecified and possi-
bly endless. It typically has one method allowing the creation of all sorts of types, much
like in the following:

public interface IServiceLocator
{
 object GetService(Type serviceType);
}

IMPORTANT If you thought of DI as a Service Locator (that is, a general-pur-
pose factory), then this is something you need to unlearn. DI is the opposite of
a Service Locator; it’s a way to structure code so that you never have to imper-
atively ask for Dependencies. Rather, you require consumers to supply them.

3 Erich Gamma et al., Design Patterns, 87.

8 ChapTEr 1 The basics of Dependency Injection: What, why, and how

di CONTaiNErS

Closely associated with the previous misconception is the notion that DI requires a DI Con-
tainer. If you held the previous, mistaken belief that DI involves a Service Locator, then
it’s easy to conclude that a DI Container can take on the responsibility of the Service
Locator. This might be the case, but it’s not at all how you should use a DI Container.

A DI Container is an optional library that makes it easier to compose classes when
you wire up an application, but it’s in no way required. When you compose applications
without a DI Container, it’s called Pure DI. It might take a little more work, but other
than that, you don’t have to compromise on any DI principles.

DEFINITION Pure DI is the practice of applying DI without a DI Container.4

IMPORTANT If you thought that DI requires a DI Container, this is another
notion you need to unlearn. DI is a set of principles and patterns, and a DI
Container is a useful, but optional tool.

We have yet to explain exactly what a DI Container is, and how and when you should use it.
We’ll go into more detail on this at the end of chapter 3; part 4 is completely dedicated to it.

You may think that, although we’ve exposed four myths about DI, we have yet to make
a compelling case against any of them. That’s true. In a sense, this book is one big argu-
ment against these common misconceptions, so we’ll certainly return to these topics later.
For example, in chapter 5, section 5.2 discusses why Service Locator is an anti-pattern.

In our experience, unlearning is vital because people often try to retrofit what we tell
them about DI and align it with what they think they already know. When this happens,
it takes time before it finally dawns on them that some of their most basic assumptions
are wrong. We want to spare you that experience. If you can, read this book as though
you know nothing about DI.

1.1.2 Understanding the purpose of DI

DI isn’t an end goal — it’s a means to an end. DI enables loose coupling, and loose
coupling makes code more maintainable. That’s quite a claim, and although we could
refer you to well-established authorities like the Gang of Four for details, we find it only
fair to explain why this is true.

To get this message across, the next section compares software design and several
software design patterns with electrical wiring. We’ve found this to be a powerful anal-
ogy. We even use it to explain software design to non-technical people.

We use four specific design patterns in this analogy because they occur frequently in
relation to DI. You’ll see many examples of three of these patterns — Decorator, Com-
posite, and Adapter — throughout this book. (We cover the fourth, the Null Object pat-
tern, in chapter 4.) Don’t worry if you’re not that familiar with these patterns: you will
be by the end of the book.

4 The first edition of this book, Dependency Injection in .NET, uses the term Poor Man’s DI. Pure DI replac-
es this term, but don’t be surprised to see the old terminology on the internet. To learn more about why
we changed this terminology, see Mark Seemann, “Pure DI” (2014), https://blog.ploeh
.dk/2014/06/10/pure-di/.

https://blog.ploeh.dk/2014/06/10/pure-di/
https://blog.ploeh.dk/2014/06/10/pure-di/

 9Writing maintainable code

Software development is still a rather new profession, so in many ways we’re still fig-
uring out how to implement good architecture. But individuals with expertise in more
traditional professions (such as construction) figured it out a long time ago.

ChECkiNg iNTO a ChEap hOTEl

If you’re staying at a cheap hotel, you might encounter a sight like the one in figure 1.3.
Here, the hotel has kindly provided a hair dryer for your convenience, but apparently they
don’t trust you to leave the hair dryer for the next guest: the appliance is directly attached
to the wall outlet. The hotel management decided that the cost of replacing stolen hair
dryers is high enough to justify what’s otherwise an obviously inferior implementation.

What happens when the hair dryer stops working? The hotel has to call in a skilled
professional. To fix the hardwired hair dryer, the power to the room will have to be cut,
rendering it temporarily useless. Then, the technician must use special tools to discon-
nect the hair dryer and replace it with a new one. If you’re lucky, the technician will
remember to turn the power to the room back on and go back to test whether the new
hair dryer works — if you’re lucky. Does this procedure sound at all familiar?

This is how you would approach working with tightly coupled code. In this scenario,
the hair dryer is tightly coupled to the wall, and you can’t easily modify one without
impacting the other.

COmpariNg ElECTriCal wiriNg TO dESigN paTTErNS

Usually, we don’t wire electrical appliances together by attaching the cable directly to
the wall. Instead, as in figure 1.4, we use plugs and sockets. A socket defines a shape
that the plug must match.

In an analogy to software design, the socket is an interface, and the plug with its
appliance is an implementation. This means that the room (the application) has one or
(hopefully) more sockets, and the users of the room (the developers) can plug in appli-
ances as they please, potentially even a customer-supplied hair dryer.

Figure 1.3 In a cheap hotel room,
you might find a hair dryer wired
directly into the wall outlet. This
is equivalent to using the common
practice of writing tightly coupled
code.

10 ChapTEr 1 The basics of Dependency Injection: What, why, and how

In contrast to the hardwired hair dryer, plugs and sockets define a loosely coupled
model for connecting electrical appliances. As long as the plug (the implementation)
fits into the socket (implements the interface), and it can handle the amount of volts
and hertz (obeys the interface contract), we can combine appliances in a variety of
ways. What’s particularly interesting is that many of these common combinations can
be compared to well-known software design principles and patterns.

First, we’re no longer constrained to hair dryers. If you’re an average reader, we
would guess that you need power for a computer much more than you do for a hair
dryer. That’s not a problem: you unplug the hair dryer and plug a computer into the
same socket (figure 1.5).

Figure 1.4 Through the use of sockets and plugs, a hair dryer can be loosely coupled
to a wall outlet.

Figure 1.5 Using a socket and a plug, you can replace the original hair dryer from figure 1.4
with a computer. This corresponds to the liSkOv SubSTiTuTiON priNCiplE.

 11Writing maintainable code

liSkOv SubSTiTuTiON priNCiplE

It’s amazing that the concept of a socket predates computers by decades, and yet it pro-
vides an essential service to computers. The original designers of sockets couldn’t possi-
bly have foreseen personal computers, but because the design is so versatile, needs that
were originally unanticipated can be met.

The ability to switch plugs, or implementations, without requiring a change to the socket,
or interface, is similar to a central software design principle called the Liskov substitution
PrinciPLe. This principle states that we should be able to replace one implementation of
an interface with another without breaking either the client or the implementation.

When it comes to DI, the Liskov substitution PrinciPLe is one of the most important soft-
ware design principles. It’s this principle that enables us to address requirements that
occur in the future, even if we can’t foresee them today.

You can unplug the computer if you don’t need to use it at the moment. Even though
nothing is plugged in, the room doesn’t explode. That is to say, if you unplug the com-
puter from the wall, neither the wall outlet nor the computer breaks down.

With software, however, a client often expects a service to be available. If you remove
the service, you get a NullReferenceException. To deal with this type of situation, you
can create an implementation of an interface that does nothing. This design pattern,
known as Null Object, corresponds to having a children’s safety outlet plug (a plug with-
out a wire or appliance that still fits into the socket). And because you’re using loose
coupling, you can replace a real implementation with something that does nothing
without causing trouble. This is illustrated in figure 1.6.

There are many other things you can do, as well. If you live in a neighborhood with
intermittent power failures, you may want to keep the computer running by plugging
in into an uninterrupted power supply (UPS). As shown in figure 1.7, you connect the
UPS to the wall outlet and the computer to the UPS.

Side view of the white
plastic plug

Figure 1.6 Unplugging the computer causes neither room nor computer to explode when
replaced with a children’s safety outlet plug. This can be roughly likened to the Null Object
pattern.

12 ChapTEr 1 The basics of Dependency Injection: What, why, and how

have an existing third-party API that you want to expose as an instance of an inter-
face your application consumes. As with the physical adapter, implementations of the
Adapter design pattern can range from simple to extremely complex.

What’s amazing about the socket and plug model is that, over decades, it’s proven
to be an easy and versatile model. Once the infrastructure is in place, it can be used by

7 Erich Gamma et al., Design Patterns, 139.

The computer and the UPS serve separate purposes. Each has a Single Responsibility
that doesn’t infringe on the other unit. The UPS and computer are likely to be pro-
duced by two different manufacturers, bought at different times, and plugged in sepa-
rately. As figure 1.5 demonstrated, you can run the computer without a UPS, and you
could also conceivably use the hair dryer during blackouts by plugging it into the UPS.

In software design, this way of intercepting one implementation with another imple-
mentation of the same interface is known as the Decorator design pattern.5 It gives you
the ability to incrementally introduce new features and Cross-Cutting Concerns
without having to rewrite or change a lot of existing code.

Another way to add new functionality to an existing code base is to refactor an exist-
ing implementation of an interface with a new implementation. When you aggregate
several implementations into one, you use the Composite design pattern.6 Figure 1.8
illustrates how this corresponds to plugging diverse appliances into a power strip.

The power strip has a single plug that you can insert into a single socket, and the
power strip itself provides several sockets for a variety of appliances. This enables you
to add and remove the hair dryer while the computer is running. In the same way, the
Composite pattern makes it easy to add or remove functionality by modifying the set of
composed interface implementations.

Here’s a final example. You sometimes find yourself in situations where a plug
doesn’t fit into a particular socket. If you’ve traveled to another country, you’ve likely
noticed that sockets differ across the world. If you bring something like the camera
in figure 1.9 along when traveling, you’ll need an adapter to charge it. Appropriately,
there’s a design pattern with the same name.

The Adapter design pattern works like its physical namesake.7 You can use it to match
two related, yet separate, interfaces to each other. This is particularly useful when you

UPS

Figure 1.7 A UPS can be introduced to keep the computer running in case of power failure. This
corresponds to the Decorator design pattern.

5 Erich Gamma et al., Design Patterns, 175.

Figure 1.8 A power strip makes it possible to plug several appliances into a single
wall outlet. This corresponds to the Composite design pattern.

6 Erich Gamma et al., Design Patterns, 163.

Adapter

Figure 1.9 When traveling, you often need to use an adapter to plug an appliance into a foreign
socket (for example, to recharge a camera). This corresponds to the Adapter design pattern.
Sometimes, translation is as simple as changing the shape of the plug, or as complex as changing
the electric current from alternating current (AC) to direct current (DC).

 13Writing maintainable code

have an existing third-party API that you want to expose as an instance of an inter-
face your application consumes. As with the physical adapter, implementations of the
Adapter design pattern can range from simple to extremely complex.

What’s amazing about the socket and plug model is that, over decades, it’s proven
to be an easy and versatile model. Once the infrastructure is in place, it can be used by

7 Erich Gamma et al., Design Patterns, 139.

The computer and the UPS serve separate purposes. Each has a Single Responsibility
that doesn’t infringe on the other unit. The UPS and computer are likely to be pro-
duced by two different manufacturers, bought at different times, and plugged in sepa-
rately. As figure 1.5 demonstrated, you can run the computer without a UPS, and you
could also conceivably use the hair dryer during blackouts by plugging it into the UPS.

In software design, this way of intercepting one implementation with another imple-
mentation of the same interface is known as the Decorator design pattern.5 It gives you
the ability to incrementally introduce new features and Cross-Cutting Concerns
without having to rewrite or change a lot of existing code.

Another way to add new functionality to an existing code base is to refactor an exist-
ing implementation of an interface with a new implementation. When you aggregate
several implementations into one, you use the Composite design pattern.6 Figure 1.8
illustrates how this corresponds to plugging diverse appliances into a power strip.

The power strip has a single plug that you can insert into a single socket, and the
power strip itself provides several sockets for a variety of appliances. This enables you
to add and remove the hair dryer while the computer is running. In the same way, the
Composite pattern makes it easy to add or remove functionality by modifying the set of
composed interface implementations.

Here’s a final example. You sometimes find yourself in situations where a plug
doesn’t fit into a particular socket. If you’ve traveled to another country, you’ve likely
noticed that sockets differ across the world. If you bring something like the camera
in figure 1.9 along when traveling, you’ll need an adapter to charge it. Appropriately,
there’s a design pattern with the same name.

The Adapter design pattern works like its physical namesake.7 You can use it to match
two related, yet separate, interfaces to each other. This is particularly useful when you

UPS

Figure 1.7 A UPS can be introduced to keep the computer running in case of power failure. This
corresponds to the Decorator design pattern.

5 Erich Gamma et al., Design Patterns, 175.

Figure 1.8 A power strip makes it possible to plug several appliances into a single
wall outlet. This corresponds to the Composite design pattern.

6 Erich Gamma et al., Design Patterns, 163.

Adapter

Figure 1.9 When traveling, you often need to use an adapter to plug an appliance into a foreign
socket (for example, to recharge a camera). This corresponds to the Adapter design pattern.
Sometimes, translation is as simple as changing the shape of the plug, or as complex as changing
the electric current from alternating current (AC) to direct current (DC).

14 ChapTEr 1 The basics of Dependency Injection: What, why, and how

anyone and adapted to changing needs and unanticipated requirements. What’s even
more interesting is that, when we relate this model to software development, all the
building blocks are already in place in the form of design principles and patterns.

The advantage of loose coupling is the same in software design as it is in the physical
socket and plug model: Once the infrastructure is in place, it can be used by anyone
and adapted to changing needs and unforeseen requirements without requiring large
changes to the application code base and infrastructure. This means that ideally, a new
requirement should only necessitate the addition of a new class, with no changes to
other already-existing classes of the system.

This concept of being able to extend an application without modifying existing code
is called the Open/Closed Principle. It’s impossible to get to a situation where 100%
of your code will always be open for extensibility and closed for modification. Still, loose
coupling does bring you closer to that goal.

And, with every step, it gets easier to add new features and requirements to your
system. Being able to add new features without touching existing parts of the system
means that problems are isolated. This leads to code that’s easier to understand and
test, allowing you to manage the complexity of your system. That’s what loose coupling
can help you with, and that’s why it can make a code base much more maintainable.
We’ll discuss the Open/Closed Principle in more detail in chapter 4.

By now you might be wondering how these patterns will look when implemented in
code. Don’t worry about that. As we stated before, we’ll show you plenty of examples
of those patterns throughout this book. In fact, later in this chapter, we’ll show you an
implementation of both the Decorator and Adapter patterns.

The easy part of loose coupling is programming to an interface instead of an imple-
mentation. The question is, “Where do the instances come from?” In a sense, this is
what this entire book is about: it’s the core question that DI seeks to answer.

You can’t create a new instance of an interface the same way that you create a new
instance of a concrete type. Code like this doesn’t compile:

An interface contains no implementation, so this isn’t possible. The writer instance
must be created using a different mechanism. DI solves this problem. With this outline
of the purpose of DI, we think you’re ready for an example.

1.2 A simple example: Hello DI!
In the tradition of innumerable programming textbooks, let’s take a look at a simple
console application that writes “Hello DI!” to the screen. Note that the full code is
available as part of the download for this book, as mentioned in the section “Code con-
ventions and downloads” at the beginning of this book.

In this section, we’ll show you what the code looks like and briefly outline some key
benefits without going into details. In the rest of the book, we’ll get more specific.

IMessageWriter writer = new IMessageWriter();

Program to an interface Does not compile

 15A simple example: Hello DI!

1.2.1 Hello DI! code

You’re probably used to seeing Hello World examples that are written with a single line of
code. Here, we’ll take something that’s extremely simple and make it more complicated.
Why? We’ll get to that shortly, but let’s first see what Hello World would look like with DI.

COllabOraTOrS

To get a sense of the structure of the program, we’ll start by looking at the Main method
of the console application. Then we’ll show you the collaborating classes; but first,
here’s the Main method of the Hello DI! application:

private static void Main()
{
 IMessageWriter writer = new ConsoleMessageWriter();
 var salutation = new Salutation(writer);
 salutation.Exclaim();
}

Because the program needs to write to the console, it creates a new instance of Con
soleMessageWriter that encapsulates that functionality. It passes that message writer
to the Salutation class so that the salutation instance knows where to write its mes-
sages. Because everything is now wired up properly, you can execute the logic via the
Exclaim method, which results in the message being written to the screen.

The construction of objects inside the Main method is a basic example of Pure DI.
No DI Container is used to compose the Salutation and its ConsoleMessageWriter
Dependency. Figure 1.10 shows the relationship between the collaborators.

implEmENTiNg ThE appliCaTiON lOgiC

The main logic of the application is encapsulated in the Salutation class, shown in
listing 1.1.

Main() Console-
MessageWriter

Salutationcreates/uses

IMessageWriter

The Main method creates new instances
of both the ConsoleMessageWriter and
Salutation classes.

ConsoleMessageWriter implements
the IMessageWriter interface that
Salutation uses.

In effect, Salutation uses ConsoleMessageWriter,
although this indirect usage isn’t shown.

creates

uses

Figure 1.10 Relationship between the collaborators of the Hello DI! application

16 ChapTEr 1 The basics of Dependency Injection: What, why, and how

Listing 1.1 Salutation class encapsulates the main application logic

public class Salutation
{
 private readonly IMessageWriter writer;

 public Salutation(IMessageWriter writer)
 {
 if (writer == null)
 throw new ArgumentNullException("writer");

 this.writer = writer;
 }

 public void Exclaim()
 {
 this.writer.Write("Hello DI!");
 }
}

The Salutation class depends on a custom interface called IMessageWriter (defined
next). It requests an instance of it through its constructor. This practice is called Con-
structor Injection. A Guard Clause verifies that the supplied IMessageWriter isn’t null
by throwing an exception if it is.8 And, finally, you use the previously injected IMessage
Writer instance inside the implementation of the Exclaim method by calling its Write
method. This sends the Hello DI! message to the IMessageWriter Dependency.

DEFINITION Constructor Injection is the act of statically defining the list of
required Dependencies by specifying them as parameters to the class’s con-
structor. (Constructor Injection is described in detail in chapter 4, which
also contains a more detailed walk-through of a similar code example.)

To speak in DI terminology, we say that the IMessageWriter Dependency is injected into
the Salutation class using a constructor argument. Note that Salutation has no aware-
ness of ConsoleMessageWriter. It interacts with it exclusively through the IMessage
Writer interface. IMessageWriter is a simple interface defined for the occasion:

public interface IMessageWriter
{
 void Write(string message);
}

It could have had other members, but in this simple example, you only need the Write
method. It’s implemented by the ConsoleMessageWriter class that the Main method
passes to the Salutation class:

public class ConsoleMessageWriter : IMessageWriter
{
 public void Write(string message)
 {
 Console.WriteLine(message);
 }
}

Provides the Salutation class with
the IMessageWriter DepenDency
using constructor InjectIon

Guard Clause verifies
that the supplied
IMessageWriter isn’t null

Sends the Hello DI! message to
the IMessageWriter DepenDency

8 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), 250.

 17A simple example: Hello DI!

The ConsoleMessageWriter class implements IMessageWriter by wrapping the Con
sole class of the .NET Base Class Library (BCL). This is a simple application of the
Adapter design pattern that we talked about in section 1.1.2.

1.2.2 Benefits of DI

You may be wondering about the benefit of replacing a single line of code with two
classes and an interface, resulting in 28 lines total. You could easily solve the same
problem as shown here:

private static void Main()
{
 Console.WriteLine("Hello DI!");
}

DI might seem like overkill, but there are several benefits to be harvested from using
it. How is the previous example better than the usual single line of code you normally
use to implement Hello World in C#? In this example, DI adds an overhead of 2800%,
but, as complexity increases from one line of code to tens of thousands, this overhead
diminishes and all but disappears. Chapter 3 provides a more complex example of
applied DI. Although that example is still overly simplistic compared to real-life appli-
cations, you should notice that DI is far less intrusive.

We don’t blame you if you find the previous DI example to be over-engineered, but
consider this: by its nature, the classic Hello World example is a simple problem with
well-specified and constrained requirements. In the real world, software development is
never like this. Requirements change and are often fuzzy. The features you must imple-
ment also tend to be much more complex. DI helps address such issues by enabling
loose coupling. Specifically, you gain the benefits listed in table 1.1.

Table 1.1 Benefits gained from loose coupling. Each benefit is always available but will be valued
differently depending on circumstances.

Benefit Description When is it valuable?

Late binding Services can be swapped with other
services without recompiling code.

Valuable in standard software, but per-
haps less so in enterprise applications
where the runtime environment tends
to be well defined.

Extensibility Code can be extended and reused in
ways not explicitly planned for.

Always valuable.

Parallel development Code can be developed in parallel. Valuable in large, complex applica-
tions; not so much in small, simple
applications.

Maintainability Classes with clearly defined responsi-
bilities are easier to maintain.

Always valuable.

testAbiLity Classes can be unit tested. Always valuable.

18 ChapTEr 1 The basics of Dependency Injection: What, why, and how

We listed the late-binding benefit first because, in our experience, this is the one that’s
foremost in most people’s minds. When architects and developers fail to understand
the benefits of loose coupling, it’s most likely because they never consider the other
benefits.

laTE biNdiNg

When we explain the benefits of programming to interfaces and DI, the ability to swap
out one service with another is the most conspicuous benefit for most people, so they
tend to weigh the advantages against the disadvantages with only this benefit in mind.
Remember when we suggested that you may need to unlearn before you can learn?
You may say that you know your requirements so well that you know you’ll never have
to replace, say, your SQL Server database with anything else. But requirements change.

NoSQL, Microsoft Azure, and the argument for composability
Years ago, I (Mark) was often met with a blank expression when I tried to convince devel-
opers and architects of the benefits of DI. “Okay, so you can swap out your relational data
access component for something else. For what? Is there any alternative to relational
databases?”

XML files never seemed like a convincing alternative in highly scalable enterprise scenar-
ios. This has changed significantly in the last couple of years.

Azure was announced at PDC 2008 and has done much to convince even die-hard Mic-
rosoft-only organizations to reevaluate their position when it comes to data storage.
There’s now a real alternative to relational databases, and I only have to ask if people
want their application to be cloud ready. The replacement argument has now become
much stronger.

A related movement can be found in the whole NoSQL concept that models applications
around denormalized data — often document databases. But concepts such as Event
Sourcing are also becoming increasingly important.9

In section 1.2.1, you didn’t use late binding because you explicitly created a new instance
of IMessageWriter by hard coding the creation of a new ConsoleMessageWriter
instance. You can, however, introduce late binding by changing this single line of code:

IMessageWriter writer = new ConsoleMessageWriter();

To enable late binding, you might replace that line of code with something like the
following.

Listing 1.2 Late binding an IMessageWriter implementation

IConfigurationRoot configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .Build();

9 Martin Fowler, “Event Sourcing” (2005), https://martinfowler.com/eaaDev/EventSourcing.html.

https://martinfowler.com/eaaDev/EventSourcing.html

 19A simple example: Hello DI!

string typeName = configuration["messageWriter"];
Type type = Type.GetType(typeName, throwOnError: true);

IMessageWriter writer = (IMessageWriter)Activator.CreateInstance(type);

NOTE Listing 1.2 takes some shortcuts to make a point. In fact, it suffers from
the Constrained Construction anti-pattern covered in detail in chapter 5.

By pulling the type name from the application configuration file and creating a Type
instance from it, you can use reflection to create an instance of IMessageWriter with-
out knowing the concrete type at compile time. To make this work, you specify the type
name in the messageWriter application setting in the application configuration file:

{
 "messageWriter":
 "Ploeh.Samples.HelloDI.Console.ConsoleMessageWriter, HelloDI.Console"
}

Loose coupling enables late binding because there’s only a single place where you cre-
ate the instance of IMessageWriter. Because the Salutation class works exclusively
against the IMessageWriter interface, it never notices the difference. In the Hello DI!
example, late binding would enable you to write the message to a different destination
than the console; for example, a database or a file. It’s possible to add such features —
even though you didn’t explicitly plan ahead for them.

ExTENSibiliTy

Successful software must be able to change. You’ll need to add new features and extend
existing features. Loose coupling lets you efficiently recompose the application, simi-
lar to the way you have flexibility when working with electrical plugs and sockets.

Let’s say that you want to make the Hello DI! example more secure by only allowing
authenticated users to write the message. Listing 1.3 shows how you can add that fea-
ture without changing any of the existing features — you simply add a new implementa-
tion of the IMessageWriter interface.

Listing 1.3 Extending the Hello DI! application with a security feature

public class SecureMessageWriter : IMessageWriter
{
 private readonly IMessageWriter writer;
 private readonly IIdentity identity;

 public SecureMessageWriter(
 IMessageWriter writer,
 IIdentity identity)
 {
 if (writer == null)
 throw new ArgumentNullException("writer");
 if (identity == null)
 throw new ArgumentNullException("identity");

 this.writer = writer;

Implements the
IMessageWriter interface
while also consuming it

constructor InjectIon that requests an
instance of IMessageWriter

20 ChapTEr 1 The basics of Dependency Injection: What, why, and how

 this.identity = identity;
 }

 public void Write(string message)
 {
 if (this.identity.IsAuthenticated)
 {
 this.writer.Write(message);
 }
 }
}

NOTE This is a standard application of the Decorator design pattern that we
mentioned in section 1.1.2. We’ll talk much more about Decorators in chapter 9.

Besides an instance of IMessageWriter, the SecureMessageWriter constructor
requires an instance of IIdentity. The Write method is implemented by first check-
ing whether the current user is authenticated, using the injected IIdentity. If this
is the case, it allows the decorated writer field to Write the message. The only place
where you need to change existing code is in the Main method, because you need to
compose the available classes differently than before:

IMessageWriter writer =
 new SecureMessageWriter(
 new ConsoleMessageWriter(),
 WindowsIdentity.GetCurrent());

NOTE Compared to listing 1.2, you now use a hard-coded ConsoleMessageWriter.

Notice that you wrap or decorate the old ConsoleMessageWriter instance with the new
SecureMessageWriter class. Once more, the Salutation class is unmodified because
it only consumes the IMessageWriter interface. Similarly, there’s no need to either
modify or duplicate the functionality in the ConsoleWriter class, either. You use the
System.Security.Principal.WindowsIdentity class to retrieve the identity of the
user on whose behalf this code is being executed.10

As we’ve stated before, loose coupling enables you to write code that’s open for exten-
sibility, but closed for modification. The only place where you need to modify the code is
at the application entry point. SecureMessageWriter implements the security features
of the application, whereas ConsoleMessageWriter addresses the user interface. This
enables you to vary these aspects independently of each other and compose them as
needed. Each class has its own Single Responsibility.

parallEl dEvElOpmENT

Separation of concerns makes it possible to develop code in parallel. When a software
development project grows to a certain size, it becomes necessary to have multiple

Verifies whether the user is authenticated

If authenticated, writes the message
using the injected message writer

The ConsoleMessageWriter is intercepted
with the SecureMessageWriter Decorator.

10 The System.Security.Principal.WindowsIdentity class is located in the System.Security.
Principal.Windows NuGet package, which is part of .NET Core.

 21A simple example: Hello DI!

developers work in parallel on the same code base. At a larger scale, it’s even necessary
to separate the development team into multiple teams of manageable sizes. Each team
is often assigned responsibility for an area of the overall application. To demarcate
responsibilities, each team develops one or more modules that will need to be inte-
grated into the finished application. Unless the areas of each team are truly indepen-
dent, some teams are likely to depend on functionality developed by other teams.

DEFINITION In object-oriented software design, a module is a group of logically
related classes (or components), where a module is independent of and inter-
changeable with other modules. Typically, you’ll see that a layer consists of one
or more modules.

In the previous example, because the SecureMessageWriter and ConsoleMessage
Writer classes don’t depend directly on each other, they could’ve been developed
by parallel teams. All they would have needed to agree on was the shared interface
IMessageWriter.

maiNTaiNabiliTy

As the responsibility of each class becomes clearly defined and constrained, mainte-
nance of the overall application becomes easier. This is a consequence of the Single
Responsibility Principle, which states that each class should have only a single respon-
sibility. We’ll discuss the Single Responsibility Principle in more detail in chapter 2.

Adding new features to an application becomes simpler because it’s clear where
changes should be applied. More often than not, you don’t need to change existing
code, but can instead add new classes and recompose the application. This is the Open/
Closed Principle in action again.

Troubleshooting also tends to become less grueling, because the scope of likely cul-
prits narrows. With clearly defined responsibilities, you’ll often have a good idea of
where to start looking for the root cause of a problem.

TESTabiliTy

An application is considered Testable when it can be unit tested. For some, Testabil-
ity is the least of their worries; for others, it’s an absolute requirement. Personally, we
belong in the latter category. In Mark’s career, he’s declined several job offers because
they involved working with certain products that weren’t Testable.

TESTabiliTy

The term testAbLe is horribly imprecise, yet it’s widely used in the software development
community, chiefly by those who practice unit testing. In principle, any application can be
tested by trying it out. Tests can be performed by people using the application via its UI or
whatever other interface it provides. Such manual tests are time consuming and expen-
sive to perform, so automated testing is preferred.

You’ll find different types of automated testing — unit testing, integration testing, perfor-
mance testing, stress testing, and so on. Because unit testing has fewer requirements on
runtime environments, it tends to be the most efficient and robust type of test. It’s often
in this context that testAbiLity is evaluated.

22 ChapTEr 1 The basics of Dependency Injection: What, why, and how

Unit tests provide rapid feedback on the state of an application, but it’s only possible to
write unit tests when the unit in question can be properly isolated from its DePenDencies.
There’s some ambiguity about how granular a unit really is, but everyone agrees that it’s
certainly not something that spans multiple modules. The ability to test modules in isola-
tion is crucial in unit testing.

It’s only when an application is susceptible to unit testing that it’s considered testAbLe.
The safest way to ensure testAbiLity is to develop it using TDD.

It should be noted that unit tests alone don’t ensure a working application. Full system
tests or other in-between types of tests are still necessary to validate whether an applica-
tion works as intended.

The benefit of Testability is perhaps the most controversial of those we’ve listed. Some
developers and architects still don’t practice unit testing, so they consider this benefit
irrelevant at best. We, however, see it as an essential part of software development, which
is why we marked it as “Always valuable” in table 1.1. Michael Feathers even defines the
term legacy application as any application that isn’t covered by unit tests.11

Almost by accident, loose coupling enables unit testing because consumers follow
the Liskov Substitution Principle: they don’t care about the concrete types of their
Dependencies. This means that you can inject Test Doubles into the System Under Test
(SUT), as you’ll see in listing 1.4.

Test Doubles
It’s a common technique to create implementations of DePenDencies that act as stand-
ins for real or intended implementations. Such implementations are called Test Doubles,
and they’ll never be used in the final application. Instead, they serve as placeholders for
real DePenDencies when these are unavailable or undesirable to use.

A Test Double is useful when the real DePenDency is slow, expensive, destructive, or sim-
ply outside the scope of the current test. There’s a complete pattern language around
Test Doubles and many subtypes, such as Stubs, Mocks, and Fakes.12

The ability to replace intended Dependencies with test-specific replacements is a
by-product of loose coupling, but we chose to list it as a separate benefit because the
derived value is different. Our personal experience is that DI is beneficial even during
integration testing. Although integration tests typically communicate with real exter-
nal systems (like a database), you still need to have a certain degree of isolation. In
other words, there are still reasons to replace, Intercept, or mock certain Dependen-
cies in the application being tested.

11 Michael C. Feathers, Working Effectively with Legacy Code (Prentice Hall, 2004), xvi.
12 Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (Addison-Wesley, 2007), 522.

(continued)

 23A simple example: Hello DI!

Intercepting text messages
I (Steven) worked on multiple applications that sent SMS messages through a third-party
service. I didn’t want our test environment to send those text messages to the real gate-
way because there was a per-message cost, and I certainly didn’t want to accidentally
spam mobile phones with those test messages.

During manual testing, on the other hand, text messages were sent to mobile phones.
But, in this case, a Decorator was applied that changed the phone number sent to the
gateway to one that the tester could supply. This way the tester was able to get all mes-
sages on his own phone and verify the system under test.

Depending on the type of application you’re developing, you may or may not care
about the ability to do late binding, but we always care about Testability. Some devel-
opers don’t care about Testability but find late binding important for the applica-
tion they’re developing. Regardless, DI provides options in the future with minimal
additional overhead today.

ExamplE: uNiT TESTiNg hEllOdi lOgiC

In section 1.2.1, you saw the Hello DI! example. Although we showed you the final
code first, we developed it using TDD. Listing 1.4 shows the most important unit test.

NOTE Don’t worry if you don’t have experience with unit tests. They’ll occasion-
ally pop up throughout this book but are in no way a prerequisite for reading it.13

Listing 1.4 Unit testing the Salutation class

[Fact]
public void ExclaimWillWriteCorrectMessageToMessageWriter()
{
 var writer = new SpyMessageWriter();
 var sut = new Salutation(writer);
 sut.Exclaim();
 Assert.Equal(
 expected: "Hello DI!",
 actual: writer.WrittenMessage);
}

public class SpyMessageWriter : IMessageWriter
{
 public string WrittenMessage { get; private set; }

 public void Write(string message)
 {
 this.WrittenMessage += message;
 }
}

13 You may, however, want to read Roy Osherove’s The Art of Unit Testing, 2nd Ed. (Manning, 2013), fol-
lowed by Gerard Meszaros’ xUnit Test Patterns (Addison-Wesley, 2007).

The IMessageWriter DepenDency is stubbed
using the SpyMessageWriter Test Spy.

24 ChapTEr 1 The basics of Dependency Injection: What, why, and how

The Salutation class needs an instance of the IMessageWriter interface, so you need
to create one. You could use any implementation, but in unit tests, a Test Double can
be useful — in this case, you roll your own Test Spy implementation.14

In this case, the Test Double is as involved as the production implementation. This
is an artifact of how simple our example is. In most applications, a Test Double is sig-
nificantly simpler than the concrete, production implementations it stands in for. The
important part is to supply a test-specific implementation of IMessageWriter to ensure
that you test only one thing at a time. Right now, you’re testing the Exclaim method of
the Salutation class, so you don’t want a production implementation of IMessage
Writer to pollute the test. To create the Salutation class, you pass in the Test Spy
instance of IMessageWriter using Constructor Injection.

After exercising the SUT, you can call Assert.Equal to verify whether the expected
outcome equals the actual outcome. If the IMessageWriter.Write method was invoked
with the "Hello DI!" string, SpyMessageWriter would have stored this in its Written
Message property, and the Equal method completes. But if the Write method wasn’t
called, or was called with a different value, the Equal method would throw an excep-
tion, and the test would fail.

Loose coupling provides many benefits: code becomes easier to develop, maintain,
and extend, and it becomes more Testable. It’s not even particularly difficult. We pro-
gram against interfaces, not concrete implementations. The only major obstacle is to
figure out how to get hold of instances of those interfaces. DI surmounts this obsta-
cle by injecting the Dependencies from the outside. Constructor Injection is the
preferred method of doing that, though we’ll also explore a few additional options in
chapter 4.

1.3 What to inject and what not to inject
In the previous section, we described the motivational forces that makes one think
about DI in the first place. If you’re convinced that loose coupling is a benefit, you may
want to make everything loosely coupled. Overall, that’s a good idea. When you need
to decide how to package modules, loose coupling proves especially useful. But you
don’t have to abstract everything away and make it pluggable. In this section, we’ll pro-
vide some decision tools to help you decide how to model your Dependencies.

The .NET BCL consists of many assemblies. Every time you write code that uses a type
from a BCL assembly, you add a dependency to your module. In the previous section,
we discussed how loose coupling is important and how programming to an interface is
the cornerstone. Does this imply that you can’t reference any BCL assemblies and use
their types directly in your application? What if you’d like to use an XmlWriter that’s
defined in the System.Xml assembly?

14 A Test Spy is “a Test Double that captures the indirect output calls made to another component by the
SUT for later verification by the test.” See Gerard Meszaros’ xUnit Test Patterns, 538.

 25What to inject and what not to inject

You don’t have to treat all Dependencies equally. Many types in the BCL can be
used without jeopardizing an application’s degree of coupling — but not all of them.
It’s important to know how to distinguish between types that pose no danger and types
that may tighten an application’s degree of coupling. Focus mainly on the latter.

As you learn DI, it can be helpful to categorize your Dependencies into Stable
Dependencies and Volatile Dependencies. Deciding where to put your Seams will
soon become second nature to you. The next sections discuss these concepts in more
detail.

SEamS

Everywhere you decide to program against an AbstrAction instead of a concrete type, you
introduce a seAm into the application. A seAm is a place where an application is assem-
bled from its constituent parts, similar to the way a piece of clothing is sewn together at
its seams.15 It’s also a place where you can disassemble the application and work with
the modules in isolation.

The Hello DI! example we built in section 1.2 contains a seAm between Salutation
and ConsoleMessageWriter, as illustrated in the following figure. The Salutation
class doesn’t directly depend on the Console MessageWriter class; rather, it uses the
IMessageWriter interface to write the message. You can take the application apart at
this seAm and reassemble it with a different message writer.

15 Michael C. Feathers, Working Effectively with Legacy Code, 29–44.

Main()

Salutation

Console-
MessageWriter

The Hello DI application
contains a SEAM between
the Salutation and
ConsoleMessageWriter
classes because the
Salutation class only
writes through the
ABSTRACTION of the
IMessageWriter interface.

SEAM

creates/uses

The SEam in the Hello DI! application from section 1.2

26 ChapTEr 1 The basics of Dependency Injection: What, why, and how

1.3.1 Stable DepenDencieS

Many of the modules in the BCL and beyond pose no threat to an application’s degree
of modularity. They contain reusable functionality that you can use to make your
own code more succinct. The BCL modules are always available to your application,
because it needs the .NET Framework to run, and, because they already exist, the con-
cern about parallel development doesn’t apply to these modules. You can always reuse
a BCL library in another application.

By default, you can consider most (but not all) types defined in the BCL as safe, or
Stable Dependencies. We call them stable because they’re already there, they tend to
be backward compatible, and invoking them has deterministic outcomes. Most Stable
Dependencies are BCL types, but other Dependencies can be stable too. The import-
ant criteria for Stable Dependencies include the following:

¡	The class or module already exists.
¡	You expect that new versions won’t contain breaking changes.
¡	The types in question contain deterministic algorithms.
¡	You never expect to have to replace, wrap, decorate, or Intercept the class or

module with another.

Other examples may include specialized libraries that encapsulate algorithms rele-
vant to your application. For example, if you’re developing an application that deals
with chemistry, you can reference a third-party library that contains chemistry-specific
functionality.

Referencing the di CONTaiNEr

Di contAiners themselves might be considered either stAbLe DePenDencies or voLAtiLe
DePenDencies, depending on whether you want to replace them. When you decide to base
your application on a particular Di contAiner, you risk being stuck with this choice for the
entire lifetime of the application. That’s yet another reason why you should limit the use
of the container to the application entry point. Only the entry point should reference the
Di contAiner.

In general, Dependencies can be considered stable by exclusion. They’re stable if they
aren’t volatile.

1.3.2 Volatile DepenDencieS

Introducing Seams into an application is extra work, so you should only do it when it’s
necessary. There can be more than one reason it’s necessary to isolate a Dependency
behind a Seam, but those reasons are closely related to the benefits of loose coupling
(discussed in section 1.2.1).

Such Dependencies can be recognized by their tendency to interfere with one
or more of these benefits. They aren’t stable because they don’t provide a sufficient

 27DI scope

foundation for applications, and we call them Volatile Dependencies for that reason.
A Dependency should be considered volatile if any of the following criteria are true:

¡	The DepenDency introduces a requirement to set up and configure a runtime environment
for the application. It isn’t so much the concrete .NET types that are volatile, but
rather what they imply about the runtime environment.

Databases are good examples of BCL types that are Volatile Dependencies,
and relational databases are the archetypical example. If you don’t hide a rela-
tional database behind a Seam, you can never replace it by any other technol-
ogy. It also makes it hard to set up and run automated unit tests. (Even though
the Microsoft SQL Server client library is a technology contained in the BCL, its
usage implies a relational database.) Other out-of-process resources like message
queues, web services, and even the filesystem fall into this category. The symp-
toms of this type of Dependency are lack of late binding and extensibility, as well
as disabled Testability.

¡	The DepenDency doesn’t yet exist, or is still in development.
¡	The DepenDency isn’t installed on all machines in the development organization. This

may be the case for expensive third-party libraries or Dependencies that can’t
be installed on all operating systems. The most common symptom is disabled
Testability.

¡	The DepenDency contains nondeterministic behavior. This is particularly important
in unit tests because all tests must be deterministic. Typical sources of nondeter-
minism are random numbers and algorithms that depend on the current date or
time.

Because the BCL defines common sources of nondeterminism, such as System
.Random, System.Security.Cryptography.RandomNumberGenerator, or System
.DateTime.Now, you can’t avoid having a reference to the assembly in which
they’re defined. Nevertheless, you should treat them as Volatile Dependencies
because they tend to destroy Testability.

IMPORTANT Volatile Dependencies are the focal point of DI. It’s for Volatile
Dependencies rather than Stable Dependencies that you introduce Seams
into your application. Again, this obligates you to compose them using DI.

Now that you understand the differences between Stable and Volatile Dependen-
cies, you can begin to see the contours of the scope of DI. Loose coupling is a perva-
sive design principle, so DI (as an enabler) should be everywhere in your code base.
There’s no hard line between the topic of DI and good software design, but to define
the scope of the rest of the book, we’ll quickly describe what it covers.

1.4 DI scope
As we discussed before, an important element of DI is to break up various responsibili-
ties into separate classes. One responsibility that we take away from classes is the task of

28 ChapTEr 1 The basics of Dependency Injection: What, why, and how

creating instances of Dependencies. The task of creating instances of Dependencies is
referred to as Object Composition.

We discussed this in our Hello DI! example where our Salutation class was released
of the responsibility of creating its Dependency. Instead, this responsibility was moved
to the application’s Main method. The UML diagram is shown again in figure 1.11.

As a class relinquishes control of Dependencies, it gives up more than the decision to
select particular implementations. By doing this, we, as developers, gain some advan-
tages. At first, it may seem like a disadvantage to let a class surrender control over which
objects are created, but we don’t lose that control — we only move it to another place.

NOTE As developers, we gain control by removing a class’s control over its
Dependencies. This is an application of the Single Responsibility Princi-
ple. Classes shouldn’t have to deal with the creation of their Dependencies.

Object Composition isn’t the only dimension of control that we remove: a class also
loses the ability to control the lifetime of the object. When a Dependency instance is
injected into a class, the consumer doesn’t know when it was created, or when it’ll go
out of scope. This should be of no concern to the consumer. Making the consumer
oblivious to the lifetime of its Dependencies simplifies the consumer.

DI gives you an opportunity to manage Dependencies in a uniform way. When con-
sumers directly create and set up instances of Dependencies, each may do so in its own
way. This can be inconsistent with how other consumers do it. You have no way to cen-
trally manage Dependencies and no easy way to address Cross-Cutting Concerns.
With DI, you gain the ability to Intercept each Dependency instance and act on it
before it’s passed to the consumer. This provides extensibility in applications.

With DI, you can compose applications while intercepting Dependencies and con-
trolling their lifetimes. Object Composition, Interception, and Lifetime Manage-
ment are three dimensions of DI. Next, we’ll cover each of these briefly; a more detailed
treatment follows in part 3 of the book.

The Main method takes responsibility for
the creation of both Salutation and
ConsoleMessageWriter.

ConsoleMessageWriter is injected by Main
into Salutation.

Main() Console-
MessageWriter

Salutationcreates/uses

IMessageWriter

Salutation only depends on IMessageWriter
and has no idea which implementation it uses.

uses

creates

Figure 1.11 Relationship between the collaborators of the Hello DI! application (repeated)

 29DI scope

1.4.1 object compoSition

To harvest the benefits of extensibility, late binding, and parallel development, you
must be able to compose classes into applications. This means that you’ll want to create
an application out of individual classes by putting them together, much like plugging
electrical appliances together. And, as with electrical appliances, you’ll want to easily
rearrange those classes when new requirements are introduced, ideally, without having
to make changes to existing classes.

Object Composition is often the primary motivation for introducing DI into an
application. In fact, initially, DI was synonymous with Object Composition; it’s the
only aspect discussed in Martin Fowler’s original article on the subject.16

You can compose classes into an application in several ways. When we discussed late
binding, we used a configuration file and a bit of dynamic object instantiation to man-
ually compose the application from the available modules. We could also have used
Configuration as Code using a DI Container. We’ll return to these in chapter 12.

Many people refer to DI as Inversion of Control (IoC). These two terms are some-
times used interchangeably, but DI is a subset of IoC. Throughout the book, we consis-
tently use the most specific term — DI. If we mean IoC, we refer to it specifically.

Dependency Injection or iNvErSiON Of CONTrOl?
The term inversion of controL originally meant any sort of programming style where an
overall framework or runtime controlled the program flow.17 According to that definition,
most software developed on the .NET Framework uses IoC. When you write an ASP.NET
Core MVC application, for instance, you create controller classes with action methods,
but it’s ASP.NET Core that will be calling your action methods. This means you aren’t in
control — the framework is.

These days, we’re so used to working with frameworks that we don’t consider this to be
special, but it’s a different model from being in full control of your code. This can still hap-
pen for a .NET application, most notably for command-line executables. As soon as Main
is invoked, your code is in full control. It controls program flow, lifetime — everything. No
special events are being raised and no overridden members are being invoked.

Before DI had a name, people started to refer to libraries that manage DePenDencies as
inversion of controL contAiners, and soon, the meaning of IoC gradually drifted towards
that particular meaning: inversion of controL over DePenDencies. Always the taxonomist,
Martin Fowler introduced the term Dependency Injection to specifically refer to IoC in
the context of dependency management. Dependency Injection has since been widely
accepted as the most correct terminology. In short, IoC is a much broader term that
includes, but isn’t limited to, DI.

16 See Martin Fowler’s “Inversion of Control Containers and the Dependency Injection pattern,” 2004,
https://martinfowler.com/articles/injection.html.

17 See Martin Fowler’s “InversionOfControl,” 2005, https://martinfowler.com/bliki/InversionOfControl
.html.

https://martinfowler.com/articles/injection.html
https://martinfowler.com/bliki/InversionOfControl.html
https://martinfowler.com/bliki/InversionOfControl.html

30 ChapTEr 1 The basics of Dependency Injection: What, why, and how

1.4.2 object lifetime

A class that has surrendered control of its Dependencies gives up more than the power
to select particular implementations of an Abstraction. It also gives up the power to
control when instances are created and when they go out of scope.

In .NET, the garbage collector takes care of these things for us. A consumer can have
its Dependencies injected into it and use them for as long as it wants. When it’s done,
the Dependencies go out of scope. If no other classes reference them, they’re eligible
for garbage collection.

What if two consumers share the same type of Dependency? Listing 1.5 illustrates that
you can choose to inject a separate instance into each consumer, whereas listing 1.6 shows
that you can alternatively choose to share a single instance across several consumers. But
from the perspective of the consumer, there’s no difference. According to the Liskov Sub-
stitution Principle, the consumer must treat all instances of a given interface equally.

Listing 1.5 Consumers getting their own instance of the same type of dEpENdENCy

IMessageWriter writer1 = new ConsoleMessageWriter();
IMessageWriter writer2 = new ConsoleMessageWriter();

var salutation = new Salutation(writer1);
var valediction = new Valediction(writer2);

Listing 1.6 Consumers sharing an instance of the same type of dEpENdENCy

IMessageWriter writer = new ConsoleMessageWriter();

var salutation = new Salutation(writer);
var valediction = new Valediction(writer);

Because Dependencies can be shared, a single consumer can’t possibly control its life-
time. As long as a managed object can go out of scope and be garbage collected, this
isn’t much of an issue. But when Dependencies implement the IDisposable interface,
things become much more complicated as we’ll discuss in section 8.2. As a whole, Life-
time Management is a separate dimension of DI and important enough that we’ve set
aside all of chapter 8 for it.

1.4.3 interception

When we delegate control over Dependencies to a third party, as figure 1.12 shows, we also
provide the power to modify them before we pass them on to the classes consuming them.

In the Hello DI! example, we initially injected a ConsoleMessageWriter instance
into a Salutation instance. Then, modifying the example, we added a security fea-
ture by creating a new SecureMessageWriter that only delegates further work to the
ConsoleMessageWriter when the user is authenticated. This allows you to maintain

Two instances of the same
IMessageWriter DepenDency
are created.

Each consumer gets its own private
instance.

One instance is created.

That same instance is injected
into two consumers.

The
ConsoleMessageWriter
DEPENDENCY is
directly injected
into its consumer,
Salutation. Instead of

injecting the
originally intended
ConsoleMessageWriter
DEPENDENCY, you
can modify it by
wrapping another
class around it
before you pass it
on to its consumer.
In this case, the
wrapper class is the
SecureMessageWriter.

The arrows indicate the direction of the injection; the direction
of DEPENDENCY goes the opposite way.

Console-
MessageWriter

Directly injected
ConsoleMessageWriter

Intercepted
ConsoleMessageWriter

Salutation

SecureMessageWriter
Console-

MessageWriter

Salutation

injected into
injected into

Figure 1.12 Intercepting a ConsoleMessageWriter

 31DI scope

the Single Responsibility Principle. It’s possible to do this because you always pro-
gram to interfaces; recall that Dependencies must always be Abstractions. In the
case of the Salutation, it doesn’t care whether the supplied IMessageWriter is a
ConsoleMessageWriter or a SecureMessageWriter. The SecureMessageWriter can
wrap a ConsoleMessageWriter that still performs the real work.

NOTE Interception is an application of the Decorator design pattern. Don’t
worry if you aren’t familiar with the Decorator design pattern. We’ll provide a
refresher in chapter 9, which is entirely devoted to Interception.

Such abilities of Interception move us along the path towards Aspect-Oriented
Programming (AOP), a closely related topic that we’ll cover in chapters 10 and 11.
With Interception and AOP, you can apply Cross-Cutting Concerns such as log-
ging, auditing, access control, validation, and so forth in a well-structured manner that
lets you maintain Separation of Concerns.

1.4.4 DI in three dimensions

Although DI started out as a series of patterns aimed at solving the problem of Object
Composition, the term has subsequently expanded to also cover Object Lifetime
and Interception. Today, we think of DI as encompassing all three in a consistent way.

Object Composition tends to dominate the picture because, without flexible
Object Composition, there’d be no Interception and no need to manage Object
Lifetime. Object Composition has dominated most of this chapter and will continue
to dominate this book, but you shouldn’t forget the other aspects. Object Composi-
tion provides the foundation, and Lifetime Management addresses some important
side effects. But it’s mainly when it comes to Interception that you start to reap the
benefits.

1.4.2 object lifetime

A class that has surrendered control of its Dependencies gives up more than the power
to select particular implementations of an Abstraction. It also gives up the power to
control when instances are created and when they go out of scope.

In .NET, the garbage collector takes care of these things for us. A consumer can have
its Dependencies injected into it and use them for as long as it wants. When it’s done,
the Dependencies go out of scope. If no other classes reference them, they’re eligible
for garbage collection.

What if two consumers share the same type of Dependency? Listing 1.5 illustrates that
you can choose to inject a separate instance into each consumer, whereas listing 1.6 shows
that you can alternatively choose to share a single instance across several consumers. But
from the perspective of the consumer, there’s no difference. According to the Liskov Sub-
stitution Principle, the consumer must treat all instances of a given interface equally.

Listing 1.5 Consumers getting their own instance of the same type of dEpENdENCy

IMessageWriter writer1 = new ConsoleMessageWriter();
IMessageWriter writer2 = new ConsoleMessageWriter();

var salutation = new Salutation(writer1);
var valediction = new Valediction(writer2);

Listing 1.6 Consumers sharing an instance of the same type of dEpENdENCy

IMessageWriter writer = new ConsoleMessageWriter();

var salutation = new Salutation(writer);
var valediction = new Valediction(writer);

Because Dependencies can be shared, a single consumer can’t possibly control its life-
time. As long as a managed object can go out of scope and be garbage collected, this
isn’t much of an issue. But when Dependencies implement the IDisposable interface,
things become much more complicated as we’ll discuss in section 8.2. As a whole, Life-
time Management is a separate dimension of DI and important enough that we’ve set
aside all of chapter 8 for it.

1.4.3 interception

When we delegate control over Dependencies to a third party, as figure 1.12 shows, we also
provide the power to modify them before we pass them on to the classes consuming them.

In the Hello DI! example, we initially injected a ConsoleMessageWriter instance
into a Salutation instance. Then, modifying the example, we added a security fea-
ture by creating a new SecureMessageWriter that only delegates further work to the
ConsoleMessageWriter when the user is authenticated. This allows you to maintain

Two instances of the same
IMessageWriter DepenDency
are created.

Each consumer gets its own private
instance.

One instance is created.

That same instance is injected
into two consumers.

The
ConsoleMessageWriter
DEPENDENCY is
directly injected
into its consumer,
Salutation. Instead of

injecting the
originally intended
ConsoleMessageWriter
DEPENDENCY, you
can modify it by
wrapping another
class around it
before you pass it
on to its consumer.
In this case, the
wrapper class is the
SecureMessageWriter.

The arrows indicate the direction of the injection; the direction
of DEPENDENCY goes the opposite way.

Console-
MessageWriter

Directly injected
ConsoleMessageWriter

Intercepted
ConsoleMessageWriter

Salutation

SecureMessageWriter
Console-

MessageWriter

Salutation

injected into
injected into

Figure 1.12 Intercepting a ConsoleMessageWriter

32 ChapTEr 1 The basics of Dependency Injection: What, why, and how

In part 3, we’ve devoted a chapter to each dimension briefly mentioned here. But it’s
important to know that, in practice, DI is more than Object Composition.

1.5 Conclusion
Dependency Injection is a means to an end, not a goal in itself. It’s the best way to
enable loose coupling, an important part of maintainable code. The benefits you can
reap from loose coupling aren’t always immediately apparent, but they’ll become visi-
ble over time, as the complexity of a code base grows. An important point about loose
coupling in relation to DI is that, in order to be effective, it should be everywhere in
your code base.

A tightly coupled code base will eventually deteriorate into Spaghetti Code;18
whereas a well-designed, loosely coupled code base can stay maintainable. It takes more
than loose coupling to reach a truly supple design,19 but programming to interfaces is a
prerequisite.

TIP DI must be pervasive. You can’t easily retrofit loose coupling onto an exist-
ing code base.

DI is nothing more than a collection of design principles and patterns. It’s more about
a way of thinking and designing code than it is about tools and techniques. The pur-
pose of DI is to make code maintainable. Small code bases, like a classic Hello World
example, are inherently maintainable because of their size. This is why DI tends to look
like overengineering in simple examples. The larger the code base becomes, the more
visible the benefits. We’ve dedicated the next two chapters to a larger and more com-
plex example to showcase these benefits.

Summary

¡	Dependency Injection is a set of software design principles and patterns that
enables you to develop loosely coupled code. Loose coupling makes code more
maintainable.

¡	When you have a loosely coupled infrastructure in place, it can be used by anyone
and adapted to changing needs and unanticipated requirements without having
to make large changes to the application’s code base and its infrastructure.

¡	Troubleshooting tends to become less taxing because the scope of likely culprits
narrows.

¡	DI enables late binding, which is the ability to replace classes or modules with
different ones without the need for the original code to be recompiled.

¡	DI makes it easier for code to be extended and reused in ways not explicitly
planned for, similar to the way you have flexibility when working with electrical
plugs and sockets.

18 William J. Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (Wiley Com-
puter Publishing, 1998), 119.

19 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, 243.

 33Conclusion

¡	DI simplifies parallel development on the same code base because the Separa-
tion of Concerns allows each team member or even entire teams to work more
easily on isolated parts.

¡	DI makes software more Testable because you can replace Dependencies with
test implementations when writing unit tests.

¡	When you practice DI, collaborating classes should rely on infrastructure to pro-
vide the necessary services. You do this by letting your classes depend on inter-
faces, instead of concrete implementations.

¡	Classes shouldn’t ask a third party for their Dependencies. This is an anti-pattern
called Service Locator. Instead, classes should specify their required Depen-
dencies statically using constructor parameters, a practice called Constructor
Injection.

¡	Many developers think that DI requires specialized tooling, a so-called DI Con-
tainer. This is a myth. A DI Container is a useful, but optional, tool.

¡	One of the most important software design principles that enables DI is the Lis-
kov Substitution Principle. It allows replacing one implementation of an
interface with another without breaking either the client or the implementation.

¡	Dependencies are considered Stable in the case that they’re already available,
have deterministic behavior, don’t require a setup runtime environment (such as
a relational database), and don’t need to be replaced, wrapped, or intercepted.

¡	Dependencies are considered Volatile when they are under development,
aren’t always available on all development machines, contain nondeterministic
behavior, or need to be replaced, wrapped, or intercepted.

¡	Volatile Dependencies are the focal point of DI. We inject Volatile Depen-
dencies into a class’s constructor.

¡	By removing control over Dependencies from their consumers, and moving
that control into the application entry point, you gain the ability to apply Cross-
Cutting Concerns more easily and can manage the lifetime of Dependencies
more effectively.

¡	To succeed, you need to apply DI pervasively. All classes should get their required
Volatile Dependencies using Constructor Injection. It’s hard to retrofit
loose coupling and DI onto an existing code base.

34

2Writing tightly coupled code

In this chapter
¡	Writing a tightly coupled application

¡	Evaluating the composability of that application

¡	Analyzing the lack of composability in that
application

As we mentioned in chapter 1, a sauce béarnaise is an emulsified sauce made from egg
yolk and butter, but this doesn’t magically instill in you the ability to make one. The
best way to learn is to practice, but an example can often bridge the gap between
theory and practice. Watching a professional cook making a sauce béarnaise is help-
ful before you try it out yourself.

When we introduced Dependency Injection (DI) in the last chapter, we presented
a high-level tour to help you understand its purpose and general principles. But that
simple explanation doesn’t do justice to DI. DI is a way to enable loose coupling, and
loose coupling is first and foremost an efficient way to deal with complexity.

Most software is complex in the sense that it must address many issues simulta-
neously. Besides the business concerns, which may be complex in their own right,

 35Building a tightly coupled application

2
software must also address matters related to security, diagnostics, operations, perfor-
mance, and extensibility. Instead of addressing all of these concerns in one big ball of
mud, loose coupling encourages you to address each concern separately. It’s easier to
address each in isolation, but ultimately, you must still compose this complex set of
issues into a single application.

In this chapter, we’ll take a look at a more complex example. You’ll see how easy it
is to write tightly coupled code. You’ll also join us in an analysis of why tightly coupled
code is problematic from a maintainability perspective. In chapter 3, we’ll use DI to
completely rewrite this tightly coupled code base to one that’s loosely coupled. If you
want to see loosely coupled code right away, you may want to skip this chapter. If not,
when you’re done with this chapter, you should begin to understand what it is that
makes tightly coupled code so problematic.

2.1 Building a tightly coupled application
The idea of building loosely coupled code isn’t particu-
larly controversial, but there’s a huge gap between theory
and practice. Before we show you in the next chapter how
to use DI to build a loosely coupled application, we want to
show you how easily it can go wrong. A common attempt
at loosely coupled code is building a layered application.
Anyone can draw a three-layer application diagram, and
figure 2.1 proves that we can too.

Drawing a three-layer diagram is deceptively simple,
but the act of drawing the diagram is akin to stating that
you’ll have sauce béarnaise with your steak: it’s a declara-
tion of intent that carries no guarantee with regard to the
final result. You can end up with something else, as you shall
soon see.

There’s more than one way to view and design a flexi-
ble and maintainable complex application, but the n-layer
application architecture constitutes a well-known, tried-
and-tested approach. The challenge is to implement it
correctly. Armed with a three-layer diagram like the one in
figure 2.1, you can start building an application.

2.1.1 Meet Mary Rowan

Mary Rowan is a professional .NET developer working for a local Certified Microsoft
Partner that mainly develops web applications. She’s 34 years old and has been work-
ing with software for 11 years. This makes her one of the more experienced developers

User interface layer

Domain layer

Data access layer

Figure 2.1 Standard
three-layer application
architecture. This is the
simplest and most common
variation of the n-layer
application architecture,
whereby an application
is composed of n distinct
layers.

36 ChapTEr 2 Writing tightly coupled code

in the company. In addition to performing her regular duties as a senior developer, she
often acts as a mentor for junior developers. In general, Mary is happy about the work
that she’s doing, but it frustrates her that milestones are often missed, forcing her and
her colleagues to work long hours and weekends to meet deadlines.

She suspects that there must be more efficient ways to build software. In an effort to
learn about efficiency, she buys a lot of programming books, but she rarely has time to
read them, as much of her spare time is spent with her husband and two girls. Mary likes
to go hiking in the mountains. She’s also an enthusiastic cook, and she definitely knows
how to make a real sauce béarnaise.

Mary has been asked to create a
new e-commerce application on ASP.
NET Core MVC and Entity Framework
Core with SQL Server as the data store.
To maximize modularity, it must be a
three-layer application.

The first feature to implement
should be a simple list of featured
products, pulled from a database table
and displayed on a web page (an exam-
ple is shown in figure 2.2). And, if the
user viewing the list is a preferred cus-
tomer, the price on all products should
be discounted by 5%.

To complete her first feature, Mary
will have to implement the following:

¡	A data layer — Includes a Products table in the database, which represents all data-
base rows, and a Product class, which represents a single database row

¡	A domain layer — Contains the logic for retrieving the featured products
¡	A UI Layer with an MVC controller — Handles incoming requests, retrieves the rele-

vant data from the domain layer, and sends it to the Razor view, which eventually
renders the list of featured products

Let’s look over Mary’s shoulder as she implements the application’s first feature.

2.1.2 Creating the data layer

Because Mary will need to pull data from a database table, she has decided to begin by
implementing the data layer. The first step is to define the database table itself. Mary
uses SQL Server Management Studio to create the table shown in table 2.1.

Figure 2.2 Screen capture of the e-commerce web
application Mary has been asked to develop. It features
a simple list of featured products and their prices.

 37Building a tightly coupled application

Table 2.1 Mary creates the Products table with the following columns.

Column Name Data Type Allow Nulls Primary Key

Id uniqueidentifier No Yes

Name nvarchar(50) No No

Description nvarchar(max) No No

UnitPrice money No No

IsFeatured bit No No

To implement the data access layer, Mary adds a new library to her solution. The fol-
lowing listing shows her Product class.

Listing 2.1 Mary’s Product class

public class Product
{
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal UnitPrice { get; set; }
 public bool IsFeatured { get; set; }
}

Mary uses Entity Framework for her data access needs. She adds a dependency to the
Microsoft.EntityFrameworkCore.SqlServer NuGet package to her project, and imple-
ments an application-specific DbContext class that allows her application to access
the Products table via the CommerceContext class. The following listing shows her
Commerce Context class.

Listing 2.2 Mary’s CommerceContext class

public class CommerceContext : Microsoft.EntityFrameworkCore.DbContext
{
 public DbSet<Product> Products { get; set; }

 protected override void OnConfiguring(
 DbContextOptionsBuilder builder)
 {
 var config = new ConfigurationBuilder()
 .SetBasePath(
 Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .Build();

Enables queries on the underlying
database’s Products table

Called for each instance of the context that’s
created, allowing it to be configured

Loads a configuration file (similar to
what you saw in listing 1.2)

38 ChapTEr 2 Writing tightly coupled code

 string connectionString =
 config.GetConnectionString(
 "CommerceConnectionString");

 builder.UseSqlServer(connectionString);
 }
}

Because CommerceContext loads a connection string from a configuration file, that file
needs to be created. Mary adds a file named appsettings.json to her web project, with
the following content:

{
 "ConnectionStrings": {
 "CommerceConnectionString":
 "Server=.;Database=MaryCommerce;Trusted_Connection=True;"
 }
}

Entity Framework Core crash course
Entity Framework Core is Microsoft’s Object/Relational Mapper, or ORM for short. It
bridges the gap between relational database models and object-oriented code like C#.
It allows developers to work at a higher level of abstraction because we don’t have write
SQL queries ourselves: Entity Framework Core will do the transformation from C# to SQL
for us.

Entity Framework’s central class is DbContext. The DbContext class is a Unit of Work.1
A Unit of Work consists of a local cache of the objects required for a single business
transaction. DbContext allows access to the data in the database like the example with
the Products table.

Don’t worry if you aren’t familiar with Microsoft Entity Framework. The details of the data
access implementation aren’t that important in this context, so you should be able to
follow the example even if you’re more familiar with a different data access technology.2

WARNING CommerceContext loads the connection string from a configuration
file — this is a trap. It causes every new CommerceContext to read the configu-
ration file, even though the configuration file typically doesn’t change while
an application is running. A CommerceContext shouldn’t contain a hard-coded
connection string, but neither should it load a configuration value from the
configuration system. This is discussed in section 2.3.3.

Reads a connection string from the configuration file and
applies it to DbContextOptionsBuilder. This effectively

configures the application’s CommerceContext using the
configured connection string.

1 Martin Fowler, Patterns of Enterprise Application Architecture (Addison-Wesley, 2002), 184.
2 There’s a whole book about Entity Framework Core: Entity Framework Core in Action, by Jon Smith (Man-

ning, 2018).

 39Building a tightly coupled application

CommerceContext and Product are public types contained within the same assem-
bly. Mary knows that she’ll later need to add more features to her application, but
the data access component required to implement the first feature is now completed
(figure 2.3).

Now that the data access layer has been implemented, the next logical step is the
domain layer. The domain layer is also referred to as the domain logic layer, business
layer, or business logic layer. Domain logic is all the behavior that the application needs
to have, specific to the domain the application is built for.

2.1.3 Creating the domain layer

With the exception of pure data-reporting applications, there’s always domain logic.
You may not realize it at first, but as you get to know the domain, its embedded and
implicit rules and assumptions will gradually emerge. In the absence of any domain
logic, the list of products exposed by CommerceContext could technically have been
used directly from the UI layer.

WARNING Implementing domain logic in either the UI or data access layers
will lead to pain and suffering. Do yourself a favor and create a domain layer
from the beginning.

The requirements for Mary’s application state that preferred customers should be
shown the product list prices with a 5% discount. Mary has yet to figure out how to
identify a preferred customer, so she asks her coworker Jens for advice:

Mary: I need to implement this business logic so that a preferred customer gets a
5% discount.

Jens: Sounds easy. Just multiply by .95.
Mary: Thanks, but that’s not what I wanted to ask you about. What I wanted to ask

you is, how should I identify a preferred customer?
Jens: I see. Is this a web application or a desktop application?
Mary: It’s a web app.
Jens: Okay, then you can use the User property of the HttpContext to check if the

current user is in the role PreferredCustomer.
Mary: Slow down, Jens. This code must be in the domain layer. It’s a library. There’s

no HttpContext.

Data access
layer1/3 33%

Figure 2.3 How
far Mary has come
in implementing
the layered
architecture
envisioned in
figure 2.1.

40 ChapTEr 2 Writing tightly coupled code

Jens: Oh. [Thinks for a while] I still think you should use the HttpContext of
ASP.NET to look up the value for the user. You can then pass the value to your
domain logic as a boolean.

Mary: I don’t know...
Jens: That’ll also ensure that you have good Separation of Concerns because

your domain logic doesn’t have to deal with security. You know, the Single
Responsibility Principle! It’s the Agile way to do it!

Mary: I guess you’ve got a point.

Jens is basing his advice on his technical knowledge of ASP.NET. As the discussion takes
him away from his comfort zone, he steamrolls Mary with a triple combo of buzzwords.
Be aware that Jens doesn’t know what he’s talking about:

¡	He misuses the concept of Separation of Concerns. Although it’s important to separate
security concerns from the domain logic, moving this to the presentation layer
doesn’t help in separating concerns.

¡	He only mentions Agile because he recently heard someone else talk enthusiastically about it.
¡	He completely misses the point of the Single reSponSibility principle. Although the

quick feedback cycle that Agile methodologies provide can help you improve
your software design accordingly, by itself, the Single Responsibility Princi-
ple as a software design principle is independent of the chosen software develop-
ment methodology.

SiNglE rESpONSibiliTy priNCiplE

As discussed in chapter 1, the singLe resPonsibiLity PrinciPLe (SRP) states that each
class should only have a single responsibility, or, better put, a class should have only one
reason to change.3

If we put SQL statements in a view that contains HTML markup, we’d all quickly agree
that changes to the markup will happen at different times, at different rates, and for
different reasons than changes to SQL statements. Our SQL statements change when
we’re changing our data model or need to do performance tuning. Our markup, on the
other hand, changes when we need to change the look and feel of the web application.
These are different concerns that change for different reasons. Putting SQL statements
directly into a view is, therefore, an SRP violation.

More often than not, however, it can be more challenging to see whether a class has
multiple reasons to change. What often helps is to look at the SRP from the perspective
of code cohesion. Cohesion is defined as the functional relatedness of the elements of
a class or module. The lower the relatedness, the lower the cohesion, and the higher the
risk a class violates the SRP.

3 Robert C. Martin, Agile Principles, Patterns, and Practices in C# (Pearson Education, 2007), 115.

 41Building a tightly coupled application

Being able to detect SRP violations is one thing, but determining whether a violation
should be fixed is yet another. It isn’t wise to apply the SRP if there are no symptoms.
Needlessly splitting up classes that cause no maintainability problems can add extra
complexity. The trick in software design is to manage complexity.

Armed with Jens’ unfortunately poor advice, Mary creates a new C# library project and
adds a class called ProductService, shown in listing 2.3. To make the ProductService
class compile, she must add a reference to her data access layer, because the Commerce-
Context class is defined there.

Listing 2.3 Mary’s ProductService class

public class ProductService
{
 private readonly CommerceContext dbContext;

 public ProductService()
 {
 this.dbContext = new CommerceContext();
 }

 public IEnumerable<Product> GetFeaturedProducts(
 bool isCustomerPreferred)
 {
 decimal discount =
 isCustomerPreferred ? .95m : 1;

 var featuredProducts =
 from product in this.dbContext.Products
 where product.IsFeatured
 select product;

 return
 from product in
 featuredProducts.AsEnumerable()
 select new Product
 {
 Id = product.Id,
 Name = product.Name,
 Description = product.Description,
 IsFeatured = product.IsFeatured,
 UnitPrice =
 product.UnitPrice * discount
 };
 }
}

Mary’s happy that she has encapsulated the data access technology (Entity Framework
Core), configuration, and domain logic in the ProductService class. She has dele-
gated the knowledge of the user to the caller by passing in the isCustomerPreferred
parameter, and she uses this value to calculate the discount for all the products.

Creates a new CommerceContext
instance for later use

Gets all products from
the database, filtered by
featured products

Creates a list of discounted
products based on the
discount percentage for
the given customer

42 ChapTEr 2 Writing tightly coupled code

Further refinement could include replacing the hard-coded discount value (.95)
with a configurable number, but, for now, this implementation will suffice. Mary’s
almost done. The only thing still left is the UI layer. Mary decides that it can wait until
tomorrow. Figure 2.4 shows how far Mary has come with implementing the architecture
envisioned in figure 2.1.

What Mary doesn’t realize is that by letting the ProductService depend on the data
access layer’s CommerceContext class, she tightly coupled her domain layer to the data
access layer. We’ll explain what’s wrong with that in section 2.2.

2.1.4 Creating the UI layer

The next day, Mary resumes her work with the e-commerce application, adding a new
ASP.NET Core MVC application to her solution. Don’t worry if you aren’t familiar with
the ASP.NET Core MVC framework. The intricate details of how the MVC framework
operates aren’t the focus of this discussion. The important part is how Dependencies
are consumed, and that’s a relatively platform-neutral subject.

An ASP.NET Core MVC crash course
ASP.NET Core MVC takes its name from the Model View Controller design pattern.4 In
this context, the most important thing to understand is that when a web request arrives,
a controller handles the request, potentially using a (domain) model to deal with it, and
forms a response that’s finally rendered by a view.

A controller is normally a class that derives from the abstract Controller class. It has
one or more action methods that handle requests; for example, a HomeController
class typically has a method named Index that handles the request for the default page.
When an action method returns, it passes on the resulting model to the view through a
ViewResult instance.

The next listing shows how Mary implements an Index method on her Home Controller
class to extract the featured products from the database and pass them to the view. To
make this code compile, she must add references to both the data access layer and the
domain layer. This is because the ProductService class is defined in the domain layer,
but the Product class is defined in the data access layer.

Data access
layer Domain layer2/3 66%

Figure 2.4 Compared
to figure 2.3, Mary has
now implemented the
data access layer and
the domain layer. The
UI layer still remains
to be implemented.

4 Martin Fowler et al., Patterns of Enterprise Application Architecture, 330.

 43Building a tightly coupled application

Listing 2.4 Index method on the default controller class

public ViewResult Index()
{
 bool isPreferredCustomer =
 this.User.IsInRole("PreferredCustomer");

 var service = new ProductService();

 var products = service.GetFeaturedProducts(
 isPreferredCustomer);

 this.ViewData["Products"] = products;

 return this.View();
}

As part of the ASP.NET Core MVC lifecycle, the User property on the HomeController
class is automatically populated with the correct user object, so Mary uses it to deter-
mine if the current user is a preferred customer. Armed with this information, she can
invoke the domain logic to get the list of featured products.

NOTE When Mary created her domain layer, she again created tightly coupled
code. In this case, HomeController is tightly coupled to ProductService. This
wouldn’t be that bad if ProductService was a Stable Dependency but, as you
learned in chapter 1, ProductService is a Volatile Dependency. It’s Volatile
because it introduces a requirement to set up and configure a relational database.

In Mary’s application, the list of products must be rendered by the Index view. The
following listing shows the markup for the view.

Listing 2.5 Index view markup

<h2>Featured Products</h2>
<div>
@{
 var products =
 (IEnumerable<Product>)this.ViewData["Products"];

 foreach (Product product in products)
 {
 <div>@product.Name (@product.UnitPrice.ToString("C"))</div>
 }
}
</div>

Determines whether a customer is a
preferred customer

Creates ProductService
from the domain layer

Gets the list of featured products (defined in the
data access layer) from the ProductService

Stores the list of products in the
controller’s generic ViewData
dictionary for later use by the view

Gets the products
populated by the controller

Loops through the products, formats their
UnitPrice, and renders them as HTML

44 ChapTEr 2 Writing tightly coupled code

ASP.NET Core MVC lets you write standard HTML with bits of imperative code embed-
ded to access objects created and assigned by the controller that created the view. In
this case, the HomeController’s Index method assigned the list of featured products to
a key called Products that Mary uses in the view to render the list of products. Figure
2.5 shows how Mary has now implemented the architecture envisioned in figure 2.1.

With all three layers in place, the applications should theoretically work. But only by
running the application can she verify whether that’s the case.

2.2 Evaluating the tightly coupled application
Mary has now implemented all three layers, so it’s time to see if the application works.
She presses F5 and the web page shown in figure 2.2 appears. The Featured Products
feature is now done, and Mary feels confident and ready to implement the next feature
in the application. After all, she followed established best practices and created a three-
layer application ... or did she?

Did Mary succeed in developing a proper, layered application? No, she didn’t,
although she certainly had the best of intentions. She created three Visual Studio
projects that correspond to the three layers in the planned architecture. To the casual
observer, this looks like the coveted layered architecture, but, as you’ll see, the code is
tightly coupled.

Visual Studio makes it easy and natural to work with solutions and projects in this
way. If you need functionality from a different library, you can easily add a reference to
it and write code that creates new instances of the types defined in the other libraries.
Every time you add a reference, though, you take on a Dependency.

2.2.1 Evaluating the dependency graph

When working with solutions in Visual Studio, it’s easy to lose track of the important
Dependencies. This is because Visual Studio displays them together with all the other
project references that may point to assemblies in the .NET Base Class Library (BCL).
To understand how the modules in Mary’s application relate to each other, we can
draw a graph of the dependencies (see figure 2.6).

Data access
layer Domain layer User interface

layer3/3 100%

Figure 2.5 Mary
has now
implemented all
three layers in the
application.

User interface layer

Domain layer

Data access layer

Figure 2.6 The dependency
graph for Mary’s application,
showing how the modules
depend on each other. The
arrows point towards a module’s
dependency.

 45Evaluating the tightly coupled application

ASP.NET Core MVC lets you write standard HTML with bits of imperative code embed-
ded to access objects created and assigned by the controller that created the view. In
this case, the HomeController’s Index method assigned the list of featured products to
a key called Products that Mary uses in the view to render the list of products. Figure
2.5 shows how Mary has now implemented the architecture envisioned in figure 2.1.

With all three layers in place, the applications should theoretically work. But only by
running the application can she verify whether that’s the case.

2.2 Evaluating the tightly coupled application
Mary has now implemented all three layers, so it’s time to see if the application works.
She presses F5 and the web page shown in figure 2.2 appears. The Featured Products
feature is now done, and Mary feels confident and ready to implement the next feature
in the application. After all, she followed established best practices and created a three-
layer application ... or did she?

Did Mary succeed in developing a proper, layered application? No, she didn’t,
although she certainly had the best of intentions. She created three Visual Studio
projects that correspond to the three layers in the planned architecture. To the casual
observer, this looks like the coveted layered architecture, but, as you’ll see, the code is
tightly coupled.

Visual Studio makes it easy and natural to work with solutions and projects in this
way. If you need functionality from a different library, you can easily add a reference to
it and write code that creates new instances of the types defined in the other libraries.
Every time you add a reference, though, you take on a Dependency.

2.2.1 Evaluating the dependency graph

When working with solutions in Visual Studio, it’s easy to lose track of the important
Dependencies. This is because Visual Studio displays them together with all the other
project references that may point to assemblies in the .NET Base Class Library (BCL).
To understand how the modules in Mary’s application relate to each other, we can
draw a graph of the dependencies (see figure 2.6).

Data access
layer Domain layer User interface

layer3/3 100%

Figure 2.5 Mary
has now
implemented all
three layers in the
application.

User interface layer

Domain layer

Data access layer

Figure 2.6 The dependency
graph for Mary’s application,
showing how the modules
depend on each other. The
arrows point towards a module’s
dependency.

The most remarkable insight to be gained from fig-
ure 2.6 is that the UI layer depends on both domain and
data access layers. It seems as though the UI could bypass
the domain layer in certain cases. This requires further
investigation.

2.2.2 Evaluating composability

A major goal of building a three-layer application is to
separate concerns. We’d like to separate our domain
model from the data access and UI layers so that none
of these concerns pollute the domain model. In large
applications, it’s essential to be able to work with each
area of the application in isolation. To evaluate Mary’s
implementation, we can ask a simple question: Is it possi-
ble to use each module in isolation?

In theory, we should be able to compose modules any
way we like. We may need to write new modules to bind
existing modules together in new and unanticipated
ways, but, ideally, we should be able to do so without having to modify the existing mod-
ules. Can we use the modules in Mary’s application in new and exciting ways? Let’s look
at some likely scenarios.

NOTE The following analyses discuss whether modules can be replaced, but
be aware that this is a technique we use to evaluate composability. Even if we
never want to swap modules, this sort of analysis uncovers potential issues
regarding coupling. If we find that the code is tightly coupled, all the benefits
of loose coupling are lost.

buildiNg a NEw ui
If Mary’s application becomes a success, the project stakeholders would like her to
develop a rich client version in Windows Presentation Foundation (WPF). Is this possi-
ble to do while reusing the domain and data access layers?

When we examine the dependency graph in figure 2.6, we can quickly ascertain that
no modules are depending on the web UI, so it’s possible to remove it and replace it
with a WPF UI. Creating a rich client based on WPF is a new application that shares
most of its implementation with the original web application. Figure 2.7 illustrates how
a WPF application would need to take the same dependencies as the web application.
The original web application can remain unchanged.

46 ChapTEr 2 Writing tightly coupled code

Replacing the UI layer is certainly possible with Mary’s implementation. Let’s examine
another interesting decomposition.

buildiNg a NEw daTa aCCESS layEr

Mary’s market analysts figure out that, to optimize profits, her application should be
available as a cloud application hosted on Microsoft Azure. In Azure, data can be stored
in the highly scalable Azure Table Storage Service. This storage mechanism is based on
flexible data containers that contain unconstrained data. The service enforces no par-
ticular database schema, and there’s no referential integrity.

Although the most common data access technology on .NET is based on ADO.NET
Data Services, the protocol used to communicate with the Table Storage Service is
HTTP. This type of database is sometimes known as a key-value database, and it’s a differ-
ent beast than a relational database accessed through Entity Framework Core.

To enable the e-commerce application as a cloud application, the data access layer
must be replaced with a module that uses the Table Storage Service. Is this possible?

From the dependency graph in figure 2.6, we already know that both the UI and
domain layers depend on the Entity Framework–based data access layer. If we try to
remove the data access layer, the solution will no longer compile without refactoring all
other projects because a required Dependency is missing. In a big application with doz-
ens of modules, we could also try to remove the modules that don’t compile to see what
would be left. In the case of Mary’s application, it’s evident that we’d have to remove all
modules, leaving nothing behind, as figure 2.8 shows.

Although it would be possible to develop an Azure Table data access layer that mim-
ics the API exposed by the original data access layer, there’s no way we could apply that
to the application without touching other parts of the application. The application isn’t
nearly as composable as the project stakeholders would have liked. Enabling the profit-
maximizing cloud abilities requires a major rewrite of the application because none of
the existing modules can be reused.

WPF UI layer

Domain layer

Data access layer

Web UI layer

Domain layer

Data access layer

Figure 2.7 Replacing a web UI with a WPF UI is possible because no module depends on
the web UI. The dashed box signals the part that we want to replace.

The domain layer
depends on the
relational data
access layer.

Attempting to remove the
relational data access layer
leaves nothing left because
all other layers depend on
it. You'll have to replace
all three layers together.
There’s no place where you
can instruct the domain
layer to use the new
Azure Table data access
layer instead of the original.

User interface layer

Domain layer

Azure Table
data access layer

User interface layer

Domain layer

Relational
data access layer

Figure 2.8 An attempt to replace the relational data access layer

 47Analysis of missing composability

Replacing the UI layer is certainly possible with Mary’s implementation. Let’s examine
another interesting decomposition.

buildiNg a NEw daTa aCCESS layEr

Mary’s market analysts figure out that, to optimize profits, her application should be
available as a cloud application hosted on Microsoft Azure. In Azure, data can be stored
in the highly scalable Azure Table Storage Service. This storage mechanism is based on
flexible data containers that contain unconstrained data. The service enforces no par-
ticular database schema, and there’s no referential integrity.

Although the most common data access technology on .NET is based on ADO.NET
Data Services, the protocol used to communicate with the Table Storage Service is
HTTP. This type of database is sometimes known as a key-value database, and it’s a differ-
ent beast than a relational database accessed through Entity Framework Core.

To enable the e-commerce application as a cloud application, the data access layer
must be replaced with a module that uses the Table Storage Service. Is this possible?

From the dependency graph in figure 2.6, we already know that both the UI and
domain layers depend on the Entity Framework–based data access layer. If we try to
remove the data access layer, the solution will no longer compile without refactoring all
other projects because a required Dependency is missing. In a big application with doz-
ens of modules, we could also try to remove the modules that don’t compile to see what
would be left. In the case of Mary’s application, it’s evident that we’d have to remove all
modules, leaving nothing behind, as figure 2.8 shows.

Although it would be possible to develop an Azure Table data access layer that mim-
ics the API exposed by the original data access layer, there’s no way we could apply that
to the application without touching other parts of the application. The application isn’t
nearly as composable as the project stakeholders would have liked. Enabling the profit-
maximizing cloud abilities requires a major rewrite of the application because none of
the existing modules can be reused.

WPF UI layer

Domain layer

Data access layer

Web UI layer

Domain layer

Data access layer

Figure 2.7 Replacing a web UI with a WPF UI is possible because no module depends on
the web UI. The dashed box signals the part that we want to replace.

The domain layer
depends on the
relational data
access layer.

Attempting to remove the
relational data access layer
leaves nothing left because
all other layers depend on
it. You'll have to replace
all three layers together.
There’s no place where you
can instruct the domain
layer to use the new
Azure Table data access
layer instead of the original.

User interface layer

Domain layer

Azure Table
data access layer

User interface layer

Domain layer

Relational
data access layer

Figure 2.8 An attempt to replace the relational data access layer

EvaluaTiNg OThEr COmbiNaTiONS

We could analyze the application for other combinations of modules, but this would
be a moot point because we already know that it fails to support an important scenario.
Besides, not all combinations make sense.

For instance, we could ask whether it would be possible to replace the domain model
with a different implementation. But, in most cases, this would be an odd question to
ask because the domain model encapsulates the heart of the application. Without the
domain model, most applications have no reason to exist.

2.3 Analysis of missing composability
Why did Mary’s implementation fail to achieve the desired degree of composability? Is
it because the UI has a direct dependency on the data access layer? Let’s examine this
possibility in greater detail.

2.3.1 Dependency graph analysis

Why does the UI depend on the data access library? The culprit is this domain model’s
method signature:

The GetFeaturedProducts method of the ProductService class returns a sequence of
products, but the Product class is defined in the data access layer. Any client consum-
ing the GetFeaturedProducts method must reference the data access layer to be able
to compile. It’s possible to change the signature of the method to return a type defined
within the domain model. It’d also be more correct, but it doesn’t solve the problem.

public IEnumerable<Product> GetFeaturedProducts(bool isCustomerPreferred)

Exposes to clients a type defined in the data access library

48 ChapTEr 2 Writing tightly coupled code

Let’s assume that we break the dependency between the
UI and data access library. The modified dependency graph
would now look like figure 2.9.

Would such a change enable Mary to replace the relational
data access layer with one that encapsulates access to the
Azure Table service? Unfortunately, no, because the domain
layer still depends on the data access layer. The UI, in turn,
still depends on the domain model. If we try to remove the
original data access layer, there’d be nothing left of the appli-
cation. The root cause of the problem lies somewhere else.

2.3.2 Data access interface analysis

The domain model depends on the data access layer because
the entire data model is defined there. Using Entity Frame-
work to implement a data access layer may be a reasonable
decision. But, from the perspective of loose coupling, con-
suming it directly in the domain model isn’t.

The offending code can be found spread out in the ProductService class. The con-
structor creates a new instance of the CommerceContext class and assigns it to a private
member variable:

this.dbContext = new CommerceContext();

This tightly couples the ProductService class to the data access layer. There’s no rea-
sonable way you can Intercept this piece of code and replace it with something else.
The reference to the data access layer is hard-coded into the ProductService class!

The implementation of the GetFeaturedProducts method uses CommerceContext
to pull Product objects from the database:

var featuredProducts =
 from product in this.dbContext.Products
 where product.IsFeatured
 select product;

The reference to CommerceContext within GetFeaturedProducts reinforces the hard-
coded dependency, but, at this point, the damage is already done. What we need is a better
way to compose modules without such tight coupling. If you look back at the benefits of
DI as discussed in chapter 1, you’ll see that Mary’s application fails to have the following:

¡	Late binding — Because the domain layer is tightly coupled with the data access
layer, it becomes impossible to deploy two versions of the same application, where
one connects to a local SQL Server database and the other is hosted on Microsoft
Azure using Azure Table Storage. In other words, it’s impossible to load the cor-
rect data access layer using late binding.

¡	Extensibility — Because all classes in the application are tightly coupled to one
another, it becomes costly to plug in Cross-Cutting Concerns like the security
feature in chapter 1. Doing so requires many classes in the system to be changed.
This tightly coupled design is, therefore, not particularly extensible.

User interface layer

Domain layer

Data access layer

Figure 2.9 Dependency
graph of the hypothetical
situation where the UI’s
dependency on the data
access layer is removed

 49Analysis of missing composability

¡	Maintainability — Not only would adding Cross-Cutting Concerns require
sweeping changes throughout the application, but every newly added Cross-
Cutting Concern would likely make each class touched even more complex.
Every addition would make a class harder to read. This means that the applica-
tion isn’t as maintainable as Mary would like.

¡	Parallel development — If we stick with the previous example of applying
Cross-Cutting Concerns, it’s quite easy to understand that having to make
sweeping changes throughout your code base hinders the ability to work with
multiple developers in parallel on a single application. Like us, you’ve likely dealt
with painful merge conflicts in the past when committing your work to a version
control system. A well-designed, loosely coupled system will, among other things,
reduce the amount of merge conflicts that you’ll have. When more developers
start working on Mary’s application, it’ll become harder and harder to work
effectively without stepping on each other’s toes.

¡	Testability — We already established that swapping out the data access layer is cur-
rently impossible. Testing code without a database, however, is a prerequisite for
doing unit testing. But even with integration testing, Mary will likely need some
parts of the code to be swapped out, and the current design makes this hard.
Mary’s application is, therefore, not Testable.

At this point, you may ask yourself what the desired dependency graph should look
like. For the highest degree of reuse, the lowest amount of dependencies is desirable.
On the other hand, the application would become rather useless if there were no
dependencies at all.

Which dependencies you need and in what direction they should point depends
on the requirements. But because we’ve already established that we have no intention
of replacing the domain layer with a completely different implementation, it’s safe to
assume that other layers can safely depend on it. Figure 2.10 contains a big spoiler for
the loosely coupled application you’ll write in the next chapter, but it does show the
desired dependency graph.

The data access layer
now depends on the
domain layer instead
of the other way
around. The UI layer only

depends on the
domain layer.

User interface layer

Domain layer

Data access layer
Figure 2.10
Dependency graph of
the desired situation

50 ChapTEr 2 Writing tightly coupled code

The figure shows how we inverted the dependency between the domain and data
access layers. We’ll go into more detail on how to do this in the next chapter.

2.3.3 Miscellaneous other issues

We’d like to point out a few other issues with Mary’s code that ought to be addressed.

¡	Most of the domain model seems to be implemented in the data access layer. Whereas it’s
a technical problem that the domain layer references the data access layer, it’s a
conceptual problem that the data access layer defines such a class as the Product
class. A public Product class belongs in the domain model.

¡	On Jens’ advice, Mary decided to implement in the UI the code that determines whether a user is
a preferred customer. But how a customer is identified as a preferred customer is a piece
of business logic, so it should be implemented in the domain model. Jens’ argument
about Separation of Concerns and the Single Responsibility Principle is no
excuse for putting code in the wrong place. Following the Single Responsibility
Principle within a single library is entirely possible — that’s the expected approach.

¡	Mary loaded the connection string from the configuration file from within the Commerce
Context class (shown in listing 2.2). From the perspective of its consumers, the
dependency on this configuration value is completely hidden. As we alluded to
when discussing listing 2.2, this implicitness contains a trap.

Although the ability to configure a compiled application is important, only the
finished application should rely on configuration files. It’s more flexible for reus-
able libraries to be imperatively configurable by their callers, instead of reading
configuration files themselves. In the end, the ultimate caller is the application’s
entry point. At that point, all relevant configuration data can be read from a con-
figuration file directly at startup and fed to the underlying libraries as needed.
We want the configuration that CommerceContext requires to be explicit.

¡	The view (as shown in listing 2.5) seems to contain too much functionality. It performs
casts and specific string formatting. Such functionality should be moved to the
underlying model.

2.4 Conclusion
It’s surprisingly easy to write tightly coupled code. Even when Mary set out with the
express intent of writing a three-layer application, it turned into a largely monolithic
piece of Spaghetti Code.5 (When we’re talking about layering, we call this Lasagna.)

One of the many reasons that it’s so easy to write tightly coupled code is that both
the language features and our tools already pull us in that direction. If you need a new
instance of an object, you can use the new keyword. If you don’t have a reference to the
required assembly, Visual Studio makes it easy to add. But every time you use the new
keyword, you introduce a tight coupling. As discussed in chapter 1, not all tight cou-
pling is bad, but you should strive to prevent tight coupling to Volatile Dependencies.

5 William J. Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (Wiley Com-
puter Publishing, 1998), 119.

 51Summary

By now you should begin to understand what it is that makes tightly coupled code
so problematic, but we’ve yet to show you how to fix these problems. In the next chap-
ter, we’ll show you a more composable way of building an application with the same
features as the one Mary built. We’ll also address those other issues discussed in sec-
tion 2.3.3 at the same time.

Summary

¡	Complex software must address lots of different concerns, such as security, diag-
nostics, operations, performance, and extensibility.

¡	Loose coupling encourages you to address all application concerns in isolation,
but ultimately you must still compose this complex set of concerns.

¡	It’s easy to create tightly coupled code. Although not all tight coupling is bad,
tight coupling to Volatile Dependencies is and should be avoided.

¡	In Mary’s application, because the domain layer depended on the data access
layer, there was no way to replace the data access layer with a different one. The
tight coupling in her application caused Mary to lose the benefits that loose cou-
pling provides: late binding, extensibility, maintainability, Testability, and par-
allel development.

¡	Only the finished application should rely on configuration files. Other parts of
the application shouldn’t request values from a configuration file, but should
instead be configurable by their callers.

¡	The Single Responsibility Principle states that each class should only have
one reason to change.

¡	The Single Responsibility Principle can be viewed from the perspective of
cohesion. Cohesion is defined as the functional relatedness of the elements of a
class or module. The lower the amount of relatedness, the lower the cohesion;
and the lower the cohesion, the greater the chance a class violates the Single
Responsibility Principle.

52

3Writing loosely coupled code

In this chapter
¡	Redesigning Mary’s e-commerce application to

become loosely coupled

¡	Analyzing that loosely coupled application

¡	Evaluating that loosely coupled application

When it comes to grilling steak, an important practice is to let the meat rest before
you cut it into slices. When resting, the juices redistribute, and the results get juicier.
If, on the other hand, you cut it too soon, all the juice runs out, and your meat gets
drier and less tasty. It’d be a terrible shame to let this happen, because you’d like to
give your guests the best tasting experience you can deliver. Although it’s important
to know the best practices for any profession, it’s just as important to know the bad
practices and to understand why those lead to unsatisfactory results.

Knowing the difference between good and bad practices is essential to learning.
This is why the previous chapter was completely devoted to an example and analysis
of tightly coupled code: the analysis provided you with the why.

To summarize, loose coupling provides a number of benefits — late binding,
extensibility, maintainability, Testability, and parallel development. With tight
coupling, you lose those benefits. Although not all tight coupling is undesirable, you

 53Rebuilding the e-commerce application

3
should strive to avoid tight coupling to Volatile Dependencies. Moreover, you can use
Dependency Injection (DI) to solve the issues that were discovered during that analysis.
Because DI is a radical departure from the way Mary created her application, we’re not
going to modify her existing code. Rather, we’re going to re-create it from scratch.

NOTE You shouldn’t infer from this decision that it’s impossible to refactor
an existing application towards DI or that we encourage you to rewrite exist-
ing applications completely from scratch. Big rewrites are costly and high risk.
Preferred are slow, step-by-step refactorings. That’s not to say that refactoring
is easy, because it’s not. It’s hard. In our experience, it takes a lot of work to get
there.1

Let’s start with a short recap of Mary’s application. We’ll also discuss how we’ll approach
the rewrite and what the desired result will look like when we’ve finished.

3.1 Rebuilding the e-commerce application
The analysis of Mary’s application in chapter 2 concluded that Volatile Dependen-

cies were tightly coupled across the dif-
ferent layers. As the dependency graph of
Mary’s application in figure 3.1 shows, both
the domain layer and the UI layer depend
on the data access layer.

What we’ll aim to achieve in this chap-
ter is to invert the dependency between
the domain layer and the data access layer.
This means that instead of the domain layer
depending on the data access layer, the data
access layer will depend on the domain layer,
as shown in figure 3.2.

1 There’s a whole book about refactoring. See Michael C. Feathers, Working Effectively with Legacy Code
(Prentice Hall, 2004).

User interface layer

Domain layer

Data access layer

Figure 3.1 The
dependency graph for
Mary’s application
shows how the
modules depend on
each other.

User interface layer

Domain layer

Data access layer

The data access layer
now depends on the
domain layer instead
of the other way
around.

The UI layer only
depends on the
domain layer.

Figure 3.2 Dependency
graph of the desired inversion
for Mary’s application

54 ChapTEr 3 Writing loosely coupled code

By creating this inversion, we allow the data access layer to be replaced without having
to completely rewrite the application. (This is a radical departure from the way Mary
developed her application.) We’ll also apply several patterns along the way. Then we’ll
apply Constructor Injection, which we discussed in chapter 1. And finally, we’ll also
use Method Injection and Composition Root, which we’ll discuss as we go.

This approach will lead to quite a few more classes as we focus on separating the
application concerns. Where Mary defined four classes, we’ll define nine classes and
three interfaces. Figure 3.3 drills a little deeper into the application and shows the
classes and interfaces we’ll create throughout this chapter.

Figure 3.4 shows how the main classes in the application will interact. At the end of this
chapter, we’ll take a look at a slightly more detailed version of this diagram again.

When we write software, we prefer to start in the most significant place — the part
that has most visibility to our stakeholders. As in Mary’s e-commerce application, this is
often the UI. From there, we work our way in, adding more functionality until one fea-
ture is done; then we move on to the next. This outside-in technique helps us to focus on
the requested functionality without overengineering the solution.

HomeController

FeaturedProducts-
ViewModel

ProductViewModel

AspNetUserContext-
Adapter

CommerceContext

DiscountedProduct

IProductService

ProductService

IProductRepository

Product

IUserContext

SqlProductRepository

User interface layer

Domain layer

Data access layer

Figure 3.3 The classes and interfaces that we’ll have at the end of this chapter. Interfaces are marked with
dashed lines.

When a request arrives, a custom controller
activator takes care of the construction of the
application’s object graphs. This ensures that
once a request arrives for the HomeController,
the activator will create a HomeController with
its DEPENDENCIES.

After the
HomeController
is constructed,
MVC will
invoke its
Index method.

Web server

Request
arrives

Create()

new(dbContext)

new(productRepository)

new(productService)

A HomeController

Featured products
with discounts

Featured products

Response

A custom
Controller Activator

A
SqlProductRepository

A HomeController

GetFeaturedProducts()

A ProductService

A ViewResult containing a
FeaturedProductsViewModel

Message

The HomeController's
Index method will call
into the ProductService
and ProductService calls
into SqlProductRepository.

GetFeaturedProducts()

Figure 3.4 Sequence diagram showing the interaction between elements involved in DI in the e-commerce
application that we build in this chapter

 55Rebuilding the e-commerce application

By creating this inversion, we allow the data access layer to be replaced without having
to completely rewrite the application. (This is a radical departure from the way Mary
developed her application.) We’ll also apply several patterns along the way. Then we’ll
apply Constructor Injection, which we discussed in chapter 1. And finally, we’ll also
use Method Injection and Composition Root, which we’ll discuss as we go.

This approach will lead to quite a few more classes as we focus on separating the
application concerns. Where Mary defined four classes, we’ll define nine classes and
three interfaces. Figure 3.3 drills a little deeper into the application and shows the
classes and interfaces we’ll create throughout this chapter.

Figure 3.4 shows how the main classes in the application will interact. At the end of this
chapter, we’ll take a look at a slightly more detailed version of this diagram again.

When we write software, we prefer to start in the most significant place — the part
that has most visibility to our stakeholders. As in Mary’s e-commerce application, this is
often the UI. From there, we work our way in, adding more functionality until one fea-
ture is done; then we move on to the next. This outside-in technique helps us to focus on
the requested functionality without overengineering the solution.

HomeController

FeaturedProducts-
ViewModel

ProductViewModel

AspNetUserContext-
Adapter

CommerceContext

DiscountedProduct

IProductService

ProductService

IProductRepository

Product

IUserContext

SqlProductRepository

User interface layer

Domain layer

Data access layer

Figure 3.3 The classes and interfaces that we’ll have at the end of this chapter. Interfaces are marked with
dashed lines.

When a request arrives, a custom controller
activator takes care of the construction of the
application’s object graphs. This ensures that
once a request arrives for the HomeController,
the activator will create a HomeController with
its DEPENDENCIES.

After the
HomeController
is constructed,
MVC will
invoke its
Index method.

Web server

Request
arrives

Create()

new(dbContext)

new(productRepository)

new(productService)

A HomeController

Featured products
with discounts

Featured products

Response

A custom
Controller Activator

A
SqlProductRepository

A HomeController

GetFeaturedProducts()

A ProductService

A ViewResult containing a
FeaturedProductsViewModel

Message

The HomeController's
Index method will call
into the ProductService
and ProductService calls
into SqlProductRepository.

GetFeaturedProducts()

Figure 3.4 Sequence diagram showing the interaction between elements involved in DI in the e-commerce
application that we build in this chapter

In chapter 2, Mary used the opposite approach. She started with the data access layer
and worked her way out, working inside-out. It would be harsh for us to say that working
inside-out is bad, but as you’ll see later, the outside-in approach gives you quicker feed-
back on what you’re building. We’ll therefore build the application in the opposite
order, starting with the UI layer, continuing with the domain layer, and then building
the data access layer last.

NOTE The outside-in technique is closely related to the YAGNI principle — “You
Aren’t Gonna Need It.” This principle emphasizes that only required features
should be implemented, and that the implementation should be as simple as
possible.

56 ChapTEr 3 Writing loosely coupled code

Because we practice Test-Driven Development (TDD), we start by writing unit tests as
soon as our outside-in approach prompts us to create a new class. Although we wrote
unit tests to create this example, TDD isn’t required to implement and use DI, so we’re
not going to show these tests in the book. If you’re interested, the source code that
accompanies this book includes the tests. Let’s dive right into our project and begin
with the UI.

3.1.1 Building a more maintainable UI

Mary’s specification for the list of fea-
tured products was to write an appli-
cation that extracts those items from
the database and displays them in a list
(shown again in figure 3.5). Because
we know that the project stakeholders
will mainly be interested in the visual
result, the UI seems like a good place
to start.

The first thing you do after opening
Visual Studio is add a new ASP.NET
Core MVC application to the solution.
Because the list of featured products
needs to go on the front page, you start
by modifying the Index.cshtml file to
include the markup shown in the following listing.2

Listing 3.1 Index.cshtml view markup

@model FeaturedProductsViewModel

<h2>Featured Products</h2>
<div>
 @foreach (ProductViewModel product in this.Model.Products)
 {
 <div>@product.SummaryText</div>
 }
</div>

Notice how much cleaner listing 3.1 is compared to Mary’s original markup.

Listing 3.2 Mary’s original Index view markup from chapter 2

<h2>Featured Products</h2>
<div>
@{

Figure 3.5 Screen capture of the e-commerce web
application

2 The view for the Index action of HomeController is typically located in the web application project
at /Views/Home/Index.cshtml.

 57Rebuilding the e-commerce application

 var products = (IEnumerable<Product>)this.ViewData["Products"];

 foreach (Product product in products)
 {
 <div>@product.Name (@product.UnitPrice.ToString("C"))</div>
 }
}
</div>

The first improvement is that you no longer cast a dictionary item to a sequence of prod-
ucts before iteration is possible. You accomplished this easily by using MVC’s special @model
directive. This means that the Model property of the page is of the FeaturedProducts
ViewModel type. Using the @model directive, MVC will ensure that the value returned
from the controller will be cast to the FeaturedProductsViewModel type. Secondly,
the entire product display string is pulled directly from the SummaryText property of
ProductViewModel.

Both improvements are related to the introduction of view-specific models
that encapsulate the behavior of the view. These models are Plain Old CLR Objects
(POCO).3 The following listing provides an outline of their structure.

Listing 3.3 FeaturedProductsViewModel and ProductViewModel classes

public class FeaturedProductsViewModel
{
 public FeaturedProductsViewModel(
 IEnumerable<ProductViewModel> products)
 {
 this.Products = products;
 }

 public IEnumerable<ProductViewModel> Products
 { get; }
}

public class ProductViewModel
{
 private static CultureInfo PriceCulture = new CultureInfo("enUS");

 public ProductViewModel(string name, decimal unitPrice)
 {
 this.SummaryText = string.Format(PriceCulture,
 "{0} ({1:C})", name, unitPrice);
 }

 public string SummaryText { get; }
}

3 A Plain Old CLR Object (POCO), or Plain Old C# Object as it’s sometimes referred to, is a simple class
created in C# or another language for the Common Language Runtime (CLR), which is free from
dependencies on an external framework.

The FeaturedProductsViewModel contains a list of
ProductViewModel instances. Both are POCOs,

which makes them amenable to unit testing.

The SummaryText property is derived
from two values — name and unitPrice —
to encapsulate rendering logic.

58 ChapTEr 3 Writing loosely coupled code

The use of view models simplifies the view, which is good because views are harder to
test. It also makes it easier for a UI designer to work on the application.

NOTE Did you happen to notice a bug in Mary’s original markup? Although
the call to UnitPrice.ToString("C") formats decimal as a currency, it does so
based on the user’s cultural preferences as supplied to the application by their
browser. This means that a visitor from the USA sees a dollar symbol, whereas
someone from Denmark sees the Danish krone symbol. This wouldn’t be bad if
both currencies had the same value, but they don’t. This would lead to Danish
visitors getting the products for a fraction of the intended price. That’s why
ProductViewModel states the culture information explicitly.

HomeController must return a view with an instance of FeaturedProductsViewModel
for the code in listing 3.1 to work. As a first step, this can be implemented inside Home
Controller like this:

public ViewResult Index()
{
 var vm = new FeaturedProductsViewModel(new[]
 {
 new ProductViewModel("Chocolate", 34.95m),
 new ProductViewModel("Asparagus", 39.80m)
 });

 return this.View(vm);
}

We hard-coded the list of discounted products inside the Index method. This isn’t the
desired end result, but it enables the web application to execute without error and
allows us to show the stakeholders an incomplete, but running example of the applica-
tion (a stub) for them to comment on.

IMPORTANT From a DI point of view, POCOs, DTOs, and view models like
FeaturedProductsViewModel and ProductViewModel aren’t really interest-
ing.4 They don’t contain any behavior you might want to Intercept, replace,
or mock. They are mere data objects. This makes them safe to create in your
code, so there’s no risk in tightly coupling your code to these data objects.
These objects contain the application’s runtime data that flows through the
system after classes like HomeController and ProductService have long been
created.

At this stage, only a stub of the UI layer has been implemented; a full implementation
of the domain layer and data access layer still remains. One advantage of starting with
the UI is that we already have software we can run and test. Contrast this with Mary’s

Creates a view model with a
hard-coded list of discounted
products

Wraps the view model in an MVC ViewResult
object using MVC’s helper method, View

4 A Data Transfer Object (DTO) is an object that carries data between processes.

Figure 3.6 Screen capture of the stubbed e-commerce
web application. Here the product list is hard-coded.

 59Rebuilding the e-commerce application

The use of view models simplifies the view, which is good because views are harder to
test. It also makes it easier for a UI designer to work on the application.

NOTE Did you happen to notice a bug in Mary’s original markup? Although
the call to UnitPrice.ToString("C") formats decimal as a currency, it does so
based on the user’s cultural preferences as supplied to the application by their
browser. This means that a visitor from the USA sees a dollar symbol, whereas
someone from Denmark sees the Danish krone symbol. This wouldn’t be bad if
both currencies had the same value, but they don’t. This would lead to Danish
visitors getting the products for a fraction of the intended price. That’s why
ProductViewModel states the culture information explicitly.

HomeController must return a view with an instance of FeaturedProductsViewModel
for the code in listing 3.1 to work. As a first step, this can be implemented inside Home
Controller like this:

public ViewResult Index()
{
 var vm = new FeaturedProductsViewModel(new[]
 {
 new ProductViewModel("Chocolate", 34.95m),
 new ProductViewModel("Asparagus", 39.80m)
 });

 return this.View(vm);
}

We hard-coded the list of discounted products inside the Index method. This isn’t the
desired end result, but it enables the web application to execute without error and
allows us to show the stakeholders an incomplete, but running example of the applica-
tion (a stub) for them to comment on.

IMPORTANT From a DI point of view, POCOs, DTOs, and view models like
FeaturedProductsViewModel and ProductViewModel aren’t really interest-
ing.4 They don’t contain any behavior you might want to Intercept, replace,
or mock. They are mere data objects. This makes them safe to create in your
code, so there’s no risk in tightly coupling your code to these data objects.
These objects contain the application’s runtime data that flows through the
system after classes like HomeController and ProductService have long been
created.

At this stage, only a stub of the UI layer has been implemented; a full implementation
of the domain layer and data access layer still remains. One advantage of starting with
the UI is that we already have software we can run and test. Contrast this with Mary’s

Creates a view model with a
hard-coded list of discounted
products

Wraps the view model in an MVC ViewResult
object using MVC’s helper method, View

4 A Data Transfer Object (DTO) is an object that carries data between processes.

Figure 3.6 Screen capture of the stubbed e-commerce
web application. Here the product list is hard-coded.

progress at a comparable stage. Only
at a much later stage does Mary arrive
at a point where she can run the appli-
cation. Figure 3.6 shows the stubbed
web application.

For our HomeController to fulfill
its obligations, and to do anything of
interest, it requests a list of featured
products from the domain layer.
These products need to have discounts
applied. In chapter 2, Mary wrapped
this logic in her ProductService class,
and we’ll do that too.

The Index method on Home
Controller should use the Product
Service instance to retrieve the list of featured products, convert those to ProductViewModel
instances, and then add those to FeaturedProductsViewModel. From the perspective of
HomeController, however, ProductService is a Volatile Dependency because it’s a
Dependency that doesn’t yet exist and is still in development. If we want to test Home
Controller in isolation, develop ProductService in parallel, or replace or Intercept it
in the future, we need to introduce a Seam.

Recall from the analysis of Mary’s implementation that depending on Volatile
Dependencies is a cardinal sin. As soon as you do that, you’re tightly coupled with the
type just used. To avoid this tight coupling, we’ll introduce an interface and use a tech-
nique called Constructor Injection; how the instance is created, and by whom, is of
no concern to HomeController.

Listing 3.4 HomeController class

public class HomeController : Controller
{
 private readonly IProductService productService;

 public HomeController(
 IProductService productService)
 {
 if (productService == null)
 throw new ArgumentNullException(
 "productService");

 this.productService = productService;
 }

The constructor specifies that
anyone wanting to use the class
must provide an instance of an
IProductService interface.

A Guard Clause prevents the
supplied instance from being
null by throwing an exception.

The injected DepenDency can be stored
for later and safely used by other
members of the HomeController class.

60 ChapTEr 3 Writing loosely coupled code

 public ViewResult Index()
 {
 IEnumerable<DiscountedProduct> products =
 this.productService.GetFeaturedProducts();

 var vm = new FeaturedProductsViewModel(
 from product in products
 select new ProductViewModel(product));

 return this.View(vm);
 }
}

As we stated in chapter 1, Constructor Injection is the act of statically defining the
list of required Dependencies by specifying them as parameters to the class’s construc-
tor. This is exactly what HomeController does. In its public constructor, it defines what
Dependencies it requires for it to function correctly.

The first time we heard about Constructor Injection, we had a hard time under-
standing the real benefit. Doesn’t it push the burden of controlling the Dependency onto
some other class? Yes, it does — and that’s the whole point. In an n-layer application, you
can push that burden all the way to the top of the application into a Composition Root.

COmpOSiTiON rOOT

As we discussed in section 1.4.1, we’d like to be able to compose our classes into appli-
cations in a way similar to how we plug electrical appliances together. This level of mod-
ularity can be achieved by centralizing the creation of our classes into a single place. We
call this location the comPosition root.

The comPosition root is located as close as possible to the application’s entry point. In
most .NET Core application types, the entry point is the Main method. Inside the comPosi-
tion root, you can decide to compose your application manually — that’s using Pure Di — or
to delegate it to a Di contAiner. We’ll discuss comPosition root in more detail in chapter 4.

Because we added a constructor with an argument to HomeController, it’ll be impossi-
ble to create a HomeController without that Dependency, and that’s exactly why we did
that. But that does mean that the application’s home screen is broken, because MVC has
no idea how our HomeController must be created — unless you instruct MVC otherwise.

In fact, the creation of HomeController isn’t a concern of the UI layer; it’s the respon-
sibility of the Composition Root.5 Because of this, we consider the UI layer completed,
and we’ll come back to the creation of HomeController later on. Figure 3.7 shows the
current state of implementing the architecture envisioned in figure 3.2.

The stored productService DepenDency. Notice how GetFeaturedProducts
returns a collection of DiscountedProduct rather than Product. The
DiscountedProduct class is defined in the domain layer.

A view model is
constructed out of the
list of featured products.

We changed ProductViewModel
to accept a DiscountedProduct
instead of a string and decimal.

5 As we explain in more detail in chapter 4, the Composition Root isn’t part of the UI layer, even though
it might be placed in the same assembly.

User interface
layer1/3 33%

Figure 3.7 At this stage, only the UI layer has been implemented; the domain
and data access layers have yet to be addressed.

 61Rebuilding the e-commerce application

 public ViewResult Index()
 {
 IEnumerable<DiscountedProduct> products =
 this.productService.GetFeaturedProducts();

 var vm = new FeaturedProductsViewModel(
 from product in products
 select new ProductViewModel(product));

 return this.View(vm);
 }
}

As we stated in chapter 1, Constructor Injection is the act of statically defining the
list of required Dependencies by specifying them as parameters to the class’s construc-
tor. This is exactly what HomeController does. In its public constructor, it defines what
Dependencies it requires for it to function correctly.

The first time we heard about Constructor Injection, we had a hard time under-
standing the real benefit. Doesn’t it push the burden of controlling the Dependency onto
some other class? Yes, it does — and that’s the whole point. In an n-layer application, you
can push that burden all the way to the top of the application into a Composition Root.

COmpOSiTiON rOOT

As we discussed in section 1.4.1, we’d like to be able to compose our classes into appli-
cations in a way similar to how we plug electrical appliances together. This level of mod-
ularity can be achieved by centralizing the creation of our classes into a single place. We
call this location the comPosition root.

The comPosition root is located as close as possible to the application’s entry point. In
most .NET Core application types, the entry point is the Main method. Inside the comPosi-
tion root, you can decide to compose your application manually — that’s using Pure Di — or
to delegate it to a Di contAiner. We’ll discuss comPosition root in more detail in chapter 4.

Because we added a constructor with an argument to HomeController, it’ll be impossi-
ble to create a HomeController without that Dependency, and that’s exactly why we did
that. But that does mean that the application’s home screen is broken, because MVC has
no idea how our HomeController must be created — unless you instruct MVC otherwise.

In fact, the creation of HomeController isn’t a concern of the UI layer; it’s the respon-
sibility of the Composition Root.5 Because of this, we consider the UI layer completed,
and we’ll come back to the creation of HomeController later on. Figure 3.7 shows the
current state of implementing the architecture envisioned in figure 3.2.

The stored productService DepenDency. Notice how GetFeaturedProducts
returns a collection of DiscountedProduct rather than Product. The
DiscountedProduct class is defined in the domain layer.

A view model is
constructed out of the
list of featured products.

We changed ProductViewModel
to accept a DiscountedProduct
instead of a string and decimal.

5 As we explain in more detail in chapter 4, the Composition Root isn’t part of the UI layer, even though
it might be placed in the same assembly.

User interface
layer1/3 33%

Figure 3.7 At this stage, only the UI layer has been implemented; the domain
and data access layers have yet to be addressed.

This leads us to the next stage in the re-creation of our e-commerce application, the
domain model.

3.1.2 Building an independent domain model

The domain model is a plain, vanilla C# library that we add to the solution. This library
will contain POCOs and interfaces. The POCOs will model the domain while the inter-
faces provide Abstractions that will serve as our main external entry points into the
domain model. They’ll provide the contract through which the domain model inter-
acts with the forthcoming data access layer.

The HomeController delivered in the previous section doesn’t compile yet because
we haven’t defined the IProductService Abstraction. In this section, we’ll add a
new domain layer project to the e-commerce application and a reference to the
domain layer project from the MVC project, like Mary did. That will turn out OK,
but we’ll postpone doing a dependency graph analysis until section 3.2 so that we can
provide you with the full picture. The following listing shows the IProductService
Abstraction.

Listing 3.5 IProductService interface

public interface IProductService
{
 IEnumerable<DiscountedProduct> GetFeaturedProducts();
}

IProductService represents the heart of our current domain layer in that it bridges
the UI layer with the data access layer. It’s the glue that binds our initial application
together.

The sole member of the IProductService Abstraction is the GetFeatured
Products method. It returns a collection of DiscountedProduct instances. Each
DiscountedProduct contains a Name and a UnitPrice. It’s a simple POCO class, as
can be seen in the next listing, and this definition gives us enough to compile our
Visual Studio solution.

62 ChapTEr 3 Writing loosely coupled code

Listing 3.6 DiscountedProduct POCO class

public class DiscountedProduct
{
 public DiscountedProduct(string name, decimal unitPrice)
 {
 if (name == null) throw new ArgumentNullException("name");

 this.Name = name;
 this.UnitPrice = unitPrice;
 }

 public string Name { get; }
 public decimal UnitPrice { get; }
}

The principle of programming to interfaces instead of concrete classes is a cornerstone
of DI. It’s this principle that lets you replace one concrete implementation with another.
Before continuing, we should take a quick moment to recognize the role of interfaces
in this discussion.

IMPORTANT Programming to interfaces doesn’t mean that all classes should
implement an interface. It typically makes little sense to hide POCOs, DTOs,
and view models behind an interface, because they contain no behavior that
requires mocking, Interception, or replacement. Because Discounted
Product, FeaturedProductsViewModel, and ProductViewModel are (view) models,
they implement no interface. We’ll take another look at whether to use interfaces or
abstract classes later in this section.

Next we’ll write our ProductService implementation. The GetFeaturedProducts
method of this ProductService class should use an IProductRepository instance to
retrieve the list of featured products, apply any discounts, and return a list of Discounted
Product instances.

A common abstraction over data access is provided by the Repository pattern, so
we’ll define an IProductRepository abstraction in the domain model library.6

Listing 3.7 IProductRepository

public interface IProductRepository
{
 IEnumerable<Product> GetFeaturedProducts();
}

IProductRepository is the interface to the data access layer, returning “raw” Entities
from the persistence store. By contrast, IProductService applies business logic, such
as the discount in this case, and converts the Entities to a narrower-focused object.
A full-blown Repository would have more methods to find and modify products, but,

6 The Repository design pattern is described in Fowler’s Patterns of Enterprise Application Architecture on
pages 322-327, but the way people typically use it has little to do with the original pattern description.
In this example, we follow the typical usage rather than Fowler’s description, as the typical usage is
better known and easier to understand.

 63Rebuilding the e-commerce application

following the outside-in principle, we only define the classes and members needed for
the task at hand. It’s easier to add functionality to code than it is to remove anything.

ENTiTy

An entity is a term from Domain-Driven Design that covers a domain object that has a
long-term identity unrelated to a particular object instance.7 This may sound abstract
and theoretical, but it means that an entity represents an object that lives beyond arbi-
trary bits in memory. Any .NET object instance has an in-memory address (identity), but
an entity has an identity that lives across process lifetimes.

We often use databases and primary keys to identify entities and ensure that we can per-
sist and read them even if the host computer reboots. The domain object Product is an
entity because the concept of a product has a longer lifetime than a single process, and
we use a product ID to identify it in IProductRepository.

Because our goal is to invert the dependency between the domain layer and the data
access layer, IProductRepository is defined in the domain layer. In the next section,
we’ll create an implementation of IProductRepository as part of the data access layer.
This allows our dependency to point at the domain layer.

NOTE By letting ProductService depend on IProductRepository, we allow
behavior to be replaced or Intercepted. By placing that behavior in a differ-
ent library, we allow a whole library to be replaced.

The Product class is also implemented with the bare minimum of members, as shown
in the following listing.

Listing 3.8 Product ENTiTy

public class Product
{
 public string Name { get; set; }
 public decimal UnitPrice { get; set; }
 public bool IsFeatured { get; set; }

 public DiscountedProduct ApplyDiscountFor(
 IUserContext user)
 {
 bool preferred =
 user.IsInRole(Role.PreferredCustomer);

 decimal discount = preferred ? .95m : 1.00m;

 return new DiscountedProduct(
 name: this.Name,
 unitPrice: this.UnitPrice * discount);
 }
}

Figure 3.8 illustrates the relationship between ProductService and its Dependencies.

7 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley, 2004), 89.

The Product class only contains the Name,
UnitPrice, and IsFeatured properties, because
those are the only properties needed to
implement the desired application feature.

This method requires IUserContext as an
argument. IUserContext is part of the
domain layer, and we’ll define it shortly.

The ApplyDiscountFor method
applies the discount (if any)
based on the user’s role, and
returns an instance of the
DiscountedProduct class.

64 ChapTEr 3 Writing loosely coupled code

The GetFeaturedProducts method of the ProductService class should use an
IProduct Repository instance to retrieve the list of featured products, apply any dis-
counts, and return a list of DiscountedProduct instances. The ProductService class
corresponds to Mary’s class of the same name, but is now a pure domain model class
because it doesn’t have a hard-coded reference to the data access layer. As with our
HomeController, we’re again going to relinquish control of its Volatile Dependen-
cies using Constructor Injection, as shown next.

Listing 3.9 ProductService with CONSTruCTOr iNjECTiON

public class ProductService : IProductService
{
 private readonly IProductRepository repository;
 private readonly IUserContext userContext;

 public ProductService(
 IProductRepository repository,
 IUserContext userContext)
 {
 if (repository == null)
 throw new ArgumentNullException("repository");
 if (userContext == null)
 throw new ArgumentNullException("userContext");

 this.repository = repository;
 this.userContext = userContext;
 }

 public IEnumerable<DiscountedProduct> GetFeaturedProducts()
 {
 return
 from product in this.repository
 .GetFeaturedProducts()
 select product

ProductService

uses

returns

uses
returns

creates

Product

ApplyDiscountFor()

Name
UnitPrice

DiscountedProduct

Name

UnitPrice
IsFeatured

GetFeaturedProducts()

IProductRepository

GetFeaturedProducts()

IUserContext

IsInRole
uses

Figure 3.8 ProductService and its dEpENdENCiES

constructor InjectIon

The repository and userContext DepenDencIes
pull a list of products and apply a discount
for each featured product, respectively.

 65Rebuilding the e-commerce application

 .ApplyDiscountFor(this.userContext);
 }
}

Besides an IProductRepository, the ProductService constructor requires an instance
of IUserContext:

public interface IUserContext
{
 bool IsInRole(Role role);
}

public enum Role { PreferredCustomer }

This is another departure from Mary’s implementation, which only took a boolean
value as argument to the GetFeaturedProducts method, indicating whether the user
is a preferred customer. Because deciding whether a user is a preferred customer is a
piece of the domain layer, it’s more correct to explicitly model this as a Dependency.
Besides that, information about the user on whose behalf the request is running is con-
textual. We don’t want every controller to be responsible for gathering this informa-
tion. That would be repetitive and error prone, and might lead to accidental security
bugs.

Instead of letting the UI layer provide this information to the domain layer, we allow
the retrieval of this information to become an implementation detail of Product
Service. The IUserContext interface allows ProductService to retrieve information
about the current user without HomeController needing to provide this. HomeController
doesn’t need to know which role(s) are authorized for a discount price, nor is it easy for
HomeController to inadvertently enable the discount by passing, for example, true
instead of false. This reduces the overall complexity of the UI layer.

TIP To reduce the overall complexity of a system, runtime data that describes
contextual information is best hidden behind an Abstraction and injected
into a consumer that requires it to function. Contextual information is metadata
about the current request. This is typically information that the user shouldn’t
be allowed to influence directly. Examples are the user’s identity (which was
established on login) and the system’s current time.

Although the .NET Base Class Library (BCL) includes an IPrincipal interface, which
represents a standard way of modeling application users, that interface is generic in
nature and isn’t tailored for our application’s special needs. Instead, we let the applica-
tion define the Abstraction.

The ProductService.GetFeaturedProducts method passes the IUserContext
Dependency on to the Product.ApplyDiscountFor method. This technique is known as
Method Injection. Method Injection is particularly useful in cases where short-lived

Supplies the userContext DepenDency to the
ApplyDiscountFor method using MethoD InjectIon

66 ChapTEr 3 Writing loosely coupled code

objects like Entities (such as the Product Entity, in our case) need Dependencies.
Although the details vary, the main technique remains the same. We’ll discuss this pat-
tern in more detail in chapter 4. At this stage, the application doesn’t work at all. That’s
because three problems remain:

¡	There’s no concrete implementation of IProductRepository. This is easily solved.
In the next section, we’ll implement a concrete SqlProductRepository that
reads the featured products from the database.

¡	There’s no concrete implementation of IUserContext. We’ll take a look at this in the
next section too.

¡	The MVC framework doesn’t know which concrete type to use. This is because we intro-
duced an abstract parameter of type IProductService to the constructor of
HomeController. This issue can be solved in various ways, but our preference is
to develop a custom Microsoft.AspNetCore.Mvc.Controllers.IController
Activator. How this is done is outside the scope of this chapter, but it’s a subject
that we’ll discuss in chapter 7. Suffice it to say that this custom factory will create
an instance of the concrete ProductService and supply it to the constructor of
HomeController.

In the domain layer, we work only with types defined within the domain layer and Stable
Dependencies of the .NET BCL. The concepts of the domain layer are implemented as
POCOs. At this stage, there’s only a single concept represented, namely, a Product. The
domain layer must be able to communicate with the outside world (such as databases).
This need is modeled as Abstractions (such as Repositories) that we must replace with
concrete implementations before the domain layer becomes useful. Figure 3.9 shows the
current state of implementing the architecture envisioned in figure 3.2.

We succeeded in making our domain model compile. This means that we created
a domain model that’s independent of the data access layer, which we still need to
create. But before we get to that, there are a few points we’d like to explain in more
detail.

User interface
layer Domain layer2/3 66%

Figure 3.9 The UI and domain layer are now both in place, whereas the data
access layer remains to be implemented.

 67Rebuilding the e-commerce application

dEpENdENCy iNvErSiON priNCiplE

Much of what we’re trying to accomplish with DI is related to the Dependency Inver-
sion Principle.8 This principle states that higher-level modules in our applications
shouldn’t depend on lower-level modules; instead, modules of both levels should
depend on Abstractions.

This is exactly what we did when we defined our IProductRepository. The Product
Service component is part of the higher-level domain layer module, whereas the
IProductRepository implementation — let’s call it SqlProductRepository — is part
of the lower-level data access module. Instead of letting our ProductService depend
on SqlProductRepository, we let both ProductService and SqlProductRepository
depend on the IProductRepository Abstraction. SqlProductRepository imple-
ments the Abstraction, while ProductService uses it. Figure 3.10 illustrates this.

The relationship between the Dependency Inversion
Principle and DI is that the Dependency Inversion
Principle prescribes what we would like to accomplish,
and DI states how we would like to accomplish it. The
principle doesn’t describe how a consumer should get
ahold of its Dependencies. Many developers, however,
aren’t aware of another interesting part of the Depen-
dency Inversion Principle.

Not only does the principle prescribe loose coupling, it
states that Abstractions should be owned by the module
using the Abstraction. In this context, “owned” means
that the consuming module has control over the shape
of the Abstraction, and it’s distributed with that mod-
ule, rather than with the module that implements it. The
consuming module should be able to define the Abstrac-
tion in a way that benefits itself the most.

You already saw us do this twice: both IUserContext
and IProductRepository are defined this way. They’re
designed in a way that works best for the domain layer,
even though their implementations are the responsibility of the UI and data access lay-
ers, respectively, as shown in figure 3.11.

Letting a higher-level module or layer define its own Abstractions not only prevents
it from having to take a dependency on a lower-level module, it allows the higher-level
module to be simplified, because the Abstractions are tailored for its specific needs.
This brings us back to the BCL’s IPrincipal interface.

As we described, IPrincipal is generic in nature. The Dependency Inversion
Principle instead guides us towards defining Abstractions tailored for our applica-
tion’s special needs. That’s why we define our own IUserContext Abstraction instead
of letting the domain layer depend on IPrincipal. This does mean, however, that we

8 Robert Martin, Agile Principles, Patterns, and Practices in C# (Pearson Education, 2007).

ProductService

IProductRepository

SqlProductRepository

Figure 3.10 Instead of
ProductService depending
on SqlProductRepository,
both classes depend on an
abSTraCTiON.

68 ChapTEr 3 Writing loosely coupled code

have to create an Adapter implementation that allows translating calls from this appli-
cation-specific IUserContext Abstraction to calls to the application framework.

If the Dependency Inversion Principle dictates
that Abstractions should be distributed with their
owning modules, doesn’t the domain layer IProd
uctService interface violate this principle? After
all, IProductService is consumed by the UI layer,
but implemented by the domain layer, as figure 3.12
shows. The answer is yes, this does violate the Depen-
dency Inversion Principle.

If we were keen on fixing this violation, we should
move IProductService out of the domain layer.
Moving IProductService into the UI layer, however,
would make our domain layer dependent on that
layer. Because the domain layer is the central part of
the application, we don’t want it to depend on any-
thing else. Besides, this dependency would make it
impossible to replace the UI later on.

This means that to fix the violation, we need an
additional two extra projects in our solution — one for
the isolated UI layer without the Composition Root
and another for the IProductService Abstraction
that the UI layer owns. Out of pragmatism, however,
we chose not to pursuit this path for this example and,
therefore, leave the violation in place. We hope you can
appreciate that we don’t want to overcomplicate things.

iNTErfaCES Or abSTraCT ClaSSES?
Many guides to object-oriented design focus on inter-
faces as the main abstraction mechanism, whereas the
.NET Framework Design Guidelines endorse abstract
classes over interfaces.9 Should you use interfaces or
abstract classes? With relation to DI, the reassuring
answer is that it doesn’t matter. The important part is
that you program against some sort of abstraction.

Choosing between interfaces and abstract classes
is important in other contexts, but not here. You’ll
notice that we use these words interchangeably; we
often use the term Abstraction to encompass both
interfaces and abstract classes. This doesn’t mean that

AspNetUserContext
Adapter

IUserContext

User interface layer

Data access layer

D
om

ain Layer

ProductService

IProductRepository

SqlProductRepository

Figure 3.11 Both IUserContext
and IProductRepository are
part of the domain layer, because
ProductService “owns” them.

HomeController

IProductService

User interface layer

Domain layer

ProductService

Figure 3.12 By making
IProductService part of
the domain layer, we violate the
dEpENdENCy iNvErSiON priNCiplE.

9 Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for
Reusable .NET Libraries, 2nd Ed. (Addison-Wesley, 2009), 88-95.

 69Rebuilding the e-commerce application

we, as authors, don’t have a preference for one over the other. We do, in fact. When
it comes to writing applications, we typically prefer interfaces over abstract classes for
these reasons:

¡	Abstract classes can easily be abused as base classes. Base classes can easily turn into
ever-changing, ever-growing God Objects.10 The derivatives are tightly coupled
to its base class, which can become a problem when the base class contains Vola-
tile behavior. Interfaces, on the other hand, force us into the “Composition over
Inheritance” mantra.11

¡	Concrete classes can implement several interfaces, although in .NET, those can only derive
from a single base class. Using interfaces as the vehicle of Abstraction is more
flexible.

¡	Interface definitions in C# are less clumsy compared to abstract classes. With interfaces,
we can omit the abstract and public keywords from their members. This makes
an interface a more succinct definition.

When writing reusable libraries, however, the subject is becoming less clear-cut, due
to the need to deal with backward compatibility. In that light, an abstract class might
make more sense because non-abstract members can be added later, whereas adding
members to an interface is a breaking change. That’s why the .NET Framework Design
Guidelines prefer abstract classes.

Reusable libraries
Reusable libraries within the .NET ecosystem are typically distributed through NuGet. An
important characteristic is that their clients aren’t known at compile time. This is dif-
ferent from a project that’s reused by other projects in the same Visual Studio solution.
Although your Visual Studio solutions might contain projects that are reused by multiple
projects within that same solution, such projects aren’t considered to be reusable librar-
ies. The domain layer project, for instance, might be reused by multiple projects, but that
still doesn’t make it a reusable library.

External libraries are harder to change because they might have thousands of consum-
ing code bases, none of which the library designer has access to. Such a reusable library
can’t be tested against its consuming code bases.

Now let’s move on to the data access layer. We’ll create an implementation for the pre-
viously defined IProductRepository interface.

10 A God Object is an object that knows too much or does too much, and it’s an anti-pattern.
11 The Composition over Inheritance principle states that classes in object-oriented programming should

achieve polymorphic behavior and code reuse by containing instances of other classes that implement
the desired functionality (composition), rather than inheritance from a base or parent class.

70 ChapTEr 3 Writing loosely coupled code

3.1.3 Building a new data access layer

Like Mary, we’d like to implement our data access layer using Entity Framework Core,
so we follow the same steps she did in chapter 2 to create the Entity model. The main
difference is that CommerceContext is now only an implementation detail of the data
access layer, as opposed to being the entirety of the data access layer.

In this model, nothing outside of the data access layer will have any awareness of, or
dependency on, Entity Framework. It can be swapped out without any upstream effects.
With that in mind, we can create an implementation of IProductRepository.

Listing 3.10 Implementing IProductRepository using Entity Framework Core

public class SqlProductRepository : IProductRepository
{
 private readonly CommerceContext context;

 public SqlProductRepository(CommerceContext context)
 {
 if (context == null) throw new ArgumentNullException("context");

 this.context = context;
 }

 public IEnumerable<Product> GetFeaturedProducts()
 {
 return
 from product in this.context.Products
 where product.IsFeatured
 select product;
 }
}

In Mary’s application, the Product Entity was also used as a domain object, although
it was defined in the data access layer. This is no longer the case. The Product class is
now defined in our domain layer. Our data access layer reuses the Product class from
that layer.

For simplicity, we chose to let the data access layer reuse our domain object instead
of defining its own implementation. We were able to do so because Entity Framework
Core allows us to write Entities that are persistence ignorant.12 Whether this is a rea-
sonable practice depends a lot on the structure and complexity of your domain objects.
If we later conclude that this shared model is enforcing unwanted constraints on our
model, we can change our data access layer by introducing internal persistence objects,
without touching the rest of the application. In that case, we’d need the data access
layer to convert those internal persistence objects into domain objects.

12 Persistence ignorance means that Entities are plain POCOs with no dependency on any persistence
framework.

 71Rebuilding the e-commerce application

In the previous chapter, we discussed how the implicit dependency of Mary’s
CommerceContext on the connection string caused her problems along the way. Our
new CommerceContext will make this dependency explicit, which is another deviation
from Mary’s implementation. The next listing shows our new CommerceContext.

Listing 3.11 A better CommerceContext class

public class CommerceContext : DbContext
{
 private readonly string connectionString;

 public CommerceContext(string connectionString)
 {
 if (string.IsNullOrWhiteSpace(connectionString))
 throw new ArgumentException(
 "connectionString should not be empty.",
 "connectionString");

 this.connectionString = connectionString;
 }

 public DbSet<Product> Products { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder builder)
 {
 builder.UseSqlServer(this.connectionString);
 }
}

This almost brings us to the end of our re-implementation of the e-commerce applica-
tion. The only implementation still missing is that of IUserContext.

3.1.4 Implementing an ASP.NET Core–specific IUserContext Adapter

The last concrete implementation missing is that of IUserContext. In web applica-
tions, information about a user who issues a request is usually passed on to the server
with each request. This information is relayed using cookies or HTTP headers. How we
retrieve the identity of the current user is highly dependent on the framework we use.
This means that we’ll need a completely different implementation when building an
ASP.NET Core application compared with, for instance, a Windows service.

The implementation of our IUserContext is framework specific. We want neither our
domain layer nor our data layer to know anything about the application framework. That
would make it impossible to use those layers in a different context. We need to imple-
ment this elsewhere. The UI layer, therefore, is an ideal place for our IUserContext
implementation.

The following listing shows a possible IUserContext implementation for an ASP.NET
Core application.

Uses constructor InjectIon on
the required DepenDencIes; in
this case, connectionString

The DepenDency is stored and used
later in the OnConfiguring method to
set up the CommerceContext for use.

72 ChapTEr 3 Writing loosely coupled code

Listing 3.12 IUserContext implementation for ASP.NET Core

public class AspNetUserContextAdapter : IUserContext
{
 private static HttpContextAccessor Accessor = new HttpContextAccessor();

 public bool IsInRole(Role role)
 {
 return Accessor.HttpContext.User.IsInRole(role.ToString());
 }
}

AspNetUserContextAdapter requires an HttpContextAccessor to work. HttpContext
Accessor, a component specified by the ASP.NET Core framework, allows access to the
HttpContext of the current request, like we were able to in ASP.NET “classic” using
HttpContext.Current. We use HttpContext to access the request’s information about
the current user.

AspNetUserContextAdapter adapts our application-specific IUserContext Abstrac-
tion to the ASP.NET Core API. This class is an implementation of the Adapter design
pattern that we discussed in chapter 1.13

The Adapter design pattern
As a reminder, the Adapter design pattern falls into the category of structural patterns.
This group is concerned with how classes and objects are composed to form larger struc-
tures. Other patterns in this category are Composite, Decorator, Facade, and Proxy. Like
an adapter for an electrical appliance, the Adapter design pattern converts the interface
into one that clients expect. This allows classes (or plugs and sockets) to work together
that wouldn’t otherwise because of their incompatible interfaces.

13 For this Adapter to work, it requires the HttpContextAccessor to be registered in ASP.NET Core’s
IServiceCollection. This is demonstrated in the next chapter in listing 4.3.

Client

Adaptee

SpecificRequest()

Target

Adapter

Request()

Request()

uses

calls adaptee

Client uses a target ABSTRACTION,
while calling its Request method.
The Adapter implements the
target ABSTRACTION. It transforms
and forwards the call to the
adaptee that has an interface
incompatible with the target.

adaptee.SpecificRequest();

General structure of the Adapter pattern

 73Rebuilding the e-commerce application

Implementations of the Adapter pattern are typically quite straightforward, but don’t be
surprised if the Adapter contains complex conversions. The idea is that this complexity is
hidden from the client.

As can be seen in listing 3.12, AspNetUserContextAdapter has to do some extra work
on top of calling the adaptee. This allows the client code to be simplified and, in this case,
it prevents the client from having to depend on HttpContext.

With AspNetUserContextAdapter implemented, our reimplementation of the e-com-
merce application is finished. This brings us to our Composition Root.

3.1.5 Composing the application in the compoSition root

With ProductService, SqlProductRepository and AspNetUserContextAdapter
implemented, we can now set up ASP.NET Core MVC to construct an instance of Home
Controller, where HomeController is fed by a ProductService instance, which itself
is constructed using a SqlProductRepository and an AspNetUserContextAdapter.
This eventually results in an object graph that would look as follows.

Listing 3.13 The application’s object graph

new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(connectionString)),
 new AspNetUserContextAdapter()));

Client uses the IUserContext
ABSTRACTION, while calling its
IsInRole method.

AspNetUserContextAdapter
implements IUserContext and
forwards the call to the
HttpContext property of the
HttpContextAccessor
adaptee.

Client

HttpContextAccessor

HttpContext

IUserContext

AspNetUserContext-
Adapter

IsInRole(Role)

IsInRole(Role)

uses

calls adaptee

Accessor.HttpContext.User
.IsInRole(role.ToString());

The adaptee's HttpContext is used to
determine the user's role.

A concrete example where a Client uses the IUserContext abSTraCTiON implemented by
AspNetUserContextAdapter

74 ChapTEr 3 Writing loosely coupled code

DEFINITION In an object-oriented application, groups of objects form a net-
work through their relationships with each other, either through a direct ref-
erence to another object or through a chain of intermediate references. These
groups of objects are referred to as object graphs.

We’ll discuss how the construction
of such an object graph is plugged
into the ASP.NET Core framework in
greater detail in chapter 7, so we won’t
show that here. But now that every-
thing is correctly wired together, we
can browse to the application’s home-
page and get the page shown in figure
3.13.

3.2 Analyzing the loosely coupled
implementation
The previous section contained lots of
details, so it’s hardly surprising if you
lost sight of the big picture along the
way. In this section, we’ll try to explain what happened in broader terms.

3.2.1 Understanding the interaction between components

The classes in each layer interact with each other either directly or in abstract form.
They do so across module boundaries, so it can be difficult to follow how they interact.
Figure 3.14 shows how the different Dependencies interact, giving a more detailed
overview to the original outline described in figure 3.4.

When the application starts, the code in Startup creates a new custom controller acti-
vator and looks up the connection string from the application’s configuration file. When
a page request comes in, the application invokes Create on the controller activator.

The activator supplies the stored connection string to a new instance of Commerce
Context (not shown in the diagram). It injects CommerceContext into a new instance of
SqlProductRepository. In turn, the SqlProductRepository instance together with an
instance of AspNetUserContextAdapter (not shown in the diagram) are injected into
a new instance of ProductService. Similarly, ProductService is injected into a new
instance of HomeController, which is then returned from the Create method.

The ASP.NET Core MVC framework then invokes the Index method on the Home
Controller instance, causing it to invoke the GetFeaturedProducts method on the
ProductRepository instance. This in turn calls the GetFeaturedProducts method

Figure 3.13 Screen capture of the finished application

Startup

A ProductService

A HomeController

A custom
Controller Activator

A
SqlProductRepository

Get connection string
from configuration file

new(connectionString)

new(productService)

new(productRepository)

Request arrives
Create()

new(dbContext)

A HomeController

Response

Index() GetFeatured-
Products() GetFeatured-

Products()

A ViewResult containing a
FeaturedProductsViewModel

Featured products
with discounts

Featured
products

After the
HomeController
is constructed,
MVC will invoke
its Index method.

When the application starts, the code in Startup
creates a new custom controller activator using the
application's connection string. The application keeps
a reference to the controller activator, so when a
page request comes in, the application will use that
controller activator instance.

When a request arrives, the custom
controller activator takes care of the
construction of HomeController.

Figure 3.14 Interaction between elements involved in DI in the e-commerce application

 75Analyzing the loosely coupled implementation

DEFINITION In an object-oriented application, groups of objects form a net-
work through their relationships with each other, either through a direct ref-
erence to another object or through a chain of intermediate references. These
groups of objects are referred to as object graphs.

We’ll discuss how the construction
of such an object graph is plugged
into the ASP.NET Core framework in
greater detail in chapter 7, so we won’t
show that here. But now that every-
thing is correctly wired together, we
can browse to the application’s home-
page and get the page shown in figure
3.13.

3.2 Analyzing the loosely coupled
implementation
The previous section contained lots of
details, so it’s hardly surprising if you
lost sight of the big picture along the
way. In this section, we’ll try to explain what happened in broader terms.

3.2.1 Understanding the interaction between components

The classes in each layer interact with each other either directly or in abstract form.
They do so across module boundaries, so it can be difficult to follow how they interact.
Figure 3.14 shows how the different Dependencies interact, giving a more detailed
overview to the original outline described in figure 3.4.

When the application starts, the code in Startup creates a new custom controller acti-
vator and looks up the connection string from the application’s configuration file. When
a page request comes in, the application invokes Create on the controller activator.

The activator supplies the stored connection string to a new instance of Commerce
Context (not shown in the diagram). It injects CommerceContext into a new instance of
SqlProductRepository. In turn, the SqlProductRepository instance together with an
instance of AspNetUserContextAdapter (not shown in the diagram) are injected into
a new instance of ProductService. Similarly, ProductService is injected into a new
instance of HomeController, which is then returned from the Create method.

The ASP.NET Core MVC framework then invokes the Index method on the Home
Controller instance, causing it to invoke the GetFeaturedProducts method on the
ProductRepository instance. This in turn calls the GetFeaturedProducts method

Figure 3.13 Screen capture of the finished application

Startup

A ProductService

A HomeController

A custom
Controller Activator

A
SqlProductRepository

Get connection string
from configuration file

new(connectionString)

new(productService)

new(productRepository)

Request arrives
Create()

new(dbContext)

A HomeController

Response

Index() GetFeatured-
Products() GetFeatured-

Products()

A ViewResult containing a
FeaturedProductsViewModel

Featured products
with discounts

Featured
products

After the
HomeController
is constructed,
MVC will invoke
its Index method.

When the application starts, the code in Startup
creates a new custom controller activator using the
application's connection string. The application keeps
a reference to the controller activator, so when a
page request comes in, the application will use that
controller activator instance.

When a request arrives, the custom
controller activator takes care of the
construction of HomeController.

Figure 3.14 Interaction between elements involved in DI in the e-commerce application

on the SqlProductRepository instance. Finally, the ViewResult with the populated
FeaturedProductsViewModel is returned, and MVC finds and renders the correct view.

3.2.2 Analyzing the new dependency graph

In section 2.2, you saw how a dependency graph can help you analyze and understand
the degree of flexibility provided by the architectural implementation. Has DI changed
the dependency graph for the application?

Figure 3.15 shows that the dependency graph has indeed changed. The domain model
no longer has any dependencies and can act as a standalone module. On the other hand,
the data access layer now has a dependency; in Mary’s application, it had none.

76 ChapTEr 3 Writing loosely coupled code

The most important thing to note in figure 3.15 is that the domain layer no longer has
any dependencies. This should raise our hopes that we can answer the original ques-
tions about composability (see section 2.2) more favorably this time:

¡	Can we replace the web-based UI with a WPF-based UI? That was possible before and is
still possible with the new design. Neither the domain model library nor the data
access library depends on the web-based UI, so we can easily put something else
in its place.

¡	Can we replace the relational data access layer with one that works with the Azure Table Ser-
vice? In a later chapter, we’ll describe how the application locates and instantiates
the correct IProductRepository, so, for now, take the following at face value: the
data access layer is being loaded by late binding, and the type name is defined
as an application setting in the application’s configuration file. It’s possible to
throw the current data access layer away and inject a new one, as long as it also
provides an implementation of IProductRepository.

HomeController

DiscountedProduct

CommerceContext

SqlProductRepository

Product

FeaturedProducts-
ViewModel

ProductViewModel

AspNetUserContext-
Adapter

IProductService

Data access layer

Domain layer

User interface layer

IUserContext

IProductRepository

ProductService

Figure 3.15 Dependency graph showing the sample e-commerce application with DI applied. All classes
and interfaces are shown, as well as their relationships to one another.

 77Analyzing the loosely coupled implementation

About di CONTaiNErS

A Di contAiner is a software library that provides DI functionality and automates many
of the tasks involved in object comPosition, intercePtion, and Lifetime mAnAgement. Di
contAiners are also known as inversion of controL (IoC) containers. Up until this point,
we touched on the subject of Di contAiners only gently. This is deliberate because, as
we explained in chapter 1, a Di contAiner is a useful, but optional, tool. We postpone a
detailed discussion about Di contAiners until part 4 because we feel that teaching you
about the set of principles and patterns that DI consists of, as well as the existing code
smells and anti-patterns, is more important.

We build applications both with and without Di contAiners, and you should be able to do
so too. And yet, we feel that it would be counterproductive if you started using a Di con-
tAiner without the knowledge presented in parts 2 and 3. On the other hand, after you
understand the principles and practices, using a Di contAiner primarily consists of get-
ting acquainted with its API. At this point, it’s only important to get a broad sense of what
a Di contAiner is and how it can help you.

When the first edition of this book came out, we used Di contAiners exclusively in all
the applications we built. Although we knew that applying DI without a Di contAiner was
possible, we thought that it was never practical. Our ideas about this have changed, and
that’s why we now focus even more on the patterns and techniques behind DI.

Although you need to address the application’s infrastructure, doing so doesn’t in itself
add business value; sometimes, using a general-purpose library can make sense. It’s no
different than implementing logging or data access. Logging application data is the kind
of problem that’s best addressed by a general-purpose logging library. The same is true
for composing object graphs. In part 4, we’ll go into a more detailed discussion of when a
Di contAiner might be useful and when it isn’t.

Don’t expect a Di contAiner to magically change tightly coupled code into loosely cou-
pled code. A Di contAiner can make your comPosition root more maintainable, but for
an application to become maintainable, it must first be designed with DI patterns and
techniques in mind. Using a Di contAiner neither guarantees nor necessitates the correct
usage of DI.

The sample e-commerce application described in this chapter only presents us with
a limited level of complexity: there’s only a single Repository involved in a read-only
scenario. Until now, we’ve kept the application as simple and small as possible to gently
introduce some core concepts and principles. Because one of the main purposes of DI
is to manage complexity, we need a complex application to fully appreciate its power.
During the course of the book, we’ll expand the sample e-commerce application to
fully demonstrate different aspects of DI.

78 ChapTEr 3 Writing loosely coupled code

Does DI make me lose the bigger picture?
A common complaint from developers starting with DI is that they feel they lose sight of the
structure of the application; it’s not immediately clear who is calling whom. Although it’s
absolutely true that with DI, we move this knowledge away from individual classes, listing
3.13 proves that we don’t have to lose this information at all. Listing 3.13 is an example of
Pure Di. When practicing Pure Di, the comPosition root typically contains this information
in a coherent way. Even better, it gives you a view of the complete object graph, not just the
direct DePenDencies of a class, which is what you get with tightly coupled code.

Moving from Pure Di to a Di contAiner, on the other hand, might make you lose this
overview. That’s because Di contAiners use reflection to build object graphs at runtime,
compared to specifying them at compile time using a programming language.14 When
an application is well designed, however, we found that this loss becomes less of a prob-
lem.15 We experienced that the amount of navigation we needed to do from a class to its
DePenDencies and back decreased when an application’s maintainability increased.

Still, this difference between Pure Di and a Di contAiner is something to take into consid-
eration, because it might influence your choice of one over another. Section 12.3 goes
into detail about when to use a Di contAiner and when to stick with Pure Di.

This chapter concludes the first part of the book. The purpose of part 1 was to put DI
on the map and to introduce DI in general. In this chapter, you’ve seen examples of
Constructor Injection. We also introduced Method Injection and Composition
Root as patterns related to DI. In the next chapter, we’ll dive deeper into these and
other design patterns.

Summary

¡	Refactoring existing applications towards a more maintainable, loosely coupled
design is hard. Big rewrites, on the other hand, are often riskier and expensive.

¡	The use of view models can simplify the view, because the incoming data is shaped
specifically for the view.

¡	Because views are harder to test, the dumber the view, the better. It also simplifies
the work of a UI designer who might work on the view.

¡	When you limit the amount of Volatile Dependencies within the domain layer,
you get a higher degree of decoupling, reuse, and Testability.

¡	When building applications, the outside-in approach facilitates more rapid pro-
totyping, which can shorten the feedback cycle.

14 Some DI Containers let you visualize object graphs, but this is something that’s only done at runtime, not
when you look at the code.

15 “Well designed” is subjective, but following SOLID principles has proven to be an important instrument
in making a well-designed application. We’ll discuss the SOLID acronym in chapter 10.

 79Summary

¡	When you want a high degree of modularity in your application, you need to
apply the Constructor Injection pattern and build object graphs in the Com-
position Root, which is located close to the application’s entry point.

¡	Programming to interfaces is a cornerstone of DI. It allows you to replace, mock,
and Intercept a Dependency, without having to make changes to its consumers.
When implementation and Abstraction are placed in different assemblies, it
enables whole libraries to be replaced.

¡	Programming to interfaces doesn’t mean that all classes should implement an
interface. Short-lived objects, such as Entities, view models, and DTOs, typi-
cally contain no behavior that requires mocking, Interception, decoration, or
replacement.

¡	With respect to DI, it doesn’t matter whether you use interfaces or purely abstract
classes. From a general development perspective, as authors, we typically prefer
interfaces over abstract classes.

¡	A reusable library is a library that has clients that aren’t known at compile time.
Reusable libraries are typically shipped via NuGet. Libraries that only have call-
ers within the same (Visual Studio) solution aren’t considered to be reusable
libraries.

¡	DI is closely related to the Dependency Inversion Principle. This principle
implies that you should program against interfaces, and that a layer must be in
control over the interfaces it uses.

¡	The use of a DI Container can help in making the application’s Composition
Root more maintainable, but it won’t magically make tightly coupled code
loosely coupled. For an application to become maintainable, it must be designed
with DI patterns and techniques in mind.

Part 2

Catalog

Part 1 provided an overview of DI, discussing the purpose and benefits of
DI. Even though chapter 3 contained an extensive example, we’re sure the first
chapters still left you with some unresolved questions. In part 2, we’ll dig a little
deeper to answer some of those questions.

As the title implies, part 2 presents a complete catalog of patterns, anti-pat-
terns, and code smells. Some people dislike design patterns, because they find
them dry or too abstract. Personally, we love patterns, because they provide us
with a high-level language that makes us more efficient and concise when we dis-
cuss software design. It’s our intent to use this catalog to provide a pattern lan-
guage for DI. Although a pattern description must contain some generalizations,
we’ve made each pattern concrete, using examples. You can read all three chap-
ters in sequence, but each item in the catalog is also written so that you can read
it by itself.

Chapter 4 contains a mini catalog of DI design patterns. In a sense, these pat-
terns constitute prescriptive guidance on how to implement DI, but you should
be aware that we don’t consider them to be of equal importance. Constructor
Injection and Composition Root are by far the most important design patterns,
whereas all the other patterns should be treated as fringe cases that can be applied
in specialized circumstances.

Whereas chapter 4 gives you a set of generalized solutions, chapter 5 contains a
catalog of situations to avoid. These anti-patterns describe common, but incorrect
ways to address typical DI challenges. In each case, the anti-pattern describes how
to identify occurrences and how to resolve the issue. It’s important to know and
understand these anti-patterns to avoid the traps that they represent, and, just
as chapter 4 presents two dominatingly important patterns, the most important
anti-pattern is Service Locator, the antithesis of DI.

As you apply DI to real-life programming tasks, you’ll run into some challenges.
We think we’ve all had moments of doubt where we feel that we understand a tool

82 CaTalOg

or technique, and yet we think, “In theory, this may work, but my case is special.” When
we find ourself thinking like this, it’s clear to us that we have more to learn.

During our career, we’ve seen a particular set of problems appear again and again.
Each of these problems has a general solution you can apply to move your code towards
one of the DI patterns from chapter 4. Chapter 6 contains a catalog of these common
problems, or code smells, and their corresponding solutions.

We expect this to be the most useful part of the book, because it’s the most enduring.
Hopefully, you’ll return to these chapters months and even years after you first read
them.

83

4DI patterns

In this chapter
¡	Composing object graphs with comPosition

root

¡	Statically declaring required DePenDencies with
constructor injection

¡	Passing DePenDencies outside the comPosition
root with methoD injection

¡	Declaring optional DePenDencies with ProPerty
injection

¡	Understanding which pattern to use

Like all professionals, cooks have their own jargon that enables them to communi-
cate about complex food preparation in a language that often sounds esoteric to the
rest of us. It doesn’t help that most of the terms they use are based on the French
language (unless you already speak French, that is). Sauces are a great example of
the way cooks use their professional terminology. In chapter 1, we briefly discussed
sauce béarnaise, but we didn’t elaborate on the taxonomy that surrounds it.

A sauce béarnaise is really a sauce hollandaise where the lemon juice is replaced by
a reduction of vinegar, shallots, chervil, and tarragon. Other sauces are based on

84 ChapTEr 4 DI patterns

sauce hollandaise, including Mark’s favorite, sauce mousseline, which is made by folding
whipped cream into the hollandaise.

Did you notice the jargon? Instead of saying, “carefully mix the whipped cream into
the sauce, taking care not to collapse it,” we used the term folding. Instead of saying,
“thickening and intensifying the flavor of vinegar,” we used the term reduction. Jargon
allows you to communicate concisely and effectively.

In software development, we have a complex and impenetrable jargon of our own.
You may not know what the cooking term bain-marie refers to, but we’re pretty sure most
chefs would be utterly lost if you told them that “strings are immutable classes, which
represent sequences of Unicode characters.” And when it comes to talking about how
to structure code to solve particular types of problems, we have design patterns that give
names to common solutions. In the same way that the terms sauce hollandaise and fold
help us succinctly communicate how to make sauce mousseline, design patterns help us
talk about how code is structured.

We’ve already named quite a few software design patterns in the previous chapters.
For instance, in chapter 1 we talked about the patterns Abstract Factory, Null Object,
Decorator, Composite, Adapter, Guard Clause, Stub, Mock, and Fake. Although, at this
point, you might not be able to recall each of them, you probably won’t feel that uncom-
fortable if we talk about design patterns. We human beings like to name reoccurring
patterns, even if they’re simple.

Don’t worry if you have only a limited knowledge of design patterns in general. The
main purpose of a design pattern is to provide a detailed and self-contained description
of a particular way of attaining a goal — a recipe, if you will. And besides, you already
saw examples of three out of the four basic DI design patterns that we’ll describe in this
chapter:

¡	compoSition root — Describes where and how you should compose an applica-
tion’s object graphs.

¡	conStructor injection — Allows a class to statically declare its required
Dependencies.

¡	methoD injection — Enables you to provide a Dependency to a consumer when
either the Dependency or the consumer might change for each operation.

¡	property injection — Allows clients to optionally override some class’s default
behavior, where this default behavior is implemented in a Local Default.

This chapter is structured to provide a catalog of patterns. For each pattern, we’ll pro-
vide a short description, a code example, advantages and disadvantages, and so on. You
can read about all four patterns introduced in this chapter in sequence or only read
the ones that interest you. The most important patterns are Composition Root and
Constructor Injection, which you should use in most situations — the other pat-
terns become more specialized as the chapter progresses.

 85Composition Root

4.1 compoSition root

Where should we compose object graphs?
As close as possible to the application’s entry point.

When you’re creating an application from many loosely coupled classes, the com-
position should take place as close to the application’s entry point as possible. The
Main method is the entry point for most application types. The Composition Root
composes the object graph, which subsequently performs the actual work of the
application.

DEFINITION A Composition Root is a single, logical location in an application
where modules are composed together.

In the previous chapter, you saw that most classes used Constructor Injection. By
doing so, they pushed the responsibility for the creation of their Dependencies up to
their consumers. Such consumers, however, also pushed the responsibility for creating
their Dependencies up to their consumers.

You can’t delay the creation of your objects indefinitely. There must be a location
where you create your object graphs. You should concentrate this creation into a single
area of your application. This place is called the Composition Root.

WARNING If you use a DI Container, the Composition Root should be the
only place where you use the DI Container. Using a DI Container outside
the Composition Root leads to the Service Locator anti-pattern, which we
discuss in the next chapter.

In the previous chapter, this resulted in the object graph that you saw in listing 3.13
(figure 4.1). This listing also shows that all components from all application layers are
constructed in the Composition Root.

Entry Point
COMPOSITION ROOT

Figure 4.1 Close to the
application’s entry point,
the COmpOSiTiON rOOT takes
care of composing object
graphs of loosely coupled
classes. The COmpOSiTiON
rOOT takes a direct
dependency on all modules
in the system.

86 ChapTEr 4 DI patterns

Listing 4.1 The application’s object graph from chapter 3

new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(connectionString)),
 new AspNetUserContextAdapter()));

If you were to have a console application that was written to operate on this particular
object graph, it might look as shown in the following listing.

Listing 4.2 The application’s object graph as part of a console application

public static class Program
{
 public static void Main(string[] args)
 {
 string connectionString = args[0];

 HomeController controller =
 CreateController(connectionString);

 var result = controller.Index();

 var vm = (FeaturedProductsViewModel)result.Model;

 Console.WriteLine("Featured products:");

 foreach (var product in vm.Products)
 {
 Console.WriteLine(product.SummaryText);
 }
 }

 private static HomeController CreateController(
 string connectionString)
 {
 var userContext = new ConsoleUserContext();

 return
 new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(
 connectionString)),
 userContext));
 }
}

UI component

Domain component

Data access components

UI component

The application’s entry point

Extracts a connection string from the
supplied command-line arguments

Requests that the
application’s coMposItIon root
build a new controller instance

Acts as the application’s
coMposItIon root

IUserContext implementation
that allows the ProductService
to function and calculate the
discounts

Builds the application’s object graph

 87Composition Root

In this example, the Composition Root is separated from the Main method. This isn’t
required, however — the Composition Root isn’t a method or a class, it’s a concept. It
can be part of the Main method, or it can span multiple classes, as long as they all reside
in a single module. Separating it into its own method helps to ensure that the composi-
tion is consolidated and not otherwise interspersed with subsequent application logic.

4.1.1 How compoSition root works

When you write loosely coupled code, you create many classes to create an applica-
tion. It can be tempting to compose these classes at many different locations in order
to create small subsystems, but that limits your ability to Intercept those systems to
modify their behavior. Instead, you should compose classes in one single area of your
application.

When you look at Constructor Injection in isolation, you may wonder, doesn’t
it defer the decision about selecting a Dependency to another place? Yes, it does, and
that’s a good thing. This means that you get a central place where you can connect col-
laborating classes.

The Composition Root acts as a third party that connects consumers with their
services. The longer you defer the decision on how to connect classes, the more you
keep your options open. Thus, the Composition Root should be placed as close to the
application’s entry point as possible.

Even a modular application that uses loose coupling and late binding to compose
itself has a root that contains the entry point into the application. Examples follow:

¡	A .NET Core console application is a library (.dll) containing a Program class
with a Main method.

¡	An ASP.NET Core web application also is a library containing a Program class
with a Main method.

¡	UWP and WPF applications are executables (.exe) with an App.xaml.cs file.

Many other technologies exist, but they have one thing in common: one module con-
tains the entry point of the application — this is the root of the application. Don’t be
misled into thinking that the Composition Root is part of your UI layer. Even if you
place the Composition Root in the same assembly as your UI layer, as we’ll do in the
next example, the Composition Root isn’t part of that layer.

Assemblies are a deployment artifact: you split code into multiple assemblies to allow
code to be deployed separately. An architectural layer, on the other hand, is a logical
artifact: you can group multiple logical artifacts in a single deployment artifact. Even
though the assembly that holds both the Composition Root and the UI layer depends
on all other modules in the system, the UI layer itself doesn’t.

IMPORTANT The Composition Root isn’t part of the UI layer, even though it
might be placed in the same assembly.

88 ChapTEr 4 DI patterns

It’s not a requirement for the Composition Root to be placed in the same project
as your UI layer. You can move the UI layer out of the application’s root project. The
advantage of this is that you can prevent the project that holds the UI layer from taking
on a dependency (for instance, the data access layer project in chapter 3). This makes
it impossible for UI classes to accidentally depend on data access classes. The downside
of this approach, however, is that it isn’t always easy to do. With ASP.NET Core MVC,
for instance, it’s trivial to move controllers and view models to a separate project, but it
can be quite challenging to do the same with your views and client resources.

Separating the presentation technology from the Composition Root might not be
that beneficial, either, because a Composition Root is specific to the application. Com-
position Roots aren’t reused.

You shouldn’t attempt to compose classes in any of the other modules, because that
approach limits your options. All classes in application modules should use Construc-
tor Injection (or, in rare cases, one of the other two patterns from this chapter), and
then leave it up to the Composition Root to compose the application’s object graph.
Any DI Container in use should be limited to the Composition Root.

NOTE Moving the composition of classes out of the Composition Root leads
to either the Control Freak or Service Locator anti-patterns, which we’ll
discuss in the next chapter.

In an application, the Composition Root should be the sole place that knows about
the structure of the constructed object graphs. Application code not only relinquishes
control over its Dependencies, it also relinquishes knowledge about its Dependencies.
Centralizing this knowledge simplifies development. This also means that applica-
tion code can’t pass on Dependencies to other threads that run parallel to the cur-
rent operation, because a consumer has no way of knowing whether it’s safe to do so.
Instead, when spinning off concurrent operations, it’s the job of the Composition
Root to create a new object graph for each concurrent operation.

The Composition Root in listing 4.2 showed an example of Pure DI. The Composi-
tion Root pattern, however, is both applicable to Pure DI and DI Containers. In the
next section, we’ll describe how a DI Container can be used in a Composition Root.

4.1.2 Using a Di container in a compoSition root

As described in chapter 3, a DI Container is a software library that can automate many
of the tasks involved in composing objects and managing their lifetimes. But it can be
misused as a Service Locator and should only be used as an engine that composes
object graphs. When you consider a DI Container from that perspective, it makes sense
to constrain it to the Composition Root. This also significantly benefits the removal of
any coupling between the DI Container and the rest of the application’s code base.

NOTE Only the Composition Root should have a reference to the DI Con-
tainer, and it should only be referenced from the Composition Root. (The
rest of the application has no reference to the container and instead relies on

 89Composition Root

the patterns described in this chapter.) Nor should the container be refer-
enced by all other modules. DI Containers understand those patterns and use
them to compose the application’s object graph.

A Composition Root can be implemented with a DI Container. This means that you
use the container to compose the entire application’s object graph in a single call to its
Resolve method. When we talk to developers about doing it like this, we can always tell
that it makes them uncomfortable because they’re afraid that it’s terribly inefficient
and bad for performance. You don’t have to worry about that. That’s almost never the
case and, in the few situations where it is, there are ways to address the issue, as we’ll
discuss in section 8.4.2.

Don’t worry about the performance overhead of using a DI Container to compose
large object graphs. It’s usually not an issue. In part 4, we’ll do a deep dive into DI Con-
tainers and show how to use a DI Container inside the Composition Root.

When it comes to request-based applications, such as websites and services, you con-
figure the container once, but resolve an object graph for each incoming request. The
e-commerce web application in chapter 3 is an example of that.

4.1.3 Example: Implementing a compoSition root using pure Di

The sample e-commerce web application must have a Composition Root to compose
object graphs for incoming HTTP requests. As with all other ASP.NET Core web appli-
cations, the entry point is in the Main method. By default, however, the Main method
of an ASP.NET Core application delegates most of the work to the Startup class. This
Startup class is close enough to the application’s entry point for us, and we’ll use that
as our Composition Root.

As in the previous example with the console application, we use Pure DI. This means
you compose your object graphs using plain old C# code instead of a DI Container, as
shown in the following listing.

Listing 4.3 The e-commerce application’s Startup class

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 this.Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(
 IServiceCollection services)
 {
 services.AddMvc();

ASP.NET Core calls this constructor
on application startup.

By convention, ASP.NET calls this
method. The supplied IServiceCollection
instance lets you influence the default
services that ASP.NET knows about.

90 ChapTEr 4 DI patterns

 services.AddHttpContextAccessor();

 var connectionString =
 this.Configuration.GetConnectionString(
 "CommerceConnection");

 services.AddSingleton<IControllerActivator>(
 new CommerceControllerActivator(
 connectionString));
 }

 ...
}

If you’re not familiar with ASP.NET Core, here’s a simple explanation: the Startup
class is a necessity; it’s where you apply the required plumbing. The interesting part is
the CommerceControllerActivator. The entire setup for the application is encapsu-
lated in the CommerceControllerActivator class, which we’ll show shortly.

To enable wiring MVC controllers to the application, you must employ the appropri-
ate Seam in ASP.NET Core MVC, called an IControllerActivator (discussed in detail
in section 7.3). For now, it’s enough to understand that to integrate with ASP.NET Core
MVC, you must create an Adapter for your Composition Root and tell the framework
about it.

NOTE Any well-designed framework provides the appropriate Seams to inter-
cept the creation of framework types. These Seams are usually shaped as fac-
tory abstractions, as is MVC’s IControllerActivator.

The Startup.ConfigureServices method only runs once. As a result, your Commerce
ControllerActivator class is a single instance that’s only initialized once. Because
you set up ASP.NET Core MVC with the custom IControllerActivator, MVC invokes
its Create method to create a new controller instance for each incoming HTTP
request (you can read about the details in section 7.3). The following listing shows the
CommerceControllerActivator.

Listing 4.4 The application’s IControllerActivator implementation

public class CommerceControllerActivator : IControllerActivator
{
 private readonly string connectionString;

 public CommerceControllerActivator(string connectionString)
 {
 this.connectionString = connectionString;
 }

Adds a service to the framework, which
retrieves the current HttpContext

Loads the application’s
database connection string
from the configuration file

Replaces the default
IControllerActivator with one
that builds the object graphs

 91Composition Root

 public object Create(ControllerContext ctx)
 {
 Type type = ctx.ActionDescriptor
 .ControllerTypeInfo.AsType();

 if (type == typeof(HomeController))
 {
 return
 new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(
 this.connectionString)),
 new AspNetUserContextAdapter()));
 }
 else
 {
 throw new Exception("Unknown controller.");
 }
 }
}

Notice how the creation of HomeController in this example is almost identical to the
application’s object graph from chapter 3 that we showed in listing 4.1. When MVC
calls Create, you determine the controller type and create the correct object graph
based on this type.

In section 2.3.3, we discussed how only the Composition Root should rely on con-
figuration files, because it’s more flexible for reusable libraries to be imperatively con-
figurable by their callers. You should also separate the loading of configuration values
from the methods that do Object Composition (as shown in listings 4.3 and 4.4). The
Startup class of listing 4.3 loads the configuration, whereas the CommerceController
Activator of listing 4.4 only depends on the configuration
value, not the configuration system. An important advan-
tage of this separation is that it decouples Object Com-
position from the configuration system in use, making it
possible to test without the existence of a (valid) configu-
ration file.

The Composition Root in this example is spread out
across two classes, as shown in figure 4.2. This is expected.
The important thing is that all classes are contained in the
same module, which, in this case, is the application root.

The most important thing to notice in this figure is that
these two classes are the only classes in the entire sample
application that compose object graphs. The remaining
application code only uses the Constructor Injection
pattern.

ASP.NET Core MVC calls this
method for every request.

Builds the appropriate object graph if
MVC asks for a HomeController

The e-commerce application currently only has
one controller. Each new controller that you add

will have its own if block.

COMPOSITION ROOT

Commerce-
ControllerActivator

Startup

Figure 4.2 The COmpOSiTiON
rOOT is spread across two
classes, but they’re defined
within the same module.

92 ChapTEr 4 DI patterns

4.1.4 The apparent dependency explosion

An often-heard complaint from developers is that the Composition Root causes the
application’s entry point to take a dependency on all other assemblies in the applica-
tion. In their old, tightly coupled code bases, their entry point only needed to depend
on the layer directly below. This seems backward because DI is meant to lower the
required number of dependencies. They see the use of DI as causing an explosion of
dependencies in their application’s entry point — or so it seems.

This complaint comes from the fact that developers misunderstand how project
dependencies work. To get a good view of what they’re worried about, let’s take a look at
the dependency graph of Mary’s application from chapter 2 and compare that with the
dependency graph of the loosely coupled application of chapter 3 (figure 4.3).

At first glance, it indeed looks as if there are two more dependencies in the loosely cou-
pled application, compared to Mary’s application with “only” three dependencies. The
diagram, however, is misleading.

Changes to the data access layer also ripple through the UI layer and, as we discussed
in the previous chapter, the UI layer can’t be deployed without the data access layer.

Because Mary didn’t apply the COMPOSITION ROOT pattern
in her application, you can visualize her dependency graph
with the entry point as a module.

Mary’s dependency graph seems to
have just three dependencies. This, however,
is deceptive, as you’ll see shortly.

The dependency graph of the
loosely coupled application
contains five dependencies.

Mary's application The loosely coupled application

Entry point COMPOSITION ROOT

User interface layer Data access layer

Domain layer

User interface layer

Domain layer

Data access layer

Figure 4.3 Comparing the dependency graph of Mary’s application to that of the loosely coupled
application

 93Composition Root

Even though the diagram doesn’t show it, there’s a dependency between the UI and the
data access layer. Assembly dependencies are in fact transitive.

NOTE Transitivity is a mathematical concept that states that when an element a is
related to an element b, and b is related to an element c, then a is also related to c.

This transitive relationship means that because Mary’s UI depends on the domain,
and the domain depends on data access, the UI depends on data access too, which is
exactly the behavior you’ll experience when deploying the application. If you take a
look at the dependencies between the projects in Mary’s application, you’ll see some-
thing different (figure 4.4).

As you can see, even in Mary’s application, the entry point depends on all libraries.
Both Mary’s entry point and the Composition Root of the loosely coupled application
have the same number of dependencies. Remember, though, that dependencies aren’t
defined by the number of modules, but the number of times each module depends on
another module. As a result, the total number of dependencies between all modules in
Mary’s application is, in fact, six. That’s one more than the loosely coupled application.

Now imagine an application with dozens of projects. It’s not hard to imagine how
the number of dependencies in a tightly coupled code base explodes compared with a
loosely coupled code base. But, by writing loosely coupled code that applies the Compo-
sition Root pattern, you can lower the number of dependencies. As you’ve seen in the
previous chapter, this lets you replace complete modules with different ones, which is
harder in a tightly coupled code base.

The total number of
dependencies between
all modules in Mary’s
application is actually
six. That’s one more
than the loosely
coupled application.

Mary's application

Entry point

User interface layer

Domain layer

Data access layer
Figure 4.4 The
dependencies between
the libraries in Mary’s
application

94 ChapTEr 4 DI patterns

The Composition Root pattern applies to all applications developed using DI, but
only startup projects will have a Composition Root. A Composition Root is the result
of removing the responsibility for the creation of Dependencies from consumers.
To achieve this, you can apply two patterns: Constructor Injection and Property
Injection. Constructor Injection is the most common and should be used almost
exclusively. Because Constructor Injection is the most commonly used pattern, we’ll
discuss that next.

 95ConstRuCtoR injeCtion

4.2 conStructor injection

How do we guarantee that a necessary Volatile DepenDency is always available to the
class we’re currently developing?

By requiring all callers to supply the Volatile DepenDency as a parame-
ter to the class’s constructor.

When a class requires an instance of a Dependency, you can supply that Dependency
through the class’s constructor, enabling it to store the reference for future use.

DEFINITION Constructor Injection is the act of statically defining the list of
required Dependencies by specifying them as parameters to the class’s constructor.

The constructor signature is compiled with the type and is available for all to see. It
clearly documents that the class requires the Dependencies it requests through its
constructor. Figure 4.5 demonstrates this.

This figure shows that the consuming class HomeController needs an instance of
the IProductService Dependency to work, so it requires the Composition Root (the
client) to supply an instance via its constructor. This guarantees that the instance is
available to HomeController when it’s needed.

4.2.1 How conStructor injection works

The class that needs the Dependency must expose a public constructor that takes an
instance of the required Dependency as a constructor argument. This should be the
only publicly available constructor. If more than one Dependency is needed, addi-
tional constructor arguments can be added to the same constructor. Listing 4.5 shows
the definition of the HomeController class of figure 4.5.

Client creates
dependency

Client injects
dependency into
consumer

Client uses
consumer

Consumer uses
dependency

The client

The consumer

new HomeController
(dependency)

controller.Index()
service.GetFeaturedProducts()

The DEPENDENCY

COMPOSITION ROOT

ProductService

HomeController

IProductService dependency = new ProductService()

Figure 4.5 Constructing a HomeController instance with a required IProductService dEpENdENCy using
CONSTruCTOr iNjECTiON

96 ChapTEr 4 DI patterns

IMPORTANT Constrain the design to a single (public) constructor. Because the
constructor is the definition of a class’s Dependencies, it makes little sense to
have multiple definitions. Overloaded constructors lead to ambiguity: which
constructor should the caller (or a DI Container) use?

Listing 4.5 Injecting a dEpENdENCy using CONSTruCTOr iNjECTiON

public class HomeController
{
 private readonly IProductService service;

 public HomeController(
 IProductService service)
 {
 if (service == null)
 throw new ArgumentNullException("service");

 this.service = service;
 }
}

The IProductService Dependency is a required constructor argument of HomeController;
any client that doesn’t supply an instance of IProductService can’t compile. But, because
an interface is a reference type, a caller can pass in null as an argument to make the call-
ing code compile. You need to protect the class against such misuse with a Guard Clause.1
Because the combined efforts of the compiler and the Guard Clause guarantee that the
constructor argument is valid if no exception is thrown, the constructor can store the
Dependency for future use without knowing anything about the real implementation.

It’s good practice to mark the field holding the Dependency as readonly. This guaran-
tees that once the initialization logic of the constructor has executed, the field can’t be mod-
ified. This isn’t strictly required from a DI point of view, but it protects you from accidentally
modifying the field (such as setting it to null) somewhere else in the depending class’s code.

IMPORTANT Keep the constructor free of any other logic to prevent it from
performing any work on Dependencies. The Single Responsibility Princi-
ple implies that members should do only one thing. Now that you’re using the
constructor to inject Dependencies, you should keep it free of other concerns.
This makes the construction of your classes fast and reliable.

When the constructor has returned, the new instance of the class is in a consistent state
with a proper instance of its Dependency injected into it. Because the constructed
class holds a reference to this Dependency, it can use the Dependency as often as nec-
essary from any of its other members. Its members don’t need to test for null, because
the instance is guaranteed to be present.

Private instance field to store supplied DepenDency

Constructor that statically
defines its DepenDencIes

Argument for supplying the required
DepenDency

Guard Clause to prevent
clients from passing in null

Storing the DepenDency in the private field for later use.
The constructor contains no other logic than verifying
and storing its incoming DepenDencIes

1 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), 250.

 97ConstRuCtoR injeCtion

4.2.2 When to use conStructor injection

Constructor Injection should be your default choice for DI. It addresses the most
common scenario where a class requires one or more Dependencies, and no reason-
able Local Defaults are available.

DEFINITION A Local Default is a default implementation of a Dependency
that originates in the same module or layer.

lOCal dEfaulT

When you’re developing a class that has a DePenDency, you probably have a particu-
lar implementation of that DePenDency in mind. If you’re writing a domain service that
accesses a Repository, you’re most likely planning to develop an implementation of a
Repository that uses a relational database.

It would be tempting to make that implementation the default used by the class under
development. But when such a prospective default is implemented in a different assem-
bly, using it as a default means creating a hard reference to that other assembly, effec-
tively violating many of the benefits of loose coupling described in chapter 1. Such
implementation is the opposite of a LocAL DefAuLt — it’s a foreign DefAuLt. A class that
has a hard reference to a foreign DefAuLt is applying the controL freAk anti-pattern.
We’ll discuss controL freAk in chapter 5.

Conversely, if the intended default implementation is defined in the same library as the
consuming class, you won’t have that problem. This is unlikely to be the case with Repos-
itories, but such LocAL DefAuLts often arise as implementations of the Strategy pattern.2

WARNING A Local Default with Dependencies becomes a Foreign Default
when one of its Dependencies is a Foreign Default. Transitivity strikes again.

Constructor Injection addresses the common scenario of an object requiring a
Dependency with no reasonable Local Default available, because it guarantees that
the Dependency must be provided. If the depending class absolutely can’t function
without the Dependency, such a guarantee is valuable. Table 4.1 provides a summary
of the advantages and disadvantages of Constructor Injection.

Table 4.1 CONSTruCTOr iNjECTiON advantages and disadvantages

Advantages Disadvantages

Injection guaranteed

Easy to implement

Statically declares a class’s DePenDencies

Frameworks that apply the constrAineD construction
anti-pattern can make using constructor injection difficult.

2 Erich Gamma et al., Design Patterns, 315.

98 ChapTEr 4 DI patterns

In cases where the local library can supply a good default implementation, Property
Injection can also be a good fit, but this is usually not the case. In the earlier chapters,
we showed many examples of Repositories as Dependencies. These are good examples
of Dependencies, where the local library can supply no good default implementation
because the proper implementations belong in specialized data access libraries. Apart
from the guaranteed injection already discussed, this pattern is also easy to implement
using the structure presented in listing 4.5.

The main disadvantage to Constructor Injection is that if the class you’re build-
ing is called by your current application framework, you might need to customize that
framework to support it. Some frameworks, especially older ones, assume that your
classes will have a parameterless constructor.3 (This is called the Constrained Con-
struction anti-pattern, and we’ll discuss this in more detail in the next chapter.) In
this case, the framework will need special help creating instances when a parameter-
less constructor isn’t available. In chapter 7, we’ll explain how to enable Constructor
Injection for common application frameworks.

As previously discussed in section 4.1, an apparent disadvantage of Constructor
Injection is that it requires that the entire Dependency graph be initialized immedi-
ately. Although this sounds inefficient, it’s rarely an issue. After all, even for a complex
object graph, we’re typically talking about creating a few dozen new object instances,
and creating an object instance is something the .NET Framework does extremely fast.
Any performance bottleneck your application may have will appear in other places, so
don’t worry about it.4

NOTE As previously stated, component constructors should be free from all
logic except guard checks and storing incoming Dependencies. This makes
construction fast and prevents most performance issues.

Extremely big object graphs
I (Steven) once had a conversation with a developer who switched Di contAiners after
having some severe performance problems with his old container. After switching, he
reported a 300 to 400 ms speedup per web request, which is quite impressive. After
doing some analysis on his application, though, I found out that, in some cases, an object
graph was created that consisted of more than 19,000 object instances. No wonder this
performed so poorly with some of the Di contAiners.

The size of this object graph was unimaginable to me. I’d never seen anything this out-
rageously big before. Many of the classes in the system were huge, with way too many

3 ASP.NET Web Forms forced forms and custom controls to have a parameterless constructor, but with
the introduction of .NET 4.7.2, this changed. ASP.NET forms and controls can now be constructed
using Constructor Injection.

4 In extremely rare cases, this can be a real issue, but in chapter 8, we’ll describe how to delay the creation
of a Dependency as one possible remedy to this issue. For now, we’ll merely observe that there may be
a potential issue with initial load.

 99ConstRuCtoR injeCtion

DePenDencies. Twenty or more DePenDencies were quite common.5 Even commonly used
classes had that many DePenDencies, which caused the number of object instances in
the object graphs to spiral out of control, or, as that developer himself said, “Real world
sometimes goes beyond fantasies.”

Although this story might seem to prove that performance could be an issue, the moral of
the story is that well-designed systems hardly ever have this problem. In a well-designed
system, classes only have a few DePenDencies (up to four or five), and this makes object
graphs quite narrow. Object graphs tend to get deeper in well-designed systems because
of the ease with which you can apply multiple layers of Decorators.6 But, in the end, the
number of objects in the graphs of well-designed systems will stay within a few hundred
at most. This means that under normal conditions, with a well-designed system, even a
slower Di contAiner should typically cause no performance problems.

Now that you know that Constructor Injection is the preferred way of applying DI,
let’s take a look at some known examples. For this, we’ll discuss Constructor Injec-
tion in the .NET BCL next.

4.2.3 Known use of conStructor injection

Although Constructor Injection tends to be ubiquitous in applications employing DI,
it isn’t very present in the BCL. This is mainly because the BCL is a set of reusable libraries
and not a full-fledged application. Two related examples where you can see a sort of Con-
structor Injection in the BCL is with the System.IO.StreamReader and System.IO
.StreamWriter classes. Both take a System.IO.Stream instance in their constructors.
Here’s all of StreamWriter's Stream-related constructors; the StreamReader construc-
tors are similar:

public StreamWriter(Stream stream);
public StreamWriter(Stream stream, Encoding encoding);
public StreamWriter(Stream stream, Encoding encoding, int bufferSize);

Stream is an abstract class that serves as an Abstraction on which StreamWriter and
StreamReader operate to perform their duties. You can supply any Stream implemen-
tation in their constructors, and they’ll use it, but they’ll throw ArgumentNullExcep
tions if you try to slip them a null stream.

NOTE For classes in a reusable class library (like the BCL), having multiple
constructors often makes sense. For your application components, however, it
doesn’t.

Although the BCL provides examples where you can see Constructor Injection in
use, it’s always more instructive to see a working example. The next section walks you
through a full implementation example.

5 This is a code smell called Constructor Over-injection, which we’ll discuss in section 6.1.
6 In chapter 10, we’ll create an example containing multiple layers of Decorators.

100 ChapTEr 4 DI patterns

4.2.4 Example: Adding currency conversions to the featured products

Mary’s boss says her app is working fine, but now some customers who are using it want
to pay for goods in different currencies. Can she write some new code that enables
the app to display and calculate costs in different currencies? Mary sighs and realizes
that it’s not going to be enough to hard-code in a few different currency conversions.
She’ll need to write code flexible enough to accommodate any currency over time. DI
is calling again.

What Mary needs is both an object for representing money and its currency and
an Abstraction that allows converting money from one currency into another. She’ll
name the Abstraction ICurrencyConverter. For simplicity, the Currency will only
have a currency Code, and Money is composed of both a Currency and an Amount, as
shown in figure 4.6.

The following listing shows the Currency and Money classes, and the ICurrency
Converter interface, as envisioned in figure 4.6.

Listing 4.6 Currency, Money, and the ICurrencyConverter interface

public interface ICurrencyConverter
{
 Money Exchange(Money money, Currency targetCurrency);
}

public class Currency
{
 public readonly string Code;

 public Currency(string code)
 {
 if (code == null) throw new ArgumentNullException("code");

 this.Code = code;
 }
}

Definition of
some “type” of
money, such as
Dollar, Euro,
Pound, etc.

Presents an actual
amount for a given
currency.

Allows converting
money from one
currency to another.

Currency Money

ICurrencyConverter

Exchange(Money, Currency): Money

Amount: Decimal
Currency: Currency

Code: String

Figure 4.6 Exchanging
currencies using
ICurrencyConverter

 101ConstRuCtoR injeCtion

public class Money
{
 public readonly decimal Amount;
 public readonly Currency Currency;

 public Money(decimal amount, Currency currency)
 {
 if (currency == null) throw new ArgumentNullException("currency");

 this.Amount = amount;
 this.Currency = currency;
 }
}

An ICurrencyConverter is likely to represent an out-of-process resource, such as a web
service or a database that supplies conversion rates. This means that it’d be fitting to
implement a concrete ICurrencyConverter in a separate project, such as a data access
layer. Hence, there’s no reasonable Local Default.

At the same time, the ProductService class will need an ICurrencyConverter.
Constructor Injection is a good fit. The following listing shows how the ICurrency
Converter Dependency is injected into ProductService.

Listing 4.7 Injecting an ICurrencyConverter into ProductService

public class ProductService : IProductService
{
 private readonly IProductRepository repository;
 private readonly IUserContext userContext;
 private readonly ICurrencyConverter converter;

 public ProductService(
 IProductRepository repository,
 IUserContext userContext,
 ICurrencyConverter converter)
 {
 if (repository == null)
 throw new ArgumentNullException("repository");
 if (userContext == null)
 throw new ArgumentNullException("userContext");
 if (converter == null)
 throw new ArgumentNullException("converter");

 this.repository = repository;
 this.userContext = userContext;
 this.converter = converter;
 }
}

Because the ProductService class already had a Dependency on IProductRepository
and IUserContext, we add the new ICurrencyConverter Dependency as a third con-
structor argument and then follow the same sequence outlined in listing 4.5. Guard

102 ChapTEr 4 DI patterns

Clauses guarantee that the Dependencies aren’t null, which means it’s safe to store
them for later use in read-only fields. Because an ICurrencyConverter is guaranteed
to be present in ProductService, it can be used from anywhere; for example, in the
GetFeaturedProducts method as shown here.

Listing 4.8 ProductService using ICurrencyConverter

public IEnumerable<DiscountedProduct> GetFeaturedProducts()
{
 Currency userCurrency = this.userContext.Currency;

 var products =
 this.repository.GetFeaturedProducts();

 return
 from product in products
 let unitPrice = product.UnitPrice
 let amount = this.converter.Exchange(
 money: unitPrice,
 targetCurrency: userCurrency)
 select product
 .WithUnitPrice(amount)
 .ApplyDiscountFor(this.userContext);
}

Notice that you can use the converter field without needing to check its availability in
advance. That’s because it’s guaranteed to be present.

4.2.5 Wrap-up

Constructor Injection is the most generally applicable DI pattern available, and
also the easiest to implement correctly. It applies when the Dependency is required. If
you need to make the Dependency optional, you can change to Property Injection
if it has a proper Local Default.

WARNING Dependencies should hardly ever be optional. Optional Dependen-
cies complicate the consuming component with null checks. Instead, make
Dependencies required, and create and inject Null Object implementations
in cases where there’s no reasonable implementation available for the required
Dependency.

Null Object pattern
The Null Object design pattern allows a consumer’s DePenDency to always be available,
even in the absence of any real implementation.7 By injecting an implementation that
contains no behavior — the Null Object — the consumer can treat the DePenDency trans-
parently, without the need to be complicated with null checks.

Adds a Currency property to
IUserContext to get the user’s
preferred currency

A product now has a
UnitPrice of type Money.

Given some Money and a new Currency,
invokes the ICurrencyConverter to
provide an amount for the new currency

7 Robert C. Martin et al., Pattern Languages of Program Design 3 (Addison-Wesley, 1998), 5.

 103ConstRuCtoR injeCtion

Client uses a target ABSTRACTION,
while calling its Request method. The null object implements

the target ABSTRACTION.
Its Request method, however,
is an empty stub.

public void Request()
{
 // Do nothing
}

Client

Target

Null object

Request()

Request()

Real Object

Request()

uses

General structure of the Null Object pattern

Implementations of the Null Object pattern are typically empty, except in the case where the
Null Object must return a value. In that case, the simplest correct value is typically returned.

From time to time, applications needs to produce output that allows developers or opera-
tion staff to analyze problems. Logging AbstrActions are an often-used method for doing
so. Even though a class can be designed to support logging, the application it runs in
might not require a particular class to log. Although you could let such a class check for
the availability of a logger — for instance, using null checks — a more robust solution is to
inject a Null Object implementation.

Client uses the ILogger ABSTRACTION,
while calling its Log method. NullLogger implements ILogger.

Any call to Log returns
immediately, without doing
anything.

FileLogger implements ILogger and
writes log entries to a file.

usesClient

ILogger

NullLogger

Log(LogEntry e)

Log(LogEntry e)

FileLogger

Log(LogEntry e)

Path: String public void Log(LogEntry e)
{
 // Do nothing.
}

A concrete example where a client uses the ILogger abSTraCTiON, implemented by NullLogger

The next pattern in this chapter is Method Injection, which takes a slightly different
approach. It tends to apply more to the situation where you already have a Depen-
dency that you want to pass on to the collaborators you invoke.

104 ChapTEr 4 DI patterns

4.3 methoD injection

How can we inject a DepenDency into a class when it’s different for each operation?
By supplying it as a method parameter.

In cases where a Dependency can vary with each method call, or the consumer of
such a Dependency can vary on each call, you can supply a Dependency via a method
parameter.

DEFINITION Method Injection supplies a consumer with a Dependency by
passing it as method argument on a method called outside the Composition
Root.

4.3.1 How methoD injection works

The caller supplies the Dependency as a method parameter in each method call. An
example of this approach in Mary’s e-commerce application is in the Product class,
where the ApplyDiscountFor method accepts an IUserContext Dependency using
Method Injection:

IUserContext presents contextual information for the operation to run, which is a
common scenario for Method Injection. Often this context will be supplied to a
method alongside a “proper” value, as shown in listing 4.9.

ProductService creates an
instance of Product.

Using METHOD INJECTION,
ProductService injects an
instance of IUserContext into
Product.ApplyDiscountFor with
each method call.

Product uses
IUserContext to
calculate the
discount.depends on uses

creates

invokes with IUserContext dependency

IUserContext

ProductService Product

ApplyDiscountFor(IUserContext)

Figure 4.7 Using mEThOd iNjECTiON, ProductService creates an instance of Product
and injects an instance of IUserContext into Product.ApplyDiscountFor with
each method call.

public DiscountedProduct ApplyDiscountFor(IUserContext userContext)

IUserContext is accepted using METHOD INJECTION

 105method injeCtion

Listing 4.9 Passing a dEpENdENCy alongside a proper value

public decimal CalculateDiscountPrice(decimal price, IUserContext context)
{
 if (context == null) throw new ArgumentNullException("context");

 decimal discount = context.IsInRole(Role.PreferredCustomer) ? .95m : 1;

 return price * discount;
}

The price value parameter represents the value on which the method is supposed to
operate, whereas context contains information about the current context of the oper-
ation; in this case, information about the current user. The caller supplies the Depen-
dency to the method. As you’ve seen many times before, the Guard Clause guarantees
that the context is available to the rest of the method body.

4.3.2 When to use methoD injection

Method Injection is different from other types of DI patterns in that the injection
doesn’t happen in a Composition Root but, rather, dynamically at invocation. This
allows the caller to provide an operation-specific context, which is a common extensi-
bility mechanism used in the .NET BCL. Table 4.2 provides a summary of the advan-
tages and disadvantages of Method Injection.

Table 4.2 mEThOd iNjECTiON advantages and disadvantages

Advantages Disadvantages

Allows the caller to provide operation-specific context

Allows injecting DePenDencies into data-centric objects
that aren’t created inside the comPosition root

Limited applicability

Causes the DePenDency to become part of the
public API of a class or its AbstrAction

There are two typical use cases for applying Method Injection:

¡	When the consumer of the injected Dependency varies on each call
¡	When the injected Dependency varies on each call to a consumer

The following sections show an example of each. Listing 4.9 is an example of how the
consumer varies. This is the most common form, which is why we’ll start with providing
another example.

ExamplE: varyiNg ThE dEpENdENCy'S CONSumEr ON EaCh mEThOd Call

When you practice Domain-Driven Design (DDD), it’s common to create domain
Entities that contain domain logic, effectively mixing runtime data with behavior in
the same class.8 Entities, however, are typically not created within the Composition
Root. Take the following Customer Entity, for example.

8 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley, 2004).

106 ChapTEr 4 DI patterns

Listing 4.10 An ENTiTy containing domain logic but no dEpENdENCiES (yet)

public class Customer
{
 public Guid Id { get; private set; }
 public string Name { get; private set; }

 public Customer(Guid id, string name)
 {
 ...
 }

 public void RedeemVoucher(Voucher voucher) ...

 public void MakePreferred() ...
}

The RedeemVoucher and MakePreferred methods in listing 4.10 are domain methods.
RedeemVoucher implements the domain logic that lets the customer redeem a voucher.
(You may have redeemed a voucher to get a discount when you purchased this book.)
voucher is a value object9 used by the method. MakePreferred, on the other hand,
implements the domain logic that promotes the customer. A regular customer could
get upgraded to become a preferred customer, which might give certain advantages
and discounts, similar to being a frequent flyer airline customer.

Entities that contain behavior besides their usual set of data members would easily
get a wide range of methods, each requiring their own Dependencies. Although you
might be tempted to use Constructor Injection to inject such Dependencies, that
leads to a situation where each such Entity needs to be created with all of its Depen-
dencies, even though only a few may be necessary for a given use case. This compli-
cates testing the logic of an Entity, because all Dependencies need to be supplied to
the constructor, even though a test might only be interested in a few Dependencies.
Method Injection, as shown in the next listing, offers a better alternative.

Listing 4.11 An ENTiTy using mEThOd iNjECTiON

public class Customer
{
 public Guid Id { get; private set; }
 public string Name { get; private set; }

 public Customer(Guid id, string name)
 {
 ...
 }

A domain entIty

The entIty’s data members. This is
the application’s runtime data.

The constructor requires the entIty’s
data to be supplied. This way the
constructor can ensure the entIty is
always created in a valid state.

Lets the customer
redeem a voucher

Promotes the customer
to Preferred status

9 As stated before in the footnote of section 4.4.1, Popsicle immutability allows a client to set a Depen-
dency during initialization.

 107method injeCtion

 public void RedeemVoucher(
 Voucher voucher,
 IVoucherRedemptionService service)
 {
 if (voucher == null)
 throw new ArgumentNullException("voucher");
 if (service == null)
 throw new ArgumentNullException("service");

 service.ApplyRedemptionForCustomer(
 voucher,
 this.Id);
 }

 public void MakePreferred(IEventHandler handler)
 {
 if (handler == null)
 throw new ArgumentNullException("handler");

 handler.Publish(new CustomerMadePreferred(this.Id));
 }
}

Inside a CustomerServices component, the Customer's RedeemVoucher method can
be called while passing the IVoucherRedemptionService Dependency with the call, as
shown next.

Listing 4.12 A component using mEThOd iNjECTiON to pass a dEpENdENCy

public class CustomerServices : ICustomerServices
{
 private readonly ICustomerRepository repository;
 private readonly IVoucherRedemptionService service;

 public CustomerServices(
 ICustomerRepository repository,
 IVoucherRedemptionService service)
 {
 this.repository = repository;
 this.service = service;
 }

 public void RedeemVoucher(
 Guid customerId, Voucher voucher)
 {
 var customer =
 this.repository.GetById(customerId);

 customer.RedeemVoucher(voucher, this.service);

 this.repository.Save(customer);
 }
}

Using MethoD InjectIon, both of
the entIty's domain methods,
RedeemVoucher and MakePreferred,
accept the required DepenDencIes
— IVoucherRedemptionService and
IEventHandler. They validate the
parameters and use the supplied
DepenDency.

The CustomerServices class uses constructor
InjectIon to statically define its required
DepenDencIes. IVoucherRedemptionService is
one of those DepenDencIes.

The IVoucherRedemptionService
DepenDency is passed to an already
constructed Customer entIty using

MethoD InjectIon. Customer is created
inside the ICustomerRepository

implementation.

108 ChapTEr 4 DI patterns

In listing 4.12, only a single Customer instance is requested from ICustomerRepository.
But a single CustomerServices instance can be called over and over again using a mul-
titude of customers and vouchers, causing the same IVoucherRedemptionService to
be supplied to many different Customer instances. Customer is the consumer of the
IVoucherRedemptionService Dependency and, while you’re reusing the Depen-
dency, you’re varying the consumer.

This is similar to the first Method Injection example shown in listing 4.9 and the
ApplyDiscountFor method discussed in listing 3.8. The opposite case is when you vary
the Dependency while keeping its consumers around.

ExamplE: varyiNg ThE iNjECTEd dEpENdENCy ON EaCh mEThOd Call

Imagine an add-in system for a graphical drawing application, where you want every-
one to be able to plug in their own image effects. External image effects might require
information about the runtime context, which can be passed on by the application to
the image effect. This is a typical use case for applying Method Injection. You can
define the following interface for applying those effects:

public interface IImageEffectAddIn
{
 Bitmap Apply(
 Bitmap source,
 IApplicationContext context);
}

The IImageEffectAddIn's IApplicationContext Dependency can vary with each call
to the Apply method, providing the effect with information about the context in which
the operation is being invoked. Any class implementing this interface can be used as
an add-in. Some implementations may not care about the context at all, whereas other
implementations will.

A client can use a list of add-ins by calling each with a source Bitmap and a context to
return an aggregated result, as shown in the next listing.

Listing 4.13 A sample add-in client

public Bitmap ApplyEffects(Bitmap source)
{
 if (source == null) throw new ArgumentNullException("source");

 Bitmap result = source;

 foreach (IImageEffectAddIn effect in this.effects)
 {

AbstrActIon of add-ins that represent image
effects. Image effects can be plugged into the
application by implementing this AbstrActIon.

Allows the add-in to apply its effect
to the source and then returns a
new Bitmap with the effect applied

Provides contextual information to the
image effect by the graphical application

using MethoD InjectIon

 109method injeCtion

 result = effect.Apply(result, this.context);
 }

 return result;
}

The private effects field is a list of IImageEffectAddIn instances, which allows the
client to loop through the list to invoke each add-in’s Apply method. Each time the Apply
method is invoked on an add-in, the operation’s context, represented by the context field,
is passed as a method parameter:

result = effect.Apply(result, this.context);

At times, the value and the operational context are encapsulated in a single Abstrac-
tion that works as a combination of both. An important thing to note is this: as you’ve
seen in both examples, the Dependency injected via Method Injection becomes part
of the definition of the Abstraction. This is typically desirable in case that Depen-
dency contains runtime information that’s supplied by its direct callers.

In cases where the Dependency is an implementation detail to the caller, you should
try to prevent the Abstraction from being “polluted”; therefore, Constructor Injec-
tion is a better pick. Otherwise, you could easily end up passing the Dependency from
the top of our application’s object graph all the way down, causing sweeping changes.

The previous examples all showed the use of Method Injection outside of the Com-
position Root. This is deliberate. Method Injection is unsuitable when used within
the Composition Root. Within a Composition Root, Method Injection can initial-
ize a previously constructed class with its Dependencies. Doing so, however, leads to
Temporal Coupling and for that reason it’s highly discouraged.

ThE TEmpOral COupliNg COdE SmEll

Temporal Coupling is a common problem in API design. It occurs when there’s an
implicit relationship between two or more members of a class, requiring clients to
invoke one member before the other. This tightly couples the members in the temporal
dimension. The archetypical example is the use of an Initialize method, although
copious other examples can be found — even in the BCL. As an example, this usage of
System.ServiceModel.EndpointAddressBuilder compiles but fails at runtime:

var builder = new EndpointAddressBuilder();
var address = builder.ToEndpointAddress();

It turns out that an URI is required before an EndpointAddress can be created. The
following code compiles and succeeds at runtime:

var builder = new EndpointAddressBuilder();
builder.Uri = new UriBuilder().Uri;
var address = builder.ToEndpointAddress();

The API provides no hint that this is necessary, but there’s a Temporal Coupling
between the Uri property and the ToEndpointAddress method.

When applied inside the Composition Root, a recurring pattern is the use of some
Initialize method, as shown in listing 4.14.

110 ChapTEr 4 DI patterns

Listing 4.14 TEmpOral COupliNg example

public class Component
{
 private ISomeInterface dependency;

 public void Initialize(
 ISomeInterface dependency)
 {
 this.dependency = dependency;
 }

 public void DoSomething()
 {
 if (this.dependency == null)
 throw new InvalidOperationException(
 "Call Initialize first.");

 this.dependency.DoStuff();
 }
}

Semantically, the name of the Initialize method is a clue, but on a structural level,
this API gives us no indication of Temporal Coupling. Thus, code like this compiles,
but throws an exception at runtime:

var c = new Component();
c.DoSomething();

The solution to this problem should be obvious by now — you should apply Construc-
tor Injection instead:

public class Component
{
 private readonly ISomeInterface dependency;

 public Component(ISomeInterface dependency)
 {
 if (dependency == null)
 throw new ArgumentNullException("dependency");

 this.dependency = dependency;
 }

 public void DoSomething()
 {
 this.dependency.DoStuff();
 }
}

WARNING Don’t store injected method Dependencies. This leads to Tempo-
ral Coupling, Captive Dependencies, or hidden side effects.10 A method
should use the Dependency or pass it on, and should refrain from storing such
a Dependency. The use of Method Injection is quite common in the .NET
BCL, so we’ll look at an example next.

The Initialize and DoSomething methods need to be
invoked in a particular order, but this relationship
is implicit. This causes teMporAl couplIng.

The possibility to call DoSomething
before Initialize forces the addition of
this extra Guard Clause, which every
public method of this class requires.

10 We’ll discuss Captive Dependencies in section 8.4.1.

 111method injeCtion

4.3.3 Known use of methoD injection

The .NET BCL provides many examples of Method Injection, particularly in the System
.ComponentModel namespace. You use System.ComponentModel.Design.IDesigner for
implementing custom design-time functionality for components. It has an Initialize
method that takes an IComponent instance so that it knows which component it’s currently
helping to design. (Note that this Initialize method causes Temporal Coupling.)
Designers are created by IDesignerHost implementations that also take IComponent
instances as parameters to create designers:

IDesigner GetDesigner(IComponent component);

This is a good example of a scenario where the parameter itself carries information.
The component can carry information about which IDesigner to create, but at the
same time, it’s also the component on which the designer must subsequently operate.

Another example in the System.ComponentModel namespace is provided by the Type
Converter class. Several of its methods take an instance of ITypeDescriptorContext
that, as the name says, conveys information about the context of the current operation,
such as information about the type’s properties. Because there are many such methods,
we don’t want to list them all, but here’s a representative example:

public virtual object ConvertTo(ITypeDescriptorContext context,
 CultureInfo culture, object value, Type destinationType)

In this method, the context of the operation is communicated explicitly by the context
parameter, whereas the value to be converted and the destination type are sent as sepa-
rate parameters. Implementers can use or ignore the context parameter as they see fit.

ASP.NET Core MVC also contains several examples of Method Injection. You can
use the IValidationAttributeAdapterProvider interface, for instance, to provide
IAttributeAdapter instances. Its only method is this:

IAttributeAdapter GetAttributeAdapter(
 ValidationAttribute attribute, IStringLocalizer stringLocalizer)

ASP.NET Core allows properties of view models to be marked with ValidationAttribute.
It’s a convenient way to apply metadata that describes the validity of properties encapsu-
lated in the view model.

Based on a ValidationAttribute, the GetAttributeAdapter method allows an
IAttributeAdapter to be returned, which allows relevant error messages to be dis-
played in a web page. In the GetAttributeAdapter method, the attribute parameter
is the object an IAttributeAdapter should be created for, whereas the stringLocal
izer is the Dependency that’s passed through Method Injection.

NOTE When we recommend that Constructor Injection should be your
preferred DI pattern, we’re assuming that you generally build applications. On
the other hand, if you’re building a framework, Method Injection can be use-
ful because it lets the framework pass information about the context to add-ins.
This is one reason why you see Method Injection used so prolifically in the
BCL. But even in application code, Method Injection can be useful.

112 ChapTEr 4 DI patterns

Next, we’ll see how Mary uses Method Injection in order to prevent code repetition.
When we last saw Mary (in section 4.2), she was working on ICurrencyConverter: she
injected it using Constructor Injection into the ProductService class.

4.3.4 Example: Adding currency conversions to the Product entity

Listing 4.8 showed how the GetFeaturedProducts method called the ICurrency
Converter.Exchange method using the product’s UnitPrice and the user’s preferred
currency in Mary’s application. Here’s that GetFeaturedProducts method again:

public IEnumerable<DiscountedProduct> GetFeaturedProducts()
{
 Currency currency = this.userContext.Currency;

 return
 from product in this.repository.GetFeaturedProducts()
 let amount = this.converter.Exchange(product.UnitPrice, currency)
 select product
 .WithUnitPrice(amount)
 .ApplyDiscountFor(this.userContext);
}

Conversions of Product Entities from one Currency to another will be a recurring
task in many parts of her application. For this reason, Mary likes to move the logic
concerning the conversion of the Product out of ProductService and centralize it as
part of the Product Entity. This prevents other parts of the system from repeating this
code. Method Injection turns out to be a great candidate for this. Mary creates a new
ConvertTo method in Product, as shown in the next listing.

Listing 4.15 Product ENTiTy with ConvertTo method

public class Product
{
 public string Name { get; set; }
 public Money UnitPrice { get; set; }
 public bool IsFeatured { get; set; }

 public Product ConvertTo(
 Currency currency,
 ICurrencyConverter converter)
 {
 if (currency == null)
 throw new ArgumentNullException("currency");
 if (converter == null)
 throw new ArgumentNullException("converter");

 var newUnitPrice =
 converter.Exchange(
 this.UnitPrice,
 currency);

 return this.WithUnitPrice(newUnitPrice);
 }

The ConvertTo method
accepts the Currency value.

The ICurrencyConverter DepenDency is
now injected using MethoD InjectIon.

The new unit price is
determined by calling Exchange.

A new Product instance is created
based on the original Product,
where the UnitPrice is replaced by
the newly constructed unit price.

 113method injeCtion

 public Product WithUnitPrice(Money unitPrice)
 {
 return new Product
 {
 Name = this.Name,
 UnitPrice = unitPrice,
 IsFeatured = this.IsFeatured
 };
 }
 ...
}

With the new ConvertTo method, Mary refactors the GetFeaturedProducts method.

Listing 4.16 GetFeaturedProducts using ConvertTo method

public IEnumerable<DiscountedProduct> GetFeaturedProducts()
{
 Currency currency = this.userContext.Currency;

 return
 from product in this.repository.GetFeaturedProducts()
 select product
 .ConvertTo(currency, this.converter)
 .ApplyDiscountFor(this.userContext);
}

Instead of calling the ICurrencyConverter.Exchange method, as you’ve seen previ-
ously, GetFeaturedProducts now passes ICurrencyConverter on to the ConvertTo
method using Method Injection. This simplifies the GetFeaturedProducts method
and prevents any code duplication when Mary needs to convert products elsewhere in
her code base. By using Method Injection instead of Constructor Injection, she
avoided having to build up the Product Entity with all of its Dependencies. This sim-
plifies construction and testing.

NOTE Although we defined the ICurrencyConverter in section 4.2, we haven’t
yet talked about how the ICurrencyConverter class is implemented, because
it’s not that important from the point of view of either Method Injection or
Constructor Injection. If you’re interested to see how it’s implemented, it’s
available in the book’s accompanying source code.

Unlike the other DI patterns in this chapter, you mainly use Method Injection when
you want to supply Dependencies to an already existing consumer. With Construc-
tor Injection and Property Injection, on the other hand, you supply Dependen-
cies to a consumer while it’s being created.

The last pattern in this chapter is Property Injection, which allows you to over-
ride a class’s Local Default. Where Method Injection was solely applied outside the
Composition Root, Property Injection, just as Constructor Injection, is applied
from within the Composition Root.

The ICurrencyConverter is now
supplied through MethoD InjectIon.

114 ChapTEr 4 DI patterns

4.4 property injection

How do we enable DI as an option in a class when we have a good local Default?
By exposing a writable property that lets callers supply a Dependency

if they want to override the default behavior.

When a class has a good Local Default, but you still want to leave it open for extensibil-
ity, you can expose a writable property that allows a client to supply a different implemen-
tation of the class’s Dependency than the default. As figure 4.8 shows, clients wanting to
use the Consumer class as is can create an instance of the class and use it without giving it
a second thought, whereas clients wanting to modify the behavior of the class can do so
by setting the Dependency property to a different implementation of IDependency.

DEFINITION Property Injection allows a Local Default to be replaced via a
public settable property. Property Injection is also known as Setter Injection.

4.4.1 How property injection works

The class that uses the Dependency must expose a public writable property of the
Dependency’s type. In a bare-bones implementation, this can be as simple as the fol-
lowing listing.

Listing 4.17 prOpErTy iNjECTiON

public class Consumer
{
 public IDependency Dependency { get; set; }
}

Consumer depends on IDependency. Clients can supply implementations of IDependency
by setting the Dependency property.

Consumer has a dependency on IDependency.

Instead of requiring callers to supply
an instance, it gives callers an option
to define it via a property.

In case a caller doesn’t set the
property, Consumer uses LocalDefault
as its default implementation.

depends on

creates

IDependency

LocalDefault

Consumer

Dependency { get; set; }

Figure 4.8 prOpErTy iNjECTiON

 115pRopeRty injeCtion

NOTE In contrast to Constructor Injection, you can’t mark the Dependency
property’s backing field as readonly, because you allow callers to modify the
property at any given time during a consumer’s lifetime.

Other members of the depending class can use the injected Dependency to perform
their duties, like this:

public void DoSomething()
{
 this.Dependency.DoStuff();
}

Unfortunately, such an implementation is fragile. That’s because the Dependency prop-
erty isn’t guaranteed to return an instance of IDependency. Code like this would throw
a NullReferenceException if the value of the Dependency property is null:

var instance = new Consumer();

instance.DoSomething();

This issue can be solved by letting the constructor set a default instance on the prop-
erty, combined with a proper Guard Clause in the property’s setter. Another complica-
tion arises if clients switch the Dependency in the middle of the class’s lifetime:

var instance = new Consumer();

instance.Dependency = new SomeImplementation();

instance.DoSomething();

instance.Dependency = new SomeOtherImplementation();

instance.DoSomething();

This can be addressed by introducing an internal flag that only allows a client to set the
Dependency during initialization.11

The example in section 4.4.4 shows how you can deal with these complications.
But before we get to that, we’d like to explain when it’s appropriate to use Property
Injection.

4.4.2 When to use property injection

Property Injection should only be used when the class you’re developing has a good
Local Default, and you still want to enable callers to provide different implementa-
tions of the class’s Dependency. It’s important to note that Property Injection is best
used when the Dependency is optional. If the Dependency is required, Constructor
Injection is always a better pick.

This call causes an exception, because we
forgot to set instance.Dependency.

Sets the Dependency property
with a valid implementation

Changes the Dependency property in the middle of the
class’s lifetime. This might cause a problem for Consumer.

11 Eric Lippert calls this Popsicle immutability. Eric Lippert, “Immutability in C# Part One: Kinds of Immu-
tability,” 2007, https://mng.bz/y2Eq/.

https://mng.bz/y2Eq/

116 ChapTEr 4 DI patterns

In chapter 1, we discussed good reasons for writing code with loose coupling, thus iso-
lating modules from each other. But loose coupling can also be applied to classes within
a single module with great success. This is often done by introducing Abstractions
within a module and letting classes within that module communicate via Abstractions,
instead of being tightly coupled to each other. The main reasons for applying loose cou-
pling within a module boundary is to open classes for extensibility and for ease of testing.

NOTE The concept of opening a class for extensibility is captured by the Open/
Closed Principle that, briefly put, states that a class should be open for exten-
sibility, but closed for modification. When you implement classes following the
Open/Closed Principle, you may have a Local Default in mind, but you
still provide clients with a way to extend the class by replacing the Dependency
with something else.

OpEN/ClOSEd priNCiplE

Software entities (classes, modules, functions, and so on) that conform to the oPen/
cLoseD PrinciPLe have two primary attributes:

¡	They’re open for extension. This means you can change or extend the behavior
of such entity. This statement by itself is a bit dull, assuming your team owns the
entire application, because you can always change the behavior of some part of
the system. You go to its source code and you change it. This attribute, however,
becomes interesting within the context of the next one.

¡	They’re closed for modification. This means that when you extend the system, you
must be able to do so without touching any of the existing source code. This can
seem rather weird; how can you change a system if you can’t alter its source code?

DI provides an important piece of the answer to this apparent conflict. It lets you replace
or intercePt classes to add or change behavior without either the consuming class nor
its DePenDency being aware of this. The oPen/cLoseD PrinciPLe pushes you to a design
where every new feature request can be addressed by creating one or more new classes
or modules without touching any of the existing ones.

When you’re able to add new functional and non-functional requirements to your sys-
tem without touching existing parts, it means that the problem at hand is isolated from
other parts of the system. This leads to code that’s easier to understand and test, and
therefore maintain. That said, although being able to extend a system without having to
change any existing code is a worthy ideal to strive for, it’s an unreachable one. There’ll
always be cases where you’ll have to change existing parts of the system.

As a developer, it’s your job to find out what kind of changes are the most likely to occur in
your application. Based on the understanding of how you expect a particular application
or system to evolve, you should model it in such a way that you maximize maintainability.
An important aspect of approaching this ideal is to prevent sweeping changes to the sys-
tem from happening regularly.

Working with AbstrActions is one of the main topics in this book, and there’s more to it.
We’ll explore some techniques that can help you make your applications open for exten-
sion but closed for modification in chapters 9 and 10.

 117pRopeRty injeCtion

NOTE The Open/Closed Principle is closely related to the DRY principle.12

TIP Sometimes you only want to provide an extensibility point, leaving the
Local Default as a no-op.13 In such cases, you can use the Null Object pattern
to implement the Local Default.

We haven’t shown you any real examples of Property Injection so far because the
applicability of this pattern is more limited, especially in the context of application
development. Table 4.3 summarizes its advantages and disadvantages.

Table 4.3 prOpErTy iNjECTiON advantages and disadvantages

Advantages Disadvantages

Easy to understand Not entirely simple to implement robustly

Limited applicability

Only applicable to reusable libraries

Causes temPorAL couPLing

The main advantage of Property Injection is that it’s so easy to understand. We’ve
often seen this pattern used as a first attempt when people decide to adopt DI.

Appearances can be deceptive, though, and Property Injection is fraught with
difficulties. It’s challenging to implement it in a robust manner. Clients can forget to
supply the Dependency because of the previously discussed problem of Temporal
Coupling. Additionally, what would happen if a client tries to change the Dependency
in the middle of the class’s lifetime? This could lead to inconsistent or unexpected
behavior, so you may want to protect yourself against that event.

Despite the downsides, it makes sense to use Property Injection when building
a reusable library. It allows components to define sensible defaults, and this simplifies
working with a library’s API.

NOTE When building applications, on the other hand, we never use Property
Injection, and you should do so sparingly. Even though you might have a
Local Default for a Dependency, Constructor Injection still provides you
with a better alternative. Constructor Injection is simpler and more robust.
You might think you need Property Injection to work around a cyclic Depen-
dency, but that’s a code smell, as we’ll explain in chapter 6.

When developing applications, you wire up your classes in your Composition Root.
Constructor Injection prevents you from forgetting to supply the Dependency.
Even in the case that there’s a Local Default, such instances can be supplied to the

12 The DRY principle — Don’t Repeat Yourself — states that “Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system.”

13 NOP, no-op, and NOOP are short for no operation. It is an assembly language instruction that does noth-
ing. The term no op has become a general term in computer science for an operation that does nothing.

118 ChapTEr 4 DI patterns

constructor by the Composition Root. This simplifies the class and allows the Compo-
sition Root to be in control over the value that all consumers get. This might even be
a Null Object implementation.

TIP Prevent the use of Property Injection as a solution to Constructor
Over-injection. Classes with many Dependencies are a code smell and Prop-
erty Injection won’t lower the class’s complexity. We’ll discuss Constructor
Over-injection in section 6.1.

The existence of a good Local Default depends in part on the granularity of modules.
The BCL ships as a rather large package; as long as the default stays within the BCL, it
could be argued that it’s also local. In the next section, we’ll briefly touch on that subject.

4.4.3 Known uses of property injection

In the .NET BCL, Property Injection is a bit more common than Constructor
Injection, probably because good Local Defaults are defined in many places, and
also because this simplifies the default instantiation of most classes. For example,
System.ComponentModel.IComponent has a writable Site property that allows you to
define an ISite instance. This is mostly used in design time scenarios (for example, by
Visual Studio) to alter or enhance a component when it’s hosted in a designer. With
that BCL example as an appetizer, let’s move on to a more substantial example of using
and implementing Property Injection.

4.4.4 Example: property injection as an extensibility model of a
reusable library

Earlier examples in this chapter extended the sample application of the previous chap-
ter. Although we could show you an example of Property Injection using the sample
application, this would be misleading because Property Injection is hardly ever a
good fit when building applications; Constructor Injection is almost always a better
choice. Instead, we’d like to show you an example of a reusable library. In this case,
we’re looking at some code from Simple Injector.

Simple Injector is one of the DI Containers that’s discussed in part 4. It helps you
construct your application’s object graphs. Chapter 14 will have an extensive discussion
on Simple Injector, so we won’t go into much detail about it here. From the perspective
of Property Injection, how Simple Injector works isn’t important.

As a reusable library, Simple Injector makes extensive use of Property Injection. Lots
of its behavior can be extended, and the way this is done is by providing default implemen-
tations of its behavior. Simple Injector exposes properties that allow the user to change the
default implementation. One of the behaviors that Simple Injector allows to be replaced is
how the library selects the correct constructor for doing Constructor Injection.14

As we discussed in section 4.2, your classes should only have one constructor. Because of
this, Simple Injector, by default, only allows classes that have just one public constructor to be
created. In any other case, Simple Injector throws an exception. Simple Injector, however,

14 To explain Property Injection, this example uses the Constructor Injection feature of a DI Con-
tainer. But don’t worry, the example shows a property with a Local Default and two Guard Clauses.

 119pRopeRty injeCtion

lets you override this behavior. This might be useful for certain narrow integration scenar-
ios. For this, Simple Injector defines an IConstructorResolutionBehavior interface.15 A
custom implementation can be defined by the user, and the library-provided default can be
replaced by setting the ConstructorResolutionBehavior property, as shown here:

var container = new Container();

container.Options.ConstructorResolutionBehavior =
 new CustomConstructorResolutionBehavior();

The Container is the central Facade16 pattern in Simple Injector’s API. It’s used to
specify the relationships between Abstractions and implementations, and to build
object graphs of these implementations. The class includes an Options property of
type ContainerOptions. It includes a number of properties and methods that allow the
default behavior of the library to be changed. One of those properties is Constructor
ResolutionBehavior. Here’s a simplified version of the ContainerOptions class with
its ConstructorResolutionBehavior property:

public class ContainerOptions
{
 IConstructorResolutionBehavior resolutionBehavior =
 new DefaultConstructorResolutionBehavior();

 public IConstructorResolutionBehavior ConstructorResolutionBehavior
 {
 get
 {
 return this.resolutionBehavior;
 }
 set
 {
 if (value == null)
 throw new ArgumentNullException("value");

 if (this.Container.HasRegistrations)
 {
 throw new InvalidOperationException(
 "The ConstructorResolutionBehav" +
 "ior property cannot be changed" +
 " after the first registration " +
 "has been made to the container.";
 }

 this.resolutionBehavior = value;
 }
 }
}

15 This is an implementation of the Strategy pattern.
16 Erich Gamma et al., Design Patterns, 208.

Assignment of the private resolutionBehavior field with the
DefaultConstructorResolutionBehavior locAl DefAult

Guard Clause with null check

Guard Clause with a
variation of the discussed
internal flag that ensures
Popsicle immutability17

Stores the incoming DepenDency in the
private field, overriding the locAl DefAult

17 As stated before in the footnote of section 4.4.1, Popsicle immutability allows a client to set a Depen-
dency during initialization.

120 ChapTEr 4 DI patterns

The ConstructorResolutionBehavior property can be changed multiple times as
long as there are no registrations made in the container. This is important, because
when registrations are made, Simple Injector uses the specified ConstructorResolu
tionBehavior to verify whether it’ll be able to construct such a type by analyzing a
class’s constructor. If a user was able to change the constructor resolution behavior
after registrations were made, it could impact the correctness of earlier registrations.
This is because Simple Injector could, otherwise, end up using a different constructor
for a component from that which it approved to be correct during the time of regis-
tration. This means that either all previous registrations should be reevaluated or the
user should be prevented from being able to change the behavior after registrations
are made. Because reevaluating can have hidden performance costs and is harder to
implement, Simple Injector implements the latter approach.

Compared to Constructor Injection, Property Injection is more involved. It
may look simple in its raw form (as shown in listing 4.19), but, properly implemented, it
tends to be more complex.

You use Property Injection in a reusable library where the Dependency is optional
and you have a good Local Default. In cases where there’s a short-lived object that
requires the Dependency, you should use Method Injection. In other cases, you
should use Constructor Injection.

This completes the last pattern in this chapter. The following section provides a short
recap and explains how to select the right pattern for your job.

4.5 Choosing which pattern to use
The patterns presented in this chapter are a central part of DI. Armed with a Composi-
tion Root and an appropriate mix of injection patterns, you can implement Pure DI
or use a DI Container. When applying DI, there are many nuances and finer details to
learn, but these patterns cover the core mechanics that answer the question, “How do
I inject my Dependencies?”

These patterns aren’t interchangeable. In most cases, your default choice should
be Constructor Injection, but there are situations where one of the other patterns
affords a better alternative. Figure 4.9 shows a decision process that can help you decide
on a proper pattern, but, if in doubt, choose Constructor Injection. You can’t go
terribly wrong with that choice.

The first thing to examine is whether the Dependency is something you need or
something you already have but want to communicate to another collaborator. In most
cases, you’ll probably need the Dependency. But in add-in scenarios, you may want to
convey the current context to an add-in. Every time the Dependency varies from opera-
tion to operation, Method Injection is a good candidate for an implementation.

Secondly, you’ll need to know what kind of class needs the Dependency. In case
you’re mixing runtime data with behavior in the same class, as you might do in your
domain Entities, Method Injection is a good fit. In other cases, when you’re writing

DEPENDENCY

METHOD INJECTION

Need it,
or need to
supply it?

Who
needs it?

Type of
code?

Is there
a LOCAL

DEFAULT?
PROPERTY INJECTION

CONSTRUCTOR

INJECTION

Need it

NoYes

Need to supply it

Data-centric object

Application code

Component

Reusable library

Figure 4.9 Pattern decision process. In most cases, you should choose CONSTruCTOr iNjECTiON, but there
are situations where one of the other DI patterns is a better fit.

 121Choosing which pattern to use

application code, opposed to writing a reusable library, Constructor Injection auto-
matically applies.
When it comes to writing application code, even the use of Local Defaults should
be prevented in favor of having these defaults set in one central place in the applica-
tion — the Composition Root. On the other hand, when writing a reusable library, a
Local Default is the deciding factor, as it can make explicitly assigning the Depen-
dency optional — the default takes over if no overriding implementation is specified.
This scenario can be effectively implemented with Property Injection.

Constructor Injection should be your default choice for DI. It’s easy to under-
stand and simpler to implement robustly than any of the other DI patterns. You can
build entire applications with Constructor Injection alone, but knowing about the

The ConstructorResolutionBehavior property can be changed multiple times as
long as there are no registrations made in the container. This is important, because
when registrations are made, Simple Injector uses the specified ConstructorResolu
tionBehavior to verify whether it’ll be able to construct such a type by analyzing a
class’s constructor. If a user was able to change the constructor resolution behavior
after registrations were made, it could impact the correctness of earlier registrations.
This is because Simple Injector could, otherwise, end up using a different constructor
for a component from that which it approved to be correct during the time of regis-
tration. This means that either all previous registrations should be reevaluated or the
user should be prevented from being able to change the behavior after registrations
are made. Because reevaluating can have hidden performance costs and is harder to
implement, Simple Injector implements the latter approach.

Compared to Constructor Injection, Property Injection is more involved. It
may look simple in its raw form (as shown in listing 4.19), but, properly implemented, it
tends to be more complex.

You use Property Injection in a reusable library where the Dependency is optional
and you have a good Local Default. In cases where there’s a short-lived object that
requires the Dependency, you should use Method Injection. In other cases, you
should use Constructor Injection.

This completes the last pattern in this chapter. The following section provides a short
recap and explains how to select the right pattern for your job.

4.5 Choosing which pattern to use
The patterns presented in this chapter are a central part of DI. Armed with a Composi-
tion Root and an appropriate mix of injection patterns, you can implement Pure DI
or use a DI Container. When applying DI, there are many nuances and finer details to
learn, but these patterns cover the core mechanics that answer the question, “How do
I inject my Dependencies?”

These patterns aren’t interchangeable. In most cases, your default choice should
be Constructor Injection, but there are situations where one of the other patterns
affords a better alternative. Figure 4.9 shows a decision process that can help you decide
on a proper pattern, but, if in doubt, choose Constructor Injection. You can’t go
terribly wrong with that choice.

The first thing to examine is whether the Dependency is something you need or
something you already have but want to communicate to another collaborator. In most
cases, you’ll probably need the Dependency. But in add-in scenarios, you may want to
convey the current context to an add-in. Every time the Dependency varies from opera-
tion to operation, Method Injection is a good candidate for an implementation.

Secondly, you’ll need to know what kind of class needs the Dependency. In case
you’re mixing runtime data with behavior in the same class, as you might do in your
domain Entities, Method Injection is a good fit. In other cases, when you’re writing

DEPENDENCY

METHOD INJECTION

Need it,
or need to
supply it?

Who
needs it?

Type of
code?

Is there
a LOCAL

DEFAULT?
PROPERTY INJECTION

CONSTRUCTOR

INJECTION

Need it

NoYes

Need to supply it

Data-centric object

Application code

Component

Reusable library

Figure 4.9 Pattern decision process. In most cases, you should choose CONSTruCTOr iNjECTiON, but there
are situations where one of the other DI patterns is a better fit.

122 ChapTEr 4 DI patterns

other patterns can help you choose wisely in the few cases where it doesn’t fit perfectly.
The next chapter approaches DI from the opposite direction and takes a look at ill-ad-
vised ways of using DI.

Summary

¡	The Composition Root is a single, logical location in an application where mod-
ules are composed together. The construction of your application’s components
should be concentrated into this single area of your application.

¡	Only startup projects will have a Composition Root.
¡	Although a Composition Root can be spread out across multiple classes, they

should be in a single module.
¡	The Composition Root takes a direct dependency on all other modules in the

system. Loosely coupled code that applies the Composition Root pattern lowers
the overall number of dependencies between modules, subsystems, and layers,
compared to tightly coupled code.

¡	Even though you might place the Composition Root in the same assembly as
your UI or presentation layer, the Composition Root isn’t part of those layers.
Assemblies are deployment artifacts, whereas layers are logical artifacts.

¡	Where a DI Container is used, it should only be referenced from the Compo-
sition Root. All other modules should be oblivious to the existence of the DI
Container.

¡	Use of a DI Container outside the Composition Root leads to the Service
Locator anti-pattern.

¡	The performance overhead of using a DI Container to compose large object
graphs is usually not an issue in a well-designed system.

¡	The Composition Root should be the sole place in the entire application that
knows about the structure of the constructed object graphs. This means that
application code can’t pass on Dependencies to other threads that run parallel
to the current operation, because a consumer has no way of knowing whether it’s
safe to do so. Instead, when spinning off concurrent operations, it’s the Compo-
sition Root’s job to create a new object graph for each concurrent operation.

¡	Constructor Injection is the act of statically defining the list of required
Dependencies by specifying them as parameters to the class’s constructor.

¡	A constructor that’s used for Constructor Injection should do no more
than apply Guard Clauses and store the receiving Dependencies. Other logic
should be kept out of the constructor. This makes building object graphs fast and
reliable.

¡	Constructor Injection should be your default choice for DI, because it’s the
most reliable and the easiest to apply correctly.

¡	Constructor Injection is well suited when a Dependency is required. It’s
important to note, however, that Dependencies should hardly ever be optional.

 123Choosing which pattern to use

Optional Dependencies complicate the component with null checks. Inside the
Composition Root, a Null Object implementation should instead be injected
when there’s no reasonable implementation available.

¡	Application components should only have a single constructor. Overloaded con-
structors lead to ambiguity. For reusable class libraries, like the BCL, having mul-
tiple constructors often makes sense; for application components, it doesn’t.

¡	Method Injection is the act of passing Dependencies on method invocations.
¡	Where either a Dependency or a Dependency’s consumer can differ for each

operation, you can apply Method Injection. This can be useful for add-in sce-
narios where some runtime context needs to be passed along to the add-in’s
public API, or when a data-centric object requires a Dependency for a certain
operation, as will often be the case with domain Entities.

¡	Method Injection is unsuited for use inside the Composition Root because it
leads to Temporal Coupling.

¡	A method that accepts a Dependency through Method Injection shouldn’t
store that Dependency. This leads to Temporal Coupling, Captive Depen-
dencies, or hidden side effects. Dependencies should only be stored with Con-
structor Injection and Property Injection.

¡	A Local Default is a default implementation of a Dependency that originates
in the same module or layer.

¡	Property Injection allows class libraries to be open for extension, because it
lets callers change the library’s default behavior.

¡	Property Injection may look simple, but when properly implemented, it tends
to be more complex compared to Constructor Injection.

¡	Beyond optional Dependencies within reusable libraries, the applicability of
Property Injection is limited, and Constructor Injection is usually a better
fit. Constructor Injection simplifies the class, allows the Composition Root
to be in control over the value that all consumers get, and prevents Temporal
Coupling.

124

5DI anti-patterns

In this chapter
¡	Creating tightly coupled code with controL freAk

¡	Requesting a class’s DePenDencies with a
service LocAtor

¡	Making a voLAtiLe DePenDency globally available
with Ambient context

¡	Forcing a particular constructor signature with
constrAineD construction

Many dishes require food to be cooked in a pan with oil. If you’re not experienced
with the recipe at hand, you might start heating the oil, and then turn your back to
read the recipe. But once you’re done cutting the vegetables, the oil is smoking. You
might think that the smoking oil means the pan is hot and ready for cooking. This is
a common misconception with inexperienced cooks. When oils start to smoke, they
also start to break down. This is called their smoke point. Not only do most oils taste
awful once heated past their smoke point, they form harmful compounds and lose
beneficial antioxidants.

In the previous chapter, we briefly compared design patterns to recipes. A pattern
provides a common language we can use to succinctly discuss a complex concept.

 125

When the concept (or rather, the implementation) becomes warped, we have an
anti-pattern on our hands.

DEFINITION An anti-pattern is a commonly occurring solution to a problem,
which generates decidedly negative consequences, although other docu-
mented solutions that prove to be more effective are available.1

Heating oil past its smoke point is a typical example of what can be considered to be a
cooking anti-pattern. It’s a commonly occurring mistake. Many inexperienced cooks
do this because it seems a reasonable thing to do, but loss of taste and unhealthful
foods are negative consequences.

Anti-patterns are, more or less, a formalized way of describing common mistakes that
people make again and again. In this chapter, we’ll describe some common anti-patterns
related to DI. During our career, we’ve seen all of them in use in one form or other, and
we’ve been guilty of applying all of them ourselves.

In many cases, anti-patterns represent sincere attempts at implementing DI in an
application. But because of not fully complying with DI fundamentals, the implemen-
tations can morph into solutions that do more harm than good. Learning about these
anti-patterns can give you an idea about what traps to be aware of as you venture into
your first DI projects. But even if you’ve been applying DI for years, it’s still easy to make
mistakes.

WARNING This chapter is different from the other chapters because most of
the code we’ll show you gives examples of how not to implement DI. Don’t try
this at home!

Anti-patterns can be fixed by refactoring the code toward one of the DI patterns intro-
duced in chapter 4. Exactly how difficult it is to fix each occurrence depends on the
details of the implementation. For each anti-pattern, we’ll supply some generalized
guidance on how to refactor it toward a better pattern.

NOTE Because it isn’t the main topic of this book, our coverage of refactoring
from a DI anti-pattern to a DI pattern is constrained by the space of this chap-
ter. If you’re interested in learning more about how you can move an existing
application in the direction of DI, an entire book discusses refactoring such
applications: Working Effectively with Legacy Code (Michael C. Feathers, Prentice
Hall, 2004). Although it doesn’t deal exclusively with DI, it covers many of the
same concepts we do here.

Legacy code sometimes requires drastic measures to make your code Testable. This
often means taking small steps to prevent accidentally breaking a previously working
application. In some cases, an anti-pattern might be the most appropriate temporary
solution. Even though the application of an anti-pattern might be an improvement

1 William J. Brown et al., AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (Wiley
Computer Publishing, 1998), 7.

126 ChapTEr 5 DI anti-patterns

over the original code, it’s important to note that this doesn’t make it any less an
anti-pattern; other documented and repeatable solutions exist that are proven to be
more effective. The anti-patterns covered in this chapter are listed in table 5.1.

Table 5.1 DI anti-patterns

Anti-pattern Description

controL freAk As opposed to inversion of controL, DePenDencies
are controlled directly.

service LocAtor An implicit service can serve DePenDencies to con-
sumers, but it isn’t guaranteed to do so.

Ambient context Makes a single DePenDency available through a
static accessor.

constrAineD construction Constructors are assumed to have a particular
signature.

The rest of this chapter describes each anti-pattern in greater detail, presenting them
in order of importance. You can read from start to finish or only read the ones you’re
interested in — each has a self-contained section. If you decide to read only part of this
chapter, we recommend that you read Control Freak and Service Locator.

Just as Constructor Injection is the most important DI pattern, Control Freak
is the most frequently occurring of the anti-patterns. It effectively prevents you from
applying any kind of proper DI, so we’ll need to focus on this anti-pattern before we
address the others — and so should you. But because Service Locator looks like it’s
solving a problem, it’s the most dangerous. We’ll address that in section 5.2.

 127ContRol FReak

5.1 control freak

What’s the opposite of Inversion of Control? Originally the term Inversion of
Control was coined to identify the opposite of the normal state of affairs, but we can’t
talk about the “Business as Usual” anti-pattern. Instead, Control Freak describes a
class that won’t relinquish control of its Volatile Dependencies.

DEFINITION The Control Freak anti-pattern occurs every time you depend
on a Volatile Dependency in any place other than a Composition Root.
It’s a violation of the Dependency Inversion Principle that we discussed in
section 3.1.2.

As an example, the Control Freak anti-pattern happens when you create a new
instance of a Volatile Dependency by using the new keyword. The following listing
demonstrates an implementation of the Control Freak anti-pattern.

Listing 5.1 A CONTrOl frEak anti-pattern example

public class HomeController : Controller
{
 public ViewResult Index()
 {
 var service = new ProductService();

 var products = service.GetFeaturedProducts();
 return this.View(products);
 }
}

Every time you create a Volatile Dependency, you explicitly state that you’re going to
control the lifetime of the instance and that no one else will get a chance to Intercept that
particular object. Although the new keyword is a code smell when it comes to Vola-
tile Dependencies, you don’t need to worry about using it for Stable Dependencies.2

NOTE In general, the new keyword isn’t suddenly “illegal,” but you should
refrain from using it to get instances of Volatile Dependencies outside the
Composition Root. Also, be aware of static classes. Static classes can also be
Volatile Dependencies. Although you’ll never use the new keyword on a static
class, depending on them causes the same problems.

The most blatant example of Control Freak is when you make no effort to introduce
Abstractions in your code. You saw several examples of that in chapter 2 when Mary
implemented her e-commerce application (section 2.1). Such an approach makes no
attempt to introduce DI. But even where developers have heard about DI and compos-
ability, the Control Freak anti-pattern can often be found in some variation.

HomeController creates a new
instance of the VolAtIle DepenDency,
ProductService, causing tightly
coupled code.

2 Code smells are certain structures in code that indicate design problems with the code and impact its
quality.

128 ChapTEr 5 DI anti-patterns

In the next sections, we’ll show you some examples that resemble code we’ve seen
used in production. In every case, the developers had the best intentions of program-
ming to interfaces, but never understood the underlying forces and motivations.

5.1.1 Example: control freak through newing up DepenDencieS

Many developers have heard about the principle of programming to interfaces but don’t
understand the deeper rationale behind it. In an attempt to do the right thing or to fol-
low best practices, they write code that doesn’t make much sense. For example, in listing
3.9, you saw an example of a ProductService that uses an instance of the IProduct
Repository interface to retrieve a list of featured products. As a reminder, the following
repeats the relevant code:

public IEnumerable<DiscountedProduct> GetFeaturedProducts()
{
 return
 from product in this.repository.GetFeaturedProducts()
 select product.ApplyDiscountFor(this.userContext);
}

The salient point is that the repository member variable represents an Abstraction.
In chapter 3, you saw how the repository field can be populated via Constructor
Injection, but we’ve seen other, more naïve attempts. The following listing shows one
such attempt.

Listing 5.2 Newing up a ProductRepository

private readonly IProductRepository repository;

public ProductService()
{
 this.repository = new SqlProductRepository();
}

The repository field is declared as the IProductRepository interface, so any
member in the ProductService class (such as GetFeaturedProducts) programs to
an interface. Although this sounds like the right thing to do, not much is gained
from doing so because, at runtime, the type will always be a SqlProductRepository.
There’s no way you can Intercept or change the repository variable unless you
change the code and recompile. Additionally, you don’t gain much by defining a
variable as an Abstraction if you hard-code it to always have a specific concrete
type. Directly newing up Dependencies is one example of the Control Freak
anti-pattern.

Before we get to the analysis and possible ways to address the resulting issues gener-
ated by a Control Freak, let’s look at some more examples to give you a better idea
of the context and common failed attempts. In the next example, it’s apparent that the
solution isn’t optimal. Most developers will attempt to refine their approach.

An example of the control freAk
anti-pattern, this directly creates
a new instance in the constructor,
causing tightly coupled code.

 129ContRol FReak

5.1.2 Example: control freak through factories

The most common and erroneous attempt to fix the evident problems from newing
up Dependencies involves a factory of some sort. When it comes to factories, there are
several options. We’ll quickly cover each of the following:

¡	Concrete Factory
¡	Abstract Factory
¡	Static Factory

If told that she could only deal with the IProductRepository Abstraction, Mary
Rowan (from chapter 2) would introduce a ProductRepositoryFactory that would
produce the instances she needs to get. Let’s listen in as she discusses this approach
with her colleague Jens. We predict that their discussion will, conveniently, cover the
factory options we’ve listed.

Mary: We need an instance of IProductRepository in this ProductService class. But
IProductRepository is an interface, so we can’t just create new instances of it, and
our consultant says that we shouldn’t create new instances of SqlProductRepository
either.

Jens: What about some sort of factory?
Mary: Yes, I was thinking the same thing, but I’m not sure how to proceed. I don’t understand

how it solves our problem. Look here —

Mary starts to write some code to demonstrate her problem. This is the code that Mary
writes:

public class ProductRepositoryFactory
{
 public IProductRepository Create()
 {
 return new SqlProductRepository();
 }
}

CONCrETE faCTOry

Mary: This ProductRepositoryFactory encapsulates knowledge about how to cre-
ate ProductRepository instances, but it doesn’t solve the problem, because we’d
have to use it in the ProductService like this:

var factory = new ProductRepositoryFactory();
this.repository = factory.Create();

See? Now we need to create a new instance of the ProductRepositoryFactory class
in the ProductService, but that still hard-codes the use of SqlProductRepository.
The only thing we’ve achieved is moving the problem into another class.

Jens: Yes, I see — couldn’t we solve the problem with an Abstract Factory instead?

Let’s pause Mary and Jens’ discussion to evaluate what happened. Mary is entirely
correct that a Concrete Factory class doesn’t solve the Control Freak issue but only

130 ChapTEr 5 DI anti-patterns

moves it around. It makes the code more complex without adding any value. Product
Service now directly controls the lifetime of the factory, and the factory directly con-
trols the lifetime of ProductRepository, so you still can’t Intercept or replace the
Repository instance at runtime.

NOTE Don’t conclude from this section that we generally oppose the use of
Concrete Factory classes. A Concrete Factory can solve other problems, such as
code repetition, by encapsulating complex creation logic. It, however, doesn’t
provide any value with regards to DI. Use it when it makes sense.

It’s fairly evident that a Concrete Factory won’t solve any DI problems, and we’ve never
seen it used successfully in this fashion. Jens’ comment about Abstract Factory sounds
more promising.

abSTraCT faCTOry

Let’s resume Mary and Jens’ discussion and hear what Jens has to say about Abstract
Factory.

Jens: What if we made the factory abstract, like this?

public interface IProductRepositoryFactory
{
 IProductRepository Create();
}

This means we haven’t hard-coded any references to SqlProductRepository, and we
can use the factory in the ProductService to get instances of IProductRepository.

Mary: But now that the factory is abstract, how do we get a new instance of it?
Jens: We can create an implementation of it that returns SqlProductService instances.
Mary: Yes, but how do we create an instance of that?
Jens: We just new it up in the ProductService ... Oh. Wait —
Mary: That would put us back where we started.

Mary and Jens quickly realize that an Abstract Factory doesn’t change their situation.
Their original conundrum was that they needed an instance of the abstract IProduct
Repository, and now they need an instance of the abstract IProductRepository
Factory instead.

Abstract Factories are commonly overused
Abstract Factory is one of the patterns from the original design patterns book.3 The
Abstract Factory pattern is more common than you may realize. The names of the classes
involved often hide this fact (for instance, by not ending in Factory).

When it comes to DI, however, Abstract Factories are often overused. In chapter 6, we’ll
return to the Abstract Factory pattern and see why it’s more often than not a code smell.

3 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994), 87.

 131ContRol FReak

Now that Mary and Jens have rejected the Abstract Factory as a viable option, one dam-
aging option is still open. Mary and Jens are about to reach a conclusion.

STaTiC faCTOry

Let’s listen as Mary and Jens decide on an approach that they think will work.

Mary: Let’s make a Static Factory. Let me show you:

public static class ProductRepositoryFactory
{
 public static IProductRepository Create()
 {
 return new SqlProductRepository();
 }
}

Now that the class is static, we don’t need to deal with how to create it.

Jens: But we’ve still hard-coded that we return SqlProductRepository instances, so does
it help us in any way?

Mary: We could deal with this via a configuration setting that determines which type of
ProductRepository to create. Like this:

public static IProductRepository Create()
{
 IConfigurationRoot configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .Build();

 string repositoryType = configuration["productRepository"];

 switch (repositoryType)
 {
 case "sql": return new SqlProductRepository();
 case "azure": return AzureProductRepository();
 default: throw new InvalidOperationException("...");
 }
}

See? This way we can determine whether we should use the SQL Server–based imple-
mentation or the Microsoft Azure–based implementation, and we don’t even need to
recompile the application to change from one to the other.

Jens: Cool! That’s what we’ll do. That consultant must be happy now!

NOTE Mary and Jens’ static ProductRepositoryFactory reads from the con-
figuration file at runtime, but recall from section 2.3.3 that this is problematic:
Only the finished application should rely on configuration files. Other parts
of the application, such as the ProductRepositoryFactory, shouldn’t request
values from a configuration file but, instead, should be configurable by their
callers.

132 ChapTEr 5 DI anti-patterns

There are several reasons why such a Static Factory doesn’t provide a satisfactory solu-
tion to the original goal of programming to interfaces. Take a look at the Dependency
graph in figure 5.1.

All classes need to reference the abstract IProductRepository as follows:

¡	ProductService because it consumes IProductRepository instances
¡	ProductRepositoryFactory because it creates IProductRepository instances
¡	AzureProductRepository and SqlProductRepository because they implement

IProductRepository

ProductRepositoryFactory depends on both the AzureProductRepository
and SqlProductRepository classes. Because ProductService directly depends on
ProductRepositoryFactory, it also depends on both concrete IProductRepository
implementations — recall from section 4.1.4 that dependencies are transitive.

We’re not making this up
If we were the consultants in this example, we wouldn’t be at all happy. In fact, such
a solution was suggested on a project Mark was involved with, and Steven has experi-
enced similar designs multiple times in the past. The project Mark was involved with was
a pretty big project that targeted a central business area of a Fortune 500 company. Due
to the complexity of the application, proper modularization was important. Unfortunately,
Mark became involved with the project too late, and his suggestions were dismissed
because they involved dramatic changes to the already-developed code base.

Mark moved on to other projects, but later learned that although the team managed
to deliver enough to fulfill the contract, the project was considered a failure and heads
rolled. It’d be unreasonable to claim that the project failed only because DI wasn’t
employed, but the approach taken was symptomatic of a lack of proper design.

A static ProductRepositoryFactory
is used by ProductService to create
IProductRepository derivatives.

ProductService

Azure-
ProductRepository

ProductRepository-
Factory

Sql-
ProductRepository

IProductRepository

creates

uses

uses

exposes

creates

The factory depends on the
concrete repository
implementations and drags along
these DEPENDENCIES. This causes
ProductService to implicitly
depend on them as well because
dependencies are transitive.

Figure 5.1 dEpENdENCy graph for the proposed ProductRepositoryFactory solution

 133ContRol FReak

As long as ProductService has a dependency on the static ProductRepository Factory,
you have unsolvable design issues. If you define the static ProductRepository Factory
in the domain layer, it means that the domain layer needs to depend on the data access
layer, because ProductRepositoryFactory creates a SqlProduct Repository that’s
located in that layer. The data access layer, however, already depends on the domain
layer because SqlProductRepository uses types and Abstractions like Product
and IProductRepository from that layer. This causes a circular reference between
the two projects. Additionally, if you move ProductRepositoryFactory into the data
access layer, you still need a dependency from the domain layer to the data access layer
because ProductService depends on ProductRepositoryFactory. This still causes a
circular dependency. Figure 5.2 shows this design issue.

No matter how you move your types around, the only way to prevent these circular
dependencies between projects is by creating a single project for all types. This isn’t a
viable option, however, because it tightly couples the domain layer to the data access
layer and disallows your data access layer from being replaced.

Instead of loosely coupled IProductRepository implementations, Mary and Jens
end up with tightly coupled modules. Even worse, the factory always drags along all
implementations — even those that aren’t needed! If they host on Azure, they still need
to distribute Commerce.SqlDataAccess.dll (for example) with their application.

If Mary and Jens ever need a third type of IProductRepository, they’ll have to
change the factory and recompile their solution. Although their solution may be con-
figurable, it isn’t extensible; if a separate team, or even company, needs to create a new
Repository, they’ll have no options without access to the source code. It’s also impos-
sible to replace the concrete IProductRepository implementations with test-specific
implementations, because that requires defining the IProductRepository instance at
runtime, instead of statically in a configuration file at design time.

Because it depends on both
IProductRepository and
SqlProductRepository, no
matter where you place
ProductRepositoryFactory,
it causes a cyclic dependency
between the domain layer
and the data access layer.

ProductService

ProductRepository-
Factory

Sql-
ProductRepository

IProductRepository

Domain library

SQL data access library

creates

uses

uses

exposes

Figure 5.2 Cyclic dependency between the domain and the data access layers that’s caused by the
static ProductRepositoryFactory

134 ChapTEr 5 DI anti-patterns

In short, a Static Factory may seem to solve the problem but, in reality, only com-
pounds it. Even in the best cases, it forces you to reference Volatile Dependencies.
Another variation of this anti-pattern can be seen when overloaded constructors are
used in combination with Foreign Defaults, as you’ll see in the next example.

5.1.3 Example: control freak through overloaded constructors

Constructor overloads are fairly common in many .NET code bases (including the
BCL). Often, the many overloads provide reasonable defaults to one or two full-blown
constructors that take all relevant parameters as input. (This practice is called Construc-
tor Chaining.) At times, we see other uses when it comes to DI.

An all-too-common anti-pattern defines a test-specific constructor overload that
allows you to explicitly define a Dependency, although the production code uses
a parameterless constructor. This can be detrimental when the default implemen-
tation of the Dependency represents a Foreign Default rather than a Local
Default. As we explained in section 4.4.2, you typically want to supply all Volatile
Dependencies using Constructor Injection — even those that could be a Local
Default.

fOrEigN dEfaulT

A foreign DefAuLt is the opposite of a LocAL DefAuLt. It’s an implementation of a voLAtiLe
DePenDency that’s used as a default, even though it’s defined in a different module than
its consumer. As an example, let’s consider the Repository implementations you saw in
the sample e-commerce application throughout the previous chapters.

A service such as a ProductService requires an instance of an IProductRepository
to work. In many cases, when you develop such applications, you have a reasonable
implementation in mind: one that implements the desired functionality by reading and
writing data to and from a relational database. It would be tempting to use such an imple-
mentation as the default. The problem is that the default implementation you have in
mind (SqlProductRepository) is defined in a different module. This forces you to take
an undesirable dependency on the data access layer.

Dragging along unwanted modules robs you of many of the benefits of loose cou-
pling, which were discussed in chapter 1. It becomes harder to reuse the domain
layer module because it drags along the data access module, although you may want
to use that in a different context. It also makes parallel development more difficult
because the ProductService class now depends directly on the SqlProduct
Repository class.

The following listing shows the ProductService class with a default and an overloaded
constructor. It’s an example of what not to do.

 135ContRol FReak

Listing 5.3 ProductService with multiple constructors

private readonly IProductRepository repository;

public ProductService()
 : this(new SqlProductRepository())
{
}

public ProductService(IProductRepository repository)
{
 if (repository == null)
 throw new ArgumentNullException("repository");

 this.repository = repository;
}

At first sight, this coding style might seem like the best of both worlds. It allows fake
Dependencies to be supplied for the sake of unit testing; whereas, the class can still be
conveniently created without having to supply its Dependencies. The following exam-
ple shows this style:

var productService = new ProductService();

By letting ProductService create the SqlProductRepository Volatile Dependency,
you again force strong coupling between modules. Although ProductService can be
reused with different IProductRepository implementations, by supplying them via
the most flexible constructor overload while testing, it disables the ability to Intercept
the IProductRepository instance in the application.

Now that you’ve seen a few of examples of Control Freak, we hope you have a
better idea what to look for — occurrences of the new keyword next to Volatile Depen-
dencies. This may enable you to avoid the most obvious traps. But if you need to untan-
gle yourself from an existing occurrence of this anti-pattern, the next section will help
you deal with such a task.

5.1.4 Analysis of control freak

Control Freak is the antithesis of Inversion of Control. When you directly control
the creation of Volatile Dependencies, you end up with tightly coupled code, miss-
ing many (if not all) of the benefits of loose coupling outlined in chapter 1.

Control Freak is the most common DI anti-pattern. It represents the default way
of creating instances in most programming languages, so it can be observed even in
applications where developers have never considered DI. It’s such a natural and deeply

Parameterless constructor forwards the
SqlProductRepository foreIgn DefAult to
the overloaded constructor. This causes
the domain layer to be coupled to the
SQL data access layer.

Injection constructor accepts a required
IProductRepository and stores it in the
repository field

136 ChapTEr 5 DI anti-patterns

rooted way to create new objects that many developers find it difficult to discard. Even
when they begin to think about DI, they have a hard time shaking the mindset that
they must somehow control when and where instances are created. Letting go of that
control can be a difficult mental leap to make; but, even if you make it, there are other,
although lesser, pitfalls to avoid.

ThE NEgaTivE EffECTS Of ThE CONTrOl frEak aNTi-paTTErN

With the tightly coupled code that’s the result of Control Freak, many benefits of
modular design are potentially lost. These were covered in each of the previous sec-
tions, but to summarize:

¡	Although you can configure an application to use one of multiple preconfigured DepenDen-
cieS, you can’t replace them at will. It isn’t possible to provide an implementation
that was created after the application was compiled, and it certainly isn’t possible
to provide specific instances as an implementation.

¡	It becomes harder to reuse the consuming module because it drags with it DepenDencieS that
may be undesirable in the new context. As an example of this, consider a module that,
through the use of a Foreign Default, depends on ASP.NET Core libraries.
This makes it harder to reuse that module as part of an application that should’t
or can’t depend on ASP.NET Core (for example, a Windows Service or mobile
phone application).

¡	It makes parallel development more difficult. This is because the consuming applica-
tion is tightly coupled to all implementations of its Dependencies.

¡	teStability suffers. Test Doubles can’t be used as substitutes for the Dependency.

With careful design, you can still implement tightly coupled applications with clearly
defined responsibilities so that maintainability doesn’t suffer. But even so, the cost is
too high, and you’ll retain many limitations. Given the amount of effort required to
accomplish that, there’s no reason to continue investing in Control Freak. You need
to move away from Control Freak and toward proper DI.

rEfaCTOriNg frOm CONTrOl frEak TOward di
To get rid of Control Freak, you need to refactor your code toward one of the proper
DI design patterns presented in chapter 4. As an initial step, you should use the guid-
ance given in figure 4.9 to determine which pattern to aim for. In most cases, this will
be Constructor Injection. The refactoring steps are as follows:

1 Ensure that you’re programming to an Abstraction. In the examples, this was
already the case; but in other situations, you may need to first extract an interface
and change variable declarations.

2 If you create a particular implementation of a Dependency in multiple places,
move them all to a single creation method. Make sure this method’s return value
is expressed as the Abstraction and not the concrete type.

 137ContRol FReak

3 Now that you have only a single place where you create the instance, move this
creation out of the consuming class by implementing one of the DI patterns,
such as Constructor Injection.

In the case of the ProductService examples in the previous sections, Constructor
Injection is an excellent solution.

Listing 5.4 Refactoring away from CONTrOl frEak using CONSTruCTOr iNjECTiON

public class ProductService : IProductService
{
 private readonly IProductRepository repository;

 public ProductService(IProductRepository repository)
 {
 if (repository == null)
 throw new ArgumentNullException("repository");

 this.repository = repository;
 }
}

Control Freak is by far the most damaging anti-pattern, but even when you have it
under control, more subtle issues can arise. The next sections look at more anti-patterns.
Although they’re less problematic than Control Freak, they also tend to be easier to
resolve, so be on the lookout, and fix them as they’re discovered.

138 ChapTEr 5 DI anti-patterns

5.2 SerVice locator

It can be difficult to give up on the idea of directly controlling Dependencies, so many
developers take Static Factories (such as the one described in section 5.1.2) to new levels.
This leads to the Service Locator anti-pattern.

DEFINITION A Service Locator supplies application components out-
side the Composition Root with access to an unbounded set of Volatile
Dependencies.

As it’s most commonly implemented, the Service Locator is a Static Factory that can
be configured with concrete services before the first consumer begins to use it. (But
you’ll equally also find abstract Service Locators.) This could conceivably happen in
the Composition Root. Depending on the particular implementation, the Service
Locator can be configured with code by reading a configuration file or by using a
combination thereof. The following listing shows the Service Locator anti-pattern
in action.

Listing 5.5 Using the SErviCE lOCaTOr anti-pattern

public class HomeController : Controller
{
 public HomeController() { }

 public ViewResult Index()
 {
 IProductService service =
 Locator.GetService<IProductService>();

 var products = service.GetFeaturedProducts();

 return this.View(products);
 }
}

Instead of statically defining the list of required Dependencies, HomeController
has a parameterless constructor, requesting its Dependencies later. This hides
these Dependencies from HomeController’s consumers and makes HomeController
harder to use and test. Figure 5.3 shows the interaction in listing 5.5, where you
can see the relationship between the Service Locator and the ProductService
implementation.

Years ago, it was quite controversial to call Service Locator an anti-pattern. The
controversy is over: Service Locator is an anti-pattern. But don’t be surprised to find
code bases that have this anti-pattern sprinkled all over the place.

HomeController has a
parameterless constructor.

HomeController requests an
IProductService instance from
the static Locator class.

Uses the requested
IProductService, as
usual

HomeController uses the IProductService interface and requests
an IProductService instance from the SERVICE LOCATOR, which then
returns an instance of whatever concrete implementation it’s
configured to return.

A SERVICE LOCATOR’S prime
responsibility is to serve
instances of services when
consumers request them.

Client HomeController

Service Locator ProductService

IProductServiceuses uses

returns

requests an IProductService

Figure 5.3 Interaction between HomeController and SErviCE lOCaTOr

 139seRviCe loCatoR

5.2 SerVice locator

It can be difficult to give up on the idea of directly controlling Dependencies, so many
developers take Static Factories (such as the one described in section 5.1.2) to new levels.
This leads to the Service Locator anti-pattern.

DEFINITION A Service Locator supplies application components out-
side the Composition Root with access to an unbounded set of Volatile
Dependencies.

As it’s most commonly implemented, the Service Locator is a Static Factory that can
be configured with concrete services before the first consumer begins to use it. (But
you’ll equally also find abstract Service Locators.) This could conceivably happen in
the Composition Root. Depending on the particular implementation, the Service
Locator can be configured with code by reading a configuration file or by using a
combination thereof. The following listing shows the Service Locator anti-pattern
in action.

Listing 5.5 Using the SErviCE lOCaTOr anti-pattern

public class HomeController : Controller
{
 public HomeController() { }

 public ViewResult Index()
 {
 IProductService service =
 Locator.GetService<IProductService>();

 var products = service.GetFeaturedProducts();

 return this.View(products);
 }
}

Instead of statically defining the list of required Dependencies, HomeController
has a parameterless constructor, requesting its Dependencies later. This hides
these Dependencies from HomeController’s consumers and makes HomeController
harder to use and test. Figure 5.3 shows the interaction in listing 5.5, where you
can see the relationship between the Service Locator and the ProductService
implementation.

Years ago, it was quite controversial to call Service Locator an anti-pattern. The
controversy is over: Service Locator is an anti-pattern. But don’t be surprised to find
code bases that have this anti-pattern sprinkled all over the place.

HomeController has a
parameterless constructor.

HomeController requests an
IProductService instance from
the static Locator class.

Uses the requested
IProductService, as
usual

HomeController uses the IProductService interface and requests
an IProductService instance from the SERVICE LOCATOR, which then
returns an instance of whatever concrete implementation it’s
configured to return.

A SERVICE LOCATOR’S prime
responsibility is to serve
instances of services when
consumers request them.

Client HomeController

Service Locator ProductService

IProductServiceuses uses

returns

requests an IProductService

Figure 5.3 Interaction between HomeController and SErviCE lOCaTOr

Our personal history with SErviCE lOCaTOr

service LocAtor and I (Mark) had an intense relationship for a couple of years before we
parted ways. Although I can’t remember exactly when I first came across a well-known
article that described service LocAtor as a pattern,4 it provided me with a potential solu-
tion to a problem that I’d been pondering for some time: how to inject DePenDencies. As
described, the service LocAtor pattern seemed like the answer to all my issues, and I
quickly set forth to develop a reusable library based on the pattern, which I conveniently
named “Service Locator.”

In 2007, I released a complete rewrite of the library, targeting Enterprise Library 2.5 Not
long after that, I abandoned the library because I realized that it was an anti-pattern. Ste-
ven’s story is quite similar to mine.

In 2009, the Common Service Locator (CSL) open source project was released.6 CSL is
a reusable library that implements the service LocAtor pattern, similar to Mark’s Service
Locator library. It’s an AbstrAction over the resolve API of Di contAiners, which allows
other reusable libraries to resolve DePenDencies without having to take a hard depen-
dency on a particular Di contAiner. Application developers are then able to plug in their
own Di contAiner.

Inspired by the CSL, I (Steven) started to develop my own Di contAiner, a simple CSL
implementation. Because of being a CSL implementation, I conveniently called my library
“Simple Service Locator.” Like Mark, it didn’t take long for me to realize that service LocA-
tor is an anti-pattern that neither application developers nor reusable libraries should
use. I therefore removed the dependency on CSL and renamed the Di contAiner “Simple
Injector” (https://simpleinjector.org).

4 Martin Fowler, “Inversion of Control Containers and the Dependency Injection pattern,” 2004,
https://martinfowler.com/articles/injection.html.

5 https://blogs.msdn.microsoft.com/ploeh/2007/03/15/service-locator-2-released/.
6 https://github.com/unitycontainer/commonservicelocator.

https://simpleinjector.org
https://martinfowler.com/articles/injection.html
https://blogs.msdn.microsoft.com/ploeh/2007/03/15/service-locator-2-released/
https://github.com/unitycontainer/commonservicelocator

140 ChapTEr 5 DI anti-patterns

It’s important to note that if you look at only the static structure of classes, a DI Container
looks like a Service Locator. The difference is subtle and lies not in the mechanics of
implementation, but in how you use it. In essence, asking a container or locator to resolve
a complete object graph from the Composition Root is proper usage. Asking it for granu-
lar services from anywhere else but the Composition Root implies the Service Locator
anti-pattern. Let’s review an example that shows Service Locator in action.

5.2.1 Example: ProductService using a SerVice locator

Let’s return to our tried-and-tested ProductService, which requires an instance of
the IProductRepository interface. Assuming we were to apply the Service Locator
anti-pattern, ProductService would use the static GetService method, as shown in
the following listing.

Listing 5.6 Using a SErviCE lOCaTOr inside a constructor

public class ProductService : IProductService
{
 private readonly IProductRepository repository;

 public ProductService()
 {
 this.repository = Locator.GetService<IProductRepository>();
 }

 public IEnumerable<DiscountedProduct> GetFeaturedProducts() { ... }
}

In this example, we implement the GetService method using generic type parameters
to indicate the type of service being requested. You could also use a Type argument to
indicate the type, if that’s more to your liking.

As the following listing shows, this implementation of the Locator class is as short
as possible. We could have added Guard Clauses and error handling, but we wanted
to highlight the core behavior. The code could also include a feature that enables it to
load its configuration from a file, but we’ll leave that as an exercise for you.

Listing 5.7 A simple SErviCE lOCaTOr implementation

public static class Locator
{
 private static Dictionary<Type, object> services =
 new Dictionary<Type, object>();

 public static void Register<T>(T service)
 {
 services[typeof(T)] = service;
 }

The static Locator class
holds all the configured
services in an internal
dictionary that maps
the abstract types to
each concrete instance.

 141seRviCe loCatoR

 public static T GetService<T>()
 {
 return (T)services[typeof(T)];
 }

 public static void Reset()
 {
 services.Clear();
 }
}

Clients such as ProductService can use the GetService method to request an instance
of the abstract type T. Because this example code contains no Guard Clauses or error
handling, the method throws a rather cryptic KeyNotFoundException if the requested
type has no entry in the dictionary. You can imagine how to add code to throw a more
descriptive exception.

The GetService method can only return an instance of the requested type if it has
previously been inserted in the internal dictionary. This can be done with the Register
method. Again, this example code contains no Guard Clause, so it would be possible to
Register a null value, but a more robust implementation shouldn’t allow that. This
implementation also caches registered instances forever, but it isn’t that hard to come
up with an implementation that allows creating new instances on every call to Get
Service. In certain cases, particularly when unit testing, it’s important to be able to
reset the Service Locator. That functionality is provided by the Reset method, which
clears the internal dictionary.

Classes like ProductService rely on the service to be available in the Service Loca-
tor, so it’s important that it’s previously configured. In a unit test, this could be done
with a Test Double implemented by a Stub, as can be seen in the following listing.7

Listing 5.8 A unit test depending on a SErviCE lOCaTOr

[Fact]
public void GetFeaturedProductsWillReturnInstance()
{
 // Arrange
 var stub = ProductRepositoryStub();

 Locator.Reset();

 Locator.Register<IProductRepository>(stub);

 var sut = new ProductService();

The GetService method
allows resolving an
arbitrary AbstrActIon.

7 For more on Test Doubles, see Gerard Meszaros’ xUnit Test Patterns: Refactoring Test Code
(Addison-Wesley, 2007), 522.

Creates a Stub for the
IProductRepository interface

Resets the Locator to its default
settings to prevent previous
tests from influencing this test

Uses the static Register method to
configure the serVIce locAtor with
the Stub instance

142 ChapTEr 5 DI anti-patterns

 // Act
 var result = sut.GetFeaturedProducts();

 // Assert
 Assert.NotNull(result);
}

The example shows how the static Register method is used to configure the Service
Locator with the Stub instance. If this is done before ProductService is constructed,
as shown in the example, ProductService uses the configured Stub to work against
ProductRepository. In the full production application, the Service Locator will be
configured with the correct ProductRepository implementation in the Composition
Root.

This way of locating Dependencies from the ProductService class definitely works
if our only success criterion is that the Dependency can be used and replaced at will.
But it has some serious shortcomings.

5.2.2 Analysis of SerVice locator

Service Locator is a dangerous pattern because it almost works. You can locate
Dependencies from consuming classes, and you can replace those Dependencies
with different implementations — even with Test Doubles from unit tests. When you
apply the analysis model outlined in chapter 1 to evaluate whether Service Locator
can match the benefits of modular application design, you’ll find that it fits in most
regards:

¡	You can support late binding by changing the registration.
¡	You can develop code in parallel, because you’re programming against inter-

faces, replacing modules at will.
¡	You can achieve good separation of concerns, so nothing stops you from writing

maintainable code, but doing so becomes more difficult.
¡	You can replace Dependencies with Test Doubles, so Testability is ensured.

There’s only one area where Service Locator falls short, and that shouldn’t be taken
lightly.

NEgaTivE EffECTS Of ThE SErviCE lOCaTOr aNTi-paTTErN

The main problem with Service Locator is that it impacts the reusability of the classes
consuming it. This manifests itself in two ways:

¡	The class drags along the Service Locator as a redundant Dependency.
¡	The class makes it non-obvious what its Dependencies are.

Let’s first look at the Dependency graph for the ProductService from the example in
section 5.2.1, shown in figure 5.4.

Executes the required task for the test at
hand; GetFeaturedProducts will now use
ProductRepositoryStub. The internal use
of Locator.GetService causes teMporAl
couplIng between Locator.Register and
GetFeaturedProducts.

Service Locator

ProductService uses a
SERVICE LOCATOR to
create instances of the
IProductRepository
interface.

IProductRepository

ProductService

Figure 5.4 dEpENdENCy
graph for a
ProductService

 143seRviCe loCatoR

 // Act
 var result = sut.GetFeaturedProducts();

 // Assert
 Assert.NotNull(result);
}

The example shows how the static Register method is used to configure the Service
Locator with the Stub instance. If this is done before ProductService is constructed,
as shown in the example, ProductService uses the configured Stub to work against
ProductRepository. In the full production application, the Service Locator will be
configured with the correct ProductRepository implementation in the Composition
Root.

This way of locating Dependencies from the ProductService class definitely works
if our only success criterion is that the Dependency can be used and replaced at will.
But it has some serious shortcomings.

5.2.2 Analysis of SerVice locator

Service Locator is a dangerous pattern because it almost works. You can locate
Dependencies from consuming classes, and you can replace those Dependencies
with different implementations — even with Test Doubles from unit tests. When you
apply the analysis model outlined in chapter 1 to evaluate whether Service Locator
can match the benefits of modular application design, you’ll find that it fits in most
regards:

¡	You can support late binding by changing the registration.
¡	You can develop code in parallel, because you’re programming against inter-

faces, replacing modules at will.
¡	You can achieve good separation of concerns, so nothing stops you from writing

maintainable code, but doing so becomes more difficult.
¡	You can replace Dependencies with Test Doubles, so Testability is ensured.

There’s only one area where Service Locator falls short, and that shouldn’t be taken
lightly.

NEgaTivE EffECTS Of ThE SErviCE lOCaTOr aNTi-paTTErN

The main problem with Service Locator is that it impacts the reusability of the classes
consuming it. This manifests itself in two ways:

¡	The class drags along the Service Locator as a redundant Dependency.
¡	The class makes it non-obvious what its Dependencies are.

Let’s first look at the Dependency graph for the ProductService from the example in
section 5.2.1, shown in figure 5.4.

Executes the required task for the test at
hand; GetFeaturedProducts will now use
ProductRepositoryStub. The internal use
of Locator.GetService causes teMporAl
couplIng between Locator.Register and
GetFeaturedProducts.

Service Locator

ProductService uses a
SERVICE LOCATOR to
create instances of the
IProductRepository
interface.

IProductRepository

ProductService

Figure 5.4 dEpENdENCy
graph for a
ProductService

In addition to the expected reference to IProductRepository, ProductService also
depends on the Locator class. This means that to reuse the ProductService class, you
must redistribute not only it and its relevant Dependency IProductRepository, but
also the Locator Dependency, which only exists for mechanical reasons. If the Locator
class is defined in a different module than ProductService and IProductRepository,
new applications wanting to reuse ProductService must accept that module too.

Perhaps we could even tolerate that extra
Dependency on Locator if it was truly neces-
sary for DI to work. We’d accept it as a tax to be
paid to gain other benefits. But there are bet-
ter options (such as Constructor Injection)
available, so this Dependency is redundant.
Moreover, neither this redundant Dependency
nor IProductRepository, its relevant counter-
part, is explicitly visible to developers wanting to
consume the ProductService class. Figure 5.5 shows that Visual Studio offers no guid-
ance on the use of this class.

If you want to create a new instance of the ProductService class, Visual Studio can only
tell you that the class has a parameterless constructor. But if you subsequently attempt to
run the code, you get a runtime error if you forgot to register an IProductRepository
instance with the Locator class. This is likely to happen if you don’t intimately know the
ProductService class.

NOTE Imagine that the code you write ships in an undocumented, obfuscated
.dll. How easy would it be for someone else to use? It’s possible to develop APIs
that are close to self documenting, and although doing so takes practice, it’s
a worthy goal. The problem with Service Locator is that any component
using it is being dishonest about its level of complexity. It looks simple as seen
through the public API, but it turns out to be complex — and you won’t find
out until you try to run it.

The ProductService class is far from self documenting: you can’t tell which Depen-
dencies must be present before it’ll work. In fact, the developers of ProductService
may even decide to add more Dependencies in future versions. That would mean that

Figure 5.5 The only thing Visual
Studio’s IntelliSense can tell us about
the ProductService class is that it
has a parameterless constructor. Its
dEpENdENCiES are invisible.

144 ChapTEr 5 DI anti-patterns

code that works for the current version can fail in a future version, and you aren’t
going to get a compiler error that warns you. Service Locator makes it easy to inad-
vertently introduce breaking changes.

The use of generics may trick you into thinking that a Service Locator is strongly
typed. But even an API like the one shown in listing 5.7 is weakly typed, because you
can request any type. Being able to compile code invoking the GetService<T> method
gives you no guarantee that it won’t throw exceptions left and right at runtime.

When unit testing, you have the additional problem that a Test Double registered
in one test case will lead to the Interdependent Tests code smell, because it remains in
memory when the next test case is executed. It’s therefore necessary to perform Fixture
Teardown after every test by invoking Locator.Reset().8 This is something that you
must manually remember to do, and it’s easy to forget.

It’s not about the mechanics
Although service LocAtors come in different forms and shapes, a common signature
looks something like this:

public T Resolve<T>()

It’s easy to think that every API with this signature is a service LocAtor, but that’s not the
case. In fact, this is the exact signature that most Di contAiners expose. It’s not the static
structure of an API that determines it as a service LocAtor, but rather the role the API
plays in the application.

An important aspect of the service LocAtor anti-pattern is that application components
query for DePenDencies instead of statically declaring them through their constructor. As
explained previously, there are quite a few downsides to doing this. When code that’s
part of the comPosition root queries for DePenDencies, however, these downsides don’t
exist.

Because the comPosition root already depends on everything else in the system (as we
discussed in section 4.1), it’s impossible for it to drag along an extra DePenDency. By defi-
nition, it knows about every DePenDency already. And it’s impossible for the comPosition
root to hide its DePenDencies — from whom does it hide them? Its role is to build object
graphs; it doesn’t need to expose those DePenDencies.

Querying for DePenDencies, even if through a Di contAiner, becomes a service LocAtor
if used incorrectly. When application code (as opposed to infrastructure code) actively
queries a service in order to be provided with required DePenDencies, then it has become
a service LocAtor.

IMPORTANT A DI Container encapsulated in a Composition Root isn’t a
Service Locator — it’s an infrastructure component.

8 For more on Fixture Teardown, see Gerard Meszaros’ xUnit Test Patterns, 100.

 145seRviCe loCatoR

A Service Locator may seem innocuous, but it can lead to all sorts of nasty runtime
errors. How do you avoid those problems? When you decide to get rid of a Service
Locator, you need to find a way to do it. As always, the default approach should be
Constructor Injection, unless one of the other DI patterns from chapter 4 provides
a better fit.

rEfaCTOriNg frOm SErviCE lOCaTOr TOward di
Because Constructor Injection statically declares a class’s Dependencies, it enables
the code to fail at compile time, assuming you practice Pure DI. When you use a DI
Container, on the other hand, you lose the ability to verify correctness at compile
time. Statically declaring a class’s Dependencies, however, still ensures that you can
verify the correctness of your application’s object graphs by asking the container to cre-
ate all object graphs for you. You can do this at application startup or as part of a unit/
integration test.

Some DI Containers even take this a step further and allow doing more-complex
analysis on the DI configuration. This allows detecting all kinds of common pitfalls. A
Service Locator, on the other hand, will be completely invisible to a DI Container,
making it impossible for it to do these kinds of verification on your behalf.

In many cases, a class that consumes a Service Locator may have calls to it spread
throughout its code base. In such cases, it acts as a replacement for the new statement.
When this is so, the first refactoring step is to consolidate the creation of each Depen-
dency in a single method.

If you don’t have a member field to hold an instance of the Dependency, you can
introduce such a field and make sure the rest of the code uses this field when it con-
sumes the Dependency. Mark the field readonly to ensure that it can’t be modified out-
side the constructor. Doing so forces you to assign the field from the constructor using
the Service Locator. You can now introduce a constructor parameter that assigns the
field instead of the Service Locator, which can then be removed.

NOTE Introducing a Dependency parameter to a constructor is likely to break
existing consumers, so it’s best to start with the top-most classes and work your
way down the Dependency graph.

Refactoring a class that uses Service Locator is similar to refactoring a class that uses
Control Freak. Section 5.1.4 contains further notes on refactoring Control Freak
implementations to use DI.

At first glance, Service Locator may look like a proper DI pattern, but don’t be
fooled: it may explicitly address loose coupling, but it sacrifices other concerns along
the way. The DI patterns presented in chapter 4 offer better alternatives with fewer
drawbacks. This is true for the Service Locator anti-pattern, as well as the other
anti-patterns presented in this chapter. Even though they’re different, they all share the
common trait that they can be resolved by one of the DI patterns from chapter 4.

146 ChapTEr 5 DI anti-patterns

5.3 ambient context

Related to Service Locator is the Ambient Context anti-pattern. Where a Service
Locator allows global access to an unrestricted set of Dependencies, an Ambient
Context makes a single strongly typed Dependency available through a static accessor.

DEFINITION An Ambient Context supplies application code outside the Com-
position Root with global access to a Volatile Dependency or its behavior by
the use of static class members.

The following listing shows the Ambient Context anti-pattern in action.

Listing 5.9 Using the ambiENT CONTExT anti-pattern

public string GetWelcomeMessage()
{
 ITimeProvider provider = TimeProvider.Current;
 DateTime now = provider.Now;

 string partOfDay = now.Hour < 6 ? "night" : "day";

 return string.Format("Good {0}.", partOfDay);
}

In this example, ITimeProvider presents an Abstraction that allows retrieving the
system’s current time. Because you might want to influence how time is perceived
by the application (for instance, for testing), you don’t want to call DateTime.Now
directly. Instead of letting consumers call DateTime.Now directly, a good solution is to
hide access to DateTime.Now behind an Abstraction. It’s all too tempting, however,
to allow consumers to access the default implementation through a static property or
method. In listing 5.9, the Current property allows access to the default ITimeProvider
implementation.

Ambient Context is similar in structure to the Singleton pattern.9 Both allow access
to a Dependency by the use of static class members. The difference is that Ambient
Context allows its Dependency to be changed, whereas the Singleton pattern ensures
that its singular instance never changes.

NOTE The Singleton pattern should only be used either from within the Com-
position Root or when the Dependency is Stable. On the other hand, when
the Singleton pattern is abused to provide the application with global access to
a Volatile Dependency, its effects are identical to those of the Ambient Con-
text, as discussed in section 5.3.3.

The access to the system’s current time is a common need. Let’s dive a little bit deeper
into the ITimeProvider example.

The Current static property
represents the AMbIent context,
which allows access to an
ITimeProvider instance. This
hides the ITimeProvider
DepenDency and complicates
testing.

9 Erich Gamma et al., Design Patterns, 132.

 147ambient Context

5.3.1 Example: Accessing time through ambient context

There are many reasons one would need to exercise some control over time. Many
applications have business logic that depends on time or the progression of it. In the
previous example, you saw a simple case where we displayed a welcome message based
on the current time. Two other examples include these:

¡	Cost calculations based on day of the week. In some businesses, it’s normal for custom-
ers to pay more for services during the weekend.

¡	Sending notifications to users using different communication channels based on the time of
day. For instance, the business might want email notifications to be sent during
working hours, and by text message or pager, otherwise.

Because the need to work with time is such a widespread requirement, developers often
feel the urge to simplify access to such a Volatile Dependency by using an Ambient
Context. The following listing shows an example ITimeProvider Abstraction.

Listing 5.10 An ITimeProvider abSTraCTiON

public interface ITimeProvider
{
 DateTime Now { get; }
}

The following listing shows a simplistic implementation of the TimeProvider class for
this ITimeProvider Abstraction.

Listing 5.11 A TimeProvider ambiENT CONTExT implementation

public static class TimeProvider
{
 private static ITimeProvider current =
 new DefaultTimeProvider();

 public static ITimeProvider Current
 {
 get { return current; }
 set { current = value; }
 }

 private class DefaultTimeProvider : ITimeProvider
 {
 public DateTime Now { get { return DateTime.Now; } }
 }
}

Allows consumers to acquire
the system’s current time

A static class that allows global
access to a configured
ITimeProvider implementation

Initialization of a locAl DefAult
that uses the real system clock

Static property that allows global
read/write access to the ITimeProvider
VolAtIle DepenDency

Default
implementation
that uses the
real system
clock

148 ChapTEr 5 DI anti-patterns

Using the TimeProvider implementation, you can unit test the previously defined
GetWelcomeMessage method. The following listing shows such test.

Listing 5.12 A unit test depending on an ambiENT CONTExT

[Fact]
public void SaysGoodDayDuringDayTime()
{
 // Arrange
 DateTime dayTime = DateTime.Parse("20190101 6:00");

 var stub = new TimeProviderStub { Now = dayTime };

 TimeProvider.Current = stub;

 var sut = new WelcomeMessageGenerator();

 // Act
 string actualMessage = sut.GetWelcomeMessage();

 // Assert
 Assert.Equal(expected: "Good day.", actual: actualMessage);
}

This is one variation of the Ambient Context anti-pattern. Other common variations
you might encounter are these:

¡	An ambient context that allows consumers to make use of the behavior of a globally
configured DepenDency. With the previous example in mind, the TimeProvider
could supply consumers with a static GetCurrentTime method that hides the
used Dependency by calling it internally.

¡	An ambient context that merges the static accessor with the interface into a single
abStraction. In respect to the previous example, that would mean that you have
a single TimeProvider base class that contains both the Now instance property
and the static Current property.

¡	An ambient context where delegates are used instead of a custom-defined abStraction.
Instead of having a fairly descriptive ITimeProvider interface, you could achieve
the same using a Func<DateTime> delegate.

Ambient Context can come in many shapes and implementations. Again, the caution
regarding Ambient Context is that it provides either direct or indirect access to a
Volatile Dependency by means of some static class member. Before doing the analy-
sis and evaluating possible ways to fix the problems caused by Ambient Context, let’s
look at another common example of Ambient Context.

Replaces the default
implementation with a
Stub that always returns
the specified dayTime

WelcomeMessageGenerator’s
API is dishonest because its
constructor hides the fact that
ITimeProvider is a required
DepenDency.

There’s teMporAl couplIng
between TimeProvider.Current
and GetWelcomeMessage.

 149ambient Context

5.3.2 Example: Logging through ambient context

Another common case where developers tend to take a shortcut and step into the
Ambient Context trap is when it comes to applying logging to their applications.
Any real application requires the ability to write information about errors and other
uncommon conditions to a file or other source for later analysis. Many developers feel
that logging is such a special activity that it deserves “bending the rules.” You might
find code similar to that shown in the next listing even in the code bases of developers
who are quite familiar with DI.

Listing 5.13 ambiENT CONTExT when logging

public class MessageGenerator
{
 private static readonly ILog Logger =
 LogManager.GetLogger(typeof(MessageGenerator));

 public string GetWelcomeMessage()
 {
 Logger.Info("GetWelcomeMessage called.");

 return string.Format(
 "Hello. Current time is: {0}.", DateTime.Now);
 }
}

There are several reasons why Ambient Context is so ubiquitous in many applications
when it comes to logging. First, code like listing 5.13 is typically the first example that
logging libraries show in their documentation. Developers copy those examples out of
ignorance. We can’t blame them; developers typically assume that the library designers
know and communicate best practices. Unfortunately, this isn’t always the case. Docu-
mentation examples are typically written for simplicity, not best practice, even if their
designers understand those best practices.

Apart from that, developers tend to apply Ambient Context for loggers because
they need logging in almost every class in their application. Injecting it in the construc-
tor could easily lead to constructors with too many Dependencies. This is indeed a code
smell called Constructor Over-injection, and we’ll discuss it in chapter 6.

Jeff Atwood wrote a great blog post back in 2008 about the danger of logging.10 A few
of his arguments follow:

¡	Logging means more code, which obscures your application code.
¡	Logging isn’t free, and logging a lot means constantly writing to disk.
¡	The more you log, the less you can find.
¡	If it’s worth saving to a log file, it’s worth showing in the user interface.

Acquires an ILog VolAtIle
DepenDency through the
static LogManager AMbIent
context and stores it in a
private static field. This
hides the DepenDency and
makes it difficult to test
MessageGenerator.

Uses the
Logger field
to log every

time the
method is

called

10 https://blog.codinghorror.com/the-problem-with-logging/.

https://blog.codinghorror.com/the-problem-with-logging/

150 ChapTEr 5 DI anti-patterns

When working on Stack Overflow, Jeff removed most of the logging, relying exclusively
on logging of unhandled exceptions. If it’s an error, an exception should be thrown.

We wholeheartedly agree with Jeff’s analysis, but would also like to approach this
from a design perspective. We’ve found that with good application design, you’ll be
able to apply logging across common components, without having it pollute your entire
code base. Chapter 10 describes in detail how to design such an application.

NOTE By no means are we stating that you shouldn’t log. Logging is a crucial
part of any application, as it is in the applications we build. What we’re saying,
however, is that you should design your application in such way that there’s only
a handful of classes in your system affected by logging. If most of your application
components are responsible for logging, your code becomes harder to maintain.

There are many other examples of Ambient Context, but these two examples are so
common and widespread that we’ve seen them countless times in companies we’ve
consulted with. (We’ve even been guilty of introducing Ambient Context implemen-
tations ourselves in the past.) Now that you’ve seen the two most common examples of
Ambient Context, the next section discusses why it’s a problem and how to deal with it.

5.3.3 Analysis of ambient context

Ambient Context is usually encountered when developers have a Cross-Cutting
Concern as a Volatile Dependency, which is used ubiquitously. This ubiquitous
nature makes developers think it justifies moving away from Constructor Injection.
It allows them to hide Dependencies and avoids the necessity of adding the Depen-
dency to many constructors in their application.

NEgaTivE EffECTS Of ThE ambiENT CONTExT aNTi-paTTErN

The problems with Ambient Context are related to the problems with Service Loca-
tor. Here are the main issues:

¡	The Dependency is hidden.
¡	Testing becomes more difficult.
¡	It becomes hard to change the Dependency based on its context.
¡	There’s Temporal Coupling between the initialization of the Dependency and

its usage.

When you hide a Dependency by allowing global access to it through Ambient Con-
text, it becomes easier to hide the fact that a class has too many Dependencies. This is
related to the Constructor Over-injection code smell and is typically an indication that
you’re violating the Single Responsibility Principle.

When a class has many Dependencies, it’s an indication that it’s doing more than
it should. It’s theoretically possible to have a class with many Dependencies, while still
having just “one reason to change.”11 The larger the class, however, the less likely it is to
abide by this guidance. The use of Ambient Context hides the fact that classes might
have become too complex, and need to be refactored.

11 Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices (Prentice Hall, 2003), 95.

 151ambient Context

Ambient Context also makes testing more difficult because it presents a global
state. When a test changes the global state, as you saw in listing 5.12, it might influence
other tests. This is the case when tests run in parallel, but even sequentially executed
tests can be affected when a test forgets to revert its changes as part of its teardown.
Although these test-related issues can be mitigated, it means building a specially crafted
Ambient Context and either global or test-specific teardown logic. This adds com-
plexity, whereas the alternative doesn’t.

The use of an Ambient Context makes it hard to provide different consumers with
different implementations of the Dependency. For instance, say you need part of your
system to work with a moment in time that’s fixed at the start of the current request,
whereas other, possibly long-running operations, should get a Dependency that’s
live-updated.12 Providing consumers with different implementations of the Depen-
dency is exactly what happened in listing 5.13, as repeated here:

private static readonly ILog Logger =
 LogManager.GetLogger(typeof(MessageGenerator));

To be able to provide consumers with different implementations, the GetLogger API
requires the consumer to pass along its appropriate type information. This needlessly
complicates the consumer.

The use of an Ambient Context causes the usage of its Dependency coupled on a
temporal level. Unless you initialize the Ambient Context in the Composition Root,
the application fails when the class starts using the Dependency for the first time. We
rather want our applications to fail fast instead.

I’m using an abSTraCTiON; what can go wrong?
I (Steven) once worked for a client that had an enormous code base that used logging in a
fashion similar to listing 5.13. Logging was ever present. Because the developers wanted to
prevent a direct dependency on the logging library in question, log4net,13 they used another
third-party library to provide them with an AbstrAction over logging libraries. This library was
called Common.Logging.14 What didn’t help, though, was that the Common.Logging library
mimicked the API of log4net, which hid the fact that their projects often accidentally con-
tained a dependency on both libraries. This caused many classes to still depend on log4net.
More importantly, even though the application designers hid the use of log4net behind an
AbstrAction, there was still a dependency on a third-party library so that now every class
depended on the Ambient context provided by Common.Logging (similar to listing 5.13).

The problem started to surface when we discovered a bug in Common.Logging, which
caused a call to the static GetLogger method to fail on certain developer machines
when run inside of IIS. On those developer machines, it became impossible to start the
application, because the first call to LogManager.GetLogger would fail. Unfortunately,
for me, I was one of the two developers who had this problem.

12 This might seem far-fetched, but we’ve seen quite a few bugs in systems we’ve worked on over the years
that were caused by requests passing midnight or daylight saving.

13 https://logging.apache.org/log4net/.
14 https://github.com/net-commons/common-logging.

https://logging.apache.org/log4net/
https://github.com/net-commons/common-logging

152 ChapTEr 5 DI anti-patterns

Many developers in the organization helped us try to find a solution and spent countless
hours trying to figure out what was going on, but no one found a solution or workaround.
In the end, I commented out all the Ambient context calls for the code paths that I needed
to run locally for my particular feature. A refactoring toward DI was, unfortunately, not
feasible at that point in time.

It’s not my intention to pick on Common.Logging nor log4net, but this is the risk you take
when letting your application code take a dependency on third-party libraries. And it’s a
risk that’s exaggerated when you depend on a library’s Ambient context.

The moral of the story is that if the developers had used proper DI patterns instead of an
Ambient context, it’d have been simple for me to locally swap out the configured logger
for a fake one in the comPosition root that didn’t require Common.Logging to be loaded.
A few minutes of work would have saved the organization countless wasted hours.

Although Ambient Context isn’t as destructive as Service Locator, because it only
hides a single Volatile Dependency opposed to an arbitrary number of Dependen-
cies, it has no place in a well-designed code base. There are always better alternatives,
which is what we describe in the next section.

rEfaCTOriNg frOm ambiENT CONTExT TOward di
Don’t be surprised to see Ambient Context even in code bases where the developers
have a fairly good understanding of DI and the harm that Service Locator brings. It
can be hard to convince developers to move away from Ambient Context, because
they’re so accustomed to using it. On top of that, although refactoring a single class
toward DI isn’t hard, the underlying problems like ineffective and harmful logging
strategies are harder to change. Typically, there’s lots of code that logs for reasons that
aren’t always clear. Finding out whether these logging statements could be removed or
should be turned into exceptions instead can often be a slow process when the original
developers are long gone. Still, assuming a code base already applies DI, refactoring
away from Ambient Context toward DI is straightforward.

A class that consumes an Ambient Context typically contains one or a few calls to it,
possibly spread over multiple methods. Because the first refactoring step is to centralize
the call to the Ambient Context, the constructor is a good place to do this.

Create a private readonly field that can hold a reference to the Dependency and
assign it with the Ambient Context’s Dependency. The rest of the class’s code can
now use this new private field. The call to the Ambient Context can now be replaced
with a constructor parameter that assigns the field and a Guard Clause that ensures
the constructor parameter isn’t null. This new constructor parameter will likely cause
consumers to break. But if DI was applied already, this should only cause changes to the
Composition Root and the class’s tests. The following listing shows the (unsurprising)
result of the refactoring, when applied to the WelcomeMessageGenerator.

(continued)

 153ambient Context

Listing 5.14 Refactoring away from ambiENT CONTExT to CONSTruCTOr iNjECTiON

public class WelcomeMessageGenerator
{
 private readonly ITimeProvider timeProvider;

 public WelcomeMessageGenerator(ITimeProvider timeProvider)
 {
 if (timeProvider == null)
 throw new ArgumentNullException("timeProvider");

 this.timeProvider = timeProvider;
 }

 public string GetWelcomeMessage()
 {
 DateTime now = this.timeProvider.Now;
 ...
 }
}

Refactoring Ambient Context is relatively simple because, for the most part, you’ll
be doing it in an application that has already applied DI. For applications that don’t,
it’s better to fix Control Freak and Service Locator problems first before tackling
Ambient Context refactorings.

Ambient Context sounds like a great way to access commonly used Cross-Cutting
Concerns, but looks are deceiving. Although less problematic than Control Freak
and Service Locator, Ambient Context is typically a cover-up for larger design prob-
lems in the application. The patterns described in chapter 4 provide a better solution,
and in chapter 10, we’ll show how to design your applications in such way that logging
and other Cross-Cutting Concerns can be applied more easily and transparently
across the application.

The last anti-pattern considered in this chapter is Constrained Construction.
This often originates from the desire to attain late binding.

154 ChapTEr 5 DI anti-patterns

5.4 conStraineD conStruction

The biggest challenge of properly implementing DI is getting all classes with Depen-
dencies moved to a Composition Root. When you accomplish this, you’ve already
come a long way. Even so, there are still some traps to look out for.

A common mistake is to require Dependencies to have a constructor with a partic-
ular signature. This normally originates from the desire to attain late binding so that
Dependencies can be defined in an external configuration file and thereby changed
without recompiling the application.

DEFINITION Constrained Construction forces all implementations of a cer-
tain Abstraction to require their constructors to have an identical signature
with the goal of enabling late binding.

Be aware that this section applies only to scenarios where late binding is desired. In sce-
narios where you directly reference all Dependencies from the application’s root, you
won’t have this problem. But then again, you won’t have the ability to replace Depen-
dencies without recompiling the startup project, either. The following listing shows
the Constrained Construction anti-pattern in action.

Listing 5.15 CONSTraiNEd CONSTruCTiON anti-pattern example

public class SqlProductRepository : IProductRepository
{
 public SqlProductRepository(string connectionStr)
 {
 }
}

public class AzureProductRepository : IProductRepository
{
 public AzureProductRepository(string connectionStr)
 {
 }
}

All implementations of the IProductRepository Abstraction are forced to have a con-
structor with the same signature. In this example, the constructor should have exactly
one argument of type string. Although it’s perfectly fine for a class to have a Depen-
dency of type string, it’s a problem for those implementations to be forced to have an
identical constructor signature. In section 1.2.2, we briefly touched on this issue. This
section examines it more carefully.

5.4.1 Example: Late binding a ProductRepository

In the sample e-commerce application, some classes depend on the IProductRepository
interface. This means that to create those classes, you first need to create an IProduct
Repository implementation. At this point, you’ve learned that a Composition Root

Forces exact
signatures for
constructors in the
implementations of
IProductRepository

 155ConstRained ConstRuCtion

is the correct place to do this. In an ASP.NET Core application, this typically means
Startup. The following listing shows the relevant part that creates an instance of an
IProductRepository.

Listing 5.16 Implicitly constraining the ProductRepository constructor

string connectionString = this.Configuration
 .GetConnectionString("CommerceConnectionString");

var settings =
 this.Configuration.GetSection("AppSettings");

string productRepositoryTypeName =
 settings.GetValue<string>("ProductRepositoryType");

var productRepositoryType =
 Type.GetType(
 typeName: productRepositoryTypeName,
 throwOnError: true);

var constructorArguments =
 new object[] { connectionString };

IProductRepository repository =
 (IProductRepository)Activator.CreateInstance(
 productRepositoryType, constructorArguments);

The following code shows the corresponding configuration file:

{
 "ConnectionStrings": {
 "CommerceConnectionString":
 "Server=.;Database=MaryCommerce;Trusted_Connection=True;"
 },
 "AppSettings": {
 "ProductRepositoryType": "SqlProductRepository, Commerce.SqlDataAccess"
 },
}

The first thing that should trigger suspicion is that a connection string is read from the
configuration file. Why do you need a connection string if you plan to treat a Product
Repository as an Abstraction?

Although it’s perhaps a bit unlikely, you could choose to implement a Product
Repository with an in-memory database or an XML file. A REST-based storage service,
such as the Windows Azure Table Storage Service, offers a more realistic alternative,
although, once again this year, the most popular choice seems to be a relational data-
base. The ubiquity of databases makes it all too easy to forget that a connection string
implicitly represents an implementation choice.

Reads the connection string from
the application’s configuration file

Reads the name of the
repository type to create
from the AppSettings section
of the configuration file

Loads the Type object of the
repository type

Creates an instance of the
repository type, while
expecting a particular
signature. This call will
fail for components that
require a different
constructor signature.

156 ChapTEr 5 DI anti-patterns

To late bind an IProductRepository, you also need to determine which type has
been chosen as the implementation. This can be done by reading an assembly-qualified
type name from the configuration and creating a Type instance from that name. This
in itself isn’t problematic. The difficulty arises when you need to create an instance
of that type. Given a Type, you can create an instance using the Activator class. The
CreateInstance method invokes the type’s constructor, so you must supply the correct
constructor parameters to prevent an exception from being thrown. In this case, you
supply a connection string.

If you didn’t know anything else about the application other than the code in listing
5.16, you should by now be wondering why a connection string is passed as a construc-
tor argument to an unknown type. It wouldn’t make sense if the implementation was
based on a REST-based web service or an XML file.

Indeed, it doesn’t make sense because this represents an accidental constraint on
the Dependency’s constructor. In this case, you have an implicit requirement that any
implementation of IProductRepository should have a constructor that takes a single
string as input. This is in addition to the explicit constraint that the class must derive
from IProductRepository.

NOTE The implicit constraint that the constructor should take a single string
still leaves you a great degree of flexibility, because you can encode different
information in strings to be decoded later. Suppose instead that the constraint
is a constructor that takes a TimeSpan and a number, and you can begin to
imagine how limiting that would be.

You could argue that an IProductRepository based on an XML file would also require
a string as constructor parameter, although that string would be a filename and not a
connection string. But, conceptually, it’d still be weird because you’d have to define
that filename in the connectionStrings element of the configuration. (In any case,
we think such a hypothetical XmlProductRepository should take an XmlReader as a
constructor argument instead of a filename.)

TIP Modeling Dependency construction exclusively on explicit constraints
(interface or base class) is a better and more flexible option.

5.4.2 Analysis of conStraineD conStruction

In the previous example, the implicit constraint required implementers to have a con-
structor with a single string parameter. A more common constraint is that all imple-
mentations should have a parameterless constructor, so that the simplest form of
Activator.CreateInstance will work:

IProductRepository repository =
 (IProductRepository)Activator.CreateInstance(productRepositoryType);

 157ConstRained ConstRuCtion

Although this can be said to be the lowest common denominator, the cost in flexibility
is significant. No matter how you constrain object construction, you lose flexibility.

NEgaTivE EffECTS Of ThE CONSTraiNEd CONSTruCTiON aNTi-paTTErN

It might be tempting to declare that
all Dependency implementations
should have a parameterless con-
structor. After all, they could per-
form their initialization internally;
for example, reading configuration
data like connection strings directly
from the configuration file. But
this would limit you in other ways
because you might want to compose
an application as layers of instances
that encapsulate other instances. In
some cases, for example, you might want to share an instance between different con-
sumers, as illustrated in figure 5.6.

When you have more than one class requiring the same Dependency, you may want
to share a single instance among all those classes. This is possible only when you can
inject that instance from the outside. Although you could write code inside each of
those classes to read type information from a configuration file and use Activator.
CreateInstance to create the correct type of instance, it’d be really involved to share a
single instance this way. Instead, you’d have multiple instances of the same class taking
up more memory.

NOTE The fact that DI allows you to share a single instance among many con-
sumers doesn’t mean you should always do so. Sharing an instance saves mem-
ory but can introduce interaction-related problems, such as threading issues.
Whether you want to share an instance is closely related to the concept of
Object Lifetime, which is discussed in chapter 8.

Instead of imposing implicit constraints on how objects should be constructed, you
should implement your Composition Root so that it can deal with any kind of con-
structor or factory method you may throw at it. Now let’s take a look at how you can
refactor toward DI.

rEfaCTOriNg frOm CONSTraiNEd CONSTruCTiON TOward di
How can you deal with having no constraints on components’ constructors when you
need late binding? It may be tempting to introduce an Abstract Factory that can cre-
ate instances of the required Abstraction and then require the implementations of
those Abstract Factories to have a particular constructor signature. But doing so, how-
ever, is likely to cause complications of its own. Let’s examine such an approach.

ProductRepository ConsumerRepository

CommerceContext

injected into injected into

Figure 5.6 You want to create a single instance of the
CommerceContext class and inject that instance into
both Repositories.

158 ChapTEr 5 DI anti-patterns

Imagine using an Abstract Factory for the IProductRepository Abstraction. The
Abstract Factory scheme dictates that you also need an IProductRepositoryFactory
interface. Figure 5.7 illustrates this structure.

In this figure, IProductRepository represents the real Dependency. But to keep its
implementers free of implicit constraints, you attempt to solve the late-binding chal-
lenge by introducing an IProductRepositoryFactory. This will be used to create
instances of IProductRepository. A further requirement is that any factories have a
particular constructor signature.

Now let’s assume that you want to use an implementation of IProductRepository
that requires an instance of IUserContext to work, as shown in the next listing.

Listing 5.17 SqlProductRepository that requires an IUserContext

public class SqlProductRepository : IProductRepository
{
 private readonly IUserContext userContext;
 private readonly CommerceContext dbContext;

 public SqlProductRepository(
 IUserContext userContext, CommerceContext dbContext)
 {
 if (userContext == null)
 throw new ArgumentNullException("userContext");
 if (dbContext == null)
 throw new ArgumentNullException("dbContext");

 this.userContext = userContext;
 this.dbContext = dbContext;
 }
}

The SqlProductRepository class implements the IProductRepository interface, but
requires an instance of IUserContext. Because the only constructor isn’t a parameter-
less constructor, IProductRepositoryFactory will come in handy.

Currently, you want to use an implementation of IUserContext that’s based on ASP.NET
Core. You call this implementation AspNetUserContextAdapter (as we discussed in listing
3.12). Because the implementation depends on ASP.NET Core, it isn’t defined in the same
assembly as SqlProductRepository. And, because you don’t want to drag a reference to the
library that contains AspNetUserContextAdapter along with Sql ProductRepository, the
only solution is to implement SqlProductRepository Factory in a different assembly than
SqlProductRepository, as shown in figure 5.8.

IProductRepositoryFactory
IProductRepository

CreateRepository()
creates

Figure 5.7 An attempt to use
the Abstract Factory structure
to solve the late-binding
challenge

SqlProduct-
RepositoryFactory

To prevent coupling the SQL
data access library to the UI
library, the Factory class must
be implemented in an assembly
other than SqlProductRepository.

AspNetUserContext-
Adapter

SqlProduct-
Repository

User interface library SQL data access library

Library containing Factory

Figure 5.8 Dependency graph with SqlProductRepositoryFactory implemented in
a separate assembly

 159ConstRained ConstRuCtion

Imagine using an Abstract Factory for the IProductRepository Abstraction. The
Abstract Factory scheme dictates that you also need an IProductRepositoryFactory
interface. Figure 5.7 illustrates this structure.

In this figure, IProductRepository represents the real Dependency. But to keep its
implementers free of implicit constraints, you attempt to solve the late-binding chal-
lenge by introducing an IProductRepositoryFactory. This will be used to create
instances of IProductRepository. A further requirement is that any factories have a
particular constructor signature.

Now let’s assume that you want to use an implementation of IProductRepository
that requires an instance of IUserContext to work, as shown in the next listing.

Listing 5.17 SqlProductRepository that requires an IUserContext

public class SqlProductRepository : IProductRepository
{
 private readonly IUserContext userContext;
 private readonly CommerceContext dbContext;

 public SqlProductRepository(
 IUserContext userContext, CommerceContext dbContext)
 {
 if (userContext == null)
 throw new ArgumentNullException("userContext");
 if (dbContext == null)
 throw new ArgumentNullException("dbContext");

 this.userContext = userContext;
 this.dbContext = dbContext;
 }
}

The SqlProductRepository class implements the IProductRepository interface, but
requires an instance of IUserContext. Because the only constructor isn’t a parameter-
less constructor, IProductRepositoryFactory will come in handy.

Currently, you want to use an implementation of IUserContext that’s based on ASP.NET
Core. You call this implementation AspNetUserContextAdapter (as we discussed in listing
3.12). Because the implementation depends on ASP.NET Core, it isn’t defined in the same
assembly as SqlProductRepository. And, because you don’t want to drag a reference to the
library that contains AspNetUserContextAdapter along with Sql ProductRepository, the
only solution is to implement SqlProductRepository Factory in a different assembly than
SqlProductRepository, as shown in figure 5.8.

IProductRepositoryFactory
IProductRepository

CreateRepository()
creates

Figure 5.7 An attempt to use
the Abstract Factory structure
to solve the late-binding
challenge

SqlProduct-
RepositoryFactory

To prevent coupling the SQL
data access library to the UI
library, the Factory class must
be implemented in an assembly
other than SqlProductRepository.

AspNetUserContext-
Adapter

SqlProduct-
Repository

User interface library SQL data access library

Library containing Factory

Figure 5.8 Dependency graph with SqlProductRepositoryFactory implemented in
a separate assembly

The following listing shows a possible implementation for the SqlProductRepository
Factory.

Listing 5.18 Factory that creates SqlProductRepository instances

public class SqlProductRepositoryFactory
 : IProductRepositoryFactory
{
 private readonly string connectionString;

 public SqlProductRepositoryFactory(
 IConfigurationRoot configuration)
 {
 this.connectionString =
 configuration.GetConnectionString(
 "CommerceConnectionString");
 }

 public IProductRepository Create()
 {
 return new SqlProductRepository(
 new AspNetUserContextAdapter(),
 new CommerceContext(this.connectionString));
 }
}

Even though IProductRepository and IProductRepositoryFactory look like a cohe-
sive pair, it’s important to implement them in two different assemblies. This is because
the factory must have references to all Dependencies to be able to wire them together
correctly. By convention, the IProductRepositoryFactory implementation must
again use Constrained Construction so that you can write the assembly-qualified
type name in a configuration file and use Activator.CreateInstance to create an
instance.

Constructor with a particular signature that
all IProductRepositoryFactory

implementations must have. By accepting
Microsoft’s IConfigurationRoot, the factory

loads its required configuration values. It
also throws an error during construction in

case such a value is missing.

Loads the connection string
from the configuration file
and stores it for later use

Creates a new
SqlProductRepository
using DepenDencIes
that are located in
different assemblies

160 ChapTEr 5 DI anti-patterns

Every time you need to wire together a new combination of Dependencies, you must
implement a new factory that wires up exactly that combination, and then configure
the application to use that factory instead of the previous one. This means you can’t
define arbitrary combinations of Dependencies without writing and compiling code,
but you can do it without recompiling the application itself. Such an Abstract Factory
becomes an Abstract Composition Root that’s defined in an assembly separate from
the core application. Although this is possible, when you try to apply it, you’ll notice the
inflexibility that it causes.

Flexibility suffers because the Abstract Composition Root takes direct dependen-
cies on concrete types in other libraries to fulfill the needs of the object graphs it builds.
In the SqlProductRepositoryFactory example, the factory needs to create an instance
of AspNetUserContextAdapter to pass to SqlProductRepository. But what if the core
application wants to replace or Intercept the IUserContext implementation? This
forces changes to both the core application and the SqlProductRepositoryFactory
project. Another problem is that it becomes quite hard for these Abstract Factories to
manage Object Lifetime. This is the same problem as illustrated in figure 5.5.

To combat this inflexibility, the only feasible solution is to use a general-purpose DI
Container. Because DI Containers analyze constructor signatures using reflection,
the Abstract Composition Root doesn’t need to know the Dependencies used to con-
struct its components. The only thing the Abstract Composition Root needs to do
is specify the mapping between the Abstraction and the implementation. In other
words, the SQL data access Composition Root needs to specify that in case the appli-
cation requires an IProductRepository, an instance of SqlProductRepository should
be created.

TIP Using a DI Container can be an effective solution to prevent Constrained
Construction. In part 4, we’ll go into detail about how DI Containers work
and how to use them.

Abstract Composition Roots are only required when you truly need to be able to plug
in a new assembly without having to recompile any part of the existing application.
Most applications don’t need this amount of flexibility. Although you might want to be
able to replace the SQL data access layer with an Azure data access layer without hav-
ing to recompile the domain layer, it’s typically OK if this means you still have to make
changes to the startup project.

NOTE The Constrained Construction anti-pattern only applies when you
employ late binding. When you use early binding, the compiler ensures that
you never introduce implicit constraints on how components are constructed.
If you can get away with recompiling the startup project, you should keep your
Composition Root centralized in the startup project. Late binding introduces
extra complexity, and complexity increases maintenance costs.

 161Summary

Because DI is a set of patterns and techniques, no single tool can mechanically verify
whether you’ve applied it correctly. In chapter 4, we looked at patterns that describe
how DI can be used properly, but that’s only one side of the coin. It’s also important
to study how it’s possible to fail, even with the best of intentions. You can learn import-
ant lessons from failure, but you don’t have to always learn from your own mistakes —
sometimes you can learn from other people’s mistakes.

In this chapter, we’ve described the most common DI mistakes in the form of anti-pat-
terns. We’ve seen all these mistakes in real life on more than one occasion, and we confess
to being guilty of all of them. By now, you should know what to avoid and what you should
ideally be doing instead. There can still be issues that look as though they’re hard to solve,
however. The next chapter discusses such challenges and how to resolve them.

Summary

¡	An anti-pattern is a description of a commonly occurring solution to a problem
that generates decidedly negative consequences.

¡	Control Freak is the most dominating of the anti-patterns presented in this
chapter. It effectively prevents you from applying any kind of proper DI. It occurs
every time you depend on a Volatile Dependency in any place other than a
Composition Root.

¡	Although the new keyword is a code smell when it comes to Volatile Dependen-
cies, you don’t need to worry about using it for Stable Dependencies. In gen-
eral, the new keyword isn’t suddenly illegal, but you should refrain from using it
to get instances of Volatile Dependencies.

¡	Control Freak is a violation of the Dependency Inversion Principle.
¡	Control Freak represents the default way of creating instances in most pro-

gramming languages, so it can be observed even in applications where develop-
ers have never considered DI. It’s such a natural and deeply rooted way to create
new objects that many developers find it difficult to discard.

¡	A Foreign Default is the opposite of a Local Default. It’s an implementation
of a Dependency that’s used as a default even though it’s defined in a different
module than its consumer. Dragging along unwanted modules robs you of many
of the benefits of loose coupling.

¡	Service Locator is the most dangerous anti-pattern presented in this chapter
because it looks like it’s solving a problem. It supplies application components
outside the Composition Root with access to an unbounded set of Volatile
Dependencies.

¡	Service Locator impacts the reusability of the components consuming it. It makes
it non-obvious to a component’s consumers what its Dependencies are, makes
such a component dishonest about its level of complexity, and causes its consuming
components to drag along the Service Locator as a redundant Dependency.

162 ChapTEr 5 DI anti-patterns

¡	Service Locator prevents verification of the configuration of relationships
between classes. Constructor Injection in combination with Pure DI allows
verification at compile time; Constructor Injection in combination with a DI
Container allows verification at application startup or as part of a simple auto-
mated test.

¡	A static Service Locator causes Interdependent Tests, because it remains in
memory when the next test case is executed.

¡	It’s not the mechanical structure of an API that determines it as a Service Locator,
but rather the role the API plays in the application. Therefore, a DI Container
encapsulated in a Composition Root isn’t a Service Locator — it’s an infra-
structure component.

¡	Ambient Context supplies application code outside the Composition Root
with global access to a Volatile Dependency or its behavior by using static class
members.

¡	Ambient Context is similar in structure to the Singleton pattern with the excep-
tion that Ambient Context allows its Dependency to be changed. The Single-
ton pattern ensures that the single created instance will never change.

¡	Ambient Context is usually encountered when developers have a Cross-Cutting
Concern as a Dependency that’s used ubiquitously, making them think it justifies
moving away from Constructor Injection.

¡	Ambient Context causes the Volatile Dependency to become hidden, com-
plicates testing, and makes it difficult to change the Dependency based on its
context.

¡	Constrained Construction forces all implementations of a certain Abstraction
to have a particular constructor signature with the goal of enabling late bind-
ing. It limits flexibility and might force implementations to do their initialization
internally.

¡	Constrained Construction can be prevented by utilizing a general-purpose
DI Container because DI Containers analyze constructor signatures using
reflection.

¡	If you can get away with recompiling the startup project, you should keep your
Composition Root centralized in the startup project and refrain from using late
binding. Late binding introduces extra complexity, and complexity increases
maintenance costs.

163

6Code smells

In this chapter
¡	Handling Constructor Over-injection code smells

¡	Detecting and preventing overuse of Abstract
Factories

¡	Fixing cyclic DePenDency code smells

You may have noticed that I (Mark) have a fascination with sauce béarnaise — or
sauce hollandaise. One reason is that it tastes so good; another is that it’s a bit tricky
to make. In addition to the challenges of production, it presents an entirely differ-
ent problem: it must be served immediately (or so I thought).

This used to be less than ideal when guests arrived. Instead of being able to casu-
ally greet my guests and make them feel welcome and relaxed, I was frantically whip-
ping the sauce in the kitchen, leaving them to entertain themselves. After a couple of
repeat performances, my sociable wife decided to take matters into her own hands.
We live across the street from a restaurant, so one day she chatted with the cooks to
find out whether there’s a trick that would enable me to prepare a genuine hollan-
daise well in advance. It turns out there is. Now I can serve a delicious sauce for my
guests without first subjecting them to an atmosphere of stress and frenzy.

164 ChapTEr 6 Code smells

Each craft has its own tricks of the trade. This is also true for software development,
in general, and for DI, in particular. Challenges keep popping up. In many cases, there
are well-known ways to deal with them. Over the years, we’ve seen people struggle when
learning DI, and many of the issues were similar in nature. In this chapter, we’ll look at
the most common code smells that appear when you apply DI to a code base and how
you can resolve them. When we’re finished, you should be able to better recognize and
handle these situations when they occur.

Similar to the two previous chapters in this part of the book, this chapter is organized
as a catalog — this time, a catalog of problems and solutions (or, if you will, refactorings).
You can read each section independently or in sequence, as you prefer. The purpose of
each section is to familiarize you with a solution to a commonly occurring problem so that
you’ll be better equipped to deal with it if it occurs. But first, let’s define code smells.

DEFINITION “A code smell is a hint that something might be wrong, not a cer-
tainty. A perfectly good idiom may be considered a code smell because it’s
often misused, or because there’s a simpler alternative that works better in
most cases. Calling something a code smell is not an attack; it’s a sign that a
closer look is warranted.” (http://wiki.c2.com/?CodeSmell)

Where an anti-pattern is a description of a commonly occurring solution to a problem that
generates decidedly negative consequences, a code smell, on the other hand, is a code
construct that might cause problems. Code smells simply warrant further investigation.

6.1 Dealing with the Constructor Over-injection code smell
Unless you have special requirements, Constructor Injection (we covered this in
chapter 4) should be your preferred injection pattern. Although Constructor Injec-
tion is easy to implement and use, it makes developers uncomfortable when their con-
structors start looking something like that shown next.

Listing 6.1 Constructor with many dEpENdENCiES

public OrderService(
 IOrderRepository orderRepository,
 IMessageService messageService,
 IBillingSystem billingSystem,
 ILocationService locationService,
 IInventoryManagement inventoryManagement)
{
 if (orderRepository == null)
 throw new ArgumentNullException("orderRepository");
 if (messageService == null)
 throw new ArgumentNullException("messageService");
 if (billingSystem == null)
 throw new ArgumentNullException("billingSystem");
 if (locationService == null)
 throw new ArgumentNullException("locationService");
 if (inventoryManagement == null)
 throw new ArgumentNullException("inventoryManagement");

OrderService
DepenDencIes

http://wiki.c2.com/?CodeSmell

 165Dealing with the Constructor Over-injection code smell

 this.orderRepository = orderRepository;
 this.messageService = messageService;
 this.billingSystem = billingSystem;
 this.locationService = locationService;
 this.inventoryManagement = inventoryManagement;
}

Having many Dependencies is an indication of a Single Responsibility Principle
(SRP) violation. SRP violations lead to code that’s hard to maintain.

In this section, we’ll look at the apparent problem of a growing number of construc-
tor parameters and why Constructor Injection is a good thing rather than a bad
thing. As you’ll see, it doesn’t mean you should accept long parameter lists in construc-
tors, so we’ll also review what you can do about those. You can refactor away from Con-
structor Over-injection in many ways, so we’ll also discuss two common approaches you
can take to refactor those occurrences, namely, Facade Services and domain events:

¡	Facade Services are abstract Facades1 that are related to Parameter Objects.2 Instead
of combining components and exposing them as parameters, however, a Facade
Service exposes only the encapsulated behavior, while hiding the constituents.

¡	With domain events, you capture actions that can trigger a change to the state of
the application you’re developing.

6.1.1 Recognizing Constructor Over-injection

When a constructor’s parameter list grows too large, we call the phenomenon Con-
structor Over-injection and consider it a code smell.3 It’s a general issue unrelated to, but
magnified by, DI. Although your initial reaction might be to dismiss Constructor
Injection because of Constructor Over-injection, we should be thankful that a general
design issue is revealed to us.

We can’t say we blame anyone for disliking a constructor as shown in listing 6.1, but don’t
blame Constructor Injection. We can agree that a constructor with five parameters is a
code smell, but it indicates a violation of the SRP rather than a problem related to DI.

NOTE Constructor Injection makes it easy to spot SRP violations. Instead
of feeling uneasy about Constructor Over-injection, you should embrace it as
a fortunate side effect of Constructor Injection. It’s a signal that alerts you
when a class takes on too much responsibility.

Our personal threshold lies at four constructor arguments. When we add a third argu-
ment, we already begin considering whether we could design things differently, but we
can live with four arguments for a few classes. Your limit may be different, but when
you cross it, it’s time to investigate.

1 See Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1994), 185.

2 See Martin Fowler et al., Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), 295.
3 Jeffrey Palermo, “Constructor over-injection smell — follow up,” 2010, https://mng.bz/jrzr.

https://mng.bz/jrzr

166 ChapTEr 6 Code smells

How you refactor a particular class that has grown too big depends on the particular
circumstances: the object model already in place, the domain, business logic, and so
on. Splitting up a budding God Class into smaller, more focused classes according to
well-known design patterns is always a good move.4 Still, there are cases where business
requirements oblige you to do many different things at the same time. This is often the
case at the boundary of an application. Think about a coarse-grained web service oper-
ation that triggers many business events.

NOTE A tempting, but erroneous, attempt to resolve Constructor Over-injection
is through the introduction of Property Injection, perhaps even by moving
those properties into a base class. Although the number of constructor Depen-
dencies can be reduced by replacing them with properties, such a change
doesn’t lower the class’s complexity, which should be your primary focus.

You can design and implement collaborators so that they don’t violate the SRP. In chap-
ter 9, we’ll discuss how the Decorator5 design pattern can help you stack Cross-Cut-
ting Concerns instead of injecting them into consumers as services. This can eliminate
many constructor arguments. In some scenarios, a single entry point needs to orches-
trate many Dependencies. One example is a web service operation that triggers a com-
plex interaction of many different services. The entry point of a scheduled batch job
can face the same issue.

The sample e-commerce application that we look at from time to time needs to be
able to receive orders. This is often best done by a separate application or subsystem
because, at that point, the semantics of the transaction change. As long as you’re look-
ing at a shopping basket, you can dynamically calculate unit prices, exchange rates, and
discounts. But when a customer places an order, all of those values must be captured
and frozen as they were presented when the customer approved the order. Table 6.1
provides an overview of the order process.

Table 6.1 When the order subsystem approves an order, it must perform a number of different actions.

Action Required dEpENdENCiES

Update the order IOrderRepository

Send a receipt email to the customer IMessageService

Notify the accounting system about the invoice
amount

IBillingSystem

Select the best warehouses to pick and ship the
order based on the items purchased and proximity
to the shipping address

ILocationService,
IInventoryManagement

Ask the selected warehouses to pick and ship the
entire order or parts of it

IInventoryManagement

4 A God Class is an object that controls too many other objects in the system and has grown beyond all
logic to become The Class That Does Everything. See William J. Brown et al., AntiPatterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis (Wiley Computer Publishing, 1998), 73.

5 See Erich Gamma et al., Design Patterns, 175.

 167Dealing with the Constructor Over-injection code smell

Five different Dependencies are required just to approve an order. Imagine the other
Dependencies you’d need to handle other order-related operations!

NOTE Most examples you saw up to this page had Guard Clauses. By now, we think
we’ve stressed the importance of Guard Clauses enough. For the sake of brevity,
from this point on, we’ll omit most of the Guard Clauses, starting with listing 6.2.

Let’s review how this would look if the consuming OrderService class directly imported
all of these Dependencies. The following listing gives a quick overview of the internals
of this class.

 Listing 6.2 Original OrderService class with many dEpENdENCiES

public class OrderService : IOrderService
{
 private readonly IOrderRepository orderRepository;
 private readonly IMessageService messageService;
 private readonly IBillingSystem billingSystem;
 private readonly ILocationService locationService;
 private readonly IInventoryManagement inventoryManagement;

 public OrderService(
 IOrderRepository orderRepository,
 IMessageService messageService,
 IBillingSystem billingSystem,
 ILocationService locationService,
 IInventoryManagement inventoryManagement)
 {
 this.orderRepository = orderRepository;
 this.messageService = messageService;
 this.billingSystem = billingSystem;
 this.locationService = locationService;
 this.inventoryManagement = inventoryManagement;
 }

 public void ApproveOrder(Order order)
 {
 this.UpdateOrder(order);
 this.Notify(order);
 }

 private void UpdateOrder(Order order)
 {
 order.Approve();
 this.orderRepository.Save(order);
 }

 private void Notify(Order order)
 {
 this.messageService.SendReceipt(new OrderReceipt { ... });
 this.billingSystem.NotifyAccounting(...);
 this.Fulfill(order);
 }

Updates the database with
the order’s new status

Notifies other systems
about the order

168 ChapTEr 6 Code smells

 private void Fulfill(Order order)
 {
 this.locationService.FindWarehouses(...);
 this.inventoryManagement.NotifyWarehouses(...);
 }
}

To keep the example manageable, we omitted most of the details of the class. But it’s
not hard to imagine such a class to be rather large and complex. If you let Order
Service directly consume all five Dependencies, you get many fine-grained Depen-
dencies. The structure is shown in figure 6.1.

If you use Constructor Injection for the OrderService class (which you should),
you have a constructor with five parameters. This is too many and indicates that Order
Service has too many responsibilities. On the other hand, all of these Dependencies
are required because the OrderService class must implement all of the desired func-
tionality when it receives a new order. You can address this issue by redesigning Order
Service using Facade Services refactoring. We’ll show you how to do that in the next
section.

6.1.2 Refactoring from Constructor Over-injection to Facade Services

When redesigning OrderService, the first thing you need to do is to look for
natural clusters of interaction. The interaction between ILocationService and
IInventoryManagement should immediately draw your attention, because you use
them to find the closest warehouses that can fulfill the order. This could potentially be
a complex algorithm.

After you’ve selected the warehouses, you need to notify them about the order. If
you think about this a little further, ILocationService is an implementation detail of
notifying the appropriate warehouses about the order. The entire interaction can be
hidden behind an IOrderFulfillment interface, like this:

public interface IOrderFulfillment
{
 void Fulfill(Order order);
}

Finds closest warehouse(s)

Notifies warehouse(s)
about order

OrderService

IOrderRepository IMessageService IBillingSystem
IInventory-

Management
ILocationService

Figure 6.1 OrderService has five direct dEpENdENCiES, which suggests an SRP violation.

 169Dealing with the Constructor Over-injection code smell

The next listing shows the implementation of the new IOrderFulfillment interface.

Listing 6.3 OrderFulfillment class

public class OrderFulfillment : IOrderFulfillment
{
 private readonly ILocationService locationService;
 private readonly IInventoryManagement inventoryManagement;

 public OrderFulfillment(
 ILocationService locationService,
 IInventoryManagement inventoryManagement)
 {
 this.locationService = locationService;
 this.inventoryManagement = inventoryManagement;
 }

 public void Fulfill(Order order)
 {
 this.locationService.FindWarehouses(...);
 this.inventoryManagement.NotifyWarehouses(...);
 }
}

Interestingly, order fulfillment sounds a lot like a domain concept in its own right.
Chances are that you discovered an implicit domain concept and made it explicit.

The default implementation of IOrderFulfillment consumes the two original
Dependencies, so it has a constructor with two parameters, which is fine. As a further
benefit, you’ve encapsulated the algorithm for finding the best warehouse for a given
order into a reusable component. The new IOrderFulfillment Abstraction is a
Facade Service because it hides the two interacting Dependencies with their behavior.

DEFINITION A Facade Service hides a natural cluster of interacting Dependencies,
along with their behavior, behind a single Abstraction.

This refactoring merges two Dependencies into one but leaves you with four
Dependencies on the OrderService class, as shown in figure 6.2. You also need to
look for other opportunities to aggregate Dependencies into a Facade.

The OrderService class only has four Dependencies, and the OrderFulfillment
class contains two. That’s not a bad start, but you can simplify OrderService even more.
The next thing you may notice is that all the requirements involve notifying other sys-
tems about the order. This suggests that you can define a common Abstraction that
models notifications, perhaps something like this:

public interface INotificationService
{
 void OrderApproved(Order order);
}

170 ChapTEr 6 Code smells

Each notification to an external system can be implemented using this interface.
But you may wonder how this helps, because you’ve wrapped each Dependency
in a new interface. The number of Dependencies didn’t decrease, so did you gain
anything?

Yes, you did. Because all three notifications implement the same interface, you can
wrap them in a Composite6 pattern as can be seen in listing 6.4. This shows another
implementation of INotificationService that wraps a collection of INotification
Service instances and invokes the OrderAccepted method on all of those.

OrderService with its original five
DEPENDENCIES before the refactoring.

OrderService after the IOrderFulfilment
Facade Service is introduced. The
OrderService now has only
four DEPENDENCIES.

Hides these two interfaces
with their behavior
behind a Facade Service

Facade
Service

OrderService

OrderFulfilment

IOrderRepository

IOrderRepository IMessageService IBillingSystem IInventory-
Management

ILocationService

IMessageService IBillingSystem

IInventory-
Management

ILocationService

IOrderFulfilment

OrderService

Figure 6.2 Two dEpENdENCiES of OrderService aggregated behind a Facade Service

6 See Erich Gamma et al., Design Patterns, 163.

 171Dealing with the Constructor Over-injection code smell

Listing 6.4 Composite wrapping INotificationService instances

public class CompositeNotificationService
 : INotificationService
{
 IEnumerable<INotificationService> services;

 public CompositeNotificationService(
 IEnumerable<INotificationService> services)
 {
 this.services = services;
 }

 public void OrderApproved(Order order)
 {
 foreach (var service in this.services)
 {
 service.OrderApproved(order);
 }
 }
}

CompositeNotificationService implements INotificationService and forwards
an incoming call to its wrapped implementations. This prevents the consumer from
having to deal with multiple implementations, which is an implementation detail. This
means that you can let OrderService depend on a single INotificationService,
which leaves just two Dependencies, as shown next.

Listing 6.5 Refactored OrderService with two dEpENdENCiES

public class OrderService : IOrderService
{
 private readonly IOrderRepository orderRepository;
 private readonly INotificationService notificationService;

 public OrderService(
 IOrderRepository orderRepository,
 INotificationService notificationService)
 {
 this.orderRepository = orderRepository;
 this.notificationService = notificationService;
 }

 public void ApproveOrder(Order order)
 {
 this.UpdateOrder(order);

 this.notificationService.OrderApproved(order);
 }

 private void UpdateOrder(Order order)
 {
 order.Approve();
 this.orderRepository.Save(order);
 }
}

Implements
INotificationService

Wraps a sequence of
INotificationService instances

Forwards an incoming call
to all wrapped instances

172 ChapTEr 6 Code smells

From a conceptual perspective, this also makes sense. At a high level, you don’t need
to care about the details of how OrderService notifies other systems, but you do care
that it does. This reduces OrderService to only two Dependencies, which is a more
reasonable number.

From the consumer’s perspective, OrderService is functionally unchanged,
making this a true refactoring. On the other hand, on the conceptual level, Order
Service is changed. Its responsibility is now to receive an order, save it, and notify
other systems. The details of which systems are notified and how this is implemented
have been pushed down to a more detailed level. Figure 6.3 shows the final Depen-
dencies of OrderService.

Using the CompositeNotificationService, you can now create the OrderService
with its Dependencies.

Listing 6.6 COmpOSiTiON rOOT refactored using Facade Services

var repository = new SqlOrderRepository(connectionString);

var notificationService = new CompositeNotificationService(
 new INotificationService[]
 {
 new OrderApprovedReceiptSender(messageService),
 new AccountingNotifier(billingSystem),
 new OrderFulfillment(locationService, inventoryManagement)
 });

var orderServive = new OrderService(repository, notificationService);

Even though you consistently use Constructor Injection throughout, no single
class’s constructor ends up requiring more than two parameters. CompositeNotifi
cationService takes an IEnumerable<INotificationService> as a single argument.

0..*
*

All notifications are
hidden behind the
INotificationService
interface.

The Composite only knows
about the existence of
INotificationServices, not
about any particular
implementation. The 0..*
sign indicates that the
Composite can wrap
zero-to-many notification
services.

At runtime, a
CompositeNotificationService
contains the remaining
three notifications.

IOrderRepository INotificationService

Composite-
NotificationService

OrderService

Figure 6.3 The final OrderService with refactored dEpENdENCiES

 173Dealing with the Constructor Over-injection code smell

TIP Refactoring to Facade Services is more than just a party trick to get rid of
too many Dependencies. The key is to identify natural clusters of interaction.

A beneficial side effect is that discovering these natural clusters draws previously
undiscovered relationships and domain concepts out into the open. In the process,
you turn implicit concepts into explicit concepts.7 Each aggregate becomes a service
that captures this interaction at a higher level, and the consumer’s single responsibility
becomes to orchestrate these higher-level services. You can repeat this refactoring if
you have a complex application where the consumer ends up with too many Depen-
dencies on Facade Services. Creating a Facade Service of Facade Services is a perfectly
sensible thing to do.

The Facade Services refactoring is a great way to handle complexity in a system. But
with regard to the OrderService example, we might even take this one step further,
bringing us to domain events.

6.1.3 Refactoring from Constructor Over-injection to domain events

Listing 6.5 shows that all notifications are actions triggered when an order is approved.
The following code shows this relevant part again:

this.notificationService.OrderApproved(order);

We can say that the act of an order being approved is of importance to the business.
These kinds of events are called domain events, and it might be valuable to model them
more explicitly in your applications.

DEFINITION The essence of a domain event is that you use it to capture actions
that can trigger a change to the state of the application you’re developing
(https://martinfowler.com/eaaDev/DomainEvent.html).

Although the introduction of INotificationService is a great improvement to
OrderService, it only solves the problem at the level of OrderService and its direct
Dependencies. When applying the same refactoring technique to other classes in the
system, one could easily imagine how INotificationService evolves toward some-
thing similar to the following listing.

Listing 6.7 INotificationService with a growing number of methods

public interface INotificationService
{
 void OrderApproved(Order order);
 void OrderCancelled(Order order);
 void OrderShipped(Order order);
 void OrderDelivered(Order order);
 void CustomerCreated(Customer customer);
 void CustomerMadePreferred(Customer customer);
}

7 See Eric J. Evans’ Domain-Driven Design (Addison-Wesley, 2003), 206–223.

Each method represents
a domain event.
AbstrActIons with many
members, however,
typically violate the
InterfAce segregAtIon
prIncIple, which we'll
discuss in section 6.2.1.

https://martinfowler.com/eaaDev/DomainEvent.html

174 ChapTEr 6 Code smells

Within any system of reasonable size and complexity, you’d easily get dozens of these
domain events, which would lead to an ever-changing INotificationService inter-
face. With each change to this interface, all implementations of that interface must be
updated too. Additionally, ever-growing interfaces also causes ever-growing implemen-
tations. If, however, you promote the domain events to actual types and make them
part of the domain, as shown in figure 6.4, an interesting opportunity to generalize
even further arises.

The following listing shows the domain event code illustrated in figure 6.4.

Listing 6.8 OrderApproved and OrderCancelled domain event classes

public class OrderApproved
{
 public readonly Guid OrderId;

 public OrderApproved(Guid orderId)
 {
 this.OrderId = orderId;
 }
}

public class OrderCancelled
{
 public readonly Guid OrderId;

 public OrderCancelled(Guid orderId)
 {
 this.OrderId = orderId;
 }
}

Although both the OrderApproved and OrderCancelled classes have the same struc-
ture and are related to the same Entity, modelling them around their own class makes
it easier to create code that responds to such a specific event. When each domain event
in your system gets its own type, it lets you change INotificationService to a generic
interface with a single method, as the following listing shows.

Each class describes a
specific change to
system state. Both
classes are simple data
objects.

Even though these classes seem
identical, giving each event its
own class allows events to be
mapped to components that
can handle them in a strongly
typed manner.

OrderId: Guid

OrderCancelled

OrderId: Guid

OrderApproved

Figure 6.4 Domain events promoted to actual types. These types contain only data and no behavior.

 175Dealing with the Constructor Over-injection code smell

Listing 6.9 Generic IEventHandler<TEvent> with just a single method

public interface IEventHandler<TEvent>
{
 void Handle(TEvent e);
}

Generics
Generics introduces the concept of type parameters, which allows the design of inter-
faces, classes, and methods that defer the specification of their types until they’re
declared and instantiated by client code. Using generics, such an interface, class, or
method becomes a template.

The .NET Framework includes many types and methods that are generic, and you’ve
most likely used many of them. In fact, we’ve already shown several examples through-
out the course of this book:

¡	The IEnumerable<T> interface in several listings (for example, listing 2.3) in
chapters 2 and 3

¡	The DbSet<T> class in listings 2.2 and 3.11
¡	The AddSingleton<T>() method in listing 4.3
¡	The Dictionary<TKey, TValue> class in listing 5.7

The IEventHandler<TEvent> interface of listing 6.9 isn’t any different from those
generic framework types and methods. If you’re new to the concept of generics, we
advise you to take a look at the topic in the C# programming guide.8

NOTE Generic types and methods will pop up from time to time throughout
the remainder of this book.

In the case of IEventHandler<TEvent>, a class deriving from the interface must specify
a TEvent type — for the instance OrderCancelled — in the class declaration. This type
will then be used as the parameter type for that class’s Handle method. This allows one
interface to unify several classes, despite differences in their types. In addition, it allows
each of those implementations to be strongly typed, working exclusively off whatever
type was specified as TEvent.

Based on this interface, you can now build the classes that respond to a
domain event, like the OrderFulfillment class you saw previously. Based on the new
IEventHandler<TEvent> interface, the original OrderFulfillment class, as shown in
listing 6.3, changes to that displayed in the following listing.

We changed the name from
INotificationService to IEventHandler to make
it more apparent that this interface has a
wider scope than just notifying other systems.

8 https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/

176 ChapTEr 6 Code smells

Listing 6.10 OrderFulfillment class implementing IEventHandler<TEvent>

public class OrderFulfillment
 : IEventHandler<OrderApproved>
{
 private readonly ILocationService locationService;
 private readonly IInventoryManagement inventoryManagement;

 public OrderFulfillment(
 ILocationService locationService,
 IInventoryManagement inventoryManagement)
 {
 this.locationService = locationService;
 this.inventoryManagement = inventoryManagement;
 }

 public void Handle(OrderApproved e)
 {
 this.locationService.FindWarehouses(...);
 this.inventoryManagement.NotifyWarehouses(...);
 }
}

The OrderFulfillment class implements IEventHandler<OrderApproved>,
meaning that it acts on OrderApproved events. OrderService then uses the new
IEventHandler<TEvent> interface, as figure 6.5 shows.

Listing 6.11 shows an OrderService depending on IEventHandler<OrderApproved>.
Compared to listing 6.5, the OrderService logic will stay almost unchanged.

Listing 6.11 OrderService depending on IEventHandler<OrderApproved>

public class OrderService : IOrderService
{
 private readonly IOrderRepository orderRepository;
 private readonly IEventHandler<OrderApproved> handler;

Implements
IEventHandler<OrderApproved>

The logic inside the
Handle method is
identical to that in
listing 6.3.

IOrderRepository
IEventHandler

<OrderApproved>
OrderFulfillment

OrderService
OrderService now depends
on an IEventHandler<T>
instead of on
INotificationService.

Figure 6.5 The OrderService class depends on an IEventHandler<OrderApproved>
interface, instead of INotificationService.

 177Dealing with the Constructor Over-injection code smell

 public OrderService(
 IOrderRepository orderRepository,
 IEventHandler<OrderApproved> handler)
 {
 this.orderRepository = orderRepository;
 this.handler = handler;
 }

 public void ApproveOrder(Order order)
 {
 this.UpdateOrder(order);

 this.handler.Handle(
 new OrderApproved(order.Id));
 }
 ...
}

Just as with the non-generic INotificationService, you still need a Composite that
takes care of dispatching the information to the list of available handlers. This enables
you to add new handlers to the application, without the need to change OrderService.
Listing 6.12 shows this Composite. As you can see, it’s similar to the CompositeNotifi
cationService from listing 6.4.

Listing 6.12 Composite wrapping IEventHandler<TEvent> instances

public class CompositeEventHandler<TEvent> : IEventHandler<TEvent>
{
 private readonly IEnumerable<IEventHandler<TEvent>> handlers;

 public CompositeEventHandler(
 IEnumerable<IEventHandler<TEvent>> handlers)
 {
 this.handlers = handlers;
 }

 public void Handle(TEvent e)
 {
 foreach (var handler in this.handlers)
 {
 handler.Handle(e);
 }
 }
}

Wrapping a collection of IEventHandler<TEvent> instances, as does CompositeEvent
Handler<TEvent>, lets you add arbitrary event handler implementations to the system
without having to make any changes to consumers of IEventHandler<TEvent>. Using
the new CompositeEventHandler<TEvent>, you can create the OrderService with its
Dependencies.

OrderService now depends on
IEventHandler<OrderApproved>
instead of INotificationService.

 Approving an order means you
create an OrderApproved domain
event and send it to the appropriate
handlers for processing.

 Wraps a collection of
IEventHandler<TEvent>
instances

178 ChapTEr 6 Code smells

Listing 6.13 COmpOSiTiON rOOT for the OrderService refactored using events

var orderRepository = new SqlOrderRepository(connectionString);

var orderApprovedHandler = new CompositeEventHandler<OrderApproved>(
 new IEventHandler<OrderApproved>[]
 {
 new OrderApprovedReceiptSender(messageService),
 new AccountingNotifier(billingSystem),
 new OrderFulfillment(locationService, inventoryManagement)
 });

var orderService = new OrderService(orderRepository, orderApprovedHandler);

Likewise, the Composition Root will contain the configuration for the handlers of
other domain events. The following code shows a few more event handlers for Order
Cancelled and CustomerCreated. We leave it up to the reader to extrapolate from this.

var orderCancelledHandler = new CompositeEventHandler<OrderCancelled>(
 new IEventHandler<OrderCancelled>[]
 {
 new AccountingNotifier(billingSystem),
 new RefundSender(orderRepository),
 });

var customerCreatedHandler = new CompositeEventHandler<CustomerCreated>(
 new IEventHandler<CustomerCreated>[]
 {
 new CrmNotifier(crmSystem),
 new TermsAndConditionsSender(messageService, termsRepository),
 });

var orderService = new OrderService(
 orderRepository, orderApprovedHandler, orderCancelledHandler);

var customerService = new CustomerService(
 customerRepository, customerCreatedHandler);

The beauty of a generic interface like IEventHandler<TEvent> is that the addi-
tion of new features won’t cause any changes to either the interface nor any of
the already existing implementations. In case you need to generate an invoice for
your approved order, you only have to add a new implementation that implements
IEventHandler<OrderApproved>. When a new domain event is created, no changes
to CompositeEventHandler<TEvent> are required.

In a sense, IEventHandler<TEvent> becomes a template for common building
blocks that the application relies on. Each building block responds to a particular
event. As you saw, you can have multiple building blocks that respond to the same event.
New building blocks can be plugged in without the need to change any existing busi-
ness logic.

 179Dealing with the Constructor Over-injection code smell

TIP A DI Container’s Auto-Registration abilities is a great way to simplify
your Composition Root. Chapters 13, 14, and 15 show how to register IEvent
Handler<TEvent> implementations using a DI Container.

Although the introduction of IEventHandler<TEvent> prevented the problem of an
ever-growing INotificationService, it doesn’t prevent the problem of an ever-growing
OrderService class. This is something we’ll address in great detail in chapter 10.

Reliable messaging
Promoting domain events to types in your system has more benefits than just improving
the maintainability of the application. Consider the following scenario.

At peak hours, the web services of the warehouses may time out. But at that point in
time, both the receipt has been sent and the billing system has been notified. Although
it’s possible to roll back the database update, it’s impossible to roll back the notifica-
tion — the customer has already been mailed.

Unfortunately, the problems with the billing system aren’t the only ones. Recently, one of
the web servers that runs the order-approval process crashed. The customer’s confirma-
tion mail got sent just before the crash, but neither the billing system nor the warehouses
were notified. The customer never got the order. What should you do to mitigate these
kinds of problems?

Although there are multiple ways to handle this scenario, domain events can help: they can
be serialized and put on a durable message queue like MSMQ, Azure Queue, or a database
table. Doing so allows you to let your OrderService only execute the following operations:

¡	Begin a transaction
¡	Update the order in the database as part of the transaction
¡	Publish the OrderAccepted event to a durable queue as part of the transaction9

¡	Commit the transaction

Only after the OrderAccepted event has been committed to the queue does it become
available for further processing. At that point, you can pass it on to each of the available
handlers for that particular event. Each handler can run in its own isolated transaction.10
If one of the handlers fails, you could retry that specific handler without influencing the
other handlers. You might even execute multiple handlers in parallel.

Processing messages using a durable queue is a form of reliable messaging. Reliable
messaging gives certain guarantees about the successful transmission of messages. It’s
an effective solution for the scenario described, where servers can crash and external
systems can become unavailable. As you can imagine, though, how to implement these
reliable messaging patterns is outside the scope of this book.11

9 The Outbox pattern is an excellent way to prevent distributed transactions. See http://gistlabs.com/
2014/05/the-outbox/.

10 This leads to eventual consistency. See https://en.wikipedia.org/wiki/Eventual_consistency for details.
11 A great book that explains the basics of message theory, eventual consistency, and Publish/Subscribe is

David Boike’s Learning NServiceBus, 2nd Ed. (Packt Publishing, 2015).

http://gistlabs.com/2014/05/the-outbox/
http://gistlabs.com/2014/05/the-outbox/
https://en.wikipedia.org/wiki/Eventual_consistency

180 ChapTEr 6 Code smells

We’ve found the use of domain events to be an effective model. It allows code to be
defined on a more conceptual level, while letting you build more-robust software, espe-
cially where you have to communicate with external systems that aren’t part of your
database transaction. But no matter which refactoring approach you choose, be it Dec-
orators, Facade Services, domain events, or perhaps another, the important takeaway
here is that Constructor Over-injection is a clear sign that code smells. Don’t ignore
such a sign, but act accordingly.

Because Constructor Over-injection is a commonly recurring code smell, the next
section discusses a more subtle problem that, at first sight, might look like a good solu-
tion to a set of recurring problems. But is it?

6.2 Abuse of Abstract Factories
When you start applying DI, one of the first difficulties you’re likely to encounter is
when Abstractions depend on runtime values. For example, an online mapping site
may offer to calculate a route between two locations, giving you a choice of how you
want the route computed. Do you want the shortest route? The fastest route based on
known traffic patterns? The most scenic route?

The first response from many developers in such cases would be to use an Abstract
Factory. Although Abstract Factories do have their place in software, when it comes to
DI — when factories are used as DEPENDENCIES in application components — they're
often overused. In many cases, better alternatives exist.

In this section, we’ll discuss two cases where better alternatives to Abstract Fac-
tories exist. In the first case, we’ll discuss why Abstract Factories shouldn’t be used
to create stateful Dependencies with a short lifetime. After that, we’ll discuss why
it’s generally better not to use Abstract Factories to select Dependencies based on
runtime data.

6.2.1 Abusing Abstract Factories to overcome lifetime problems

When it comes to the abuse of Abstract Factories, a common code smell is to see
parameterless factory methods that have a Dependency as the return type, as the next
listing shows.

Listing 6.14 Abstract Factory with parameterless Create method

public interface IProductRepositoryFactory
{
 IProductRepository Create();
}

Abstract Factories with parameterless Create methods are often used to allow
consumers to control the lifetime of their Dependencies. In the following listing,
HomeController controls the lifetime of IProductRepository by requesting it from
the factory, and disposing of it when it finishes using it.

 A parameterless factory method
returning a new instance of a
VolAtIle DepenDency

 181Abuse of Abstract Factories

Listing 6.15 A HomeController explicitly managing its dEpENdENCy’s lifetime

public class HomeController : Controller
{
 private readonly IProductRepositoryFactory factory;

 public HomeController(
 IProductRepositoryFactory factory)
 {
 this.factory = factory;
 }

 public ViewResult Index()
 {
 using (IProductRepository repository =
 this.factory.Create())
 {
 var products =
 repository.GetFeaturedProducts();

 return this.View(products);
 }
 }
}

Figure 6.6 shows the sequence of communication between HomeController and its
Dependencies.

 Injects Abstract Factory
into the consumer

 Abstract Factory creates
Repository instance, whose
lifetime must be managed
explicitly.

 The Repository
is used.

 Because IProductRepository
implements IDisposable, the created
instance should be disposed of when
the consumer is done. This makes
IProductRepository a leAky
AbstrActIon, as we’ll discuss shortly.

HomeController ProductRepository-
Factory

HomeController manages
the repository’s lifetime
by calling Dispose. This
makes IProductRepository
a LEAKY ABSTACTION.

Create()

Repository

new()

The Factory returns an
IProductRepository to
the HomeController.

GetFeaturedProducts

Products
Dispose()

SqlProductRepository

Figure 6.6 The consuming class HomeController controls the lifetime of its IProductRepository
dEpENdENCy. It does so by requesting a Repository instance from the IProductRepositoryFactory
dEpENdENCy and calling Dispose on the IProductRepository instance when it’s done with it.

182 ChapTEr 6 Code smells

Disposing the Repository is required when the used implementation holds on to
resources, such as database connections, that should be closed in a deterministic fash-
ion. Although an implementation might require deterministic cleanup, that doesn’t
imply that it should be the responsibility of the consumer to ensure proper cleanup.
This brings us to the concept of Leaky Abstractions.

ThE lEaky abSTraCTiON COdE SmEll

Just as Test-Driven Development (TDD) ensures Testability, it’s safest to define inter-
faces first and then subsequently program against them. Even so, there are cases where
you already have a concrete type and now want to extract an interface. When you do
this, you must take care that the underlying implementation doesn’t leak through.
One way this can happen is if you only extract an interface from a given concrete type,
but some of the parameter or return types are still concrete types defined in the library
you want to abstract from. The following interface definition offers an example:

public interface IRequestContext
{
 HttpContext Context { get; }
}

If you need to extract an interface, you need to do it in a recursive manner, ensuring
that all types exposed by the root interface are themselves interfaces. We call this Deep
Extraction, and the result is Deep Interfaces.

This doesn’t mean that interfaces can’t expose any concrete classes. It’s typically fine
to expose behaviorless data objects, such as Parameter Objects, view models, and Data
Transfer Objects (DTOs). They’re defined in the same library as the interface instead of
the library you want to abstract from. Those data objects are part of the Abstraction.

Be careful with Deep Extraction: it doesn’t always lead to the best solution. Take
the previous example. Consider the following suspicious-looking implementation of a
Deep Extracted IHttpContext interface:

public interface IHttpContext
{
 IHttpRequest Request { get; }
 IHttpResponse Response { get; }
 IHttpSession Session { get; }
 IPrincipal User { get; }
}

 Application interface tries to abstract away
from the ASP.NET runtime environment

 The interface is still exposing HttpContext, which
is part of ASP.NET. This is a leAky AbstrActIon.

Application-defined interface to abstract
from ASP.NET’s HttpContext

The interface’s members expose other
application-defined interfaces that abstract
from the members that HttpContext
exposes. This can go many levels deep.

 183Abuse of Abstract Factories

Although you might be using interfaces all the way down, it’s still glaringly obvious
that the HTTP model is leaking through. In other words, IHttpContext is still a Leaky
Abstraction — and so are its sub-interfaces.

How should you model IRequestContext instead? To figure this out, you have to
look at what its consumers want to achieve. For instance, if a consumer needs to find out
the role of the user who sent the current web request, you might end up instead with the
IUserContext we discussed in chapter 3:

public interface IUserContext
{
 bool IsInRole(Role role);
}

This IUserContext interface doesn’t reveal to the consumer that it’s running as part
of an ASP.NET web application. As a matter of fact, this Abstraction lets you run the
same consumer as part of a Windows service or desktop application. It’ll likely require
the creation of a different IUserContext implementation, but its consumers are obliv-
ious to this.

Always consider whether a given Abstraction makes sense for implementations
other than the one you have in mind. If it doesn’t, you should reconsider your design.
That brings us back to our parameterless factory methods.

paramETErlESS faCTOry mEThOdS arE lEaky abSTraCTiONS

As useful as the Abstract Factory pattern can be, you must take care to apply it with
discrimination. The Dependencies created by an Abstract Factory should concep-
tually require a runtime value, and the translation from a runtime value into an
Abstraction should make sense. If you feel the urge to introduce an Abstract Fac-
tory because you have a specific implementation in mind, you may have a Leaky
Abstraction at hand.

Consumers that depend on IProductRepository, such as the HomeController from
listing 6.15, shouldn’t care about which instance they get. At runtime, you might need
to create multiple instances, but as far as the consumer is concerned, there’s only one.

IMPORTANT Conceptually, there’s only one instance of a service Abstraction.
During the lifetime of a consumer, it shouldn’t be concerned with the possi-
bility that multiple instances of a Dependency can exist. Anything otherwise
would cause needless complication for consumers, which means the Abstrac-
tion isn’t designed for their benefit.

By specifying an IProductRepositoryFactory Abstraction with a parameterless
Create method, you let the consumer know that there are more instances of the given
service, and that it has to deal with this. Because another implementation of IProduct
Repository might not require multiple instances or deterministic disposal at all,
you’re therefore leaking implementation details through the Abstract Factory with its
parameterless Create method. In other words, you’ve created a Leaky Abstraction.

184 ChapTEr 6 Code smells

abSTraCTiONS that implement IDisposable are lEaky abSTraCTiONS

Application code shouldn’t be responsible for the management of the lifetime of objects.
Putting this responsibility inside the application code means you increase complexity of
that particular class and make it more complicated to test and maintain. We often see
Lifetime mAnAgement logic duplicated across the application, instead of being centralized
in the comPosition root, which is what you’re aiming for.

DI is no excuse for writing applications with memory leaks, so you must be able to explic-
itly close connections and other resources as soon as possible. On the other hand, any
DePenDency may or may not represent an out-of-process resource, so it would be a LeAky
AbstrAction if you were to model an AbstrAction to include a Dispose or Close method.

An AbstrAction generally shouldn’t be disposable, as there’s no way to foresee all of
its possible implementations. Practically, any AbstrAction could end up requiring a dis-
posable implementation at some point, whereas other implementations of the same
AbstrAction continue relying exclusively on managed code.

This doesn’t mean that classes shouldn’t implement IDisposable. What this does
mean, however, is that AbstrActions shouldn’t implement IDisposable. Because the
client only knows about the AbstrAction, it can’t be responsible for managing the lifetime
of that instance. We move this responsibility back to the comPosition root. We’ll discuss
Lifetime mAnAgement in chapter 8.

Next, we’ll discuss how to prevent this Leaky Abstraction code smell.

rEfaCTOriNg TOward a bETTEr SOluTiON

Consuming code shouldn’t be concerned with the possibility of there being more than
one IProductRepository instance. You should therefore get rid of the IProduct
RepositoryFactory completely and instead let consumers depend solely on IProduct
Repository, which they should have injected using Constructor Injection. This
advice is reflected in the following listing.

Listing 6.16 HomeController without managing its dEpENdENCy’S lifetime

public class HomeController : Controller
{
 private readonly IProductRepository repository;

 public HomeController(
 IProductRepository repository)
 {
 this.repository = repository;
 }

 public ViewResult Index()

Instead of injecting an Abstract
Factory, IProductRepository itself is
injected directly into the consuming
HomeController.

 185Abuse of Abstract Factories

 {
 var products =
 this.repository.GetFeaturedProducts();

 return this.View(products);
 }
}

This code results in a simplified sequence of interactions between HomeController
and its sole IProductRepository Dependency, as shown in figure 6.7.

Although removing Lifetime Management simplifies the HomeController, you’ll
have to manage the Repository’s lifetime somewhere in the application. A common
pattern to address this problem is the Proxy pattern, an example of which is given in
the next listing.

Listing 6.17 Delaying creation of SqlProductRepository using a Proxy

public class SqlProductRepositoryProxy : IProductRepository
{
 private readonly string connectionString;

 public SqlProductRepositoryProxy(string connectionString)
 {
 this.connectionString = connectionString;
 }

 public IEnumerable<Product> GetFeaturedProducts()
 {
 using (var repository = this.Create())
 {
 return repository.GetFeaturedProducts();
 }
 }

 private SqlProductRepository Create()
 {
 return new SqlProductRepository(
 this.connectionString);
 }
}

Instead of managing
IProductRepository’s lifetime
by requesting it from an
Abstract Factory and disposing
of it, HomeController merely
uses it. IProductRepository no
longer implements IDisposable.

HomeController

GetFeaturedProducts

Products

SqlProductRepository

Figure 6.7 Compared to figure 6.6, removing the responsibility of managing IProduct
Repository’s lifetime together with removing the IProductRepositoryFactory
dEpENdENCy considerably simplifies interaction with HomeController’s dEpENdENCiES.

The Proxy creates and calls
the SqlProductRepository
internally only when its
GetFeaturedProducts
method is called. Such a
Proxy should typically be
part of the coMposItIon root
to prevent the control freAk
anti-pattern.

The Proxy forwards
the call to the real

IProductRepository
implementation.

The SqlProductRepository
implementation still implements
IDisposable. This way, the Proxy
can manage its lifetime.

186 ChapTEr 6 Code smells

Proxy design pattern
The Proxy design pattern provides a surrogate or placeholder for another object to control
access to it.12 It allows deferring the full cost of its creation and initialization until you
need to use it. A Proxy implements the same interface as the object it’s surrogate for. It
makes consumers believe they’re talking to the real implementation.

Notice how SqlProductRepositoryProxy internally contains factory-like behavior with
its private Create method. This behavior, however, is encapsulated within the Proxy
and doesn’t leak out, compared to the IProductRepositoryFactory Abstract Factory
that exposes IProductRepository from its definition.

NOTE Having factory-like behavior (like the Create method of listing 6.17)
is typically unavoidable. Application-wide Factory Abstractions, however,
should be viewed with suspicion.

SqlProductRepositoryProxy is tightly coupled to SqlProductRepository. This
would be an implementation of the Control Freak anti-pattern (section 5.1) if the
SqlProductRepositoryProxy was defined in your domain layer. Instead, you should
either define this Proxy in your data access layer that contains SqlProductRepository
or, more likely, the Composition Root.

Because the Create method composes part of the object graph, the Composition
Root is a well-suited location to place this Proxy class. The next listing shows the struc-
ture of the Composition Root using the SqlProductRepositoryProxy.

Listing 6.18 Object graph with the new SqlProductRepositoryProxy

new HomeController(
 new SqlProductRepositoryProxy(
 connectionString));

In the case that an Abstraction has many members, it becomes quite cumbersome to
create Proxy implementations. Abstractions with many members, however, typically
violate the Interface Segregation Principle. Making Abstractions more focused
solves many problems, such as the complexity of creating Proxies, Decorators, and Test
Doubles. We’ll discuss this in more detail in section 6.3 and again come back to this
subject in chapter 10.

12 Erich Gamma et al., Design Patterns, 245.

Instantiating the Proxy class
instead of a SqlProductRepository

 187Abuse of Abstract Factories

iNTErfaCE SEgrEgaTiON priNCiplE

The interfAce segregAtion PrinciPLe (ISP) states that “No client should be forced to
depend on methods it doesn’t use.”

This means that a consumer of an interface should use all the methods of a consumed
DePenDency. If there are methods on that AbstrAction that aren’t used by a consumer,
the interface is too large and, according to the ISP, the interface should be split up. This
keeps a system decoupled and easier to refactor, change, and redeploy. Interfaces
should therefore be designed to be specific. You don’t want to lump too many responsi-
bilities together into one interface, because it becomes too cumbersome to implement.

The ISP can be considered to be the conceptual underpinning of the singLe resPonsibiL-
ity PrinciPLe (SRP). The ISP states that interfaces should model only a single concept,
whereas the SRP states that implementations should have only one responsibility.

The ISP may at first seem to be distantly related to DI. It’s important because an inter-
face that models too much pulls you in the direction of a particular implementation. It’s
often a smell of a LeAky AbstrAction and makes it harder to replace DePenDencies. This is
because some of the interface members may make no sense in a context that’s different
to the one that drove the initial design.13 In chapter 10, however, you’ll learn that the ISP
is crucial when it comes to effectively applying DI and AsPect-orienteD ProgrAmming.

That doesn’t mean that there should always be a one-to-one relationship between an
implementation and an AbstrAction, though. Sometimes you want to make interfaces
smaller than their implementations, meaning that an implementation might implement
more interfaces.14

The next section deals with the abuse of Abstract Factories to select the Dependency
to return, based on the supplied runtime data.

6.2.2 Abusing Abstract Factories to select DepenDencieS based on
runtime data

In the previous section, you learned that Abstract Factories should typically accept runtime
values as input. Without them, you’re leaking implementation details about the implemen-
tation to the consumer. This doesn’t mean that an Abstract Factory that accepts runtime
data is the correct solution to every situation. More often than not, it isn’t.

In this section, we’ll look at Abstract Factories that accept runtime data specifically to
decide which Dependency to return. The example we’ll look at is the online mapping
site that offers to calculate a route between two locations, which we introduced at the
start of section 6.2.

13 Mark Seemann, “Interfaces are not abstractions,” 2010, https://mng.bz/8yvz.
14 For a detailed discussion, see Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices

(Prentice Hall, 2003), chapter 12.

https://mng.bz/8yvz

188 ChapTEr 6 Code smells

To calculate a route, the application needs a routing algorithm, but it doesn’t care
which one. Each option represents a different algorithm, and the application can handle
each routing algorithm as an Abstraction to treat them all equally. You must tell the
application which algorithm to use, but you won’t know this until runtime because it’s
based on the user’s choice.

In a web application, you can only transfer primitive types from the browser to the
server. When the user selects a routing algorithm from a drop-down box, you must rep-
resent this by a number or a string.15 An enum is a number, so on the server you can repre-
sent the selection using this RouteType:

public enum RouteType { Shortest, Fastest, Scenic }

What you need is an instance of IRouteAlgorithm that can calculate the route for you:

public interface IRouteAlgorithm
{
 RouteResult CalculateRoute(RouteSpecification specification);
}

Now you’re presented with a problem. The RouteType is runtime data based on the
user’s choice. It’s sent to the server with the request.

Listing 6.19 RouteController with its GetRoute method

public class RouteController : Controller
{
 public ViewResult GetRoute(
 RouteSpecification spec, RouteType routeType)
 {
 IRouteAlgorithm algorithm = ...

 var route = algorithm.CalculateRoute(spec);

 var vm = new RouteViewModel
 {
 ...
 };

 return this.View(vm);
 }
}

The question now becomes, how do you get the appropriate algorithm? If you hadn’t
been reading this chapter, your knee-jerk reaction to this challenge would probably be
to introduce an Abstract Factory, like this:

public interface IRouteAlgorithmFactory
{
 IRouteAlgorithm CreateAlgorithm(RouteType routeType);
}

15 To be pedantic, we can only transfer strings, but most web frameworks support type conversion for
primitive types.

Gets the IRouteAlgorithm for
the appropriate RouteType.
But how?

Calls the selected
IRouteAlgorithm

Maps the returned
route data to a
RouteViewModel
that can be
consumed by
the view

Wraps the view model in an
MVC ViewResult object using
MVC’s View helper method

 189Abuse of Abstract Factories

This enables you to implement a GetRoute method for RouteController by inject-
ing IRouteAlgorithmFactory and using it to translate the runtime value to the
IRouteAlgorithm Dependency you need. The following listing demonstrates the
interaction.

Listing 6.20 Using an IRouteAlgorithmFactory in RouteController

public class RouteController : Controller
{
 private readonly IRouteAlgorithmFactory factory;

 public RouteController(IRouteAlgorithmFactory factory)
 {
 this.factory = factory;
 }

 public ViewResult GetRoute(
 RouteSpecification spec, RouteType routeType)
 {
 IRouteAlgorithm algorithm =
 this.factory.CreateAlgorithm(routeType);

 var route = algorithm.CalculateRoute(spec);

 var vm = new RouteViewModel
 {
 ...
 };

 return this.View(vm);
 }
}

The RouteController class’s responsibility is to handle web requests. The GetRoute
method receives the user’s specification of origin and destination, as well as a selected
RouteType. With an Abstract Factory, you map the runtime RouteType value to an
IRouteAlgorithm instance, so you request an instance of IRouteAlgorithmFactory
using Constructor Injection. This sequence of interactions between RouteController
and its Dependencies is shown in figure 6.8.

The most simple implementation of IRouteAlgorithmFactory would involve a
switch statement and return three different implementations of IRouteAlgorithm
based on the input. But we’ll leave this as an exercise for the reader.

Up until this point you might be wondering, “What’s the catch? Why is this a code
smell?” To be able to see the problem, we need to go back to the Dependency Inver-
sion Principle.

Uses the factory to map
the runtime value of the
routeType parameter to
an IRouteAlgorithm

When you have that
algorithm, you can use
it to calculate the route
and return the result.

190 ChapTEr 6 Code smells

aNalySiS Of ThE COdE SmEll

In chapter 3 (section 3.1.2), we talked about the Dependency Inversion Principle.
We discussed how it states that Abstractions should be owned by the layer using the
Abstraction. We explained that it’s the consumer of the Abstraction that should
dictate its shape and define the Abstraction in a way that suits its needs the most.
When we go back to our RouteController and ask ourselves whether this is the
design that suits RouteController the best, we’d argue that this design doesn’t suit
RouteController.

One way of looking at this is by evaluating the number of Dependencies Route
Controller has, which tells you something about the complexity of the class. As you
saw in section 6.1, having a large number of Dependencies is a code smell, and a typical
solution is to apply Facade Services refactoring.

When you introduce an Abstract Factory, you always increase the number of Depen-
dencies a consumer has. If you only look at the constructor of RouteController,
you may be led to believe that the controller only has one Dependency. But IRoute
Algorithm is also a Dependency of RouteController, even if it isn’t injected into its
constructor.

This increased complexity might not be obvious at first, but it can be felt instantly
when you start unit testing RouteController. Not only does this force you to test the
interaction RouteController has with IRouteAlgorithm, you also have to test the inter-
action with IRouteAlgorithmFactory.

The controller requests a route algorithm from
the factory, while supplying the routeType
runtime value. The factory returns an

IRouteAlgorithm to the
RouteController.

RouteController

CreateAlgorithm(routeType)
new()

The RouteController requests a
route by calling CalculateRoute
on the requested algorithm.

Algorithm

RouteAlgorithm-
Factory

A RouteAlgorithm

CalculateRoute(spec)

Route

Figure 6.8 RouteController supplies the routeType runtime value to IRouteAlgorithmFactory.
The factory returns an IRouteAlgorithm implementation, and RouteController requests a route by
calling CalculateRoute. The interaction is similar to that of figure 6.6.

 191Abuse of Abstract Factories

rEfaCTOriNg TOward a bETTEr SOluTiON

You can reduce the number of Dependencies by merging both IRouteAlgorithm
Factory and IRouteAlgorithm together, much like you saw with the Facade Services
refactoring of section 6.1. Ideally, you’d want to use the Proxy pattern the same way you
applied it in section 6.2.1. A Proxy, however, is only applicable in case the Abstraction
is supplied with all the data required to select the appropriate Dependency. Unfortu-
nately, this prerequisite doesn’t hold for IRouteAlgorithm because it’s only supplied
with a RouteSpecification, but not a RouteType.

Before you discard the Proxy pattern, it’s important to verify whether it makes sense
from a conceptual level to pass RouteType on to IRouteAlgorithm. If it does, it means
that a CalculateRoute implementation contains all the information required to select
both the proper algorithm and the runtime values the algorithm will need to calculate
the route. In this case, however, passing RouteType on to IRouteAlgorithm is conceptu-
ally weird. An algorithm implementation will never need to use RouteType. Instead, to
reduce the controller’s complexity, you define an Adapter that internally dispatches to
the appropriate route algorithm:

public interface IRouteCalculator
{
 RouteResult Calculate(RouteSpecification spec, RouteType routeType);
}

The following listing shows how RouteController gets simplified when it depends on
IRouteCalculator instead of IRouteAlgorithmFactory.

Listing 6.21 Using an IRouteCalculator in RouteController

public class RouteController : Controller
{
 private readonly IRouteCalculator calculator;

 public RouteController(IRouteCalculator calculator)
 {
 this.calculator = calculator;
 }

 public ViewResult GetRoute(RouteSpecification spec, RouteType routeType)
 {
 var route = this.calculator.Calculate(spec, routeType);

 var vm = new RouteViewModel { ... };

 return this.View(vm);
 }
}

The use of IRouteCalculator
reduces the number of
DepenDencIes. There’s now
just one DepenDency left.

192 ChapTEr 6 Code smells

Figure 6.9 shows the simplified interaction between RouteController and its sole
Dependency. As you saw in figure 6.7, the interaction is reduced to a single method call.

You can implement an IRouteCalculator in many ways. One way is to inject IRoute
AlgorithmFactory into this RouteCalculator. This isn’t our preference, though,
because IRouteAlgorithmFactory would be a useless extra layer of indirection you
could easily do without. Instead, you’ll inject IRouteAlgorithm implementations into
the RouteCalculator constructor.

Listing 6.22 IRouteCalculator wrapping a dictionary of IRouteAlgorithms

public class RouteCalculator : IRouteCalculator
{
 private readonly IDictionary<RouteType, IRouteAlgorithm> algorithms;

 public RouteCalculator(
 IDictionary<RouteType, IRouteAlgorithm> algorithms)
 {
 this.algorithms = algorithms;
 }

 public RouteResult Calculate(RouteSpecification spec, RouteType type)
 {
 return this.algorithms[type].CalculateRoute(spec);
 }
}

Using the newly defined RouteCalculator, RouteController can now be constructed
like this:

var algorithms = new Dictionary<RouteType, IRouteAlgorithm>
{
 { RouteType.Shortest, new ShortestRouteAlgorithm() },
 { RouteType.Fastest, new FastestRouteAlgorithm() },
 { RouteType.Scenic, new ScenicRouteAlgorithm() }
};

new RouteController(
 new RouteCalculator(algorithms));

RouteController

Calculate(spec, routeType)

Route

A RouteAlgorithm

Figure 6.9 Compared to figure 6.8, by hiding IRouteAlgorithmFactory and
IRouteAlgorithm behind a single IRouteCalculator abSTraCTiON, the interaction
between RouteController and its (now single) dEpENdENCy is simplified.

 193Abuse of Abstract Factories

By refactoring from Abstract Factory to an Adapter, you effectively reduce the num-
ber of Dependencies between your components. Figure 6.10 shows the Dependency
graph of the initial solution using the Factory, while figure 6.11 shows the object graph
after refactoring.

When you use Abstract Factories to select Dependencies based on supplied runtime
data, more often than not, you can reduce complexity by refactoring toward Adapters
that don’t expose the underlying Dependency like the Abstract Factory does. This,
however, doesn’t hold only when dealing with Abstract Factories. We’d like to general-
ize this point.

Typically, service Abstractions shouldn’t expose other service Abstractions in
their definition.16 This means that a service Abstraction shouldn’t accept another ser-
vice Abstraction as input, nor should it have service Abstractions as output param-
eters or as a return type. Application services that depend on other application services
force their clients to know about both Dependencies.

NOTE The previous is more of a guideline than a strict rule. There certainly are
exceptions where returning Abstractions makes the most sense, but beware
that, when it comes to using them to resolve Dependencies, these situations
aren’t that common. For that reason, we see this as a code smell and not an
anti-pattern.

IRouteAlgorithm
Factory

IRouteAlgorithm

RouteController
RouteAlgorithm

Factory

creates/returns

returns

uses

Because
IRouteAlgorithmFactory
returns an IRouteAlgorithm,
RouteController is forced to
depend on both
IRouteAlgorithmFactory
and IRouteAlgorithm.

uses

Figure 6.10 The initial dEpENdENCy graph for RouteController with IRouteAlgorithmFactory

Compared to the previous
object graph, the number
of DEPENDENCIES are fewer.

IRouteCalculator

IRouteAlgorithm

RouteController RouteCalculator

uses

uses

Figure 6.11 The dEpENdENCy graph for RouteController when depending on IRoute
Calculator instead

16 This is related to the principle of least knowledge.

194 ChapTEr 6 Code smells

The next code smell is a more exotic one, so you might not encounter it that often.
Although the previously discussed code smells can go unnoticed, the next smell is hard
to miss — your code either stops compiling or breaks at runtime.

6.3 Fixing cyclic DepenDencieS

Occasionally, Dependency implementations turn out to be cyclic. An implementation
requires another Dependency whose implementation requires the first Abstraction.
Such a Dependency graph can’t be satisfied. Figure 6.12 shows this problem.

The following shows a simplistic example containing the cyclic Dependency of
figure 6.12:

public class Chicken : IChicken
{
 public Chicken(IEgg egg) { ... }

 public void HatchEgg() { ... }
}

public class Egg : IEgg
{
 public Egg(IChicken chicken) { ... }
}

With the previous example in mind, how can you construct an object graph consisting
of these classes?

new Chicken(
 new Egg(
 ???
)
);

IChicken

IEggChicken

Chicken implements
IChicken and requires
an IEgg DEPENDENCY.

Egg implements IEgg
and requires an
IChicken DEPENDENCY.

Egg

This DEPENDENCY graph can’t be satisfied.

Figure 6.12 dEpENdENCy
cycle between Chicken
and Egg

Chicken depends
on IEgg.

Egg implements
IEgg. Egg depends on IChicken,

which is implemented by
Chicken.

To be able to construct a new Chicken instance, its
constructor should be supplied with an existing
Egg instance.

To be able to construct a new Egg instance, its
constructor should be supplied with an existing
Chicken, but we haven’t created the previous Chicken
yet because it requires an existing Egg instance.

 195Fixing cyclic dependenCies

What we’ve got here is your typical the chicken or the egg causality dilemma. The short
answer is that you can’t construct an object graph like this because both classes require
the other object to exist before they’re constructed. As long as the cycle remains, you
can’t possibly satisfy all Dependencies, and your applications won’t be able to run.
Clearly, something must be done, but what?

In this section, we’ll look into the issue concerning cyclic Dependencies, including
an example. When we’re finished, your first reaction should be to try to redesign your
Dependencies, because the problem is typically caused by your application’s design.
The main takeaway from this section, therefore, is this: Dependency cycles are typically
caused by an SRP violation.

If redesigning your Dependencies isn’t possible, you can break the cycle by refactor-
ing from Constructor Injection to Property Injection. This represents a loosen-
ing of a class’s invariants, so it isn’t something you should do lightly.

6.3.1 Example: DepenDency cycle caused by an SRP violation

Mary Rowan (our developer from chapter 2) has been developing her e-commerce
application for some time now, and it’s been quite successful in production. One day,
however, Mary’s boss pops around the door to request a new feature. The complaint is
that when problems arise in production, it’s hard to pinpoint who’s been working on a
certain piece of data in the system. One solution would be to store changes in an audit-
ing table that records every change that every user in the system makes.

After thinking about this for some time, Mary comes up with the definition for an
IAuditTrailAppender Abstraction, as shown in listing 6.23. (Note that to demon-
strate this code smell in a realistic setting, we need a somewhat complex example. The
following example consists of three classes, and we’ll spend a few pages explaining the
code, before we get to its analysis.)

Listing 6.23 An IAuditTrailAppender abSTraCTiON

public interface IAuditTrailAppender
{
 void Append(Entity changedEntity);
}

Mary uses SQL Server Management Studio to create an AuditEntries table that she can
use to store the audit entries. The table definition is shown in table 6.2.

Table 6.2 Mary’s AuditEntries table

Column Name Data Type Allow Nulls Primary Key

Id uniqueidentifier No Yes

UserId uniqueidentifier No No

Allows appending entries to the auditing table by
passing in a domain entIty that’s being altered

The base class from which
all entItIes derive

196 ChapTEr 6 Code smells

Column Name Data Type Allow Nulls Primary Key

TimeOfChange DateTime No No

EntityId uniqueidentifier No No

EntityType varchar(100) No No

After creating her database table, Mary continues with the IAuditTrailAppender
implementation, shown in the next listing.

Listing 6.24 SqlAuditTrailAppender appends entries to a SQL database table

public class SqlAuditTrailAppender : IAuditTrailAppender
{
 private readonly IUserContext userContext;
 private readonly CommerceContext context;
 private readonly ITimeProvider timeProvider;

 public SqlAuditTrailAppender(
 IUserContext userContext,
 CommerceContext context,
 ITimeProvider timeProvider)
 {
 this.userContext = userContext;
 this.context = context;
 this.timeProvider = timeProvider;
 }

 public void Append(Entity changedEntity)
 {
 AuditEntry entry = new AuditEntry
 {
 UserId = this.userContext.CurrentUser.Id,
 TimeOfChange = this.timeProvider.Now,
 EntityId = entity.Id,
 EntityType = entity.GetType().Name
 };

 this.context.AuditEntries.Add(entry);
 }
}

An important part of an audit trail is relating a change to a user. To accomplish
this, SqlAuditTrailAppender requires an IUserContext Dependency. This allows
SqlAuditTrailAppender to construct the entry using the CurrentUser property on
IUserContext. This is a property that Mary added some time ago for another feature.

Recall that this is the
ITimeProvider interface
from listing 5.10.

Constructs a new AuditEntry
object that will be inserted
into the AuditEntries table.
This entry is constructed using
the current system time,
information specific to the
supplied Entity, and the
identity of the User executing
the request.

Table 6.2 Mary’s AuditEntries table (continued)

 197Fixing cyclic dependenCies

Listing 6.25 shows Mary’s current version of the AspNetUserContextAdapter (see
listing 3.12 for the initial version).

Listing 6.25 AspNetUserContextAdapter with added CurrentUser property

public class AspNetUserContextAdapter : IUserContext
{
 private static HttpContextAccessor Accessor = new HttpContextAccessor();

 private readonly IUserRepository repository;

 public AspNetUserContextAdapter(
 IUserRepository repository)
 {
 this.repository = repository;
 }

 public User CurrentUser
 {
 get
 {
 var user = Accessor.HttpContext.User;
 string userName = user.Identity.Name;
 return this.repository.GetByName(userName);
 }
 }
 ...
}

While you were busy reading about DI patterns and anti-patterns, Mary’s been busy
too. IUserRepository is one of the Abstractions she added in the meantime. We’ll
discuss her IUserRepository implementation shortly.

Mary’s next step is to update the classes that need to be appended to the audit trail.
One of the classes that needs to be updated is SqlUserRepository. It implements IUser
Repository, so this is a good moment to take a peek at it. The following listing shows the
relevant parts of this class.

Listing 6.26 SqlUserRepository that needs to append to the audit trail

public class SqlUserRepository : IUserRepository
{
 public SqlUserRepository(
 CommerceContext context,
 IAuditTrailAppender appender)
 {
 this.appender = appender;
 this.context = context;
 }

The IUserRepository DepenDency
was added by Mary to allow
retrieving user information
from the database.

The new
property Gets the name of the

logged-in user from
the HttpContext and
uses it to request a
User instance from
the IUserRepository

For the new audit trail feature,
Mary adds a DepenDency to
IAuditTrailAppender into the
constructor of SqlUserRepository.

198 ChapTEr 6 Code smells

 public void Update(User user)
 {
 this.appender.Append(user);
 ...
 }

 public User GetById(Guid id) { ... }

 public User GetByName(string name) { ... }
}

Mary is almost finished with her feature. Because she added a constructor argument
to the SqlUserRepository method, she’s left with updating the Composition Root.
Currently, the part of the Composition Root that creates AspNetUserContextAdapter
looks like this:

var userRepository = new SqlUserRepository(context);

IUserContext userContext = new AspNetUserContextAdapter(userRepository);

Because IAuditTrailAppender was added as Dependency to the SqlUserRepository
constructor, Mary tries to add it to the Composition Root:

var appender = new SqlAuditTrailAppender(
 userContext,
 context,
 timeProvider);

var userRepository = new SqlUserRepository(context, appender);

IUserContext userContext = new AspNetUserContextAdapter(userRepository);

Unfortunately, Mary’s changes don’t compile. The C# compiler complains: “Cannot
use local variable 'userContext' before it’s declared.”

Because SqlAuditTrailAppender depends on IUserContext, Mary tries to supply
the SqlAuditTrailAppender with the userContext variable that she defined. The
C# compiler doesn’t accept this because such a variable must be defined before it’s used.
Mary tries to fix the problem by moving the definition and assignment of the userContext
variable up, but this immediately causes the C# compiler to complain about the user
Repository variable. But when she moves the userRepository variable up, the com-
piler complaints about the appender variable, which is used before it’s declared.

Mary starts to realize she’s in serious trouble — there’s a cycle in her Dependency
graph. Let’s analyze what went wrong.

The Update method is modified with
a call to IAuditTrailAppender.Append.
This allows an entry to be appended
to the audit trail.

Original,
unchanged

code
This method is used by the CurrentUser
property of the previously discussed
AspNetUserContextAdapter.

Ouch! Mary gets a compile
error on this line.

 199Fixing cyclic dependenCies

6.3.2 Analysis of Mary’s DepenDency cycle

The cycle in Mary’s object graph appeared once she added the IAuditTrailAppender
Dependency to the SqlUserRepository class. Figure 6.13 shows this Dependency cycle.

The figure shows the cycle in the object graph. The object graph, however, is part of
the story. Another view we can use to analyze the problem is the method call graph as
shown here:

UserService.UpdateMailAddress(Guid userId, string newMailAddress)
 ➥ SqlUserRepository.Update(User user)
 ➥ SqlAuditTrailAppender.Append(Entity changedEntity)
 ➥ AspNetUserContextAdapter.CurrentUser
 ➥ SqlUserRepository.GetByName(string name)

This call graph shows how the call would start with the UpdateMailAddress method
of UserService, which would call into the Update method of the SqlUserRepository
class. From there it goes into SqlAuditTrailAppender, then into AspNetUserContext
Adapter and, finally, it ends up in the SqlUserRepository’s GetByName method.

NOTE We haven’t discussed the UserService class because it isn’t that interest-
ing for this discussion.

IUserContext

IUserRepository

IAuditTrail-
Appender

The addition of IAuditTrailAppender
as a DEPENDENCY of SqlUserRepository
caused this cycle to appear.

AspNetUserContext-
Adapter

SqlUserRepository

SqlAuditTrail-
Appender

uses

uses

uses

Figure 6.13 The dEpENdENCy cycle involving AspNetUserContextAdapter, SqlUserRepository,
and SqlAuditTrailAppender

200 ChapTEr 6 Code smells

What this method call graph shows is that although the object graph is cyclic, the
method call graph isn’t recursive. It would become recursive if GetByName again called
Sql AuditTrailAppender.Append, for instance. That would cause the endless calling
of other methods until the process ran out of stack space, causing a StackOverflow
Exception. Fortunately for Mary, the call graph isn’t recursive, as that would require
her to rewrite the methods. The cause of the problem lies somewhere else — there’s an
SRP violation.

When we take a look at the previously declared classes AspNetUserContextAdapter,
SqlUserRepository, and SqlAuditTrailAppender, you might find it difficult to spot a
possible SRP violation. All three classes seem to be focused on one particular area, as
table 6.3 lists.

Table 6.3 The abSTraCTiONS with their roles in the application

abSTraCTiON Role Methods

IAuditTrailAppender Enables recording of important changes made by users 1 method

IUserContext Provides consumers with information about the user on
whose behalf the current request is executed

2 methods

IUserRepository Provides operations around the retrieval, querying, and
storage of users for a given persistence technology

3 methods

If you look more closely at IUserRepository, you can see that the functionality in
the class is primarily grouped around the concept of a user. This is a quite broad
concept. If you stick with this approach of grouping user-related methods in a single
class, you’ll see both IUserRepository and SqlUserRepository being changed quite
frequently.

NOTE Ever-changing Abstractions are a strong indication of SRP violations.
This also relates to the Open/Closed Principle (OCP) as discussed in chap-
ter 4, which states that you should be able to add features without having to
change existing classes.

When we look at the SRP from the perspective of cohesion, we can ask ourselves
whether the methods in IUserRepository are really that highly cohesive. How easy
would it be to split the class up into multiple narrower interfaces and classes?

6.3.3 Refactoring from SRP violations to resolve the DepenDency cycle

It might not always be easy to fix SRP violations, because that might cause rippling
changes through the consumers of the Abstraction. In the case of our little com-
merce application, however, it’s quite easy to make the change, as the following list-
ing shows.

 201Fixing cyclic dependenCies

Listing 6.27 GetByName moved into IUserByNameRetriever

public interface IUserByNameRetriever
{
 User GetByName(string name);
}

public class SqlUserByNameRetriever : IUserByNameRetriever
{
 public SqlUserByNameRetriever(CommerceContext context)
 {
 this.context = context;
 }

 public User GetByName(string name) { ... }
}

In the listing, the GetByName method is extracted from IUserRepository and
SqlUserRepository into a new Abstraction implementation pair named IUserBy
NameRetriever and SqlUserByNameRetriever. The new SqlUserByNameRetriever
implementation doesn’t depend on IAuditTrailAppender. The remaining part of
SqlUserRepository is shown next.

Listing 6.28 The remaining part of IUserRepository and its implementation

public interface IUserRepository
{
 void Update(User user);
 User GetById(Guid id);
}

public class SqlUserRepository : IUserRepository
{
 public SqlUserRepository(
 CommerceContext context,
 IAuditTrailAppender appender
 {
 this.context = context;
 this.appender = appender;
 }

 public void Update(User user) { ... }
 public User GetById(Guid id) { ... }
}

NOTE The more methods a class has, the higher the chance it violates the
Single Responsibility Principle. This is also related to the Interface
Segregation Principle, which prefers narrow interfaces.

GetByName method moved from
IUserRepository to this new
IUserByNameRetriever interface

Removes the GetByName
method

Removes the IUserContext
DepenDency

202 ChapTEr 6 Code smells

Mary gained a couple of things from this division. First of all, the new classes are
smaller and easier to comprehend. Next, it lowers the chance of getting into the situ-
ation where Mary will be constantly updating existing code. And last, but not least,
splitting the SqlUserRepository class breaks the Dependency cycle, because the new
SqlUserByNameRetriever doesn’t depend on IAuditTrailAppender. Figure 6.14
shows how the Dependency cycle was broken.

IUserRepository is now split into
two separate interfaces.

AspNetUserContextAdapter
now depends on the new
IUserByNameRetriever
instead of IUserRepository.

The separation of IUserRepository into two
interfaces breaks the DEPENDENCY cycle.
Because SqlUserByNameRetriever doesn’t
depend on IAuditTrailAppender, the graph is
now acyclic again.

Original, cyclic object graph

IUserContext

IUserContext

IUserByName-
Retriever

IUserRepository

IAuditTrail-
Appender

IUserRepository

IAuditTrail-
Appender

AspNetUserContext-
Adapter

AspNetUserContext-
Adapter

SqlUserByName-
Retriever SqlUserRepository

SqlAuditTrail-
Appender

SqlUserRepository

SqlAuditTrail-
Appender

uses

uses

uses

uses

Figure 6.14 The separation of IUserRepository into two interfaces breaks the dEpENdENCy cycle.

 203Fixing cyclic dependenCies

The following code shows the new Composition Root that ties everything together:

var userContext = new AspNetUserContextAdapter(
 new SqlUserByNameRetriever(context));

var appender = new
 SqlAuditTrailAppender(
 userContext,
 context,
 timeProvider);

var repository = new SqlUserRepository(context, appender);

Implementing an audit trail
The specific audit trail implementation in this section is chosen for the purpose of
explaining DePenDency cycles. However, this isn’t typically how we’d implement such a
feature ourselves. An audit trail is a cross-cutting concern. The way Mary implemented
it causes sweeping changes throughout many classes in the system. This is cumbersome
and error prone, and it’s a violation of both the OCP and the SRP.

A simpler solution would be to override the DbContext.SaveChanges method inside
CommerceContext. A DbContext allows querying for changes using its ChangeTracker
property. That prevents having to make sweeping changes and saves you from imple-
menting this on any individual class and writing appropriate tests for this. Our preferred
approach, however, would be to apply domain events as discussed in section 6.1. Where
the previous method stores every changed entity as an entry in an audit trail, domain
events provide you with a trail at a higher, more functional level.

Let’s take a previous example, where you try to update the user’s mail address. When
you publish a UserMailAddressChanged event, you can append that event to the trail.
With it, you can store the ID of the user whose mail address was changed, the time this
happened, and the user who made the change. This results in an audit trail that gives
you an excellent view of what happened at every point in time. When you visualize the
domain events for a given Order in the e-commerce web application, you might end up
with the view shown in the following table.

Timeline for a given Order

Date User Description

2018-11-21 15:21 Mary Rowan Order created

2018-11-21 15:26 Mary Rowan Order approved

2018-11-21 15:27 Mary Rowan Order paid

2018-11-22 08:10 [system] Order shipped

2018-11-23 15:48 [system] Order delivered

In chapter 10, we’ll demonstrate yet another solution for implementing audit trails.

AspNetUserContextAdapter now
depends on IUserByNameRetriever,
because it requires the retrieval of
users by their name.

204 ChapTEr 6 Code smells

The most common cause of Dependency cycles is an SRP violation. Fixing the viola-
tion by breaking classes into smaller, more focused classes is typically a good solution,
but there are also other strategies for breaking Dependency cycles.

6.3.4 Common strategies for breaking DepenDency cycles

When we encounter a Dependency cycle, our first question is, “Where did I fail?” A
Dependency cycle should immediately trigger a thorough evaluation of the root cause.
Any cycle is a design smell, so your first reaction should be to redesign the involved
part to prevent the cycle from happening in the first place. Table 6.4 shows some gen-
eral directions you can take.

Table 6.4 Some redesign strategies for breaking dEpENdENCy cycles, ordered from most to least
preferable strategy

Strategy Description

Split classes As you saw with the audit trail example, in most cases, you can split
classes with too many methods into smaller classes to break the cycle.

.NET events You can often break a cycle by changing one of the AbstrActions to raise
events instead of having to explicitly invoke a DePenDency to inform the
DePenDency that something happened. Events are particularly appropri-
ate if one side only invokes void methods on its DePenDency.

ProPerty injection If all else fails, you can break the cycle by refactoring one class from
constructor injection to ProPerty injection. This should be a last-ditch
effort, because it only treats the symptoms.

Make no mistake: a Dependency cycle is a design smell. Your first priority should be
to analyze the code to understand why the cycle appears. Still, sometimes you can’t
change the design, even if you understand the root cause of the cycle.

6.3.5 Last resort: Breaking the cycle with property injection

In some cases, the design error is out of your control, but you still need to break the
cycle. In such cases, you can do this by using Property Injection, even if it’s a tempo-
rary solution.

WARNING Only resort to solving cycles by using Property Injection as a last-
ditch effort. It only treats the symptoms instead of curing the illness.

To break the cycle, you must analyze it to figure out where you can make a cut. Because
using Property Injection suggests an optional rather than a required Dependency,
it’s important that you closely inspect all Dependencies to determine where cutting
hurts the least.

 205Fixing cyclic dependenCies

In our audit trail example, you can resolve the cycle by changing the Dependency
of SqlAuditTrailAppender from Constructor Injection to Property Injection. This
means that you can create SqlAuditTrailAppender first, inject it into SqlUserRepository,
and then subsequently assign AspNetUserContextAdapter to SqlAuditTrailAppender,
as this listing shows.

Listing 6.29 Breaking a dEpENdENCy cycle with prOpErTy iNjECTiON

var appender =
 new SqlAuditTrailAppender(context, timeProvider);

var repository =
 new SqlUserRepository(context, appender);

var userContext = new
AspNetUserContextAdapter(
 new SqlUserByNameRetriever(context));

appender.UserContext = userContext;

Using Property Injection this way adds extra complexity to SqlAuditTrailAppender,
because it must now be able to deal with a Dependency that isn’t yet available. This
leads to Temporal Coupling, as discussed in section 4.3.2.

NOTE As we stated previously in section 4.2.1, classes should never perform
work involving Dependencies in their constructors. Besides making object
construction slow and unreliable, using an injected Dependency might fail,
because it may not yet be fully initialized.

If you don’t want to relax any of the original classes in this way, a closely related
approach is to introduce a Virtual Proxy, which leaves SqlAuditTrailAppender intact:17

Listing 6.30 Breaking a dEpENdENCy cycle with a Virtual Proxy

var lazyAppender = new LazyAuditTrailAppender();

var repository =
 new SqlUserRepository(context, lazyAppender);

var userContext = new
AspNetUserContextAdapter(
 new SqlUserByNameRetriever(context));

lazyAppender.Appender =
 new SqlAuditTrailAppender(
 userContext, context, timeProvider);

Creates the appender
without an IUserContext
instance. This results in a
partially initialized instance.

Injects the partially initialized
appender into the Repository.

Uses property InjectIon to finalize
the initialization of the appender
by injecting IUserContext.

17 Erich Gamma et al., Design Patterns, 208.

Creates a
Virtual Proxy

Injects the real appender
into the property of the
Virtual Proxy

206 ChapTEr 6 Code smells

LazyAuditTrailAppender implements IAuditTrailAppender like SqlAuditTrail
Appender does. But it takes its IAuditTrailAppender Dependency through Property
Injection instead of Constructor Injection, allowing you to break the cycle with-
out violating the invariants of the original classes. The next listing shows the LazyAudit
TrailAppender Virtual Proxy.

Listing 6.31 A LazyAuditTrailAppender Virtual Proxy implementation

public class LazyAuditTrailAppender : IAuditTrailAppender
{
 public IAuditTrailAppender Appender { get; set; }

 public void Append(Entity changedEntity)
 {
 if (this.Appender == null)
 {
 throw new InvalidOperationException("Appender was not set.");
 }

 this.Appender.Append(changedEntity);
 }
}

Always keep in mind that the best way to address a cycle is to redesign the API so that
the cycle disappears. But in the rare cases where this is impossible or highly undesir-
able, you must break the cycle by using Property Injection in at least one place.
This enables you to compose the rest of the object graph apart from the Dependency
associated with the property. When the rest of the object graph is fully populated, you
can inject the appropriate instance via the property. Property Injection signals that a
Dependency is optional, so you shouldn’t make the change lightly.

DI isn’t particularly difficult when you understand a few basic principles. As you learn,
however, you’re guaranteed to run into issues that may leave you stumped for a while.
This chapter addressed some of the most common issues people encounter. Together
with the two preceding chapters, it forms a catalog of patterns, anti-patterns, and code
smells. This catalog constitutes part 2 of the book. In part 3, we’ll turn toward the three
dimensions of DI: Object Composition, Lifetime Management, and Interception.

Summary

¡	Ever-changing Abstractions are a clear sign of Single Responsibility Princi-
ple (SRP) violations. This also relates to the Open/Closed Principle that states
that you should be able to add features without having to change existing classes.

¡	The more methods a class has, the higher the chance it violates the SRP. This is
also related to the Interface Segregation Principle, which states that no cli-
ent should be forced to depend on methods it doesn’t use.

¡	Making Abstractions thinner solves many problems, such as the complexity of
creating Proxies, Decorators, and Test Doubles.

Property that allows breaking
the DepenDency cycle

Guard Clause

Forwards the call

 207Summary

¡	A benefit of Constructor Injection is that it becomes more obvious when you
violate the SRP. When a single class has too many Dependencies, it’s a signal that
you should redesign it.

¡	When a constructor’s parameter list grows too large, we call the phenomenon
Constructor Over-injection and consider it a code smell. It’s a general code smell
unrelated to, but magnified by, DI.

¡	You can redesign from Constructor Over-injection in many ways, but splitting up
a large class into smaller, more focused classes according to well-known design
patterns is always a good move.

¡	You can refactor away from Constructor Over-injection by applying Facade Ser-
vices refactoring. A Facade Service hides a natural cluster of interacting Depen-
dencies with their behavior behind a single Abstraction.

¡	Facade Service refactoring allows discovering these natural clusters and draws
previously undiscovered relationships and domain concepts out in the open.
Facade Service is related to Parameter Objects but, instead of combining and
exposing components, it exposes only the encapsulated behavior while hiding
the constituents.

¡	You can refactor away from Constructor Over-injection by introducing domain
events into your application. With domain events, you capture actions that can
trigger a change to the state of the application you’re developing.

¡	A Leaky Abstraction is an Abstraction, such as an interface, that leaks
implementation details, such as layer-specific types or implementation-specific
behavior.

¡	Abstractions that implement IDisposable are Leaky Abstractions. IDis
posable should be put into effect within the implementation instead.

¡	Conceptually, there’s only one instance of a service Abstraction. Abstrac-
tions that leak this knowledge to their consumers aren’t designed with those
consumers in mind.

¡	Service Abstractions should typically not expose other service Abstractions
in their definition. Abstractions that depend on other Abstractions force
their clients to know about both Abstractions.

¡	When it comes to applying DI, Abstract Factories are often overused. In many
cases, better alternatives exist.

¡	The Dependencies created by an Abstract Factory should conceptually require
a runtime value. The translation from a runtime value into an Abstraction
should make sense on the conceptual level. If you feel the urge to introduce an
Abstract Factory to be able to create instances of a concrete implementation, you
may have a Leaky Abstraction on hand. Instead, the Proxy pattern provides
you with a better solution.

¡	Having factory-like behavior inside some classes is typically unavoidable. Appli-
cation-wide Factory Abstractions, however, should be reviewed with suspicion.

208 ChapTEr 6 Code smells

¡	An Abstract Factory always increases the number of Dependencies a consumer
has, along with its complexity.

¡	When you use Abstract Factories to select Dependencies based on supplied
runtime data, more often than not, you can reduce complexity by refactoring
towards Facades that don’t expose the underlying Dependency.

¡	Dependency cycles are typically caused by SRP violations.
¡	Improving the design of the part of the application that contains the Depen-

dency cycle should be your preferred option. In the majority of cases, this means
splitting up classes into smaller, more focused classes.

¡	Dependency cycles can be broken using Property Injection. You should only
resort to solving cycles by using Property Injection as a last-ditch effort. It only
treats the symptoms instead of curing the illness.

¡	Classes should never perform work involving Dependencies in their construc-
tors because the injected Dependency may not yet be fully initialized.

Part 3

Pure DI

In chapter 1, we gave a short outline of the three dimensions of DI: Object
Composition, Lifetime Management, and Interception. In this part of the
book, we’ll explore these dimensions in depth, providing each with their own
chapter. Many DI Containers have features that directly relate to these dimen-
sions. Some provide features in all three dimensions, whereas others only sup-
port some of them.

Because a DI Container is an optional tool, we feel it’s more important to
explain the underlying principles and techniques that containers typically use to
implement these features. Given this, part 3 examines how to apply DI without
using a DI Container at all. A practical do-it-yourself guide, this is what we call
Pure DI.

Chapter 7 explains how to compose objects in various frameworks like ASP.NET
Core MVC, Console Applications, and so on. Not all frameworks support DI equally
well, and even among those that do, the details differ a lot. For each framework,
it can be difficult to identify the Seam that enables DI. Once that Seam is found,
however, you have a solution for all applications that use that particular framework.
In chapter 7, we’ve done this work for the most common .NET application frame-
works. Think of it as a catalog of framework Seams.

Although composing objects isn’t particularly hard with Pure DI, you should
begin to see the benefits of a real DI Container after reading about Lifetime
Management in chapter 8. It’s possible to properly manage the lifetime of various
objects in an object graph, but it requires more custom code than Object Com-
position. And none of that code adds any particular business value to an appli-
cation. In addition to explaining the basics of Lifetime Management, chapter 8
also contains a catalog of common lifestyles. This catalog serves as a vocabulary for
discussing lifestyles throughout part 4. Although you don’t have to implement any
of these by hand, it’s good to know how they work.

The remaining chapters of part 3 explain the last dimension of DI: Intercep-
tion. In chapter 9, we’ll look at the frequently occurring problem of implementing

210 purE di

Cross-Cutting Concerns in a component-based way. We’ll do this by using the Dec-
orator design pattern. Chapter 9 also functions as an introduction to the two chapters
following it.

We’ll look at the Aspect-Oriented Programming (AOP) paradigm in chapter 10
and see how a careful application design, based on the SOLID principles, enables you
to create highly maintainable code, without the use of any special tooling. We consider
this chapter the climax of the book — this is where many readers using the early access
program said they began to see the contours of a tremendously powerful way to model
software.

Besides applying SOLID design principles, there are other ways to practice
Aspect-Oriented Programming. Instead of using patterns and principles, you can
use specialized tooling such as compile-time weaving and dynamic Interception tools.
These are described in chapter 11.

211

7Application composition

In this chapter
¡	Composing console applications

¡	Composing Universal Windows Programming
(UWP) applications

¡	Composing ASP.NET Core MVC applications

Cooking a gourmet meal with several courses is a challenging undertaking, particu-
larly if you want to partake in the consumption. You can’t eat and cook at the same
time, yet many dishes require last-minute cooking to turn out well. Professional
cooks know how to resolve many of these challenges. Amidst many tricks of the
trade, they use the general principle of mise en place, which can be loosely translated
to everything in place.1 Everything that can be prepared well in advance is, well, pre-
pared in advance. Vegetables are cleaned and chopped, meats cut, stocks cooked,
ovens preheated, tools laid out, and so on.

If ice cream is part of the dessert, it can be made the day before. If the first course
contains mussels, they can be cleaned hours before. Even such a fragile component
as sauce béarnaise can be prepared up to an hour before. When the guests are ready

1 French pronunciation: mi zã 'plas.

212 ChapTEr 7 Application composition

to eat, only the final preparations are necessary: reheat the sauce while frying the meat,
and so on. In many cases, this final composition of the meal need not take more than 5
to 10 minutes. Figure 7.1 illustrates the process.

Cook stock

Make ice cream Prepare
vegetables Preheat oven

Time

Compose
meal

Clean mussels

Figure 7.1 Mise en place involves preparing all components of the meal well in advance so that the final
composition of the meal can be done as quickly and effortlessly as possible.

The principle of mise en place is similar to developing a loosely coupled application with
DI. You can write all the required components well in advance and only compose them
when you absolutely must.

As with all analogies, we can only
take this one so far. In cooking, prepa-
ration and composition are separated
by time, whereas in application devel-
opment, separation occurs across
modules and layers. Figure 7.2 shows
how to compose the components in
the Composition Root.

At runtime, the first thing that
happens is Object Composition.
As soon as the object graph is wired
up, Object Composition is fin-
ished, and the constituent com-
ponents take over. In this chapter,
we’ll focus on the Composition
Roots of several application frame-
works. In contrast to mise en place,
Object Composition doesn’t hap-
pen as late as possible, but in a place
where integration of the different
modules is required.

DEFINITION Object Composition is the act of building up hierarchies of related
components. This composition takes place inside the Composition Root.

Layers

COMPOSITION ROOT Compose
modules

Presentation logic

Domain logic

Data access

Figure 7.2 The COmpOSiTiON rOOT composes all the
independent modules of the application.

 213Composing console applications

Object Composition is the foundation of DI, and it’s one of the easiest parts to under-
stand. You already know how to do it because you compose objects all the time when
you create objects that contain other objects.

In section 4.1, we covered the basics of when and how to compose applications. This
chapter doesn’t repeat that information. Instead, we want to help you address some of
the challenges that can arise as you compose objects. Those challenges stem not from
Object Composition itself, but from the application frameworks in which you work.
These issues tend to be specific to each framework, and so are the resolutions. In our
experience, these challenges pose some of the greatest obstacles to successfully apply-
ing DI, so we’ll focus on them. Doing so will make the chapter less theoretical and more
practical than the previous chapters.

NOTE If you only want to read about applying DI in your framework of choice,
you can skip ahead to that section in this chapter. Each section is intended to
stand alone.

It’s easy to compose an application’s entire Dependency hierarchy when you have full
control over the application’s lifetime (as you do with command-line applications).
But some frameworks in .NET (for example, ASP.NET Core) involve Inversion of
Control, which can sometimes make it more difficult to apply DI. Understanding
each framework’s Seams is key to applying DI for that particular framework. In this
chapter, we’ll examine how to implement Composition Roots in the most common
.NET Core frameworks.

We’ll begin each section with a general introduction to applying DI in a particular
framework, followed by an extensive example built on the e-commerce example that
runs throughout most of this book. We’ll start with the easiest framework in which to
apply DI, and then gradually work through the more complex frameworks. The easiest
type to apply DI to is, by far, a console application, so we’ll discuss this next.

NOTE Some of the old .NET frameworks (such as PowerShell and older ver-
sions of ASP.NET Web Forms) are downright hostile environments in which
to apply DI. The more recent .NET Core frameworks, on the other hand, are
more DI-friendly. In this book, we mainly focus on those newer .NET Core
frameworks. If you’re interested in finding out how to apply DI to ASP.NET
MVC, Web Forms, WCF, WPF, or PowerShell, grab the digital copy of the first
edition of this book; it comes with your purchase of this edition. Chapter 7 dis-
cusses each in great detail.

7.1 Composing console applications
A console application is, hands down, the easiest type of application to compose. Con-
trary to most other .NET BCL application frameworks, a console application involves
virtually no Inversion of Control. When execution hits the application’s entry point
(usually the Main method in the Program class), you’re on your own. There are no special
events to subscribe to, no interfaces to implement, and precious few services you can use.

214 ChapTEr 7 Application composition

The Program class is a suitable Composition Root. In its Main method, you compose
the application’s modules and let them take over. There’s nothing to it, but let’s look at
an example.

7.1.1 Example: Updating currencies using the UpdateCurrency program

In chapter 4, we looked at how to provide a currency conversion feature for the sample
e-commerce application. Section 4.2.4 introduced the ICurrencyConverter Abstrac-
tion that applies exchange rates from one currency to other currencies. Because
ICurrencyConverter is an interface, we could have created many different implemen-
tations, but in the example, we used a database. The purpose of the example code in
chapter 4 was to demonstrate how to retrieve and implement currency conversion, so
we never looked at how to update exchange rates in the database.

NOTE The complete source code of this example is available in the source
code that accompanies the book.

To continue the example, let’s examine how to write a simple .NET Core console appli-
cation that enables an administrator or super-user to update the exchange rates without
having to interact directly with the database. The console application talks to the data-
base and processes the incoming command-line arguments. Because the purpose of this
program is to update the exchange rates in the database, we’ll call it UpdateCurrency. It
takes two command-line arguments:

¡	The currency code
¡	The exchange rate from the primary currency (USD) to this currency

USD is the primary currency in our system, and we store all the exchange rates of other
currencies relative it. For example, the exchange rate for USD to EUR is expressed as 1
USD costing 0.88 EUR (December 2018). When we want to update the exchange rate
at the command line, it looks like this:

d:\> dotnet commerce\UpdateCurrency.dll EUR "0.88"
Updated: 0.88 EUR = 1 USD.

NOTE In .NET Core, a console application is a .dll (not an .exe) that can be
started by running the dotnet command with the name of the DLL as the first
argument.

Executing the program updates the database and writes the new values back to the
console. Let’s look at how we build such a console application.

 215Composing console applications

7.1.2 Building the compoSition root of the UpdateCurrency program

UpdateCurrency uses the default entry point for a console program: the Main method
in the Program class. This acts as the Composition Root for the application.

Listing 7.1 The console application’s COmpOSiTiON rOOT

class Program
{
 static void Main(string[] args)
 {
 string connectionString =
 LoadConnectionString();

 CurrencyParser parser =
 CreateCurrencyParser(connectionString);

 ICommand command = parser.Parse(args);
 command.Execute();
 }

 static string LoadConnectionString()
 {
 var configuration = new ConfigurationBuilder()
 .SetBasePath(AppContext.BaseDirectory)
 .AddJsonFile("appsettings.json", optional: false)
 .Build();

 return configuration.GetConnectionString(
 "CommerceConnectionString");
 }

 static CurrencyParser CreateCurrencyParser(string connectionString) ...
}

The Program class’s only responsibilities are to load the configuration values, compose
all relevant modules, and let the composed object graph take care of the functional-
ity. In this example, the composition of the application’s modules is extracted to the
CreateCurrencyParser method, whereas the Main method is responsible for calling
methods on the composed object graph. CreateCurrencyParser composes its object
graph using hardwired Dependencies. We’ll return to it shortly to examine how it’s
implemented.

Any Composition Root should only do four things: load configuration values, build
the object graph, invoke the desired functionality, and, as we’ll discuss in the next chap-
ter, release the object graph. As soon as it has done that, it should get out of the way and
leave the rest to the invoked instance.

Loads configuration
values

Builds the object graph

Invokes the desired
functionality

216 ChapTEr 7 Application composition

NOTE As we stated previously in section 4.1.3, you should separate the loading
of configuration values from the methods that do Object Composition, as
shown in listing 7.1. This decouples Object Composition from the configura-
tion system in use, making it possible to test without the existence of a (valid)
configuration file.

With this infrastructure in place, you can now ask CreateCurrencyParser to create a
CurrencyParser that parses the incoming arguments and eventually executes the cor-
responding command. This example uses Pure DI, but it’s straightforward to replace
it with a DI Container like those covered in part 4.

7.1.3 Composing object graphs in CreateCurrencyParser

The CreateCurrencyParser method exists for the express purpose of wiring up all
Dependencies for the UpdateCurrency program. The following listing shows the
implementation.

Listing 7.2 CreateCurrencyParser method that composes the object graph

static CurrencyParser CreateCurrencyParser(string connectionString)
{
 IExchangeRateProvider provider =
 new SqlExchangeRateProvider(
 new CommerceContext(connectionString));

 return new CurrencyParser(provider);
}

In this listing, the object graph is rather shallow. The CurrencyParser class requires an
instance of the IExchangeRateProvider interface, and you construct SqlExchange
RateProvider for communicating with the database in the CreateCurrencyParser
method.

The CurrencyParser class uses Constructor Injection, so you pass it the Sql
ExchangeRateProvider instance that was just created. You then return the newly
created CurrencyParser from the method. In case you’re wondering, here’s the con-
structor signature of CurrencyParser:

public CurrencyParser(IExchangeRateProvider exchangeRateProvider)

Recall that IExchangeRateProvider is an interface that’s implemented by Sql
ExchangeRateProvider. As part of the Composition Root, CreateCurrencyParser
contains a hard-coded mapping from IExchangeRateProvider to SqlExchangeRate
Provider. The rest of the code, however, remains loosely coupled, because it consumes
only the Abstraction.

This example may seem simple, but it composes types from three different applica-
tion layers. Let’s briefly examine how these layers interact in this example.

Composes the
object graph

 217Composing console applications

7.1.4 A closer look at UpdateCurrency’s layering

The Composition Root is where components from all layers are wired together. The
entry point and the Composition Root constitute the only code of the executable. All
implementation is delegated to lower layers, as figure 7.3 illustrates.

The diagram in figure 7.3 may look complicated, but it represents almost the entire
code base of the console application. Most of the application logic consists of parsing
the input arguments and choosing the correct command based on the input. All this
takes place in the application services layer, which only talks directly with the domain
layer via the IExchangeRateProvider interface and the Currency class.

IExchangeRateProvider is injected into CurrencyParser by the Composition
Root and is subsequently used as an Abstract Factory to create a Currency instance
used by UpdateCurrencyCommand. The data access layer supplies the SQL Server–based
implementations of the domain Abstractions. Although none of the other applica-
tion classes talk directly to those implementations, CreateCurrencyParser maps the
Abstractions to the concrete classes.

Program

CurrencyParser

Currency

SqlExchangeRate-
Provider

HelpCommand UpateCurrency
command

Main()

ICommand

Executable

Application services

Domain

Data access

IExchangeRate-
Provider

uses

uses

uses

CurrencyParser parses the
command-line arguments
and returns an appropriate
ICommand implementation.

If the arguments were
intelligible, it returns a
CurrencyUpdateCommand that
uses an IExchangeRateProvider
instance to update the
exchange rate.

creates

creates

Figure 7.3 Component composition of the UpdateCurrency application

218 ChapTEr 7 Application composition

NOTE You might recall from section 6.2 that the use of Abstract Factories
should be viewed with suspicion. In this case, however, using Abstract Factory is
fine because only the Composition Root makes use of it.

Using DI with a console application is easy because there’s virtually no external Inver-
sion of Control involved. The .NET Framework spins up the process and hands
control to the Main method. This is similar to working with Universal Windows Pro-
gramming (UWP), which allows Object Composition without any Seams.

7.2 Composing UWP applications
Composing a UWP application is almost as easy as composing a console application.
In this section, we’ll implement a small UWP application for managing products of
the e-commerce application using the Model-View-ViewModel (MVVM) pattern. We’ll
take a look at where to place the Composition Root, how to construct and initialize
view models, how to bind views to their corresponding view models, and how to ensure
we can navigate from one page to the next.

A UWP application’s entry point is fairly uncomplicated, and although it doesn’t
provide Seams explicitly targeted at enabling DI, you can easily compose an application
in any way you prefer.

What’s a UWP application?
Microsoft has defined UWP this way:

The Universal Windows Platform (UWP) is the application platform for Windows
10. You can develop apps for UWP with just one API set, one application
package, and one store to reach all Windows 10 devices (PC, tablet, phone,
Xbox, HoloLens, Surface Hub, and more). It’s easier to support a number of
screen sizes and a variety of interaction models, whether it be touch, mouse
and keyboard, a game controller, or a pen. At the core of UWP applications
is the idea that users want their experiences to be common across all their
devices, and they want to use whatever device is most convenient or productive
for the task at hand.2

In this section, we won’t be teaching UWP itself. Basic knowledge about building UWP
applications is assumed.3

7.2.1 UWP composition

A UWP application’s entry point is defined in its App class. As with most other classes in
UWP, this class is split into two files: App.xaml and App.xaml.cs. You define what hap-
pens at application startup in the App.xaml.cs.

2 Source: https://mng.bz/DVVg.
3 To learn about UWP, see Ayan Chatterjee, Building Apps for the Universal Windows Platform, (Apress,

2017).

https://mng.bz/DVVg

 219Composing UWP applications

NOTE The code for this example is available in the source code that accompa-
nies the book.

When you create a new UWP project in Visual Studio, the App.xaml.cs file defines an
OnLaunched method that defines which page is shown when the application starts; in
this case, MainPage.

Listing 7.3 OnLaunched method of the App.xaml.cs file

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 ...

 rootFrame.Navigate(typeof(MainPage), e.Arguments);

 ...
}

The OnLaunched method is similar to a console application’s Main method — it’s the
entry point for your application. The App class becomes the application’s Composi-
tion Root. You can use a DI Container or Pure DI to compose the page; the next
example uses Pure DI.

7.2.2 Example: Wiring up a product-management rich client

The example in the previous section created our commerce console application for
setting exchange rates. In this example, you’ll create a UWP application that enables
you to manage products. Figures 7.4 and 7.5 show screen captures of this application.

Among other things, a
default UWP project in
Visual Studio navigates
the user to the MainPage
on launch by calling
Frame.Navigate.

Figure 7.4 Product Management’s main page is a list
of products. You can edit or delete products by tapping
on a row, or you can add a new product by tapping
Add Product.

Figure 7.5 Product Management’s product-edit page
lets you change the product name and unit price in
dollars. The application makes use of UWP’s default
command bar.

220 ChapTEr 7 Application composition

The entire application is implemented using the MVVM approach and contains the
four layers shown in figure 7.6. We keep the part with the most logic isolated from the
other modules; in this case, that’s the presentation logic. The UWP client layer is a thin
layer that does little apart from defining the UI and delegating implementation to the
other modules.

The diagram in figure 7.6 is similar to what you’ve seen in previous chapters, with the
addition of a presentation logic layer. The data access layer can directly connect to a data-
base, as we did in the e-commerce web application, or it can connect to a product-manage-
ment web service. How the information is stored isn’t that relevant where the presentation
logic layer is concerned, so we won’t go into details about that in this chapter.

MVVM
Model-View-ViewModel (MVVM) is a design pattern for which UWP is particularly well
suited.4 It divides UI code into three distinct responsibilities:

¡	The Model is the underlying model for the application. This is often, but not always,
the domain model. It frequently consists of Plain Old CLR Objects (POCOs). Notice
that the Model is usually expressed in a UI-neutral way; it doesn’t assume that it’ll
be exposed directly by a UI, so it doesn’t expose any UWP-specific functionality.

¡	The View is the UI we look at. In UWP, you can declaratively express the View in
XAML and use data binding and data templating to present the data. It’s possible

The application consists of
four distinct assemblies.
The UWP client library is
the executable and contains
the UI implemented in
XAML with no code-behind.

The dependency arrows
imply that UWP client
acts as the COMPOSITION ROOT
because it wires together
the other modules.

The presentation logic
layer contains the
ViewModels and
supporting classes.

The domain layer
contains Model classes
and ABSTRACTIONS to be
used by the presentation
logic and implemented
by the data access
layer.

The data access layer
enables persistence of
managed products.

UWP client

Presentation logic

Domain

Data access

Figure 7.6 The four distinct assemblies of the product-management rich client application

4 Read more about MVVM in Josh Smith’s “Patterns: WPF Apps With The Model-View-ViewModel Design
Pattern,” 2009, https://msdn.microsoft.com/en-us/magazine/dd419663.aspx.

https://msdn.microsoft.com/en-us/magazine/dd419663.aspx

 221Composing UWP applications

to express the views without the use of code-behind, and, in fact, it’s often pre-
ferred, as it helps keep the views focused exclusively on UI.

¡	The ViewModel is the bridge between the View and the Model. Each ViewMod-
el is a class that translates and exposes the Model in a technology-specific way.
In UWP, this means it may expose lists as System.Collections.ObjectModel
.ObservableCollection, user actions as System.Windows.Input.ICommand,
and so on.

The role of the ViewModel in MVVM is different from the View Model in an MVC appli-
cation. With MVC, the View Model is a behaviorless data object and is newed up in
your application code. MVVM ViewModels, on the other hand, are components with
DePenDencies. In your UWP application, ViewModels will be composed using DI.

With MVVM, you assign a ViewModel to a page’s DataContext property, and the
data-binding and data-templating engines take care of presenting the data correctly
as you spin up new ViewModels or change the data in the existing ViewModels. Before
you can create the first ViewModel, however, you need to define some constructs that
enable ViewModels to navigate to other ViewModels. Likewise, for a ViewModel to be
initialized with the runtime data required when a page is shown to the user, you must
let the ViewModels implement a custom interface. The following section addresses
these concerns before getting to the meat of the application: the MainViewModel.

iNjECTiNg dEpENdENCiES iNTO ThE MainViewModel
MainPage contains only XAML markup and no custom code-behind. Instead, it uses
data binding to display data and handle user commands. To enable this, you must
assign a MainViewModel to its DataContext property. This, however, is a form of Prop-
erty Injection. We'd like to use Constructor Injection instead. To allow this,
we remove the MainPage’s default constructor with an overloaded constructor that
accepts the MainViewModel as an argument, where the constructor internally assigns
that DataContext property:

public sealed partial class MainPage : Page
{
 public MainPage(MainViewModel vm)
 {
 this.InitializeComponent();

 this.DataContext = vm;
 }
}

MainViewModel exposes data, such as the list of products, as well as commands to
create, update, or delete a product. Enabling this functionality depends on a service
that provides access to the product catalog: the IProductRepository Abstraction.
Apart from IProductRepository, MainViewModel also needs a service that it can use

222 ChapTEr 7 Application composition

to control its windowing environment, such as navigating to other pages. This other
Dependency is called INavigationService:

public interface INavigationService
{
 void NavigateTo<TViewModel>(Action whenDone = null, object model = null)
 where TViewModel : IViewModel;
}

NOTE C# 4 introduced optional method arguments, which enable you to omit
arguments for some parameters. In this case, the C# compiler supplies the call
with the declared default. In the previous listing, both method parameters are
optional. Listing 7.4 calls NavigateTo, sometimes omitting arguments.

The NavigateTo method is generic, so the type of ViewModel that it needs to navigate
to must be supplied as its generic type argument. The method arguments are passed by
the navigation service to the created ViewModel. For this to work, a ViewModel must
implement IViewModel. For this reason, the NavigateTo method specifies the generic
type constraint where TViewModel : IViewModel.5 The following code snippet shows
IViewModel:

public interface IViewModel
{
 void Initialize(Action whenDone, object model);
}

The Initialize method contains the same arguments as the INavigationService
.NavigateTo method. The navigation service will invoke Initialize on a constructed
ViewModel. The model represents the data that the ViewModel needs to initialize, such
as a Product. The whenDone action allows the originating ViewModel to get notified
when the user exits this ViewModel, as we’ll discuss shortly.

Using the previous interface definitions, you can now construct a ViewModel for
MainPage. The following listing shows MainViewModel in its full glory.

Listing 7.4 The MainViewModel class

public class MainViewModel : IViewModel,
 INotifyPropertyChanged
{
 private readonly INavigationService navigator;
 private readonly IProductRepository repository;

5 Using generic type constraints, you can narrow the possible types that you can use as the generic type
argument. This is verified for you by the C# compiler.

Initializes a
ViewModel

To be able to inform the view that it
should be updated, the ViewModel must
implement INotifyPropertyChanged.

 223Composing UWP applications

 public MainViewModel(
 INavigationService navigator,
 IProductRepository repository)
 {
 this.navigator = navigator;
 this.repository = repository;

 this.AddProductCommand =
 new RelayCommand(this.AddProduct);
 this.EditProductCommand =
 new RelayCommand(this.EditProduct);
 }

 public IEnumerable<Product> Model { get; set; }
 public ICommand AddProductCommand { get; }
 public ICommand EditProductCommand { get; }

 public event PropertyChangedEventHandler
 PropertyChanged = (s, e) => { };

 public void Initialize(
 object model, Action whenDone)
 {
 this.Model = this.repository.GetAll();
 this.PropertyChanged.Invoke(this,
 new PropertyChangedEventArgs("Model"));
 }

 private void AddProduct()
 {
 this.navigator.NavigateTo<NewProductViewModel>(
 whenDone: this.GoBack);
 }

 private void EditProduct(object product)
 {
 this.navigator.NavigateTo<EditProductViewModel>(
 whenDone: this.GoBack,
 model: product;
 }

 private void GoBack()
 {
 this.navigator.NavigateTo<MainViewModel>();
 }
}

The ViewModel contains
several properties that the
XAML of MainPage binds
to. Model is the list of
products shown in the grid
view; the ICommand
properties represent the
actions that are executed
when their corresponding
buttons are pressed.

The Initialize method
is specified by the
IViewModel interface,
which every ViewModel
is required to
implement. In the
case of MainViewModel,
you don’t use the
arguments, but do
load all products
using the injected
IProductRepository.

By calling the
PropertyChanged event
of the implemented
INotifyPropertyChanged
interface and supplying
it with the name of the
property being changed,
UWP can figure out how
the screen should be
repainted.

When the
Add Product
button (see

figure 7.4) is
pressed, this
method will
be invoked.

When the user taps a row in the products table,
the EditProduct method is invoked. With the call,
UWP passes on the bound item from the list,
which will be a Product from the Model collection.

On initialization, EditProductViewModel
loads the product you want to edit. This
requires you to pass the product ID with
the call to NavigateTo.

224 ChapTEr 7 Application composition

The command methods, AddProduct and EditProduct, both instruct INavigation
Service to navigate to the page for the corresponding ViewModel. In the case of
AddProduct, this corresponds to NewProductViewModel. The NavigateTo method is
supplied with a delegate that’ll be invoked by NewProductViewModel when the user
finishes working on that page. This results in invoking the MainViewModel’s GoBack
method, which will navigate the application back to MainViewModel. To paint a com-
plete picture, listing 7.5 shows a simplified version of the MainPage XAML definition
and how the XAML is bound to the Model, EditProductCommand, and AddProduct
Command properties of MainViewModel.

Listing 7.5 XAML of MainPage

<Page x:Class="Ploeh.Samples.ProductManagement.UWPClient.MainPage"
 xmlns:commands="using:ProductManagement.PresentationLogic.UICommands"
 ...>
 <Grid>
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>

 <GridView ItemsSource="{Binding Model}"
 commands:ItemClickCommand.Command="{Binding EditProductCommand}"
 IsItemClickEnabled="True">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Grid.Column="0">
 <TextBlock Text="{Binding Name}" />
 </StackPanel>
 <StackPanel Grid.Column="1">
 <TextBlock Text="{Binding UnitPrice}" />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>

 <CommandBar Grid.Row="5" Grid.ColumnSpan="3" Grid.Column="0">
 <AppBarToggleButton Icon="Add" Label="Add product"
 Command="{Binding AddProductCommand}" />
 </CommandBar>
 </Grid>
</Page>

 225Composing UWP applications

NOTE The XAML’s GridView uses a custom UI command named ItemClick
Command to allow taps and clicks on GridView rows to be bound to the View-
Model’s EditProductCommand. A discussion of this UI command is outside the
scope of the book, but the custom command is available in the book’s accom-
panying source code, where you can see the full version of the XAML.

Although the previous XAML makes use of the older Binding markup extension, as
a UWP developer, you might be used to using the newer x:Bind markup extension.
x:Bind gives compile-time support, but requires types to be fixed at compile time,
typically defined in the view’s code-behind class. Because you bind to a ViewModel
that’s stored in the untyped DataContext property, you lose compile-time support and,
therefore, need to fall back to the Binding markup extension.6

The two main elements in the MainPage XAML are a GridView and a CommandBar.
The GridView is used to display the available products and bind to both the Model and
EditProductCommand properties; its DataTemplate binds to the Name and UnitPrice
properties of the Model’s Product elements. The CommandBar displays a generic ribbon
with operations that the user is allowed to invoke. The CommandBar binds to the Add
ProductCommand property. With the definitions of MainViewModel and MainPage, you
can now start wiring up the application.

wiriNg up MainViewModel
Before wiring up MainViewModel, let’s take a look at all the classes involved in this
Dependency graph. Figure 7.7 shows the graph for the application, starting with
MainPage.

Now that you’ve identified all the building blocks of the application, you can com-
pose it. To do this, you must create both a MainViewModel and a MainPage, and then
inject the ViewModel to the MainPage’s constructor. To wire up MainViewModel, you
have to compose it with its Dependencies:

IViewModel vm = new MainViewModel(navigationService, productRepository);
Page view = new MainPage(vm);

As you saw in listing 7.3, the default Visual Studio template calls Frame
.Navigate(Type). The Navigate method creates a new Page instance on your behalf
and shows that page to the user. There’s no way to supply a Page instance to Navigate,
but you can work around this by manually assigning the page created to the Content
property of the application’s main Frame:

var frame = (Frame)Window.Current.Content;
frame.Content = view;

Because these are the important pieces to glue the application together, this is exactly
what you’ll do in the Composition Root.

6 See the MSDN article, “Data Binding in Depth”, https://mng.bz/mz9P.

https://mng.bz/mz9P

226 ChapTEr 7 Application composition

7.2.3 Implementing the compoSition root in the UWP application

There are many ways to create the Composition Root. For this example, we chose to
place both the navigation logic and the construction of View/ViewModel pairs inside
the App.xaml.cs file to keep the example relatively succinct. The application’s Compo-
sition Root is displayed in figure 7.8 .

NOTE An important part of the Composition Root is the Composer. It’s a
unifying term to refer to any object or method that composes Dependencies
and is discussed in more detail in the next chapter.

creates

uses

The App class functions as the
COMPOSITION ROOT of the application
to create the MainPage class.

MainPage is the root object in the
object graph that is created by the
COMPOSITION ROOT.

INavigationService
is implemented by
the App class of
the UWP client.

MainPage uses
MainViewModel
for data binding.

MainViewModel makes use of
the INavigationService
ABSTRACTION.

MainViewModel also
takes a dependency on
IProductRepository,
which is implemented by
WcfProductRepository.

INavigationService

Executable

Presentation logic

Domain

Data access

IProductRepository

App MainPage

uses

uses

Wcf-
ProductRepository

MainViewModel

Figure 7.7 dEpENdENCy graph of the product-management rich client

The application’s
COMPOSITION ROOT
consists solely of
the App class.

The parts of the COMPOSITION
ROOT include the following:

App

OnLaunched

NavigateTo<T> CreatePage

The application’s entry
point, implemented by the
App.OnLaunched method

The COMPOSER, implemented
by the App.CreatePage
method

The navigation service,
implemented by the
App.NavigateTo<TViewModel>
method

COMPOSITION ROOT

Entry point

Navigation COMPOSER

Figure 7.8 The product-management rich client’s COmpOSiTiON rOOT

 227Composing UWP applications

The next listing shows our Composition Root in action.

Listing 7.6 The product-management App class containing the COmpOSiTiON rOOT

public sealed partial class App : Application, INavigationService
{
 protected override void OnLaunched(
 LaunchActivatedEventArgs e)
 {
 if (Window.Current.Content == null)
 {
 Window.Current.Content = new Frame();
 Window.Current.Activate();
 this.NavigateTo<MainViewModel>(null, null);
 }
 }

 public void NavigateTo<TViewModel>(
 Action whenDone, object model)
 where TViewModel : IViewModel
 {
 var page = this.CreatePage(typeof(TViewModel));
 var viewModel = (IViewModel)page.DataContext;

 viewModel.Initialize(whenDone, model);

 var frame = (Frame)Window.Current.Content;
 frame.Content = page;
 }

The application’s
entry point

On launch, creates a new
Frame and activates it

Creates a new
MainPage and
MainViewModel
pair, and shows
the MainPage to
the user

NavigateTo
triggers the
composition and
initialization,
ensuring the
created page is
displayed.

7.2.3 Implementing the compoSition root in the UWP application

There are many ways to create the Composition Root. For this example, we chose to
place both the navigation logic and the construction of View/ViewModel pairs inside
the App.xaml.cs file to keep the example relatively succinct. The application’s Compo-
sition Root is displayed in figure 7.8 .

NOTE An important part of the Composition Root is the Composer. It’s a
unifying term to refer to any object or method that composes Dependencies
and is discussed in more detail in the next chapter.

creates

uses

The App class functions as the
COMPOSITION ROOT of the application
to create the MainPage class.

MainPage is the root object in the
object graph that is created by the
COMPOSITION ROOT.

INavigationService
is implemented by
the App class of
the UWP client.

MainPage uses
MainViewModel
for data binding.

MainViewModel makes use of
the INavigationService
ABSTRACTION.

MainViewModel also
takes a dependency on
IProductRepository,
which is implemented by
WcfProductRepository.

INavigationService

Executable

Presentation logic

Domain

Data access

IProductRepository

App MainPage

uses

uses

Wcf-
ProductRepository

MainViewModel

Figure 7.7 dEpENdENCy graph of the product-management rich client

The application’s
COMPOSITION ROOT
consists solely of
the App class.

The parts of the COMPOSITION
ROOT include the following:

App

OnLaunched

NavigateTo<T> CreatePage

The application’s entry
point, implemented by the
App.OnLaunched method

The COMPOSER, implemented
by the App.CreatePage
method

The navigation service,
implemented by the
App.NavigateTo<TViewModel>
method

COMPOSITION ROOT

Entry point

Navigation COMPOSER

Figure 7.8 The product-management rich client’s COmpOSiTiON rOOT

228 ChapTEr 7 Application composition

 private Page CreatePage(Type vmType)
 {
 var repository = new WcfProductRepository();

 if (vmType == typeof(MainViewModel))
 {
 return new MainPage(
 new MainViewModel(this, repository));
 }
 else if (vmType == typeof(EditProductViewModel))
 {
 return new EditProductPage(
 new EditProductViewModel(repository));
 }
 else if (vmType == typeof(NewProductViewModel))
 {
 return new NewProductPage(
 new NewProductViewModel(repository));
 {
 else
 {
 throw new Exception(“Unknown view model.”);
 }
 ...
}

The CreatePage factory method is similar to the Composition Root examples we dis-
cussed in section 4.1. It consists of a big list of else if statements to construct the
correct pair accordingly.

NOTE For simplicity, CreatePage of listing 7.6 creates new Page instances on
every call. This isn’t strictly required, but is easier to implement.

UWP offers a simple place for a Composition Root. All you need to do is remove the
call to Frame.Navigate(Type) from OnLaunched and set Frame.Content with a manu-
ally created Page class, which is composed using a ViewModel and its Dependencies.

In most other frameworks, there’s a higher degree of Inversion of Control, which
means we need to be able to identify the correct extensibility points to wire up the
desired object graph. One such framework is ASP.NET Core MVC.

7.3 Composing ASP.NET Core MVC applications
ASP.NET Core MVC was built and designed to support DI. It comes with its own inter-
nal composition engine that you can use to build up its own components; although, as
you’ll see, it doesn’t enforce the use of a DI Container for your application compo-
nents. You can use Pure DI or whichever DI Container you like.7

CreatePage constructs the
requested View/ViewModel
pair by composing the
ViewModel and injects it
into the view’s constructor.
Note that MainViewModel
depends on an
INavigationService, but
because the App class
implements
INavigationService, it can be
injected into the
MainViewModel directly
using the keyword this.

7 The ASP.NET Core designers, however, defined an Abstraction over DI Containers with the intention
of allowing third-party DI Containers to completely replace the built-in implementation. In our opinion,
this was a grave mistake, causing pain and frustration for those who maintain DI Containers. Due to time
and page constraints, a discussion of this is outside the scope of the book. Our advice, however, is to keep
the built-in DI Container, even if you use a third-party DI Container to construct your application com-
ponents. For more information about this, see https://simpleinjector.org/blog/2016/06/.

https://simpleinjector.org/blog/2016/06/

 229Composing ASP.NET Core MVC applications

In this section, you’ll learn how to use the main extensibility point of ASP.NET Core
MVC, which allows you to plug in your logic for composing controller classes with their
Dependencies. This section looks at ASP.NET Core MVC from the perspective of DI
Object Composition. There’s a lot more to building ASP.NET Core applications than
we can address in a single chapter, however. If you want to learn more about how to
build applications with ASP.NET Core, take a look at Andrew Lock’s ASP.NET Core in
Action (Manning, 2018). After that, we’ll take a look at how to plug in custom middle-
ware that requires Dependencies.

NOTE In ASP.NET “classic,” Microsoft developed separate frameworks for
MVC and Web API. With ASP.NET Core, Microsoft created one unifying frame-
work to handle both MVC and Web API under the umbrella of ASP.NET Core
MVC. From the perspective of DI, wiring a Web API is identical to an MVC
application in ASP.NET Core. This means that this section applies to building
Web APIs in .NET Core too.

As is always the case with practicing DI in an application framework, the key to applying
it is finding the correct extensibility point. In ASP.NET Core MVC, this is an interface
called IControllerActivator. Figure 7.9 illustrates how it fits into the framework.

Controllers are central to ASP.NET Core MVC. They handle requests and determine
how to respond. If you need to query a database, validate and save incoming data, invoke
domain logic, and so on, you initiate such actions from a controller. A controller shouldn’t
do such things itself, but rather delegate the work to the appropriate Dependencies. This
is where DI comes in.

When the ASP.NET Core MVC runtime receives a
request, it asks its controller activator to create a controller
for the requested URL by supplying the controller type.

The controller activator creates and
returns a new instance of that type.

ASP.NET Core MVC then
invokes the appropriate action
method on the controller
instance.

When it’s finished, ASP.NET
Core MVC gives the controller
activator a chance to dispose
of resources by calling Release.

An
IControllerActivator

ASP.NET Core MVC

Request arrives

Response

Create()

A HomeController

new()
A HomeController

An ActionResult

Invoke some action method

Release(context, controller)

Figure 7.9 The ASP.NET Core MVC request pipeline

230 ChapTEr 7 Application composition

You want to be able to supply Dependencies to a given controller class, ideally by Con-
structor Injection. This is possible with a custom IControllerActivator.

7.3.1 Creating a custom controller activator

Creating a custom controller activator isn’t particularly difficult. It requires you to
implement the IControllerActivator interface:

public interface IControllerActivator
{
 object Create(ControllerContext context);
 void Release(ControllerContext context, object controller);
}

The Create method provides a ControllerContext that contains information such as
the HttpContext and the controller type. This is the method where you get the chance
to wire up all required Dependencies and supply them to the controller before return-
ing the instance. You’ll see an example in a moment.

If you created any resources that need to be explicitly disposed of, you can do that
when the Release method is called. We’ll go into further details about releasing com-
ponents in the next chapter. A more practical way to ensure that Dependencies are dis-
posed of is to add them to the list of disposable request objects using the HttpContext.
Response.RegisterForDispose method. Although implementing a custom controller
activator is the hard part, it won’t be used unless we tell ASP.NET Core MVC about it.

uSiNg a CuSTOm CONTrOllEr aCTivaTOr iN aSp.NET COrE

A custom controller activator can be added as part of the application startup sequence —
usually in the Startup class. They’re used by calling AddSingleton<IController
Activator> on the IServiceCollection instance. The next listing shows the Startup
class from the sample e-commerce application.

Listing 7.7 Commerce application’s Startup class

public class Startup
{
 public Startup(IConfiguration configuration)
 {
 this.Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

 var controllerActivator = new CommerceControllerActivator(
 Configuration.GetConnectionString("CommerceConnectionString"));

 services.AddSingleton<IControllerActivator>(controllerActivator);
 }

 231Composing ASP.NET Core MVC applications

 public void Configure(ApplicationBuilder app, IHostingEnvironment env)
 {
 ...
 }
}

This listing creates a new instance of the custom CommerceControllerActivator. By
adding it to the list of known services using AddSingleton, you ensure the creation
of controllers is Intercepted by your custom controller activator. If this code looks
vaguely familiar, it’s because you saw something similar in section 4.1.3. Back then, we
promised to show you how to implement a custom controller activator in chapter 7,
and what do you know? This is chapter 7.

ExamplE: implEmENTiNg ThE CommerceControllerActivator
As you might recall from chapters 2 and 3, the e-commerce sample application pres-
ents the visitor of the website with a list of products and their prices. In section 6.2,
we added a feature that allowed users to calculate a route between two locations.
Although we’ve shown several snippets of the Composition Root, we didn’t show a
complete example. Together with listing 7.7’s Startup class, listing 7.8’s Commerce
ControllerActivator class shows a complete Composition Root.

The e-commerce sample application needs a custom controller activator to wire up
controllers with their required Dependencies. Although the entire object graph is con-
siderably deeper, from the perspective of the controllers themselves, the union of all
immediate Dependencies is as small as two items (figure 7.10).

IProductService IRouteCalculator

HomeController RouteController

Figure 7.10 Two controllers in the sample
application with their dEpENdENCiES

The following listing shows a CommerceControllerActivator that composes both Home
Controller and RouteController with their Dependencies.

Listing 7.8 Creating controllers using a custom controller activator

public class CommerceControllerActivator : IControllerActivator
{
 private readonly string connectionString;

 public CommerceControllerActivator(string connectionString)
 {
 this.connectionString = connectionString;
 }

232 ChapTEr 7 Application composition

 public object Create(ControllerContext context)
 {
 Type type = context.ActionDescriptor
 .ControllerTypeInfo.AsType();

 if (type == typeof(HomeController))
 {
 return this.CreateHomeController();
 }
 else if (type == typeof(RouteController))
 {
 return this.CreateRouteController();
 }
 else
 {
 throw new Exception("Unknown controller " + type.Name);
 }
 }

 private HomeController CreateHomeController()
 {
 return new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(
 this.connectionString)),
 new AspNetUserContextAdapter()));
 }

 private RouteController CreateRouteController()
 {
 var routeAlgorithms = ...;
 return new RouteController(
 new RouteCalculator(routeAlgorithms));
 }

 public void Release(
 ControllerContext context, object controller)
 {
 }
}

NOTE As we stated before, ASP.NET Core contains its own built-in DI Con-
tainer (which we’ll discuss in chapter 15). Alternatively, you could use this
built-in DI Container to register your Dependencies. In chapter 12, we’ll dis-
cuss how to decide whether to use Pure DI or a DI Container. In this part of
the book, we’ll stick to using Pure DI.

When a CommerceControllerActivator instance is registered in Startup, it correctly
creates all requested controllers with the required Dependencies. Besides controllers,
other common components that often require the use of DI are what ASP.NET Core
calls middleware.

Gets the
controller Type
to create from

ControllerContext Returns the
appropriate controller
based on the given
type, assuming the
requested type is
either HomeController
or RouteController

Explicitly wires up the
controllers with the
required DepenDencIes
and returns them. Both
types use constructor
InjectIon, so you supply
the DepenDencIes
through their
constructors.

We leave the Release
method empty for
now, as we’ll get back
to this in section 8.2.

 233Composing ASP.NET Core MVC applications

7.3.2 Constructing custom middleware components using pure Di

ASP.NET Core makes it relatively easy to plug in extra behavior in the request pipeline.
Such behavior can influence the request and response. In ASP.NET Core, these exten-
sions to the request pipeline are called middleware. A typical use of hooking up middle-
ware to the request pipeline is through the Use extension method:

var logger =
 loggerFactory.CreateLogger("Middleware");

app.Use(async (context, next) =>
{
 logger.LogInformation("Request started");

 await next();

 logger.LogInformation("Request ended");
});

NOTE This is the first time in the book that we show a code sample that uses the
C# 5.0 async and await keywords. If you’re a C# developer, you’ve probably come
across examples of asynchronous programming already because ASP.NET Core
is built around an asynchronous programming model. A discussion about asyn-
chronous programming, however, is out of the scope of this book.8 Fortunately,
when it comes to applying DI, asynchronous programming isn’t an issue, because
construction of object graphs should always be fast, should never depend on any
I/O, and, therefore, should always be synchronous.

More often, however, more work needs to be done prior to or after the request’s main
logic runs. You might therefore want to extract such middleware logic into its own class.
This prevents your Startup class from being cluttered and gives you the opportunity to
unit test this logic, should you want to do so. You can extract the body of our previous Use
lambda to an Invoke method on a newly created LoggingMiddleware class:

public class LoggingMiddleware
{
 private readonly ILogger logger;

 public LoggingMiddleware(ILogger logger)
 {
 this.logger = logger;
 }

 public async Task Invoke(
 HttpContext context, Func<Task> next)
 {

Creates an ILogger instance for
use by the middleware

Lets you register a lambda expression
to run with each request. The context
argument is an HttpContext, and the
next argument is a Func<Task>.

Runs some
code before
continuing

with the
rest of the

pipeline

A call to next() causes the rest of
the pipeline to run. Because next()
returns a Task, you must await the
results of that Task.

Runs some
code after
the rest of

the pipeline
has run

8 For guidance on asynchronous programming, when to use it, and how to use the async and await
keywords, see https://docs.microsoft.com/en-us/dotnet/csharp/async.

A constructor accepts the
required DepenDency.

The Invoke method contains the logic
that was previously supplied in-line.

https://docs.microsoft.com/en-us/dotnet/csharp/async

234 ChapTEr 7 Application composition

 this.logger.LogInformation("Request started");
 await next();
 this.logger.LogInformation("Request ended");
 }
}

With the middleware logic now moved into the LoggingMiddleware class, the Startup
configuration can be minimized to the following code:

var logger = loggerFactory.CreateLogger("Middleware");

app.Use(async (context, next) =>
{
 var middleware = new LoggingMiddleware(logger);

 await middleware.Invoke(context, next);
});

NOTE When the object graph of the created middleware component becomes
more complex, it may become necessary to move the creation of the compo-
nent into the location where your other components are composed. In our
previous example, that would be the CommerceControllerActivator. But
we’ll leave this as an exercise for the reader.

The great thing about ASP.NET Core MVC is that it was designed with DI in mind, so,
for the most part, you only need to know and use a single extensibility point to enable
DI for an application. Object Composition is one of three important dimensions of DI
(the others being Lifetime Management and Interception).

In this chapter, we’ve shown you how to compose applications from loosely coupled
modules in a variety of different environments. Some frameworks actually make it easy.
When you’re writing console applications and Windows clients (such as UWP), you’re
more or less in direct control of what’s happening at the application’s entry point. This
provides you with a distinct and easily implemented Composition Root. Other frame-
works, such as ASP.NET Core, make you work a little harder, but they still provide Seams
you can use to define how the application should be composed. ASP.NET Core was
designed with DI in mind, so composing an application is as easy as implementing a
custom IControllerActivator and adding it to the framework.

Without Object Composition, there’s no DI, but you may not yet have fully real-
ized the implications for Object Lifetime when we move the creation of objects out
of the consuming classes. You may find it self evident that the external caller (often
a DI Container) creates new instances of Dependencies — but when are injected
instances deallocated? And what if the external caller doesn’t create new instances
each time, but instead hands you an existing instance? These are topics for the next
chapter.

Constructs a
new middleware
component with
its DepenDencIes

Invokes the middleware by passing
the context and next arguments

 235Summary

Summary

¡	Object Composition is the act of building up hierarchies of related compo-
nents, which takes place inside the Composition Root.

¡	A Composition Root should only do four things: load configuration values,
build object graphs, invoke the desired functionality, and release the object graphs.

¡	Only the Composition Root should rely on configuration files because it’s more
flexible for libraries to be imperatively configurable by their callers.

¡	Separate the loading of configuration values from the methods that do Object
Composition. This makes it possible to test Object Composition without the
existence of a configuration file.

¡	Model View ViewModel (MVVM) is a design in which the ViewModel is the
bridge between the view and the model. Each ViewModel is a class that translates
and exposes the model in a technology-specific way. In MVVM, ViewModels are
the application components that will be composed using DI.

¡	In a console application, the Program class is a suitable Composition Root.
¡	In a UWP application, the App class is a suitable Composition Root, and its

OnLaunched method is the main entry point.
¡	In an ASP.NET Core MVC application, the IControllerActivator is the correct

extensibility point to plug in Object Composition.
¡	A practical way to ensure that Dependencies are disposed of in ASP.NET Core is

to use the HttpContext.Response.RegisterForDispose method to add them to
the list of disposable request objects.

¡	Middleware can be added to ASP.NET Core by registering a function to the pipe-
line that implements a small part of the Composition Root. This composes the
middleware component and invokes it.

236

8Object lifetime

In this chapter
¡	Managing DePenDency Lifetime

¡	Working with disposable DePenDencies

¡	Using singLeton, trAnsient, and scoPeD
LifestyLes

¡	Preventing or fixing bad LifestyLe choices

The passing of time has a profound effect on most food and drink, but the con-
sequences vary. Personally, we find 12-month-old Gruyère more interesting than
6-month-old Gruyère, but Mark prefers his asparagus fresher than either of those.1
In many cases, it’s easy to assess the proper age of an item; but in certain cases, doing
so becomes complex. This is most notable when it comes to wine (see figure 8.1).

Wines tend to get better with age — until they suddenly become too old and lose
most of their flavor. This depends on many factors, including the origin and vintage of
the wine. Although wines interest us, we don’t ever expect we’ll be able to predict when
a wine will peak. For that, we rely on experts: books at home and sommeliers at restau-
rants. They understand wines better than we do, so we happily let them take control.

1 Steven, however, doesn’t like asparagus at any age, but does prefer his whiskey of older age.

 237

Unless you dove straight into this chapter without reading any of the previous ones, you
know that letting go of control is a key concept in DI. This stems from the Inversion
of Control principle, where you delegate control of your Dependencies to a third
party, but it also implies more than just letting someone else pick an implementation
of a required Abstraction. When you allow a Composer to supply a Dependency, you
must also accept that you can’t control its lifetime.

DEFINITION Composer is a unifying term to refer to any object or method that
composes Dependencies. It’s an important part of the Composition Root.
The Composer is often a DI Container, but it can also be any method that
constructs object graphs manually (using Pure DI).

Just as the sommelier intimately knows the contents of the restaurant’s wine cellar and
can make a far more informed decision than we can, we should trust the Composer to
be able to control the lifetime of Dependencies more efficiently than the consumer.
Composing and managing components is its single responsibility.

Figure 8.1 Wine, cheese,
and asparagus. Although the
combination may be a bit off,
their age greatly affects their
overall qualities.

238 ChapTEr 8 Object lifetime

In this chapter, we’ll explore Dependency Lifetime Management. Understand-
ing this topic is important because, just as you can have a subpar experience if you
drink a wine at the wrong age (both your own age and the wine’s), you can experience
degraded performance from configuring Dependency Lifetime incorrectly. Even
worse, you may get the Lifetime Management equivalent of spoiled food: resource
leaks. Understanding the principles of correctly managing the lifecycles of components
should enable you to make informed decisions to configure your applications correctly.

We’ll start with a general introduction to Dependency Lifetime Management, fol-
lowed by a discussion about disposable Dependencies. This first part of the chapter is
meant to provide all the background information and guiding principles you need in
order to make knowledgeable decisions about your own applications' lifecycles, scope,
and configurations.

After that, we’ll look at different lifetime strategies. This part of the chapter takes the
form of a catalog of available Lifestyles. In most cases, one of these stock Lifestyle
patterns will provide a good match for a given challenge, so understanding them in
advance equips you to deal with many difficult situations.

DEFINITION A Lifestyle is a formalized way of describing the intended life-
time of a Dependency.

We’ll finish the chapter with some bad habits, or anti-patterns, concerning Lifetime
Management. When we’re finished, you should have a good grasp of Lifetime Man-
agement and common Lifestyle do’s and don’ts. First, let’s look at Object Lifetime
and how it relates to DI in general.

8.1 Managing DepenDency lifetime

Up to this point, we’ve mostly discussed how DI enables you to compose Dependen-
cies. The previous chapter explored this subject in great detail, but, as we alluded to in
section 1.4, Object Composition is just one aspect of DI. Managing Object Lifetime
is another.

The first time we were introduced to the idea that the scope of DI includes Lifetime
Management, we failed to understand the deep connection between Object Compo-
sition and Object Lifetime. We finally got it, and it’s simple, so let’s take a look!

In this section, we’ll introduce Lifetime Management and how it applies to Depen-
dencies. We’ll look at the general case of composing objects and how it has implications
for the lifetimes of Dependencies. First, we’ll investigate why Object Composition
implies Lifetime Management.

8.1.1 Introducing lifetime management

When we accept that we should let go of our psychological need for control over
Dependencies and instead request them through Constructor Injection or one
of the other DI patterns, we must let go completely. To understand why, we’ll examine

 239Managing dependenCy liFetime

the issue progressively. Let’s begin by reviewing what the standard .NET object lifecycle
means for Dependencies. You likely already know this, but bear with us for the next
half page while we establish the context.

SimplE dEpENdENCy lifECyClE

You know that DI means you let a third party (typically our Composition Root) serve
the Dependencies you need. This also means you must let it manage the Dependen-
cies’ lifetimes. This is easiest to understand when it comes to object creation. Here’s a
(slightly restructured) code fragment from the sample e-commerce application’s Com-
position Root. (You can see the complete example in listing 7.8.)

var productRepository =
 new SqlProductRepository(
 new CommerceContext(connectionString));

var productService =
 new ProductService(
 productRepository,
 userContext);

We hope that it’s evident that the ProductService class doesn’t control when product
Repository is created. In this case, SqlProductRepository is likely to be created
within the same millisecond; but as a thought experiment, we could insert a call to
Thread.Sleep between these two lines of code to demonstrate that you can arbitrarily
separate them over time. That would be a pretty weird thing to do, but the point is that
not all objects of a Dependency graph have to be created at the same time.

Consumers don’t control creation of their Dependencies, but what about destruc-
tion? As a general rule, you don’t control when objects are destroyed in .NET. The
garbage collector cleans up unused objects, but unless you’re dealing with disposable
objects, you can’t explicitly destroy an object.

NOTE We use the term disposable object as shorthand for referring to object
instances of types that implement the IDisposable interface.

Objects are eligible for garbage collection when they go out of scope. Conversely, they
last as long as someone else holds a reference to them. Although a consumer can’t
explicitly destroy an object — that’s up to the garbage collector — it can keep the object
alive by holding on to the reference. This is what you do when you use Constructor
Injection, because you save the Dependency in a private field:

public class HomeController
{
 private readonly IProductService service;

 public HomeController(IProductService service)
 {
 this.service = service;
 }
}

Injects a DepenDency into
the class’s constructor

Saves the reference to the DepenDency in
a private field, keeping the DepenDency
alive at least as long as the consuming
HomeController instance is alive

240 ChapTEr 8 Object lifetime

This means that when the consumer goes out of scope, so can the Dependency. Even
when a consumer goes out of scope, however, the Dependency can live on if other
objects hold a reference to it. Otherwise, it’ll be garbage collected. Because you’re an
experienced .NET developer, this is probably old news to you, but now the discussion
should begin to get more interesting.

addiNg COmplExiTy TO ThE dEpENdENCy lifECyClE

Until now our analysis of the Dependency lifecycle has been mundane, but now we
can add some complexity. What happens when more than one consumer requires
the same Dependency? One option is to supply each consumer their own instance, as
shown in figure 8.2.

Both ProductService and
DiscountCalculator depend
on IProductRepository. Both
get a SqlProductRepository
injected.

However, both
consumers get
their own unique
SqlProductRepository
instance.

Instance 1 Instance 2

SqlProductRepository

injected into injected into

ProductService DiscountCalculator

SqlProductRepository

Figure 8.2 Composing multiple, unique instances of a dEpENdENCy

The following listing composes multiple consumers with multiple instances of the
same Dependency, shown in figure 8.2.

Listing 8.1 Composing with multiple instances of the same dEpENdENCy

var repository1 = new SqlProductRepository(connString);
var repository2 = new SqlProductRepository(connString);

var productService = new ProductService(repository1);

var calculator = new DiscountCalculator(repository2);

When it comes to the lifecycles of each Repository in listing 8.1, nothing has changed
compared to the previously discussed sample e-commerce application’s Composition
Root. Each Dependency goes out of scope and is garbage-collected when its consum-
ers go out of scope. This can happen at different times, but the situation is only margin-
ally different than before. It would be a somewhat different situation if both consumers
were to share the same Dependency, as shown in figure 8.3.

Two consumers both require
an IProductRepository
instance, but you wire up
two separate instances with
the same connection string.

You can now pass repository1 to
a new ProductService instance.

You pass repository2 to a new
DiscountCalculator instance.

Both ProductService and
DiscountCalculator depend
on IProductRepository. Both
get a SqlProductRepository
injected.

In this case, however,
both consumers share
the same instance.

injected into

ProductService DiscountCalculator

SqlProductRepository

Figure 8.3 Reusing the same instance of a dEpENdENCy by injecting it into multiple consumers

 241Managing dependenCy liFetime

This means that when the consumer goes out of scope, so can the Dependency. Even
when a consumer goes out of scope, however, the Dependency can live on if other
objects hold a reference to it. Otherwise, it’ll be garbage collected. Because you’re an
experienced .NET developer, this is probably old news to you, but now the discussion
should begin to get more interesting.

addiNg COmplExiTy TO ThE dEpENdENCy lifECyClE

Until now our analysis of the Dependency lifecycle has been mundane, but now we
can add some complexity. What happens when more than one consumer requires
the same Dependency? One option is to supply each consumer their own instance, as
shown in figure 8.2.

Both ProductService and
DiscountCalculator depend
on IProductRepository. Both
get a SqlProductRepository
injected.

However, both
consumers get
their own unique
SqlProductRepository
instance.

Instance 1 Instance 2

SqlProductRepository

injected into injected into

ProductService DiscountCalculator

SqlProductRepository

Figure 8.2 Composing multiple, unique instances of a dEpENdENCy

The following listing composes multiple consumers with multiple instances of the
same Dependency, shown in figure 8.2.

Listing 8.1 Composing with multiple instances of the same dEpENdENCy

var repository1 = new SqlProductRepository(connString);
var repository2 = new SqlProductRepository(connString);

var productService = new ProductService(repository1);

var calculator = new DiscountCalculator(repository2);

When it comes to the lifecycles of each Repository in listing 8.1, nothing has changed
compared to the previously discussed sample e-commerce application’s Composition
Root. Each Dependency goes out of scope and is garbage-collected when its consum-
ers go out of scope. This can happen at different times, but the situation is only margin-
ally different than before. It would be a somewhat different situation if both consumers
were to share the same Dependency, as shown in figure 8.3.

Two consumers both require
an IProductRepository
instance, but you wire up
two separate instances with
the same connection string.

You can now pass repository1 to
a new ProductService instance.

You pass repository2 to a new
DiscountCalculator instance.

Both ProductService and
DiscountCalculator depend
on IProductRepository. Both
get a SqlProductRepository
injected.

In this case, however,
both consumers share
the same instance.

injected into

ProductService DiscountCalculator

SqlProductRepository

Figure 8.3 Reusing the same instance of a dEpENdENCy by injecting it into multiple consumers

When you apply this to listing 8.1, you get the code in listing 8.2.

Listing 8.2 Composing with a single instance of the same dEpENdENCy

var repository = new SqlProductRepository(connString);

var productService = new ProductService(repository);

var calculator = new DiscountCalculator(repository);

When comparing listings 8.1 and 8.2, you don’t find that one is inherently better than
the other. As we’ll discuss in section 8.3, there are several factors to consider when it
comes to when and how you want to reuse a Dependency.

NOTE The consumers are blissfully unaware that the Dependency is shared.
Because they both accept whichever version of the Dependency they’re given,
no modification of the source code is necessary to accommodate this change
in Dependency configuration. This is a result of the Liskov Substitution
Principle.

liSkOv SubSTiTuTiON priNCiplE

As it was originally stated, the Liskov substitution PrinciPLe is an academic and abstract
concept defined by Barbara Liskov in 1987. But in object-oriented design, we can para-
phrase it as follows: “Methods that consume AbstrActions must be able to use any class
derived from that AbstrAction without noticing the difference.”

We must be able to substitute the AbstrAction for an arbitrary implementation with-
out changing the correctness of the system. Failing to adhere to the Liskov substitution
PrinciPLe makes applications fragile, because it disallows replacing DePenDencies, and
doing so might cause a consumer to break.

Instead of creating
two different
SqlProductRepository
instances, you create
a single instance that
you inject into both
consumers. Both
save the reference
for later use.

242 ChapTEr 8 Object lifetime

The lifecycle for the Repository Dependency has changed distinctly, compared with
the previous example. Both consumers must go out of scope before the variable repos
itory can be eligible for garbage collection, and they can do so at different times. The
situation becomes less predictable when the Dependency reaches the end of its life-
time. This trait is only reinforced when the number of consumers increases.

Given enough consumers, it’s likely that there’ll always be one around to keep the
Dependency alive. This may sound like a problem, but it rarely is: instead of a multitude
of similar instances, you have only one, which saves memory. This is such a desirable
quality that we formalize it in a Lifestyle pattern called the Singleton Lifestyle.
Don’t confuse this with the Singleton design pattern, although there are similarities.2
We’ll go into greater detail about this subject in section 8.3.1.

The key point to appreciate is that the Composer has a greater degree of influence
over the lifetime of Dependencies than any single consumer. The Composer decides
when instances are created, and by its choice of whether to share instances, it deter-
mines whether a Dependency goes out of scope with a single consumer, or whether all
consumers must go out of scope before the Dependency can be released.

DEFINITION Releasing is the process of determining which Dependencies can
be dereferenced and possibly disposed of. The Composition Root requests an
object graph from the Composer. After the Composition Root has finished
working with that resolved graph, it informs the Composer that it has finished
with the graph. The Composer can then decide which of the Dependencies of
that particular graph can be released.

This is comparable to visiting a restaurant with a good sommelier. The sommelier
spends a large proportion of the day managing and evolving the wine cellar: buying
new wines, sampling the available bottles to track how they develop, and working with
the chefs to identify optimal matches to the food being served. When we’re presented
with the wine list, it includes only what the sommelier deems fit to offer for today’s
menu. We’re free to select a wine according to our personal taste, but we don’t pre-
sume to know more about the restaurant’s selection of wines and how they go with the
food than the sommelier does. The sommelier will often decide to keep lots of bottles
in stock for years; and as you’ll see in the next section, a Composer may decide to keep
instances alive by holding on to their references.

8.1.2 Managing lifetime with pure Di

The previous section explained how you can vary the composition of Dependencies
to influence their lifetimes. In this section, we’ll look at how to implement this using
Pure DI, while applying the two most commonly used Lifestyles: Transient and
Singleton.

2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1994), 127.

 243Managing dependenCy liFetime

In chapter 7, you created specialized classes to compose applications. One of these
was a CommerceControllerActivator for an ASP.NET Core MVC application — our
Composer. Listing 7.8 shows the implementation of its Create method.

As you may recall, the Create method creates the entire object graph on the fly each
time it’s invoked. Each Dependency is private to the issued controller, and there’s no
sharing. When the controller instance goes out of scope (which it does every time the
server has replied to a request), all the Dependencies go out of scope too. This is often
called a Transient Lifestyle, which we’ll talk more about in section 8.3.2.

Let’s analyze the object graphs created by the CommerceControllerActivator and
shown in figure 8.4 to see if there’s room for improvement. Both the AspNetUser
ContextAdapter and RouteCalculator classes are completely stateless services, so
there’s no reason to create a new instance every time you need to service a request.
The connection string is also unlikely to change, so you can reuse it across requests.
The SqlProductRepository class, on the other hand, relies on an Entity Framework
DbContext (implemented by our CommerceContext), which mustn’t be shared across
requests.3

Each HomeController
instance contains its
own ProductService
and its own
SqlProductRepository,
depending on both
AspNetUserContextAdapter
and CommerceContext.
The CommerceContext
in turn contains its own
connection string.

The object graph
for RouteController
is shallower, where
each RouteController
gets its own
RouteCalculator
that receives a
collection of
IRouteAlgorithm
instances.

HomeController

ProductService

SqlProductRepository

AspNetUserContext-
Adapter CommerceContext

ShortestRoute
Algorithm

FastestRoute
Algorithm

ScenicRoute
Algorithm

RouteCalculator

RouteController

connectionString

Figure 8.4 Object graphs as created by CommerceControllerActivator, which creates
HomeController and RouteController instances with their dEpENdENCiES

3 Entity Framework DbContext instances aren’t thread-safe and can’t be used by multiple requests in
parallel.

244 ChapTEr 8 Object lifetime

Given this particular configuration, a better implementation of CommerceController
Activator would reuse the same instances of both AspNetUserContextAdapter and
RouteCalculator, while creating new instances of ProductService and SqlProduct
Repository. In short, you should configure AspNetUserContextAdapter and
RouteCalculator to use the Singleton Lifestyle, and ProductService and Sql
ProductRepository as Transient. The following listing shows how to implement this
change.

Listing 8.3 Managing lifetime within the CommerceControllerActivator

public class CommerceControllerActivator : IControllerActivator
{
 private readonly string connectionString;
 private readonly IUserContext userContext;
 private readonly RouteCalculator calculator;

 public CommerceControllerActivator(string connectionString)
 {
 this.connectionString = connectionString;

 this.userContext =
 new AspNetUserContextAdapter();

 this.calculator =
 new RouteCalculator(
 this.CreateRouteAlgorithms());
 }

 public object Create(ControllerContext context)
 {
 Type type = context.ActionDescriptor
 .ControllerTypeInfo.AsType();

 switch (type.Name)
 {
 case "HomeController":
 return this.CreateHomeController();

 case "RouteController":
 return this.CreateRouteController();

 default:
 throw new Exception("Unknown controller " + type.Name);
 }
 }

Read-only fields to store
sIngleton DepenDencIes

Creates sIngleton
DepenDencIes and stores
them in private fields.
This way they can be
reused throughout the
application’s lifetime by
all requests.

 245Working with disposable dependenCies

 private HomeController CreateHomeController()
 {
 return new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(
 this.connectionString)),
 this.userContext));
 }

 private RouteController CreateRouteController()
 {
 return new RouteController(this.calculator);
 }

 public void Release(ControllerContext context,
 object controller) { ... }
}

NOTE The readonly keyword of listing 8.3 provides an extra guarantee
that once assigned, these Singleton instances are permanent and can’t be
replaced. Apart from that guarantee, however, readonly is in no way required
when implementing the Singleton Lifestyle.

In an MVC application, it’s practical to load configuration values in the Startup class.
That’s why in listing 8.3, the connection string is supplied to the constructor of the
CommerceControllerActivator.

The code in listing 8.3 is functionally equivalent to the code in listing 7.8 — it’s just
slightly more efficient because some of the Dependencies are shared. By holding on to
the Dependencies you create, you can keep them alive for as long as you want. In this
example, CommerceControllerActivator created both Singleton Dependencies as
soon as it was initialized, but it could also have used lazy initialization.

The ability to fine-tune each Dependency’s Lifestyle can be important for perfor-
mance reasons, but can also be important for correct behavior. For instance, the Mediator
design pattern relies on a shared director through which several components commu-
nicate.4 This only works when the Mediator is shared among the involved collaborators.

So far, we’ve discussed how Inversion of Control implies that consumers can’t
manage the lifetimes of their Dependencies, because they don’t control creation of
objects; and because .NET uses garbage collection, consumers can’t explicitly destroy
objects, either. This leaves a question unanswered: what about disposable Dependen-
cies? We’ll now turn our attention to that delicate question.

8.2 Working with disposable DepenDencieS

Although .NET is a managed platform with a garbage collector, it can still interact with
unmanaged code. When this happens, .NET code interacts with unmanaged memory
that isn’t garbage-collected. To prevent memory leaks, you must have a mechanism
with which to deterministically release unmanaged memory. This is the key purpose of
the IDisposable interface.

Creates trAnsIent
instances each time the
CommerceControllerActivator
is asked to create a new
instance. The earlier created
sIngletons are injected into
these trAnsIents.

We’ll leave the Release
method empty for now
and get back to it in
section 8.2.

4 Erich Gamma et al., Design Patterns, 273.

246 ChapTEr 8 Object lifetime

It’s likely that some Dependency implementations will contain unmanaged
resources. As an example, ADO.NET connections are disposable because they tend to
use unmanaged memory. As a result, database-related implementations like Reposito-
ries backed by databases are likely to be disposable themselves. How should we model
disposable Dependencies? Should we also let Abstractions be disposable? That might
look like this:

public interface IMyDependency : IDisposable

IMPORTANT This is technically possible but not a particularly good idea.
It’s a design smell that, as we explained in section 6.2.1, indicates a Leaky
Abstraction.

If you feel the urge to add IDisposable to your interface, it’s probably because you
have a particular implementation in mind. But you must not let that knowledge leak
through to the interface design. Doing so would make it more difficult for other classes
to implement the interface and would introduce vagueness into the Abstraction.

Who’s responsible for disposing of a disposable Dependency? Could it be the
consumer?

8.2.1 Consuming disposable DepenDencieS

For the sake of argument, imagine that you have a disposable Abstraction like the
following IOrderRepository interface.

Listing 8.4 IOrderRepository implementing IDisposable

public interface IOrderRepository : IDisposable

How should an OrderService class deal with such a Dependency? Most design guide-
lines (including Visual Studio’s built-in Code Analysis) would insist that if a class holds
a disposable resource as a member, it should itself implement IDisposable and dis-
pose of the resource. The next listing shows how.

Listing 8.5 OrderService depending on disposable dEpENdENCy

public sealed class OrderService : IDisposable
{
 private readonly IOrderRepository repository;

 public OrderService(IOrderRepository repository)
 {
 this.repository = repository;
 }

 public void Dispose()
 {
 this.repository.Dispose();
 }
}

OrderService also implements
IDisposable.

Implements Dispose and disposes
the IOrderRepository DepenDency

 247Working with disposable dependenCies

But this turns out to be a bad idea because the repository member was originally
injected, and it can be shared by other consumers:

var repository =
 new SqlOrderRepository(connectionString);

var validator = new OrderValidator(repository);
var orderService = new OrderService(repository);

orderService.AcceptOrder(order);
orderService.Dispose();

validator.Validate(order);

It would be less dangerous not to dispose of the injected Repository, but this means
you’re ignoring the fact that the Abstraction is disposable. Besides, in this case, the
Abstraction exposes more members than used by the client, which is an Interface
Segregation Principle violation (see section 6.2.1). Declaring an Abstraction
as deriving from IDisposable provides no benefit.

Then again, there can be scenarios where you need to signal the beginning and
end of a short-lived scope; IDisposable is sometimes used for that purpose. Before we
examine how a Composer can manage the lifetime of a disposable Dependency, we
should consider how to deal with such ephemeral disposables.

DEFINITION An ephemeral disposable is an object with a clear and short lifetime
that typically doesn’t exceed a single method call.

CrEaTiNg EphEmEral diSpOSablES

Many APIs in the .NET BCL use IDisposable to signal that a particular scope has
ended. One of the more prominent examples is WCF proxies.

WCF proxies and IDisposable
All autogenerated Windows Communication Foundation (WCF) proxies implement IDispos
able, and it’s important to remember to invoke the Dispose method on a proxy as soon as
possible.5 Many bindings automatically create a session on the service when they submit the
first request, and this session lingers in the service until it times out or is explicitly disposed of.

If you forget to dispose of the WCF proxies after use, the number of sessions increases
until you hit the limit for concurrent connections from the same source. When you reach
the limit, exceptions are thrown. Too many sessions also place an undue burden on the
service, so disposing of WCF proxies as soon as possible is important.

A single instance of
SqlOrderRepository is injected
into both OrderValidator and
OrderService. These two instances
share the same instance of the
IOrderRepository DepenDency.

If OrderService disposes of its injected
IOrderRepository at a later point in time, it
destroys OrderValidator’s DepenDency too.

 This causes exceptions to be thrown when
OrderValidator tries to use it in its Validate method.

5 Although it’s impossible to create services with .NET Core, you can still consume them from a .NET Core
application.

248 ChapTEr 8 Object lifetime

It’s important to remember that the use of IDisposable for such purposes need not
indicate a Leaky Abstraction, because these types aren’t always Abstractions in the
first place. On the other hand, some of them are; and when that’s the case, how do you
deal with them?

Fortunately, after an object is disposed of, you can’t reuse it. If you want to invoke the
same API again, you must create a new instance. As an example that fits well with how
you use WCF proxies or ADO.NET commands, you create the proxy, invoke its opera-
tions, and dispose of it as soon as you’re finished. How can you reconcile this with DI if
you consider disposable Abstractions to be Leaky Abstractions?

As always, hiding the messy details behind an interface can be helpful. Returning to
the UWP application from section 7.2, we used an IProductRepository Abstraction
to hide the details of communicating with a data store from the presentation logic layer.
During this discussion, we ignored the details of such an implementation because it
wasn’t that relevant at that moment. But let’s assume that the UWP application must
communicate with a WCF web service. From the EditProductViewModel’s perspective,
this is how you delete a product:

private void DeleteProduct()
{
 this.productRepository.Delete(this.Model.Id);
 this.whenDone();
}

Another picture forms when we look at the WCF implementation of that interface.
Here’s the implementation of WcfProductRepository with its Delete method.

Listing 8.6 Using a WCF channel as an ephemeral disposable

public class WcfProductRepository : IProductRepository
{
 private readonly ChannelFactory<IProductManagementService> factory;

 public WcfProductRepository(
 ChannelFactory<IProductManagementService> factory)
 {
 this.factory = factory;
 }

 public void Delete(Guid productId)
 {
 using (var channel =
 this.factory.CreateChannel())
 {
 channel.DeleteProduct(productId);
 }
 }
 ...
}

You ask the injected Repository to delete the product
by supplying the product ID. EditProductViewModel

can safely hold a reference to the Repository because
the IProductRepository interface doesn’t derive from

IDisposable.

The Delete method creates
a WCF channel, which is an
ephemeral disposable. The
channel is both created and
disposed of within the same
method call.

 249Working with disposable dependenCies

The WcfProductRepository class has no mutable state, so you inject a Channel
Factory<TChannel> that you can use to create a channel. Channel is just another word
for a WCF proxy, and it’s the autogenerated client interface you get for free when you
create a service reference with Visual Studio or svcutil.exe.

Because this interface derives from IDisposable, you can wrap it in a using state-
ment. You then use the channel to delete the product. When you exit the using scope,
the channel is disposed of.

WARNING Although the using statement is a best practice when it comes to
working with short-lived disposables, this doesn’t hold true when it comes to
WCF. Against all guidelines, WCF proxy classes can throw exceptions when call-
ing Dispose. This causes you to lose the original exception information, in case
an exception was thrown within the using block. Instead of relying on a using
statement, you must write a finally block and ignore any exceptions thrown
by Dispose. We only referenced using here to demonstrate the general con-
cept of implementing an ephemeral disposable.6

Every time you invoke a method on the WcfProductRepository class, it quickly opens
a new channel and disposes of it after use. Its lifetime is extremely short, which is why
we call such a disposable Abstraction an ephemeral disposable.

But wait! Didn’t we claim that a disposable Abstraction is a Leaky Abstraction?
Yes, we did, but we have to balance pragmatic concerns against principles. In this case,
at least, WcfProductRepository and IProductManagementService are defined in
the same WCF-specific library. This ensures that the Leaky Abstraction can be con-
fined to code that has a reasonable expectation of knowing about and managing that
complexity.

Notice that the ephemeral disposable is never injected into the consumer. Instead,
a factory is used, and you use that factory to control the lifetime of the ephemeral
disposable.

ChannelFactory<TChannel> is thread-safe and can be injected as a Singleton.
In this case, you might wonder why we choose to inject ChannelFactory<TChannel>
into the WcfProductRepository’s constructor; you can create it internally and store
it in a static field. This, however, causes WcfProductRepository to be implicitly
dependent on a configuration file, which needs to exist to create a new WcfProduct
Repository. As we discussed in 2.2.3, only the finished application should rely on
configuration files.

In summary, disposable Abstractions are Leaky Abstractions. Sometimes we
must accept such a leak to avoid bugs (such as refused WCF connections); but when we
do that, we should do our best to contain that leak so it doesn’t propagate throughout
an entire application. We’ve now examined how to consume disposable Dependencies.
Let’s turn our attention to how we can serve and manage them for consumers.

6 For more information, see https://mng.bz/5Y6z.

https://mng.bz/5Y6z

250 ChapTEr 8 Object lifetime

8.2.2 Managing disposable DepenDencieS

Because we so adamantly insist that disposable Abstractions are Leaky Abstrac-
tions, the consequence is that Abstractions shouldn’t be disposable. On the other
hand, sometimes implementations are disposable; if you don’t properly dispose of
them, you’ll have resource leaks in your applications. Someone or something must
dispose of them.

TIP Strive to implement services so they don’t hold references to disposables,
but rather create and dispose of them on demand as illustrated in listing 8.6.
This makes memory management simpler because the service can be garbage
collected like other objects.

As always, this responsibility falls on the Composer. It, better than anything else, knows
when it creates a disposable instance, so it also knows when the instance needs to be dis-
posed of. It’s easy for the Composer to keep a reference to the disposable instance and
invoke its Dispose method at an appropriate time. The challenge lies in identifying when
it’s the appropriate time. How do you know when all consumers have gone out of scope?

Unless you’re informed when that happens, you don’t know. Often, however, your
code lives inside some sort of context with a well-defined lifetime, as well as events that
tell you when a specific scope completes. In ASP.NET Core, for instance, you can scope
instances around a single web request. At the end of a web request, the framework
tells IControllerActivator, which is typically our Composer, that it should release
all Dependencies for a given object. It’s then up to the Composer to keep track of
those Dependencies and to decide whether anything must be disposed of based on
their Lifestyles.

rElEaSiNg dEpENdENCiES

Releasing an object graph isn’t the same as disposing of it. As we stated in the introduc-
tion, releasing is the process of determining which Dependencies can be dereferenced
and possibly disposed of, and which Dependencies should be kept alive to be reused. It’s
the Composer that decides whether a released object should be disposed of or reused.

The release of an object graph is a signal to the Composer that the root of the graph
is going out of scope, so if the root itself implements IDisposable, then it should be
disposed of. But the root’s Dependencies can be shared with other roots, so the Com-
poser may decide to keep some of them around, because it knows other objects still rely
on them. Figure 8.5 illustrates the sequence of events.

To release Dependencies, a Composer must track all the disposable Dependencies
it has ever served, and to which consumers it has served them, so that it can dispose of
them when the last consumer is released. And a Composer must take care to dispose of
objects in the correct order.

WARNING An object might require its Dependencies to be called during dis-
posal, which causes problems when these Dependencies are already disposed
of. Disposal should therefore happen in the opposite order of creation — this
means from the outside in.

When a COMPOSER is
asked to resolve an
object, it gathers all
of the requested
object’s DEPENDENCIES.

When the COMPOSER receives a request to release the object, it disposes
of the private disposable DEPENDENCY and lets the non-disposable
DEPENDENCY and the object itself go out of scope. The only interaction
with the shared DEPENDENCY is that it’s injected into the requested
object; but because it’s shared, it isn’t disposed of (yet).

In this case, the requested
object has three DEPENDENCIES,
two of which are disposable. One
of these disposable DEPENDENCIES
is shared with other consumers,
so it’s reused, whereas the other
DEPENDENCIES are instantiated on
the spot.

COMPOSER

new()

Dispose()

new()

Resolve

Release a
resolved object

A shared
disposable

dependency

A private
disposable

dependency

A resolved
object

A private
non-disposable

dependency

A resolved object

new(a shared disposable dependency,
 a private disposable dependency,
 a private non-disposable dependency)

Figure 8.5 The sequence of events for releasing dEpENdENCiES

 251Working with disposable dependenCies

8.2.2 Managing disposable DepenDencieS

Because we so adamantly insist that disposable Abstractions are Leaky Abstrac-
tions, the consequence is that Abstractions shouldn’t be disposable. On the other
hand, sometimes implementations are disposable; if you don’t properly dispose of
them, you’ll have resource leaks in your applications. Someone or something must
dispose of them.

TIP Strive to implement services so they don’t hold references to disposables,
but rather create and dispose of them on demand as illustrated in listing 8.6.
This makes memory management simpler because the service can be garbage
collected like other objects.

As always, this responsibility falls on the Composer. It, better than anything else, knows
when it creates a disposable instance, so it also knows when the instance needs to be dis-
posed of. It’s easy for the Composer to keep a reference to the disposable instance and
invoke its Dispose method at an appropriate time. The challenge lies in identifying when
it’s the appropriate time. How do you know when all consumers have gone out of scope?

Unless you’re informed when that happens, you don’t know. Often, however, your
code lives inside some sort of context with a well-defined lifetime, as well as events that
tell you when a specific scope completes. In ASP.NET Core, for instance, you can scope
instances around a single web request. At the end of a web request, the framework
tells IControllerActivator, which is typically our Composer, that it should release
all Dependencies for a given object. It’s then up to the Composer to keep track of
those Dependencies and to decide whether anything must be disposed of based on
their Lifestyles.

rElEaSiNg dEpENdENCiES

Releasing an object graph isn’t the same as disposing of it. As we stated in the introduc-
tion, releasing is the process of determining which Dependencies can be dereferenced
and possibly disposed of, and which Dependencies should be kept alive to be reused. It’s
the Composer that decides whether a released object should be disposed of or reused.

The release of an object graph is a signal to the Composer that the root of the graph
is going out of scope, so if the root itself implements IDisposable, then it should be
disposed of. But the root’s Dependencies can be shared with other roots, so the Com-
poser may decide to keep some of them around, because it knows other objects still rely
on them. Figure 8.5 illustrates the sequence of events.

To release Dependencies, a Composer must track all the disposable Dependencies
it has ever served, and to which consumers it has served them, so that it can dispose of
them when the last consumer is released. And a Composer must take care to dispose of
objects in the correct order.

WARNING An object might require its Dependencies to be called during dis-
posal, which causes problems when these Dependencies are already disposed
of. Disposal should therefore happen in the opposite order of creation — this
means from the outside in.

When a COMPOSER is
asked to resolve an
object, it gathers all
of the requested
object’s DEPENDENCIES.

When the COMPOSER receives a request to release the object, it disposes
of the private disposable DEPENDENCY and lets the non-disposable
DEPENDENCY and the object itself go out of scope. The only interaction
with the shared DEPENDENCY is that it’s injected into the requested
object; but because it’s shared, it isn’t disposed of (yet).

In this case, the requested
object has three DEPENDENCIES,
two of which are disposable. One
of these disposable DEPENDENCIES
is shared with other consumers,
so it’s reused, whereas the other
DEPENDENCIES are instantiated on
the spot.

COMPOSER

new()

Dispose()

new()

Resolve

Release a
resolved object

A shared
disposable

dependency

A private
disposable

dependency

A resolved
object

A private
non-disposable

dependency

A resolved object

new(a shared disposable dependency,
 a private disposable dependency,
 a private non-disposable dependency)

Figure 8.5 The sequence of events for releasing dEpENdENCiES

Should I dispose of a DbContext?
CommerceContext is our project-specific version of Entity Framework Core’s DbContext,
which implements IDisposable. In the past, we’ve witnessed many discussions with col-
leagues and developers on online forums about the need to dispose of DbContext instances.
These discussions typically came from the observation that a DbContext uses database con-
nections as ephemeral disposables; connections are opened and closed in the same method
call. Calling SaveChanges on DbContext, for instance, creates and opens a database con-
nection, and then disposes of that connection once all changes are saved.

Well, things have changed in Entity Framework Core 2.0. With the introduction of version
2, it now supports DbContext pooling, a feature similar to ADO.NET’s connection pool-
ing. It allows the same DbContext instance to be reused, which can improve applica-
tion performance under certain conditions. DbContext instances, however, are returned
back to their pool when Dispose is called, so not calling Dispose on a DbContext
instance might starve the pool.

The moral of this story is that you should always make sure disposable objects are cor-
rectly disposed of. Even if you determined that you could omit a call to Dispose in your
specific case, an external component, such as Entity Framework Core, is free to change
that behavior any time in the future.

252 ChapTEr 8 Object lifetime

NOTE To learn about Entity Framework Core in detail, the book Entity Frame-
work Core in Action by Jon Smith (Manning, 2018) is a good place to start.

Let’s go back to the CommerceControllerActivator example from listing 8.3. As it turns
out, there’s a bug in that listing, because CommerceContext implements IDisposable.
The code in listing 8.3 creates new instances of CommerceContext, but it never disposes
of those instances. This could cause resource leaks, so let’s fix that bug with a new version
of the Composer.

First, keep in mind that the Composer for a web application must be able to service
many concurrent requests, so it has to associate each CommerceContext instance with
either the root object it creates or with the request it’s associated with. In the following
example, we’ll use the request to track disposable objects, because this saves us from hav-
ing to define a static dictionary instance. A static mutable state is more difficult to use
correctly, because it must be implemented in a thread-safe manner. The next listing shows
how CommerceControllerActivator resolves requests for HomeController instances.

Listing 8.7 Associating disposable dEpENdENCiES with a web request

private HomeController CreateHomeController(ControllerContext context)
{
 var dbContext =
 new CommerceContext(this.connectionString);

 TrackDisposable(context, dbContext);

 return new HomeController(
 new ProductService(
 new SqlProductRepository(dbContext),
 this.userContext));
}

private static void TrackDisposable(
 ControllerContext context, IDisposable disposable)
{
 IDictionary<object, object> items =
 context.HttpContext.Items;

 object list;

 if (!items.TryGetValue("Disposables", out list))
 {
 list = new List<IDisposable>();
 items["Disposables"] = list;
 }

 ((List<IDisposable>)list).Add(disposable);
}

The CreateHomeController method starts by resolving all the Dependencies. This is sim-
ilar to the implementation in listing 8.3, but before returning the resolved service, it must
store the Dependency with the request in such a way that it can be disposed of when the
controller gets released. The application flow of listing 8.7 is shown in figure 8.6.

Creates the instance that
requires disposal

Tracks that instance by associating
it with the current request

The TrackDisposable
method stores
disposable instances
in a list that’s
associated with the
request by storing it
in the HttpContext
.Items dictionary. If
the list doesn’t exist,
it’ll be created. The
disposable instance is
appended to the list.

 253Working with disposable dependenCies

When we implemented the CommerceControllerActivator in listing 7.8, we left the
Release method empty. So far, we haven’t implemented this method, relying on the
garbage collector to do the job; but with disposable Dependencies, it’s essential that
you take this opportunity to clean up. Here’s the implementation.

Listing 8.8 Releasing disposable dEpENdENCiES

public void Release(ControllerContext context, object controller)
{
 var disposables =
 (List<IDisposable>)context.HttpContext
 .Items["Disposables"];

 if (disposables != null)
 {
 disposables.Reverse();

 foreach (IDisposable disposable in disposables)
 {
 disposable.Dispose();
 }
 }
}

CommerceControllerActivator
functions as the COMPOSER.

The CommerceContext is
tracked by attaching it
to the current request
object.

When the controller
activator receives a
request for the
home page, it creates
a new HomeController
with its DEPENDENCIES.

Commerce-
ControllerActivator

Commerce-
Context

CreateHomeController()

new()

SqlProduct-
Repository

ProductService

HomeController

TrackDisposable(dbContext)

new(dbContext)

new(repository, userContext)

resolved(HomeController)

Create(context)

new(productService)

Figure 8.6 Tracking disposable dEpENdENCiES

Gets the list of tracked
disposables from the
items dictionary

Reverses the order
of the list of
disposables so
instances can be
disposed of in the
opposite order of
their creation

Loops
through the

collection and
disposes of all
instances one

by one

254 ChapTEr 8 Object lifetime

This Release method takes a shortcut that prevents some disposables from being dis-
posed of if an exception is thrown. If you’re meticulous, you’ll need to ensure that dis-
posal of instances continues, even if one throws an exception, preferably by using try
and finally statements. We’ll leave this as an exercise for the reader.

In the context of ASP.NET Core MVC, the given solution using TrackDisposable
and Release can be reduced to a simple call to HttpContext.Response.Register
ForDispose, because that would effectively do the same thing. It both implements
opposite-order disposal and continues disposing of objects in case of a failure. Because
this chapter isn’t about ASP.NET Core MVC in particular, we wanted to provide you
with a more generic solution that illustrates the basic idea.

TIP DI Containers are particularly good at Lifetime Management. DI Con-
tainers can deal with complex combinations of Lifestyles, and they offer
opportunities, such as a Release method, to explicitly release components
when you’re finished with them. When you find yourself in the situation where
maintaining your Composition Root using Pure DI becomes difficult, con-
sider switching to a DI Container instead. (We’ll go into more detail when
discussing DI Containers in chapter 12.)

whErE ShOuld dEpENdENCiES bE rElEaSEd?
After reading all this, two questions remain: where should object graphs be released,
and who is responsible for doing this? It’s important to note that the code that has
requested an object graph is also responsible for requesting its release. Because the
request for an object graph is typically part of the Composition Root, so is the initia-
tion of its release.

NOTE Releasing will be demanded after the Composition Root has finished
using the resolved root object.

The following listing shows the Main method of the console application of section 7.1
again, but now with an additional Release method.

Listing 8.9 The COmpOSiTiON rOOT that releases the resolved object graph

static void Main(string[] args)
{
 string connStr = LoadConnectionString();

 CurrencyParser parser =
 CreateCurrencyParser(connStr);

 ICommand command = parser.Parse(args);
 command.Execute();

 Release(parser);
}

Requests a CurrencyParser
root object

Uses that root object

Demands its release after
the operation is completed

 255liFestyle catalog

When building a console application, you’re in full control of the application. As we
discussed in section 7.1, there’s no Inversion of Control. If you’re using a frame-
work, you’ll often see the framework take control over both requesting the object
graph and demanding its release. ASP.NET Core MVC is a good example of this. In
the case of MVC, it’s the framework that calls CommerceControllerActivator’s Create
and Release methods. In between those calls, it uses a resolved controller instance.

We’ve now discussed Lifetime Management in some detail. As a consumer, you
can’t manage the lifetime of injected Dependencies; that responsibility falls on the
Composer who can decide to share a single instance among many consumers or give
each consumer its own private instance. These Singleton and Transient Lifestyles
are only the most common members of a larger set of Lifestyles, and we’ll use the
next section to work our way through a catalog of the most common lifecycle strategies.

8.3 lifeStyle catalog
Now that we’ve covered the principles behind Lifetime Management, we’ll spend
some time looking at common Lifestyle patterns. As we described in the introduc-
tion, a Lifestyle is a formalized way of describing the intended lifetime of a Depen-
dency. This gives us a common vocabulary, just as design patterns do. It makes it easier
to reason about when and how a Dependency is expected to go out of scope — and if
it’ll be reused.

This section discusses the three most common Lifestyles described in table 8.1.
Because you’ve already encountered both Singleton and Transient, we’ll begin with
those.

Table 8.1 Lifestyle patterns covered in this section

Name Description

singLeton A single instance is perpetually reused.

trAnsient New instances are always served.

scoPeD At most, one instance of each type is served per an implicitly or explicitly defined scope.

NOTE We use comparable examples throughout this section. But to allow us to
focus on the essentials, we’ll compose shallow hierarchies, and we’ll sometimes
ignore the issue with disposable Dependencies to avoid that added complexity.

The use of a Scoped Lifestyle is widespread; most exotic Lifestyles are variations of
it. Compared to advanced Lifestyles, a Singleton Lifestyle may seem mundane,
but it’s nevertheless a common and appropriate lifecycle strategy.

256 ChapTEr 8 Object lifetime

8.3.1 The Singleton lifeStyle

In this book, we’ve implicitly used the Singleton Lifestyle from time to time. The
name is both clear and somewhat confusing at the same time. It makes sense, however,
because the resulting behavior is similar to the Singleton design pattern, but the struc-
ture is different.

NOTE Within the scope of a single Composer, there’ll only be one instance of
a component with the Singleton Lifestyle. Each and every time a consumer
requests the component, the same instance is served.

With both the Singleton Lifestyle and the Singleton design pattern, there’s only one
instance of a Dependency, but the similarity ends there. The Singleton design pattern
provides a global point of access to its instance, which is similar to the Ambient Context
anti-pattern we discussed in section 5.3. A consumer, however, can’t access a Single-
ton-scoped Dependency through a static member. If you ask two different Composers
to serve an instance, you’ll get two different instances. It’s important, therefore, that you
don’t confuse the Singleton Lifestyle with the Singleton design pattern.

Because only a single instance is in use, the Singleton Lifestyle generally con-
sumes a minimal amount of memory and is efficient. The only time this isn’t the case is
when the instance is used rarely but consumes large amounts of memory. In such cases,
the instance can be wrapped in a Virtual Proxy, as we’ll discuss in section 8.4.2.

whEN TO uSE ThE SiNglETON lifESTylE

Use the Singleton Lifestyle whenever possible. Two main issues that might prevent
you from using a Singleton follow:

¡	When a component isn’t thread-safe. Because the Singleton instance is potentially
shared among many consumers, it must be able to handle concurrent access.

¡	When one of the component’s DepenDencieS has a lifetime that’s expected to be shorter,
possibly because it isn’t thread-safe. Giving the component a Singleton Lifestyle
would keep its Dependencies alive for too long. In that case, such a Dependency
becomes a Captive Dependency. We’ll go into more detail about Captive
Dependencies in section 8.4.1.

All stateless services are, by definition, thread-safe, as are immutable types and, obvi-
ously, classes specifically designed to be thread-safe. In these cases, there’s no reason
not to configure them as Singletons.

In addition to the argument for efficiency, some Dependencies may work as
intended only if they’re shared. For example, this is the case for implementations of
the Circuit Breaker7 design pattern that we’ll discuss in chapter 9, as well as in-memory
caches. In these cases, it’s essential that the implementations are thread-safe.

Let’s take a closer look at an in-memory Repository. We’ll explore an example of
this next.

7 Michael T. Nygard, Release It! Design and Deploy Production-Ready Software (Pragmatic Bookshelf,
2007), 104.

 257liFestyle catalog

ExamplE: uSiNg a ThrEad-SafE iN-mEmOry rEpOSiTOry

Let’s once more turn our attention to implementing a CommerceControllerActivator
like those from sections 7.3.1 and 8.1.2. Instead of using a SQL Server–based IProduct
Repository, you could use a thread-safe, in-memory implementation. For an in-memory
data store to make sense, it must be shared among all requests, so it has to be thread-safe.
This is illustrated in figure 8.7.

Instead of explicitly implementing such a Repository using the Singleton design pat-
tern, you should use a concrete class and scope it appropriately using the Singleton
Lifestyle. The next listing shows how a Composer can return new instances every
time it’s asked to resolve a HomeController, whereas IProductRepository is shared
among all instances.

Listing 8.10 Managing a SiNglETON lifESTylE

public class CommerceControllerActivator : IControllerActivator
{
 private readonly IUserContext userContext;
 private readonly IProductRepository repository;

 public CommerceControllerActivator()
 {
 this.userContext = new FakeUserContext();
 this.repository = new InMemoryProductRepository();
 }
 ...

A possible concurrency
conflict on a shared
resource if the repository
isn’t thread-safe

A ProductService An in-memory
ProductRepository

Another
ProductService

Thread 2

Insert(a Product)

Update(another Product)

Update(a Product)Insert(yet another Product)

Thread 1

Figure 8.7 When multiple ProductService instances running on separate threads access a shared
resource, such as an in-memory IProductRepository, you must ensure that the shared resource is
thread-safe.

Storage locations for sIngleton instances
keep the sIngleton DepenDencIes referenced

for the lifetime of the coMposer.

Creates sIngletons
in the coMposer’s

constructor

258 ChapTEr 8 Object lifetime

 private HomeController CreateHomeController()
 {
 return new HomeController(
 new ProductService(
 this.repository,
 this.userContext));
 }
}

Note that in this example, both repository and userContext encompass Singleton
Lifestyles. You can, however, mix Lifestyles if you want. Figure 8.8 shows what hap-
pens with CommerceControllerActivator at runtime.

The Singleton Lifestyle is one of the easiest Lifestyles to implement. All it requires
is that you keep a reference to the object and serve the same object every time it’s
requested. The instance doesn’t go out of scope until the Composer goes out of scope.
When that happens, the Composer should dispose of the object if it’s a disposable
type.

Another Lifestyle that’s trivial to implement is the Transient Lifestyle. Let’s
look at that next.

Every time the coMposer is asked
to resolve a HomeController
instance, it creates a trAnsIent
ProductService with the two
sIngletons injected into it.

The COMPOSITION ROOT creates the
CommerceControllerActivator, which
functions as the COMPOSER during
application startup.

The CommerceControllerActivator
creates new FakeUserContext and
InMemoryProductRepository SINGLETONS.

When
CommerceControllerActivator
receives a request for
the home page, it creates
a new ProductService
and HomeController for
the request, while
injecting the two
SINGLETONS into
the ProductService.

COMPOSITION

ROOT

App start

Create(context)

new()

new()

new()

Fake-
UserContext

ProductService

HomeController

Commerce-
ControllerActivator

InMemoryProduct-
Repository

Application startup

Request comes inCreateHomeController()

new(repository, userContext)

new(productService)

resolved (HomeController)

Figure 8.8 Composing SiNglETONS using CommerceControllerActivator

 259liFestyle catalog

8.3.2 The tranSient lifeStyle

The Transient Lifestyle involves returning a new instance every time it’s requested.
Unless the instance returned implements IDisposable, there’s nothing to keep track
of. Conversely, when the instance implements IDisposable, the Composer must
keep it in mind and explicitly dispose of it when asked to release the applicable object
graph. Most of the examples in this book of constructed object graphs implicitly used
the Transient Lifestyle.

WARNING When it comes to the Transient Lifestyle, be aware that DI Con-
tainers can behave differently. Although some DI Containers track Tran-
sient components and tend to dispose of them when their consumer goes out
of scope, others don’t and, therefore, the Transients aren’t disposed.

It’s worth noting that in desktop and similar applications, we tend to resolve the entire
object hierarchy only once: at application startup. This means that even for Tran-
sient components, only a few instances could be created, and they can be around for a
long time. In the degenerate case where there’s only one consumer per Dependency,
the end result of resolving a graph of pure Transient components is equivalent to
resolving a graph of pure Singletons, or any mix thereof. This is because the graph is
resolved only once, so the difference in behavior is never realized.

whEN TO uSE ThE TraNSiENT lifESTylE

The Transient Lifestyle is the safest choice of Lifestyles, but also one of the least
efficient. It can cause a myriad of instances to be created and garbage collected, even
when a single instance would have sufficed.

If you have doubts about the thread-safety of a component, however, the Transient
Lifestyle is safe, because each consumer has its own instance of the Dependency. In
many cases, you can safely exchange the Transient Lifestyle for a Scoped Lifestyle,
where access to the Dependency is also guaranteed to be sequential.

ExamplE: rESOlviNg mulTiplE rEpOSiTOriES

You saw several examples of using the Transient Lifestyle earlier in this chapter. In
listing 8.3, the Repository is created and injected on the spot in the resolving method,
and the Composer keeps no reference to it. In listings 8.8 and 8.9, you subsequently
saw how to deal with a Transient disposable component.

In these examples, you may have noticed that the userContext stays a Singleton
throughout. This is a purely stateless service, so there’s no reason to create a new instance
for every ProductService created. The noteworthy point is that you can mix Depen-
dencies with different Lifestyles.

WARNING Although you can mix Dependencies with different Lifestyles,
you should make sure that a consumer only has Dependencies with a lifetime
that’s equal to or exceeds its own, because a consumer will keep its Dependen-
cies alive by storing them in its private fields. Failing to do so leads to Captive
Dependencies, which we’ll address in section 8.4.1.

260 ChapTEr 8 Object lifetime

When multiple components require the same Dependency, each is given a separate
instance. The following listing shows a method resolving an ASP.NET Core MVC
controller.

Listing 8.11 Resolving TraNSiENTAspNetUserContextAdapter instances

private HomeController CreateHomeController()
{
 return new HomeController(
 new ProductService(
 new SqlProductRepository(this.connStr),
 new AspNetUserContextAdapter(),
 new SqlUserRepository(
 this.connStr,
 new AspNetUserContextAdapter())));
}

The Transient Lifestyle implies that every consumer receives a private instance of
the Dependency, even when multiple consumers in the same object graph have the
same Dependency (as is the case in the previous listing). If many consumers share the
same Dependency, this approach can be inefficient; but if the implementation isn’t
thread-safe, the more efficient Singleton Lifestyle is inappropriate. In such cases,
the Scoped Lifestyle may be a better fit.

8.3.3 The ScopeD lifeStyle

As users of a web application, we’d like a response from the application as quickly as
possible, even when other users are accessing the system at the same time. We don’t
want our request to be put on a queue together with all the other users’ requests. We
might have to wait an inordinate amount of time for a response if there are many
requests ahead of ours. To address this issue, web applications handle requests concur-
rently. The ASP.NET Core infrastructure shields us from this by letting each request
execute in its own context and with its own instance of controllers (if you use ASP.NET
Core MVC).

Because of concurrency, Dependencies that aren’t thread-safe can’t be used as Sin-
gletons. On the other hand, using them as Transients can be inefficient or even
downright problematic if you need to share a Dependency between different consum-
ers within the same request.

Although the ASP.NET Core engine executes a single request asynchronously, and
the execution of a single request typically involves multiple threads, it does guaran-
tee that code is executed in a sequential manner — at least when you properly await
asynchronous operations.8 This means that if you can share a Dependency within a
single request, thread-safety isn’t an issue. Section 8.4.3 provides more details on how
the asynchronous, multi-threaded approach works in ASP.NET Core.

Both the ProductService and
SqlUserRepository classes
require an IUserContext
DepenDency. When the
AspNetUserContextAdapter is
transient, each consumer gets
its own private instance, so
ProductService gets one
instance, and SqlUserRepository
gets another.

8 Threads are still used sequentially, one after the other, not in parallel.

 261liFestyle catalog

Although the concept of a web request is limited to web applications and web ser-
vices, the concept of a request is broader. Most long-running applications use requests
to execute single operations. For example, when building a service application that
processes items one by one from a queue, you can imagine each processed item as an
individual request, consisting of its own set of Dependencies.

The same could hold for desktop or phone applications. Although the top root types
(views or ViewModels) could potentially live for a long time, you could see a button
press as a request, and you could scope this operation and give it its own isolated bubble
with its own set of Dependencies. This leads to the concept of a Scoped Lifestyle,
where you decide to reuse instances within a given scope. Figure 8.9 demonstrates how
the Scoped Lifestyle works.

DEFINITION Scoped Dependencies behave like Singleton Dependencies
within a single, well-defined scope or request but aren’t shared across scopes.
Each scope has its own cache of associated Dependencies.

Note that DI Containers might have specialized versions of the Scoped Lifestyle
that target a specific technology. Also, any disposable components should be disposed
of when the scope ends.

Within Scope 1, the AspNetUserContextAdapter
instance is, in this case, shared between
ProductService and SqlProductRepository.

Scope 2 uses the same configuration, but instances
are constrained to that scope, thereby getting its
own AspNetUserContextAdapter instance.

AspNetUserContext-
Adapter

ProductService

HomeController Scope 1

Scope 2

SqlProductRepository

ProductService

AspNetUserContext-
Adapter HomeController

SqlProductRepository

injected into

injected into

injected into

injected into

injected into

injected into

injected into

injected into

Figure 8.9 The SCOpEd lifESTylE indicates that you create, at most, one instance per specified scope.

262 ChapTEr 8 Object lifetime

whEN TO uSE ThE SCOpEd lifESTylE

The Scoped Lifestyle makes sense for long-running applications that are tasked
with processing operations that need to run with some degree of isolation. Isolation
is required when these operations are processed in parallel, or when each operation
contains its own state. Web applications are a great example of where the Scoped Life-
style works well, because web applications typically process requests in parallel, and
those requests typically contain some mutable state that’s specific to the request. But
even if a web application starts some background operation that isn’t related to a web
request, the Scoped Lifestyle is valuable. Even these background operations can typ-
ically be mapped to the concept of a request.

TIP If you ever need to compose an Entity Framework Core DbContext in a
web request, a Scoped Lifestyle is an excellent choice. DbContext instances
aren’t thread-safe, but you typically only want to have one DbContext instance
per web request.

As with all Lifestyles, you can mix the Scoped Lifestyle with others so that, for
example, some Dependencies are configured as Singletons, and others are shared
per request.

ExamplE: COmpOSiNg a lONg-ruNNiNg appliCaTiON uSiNg a SCOpEd dbCONTExT

In this example, you’ll see how to compose a long-running console application with a
scoped DbContext Dependency. This console application is a variation of the Update-
Currency program we discussed in section 7.1.

Just as with the UpdateCurrency program, this new console application reads cur-
rency exchange rates. The goal of this version, however, is to output the exchange rates
of a particular currency amount once a minute and to continue to do so until the user
stops the application. Figure 8.10 outlines the application’s main classes.

The CurrencyMonitoring program reuses the SqlExchangeRateProvider and Commerce
Context from the UpdateCurrency program of chapter 7 and the ICurrencyConverter
Abstraction from chapter 4. The ICurrencyRepository Abstraction and its accompany-
ing SqlCurrencyRepository implementation are new. The CurrencyRateDisplayer is also
new and is specific to this program; it’s shown in the following listing.

Listing 8.12 The CurrencyRateDisplayer class

public class CurrencyRateDisplayer
{
 private readonly ICurrencyRepository repository;
 private readonly ICurrencyConverter converter;

 public CurrencyRateDisplayer(
 ICurrencyRepository repository,
 ICurrencyConverter converter)
 {
 this.repository = repository;
 this.converter = converter;
 }

Transient
The application’s main class is the
CurrencyRateDisplayer class that
uses the ICurrencyRepository to
load all known currencies. It uses
the ICurrencyConverter to convert
those currencies to the requested
currency.

SqlCurrencyRepository depends
on CommerceContext to
retrieve the list of currencies
from the database.

CurrencyConverter depends
on IExchangeRateProvider
to convert an amount of
one currency to another.

SqlExchangeRateProvider
makes use of the
application’s
CommerceContext
to query rate information
from the database.

The CommerceContext
is the DEPENDENCY you
want to make SCOPED.

Transient Transient

Transient Scoped

Singleton

ICurrencyConverter

IExchangeRate-
Provider

ICurrencyRepository

CurrencyRate-
Displayer

CurrencyConverter SqlCurrency-
Repository

SqlExchangeRate-
Provider

Connection string

CommerceContext

uses

uses

uses

uses

uses

uses

Figure 8.10 The class diagram of the CurrencyMonitoring program

 263liFestyle catalog

whEN TO uSE ThE SCOpEd lifESTylE

The Scoped Lifestyle makes sense for long-running applications that are tasked
with processing operations that need to run with some degree of isolation. Isolation
is required when these operations are processed in parallel, or when each operation
contains its own state. Web applications are a great example of where the Scoped Life-
style works well, because web applications typically process requests in parallel, and
those requests typically contain some mutable state that’s specific to the request. But
even if a web application starts some background operation that isn’t related to a web
request, the Scoped Lifestyle is valuable. Even these background operations can typ-
ically be mapped to the concept of a request.

TIP If you ever need to compose an Entity Framework Core DbContext in a
web request, a Scoped Lifestyle is an excellent choice. DbContext instances
aren’t thread-safe, but you typically only want to have one DbContext instance
per web request.

As with all Lifestyles, you can mix the Scoped Lifestyle with others so that, for
example, some Dependencies are configured as Singletons, and others are shared
per request.

ExamplE: COmpOSiNg a lONg-ruNNiNg appliCaTiON uSiNg a SCOpEd dbCONTExT

In this example, you’ll see how to compose a long-running console application with a
scoped DbContext Dependency. This console application is a variation of the Update-
Currency program we discussed in section 7.1.

Just as with the UpdateCurrency program, this new console application reads cur-
rency exchange rates. The goal of this version, however, is to output the exchange rates
of a particular currency amount once a minute and to continue to do so until the user
stops the application. Figure 8.10 outlines the application’s main classes.

The CurrencyMonitoring program reuses the SqlExchangeRateProvider and Commerce
Context from the UpdateCurrency program of chapter 7 and the ICurrencyConverter
Abstraction from chapter 4. The ICurrencyRepository Abstraction and its accompany-
ing SqlCurrencyRepository implementation are new. The CurrencyRateDisplayer is also
new and is specific to this program; it’s shown in the following listing.

Listing 8.12 The CurrencyRateDisplayer class

public class CurrencyRateDisplayer
{
 private readonly ICurrencyRepository repository;
 private readonly ICurrencyConverter converter;

 public CurrencyRateDisplayer(
 ICurrencyRepository repository,
 ICurrencyConverter converter)
 {
 this.repository = repository;
 this.converter = converter;
 }

Transient
The application’s main class is the
CurrencyRateDisplayer class that
uses the ICurrencyRepository to
load all known currencies. It uses
the ICurrencyConverter to convert
those currencies to the requested
currency.

SqlCurrencyRepository depends
on CommerceContext to
retrieve the list of currencies
from the database.

CurrencyConverter depends
on IExchangeRateProvider
to convert an amount of
one currency to another.

SqlExchangeRateProvider
makes use of the
application’s
CommerceContext
to query rate information
from the database.

The CommerceContext
is the DEPENDENCY you
want to make SCOPED.

Transient Transient

Transient Scoped

Singleton

ICurrencyConverter

IExchangeRate-
Provider

ICurrencyRepository

CurrencyRate-
Displayer

CurrencyConverter SqlCurrency-
Repository

SqlExchangeRate-
Provider

Connection string

CommerceContext

uses

uses

uses

uses

uses

uses

Figure 8.10 The class diagram of the CurrencyMonitoring program

 public void DisplayRatesFor(Money amount)
 {
 Console.WriteLine(
 "Exchange rates for {0} at {1}:",
 amount,
 DateTime.Now);

 IEnumerable<Currency> currencies =
 this.repository.GetAllCurrencies();

 foreach (Currency target in currencies)
 {
 Money rate = this.converter.Exchange(
 amount,
 target);

 Console.WriteLine(rate);
 }
 }
}

Loads all known
currencies

Calculates the exchange
rates for the given
amount in the target
currency

Prints the requested exchange
rates to the console

264 ChapTEr 8 Object lifetime

You can run the application from the command line using "EUR 1.00" as argument.
Doing so outputs the following text:

Exchange rates for EUR 1.00000 at 12/10/2018 22:55:00.
CAD 1.48864
USD 1.13636
DKK 7.46591
EUR 1.00000
GBP 0.89773

To piece the application together, you need to create the application’s Composition
Root. The Composition Root, in this case, consists of two classes, as shown in figure 8.11.

Application’s entry point.
Loads the configuration and configures a
timer that starts a new request once a
minute. Each request resolves a new
object graph from the COMPOSER.

Composes the application’s
object graph

Program COMPOSERcreates

Figure 8.11 The application’s infrastructure consists of two classes, Program and Composer.

The Program class uses the Composer class to resolve the application’s object graph.
Listing 8.13 shows the Composer class with its CreateRateDisplayer method. It ensures
that for each resolve, only one instance of the scoped CommerceContext Dependency
is created.

Listing 8.13 The Composer class, responsible for composing object graphs

public class Composer
{
 private readonly string connectionString;

 public Composer(string connectionString)
 {
 this.connectionString = connectionString;
 }

 public CurrencyRateDisplayer CreateRateDisplayer()
 {
 var context =
 new CommerceContext(this.connectionString);

 return new CurrencyRateDisplayer(
 new SqlCurrencyRepository(
 context),
 new CurrencyConverter(
 new SqlExchangeRateProvider(
 context)));
 }
}

Storage fields for sIngletons. In
this case, there’s only a connection
string, but a typical application
will have more singleton instances.

Public method that allows
the transient root type
CurrencyRateDisplayer to
be composed

Creates
the scopeD

DepenDencIes

Injects the scopeD
DepenDencIes into a
transient object graph

 265liFestyle catalog

The remaining part of the Composition Root is the application’s entry point: the
Program class. It’s responsible for reading the input arguments and configuration file,
and setting up the Timer that runs once a minute to display exchange rates. The fol-
lowing listing shows it in full glory.

Listing 8.14 The application’s entry point that manages scopes

public static class Program
{
 private static Composer composer;

 public static void Main(string[] args)
 {
 var money = new Money(
 currency: new Currency(code: args[0]),
 amount: decimal.Parse(args[1]));

 composer = new Composer(LoadConnectionString());

 var timer = new Timer(interval: 60000);

 timer.Elapsed += (s, e) => DisplayRates(money);
 timer.Start();

 Console.WriteLine("Press any key to exit.");
 Console.ReadLine();
 }

 private static void DisplayRates(Money money)
 {
 CurrencyRateDisplayer displayer =
 composer.CreateRateDisplayer();

 displayer.DisplayRatesFor(money);
 }

 private static string LoadConnectionString() { ... }
}

The Program class configures a Timer that calls the DisplayRates method when it
elapses. Even though you only call DisplayRates once per minute, in this example,
you could easily call DisplayRates in parallel over multiple threads or even make
DisplayRates asynchronous. This would still work because each call creates and manages
its set of scoped instances, allowing each operation to run in isolation from the others.

NOTE As a simplification, the previous example omitted the release of the
created object graph. Listings 8.7 and 8.8 demonstrate this concept in the con-
text of an ASP.NET Core MVC application. A solution that works with a con-
sole application would look similar, so we’ll leave that as an exercise for you.

Creates new Money based on
the incoming command-line
arguments. This is the amount
for which the exchange rates
will be displayed.

Creates a System
.Timers.Timer.9
Triggers the Timer
once a minute. When
an interval elapses,
calls the DisplayRates
method.

9 The System.Timers.Timer class is part of .NET Standard 2.0 and .NET Core 2.0.

After the timer is started,
the program waits for user
input and quits when that
happens.

The coMposer is requested to
resolve a CurrencyRateDisplayer
for the current request.

266 ChapTEr 8 Object lifetime

Whereas a Transient Lifestyle implies that every consumer receives a private
instance of a Dependency, a Scoped Lifestyle ensures that all consumers of all
resolved graphs for that scope get the same instance. Besides common Lifestyle pat-
terns, such as Singleton, Transient, and Scoped, there are also patterns that you can
define as code smells or even anti-patterns. A few of those bad Lifestyle choices are
discussed in the following section.

8.4 Bad lifeStyle choices
As we all know, some lifestyle choices are bad for our heath, smoking being one of
them. The same holds true when it comes to applying Lifestyles in DI. You can make
many mistakes. In this section, we discuss the choices shown in table 8.2.

Table 8.2 Bad lifESTylE choices covered in this section

Subject Type Description

cAPtive DePenDencies Bug Keeps DePenDencies referenced beyond their expected lifetime

LeAky AbstrActions Design issue Uses LeAky AbstrActions, leaking LifestyLe choices to consumers

Per-thread LifestyLe Bug Causes concurrency bugs by tying instances to the lifetime of a
thread

As table 8.2 states, Captive Dependencies and the per-thread Lifestyle can cause
bugs in your application. More often than not, these bugs only appear after deploying
the application to production, because they are concurrency related. When we start
the application, as developers, we typically run it for a short period of time, one request
at a time. The same holds true for testers that typically go through the application in
an orderly fashion. This might hide such problems, which only pop up when multiple
users access the application concurrently.

When we leak details of our Lifestyle choices to our consumers, this typically won’t
lead to bugs — or at least, not immediately. It does, however, complicate the Dependency’s
consumers and their tests, and might cause sweeping changes throughout the code
base. In the end, this increases the chance of bugs.

8.4.1 captiVe DepenDencieS

When it comes to lifetime management, a common pitfall is that of Captive Depen-
dencies. This happens when a Dependency is kept alive by a consumer for longer
than you intended it to be. This might even cause it to be reused by multiple threads or
requests concurrently, even though the Dependency isn’t thread-safe.

DEFINITION A Captive Dependency is a Dependency that’s inadvertently kept
alive for too long because its consumer was given a lifetime that exceeds the
Dependency’s expected lifetime.

 267Bad liFestyle choices

An all-too-common example of a Captive Dependency is when a short-lived
Dependency is injected into a Singleton consumer. A Singleton is kept alive for the
lifetime of the Composer, and so will its Dependency. The following listing illustrates
this problem.

Listing 8.15 CapTivE dEpENdENCy example

public class Composer
{
 private readonly IProductRepository repository;

 public Composer(string connectionString)
 {
 this.repository = new SqlProductRepository(
 new CommerceContext(connectionString));
 }
 ...
}

Because there’s only one instance of SqlProductRepository for the entire applica-
tion, and CommerceContext is referenced by SqlProductRepository in its private
field, there will be effectively just one instance of CommerceContext too. This is a prob-
lem, because CommerceContext isn’t thread-safe and isn’t intended to outlive a single
request. Because CommerceContext is kept captive by SqlProductRepository past its
expected release time, we call CommerceContext a Captive Dependency.

IMPORTANT A component should only reference Dependencies that have an
expected lifetime that’s equal to or longer than that of the component itself.

Captive Dependencies are a common problem when you’re working with a DI Con-
tainer. This is caused by the dynamic nature of DI Containers that make it easy to
lose track of the shape of the object graphs you’re building. As the previous example
showed, however, the problem can also arise when working with Pure DI. By carefully
structuring code in the Pure DI Composition Root, you can reduce the chance of
running into this problem. The following listing shows an example of this approach.

Listing 8.16 Mitigating CapTivE dEpENdENCiES with purE di

public class CommerceControllerActivator : IControllerActivator
{
 private readonly string connStr;
 private readonly IUserContext userContext;

 public CommerceControllerActivator(string connectionString)
 {
 this.connStr = connectionString;
 this.userContext =
 new AspNetUserContextAdapter();
 }

Creates SqlProductRepository
as sIngleton and stores it for
reuse

Injects CommerceContext into the sIngleton. CommerceContext
has now become a cAptIVe DepenDency; it isn’t thread-safe and

isn’t intended to be reused by multiple threads.

Storage fields
for sIngletons

Creates
sIngletons

268 ChapTEr 8 Object lifetime

 public object Create(ControllerContext ctx)
 {
 var context = new CommerceContext(this.connStr);
 var provider = new SqlExchangeRateProvider(context);

 Type type = ctx.ActionDescriptor
 .ControllerTypeInfo.AsType();

 if (type == typeof(HomeController))
 {
 return this.CreateHomeController(context);
 }
 else if (type == typeof(ExchangeController))
 {
 return this.CreateExchangeController(
 context, provider);
 }
 else
 {
 throw new Exception("Unknown controller " + type.Name);
 }
 }

 private HomeController CreateHomeController(
 CommerceContext context)
 {
 return new HomeController(
 new ProductService(
 new SqlProductRepository(
 context),
 this.userContext));
 }

 private RouteController CreateExchangeController(
 CommerceContext context,
 IExchangeRateProvider provider) { ... }
}

NOTE When working with a DI Container, the problem of Captive Depen-
dencies is so widespread that some DI Containers will do analysis on con-
structed object graphs to detect them.10

Listing 8.16 separates the creation of all Dependencies into three distinct phases.
When you separate these phases, it becomes much easier to detect and prevent Cap-
tive Dependencies. These phases are

¡	Singletons created during application start-up
¡	Scoped instances created at the start of a request
¡	Based on the request, a particular object graph that consists of Transient,

Scoped, and Singleton instances

Creates scopeD
DepenDencIes

Supplies factory
methods with the
created scopeD
DepenDencIes

Composes object graph
containing trAnsIent,
scopeD, and sIngleton
instances

10 All DI Containers covered in this book contain features for the detection of Captive Dependencies.

 269Bad liFestyle choices

With this model, all the application’s Scoped Dependencies are created for each
request, even when they aren’t used. This might seem inefficient, but remember that,
as we discussed in section 4.2.2, component constructors should be free from all logic
except guard checks and when storing incoming Dependencies. This makes construc-
tion fast and prevents most performance issues; the creation of a few unused Depen-
dencies is a non-issue.

From a misconfiguration perspective, Captive Dependencies are one of the most
common, hardest-to-spot configurations or programming errors related to bad Life-
style choices. More often than we’d like to admit, we’ve wasted many hours trying
to find bugs caused by Captive Dependencies. That’s why we consider tool support
for spotting Captive Dependencies invaluable when you’re using a DI Container.
Although Captive Dependencies are typically caused by configuration or program-
ming errors, other inconvenient Lifestyle choices are design flaws, such as when
you’re forcing Lifestyle choices on consumers.

8.4.2 Using leaky abStractionS to leak lifeStyle choices to consumers

Another case where you might end up with a bad Lifestyle choice is when you need
to postpone the creation of a Dependency. When you have a Dependency that’s rarely
needed and is costly to create, you might prefer to create such an instance on the
fly, after the object graph is composed. This is a valid concern. What isn’t, however,
is pushing such a concern on to the Dependency’s consumers. If you do this, you’re
leaking details about the implementation and implementation choices of the Compo-
sition Root to the consumer. The Dependency becomes a Leaky Abstraction, and
you’re violating the Dependency Inversion Principle.

In this section, we’ll show two common examples of how you can cause your Life-
style choice to be leaked to a Dependency’s consumer. Both examples have the same
solution: create a wrapper class that hides the Lifestyle choice and functions as an
implementation of the original Abstraction rather than the Leaky Abstraction.

Lazy<T> aS a lEaky abSTraCTiON

Let’s again return to our regularly reused ProductService example that was first intro-
duced in listing 3.9. Let’s imagine that one of its Dependencies is costly to create, and
not all code paths in the application require its existence.

This is something you might be tempted to solve by using .NET’s System.Lazy<T>
class. A Lazy<T> allows access to an underlying value through its Value property. That
value, however, will only be created when it’s requested for the first time. After that, the
Lazy<T> caches the value for as long as the Lazy<T> instance exists.

This is useful, because it allows you to delay the creation of Dependencies. It’s an
error, however, to inject Lazy<T> directly into a consumer’s constructor, as we’ll discuss
later. The next listing shows an example of such an erroneous use of Lazy<T>.

270 ChapTEr 8 Object lifetime

Listing 8.17 Lazy<T> as lEaky abSTraCTiON

public class ProductService : IProductService
{
 private readonly IProductRepository repository;
 private readonly Lazy<IUserContext> userContext;

 public ProductService(
 IProductRepository repository,
 Lazy<IUserContext> userContext)
 {
 this.repository = repository;
 this.userContext = userContext;
 }

 public IEnumerable<DiscountedProduct> GetFeaturedProducts()
 {
 return
 from product in this.repository
 .GetFeaturedProducts()
 select product.ApplyDiscountFor(
 this.userContext.Value);
 }
}

Listing 8.18 shows the structure of the Composition Root for the ProductService of
listing 8.17.

Listing 8.18 Composing a ProductService that depends on Lazy<IUserContext>

Lazy<IUserContext> lazyUserContext =
 new Lazy<IUserContext>(
 () => new AspNetUserContextAdapter())

new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(connectionString)),
 lazyUserContext));

After seeing this code, you might wonder what’s so bad about it. The following discus-
sion lists several problems with such a design, but it’s important that you know there’s
nothing wrong with the use of Lazy<T> inside your Composition Root — injecting
Lazy<T> into an application component, however, leads to Leaky Abstractions.
Now, back to the problems.

Instead of depending on IUserContext, ProductService
now depends on Lazy<IUserContext>. This way, the
IUserContext instance is created only when
it’s needed. This is bad because Lazy<IUserContext>
is a leAky AbstrActIon.

The Value property on Lazy<IUserContext>
ensures that the IUserContext DepenDency is
created once. When the GetFeaturedProducts
method on IProductRepository returns an empty
list, the select clause is never executed, and the
Value property will never get called, preventing
IUserContext from being created.

Delays the creation of the real
AspNetUserContextAdapter
DepenDency by wrapping its creation
inside the Lazy<IUserContext>

Because ProductService now depends on
Lazy<IUserContext> rather than IUserContext,
you inject Lazy<IUserContext> directly into its
constructor.

 271Bad liFestyle choices

First, letting a consumer depend on Lazy<IUserContext> complicates the consumer
and its unit tests. You might think that having to call userContext.Value is a small price
to pay for being able to lazy load an expensive Dependency, but it isn’t. When creat-
ing unit tests, not only do you have to create Lazy<T> instances that wrap the original
Dependency, but you also have to write extra tests to verify whether that Value isn’t
being called at the wrong time.

Because making the Dependency lazy seems important enough as a performance
optimization, it would be weird not to verify whether you implemented it correctly. This
is, at least, one extra test you need to write for every consumer of that Dependency.
There might be dozens of consumers for such a Dependency, and they all need the
extra tests to verify their correctness.

Second, changing an existing Dependency to a lazy Dependency later in the devel-
opment process causes sweeping changes throughout the application. This can present
a serious amount of effort when there are dozens of consumers for that Dependency,
because, as discussed in the previous point, not only do the consumers themselves need
to be altered, but all of their tests need to be changed too. Making these kinds of rip-
pling changes is time consuming and risky.

To prevent this, you could make all Dependencies lazy by default, because, in theory,
every Dependency could potentially become expensive in the future. This would prevent
you from having to make any future cascading changes. But this would be madness, and
we hope you agree that this isn’t a good path to pursue. This is especially true if you con-
sider that every Dependency could potentially become a list of implementations, as we’ll
discuss shortly. This would lead to making all Dependencies IEnumerable<Lazy<T>> by
default, which would be, even more so, insane.

Last, because the amount of changes you have to make and the number of tests you
need to add, it becomes quite easy to make programming mistakes that would com-
pletely nullify these changes. For instance, if you create a new component that acciden-
tally depends on IUserContext instead of Lazy<IUserContext>, it means that every
graph that contains that component will always get an eagerly loaded IUserContext
implementation.

This doesn’t mean that you aren’t allowed to construct your Dependencies lazily,
though. We’d like, however, to repeat our statement from section 4.2.1: you should
keep the constructors of your components free of any logic other than Guard Clauses
and the storing of incoming Dependencies. This makes the construction of your classes
fast and reliable, and will prevent such components from ever becoming expensive to
instantiate.

In some cases, however, you’ll have no choice; for instance, when dealing with third-
party components you have little control over. In that case, Lazy<T> is a great tool. But
rather than letting all consumers depend on Lazy<T>, you should hide Lazy<T> behind
a Virtual Proxy and place that Virtual Proxy within the Composition Root.11 The fol-
lowing listing provides an example of this.

11 For more on Virtual Proxies, see Erich Gamma et. al., Design Patterns, 208.

272 ChapTEr 8 Object lifetime

Listing 8.19 Virtual Proxy wrapping Lazy<T>

public class LazyUserContextProxy : IUserContext
{
 private readonly Lazy<IUserContext> userContext;

 public LazyUserContextProxy(
 Lazy<IUserContext> userContext)
 {
 this.userContext = userContext;
 }

 public bool IsInRole(Role role)
 {
 IUserContext real = this.userContext.Value;
 return real.IsInRole(role);
 }
}

This new LazyUserContextProxy allows ProductService to dependent on IUser
Context instead of Lazy<IUserContext>. Here’s ProductService’s new constructor:

public ProductService(
 IProductRepository repository,
 IUserContext userContext)

The next listing shows how you can compose the object graph for HomeController
while injecting LazyUserContextProxy into ProductService.

Listing 8.20 Composing a ProductService by injecting a Virtual Proxy

IUserContext lazyProxy =
 new LazyUserContextProxy(
 new Lazy<IUserContext>(
 () => new AspNetUserContextAdapter()));

new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(connectionString)),
 lazyProxy));

As listing 8.19 shows, it’s not a bad thing per se to have a class depending on Lazy<T>,
but you want to centralize this inside the Composition Root and only have a single
class that takes this dependency on Lazy<IUserContext>. Depending on Func<T> has
practically the same effect as depending on Lazy<T>, and the solution is similar. Doing
so prevents your code from being complicated, unit tests from being added, sweeping

Implements IUserContext

Depends on Lazy<IUserContext>
to allow the IUserContext to be
constructed lazily

Only when the Proxy’s
IsInRole method is invoked
will the real IUserContext
implementation be
constructed and invoked.

Creates the Virtual Proxy
that wraps a Lazy<T>,
allowing the creation of
the real DepenDency in a
lazy fashion

Because LazyUserContextProxy implements
IUserContext, you’re now able to let ProductService
depend on IUserContext while injecting
LazyUserContextProxy into its constructor.

 273Bad liFestyle choices

changes from being made, and unfortunate bugs from being introduced. As you’ll see
next, the same arguments hold for injecting IEnumerable<T> too.

IEnumerable<T> aS a lEaky abSTraCTiON

Just as with using Lazy<T> to delay the creation of Dependencies, there are many cases
where you need to work with a collection of Dependencies of a certain Abstraction.
For this purpose, you can make use of one of the BCL collection Abstractions, such as
IEnumerable<T>. Although, in itself, there’s nothing wrong with using IEnumerable<T>
as an Abstraction to present a collection of Dependencies, using it in the wrong place
can, once again, lead to a Leaky Abstraction. The following listing shows how IEnu
merable<T> can be used incorrectly.

Listing 8.21 IEnumerable<T> as a lEaky abSTraCTiON

public class Component
{
 private readonly IEnumerable<ILogger> loggers;

 public Component(IEnumerable<ILogger> loggers)
 {
 this.loggers = loggers;
 }

 public void DoSomething()
 {
 foreach (var logger in this.loggers)
 {
 logger.Log("DoSomething called");
 }

 ...
 }
}

NOTE We’ll ignore for a moment the advice of section 5.3.2, where we stated
that you shouldn’t pollute your application’s code base with logging. Chapter 10
describes in detail how to design your application to account for Cross-Cutting
Concerns.

We’d like to prevent consumers from having to deal with the fact that there might be
multiple instances of a certain Dependency. This is an implementation detail that’s
leaking out through the IEnumerable<ILogger> Dependency. As we explained previ-
ously, every Dependency could potentially have multiple implementations, but your
consumers shouldn’t need to be aware of this. Just as with the previous Lazy<T> example,
this leakage increases the system’s complexity and maintenance costs when you have
multiple consumers of such a Dependency, because every consumer has to deal with
looping over the collection. So do consumer’s tests.

Injects a collection of
ILogger DepenDencIes

Loops through the collection
and operates on them

274 ChapTEr 8 Object lifetime

Although experienced developers spit out foreach constructs like this in a matter of
seconds, things get more complicated when the collection of Dependencies needs to
be processed differently. For example, let’s say that logging should continue even if one
of the loggers fails:

foreach (var logger in this.loggers)
{
 try
 {
 logger.Log("DoSomething called");
 }
 catch
 {
 }
}

Or, perhaps you not only want to continue processing, but also log that error to the
next logger. This way, the next logger functions as a fallback for the failed logger:

for (int index = 0; index < this.loggers.Count; index++)
{
 try
 {
 this.loggers[index].Log("DoSomething called");
 }
 catch (Exception ex)
 {
 if (loggers.Count > index + 1)
 {
 loggers[index + 1].Log(ex);
 }
 }
}

Or perhaps — well, we think you get the idea. It’d be rather painful to have these kinds
of code constructs all over the place. If you want to change your logging strategy, it
causes you to make cascading changes throughout the application. Ideally, we’d like to
centralize this knowledge to one single location.

You can fix this design problem using the Composite design pattern. You should be
familiar with the Composite design pattern by now, as we’ve discussed it in chapters 1 and 6
(see figure 1.8, and listings 6.4 and 6.12). The next listing shows a Composite for ILogger.

Listing 8.22 Composite wrapping IEnumerable<T>

public class CompositeLogger : ILogger
{
 private readonly IList<ILogger> loggers;

 public CompositeLogger(IList<ILogger> loggers)
 {

Empty catch clause allows
continuing logging in case
of a failure

Forwards the call to
the underlying logger
implementation

Forwards the exception to the
fallback logger, which is the
next logger, if any, in the list

CompositeLogger implements ILogger.

CompositeLogger depends on IList<ILogger>
to allow forwarding the log requests to all
available ILogger components.

 275Bad liFestyle choices

 this.loggers = loggers;
 }

 public void Log(LogEntry entry)
 {
 for (int index = 0; index < this.loggers.Count; index++)
 {
 try
 {
 this.loggers[index].Log(entry);
 }
 catch (Exception ex)
 {
 if (loggers.Count > index + 1)
 {
 var logger = loggers[index + 1];
 logger.Log(new LogEntry(ex));
 }
 }
 }
 }
}

The following snippet shows how you can compose the object graph for Component
using this new CompositeLogger, keeping Component dependent on a single ILogger
instead of an IEnumerable<ILogger>:

ILogger composite =
 new CompositeLogger(new ILogger[]
 {
 new SqlLogger(connectionString),
 new WindowsEventLogLogger(source: "MyApp"),
 new FileLogger(directory: "c:\\logs")
 });

new Component(composite);

As you’ve seen many times before, good application design follows the Dependency
Inversion Principle and prevents Leaky Abstractions. This results in cleaner code
that’s more maintainable and more resilient to programming errors. Let’s now look at
a different smell, which doesn’t affect the application’s design per se, but potentially
causes hard-to-fix concurrency problems.

8.4.3 Causing concurrency bugs by tying instances to the lifetime of a thread

Sometimes you’re dealing with Dependencies that aren’t thread-safe but don’t neces-
sarily need to be tied to the lifetime of a request. A tempting solution is to synchroniz-
ing the lifetime of such a Dependency to the lifetime of a thread. Although seductive,
such practice is error prone.

Implements ILogger’s Log method. In this
case, we assume ILogger contains one single
method accepting a LogEntry method.12

12 To get an idea of why we defined ILogger using a single Log method, take a look at the following Stack
Overflow question: https://mng.bz/QgdG.

Wraps the exception
thrown by the failed
logger in a LogEntry
object so it can be passed
on to the fallback logger

Constructs a Composite with multiple
ILogger implementations

Constructs the new Component
using the Composite

https://mng.bz/QgdG

276 ChapTEr 8 Object lifetime

WARNING Some DI Containers refer to this method as the per-thread Life-
style and have built-in support for it — avoid this!

Listing 8.23 shows how the CreateCurrencyParser method, previously discussed in
listing 7.2, makes use of a SqlExchangeRateProvider Dependency. This is created
once for each thread in the application.

Listing 8.23 A dEpENdENCy’s lifetime tied to the lifetime of a thread

[ThreadStatic]
private static CommerceContext context;

static CurrencyParser CreateCurrencyParser(
 string connectionString)
{
 if (context == null)
 {
 context = new CommerceContext(
 connectionString);
 }

 return new CurrencyParser(
 new SqlExchangeRateProvider(context),
 context);
}

Although this might look innocent, that couldn’t be further from the truth. We’ll dis-
cuss two problems with this listing next.

ThE lifETimE Of a ThrEad iS OfTEN uNClEar

It can be hard to predict what the lifespan of a thread is. When you create and start a
thread using new Thread().Start(), you’ll get a fresh block of thread-static memory.
This means that if you call CreateCurrencyParser in such a thread, the thread-static
fields will all be unset, resulting in new instances being created.

When starting threads from the thread pool using ThreadPool.QueueUserWorkItem,
however, you’ll possibly get an existing thread from the pool or a newly created thread,
depending on what’s in the thread pool. Even if you aren’t creating threads yourself,
the framework might be (as we’ve discussed regarding, for example, ASP.NET Core).
This means that while some threads have a lifetime that’s rather short, others live for
the duration of the entire application. Further complications arise when operations
aren’t guaranteed to run on a single thread.

aSyNChrONOuS appliCaTiON mOdElS CauSE mulTi-ThrEadiNg iSSuES

Modern application frameworks are inherently asynchronous in nature. Even though
your code might not implement the new asynchronous programming patterns using
the async and await keywords, the framework you’re using might still decide to finish
a request on a different thread than it was started on. ASP.NET Core is, for instance,
completely built around this asynchronous programming model. But even older

A static field is marked with the
[ThreadStatic] attribute. The CLR ensures
that such a field isn’t shared between
threads, instead providing each executing
thread a separate instance of the field. If
the field is accessed on a different thread,
it’ll contain a different value.

In case the thread on which the
current code is executing doesn’t have
an initialized CommerceContext yet, a
new instance is created and stored in
the corresponding thread-static field.

Injects the
per-thread
DepenDency

into a
transient

object graph

 277Bad liFestyle choices

frameworks, such as ASP.NET Web API and ASP.NET Web Forms, allow requests to run
asynchronously.

This is a problem for Dependencies that are tied to a particular thread. When a
request continues on a different thread, it still references the same Dependencies,
even though some of them are tied to the original thread. Figure 8.12 illustrates this.

NOTE The object graph of Request 1 in figure 8.12 moves from one thread
to another, although the Dependency is thread specific. The Dependency
effectively becomes a Captive Dependency once the object graph is moved to
another thread.

Request 1 is
started on
Thread A.

Once the request
begins I/O, it’s
postponed, waiting
for the asynchronous
I/O operation to
complete. At that
point, Thread A
becomes available
and is allowed to
take on any new
work. In this case,
Thread A starts
processing
Request 2.

Possible concurrent use

In parallel to Request 1, Request 2 is running on Thread A.
Since Request 2 runs on Thread A, it gets the original Thread
A-specific DEPENDENCY injected. When it starts using this
DEPENDENCY, it may do so in parallel to Request 1, which is now
running on Thread B. This can cause concurrency bugs.

When the I/O operation
for Request 1 finishes,
Request 1 continues, but
it does so on a completely
different thread—in this
case, Thread B. While
running, it makes use of
the Thread 1-specific
DEPENDENCY that was
injected into its graph.

Request 1 is
postponed
because of I/O.

R
equest 1

R
equest 1

R
equest 2

At the beginning of the request, the object graph is resolved and,
because this is a previously unused thread, a new thread-specific
DEPENDENCY for the request is created and injected into Request 1’s
object graph.

Thread A

new()

Asynchronous I/O call

Make use of
dependency

Make use of dependency

Thread B Thread-specific
dependency for

Thread A

Some
external
resource

Asynchronous I/O call completes

Figure 8.12 Thread-specific dEpENdENCiES can cause concurrency bugs in asynchronous environments.

278 ChapTEr 8 Object lifetime

Using thread-specific Dependencies while running in an asynchronous context is a par-
ticularly bad idea, because it could lead to concurrency problems, which are typically
hard to find and reproduce. Such a problem would only occur if the thread-specific
Dependency isn’t thread-safe — they typically aren’t. Otherwise, the Singleton Life-
style would have worked just fine.

The solution to this problem is to scope things around a request or operation, and
there are several ways to achieve this. Instead of linking the lifetime of the Dependency
to that of a thread, make its lifetime scoped to the request, as discussed in section 8.3.3.
The following listing demonstrates this once more.

Listing 8.24 Storing SCOpEd dEpENdENCiES in local variables

static CurrencyParser CreateCurrencyParser(
 string connectionString)
{
 var context = new CommerceContext(
 connectionString);

 return new CurrencyParser(
 new SqlExchangeRateProvider(context),
 context);
}

NOTE The given solution could reduce the lifetime of the Dependency con-
siderably. This typically won’t be a problem, but if it is, consider pooling the
Dependency, or wrap access to a thread-static Dependency behind a proxy,
which only accesses the Dependency from within its method. This prevents the
Dependency from being accidentally moved from thread to thread. We’ll leave
this as an exercise for the reader.

The Lifestyles examined in this chapter represent the most common types, but
you may have more exotic needs that aren’t satisfactorily addressed. When we find
ourselves in such a situation, our immediate response should be to realize that our
approach must be wrong, and if we change our design a bit, everything will fit nicely
into standard patterns.

This realization is often a disappointment, but it leads to better and more maintain-
able code. The point is that if you feel the need to implement a custom Lifestyle or
create a Leaky Abstraction, you should first seriously reconsider your design. For
this reason, we decided to leave specialized Lifestyles out of this book. We can often
handle such situations better with a redesign or Interception, as you’ll see in the next
chapter.

Creates the scopeD
DepenDency

Injects the scopeD DepenDency
into a transient object graph

 279Summary

Summary

¡	Composer is a unifying term, referring to any object or method that composes
Dependencies. It’s an important part of the Composition Root.

¡	The Composer can be a DI Container, but it can also be any method that con-
structs object graphs manually using Pure DI.

¡	The Composer has a greater degree of influence over the lifetime of Dependen-
cies than any single consumer can have. The Composer decides when instances
are created, and, by its choice of whether to share instances, it determines
whether a Dependency goes out of scope with a single consumer or whether all
consumers must go out of scope before the Dependency can be released.

¡	A Lifestyle is a formalized way of describing the intended lifetime of a
Dependency.

¡	The ability to fine tune each Dependency’s Lifestyle is important for perfor-
mance reasons but can also be important for correct behavior. Some Dependen-
cies must be shared between several consumers for the system to work correctly.

¡	The Liskov Substitution Principle states that you must be able to substitute
the Abstraction for an arbitrary implementation without changing the correct-
ness of the system.

¡	Failing to adhere to the Liskov Substitution Principle makes applications
fragile, because it disallows replacing Dependencies that might cause a con-
sumer to break.

¡	An ephemeral disposable is an object with a clear and short lifetime that typically
doesn’t exceed a single method call.

¡	Diligently work to implement services so they don’t hold references to disposables,
but rather create and dispose of them on demand. This makes memory manage-
ment simpler, because the service can be garbage collected like other objects.

¡	The responsibility of disposing of Dependencies falls to the Composer. It, better
than anything else, knows when it creates a disposable instance, so it also knows
that the instance needs to be disposed of.

¡	Releasing is the process of determining which Dependencies can be dereferenced
and (possibly) disposed of. The Composition Root signals the Composer to
release a resolved Dependency.

¡	A Composer must take care of the correct order of disposal for objects. An object
might require its Dependencies to be called during disposal, which causes prob-
lems if these Dependencies are already disposed of. Disposal should, therefore,
happen in the opposite order of object creation.

280 ChapTEr 8 Object lifetime

¡	The Transient Lifestyle involves returning a new instance every time it’s
requested. Each consumer gets its own instance of the Dependency.

¡	Within the scope of a single Composer, there’ll only be one instance of a compo-
nent with the Singleton Lifestyle. Each time a consumer requests the compo-
nent, the same instance is served.

¡	Scoped Dependencies behave like singletons within a single, well-defined scope
or request, but aren’t shared across scopes. Each scope has its own set of associ-
ated Dependencies.

¡	The Scoped Lifestyle makes sense for long-running applications that are
tasked with processing operations that need to run in some degree of isolation.
Isolation is required when these operations are processed in parallel, or when
each operation contains its own state.

¡	If you ever need to compose an Entity Framework Core DbContext in a web
request, a Scoped Lifestyle is an excellent choice. DbContext instances aren’t
thread-safe, but you typically only want one DbContext instance per web request.

¡	Object graphs can consist of Dependencies of different Lifestyles, but you
should make sure that a consumer only has Dependencies with a lifetime that’s
equal to or exceeds its own, because a consumer will keep its Dependencies alive.
Failing to do so leads to Captive Dependencies.

¡	A Captive Dependency is a Dependency that’s inadvertently kept alive for too
long, because its consumer was given a lifetime that exceeds the Dependency’s
expected lifetime.

¡	Captive Dependencies are a common source of bugs when working with a DI
Container, although the problem can also arise when working with Pure DI.

¡	When applying Pure DI, a careful structure of the Composition Root can
reduce the chance of running into problems.

¡	When working with a DI Container, Captive Dependencies are such a wide-
spread problem that some DI Containers perform analysis on constructed
object graphs to detect them.

¡	Sometimes you need to postpone the creation of a Dependency. Injecting the
Dependency as a Lazy<T>, Func<T>, or IEnumerable<T>, however, is a bad idea
because it causes the Dependency to become a Leaky Abstraction. Instead,
you should hide this knowledge behind a Proxy or Composite.

¡	Don’t bind the lifetime of a Dependency to the lifetime of a thread. The lifetime
of a thread is often unclear, and using it in an asynchronous framework can cause
multi-threading issues. Instead, use a proper Scoped Lifestyle or hide access to
the thread-static value behind a Proxy.

281

9Interception

In this chapter
¡	Intercepting calls between two collaborating objects

¡	Understanding the Decorator design pattern

¡	Applying cross-cutting concerns using Decorators

One of the most interesting things about cooking is the way you can combine many
ingredients, some of them not particularly savory in themselves, into a whole that’s
greater than the sum of its parts. Often, you start with a simple ingredient that pro-
vides the basis for the meal, and then modify and embellish it until the end result is
a delicious dish.

Consider a veal cutlet. If you were desperate, you could eat it raw, but in most cases
you’d prefer to fry it. But if you slap it on a hot pan, the result will be less than stellar.
Apart from the burned flavor, it won’t taste like much. Fortunately, there are lots of
steps you can take to enhance the experience:

¡	Frying the cutlet in butter prevents burning the meat, but the taste is likely to
remain bland.

¡	Adding salt enhances the taste of the meat.
¡	Adding other spices, such as pepper, makes the taste more complex.

282 ChapTEr 9 Interception

¡	Breading it with a mixture that includes salt and spices not only adds to the taste,
but also envelops the original ingredient in a new texture. At this point, you’re
getting close to having a cotoletta.1

¡	Slitting open a pocket in the cutlet and adding ham, cheese, and garlic into the
pocket before breading it takes us over the top. Now you have veal cordon bleu, a
most excellent dish.

The difference between a burned veal cutlet and veal cordon bleu is significant, but
the basic ingredient is the same. The variation is caused by the things you add to it.
Given a veal cutlet, you can embellish it without changing the main ingredient to create
a different dish.

With loose coupling, you can perform a similar feat when developing software. When
you program to an interface, you can transform or enhance a core implementation by
wrapping it in other implementations of that interface. You already saw a bit of this
technique in action in listing 8.19, where we used this technique to modify an expensive
Dependency’s lifetime by wrapping it in a Virtual Proxy.2

This approach can be generalized, providing you with the ability to Intercept a call
from a consumer to a service. This is what we’ll cover in this chapter.

Like the veal cutlet, we start out with a basic ingredient and add more ingredients to
make the first ingredient better, but without changing the core of what it was originally.
Interception is one of the most powerful abilities that you gain from loose coupling.
It enables you to apply the Single Responsibility Principle and Separation of Con-
cerns with ease.

In the previous chapters, we expended a lot of energy maneuvering code into a posi-
tion where it’s truly loosely coupled. In this chapter, we’ll start harvesting the benefits
of that investment. The overall structure of this chapter is pretty linear. We’ll start with
an introduction to Interception, including an example. From there, we’ll move on
to talk about Cross-Cutting Concerns. This chapter is light on theory and heavy on
examples, so if you’re already familiar with this subject, you can consider moving
directly to chapter 10, which discusses Aspect-Oriented Programming.

DEFINITION Cross-Cutting Concerns are aspects of a program that affect
a larger part of the application. They’re often non-functional requirements.
They don’t directly relate to any particular feature, but, rather, are applied to
existing functionality.

When you’re done with this chapter, you should be able to use Interception to
develop loosely coupled code using the Decorator design pattern. You should gain the
ability to successfully observe Separation of Concerns and apply Cross-Cutting Con-
cerns, all while keeping your code in good condition.

1 Cotoletta is the Italian word for breaded veal cutlet.
2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,

1994), 207.

 283Introducing inteRCeption

This chapter starts with a basic, introductory example, building toward increasingly
complex notions and examples. The final, and most advanced, concept can be quickly
explained in the abstract. But, because it’ll probably only make sense with a solid example,
the chapter culminates with a comprehensive, multipage demonstration of how it
works. Before we get to that point, however, we must start at the beginning, which is to
introduce Interception.

9.1 Introducing interception

The concept of Interception is simple: we want to be able to intercept the call between a
consumer and a service, and to execute some code before or after the service is invoked.
And we want to do so in such a way that neither the consumer nor the service has to change.

DEFINITION Interception is the ability to intercept calls between two collabo-
rating components in such a way that you can enrich or change the behavior of
the Dependency without the need to change the two collaborators themselves.

For example, imagine you want to add security checks to a SqlProductRepository
class. Although you could do this by changing SqlProductRepository itself or by
changing a consumer’s code, with Interception, you apply security checks by inter-
cepting calls to SqlProductRepository using some intermediary piece of code. In fig-
ure 9.1, a normal call from a consumer to a service is intercepted by an intermediary
that can execute its own code before or after passing the call to the real service.

Consumer interacts with service Service gets intercepted

Consumer

Service Service

uses

uses

uses

You can convert a simple
call from consumer to service …

… to a more complex interaction by
slotting in a piece of intermediate code.

The intermediate code receives the original call
from the consumer and passes it on to the
actual implementation (the service), while also
acting on the call by doing whatever it needs
to do.

For this to be INTERCEPTION, the
intermediate code needs to be
applied in a way that doesn’t
require the two collaborators
to change.

Intermediate code

Consumer

Figure 9.1 iNTErCEpTiON in a nutshell

284 ChapTEr 9 Interception

IMPORTANT The set of software design principles and patterns around DI
(such as, but not limited to, loose coupling and the Liskov Substitution
Principle) are the enablers of Interception. Without these principles and
patterns, it’s impossible to apply Interception.

In this section, you’re going to get acquainted with Interception and learn how, at its
core, it’s an application of the Decorator design pattern. Don’t worry if your knowledge
of the Decorator pattern is a bit rusty; we’ll start with a description of this pattern as part
of the discussion. When we’re done, you should have a good understanding of how Dec-
orators work. We’ll begin by looking at a simple example that showcases the pattern, and
follow up with a discussion of how Interception relates to the Decorator pattern.

9.1.1 Decorator design pattern

As is the case with many other patterns, the Decorator pattern is an old and well-
described design pattern that predates DI by a decade. It’s such a fundamental part of
Interception that it warrants a refresher.

The Decorator pattern was first described in the book Design Patterns: Elements of
Reusable Object-Oriented Software by Erich Gamma et al. (Addison-Wesley, 1994). The pat-
tern’s intent is to “attach additional responsibilities to an object dynamically. Decora-
tors provide a flexible alternative to subclassing for extending functionality.”3

As figure 9.2 shows, a Decorator works by wrapping one implementation of an Abstrac-
tion in another implementation of the same Abstraction. This wrapper delegates
operations to the contained implementation, while adding behavior before and/or after
invoking the wrapped object.

3 Erich Gamma et al., Design Patterns, 175.

Decorator also
implements
IComponent, but
it also wraps an
IComponent.

Decorator forwards
the call from its
Operation method
to the wrapped
IComponent’s
Operation method.

ConcreteComponent
implements
IComponent.

interface IComponent
{
 void Operation();
}

class ConcreteComponent
 : IComponent
{
 public void Operation() {
 // Do something
 }
}

uses
ConcreteComponent Decorator

decoratee : IComponent

Operation()

IComponent

Operation()

Operation()

class Decorator : IComponent {

 private readonly IComponent decoratee;
 public Decorator(IComponent decoratee) {
 this.decoratee = decoratee;
 }
 public void Operation() {
 this.decoratee.Operation();
 }
}

Figure 9.2 General structure of the Decorator pattern

 285Introducing inteRCeption

The ability to attach responsibilities dynamically means that you can make the decision
to apply a Decorator at runtime rather than having this relationship baked into the
program at compile time, which is what you’d do with subclassing.

A Decorator can wrap another Decorator, which wraps another Decorator, and so
on, providing a “pipeline” of interception. Figure 9.3 shows how this works. At the core,
there must be a self-contained implementation that performs the desired work.

Let’s say, for instance, that you have an Abstraction called IGreeter that contains a
Greet method:

public interface IGreeter
{
 string Greet(string name);
}

For this Abstraction, you can create a simple implementation that creates a formal
greeting:

public class FormalGreeter : IGreeter
{
 public string Greet(string name)
 {
 return "Hello, " + name + ".";
 }
}

The simplest Decorator implementation is one that delegates the call to the decorated
object without doing anything at all:

public class SimpleDecorator : IGreeter
{
 private readonly IGreeter decoratee;

 public SimpleDecorator(IGreeter decoratee)

When a member is invoked on the outermost
Decorator, it delegates the call to its wrapped
component. Because the wrapped component
is itself a Decorator, it delegates the call to
its contained component. For each call, a
Decorator has the opportunity to use the input
or the return value from the contained
component to perform additional work.

IComponenent component =
 new OuterMostDecorator(
 new InnerDecorator(
 new ActualComponent()));

Outermost Decorator

Inner Decorator

Actual
component

Figure 9.3 Like a set of Russian nesting dolls, a Decorator wraps another Decorator that wraps a self-
contained component.4

4 Russian nesting dolls are also known as Matryoshka dolls: a set of wooden dolls of decreasing size nest-
ed one inside another.

A Decorator wraps
a component of the
same AbstrActIon as
it implements.

286 ChapTEr 9 Interception

 {
 this.decoratee = decoratee;
 }

 public string Greet(string name)
 {
 return this.decoratee.Greet(name);
 }
}

Figure 9.4 shows the relationship between IGreeter, FormalGreeter, and SimpleDec
orator. Because SimpleDecorator doesn’t do anything except forward the call, it’s
pretty useless. Instead, a Decorator can choose to modify the input before delegating
the call.

NOTE In the following code examples, we focus on the Greet method, because
the rest of the Decorator’s code will stay the same.

Let’s take a look at the Greet method of a TitledGreeterDecorator class:

public string Greet(string name)
{
 string titledName = "Mr. " + name;
 return this.decoratee.Greet(titledName);
}

In a similar move, the Decorator may decide to modify the return value before return-
ing it when you create a NiceToMeetYouGreeterDecorator:

public string Greet(string name)
{
 string greet = this.decoratee.Greet(name);
 return greet + " Nice to meet you.";
}

Given the two previous examples, you can wrap the latter around the former to com-
pose a combination that modifies both input and output:

IGreeter greeter =
 new NiceToMeetYouGreeterDecorator(
 new TitledGreeterDecorator(
 new FormalGreeter()));

The call to Greet is passed without any
changes to the decorated component; its
return value is directly returned as well.

IGreeter

Greet(name)

uses

FormalGreeter SimpleDecorator

decoratee: IGreeter

Greet(name)Greet(name)

Figure 9.4 Both
SimpleDecorator
and FormalGreeter
implement IGreeter, while
SimpleDecorator wraps an
IGreeter and forwards any
calls from its Greet method
to the Greet method of the
decoratee.

 287Introducing inteRCeption

string greet = greeter.Greet("Samuel L. Jackson");
Console.WriteLine(greet);

This produces the following output:

A Decorator may also decide not to invoke the underlying implementation:

public string Greet(string name)
{
 if (name == null)
 {
 return "Hello world!";
 }

 return this.decoratee.Greet(name);
}

Not invoking the underlying implementation is more consequential than delegating
the call. Although there’s nothing inherently wrong with skipping the decoratee, the
Decorator now replaces, rather than enriches, the original behavior.5 A more common
scenario is to stop execution by throwing an exception, as we’ll discuss in section 9.2.3.

What differentiates a Decorator from any class containing Dependencies is that the
wrapped object implements the same Abstraction as the Decorator. This enables a
Composer to replace the original component with a Decorator without changing the
consumer. The wrapped object is often injected into the Decorator declared as the
abstract type — it wraps the interface, not a specific, concrete implementation. In that
case, the Decorator must adhere to the Liskov Substitution Principle and treat all
decorated objects equally.

That’s it. There isn’t much more to the Decorator pattern than this. You’ve already
seen Decorators in action several places in this book. The SecureMessageWriter exam-
ple in section 1.2.2, for instance, is a Decorator. Now let’s look at a concrete example of
how we can use a Decorator to implement a Cross-Cutting Concern.

9.1.2 Example: Implementing auditing using a Decorator

In this example, we’ll implement auditing for the IUserRepository again. As you
might recall, we discussed auditing in section 6.3, where we used it as an example when
explaining how to fix Dependency cycles. With auditing, you record all of the import-
ant actions users make in a system for later analysis.

Hello, Mr. Samuel L. Jackson. Nice to meet you.

TitledGreeterDecorator NiceToMeetYouGreeterDecorator

FormalGreaterinputFormalGreater

A Guard Clause provides a
default behavior for null input,
in which case, the wrapped
component isn’t invoked at all.

5 You could argue that it’s no longer an application of the Decorator pattern, but rather of the Chain of
Responsibility pattern (Erich Gamma et al., Design Patterns, 251). These two patterns, however, are
closely related. We call it Decorator, to keep it simple.

288 ChapTEr 9 Interception

Auditing is a common example of a Cross-Cutting Concern: it may be required,
but the core functionality of reading and editing users shouldn’t be affected by audit-
ing. This is exactly what we did in section 6.3. Because we injected the IAuditTrail
Appender interface into the SqlUserRepository itself, we forced it to know about and
to implement auditing. This is a Single Responsibility Principle violation. The
Single Responsibility Principle suggests that we shouldn’t let SqlUserRepository
implement auditing; given this, using a Decorator is a better alternative.

implEmENTiNg aN audiTiNg dECOraTOr fOr ThE uSEr rEpOSiTOry

You can implement auditing with a Decorator by introducing a new AuditingUser
RepositoryDecorator class that wraps another IUserRepository and implements
auditing. Figure 9.5 illustrates how the types relate to each other.
In addition to a decorated IUserRepository, AuditingUserRepositoryDecorator
also needs a service that implements auditing. For this, you can use IAuditTrail

Appender from section 6.3. The following listing shows this implementation.

Listing 9.1 Declaring an AuditingUserRepositoryDecorator

public class AuditingUserRepositoryDecorator
 : IUserRepository
{
 private readonly IAuditTrailAppender appender;
 private readonly IUserRepository decoratee;

 public AuditingProductRepository(
 IAuditTrailAppender appender,
 IUserRepository decoratee)
 {

AuditingUserRepositoryDecorator
implements IUserRepository and
wraps an instance of any other
IUserRepository implementation.
It delegates all work to the
decorated IUserRepository but
adds auditing in appropriate
places. Can you spot the
breading?

SqlUserRepository AuditingUser-
RepositoryDecorator

uses

uses

IUserRepository

IAuditTrailAppender
Figure 9.5 Auditing User
Repository Decorator
adds auditing to any IUser
Repository implementation.

Implements and
decorates IUserRepository

 289Introducing inteRCeption

 this.appender = appender;
 this.decoratee = decoratee;
 }

 ...
}

AuditingUserRepositoryDecorator implements the same Abstraction that it deco-
rates. It uses standard Constructor Injection to request an IUserRepository that
it can wrap and to which it can delegate its core implementation. In addition to the
decorated Repository, it also requests an IAuditTrailAppender it can use to audit the
operations implemented by the decorated Repository. The following listing shows sam-
ple implementations of two methods on AuditingUserRepositoryDecorator.

Listing 9.2 Implementing AuditingUserRepositoryDecorator

public User GetById(Guid id)
{
 return this.decoratee.GetById(id);
}

public void Update(User user)
{
 this.decoratee.Update(user);
 this.appender.Append(user);
}

Not all operations need auditing. A common requirement is to audit all create, update,
and delete operations, while ignoring read operations. Because the GetById method is
a pure read operation, you delegate the call to the decorated Repository and immedi-
ately return the result. The Update method, on the other hand, must be audited. You
still delegate the implementation to the decorated Repository, but after the delegated
method returns successfully, you use the injected IAuditTrailAppender to audit the
operation.

A Decorator, like AuditingUserRepositoryDecorator, is similar to the breading
around the veal cutlet: it embellishes the basic ingredient without modifying it. The
breading itself isn’t an empty shell, but comes with its own list of ingredients. Real
breading is made from breadcrumbs and spices; similarly, AuditingUserRepository
Decorator contains an IAuditTrailAppender.

Note that the injected IAuditTrailAppender is itself an Abstraction, which means
that you can vary the implementation independently of AuditingUserRepository
Decorator. All the AuditingUserRepositoryDecorator class does is coordinate the
actions of the decorated IUserRepository and IAuditTrailAppender. You can write
any implementation of IAuditTrailAppender you like, but in listing 6.24, we chose to
build one based on the Entity Framework. Let’s see how you can wire up all relevant
Dependencies to make this work.

Omits auditing on
read operations

Write operation
decorated with auditing

290 ChapTEr 9 Interception

COmpOSiNg AuditingUserRepositoryDecorator
In chapter 8, you saw several examples of how to compose a HomeController instance.
Listing 8.11 provided a simple implementation concerning instances with a Transient
Lifestyle. The following listing shows how you can compose this HomeController
using a decorated SqlUserRepository.

Listing 9.3 Composing a Decorator

private HomeController CreateHomeController()
{
 var context = new CommerceContext();

 IAuditTrailAppender appender =
 new SqlAuditTrailAppender(
 this.userContext,
 context);

 IUserRepository userRepository =
 new AuditingUserRepositoryDecorator(
 appender,
 new SqlUserRepository(context));

 IProductService productService =
 new ProductService(
 new SqlProductRepository(context),
 this.userContext,
 userRepository);

 return new HomeController(productService);
}

WARNING Listing 9.3 is a simplified example that ignores lifetime issues.
Because CommerceContext is a disposable type, the code could cause resource
leaks. A more correct implementation would be an interpolation of listing 9.3
with the model discussed in section 8.3.3, but we’re sure you’ll appreciate that
it starts to get rather complex at that point.

Notice that you were able to add behavior to IUserRepository without changing the
source code of existing classes. You didn’t have to change SqlUserRepository to add
auditing. Recall from section 4.4.2 that this is a desirable trait known as the Open/
Closed Principle.

Now that you’ve seen an example of intercepting the concrete SqlUserRepository
with a decorating AuditingUserRepositoryDecorator, let’s turn our attention to writ-
ing clean and maintainable code in the face of inconsistent or changing requirements,
and to addressing Cross-Cutting Concerns.

9.2 Implementing croSS-cutting concernS

Most applications must address aspects that don’t directly relate to any particular fea-
ture, but, rather, address a wider matter. These concerns tend to touch many otherwise

Creates a new instance of
SqlUserRepository. Injects both
the SqlUserRepository and a SQL
Server–based IAuditTrailAppender
implementation into a Decorator
instance. SqlUserRepository and
AuditingUserRepositoryDecorator
are both IUserRepository instances.

Instead of injecting SqlUserRepository
directly into a ProductService instance,
injects the Decorator that wraps
SqlUserRepository. ProductService sees
only the IUserRepository interface and
knows nothing about either the
SqlUserRepository or the Decorator.

 291Implementing CRoss-Cutting ConCeRns

unrelated areas of code, even in different modules or layers. Because they cut across a
wide area of the code base, we call them Cross-Cutting Concerns. Table 9.1 lists some
examples. This table isn’t a comprehensive listing; rather, it’s an illustrative sampling.

Table 9.1 Common examples of CrOSS-CuTTiNg CONCErNS

Aspect Description

Auditing Any data-altering operation should leave an audit trail including time-
stamp, the identity of the user who performed the change, and informa-
tion about what changed. You saw an example of this in section 9.1.2.

Logging Slightly different than auditing, logging tends to focus on recording events
that reflect the state of the application. This could be events of interest to
IT operations staff, but might also be business events.

Performance monitoring Slightly different than logging because this deals more with recording
performance than specific events. If you have Service Level Agreements
(SLAs) that can’t be monitored via standard infrastructure, you must
implement your own performance monitoring. Custom Windows perfor-
mance counters are a good choice for this, but you must still add some
code that captures the data.

Validation Operations typically need to be called with valid data. This can be either
simple user input validation or more complex business rule validation.
Although validation itself is always dependent on its context, the invoca-
tion of that validation and the processing of the validation results often
isn’t and can be considered to be cross-cutting.

Security Some operations should only be allowed for certain users, often based on
membership in roles or groups, and you must enforce this.

Caching You can often increase performance by implementing caches, but there’s
no reason why a specific data access component should deal with this
aspect. You may want the ability to enable or disable caching for different
data access implementations.

Error handling An application may need to handle certain exceptions and log them, trans-
form them, or show a message to the user. You can use an error-handling
Decorator to deal with errors in a proper way.

Fault tolerance Out-of-process resources are guaranteed to be unavailable from time to
time. Relational databases need to process transactional operations to
prevent data corruption, which can lead to deadlocks. Using a Decorator,
you can implement fault tolerance patterns, such as a Circuit Breaker, to
address this.

292 ChapTEr 9 Interception

When you draw diagrams of layered application
architecture, Cross-Cutting Concerns are often
represented as vertical blocks placed beside the lay-
ers. This is shown in figure 9.6.

In this section, we’ll look at some examples that
illustrate how to use Interception in the form of
Decorators to address Cross-Cutting Concerns.
From table 9.1, we’ll pick the fault tolerance, error
handling, and security aspects to get a feel for imple-
menting aspects. As is the case with many other con-
cepts, Interception can be easy to understand in
the abstract, but the devil is in the details. It takes
exposure to properly absorb the technique, and
that’s why this section shows three examples. When
we’re done with these, you should have a clearer pic-
ture of what Interception is and how you can apply
it. Because you already saw an introductory example in section 9.1.2, we’ll take a look
at a more complex example to illustrate how Interception can be used with arbitrarily
complex logic.

9.2.1 Intercepting with a Circuit Breaker

Any application that communicates with an out-of-process resource will occasion-
ally find that the resource is unavailable. Network connections go down, databases
go offline, and web services get swamped by Distributed Denial of Service (DDOS)
attacks. In such cases, the calling application must be able to recover and appropriately
deal with the issue.

Most .NET APIs have default timeouts that ensure that an out-of-process call doesn’t
block the consuming thread forever. Still, in a situation where you receive a timeout
exception, how do you treat the next call to the faulting resource? Do you attempt to
call the resource again? Because a timeout often indicates that the other end is either
offline or swamped by requests, making a new blocking call may not be a good idea. It
would be better to assume the worst and throw an exception immediately. This is the
rationale behind the Circuit Breaker pattern.

Circuit Breaker is a stability pattern that adds robustness to an application by failing
fast instead of hanging and consuming resources as it hangs. This is a good example of
a non-functional requirement and a true Cross-Cutting Concern, because it has little
to do with the feature implemented in the out-of-process call.

The Circuit Breaker pattern itself is a bit complex and can be intricate to implement,
but you only need to make that investment once. You could even implement it in a
reusable library if you liked, where you could easily apply it to multiple components by
employing the Decorator pattern.

User interface layer

S
ec

ur
ity

Data access layer

Domain layer

Figure 9.6 In application
architecture diagrams, CrOSS-CuTTiNg
CONCErNS are typically represented by
vertical blocks that span all layers. In
this case, security is a CrOSS-CuTTiNg
CONCErN.

 293Implementing CRoss-Cutting ConCeRns

ThE CirCuiT brEakEr paTTErN

The Circuit Breaker design pattern takes its name from the electric switch of the same
name.6 It’s designed to cut the connection when a fault occurs, preventing the fault
from propagating.

In software applications, once a timeout or similar communications error occurs, it
can make a bad situation worse if you keep hammering a downed system. If the remote
system is swamped, multiple retries can take it over the edge — a pause might give it a
chance to recover. On the calling tier, threads blocked waiting for timeouts can make
the consuming application unresponsive, forcing a user to wait for an error message.
It’s better to detect that communications are down and fail fast for a period of time.

The Circuit Breaker design addresses this by tripping the switch when an error
occurs. It usually includes a timeout that makes it retry the connection later; this way, it
can automatically recover when the remote system comes back up. Figure 9.7 illustrates
a simplified view of the state transitions in a Circuit Breaker.

You may want to make a Circuit Breaker more complex than described in figure 9.7. First,
you may not want to trip the breaker every time a sporadic error occurs but, rather, use
a threshold. Second, you should only trip the breaker on certain types of errors. Time-
outs and communication exceptions are fine, but a NullReference Exception is likely
to indicate a bug instead of an intermittent error.

6 Michael T. Nygard, Release It! Design and Deploy Production-Ready Software (Pragmatic Bookshelf,
2007), 104.

The Circuit Breaker starts
in the Closed state,
indicating that the circuit’s
closed and messages can flow.

When an error occurs,
the breaker is tripped,
and the state switches
to Open.

In the Open state, the breaker
lets no calls through to the
remote system; instead, it throws
an exception immediately.

After a timeout, the Open
state switches to Half-Open,
where a single remote call is
allowed to go through.

If that single remote
call succeeds, the state
goes back to Closed,
but if it fails, the breaker
goes back to Open,
starting a new timeout.

Closed Open

Timeout Error

Half-open

Call succeeds

Call succeeds

Error

Figure 9.7 Simplified state transition diagram of the Circuit Breaker pattern

294 ChapTEr 9 Interception

Let’s look at an example that shows how the Decorator pattern can be used to add
Circuit Breaker behavior to an existing out-of-process component. In this example,
we’ll focus on applying the reusable Circuit Breaker, but not on how it’s implemented.

ExamplE: CrEaTiNg a CirCuiT brEakEr fOr IProductRepository
In section 7.2, we created a UWP application that communicates with a backend data
source, such as a WCF or Web API service, using the IProductRepository interface.
In listing 8.6, we used a WcfProductRepository that implements IProductRepository
by invoking the WCF service operations. Because this implementation has no explicit
error handling, any communication error will bubble up to the caller.

This is an excellent scenario in which to use a Circuit Breaker. You’d like to fail fast
once exceptions start occurring; this way, you won’t block the calling thread and swamp
the service. As the next listing shows, you start by declaring a Decorator for IProduct
Repository and requesting the necessary Dependencies via Constructor Injection.

Listing 9.4 Decorating with a Circuit Breaker

public class CircuitBreakerProductRepositoryDecorator
 : IProductRepository
{
 private readonly ICircuitBreaker breaker;
 private readonly IProductRepository decoratee;

 public CircuitBreakerProductRepositoryDecorator(
 ICircuitBreaker breaker,
 IProductRepository decoratee)
 {
 this.breaker = breaker;
 this.decoratee = decoratee;
 }

 ...
}

You can now wrap any call to the decorated IProductRepository.

Listing 9.5 Applying a Circuit Breaker to the Insert method

public void Insert(Product product)
{
 this.breaker.Guard();

 try
 {
 this.decoratee.Insert(product);
 this.breaker.Succeed();
 }
 catch (Exception ex)
 {
 this.breaker.Trip(ex);
 throw;
 }
}

Decorator of
IProductRepository,
meaning that it both
implements and wraps
an implementation of
IProductRepository

The other DepenDency is an
ICircuitBreaker that you can
use to implement the Circuit
Breaker pattern.

Checks the state of
the Circuit Breaker

Invokes the decorated Repository and
calls Succeed when the call succeeds

When the call to Insert fails,
trips the Circuit Breaker

 295Implementing CRoss-Cutting ConCeRns

The first thing you need to do before you invoke the decorated Repository is check
the state of the Circuit Breaker. The Guard method lets you through when the state is
either Closed or Half-Open, whereas it throws an exception when the state is Open.
This ensures that you fail fast when you have reason to believe that the call isn’t going
to succeed. If you make it past the Guard method, you can attempt to invoke the deco-
rated Repository. If the call fails, you trip the breaker. In this example, we’re keeping
things simple, but in a proper implementation, you should only catch and trip the
breaker from a selection of exception types.

From both the Closed and Half-Open states, tripping the breaker puts you back in
the Open state. From the Open state, a timeout determines when you move back to the
Half-Open state.

Conversely, you signal the Circuit Breaker if the call succeeds. If you’re already in the
Closed state, you stay in the Closed state. If you’re in the Half-Open state, you transition
back to Closed. It’s impossible to signal success when the Circuit Breaker is in the Open
state, because the Guard method ensures that you never get that far.

All other methods of IProductRepository look similar, with the only difference
being the method they invoke on the decoratee and an extra line of code for meth-
ods that return a value. You can see this variation inside the try block for the GetAll
method:

var products = this.decoratee.GetAll();
this.breaker.Succeed();
return products;

Because you must indicate success to the Circuit Breaker, you have to hold the return
value of the decorated repository before returning it. That’s the only difference
between methods that return a value and methods that don’t.

At this point, you’ve left the implementation of ICircuitBreaker open, but the
real implementation is a completely reusable complex of classes that employ the State
design pattern.7 Although we aren’t going to dive deeper into the implementation of
CircuitBreaker here, the important message is that you can Intercept with arbitrarily
complex code.

NOTE If you’re curious about the implementation of the CircuitBreaker
class, it’s available in the code that accompanies this book.

COmpOSiNg ThE appliCaTiON uSiNg ThE CirCuiT brEakEr implEmENTaTiON

To compose an IProductRepository with Circuit Breaker functionality added, you
can wrap the Decorator around the real implementation:

var channelFactory = new ChannelFactory<IProductManagementService>("*");

var timeout = TimeSpan.FromMinutes(1);

ICircuitBreaker breaker = new CircuitBreaker(timeout);

7 Erich Gamma et al., Design Patterns, 305.

296 ChapTEr 9 Interception

IProductRepository repository =
 new CircuitBreakerProductRepositoryDecorator(
 breaker,
 new WcfProductRepository(channelFactory));

In listing 7.6, we composed a UWP application from several Dependencies, including
a WcfProductRepository instance in listing 8.6. You can decorate this WcfProduct
Repository by injecting it into a CircuitBreakerProductRepositoryDecorator
instance, because it implements the same interface. In this example, you create a new
instance of the CircuitBreaker class every time you resolve Dependencies. That cor-
responds to the Transient Lifestyle.

In a UWP application, where you only resolve the Dependencies once, using a Tran-
sient Circuit Breaker isn’t an issue but, in general, this isn’t the optimal lifestyle for
such functionality. There’ll only be a single web service at the other end. If this service
becomes unavailable, the Circuit Breaker should disconnect all attempts to connect to
it. If several instances of CircuitBreakerProductRepositoryDecorator are in use, this
should happen for all of them.

A more compact ICircuitBreaker
As presented here, the ICircuitBreaker interface contains three members: Guard,
Succeed, and Trip. An alternative interface definition could accept a delegate to reduce
the footprint to a single method:

public interface ICircuitBreaker
{
 T Execute<T>(Func<T> action);
}

This would allow you to more succinctly use ICircuitBreaker in each method, like this:

public IEnumerable<Product> GetAll()
{
 this.breaker.Execute(() => this.decoratee.GetAll());
}

We chose to use the more explicit and old-fashioned version of ICircuitBreaker,
because we want you to be able to focus on the current topic of intercePtion. Although
we personally like continuation passing, we think it might be more distracting than help-
ful in this context. Whether we ultimately choose one interface definition over the other
doesn’t change the conclusion of the current chapter.

There’s an obvious case for setting up CircuitBreaker with the Singleton lifetime,
but that also means that it must be thread-safe. Due to its nature, CircuitBreaker
maintains state; thread-safety must be explicitly implemented. This makes the imple-
mentation even more complex.

Despite its complexity, you can easily Intercept an IProductRepository instance
with a Circuit Breaker. Although the first Interception example in section 9.1.2 was
fairly simple, the Circuit Breaker example demonstrates that you can intercept a class

Decorates the
WcfProductRepository

 297Implementing CRoss-Cutting ConCeRns

with a Cross-Cutting Concern. The Cross-Cutting Concern can easily be more
complex than the original implementation.

The Circuit Breaker pattern ensures that an application fails fast instead of tying up
precious resources. Ideally, the application wouldn’t crash at all. To address this issue,
you can implement some kinds of error handling with Interception.

9.2.2 Reporting exceptions using the Decorator pattern

Dependencies are likely to throw exceptions from time to time. Even the best-written
code will (and should) throw exceptions if it encounters situations it can’t deal with.
Clients that consume out-of-process resources fall into that category. A class like Wcf
ProductRepository from the sample UWP application is one example. When the web
service is unavailable, the Repository will start throwing exceptions. A Circuit Breaker
doesn’t change this fundamental trait. Although it Intercepts the WCF client, it still
throws exceptions — it does so quicker.

You can use Interception to add error handling. You don’t want to burden a Depen-
dency with error handling. Because a Dependency should be viewed as a reusable com-
ponent that can be consumed in many different scenarios, it wouldn’t be possible to
add an exception-handling strategy to the Dependency that would fit all scenarios. It
would also be a violation of the Single Responsibility Principle if you did.

By using Interception to deal with exceptions, you follow the Open/Closed Prin-
ciple. It allows you to implement the best error-handling strategy for any given situa-
tion. Let’s look at an example.

In the previous example, we wrapped WcfProductRepository in a Circuit Breaker for
use with the product-management
client application, which was origi-
nally introduced in section 7.2.2. A
Circuit Breaker only deals with errors
by making certain that the client fails
fast, but it still throws exceptions.
If left unhandled, they’ll cause the
application to crash, so you should
implement a Decorator that knows
how to handle some of those errors.

Instead of a crashing applica-
tion, you might prefer a message
box that tells the user that the oper-
ation didn’t succeed and that they
should try again later. In this exam-
ple, when an exception is thrown, it
should pop up a message as shown
in figure 9.8.

Figure 9.8 The product-management application handles
communication exceptions by showing a message to the
user. Notice that in this case, the error message originates
from the Circuit Breaker instead of the underlying
communication failure.

298 ChapTEr 9 Interception

Implementing this behavior is easy. The same way you did in section 9.2.1, you add a
new ErrorHandlingProductRepositoryDecorator class that decorates the IProduct
Repository interface. Listing 9.6 shows a sample of one of the methods of that inter-
face, but they’re all similar.

Listing 9.6 Handling exceptions with ErrorHandlingProductRepositoryDecorator

public void Insert(Product product)
{
 try
 {
 this.decoratee.Insert(product);
 }
 catch (CommunicationException ex)
 {
 this.AlertUser(ex.Message);
 }
 catch (InvalidOperationException ex)
 {
 this.AlertUser(ex.Message);
 }
}

The Insert method is representative of the entire implementation of the ErrorHandling
ProductRepositoryDecorator class. You attempt to invoke the decoratee and alert
the user with the error message if an exception is thrown. Notice that you only han-
dle a particular set of known exceptions, because it can be dangerous to suppress all
exceptions. Alerting the user involves formatting a string and showing it to the user
using the MessageBox.Show method. This is done inside the AlertUser method.

Once again, you added functionality to the original implementation (WcfProduct
Repository) by implementing the Decorator pattern. You’re following both the Single
Responsibility Principle and the Open/Closed Principle by continually adding
new types instead of modifying existing code. By now, you should be seeing a pattern
that suggests a more general arrangement than a Decorator. Let’s briefly glance at a
final example, implementing security.

9.2.3 Preventing unauthorized access to sensitive functionality using a Decorator

Security is another common Cross-Cutting Concern. We want to secure our appli-
cations as much as possible to prevent unauthorized access to sensitive data and
functionality.

NOTE Security is a big topic that encompasses many areas, including the dis-
closure of sensitive information and breaking into networks.8 In this section,
we’ll touch briefly on the subject of authorization: making sure that only autho-
rized people (or systems) can perform certain actions.

Delegates to
the decoratee

Alerts the user

8 For a thorough treatment of security, you may want to read Michael Howard and David LeBlanc,
Writing Secure Code, 2nd Ed. (Microsoft Press, 2003).

 299Implementing CRoss-Cutting ConCeRns

Similar to how we used Circuit Breaker, we’d like to Intercept a method call and
check whether the call should be allowed. If not, instead of allowing the call to be
made, an exception should be thrown. The principle is the same; the difference lies in
the criterion we use to determine the validity of the call.

A common approach to implementing authorization logic is to employ role-based
security by checking the user’s role(s) against a hard-coded value for the operation at
hand. If we stick with our IProductRepository, we might start out with a SecureProduct
RepositoryDecorator. Because, as you’ve seen in the previous sections, all methods
look similar, the following listing only shows two method implementations.

Listing 9.7 Explicitly checking authorization with a Decorator

public class SecureProductRepositoryDecorator
 : IProductRepository
{
 private readonly IUserContext userContext;
 private readonly IProductRepository decoratee;

 public SecureProductRepositoryDecorator(
 IUserContext userContext,
 IProductRepository decoratee)
 {
 this.userContext = userContext;
 this.decoratee = decoratee;
 }

 public void Delete(Guid id)
 {
 this.CheckAuthorization();
 this.decoratee.Delete(id);
 }

 public IEnumerable<Product> GetAll()
 {
 return this.decoratee.GetAll();
 }
 ...
 private void CheckAuthorization()
 {
 if (!this.userContext.IsInRole(
 Role.Administrator))
 {
 throw new SecurityException(
 "Access denied.");
 }
 }
}

The Decorator depends
on IUserContext, which
enables it to check the
current user’s role.

The Delete method starts with a Guard Clause
that explicitly checks if the current user is
allowed to execute this operation. If not, it
immediately throws an exception. Only if the
current user has the required role do you
allow it past the Guard Clause to invoke the
decorated Repository.

Not all methods require permission
checks. In this application, only create,
update, and delete (CUD) operations do.
Every user in this system is allowed to
query all products.

The required role for the CUD
operations is hard-coded to
the Administrator role. If the
user isn’t in that role, an
exception is thrown.

300 ChapTEr 9 Interception

NOTE The Decorator examples in listings 9.2, 9.5, 9.6, and 9.7 only showed part
of the Decorator’s code because all methods of the Decorator looked similar.

In our current design, for a given Cross-Cutting Concern, the implementation
based on a Decorator tends to be repetitive. Implementing a Circuit Breaker involves
applying the same code template to all methods of the IProductRepository interface.
Had you wanted to add a Circuit Breaker to another Abstraction, you would’ve had
to apply the same code to more methods.

With the security Decorator, it got even worse because we required some of the meth-
ods to be extended, whereas others are mere pass-through operations. But the overall
problem is identical.

If you need to apply this Cross-Cutting Concern to a different Abstraction, this
too will cause code duplication, which can cause major maintainability issues as the
system gets bigger. As you might imagine, there are ways to prevent code duplication,
bringing us to the important topic of Aspect-Oriented Programming, which we’ll
discuss in the next chapter.

Summary

¡	Interception is the ability to intercept calls between two collaborating compo-
nents in such a way that you can enrich or change the behavior of the Depen-
dency without the need to change the two collaborators themselves.

¡	Loose coupling is the enabler of Interception. When you program to an inter-
face, you can transform or enhance a core implementation by wrapping it in
other implementations of that interface.

¡	At its core, Interception is an application of the Decorator design pattern.
¡	The Decorator design pattern provides a flexible alternative to subclassing by

attaching additional responsibilities to an object dynamically. It works by wrap-
ping one implementation of an Abstraction in another implementation of
the same Abstraction. This allows Decorators to be nested like Russian nest-
ing dolls.

¡	Cross-Cutting Concerns are non-functional aspects of code that typically cut
across a wide area of the code base. Common examples of Cross-Cutting Con-
cerns are auditing, logging, validation, security, and caching.

¡	Circuit Breaker is a stability design pattern that adds robustness to a system
by cutting connections when a fault occurs in order to prevent the fault from
propagating.

301

10Aspect-Oriented
Programming by design

In this chapter
¡	Recapping the soLiD principles

¡	Using AsPect-orienteD ProgrAmming to prevent
code duplication

¡	Using soLiD to achieve AsPect-orienteD
ProgrAmming

There’s a big difference between cooking at home and working in a professional
kitchen. At home, you can take all the time you want to prepare your dish, but in
a commercial kitchen, efficiency is key. Mise en place is an important aspect of this.
This is more than in-advance preparation of ingredients; it’s about having all the
required equipment set up, including your pots, pans, chopping boards, tasting
spoons, and anything that’s an essential part of your workspace.

The ergonomics and layout of the kitchen is also a major factor in the efficiency
of a kitchen. A badly laid out kitchen can cause pinch points, high levels of disrup-
tion, and context switching for staff. Features like dedicated stations with associated
specialized equipment help to minimize the movement of staff, avoid (unnecessary)
multitasking, and encourage concentration on the task at hand. When this is done
well, it helps to improve the efficiency of the kitchen as a whole.

302 ChapTEr 10 Aspect-Oriented Programming by design

In software development, the code base is our kitchen. Teams work together for
years in the same kitchen, and the right architecture is essential to be efficient and
consistent, keeping code repetition to a minimum. Your “guests” depend on your suc-
cessful kitchen strategy.

One of the key architectural strategies you can use to improve your software ergo-
nomics is Aspect-Oriented Programming (AOP). This can come in the form of
equipment (tools) or a solid layout (software design). AOP is strongly related to Inter-
ception. To fully appreciate the potential of Interception, you must study the con-
cept of AOP and software design principles like SOLID.

This chapter starts with an introduction to AOP. Because one of the most effective
ways to apply AOP is through well-known design patterns and object-oriented princi-
ples, this chapter continues with a recap of the five SOLID principles, which were dis-
cussed in previous chapters throughout the book.

A common misconception is that AOP requires tooling. In this chapter, we’ll demon-
strate that this isn’t the case: We’ll show how you can use SOLID software design as a
driver of AOP and an enabler of an efficient, consistent, and maintainable code base.
In the next chapter, we’ll discuss two well-known forms of AOP that require special tool-
ing. Both forms, however, exhibit considerable disadvantages over the purely design-
driven form of AOP discussed in this chapter.

If you’re already familiar with SOLID and the basics of AOP, you can jump directly
into section 10.3, which contains the meat of this chapter. Otherwise, you can continue
with our introduction to Aspect-Oriented Programming.

10.1 Introducing AOP
AOP was invented at the Xerox Palo Alto Research Center (PARC) in 1997, where
Xerox engineers designed AspectJ, an AOP extension to the Java language. AOP is a
paradigm that focuses around the notion of applying Cross-Cutting Concerns effec-
tively and maintainably. It’s a fairly abstract concept that comes with its own set of jar-
gon, most of which isn’t pertinent to this discussion.

DEFINITION Aspect-Oriented Programming aims to reduce boilerplate code
required for implementing Cross-Cutting Concerns and other coding pat-
terns. It does this by implementing such patterns in a single place and applying
them to a code base either declaratively or based on convention, without mod-
ifying the code itself.

The auditing and Circuit Breaker examples in sections 9.1.2 and 9.2.1 showed only a
few representative methods, because all methods were implemented in the same way.
We didn’t want to add several pages of nearly identical code to our discussion because
it would’ve detracted from the point we were making.

The following listing shows the CircuitBreakerProductRepositoryDecorator’s
Delete method again.

 303Introducing AOP

Listing 10.1 Delete method of CircuitBreakerProductRepositoryDecorator

public void Delete(Product product)
{
 this.breaker.Guard();

 try
 {
 this.decoratee.Delete(product);
 this.breaker.Succeed();
 }
 catch (Exception ex)
 {
 this.breaker.Trip(ex);
 throw;
 }
}

Listing 10.2 shows how similar the methods of CircuitBreakerProductRepository
Decorator are. This listing only shows the Insert method, but we’re confident that
you can extrapolate how the rest of the implementation would look.

Listing 10.2 Violating the DRY principle by duplicating Circuit Breaker logic

public void Insert(Product product)
{
 this.breaker.Guard();

 try
 {
 this.decoratee.Insert(product);
 this.breaker.Succeed();
 }
 catch (Exception ex)
 {
 this.breaker.Trip(ex);
 throw;
 }
}

The purpose of this listing is to illustrate the repetitive nature of Decorators used as
aspects in our current design. The only difference between the Delete and Insert
methods is that they each invoke their own corresponding method on the decorated
Repository.

Even though we’ve successfully delegated the Circuit Breaker implementation to a
separate class via the ICircuitBreaker interface, this plumbing code violates the DRY
principle. It tends to be reasonably unchanging, but it’s still a liability. Every time you
want to add a new member to a type you decorate, or when you want to apply a Circuit
Breaker to a new Abstraction, you must apply the same plumbing code. This repeti-
tiveness can become a problem if you want to maintain such an application.

This line is the only difference between
this listing and listing 10.1. Instead of
calling Delete, this line calls Insert.

304 ChapTEr 10 Aspect-Oriented Programming by design

NOTE AOP as a paradigm focuses on working around the problem of repetition.

Sticking with our auditing example from chapter 9, we’ve already established that
you don’t want to put the auditing code inside the SqlProductRepository imple-
mentation, because that would violate the Single Responsibility Principle (SRP).
But neither do you want to have dozens of auditing Decorators for each Repository
Abstraction in the system. This would also cause severe code duplication and, likely,
sweeping changes, which is an Open/Closed Principle (OCP) violation. Instead, you
want to declaratively state that you want to apply the auditing aspect to a certain set of
methods of all Repository Abstractions in the system and implement this auditing
aspect once.

You’ll find tools, frameworks, and architectural styles that enable AOP. In this chap-
ter, we’ll discuss the most ideal form of AOP. The next chapter will discuss dynamic
Interception and compile-time weaving as tool-based forms of AOP. These are the
three major methods of AOP.1 Table 10.1 lists the methods we’ll discuss, with a few of
the major advantages and disadvantages of each.

Table 10.1 Common AOP methods

Method Description Advantages Disadvantages

soLiD Applies aspects using
Decorators around
reusable AbstrActions
defined for groups of
classes based on their
behavior.

 ■ Doesn’t require any
tooling.

 ■ Aspects are easy to
implement.

 ■ Focuses on design.

 ■ Makes the system
more maintainable.

 ■ Not always easy
to apply in legacy
systems.

Dynamic intercePtion Causes the runtime
generation of Decora-
tors based on the appli-
cation’s AbstrActions.
These Decorators are
injected with tool-spe-
cific aspects, called
Interceptors.

 ■ Easy to add to existing
or legacy applications
with relatively little
changes, assuming
the application
already programs to
interfaces.

 ■ Keeps the compiled
application decoupled
from the used dynamic
intercePtionlibrary

 ■ Good tooling is freely
available.

 ■ Causes aspects to be
strongly coupled to
the AOP tool.

 ■ Loses compile-time
support.

 ■ Causes the conven-
tion to be fragile and
error prone.

1 Other AOP methods exist, but those are either similar or out of fashion in the .NET world, so we ig-
nore them in this book. Be aware, however, that each method discussed comes with its own subset of
variations.

 305The SOLID principles

Method Description Advantages Disadvantages

Compile-time weaving Aspects are added
to an application in a
post-compilation pro-
cess. The most common
form is IL weaving,
where an external tool
reads the compiled
assembly, modifies it by
applying the aspects,
and replaces the orig-
inal assembly with the
modified one.

 ■ Easy to add to existing
or legacy applications
with relatively few
changes, even if the
application doesn’t
program to interfaces.

 ■ Injecting voLAtiLe
DePenDencies into
aspects causes
temPorAL couPLing
or Interdependent
Tests.

 ■ Aspects are woven in
at compile time, mak-
ing it impossible to
call code without the
aspect applied. This
complicates testing
and reduces flexibility.

 ■ Compile-time weaving
is the antithesis of DI.

As stated previously, we’ll get back to dynamic Interception and compile-time weav-
ing in the next chapter. But before we dive into using SOLID as a driver for AOP, let’s
start with a short recap of the SOLID principles.

10.2 The SoliD principles
You may have noticed a denser-than-usual usage of terms such as Single Responsi-
bility Principle, Open/Closed Principle, and Liskov Substitution Principle in
chapter 9 and in the previous section. Together with the Interface Segregation Prin-
ciple (ISP) and Dependency Inversion Principle (DIP), they make up the SOLID
acronym. We’ve discussed all five of them independently throughout the course of this
book, but this section provides a short summary to refresh your mind, because under-
standing those principles is important for the remainder of this chapter.

NOTE Who doesn’t want to write solid software? Software that can withstand
the test of time and provide value to its users sounds like a worthy goal, so we
introduce SOLID as an acronym because building quality software just makes
sense.

All these patterns and principles are recognized as valuable guidance for writing clean
code. The general purpose of this section is to relate this established guidance to DI,
emphasizing that DI is only a means to an end. We, therefore, use DI as an enabler of
maintainable code.

Table 10.1 Common AOP methods (continued)

306 ChapTEr 10 Aspect-Oriented Programming by design

None of the principles encapsulated by SOLID represent absolutes. They’re guide-
lines that can help you write clean code. To us, they represent goals that help us decide
which direction we should take our applications. We’re always happy when we succeed;
but sometimes we don’t.

The following sections go through the SOLID principles and summarize what we’ve
already explained about them throughout the course of this book. Each section is a
brief overview — we omit examples in those sections. We’ll return to this in section 10.3,
where we walk through a realistic example that shows why a violation of the SOLID prin-
ciples can become problematic from a maintainability perspective. For now, we’ll recap
the five SOLID principles.

10.2.1 Single reSponSibility principle (SRP)

In section 2.1.3, we described how the SRP states that every class should have a single
reason to change. Violating this principle causes classes to become more complex and
harder to test and maintain.

More often than not, however, it can be challenging to see whether a class has multi-
ple reasons to change. What can help in this respect is looking at the SRP from the per-
spective of cohesion. Cohesion is defined as the functional relatedness of the elements of
a class or module. The lower the amount of relatedness, the lower the cohesion; and the
lower the cohesion, the greater the possibility a class violates the SRP. In section 10.3,
we’ll discuss cohesion with a concrete example.

It can be difficult to stick to, but if you practice DI, one of the many benefits of Con-
structor Injection is that it becomes more obvious when you violate the SRP. In the
auditing example in section 9.1.2, you were able to adhere to the SRP by separating respon-
sibilities into separate types: SqlUserRepository deals only with storing and retrieving
product data, whereas AuditingUserRepositoryDecorator concentrates on persisting
the audit trail in the database. The AuditingUserRepositoryDecorator class’s single
responsibility is to coordinate the actions of IUserRepository and IAuditTrailAppender.

10.2.2 open/cloSeD principle (OCP)

As we discussed in section 4.4.2, the OCP prescribes an application design that pre-
vents you from having to make sweeping changes throughout the code base; or, in the
vocabulary of the OCP, a class should be open for extension, but closed for modifica-
tion. A developer should be able to extend the functionality of a system without need-
ing to modify the source code of any existing classes.

Because they both try to prevent sweeping changes, there’s a strong relationship
between the OCP principle and the Don’t Repeat Yourself (DRY) principle. OCP, how-
ever, focuses on code, whereas DRY focuses on knowledge.

 307The SOLID principles

Don’t Repeat Yourself (DRY)
In their book, The Pragmatic Programmer, Andy Hunt and Dave Thomas coined the acro-
nym DRY, short for Don’t Repeat Yourself, which they formulate this way:

Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.2

We developers work in systems where knowledge isn’t stable. Having such knowledge
duplicated makes it difficult to keep everything in sync. Our understanding of both the
system and the requirements change — often rapidly. DRY states that we should strive to
centralize every piece of knowledge in a single place. DRY goes beyond mere code: it also
holds for documentation.

You can make a class extensible in many ways, including virtual methods, injection of
Strategies, and the application of Decorators.3 But no matter the details, DI makes this
possible by enabling you to compose objects.

10.2.3 liSkoV SubStitution principle (LSP)

In section 8.1.1, we described that all consumers of Dependencies should observe the
LSP when they invoke their Dependencies ,because every Dependency should behave
as defined by its Abstraction. This allows you to replace the originally intended
implementation with another implementation of the same Abstraction, without wor-
rying about breaking a consumer. Because a Decorator implements the same Abstrac-
tion as the class it wraps, you can replace the original with a Decorator, but only if that
Decorator adheres to the contract given by its Abstraction.

This was exactly what we did in listing 9.3 when we substituted the original
SqlUserRepository with AuditingUserRepositoryDecorator. You could do this with-
out changing the code of the consuming ProductService, because any implementation
should adhere to the LSP. ProductService requires an instance of IUserRepository
and, as long as it talks exclusively to that interface, any implementation will do.

The LSP is a foundation of DI. When consumers don’t observe it, there’s little advan-
tage in injecting Dependencies, because you can’t replace them at will, and you’ll lose
many (if not all) benefits of DI.

10.2.4 interface Segregation principle (ISP)

In section 6.2.1, you learned that the ISP promotes the use of fine-grained Abstractions,
rather than wide Abstractions. Any time a consumer depends on an Abstraction
where some of its members are unused, the ISP is violated.

2 Andy Hunt and Dave Thomas, The Pragmatic Programmer (Addison-Wesley, 2000), 27.
3 For more on Strategies, see Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Soft-

ware (Addison-Wesley, 1994), 315.

308 ChapTEr 10 Aspect-Oriented Programming by design

The ISP can, at first, seem to be distantly related to DI, but that’s probably because we
ignored this principle for most of this book. That’ll change in section 10.3, where you’ll
learn that the ISP is crucial when it comes to effectively applying Aspect-Oriented
Programming.

10.2.5 DepenDency inVerSion principle (DIP)

When we discussed the DIP in section 3.1.2, you learned that much of what we’re try-
ing to accomplish with DI is related to the DIP. The principle states that you should
program against Abstractions, and that the consuming layer should be in control of
the shape of a consumed Abstraction. The consumer should be able to define the
Abstraction in a way that benefits itself the most. If you find yourself adding mem-
bers to an interface to satisfy the needs of other, specific implementations — including
potential future implementations — then you’re almost certainly violating the DIP.

10.2.6 SoliD principles and interception

Design patterns (such as Decorator) and guidelines (such as SOLID principles) have
been around for many years and are generally regarded as beneficial. In these sections,
we provide an indication of how they relate to DI.

The SOLID principles have been relevant throughout the book’s chapters. But it’s
when we start talking about Interception and how it relates to Decorators that the
benefits of adhering to the SOLID principles stands out. Some are subtler than others,
but adding behavior (such as auditing) by using a Decorator is a clear application of
both the OCP and the SRP, the latter allowing us to create implementations with specif-
ically defined scopes.

In the previous sections, we took a short detour through common patterns and prin-
ciples to understand the relationship DI has with other established guidelines. Armed
with this knowledge, let’s now turn our attention back to the goal of the chapter, which
is to write clean and maintainable code in the face of inconsistent or changing require-
ments, as well as the need to address Cross-Cutting Concerns.

10.3 SoliD as a driver for AOP
In section 10.1, you learned that the primary aim of AOP is to keep your Cross-Cutting
Concerns DRY. As we discussed in section 10.2, there’s a strong relationship between
the OCP and the DRY principle. They both strive for the same objective, which is to min-
imize repetition and prevent sweeping changes.

From that perspective, the code repetition that you witnessed with AuditingUser
RepositoryDecorator, CircuitBreakerProductRepositoryDecorator, and Secure
ProductRepositoryDecorator in chapter 9 (listings 9.2, 9.4, and 9.7) are a strong
indication that we were violating the OCP. AOP seeks to address this by separating out
extensible behavior (aspects) into separate components that can easily be applied to a
variety of implementations.

 309SOLID as a driver for AOP

A common misconception, however, is that AOP requires tooling. AOP tool vendors
are all to eager to keep this fallacy alive. Our preferred approach is to practice AOP by
design, which means you apply patterns and principles first, before reverting to special-
ized AOP tooling like dynamic Interception libraries.

In this section, we’ll do just that. We’ll look at AOP from a design perspective by
taking a close look at the IProductService Abstraction we introduced in chapter 3.
We’ll analyze which SOLID principles we’re violating and why such violations are prob-
lematic. After that, we’ll address these violations step by step with the goal of making the
application more maintainable, preventing the need to make sweeping changes in the
future. Be prepared for some mental discomfort — and even cognitive dissonance — as
we defy your beliefs on how to design software. Buckle up, and get ready for the ride.

10.3.1 Example: Implementing product-related features using IProductService

Let’s dive right in by looking at the IProductService Abstraction that you built in
chapter 3 as part of the sample e-commerce application’s domain layer. The following
listing shows this interface as originally defined in listing 3.5.

Listing 10.3 The IProductService interface of chapter 3

public interface IProductService
{
 IEnumerable<DiscountedProduct> GetFeaturedProducts();
}

When looking at an application’s design from the perspective of SOLID principles in
general, and the OCP in particular, it’s important to take into consideration how the
application has changed over time, and from there predict future changes. With this
in mind, you can determine whether the application is closed for modification to the
changes that are most likely to happen in the future.

NOTE The more experience you have in the application’s domain and with
software development, in general, the more likely you are to make good pre-
dictions about future changes. That’s why it’s typically difficult to get the design
right immediately when starting a project.

It’s important to note that even with a SOLID design, there can come a time where a
change becomes sweeping. Being 100% closed for modification is neither possible nor
desirable. Besides, conforming to the OCP is expensive. It takes considerable effort
to find and design the appropriate Abstractions, although too many Abstractions
can have a negative impact on the complexity of the application. Your job is to balance
the risks and the costs and come up with a global optimum.

Because you should be looking at how the application evolves, evaluating IProduct
Service at a single point in time isn’t that helpful. Fortunately, Mary Rowan (our devel-
oper from chapter 2), has been working on her e-commerce application for some time
now, and a number of features have been implemented since we last looked over her
shoulder. The next listing shows how Mary has progressed.

310 ChapTEr 10 Aspect-Oriented Programming by design

Listing 10.4 The evolved IProductService interface

public interface IProductService
{
 IEnumerable<DiscountedProduct> GetFeaturedProducts();

 void DeleteProduct(Guid productId);
 Product GetProductById(Guid productId);
 void InsertProduct(Product product);
 void UpdateProduct(Product product);
 Paged<Product> SearchProducts(
 int pageIndex, int pageSize,
 Guid? manufacturerId, string searchText);
 void UpdateProductReviewTotals(
 Guid productId, ProductReview[] reviews);
 void AdjustInventory(
 Guid productId, bool decrease, int quantity);
 void UpdateHasTierPricesProperty(Product product);
 void UpdateHasDiscountsApplied(
 Guid productId, string discountDescription);
}

As you can see, quite a few new features have been added to the application. Some are
typical CRUD operations, such as UpdateProduct, whereas others address more-complex
use cases, such as UpdateHasTierPricesProperty. Still others are for retrieving data,
such as SearchProducts and GetProductById.

NOTE Don’t worry if the functionality of these new methods isn’t clear to you;
the details of this interface and what each method does aren’t that relevant to
this discussion.

Although Mary started off with good intentions when she defined the first version of
IProductService in listing 10.3, the fact that this interface needs to be updated every
time a new product-related feature is implemented is a clear indication that some-
thing’s wrong.

If you extrapolate this to make a prediction, can you expect this interface to be
updated again soon? The answer to that question is a clear “Yes!” As a matter of fact,
Mary already has several features in her backlog, concerning cross-sellings, product pic-
tures, and product reviews that would all cause changes to IProductService.4

What this teaches us is that, in this particular application, new features concerning
products are added on a regular basis. Because this is an e-commerce application, this
isn’t a world-shattering observation. But because this is both a central part of the code
base and under frequent change, the need to improve the design arises. Let’s analyze
the current design with SOLID principles in mind.

New features added by
Mary during the course of
the last few chapters. As
we’ll discuss shortly, this
small code snippet
exhibits three solID
violations.

4 Have you ever seen lists like Other Customers Bought or Related Items in web shops? Those are
cross-sellings. Cross-selling is the action or practice of selling an additional product or service to a
customer.

 311SOLID as a driver for AOP

10.3.2 Analysis of IProductService from the perspective of SoliD

Concerning the five SOLID principles discussed in section 10.2, Mary’s design violates
three out of five SOLID principles, namely, the ISP, SRP, and OCP. We’ll start with the
first one: IProductService violates the ISP.

IProductService viOlaTES ThE iSp
There’s one obvious violation — IProductService violates the ISP. As explained in
section 10.2.4, the ISP prescribes the use of fine-grained Abstractions over wide
Abstractions. From the perspective of the ISP, IProductService is rather wide. With
listing 10.4 in mind, it’s easy to believe that there’ll be no single consumer of IProduct
Service that’ll use all its methods. Most consumers would typically use one method or a
few at most. But how is this violation a problem?

A part of the code base where wide interfaces directly cause trouble is during test-
ing. HomeController’s unit tests, for instance, will define an IProductService Test
Double implementation, but such a Test Double is required to implement all its mem-
bers, even though HomeController itself only uses one method.5 Even if you could cre-
ate a reusable Test Double, you typically still want to assert that unrelated methods of
IProductService aren’t called by HomeController. The following listing shows a Mock
IProductService implementation that asserts unexpected methods aren’t called.

Listing 10.5 A reusable Mock IProductService base class

public abstract class MockProductService : IProductService
{
 public virtual void DeleteProduct(Guid productId)
 {
 Assert.True(false, "Should not be called.");
 }

 public virtual Product GetProductById(Guid id)
 {
 Assert.True(false, "Should not be called.");
 return null;
 }

 public virtual void InsertProduct(Product product)
 {
 Assert.True(false, "Should not be called.");
 }

 ...
}

5 Listing 3.4 shows how HomeController’s Index method solely calls GetFeaturedProducts() on
IProductService.

All method
implementations fail.

List of methods goes on. You’ll need
to implement all 10 methods.

312 ChapTEr 10 Aspect-Oriented Programming by design

All methods are implemented to fail by calling Assert.True using a value of false.
The Assert.True method is part of the xUnit testing framework.6 By passing false,
the assertion fails, and the currently running test also fails.

To preserve precious trees, listing 10.5 only shows a few of MockProductService’s
methods, but we think you get the picture. You wouldn’t have to implement this big list
of failing methods if the interface was specific to HomeController’s needs; in that case,
HomeController is expected to call all its Dependency’s methods, and you wouldn’t
have to do this check.

IProductService viOlaTES ThE Srp
Because the ISP is the conceptual underpinning of the SRP, an ISP violation typically
indicates an SRP violation in its implementations, as is the case here. SRP violations
can sometimes be hard to detect, and you might argue that a ProductService imple-
mentation has one responsibility, namely, handling product-related use cases.

The concept of product-related use cases, however, is extremely vague and broad.
Rather, you want classes that have only one reason to change. ProductService defi-
nitely has multiple reasons to change. For instance, any of the following reasons causes
ProductService to change:

¡	Changes to how discounts are applied
¡	Changes to how inventory adjustments are processed
¡	Adding search criteria for products
¡	Adding a new product-related feature

Not only does ProductService have many reasons to change, its methods are most
likely not cohesive. A simple way to spot low cohesion is to check how easy it is to move
some of the class’s functionality to a new class. The easier this is, the lower the related-
ness of the two parts, and the more likely SRP is violated.

Perhaps UpdateHasTierPricesProperty and UpdateHasDiscountsApplied share
the same Dependencies, but that’d be about it; they aren’t cohesive. As a result, the
class will likely be complex, which can cause maintainability problems. ProductService
should, therefore, be split into multiple classes. But that raises this question: how many
classes and which methods should be grouped together, if any? Before we get into that,
let’s first inspect how the design around IProductService violates the OCP.

IProductService viOlaTES ThE OCp
To test whether the code violates the OCP, you first have to determine what kind of
changes to this part of the application you can expect. After that, you can ask the ques-
tion, “Does this design cause sweeping changes when expected changes are made?”

6 Calling Assert.True with a false argument is a bit confusing, but xUnit lacks a convenient
Assert.Fail method.

 313SOLID as a driver for AOP

You can expect two quite likely changes to happen during the course of the lifetime
of the e-commerce application. First, new features will need to be added (Mary already
has them on her backlog). Second, Mary likely also needs to apply Cross-Cutting Con-
cerns. With these expected changes, the obvious answer to the question is, “Yes, the
current design does cause sweeping changes.” Sweeping changes happen both when
adding new features and when adding new aspects.

When a new product-related feature is added, the change ripples through all IProduct
Service implementations, which will be the main ProductService implementation, and
also all Decorators and Test Doubles. When a new Cross-Cutting Concern is added,
there’ll likely be rippling changes to the system too, because, besides adding a new Dec-
orator for IProductService, you’ll also be adding Decorators for ICustomer Service,
IOrderService, and all other I...Service Abstractions. Because each Abstraction
potentially contains dozens of methods, the aspect’s code would be repeated many times,
as we discussed in section 10.1.

NOTE The amount of changes you need to make to the existing Decorators
grows proportionally with the amount of features in the system. This makes
adding new aspects and features more expensive over time, up to the point
that adding features becomes too costly.

In table 9.1, we summed up a wide range of possible aspects you might need to imple-
ment. At the start of a project, you might not know which ones you’ll need. But even
though you might not know exactly which Cross-Cutting Concerns you may need to
add, it’d be a fairly well-educated guess to assume that you do need to add some during
the course of the project, as Mary does.

CONCludiNg Our aNalySiS Of IProductService
From the previous analysis, you can conclude that, together with its implementations,
listing 10.4 violates three out of five SOLID principles. Although from the perspective
of AOP, you might be tempted to use either dynamic Interception (section 11.1)
or compile-time weaving tools (section 11.2) to apply aspects, we argue that this only
solves part of the problem; namely, how to effectively apply Cross-Cutting Concerns
in a maintainable fashion. The use of tools doesn’t fix the underlying design issues that
still cause maintainability problems in the long run.

TIP Although you shouldn’t reject tool-based methods of AOP immediately,
your first instinct should be to improve the application’s design. Only when
that doesn’t solve the maintainability issues should you resort to the use of
tooling.

As we’ll discuss in sections 11.1.2 and 11.2.2, both methods of AOP have their own
particular sets of disadvantages. But let’s take a look at whether we can get to a more
SOLID and maintainable design with Mary’s app.

314 ChapTEr 10 Aspect-Oriented Programming by design

10.3.3 Improving design by applying SoliD principles

In this section, we’ll improve the application’s design step by step by doing the following:

¡	Separate the reads from the writes
¡	Fix the ISP and SRP violations by splitting interfaces and implementations
¡	Fix the OCP violation by introducing Parameter Objects and a common inter-

face for implementations
¡	Fix the accidentally introduced LSP violation by defining a generic Abstraction

STEp 1: SEparaTiNg rEadS frOm wriTES

One of the problems with Mary’s current design is that the majority of aspects applied
to IProductService are only required by a subset of its methods. Although an aspect
such as security typically applies to all features, aspects such as auditing, validation, and
fault tolerance will usually only be required around the parts of the application that
change state. An aspect such as caching, on the other hand, may only make sense for
methods that read data without changing state. You can simplify the creation of Deco-
rators by splitting IProductService into a read-only and write-only interface, as shown
in figure 10.1.

Mary's solution Reads and writes separated

All methods
crammed together

Interface containing
read-only methods

Interface containing
write-only methods

Figure 10.1 Separating IProductService into a read-only IProductQueryServices abSTraCTiON
and a write-only IProductCommandServices abSTraCTiON

 315SOLID as a driver for AOP

NOTE We use the term query for operations that only read state but don’t
change the state of the system, and command for operations that change the
state of the system but don’t produce any results. This terminology stems from
the Command-Query Separation (CQS) principle. Mary already applied CQS
with IProductService on the method level, but by splitting the interface, she
now propagates CQS to the interface level.

COmmaNd-QuEry SEparaTiON

commAnD-Query sePArAtion (CQS) was coined by Bertrand Meyer in Object-Oriented Soft-
ware Construction (ISE Inc., 1988). CQS has become an influential object-oriented princi-
ple that promotes the idea that each method should either

¡	Return a result, but not change the observable state of the system
¡	Change the state, but not produce any value

Meyer called the value-producing methods queries and the state-changing methods
commands. The idea behind this separation is that methods become easier to reason
about when they’re either a query or a command, but not both.

The advantage of this split is that the new interfaces are finer-grained than before. This
reduces the risk of you having to depend on methods that you don’t need. When you
create a Decorator that applies a transaction to the executed code, for instance, only
IProductCommandServices will need to be decorated, which eliminates the need to
implement the IProductQueryServices’s methods. It also makes the implementations
smaller and simpler to reason about.

Although this split is an improvement over the original IProductService interface,
this new design still causes sweeping changes. As before, implementing a new prod-
uct-related feature causes a change to many classes in the application. Although you
reduced the likelihood of a class being changed by half, a change still causes about the
same amount of classes to be touched. This brings us to the second step.

STEp 2: fixiNg iSp aNd Srp by SpliTTiNg iNTErfaCES aNd implEmENTaTiONS

Because splitting the wide interface pushes us in the right direction, let’s take this a
step further. We’ll focus our attention on IProductCommandServices and ignore
IProductQueryServices.

Let’s try something radical here. Let’s break up IProductCommandServices into mul-
tiple one-membered interfaces. Figure 10.2 shows how the ProductCommand Services
implementation is segregated into seven classes, each with their own one-membered
interface.

In figure 10.2 , you moved each method of the IProductCommandServices interface
into a separate interface and gave each interface its own class. Listing 10.6 shows a few
of those interface definitions.

316 ChapTEr 10 Aspect-Oriented Programming by design

Listing 10.6 The big interface segregated into one-membered interfaces

public interface IAdjustInventoryService
{
 void AdjustInventory(Guid productId, bool decrease, int quantity);
}

public interface IUpdateProductReviewTotalsService
{
 void UpdateProductReviewTotals(Guid productId, ProductReview[] reviews);
}

public interface IUpdateHasDiscountsAppliedService
{
 void UpdateHasDiscountsApplied(Guid productId, string description);
}

...

Reads and writes separated Interfaces segregated

Figure 10.2 The IProductCommandServices interface containing seven members is replaced with
seven, one-membered interfaces. Each interface gets its own corresponding implementation.

The other four interfaces
are omitted for brevity.

 317SOLID as a driver for AOP

This might scare the living daylights out of you, but it might not be as bad as it seems.
Here are some compelling advantages to this change:

¡	Every interface is segregated. No client will be forced to depend on methods it
doesn’t use.

¡	When you create a one-to-one mapping from interface to implementation,
each use case in the application gets its own class. This makes classes small and
focused — they have a single responsibility.

¡	Adding a new feature means the addition of a new interface-implementation
pair. No changes have to be made to existing classes that implement other
use cases.

Even though this new design conforms to the ISP and the SRP, it still causes sweeping
changes when it comes to creating Decorators. Here’s how:

¡	With the IProductCommandServices interface split into seven, one-membered
interfaces, there’ll be seven Decorator implementations per aspect. With 10
aspects, for instance, this means 70 Decorators.

¡	Making changes to an existing aspect causes sweeping changes throughout a
large set of classes, because each aspect is spread out over many Decorators.

This new design causes each class in the application to be focused around one partic-
ular use case, which is great from the perspective of the SRP and the ISP. But, because
these classes have no commonality to which you can apply aspects, you’re forced to
create many Decorators with almost identical implementations. It’d be nice if you were
able to define a single interface for all command operations in the code base. That
would greatly reduce the code duplication around aspects and the number of Decora-
tor classes to one Decorator per aspect.

When you look at listing 10.6, it might be hard to see how these interfaces have any
similarity. They all return void, but all have a differently named method, and each
method has a different set of parameters. There’s no commonality to extract from
that — or is there?

STEp 3: fixiNg OCp uSiNg paramETEr ObjECTS

What if you extract the method parameters of each command method into a
Parameter Object? Most refactoring tools allow such refactoring with a few simple
keystrokes.

DEFINITION A Parameter Object is a group of parameters that naturally go
together.7

7 Martin Fowler et al., Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), 285.

318 ChapTEr 10 Aspect-Oriented Programming by design

The next listing shows the result of this refactoring.

Listing 10.7 Wrapping method parameters in a Parameter Object

public interface IAdjustInventoryService
{
 void Execute(AdjustInventory command);
}

public class AdjustInventory
{
 public Guid ProductId { get; set; }
 public bool Decrease { get; set; }
 public int Quantity { get; set; }
}

public interface IUpdateProductReviewTotalsService
{
 void Execute(UpdateProductReviewTotals command);
}

public class UpdateProductReviewTotals
{
 public Guid ProductId { get; set; }
 public ProductReview[] Reviews { get; set; }
}

It’s important to note that even though both AdjustInventory and UpdateProduct
ReviewTotals Parameter Objects are concrete objects, they’re still part of their
Abstraction. As we mentioned in section 3.1.1, because they’re mere data objects
without behavior, hiding their values behind an Abstraction would be rather useless.
If you moved the implementations into a different assembly, the Parameter Objects
would stay in the same assembly as their Abstraction. Also, these extracted Param-
eter Objects become the definition of a command operation. We therefore typically
refer to these objects themselves as commands.

TIP It’s perfectly fine for command Parameter Objects to have a single param-
eter — or even no parameters at all.

Both the InsertProduct and UpdateHasTierPricesProperty commands will have a
single parameter of type Product. Inserting a product, however, is something com-
pletely different than updating a product’s HasTierPrices property. Again, the command
type itself becomes the definition of a command operation.

Instead of accepting a list of parameters,
IAdjustInventoryService now accepts one single
parameter of the new AdjustInventory Parameter
Object. That class groups all the method’s
parameters. Its method is renamed to a more
generic name, Execute.

AdjustInventory contains IAdjustInventoryService’s
grouped method parameters. It’s a Parameter
Object; it contains no behavior.

Same refactoring applied to this interface. It now
accepts UpdateProductReviewTotals as its sole
parameter.

The two method parameters of
IUpdateProductReviewTotalsService
are now grouped together in the new
UpdateProductReviewTotals
Parameter Object.

 319SOLID as a driver for AOP

With these refactorings, you effectively changed the code from 1 interface and
implementation with 7 methods, to 7 interfaces and 14 classes. At this point, you might
think we’re certifiably nuts and perhaps you’re ready to toss this book out the window.
This might be the mental discomfort we warned about at the beginning of this section.
Bear with us, because increasing the number of classes in your system might not be as
bad as it might seem at first, and this refactoring will get us somewhere. Promise.

IMPORTANT Although this refactoring increases the number of files in the
project, assuming that each class and interface gets its own file in the project,
you didn’t change the executable code. Every method still contains the same
amount of code as before. You gave each use case its own data object, and each
class now handles a single use case.

With the previous refactoring, a pattern emerges:

¡	Every Abstraction contains a single method.
¡	Every method is named Execute.
¡	Every method returns void.
¡	Every method has one single input parameter.

You can now extract a common interface from this pattern. Here’s how:

public interface ICommandService
{
 void Execute(object command);
}

If you implement the command services using this new ICommandService interface, it
results in the code in listing 10.8. Note that this new interface definition can likely be
used to replace other I...Service Abstractions too.

Listing 10.8 AdjustInventoryService implementing ICommandService

public class AdjustInventoryService : ICommandService
{
 readonly IInventoryRepository repository;

 public AdjustInventoryService(
 IInventoryRepository repository)
 {
 this.repository = repository;
 }

 public void Execute(object cmd)
 {
 var command = (AdjustInventory)cmd;

 Guid id = command.ProductId;
 bool decrease = command.Decrease;
 int quantity = command.Quantity;
 ...
 }
}

One interface to rule them all!

Implements ICommandService
instead of IAdjustInventoryService

Uses constructor InjectIon to inject
the class’s DepenDencIes

Execute accepts a value of type
object, but because you know
AdjustInventoryService gets supplied
with an AdjustInventory command
message, you perform a cast.

Accesses the command’s parameters
and executes the appropriate code.
This is the code that was originally
placed in the AdjustInventory method
of the ProductService class.

320 ChapTEr 10 Aspect-Oriented Programming by design

Figure 10.3 shows how the number of interfaces are reduced from seven back to one.
Now, however, you extract the method parameters into a Parameter Object per service.

As we stated previously, the Parameter Objects are part of the Abstraction. Collapsing
all interfaces into one single interface makes this even more apparent. The Parameter
Object has become the definition of a use case — it has become the contract. Consum-
ers can get this ICommandService injected into their constructor and call its Execute
method by supplying the appropriate Parameter Object.

Listing 10.9 InventoryController depending on ICommandService

public class InventoryController : Controller
{
 private readonly ICommandService service;

 public InventoryController(ICommandService service)
 {

All method parameters are extracted
to Parameter Objects.

All service classes implement
ICommandService.

Each service casts its incoming
command object to its companion
Parameter Object.
UpdateProductService, for
instance, requires a call from
the UpdateProduct Parameter
Object instance.

AdjustInventory-
Service AdjustInventory

DeleteProduct

InsertProduct

UpdateHasDiscount-
Applied

UpdateHasTier-
PricesProperty

UpdateProduct

UpdateProduct-
ReviewTotals

DeleteProduct-
Service

InsertProduct-
Service

UpdateHasDiscount-
AppliedService

UpdateHasTier-
PricesPropertyService

UpdateProduct-
Service

UpdateProduct-
ReviewTotalsService

Implementations

ICommandService

ParameterObjects

public class UpdateProductService
 : ICommandService
{
 public void Execute(object cmd) {
 var command = (UpdateProduct)cmd;
 ...
 }
}

uses

uses

uses

uses

uses

uses

uses

Figure 10.3 The number of interfaces is reduced from seven to one ICommandService by extracting method
parameters into Parameter Objects.

Injects ICommandService
into the MVC controller class

 321SOLID as a driver for AOP

 this.service = service;
 }

 [HttpPost]
 public ActionResult AdjustInventory(
 AdjustInventoryViewModel viewModel)
 {
 if (!this.ModelState.IsValid)
 {
 return this.View(viewModel);
 }

 AdjustInventory command = viewModel.Command;

 this.service.Execute(command);

 return this.RedirectToAction("Index");
 }
}

The AdjustInventoryViewModel wraps the AdjustInventory command as a property.
This is convenient, because AdjustInventory is part of the Abstraction and only
contains data specific to the use case. AdjustInventory will be model-bound by the
MVC framework, together with its surrounding AdjustInventoryViewModel, when the
user posts back the request.

NOTE If you noticed that listing 10.9 violates the LSP, we applaud you. We’ll
get to that violation in a moment.

uSiNg ICommandService TO implEmENT CrOSS-CuTTiNg CONCErNS

Having a single interface for all your command service calls in the code base provides a
huge advantage. Because all the application’s state-changing use cases now implement
this single interface, you can now create a single Decorator per aspect and wrap it
around each and every implementation. To prove this point, the following listing shows
the implementation of a transaction aspect as a Decorator for the ICommandService.

Listing 10.10 Implementing a transaction aspect based on ICommandService

public class TransactionCommandServiceDecorator
 : ICommandService
{
 private readonly ICommandService decoratee;

 public TransactionCommandServiceDecorator(
 ICommandService decoratee)
 {
 this.decoratee = decoratee;
 }

 public void Execute(object command)
 {
 using (var scope = new TransactionScope())

AdjustInventoryViewModel
wraps the AdjustInventory
command as a property.

In case the posted
data is valid,

passes on the
command to the

ICommandService
for execution

322 ChapTEr 10 Aspect-Oriented Programming by design

 {
 this.decoratee.Execute(command);

 scope.Complete();
 }
 }
}

Because this Decorator is like what you saw many times in chapter 9, we think it needs
little explaining, except perhaps the TransactionScope class.

TransactionScope
The System.Transactions.TransactionScope class of the System.Transactions.dll
lets you wrap any arbitrary piece of code in a transaction. Any DbTransaction created
during the lifetime of that scope is automatically enlisted in the same transaction. This
is a powerful concept that makes it possible to apply transactions to multiple pieces of
code that belong to the same business operation, without having to pass along transac-
tions through the call stack.

Compared to the full .NET framework, .NET Core doesn’t support distributed transac-
tions, because this requires the Microsoft Distributed Transaction Coordinator (MSDTC)
service, which has no equivalent on platforms other than Windows. This is an advantage,
because we feel that, in general, distributed transactions should be prevented anyway.
With .NET Core, however, you can still use TransactionScope to enlist operations in a
transaction to a single data source.

Using this new Decorator, you can now compose an Inventory Controller by inject-
ing a new AdjustInventoryService that gets Intercepted by a Transaction
 Command Service Decorator:

ICommandService service =
 new TransactionCommandServiceDecorator(
 new AdjustInventoryService(repository));

new InventoryController(service);

This design effectively prevents sweeping changes both when new features are added
and when new Cross-Cutting Concerns need to be applied. This design is now truly
closed for modification because

¡	Adding a new (command) feature means creating a new command Parameter
Object and a supporting ICommandService implementation. No existing classes
need to be changed.

¡	Adding a new feature doesn’t force the creation of new Decorators nor the
change of existing Decorators.

¡	Adding a new Cross-Cutting Concern to the application can be done by add-
ing a single Decorator.

¡	Changing a Cross-Cutting Concern results in changing a single class.

 323SOLID as a driver for AOP

IMPORTANT Even though you moved from the situation of listing 10.4, where
you had 2 types (the IProductService interface and its implementation),
into the situation shown in figure 10.3, where you have 15 types (1 interface, 7
Parameter Objects, and 7 service implementations), the maintainability of the
application improved dramatically because sweeping changes will be rare. This
leads to the important realization that the number of classes in itself is a bad
metric for measuring maintainability.

Some developers argue against having this many classes in their system, because they feel
it complicates navigating through the project. This, however, only happens when you
don’t structure your project properly. In this example, all product-related operations can
be placed in a namespace called MyApp.Services.Products, effectively grouping those
operations together, similar to what Mary’s IProductService did. Instead of having the
grouping at the class level, you now have it at the project level, which is a great benefit,
because the project structure immediately shows you the application’s behavior.

Now that you’ve fixed the previously analyzed SOLID violations, you might think
that we’re done with our refactoring. But, unfortunately, these changes accidentally
introduced a new SOLID violation. Let’s look at that next.

aNalyziNg ThE NEw aCCidENTal lSp viOlaTiON

As mentioned, the definition of ICommandService accidentally introduced a new
SOLID violation, namely, the LSP. The InventoryController of listing 10.9 exhibits
this violation.

As we discussed in section 10.2.3, the LSP says that you must be able to substitute
an Abstraction for an arbitrary implementation of that same Abstraction without
changing the correctness of the client. According to the LSP, because the Adjust
InventoryService implements the ICommandService, you should be able to substitute
it for a different implementation without breaking the InventoryController. The fol-
lowing listing shows an altered object composition for InventoryController.

Listing 10.11 Substituting AdjustInventoryService

ICommandService service =
 new TransactionCommandServiceDecorator(
 new UpdateProductReviewTotalsService(
 repository));

new InventoryController(service);

The following shows the Execute method for UpdateProductReviewTotalsService:

public void Execute(object cmd)
{
 var command = (UpdateProductReviewTotals)cmd;
 ...
}

Instead of injecting an
AdjustInventoryService, you inject an
UpdateProductReviewTotalsService.
This compiles, but completely breaks
InventoryController — an LSP violation.

This cast fails when Execute
is supplied with a command
of type AdjustInventory.

324 ChapTEr 10 Aspect-Oriented Programming by design

InventoryController gets an ICommandService injected into its constructor. It passes
on the AdjustInventory command to that injected ICommandService. Because the
injected ICommandService is an UpdateProductReviewTotalsService, it’ll try to cast
the incoming command to UpdateProductReviewTotals. Because it’ll be unable to
cast AdjustInventory to UpdateProductReviewTotals, however, the cast fails. This
breaks InventoryController and therefore violates the LSP.

NOTE DI Containers compose object graphs based on the type informa-
tion retrieved from the type’s constructor arguments. Because their primary
method for Object Composition is based on this, DI Containers are bad for
handling ambiguous Abstractions. LSP violations, therefore, tend to compli-
cate your Composition Root when using a DI Container. Or, put differently,
the use of a DI Container makes LSP violations more obvious, just as Con-
structor Injection makes SRP violations more obvious.

Although one could argue that it’s up to the Composition Root to supply the cor-
rect implementation, the ICommandService interface still causes ambiguity, and it pre-
vents the compiler from verifying whether the composition of our object graph makes
sense. LSP violations tend to make a system fragile. Furthermore, the untyped command
method argument that Execute methods consume requires every ICommandService
implementation to contain a cast, which can be considered a code smell in its own
right. Let’s fix this violation.

STEp 4: fixiNg lSp uSiNg a gENEriC abSTraCTiON

Here’s a rather elegant solution to this seemingly intractable design deadlock. All you
have to do to fix this issue is redefine ICommandService.

Listing 10.12 A generic ICommandService implementation

public interface ICommandService<TCommand>
{
 void Execute(TCommand command);
}

You might be confused as to how making the interface generic helps. To help clarify
this, the next listing shows how you would implement ICommandService<TCommand>.

Listing 10.13 AdjustInventoryService implementing ICommandService<TCommand>

public class AdjustInventoryService
 : ICommandService<AdjustInventory>
{
 private readonly IInventoryRepository repository;

 public AdjustInventoryService(
 IInventoryRepository repository)

TCommand is the generic type argument.
It specifies the type of command that an
implementation will execute.

Implements an
ICommandService<TCommand>,
indicating that this class handles
AdjustInventory messages

 325SOLID as a driver for AOP

 {
 this.repository = repository;
 }

 public void Execute(AdjustInventory command)
 {
 var productId = command.ProductId;

 ...
 }
}

IMPORTANT Do you remember how we defined an IEventHandler<TEvent>
Abstraction in listing 6.9? The signature of this new ICommand Service<TCommand>
is identical to IEventHandler<TEvent>’s, and that’s no coincidence. This is the kind
of structure that’ll frequently emerge when you apply SOLID principles to your
code base — that is, one-membered generic interfaces that accept and/or return
messages based on their generic types.

Many frameworks and online reference architecture samples have different names for
an interface similar to the previous examples. They might be named IHandler<T>,
ICommandHandler<T>, IMessageHandler<T>, or IHandleMessages<T>. Some Abstrac-
tions are asynchronous and return a Task, whereas others add a Cancellation Token
as a method argument. Sometimes the method is called Handle or HandleAsync.
Although named differently, the idea and the effect it has on the maintainability of
your application, however, is the same.

Although the additional compile-time support in the implementation is certainly a
nice plus, the main reason for the generic ICommandService<TCommand> is to prevent
violating the LSP in its clients. The following listing shows how injecting ICommand
Service<TCommand> into the InventoryController fixes the LSP.

Listing 10.14 InventoryController depending on ICommandService<TCommand>

public class InventoryController : Controller
{
 readonly ICommandService<AdjustInventory> service;

 public InventoryController(
 ICommandService<AdjustInventory> service)
 {
 this.service = service;
 }

 public ActionResult AdjustInventory(

Because the class implements
ICommandService<AdjustInventory>,
its Execute method now accepts an
AdjustInventory instead of an object.

Because Execute now directly
accepts an AdjustInventory, the
parameter command can be
used directly without any casts.

Injects a specific
ICommandService<AdjustInventory>,
indicating that you want to execute
AdjustInventory commands. This
prevents the accidental injection
of services that handle
UpdateProductReviewTotals
or any other command type.

326 ChapTEr 10 Aspect-Oriented Programming by design

 AdjustInventoryViewModel viewModel)
 {
 ...

 AdjustInventory command = viewModel.Command;

 this.service.Execute(command);

 return this.RedirectToAction("Index");
 }
}

TIP If your programming language doesn’t support generics, you might find
the use of the non-generic ICommandService interface mixed with the Medi-
ator design pattern an acceptable workaround.8 In that case, you introduce
an additional Abstraction, the Mediator, which accepts arbitrary commands
and gets injected into consumers. The Mediator’s job is to dispatch a supplied
command to the correct ICommandService implementation.

Changing the non-generic ICommandService into the generic ICommand Service <TCommand>
fixes our last SOLID violation. This would be a good time to reap the benefits of our new
design.

applyiNg TraNSaCTiON haNdliNg uSiNg ThE gENEriC abSTraCTiON

Although there’s more to a generic one-membered Abstraction than just Cross-
Cutting Concerns, the ability to apply aspects in a way that doesn’t cause sweep-
ing changes is one of the greatest benefits of such a design. As with the non-generic
ICommand Service interface, ICommandService<TCommand> still allows the creation of a
single Decorator per aspect. Listing 10.15 shows a rewrite of the transaction Decorator
of listing 10.10 using the new generic ICommandService<TCommand> Abstraction.

Listing 10.15 Implementing a generic transaction aspect

public class TransactionCommandServiceDecorator<TCommand>
 : ICommandService<TCommand>
{
 private readonly ICommandService<TCommand> decoratee;

 public TransactionCommandServiceDecorator(
 ICommandService<TCommand> decoratee)
 {
 this.decoratee = decoratee;
 }

The service parameter only
accepts AdjustInventory as a
command type. It becomes
impossible to supply it with a
different type of message —
that wouldn’t compile.

8 Erich Gamma et al., Design Patterns, 273.

 327SOLID as a driver for AOP

 public void Execute(TCommand command)
 {
 using (var scope = new TransactionScope())
 {
 this.decoratee.Execute(command);

 scope.Complete();
 }
 }
}

Using the ICommandService<TCommand> interface and the TransactionCommand
ServiceDecorator<TCommand> Decorator, your Composition Root becomes the
following:

new InventoryController(
 new TransactionCommandServiceDecorator<AdjustInventory>(
 new AdjustInventoryService(repository)));

This brings us to the point where this one-membered generic Abstraction starts to
steal the show. This is when you start adding more Cross-Cutting Concerns.

10.3.4 Adding more croSS-cutting concernS

The examples of Cross-Cutting Concerns we discussed in section 9.2 all focused on
applying aspects at the boundary of Repositories (such as in listings 9.4 and 9.7). In
this section, however, we shift the focus one level up in the layered architecture, from
the data access library’s repository to the domain library’s IProductService.

This shift is deliberate, because you’ll find that Repositories aren’t the right gran-
ular level for applying many Cross-Cutting Concerns effectively. A single business
action defined in the domain layer would potentially call multiple Repositories, or
call the same Repository multiple times. If you were to apply, for instance, a trans-
action at the level of the repository, it’d still mean that the business operation could
potentially run in dozens of transactions, which would endanger the correctness of
the system.

A single business operation should typically run in a single transaction. This level of
granularity holds not only for transactions, but other types of operations as well.

The domain library implements business operations, and it’s at this boundary that
you typically want to apply many Cross-Cutting Concerns. The following lists some
examples. It isn’t a comprehensive listing, but it’ll give you a sense of what you could
apply on that level:

¡	Auditing — Although you could implement auditing around Repositories, as you
did in the AuditingUserRepositoryDecorator of listing 9.1, this presents a list
of changes to individual Entities, and you lose the overall picture — that is, why
the change happened. Reporting changes to individual Entities might be suited
for CRUD-based applications, but if the application implements more-complex

328 ChapTEr 10 Aspect-Oriented Programming by design

use cases that influence more than a single Entity, it becomes beneficial to pull
auditing a level up and store information about the executed command. We’ll
show an auditing example next.

¡	Logging — As we alluded to in section 5.3.2, a good application design can prevent
unnecessary logging statements spread across the entire code base. Logging any
executed business operation with its data provides you with detailed information
about the call, which typically removes the need to log at the start of each method.

¡	Performance monitoring — Since 99% of the time executing a request is typically
spent running the business operation itself, ICommandService<TCommand>
becomes an ideal boundary for plugging in performance monitoring.

¡	Security — Although you might try to restrict access on the level of the repository,
this is typically too fine-grained, because you more likely want to restrict access at
the level of the business operation. You can mark your commands with either a
permitted role or a permission, which makes it trivial to apply security concerns
around all business operations using a single Decorator. We’ll show an example
shortly.

¡	Fault tolerance — Because you want to apply transactions around your business
operations, as we’ve shown in listing 10.15, other fault-tolerant aspects should
typically be applied on the same level. Implementing a database deadlock retry
aspect, for instance, is a good example. Such a mechanism should always be
applied around a transaction aspect.

¡	Validation — As we demonstrated in listings 10.9 and 10.14, the command can
become part of the web request’s submitted data. By enriching commands with
Data Annotations’ attributes, the command’s data will also be validated by MVC.9
As an extra safety measure, you can create a Decorator that validates an incoming
command using Data Annotations’ static Validator class.10

The following sections take a look at how you can implement two of these aspects on
top of ICommandService<TCommand>.

ExamplE: implEmENTiNg aN audiTiNg aSpECT

Listings 9.1 and 9.2 defined an auditing Decorator for IUserRepository, while
reusing the IAuditTrailAppender from listing 6.23. If you apply auditing on
ICommandService <TCommand> instead, you’re at the ideal level of granularity, because
the command contains all interesting use case–specific data you might want to record.
If you enrich this data and metadata with some contextual information, such as user-
name and the current system time, you’re pretty much done. The next listing shows an
auditing Decorator on top of ICommandService<TCommand>.

9 System.ComponentModel.DataAnnotations is a framework-agnostic data validation library by
Microsoft.

10 For an example of such a Decorator, see https://simpleinjector.org/aop#decoration.

https://simpleinjector.org/aop#decoration

 329SOLID as a driver for AOP

Listing 10.16 Implementing a generic auditing aspect for business operations

public class AuditingCommandServiceDecorator<TCommand>
 : ICommandService<TCommand>
{
 private readonly IUserContext userContext;
 private readonly ITimeProvider timeProvider;
 private readonly CommerceContext context;
 private readonly ICommandService<TCommand> decoratee;

 public AuditingCommandServiceDecorator(
 IUserContext userContext,
 ITimeProvider timeProvider,
 CommerceContext context,
 ICommandService<TCommand> decoratee)
 {
 this.userContext = userContext;
 this.timeProvider = timeProvider;
 this.context = context;
 this.decoratee = decoratee;
 }

 public void Execute(TCommand command)
 {
 this.decoratee.Execute(command);
 this.AppendToAuditTrail(command);
 }

 private void AppendToAuditTrail(TCommand command)
 {
 var entry = new AuditEntry
 {
 UserId = this.userContext.CurrentUser.Id,
 TimeOfExecution = this.timeProvider.Now,
 Operation = command.GetType().Name,
 Data = Newtonsoft.Json.JsonConvert
 .SerializeObject(command)
 };

 this.context.AuditEntries.Add(entry);
 this.context.SaveChanges();
 }
}

NOTE This Decorator combines the auditing logic and the decorating logic.
Whether this is good practice depends on the amount of logic inside the Deco-
rator, whether you need this auditing logic to be reused by other classes, and in
which module you locate the Decorator. Because you can now apply this Deco-
rator around all business operations, we argue there’s little reason to share this
logic with other classes. For that reason, we merged the two classes together.
Because of the dependency on CommerceContext, however, this Decorator
should be placed in either the data access layer or the Composition Root.

Recall that this is the ITimeProvider
interface from listing 5.10.

Besides appending the user and
the time of execution to the audit
trail, the Decorator stores the
name of the command and a
serialized representation of its
data too. This information is
gathered using reflection and, in
this case, you use the well-known
JSON.NET serialization library
(https://www.newtonsoft.com/
json) that converts the command
data to a readable JSON format.

https://www.newtonsoft.com/json
https://www.newtonsoft.com/json

330 ChapTEr 10 Aspect-Oriented Programming by design

When Mary runs the application using the AuditingCommandService
Decorator <TCommand>, the Decorator produces the information in the auditing
table, shown in table 10.2.

Table 10.2 Example audit trail

User Time Operation Data

Mary 2018-12-24 11:20 AdjustInventory { ProductId: "ae361...00bc",
Decrease: false, Quantity: 2 }

Mary 2018-12-24 11:21 UpdateHasTierPricesProperty { Product: { Id: "ae361...00bc",
Name: "Gruyère", UnitPrice:
48.50, IsFeatured: true } }

Mary 2018-12-24 11:25 UpdateHasDiscountsApplied { ProductId: "ae361...00bc",
DiscountDescription: "Test" }

Mary 2018-12-24 15:11 AdjustInventory { ProductId: "5435...a845",
Decrease: true, Quantity: 1 }

Mary 2018-12-24 15:12 UpdateProductReviewTotals { ProductId: "5435...a845",
Reviews: [{ Rating: 5, Text:
"nice!" }] }

As stated previously, AuditingCommandServiceDecorator<TCommand> uses reflec-
tion to get the name of the command and convert the command to a JSON format.
Although JSON is human readable, you probably don’t want to show this to your end
users. Still, this is a good format to use for backend auditing purposes. Using this infor-
mation, you’ll be able to efficiently see what happened in your system, by whom, and
at which point in time. It would even allow you to replay an operation if it failed for
some reason or to use this information to perform a realistic stress test on the system.
You could deserialize the information from this table back to commands and run them
through the system.

As we described in section 6.3.2, domain events are another well-suited technique
that can also be used for auditing. This auditing aspect, however, only records a user’s
successful action. Although an auditor might not be interested in failures, we as devel-
opers certainly are. It isn’t hard to imagine how you’d use the same mechanism to
record the same data and include a stack trace when the operation fails.

IMPORTANT The application design went from an RPC-like method-calling
model to a message-passing model. These messages can be serialized, queued,
logged, and replayed — all abilities that are harder to achieve with a method-
calling model, such as the initial IProductService implementation from list-
ing 10.4.

 331SOLID as a driver for AOP

Well-designed applications have few code lines that log
When you use an AbstrAction that wraps around a business transaction, like ICommand
Service<TCommand> does, the method parameters become an easily serializable
package of data, as you saw in listing 10.16. A single Decorator, therefore, lets you apply
logging across a wide range of methods in the application.

This might not solve all your logging needs, but when an application gets more complex,
we’ve experienced that the AbstrActions of a well-designed soLiD application allow the
definition of a few Decorators that provide us with 98% of the logging needs of our appli-
cations. But there are other practices you need to apply to prevent having to log at too
many places in the application:

¡	Instead of logging unexpected situations while continuing execution, throw
exceptions.11

¡	Instead of catching unexpected exceptions, logging, and continuing in the middle
of an operation, prefer leaving exceptions unhandled and let them bubble up the
call stack. Letting an operation fail fast allows exceptions to be logged at a single
location at the top of the call stack and prevents giving users the illusion that their
request completed successfully.

¡	Make methods small.12 Not only does this improve the readability of code but, in
the case of thrown exceptions, the stack trace gives you more information about
which path the application went through at the time of the exception.

Likewise, you can use this information for performance monitoring in the same way,
where you store an additional timespan next to the time and the operation details.
This easily allows you to monitor which operations become slower over time. Before
showing you an example of the new Composition Root with AuditingCommand
ServiceDecorator<TCommand> applied, we’ll first take a look at how you can use pas-
sive attributes to implement a security aspect.

ExamplE: implEmENTiNg a SECuriTy aSpECT

During our discussion about Cross-Cutting Concerns in section 9.2, you imple-
mented a SecureProductRepositoryDecorator in listing 9.7. Because that Decorator
was specific to IProductRepository, it was clear what role the Decorator should grant
access to. In the example, access to the write methods of IProductRepository was
restricted to the Administrator role.

With this new generic model, a single Decorator is wrapped around all business opera-
tions, not just the product CRUD operations. Some operations also need to be executable
by other roles, which makes the hard-coded Administrator role unsuited for this generic
model. You can implement such a security check on top of a generic Abstraction in
many ways, but one compelling method is through the use of passive attributes.

11 See, for example, Jeff Atwood, “The Problem With Logging” 2008, https://blog.codinghorror.com/
the-problem-with-logging/.

12 See, for example, Robert C. Martin, Clean Code (Prentice Hall, 2009).

https://blog.codinghorror.com/the-problem-with-logging/
https://blog.codinghorror.com/the-problem-with-logging/

332 ChapTEr 10 Aspect-Oriented Programming by design

DEFINITION A passive attribute provides metadata rather than behavior. Passive
attributes prevent the Control Freak anti-pattern, because aspect attributes
that include behavior are often Volatile Dependencies.13

When you stick to role-based security as an example of authorization, you can specify a
PermittedRoleAttribute.

Listing 10.17 A passive PermittedRoleAttribute

public class PermittedRoleAttribute : Attribute
{
 public readonly Role Role;

 public PermittedRoleAttribute(Role role)
 {
 this.Role = role;
 }
}

public enum Role
{
 PreferredCustomer,
 Administrator,
 InventoryManager
}

You can use this attribute to enrich commands with metadata about which role is
allowed to execute an operation.

Listing 10.18 Enriching commands with security-related metadata

[PermittedRole(Role.InventoryManager)]
public class AdjustInventory
{
 public Guid ProductId { get; set; }
 public bool Decrease { get; set; }
 public int Quantity { get; set; }
}

[PermittedRole(Role.Administrator)]
public class UpdateProductReviewTotals
{
 public Guid ProductId { get; set; }
 public ProductReview[] Reviews { get; set; }
}

IMPORTANT Notice how the permitted role in listing 10.18 becomes part of the
definition of a command.

13 Mark Seemann, “Passive attributes” 2014, https://blog.ploeh.dk/2014/06/13/passive-attributes/.

This passive attribute allows classes
to be enriched with metadata about
the permitted role.

Wraps the application’s Role
enumeration that defines the
application’s fixed set of roles

The Role enumeration containing the
application’s known roles. You first
saw this enum in section 3.1.2.

Marks commands with the
PermittedRoleAttribute while
specifying the allowed role. In this
case, AdjustInventory can be
executed by users with the role
InventoryManager, although only
administrators are authorized to
execute UpdateProductReviewTotals.

https://blog.ploeh.dk/2014/06/13/passive-attributes/

 333SOLID as a driver for AOP

There’s a big difference between applying aspect attributes, as we’ll discuss in section 11.2,
and a passive attribute, such as the PermittedRoleAttribute. Compared to aspect
attributes, passive attributes are decoupled from the aspect that use their values, which
is one of the main problems with compile-time weaving, as you’ll see in chapter 11. The
passive attribute doesn’t have a direct relationship with the aspect. This allows the
metadata to be reused by multiple aspects, perhaps in different ways.

TIP Prefer creating a domain-specific attribute over reusing an attribute
that’s tied to a specific framework. For instance, if you use the ASP.NET Core’s
[Authorize] attribute, that would drag along a dependency to Microsoft
.AspNetCore.Authorization.dll, which wouldn’t be appropriate if you were to
reuse the domain in, for example, a Windows service application.

Like you’ve seen previously, adding the security behavior is a matter of creating the
Decorator and wrapping it around the real implementation. Listing 10.19 shows
such a Decorator. It makes use of the PermittedRoleAttribute that’s supplied to com-
mands, as listing 10.18 showed.

Listing 10.19 SecureCommandServiceDecorator<TCommand>

public class SecureCommandServiceDecorator<TCommand>
 : ICommandService<TCommand>
{
 private static readonly Role PermittedRole = GetPermittedRole();

 private readonly IUserContext userContext;
 private readonly ICommandService<TCommand> decoratee;

 public SecureCommandServiceDecorator(
 IUserContext userContext,
 ICommandService<TCommand> decoratee)
 {
 this.decoratee = decoratee;
 this.userContext = userContext;
 }

 public void Execute(TCommand command)
 {
 this.CheckAuthorization();
 this.decoratee.Execute(command);
 }

 private void CheckAuthorization()
 {
 if (!this.userContext.IsInRole(PermittedRole))
 {
 throw new SecurityException();
 }
 }

Gets the role permitted to
execute this command

The Decorator depends on an
IUserContext that allows it to
check the current user’s role.

Before delegating the call to the
decoratee, verifies whether the user
is allowed to execute this operation

In case the user isn’t part
of the specified role,
throws an exception. This
lets the operation fail fast.
Logging of the exception
can be done higher up the
call stack.

334 ChapTEr 10 Aspect-Oriented Programming by design

 private static Role GetPermittedRole()
 {
 var attribute = typeof(TCommand)
 .GetCustomAttribute<PermittedRoleAttribute>();

 if (attribute == null)
 {
 throw new InvalidOperationException(
 "[PermittedRole] missing.");
 }

 return attribute.Role;
 }
}

Authorization flavors
You can specify authorization on commands and other message types in many ways.
Here are some ideas:

¡	If commands are always accessible by a single role, consider placing the com-
mand in a namespace that’s named after its role instead of applying an attribute.
For instance, you can place administrative commands in the namespace MyApp
.Domain.Commands.Administrator and let the Decorator analyze this name-
space. This also gives you a nice intuitive project structure because commands
are grouped by their permitted role.

¡	Instead of working with roles, a common model is working with permissions.
Permissions allow access to be configured in a more fine-grained manner. A com-
mand can be marked with a specific permission. This hard-codes the list of appli-
cation permissions rather than roles and allows an administrator to manage the
link between users, roles, and permissions.

¡	Next to role-based security, your application might require row-based security. In
the context of the e-commerce application, this could mean that certain groups of
products can only be managed by users located in certain regions. In other words,
even though multiple users might be in the same role, row-based security can still
make a specific product accessible to some users in a role, but inaccessible to
others from that same role.14

We could give you tons of examples of Decorators that can be wrapped around busi-
ness transactions, but there’s a limit to the number of pages a book can have. Besides,
at this point, we think you’re starting to get the picture about how to apply Decora-
tors on top of ICommandService<TCommand>. Let’s piece everything together inside the
Composition Root.

Uses reflection to get the
PermittedRoleAttribute
specified on the
command type

In case no attribute is defined on
the command type, you could
assume that every user is allowed
to execute the command, but that
would be a security risk. Instead, it
throws an exception, forcing every
command to have the attribute
applied.

14 For inspiration on how to handle row-based security, see this online discussion: https://github.com/
dotnetjunkie/solidservices/issues/4.

https://github.com/dotnetjunkie/solidservices/issues/4
https://github.com/dotnetjunkie/solidservices/issues/4

 335SOLID as a driver for AOP

COmpOSiNg ObjECT graphS uSiNg gENEriC dECOraTOrS

In the previous sections, you declared three Dec-
orators implementing security, transaction man-
agement, and auditing. You need to apply these
Decorators around a real implementation in your
Composition Root. Figure 10.4 shows how the
Decorators are wrapped around a command ser-
vice like a set of Russian nesting dolls.

If you apply all three previously defined Decora-
tors to your Composition Root, you end up with
the code shown next.

Listing 10.20 Decorating AdjustInventoryService

ICommandService<AdjustInventory> service =
 new SecureCommandServiceDecorator<AdjustInventory>(
 this.userContext,
 new TransactionCommandServiceDecorator<AdjustInventory>(
 new AuditingCommandServiceDecorator<AdjustInventory>(
 this.userContext,
 this.timeProvider,
 context,
 new AdjustInventoryService(repository))));

return new InventoryController(service);

Because the application is expected to get many ICommandService<TCommand> imple-
mentations, most of the implementations would require the same decorators. Listing
10.20, therefore, would lead to lots of code repetition inside the Composition Root.
This is something that’s easily fixed by extracting the repeated Decorator creation
into its own method.

Listing 10.21 Extracting the composition of Decorators to a reusable method

private ICommandService<TCommand> Decorate<TCommand>(
 ICommandService<TCommand> decoratee, CommerceContext context)
{
 return
 new SecureCommandServiceDecorator<TCommand>(
 this.userContext,
 new TransactionCommandServiceDecorator<TCommand>(
 AuditingCommandServiceDecorator<TCommand>(
 this.userContext,
 this.timeProvider,
 context,
 decoratee))));
}

Security Decorator

Transaction Decorator

Auditing Decorator

Actual
command

service

Figure 10.4 Enriching a real command
service with auditing, transaction, and
security aspects

Wraps he decoratee parameter
in the list of Decorators

336 ChapTEr 10 Aspect-Oriented Programming by design

Extracting the Decorators into the Decorate method allows the Composition Root to
be completely DRY. The creation of AdjustInventoryService is reduced to a simple
one-liner:

var service = Decorate(new AdjustInventoryService(repository), context);

return new InventoryController(service);

Chapter 12 demonstrates how to Auto-Register ICommandService<TCommand> imple-
mentations and apply Decorators using a DI Container. Because this almost brings us
to the end of this section about using SOLID principles as a driver for AOP, let’s reflect
for a moment on what we’ve achieved and how this relates to the bigger picture of
application design.

10.3.5 Conclusion

In this chapter, you refactored the domain layer’s big IProductService, which con-
sisted of several command methods, into a single ICommandService<TCommand>
Abstraction, where each command got its own message and associated implemen-
tation for handling that message. This refactoring didn’t change any of the original
application logic; you did, however, make the concept of commands explicit.

An important observation is that these domain commands are now exposed as a clear
artifact in the system, and their handlers are marked with a single interface. This meth-
odology is similar to what you implicitly practice when working with application frame-
works such as ASP.NET Core MVC. MVC Controllers are typically defined by inheriting
from the Controller Abstraction; this allows MVC to find them using reflection, and
it presents a common API for interacting with them. This practice is valuable at a larger
scale in the application’s design, as you’ve seen with these commands where you gave
their handlers a common API (a single Execute method). This allowed aspects to be
applied effectively and without code repetition.

Besides commands, there are other artifacts in the system that you might want to
design in a similar fashion in order to be able to apply Cross-Cutting Concerns.
A common artifact that deserves to be exposed more clearly is that of a query. At
the start of section 10.3.3, after you split up IProductService into a read and write
interface, we focused your attention on IProductCommandServices and ignored
IProduct QueryServices. Queries deserve an Abstraction of their own. Due to space
constraints, however, a discussion of this is outside the scope of this book.15

Our point, however, is that in many types of applications, it’s possible to determine
a commonality between groups of related components as you did in this chapter. This
might help with applying Cross-Cutting Concerns more effectively and also supplies
you with an explicit and compiler-verified coding convention.

15 For a discussion of such an Abstraction, see Steven van Deursen, “Meanwhile... on the query side of
my architecture” 2011, https://cuttingedge.it/blogs/steven/pivot/entry.php?id=92.

https://cuttingedge.it/blogs/steven/pivot/entry.php?id=92

 337SOLID as a driver for AOP

But the goal of this chapter wasn’t to state that the ICommandService<TCommand>
Abstraction is the way to design your applications. The important takeaway from this
chapter should be that designing applications according to SOLID is the way to keep appli-
cations maintainable. As we demonstrated, this can, for the most part, be achieved with-
out the use of specialized AOP tooling. This is important, because those tools come with
their own sets of limitations and problems, which is something we’ll go into deeper in the
next chapter. We have found, however, a certain set of design structures to be applicable
to many line-of-business (LOB) applications — an ICommandService-like Abstraction
being one of them.

This doesn’t mean that it’s always easy to apply SOLID principles. On the contrary,
it can be difficult. As stated previously, it takes time, and you’ll never be 100% SOLID.
Your job as software developers is to find the sweet spot; applying DI and SOLID at the
right moments will absolutely boost your chances of getting closer to that.

DI shines when it comes to applying recognized object-oriented principles such as
SOLID. In particular, the loosely coupled nature of DI lets you use the Decorator pat-
tern to follow the OCP as well as the SRP. This is valuable in a wide range of situations,
because it enables you to keep your code clean and well organized, especially when it
comes to addressing Cross-Cutting Concerns.

But let’s not beat around the bush. Writing maintainable software is hard, even
when you try to apply the SOLID principles. Besides, you often work in projects that
aren’t designed to stand the test of time. It might be unfeasible or dangerous to make
big architectural changes. At those times, using AOP tooling might be your only via-
ble option, even if it presents you with a temporary solution. Before you decide to use
these tools, it’s important to understand how they work and what their weaknesses are,
especially compared to the design philosophy described in this chapter. This will be the
subject of the next chapter.

Summary

¡	The Single Responsibility Principle (SRP) states that each class should have
only one reason to change. This can be viewed from the perspective of cohesion.
Cohesion is defined as the functional relatedness of the elements of a class or mod-
ule. The lower the amount of relatedness, the lower the cohesion; and the lower
the cohesion, the greater the chance a class violates the SRP.

¡	The Open/Closed Principle (OCP) prescribes an application design that pre-
vents you from having to make sweeping changes throughout the code base. A
strong relationship between the OCP and the DRY principle is that they both
strive for the same objective.

¡	The Don’t Repeat Yourself (DRY) principle states that every piece of knowledge
must have a single, unambiguous, authoritative representation within a system.

338 ChapTEr 10 Aspect-Oriented Programming by design

¡	The Liskov Substitution Principle (LSP) states that every implementation
should behave as defined by its Abstraction. This lets you replace the originally
intended implementation with another implementation of the same Abstrac-
tion without worrying about breaking a consumer. It’s a foundation of DI. When
consumers don’t observe it, there’s little advantage in injecting Dependencies,
because you can’t replace Dependencies at will, and you lose many (if not all)
benefits of DI.

¡	The Interface Segregation Principle (ISP) promotes the use of fine-grained
Abstractions rather than wide Abstractions. Any time a consumer depends
on an Abstraction where some of the members stay unused, this principle is
violated. This principle is crucial when it comes to effectively applying Aspect-
Oriented Programming.

¡	The Dependency Inversion Principle (DIP) states that you should program
against Abstractions and that the consuming layer should be in control of the
shape of a consumed Abstraction. The consumer should be able to define the
Abstraction in a way that benefits itself the most.

¡	These five principles together form the SOLID acronym. None of the SOLID prin-
ciples represents absolutes. They’re guidelines that can help you write clean code.

¡	Aspect-Oriented Programming (AOP) is a paradigm that focuses on the
notion of applying Cross-Cutting Concerns effectively and maintainably.

¡	The most compelling AOP technique is SOLID. A SOLID application prevents
code duplication during normal application code and implementation of
Cross-Cutting Concerns. Using SOLID techniques can also help developers
avoid the use of specific AOP tooling.

¡	Even with a SOLID design, there likely will come a time where a change becomes
sweeping. Being 100% closed for modification is neither possible nor desirable.
Conforming to the OCP takes considerable effort when finding and designing
the appropriate Abstractions, although too many Abstractions can have a
negative impact on the complexity of the application.

¡	Command-Query Separation (CQS) is an influential object-oriented principle
that states that each method should either return a result but not change the
observable state of the system, or change the state but not produce any value.

¡	Placing command methods and query methods in different Abstractions sim-
plifies applying Cross-Cutting Concerns, because the majority of aspects need
to be applied to either commands or queries, but not both.

¡	A Parameter Object is a group of parameters that naturally go together. The
extraction of Parameter Objects allows the definition of a reusable Abstraction that
can be implemented by a large group of components. This allows these components
to be handled similarly and Cross-Cutting Concerns to be applied effectively.

 339Summary

¡	Rather than a component’s Abstraction, these extracted Parameter Objects
become the definition of a distinct operation or use case in the system.

¡	Although splitting larger classes into many smaller classes with Parameter Objects
can drastically increase the number of classes in a system, it can also dramatically
improve the maintainability of a system. The number of classes in a system is a
bad metric for measuring maintainability.

¡	Cross-Cutting Concerns should be applied at the right granular level in the
application. For all but the simplest CRUD applications, Repositories aren’t the
right granular level for most Cross-Cutting Concerns. With the application of
SOLID principles, reusable one-membered Abstractions typically emerge as
the levels where Cross-Cutting Concerns need to be applied.

341

11Tool-based Aspect-Oriented
Programming

In this chapter
¡	Using dynamic intercePtion to apply

Interceptors using generated Decorators

¡	Advantages and disadvantages of dynamic
intercePtion

¡	Using compile-time weaving to apply
cross-cutting concerns

¡	Why compile-time weaving is the antithesis of DI

This chapter is a continuation of the Aspect-Oriented Programming (AOP) discus-
sion that we started in chapter 10. Where chapter 10 described AOP in its purest
form — namely, applying AOP solely using SOLID design practices — this chapter
approaches AOP from a tool-based perspective. We’ll discuss two common methods
for applying AOP: dynamic Interception and compile-time weaving.

In case the design approach of chapter 10 is too radical, dynamic Intercep-
tion will be your next best pick, which is why we’ll discuss it first. Dynamic Inter-
ception might be a good temporary solution until the right time arrives to start
making the kinds of improvements discussed in the last chapter.

342 ChapTEr 11 Tool-based Aspect-Oriented Programming

Compile-time weaving is the opposite of DI, and we consider it to be an anti-pattern. We
feel it’s important, however, to include a discussion on compile-time weaving, because it’s a
well-known form of AOP, and we want to make it clear that it isn’t a viable alternative to DI.

TIP Our coverage of these tools is limited to the topic of DI. If you’re interested
in learning more about tool-based AOP, there’s a book on this topic: AOP in
.NET, by Matthew D. Groves (Manning, 2013).

11.1 Dynamic interception

The code listings of section 10.1, which implement the Delete and Insert methods
of CircuitBreakerProductRepositoryDecorator, contained code duplication. The
following listing shows this code again.

Listing 11.1 Violating the DRY principle (repeated)

public void Delete(Product product)
{
 this.breaker.Guard();

 try
 {
 this.decoratee.Delete(product);
 this.breaker.Succeed();
 }
 catch (Exception ex)
 {
 this.breaker.Trip(ex);
 throw;
 }
}

public void Insert(Product product)
{
 this.breaker.Guard();

 try
 {
 this.decoratee.Insert(product);
 this.breaker.Succeed();
 }
 catch (Exception ex)
 {
 this.breaker.Trip(ex);
 throw;
 }
}

The code of these two methods
looks a lot like a template. They’re
almost identical, with the only
difference being the calls to the
Delete and Insert methods.

 343Dynamic inteRCeption

The hardest part of implementing a Decorator as an aspect is to design the template.
After that, it’s a rather mechanical process:

1 Create a new Decorator class

2 Derive from the desired interface

3 Implement each interface member by applying the template

This process is so repetitive that you can use a tool to automate it. Among the many
powerful features of the .NET Framework is the ability to dynamically emit types. This
makes it possible to write code that generates a fully functional class at runtime. Such
a class has no underlying source code file, but is compiled directly from some abstract
model. This enables you to automate the generation of Decorators that are created at
runtime. As figure 11.1 shows, this is what dynamic Interception enables you to do.

After the object graph for the dynamically generated Decorator and its Dependencies
is created, the Decorator can be used as a stand-in for the real class. Because it implements
the real class’s Abstraction, it can be injected into clients that use that Abstraction.
Figure 11.2 describes the flow of method calls when the client calls into its Intercepted
Abstraction.

To use dynamic Interception, you must still write the code that implements the
aspect. This could be the plumbing code required for the Circuit Breaker aspect as

Handwritten Interceptor
class that adds logging
behavior Class generated at runtime

by the INTERCEPTION library
Handwritten application
code that needs to be
intercepted

Use a runtime-generated
Decorator to wrap the target
class and the interceptor.

public class SomeRepository : IRepo
{
 // repo data members
 public void Insert(Product p) {
 // core operation
 }
}

new RuntimeGeneratedDecorator(
 new SomeRepository(),
 new LoggingAspect())

class RuntimeGeneratedDecorator : IRepo
{
 public RuntimeGeneratedDecorator(
 IRepo target,
 IInterceptor interceptor)
 { … }

 public void Insert(Product p) {
 var i = new Invocation();
 i.Proceed = () =>
 this.target.Insert(p);
 this.interceptor.Intercept(i);
 }
}

class LoggingAspect : IInterceptor {
 // aspect data members
 Intercept(invocation) {
 // start logging
 invocation.Proceed();
 // end logging
 }
}

Compose
object graph

using all classes

Figure 11.1 A dynamic iNTErCEpTiON library generates a Decorator class at runtime. This happens once per given
abSTraCTiON (in this case, for IRepo). After the generation process completes, you can request that the iNTErCEpTiON
library create new instances of that Decorator for you, while you supply both the target and the interceptor.

344 ChapTEr 11 Tool-based Aspect-Oriented Programming

shown in listing 11.1. Once you’ve done this, you must tell the dynamic Interception
library about the Abstractions it should apply the aspect to. Enough with the theory,
let’s see an example.

11.1.1 Example: interception with Castle Dynamic Proxy

With its repetitive code, the Circuit Breaker aspect from listing is a good candidate
for dynamic Interception. While you can write the code that generates Decorators
at runtime, this is a rather involved operation, and besides, there are already excellent
tools available. Instead of taking you through the tedious process of generating code
by hand, we’ll start using a tool directly. As an example, let’s see how you can reduce
code duplication with Castle Dynamic Proxy’s Interception capabilities.

NOTE Castle Dynamic Proxy is the de facto standard tool for dynamic Inter-
ception in .NET. It’s free and open source. In fact, most DI Containers use it
under the hood for their dynamic Interception functionality. Other dynamic
Interception tools are available, but Castle is mature and has stood the test of
time, so we’ll focus on Castle for this discussion.

implEmENTiNg a CirCuiT brEakEr iNTErCEpTOr

Implementing an Interceptor for Castle requires that you implement its Castle
.DynamicProxy.IInterceptor interface, which consists of a single method. The fol-
lowing listing shows how to implement the Circuit Breaker from listing 11.1. Distinct
from that listing, however, the following shows the entire class.

The client invokes
a method on its
ABSTRACTION.

Because SomeRepository is intercepted
using the RuntimeGeneratedDecorator,
the client calls the Decorator.

When SomeRepository finishes, the LoggingAspect may do some additional work before
returning to the Decorator. The Decorator ensures the client receives the right value.

The Decorator forwards the call
to the LoggingAspect, which may
do some work before forwarding
the call to SomeRepository.

Client

invokes method calls Intercept() calls Proceed()

returns valuereturns value

Runtime-
Generated-
Decorator

Logging-
Aspect

Some-
Repository

Figure 11.2 The flow of method calls when the client calls into its iNTErCEpTEd abSTraCTiON

 345Dynamic inteRCeption

Listing 11.2 Implementing the Circuit Breaker Interceptor with Dynamic Proxy

public class CircuitBreakerInterceptor
 : Castle.DynamicProxy.IInterceptor
{
 private readonly ICircuitBreaker breaker;

 public CircuitBreakerInterceptor(
 ICircuitBreaker breaker)
 {
 this.breaker = breaker;
 }

 public void Intercept(IInvocation invocation)
 {
 this.breaker.Guard();

 try
 {
 invocation.Proceed();

 this.breaker.Succeed();
 }
 catch (Exception ex)
 {
 this.breaker.Trip(ex);
 throw;
 }
 }
}

The main difference from listing 11.1 is that instead of delegating the method call to
a specific method, you must be more general, because you apply this code to poten-
tially any method. The IInvocation interface passed to the Intercept method as a
parameter represents the method call. It might, for example, represent the call to the
Insert(Product) method. The Proceed method is one of the key members of this
interface, because it enables you to let the call proceed to the next implementation on
the stack.

The IInvocation interface enables you to assign a return value before letting the
call proceed. It also provides access to detailed information about the method call.
From the invocation parameter, you can get information about the name and param-
eter values of the method, as well as other information about the current method call.
Implementing the Interceptor is the hard part. The next step is easy.

applyiNg ThE iNTErCEpTOr iNSidE ThE COmpOSiTiON rOOT uSiNg purE di
The following listing shows how you can incorporate the CircuitBreakerInterceptor
into your Composition Root.

To implement an Interceptor, you
must implement the IInterceptor
interface defined by Castle.

An Interceptor can be composed inside
the coMposItIon root. This enables you
to use constructor InjectIon in your
Interceptor aspects.

There’s only one method to implement, and
you implement it by applying the same code

that you used repeatedly when you
implemented the CircuitBreakerProduct

RepositoryDecorator.

Instructs Castle to let the call proceed
to the decorated instance

346 ChapTEr 11 Tool-based Aspect-Oriented Programming

Listing 11.3 Incorporating the Interceptor into the COmpOSiTiON rOOT

var generator =
 new Castle.DynamicProxy.ProxyGenerator();

var timeout = TimeSpan.FromMinutes(1);

var breaker = new CircuitBreaker(timeout);

var interceptor =
 new CircuitBreakerInterceptor(breaker);

var wcfRepository = new WcfProductRepository();

IProductRepository repository = generator
 .CreateInterfaceProxyWithTarget<IProductRepository>(
 wcfRepository,
 interceptor);

TIP For good performance, Castle.DynamicProxy.ProxyGenerator should
typically be created once and cached for the lifetime of the application.

This example shows that, although Castle is in control of the construction of the
IProductRepository Decorator and the injection of its Dependencies, you can still
bootstrap your application using Pure DI. In the next section, we’ll analyze dynamic
Interception and discuss its advantages and disadvantages.

11.1.2 Analysis of dynamic interception

When we compare the tool-based AOP approach of dynamic Interception to the AOP
by design approach discussed in the previous chapter, we find a number of similarities
between the two:

¡	Each enables you to address Cross-Cutting Concerns when you program
against Abstractions.

¡	As with plain old Decorators, Interceptors can use Constructor Injection, which
makes them DI-friendly and decoupled from the code they’re decorating. These
characteristics allow both your business code and your aspects to be easily tested.

¡	Aspects can be centralized in the Composition Root, which prevents code dupli-
cation, and in case your Visual Studio solution contains multiple applications, it
allows the aspects to be applied in one Composition Root, but not the other.

Despite these similarities, there are some differences that make dynamic Interception
less than ideal. Table 11.1 summarizes the downsides, which we’ll discuss next.

Castle’s ProxyGenerator can
generate Proxy types at runtime.1

1 Proxy is Castle’s terminology for a Decorator.

The Interceptor accepts an instance
of ICircuitBreaker in its constructor
using constructor InjectIon.

Creates the real
IProductRepository
instance

Requests that Castle creates a Decorator (the
Proxy) based on the IProductRepository interface
and wraps it around both the original Repository

instance and the newly created Interceptor

 347Dynamic inteRCeption

Table 11.1 Disadvantages of dynamic iNTErCEpTiON

Disadvantage Summary

Loss of compile-time support. intercePtion code tends to be more complicated than a Decorator, which
makes it harder to read and maintain.

Aspects are tighly coupled to
the tooling.

This coupling makes it harder to test and forces the Interceptor to be part
of the comPosition root in order to prevent other assemblies from requir-
ing a DePenDency on the dynamic intercePtion library.

Not universally applicable. Aspects can only be applied at the boundaries of methods that are virtual
or abstract, such as methods that are part of an interface definition.

Doesn’t fix underlying design
problems.

You still end up with a system that’s only marginally more and consider-
ably less maintainable than a more soLiD-based design.

lOSS Of COmpilE-TimE SuppOrT

Compared to plain old Decorators, dynamic Interception involves a fair deal of
runtime reflection calls any time an Interceptor is used. With Castle, for instance, the
IInvocation interface contains an Arguments property that returns an array of object
instances that contains the list of method arguments. Reading and changing those val-
ues involves casting and boxing in case of value types like integer and boolean. From a
performance perspective, this constant burden of reflection will be, for the most part,
negligible. Your typical I/O operations, such as database reads and writes, cost orders of
magnitude more.

This use of reflection, however, does complicate the Interceptors you write. When
handling the list of method arguments and return types, you’ll have to write the proper
casting and type checking, and possibly communicate casting errors more effectively.
An Interceptor, therefore, tends to be more complicated than a Decorator, which
makes it harder to read and maintain.

aSpECTS arE STrONgly COuplEd TO TOOliNg

Compared to plain old Decorators, the Interceptors you write with dynamic Inter-
ception are strongly coupled to the Interception library you use. The Circuit
BreakerInterceptor of listing 11.2 is a good example of this. This Interceptor
implements Castle.DynamicProxy.IInterceptor and makes use of the Castle
.DynamicProxy.IInvocation Abstraction.

Although less pervasive than compile-time weaving, as you’ll see in section 11.2,
this leads to all aspects being coupled to a Castle Dynamic Proxy library. This coupling
introduces an extra dependency on an external library that needs to be learned, which
brings extra costs and risks to the project. We’ll explain this in detail in section 12.3.1 .

NOT uNivErSally appliCablE

Because dynamic Interception works by wrapping existing Abstractions with
dynamically generated Decorators, the behavior of a class can only be extended at the
Abstraction’s method boundaries. Private methods can’t be Intercepted because
they’re not part of the interface.

348 ChapTEr 11 Tool-based Aspect-Oriented Programming

This limitation also holds true when practicing AOP by design. With AOP by design,
however, this is typically less of a problem, because you design your Abstractions in
such a way that there’s only a need to apply aspects at the boundaries of the Abstrac-
tions.2 When you apply dynamic Interception, on the other hand, you typically
accept the status quo because, if you didn’t, you’d end up practicing AOP by design.

iT dOESN’T fix uNdErlyiNg dESigN prOblEmS

In chapter 10, we extensively discussed the design problems that existed with the big
IProductService interface and how they could be fixed by applying SOLID principles.
As discussed, these problems have a bigger impact on the system beyond any issues
regarding Cross-Cutting Concerns.

You can use dynamic Interception, however, when you accept the status quo of the
application’s current design. You want to be able to apply Cross-Cutting Concerns
without having to apply large refactorings. The disadvantage of this is that you only solve
part of the problem. You’ll still end up with a system that’s only marginally more main-
tainable than the existing design and considerably less maintainable than a more SOLID-
based design This is because dynamic Interception only considers the application of
Cross-Cutting Concerns — not other parts of your code.

Applying dynamic Interception requires you to program to interfaces and to use
the DI patterns from chapter 4. Another form of AOP that doesn’t require program-
ming to interfaces is compile-time weaving. This may sound attractive at first, but as
we’ll discuss next, it’s a DI anti-pattern.

11.2 Compile-time weaving
When we as developers write C# code, the C# compiler transforms our code to Micro-
soft Intermediate Language (IL). IL is read by the Common Language Runtime (CLR)
Just-In-Time (JIT) compiler and is translated on the spot to machine instructions for
execution by the CPU.3 You’ll most likely be familiar with the basics of this process.

Compile-time weaving is a common AOP technique that alters this compilation process.
It uses special tools to read a compiled assembly produced by our (C#) compiler, modifies
it, and writes it back to disk, effectively replacing the original assembly. Figure 11.3 shows
this process.

2 In fact, we consider the need to Intercept private methods a code smell.
3 This is a simplification; in some environments, IL is interpreted rather than JIT compiled.

C# source
code

C# compiler Post-compiler

A post-compiler alters a compiled assembly, applies any
aspects by altering the original assembly, and writes an
altered version back to disk.

IL
assembly

Modified
IL

assembly

Figure 11.3 Compile-time weaving process

 349Compile-time weaving

Altering an originally compiled assembly in a post-compilation process is done with
the intention of weaving aspects into the original source code, as shown in figure 11.4.

But, as alluring as it may seem at first, when applied to Volatile Dependencies, the use
of compile-time weaving comes with issues that make this technique problematic from a
maintainability perspective. Because of these downsides, as explained throughout this sec-
tion, we consider compile-time weaving to be the opposite of DI — it’s a DI anti-pattern.

IMPORTANT Compile-time weaving isn’t a desirable method of applying AOP
for Volatile Dependencies. Favor applying the SOLID principles, or fall back
to dynamic Interception if that isn’t possible.

As we stated in the introduction, we found it important to discuss compile-time weaving
even though it’s a DI anti-pattern. Compile-time weaving is such a well-known form of
AOP that we have to warn against its use. Before we discuss why it’s problematic, we’ll
begin with an example.

11.2.1 Example: Applying a transaction aspect using compile-time weaving

Attributes share a trait with Decorators: although they may add or imply a modification
of behavior of a member, they leave the signature and original source code unchanged.
In section 9.2.3, you applied a security aspect using a Decorator. Compile-time weaving
tools, however, let you declare aspects by placing attributes on classes, their members,
and even assemblies.

public class SomeRepository : IRepo
{
 // repo data members
 public void Insert(Product p) {
 // core operation
 }
}

Handwritten application
code that needs to be
altered

Handwritten
aspect class that
adds logging behavior

Altered application code
with the aspect applied

An AOP post-compilation tool takes the
original IL and the IL of some aspect that
needs to be applied, and weaves them
together by adding the aspect IL to the
original IL.

class LoggingAspect {
 // aspect data members
 OnEntry() {
 // start logging
 }

 OnExit() {
 // end logging
 }
}

public class SomeRepository : IRepo
{
 // repo data members
 // aspect data members
 public void Insert(Product p) {
 // start logging
 // core operation
 // end logging
 }
}

Compile-time
weaving

Figure 11.4 Compile-time weaving, visualized

350 ChapTEr 11 Tool-based Aspect-Oriented Programming

It sounds attractive to use this concept to apply Cross-Cutting Concerns. Wouldn’t
it be nice if you could decorate a method or class with a [Transaction] attribute, or even
a custom [CircuitBreaker] attribute and, in this way, apply the aspect with a single line
of declarative code? The following listing shows how a custom TransactionAttribute
aspect attribute gets applied directly to the methods of SqlProductRepository.

Listing 11.4 Applying a [Transaction] aspect attribute to SqlProductRepository

public class SqlProductRepository : IProductRepository
{
 [Transaction]
 public void Insert(Product product) ...

 [Transaction]
 public void Update(Product product) ...

 [Transaction]
 public void Delete(Guid id) ...

 public IEnumerable<Product> GetAll() ...

 ...
}

NOTE We use the term aspect attribute to denote a custom attribute declared on
a class or its members that implements or signifies an aspect.

Although there are many compile-time weaving tools you can choose from, in this sec-
tion, we’ll use PostSharp (https://www.postsharp.net/), which is a commercial tool.
The next listing shows the definition of TransactionAttribute using PostSharp.

Listing 11.5 Implementing a TransactionAttribute aspect with PostSharp

[AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Class |
 AttributeTargets.Assembly,
 AllowMultiple = false)]
[PostSharp.Serialization.PSerializable]
[PostSharp.Extensibility.MulticastAttributeUsage(
 MulticastTargets.Method,
 TargetMemberAttributes =
 MulticastAttributes.Instance |
 MulticastAttributes.Static)]
public class TransactionAttribute
 : PostSharp.Aspects.OnMethodBoundaryAspect
{

 public override void OnEntry(
 MethodExecutionArgs args)
 {
 args.MethodExecutionTag =
 new TransactionScope();
 }

A custom aspect attribute gets
applied to all the Insert, Update,
and Delete methods, while their
code remains untouched.

Not all methods require
transaction logic, so this
method isn’t marked with
the attribute.

Required attributes for
PostSharp aspects

By inheriting from the PostSharp
OnMethodBoundaryAspect
attribute, you can apply the
aspect to the boundary of a
decorated method, just as you
would do with a Decorator.

Implements the aspect by overriding the
OnEntry, OnSuccess, and OnExit methods

https://www.postsharp.net/

 351Compile-time weaving

 public override void OnSuccess(
 MethodExecutionArgs args)
 {
 var scope = (TransactionScope)
 args.MethodExecutionTag;
 scope.Complete();
 }

 public override void OnExit(
 MethodExecutionArgs args)
 {
 var scope = (TransactionScope)
 args.MethodExecutionTag;
 scope.Dispose();
 }
}

Because you want to wrap a transaction around some arbitrary piece of code, you need
to override three of the methods of OnMethodBoundaryAspect — namely, OnEntry,
OnSuccess, and OnExit. During OnEntry, you create a new TransactionScope, and
during OnExit, you dispose of the scope. OnExit is guaranteed to be called. PostSharp
will wrap its call in a finally block. Only when the wrapped operation succeeds will you
want to invoke the Complete method. That’s why you implement this in the OnSuccess
method. You make use of the MethodExecutionTag property to transfer the created
TransactionScope from method to method.

NOTE For a discussion on TransactionScope, see section 10.3.3.

While looking at listing 11.4 in isolation, you might find these attributes attractive, but
if you compare the code in listing 11.5 to the same aspect in a Decorator (listing 10.15),
there’s quite a lot of boilerplate. You need to override multiple methods, apply all kinds
of attributes, and pass state from method to method.

NOTE When comparing the TransactionCommandServiceDecorator<TCommand>
of listing 10.15 with the implementation of the PostSharp aspect in listing 11.5, we
appreciate how much cleaner a Decorator is to write. Decorators can be written in
a way that’s more natural for developers. Especially when it comes to writing code
that contains catch, finally, or using blocks, a SOLID Decorator — and even
the dynamic Interception approach — is superior in simplicity and maintain-
ability to compile-time weaving as offered by tools such as PostSharp.

This would perhaps be a small price to pay if this would increase maintainability, but
there are other, more limiting issues with compile-time weaving that make it unsuitable
as a method to apply Volatile Dependencies as Cross-Cutting Concerns.

11.2.2 Analysis of compile-time weaving

In relationship to DI, compile-time weaving comes with two specific disadvantages.
In this section, we’ll discuss these limitations. While there are other downsides to

Implements the aspect by overriding the
OnEntry, OnSuccess, and OnExit methods

352 ChapTEr 11 Tool-based Aspect-Oriented Programming

compile-time weaving, the two described in table 11.2 capture the core issue that
makes it an undesirable method for DI.

Table 11.2 Disadvantages of compile-time weaving from a DI perspective

Disadvantage Summary

DI-unfriendly There’s no good way to inject voLAtiLe DePenDencies into compile-time weaving
aspects. The alternatives cause temPorAL couPLing, cAPtive DePenDencies,
and Interdependent Tests.

Compile-time coupling Aspects are woven in at compile time, making it impossible to call code with-
out the aspect applied. This complicates testing and reduces flexibility.

COmpilE-TimE wEaviNg aSpECTS arE di-uNfriENdly

When it comes to applying Cross-Cutting Concerns, you’ll find yourself regularly
working with Volatile Dependencies. As you learned in chapter 1, Volatile Depen-
dencies are the focal point of DI. With Volatile Dependencies, your default choice
should be to use Constructor Injection, because it statically defines the list of
required Dependencies.

Unfortunately, it isn’t possible to use Constructor Injection with compile-time
weaving aspects. Take a look at the next listing, where we try to use Constructor
Injection with a Circuit Breaker aspect.

Listing 11.6 Injecting a dEpENdENCy into an aspect using CONSTruCTOr iNjECTiON

[PostSharp.Serialization.PSerializable]
public class CircuitBreakerAttribute
 : OnMethodBoundaryAspect
{
 private readonly ICircuitBreaker breaker;

 public CircuitBreakerAttribute(
 ICircuitBreaker breaker)
 {
 this.breaker = breaker;
 }

 public override void OnEntry(
 MethodExecutionArgs args)
 {
 this.breaker.Guard();
 }

 ...
}

This attempt to apply Constructor Injection to this aspect class fails miserably.
Remember, you’re defining an attribute that represents separate code, which will be

Other attributes omitted for brevity

Attempts to use constructor InjectIon to
get the aspect’s VolAtIle DepenDency. This
won’t work, as we show next.

Uses the breaker VolAtIle DepenDency
inside the OnEntry, OnSuccess, and
OnException methods

 353Compile-time weaving

woven into the methods you’ll be working with at compile time. In .NET, attributes can
only have primitive types, such as strings and integers, in their constructor.

Even if attributes could have more complex Dependencies, there’d be no way for
you to supply an instance of this aspect with an ICircuitBreaker instance, because the
aspect is constructed at a completely different time and location from where you’d con-
struct ICircuitBreaker instances. Instances of attributes, like the CircuitBreaker
Attribute, are created by the .NET runtime, and there’s no way for you to influence
their creation. You have no means of injecting the Dependency into the attribute’s
constructor as part of, for instance, the Composition Root:

This issue, however, isn’t limited to working with attributes. Even if the AOP framework
uses a mechanism other than attributes, its post-compiler weaves the aspect code into
your normal code at compile time and makes it part of the assembly’s code. Your object
graphs, on the other hand, are constructed at runtime as part of the Composition
Root. These two models don’t mix well. Constructor Injection isn’t possible with
compile-time weaving.

Ambient Context and Service Locator are two workarounds for this issue. Both
workarounds are, however, hacks with considerable downsides of their own. For the sake
of argument, let’s take a look at how to work around the problem using an Ambient
Context. The following listing shows the definition of a public static Breaker property
in the Circuit Breaker aspect.

Listing 11.7 Using a dEpENdENCy inside an aspect using an ambiENT CONTExT

public class CircuitBreakerAttribute
 : OnMethodBoundaryAspect
{
 public static ICircuitBreaker Breaker { get; set; }

 public override void OnEntry(
 MethodExecutionArgs args)
 {
 Breaker.Guard();
 }

 ...
}

As you learned in section 5.3.2, among other things, the Ambient Context causes Tem-
poral Coupling. This means that if you forget to set the Breaker property, the applica-
tion fails with a NullReferenceException, because the Dependency isn’t optional.

Further, because your only option is to set the property once during application
startup, it needs to be defined as static. But this might lead to problems of its own: this
could cause the ICircuitBreaker to become a Captive Dependency, as explained in
section 8.4.1.

[CircuitBreakerAttribute(???)]

What to inject here? And how?

A public static property that lets you set the
ICircuitBreaker interface inside the coMposItIon

root when the application starts. This is the
AMbIent context antipattern.

354 ChapTEr 11 Tool-based Aspect-Oriented Programming

Such a static property causes Interdependent Tests because its value remains in
memory when the next test case is executed. It’s therefore necessary to perform Fixture
Teardown after each and every test.4 This is something that we must always remember to
do — it’s easy to forget. For this reason, compile-time weaving aspects that use an Ambient
Context to access Volatile Dependencies aren’t easy to test.

NOTE You can mitigate Captive Dependencies with the use of Factory or
Proxy implementations for ICircuitBreaker, but we think at this point, you’ve
started to understand the complexity a static property causes.

The other workaround is Service Locator, but compared to Ambient Context, it’d
only make things worse. Service Locator exhibits the same problems with Interde-
pendent Tests and Temporal Coupling. On top of that, its access to an unbound set
of Volatile Dependencies makes it non-obvious as to what its Dependencies are, and
it drags along the Service Locator as a redundant Dependency. Because Service
Locator is the worse choice, we spare you an example and jump directly into the sec-
ond disadvantage of compile-time weaving — coupling at compile time.

COmpilE-TimE wEaviNg CauSES COupliNg aT COmpilE TimE

Although compile-time weaving decouples your source code from your aspects, it still
causes your compiled code to be tightly coupled with the woven aspects. This is a prob-
lem, because Cross-Cutting Concerns often depend on an external system. This
problem becomes obvious when you write unit tests, because a unit test must be able to
run in isolation. You want to test a class’s logic itself without interdependency with its
Volatile Dependencies. You don’t want your unit test crossing process and network
boundaries, because communication with a database, filesystem, or other external sys-
tem will influence the reliability and performance of your tests. In other words, com-
pile-time woven aspects impact Testability.

But even with broadly defined integration tests, compile-time weaving will still cause
problems. In an integration test, you test a part of the system in integration with other
parts. This lowers the level of isolation, but enables you to find out how individual com-
ponents work when integrated with others. If you were testing SqlProductRepository,
for instance, it wouldn’t make sense to unit test it, because all this Repository does is
query the database. You therefore want to test this component’s interaction with the
database.

But even in that case, you typically wouldn’t want to have all aspects applied during
testing. The use of a [CheckAuthorization] aspect, for instance, might force such a test
to go through some sort of login process to verify whether the component can success-
fully store and retrieve products. It’s important to see whether such an authorization
aspect works as expected. Having to run this as part of your test setup for every integra-
tion test, unfortunately, makes these tests harder to maintain and, possibly, a lot slower.

4 For more on Fixture Teardown, see Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code (Addi-
son-Wesley, 2007), 100.

 355Summary

A funnier problem manifests itself if you also have caching enabled. In such a case,
you could write an automated test with the intent to query the database, but never do so
because the test code hits the cache. For this reason, you want to have full control over
which aspects are applied to which test and when, in case those aspects are related to
Volatile Dependencies. Compile-time weaving complicates this tremendously.

COmpilE-TimE wEaviNg iS uNSuiTablE fOr uSE ON vOlaTilE dEpENdENCiES

The aim of DI is to manage Volatile Dependencies by introducing Seams into your
application. This enables you to centralize the composition of your object graphs
inside the Composition Root.

This is the complete opposite of what you achieve when applying compile-time weav-
ing: it causes Volatile Dependencies to be coupled to your code at compile time. This
makes it impossible to use proper DI techniques and to safely compose complete object
graphs in the application’s Composition Root. It’s for this reason that we say that
compile-time weaving is the opposite of DI — using compile-time weaving on Volatile
Dependencies is an anti-pattern.

IMPORTANT We’re explicitly talking about the use of compile-time weaving in
combination with Volatile Dependencies. From a DI point of view, Stable
Dependencies aren’t that interesting. While you might find value in applying
Stable Dependencies using compile-time weaving, there’s no value in apply-
ing Volatile Dependencies using compile-time weaving.

Favor applying SOLID principles, falling back to dynamic Interception if that isn’t
possible. On that note, we can now leave Pure DI behind in part 3 and move on to read
about DI Containers in part 4. There, you’ll learn how DI Containers can fix some
of the challenges you might face.

Summary

¡	Dynamic Interception is an Aspect-Oriented Programming (AOP) technique
that automates the generation of Decorators to be emitted at runtime. Aspects are
written as Interceptors, which are injected into a runtime-generated Decorator.

¡	Dynamic Interception exhibits the following disadvantages:

– Loss of compile-time support.

– Aspects are strongly coupled to the tooling.

– Not universally applicable.

– Doesn’t fix underlying design problems.

¡	To prevent or delay making design changes like the ones we suggested in chapter
10, dynamic Interception might be a good temporary solution until its time to
start making these kinds of improvements.

¡	Compile-time weaving is an AOP technique that alters the compilation process.
It uses special tools to alter a compiled assembly using IL manipulation. It isn’t a
desirable method of applying AOP to Volatile Dependencies.

356 ChapTEr 11 Tool-based Aspect-Oriented Programming

¡	In relation to DI, compile-time weaving exhibits the following problems:

– Compile-time weaving aspects are DI-unfriendly.

– Compile-time weaving causes tight coupling at compile time.

¡	Favor applying SOLID principles, falling back to dynamic Interception if that
isn’t possible.

Part 4

DI Containers

The previous parts of the book have been about the various principles and
patterns that together define DI. As chapter 3 explained, a DI Container is an
optional tool that you can use to implement a lot of the general-purpose infra-
structure that you would otherwise have to implement if you were using Pure DI.

Throughout the book, we’ve kept the discussion container agnostic, which
means we’ve only taught you Pure DI. Don’t interpret this as a recommendation
of Pure DI per se; rather, we want you to see DI in its purest form, untainted by any
particular container’s API.

Many excellent DI Containers are available for the .NET platform. In chapter 12,
we’ll discuss when you should use one of these containers and when you should stick
with Pure DI. The remaining chapters in part 4 cover a selection of three free and
open source DI Containers. In each chapter, we provide detailed coverage of that
particular container’s API as it relates to the dimensions covered in part 3, as well as
various other issues that traditionally cause beginners grief. The containers covered
are Autofac (chapter 13), Simple Injector (chapter 14), and Microsoft.Extensions
.DependencyInjection (chapter 15).

Given unlimited space and time, we wanted to include all containers, but alas,
that wasn’t possible. We excluded all but one of the containers covered in the
first edition. Those excluded include Castle Windsor, StructureMap, String.NET,
Unity, and MEF. For more information on those, grab your copy of the first edition
(you get it free with this edition). Also, we considered, but didn’t include, Ninject,
which is one of the more popular DI Containers. At the time of writing, there is
no .NET Core–compatible version available, which was a criterion for inclusion.

All the containers described are open source projects with fast release cycles.
Before we discuss the containers in this part, chapter 12 goes into more detail

358 di CONTaiNErS

about what a container is, what it helps you with, and how to decide when to use a DI
Container or stick with using Pure DI.

Because of its market share, we simply couldn’t exclude Autofac, even though we
covered it in the first edition. Autofac is the most popular DI Container for .NET.
Chapter 13 is dedicated to it. And although we included Microsoft.Extensions
.DependencyInjection (MS.DI), we’re skeptical of it, because it’s limited in function-
ality. However, we felt obliged to cover it, because many developers are inclined to
use the built-in tooling first before switching to third-party tooling. Chapter 15 will
explain what MS.DI can and can’t do.

Each chapter follows a common template. This may give you a certain sense of déjà vu
as you read the same sentence for the third time. We consider it an advantage, because
it should make it easy for you to quickly find similar sections across different chapters if
you want to compare how a specific feature is addressed across containers.

These chapters are meant as inspiration. If you have yet to pick a favorite DI Con-
tainer, you can read through all three chapters to compare them, but you can also just
read the one that particularly interests you. The information presented in part 4 was
accurate at the time of writing, but always be sure to consult more up-to-date sources
as well.

359

12DI Container introduction

In this chapter
¡	Using configuration files to enable late binding

¡	Explicitly registering components in a
Di contAiner with configurAtion As coDe

¡	Applying Convention over Configuration in a
Di contAiner with Auto-registrAtion

¡	Choosing between applying Pure Di or using
a Di contAiner

When I (Mark) was a kid, my mother and I would occasionally make ice cream.
This didn’t happen too often because it required work, and it was hard to get right.
Real ice cream is based on a crème anglaise, which is a light custard made from sugar,
egg yolks, and milk or cream. If heated too much, this mixture curdles. Even if you
manage to avoid this, the next phase presents more problems. Left alone in the
freezer, the cream mixture crystallizes, so you have to stir it at regular intervals until
it becomes so stiff that this is no longer possible. Only then will you have a good,
homemade ice cream. Although this is a slow and labor-intensive process, if you
want to — and you have the necessary ingredients and equipment — you can use
this technique to make ice cream.

360 ChapTEr 12 DI Container introduction

Today, some 35 years later, my mother-in-law makes ice cream with a frequency
unmatched by myself and my mother at much younger ages — not because she loves
making ice cream, but because she uses technology to help her. The technique is still
the same, but instead of regularly taking out the ice cream from the freezer and stirring
it, she uses an electric ice cream maker to do the work for her (see figure 12.1).

DI is first and foremost a technique, but you can use technology to make things easier.
In part 3, we described DI as a technique. Here, in part 4, we take a look at the technology
that can be used to support the DI technique. We call this technology DI Containers.

DEFINITION A DI Container is a software library that provides DI function-
ality and automates many of the tasks involved in Object Composition,
Interception, and Lifetime Management. It’s an engine that resolves and
manages object graphs.

Figure 12.1 An Italian
ice cream maker. As with
making ice cream, with better
technology, you can accomplish
programming tasks more easily
and quickly.

 361Introducing di ContaineRs

In this chapter, we’ll look at DI Containers as a concept — how they fit into the overall
topic of DI — as well as some patterns and practices concerning their usage. We’ll also
look at some examples along the way.

This chapter begins with a general introduction to DI Containers, including a
description of a concept called Auto-Wiring, followed by a section on various configu-
ration options. You can read about each of these configuration options in isolation, but
we think it’d be beneficial to at least read about Configuration as Code before you
read about Auto-Registration.

The last section is different. It focuses on the advantages and disadvantages of using
DI Containers and helps you decide whether the use of a DI Container is beneficial to
you and your applications. We think this an important part that everyone should read,
regardless of their experience with DI and DI Containers. This section can be read in
isolation, although it would be beneficial to read the sections on Configuration as
Code and Auto-Registration first.

The purpose of this chapter is to give you a good understanding of what a DI Con-
tainer is and how it fits in with the rest of the patterns and principles in this book. In a
sense, you can view this chapter as an introduction to part 4 of the book. Here, we’ll talk
about DI Containers in general, whereas in the following chapters, we’ll talk about
specific containers and their APIs.

12.1 Introducing Di containerS

A DI Container is a software library that can automate many of the tasks involved
in Object Composition, Lifetime Management, and Interception. Although it’s
possible to write all the required infrastructure code with Pure DI, it doesn’t add
much value to an application. On the other hand, the task of composing objects is of
a general nature and can be resolved once and for all; this is what’s known as a Generic
Subdomain.1 Given this, using a general-purpose library can make sense. It’s not much
different than implementing logging or data access; logging application data is the
kind of problem that can be addressed by a general-purpose logging library. The same
is true for composing object graphs.

In this section, we’ll discuss how DI Containers compose object graphs. We’ll also
show you some examples to give you a general sense of what using a container and an
implementation might look like.

12.1.1 Exploring containers’ Resolve API

A DI Container is a software library like any other software library. It exposes an API
that you can use to compose objects, and composing an object graph is a single method
call. DI Containers also require you to configure them prior to composing objects.
We’ll revisit that in section 12.2.

Here, we’ll show you some examples of how DI Containers can resolve object
graphs. As examples in this section, we’ll use both Autofac and Simple Injector applied

1 Eric J. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley, 2004), 406.

362 ChapTEr 12 DI Container introduction

to an ASP.NET Core MVC application. Refer to section 7.3 for more detailed informa-
tion about how to compose ASP.NET Core MVC applications.

You can use a DI Container to resolve controller instances. This functionality can
be implemented with all three DI Containers covered in the following chapters, but
we’ll show only a couple of examples here.

rESOlviNg CONTrOllErS wiTh variOuS di CONTaiNErS

Autofac is a DI Container with a fairly pattern-conforming API. Assuming you already
have an Autofac container instance, you can resolve a controller by supplying the
requested type:

var controller = (HomeController)container.Resolve(typeof(HomeController));

You’ll pass typeof(HomeController) to the Resolve method and get back an instance
of the requested type, fully populated with all the appropriate Dependencies. The
Resolve method is weakly typed and returns an instance of System.Object; this means
you’ll need to cast it to something more specific, as the example shows.

Many of the DI Containers have APIs that are similar to Autofac’s. The corresponding
code for Simple Injector looks nearly identical to Autofac’s, even though instances are
resolved using the SimpleInjector.Container class. With Simple Injector, the previous
code would look like this:

controller = (HomeController)container.GetInstance(typeof(HomeController));

The only real difference is that the Resolve method is called GetInstance. You can
extract a general shape of a DI Container from these examples.

rESOlviNg ObjECT graphS wiTh di CONTaiNErS

A DI Container is an engine that resolves and manages object graphs. Although
there’s more to a DI Container than resolving objects, this is a central part of any con-
tainer’s API. The previous examples show that containers have a weakly typed method
for that purpose. With variations in names and signatures, that method looks like this:

object Resolve(Type serviceType);

As the previous examples demonstrate, because the returned instance is typed as
System.Object, you often need to cast the return value to the expected type before
using it. Many DI Containers also offer a generic version for those cases where you
know which type to request at compile time. They often look like this:

T Resolve<T>();

Instead of supplying a Type method argument, such an overload takes a type param-
eter (T) that indicates the requested type. The method returns an instance of T. Most
containers throw an exception if they can’t resolve the requested type.

WARNING The signature of the Resolve method is extremely powerful and
versatile. You can request an instance of any type and your code still compiles.
In fact, the Resolve method fits the signature of a Service Locator. As dis-
cussed in 5.2, you’ll need to exercise care not to use your DI Container as a
Service Locator by calling Resolve outside the Composition Root.

 363Introducing di ContaineRs

If we view the Resolve method in isolation, it almost looks like magic. From the
compiler’s perspective, it’s possible to ask it to resolve instances of arbitrary types.
How does the container know how to compose the requested type, including all
Dependencies? It doesn’t; you’ll have to tell it first. You do so using a configuration
that maps Abstractions to concrete types. We’ll return to this topic in section 12.2.

If a container has insufficient configuration to fully compose a requested type,
it’ll normally throw a descriptive exception. As an example, consider the following
HomeController we first discussed in listing 3.4. As you might remember, it contains a
Dependency of type IProductService:

public class HomeController : Controller
{
 private readonly IProductService productService;

 public HomeController(IProductService productService)
 {
 this.productService = productService;
 }

 ...
}

With an incomplete configuration, Simple Injector has exemplary exception messages
like this one:

The constructor of type HomeController contains the parameter with name 'productService'
and type IProductService, which isn’t registered. Please ensure IProductService is registered
or change the constructor of HomeController.

In the previous example, you can see that Simple Injector can’t resolve HomeController,
because it contains a constructor argument of type IProductService, but Simple Injec-
tor wasn’t told which implementation to return when IProductService was requested.
If the container is correctly configured, it can resolve even complex object graphs from
the requested type. If something is missing from the configuration, the container can
provide detailed information about what’s missing. In the next section, we’ll take a closer
look at how this is done.

12.1.2 auto-Wiring

DI Containers thrive on the static information compiled into all classes. Using reflection,
they can analyze the requested class and figure out which Dependencies are needed.

As explained in section 4.2, Constructor Injection is the preferred way of applying
DI and, because of this, all DI Containers inherently understand Constructor Injec-
tion. Specifically, they compose object graphs by combining their own configuration with
the information extracted from the classes’ type information. This is called Auto-Wiring.

DEFINITION Auto-Wiring is the ability to automatically compose an object
graph from maps between Abstractions and concrete types by making use of
type information supplied by the compiler and the Common Language Run-
time (CLR).

364 ChapTEr 12 DI Container introduction

Most DI Containers also understand Property Injection, although some require
you to explicitly enable it. Considering the downsides of Property Injection (as
explained in section 4.4), this is a good thing. Figure 12.2 describes the general algo-
rithm most DI Containers follow to Auto-Wire an object graph.

As shown, a DI Container finds the concrete type for a requested Abstraction. If the
constructor of the concrete type requires arguments, a recursive process starts where
the DI Container repeats the process for each argument type until all constructor
arguments are satisfied. When this is complete, the container constructs the concrete
type while injecting the recursively resolved Dependencies.

NOTE Most DI Containers implement optimizations that allow consecutive
requests to execute faster. How these optimizations are performed differs from
container to container. As we alluded in section 4.2.2, a DI Container typi-
cally doesn’t pose significant performance overhead to your application. I/O is
the most important bottleneck for an average application, and optimizing I/O
generally produces more gains than optimizing Object Composition.

In section 12.2, we’ll take a closer look at how containers can be configured. For now,
the most important thing to understand is that at the core of the configuration is a
list of mappings between Abstractions and their represented concrete classes. That
sounds a bit theoretical, so we think an example will be helpful.

12.1.3 Example: Implementing a simplistic Di container that
supports auto-Wiring

To demonstrate how Auto-Wiring works, and to show that there’s nothing magical
about DI Containers, let’s look at a simplistic DI Container implementation that’s
able to build complex object graphs using Auto-Wiring.

Recursive callRequest instance
for ABSTRACTION

Request each
constructor

argument type

Construct concrete type
using resolved

constructor arguments

Find concrete type for
requested ABSTRACTION

Return instance

Figure 12.2 Simplified
workflow for auTO-wiriNg.
A di CONTaiNEr uses its
configuration to find the
appropriate concrete
class that matches the
requested type. It then
uses reflection to examine
the class’s constructor.

 365Introducing di ContaineRs

WARNING Listing 12.1 is marked as bad code, which, in this context, means
that although you can use this code to play around with the concept, you should
never use it in a real application. As we’ll explain in more detail in section 12.3,
you should either use Pure DI or one of the existing commonly used and well-
tested DI Containers. This listing is purely for educational purposes — do not
use this at work!

Listing 12.1 shows this simplistic DI Container implementation. It doesn’t support
Lifetime Management, Interception, or many other important features. The only
supported feature is Auto-Wiring.

Listing 12.1 A simplistic di CONTaiNEr that supports auTO-wiriNg

public class AutoWireContainer
{
 Dictionary<Type, Func<object>> registrations =
 new Dictionary<Type, Func<object>>();

 public void Register(
 Type serviceType, Type componentType)
 {
 this.registrations[serviceType] =
 () => this.CreateNew(componentType);
 }

 public void Register(
 Type serviceType, Func<object> factory)
 {
 this.registrations[serviceType] = factory;
 }

 public object Resolve(Type type)
 {
 if(this.registrations.ContainsKey(type))
 {
 return this.registrations[type]();
 }

 throw new InvalidOperationException(
 "No registration for " + type);
 }

 private object CreateNew(Type componentType)
 {
 var ctor =
 componentType.GetConstructors()[0];

 var dependencies =
 from p in ctor.GetParameters()
 select this.Resolve(p.ParameterType);

 return Activator.CreateInstance(
 componentType, dependencies.ToArray());
 }
}

Contains a set of mappings

Creates a new registration and adds
the mapping for the service type to
the registrations dictionary

You can supply the container
with a Func<T> delegate
yourself, optionally
bypassing Auto-WIrIng.

Resolves a complete object graph

Creates a new instance
of a component

366 ChapTEr 12 DI Container introduction

The AutoWireContainer contains a set of registrations. A registration is a mapping
between an Abstraction (the service type) and a component type. The Abstraction
is presented as the dictionary’s key, whereas its value is a Func<object> delegate that
allows constructing a new instance of a component that implements the Abstraction.
The Register method registers a new registration by telling the container which com-
ponent should be created for a given service type. You only specify which component
to create, not how.

The Register method adds the mapping for the service type to the registrations
dictionary. Optionally, the Register method can supply the container with a Func<T>
delegate directly. This bypasses its Auto-Wiring abilities. It will call the supplied dele-
gate instead.

The Resolve methods allows resolving a complete object graph. It gets the Func<T>
from the registrations dictionary for the requested serviceType, invokes it, and
returns its value. In case there’s no registration for the requested type, Resolve throws
an exception. And finally, CreateNew creates a new instance of a component by iterat-
ing over the component’s constructor parameters and calling back into the container
recursively. It does so by calling Resolve for each parameter, while supplying the param-
eter’s Type. When all the type’s Dependencies are resolved in this way, it constructs the
type itself by using reflection (using the System.Activator class).

NOTE The AutoWireContainer’s CreateNew method contains the meat of the
example in listing 12.1. It uses reflection to analyze the type information to
recursively call back into the container to get the type’s Dependencies and
once more to create the type itself. CreateNew implements Auto-Wiring.

An AutoWireContainer instance can be configured to compose arbitrary object
graphs. Back in chapter 3 in listing 3.13, you created a HomeController using Pure
DI. The next listing repeats that listing from chapter 3. We’ll use that as an example to
demonstrate the Auto-Wiring capabilities previously defined in AutoWireContainer.

Listing 12.2 Composing an object graph for HomeController using purE di

new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(connectionString)),
 new AspNetUserContextAdapter()));

Instead of composing this object graph by hand, as done in the previous listing, you
can use the AutoWireContainer to register the five required components. To do this,
you must map these five components to their appropriate Abstraction. Table 12.1
lists these mappings.

 367Introducing di ContaineRs

Table 12.1 Mapping types to support auTO-wiriNg of HomeController

abSTraCTiON Concrete type

HomeController HomeController

IProductService ProductService

IProductRepository SqlProductRepository

CommerceContext CommerceContext

IUserContext AspNetUserContextAdapter

Listing 12.3 shows how you can use the AutoWireContainer’s Register methods to add
the required mappings specified in table 12.1. Note that this listing uses Configuration
as Code. We’ll discuss Configuration as Code in section 12.2.2.

Listing 12.3 Using AutoWireContainer to register HomeController

var container = new AutoWireContainer();

container.Register(
 typeof(IUserContext),
 typeof(AspNetUserContextAdapter));

container.Register(
 typeof(IProductRepository),
 typeof(SqlProductRepository));

container.Register(
 typeof(IProductService),
 typeof(ProductService));

container.Register(
 typeof(HomeController),
 typeof(HomeController));

container.Register(
 typeof(CommerceContext),
 () => new CommerceContext(connectionString));

NOTE When a CommerceContext is requested, you create the context by
hand, instead of making use of Auto-Wiring. Hand wiring is required
because CommerceContext contains the connectionString parameter, which
is a primitive type string.

You might find the mapping for HomeController in table 12.1 and listing 12.3 confus-
ing, because it maps to itself instead of mapping to an Abstraction. This is a common
practice, however, especially when dealing with types that are at the top of the object
graph, such as MVC controllers.

Creates a new container instance

Registers a mapping between an
AbstrActIon and a concrete type without
having to specify the type’s DepenDencIes.
Note that because the container uses an
internal dictionary, the order in which
you make the registrations is irrelevant.

In the case of HomeController, the AbstrActIon
and the concrete type are of the same type.
This means that any time you request a
HomeController, you get a HomeController.

When a
CommerceContext
is requested, the
Resolve method
calls this delegate.

368 ChapTEr 12 DI Container introduction

You saw something similar in listings 4.4, 7.8, and 8.3, where you created a new Home
Controller instance when a HomeController type was requested. The main difference
between those listings and listing 12.3 is that the latter uses a DI Container instead of
Pure DI.

NOTE Instead of hand wiring CommerceContext, you could have tried
Auto-Wiring the CommerceContext while adding an extra registration for the
connectionString. Because connectionString is of type String, however,
this would cause ambiguity. Remember that DI Containers resolve Depen-
dencies based on their type, but there could be many configuration values of
type String required by application components. When that’s the case, the con-
tainer would be unable to determine which value to use because they’d all have
the same type. Hand wiring CommerceContext solves this problem.

Listing 12.3 effectively registered all components required for the composition of an
object graph of HomeController. You can now use the configured AutoWireContainer
to create a new HomeController.

Listing 12.4 Using AutoWireContainer to resolve a HomeController

object controller = container.Resolve(typeof(HomeController));

When the AutoWireContainer’s Resolve method is called to request a new Home
Controller type, the container will call itself recursively until it has resolved all of
its required Dependencies. After this, a new HomeController instance is created,
while supplying the resolved Dependencies to its constructor. Figure 12.3 shows the
recursive process, using a somewhat unconventional representation to visualize recur-
sive calls. The container instance is spread out over four separate vertical time lines.
Because there are multiple levels of recursive calls, folding them into one single line, as
is the norm with UML sequence diagrams, would be quite confusing.

When the DI Container receives a request for a HomeController, the first thing it’ll
do is look up the type in its configuration. HomeController is a concrete class, which
you mapped to itself. The container then uses reflection to inspect HomeController’s
one and only constructor with the following signature:

public HomeController(IProductService productService)

Because this constructor isn’t a parameterless constructor, it needs to repeat the pro-
cess for the IProductService constructor argument when following the general flow-
chart from figure 12.2. The container looks up IProductService in its configuration
and finds that it maps to the concrete ProductService class. The single public con-
structor for ProductService has this signature:

public ProductService(
 IProductRepository repository,
 IUserContext userContext)

Requests a
HomeController
from the
container

Calls into the System.Activator
class to create the type using
reflection by supplying it with the
constructed type’s DEPENDENCIES

Calls back into the container
recursively to get the
requested type’s DEPENDENCIES

Calls the registered delegate
() => new CommerceContext(connectionString)

Composition
Root Container

Resolve<HomeController>
Resolve<IProductService>

Resolve<IProductRepository>
Resolve<CommerceContext>

Activator.CreateInstance
<SqlProductRepository>(c)

Resolve
<IUserContext>

Activator.CreateInstance
<ProductService>(r, c)

Activator.CreateInstance
<HomeController>(s)

Controller

c

c

s

r

Activator.CreateInstance
<AspNetUserContext-

Adapter>()

Figure 12.3 The COmpOSiTiON rOOT requests a HomeController from the container, which recursively calls
back into itself to request HomeController’s dEpENdENCiES.

 369Introducing di ContaineRs

That’s still not a parameterless constructor, and now there are two constructor argu-
ments to deal with. The container takes care of each in order, so it starts with the
IProductRepository interface that, according to the configuration, maps to Sql
ProductRepository. That SqlProductRepository has a public constructor with this
signature:

public SqlProductRepository(CommerceContext context)

That’s again not a parameterless constructor, so the container needs to resolve Com
merceContext to satisfy SqlProductRepository’s constructor. CommerceContext, how-
ever, is registered in listing 12.3 using the following delegate:

() => new CommerceContext(connectionString)
This syntax for defining
anonymous functions is also
known as a lambda expression.

You saw something similar in listings 4.4, 7.8, and 8.3, where you created a new Home
Controller instance when a HomeController type was requested. The main difference
between those listings and listing 12.3 is that the latter uses a DI Container instead of
Pure DI.

NOTE Instead of hand wiring CommerceContext, you could have tried
Auto-Wiring the CommerceContext while adding an extra registration for the
connectionString. Because connectionString is of type String, however,
this would cause ambiguity. Remember that DI Containers resolve Depen-
dencies based on their type, but there could be many configuration values of
type String required by application components. When that’s the case, the con-
tainer would be unable to determine which value to use because they’d all have
the same type. Hand wiring CommerceContext solves this problem.

Listing 12.3 effectively registered all components required for the composition of an
object graph of HomeController. You can now use the configured AutoWireContainer
to create a new HomeController.

Listing 12.4 Using AutoWireContainer to resolve a HomeController

object controller = container.Resolve(typeof(HomeController));

When the AutoWireContainer’s Resolve method is called to request a new Home
Controller type, the container will call itself recursively until it has resolved all of
its required Dependencies. After this, a new HomeController instance is created,
while supplying the resolved Dependencies to its constructor. Figure 12.3 shows the
recursive process, using a somewhat unconventional representation to visualize recur-
sive calls. The container instance is spread out over four separate vertical time lines.
Because there are multiple levels of recursive calls, folding them into one single line, as
is the norm with UML sequence diagrams, would be quite confusing.

When the DI Container receives a request for a HomeController, the first thing it’ll
do is look up the type in its configuration. HomeController is a concrete class, which
you mapped to itself. The container then uses reflection to inspect HomeController’s
one and only constructor with the following signature:

public HomeController(IProductService productService)

Because this constructor isn’t a parameterless constructor, it needs to repeat the pro-
cess for the IProductService constructor argument when following the general flow-
chart from figure 12.2. The container looks up IProductService in its configuration
and finds that it maps to the concrete ProductService class. The single public con-
structor for ProductService has this signature:

public ProductService(
 IProductRepository repository,
 IUserContext userContext)

Requests a
HomeController
from the
container

Calls into the System.Activator
class to create the type using
reflection by supplying it with the
constructed type’s DEPENDENCIES

Calls back into the container
recursively to get the
requested type’s DEPENDENCIES

Calls the registered delegate
() => new CommerceContext(connectionString)

Composition
Root Container

Resolve<HomeController>
Resolve<IProductService>

Resolve<IProductRepository>
Resolve<CommerceContext>

Activator.CreateInstance
<SqlProductRepository>(c)

Resolve
<IUserContext>

Activator.CreateInstance
<ProductService>(r, c)

Activator.CreateInstance
<HomeController>(s)

Controller

c

c

s

r

Activator.CreateInstance
<AspNetUserContext-

Adapter>()

Figure 12.3 The COmpOSiTiON rOOT requests a HomeController from the container, which recursively calls
back into itself to request HomeController’s dEpENdENCiES.

370 ChapTEr 12 DI Container introduction

The container calls that delegate, which results in a new CommerceContext instance.
This time, no Auto-Wiring is used.

IMPORTANT When you start using a DI Container, it’s not required that you
abandon hand wiring object graphs altogether.

Now that the container has the appropriate value for CommerceContext, it can invoke
the SqlProductRepository constructor. It has now successfully handled the Reposi-
tory parameter for the ProductService constructor, but it’ll need to hold on to that
value for a while longer; it also needs to take care of ProductService’s userContext
constructor parameter. According to the configuration, IUserContext maps to the
concrete AspNetUserContextAdapter class, which has this public constructor:

public AspNetUserContextAdapter()

NOTE You might recall from listing 3.12 that AspNetUserContextAdapter
didn’t specify a constructor at all. If you don’t specify any constructors on a class,
the C# compiler compiles the class using a parameterless public constructor.

Because AspNetUserContextAdapter contains a parameterless constructor, it can be
created without having to resolve any Dependencies. It can now pass the new AspNet
UserContextAdapter instance to the ProductService constructor. Together with the
SqlProductRepository from before, it now fulfills the ProductService constructor and
invokes it via reflection. Finally, it passes the newly created ProductService instance
to the HomeController constructor and returns the HomeController instance. Figure
12.4 shows how the general workflow presented in figure 12.2 maps to the AutoWire
Container from listing 12.1.

The advantage of using a DI Container’s Auto-Wiring capabilities as shown in listing
12.3 rather than using Pure DI as shown in listing 12.2 is that with Pure DI, any change to a
component’s constructor needs to be reflected in the Composition Root. Auto-Wiring,
on the other hand, makes the Composition Root more resilient to such changes.

For example, let’s say you need to add a CommerceContext Dependency to AspNet
UserContextAdapter in order for it to query the database. The following listing shows
the change that needs to be made to the Composition Root when you apply Pure DI.

Listing 12.5 COmpOSiTiON rOOT for the changed AspNetUserContextAdapter

new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(connectionString)),
 new AspNetUserContextAdapter(
 new CommerceContext(connectionString))));

Request instance
for abstraction

Return instance

Find concrete type for
requested abstraction

Request each
constructor

argument type

Construct concrete type
using resolved

constructor arguments

this.registrations[serviceType]

var dependencies =
 from p in ctor.GetParameters()
 select this.Resolve(p.ParameterType);

return Activator.CreateInstance(
 componentType,
 dependencies.ToArray());

Figure 12.4 Simplified workflow for auTO-wiriNg mapped to the code from listing 12.1. The registrations
dictionary is queried for the concrete type, its constructor parameters get resolved, and the concrete type is
created using its resolved dEpENdENCiES.

CommerceContext is now injected
into AspNetUserContextAdapter.

 371Introducing di ContaineRs

With Auto-Wiring, on the other hand, no changes to the Composition Root are required
in this case. AspNetUserContextAdapter is Auto-Wired, and because its new Commerce
Context Dependency was already registered, the container will be able to satisfy the new
constructor argument and will happily construct a new AspNetUserContextAdapter.

IMPORTANT Although Auto-Wiring can decrease the required maintenance
to the Composition Root, this still doesn’t mean you should always prefer a
DI Container over Pure DI. As stated previously, section 12.3 goes into more
detail about when Pure DI is better.

This is how Auto-Wiring works, although DI Containers also need to take care of
Lifetime Management and, perhaps, address Property Injection as well as other,
more specialized, creational requirements.

WARNING The AutoWireContainer from listing 12.1 will cause a StackOver
flowException when there’s a Dependency cycle in an object graph.2 Stack
OverflowExceptions are problematic because they’ll crash the application,
making it hard to find out what exactly went wrong. This is one of the many
reasons you should always prefer one of the available DI Containers over a
home-grown implementation. Most of the modern popular DI Containers
detect cycles without causing the process to be terminated.

The salient point is that Constructor Injection statically advertises the Dependency
requirements of a class, and DI Containers use that information to Auto-Wire com-
plex object graphs. A container must be configured before it can compose object
graphs. Registration of components can be done in various ways.

2 We discussed Dependency cycles in section 6.3.

The container calls that delegate, which results in a new CommerceContext instance.
This time, no Auto-Wiring is used.

IMPORTANT When you start using a DI Container, it’s not required that you
abandon hand wiring object graphs altogether.

Now that the container has the appropriate value for CommerceContext, it can invoke
the SqlProductRepository constructor. It has now successfully handled the Reposi-
tory parameter for the ProductService constructor, but it’ll need to hold on to that
value for a while longer; it also needs to take care of ProductService’s userContext
constructor parameter. According to the configuration, IUserContext maps to the
concrete AspNetUserContextAdapter class, which has this public constructor:

public AspNetUserContextAdapter()

NOTE You might recall from listing 3.12 that AspNetUserContextAdapter
didn’t specify a constructor at all. If you don’t specify any constructors on a class,
the C# compiler compiles the class using a parameterless public constructor.

Because AspNetUserContextAdapter contains a parameterless constructor, it can be
created without having to resolve any Dependencies. It can now pass the new AspNet
UserContextAdapter instance to the ProductService constructor. Together with the
SqlProductRepository from before, it now fulfills the ProductService constructor and
invokes it via reflection. Finally, it passes the newly created ProductService instance
to the HomeController constructor and returns the HomeController instance. Figure
12.4 shows how the general workflow presented in figure 12.2 maps to the AutoWire
Container from listing 12.1.

The advantage of using a DI Container’s Auto-Wiring capabilities as shown in listing
12.3 rather than using Pure DI as shown in listing 12.2 is that with Pure DI, any change to a
component’s constructor needs to be reflected in the Composition Root. Auto-Wiring,
on the other hand, makes the Composition Root more resilient to such changes.

For example, let’s say you need to add a CommerceContext Dependency to AspNet
UserContextAdapter in order for it to query the database. The following listing shows
the change that needs to be made to the Composition Root when you apply Pure DI.

Listing 12.5 COmpOSiTiON rOOT for the changed AspNetUserContextAdapter

new HomeController(
 new ProductService(
 new SqlProductRepository(
 new CommerceContext(connectionString)),
 new AspNetUserContextAdapter(
 new CommerceContext(connectionString))));

Request instance
for abstraction

Return instance

Find concrete type for
requested abstraction

Request each
constructor

argument type

Construct concrete type
using resolved

constructor arguments

this.registrations[serviceType]

var dependencies =
 from p in ctor.GetParameters()
 select this.Resolve(p.ParameterType);

return Activator.CreateInstance(
 componentType,
 dependencies.ToArray());

Figure 12.4 Simplified workflow for auTO-wiriNg mapped to the code from listing 12.1. The registrations
dictionary is queried for the concrete type, its constructor parameters get resolved, and the concrete type is
created using its resolved dEpENdENCiES.

CommerceContext is now injected
into AspNetUserContextAdapter.

372 ChapTEr 12 DI Container introduction

12.2 Configuring Di containerS

Although the Resolve method is where most of the action happens, you should expect
to spend most of your time with a DI Container’s configuration API. Resolving object
graphs is, after all, a single method call.

DI Containers tend to support two
or three of the common configuration
options shown in figure 12.5. Some don’t
support configuration files, and others
also lack support for Auto-Registration,
whereas Configuration as Code support
is ubiquitous. Most allow you to mix several
approaches in the same application. Sec-
tion 12.2.4 discusses why you’d want to use
a mixed approach.

These three configuration options have
different characteristics that make them
useful in different situations. Both config-
uration files and Configuration as Code
tend to be explicit, because they require
you to register each component individ-
ually. Auto-Registration, on the other
hand, is more implicit because it uses con-
ventions to register a set of components by
a single rule.

When you use Configuration as Code, you compile the container configuration
into an assembly, whereas file-based configuration enables you to support late binding,
where you can change the configuration without recompiling the application. In that
dimension, Auto-Registration falls somewhere in the middle, because you can ask
it to scan a single assembly known at compile time or, alternatively, to scan all assem-
blies in a predefined folder that might be unknown at compile time. Table 12.2 lists the
advantages and disadvantages of each option.

Table 12.2 Configuration options

Style Description Advantages Disadvantages

Configuration files Mappings are speci-
fied in configuration
files (typically in XML
or JSON format)

 ■ Supports replacement
without recompilation

 ■ No compile-time checks

 ■ Verbose and brittle

configurAtion As coDe Code explicitly deter-
mines mappings

 ■ Compile-time checks

 ■ High degree of control

 ■ No support for
replacement without
recompilation

Config files CONFIGURATION

AS CODE

Late binding Early binding

AUTO-
REGISTRATION

Explicit

Implicit

Figure 12.5 The most common ways to configure
a di CONTaiNEr shown against dimensions of
explicitness and the degree of binding

 373Configuring di ContaineRs

Style Description Advantages Disadvantages

Auto-registrAtion Rules are used to
locate suitable com-
ponents using reflec-
tion and to build the
mappings.

 ■ Supports replacement
without recompilation

 ■ Less effort required

 ■ Helps enforce conven-
tions to make a code
base more consistent

 ■ No compile-time checks

 ■ Less control

 ■ May seem more
abstract at first

Historically, DI Containers started out with configuration files, which also explains
why the older libraries still support this. But this feature has been downplayed in favor
of more conventional approaches. That’s why more recently developed DI Containers,
such as Simple Injector and Microsoft.Extensions.DependencyInjection, don’t have any
built-in support for file-based configuration.

IMPORTANT You shouldn’t go back and reconfigure the container once you’ve
started resolving object graphs — that will only give you grief. This is related to
the Register Resolve Release pattern (https://mng.bz/D8Ew).

Although Auto-Registration is the most modern option, it isn’t the most obvious
place to start. Because of its implicitness, it may seem more abstract than the more
explicit options, so instead, we’ll cover each option in historical order, starting with
configuration files.

12.2.1 Configuring containers with configuration files

When DI Containers first appeared back in the early 2000s, they all used XML as
a configuration mechanism — most things did back then. Experience with XML as a
configuration mechanism later revealed that this is rarely the best option.

XML tends to be verbose and brittle. When you configure a DI Container in XML,
you identify various classes and interfaces, but you have no compiler support to warn
you if you misspell something. Even if the class names are correct, there’s no guarantee
that the required assembly is going to be in the application’s probing path.

NOTE In recent years, JSON has also become a popular way of expressing
configurations. The format is cleaner and easier to read than XML, but it still
exhibits the same characteristics: it’s as brittle and verbose as XML.

To add insult to injury, the expressiveness of XML is limited compared to that of plain
code. This sometimes makes it hard or impossible to express certain configurations
in a configuration file that are otherwise trivial to express in code. In listing 12.3, for
instance, you registered the CommerceContext using a lambda expression. Such a
lambda expression can be expressed in neither XML nor JSON.

The advantage of configuration files, on the other hand, is that you can change the
behavior of the application without recompilation. This is valuable if you develop soft-
ware that ships to thousands of customers, because it gives them a way to customize

https://mng.bz/D8Ew

374 ChapTEr 12 DI Container introduction

the application. But if you write an internal application or a website where you con-
trol the deployment environment, it’s often easier to recompile and redeploy the
application when you need to change the behavior.

IMPORTANT Configuration files are as much a part of your Composition Root
as is Configuration as Code and Auto-Registration. Using configuration
files, therefore, doesn’t make your Composition Root smaller, it just moves it.
Use configuration files only for those parts of your DI configuration that require
late binding. Prefer Configuration as Code or Auto-Registration in all
other parts of your configuration.

A DI Container is often configured with files by pointing it to a particular configuration
file. The following example uses Autofac as an example.

NOTE Because Autofac is the only DI Container covered in this book that has
built-in support for configuration files, it makes sense to use it for an example.

In this example, you’ll configure the same classes as in section 12.1.3. A large part of the
task is to apply the configuration outlined in table 12.1, but you must also supply a similar
configuration to support composition of the HomeController class. The following listing
shows the configuration necessary to get the application up and running.

Listing 12.6 Configuring Autofac with a JSON configuration file

{
 "defaultAssembly": "Commerce.Web",
 "components": [
 {
 "services": [{
 "type":
 "Commerce.Domain.IUserContext, Commerce.Domain"
 }],
 "type":
 "Commerce.Web.AspNetUserContextAdapter"
 },
 {
 "services": [{
 "type": "Commerce.Domain.IProductRepository, Commerce.Domain"
 }],
 "type": "Commerce.SqlDataAccess.SqlProductRepository, Commerce.
 ➥SqlDataAccess"
 },
 {
 "services": [{
 "type": "Commerce.Domain.IProductService, Commerce.Domain"
 }],
 "type":
 "Commerce.Domain.ProductService, Commerce.Domain"
 },
 {
 "type": "Commerce.Web.Controllers.HomeController"
 },

defaultAssembly helps write
types in a shorter fashion.

Simple mapping

If a type maps to
itself, the services
array can be
omitted.

 375Configuring di ContaineRs

 {
 "type": "Commerce.SqlDataAccess.CommerceContext,
 ➥Commerce.SqlDataAccess",
 "parameters": {
 "connectionString":
 "Server=.;Database=MaryCommerce;Trusted_
 ➥Connection=True;"
 }
 }]
}

In this example, if you don’t specify an assembly-qualified type name in a type or inter-
face reference, defaultAssembly will be assumed to be the default assembly. For a sim-
ple mapping, full type names must be used, including namespace and assembly name.
Because AspNetUserContextAdapter excluded the name of the assembly, Autofac looks
for it in the Commerce.Web assembly, which you defined as the defaultAssembly.

As you can see from even this simple code listing, JSON configuration tends to be
quite verbose. Simple mappings like the one from the IUserContext interface to the
AspNetUserContextAdapter class require quite a lot of text in the form of brackets and
fully qualified type names.

As you may recall, CommerceContext takes a connection string as input, so you need
to specify how the value of this string is found. By adding parameters to a mapping, you
can specify values by their parameter name — in this case, connectionString. Loading
the configuration into the container is done with the following code.

Listing 12.7 Reading configuration files using Autofac

var builder = new Autofac.ContainerBuilder();

IConfigurationRoot configuration =
 new ConfigurationBuilder()
 .AddJsonFile("autofac.json")
 .Build();

builder.RegisterModule(
 new Autofac.Configuration.ConfigurationModule(
 configuration));

Autofac is the only DI Container included in this book that supports configuration
files, but there are other DI Containers not covered here that continue to support
configuration files. The exact schema is different for each container, but the over-
all structure tends to be similar, because you need to map an Abstraction to an
implementation.

Specifies a connection string as the value to a
constructor parameter named connectionString

Allows adding mapping
between AbstrActIons
and concrete types

Loads the autofac.json configuration
file from listing 12.6 using .NET Core’s
configuration system

Wraps the created configuration in an Autofac
module that processes the configuration file and
maps the components to registrations in Autofac

376 ChapTEr 12 DI Container introduction

WARNING As your application grows in size and complexity, so will your con-
figuration file. It can grow to become a real stumbling block. This is because it
models coding concepts such as classes, parameters, and such, but without the
benefits of the compiler, debugging options, and so forth. Configuration files
tend to become brittle and opaque to errors, so only use this approach when
you need late binding.

Configuration files don’t scale
I (Steven) once worked for a big client that maintained a product that contained over a
hundred man-years of code. DI was applied ubiquitously, which was an absolute plus. To
support object comPosition, however, they used Spring.NET as their Di contAiner, which
solely supported XML configuration files at the time. To make matters worse, the version
of Spring.NET they used didn’t support Auto-Wiring. This not only required every map-
ping to be explicitly defined in big XML files, but every constructor DePenDency needed to
be specified too. With over a dozen teams working on that code base, these Spring.NET
XML configuration files were not only verbose, brittle, and maintenance heavy, they also
caused merge conflicts on a regular basis.

Because of the verbosity, fragility, lack of compiler support, and bad performance of
those XML configuration files, many development hours were wasted on a daily basis,
which was something the developers all realized. They’d have been better off if they had
decided to practice Pure Di instead from the beginning.3 In their case, Pure Di wouldn’t
by itself have solved their merge conflicts, but at least the compiler would help catch
most of the errors earlier.

TIP Although configuration files can work in a small application, or when
used for small portions of your application, they don’t scale. Avoid using con-
figuration files as your default method of DI configuration. As we’ll discuss in
section 12.3, use either Pure DI or Auto-Registration.

Don’t let the absence of support for handling configuration files influence your choice
of a DI Container too much. As described previously, only true late-bound compo-
nents should be defined in configuration files, which will unlikely be more than a
handful. Even with absence of support from your container, types can be loaded from
configuration files in a few simple statements, as shown in listing 1.2.

Because of the disadvantages of verbosity and brittleness, you should prefer the
other alternatives for configuring containers. Configuration as Code is similar to
configuration files in granularity and concept, but obviously uses code instead of con-
figuration files.

3 Their choice of XML-based Object Composition wasn’t weird, considering that at the time development
for the product started, everybody was using XML.

 377Configuring di ContaineRs

12.2.2 Configuring containers using configuration aS coDe

Perhaps the easiest way to compose an application is to hard code the construction
of object graphs. This may seem to go against the whole spirit of DI, because it deter-
mines the concrete implementations that should be used for all Abstractions at com-
pile time. But if done in a Composition Root, it only violates one of the benefits listed
in table 1.1, namely, late binding.

The benefit of late binding is lost if Dependencies are hard-coded, but, as we men-
tioned in chapter 1, this may not be relevant for all types of applications. If your applica-
tion is deployed in a limited number of instances in a controlled environment, it can be
easier to recompile and redeploy the application if you need to replace modules:

I often think that people are over-eager to define configuration files. Often a programming
language makes a straightforward and powerful configuration mechanism.4

MARTIN FOWLER

When you use Configuration as Code, you explicitly state the same discrete mappings
as when you use configuration files — only you use code instead of XML or JSON.

DEFINITION In the context of DI Containers, Configuration as Code allows
the container’s configuration to be stored as source code. Each mapping
between an Abstraction and a particular implementation is expressed explic-
itly and directly in code.

All modern DI Containers fully support Configuration as Code as the successor to
configuration files; in fact, most of them present this as the default mechanism, with
configuration files as an optional feature. As stated previously, some don’t even offer
support for configuration files at all. The API exposed to support Configuration as
Code differs from DI Container to DI Container, but the overall goal is still to define
discrete mappings between Abstractions and concrete types.

TIP Prefer Configuration as Code over configuration files unless you need
late binding. The compiler can be helpful, and the Visual Studio build system
automatically copies all required assemblies to the output folder. And if you do
need late binding, only use a configuration file for the parts of the configura-
tion that need to be late bound, which is typically just a tiny subset of the types
in the entire application.

Let’s take a look how to configure the e-commerce application using Configuration
as Code with Microsoft.Extensions.DependencyInjection. For this, we’ll use an exam-
ple that configures the sample e-commerce application with code.

4 Martin Fowler, “Inversion of Control Containers and the Dependency Injection pattern,” 2004,
https://martinfowler.com/articles/injection.html.

https://martinfowler.com/articles/injection.html

378 ChapTEr 12 DI Container introduction

In section 12.2.1, you saw how to configure the sample e-commerce application
with configuration files using Autofac. We could also demonstrate Configuration as
Code with Autofac, but, to make this chapter a bit more interesting, we’ll instead use
Microsoft.Extensions.DependencyInjection in this example. Using Microsoft’s config-
uration API, you can express the configuration from listing 12.6 more compactly, as
shown here.

Listing 12.8 Configuring Microsoft.Extensions.DependencyInjection with code

var services = new ServiceCollection();

services.AddSingleton<
 IUserContext,
 AspNetUserContextAdapter>();

services.AddTransient<
 IProductRepository,
 SqlProductRepository>();

services.AddTransient<
 IProductService,
 ProductService>();

services.AddTransient<HomeController>();

services.AddScoped<CommerceContext>(
 p => new CommerceContext(connectionString));

ServiceCollection is Microsoft’s equivalent to Autofac’s ContainerBuilder, which
defines the mappings between Abstractions and implementations. The Add
Transient, AddScoped, and AddSingleton methods are used to add Auto-Wired map-
pings between Abstractions and concrete types for their specific Lifestyle. These
methods are generic, which results in more condensed code with the additional bene-
fit of getting some extra compile-time checking. In case a concrete type maps to itself,
instead of having an Abstraction mapping to a concrete type, there’s a convenient
overload that just takes in the concrete type as a generic type argument. And, just as
with the AutoWireContainer example of listing 12.1, the API of this DI Container
contains an overload that allows mapping an Abstraction to a Func<T> delegate.

NOTE If this looks familiar, that isn’t a surprise: it’s conceptually almost identical
to our sample code in listing 12.3. There, we established a proof of concept for
how Auto-Wiring is accomplished.

In listing 12.8, we took the liberty of demonstrating the registration of components
using the three common lifestyles: Singleton, Transient, and Scoped. The following
chapters show how to configure lifestyles for each container in more detail.

Compare this code with listing 12.6, and notice how much more compact it is — even
though it does the exact same thing. A simple mapping like the one from IProductService
to ProductService is expressed with a single method call.

Defines
mappings
between
AbstrActIons and
implementations

Adds Auto-WIreD mappings between
AbstrActIons and concrete types

Overload that takes the concrete
type as a generic type argument

Overload that allows mapping an
AbstrActIon to a Func<T> delegate

 379Configuring di ContaineRs

Not only is Configuration as Code much more compact than configurations
expressed in a configuration file, it also enjoys compiler support. The type arguments
used in listing 12.8 represent real types that the compiler checks. Generics go even
a step further, because the use of generic type constraints such as Microsoft’s API
applies allows the compiler to check whether the supplied concrete type matches the
Abstraction. If a conversion isn’t possible, the code won’t compile.

Although Configuration as Code is safe and easy to use, it still requires more
maintenance than you might like. Every time you add a new type to an application,
you must also remember to register it — and many registrations end up being similar.
Auto-Registration addresses this issue.

12.2.3 Configuring containers by convention using auto-regiStration

Considering the registrations of listing 12.8, it might be completely fine to have
these few lines of code in your project. When a project grows, however, so will the
amount of registrations required to set up the DI Container. In time, you’re likely
to see many similar registrations appear. They’ll typically follow a common pat-
tern. The following listing shows how these registrations can start to look somewhat
repetitive.

Listing 12.9 Repetition in registrations when using CONfiguraTiON aS COdE

services.AddTransient<IProductRepository, SqlProductRepository>();
services.AddTransient<ICustomerRepository, SqlCustomerRepository>();
services.AddTransient<IOrderRepository, SqlOrderRepository>();
services.AddTransient<IShipmentRepository, SqlShipmentRepository>();
services.AddTransient<IImageRepository, SqlImageRepository>();

services.AddTransient<IProductService, ProductService>();
services.AddTransient<ICustomerService, CustomerService>();
services.AddTransient<IOrderService, OrderService>();
services.AddTransient<IShipmentService, ShipmentService>();
services.AddTransient<IImageService, ImageService>();

Repeatedly writing registration code like that violates the DRY principle. It also seems
like an unproductive piece of infrastructure code that doesn’t add much value to the
application. You can save time and make fewer errors if you can automate the regis-
tration of components, assuming those components follow some sort of convention.
Many DI Containers provide Auto-Registration capabilities that let you introduce
your own conventions and apply Convention over Configuration.

DEFINITION Auto-Registration is the ability to automatically register compo-
nents in a container by scanning one or more assemblies for implementations
of desired Abstractions, based on a certain convention. Auto-Registration
is sometimes referred to as Batch Registration or Assembly Scanning.

380 ChapTEr 12 DI Container introduction

Convention over Configuration
An increasingly popular architectural model is the concept of Convention over Configuration.
Instead of writing and maintaining a lot of configuration code, you can agree on conventions
that affect the code base. The way ASP.NET Core MVC finds controllers based on controller
names is a great example of a simple convention:5

¡	A request comes in for a controller named Home.
¡	The default controller factory searches through a list of well-known namespaces

for a class named HomeController. If it finds such a class, it’s a match.
¡	The default controller factory forwards the type of the class to the controller activator,

which constructs an instance of the controller.

The convention here is that a controller must be named [ControllerName]Controller.

Conventions can be applied to more than ASP.NET Core MVC controllers. The more conven-
tions you add, the more you can automate the various parts of the container configuration.

TIP Convention over Configuration has more advantages than just supporting
DI configuration. It makes your code more consistent, because it automatically
works, as long as you follow your conventions.

In reality, you may need to combine Auto-Registration with Configuration as
Code or configuration files, because you may not be able to fit every single component
into a meaningful convention. But the more you can move your code base towards
conventions, the more maintainable it will be.

Autofac supports Auto-Registration, but we thought it would be more interesting
to use yet another DI Container to configure the sample e-commerce application using
conventions. Because we like to restrain the examples to the DI Containers discussed
in this book, and because Microsoft.Extensions.DependencyInjection doesn’t have any
Auto-Registration facilities, we’ll use Simple Injector to illustrate this concept.

Looking back at listing 12.9, you’ll likely agree that the registrations of the various
data access components are repetitive. Can we express some sort of convention around
them? All five concrete Repository types of listing 12.9 share some characteristics:

¡	They’re all defined in the same assembly.
¡	Each concrete class has a name that ends with Repository.
¡	Each implements a single interface.

It seems that an appropriate convention would express these similarities by scanning
the assembly in question and registering all classes that match the convention. Even
though Simple Injector does support Auto-Registration, its Auto-Registration

5 The description of this convention for finding MVC controllers is simplified. In reality, there’s more to it
(see https://mng.bz/lED8).

https://mng.bz/lED8

 381Configuring di ContaineRs

API focuses around the registration of groups of types that share the same interface.
Its API, by itself, doesn’t allow you to express this convention, because there’s no single
interface that describes this group of repositories.

At first, this omission might seem rather awkward, but defining a custom LINQ
query on top of .NET’s reflection API is typically easy to write, provides more flexibility,
and prevents you from having to learn another API — assuming you’re familiar with
LINQ and .NET’s reflection API. The following listing shows such a convention using
a LINQ query.

Listing 12.10 Convention for scanning repositories using Simple Injector

var assembly =
 typeof(SqlProductRepository).Assembly;

var repositoryTypes =
 from type in assembly.GetTypes()
 where !type.Abstract
 where type.Name.EndsWith("Repository")
 select type;

foreach (Type type in repositoryTypes)
{
 container.Register(
 type.GetInterfaces().Single(), type);
}

Each of the classes that make it through the where filters during iteration should be
registered against their interface. For example, because SqlProductRepository’s inter-
face is an IProductRepository, it’ll end up as a mapping from IProductRepository to
SqlProductRepository.

This particular convention scans the assembly that contains the data access compo-
nents. You could get a reference to that assembly in many ways, but the easiest way is to
pick a representative type, such as SqlProductRepository, and get the assembly from
that, as shown in listing 12.10. You could also have chosen a different class or found the
assembly by name.

NOTE With Microsoft.Extensions.DependencyInjection, the code of the con-
vention of listing 12.10 would be almost identical. Only the body of the foreach
loop would be different, because that’s the only place the DI Container’s API
is called.

Comparing this convention against the four registrations in listing 12.9, you may think
that the benefits of this convention look negligible. Indeed, because there are only
four data access components in the current example, the amount of code statements
has increased with the convention. But this convention scales much better. Once you
write it, it handles hundreds of components without any additional effort.

Selects an assembly for the convention

Defines a LINQ query that locates
all types in the assembly that fit
the criterion of being concrete
and ending with Repository

Iterates over the LINQ query
to register each type

382 ChapTEr 12 DI Container introduction

You can also address the other mappings from listings 12.6 and 12.8 with conven-
tions, but there wouldn’t be much value in doing so. As an example, you can register all
services with this convention:

var assembly = typeof(ProductService).Assembly;

var serviceTypes =
 from type in assembly.GetTypes()
 where !type.Abstract
 where type.Name.EndsWith("Service")
 select type;

foreach (Type type in serviceTypes)
{
 container.Register(type.GetInterfaces().Single(), type);
}

This convention scans the identified assembly for all concrete classes where the name
ends with Service and registers each type against the interface it implements. This effec-
tively registers ProductService against the IProductService interface, but because
you currently don’t have any other matches for this convention, nothing much is
gained. It’s only when more services are added, as indicated in listing 12.9, that it starts
to make sense to formulate a convention.

Defining conventions by hand with the use of LINQ might make sense for types all
deriving from their own interface, as you’ve seen previously with the repositories. But
when you start to register types that are based on a generic interface, as we extensively
discussed in section 10.3.3, this strategy starts to break down rather quickly — querying
generic types through reflection is typically not a pleasant thing to do.6

That’s why Simple Injector’s Auto-Registration API is built around the registration
of types based on a generic Abstraction, such as the ICommandService<TCommand>
interface from listing 10.12. Simple Injector allows the registration of all ICommand
Service<TCommand> implementations to be done in a single line of code.

Listing 12.11 auTO-rEgiSTEriNg implementations based on a generic abSTraCTiON

Assembly assembly = typeof(AdjustInventoryService).Assembly;

container.Register(typeof(ICommandService<>), assembly);

NOTE ICommandService<> is the C# syntax for specifying the open-generic
version, accomplished by omitting the TCommand generic type argument.

By supplying a list of assemblies to one of its Register overloads, Simple Injec-
tor iterates through these assemblies to find any non-generic, concrete types that
implement ICommandService<TCommand>, while registering each type by its specific

6 You’ll have to find implementations of the generic interface, consider types that implement multiple
interfaces, register all Decorators for all implementations, and so forth.

 383Configuring di ContaineRs

ICommandService<TCommand> interface. This has the generic type argument TCommand
filled in with an actual type.

DEFINITION A generic type that has its generic type arguments filled in (for
example, ICommandService<AdjustInventory>), is called a closed generic.
Likewise, when you have just the generic type definition itself (for example,
ICommandService<TCommand>), such a type is referred to as open generic.

In an application with four ICommandService<TCommand> implementations, the previ-
ous API call would be equivalent to the following Configuration as Code listing.

Listing 12.12 Registering implementations using CONfiguraTiON aS COdE

container.Register(typeof(ICommandService<AdjustInventory>),
 typeof(AdjustInventoryService));
container.Register(typeof(ICommandService<UpdateProductReviewTotals>),
 typeof(UpdateProductReviewTotalsService));
container.Register(typeof(ICommandService<UpdateHasDiscountsApplied>),
 typeof(UpdateHasDiscountsAppliedService));
container.Register(typeof(ICommandService<UpdateHasTierPricesProperty>),
 typeof(UpdateHasTierPricesPropertyService));

Iterating a list of assemblies to find appropriate types, however, isn’t the only thing you
can achieve with Simple Injector’s Auto-Registration API. Another powerful feature
is the registration of generic Decorators, like the ones you saw in listings 10.15, 10.16,
and 10.19. Instead of manually composing the hierarchy of Decorators, as you did in list-
ing 10.21, Simple Injector allows Decorators to be applied using its RegisterDecorator
method overloads.

Listing 12.13 Registering generic Decorators using auTO-rEgiSTraTiON

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(AuditingCommandServiceDecorator<>));

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(TransactionCommandServiceDecorator<>));

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(SecureCommandServiceDecorator<>));

Simple Injector applies Decorators in order of registration, which means that, in respect
to listing 12.13, the auditing Decorator is wrapped using the transaction Decorator, and
the transaction Decorator is wrapped with the security Decorator, resulting in an object
graph identical to the one shown in listing 10.21.

Registration of open-generic types can be seen as a form of Auto-Registration
because a single method call to RegisterDecorator can result in a Decorator being

RegisterDecorator is supplied
with the open-generic
ICommandService<TCommand>
service type and the open-
generic implementation for the
Decorator. Using this
information, Simple Injector
wraps every
ICommandService<TCommand>
that it resolves with the
appropriate Decorators.

384 ChapTEr 12 DI Container introduction

applied to many registrations.7 Without this form of Auto-Registration for generic
Decorator classes, you’d be forced to register each closed version of each Decorator for
each closed ICommandService<TCommand> implementation individually, as the follow-
ing listing shows.

Listing 12.14 Registering generic Decorators using CONfiguraTiON aS COdE

container.RegisterDecorator(
 typeof(ICommandService<AdjustInventory>),
 typeof(AuditingCommandServiceDecorator<AdjustInventory>));
container.RegisterDecorator(
 typeof(ICommandService<AdjustInventory>),
 typeof(TransactionCommandServiceDecorator<AdjustInventory>));
container.RegisterDecorator(
 typeof(ICommandService<AdjustInventory>),
 typeof(SecureCommandServiceDecorator<AdjustInventory>));

container.RegisterDecorator(
 typeof(ICommandService<UpdateProductReviewTotals>),
 typeof(AuditingCommandServiceDecorator<UpdateProductReviewTotals>));
container.RegisterDecorator(
 typeof(ICommandService<UpdateProductReviewTotals>),
 typeof(TransactionCommandServiceDecorator<UpdateProductReviewTotals>));
container.RegisterDecorator(
 typeof(ICommandService<UpdateProductReviewTotals>),
 typeof(SecureCommandServiceDecorator<UpdateProductReviewTotals>));

container.RegisterDecorator(
 typeof(ICommandService<UpdateHasDiscountsApplied>),
 typeof(AuditingCommandServiceDecorator<UpdateHasDiscountsApplied>));
container.RegisterDecorator(
 typeof(ICommandService<UpdateHasDiscountsApplied>),
 typeof(TransactionCommandServiceDecorator<UpdateHasDiscountsApplied>));
container.RegisterDecorator(
 typeof(ICommandService<UpdateHasDiscountsApplied>),
 typeof(SecureCommandServiceDecorator<UpdateHasDiscountsApplied>));

...

The code in this listing is cumbersome and error prone. Additionally, it would cause an
exponential growth of the Composition Root.

TIP The most prominent downside of Auto-Registration is that you lose
some control. It must be possible to Auto-Wire every component that’s picked
up by the Auto-Registration facility. When there’s a particular component
that requires hand wiring, it should be excluded from Auto-Registration to
prevent errors.

7 On top of that, there’s a lot going on in the background. For instance, if the Decorator contains generic-
type constraints, Simple Injector automatically finds out whether the Decorator is applicable to a given
registration based on these type constraints. Doing this by hand would be cumbersome and error
prone.

Other registrations are omitted for brevity.

 385When to use a di ContaineR

In a system that adheres to the SOLID principles, you create many small and focused
classes, but existing classes are less likely to change, increasing maintainability.
Auto-Registration prevents the Composition Root from constantly being updated.
It’s a powerful technique that has the potential to make the DI Container invisible.
Once appropriate conventions are in place, you may have to modify the container con-
figuration only on rare occasions.

12.2.4 Mixing and matching configuration approaches

So far, you’ve seen three different approaches to configuring a DI Container:

¡	Configuration files
¡	Configuration as Code
¡	Auto-Registration

None of these are mutually exclusive. You can choose to mix Auto-Registration with
specific mappings of abstract-to-concrete types, and even mix all three approaches to
have some Auto-Registration, some Configuration as Code, and some of the con-
figuration in configuration files for late binding purposes.

As a rule of thumb, you should prefer Auto-Registration as a starting point, com-
plemented by Configuration as Code to handle more special cases. You should
reserve configuration files for cases where you need to be able to vary an implementa-
tion without recompiling the application — which is rarer than you may think.

Now that we’ve covered how to configure a DI Container and how to resolve
object graphs with one, you should have a good idea about how to use them. Using a
DI Container is one thing, but understanding when to use one is another.

12.3 When to use a Di container

In the previous parts of this book, we solely used Pure DI as our method of Object
Composition. This wasn’t just for educational purposes. Complete applications can be
built using Pure DI alone.

In section 12.2, we talked about the different configuration methods of DI Containers
and how the use of Auto-Registration can increase maintainability of your Composi-
tion Root. But the use of DI Containers comes with additional costs and disadvantages
over Pure DI. Most, if not all, DI Containers are open source, so they’re free in a mone-
tary sense. But because developer hours are typically the most expensive part of software
development, anything that increases the time it takes to develop and maintain software is
a cost, which is what we’ll talk about here.

In this section, we’ll compare the advantages and disadvantages, so you can make
an educated decision about when to use a DI Container and when to stick to Pure DI.
Let’s start with an often overlooked aspect of using libraries such as DI Containers,
which is that they introduce costs and risks.

386 ChapTEr 12 DI Container introduction

12.3.1 Using third-party libraries involves costs and risks

When a library is free in a monetary sense, we developers often tend to ignore the
other costs involved in using it. A DI Container might be considered a Stable Depen-
dency (section 1.3.1), so from a DI perspective, using one isn’t an issue. But there
are other concerns to consider. As with any third-party library, using a DI Container
comes with costs and risks.

The most obvious cost of any library is its learning curve — it takes time to learn to
use a new library. You have to learn its API, its behavior, its quirks, and its limitations.
When you’re with a team of developers, most of them will have to understand how to
work with that library in one way or another. Having just one developer that knows how
to work with the tool might save costs in the short run, but such a practice is in itself a
liability to the continuity of your project.8

A library’s behavior, quirks, and limitations might not exactly suit your needs. A
library might be opinionated towards a different model than the one your software is
built around.9 This is typically something you only find out while you’re learning to use
it. As you apply it to your code base, you may find that you need to implement various
workarounds. This can result in much yak shaving.

It is, therefore, hard to estimate how much money the use of a new library will save
the project because of the learning costs that are often hard to realistically estimate.
The accumulated time spent on learning the API of a third-party library is time not
spent building the application itself, and therefore represents a real cost.

Besides the direct cost of learning to work with a library, there are risks involved in
taking a dependency on such a library. One risk is that the developers stop maintain-
ing and supporting a library you’re using.10 When such an event occurs, it introduces
extra costs to the project because it can force you to switch libraries. In that case, you’re
paying the previously discussed learning costs all over again with the additional costs of
migrating and testing the application again.

TIP Because of these costs and risks, care should be taken in selecting the right
libraries for your project. When starting a new project, to mitigate the risks, it’s
therefore advisable to limit the amount of external libraries your team needs to
become familiar with.

8 This is often referred to as the bus factor. The bus factor is the minimum number of team members that
have to suddenly disappear from a project (get hit by a bus) before the project stalls due to lack of
knowledgeable or competent personnel.

9 The library maker’s opinions might be an opportunity for you and your team to learn something, but
it might simply be a different opinion, incompatible with yours.

10 This isn’t a risk with third-party libraries only. Even Microsoft, one of the organizations most committed
to long-term support of their technologies, has been known to break compatibility or abandon tech-
nologies. Examples include Workflow Foundation, Silverlight, Visual Studio LightSwitch, Windows
Phone, and Windows RT. These days, Microsoft seems to be back to a more stable commitment to
long-term support. The point is that one can never be certain.

 387When to use a di ContaineR

This all sounds like an argument against using external libraries, but that isn’t the case.
You wouldn’t be productive without external libraries, because you’d have to reinvent
the wheel. If not using an external library means building such a library yourself, you’ll
often be worse off. (And we developers tend to underestimate the time it takes to write,
test, and maintain such a piece of software.)

With DI Containers, however, you’re in a somewhat different situation. That’s
because the alternative to using an external DI Container library isn’t to build your
own, but to apply Pure DI.

Don’t build your own di CONTaiNEr

At first sight, listing 12.1 might seem to imply that a Di contAiner can be written in a
few lines of code. Although listing 12.1 sketches the first steps in writing a Di contAiner,
there’s a clear reason it’s flagged as bad code.

The code in listing 12.1 is a naive implementation that, as we stated earlier, lacks many
crucial capabilities. A fully functional Di contAiner should support Lifetime mAnAgement,
intercePtion, Auto-registrAtion, and DePenDency cycle detection; communicate config-
uration mistakes effectively; have properly designed extensibility points; rest on great
documentation; and much, much more. This isn’t something you’ll be able to do in a
couple of weeks.

From experience, I (Steven) can tell you that it takes years for such a library to become
stable and mature. And although it might be a great learning experience for you as a
developer, it doesn’t help your project or your company, because your focus should be on
producing business value.11

This doesn’t mean you should never create a new open source library such as a Di con-
tAiner. Innovation is an important aspect of our industry, and the creation of new librar-
ies helps with this. Sometimes we need radical new ideas, and this sometimes means
we need to build new libraries and frameworks based on those ideas. You should, how-
ever, be cautious about spending your employer’s money on this, because it’ll cost your
employer way more than you initially envision.

As you learned in section 4.1, interaction with the DI Container should be limited to
the Composition Root. This already reduces the risk when it must be replaced. But
even in that case, it can be a time-consuming endeavor to replace the DI Container
and become familiar with a new API and design philosophy.

The major advantage of Pure DI is that it’s easy to learn. You don’t have to learn the
API of any DI Container and, although individual classes still use DI, once you find
the Composition Root, it’ll be evident what’s going on and how object graphs are
constructed. Although newer IDEs make this less of a problem, it can be difficult for a
new developer on a team to get a sense of the constructed object graph and to find the
implementation for a class’s Dependency when a DI Container is used.

11 Writing and maintaining Simple Injector and supporting its community gave me a lot of knowledge, which
eventually led to me becoming the coauthor of this book.

388 ChapTEr 12 DI Container introduction

With Pure DI, this is less of a problem, because object graph construction is hard
coded in the Composition Root. Besides being easier to learn, Pure DI gives you a
shorter feedback cycle in case there’s an error in your composition of objects. Let’s look
at that next.

12.3.2 pure Di gives a shorter feedback cycle

DI Container techniques, such as Auto-Wiring and Auto-Registration, depend
on the use of reflection. This means that, at runtime, the DI Container will analyze
constructor arguments using reflection or even query through complete assemblies
to find types based on conventions in order to compose complete object graphs. Con-
sequently, configuration errors are only detected at runtime when an object graph is
resolved. Compared to Pure DI, the DI Container assumes the compiler’s role of
code verification.

IMPORTANT Pure DI has a big advantage that’s often overlooked: it’s strongly
typed. This allows the compiler to provide feedback about correctness, which is
the fastest feedback that you can get.

When a Composition Root is well structured so that the creation of Singletons and
Scoped instances are separated (see listings 8.10 and 8.13, for instance), it allows the
compiler to detect Captive Dependencies, as discussed in section 8.4.1.

As we discussed in section 3.2.2, because of strong typing, Pure DI also has the advan-
tage of giving you a clearer picture of the structure of the application’s object graphs.
This is something that you’ll lose immediately when you start using a DI Container.

But strong typing cuts both ways because, as we discussed in section 12.1.3, it also means
that every time you refactor a constructor, you’ll break the Composition Root. If you’re
sharing a library (domain model, utility, data access component, and so on) between appli-
cations, you may have more than one Composition Root to maintain. How much of a
burden this is depends on how often you refactor constructors, but we’ve seen projects
where this happens several times each day. With multiple developers working on a single
project, this can easily lead to merge conflicts, which cost time to fix.

Although the compiler will give rapid feedback when using Pure DI, the amount
of validations it can do is limited. It’ll be able to report missing Dependencies due to
changes to constructors and to some extent Captive Dependencies, but, among other
things, it will fail to detect the following:

¡	Failing constructor invocations due to exceptions thrown from within the con-
structor’s body (for example, failing Guard Clauses)

¡	Whether disposable components are disposed of when they go out of scope
¡	When classes that are supposed to be Singleton or Scoped are again (acciden-

tally) created in a different part of the Composition Root, possibly with a differ-
ent lifestyle12

12 These defects are sometimes referred to as Torn Lifestyles (https://simpleinjector.org/diatl) and
Ambiguous Lifestyles (https://simpleinjector.org/diaal).

https://simpleinjector.org/diatl
https://simpleinjector.org/diaal

 389When to use a di ContaineR

When using Pure DI, the size of the Composition Root grows linearly with the size
of the application. When an application is small, its Composition Root will also be
small. This makes its Composition Root clean and manageable, and previously listed
defects will be easy to spot. But when the Composition Root grows, it becomes easier
to miss such defects.

This is something that the use of a DI Container can mitigate. Most DI Containers
automatically detect a disposable component on your behalf and might detect common
pitfalls, such as Captive Dependencies.13

12.3.3 The verdict: When to use a Di container

If you use a DI Container’s Configuration as Code abilities (as discussed in section
12.2.2), explicitly registering each and every component using the container’s API,
you lose the rapid feedback from strong typing. On the other hand, the maintenance
burden is also likely to drop because of Auto-Wiring. Still, you’ll need to register
each new class when you introduce it, which is a linear growth, and you and your team
have to learn the specific API of that container. But even if you’re already familiar
with its API, there’s still the risk of having to replace it someday. You might lose more
than you gain.

Ultimately, if you can wield a DI Container in a sufficiently sophisticated way, you
can use it to define a set of conventions using Auto-Registration (as discussed in
section 12.2.3). These conventions define a rule set that your code should adhere to,
and as long as you stick to those rules, things just work. The container drops to the back-
ground, and you rarely need to touch it.

IMPORTANT The use of Convention over Configuration using Auto-Registra-
tion can minimize the amount of maintenance on the Composition Root to
almost zero.

Auto-Registration takes time to learn, and is weakly typed, but, if done right, it
enables you to focus on code that adds value instead of infrastructure. An additional
advantage is that it creates a positive feedback mechanism, forcing a team to produce
code that’s consistent with the conventions. Figure 12.6 visualizes the trade-off between
Pure DI and using a DI Container.

As we stated in section 12.2.4, none of the available approaches are mutually exclu-
sive. Although you might find a single Composition Root to contain a mix of all con-
figuration styles, a Composition Root should either be focused around Pure DI with,
perhaps, a few late-bound types, or around Auto-Registration with, optionally, a lim-
ited amount of Configuration as Code, Pure DI, and configuration files. A Com-
position Root that focuses around Configuration as Code is pointless and should
therefore be avoided.

13 The three DI Containers discussed in this book all detect Captive Dependencies to some extent.

390 ChapTEr 12 DI Container introduction

The question then becomes this: when should you choose Pure DI, and when should
you use Auto-Registration? We, unfortunately, can’t give any hard numbers on this.
It depends on the size of the project, the amount of experience you and your team
have with a DI Container, and the calculation of risk.

In general, though, you should use Pure DI for Composition Roots that are small
and switch to Auto-Registration when maintaining such a Composition Root
becomes a problem. Bigger applications with many classes that can be captured by sev-
eral conventions can benefit from using Auto-Registration.14

Automagical
I (Mark) once worked for a client where I applied convention-based Auto-registrAtion in
a code base. The other developers weren’t too happy with it because they found it too
automagical. They fully embraced DI and used TDD, but weren’t keen on using a Di con-
tAiner, because they weren’t familiar with its API.

In many cases, the conventions worked as advertised. When developers introduced new
classes or interfaces, the Di contAiner discovered the new types and correctly configured
them. Once in a while, however, developers (including myself) would implement a feature
in a way not anticipated by the conventions. When that happened, it was necessary to
adjust the conventions.

The other developers didn’t understand — and weren’t interested in learning — how to
work with the Di contAiner’s API, so whenever a change was required, I had to implement

14 We also promote the idea of keeping applications relatively small. This inevitably leads to the concept
of Bounded Contexts. See Eric J. Evans, Domain-Driven Design, 335.

Pure DI

SophisticatedSimple

AUTO-
REGISTRATION

CONFIGURATION

AS CODE

Valuable

Pointless

Figure 12.6 purE di can be valuable
because it’s simple, although a di
CONTaiNEr can be either valuable
or pointless, depending on how it’s
used. When it’s used in a sufficiently
sophisticated way (using auTO-
rEgiSTraTiON), we consider a di
CONTaiNEr to offer the best value/cost
ratio.

 391Summary

it. I became a critical resource, and occasionally a bottleneck. When I left the project,
I expected the remaining team to rip out the Di contAiner and replace it with Pure Di.
When I returned a year later, I wasn’t surprised to learn that this was exactly what they
had done. I can’t say that I blamed them.

The other thing we won’t tell you is which DI Container to choose. Selecting a DI
Container involves more than technical evaluation. You must also evaluate whether
the licensing model is acceptable, whether you trust the people or organization that
develops and maintains the DI Container, how it fits into your organization’s IT strat-
egy, and so on. Your search for the right DI Container also shouldn’t be limited to
the containers listed in this book. For example, many excellent DI Containers for the
.NET platform are available to choose from.

A DI Container can be a helpful tool if you use it correctly. The most important
thing to understand is that the use of DI in no way depends on the use of a DI Con-
tainer. An application can be made from many loosely coupled classes and modules,
and none of these modules knows anything about a container. The most effective way
to make sure that application code is unaware of any DI Container is by limiting its use
to the Composition Root. This prevents you from inadvertently applying the Service
Locator anti-pattern, because it constrains the container to a small, isolated area of
the code.

Used in this way, a DI Container becomes an engine that takes care of part of the
application’s infrastructure. It composes object graphs based on its configuration. This
can be particularly beneficial if you employ Convention over Configuration. If suitably
implemented, it can take care of composing object graphs, and you can concentrate
your efforts on implementing new features. The container will automatically discover
new classes that follow the established conventions and make them available to consum-
ers. The final three chapters of this book cover Autofac (chapter 13), Simple Injector
(chapter 14), and Microsoft.Extensions.DependencyInjection (chapter 15).

Summary

¡	A DI Container is a library that provides DI functionality. It’s an engine that
resolves and manages object graphs.

¡	DI in no way hinges on the use of a DI Container. A DI Container is a useful,
but optional, tool.

¡	Auto-Wiring is the ability to automatically compose an object graph from maps
between Abstractions and concrete types by making use of the type informa-
tion as supplied by the compiler and the Common Language Runtime (CLR).

¡	Constructor Injection statically advertises the Dependency requirements
of a class, and DI Containers use that information to Auto-Wire complex
object graphs.

392 ChapTEr 12 DI Container introduction

¡	Auto-Wiring makes a Composition Root more resilient to change.
¡	When you start using a DI Container, you’re not required to abandon hand

wiring object graphs altogether. You can use hand wiring in parts of your configu-
ration when this is more convenient.

¡	When using a DI Container, the three configuration styles are configuration
files, Configuration as Code, and Auto-Registration.

¡	Configuration files are as much a part of your Composition Root as Configu-
ration as Code and Auto-Registration. Using configuration files, therefore,
doesn’t make your Composition Root smaller, it just moves it.

¡	As your application grows in size and complexity, so will your configuration file.
Configuration files tend to become brittle and opaque to errors, so only use this
approach when you need late binding.

¡	Don’t let the absence of support for handling configuration files influence your
choice for picking a DI Container. Types can be loaded from configuration files
in a few simple statements.

¡	Configuration as Code allows the container’s configuration to be stored as
source code. Each mapping between an Abstraction and a particular imple-
mentation is expressed explicitly and directly in code. This method is preferred
over configuration files unless you need late binding.

¡	Convention over Configuration is the application of conventions to your code to
facilitate easier registration.

¡	Auto-Registration is the ability to automatically register components in a
container by scanning one or more assemblies for implementations of desired
Abstractions, which is a form of Convention over Configuration.

¡	Auto-Registration helps avoid constantly updating the Composition Root
and is, therefore, preferred over Configuration as Code.

¡	Using external libraries such as DI Containers incurs costs and risks; for exam-
ple, the cost of learning a new API and the risk of the library being abandoned.

¡	Avoid building your own DI Container. Either use one of the existing, well-
tested, and freely available DI Containers, or practice Pure DI. Creating and
maintaining such a library takes a lot of effort, which is effort not spent produc-
ing business value.

¡	The big advantage of Pure DI is that it’s strongly typed. This allows the compiler to
provide feedback about correctness, which is the fastest feedback that you can get.

¡	You should use Pure DI for Composition Roots that are small and switch to
Auto-Registration whenever maintaining such Composition Roots becomes
a problem. Bigger applications with many classes that can be captured by several
conventions can greatly benefit from using Auto-Registration.

393

13The Autofac DI Container

In this chapter
¡	Working with Autofac’s basic registration API

¡	Managing component lifetime

¡	Configuring difficult APIs

¡	Configuring sequences, Decorators, and
Composites

In the previous chapters, we discussed patterns and principles that apply to DI in
general, but, apart from a few examples, we’ve yet to take a detailed look at how to
apply them using any particular DI Container. In this chapter, you’ll see how these
overall patterns map to Autofac. You’ll need to be familiar with the material from
the previous chapters to fully benefit from this.

Autofac is a fairly comprehensive DI Container that offers a carefully designed
and consistent API. It’s been around since late 2007 and is, at the time of writing, one
of the most popular containers.1

1 No official statistics exist on DI Container usage, so our assessment is based on the average NuGet
downloads per day.

394 ChapTEr 13 The Autofac DI Container

In this chapter, we’ll examine how Autofac can be used to apply the principles and
patterns presented in parts 1–3. This chapter is divided into four sections. You can read
each section independently, though the first section is a prerequisite for the other sec-
tions, and the fourth section relies on some methods and classes introduced in the
third section.

This chapter should enable you to get started, as well as deal with the most common
issues that can come up as you use Autofac on a daily basis. It’s not a complete treatment
of Autofac; that would take several more chapters or perhaps a whole book in itself. If
you want to know more about Autofac, the best place to start is at the Autofac home
page at https://autofac.org.

13.1 Introducing Autofac
In this section, you’ll learn where to get Autofac, what you get, and how you start using
it. We’ll also look at common configuration options. Table 13.1 provides fundamental
information that you’re likely to need to get started.

Table 13.1 Autofac at a glance

Question Answer

Where do I get it? From Visual Studio, you can get it via NuGet. The package name is Autofac.
Alternatively, the NuGet package can be downloaded from the GitHub repository
(https://github.com/autofac/Autofac/releases).

Which platforms are
supported?

.NET 4.5 (without a .NET Core SDK) and .NET Standard 1.1 (.NET Core 1.0, Mono
4.6, Xamarin.iOS 10.0, Xamarin.Mac 3.0, Xamarin.Android 7.0, UWP 10.0, Win-
dows 8.0, Windows Phone 8.1). Older builds that support .NET 2.0 and Silver-
light are available via NuGet history.

How much does it cost? Nothing. It’s open source.

How is it licensed? MIT License.

Where can I get help? You can get commercial support from companies associated with the Autofac
developers. Read more about the options at https://autofac.readthedocs.io/
en/latest/support.html. Other than commercial support, Autofac is still open
source software with a thriving ecosystem, so you’re also likely (but not guaran-
teed) to get help by posting on Stack Overflow at https://stackoverflow.com or by
using the official forum at https://groups.google.com/group/autofac.

On which version is this
chapter based?

4.9.0-beta1

Using Autofac isn’t that different from using the other DI Containers that we’ll
discuss in the following chapters. As with Simple Injector and Microsoft.Extensions
.DependencyInjection, usage is a two-step process, as figure 13.1 illustrates. First, you
configure a ContainerBuilder, and when you’re done with that, you use it to build a
container to resolve components.

When you’re done configuring
ContainerBuilder, you use it to
create a container that you can
use to resolve components.

Notice that the rhythm is register
once, resolve many.

With Autofac, you first create
and configure a ContainerBuilder
instance.

Register Resolve components

ContainerBuilder Containercreates

Figure 13.1 The pattern for using Autofac is to first configure it, and then resolve
components.

https://autofac.org
https://github.com/autofac/Autofac/releases
https://autofac.readthedocs.io/en/latest/support.html
https://autofac.readthedocs.io/en/latest/support.html
https://stackoverflow.com
https://groups.google.com/group/autofac

 395Introducing Autofac

When you’re done with this section, you should have a good feeling for the overall
usage pattern of Autofac, and you should be able to start using it in well-behaved sce-
narios — where all components follow proper DI patterns like Constructor Injec-
tion. Let’s start with the simplest scenario and see how you can resolve objects using
an Autofac container.

13.1.1 Resolving objects

The core service of any DI Container is to compose object graphs. In this section,
we’ll look at the API that lets you compose object graphs with Autofac.

By default, Autofac requires you to register all relevant components before you can
resolve them. This behavior, however, is configurable. The following listing shows one
of the simplest possible uses of Autofac.

Listing 13.1 Simplest possible use of Autofac

var builder = new ContainerBuilder();

builder.RegisterType<SauceBéarnaise>();

IContainer container = builder.Build();

ILifetimeScope scope = container.BeginLifetimeScope();

SauceBéarnaise sauce = scope.Resolve<SauceBéarnaise>();

In this chapter, we’ll examine how Autofac can be used to apply the principles and
patterns presented in parts 1–3. This chapter is divided into four sections. You can read
each section independently, though the first section is a prerequisite for the other sec-
tions, and the fourth section relies on some methods and classes introduced in the
third section.

This chapter should enable you to get started, as well as deal with the most common
issues that can come up as you use Autofac on a daily basis. It’s not a complete treatment
of Autofac; that would take several more chapters or perhaps a whole book in itself. If
you want to know more about Autofac, the best place to start is at the Autofac home
page at https://autofac.org.

13.1 Introducing Autofac
In this section, you’ll learn where to get Autofac, what you get, and how you start using
it. We’ll also look at common configuration options. Table 13.1 provides fundamental
information that you’re likely to need to get started.

Table 13.1 Autofac at a glance

Question Answer

Where do I get it? From Visual Studio, you can get it via NuGet. The package name is Autofac.
Alternatively, the NuGet package can be downloaded from the GitHub repository
(https://github.com/autofac/Autofac/releases).

Which platforms are
supported?

.NET 4.5 (without a .NET Core SDK) and .NET Standard 1.1 (.NET Core 1.0, Mono
4.6, Xamarin.iOS 10.0, Xamarin.Mac 3.0, Xamarin.Android 7.0, UWP 10.0, Win-
dows 8.0, Windows Phone 8.1). Older builds that support .NET 2.0 and Silver-
light are available via NuGet history.

How much does it cost? Nothing. It’s open source.

How is it licensed? MIT License.

Where can I get help? You can get commercial support from companies associated with the Autofac
developers. Read more about the options at https://autofac.readthedocs.io/
en/latest/support.html. Other than commercial support, Autofac is still open
source software with a thriving ecosystem, so you’re also likely (but not guaran-
teed) to get help by posting on Stack Overflow at https://stackoverflow.com or by
using the official forum at https://groups.google.com/group/autofac.

On which version is this
chapter based?

4.9.0-beta1

Using Autofac isn’t that different from using the other DI Containers that we’ll
discuss in the following chapters. As with Simple Injector and Microsoft.Extensions
.DependencyInjection, usage is a two-step process, as figure 13.1 illustrates. First, you
configure a ContainerBuilder, and when you’re done with that, you use it to build a
container to resolve components.

When you’re done configuring
ContainerBuilder, you use it to
create a container that you can
use to resolve components.

Notice that the rhythm is register
once, resolve many.

With Autofac, you first create
and configure a ContainerBuilder
instance.

Register Resolve components

ContainerBuilder Containercreates

Figure 13.1 The pattern for using Autofac is to first configure it, and then resolve
components.

https://autofac.org
https://github.com/autofac/Autofac/releases
https://autofac.readthedocs.io/en/latest/support.html
https://autofac.readthedocs.io/en/latest/support.html
https://stackoverflow.com
https://groups.google.com/group/autofac

396 ChapTEr 13 The Autofac DI Container

As figure 13.1 shows, you need a ContainerBuilder instance to configure components.
Here, you register the concrete SauceBéarnaise class with builder so that when you ask
it to build a container, the resulting container is configured with the SauceBéarnaise
class. This again enables you to resolve the SauceBéarnaise class from the container.

With Autofac, however, you never resolve from the root container itself, but from a
lifetime scope. Section 13.2.1 goes into more detail about lifetime scope and why resolv-
ing from the root container is a bad thing.

WARNING With Autofac, resolving from the root container directly is a bad
practice. This can easily lead to memory leaks or concurrency bugs. Instead,
you should always resolve from a lifetime scope.

If you don’t register the SauceBéarnaise component, attempting to resolve it throws a
ComponentNotRegisteredException with the following message:

The requested service "Ploeh.Samples.MenuModel.SauceBéarnaise" has not been registered.
To avoid this exception, either register a component to provide the service, check for service
registration using IsRegistered(), or use the ResolveOptional() method to resolve an optional
dependency.

Not only can Autofac resolve concrete types with parameterless constructors, it can
also Auto-Wire a type with other Dependencies. All these Dependencies need to be
registered. For the most part, you’ll want to program to interfaces, because this intro-
duces loose coupling. To support this, Autofac lets you map Abstractions to concrete
types.

mappiNg abSTraCTiONS TO CONCrETE TypES

Whereas your application’s root types will typically be resolved by their concrete
types, loose coupling requires you to map Abstractions to concrete types. Creating
instances based on such maps is the core service offered by any DI Container, but you
must still define the map. In this example, you map the IIngredient interface to the
concrete SauceBéarnaise class, which allows you to successfully resolve IIngredient:

var builder = new ContainerBuilder();

builder.RegisterType<SauceBéarnaise>()
 .As<IIngredient>();

IContainer container = builder.Build();

ILifetimeScope scope = container.BeginLifetimeScope();

IIngredient sauce = scope.Resolve<IIngredient>();

The As<T> method allows a concrete type to be mapped to a particular Abstraction.
Because of the previous As<IIngredient>() call, SauceBéarnaise can now be resolved
as IIngredient.

You use the ContainerBuilder instance to register types and define maps. The
RegisterType method lets you register a concrete type.

Maps a concrete type to an AbstrActIon

Resolves the SauceBéarnaise class

 397Introducing Autofac

As you saw in listing 13.1, you can stop right there if you only want to register the
SauceBéarnaise class. You can also continue with the As method to define how the con-
crete type should be registered.2

WARNING Contrary to Simple Injector and Microsoft.Extensions.Dependen-
cyInjection, there are no generic type constraints in effect between the types
defined by the RegisterType and As methods. This means that it’s possible to
map incompatible types. The code will compile, but you’ll get an exception at
runtime when the ContainerBuilder builds the container.

In many cases, the generic API is all you need. Although it doesn’t offer the same
degree of type safety as some other DI Containers, it’s still a readable way to configure
the container. Still, there are situations where you need a more weakly typed way to
resolve services. With Autofac, this is also possible.

rESOlviNg wEakly TypEd SErviCES

Sometimes you can’t use a generic API, because you don’t know the appropriate type
at design time. All you have is a Type instance, but you’d still like to get an instance of
that type. You saw an example of that in section 7.3, where we discussed ASP.NET Core
MVC’s IControllerActivator class. The relevant method is this:

object Create(ControllerContext context);

As shown previously in listing 7.8, the ControllerContext captures the controller’s
Type, which you can extract using the ControllerTypeInfo property of the Action
Descriptor property:

Type controllerType = context.ActionDescriptor.ControllerTypeInfo.AsType();

Because you only have a Type instance, you can’t use the generic Resolve<T> method,
but must resort to a weakly typed API. Autofac offers a weakly typed overload of the
Resolve method that lets you implement the Create method like this:

Type controllerType = context.ActionDescriptor.ControllerTypeInfo.AsType();
return scope.Resolve(controllerType);

The weakly typed overload of Resolve lets you pass the controllerType variable
directly to Autofac. Typically, this means you have to cast the returned value to some
Abstraction, because the weakly typed Resolve method returns object. In the case
of IControllerActivator, however, this isn’t required, because ASP.NET Core MVC
doesn’t require controllers to implement any interface or base class.

No matter which overload of Resolve you use, Autofac guarantees that it’ll return
an instance of the requested type or throw an exception if there are Dependencies that
can’t be satisfied. When all required Dependencies have been properly configured,
Autofac can Auto-Wire the requested type.

2 With Autofac, you start with the concrete type and map it to an Abstraction. This is the reverse of most
other DI Containers, which start with the Abstraction and map it to a concrete type.

398 ChapTEr 13 The Autofac DI Container

In the previous example, scope is an instance of Autofac.ILifetimeScope. To be
able to resolve the requested type, all loosely coupled Dependencies must have been
previously configured. There are many ways to configure Autofac, and the next section
reviews the most common ones.

13.1.2 Configuring the ContainerBuilder

As we discussed in section 12.2, you can configure a DI Container in several concep-
tually different ways. Figure 12.5 reviewed the options: configuration files, Configura-
tion as Code, and Auto-Registration. Figure 13.2 shows these options again.

The core configuration API is centered on code and supports both Configuration as
Code and convention-based Auto-Registration. Support for configuration files can
be plugged in using the Autofac.Configuration NuGet package. Autofac supports all
three approaches and lets you mix them all within the same container. In this section,
you’ll see how to use each of these three types of configuration sources.

CONfiguriNg ThE ContainerBuilder uSiNg CONfiguraTiON aS COdE

In section 13.1, you saw a brief glimpse of Autofac’s strongly typed configuration API.
Here, we’ll examine it in greater detail.

All configurations in Autofac use the API exposed by the ContainerBuilder class,
although most of the methods you use are extension methods. One of the most com-
monly used methods is the RegisterType method that you’ve already seen:

builder.RegisterType<SauceBéarnaise>().As<IIngredient>();

Config files CONFIGURATION

AS CODE

Late binding Early binding

Auto-
Registration

Explicit

Implicit

Figure 13.2 The most common ways to
configure a di CONTaiNEr shown against
dimensions of explicitness and the
degree of binding

 399Introducing Autofac

Registering SauceBéarnaise as IIngredient hides the concrete class so that you can
no longer resolve SauceBéarnaise with this registration. But you can easily fix this by
using an overload of the As method that lets you specify that the concrete type maps to
more than one registered type:

builder.RegisterType<SauceBéarnaise>().As<SauceBéarnaise, IIngredient>();

Instead of registering the class only as IIngredient, you can register it as both itself
and the interface it implements. This enables the container to resolve requests for
both SauceBéarnaise and IIngredient. As an alternative, you can also chain calls to
the As method:

builder.RegisterType<SauceBéarnaise>()
 .As<SauceBéarnaise>()
 .As<IIngredient>();

This produces the same result as in the previous example. The difference between the
two registrations is simply a matter of style.

Three generic overloads of the As method let you specify one, two, or three types. If
you need to specify more, there’s also a non-generic overload that you can use to specify
as many types as you like.

Torn lifESTylES

In this section, we’ve shown how you can call As multiple times to register a component
as multiple service types. The following example shows this once more:

builder.RegisterType<SauceBéarnaise>()
 .As<SauceBéarnaise>()
 .As<IIngredient>();

You might be tempted to think this is equivalent to the following code:

builder.RegisterType<SauceBéarnaise>();
builder.RegisterType<SauceBéarnaise>().As<IIngredient>();

The former example, however, isn’t equivalent to the latter. This becomes apparent when
you change the LifestyLe from trAnsient to, for instance, singLeton.

builder.RegisterType<SauceBéarnaise>().SingleInstance();
builder.RegisterType<SauceBéarnaise>().As<IIngredient>()
 .SingleInstance();

Although you might expect there to only be one SauceBéarnaise instance for the life-
time of the container, splitting up the registration causes Autofac to create a separate
instance per RegisterType call. The LifestyLe of SauceBéarnaise is therefore consid-
ered to be torn.

400 ChapTEr 13 The Autofac DI Container

WARNING Supplying multiple service types to the As method isn’t the same as
making multiple RegisterType calls. Each call will get its own cache, which
can cause the lifetime to be torn when the chosen Lifestyle is other than
Transient.

In real applications, you always have more than one Abstraction to map, so you must
configure multiple mappings. This is done with multiple calls to RegisterType:

builder.RegisterType<SauceBéarnaise>().As<IIngredient>();
builder.RegisterType<Course>().As<ICourse>();

This example maps IIngredient to SauceBéarnaise, and ICourse to Course. There’s
no overlap of types, so it should be pretty evident what’s going on. But you can also
register the same Abstraction several times:

builder.RegisterType<SauceBéarnaise>().As<IIngredient>();
builder.RegisterType<Steak>().As<IIngredient>();

Here, you register IIngredient twice. If you resolve IIngredient, you get an instance
of Steak. The last registration wins, but previous registrations aren’t forgotten. Autofac
handles multiple configurations for the same Abstraction well, but we’ll get back to
this topic in section 13.4.

There are more-advanced options available for configuring Autofac, but you can
configure an entire application with the methods shown here. But to save yourself from
too much explicit maintenance of container configuration, you could instead consider
a more convention-based approach using Auto-Registration.

CONfiguriNg ThE ContainerBuilder uSiNg auTO-rEgiSTraTiON

In many cases, registrations will be similar. Such registrations are tedious to maintain,
and explicitly registering each and every component might not be the most productive
approach, as we discussed in section 12.3.3.

Consider a library that contains many IIngredient implementations. You can con-
figure each class individually, but it’ll result in numerous similar-looking calls to the
RegisterType method. What’s worse is that every time you add a new IIngredient
implementation, you must also explicitly register it with the ContainerBuilder if you
want it to be available. It’d be more productive to state that all implementations of
IIngredient found in a given assembly should be registered.

This is possible using the RegisterAssemblyTypes method. This method lets you
specify an assembly and configure all selected classes from this assembly into a single
statement. To get the Assembly instance, you can use a representative class (in this case,
Steak):

Assembly ingredientsAssembly = typeof(Steak).Assembly;

builder.RegisterAssemblyTypes(ingredientsAssembly).As<IIngredient>();

The RegisterAssemblyTypes method returns the same interface as the RegisterType
method, so many of the same configuration options are available. This is a strong fea-
ture, because it means that you don’t have to learn a new API to use Auto-Registration.

 401Introducing Autofac

In the previous example, we used the As method to register all types in the assem-
bly as IIngredient services. The previous example also unconditionally configures all
implementations of the IIngredient interface, but you can provide filters that let you
select only a subset. Here’s a convention-based scan where you add only classes whose
name starts with Sauce:

Assembly ingredientsAssembly = typeof(Steak).Assembly;

builder.RegisterAssemblyTypes(ingredientsAssembly)
 .Where(type => type.Name.StartsWith("Sauce"))
 .As<IIngredient>();

When you register all types in an assembly, you can use a predicate to define a selection
criterion. The only difference from the previous code example is the inclusion of the
Where method, where you select only those types whose names start with Sauce.

There are many other methods that let you provide various selection criteria. The
Where method gives you a filter that only lets those types through that match the predi-
cate, but there’s also an Except method that works the other way around.

Apart from selecting the correct types from an assembly, another part of Auto-
Registration is defining the correct mapping. In the previous examples, we used
the As method with a specific interface to register all selected types against that inter-
face. But sometimes you’ll want to use different conventions.

Let’s say that instead of interfaces, you use abstract base classes, and you want to register
all types in an assembly where the name ends with Policy. For this purpose, there are several
other overloads of the As method, including one that takes a Func<Type, Type> as input:

Assembly policiesAssembly = typeof(DiscountPolicy).Assembly;

builder.RegisterAssemblyTypes(policiesAssembly)
 .Where(type => type.Name.EndsWith("Policy"))
 .As(type => type.BaseType);

TIP Think of RegisterAssemblyTypes as the plural of RegisterType.

You can use the code block provided to the As method for every single type whose
name ends with Policy. This ensures that all classes with the Policy suffix will be regis-
tered against their base class, so that when the base class is requested, the container will
resolve it to the type mapped by this convention. Convention-based registration with
Autofac is surprisingly easy and uses an API that closely mirrors the API exposed by the
singular RegisterType method.

auTO-rEgiSTraTiON Of gENEriC abSTraCTiONS uSiNg AsClosedTypesOf
During the course of chapter 10, you refactored the big, obnoxious IProductService
interface to the ICommandService<TCommand> interface of listing 10.12. Here’s that
Abstraction again:

public interface ICommandService<TCommand>
{
 void Execute(TCommand command);
}

402 ChapTEr 13 The Autofac DI Container

As discussed in chapter 10, every command Parameter Object represents a use case
and, apart from any Decorators that implement Cross-Cutting Concerns, there’ll be
a single implementation per use case. The AdjustInventoryService of listing 10.8 was
given as an example. It implemented the “adjust inventory” use case. The next listing
shows this class again.

Listing 13.2 The AdjustInventoryService from chapter 10

public class AdjustInventoryService : ICommandService<AdjustInventory>
{
 private readonly IInventoryRepository repository;

 public AdjustInventoryService(IInventoryRepository repository)
 {
 this.repository = repository;
 }

 public void Execute(AdjustInventory command)
 {
 var productId = command.ProductId;

 ...
 }
}

Any reasonably complex system will easily implement hundreds of use cases. This is an
ideal candidate for using Auto-Registration. With Autofac, this couldn’t be easier, as
the following listing shows.

Listing 13.3 auTO-rEgiSTraTiON of ICommandService<TCommand> implementations

Assembly assembly = typeof(AdjustInventoryService).Assembly;

builder.RegisterAssemblyTypes(assembly)
 .AsClosedTypesOf(typeof(ICommandService<>));

As in the previous listings, you make use of the RegisterAssemblyTypes method to
select classes from the supplied assembly. Instead of calling As, however, you call
AsClosedTypesOf and supply the open-generic ICommandService<TCommand> interface.

Using the supplied open-generic interface, Autofac iterates through the list of assem-
bly types and registers all types that implement a closed-generic version of ICommand
Service<TCommand>. What this means, for instance, is that AdjustInventoryService
is registered, because it implements ICommandService<AdjustInventory>, which is a
closed-generic version of ICommandService<TCommand>.

The RegisterAssemblyTypes method takes a params array of Assembly instances,
so you can supply as many assemblies to a single convention as you’d like. It’s not a
far-fetched thought to scan a folder for assemblies and supply them all to implement
add-in functionality. In that way, add-ins can be added without recompiling a core appli-
cation. This is one way to implement late binding; another is to use configuration files.

 403Introducing Autofac

CONfiguriNg ThE ContainerBuilder uSiNg CONfiguraTiON filES

When you need to change a container’s registrations without recompiling the applica-
tion, configuration files are a viable option. As we stated in section 12.2.1, you should
use configuration files only for those types of your DI configuration that require late
binding: prefer Configuration as Code or Auto-Registration in all other types and
all other parts of your configuration.

The most natural way to use configuration files is to embed those into the standard
.NET application configuration file. This is possible, but you can also use a standalone
configuration file if you need to vary the Autofac configuration independently of the
standard .config file. Whether you want to do one or the other, the API is almost the same.

NOTE Autofac’s configuration support is implemented in a separate assembly.
To use this feature, you must add a reference to the Autofac.Configuration
assembly (https://mng.bz/1Q4V).

Once you have a reference to Autofac.Configuration, you can ask the Container
Builder to read component registrations from the standard .config file like this:

var configuration = new ConfigurationBuilder()
 .AddJsonFile("autofac.json")
 .Build();

builder.RegisterModule(
 new ConfigurationModule(configuration));

Here’s a simple example that maps the IIngredient interface to the Steak class:

{
 "defaultAssembly": "Ploeh.Samples.MenuModel",
 "components": [
 {
 "services": [{
 "type": "Ploeh.Samples.MenuModel.IIngredient"
 }],
 "type": "Ploeh.Samples.MenuModel.Steak"
 }]
}

The type name must include the namespace so that Autofac can find that type.
Because both types are located in the default assembly Ploeh.Samples.MenuModel, the
assembly name can be omitted in this case. Although the defaultAssembly attribute is

Loads the autofac.json configuration file
using .NET Core’s configuration system.
By default, the configuration file will be
located in the application’s root directory.

Wraps the created configuration in an
Autofac module that processes the
configuration file and maps file-based
registrations in Autofac. That module is
added to the builder using RegisterModule.

The defaultAssembly construct lets
you write types in a shorter fashion.
If you don’t specify an assembly-
qualified type name in a type or
interface reference, it’ll be assumed
to be in the default assembly.

Simple mapping from IIngredient to Steak. Specifying a type is done
using a fully qualified type name, but you can omit the assembly
name if the type is defined in the default assembly, as it is in this case.

https://mng.bz/1Q4V

404 ChapTEr 13 The Autofac DI Container

optional, it’s a nice feature that can save you from a lot of typing if you have many types
defined in the same assembly.

The components element is a JSON array of component elements. The previous
example contained a single component, but you can add as many component elements
as you like. In each element, you must specify a concrete type with the type attribute.
This is the only required attribute. To map the Steak class to IIngredient, you can use
the optional services attribute.

A configuration file is a good option when you need to change the configuration of one
or more components without recompiling the application, but because it tends to be quite
brittle, you should reserve it for only those occasions. Use either Auto-Registration or
Configuration as Code for the main part of the container’s configuration.

TIP Remember that the last configuration of a type wins! You can use this
behavior to overwrite hard-coded configurations with XML configurations. To
do this, you must remember to read in the XML configuration after any other
components have been configured.

This section introduced the Autofac DI Container and demonstrated these funda-
mental mechanics: how to configure a ContainerBuilder and, subsequently, how to
use the constructed container to resolve services. Resolving services is easily done with
a single call to the Resolve method, so the complexity involves configuring the con-
tainer. This can be done in several different ways, including imperative code and con-
figuration files.

Until now, we’ve only looked at the most basic API, so there are more-advanced areas we
have yet to cover. One of the most important topics is how to manage component lifetime.

13.2 Managing lifetime
In chapter 8, we discussed Lifetime Management, including the most common con-
ceptual Lifestyles such as Singleton, Scoped, and Transient. Autofac supports sev-
eral different Lifestyles, enabling you to configure the lifetime of all services. The
Lifestyles shown in table 13.2 are available as part of the API.

NOTE In Autofac, Lifestyles are called instance scopes.

Table 13.2 Autofac instance scopes (lifESTylES)

Autofac name Pattern name Comments

Per-dependency trAnsient This is the default instance scope. Instances are tracked by the
container.

Single instance singLeton Instances are disposed of when the container is disposed of.

Per-lifetime scope scoPeD Ties the lifetime of components together with a lifetime scope
(see section 13.2.1).

 405Managing lifetime

TIP The default Transient Lifestyle is the safest, but not always the most
efficient. Singleton is a more effective choice for thread-safe services, but you
must remember to explicitly register those services.

Autofac’s implementations of Transient and Singleton are equivalent to the general
Lifestyles described in chapter 8, so we won’t spend much time on them in this chap-
ter. Instead, in this section, you’ll see how you can define Lifestyles for components
both in code and with configuration files. We’ll also look at Autofac’s concept of life-
time scopes and how they can be used to implement the Scoped Lifestyle. By the end
of this section, you should be able to use Autofac’s Lifestyles in your own application.
Let’s start by reviewing how to configure instance scopes for components.

13.2.1 Configuring instance scopes

In this section, we’ll review how to manage component instance scopes with Autofac.
Instance scopes are configured as part of registering components, and you can define
them both with code and via a configuration file. We’ll look at each in turn.

CONfiguriNg iNSTaNCE SCOpES wiTh COdE

Instance scope is defined as part of the registrations you make on a ContainerBuilder
instance. It’s as easy as this:

builder.RegisterType<SauceBéarnaise>().SingleInstance();

This configures the concrete SauceBéarnaise class as a Singleton so that the same
instance is returned each time SauceBéarnaise is requested. If you want to map an
Abstraction to a concrete class with a specific lifetime, you can use the usual As
method and place the SingleInstance method call wherever you like. These two regis-
trations are functionally equivalent:

builder builder
 .RegisterType<SauceBéarnaise>() .RegisterType<SauceBéarnaise>()
 .As<IIngredient>() .SingleInstance()
 .SingleInstance(); .As<IIngredient>();

Notice that the only difference is that we’ve swapped the As and SingleInstance
method calls. Personally, we prefer the sequence on the left, because the Register
Type and As method calls form a mapping between a concrete class and an Abstrac-
tion. Keeping them close together makes the registration more readable, and you can
then state the instance scope as a modification to the mapping.

Although Transient is the default instance scope, you can explicitly state it. These
two examples are equivalent:

builder builder
 .RegisterType<SauceBéarnaise>(); .RegisterType<SauceBéarnaise>()
 .InstancePerDependency();

406 ChapTEr 13 The Autofac DI Container

Configuring instance scope for convention-based registrations is done using the same
method as for singular registrations:

Assembly ingredientsAssembly = typeof(Steak).Assembly;

builder.RegisterAssemblyTypes(ingredientsAssembly).As<IIngredient>()
 .SingleInstance();

You can use SingleInstance and the other related methods to define the instance
scope for all registrations in a convention. In the previous example, you defined all
IIngredient registrations as Singleton. In the same way that you can register compo-
nents both in code and in a configuration file, you can also configure instance scope
in both places.

CONfiguriNg iNSTaNCE SCOpES wiTh CONfiguraTiON filES

When you need to define components in a configuration file, you might want to
configure their instance scopes in the same place; otherwise, it would result in all
components getting the same default Lifestyle. This is easily done as part of the con-
figuration schema you saw in section 13.1.2. You can use the optional instancescope
attribute to declare the Lifestyle.

Listing 13.4 Using the optional instance-scope attribute

{
 "defaultAssembly": "Ploeh.Samples.MenuModel",
 "components": [
 {
 "services": [{
 "type": "Ploeh.Samples.MenuModel.IIngredient"
 }],
 "type": "Ploeh.Samples.MenuModel.Steak",
 "instance-scope": "single-instance"
 }]
}

Compared to the example in section 13.1.2, the only difference is the added instance
scope attribute that configures the instance as a Singleton. When you omit the
instancescope attribute, perdependency is used, which is Autofac’s equivalent to
Transient.

Both in code and in a file, it’s easy to configure instance scopes for components. In
all cases, it’s done in a rather declarative fashion. Although configuration is easy, you
must not forget that some Lifestyles involve long-lived objects that use resources as
long as they’re around.

13.2.2 Releasing components

As discussed in section 8.2.2, it’s important to release objects when you’re done with
them. Autofac has no explicit Release method but instead uses a concept called lifetime
scopes. A lifetime scope can be regarded as a throw-away copy of the container. As figure
13.3 illustrates, it defines a boundary where components can be reused.

Adds instance scope to
configure a sIngleton

A lifetime-scoped component is a
SINGLETON within that scope. No
matter how many times you ask
a scope for such a component, you
get the same instance.

Another scope will
have its own scoped
instances.

The parent container manages
the truly shared SINGLETONS.

TRANSIENT components
are never shared, but
are decommissioned when
the scope is disposed of.

Container

ILifetimeScope ILifetimeScope

Singleton

Scoped

Transient Transient Transient Transient

Scoped

Figure 13.3 Autofac’s lifetime scopes act as containers that can share components for a limited duration or
purpose.

 407Managing lifetime

A lifetime scope defines a derived container that you can use for a particular duration or
purpose; the most obvious example is a web request. You spawn a scope from a container
so that the scope inherits all the Singletons tracked by the parent container, but the
scope also acts as a container of local Singletons. When a lifetime-scoped component
is requested from a lifetime scope, you always receive the same instance. The difference
from true Singletons is that if you query a second scope, you’ll get another instance.

NOTE Transient components still act as they should, whether you resolve
them from the root container or a lifetime scope.

One of the important features of lifetime scopes is that they allow you to properly
release components when the scope completes. You create a new scope with the
BeginLifetimeScope method and release all appropriate components by invoking its
Dispose method like so:

using (var scope = container.BeginLifetimeScope())
{
 IMeal meal = scope.Resolve<IMeal>();

 meal.Consume();

}

Creates a scope from the root container

Resolves a meal from the
newly created scope

Consumes the meal

Releases the meal by ending the using block

Configuring instance scope for convention-based registrations is done using the same
method as for singular registrations:

Assembly ingredientsAssembly = typeof(Steak).Assembly;

builder.RegisterAssemblyTypes(ingredientsAssembly).As<IIngredient>()
 .SingleInstance();

You can use SingleInstance and the other related methods to define the instance
scope for all registrations in a convention. In the previous example, you defined all
IIngredient registrations as Singleton. In the same way that you can register compo-
nents both in code and in a configuration file, you can also configure instance scope
in both places.

CONfiguriNg iNSTaNCE SCOpES wiTh CONfiguraTiON filES

When you need to define components in a configuration file, you might want to
configure their instance scopes in the same place; otherwise, it would result in all
components getting the same default Lifestyle. This is easily done as part of the con-
figuration schema you saw in section 13.1.2. You can use the optional instancescope
attribute to declare the Lifestyle.

Listing 13.4 Using the optional instance-scope attribute

{
 "defaultAssembly": "Ploeh.Samples.MenuModel",
 "components": [
 {
 "services": [{
 "type": "Ploeh.Samples.MenuModel.IIngredient"
 }],
 "type": "Ploeh.Samples.MenuModel.Steak",
 "instance-scope": "single-instance"
 }]
}

Compared to the example in section 13.1.2, the only difference is the added instance
scope attribute that configures the instance as a Singleton. When you omit the
instancescope attribute, perdependency is used, which is Autofac’s equivalent to
Transient.

Both in code and in a file, it’s easy to configure instance scopes for components. In
all cases, it’s done in a rather declarative fashion. Although configuration is easy, you
must not forget that some Lifestyles involve long-lived objects that use resources as
long as they’re around.

13.2.2 Releasing components

As discussed in section 8.2.2, it’s important to release objects when you’re done with
them. Autofac has no explicit Release method but instead uses a concept called lifetime
scopes. A lifetime scope can be regarded as a throw-away copy of the container. As figure
13.3 illustrates, it defines a boundary where components can be reused.

Adds instance scope to
configure a sIngleton

A lifetime-scoped component is a
SINGLETON within that scope. No
matter how many times you ask
a scope for such a component, you
get the same instance.

Another scope will
have its own scoped
instances.

The parent container manages
the truly shared SINGLETONS.

TRANSIENT components
are never shared, but
are decommissioned when
the scope is disposed of.

Container

ILifetimeScope ILifetimeScope

Singleton

Scoped

Transient Transient Transient Transient

Scoped

Figure 13.3 Autofac’s lifetime scopes act as containers that can share components for a limited duration or
purpose.

408 ChapTEr 13 The Autofac DI Container

You create a new scope from the container by invoking the BeginLifetimeScope
method. The return value implements IDisposable so you can wrap it in a using
block. Because it also implements the same interface that the container itself imple-
ments, you can use the scope to resolve components in exactly the same way as with the
container itself.

When you’re done with a lifetime scope, you can dispose of it. This happens auto-
matically with a using block when you exit the block, but you can also choose to explic-
itly dispose of it by invoking the Dispose method. When you dispose of a scope, you also
release all the components that were created by the lifetime scope. In the example, it
means that you release the meal object graph.

Dependencies of a component are always resolved at or below the component’s life-
time scope. For example, if you need a Transient Dependency injected into a Sin-
gleton, that Transient Dependency comes from the root container even if you’re
resolving the Singleton from a nested lifetime scope. This will track the Transient
within the root container and prevent it from being disposed of when the lifetime scope
gets disposed of. The Singleton consumer would otherwise break, because it’s kept
alive in the root container while depending on a component that was disposed of.

NOTE Remember that releasing a disposable component isn’t the same as dis-
posing of it. It’s a signal to the container that the component is eligible for
decommissioning. If the component is Scoped, it’ll be disposed of; otherwise,
if it’s a Singleton, it remains active until the root container is disposed of.

Earlier in this section, you saw how to configure components as Singletons or Tran-
sients. Configuring a component to have its instance scope tied to a lifetime scope is
done in a similar way:

builder.RegisterType<SauceBéarnaise>()
 .As<IIngredient>()
 .InstancePerLifetimeScope();

IMPORTANT Autofac tracks most components — even disposable Tran-
sients — so it’s important to resolve all components from a lifetime scope
and dispose of the scope after use. Resolving scoped instances from the root
container causes the same instance to always be returned. This’ll cause con-
currency bugs when such a scoped component isn’t thread-safe. When the
root container is used to resolve a disposable Transient, even though new
instances are created on each call to Resolve, instances are kept alive as well,
in order to allow them to be disposed of when the container is disposed of.
Because the root container won’t be disposed of until the application stops,
this causes memory leaks.

Due to their nature, Singletons are never released for the lifetime of the container
itself. Still, you can release even those components if you don’t need the container any
longer. This is done by disposing of the container itself:

container.Dispose();

Similar to the SingleInstance and InstancePerDependency
methods, you use the InstancePerLifetimeScope method
to state that the component’s lifetime should follow the
lifetime scope that created the instance.

 409Registering difficult APIs

In practice, this isn’t nearly as important as disposing of a scope because the lifetime
of a container tends to correlate closely with the lifetime of the application it supports.
You normally keep the container around as long as the application runs, so you’d
only dispose of it when the application shuts down. In this case, memory would be
reclaimed by the operating system.

This completes our tour of Lifetime Management with Autofac. Components
can be configured with mixed instance scopes, and this is true even when you regis-
ter multiple implementations of the same Abstraction. But until now, you’ve allowed
the container to wire Dependencies by implicitly assuming that all components use
Auto-Wiring. This isn’t always the case. In the next section, we’ll review how to deal
with classes that must be instantiated in special ways.

13.3 Registering difficult APIs
Until now, we’ve considered how you can configure components that use Construc-
tor Injection. One of the many benefits of Constructor Injection is that DI Con-
tainers like Autofac can easily understand how to compose and create all classes in a
Dependency graph. This becomes less clear when APIs are less well behaved.

In this section, you’ll see how to deal with primitive constructor arguments and static
factories. These all require special attention. Let’s start by looking at classes that take
primitive types, such as strings or integers, as constructor arguments.

13.3.1 Configuring primitive DepenDencieS

As long as you inject Abstractions into consumers, all is well. But it becomes more
difficult when a constructor depends on a primitive type, such as a string, a number,
or an enum. This is particularly the case for data access implementations that take a
connection string as constructor parameter, but it’s a more general issue that applies to
all strings and numbers.

Conceptually, it doesn’t always make sense to register a string or number as a com-
ponent in a container. But with Autofac, this is at least possible. Consider as an example
this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness { Mild, Medium, Hot }

TIP As a rule of thumb, enums are code smells and should be refactored to
polymorphic classes.3 But they serve us well for this example.

If you want all consumers of Spiciness to use the same value, you can register Spiciness
and ChiliConCarne independently of each other. This snippet shows how:

builder.Register<Spiciness>(c => Spiciness.Medium);
builder.RegisterType<ChiliConCarne>().As<ICourse>();

3 See Martin Fowler et al., Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), 82.

410 ChapTEr 13 The Autofac DI Container

When you subsequently resolve ChiliConCarne, it’ll have a Spiciness value of Medium,
as will all other components with a Dependency on Spiciness. If you’d rather con-
trol the relationship between ChiliConCarne and Spiciness on a finer level, you can
use the WithParameter method. Because you want to supply a concrete value for the
Spiciness parameter, you can use the WithParameter overload that takes a parameter
name and a value:

builder.RegisterType<ChiliConCarne>().As<ICourse>()
 .WithParameter(
 "spiciness",
 Spiciness.Hot);

Both options described here use Auto-Wiring to provide a concrete value to a com-
ponent. As discussed in section 13.4, this has advantages and disadvantages. A more
convenient solution, however, is to extract the primitive Dependencies into Parameter
Objects.

In section 10.3.3, we discussed how the introduction of Parameter Objects allowed
mitigating the Open/Closed Principle violation that IProductService caused.
Parameter Objects, however, are also a great tool to mitigate ambiguity.

The Spiciness of a course, for instance, could be described in the more general
term flavoring. Flavoring might include other properties, such as saltiness. In other
words, you can wrap the Spiciness and ExtraSalty in a Flavoring class:4

public class Flavoring
{
 public readonly Spiciness Spiciness;
 public readonly bool ExtraSalty;

 public Flavoring(Spiciness spiciness, bool extraSalty)
 {
 this.Spiciness = spiciness;
 this.ExtraSalty = extraSalty;
 }
}

TIP As we mentioned in section 10.3.3, it’s perfectly fine for Parameter
Objects to have one parameter. The goal is to remove ambiguity, but not just
on the technical level. Such a Parameter Object’s name might do a better job
describing what your code does on a functional level, as the Flavoring class so
elegantly does.

With the introduction of the Flavoring Parameter Object, it now becomes easy to
Auto-Wire any ICourse implementation that requires some flavoring:

var flavoring = new Flavoring(Spiciness.Medium, extraSalty: true);
builder.RegisterInstance<Flavoring>(flavoring);

builder.RegisterType<ChiliConCarne>().As<ICourse>();

Name of the parameter

Value to inject

4 From a culinary perspective, Mark shivers at the concept of extra saltiness. Savory food should have
appropriate amounts of salt, but not extra.

 411Registering difficult APIs

Now you have a single instance of the Flavoring class. Flavoring becomes a configu-
ration object for ICourses. Because there’ll only be one Flavoring instance, you can
register it in Autofac using RegisterInstance.

NOTE Avoid injecting Parameter Objects that function as application-wide
configuration objects. Instead, prefer narrow, focused, Parameter Objects
that only contain the values a particular consumer requires. This communi-
cates more clearly what configuration values a component uses, and simplifies
testing. In general terms, injecting application-wide configuration objects is an
Interface Segregation Principle violation.

Extracting primitive Dependencies into Parameter Objects should be your preference
over the previously discussed options because Parameter Objects remove ambiguity,
both at the functional and the technical levels. It does, however, require a change to a
component’s constructor, which might not always be feasible. In this case, the use of
WithParameter is your second-best pick.

13.3.2 Registering objects with code blocks

Another option for creating a component with a primitive value is to use the Register
method. It lets you supply a delegate that creates the component:

builder.Register<ICourse>(c => new ChiliConCarne(Spiciness.Hot));

You already saw the Register method when we discussed the registration of Spiciness
in section 13.3.1. Here, the ChiliConCarne constructor is invoked with a Spiciness
value of Hot every time the ICourse service is resolved.

NOTE The Register method is type-safe, but it disables Auto-Wiring.

When it comes to the ChiliConCarne class, you have a choice between Auto-Wiring
or using a code block. Other classes can be more restrictive: they can’t be instanti-
ated through a public constructor. Instead, you must use some sort of factory to cre-
ate instances of the type. This is always troublesome for DI Containers, because, by
default, they look after public constructors. Consider this example constructor for the
public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class might be public, the constructor is internal. In this
example, instances of JunkFood should instead be created through the static Junk
FoodFactory class:

public static class JunkFoodFactory
{
 public static JunkFood Create(string name)
 {
 return new JunkFood(name);
 }
}

412 ChapTEr 13 The Autofac DI Container

From Autofac’s perspective, this is a problematic API, because there are no unambig-
uous and well-established conventions around static factories. It needs help — and you
can give that help by providing a code block it can execute to create the instance:

builder.Register<IMeal>(c => JunkFoodFactory.Create("chicken meal"));

This time, you use the Register method to create the component by invoking a static
factory within the code block. With that in place, JunkFoodFactory.Create is invoked
every time IMeal is resolved and the result returned.

When you end up writing the code to create the instance, how is this better than
invoking the code directly? By using a code block inside a Register method call, you
still gain something:

¡	You map from IMeal to JunkFood. This allows consuming classes to stay loosely
coupled.

¡	Instance scope can still be configured. Although the code block will be invoked to
create the instance, it may not be invoked every time the instance is requested.
It is by default, but if you change it to a Singleton, the code block will only be
invoked once, with the result cached and reused thereafter.

In this section, you’ve seen how you can use Autofac to deal with more-difficult cre-
ational APIs. You can use the WithParameter method to wire constructors with services
to maintain a semblance of Auto-Wiring, or you can use the Register method with
a code block for a more type-safe approach. We have yet to look at how to work with
multiple components, so let’s now turn our attention in that direction.

13.4 Working with multiple components
As alluded to in section 12.1.2, DI Containers thrive on distinctness but have a hard
time with ambiguity. When using Constructor Injection, a single constructor is
preferred over overloaded constructors, because it’s evident which constructor to use
when there’s no choice. This is also the case when mapping from Abstractions to
concrete types. If you attempt to map multiple concrete types to the same Abstrac-
tion, you introduce ambiguity.

Despite the undesirable qualities of ambiguity, you often need to work with multiple
implementations of a single Abstraction.5 This can be the case in situations like these:

¡	Different concrete types are used for different consumers.
¡	Dependencies are sequences.
¡	Decorators or Composites are in use.

5 As a matter of fact, having many Abstractions with only one implementation is a design smell de-
scribed by the Reused Abstraction Principle. See Jason Gorman, “Reused Abstractions Principle
(RAP),” 2010, http://www.codemanship.co.uk/parlezuml/blog/?postid=934.

http://www.codemanship.co.uk/parlezuml/blog/?postid=934

 413Working with multiple components

In this section, we’ll look at each of these cases and see how Autofac addresses each in
turn. When we’re done, you should be able to register and resolve components even
when multiple implementations of the same Abstraction are in play. Let’s first see
how you can provide more fine-grained control than Auto-Wiring provides.

13.4.1 Selecting among multiple candidates

Auto-Wiring is convenient and powerful but provides little control. As long as all
Abstractions are distinctly mapped to concrete types, you have no problems. But as
soon as you introduce more implementations of the same interface, ambiguity rears its
ugly head. Let’s first recap how Autofac deals with multiple registrations of the same
Abstraction.

CONfiguriNg mulTiplE implEmENTaTiONS Of ThE SamE SErviCE

As you saw in section 13.1.2, you can register multiple implementations of the same
interface like this:

builder.RegisterType<Steak>().As<IIngredient>();
builder.RegisterType<SauceBéarnaise>().As<IIngredient>();

This example registers both the Steak and SauceBéarnaise classes as the IIngredient
service. The last registration wins, so if you resolve IIngredient with scope.Resolve
<IIngredient>(), you’ll get a SauceBéarnaise instance.

TIP The last registration of a given service defines the default instance for that
type. You can register a type with .PreserveExistingDefaults() if you don’t
want your registration to take precedence over previous registrations.

You can also ask the container to resolve all IIngredient components. Autofac has no
dedicated method to do that, but instead relies on relationship types (https://mng.
bz/P429). A relationship type is a type that indicates a relationship that the container
can interpret. As an example, you can use IEnumerable<T> to indicate that you want all
services of a given type:

IEnumerable<IIngredient> ingredients =
 scope.Resolve<IEnumerable<IIngredient>>();

Notice that we use the normal Resolve method, but that we request IEnumerable
<IIngredient>. Autofac interprets this as a convention and gives us all the IIngredi
ent components it has.

TIP As an alternative to IEnumerable<T>, you can also request an array.
The results are equivalent; in both cases, you get all the components of the
requested type.

https://mng.bz/P429
https://mng.bz/P429

414 ChapTEr 13 The Autofac DI Container

When you register components, you can give each registration a name that you can
later use to select among the different components. This code snippet shows that
process:

builder.RegisterType<Steak>().Named<IIngredient>("meat");
builder.RegisterType<SauceBéarnaise>().Named<IIngredient>("sauce");

As always, you start with the RegisterType method, but instead of following up with the
As method, you use the Named method to specify a service type as well as a name. This
enables you to resolve named services by supplying the same name to the Resolve
Named method:

IIngredient meat = scope.ResolveNamed<IIngredient>("meat");
IIngredient sauce = scope.ResolveNamed<IIngredient>("sauce");

NOTE A named component doesn’t count as a default component. If you only
register named components, you can’t resolve a default instance of the service.
But nothing prevents you from also registering a default (unnamed) compo-
nent with the As method. You can even do it in the same statement by method
chaining.

Naming components with strings is a fairly common feature of DI Containers. But
Autofac also lets you identify components with arbitrary keys:

object meatKey = new object();
builder.RegisterType<Steak>().Keyed<IIngredient>(meatKey);

The key can be any object, and you can subsequently use it to resolve the component:

IIngredient meat = scope.ResolveKeyed<IIngredient>(meatKey);

Given that you should always resolve services in a single Composition Root, you should
normally not expect to deal with such ambiguity on this level. If you do find yourself
invoking the Resolve method with a specific name or key, consider if you can change
your approach to be less ambiguous. You can also use named or keyed instances to
select among multiple alternatives when configuring Dependencies for a given service.

rEgiSTEriNg NamEd dEpENdENCiES

As useful as Auto-Wiring is, sometimes you need to override the normal behavior to
provide fine-grained control over which Dependencies go where; it can also be that
you need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée, ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed Dependencies, each of which represents
a different concept. In most cases, you want to map each of the Dependencies to a sep-
arate type. The following listing shows how you could choose to register the ICourse
mappings.

 415Working with multiple components

Listing 13.5 Registering named courses

builder.RegisterType<Rillettes>().Named<ICourse>("entrée");
builder.RegisterType<CordonBleu>().Named<ICourse>("mainCourse");
builder.RegisterType<MousseAuChocolat>().Named<ICourse>("dessert");

Here, you register three named components, mapping the Rilettes to an instance
named entrée, CordonBleu to an instance named mainCourse, and the MousseAuChocolat
to an instance named dessert. Given this configuration, you can now register the Three
CourseMeal class with the named registrations.

This turns out to be surprisingly complex. In the following listing, we’ll first show you
what it looks like, and then we’ll subsequently pick apart the example to understand
what’s going on.

Listing 13.6 Overriding auTO-wiriNg

builder.RegisterType<ThreeCourseMeal>().As<IMeal>()
 .WithParameter(
 (p, c) => p.Name == "entrée",
 (p, c) => c.ResolveNamed<ICourse>("entrée"))
 .WithParameter(
 (p, c) => p.Name == "mainCourse",
 (p, c) => c.ResolveNamed<ICourse>("mainCourse"))
 .WithParameter(
 (p, c) => p.Name == "dessert",
 (p, c) => c.ResolveNamed<ICourse>("dessert"));

Let’s take a closer look at what’s going on here. The WithParameter method overload
wraps around the ResolvedParameter class, which has this constructor:

public ResolvedParameter(
 Func<ParameterInfo, IComponentContext, bool> predicate,
 Func<ParameterInfo, IComponentContext, object> valueAccessor);

The predicate parameter is a test that determines whether the valueAccessor dele-
gate will be invoked. When predicate returns true, valueAccessor is invoked to pro-
vide the value for the parameter. Both delegates take the same input: information about
the parameter in the form of a ParameterInfo object and an IComponent Context that
can be used to resolve other components. When Autofac uses the ResolvedParameter
instances, it provides both of these values when it invokes the delegates.

As listing 13.6 shows, the resulting registration is rather verbose. With the aid of two
self-written helper methods, however, you can simplify the registration considerably:

builder.RegisterType<ThreeCourseMeal>().As<IMeal>()
 .WithParameter(Named("entrée"), InjectWith<ICourse>("entrée"))
 .WithParameter(Named("mainCourse"), InjectWith<ICourse>("mainCourse"))
 .WithParameter(Named("dessert"), InjectWith<ICourse>("dessert"));

The WithParameter method provides parameter values for the ThreeCourseMeal
constructor. One of its overloads takes two arguments.

A predicate matching the
constructor parameter to
a specific name; in this
case, mainCourse

Resolves the value to be
injected into the
constructor parameter;
in this case, desert

416 ChapTEr 13 The Autofac DI Container

By introducing the Named and InjectWith<T> helper methods, you simplified the reg-
istration, reduced its verbosity, and at the same time, made it easier to read what’s
going on. It almost starts to read like poetry (or a well-aged bottle of wine):

create thy ThreeCourseMeal, with a parameter Named entrée, InjectedWith an
ICourse named entrée.

The following code shows the two new methods:

Func<ParameterInfo, IComponentContext, bool> Named(string name)
{
 return (p, c) => p.Name == name;
}

Func<ParameterInfo, IComponentContext, object> InjectWith<T>(string name)
{
 return (p, c) => c.ResolveNamed<T>(name);
}

When called, both methods create a new delegate that wraps the supplied name argu-
ment. Sometimes there’s no other way than to use the WithParameter method for
each and every constructor parameter, but in other cases, you can take advantage of
conventions.

rESOlviNg NamEd COmpONENTS by CONvENTiON

If you examine listing 13.6 closely, you’ll notice a repetitive pattern. Each call to With
Parameter addresses only a single constructor parameter, but each valueAccessor
does the same thing: it uses the IComponentContext to resolve an ICourse component
with the same name as the parameter.

There’s no requirement that says you must name the component after the construc-
tor parameter, but when this is the case, you can take advantage of this convention and
rewrite listing 13.6 in a simpler way. The following listing demonstrates how.

Listing 13.7 Overriding auTO-wiriNg with a convention

builder.RegisterType<ThreeCourseMeal>().As<IMeal>()
 .WithParameter(
 (p, c) => true,
 (p, c) => c.ResolveNamed(p.Name, p.ParameterType));

It might be a little surprising, but you can address all three constructor parameters
of the ThreeCourseMeal class with the same WithParameter call. You do that by stat-
ing that this instance will handle any parameter Autofac might throw at it. Because
you only use this method to configure the ThreeCourseMeal class, the convention only
applies within this limited scope.

As the predicate always returns true, the second code block will be invoked for all
three constructor parameters. In all three cases, it’ll ask IComponentContext to resolve
a component that has the same name and type as the parameter. This is functionally the
same as what you did in listing 13.6.

 417Working with multiple components

WARNING Identifying parameters by their names is convenient but not refac-
toring-safe. If you rename a parameter, you can break the configuration
(depending on your refactoring tool).

As in listing 13.6, you can create a simplified version of listing 13.7. But we’ll leave this
as an exercise for the reader.

Overriding Auto-Wiring by explicitly mapping parameters to named components
is a universally applicable solution. You can do this even if you configure the named
components in one part of the Composition Root and the consumer in a completely
different part, because the only identification that ties a named component together
with a parameter is the name. This is always possible but can be brittle if you have many
names to manage. When the original reason prompting you to use named components
is to deal with ambiguity, a better solution is to design your own API to get rid of that
ambiguity. It often leads to a better overall design.

In the next section, you’ll see how to use the less ambiguous and more flexible
approach, where you allow any number of courses in a meal. To this end, you must learn
how Autofac deals with lists and sequences.

13.4.2 Wiring sequences

In section 6.1.1, we discussed how Constructor Injection acts as a warning system
for Single Responsibility Principle violations. The lesson then was that instead of
viewing Constructor Over-Injection as a weakness of the Constructor Injection pat-
tern, you should rather rejoice that it makes problematic design so obvious.

When it comes to DI Containers and ambiguity, we see a similar relationship. DI
Containers generally don’t deal with ambiguity in a graceful manner. Although you
can make a good DI Container like Autofac deal with it, it can seem awkward. This is
often an indication that you could improve on the design of your code.

TIP If configuring a certain part of your API is difficult with Autofac, take a
step back and reevaluate your design against the patterns and principles pre-
sented in this book. More often than not, configuration difficulties are caused
by an application design that doesn’t follow these patterns or violates these
principles. Making your overall design better not only improves the applica-
tion’s maintainability, but also makes it easier to configure Autofac.

Instead of feeling constrained by Autofac, you should embrace its conventions and let
it guide you toward a better and more consistent design. In this section, we’ll look at an
example that demonstrates how you can refactor away from ambiguity, as well as show
how Autofac deals with sequences, arrays, and lists.

rEfaCTOriNg TO a bETTEr COurSE by rEmOviNg ambiguiTy

In section 13.4.1, you saw how the ThreeCourseMeal and its inherent ambiguity forced
you to abandon Auto-Wiring and instead use WithParameter. This should prompt
you to reconsider the API design. For example, a simple generalization moves toward

418 ChapTEr 13 The Autofac DI Container

an implementation of IMeal that takes an arbitrary number of ICourse instances,
instead of exactly three, as was the case with the ThreeCourseMeal class:

public Meal(IEnumerable<ICourse> courses)

Notice that instead of requiring three distinct ICourse instances in the constructor,
the single dependency on an IEnumerable<ICourse> instance lets you provide any
number of courses to the Meal class — from zero to ... a lot! This solves the issue with
ambiguity, because there’s now only a single Dependency. In addition, it also improves
the API and implementation by providing a single, general-purpose class that can
model different types of meals, from a simple meal with a single course to an elaborate
12-course dinner.

In this section, we’ll look at how you can configure Autofac to wire up Meal instances
with appropriate ICourse Dependencies. When you’re done, you should have a good
idea of the options available when you need to configure instances with sequences of
Dependencies.

auTO-wiriNg SEQuENCES

Autofac has a good understanding of sequences, so if you want to use all registered
components of a given service, Auto-Wiring just works. As an example, you can con-
figure the IMeal service like this:

builder.RegisterType<Rillettes>().As<IIngredient>();
builder.RegisterType<CordonBlue>().As<IIngredient>();
builder.RegisterType<MousseAuChocolat>().As<IIngredient>();

builder.RegisterType<Meal>().As<IMeal>();

Notice that this is a completely standard mapping from a concrete type to an Abstrac-
tion. Autofac automatically understands the Meal constructor and determines that the
correct course of action is to resolve all ICourse components. When you resolve IMeal,
you get a Meal instance with the ICourse components: Rillettes, CordonBleu, and
MousseAuChocolat.

Autofac automatically handles sequences, and, unless you specify otherwise, it does
what you’d expect it to do: it resolves a sequence of Dependencies to all registered com-
ponents of that type. Only when you need to explicitly pick some components from a
larger set do you need to do more. Let’s see how you can do that.

piCkiNg ONly SOmE COmpONENTS frOm a largEr SET

Autofac’s default strategy of injecting all components is often the correct policy, but
as figure 13.4 shows, there may be cases where you want to pick only some registered
components from the larger set of all registered components.

NOTE The need to inject a subset of a complete collection isn’t a common
scenario, but it does demonstrate how to solve more-complex needs that you
might encounter.

When you previously let Autofac Auto-Wire all configured instances, it corresponded
to the situation depicted on the right side of the figure. If you want to register a

On the left, you want to
explicitly select only certain
DEPENDENCIES from the
larger list of all registered
components.

This is different from the
situation on the right,
where you indiscriminately
want them all.

ent
rée

mainCourse

dessert

ICourse implementations

Rillettes

Crème brûlée

Lobster bisque

Meal Meal
Cordon bleu

Osso buco

Mousse au chocolat

Figure 13.4 Picking components from a larger set of all registered components

 419Working with multiple components

component as shown on the left side, you must explicitly define which components
should be used. In order to achieve this, you can use the WithParameter method the
way you did in listings 13.6 and 13.7. This time, you’re dealing with the Meal construc-
tor that only takes a single parameter. The following listing demonstrates how you can
implement the value-providing part of WithParameter to explicitly pick named com-
ponents from the IComponentContext.

Listing 13.8 Injecting named components into a sequence

builder.RegisterType<Meal>().As<IMeal>()
 .WithParameter(
 (p, c) => true,
 (p, c) => new[]
 {
 c.ResolveNamed<ICourse>("entrée"),
 c.ResolveNamed<ICourse>("mainCourse"),
 c.ResolveNamed<ICourse>("dessert")
 });

As you saw in section 13.4.1, the WithParameter method takes two delegates as input
parameters. The first is a predicate that’s used to determine if the second delegate
should be invoked. In this case, you decide to be a bit lazy and return true. You know
that the Meal class has only a single constructor parameter, so this’ll work. But if you
later refactor the Meal class to take a second constructor parameter, this may not work
correctly anymore. It might be safer to define an explicit check for the parameter type.

an implementation of IMeal that takes an arbitrary number of ICourse instances,
instead of exactly three, as was the case with the ThreeCourseMeal class:

public Meal(IEnumerable<ICourse> courses)

Notice that instead of requiring three distinct ICourse instances in the constructor,
the single dependency on an IEnumerable<ICourse> instance lets you provide any
number of courses to the Meal class — from zero to ... a lot! This solves the issue with
ambiguity, because there’s now only a single Dependency. In addition, it also improves
the API and implementation by providing a single, general-purpose class that can
model different types of meals, from a simple meal with a single course to an elaborate
12-course dinner.

In this section, we’ll look at how you can configure Autofac to wire up Meal instances
with appropriate ICourse Dependencies. When you’re done, you should have a good
idea of the options available when you need to configure instances with sequences of
Dependencies.

auTO-wiriNg SEQuENCES

Autofac has a good understanding of sequences, so if you want to use all registered
components of a given service, Auto-Wiring just works. As an example, you can con-
figure the IMeal service like this:

builder.RegisterType<Rillettes>().As<IIngredient>();
builder.RegisterType<CordonBlue>().As<IIngredient>();
builder.RegisterType<MousseAuChocolat>().As<IIngredient>();

builder.RegisterType<Meal>().As<IMeal>();

Notice that this is a completely standard mapping from a concrete type to an Abstrac-
tion. Autofac automatically understands the Meal constructor and determines that the
correct course of action is to resolve all ICourse components. When you resolve IMeal,
you get a Meal instance with the ICourse components: Rillettes, CordonBleu, and
MousseAuChocolat.

Autofac automatically handles sequences, and, unless you specify otherwise, it does
what you’d expect it to do: it resolves a sequence of Dependencies to all registered com-
ponents of that type. Only when you need to explicitly pick some components from a
larger set do you need to do more. Let’s see how you can do that.

piCkiNg ONly SOmE COmpONENTS frOm a largEr SET

Autofac’s default strategy of injecting all components is often the correct policy, but
as figure 13.4 shows, there may be cases where you want to pick only some registered
components from the larger set of all registered components.

NOTE The need to inject a subset of a complete collection isn’t a common
scenario, but it does demonstrate how to solve more-complex needs that you
might encounter.

When you previously let Autofac Auto-Wire all configured instances, it corresponded
to the situation depicted on the right side of the figure. If you want to register a

On the left, you want to
explicitly select only certain
DEPENDENCIES from the
larger list of all registered
components.

This is different from the
situation on the right,
where you indiscriminately
want them all.

ent
rée

mainCourse

dessert

ICourse implementations

Rillettes

Crème brûlée

Lobster bisque

Meal Meal
Cordon bleu

Osso buco

Mousse au chocolat

Figure 13.4 Picking components from a larger set of all registered components

420 ChapTEr 13 The Autofac DI Container

The second delegate provides the value for the parameter. You use IComponentCon
text to resolve three named components into an array. The result is an array of ICourse
instances, which is compatible with IEnumerable<ICourse>.

Autofac natively understands sequences; unless you need to explicitly pick only
some components from all services of a given type, Autofac automatically does the right
thing. Auto-Wiring works not only with single instances, but also for sequences, and
the container maps a sequence to all configured instances of the corresponding type. A
perhaps less intuitive use of having multiple instances of the same Abstraction is the
Decorators design pattern, which we’ll discuss next.

13.4.3 Wiring Decorators

In section 9.1.1, we discussed how the Decorator design pattern is useful when imple-
menting Cross-Cutting Concerns. By definition, Decorators introduce multiple
types of the same Abstraction. At the very least, you have two implementations of an
Abstraction: the Decorator itself and the decorated type. If you stack the Decorators,
you can have even more. This is another example of having multiple registrations of
the same service. Unlike the previous sections, these registrations aren’t conceptually
equal but rather Dependencies of each other.

There are multiple strategies for applying Decorators in Autofac, such as using the
previously discussed WithParameter or using code blocks, as we discussed in section
13.3.2. In this section, however, we’ll focus on the use of the RegisterDecorator and
RegisterGenericDecorator methods because they make configuring Decorators a
no-brainer.

dECOraTiNg NON-gENEriC abSTraCTiONS wiTh RegisterDecorator
Autofac has built-in support for Decorators via the RegisterDecorator method. The
following example shows how to use this method to apply Breading to a VealCutlet:

builder.RegisterType<VealCutlet>()
 .As<IIngredient>();

builder.RegisterDecorator<Breading, IIngredient>();

As you learned in chapter 9, you get Cordon Bleu when you slit open a pocket in the
veal cutlet and add ham, cheese, and garlic into the pocket before breading the cutlet.
The following example shows how to add a HamCheeseGarlic Decorator in between
VealCutlet and the Breading Decorator:

builder.RegisterType<VealCutlet>()
 .As<IIngredient>();

builder.RegisterDecorator<HamCheeseGarlic,
 IIngredient>();

builder.RegisterDecorator<Breading, IIngredient>();

Registers the VealCutlet
as a default IIngredient

Registers Breading as a Decorator of IIngredient.
When resolving an IIngredient, Autofac returns
a VealCutlet wrapped inside Breading.

Adds a new Decorator

 421Working with multiple components

By placing this new registration before the Breading registration, the HamCheeseGar
lic Decorator is wrapped first. This results in an object graph equal to the following
Pure DI version:

new Breading(
 new HamCheeseGarlic(
 new VealCutlet()));

NOTE Autofac applies Decorators in the order of registration.

Chaining Decorators using the RegisterDecorator method is easy in Autofac. Like-
wise, you can apply generic Decorators, as you’ll see next.

dECOraTiNg gENEriC abSTraCTiONS wiTh RegisterGenericDecorator
During the course of chapter 10, we defined multiple generic Decorators that could
be applied to any ICommandService<TCommand> implementation. In the remainder of
this chapter, we’ll set our ingredients and courses aside, and take a look at how to regis-
ter these generic Decorators using Autofac. The following listing demonstrates how to
register all ICommandService<TCommand> implementations with the three Decorators
presented in section 10.3.

Listing 13.9 Decorating generic auTO-rEgiSTErEd abSTraCTiONS

builder.RegisterAssemblyTypes(assembly)
 .AsClosedTypesOf(typeof(ICommandService<>));

builder.RegisterGenericDecorator(
 typeof(AuditingCommandServiceDecorator<>),
 typeof(ICommandService<>));

builder.RegisterGenericDecorator(
 typeof(TransactionCommandServiceDecorator<>),
 typeof(ICommandService<>));

builder.RegisterGenericDecorator(
 typeof(SecureCommandServiceDecorator<>),
 typeof(ICommandService<>));

As you saw in listing 13.3, listing 13.9 uses Register
AssemblyTypes to register arbitrary ICommand
Service<TCommand> implementations. To register
generic Decorators, however, Autofac provides a dif-
ferent method — RegisterGenericDecorator. The
result of the configuration of listing 13.9 is figure
13.5, which we discussed previously in section 10.3.4.

You can configure Decorators in different ways,
but in this section, we focused on Autofac’s methods
that were explicitly designed for this task. Autofac
lets you work with multiple instances in several dif-
ferent ways: you can register components as alterna-
tives to each other, as peers resolved as sequences,

VealCutlet is wrapped by HamCheeseGarlic,
which is wrapped by Breading.

Security Decorator

Transaction Decorator

Auditing Decorator

Actual
command

service

Figure 13.5 Enriching a real command
service with transaction, auditing, and
security aspects

422 ChapTEr 13 The Autofac DI Container

or as hierarchical Decorators. In many cases, Autofac figures out what to do, but you can
always explicitly define how services are composed if you need more-explicit control.

Although consumers that rely on sequences of Dependencies can be the most intu-
itive use of multiple instances of the same Abstraction, Decorators are another good
example. But there’s a third and perhaps a bit surprising case where multiple instances
come into play, which is the Composite design pattern.

13.4.4 Wiring Composites

During the course of this book, we discussed the Composite design pattern on sev-
eral occasions. In section 6.1.2, for instance, you created a CompositeNotification
Service (listing 6.4) that both implemented INotificationService and wrapped a
sequence of INotificationService implementations.

wiriNg NON-gENEriC COmpOSiTES

Let’s take a look at how you can register Composites like the CompositeNotification
Service from chapter 6 in Autofac. The following listing shows this class again.

Listing 13.10 The CompositeNotificationService Composite from chapter 6

public class CompositeNotificationService : INotificationService
{
 private readonly IEnumerable<INotificationService> services;

 public CompositeNotificationService(
 IEnumerable<INotificationService> services)
 {
 this.services = services;
 }

 public void OrderApproved(Order order)
 {
 foreach (INotificationService service in this.services)
 {
 service.OrderApproved(order);
 }
 }
}

Registering a Composite requires that it be added as a default registration while inject-
ing it with a sequence of named instances:

builder.RegisterType<OrderApprovedReceiptSender>()
 .Named<INotificationService>("service");
builder.RegisterType<AccountingNotifier>()
 .Named<INotificationService>("service");
builder.RegisterType<OrderFulfillment>()
 .Named<INotificationService>("service");

builder.Register(c =>
 new CompositeNotificationService(
 c.ResolveNamed<IEnumerable<INotificationService>>("service")))
 .As<INotificationService>();

 423Working with multiple components

Here, three INotificationService implementations are registered by the same name,
service, using the Auto-Wiring API of Autofac. The CompositeNotification Service,
on the other hand, is registered using a delegate. Inside the delegate, the Composite
is newed up manually and injected with an IEnumerable<INotification Service>. By
specifying the service name, the previous named registrations are resolved.

Because the number of notification services will likely grow over time, you can reduce
the burden on your Composition Root by applying Auto-Registration. Using the
RegisterAssemblyTypes method, you can turn the previous list of registrations in a
simple one-liner.

Listing 13.11 Registering CompositeNotificationService

builder.RegisterAssemblyTypes(assembly)
 .Named<INotificationService>("service");

builder.Register(c =>
 new CompositeNotificationService(
 c.ResolveNamed<IEnumerable<INotificationService>>("service")))
 .As<INotificationService>();

This looks reasonably simple, but looks are deceiving. RegisterAssemblyTypes will
register any non-generic implementation that implements INotificationService.
When you try to run the previous code, depending on which assembly your Composite
is located in, Autofac might throw the following exception:

Circular component dependency detected: CompositeNotificationService ->
INotificationService[] -> CompositeNotificationService -> INotificationService[] ->
CompositeNotificationService.

Autofac detected a cyclic Dependency. (We discussed Dependency cycles in detail
in section 6.3.) Fortunately, its exception message is pretty clear. It describes that
Composite NotificationService depends on INotificationService[]. The
CompositeNotification Service wraps a sequence of INotificationService, but
that sequence itself again contains CompositeNotificationService. What this means
is that CompositeNotificationService is an element of the sequence that’s injected
into CompositeNotificationService. This is an object graph that’s impossible to
construct.

CompositeNotificationService became a part of the sequence because Autofac’s
RegisterAssemblyTypes registers all non-generic INotificationService implemen-
tations it finds. In this case, CompositeNotificationService was placed in the same
assembly as all other implementations.

There are multiple ways around this. The simplest solution is to move the Com-
posite to a different assembly; for instance, the assembly containing the Composi-
tion Root. This prevents RegisterAssemblyTypes from selecting the type, because
it’s provided with a particular Assembly instance. Another option is to filter the

424 ChapTEr 13 The Autofac DI Container

CompositeNotificationService out of the list. An elegant way of doing this is using
the Except method:

builder.RegisterAssemblyTypes(assembly)
 .Except<CompositeNotificationService>()
 .Named<INotificationService>("service");

Composite classes, however, aren’t the only classes that might require removal. You’ll
have to do the same for any Decorator. This isn’t particularly difficult, but because
there’ll typically be more Decorator implementations, you might be better off query-
ing the type information to find out whether the type represents a Decorator or not.
The following example shows how you can filter out Decorators as well, using a custom
IsDecoratorFor helper method:

builder.RegisterAssemblyTypes(assembly)
 .Except<CompositeNotificationService>()
 .Where(type => !IsDecoratorFor<INotificationService>(type))
 .Named<INotificationService>("service");

And the following example shows the IsDecoratorFor method:

private static bool IsDecoratorFor<T>(Type type)
{
 return typeof(T).IsAssignableFrom(type) &&
 type.GetConstructors()[0].GetParameters()
 .Any(p => p.ParameterType == typeof(T));
}

The IsDecoratorFor method expects a type to have a single constructor. A type is con-
sidered to be a Decorator when it both implements the given T Abstraction and its
constructor also requires a T.

wiriNg gENEriC COmpOSiTES

In section 13.4.3, you saw how using Autofac’s RegisterGenericDecorator method
made registering generic Decorators child’s play. In this section, we’ll take a look at
how you can register Composites for generic Abstractions.

In section 6.1.3, you specified the CompositeEventHandler<TEvent> class (listing
6.12) as a Composite implementation over a sequence of IEventHandler<TEvent>
implementations. Let’s see if you can register the Composite with its wrapped event
handler implementations.

Let’s start with Auto-Registration of the event handlers. As you’ve seen previously,
this is done using the RegisterAssemblyTypes method:

builder.RegisterAssemblyTypes(assembly)
 .As(type =>
 from interfaceType in type.GetInterfaces()
 where interfaceType.IsClosedTypeOf(typeof(IEventHandler<>))
 select new KeyedService("handler", interfaceType));

 425Working with multiple components

This example makes use of the As overload that allows supplying a sequence of Autofac
.Core.KeyedService instances. A KeyedService class is a small data object that com-
bines both a key and a service type.

Autofac runs any type it finds in the assembly through the As method. You can use
a LINQ query to find the type’s implemented interface that’s a closed-generic version
of IEventHandler<TEvent>. For most types in the assembly, this query won’t yield any
results, because most types don’t implement IEventHandler<TEvent>. For those types,
no registration is added to ContainerBuilder.

Even though this is quite complex, generic Composites and Decorators don’t have
to be filtered out. RegisterAssemblyTypes only selects non-generic implementations.
Generic types, such as CompositeEventHandler<TEvent>, won’t cause any problem,
and don’t have to be filtered out or moved to a different assembly. This is fortunate,
because it wouldn’t be fun at all to have to write a version of IsDecoratorFor that could
handle generic Abstractions.

What remains is the registration for CompositeEventHandler<TEvent>. Because this
type is generic, you can’t use the Register overload that takes in a predicate. Instead,
you use RegisterGeneric. This method allows making a mapping between a generic
implementation and its Abstraction, similar to what you saw with RegisterGeneric
Decorator. To get the sequence of named registrations to be injected into the Com-
posite’s constructor argument, you can once more use the versatile WithParameter
method:

builder.RegisterGeneric(typeof(CompositeEventHandler<>))
 .As(typeof(IEventHandler<>))
 .WithParameter(
 (p, c) => true,
 (p, c) => c.ResolveNamed("handler", p.ParameterType));

Because CompositeEventHandler<TEvent> contains a single constructor parameter,
you simplify the registration to apply to all parameters by letting the predicate return
true.

The WithParameter delegates are called when a closed IEventHandler<TEvent> is
requested. Therefore, at the time of invocation, you can get the type of the constructor
parameter by calling p.ParameterType. For example, if an IEvent Handler<Order
Approved> is requested, the parameter type will be IEnumerable<IEvent
Handler<OrderApproved>>. By passing this type on to the ResolveNamed method with
the sequence name handler, Autofac resolves the previously registered sequence of
named instances that implement IEvent Handler<OrderApproved>.

Although the registration of Decorators is simple, this unfortunately doesn’t hold for
Composites. Autofac hasn’t been designed — yet — with the Composite design pattern
in mind. It’s likely this will change in a future version.

This completes our discussion of the Autofac DI Container. In the next chapter,
we’ll turn our attention to Simple Injector.

426 ChapTEr 13 The Autofac DI Container

Summary

¡	The Autofac DI Container offers a fairly comprehensive API and addresses many
of the trickier situations you typically encounter when you use DI Containers.

¡	An important overall theme for Autofac seems to be one of explicitness. It
doesn’t attempt to guess what you mean, but rather offers an easy-to-use API that
provides you with options to explicitly enable features.

¡	Autofac enforces stricter separation of concerns between configuring and con-
suming a container. You configure components using a ContainerBuilder
instance, but a ContainerBuilder can’t resolve components. When you’re done
configuring a ContainerBuilder, you use it to build an IContainer that you can
use to resolve components.

¡	With Autofac, resolving from the root container directly is a bad practice. This
can easily lead to memory leaks or concurrency bugs. Instead, you should always
resolve from a lifetime scope.

¡	Autofac supports the standard Lifestyles: Transient, Singleton, and Scoped.
¡	Autofac allows working with ambiguous constructors and types by providing an

API that allows supplying code blocks. This allows any code that creates a service
to be executed.

427

14The Simple Injector DI Container

In this chapter
¡	Working with Simple Injector’s basic

registration API

¡	Managing component lifetime

¡	Configuring difficult APIs

¡	Configuring sequences, Decorators, and
Composites

In the previous chapter, we looked at the Autofac DI Container, created by Nicho-
las Blumhardt in 2007. Three years later, Steven created Simple Injector, which we’ll
examine in this chapter. We’ll give Simple Injector the same treatment that we gave
Autofac in the last chapter. You’ll see how you can use Simple Injector to apply the
principles and patterns presented in parts 1–3.

This chapter is divided into four sections. You can read each section inde-
pendently, though the first section is a prerequisite for the other sections, and the
fourth section relies on some methods and classes introduced in the third section.
You can read this chapter apart from the rest of the chapters in part 4, specifically to
learn about Simple Injector, or you can read it together with the other chapters to
compare DI Containers.

428 ChapTEr 14 The Simple Injector DI Container

Although this chapter isn’t a complete treatment of the Simple Injector container, it
gives enough information that you can start using it. This chapter includes information
on how to deal with the most common questions that may come up as you use Simple
Injector. For more information about this container, see the Simple Injector home page
at https://simpleinjector.org.

14.1 Introducing Simple Injector
In this section, you’ll learn where to get Simple Injector, what you get, and how to start
using it. We’ll also look at common configuration options. Table 14.1 provides funda-
mental information that you’re likely to need to get started.

Table 14.1 Simple Injector at a glance

Question Answer

Where do I get it? From Visual Studio, you can get it via NuGet. The package name is
SimpleInjector.

Which platforms are
supported?

.NET 4.0 and .NET Standard 1.0 (.NET Core 1.0, Mono 4.6, Xamarin.iOS 10.0,
Xamarin.Mac 3.0, Xamarin.Android 7.0, UWP 10.0, Windows 8.0, Windows
Phone 8.1).

How much does it cost? Nothing. It’s open source.

How is it licensed? MIT License

Where can I get help? There’s no guaranteed support, but you’re likely to get help in the official forum at
https://simpleinjector.org/forum or by asking your question on Stack Overflow at
https://stackoverflow.com/.

On which version is this
chapter based?

4.4.3

At a high level, using Simple Injector isn’t that different from using the other DI Con-
tainers. As with the Autofac DI Container (covered in chapter 13) and the Micro-
soft.Extensions.DependencyInjection DI Container (covered in chapter 15), usage is
a two-step process, as figure 14.1 illustrates.

As you might remember from chapter 13, to facilitate the two-step process, Autofac
uses a ContainerBuilder class that produces an IContainer. Simple Injector, on the
other hand, integrates both registration and resolution in the same Container instance.
Still, it forces the registration to be a two-step process by disallowing any explicit regis-
trations to be made after the first service is resolved.

Although resolution isn’t that different, Simple Injector’s registration API does dif-
fer quite a lot from how most DI Containers work. In its design and implementation, it
eliminates many pitfalls that are a common cause of bugs. We’ve discussed most of these

You resolve components from the
same container instance that you
configure.

Notice that the rhythm is register
once, resolve many.

The first step in using Simple
Injector is to configure it.

Register Resolve components

Container

Figure 14.1 The pattern for using Simple Injector. First, you configure a Container, and
then, using the same container instance, you resolve components from it.

https://simpleinjector.org
https://simpleinjector.org/forum
https://stackoverflow.com/

 429Introducing Simple Injector

pitfalls throughout the book, so in this chapter, we’ll discuss the following differences
between Simple Injector and other DI Containers:

¡	Scopes are ambient, allowing object graphs to always be resolved from the con-
tainer itself to prevent memory and concurrency bugs.

¡	Sequences are registered through a different API to prevent accidental duplicate
registrations from overriding each other.

¡	Primitive types can’t be registered directly to prevent registrations from becom-
ing ambiguous.

¡	Object graphs can be verified to spot common configuration errors, such as Cap-
tive Dependencies.

When you’re done with this section, you should have a good feeling for the overall
usage pattern of Simple Injector, and you should be able to start using it in well-behaved
scenarios — where all components follow proper DI patterns, such as Constructor
Injection. Let’s start with the simplest scenario and see how you can resolve objects
using a Simple Injector container.

14.1.1 Resolving objects

The core service of any DI Container is to compose object graphs. In this section,
we’ll look at the API that lets you compose object graphs with Simple Injector.

If you remember the discussion about resolving components with Autofac, you may
recall that Autofac requires you to register all relevant components before you can

Although this chapter isn’t a complete treatment of the Simple Injector container, it
gives enough information that you can start using it. This chapter includes information
on how to deal with the most common questions that may come up as you use Simple
Injector. For more information about this container, see the Simple Injector home page
at https://simpleinjector.org.

14.1 Introducing Simple Injector
In this section, you’ll learn where to get Simple Injector, what you get, and how to start
using it. We’ll also look at common configuration options. Table 14.1 provides funda-
mental information that you’re likely to need to get started.

Table 14.1 Simple Injector at a glance

Question Answer

Where do I get it? From Visual Studio, you can get it via NuGet. The package name is
SimpleInjector.

Which platforms are
supported?

.NET 4.0 and .NET Standard 1.0 (.NET Core 1.0, Mono 4.6, Xamarin.iOS 10.0,
Xamarin.Mac 3.0, Xamarin.Android 7.0, UWP 10.0, Windows 8.0, Windows
Phone 8.1).

How much does it cost? Nothing. It’s open source.

How is it licensed? MIT License

Where can I get help? There’s no guaranteed support, but you’re likely to get help in the official forum at
https://simpleinjector.org/forum or by asking your question on Stack Overflow at
https://stackoverflow.com/.

On which version is this
chapter based?

4.4.3

At a high level, using Simple Injector isn’t that different from using the other DI Con-
tainers. As with the Autofac DI Container (covered in chapter 13) and the Micro-
soft.Extensions.DependencyInjection DI Container (covered in chapter 15), usage is
a two-step process, as figure 14.1 illustrates.

As you might remember from chapter 13, to facilitate the two-step process, Autofac
uses a ContainerBuilder class that produces an IContainer. Simple Injector, on the
other hand, integrates both registration and resolution in the same Container instance.
Still, it forces the registration to be a two-step process by disallowing any explicit regis-
trations to be made after the first service is resolved.

Although resolution isn’t that different, Simple Injector’s registration API does dif-
fer quite a lot from how most DI Containers work. In its design and implementation, it
eliminates many pitfalls that are a common cause of bugs. We’ve discussed most of these

You resolve components from the
same container instance that you
configure.

Notice that the rhythm is register
once, resolve many.

The first step in using Simple
Injector is to configure it.

Register Resolve components

Container

Figure 14.1 The pattern for using Simple Injector. First, you configure a Container, and
then, using the same container instance, you resolve components from it.

https://simpleinjector.org
https://simpleinjector.org/forum
https://stackoverflow.com/

430 ChapTEr 14 The Simple Injector DI Container

resolve them. This isn’t the case with Simple Injector; if you request a concrete type with
a parameterless constructor, no configuration is necessary. The following listing shows
one of the simplest possible uses of Simple Injector.

Listing 14.1 Simplest possible use of Simple Injector

var container = new Container();

SauceBéarnaise sauce =
 container.GetInstance<SauceBéarnaise>();

Given an instance of SimpleInjector.Container, you can use the generic GetInstance
method to get an instance of the concrete SauceBéarnaise class. Because this class has
a parameterless constructor, Simple Injector automatically creates an instance of it. No
explicit configuration of the container is necessary.

NOTE The GetInstance<T> method is equivalent to Autofac’s Resolve<T>
method.

As you learned in section 12.1.2, Auto-Wiring is the ability to automatically compose
an object graph by making use of the type information. Because Simple Injector sup-
ports Auto-Wiring, even in the absence of a parameterless constructor, it can create
instances without configurations as long as the involved constructor parameters are all
concrete types, and all parameters in the entire tree have leaf types with parameterless
constructors. As an example, consider this Mayonnaise constructor:

public Mayonnaise(EggYolk eggYolk, SunflowerOil oil)

Although the mayonnaise recipe is a bit simplified, suppose both EggYolk and Sunflower
Oil are concrete classes with parameterless constructors. Although Mayonnaise itself has
no parameterless constructor, Simple Injector creates it without any configuration:

var container = new Container();
Mayonnaise mayo = container.GetInstance<Mayonnaise>();

This works because Simple Injector is able to figure out how to create all required con-
structor parameters. But as soon as you introduce loose coupling, you must configure
Simple Injector by mapping Abstractions to concrete types.

mappiNg abSTraCTiONS TO CONCrETE TypES

Although Simple Injector’s ability to Auto-Wire concrete types certainly can come
in handy from time to time, loose coupling requires you to map Abstractions to
concrete types. Creating instances based on such maps is the core service offered by
any DI Container, but you must still define the map. In this example, you map the
IIngredient interface to the concrete SauceBéarnaise class, which allows you to suc-
cessfully resolve IIngredient:

Creates container

Resolves concrete instance

 431Introducing Simple Injector

var container = new Container();

container.Register<IIngredient, SauceBéarnaise>();

IIngredient sauce =
 container.GetInstance<IIngredient>();

You use the Container instance to register types and define maps. Here, the generic
Register method allows an Abstraction to be mapped to a particular implemen-
tation. This lets you register a concrete type. Because of the previous Register call,
SauceBéarnaise can now be resolved as IIngredient.

NOTE The Register<TService, TImplementation> method contains generic
type constraints. This means that an incompatible type mapping will be caught
by the compiler.

In many cases, the generic API is all you need. Still, there are situations where you need
a more weakly typed way to resolve services. This is also possible.

rESOlviNg wEakly TypEd SErviCES

Sometimes you can’t use a generic API, because you don’t know the appropriate type
at design time. All you have is a Type instance, but you’d still like to get an instance of
that type. You saw an example of that in section 7.3, where we discussed ASP.NET Core
MVC’s IControllerActivator class. The relevant method is this one:

object Create(ControllerContext context);

As shown previously in listing 7.8, the ControllerContext captures the controller’s
Type, which you can extract using the ControllerTypeInfo property of the Action
Descriptor property:

Type controllerType = context.ActionDescriptor.ControllerTypeInfo.AsType();

Because you only have a Type instance, you can’t use the generic GetInstance<T> method,
but must resort to a weakly typed API. Simple Injector offers a weakly typed overload of
the GetInstance method that lets you implement the Create method like this:

Type controllerType = context.ActionDescriptor.ControllerTypeInfo.AsType();
return container.GetInstance(controllerType);

The weakly typed overload of GetInstance lets you pass the controllerType variable
directly to Simple Injector. Typically, this means you have to cast the returned value to
some Abstraction because the weakly typed GetInstance method returns object.
In the case of IControllerActivator, however, this isn’t required, because ASP.NET
Core MVC doesn’t require controllers to implement any interface or base class.

No matter which overload of GetInstance you use, Simple Injector guarantees
that it’ll return an instance of the requested type or throw an exception if there are

Maps an AbstrActIon to a
particular implementation

Resolves SauceBéarnaise
as an IIngredient

432 ChapTEr 14 The Simple Injector DI Container

Dependencies that can’t be satisfied. When all required Dependencies have been
properly configured, Simple Injector can Auto-Wire the requested type.

To be able to resolve the requested type, all loosely coupled Dependencies must
have been previously configured. You can configure Simple Injector in many ways; the
next section reviews the most common ones.

14.1.2 Configuring the container

As we discussed in section 12.2, you can configure a DI Container in several concep-
tually different ways. Figure 12.5 reviewed the options: configuration files, Configura-
tion as Code, and Auto-Registration. Figure 14.2 shows these options again.

Simple Injector’s core configuration API is centered on code and supports both Con-
figuration as Code and convention-based Auto-Registration. File-based config-
uration is left out completely. This shouldn’t be a obstacle to using Simple Injector
because, as we discussed in chapter 12, this configuration method should generally be
avoided. Still, if your application requires late binding, it’s quite easy to add a file-based
configuration yourself, as we’ll discuss later in this section.

Simple Injector lets you mix all three approaches. In this section, you’ll see how to
use each of these three types of configuration sources.

Config files CONFIGURATION

AS CODE

Late binding Early binding

AUTO-
REGISTRATION

Explicit

Implicit

Figure 14.2 The most common ways
to configure a di CONTaiNEr shown
against dimensions of explicitness and
the degree of binding.

 433Introducing Simple Injector

CONfiguriNg ThE CONTaiNEr uSiNg CONfiguraTiON aS COdE

In section 14.1, you saw a brief glimpse of Simple Injector’s strongly typed configura-
tion API. Here, we’ll examine it in greater detail.

All configuration in Simple Injector uses the API exposed by the Container class. One
of the most commonly used methods is the Register method that you’ve already seen:

container.Register<IIngredient, SauceBéarnaise>();

Because you want to program to interfaces, most of your components will depend on
Abstractions. This means that most components will be registered by their corre-
sponding Abstraction. When a component is the topmost type in the object graph,
its not uncommon to resolve it by its concrete type instead of its Abstraction. MVC
controllers, for instance, are resolved by their concrete type.

TIP Even though Simple Injector allows resolving concrete unregistered types,
make sure you register your topmost types explicitly. This allows Simple Injec-
tor to verify your complete object graph, including these root types. This often
leads to the detection of otherwise hidden configuration errors. Section 14.2.4
goes into more detail about verification.

In general, you would register a type either by its Abstraction or by its concrete type,
but not both. There are exceptions to this rule, however. In Simple Injector, register-
ing a component both by its concrete type and its Abstraction is simply a matter of
adding an extra registration:

container.Register<IIngredient, SauceBéarnaise>();
container.Register<SauceBéarnaise>();

Instead of registering the class only as IIngredient, you can register it as both itself
and the interface it implements. This enables the container to resolve requests for
both SauceBéarnaise and IIngredient.

NOTE In section 13.1.2, we warned about Torn Lifestyles when calling Register
Type twice for the same component in Autofac. With Simple Injector, however,
this isn’t a problem. Under the hood, Simple Injector automatically deduplicates
SauceBéarnaise’s registrations and prevents SauceBéarnaise’s Lifestyle from
being torn.

In real applications, you always have more than one Abstraction to map, so you must
configure multiple mappings. This is done with multiple calls to Register:

container.Register<IIngredient, SauceBéarnaise>();
container.Register<ICourse, Course>();

This example maps IIngredient to SauceBéarnaise, and ICourse to Course. There’s
no overlap of types, so it should be pretty evident what’s going on. But what would hap-
pen if you register the same Abstraction several times?

container.Register<IIngredient, SauceBéarnaise>();
container.Register<IIngredient, Steak>(); Throws an exception

434 ChapTEr 14 The Simple Injector DI Container

Here, you register IIngredient twice, which results in an exception being thrown on
the second line with the following message:

Type IIngredient has already been registered. If your intention is to resolve a collection of
IIngredient implementations, use the Collection.Register overloads. For more information,
see https://simpleinjector.org/coll1.

In contrast to most other DI Containers, Simple Injector doesn’t allow stacking up
registrations to build up a sequence of types, as the previous code snippet shows. Its
API explicitly separates the registration of sequences from single Abstraction map-
pings.1 Instead of making multiple calls to Register, Simple Injector forces you to use
the registration methods of the Collection property, such as Collection.Register:

container.Collection.Register<IIngredient>(
 typeof(SauceBéarnaise),
 typeof(Steak));

NOTE Simple Injector uses the term collection where we use sequence. For the
most part, you can use the terms interchangeably.

This example registers all ingredients in one single call. Alternatively, you can use
 Collection.Append to add implementations to a sequence of ingredients:

container.Collection.Append<IIngredient, SauceBéarnaise>();
container.Collection.Append<IIngredient, Steak>();

With the previous registrations, any component that depends on IEnumerable
<IIngredient> gets a sequence of ingredients injected. Simple Injector handles mul-
tiple configurations for the same Abstraction well, but we’ll get back to this topic in
section 14.4.

Although there are more-advanced options available for configuring Simple Injec-
tor, you can configure an entire application with the methods shown here. But to save
yourself from too much explicit maintenance of container configuration, you could
instead consider a more convention-based approach using Auto-Registration.

CONfiguriNg ThE CONTaiNEr uSiNg auTO-rEgiSTraTiON

In many cases, registrations will be similar. Such registrations are tedious to maintain,
and explicitly registering each and every component might not be the most productive
approach, as we discussed in section 12.3.3.

Consider a library that contains many IIngredient implementations. You can con-
figure each class individually, but it’ll result in an ever-changing list of Type instances
supplied to the Collection.Register method. What’s worse is that, every time you
add a new IIngredient implementation, you must also explicitly register it with the
Container if you want it to be available. It’d be more productive to state that all imple-
mentations of IIngredient found in a given assembly should be registered.

1 For a detailed discussion on why this is so, see https://simpleinjector.org/separate-collections.

https://simpleinjector.org/coll1
https://simpleinjector.org/separate-collections

 435Introducing Simple Injector

This is possible using some of the Register and Collection.Register method over-
loads. These particular overloads let you specify an assembly and configure all selected
classes from this assembly in a single statement. To get the Assembly instance, you can
use a representative class; in this case, Steak:

Assembly ingredientsAssembly = typeof(Steak).Assembly;

container.Collection.Register<IIngredient>(ingredientsAssembly);

The previous example unconditionally configures all implementations of the IIngredient
interface, but you can provide filters that enable you to select only a subset. Here’s a conven-
tion-based scan where you add only classes whose name starts with Sauce:

Assembly assembly = typeof(Steak).Assembly;

var types = container.GetTypesToRegister<IIngredient>(assembly)
 .Where(type => type.Name.StartsWith("Sauce"));

container.Collection.Register<IIngredient>(types);

This scan makes use of the GetTypesToRegister method, which searches for types
without registering them. This allows you to filter the selection using a predicate.
Instead of supplying Collection.Register using a list of assemblies, you now supply it
with a list of Type instances.

Apart from selecting the correct types from an assembly, another part of Auto-
Registration is defining the correct mapping. In the previous examples, you used
the Collection.Register method with a specific interface to register all selected types
against that interface. Sometimes, however, you may want to use different conventions.
Let’s say that instead of interfaces, you use abstract base classes, and you want to register
all types in an assembly where the name ends with Policy by their base type:

Assembly policiesAssembly = typeof(DiscountPolicy).Assembly;

var policyTypes =
 from type in policiesAssembly.GetTypes()
 where type.Name.EndsWith("Policy")
 select type;

foreach (Type type in policyTypes)
{
 container.Register(type.BaseType, type);
}

In this example, you hardly use any part of the Simple Injector API. Instead, you use
the reflection and LINQ APIs provided by the .NET framework to filter and get the
expected types.

Even though Simple Injector’s convention-based API is limited, by making use of
existing .NET framework APIs, convention-based registrations are still surprisingly easy.
The Simple Injector’s convention-based API mainly focuses around the registration
of sequences and generic types. This becomes a different ball game when it comes to

Gets all types in the assembly

Filters by the Policy suffix

Registers each policy
component by its base class

436 ChapTEr 14 The Simple Injector DI Container

generics, which is why Simple Injector has explicit support for registering types based
on generic Abstractions, as we’ll discuss next.

auTO-rEgiSTraTiON Of gENEriC abSTraCTiONS

During the course of chapter 10, you refactored the big, obnoxious IProductService
interface to the ICommandService<TCommand> interface of listing 10.12. Here’s that
Abstraction again:

public interface ICommandService<TCommand>
{
 void Execute(TCommand command);
}

As discussed in chapter 10, every command Parameter Object represents a use case,
and there’ll be a single implementation per use case. The AdjustInventoryService
of listing 10.8 was given as an example. It implemented the “adjust inventory” use case.
The next listing shows this class again.

Listing 14.2 The AdjustInventoryService from chapter 10

public class AdjustInventoryService : ICommandService<AdjustInventory>
{
 private readonly IInventoryRepository repository;

 public AdjustInventoryService(IInventoryRepository repository)
 {
 this.repository = repository;
 }

 public void Execute(AdjustInventory command)
 {
 var productId = command.ProductId;

 ...
 }
}

Any reasonably complex system will easily implement hundreds of use cases, and these
are ideal candidates for using Auto-Registration. With Simple Injector, this couldn’t
be simpler.

Listing 14.3 auTO-rEgiSTraTiON of ICommandService<TCommand> implementations

Assembly assembly = typeof(AdjustInventoryService).Assembly;

container.Register(typeof(ICommandService<>), assembly);

In contrast to the previous listing that used Collection.Register, you again make
use of Register. This is because there’ll always be exactly one implementation of a
requested command service; you don’t want to inject a sequence of command services.

 437Introducing Simple Injector

Using the supplied open-generic interface, Simple Injector iterates through the
list of assembly types and registers types that implement a closed-generic version of
ICommand Service<TCommand>. What this means, for instance, is that AdjustInventory
Service is registered because it implements ICommandService<AdjustInventory>,
which is a closed-generic version of ICommandService<TCommand>.

Not all ICommandService<TCommand> implementations will be registered, though.
Simple Injector skips open-generic implementations, Decorators, and Composites, as
they often require special registration. We’ll discuss this in section 14.4.

The Register method takes a params array of Assembly instances, so you can supply
as many assemblies as you like to a single convention. It’s not a far-fetched idea to scan a
folder for assemblies and supply them all to implement add-in functionality where add-
ins can be added without recompiling a core application. (For an example, see https://
simpleinjector.org/registering-plugins-dynamically.) This is one way to implement late
binding; another is to use configuration files.

CONfiguriNg ThE CONTaiNEr uSiNg CONfiguraTiON filES

When you need to be able to change a configuration without recompiling the applica-
tion, configuration files are a good option. The most natural way to use configuration
files is to embed them into a standard .NET application configuration file. This is pos-
sible, but you can also use a standalone configuration file if you need to be able to vary
the Simple Injector configuration independently of the standard .config file.

TIP As we stated in section 12.2.1, you should use configuration files only for
those types in your DI configuration that require late binding. Prefer Config-
uration as Code or Auto-Registration in all other types and all other parts
of your configuration.

As stated in the beginning of this section, there’s no explicit support in Simple Injector
for file-based configuration. By making use of .NET Core’s built-in configuration sys-
tem, however, loading registrations from a configuration file is rather straightforward.
For this purpose, you can define your own configuration structure that maps Abstrac-
tions to implementations. Here’s a simple example that maps the IIngredient inter-
face to the Steak class.

Listing 14.4 Simple mapping from IIngredient to Steak using a configuration file

{
 "registrations": [
 {
 "service":
 "Ploeh.Samples.MenuModel.IIngredient, Ploeh.Samples.MenuModel",
 "implementation":
 "Ploeh.Samples.MenuModel.Steak, Ploeh.Samples.MenuModel"
 }
]
}

https://simpleinjector.org/registering-plugins-dynamically
https://simpleinjector.org/registering-plugins-dynamically

438 ChapTEr 14 The Simple Injector DI Container

NOTE The structure of this configuration sample closely follows that of Auto-
fac, because it’s a quite natural format.

The registrations element is a JSON array of registration elements. The previous
example contained a single registration, but you can add as many registration elements
as you like. In each element, you must specify a concrete type with the implementation
attribute. To map the Steak class to IIngredient, you can use the service attribute.

Using .NET Core’s built-in configuration system, you can load a configuration file
and iterate through it. You then append the defined registrations to the container:

var config = new ConfigurationBuilder()
 .AddJsonFile("simpleinjector.json")
 .Build();

var registrations = config
 .GetSection("registrations").GetChildren();

foreach (var reg in registrations)
{
 container.Register(
 Type.GetType(reg["service"]),
 Type.GetType(reg["implementation"]));
}

A configuration file is a good option when you need to change the configuration of
one or more components without recompiling the application, but because it tends
to be quite brittle, you should reserve it for only those occasions and use either
Auto-Registration or Configuration as Code for the main part of the container’s
configuration.

This section introduced the Simple Injector DI Container and demonstrated these
fundamental mechanics: how to configure a Container, and, subsequently, how to
use it to resolve services. Resolving services is easily done with a single call to the Get
Instance method, so the complexity involves configuring the container. This can be
done in several different ways, including imperative code and configuration files.

Until now, we’ve only looked at the most basic API; we have yet to cover more-advanced
areas. One of the most important topics is how to manage component lifetime.

14.2 Managing lifetime
In chapter 8, we discussed Lifetime Management, including the most common con-
ceptual Lifestyles such as Transient, Singleton, and Scoped. Simple Injector’s
Lifestyle supports mapping to these three Lifestyles. The Lifestyles shown in
table 14.2 are available as part of the API.

Loads the simpleinjector.json configuration file
using .NET Core’s configuration system. By
default, the config file will be located in the
application’s root directory.

Loads the list of registrations
from the configuration file

Iterates through the list of registrations.
Adds each registration to Simple Injector
using its supplied service and
implementation types as defined in the
configuration file.

 439Managing lifetime

Table 14.2 Simple Injector lifESTylES

Simple Injector name Pattern name Comments

Transient trAnsient This is the default LifestyLe. trAnsient instances aren’t
tracked by the container and, therefore, are never disposed
of. Using its diagnostic services, Simple Injector warns if you
register a disposable component as trAnsient.

Singleton singLeton Instances are disposed of when the container is disposed of.

Scoped scoPeD Template for LifestyLes that allows scoping instances. A
scoPeD LifestyLe is defined by the ScopedLifestyle base
class, and there are several ScopedLifestyle imple-
mentations. The most commonly used LifestyLe for a .NET
Core application is AsyncScopedLifestyle. Instances
are tracked for the lifetime of the scope and are disposed of
when the scope is disposed of.

TIP The default Transient Lifestyle is the safest, but not always the most
efficient. Singleton is a more efficient choice for thread-safe services, but you
must remember to explicitly register those services.

Simple Injector’s implementations of Transient and Singleton are equivalent to the
general Lifestyles described in chapter 8, so we won’t spend much time on them in
this chapter. Instead, in this section, you’ll see how you can define Lifestyles for com-
ponents in code. We’ll also look at Simple Injector’s concept of ambient scoping and
how it can simplify working with the container. We’ll then cover how Simple Injector
can verify and diagnose its configuration to prevent common configuration errors. By
the end of this section, you should be able to use Simple Injector’s Lifestyles in your
own application. Let’s start by reviewing how to configure Lifestyles for components.

14.2.1 Configuring lifeStyleS

In this section, we’ll review how to manage Lifestyles with Simple Injector. A Life-
style is configured as part of registering components. It’s as easy as this:

container.Register<SauceBéarnaise>(Lifestyle.Singleton);

This example configures the concrete SauceBéarnaise class as a Singleton so that
the same instance is returned each time SauceBéarnaise is requested. If you want to
map an Abstraction to a concrete class with a specific lifetime, you can use the usual
Register overload with two generic arguments, while supplying it with the Lifestyle
.Singleton:

container.Register<IIngredient, SauceBéarnaise>(Lifestyle.Singleton);

440 ChapTEr 14 The Simple Injector DI Container

Although Transient is the default Lifestyle, you can explicitly state it. These two
examples are equivalent under the default configuration:2

container.Register<IIngredient, SauceBéarnaise>(
 Lifestyle.Transient);

container.Register<IIngredient, SauceBéarnaise>();

Configuring Lifestyles for convention-based registrations can be done in several
ways. When registering a sequence, for instance, one of the options is to supply the
Collection.Register method with a list of Registration instances:

Assembly assembly = typeof(Steak).Assembly;

var types = container.GetTypesToRegister<IIngredient>(assembly);

container.Collection.Register<IIngredient>(
 from type in types
 select Lifestyle.Singleton.CreateRegistration(type, container));

You can use Lifestyle.Singleton to define the Lifestyle for all registrations in a
convention. In this example, you define all IIngredient registrations as Singleton by
supplying them all as a Registration instance to the Collection.Register overload.3

NOTE A Registration is the Simple Injector class that’s responsible for the
construction of the expression tree, which describes the creation of a type
based on its Lifestyle. Registration objects are constructed by Simple Injec-
tor under the hood when you call most of the Register overloads, but you can
also create them directly. This is useful in scenarios like this one.

When it comes to configuring Lifestyles for components, there are many options. In
all cases, it’s done in a rather declarative fashion. Although configuration is typically
easy, you mustn’t forget that some Lifestyles involve long-lived objects, which use
resources as long as they’re around.

14.2.2 Releasing components

As discussed in section 8.2.2, it’s important to release objects when you’re done with
them. Similar to Autofac, Simple Injector has no explicit Release method, but instead
uses a concept called scopes. A scope can be regarded as a request-specific cache. As fig-
ure 14.3 illustrates, it defines a boundary where components can be reused.

A Scope defines a cache that you can use for a particular duration or purpose; the
most obvious example is a web request. When a scoped component is requested from
a Scope, you always receive the same instance. The difference from true Singletons is
that if you query a second scope, you’ll get another instance.

2 The default Lifestyle can be changed by setting Container.Options.DefaultLifestyle to
anything other than Lifestyle.Transient.

Explicitly supplies trAnsIent
to a registration

trAnsIent is the default lIfestyle
and can be omitted.

3 Another interesting option is to override Simple Injector’s default ILifestyleSelection
Behavior. See https://simpleinjector.org/xtpls.

A scoped component is a SINGLETON
within that scope. No matter how
many times you ask a scope for such
a component, you get the same instance.

Another scope
will have its own
scoped instances.

The parent container
manages the truly
shared SINGLETONS.

TRANSIENT components
are never shared, and
are never tracked, nor
disposed.

Container

Scope Scope

Singleton

Scoped

Transient Transient Transient Transient

Scoped

Figure 14.3 Simple Injector’s Scope acts as a request-specific cache that can share components for a
limited duration or purpose.

https://simpleinjector.org/xtpls

 441Managing lifetime

One of the important features of scopes is that they let you properly release compo-
nents when the scope completes. You create a new scope with the BeginScope method
of a particular ScopedLifestyle implementation and release all appropriate compo-
nents by invoking its Dispose method:

using (AsyncScopedLifestyle.BeginScope(container))
{
 IMeal meal = container.GetInstance<IMeal>();

 meal.Consume();

}

This example shows how IMeal is resolved from the Container instance, instead of being
resolved from a Scope instance. This isn’t a typo — the container automatically “knows”
in which active scope it’s operating. The next section discusses this in more detail.

TIP Simple Injector contains several NuGet packages that help to integrate it
with common application frameworks. Some of these packages automatically
ensure that a scope wraps around a web request. To find out what’s the best way
to integrate Simple Injector with your framework of choice, see the integration
guide (https://simpleinjector.org/integration).

Creates a scope
for the container

Resolves a meal from the
container within the context
of the created scopeConsumes the meal

Releases the meal by ending the using block

Although Transient is the default Lifestyle, you can explicitly state it. These two
examples are equivalent under the default configuration:2

container.Register<IIngredient, SauceBéarnaise>(
 Lifestyle.Transient);

container.Register<IIngredient, SauceBéarnaise>();

Configuring Lifestyles for convention-based registrations can be done in several
ways. When registering a sequence, for instance, one of the options is to supply the
Collection.Register method with a list of Registration instances:

Assembly assembly = typeof(Steak).Assembly;

var types = container.GetTypesToRegister<IIngredient>(assembly);

container.Collection.Register<IIngredient>(
 from type in types
 select Lifestyle.Singleton.CreateRegistration(type, container));

You can use Lifestyle.Singleton to define the Lifestyle for all registrations in a
convention. In this example, you define all IIngredient registrations as Singleton by
supplying them all as a Registration instance to the Collection.Register overload.3

NOTE A Registration is the Simple Injector class that’s responsible for the
construction of the expression tree, which describes the creation of a type
based on its Lifestyle. Registration objects are constructed by Simple Injec-
tor under the hood when you call most of the Register overloads, but you can
also create them directly. This is useful in scenarios like this one.

When it comes to configuring Lifestyles for components, there are many options. In
all cases, it’s done in a rather declarative fashion. Although configuration is typically
easy, you mustn’t forget that some Lifestyles involve long-lived objects, which use
resources as long as they’re around.

14.2.2 Releasing components

As discussed in section 8.2.2, it’s important to release objects when you’re done with
them. Similar to Autofac, Simple Injector has no explicit Release method, but instead
uses a concept called scopes. A scope can be regarded as a request-specific cache. As fig-
ure 14.3 illustrates, it defines a boundary where components can be reused.

A Scope defines a cache that you can use for a particular duration or purpose; the
most obvious example is a web request. When a scoped component is requested from
a Scope, you always receive the same instance. The difference from true Singletons is
that if you query a second scope, you’ll get another instance.

2 The default Lifestyle can be changed by setting Container.Options.DefaultLifestyle to
anything other than Lifestyle.Transient.

Explicitly supplies trAnsIent
to a registration

trAnsIent is the default lIfestyle
and can be omitted.

3 Another interesting option is to override Simple Injector’s default ILifestyleSelection
Behavior. See https://simpleinjector.org/xtpls.

A scoped component is a SINGLETON
within that scope. No matter how
many times you ask a scope for such
a component, you get the same instance.

Another scope
will have its own
scoped instances.

The parent container
manages the truly
shared SINGLETONS.

TRANSIENT components
are never shared, and
are never tracked, nor
disposed.

Container

Scope Scope

Singleton

Scoped

Transient Transient Transient Transient

Scoped

Figure 14.3 Simple Injector’s Scope acts as a request-specific cache that can share components for a
limited duration or purpose.

https://simpleinjector.org/integration
https://simpleinjector.org/xtpls

442 ChapTEr 14 The Simple Injector DI Container

In the previous example, a new scope is created by invoking the BeginScope method
on the corresponding Scoped Lifestyle. The return value implements IDisposable,
so you can wrap it in a using block.

When you’re done with a scope, you can dispose of it with a using block. This hap-
pens automatically when you exit the block, but you can also choose to explicitly dispose
of it by invoking the Dispose method. When you dispose of a scope, you also release all
the components that were created during that scope. In the example, it means that you
release the meal object graph.

NOTE Remember that releasing a disposable component isn’t the same as dis-
posing of it. It’s a signal to the container that the component is eligible for
decommissioning. If the component is scoped, it’ll be disposed of; if it’s a Sin-
gleton, it remains active until the container is disposed of.

Earlier in this section, you saw how to configure components as Singletons or Tran-
sients. Configuring a component to have its Lifestyle tied to a scope is done in a
similar way:

container.Register<IIngredient, SauceBéarnaise>(Lifestyle.Scoped);

Similar to Lifestyle.Singleton and Lifestyle.Transient, you can use the Lifestyle
.Scoped value to state that the component’s lifetime should live for the duration of the
scope that created the instance. This call by itself, however, would cause the container
to throw the following exception:

To be able to use the Lifestyle.Scoped property, please ensure that the container is configured
with a default scoped lifestyle by setting the Container.Options.DefaultScopedLifestyle
property with the required scoped lifestyle for your type of application. For more information,
see https://simpleinjector.org/scoped.

Before you can use the Lifestyle.Scoped value, Simple Injector requires that you set
the Container.Options.DefaultScopedLifestyle property. Simple Injector has mul-
tiple ScopedLifestyle implementations that are sometimes specific to a framework.
This means you’ll have to explicitly configure the ScopedLifestyle implementation
that works best for your type of application. For ASP.NET Core applications, the proper
Scoped Lifestyle is the AsyncScopedLifestyle, which you can configure like this:

var container = new Container();

container.Options.DefaultScopedLifestyle =
 new AsyncScopedLifestyle();

container.Register<IIngredient, SauceBéarnaise>(
 Lifestyle.Scoped);

TIP Because of Simple Injector’s ambient scopes, you can always resolve
directly from the Container without being afraid of the accidental memory
leaks that would occur were you to do this with a DI Container, such as Auto-
fac. In case you resolve a Scoped Dependency from the container while there’s
no active scope, Simple Injector throws a descriptive exception.

Before making any registrations
to the container, you register
the AsyncScopedLifestyle as the
default scopeD lIfestyle.

Now you can use the Lifestyle.Scoped
value to make scoped registrations.

https://simpleinjector.org/scoped

 443Managing lifetime

Due to their nature, Singletons are never released for the lifetime of the container
itself. Still, you can release even those components if you don’t need the container any
longer. This is done by disposing of the container itself:

container.Dispose();

In practice, this isn’t nearly as important as disposing of a scope, because the lifetime
of a container tends to correlate closely with the lifetime of the application it supports.
You normally keep the container around as long as the application runs, so you only
dispose of it when the application shuts down. In this case, memory would be reclaimed
by the operating system.

As we mentioned earlier in this section, with Simple Injector, you always resolve
objects from the container — not from a scope. This works because scopes are ambient
in Simple injector. Let’s look at ambient scopes next.

14.2.3 Ambient scopes

With Simple Injector, the previous example of the creation and disposal of the scope
shows how you can always resolve instances from the Container, even if you resolve
scoped instances. The following example shows this again:

using (AsyncScopedLifestyle.BeginScope(container))
{
 IMeal meal = container.GetInstance<IMeal>();

 meal.Consume();
}

This reveals an interesting feature of Simple Injector, which is that scope instances are
ambient and are globally available in the context in which they’re running. The follow-
ing listing shows this behavior.

Listing 14.5 Ambient scopes in Simple Injector

var container = new Container();

container.Options.DefaultScopedLifestyle =
 new AsyncScopedLifestyle();

Scope scope1 = Lifestyle.Scoped
 .GetCurrentScope(container);

using (Scope scope2 =
 AsyncScopedLifestyle.BeginScope(container))
{
 Scope scope3 = Lifestyle.Scoped
 .GetCurrentScope(container);
}

Scope scope4 = Lifestyle.Scoped
 .GetCurrentScope(container);

With Simple Injector, you always
resolve from the container.

Requests the currently active scope for the
configured scopeD lIfestyle; in this case,
AsyncScopedLifestyle. Because there’s no active
scope yet, this method returns the value null.

When GetCurrentScope is called when
there is an active scope, it returns that
scope. In this case, the value of scope3
will be equal to scope2.

After disposing of the scope, it becomes
unlisted. This results in the call to
GetCurrentScope returning null again.

444 ChapTEr 14 The Simple Injector DI Container

This behavior is similar to that of .NET’s TransactionScope class.4 When you wrap
an operation with a TransactionScope, all database connections opened within that
operation will automatically be part of the same transaction.

IMPORTANT Ambient scopes shouldn’t be confused with Ambient Context.
Ambient Context supplies application code outside the Composition Root
with global access to a Volatile Dependency or its behavior. Because a DI
Container’s scopes will only be used inside the Composition Root, ambient
scopes don’t expose the same problems as Ambient Context does.

In general, you won’t use the GetCurrentScope method a lot, if at all. The Container
uses this under the hood on your behalf when you start resolving instances. Still, it
demonstrates nicely that Scope instances can be retrieved and are accessible from the
container.

A ScopedLifestyle implementation, such as the previous AsyncScopedLifestyle,
stores its created Scope instance for later use, which allows it to be retrieved within the
same context. It’s the particular ScopedLifestyle implementation that defines when
code runs in the same context. The AsyncScopedLifestyle, for instance, stores the
Scope internally in an System.Threading.AsyncLocal<T>.5 This allows scopes to flow
from method to method, even if an asynchronous method continues on a different
thread, as this example demonstrates:

using (AsyncScopedLifestyle.BeginScope(container))
{
 IMeal meal = container.GetInstance<IMeal>();

 await meal.Consume();

 meal = container.GetInstance<IMeal>();
}

Although ambient scopes might be confusing at first, their usage typically simplifies
working with Simple Injector. For instance, you won’t have to worry about getting
memory leaks when resolving from the container, because Simple Injector manages
this transparently on your behalf. Scope instances will never be cached in the root con-
tainer, which is something you need to be cautious about with the other containers
described in this book. Another area in which Simple Injector excels is the ability to
detect common misconfigurations.

14.2.4 Diagnosing the container for common lifetime problems

Compared to Pure DI, registration and building object graphs in a DI Container is
more implicit. This makes it easy to accidentally misconfigure the container. For that
reason, many DI Containers have a function that allows all registrations to be iterated
to enable verifying whether all can be resolved, and Simple Injector is no exception.

4 See https://mng.bz/jrQP.
5 See https://mng.bz/WeD1.

This asynchronous call might cause
the remaining code of the method
to continue on a different thread.

The object graph is guaranteed to
be resolved on the same scope.

https://mng.bz/jrQP
https://mng.bz/WeD1

 445Managing lifetime

Being able to resolve an object graph, however, is no guarantee of the correct-
ness of the configuration, as the Captive Dependency pitfall of section 8.4.1 illus-
trates. A Captive Dependency is a misconfiguration of the lifetime of a component.
In fact, most errors concerning working with DI Containers are related to lifetime
misconfigurations.

Because DI Container misconfigurations are so common and often difficult to
trace, Simple Injector lets you verify its configuration, which goes beyond the simple
instantiation of object graphs that most DI Containers support. On top of that, Simple
Injector scans the object graphs for common misconfigurations — Captive Dependen-
cies being one of them.

Therefore, the configure step of Simple Injector’s two-step process, as outlined in
figure 14.1, exists of two substeps. Figure 14.4 shows this process.

The easiest way to let Simple Injector diagnose and detect configuration errors is by
calling the Container’s Verify method, as shown in the following listing.

Listing 14.6 Verifying the container

var container = new Container();

container.Register<IIngredient, Steak>();

container.Verify();

Before you start resolving services at the end
of the configuration phase, you request Simple
Injector to verify its configuration.

Register Verify

Container

Resolve components

Configure

Figure 14.4 The pattern for using Simple Injector is to configure it, including verifying it,
and then to resolve components.

Registers all components for
a fully functional application

After the last registration, calls Verify to
ensure all registrations are verified

446 ChapTEr 14 The Simple Injector DI Container

lETTiNg ThE CONTaiNEr dETECT CapTivE dEpENdENCiES

The Captive Dependency misconfiguration is one that Simple Injector detects.
Now let’s see how you can cause Verify to trip on a Captive Dependency using the
Mayonnaise ingredient of section 14.1.1. Its constructor contained two Dependencies:

public Mayonnaise(EggYolk eggYolk, SunflowerOil oil)

The following listing registers Mayonnaise with its two Dependencies. But it miscon-
figures Mayonnaise as Singleton, whereas its EggYolk Dependency is registered as
Transient.

Listing 14.7 Causing the container to detect a CapTivE dEpENdENCy

var container = new Container();

container.Register<EggYolk>(Lifestyle.Transient);
container.Register<Mayonnaise>(Lifestyle.Singleton);
container.Register<SunflowerOil>(Lifestyle.Singleton);

container.Verify();

When you call Register, Simple Injector only performs some rudimentary valida-
tions. This includes checking that the type isn’t abstract, that it has a public construc-
tor, and the like. It won’t check for problems such as Captive Dependencies at that
stage, because registrations can be made in any arbitrary order. In listing 14.7, for
instance, SunflowerOil is registered after Mayonnaise, even though it’s a Depen-
dency of Mayonnaise. It’s completely valid to do so. It’s only after the configuration is
completed that verification can be performed. When you run this code example, the
call to Verify fails with the following exception message:

The configuration is invalid. The following diagnostic warnings were reported:

-[Lifestyle Mismatch] Mayonnaise (Singleton) depends on EggYolk (Transient). See
the Error property for detailed information about the warnings. Please see https://
simpleinjector.org/diagnostics how to fix problems and how to suppress individual
warnings.

NOTE Simple Injector calls Captive Dependencies Lifestyle Mismatches.

An interesting observation here is that Simple Injector doesn’t allow Transient
Dependencies to be injected into Singleton consumers. This is the opposite of Auto-
fac. With Autofac, Transients are implicitly expected to live as long as their consumer,
which means that in Autofac, this situation is never considered to be a Captive Depen-
dency. For that reason, Autofac calls a Transient InstancePerDependency, which
pretty much describes its behavior: each consumer’s Dependency that’s configured as
Transient is expected to get its own instance. Because of that, Autofac only detects the
injection of scoped components into Singletons as Captive Dependencies.

Because of the short
expiration of egg yolk, it’s
registered as trAnsIent.

Mayonnaise depends on
EggYolk, but is accidentally
registered as sIngleton.Because of the previous misconfiguration,

this method throws an exception.

https://simpleinjector.org/diagnostics
https://simpleinjector.org/diagnostics

 447Registering difficult APIs

Although this might sometimes be exactly the behavior you need, in most cases, it’s
not. More often, Transient components are expected to live for a brief period of time,
whereas injecting them into a Singleton consumer causes the component to live for
as long as the application lives. Because of this, Simple Injector’s motto is: “better safe
than sorry,” which is why it throws an exception. Sometimes you might need to suppress
such warnings in cases where you know best.

SupprESSiNg warNiNgS ON iNdividual rEgiSTraTiONS

In case you want to ignore EggYolk’s expiration date, Simple Injector lets you suppress
the check on that particular registration.

Listing 14.8 Suppressing a diagnostic warning

var container = new Container();

Registration reg = Lifestyle.Transient
 .CreateRegistration<EggYolk>(container);

reg.SuppressDiagnosticWarning(
 DiagnosticType.LifestyleMismatch,
 justification: "I like to eat rotten eggs.");

container.AddRegistration(typeof(EggYolk), reg);

container.Register<Mayonnaise>(Lifestyle.Singleton);
container.Register<SunflowerOil>(Lifestyle.Singleton);

container.Verify();

SuppressDiagnosticWarning contains a required justification argument. It isn’t
used by SuppressDiagnosticWarning at all, but serves as a reminder so that you don’t
forget to document why the warning is suppressed.

NOTE For a description of all the available diagnostic checks, see https://sim-
pleinjector.org/diagnostics.

This completes our tour of Lifetime Management with Simple Injector. Components
can be configured with mixed Lifestyles, and this is even true when you register mul-
tiple implementations of the same Abstraction.

Until now, you’ve allowed the container to wire Dependencies by implicitly assuming
that all components use Constructor Injection. But this isn’t always the case. In the
next section, we’ll review how to deal with classes that must be instantiated in special ways.

14.3 Registering difficult APIs
Until now, we’ve considered how you can configure components that use Construc-
tor Injection. One of the many benefits of Constructor Injection is that DI
Containers like Simple Injector can easily understand how to compose and create
all classes in a Dependency graph. This becomes less clear when APIs are less well
behaved.

Creates a trAnsIent
Registration for EggYolk

Suppresses the cAptIVe DepenDency
diagnostic warning with a
description of why this is needed

Adds the Registration
to the container

https://simpleinjector.org/diagnostics
https://simpleinjector.org/diagnostics

448 ChapTEr 14 The Simple Injector DI Container

In this section, you’ll see how to deal with primitive constructor arguments and static
factories. These all require special attention. Let’s start by looking at classes that take
primitive types, such as strings or integers, as constructor arguments.

14.3.1 Configuring primitive DepenDencieS

As long as you inject Abstractions into consumers, all is well. But it becomes more
difficult when a constructor depends on a primitive type, such as a string, a number, or
an enum. This is particularly the case for data access implementations that take a con-
nection string as constructor parameter, but it’s a more general issue that applies to all
string and numeric types.

Conceptually, it doesn’t make sense to register a string or number as a component in
a container. In particular, when Auto-Wiring is used, the registration of primitive types
causes ambiguity. Take string, for instance. Where one component might require a
database connection string, another might require a file path. The two are conceptually
different, but because Auto-Wiring works by selecting Dependencies based on their
type, they become ambiguous. For that reason, Simple Injector blocks the registration
of primitive Dependencies. Consider as an example this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness { Mild, Medium, Hot }

TIP As a rule of thumb, enums are code smells and should be refactored to
polymorphic classes.6 But they serve us well for this example.

You might be tempted to register ChiliConCarne as in the following example. That
won’t work!

container.Register<ICourse, ChiliConCarne>();

This line causes an exception with the following message:

The constructor of type ChiliConCarne contains parameter 'spiciness' of type Spiciness,
which cannot be used for constructor injection because it’s a value type.

When you want to resolve ChiliConCarne with a medium Spiciness, you’ll have to
depart from Auto-Wiring and instead use a delegate:7

container.Register<ICourse>(() => new ChiliConCarne(Spiciness.Medium));

NOTE This Register method is type-safe but disables Auto-Wiring.

6 Martin Fowler et al, Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), 82.
7 Simple Injector allows overriding its default behavior of disallowing primitive types by replacing the

default IDependencyInjectionBehavior implementation. A discussion about this, however, is
outside the scope of this book. For more details, see https:/simpleinjector.org/xtppi.

https:/simpleinjector.org/xtppi

 449Registering difficult APIs

The downside of using delegates is that the registration has to be changed when the
ChiliConCarne constructor changes. When you add an IIngredient Dependency to
the ChiliConCarne constructor, for instance, the registration must be updated:

container.Register<ICourse>(() =>
 new ChiliConCarne(
 Spiciness.Medium,
 container.GetInstance<IIngredient>()));

Besides the additional maintenance in the Composition Root, and because of the
lack of Auto-Wiring, the use of delegates disallows Simple Injector from verifying the
validity of the relationship between ChiliConCarne and its IIngredient Dependency.
The delegate hides the fact that this Dependency exists. This isn’t always a problem,
but it can complicate diagnosing problems that are caused due to misconfigurations.
Because of these downsides, a more convenient solution is to extract the primitive
Dependencies into Parameter Objects.

14.3.2 Extracting primitive DepenDencieS to Parameter Objects

In section 10.3.3, we discussed how the introduction of Parameter Objects allowed mit-
igating the Open/Closed Principle violation that IProductService caused. Param-
eter Objects, however, are also a great tool to mitigate ambiguity. For example, the
Spiciness of a course could be described in more general terms as a flavoring. Flavor-
ing might include other properties, such as saltiness, so you can wrap Spiciness and
the saltiness in a Flavoring class:

public class Flavoring
{
 public readonly Spiciness Spiciness;
 public readonly bool ExtraSalty;

 public Flavoring(Spiciness spiciness, bool extraSalty)
 {
 this.Spiciness = spiciness;
 this.ExtraSalty = extraSalty;
 }
}

As we mentioned in section 10.3.3, it’s perfectly fine for Parameter Objects to have one
parameter. The goal is to remove ambiguity, and not just on the technical level. Such
a Parameter Object’s name might do a better job describing what your code does on
a functional level, as the Flavoring class so elegantly does. With the introduction of
the Flavoring Parameter Object, it now becomes possible to Auto-Wire any ICourse
implementation that requires some flavoring:

var flavoring = new Flavoring(Spiciness.Medium, extraSalty: true);
container.RegisterInstance<Flavoring>(flavoring);

container.Register<ICourse, ChiliConCarne>();

Registers a delegate that creates
ChiliConCarne when invoked

Calls back into the container to
get an IIngredient and injects it
manually into the constructor

450 ChapTEr 14 The Simple Injector DI Container

This code creates a single instance of the Flavoring class. Flavoring becomes a con-
figuration object for courses. Because there’ll only be one Flavoring instance, you can
register it in Simple Injector using RegisterInstance.

TIP Avoid injecting Parameter Objects that function as application-wide con-
figuration objects. Instead, prefer narrow, focused, Parameter Objects that
only contain the values a particular consumer requires. This communicates
more clearly what configuration values a component uses and simplifies test-
ing. In general terms, injecting application-wide configuration objects is an
Interface Segregation Principle violation.

Extracting primitive Dependencies into Parameter Objects should be your preference
over the previously discussed option, because Parameter Objects remove ambiguity,
at both the functional and technical levels. It does, however, require a change to a
component’s constructor, which might not always be feasible. In this case, registering a
delegate is your second-best pick.

14.3.3 Registering objects with code blocks

As we discussed in the previous section, one of the options for creating a component
with a primitive value is to use the Register method. This lets you supply a delegate
that creates the component. Here’s that registration again:

container.Register<ICourse>(() => new ChiliConCarne(Spiciness.Hot));

The ChiliConCarne constructor is invoked with Hot Spiciness every time the ICourse
service is resolved. Instead of Simple Injector figuring out the constructor arguments,
however, you write the constructor invocation yourself using a code block.

When it comes to application classes, you typically have a choice between Auto-
Wiring or using a code block. But other classes are more restrictive: they can’t be
instantiated through a public constructor. Instead, you must use some sort of factory to
create instances of the type. This is always troublesome for DI Containers because, by
default, they look after public constructors.

TIP By default, Simple Injector is able to instantiate internal classes too, as
long as their constructor is defined as public. This behavior, however, can be
overridden by replacing the default IConstructorResolutionBehavior imple-
mentation (https://simpleinjector.org/xtpcr).

Consider this example constructor for the public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class might be public, the constructor is internal. In the
next example, instances of JunkFood should instead be created through the static
JunkFoodFactory class:

https://simpleinjector.org/xtpcr

 451Working with multiple components

public static class JunkFoodFactory
{
 public static JunkFood Create(string name)
 {
 return new JunkFood(name);
 }
}

From Simple Injector’s perspective, this is a problematic API, because there are no
unambiguous and well-established conventions around static factories. It needs
help — and you can give that help by providing a code block it can execute to create
the instance:

container.Register<IMeal>(() => JunkFoodFactory.Create("chicken meal"));

This time, you use the Register method to create the component by invoking a static
factory within the code block. JunkFoodFactory.Create is invoked every time IMeal is
resolved, and the result is returned.

When you end up writing the code to create the instance, how is this in any way better
than invoking the code directly? By using a code block inside a Register method call,
you still gain something:

¡	You map from IMeal to JunkFood. This allows consuming classes to stay loosely
coupled.

¡	You can still configure lifeStyleS. Although the code block will be invoked to create
the instance, it may not be invoked every time the instance is requested. It is by
default, but if you change it to a Singleton, the code block will only be invoked
once, and the result cached and reused thereafter.

In this section, you’ve seen how you can use Simple Injector to deal with more-difficult
APIs. You can use the Register method with a code block for a more type-safe approach.
We have yet to look at how to work with multiple components, so let’s now turn our atten-
tion in that direction.

14.4 Working with multiple components
As alluded to in section 12.1.2, DI Containers thrive on distinctness but have a hard
time with ambiguity. When using Constructor Injection, a single constructor is
preferred over overloaded constructors, because it’s evident which constructor to use
when there’s no choice. This is also the case when mapping from Abstractions to
concrete types. If you attempt to map multiple concrete types to the same Abstrac-
tion, you introduce ambiguity.

NOTE Where most containers contain some heuristic for picking the right
constructor in cases where a class has multiple overloaded constructors, by
default, Simple Injector throws an exception, which explains that the type’s
definition is ambiguous. Although this behavior can be overridden (see
https://simpleinjector.org/xtpcr) as stated in section 4.2.3, our advice is to
prevent creating components with multiple constructors.

https://simpleinjector.org/xtpcr

452 ChapTEr 14 The Simple Injector DI Container

Despite the undesirable qualities of ambiguity, you often need to work with multiple
implementations of a single Abstraction.8 This can be the case in these situations:

¡	Different concrete types are used for different consumers.
¡	Dependencies are sequences.
¡	Decorators or Composites are in use.

In this section, we’ll look at each of these cases and see how Simple Injector addresses
each one in turn. When we’re done, you should be able to register and resolve compo-
nents even when multiple implementations of the same Abstraction are in play. Let’s
first see how you can provide fine-grained control in the case of ambiguity.

14.4.1 Selecting among multiple candidates

Auto-Wiring is convenient and powerful but provides little control. As long as all
Abstractions are distinctly mapped to concrete types, you have no problems. But as
soon as you introduce more implementations of the same interface, ambiguity rears its
ugly head. Let’s first recap how Simple Injector deals with multiple registrations of the
same Abstraction.

CONfiguriNg mulTiplE implEmENTaTiONS Of ThE SamE SErviCE

As you saw in section 14.1.2, you can register multiple implementations of the same
interface like this:

container.Collection.Register<IIngredient>(
 typeof(SauceBéarnaise),
 typeof(Steak));

This example registers both the Steak and SauceBéarnaise classes as a sequence of
IIngredient services. You can ask the container to resolve all IIngredient compo-
nents. Simple Injector has a dedicated method to do that: GetAllInstances gets an
IEnumerable with all registered ingredients. Here’s an example:

IEnumerable<IIngredient> ingredients =
 container.GetAllInstances<IIngredient>();

You can also ask the container to resolve all IIngredient components using Get
Instance instead:

IEnumerable<IIngredient> ingredients =
 container.GetInstance<IEnumerable<IIngredient>>();

Notice that you request IEnumerable <IIngredient>, but you use the normal GetInstance
method. Simple Injector interprets this as a convention and gives you all the IIngredient
components it has.

8 As a matter of fact, having many Abstractions with only one implementation is a design smell de-
scribed by the Reused Abstraction Principle. See Jason Gorman, “Reused Abstractions Principle
(RAP),” 2010, http://www.codemanship.co.uk/parlezuml/blog/?postid=934.

http://www.codemanship.co.uk/parlezuml/blog/?postid=934

 453Working with multiple components

TIP As an alternative to IEnumerable<T>, you can also request Abstrac-
tions like IList<T>, ICollection<T>, IReadOnlyList<T>, and IReadOnly
Collection<T>. The results are equivalent: in all cases, you get all the components
of the requested type.

When there are multiple implementations of a certain Abstraction, there’ll often be
a consumer that depends on a sequence. Sometimes, however, components need to
work with a fixed set or a subset of Dependencies of the same Abstraction, which is
what we’ll discuss next.

rEmOviNg ambiguiTy uSiNg CONdiTiONal rEgiSTraTiONS

As useful as Auto-Wiring is, sometimes you need to override the normal behavior to
provide fine-grained control over which Dependencies go where, but it may also be
that you need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée, ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed Dependencies, each of which represents
a different concept. In most cases, you want to map each of the Dependencies to a sep-
arate type. With most DI Containers, the typical solution for this type of problem is to
use keyed or named registrations, as you saw with Autofac in the previous chapter. With
Simple Injector, the solution is typically to change the registration of the Dependency
instead of the consumer. The following listing shows how you could choose to register
the ICourse mappings.

Listing 14.9 Registering courses based on the constructor’s parameter names

container.Register<IMeal, ThreeCourseMeal>();

container.RegisterConditional<ICourse, Rillettes>(
 c => c.Consumer.Target.Name == "entrée");

container.RegisterConditional<ICourse, CordonBleu>(
 c => c.Consumer.Target.Name == "mainCourse");

container
 .RegisterConditional<ICourse, MousseAuChocolat>(
 c => c.Consumer.Target.Name == "dessert");

Let’s take a closer look at what’s going on here. The RegisterConditional method
accepts a Predicate<PredicateContext> value, which allows it to determine whether a
registration should be injected into the consumer or not. It has the following signature:

public void RegisterConditional<TService, TImplementation>(
 Predicate<PredicateContext> predicate)
 where TImplementation : class, TService
 where TService : class;

The ThreeCourseMeal is made using
the usual Auto-WIrIng registration.

The three courses are registered conditionally, based on the name of the target of
the consuming type. A target can either be a property or a constructor parameter;
and, in this case, the targets are ThreeCourseMeal’s constructor parameters.

454 ChapTEr 14 The Simple Injector DI Container

System.Predicate<T> is a .NET delegate type. The predicate value will be invoked
by Simple Injector. If predicate returns true, it uses the registration for the given
consumer. Otherwise, Simple Injector expects another conditional registration to have
a delegate that returns true. It throws an exception when it can’t find a registration,
because, in that case, the object graph can’t be constructed. Likewise, it throws an
exception when there are multiple registrations that are applicable.

Simple Injector is strict and never assumes to know what you intended to select, as
we discussed previously regarding components with multiple constructors. This does
mean, though, that Simple Injector always calls all predicates of all applicable condi-
tional registrations to find possible overlapping registrations. This might seem ineffi-
cient, but those predicates are only called when a component is resolved for the first
time. Any following resolution has all the information available, which means addi-
tional resolutions are fast.

WARNING Identifying parameters by their names is convenient but not refac-
toring-safe. If you rename a parameter, you can break the configuration
(depending on your refactoring tool).

By overriding Auto-Wiring using conditional registered components, you allow Sim-
ple Injector to build the entire object graph without having to revert to registering a
code block, as we discussed in section 14.3.3. This is useful when working with Simple
Injector because of the previously discussed diagnostic capabilities. The use of code
blocks blinds a container, which might cause configuration mistakes to stay undetected
for too long.

In the next section, you’ll see how to use the less ambiguous and more flexible
approach where you allow any number of courses in a meal. To this end, you must learn
how Simple Injector deals with lists and sequences.

14.4.2 Wiring sequences

In section 6.1.1, we discussed how Constructor Injection acts as a warning system
for Single Responsibility Principle violations. The lesson then was that instead of
viewing Constructor Over-injection as a weakness of the Constructor Injection pat-
tern, you should rather rejoice that it makes a problematic design so obvious.

When it comes to DI Containers and ambiguity, we see a similar relationship. DI
Containers generally don’t deal with ambiguity in a graceful manner. Although you
can make a good DI Container like Simple Injector deal with it, it can seem awkward.
This is often an indication that you could improve the design of your code.

TIP If configuring a certain part of your API is difficult with Simple Injector,
take a step back and reevaluate your design against the patterns and princi-
ples presented in this book. More often than not, configuration difficulties are
caused by an application design that doesn’t follow these patterns or violates
these principles. Making your overall design better not only improves the appli-
cation’s maintainability, but also makes it easier to configure Simple Injector.

 455Working with multiple components

Instead of feeling constrained by Simple Injector, you should embrace its conventions
and let it guide you toward a better and more consistent design. In this section, we’ll
look at an example that demonstrates how you can refactor away from ambiguity, as
well as show how Simple Injector deals with sequences.

rEfaCTOriNg TO a bETTEr COurSE by rEmOviNg ambiguiTy

In section 14.4.1, you saw how the ThreeCourseMeal and its inherent ambiguity forced
you to complicate your registration. This should prompt you to reconsider the API
design. A simple generalization moves toward an implementation of IMeal that takes
an arbitrary number of ICourse instances instead of exactly three, as was the case with
the ThreeCourseMeal class:

public Meal(IEnumerable<ICourse> courses)

Notice that, instead of requiring three distinct ICourse instances in the constructor, the
single Dependency on an IEnumerable<ICourse> instance lets you provide any number
of courses to the Meal class — from zero to ... a lot! This solves the issue with ambiguity,
because there’s now only a single Dependency. In addition, it also improves the API and
implementation by providing a single, general-purpose class that can model different
types of meal: from a simple meal with a single course to an elaborate 12-course dinner.

In this section, we’ll look at how you can configure Simple Injector to wire up Meal
instances with appropriate ICourse Dependencies. When you’re done, you should
have a good idea of the options available when you need to configure instances with
sequences of Dependencies.

auTO-wiriNg SEQuENCES

Simple Injector has a good understanding of sequences, so if you want to use all regis-
tered components of a given service, Auto-Wiring just works. As an example, given a
set of configured ICourse instances, you can configure the IMeal service like this:

container.Register<IMeal, Meal>();

Notice that this is a completely standard mapping from an Abstraction to a concrete
type. Simple Injector automatically understands the Meal constructor and determines
that the correct course of action is to resolve all ICourse components. When you resolve
IMeal, you get a Meal instance with the ICourse components. This still requires you to
register the sequence of ICourse components, for instance, using Auto-Registration:

container.Collection.Register<ICourse>(assembly);

Simple Injector automatically handles sequences, and unless you specify otherwise, it
does what you’d expect it to do: it resolves a sequence of Dependencies for all registra-
tions of that Abstraction. Only when you need to explicitly pick only some compo-
nents from a larger set do you need to do more. Let’s see how you can do that.

piCkiNg ONly SOmE COmpONENTS frOm a largEr SET

Simple Injector’s default strategy of injecting all components is often the correct pol-
icy, but as figure 14.5 shows, there may be cases where you want to pick only some regis-
tered components from the larger set of all registered components.

456 ChapTEr 14 The Simple Injector DI Container

NOTE The need to inject a subset of a complete collection isn’t a common
scenario, but it does demonstrate how to solve more-complex needs that you
might encounter.

When you previously let Simple Injector Auto-Register and Auto-Wire all config-
ured instances, it corresponded to the situation depicted on the right side of the fig-
ure. If you want to register a component as shown on the left side, you must explicitly
define which components should be used. In order to achieve this, you can use the
Collection.Create method, which allows creating a subset of a sequence. The follow-
ing listing shows how to inject a subset of a sequence into a consumer.

Listing 14.10 Injecting a sequence subset into a consumer

IEnumerable<ICourse> coursesSubset1 =
 container.Collection.Create<ICourse>(
 typeof(Rillettes),
 typeof(CordonBleu),
 typeof(MousseAuChocolat));

IEnumerable<ICourse> coursesSubset2 =
 container.Collection.Create<ICourse>(
 typeof(CeasarSalad),
 typeof(ChiliConCarne),
 typeof(MousseAuChocolat));

container.RegisterInstance<IMeal>(
 new Meal(sourcesSubset1));

On the left, you want to
explicitly select only certain
DEPENDENCIES from the
larger list of all available
components.

This is different from the
situation on the right,
where you indiscriminately
want them all.

ent
rée

mainCourse

dessert

ICourse implementations

Rillettes

Crème brûlée

Lobster bisque

Meal Meal
Cordon bleu

Osso buco

Mousse au chocolat

Figure 14.5 Picking components from a larger set of all registered components

Creates a sequence of three courses

Creates another sequence with a
different subset of courses

Creates a single instance of Meal by injecting
the first sequence, and maps it to IMeal

 457Working with multiple components

The Collection.Create method lets you create a sequence of a given Abstraction.
The sequence itself won’t be registered in the container — this can be done using
Collection.Register. By calling Collection.Create multiple times for the same
Abstraction, you can create multiple sequences that are all different subsets, as
shown in listing 14.10.

What might be surprising about listing 14.10 is that the call to Collection.Create
doesn’t create the courses at that point in time. Instead, the sequence is a stream. Only
when you start iterating the sequence will it start to resolve instances. Because of this
behavior, the sequence subset can be safely injected into the Singleton Meal without
causing any harm. We’ll go into more detail about streams in section 14.4.5.

Simple Injector natively understands sequences. Unless you need to explicitly pick
only some components from all services of a given type, Simple Injector automatically
does the right thing.

Auto-Wiring works not only with single instances, but also for sequences; the con-
tainer maps a sequence to all configured instances of the corresponding type. A per-
haps less intuitive use of having multiple instances of the same Abstraction is the
Decorator design pattern, which we’ll discuss next.

14.4.3 Wiring Decorators

In section 9.1.1, we discussed how the Decorator design pattern is useful when imple-
menting Cross-Cutting Concerns. By definition, Decorators introduce multiple
types of the same Abstraction. At the very least, you have two implementations of an
Abstraction: the Decorator itself and the decorated type. If you stack the Decorators,
you can have even more. This is another example of having multiple registrations of
the same service. Unlike the previous sections, these registrations aren’t conceptually
equal, but rather Dependencies of each other.

Simple Injector has built-in support for registering Decorators using the Register
Decorator method. And, in this section, we’ll discuss both registrations of non-generic
and generic Abstractions. Let’s start with the former.

dECOraTiNg NON-gENEriC abSTraCTiONS

Using the RegisterDecorator method, you can elegantly register a Decorator. The
following example shows how to use this method to apply Breading to a VealCutlet:

var c = new Container();

c.Register<IIngredient, VealCutlet>();

c.RegisterDecorator<IIngredient, Breading>();

Registers VealCutlet as IIngredient

Registers Breading as Decorator of
IIngredient. When resolving
IIngredient, Simple Injector returns
VealCutlet wrapped inside Breading.

458 ChapTEr 14 The Simple Injector DI Container

As you learned in chapter 9, you get veal cordon bleu when you slit open a pocket
in the veal cutlet and add ham, cheese, and garlic into the pocket before breading
the cutlet. The following example shows how to add a HamCheeseGarlic Decorator in
between VealCutlet and the Breading Decorator:

var c = new Container();

c.Register<IIngredient, VealCutlet>();

c.RegisterDecorator<IIngredient, HamCheeseGarlic>();

c.RegisterDecorator<IIngredient, Breading>();

By placing this new registration before the Breading registration, the HamCheese
Garlic Decorator will be wrapped first. This results in an object graph equal to the
following Pure DI version:

new Breading(
 new HamCheeseGarlic(
 new VealCutlet()));

NOTE Decorators are applied in the order of registration.

Chaining Decorators using the RegisterDecorator method is easy in Simple Injector.
Likewise, you can apply generic Decorators, as you’ll see next.

dECOraTiNg gENEriC abSTraCTiONS

During the course of chapter 10, we defined multiple generic Decorators that could
be applied to any ICommandService<TCommand> implementation. In the remainder of
this chapter, we’ll set our ingredients and courses aside, and take a look at how to regis-
ter these generic Decorators using Simple Injector. The following listing demonstrates
how to register all ICommandService<TCommand> implementations with the three Deco-
rators presented in section 10.3.

Listing 14.11 Decorating generic auTO-rEgiSTErEd abSTraCTiONS

container.Register(
 typeof(ICommandService<>), assembly);

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(AuditingCommandServiceDecorator<>));

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(TransactionCommandServiceDecorator<>));

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(SecureCommandServiceDecorator<>));

Adds a new Decorator

VealCutlet is wrapped by HamCheeseGarlic,
which is wrapped by Breading.

Registers arbitrary
ICommandService<TCommand>
implementations

Registers generic Decorators

 459Working with multiple components

As in listing 14.3, you use a Register overload to register arbitrary ICommand
Service<TCommand> implementations by scanning assemblies. To register generic Dec-
orators, you use the RegisterDecorator method that accepts two Type instances. The
result of the configuration of listing 14.11 is figure 14.6, which we discussed previously
in section 10.3.4.

When it comes to Simple Injector’s support for
Decorators, this is only the tip of the iceberg. Several
RegisterDecorator overloads allow Decorators to
be made conditionally, like the previously discussed
RegisterConditional overload of listing 14.9. A dis-
cussion of this and other features, however, is out of
the scope of this book.9

Simple Injector lets you work with multiple Dec-
orator instances in several different ways. You can
register components as alternatives to each other,
as peers resolved as sequences, or as hierarchical
Decorators. In many cases, Simple Injector figures
out what to do. You can always explicitly define how
services are composed if you need more-explicit
control.

In this section, we focused on Simple Injector’s methods that were explicitly designed
for configuring Decorators. Although consumers that rely on sequences of Dependen-
cies can be the most intuitive use of multiple instances of the same Abstraction, Dec-
orators are another good example. But there’s a third and perhaps a bit surprising case
where multiple instances come into play, which is the Composite design pattern.

14.4.4 Wiring Composites

During the course of this book, we discussed the Composite design pattern on sev-
eral occasions. In section 6.1.2, for instance, you created a CompositeNotification
Service (listing 6.4) that both implemented INotificationService and wrapped a
sequence of INotificationService implementations.

wiriNg NON-gENEriC COmpOSiTES

Let’s take a look at how you can register Composites, such as the Composite
NotificationService from chapter 6 in Simple Injector. The following listing shows
this class again.

Listing 14.12 The CompositeNotificationService Composite from chapter 6

public class CompositeNotificationService : INotificationService
{
 private readonly IEnumerable<INotificationService> services;

Security Decorator

Transaction Decorator

Auditing Decorator

Actual
command

service

Figure 14.6 Enriching a real command
service with transaction, auditing, and
security aspects

9 For a detailed discussion, see https://simpleinjector.org/aop.

As you learned in chapter 9, you get veal cordon bleu when you slit open a pocket
in the veal cutlet and add ham, cheese, and garlic into the pocket before breading
the cutlet. The following example shows how to add a HamCheeseGarlic Decorator in
between VealCutlet and the Breading Decorator:

var c = new Container();

c.Register<IIngredient, VealCutlet>();

c.RegisterDecorator<IIngredient, HamCheeseGarlic>();

c.RegisterDecorator<IIngredient, Breading>();

By placing this new registration before the Breading registration, the HamCheese
Garlic Decorator will be wrapped first. This results in an object graph equal to the
following Pure DI version:

new Breading(
 new HamCheeseGarlic(
 new VealCutlet()));

NOTE Decorators are applied in the order of registration.

Chaining Decorators using the RegisterDecorator method is easy in Simple Injector.
Likewise, you can apply generic Decorators, as you’ll see next.

dECOraTiNg gENEriC abSTraCTiONS

During the course of chapter 10, we defined multiple generic Decorators that could
be applied to any ICommandService<TCommand> implementation. In the remainder of
this chapter, we’ll set our ingredients and courses aside, and take a look at how to regis-
ter these generic Decorators using Simple Injector. The following listing demonstrates
how to register all ICommandService<TCommand> implementations with the three Deco-
rators presented in section 10.3.

Listing 14.11 Decorating generic auTO-rEgiSTErEd abSTraCTiONS

container.Register(
 typeof(ICommandService<>), assembly);

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(AuditingCommandServiceDecorator<>));

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(TransactionCommandServiceDecorator<>));

container.RegisterDecorator(
 typeof(ICommandService<>),
 typeof(SecureCommandServiceDecorator<>));

Adds a new Decorator

VealCutlet is wrapped by HamCheeseGarlic,
which is wrapped by Breading.

Registers arbitrary
ICommandService<TCommand>
implementations

Registers generic Decorators

https://simpleinjector.org/aop

460 ChapTEr 14 The Simple Injector DI Container

 public CompositeNotificationService(
 IEnumerable<INotificationService> services)
 {
 this.services = services;
 }

 public void OrderApproved(Order order)
 {
 foreach (INotificationService service in this.services)
 {
 service.OrderApproved(order);
 }
 }
}

Because the Simple Injector API separates the registration of sequences from
non-sequence registrations, the registration of Composites couldn’t be any easier.
You can register the Composite as a single registration, while registering its Depen-
dencies as a sequence:

container.Collection.Register<INotificationService>(
 typeof(OrderApprovedReceiptSender),
 typeof(AccountingNotifier),
 typeof(OrderFulfillment),
);

container.Register<INotificationService, CompositeNotificationService>();

In the previous example, three INotificationService implementations are registered as
a sequence using Collection.Register. The CompositeNotificationService, on the
other hand, is registered as single, non-sequence registration. All types are Auto-Wired
by Simple Injector. Using the previous registration, when an INotificationService is
resolved, it results in an object graph similar to the following Pure DI representation:

return new CompositeNotificationService(new INotificationService[]
{
 new OrderApprovedReceiptSender(),
 new AccountingNotifier(),
 new OrderFulfillment()
});

Because the number of notification services will likely grow over time, you can reduce
the burden on your Composition Root by applying Auto-Registration using the
Collection.Register overload that accepts an Assembly. This lets you turn the previ-
ous list of types into a simple one-liner:

container.Collection.Register<INotificationService>(assembly);

container.Register<INotificationService, CompositeNotificationService>();

You may recall from chapter 13 that a similar construct in Autofac didn’t work, because
Autofac’s Auto-Registration would register the Composite as well as part of the
sequence. This, however, isn’t the case with Simple Injector. It’s Collection.Register
method automatically filters out any Composite types and prevents them from being
registered as part of the sequence.

 461Working with multiple components

Composite classes, however, aren’t the only classes that will automatically be removed
from the list by Simple Injector. Simple Injector also detects Decorators in the same
way. This behavior makes working with Decorators and Composites in Simple Injector a
breeze. The same holds true for working with generic Composites.

wiriNg gENEriC COmpOSiTES

In section 14.4.2, you saw how Simple Injector’s RegisterDecorator method made
registering generic Decorators look like child’s play. In this section, we’ll take a look at
how you can register Composites for generic Abstractions.

In section 6.1.3, you specified the CompositeEventHandler<TEvent> class (listing
6.12) as a Composite implementation over a sequence of IEventHandler<TEvent>
implementations. Let’s see if you can register the Composite with its wrapped event han-
dler implementations. We’ll start with the Auto-Registration of the event handlers:

container.Collection.Register(typeof(IEventHandler<>), assembly);

In contrast to the registration of ICommandService<T> implementations in listing 14.3,
you now use Collection.Register instead of Register. That’s because there’ll poten-
tially be multiple handlers for a particular type of event. This means you have to explic-
itly state that you know there’ll be more implementations for the single event type.
Were you to have accidentally called Register instead of Collection.Register, Sim-
ple Injector would have thrown an exception similar to the following:

In the supplied list of types or assemblies, there are 3 types that represent the same
closed-generic type IEventHandler<OrderApproved>. Did you mean to register the
types as a collection using the Collection.Register method instead? Conflicting types:
OrderApprovedReceiptSender, AccountingNotifier, and OrderFulfillment.

A nice thing about this message is that it already indicates you most likely should be
using Collection.Register instead of Register. But it’s also possible that you acciden-
tally added an invalid type that was picked up. As we explained before, when it comes to
ambiguity, Simple Injector forces you to be explicit, which is helpful in detecting errors.

What remains is the registration for CompositeEventHandler<TEvent>. Because
CompositeEventHandler<TEvent> is a generic type, you’ll have to use the Register
overload that accepts Type arguments:

container.Register(
 typeof(IEventHandler<>),
 typeof(CompositeEventHandler<>));

Using this registration, when a particular closed IEventHandler<TEvent> Abstrac-
tion is requested (for example, IEventHandler<OrderApproved>), Simple Injector
determines the exact CompositeEventHandler<TEvent> type to create. In this case,
this is rather straightforward, because requesting an IEventHandler<OrderApproved>
results in a CompositeEventHandler<OrderApproved> getting resolved. In other cases,
determining the exact closed type can be a rather complex process, but Simple Injec-
tor handles this well.

Because the Composite’s goal is to hide the existence
of the sequence, the Composite is registered as
single, non-sequence mapping.

462 ChapTEr 14 The Simple Injector DI Container

Working with sequences is rather straightforward in Simple Injector. When it comes
to resolving and injecting sequences, however, Simple Injector behaves differently com-
pared to other DI Containers in a captivating way. As we alluded earlier, Simple Injec-
tor handles sequences as streams.

14.4.5 Sequences are streams

In section 14.1, you registered a sequence of ingredients as follows:

container.Collection.Register<IIngredient>(
 typeof(SauceBéarnaise),
 typeof(Steak));

As shown previously, you can ask the container to resolve all IIngredient components
using either the GetAllInstances or GetInstance methods. Here’s the example using
GetInstance again:

IEnumerable<IIngredient> ingredients =
 container.GetInstance<IEnumerable<IIngredient>>();

You might expect the call to GetInstance<IEnumerable<IIngredient>>() to create
an instance of both classes, but this couldn’t be further from the truth. When resolving
or injecting an IEnumerable<T>, Simple Injector doesn’t prepopulate the sequence
with all ingredients right away. Instead, IEnumerable<T> behaves like a stream.10 What
this means is that the returned IEnumerable<IIngredient> is an object that’s able
to produce new IIngredient instances when it’s iterated. This is similar to stream-
ing data from disk using a System.IO.FileStream or a database using a System.Data
.SqlClient.SqlDataReader, where data arrives in small chunks rather than prefetch-
ing all the data in one go.

NOTE Simple Injector is, to our knowledge, the only DI Container that
streams sequences of Abstractions.

The following example shows how iterating a stream multiple times can produce new
instances:

IEnumerable<IIngredient> stream =
 container.GetAllInstance<IIngredient>();

IIngredient ingredient1 = stream.First();
IIngredient ingredient2 = stream.First();

object.ReferenceEquals(ingredient1, ingredient2);

10 As a matter of fact, all sequence Abstractions like IList<T> and ICollection<T> behave like
streams in Simple Injector.

Iterates the ingredients stream to resolve the first ingredient, which is
SauceBéarnaise, using LINQ’s Enumerable.First extension method

Iterates the ingredients stream again

Returns false because every time the stream is iterated,
the container is requested to resolve an instance

 463Working with multiple components

When a stream is iterated, it calls back into the container to resolve elements of the
sequence based on their appropriate Lifestyle. This means that if the type is registered
as Transient, new instances are always produced, as the previous example showed.
When the type is Singleton, however, the same instance is returned every time:

var c = new Container();

c.Collection.Append<IIngredient, SauceBéarnaise>();
c.Collection.Append<IIngredient, Steak>(
 Lifestyle.Singleton);

var s = c.GetInstance<IEnumerable<IIngredient>>();

object.ReferenceEquals(s.First(), s.First());
object.ReferenceEquals(s.Last(), s.Last());

NOTE The calls to First stop iterating the stream after the first instance is
returned, which means that only SauceBéarnaise is created, whereas no Steak
instance gets created. What might be surprising, though, is that the calls to
Last don’t cause the creation of both the first and the last element, but only
the last, which isn’t something you would expect when working with streams.
This is caused by an optimization in Enumerable.Last in combination with the
object that Simple Injector returns.

The returned sequence implements IList<T>. This might seem odd when
you consider the sequence to be a stream, but this is possible because the number
of items in the sequence is fixed after the configuration phase ends. Enumerable
.Last has an optimization for IList<T>, allowing it to only request the last ele-
ment using List<T>’s indexer without having to iterate the complete list.

Although streaming isn’t a common trait under DI Containers, it has a few interest-
ing advantages. First, when injecting a stream into a consumer, the injection of the
stream itself is practically free, because no instance is created at that point in time.11
This is useful when the list of elements is big, and not all elements are needed during
the lifetime of the consumer. Take the following Composite ILogger implementation,
for instance. It’s a variation of the Composite of listing 8.22 but, in this case, the Com-
posite stops logging directly after one of the wrapped loggers succeeds.

Listing 14.13 A Composite that processes part of the injected stream

public class CompositeLogger : ILogger
{
 private readonly IEnumerable<ILogger> loggers;

 public CompositeLogger(
 IEnumerable<ILogger> loggers)
 {
 this.loggers = loggers;
 }

Appends both ingredients to the
IIngredient sequence, while
registering Steak as sIngleton

Returns false

Returns true

11 The stream itself is a Singleton and will only get created once.

Implements ILogger

Depends on IEnumerable<ILogger>

464 ChapTEr 14 The Simple Injector DI Container

 public void Log(LogEntry entry)
 {
 foreach (ILogger logger in this.loggers)
 {
 try
 {
 logger.Log(entry);
 break;
 }
 catch { }
 }
 }
}

As you saw in section 14.4.4, you can register the CompositeLogger and the sequence
of ILogger implementations as follows:

container.Collection.Register<ILogger>(assembly);
container.Register<ILogger, CompositeLogger>(Lifestyle.Singleton);

In this case, you registered the CompositeLogger as Singleton because it’s stateless,
and its only Dependency, the IEnumerable<ILogger>, is itself a Singleton. The effect
of the CompositeLogger and ILogger sequences as Singletons is that the injecting of
CompositeLogger is practically free. Even when a consumer calls its Dependency’s Log
method, this typically only results in the creation of the first ILogger implementation
of the sequence — not all of them.

A second advantage of sequences being streams is that, as long as you only store
the reference to IEnumerable<ILogger>, as listing 14.13 showed, the sequence’s ele-
ments can never accidentally become Captive Dependencies. The previous exam-
ple already showed this. The Singleton CompositeLogger could safely depend on
IEnumerable<ILogger>, because it also is a Singleton, even though its produced
services might not be.

In this section, you’ve seen how to deal with multiple components such as sequences,
Decorators, and Composites. This ends our discussion of Simple Injector. In the next
chapter, we’ll turn our attention to Microsoft.Extensions.DependencyInjection.

Summary

¡	Simple Injector is a modern DI Container that offers a fairly comprehensive fea-
ture set, but its API is quite different from most DI Containers. The following
are a few of its characteristic attributes:

– Scopes are ambient.

– Sequences are registered using Collection.Register instead of appending
new registrations of the same Abstraction.

– Sequences behave as streams.

– The container can be diagnosed to find common configuration pitfalls.

Iterates through the
sequence of loggers

Breaks out of the loop when the
logger doesn’t throw an exception

Ignores any exception thrown by the logger and
continues to the next logger in the sequence

 465Summary

¡	An important overall theme for Simple Injector is one of strictness. It doesn’t
attempt to guess what you mean and tries to prevent and detect configuration
errors through its API and diagnostic facility.

¡	Simple Injector enforces a strict separation of registration and resolution.
Although you use the same Container instance for both register and resolve, the
Container is locked after first use.

¡	Because of Simple Injector’s ambient scopes, resolving from the root container
directly is good practice and encouraged: it doesn’t lead to memory leaks or con-
currency bugs.

¡	Simple Injector supports the standard Lifestyles: Transient, Singleton, and
Scoped.

¡	Simple Injector has excellent support for registration of sequences, Decorators,
Composites, and generics.

466

15The Microsoft.Extensions
.DependencyInjection DI Container

In this chapter
¡	Working with Microsoft.Extensions

.DependencyInjection’s registration API

¡	Managing component lifetime

¡	Configuring difficult APIs

¡	Configuring sequences, Decorators, and
Composites

With the introduction of ASP.NET Core, Microsoft introduced its own DI Con-
tainer, Microsoft.Extensions.DependencyInjection, as part of the Core framework.
In this chapter, we shorten that name to MS.DI.

Microsoft built MS.DI to simplify Dependency management for framework and
third-party component developers working with ASP.NET Core. Microsoft’s inten-
tion was to define a DI Container with a minimal, lowest common denominator
feature set that all other DI Containers could conform to.

In this chapter, we’ll give MS.DI the same treatment that we gave Autofac and
Simple Injector. You’ll see to which degree MS.DI can be used to apply the principles
and patterns laid forth in parts 1–3. Even though MS.DI is integrated in ASP.NET
Core, it can also be used separately, which is why, in this chapter, we treat it as such.

 467Introducing Microsoft.Extensions.DependencyInjection

15
During the course of this chapter, however, you’ll find that MS.DI is so limited in

functionality that we deem it unsuited for development of any reasonably sized applica-
tion that practices loose coupling and follows the principles and patterns described in
this book. If MS.DI isn’t suited, then why use an entire chapter covering it in this book?
The most important reason is that MS.DI looks at a first glance so much like the other
DI Containers that you need to spend some time with it to understand the differences
between it and mature DI Containers. Because it’s part of .NET Core, it may be tempt-
ing to use this built-in container if you don’t understand its limitations. The purpose of
this chapter is to reveal these limitations so you can make an informed decision.

NOTE You can skip this chapter if MS.DI doesn’t interest you and you’ve
already decided to use another DI Container.

This chapter is divided into four sections. You can read each section independently,
though the first section is a prerequisite for the other sections, and the fourth section
relies on some methods and classes introduced in the third section. You can read the
chapter in isolation from the rest of part 4, specifically to learn about MS.DI, or you
can read it together with the other chapters to compare DI Containers. The focus of
this chapter is to show how MS.DI relates to and implements the patterns and princi-
ples described in parts 1–3.

15.1 Introducing Microsoft.Extensions.DependencyInjection
In this section, you’ll learn where to get MS.DI, what you get, and how you start using
it. We’ll also look at common configuration options. Table 15.1 provides fundamental
information that you’re likely to need to get started.

Table 15.1 Microsoft.Extensions.DependencyInjection at a glance

Question Answer

Where do I get it? It’s automatically included if you create a new ASP.NET Core applica-
tion, but you can also manually add it to other application types. From
Visual Studio, you can get it via NuGet. The package name is Microsoft
.Extensions.DependencyInjection.

Which platforms are supported? .NET Standard 2.0 (.NET Core 2.0, .NET Framework 4.6.1, Mono 5.4,
Xamarin.iOS 10.14, Xamarin.Android 8.0, UWP 10.0.16299).

How much does it cost? Nothing. It’s open source.

How is it licensed? Apache License, Version 2.0

Where can I get help? Because this is an official Microsoft .NET product, there’s guaranteed
commercial support at https://www.microsoft.com/net/support/pol-
icy. For noncommercial — unguaranteed — support, you’re likely to get
help by asking on Stack Overflow at https://stackoverflow.com/.

On which version is this chapter
based?

2.1.0

https://www.microsoft.com/net/support/policy
https://www.microsoft.com/net/support/policy
https://stackoverflow.com/

468 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

At a high level, using MS.DI isn’t that different from Autofac (discussed in chapter 13).
Its usage is a two-step process, as figure 15.1 illustrates. Compared to Simple Injector,
however, with MS.DI this two-step process is explicit: first, you configure a Service
Collection, and when you’re done with that, you use it to build a ServiceProvider
that can be used to resolve components.

When you’re done with this section, you should have a good feeling for the overall
usage pattern of MS.DI, and you should be able to start using it in well-behaved scenar-
ios — where all components follow proper DI patterns, such as Constructor Injec-
tion. Let’s start with the simplest scenario and see how you can resolve objects using
an MS.DI container.

15.1.1 Resolving objects

The core service of any DI Container is to compose object graphs. In this section,
we’ll look at the API that enables you to compose object graphs with MS.DI. MS.DI
requires you to register all relevant components before you can resolve them. The fol-
lowing listing shows one of the simplest possible uses of MS.DI.

Listing 15.1 Simplest possible use of MS.DI

var services = new ServiceCollection();

services.AddTransient<SauceBéarnaise>();

ServiceProvider container =
 services.BuildServiceProvider(validateScopes: true);

Notice that the rhythm is register
once, resolve many.

You first create and configure
a ServiceCollection instance.

When you’re done configuring the
ServiceCollection, you use it to create
an IServiceProvider that you can
use to resolve components.

Register Resolve components

ServiceCollection ServiceProvidercreates

Figure 15.1 The pattern for using Microsoft.Extensions.DependencyInjection is to first
configure it and then resolve components.

 469Introducing Microsoft.Extensions.DependencyInjection

IServiceScope scope = container.CreateScope();

SauceBéarnaise sauce =
 scope.ServiceProvider.GetRequiredService<SauceBéarnaise>();

As was already implied by figure 15.1, you need a ServiceCollection instance to
configure components. MS.DI’s ServiceCollection is the equivalent of Autofac’s
ContainerBuilder.

Here, you register the concrete SauceBéarnaise class with services, so that when
you ask it to build a container, the resulting container is configured with the Sauce
Béarnaise class. This again enables you to resolve the SauceBéarnaise class from the
container. If you don’t register the SauceBéarnaise component, the attempt to resolve
it throws a InvalidOperationException with the following message:

No service for type 'Ploeh.Samples.MenuModel.SauceBéarnaise' has been registered.

NOTE When creating an ASP.NET Core application, the hosting environment
creates the ServiceCollection for you. In that case, you only have to consume
it, as shown in listing 7.7. In this chapter, however, we’ll treat MS.DI as the
other DI Containers, which means we’ll show how to use it in a less integrated
environment.

As listing 15.1 shows, with MS.DI, you never resolve from the root container itself but
from an IServiceScope. Section 15.2.1 goes into more detail about what an IService
Scope is.

WARNING With MS.DI, avoid resolving from the root container. This can easily
lead to memory leaks or concurrency bugs. Instead, you should always resolve
from a scope, as listing 15.1 shows.

As a safety measure, always build the ServiceProvider using the BuildService
Provider overload with the validateScopes argument set to true, as shown in listing
15.1. This prevents the accidental resolution of Scoped instances from the root con-
tainer. With the introduction of ASP.NET Core 2.0, validateScopes is automatically
set to true by the framework when the application is running in the development envi-
ronment, but it’s best to enable validation even outside the development environment
as well. This means you’ll have to call BuildServiceProvider(true) manually.

Not only can MS.DI resolve concrete types with parameterless constructors, it can
also Auto-Wire a type with other Dependencies. All these Dependencies need to be
registered. For the most part, you want to program to interfaces, because this introduces
loose coupling. To support this, MS.DI lets you map Abstractions to concrete types.

mappiNg abSTraCTiONS TO CONCrETE TypES

Whereas our application’s root types will typically be resolved by their concrete types
as listing 15.1 showed, loose coupling requires you to map Abstractions to concrete
types. Creating instances based on such maps is the core service offered by any DI Con-
tainer, but you must still define the map. In this example, you map the IIngredient

470 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

interface to the concrete SauceBéarnaise class, which allows you to successfully resolve
IIngredient:

var services = new ServiceCollection();

services.AddTransient<IIngredient, SauceBéarnaise>();

var container = services.BuildServiceProvider(true);

IServiceScope scope = container.CreateScope();

IIngredient sauce = scope.ServiceProvider
 .GetRequiredService<IIngredient>();

Here, the AddTransient method allows a concrete type to be mapped to a particular
Abstraction using the Transient Lifestyle. Because of the previous AddTransient
call, SauceBéarnaise can now be resolved as IIngredient.

In many cases, the generic API is all you need. Still, there are situations where you’ll
need a more weakly typed way to resolve services. This is also possible.

rESOlviNg wEakly TypEd SErviCES

Sometimes you can’t use a generic API because you don’t know the appropriate type
at design time. All you have is a Type instance, but you’d still like to get an instance of
that type. You saw an example of that in section 7.3, where we discussed ASP.NET Core
MVC’s IControllerActivator class. The relevant method is this one:

object Create(ControllerContext context);

As shown previously in listing 7.8, the ControllerContext captures the controller’s
Type, which you can extract using the ControllerTypeInfo property of the Action
Descriptor property:

Type controllerType = context.ActionDescriptor.ControllerTypeInfo.AsType();

Because you only have a Type instance, you can’t use generics, but must resort to a
weakly typed API. MS.DI offers a weakly typed overload of the GetRequiredService
method that lets you implement the Create method:

Type controllerType = context.ActionDescriptor.ControllerTypeInfo.AsType();
return scope.ServiceProvider.GetRequiredService(controllerType);

The weakly typed overload of GetRequiredService lets you pass the controllerType
variable directly to MS.DI. Typically, this means you have to cast the returned value to
some Abstraction, because the weakly typed GetRequiredService method returns
object. In the case of IControllerActivator, however, this isn’t required, because
ASP.NET Core MVC doesn’t require controllers to implement any interface or base class.

No matter which overload of GetRequiredService you use, MS.DI guarantees that
it’ll return an instance of the requested type or throw an exception if there are Depen-
dencies that can’t be satisfied. When all required Dependencies have been properly
configured, MS.DI can Auto-Wire the requested type.

Maps a concrete type to a
particular AbstrActIon

Resolves SauceBéarnaise as an IIngredient

 471Introducing Microsoft.Extensions.DependencyInjection

NOTE As an alternative to GetRequiredService, there’s also a GetService
method. GetRequiredService throws an exception when the requested type
can’t be resolved, where GetService returns null instead. You should prefer
GetRequiredService when you expect an instance to be returned, which is
almost always.

To be able to resolve the requested type, all loosely coupled Dependencies must
have been previously configured. Let’s investigate the ways that you can configure
MS.DI.

15.1.2 Configuring the ServiceCollection

As we discussed in section 12.2, you can configure a DI Container in several concep-
tually different ways. Figure 12.5 reviewed the options: configuration files, Configura-
tion as Code, and Auto-Registration. Figure 15.2 shows these options again.

WARNING MS.DI is designed around Configuration as Code and contains
no API that supports either configuration files or Auto-Registration.

Although there’s no Auto-Registration API, to some extent, you can implement
assembly scanning with the help of .NET’s LINQ and reflection APIs. Before we discuss
this, we’ll start with a discussion of MS.DI’s Configuration as Code API.

Config files CONFIGURATION

AS CODE

Late binding Early binding

AUTO-
REGISTRATION

Explicit

Implicit

Figure 15.2 The most common ways
to configure a di CONTaiNEr shown
against dimensions of explicitness and
the degree of binding

472 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

CONfiguriNg ThE ServiceCollection uSiNg CONfiguraTiON aS COdE

In section 15.1.1, you saw a brief glimpse of MS.DI’s strongly typed configuration API.
Here, we’ll examine it in greater detail.

All configuration in MS.DI uses the API exposed by the ServiceCollection class,
although most of the methods are extension methods. One of the most commonly used
methods is the AddTransient method that you’ve already seen:

services.AddTransient<IIngredient, SauceBéarnaise>();

Registering SauceBéarnaise as IIngredient hides the concrete class so that you can
no longer resolve SauceBéarnaise with this registration. But you can fix this by replac-
ing the registration with the following:

services.AddTransient<SauceBéarnaise>();
services.AddTransient<IIngredient>(
 c => c.GetRequiredService<SauceBéarnaise>());

Instead of making the registration for IIngredient using the Auto-Wiring overload
of AddTransient, you register a code block that, when called, forwards the call to the
registration of the concrete SauceBéarnaise.

Torn lifESTylES

In this section, we’ve shown how you can call AddTransient multiple times to register a
component as multiple service types. The following example shows this once more:

services.AddTransient<SauceBéarnaise>();
services.AddTransient<IIngredient>(
 c => c.GetRequiredService<SauceBéarnaise>());

You might be tempted, however, to think this is equivalent to the following code:

services.AddTransient<SauceBéarnaise>();
services.AddTransient<IIngredient, SauceBéarnaise>();

The former example, however, isn’t equivalent to the latter. This becomes apparent when
you change the LifestyLe from trAnsient to, for instance, singLeton.

services.AddSingleton<SauceBéarnaise>();
services.AddSingleton<IIngredient, SauceBéarnaise>();

Although you might expect there to only be one SauceBéarnaise instance for the life-
time of the container, splitting up the registration causes MS.DI to create a separate
instance per AddSingleton call. The LifestyLe of SauceBéarnaise is therefore consid-
ered to be torn.

Registers a delegate that calls back
into the container to resolve the
previously registered concrete type

 473Introducing Microsoft.Extensions.DependencyInjection

WARNING Each call to one of the AddScoped and AddSingleton methods
results in its own unique cache. Having multiple Add... calls can, therefore,
result in multiple instances per scope or per container. To prevent this, register
a delegate that resolves the concrete instance.

In real applications, you always have more than one Abstraction to map, so you must
configure multiple mappings. This is done with multiple calls to one of the Add...
methods:

services.AddTransient<IIngredient, SauceBéarnaise>();
services.AddTransient<ICourse, Course>();

This maps IIngredient to SauceBéarnaise, and ICourse to Course. There’s no over-
lap of types, so it should be pretty evident what’s going on. But you can also register the
same Abstraction several times:

services.AddTransient<IIngredient, SauceBéarnaise>();
services.AddTransient<IIngredient, Steak>();

Here, you register IIngredient twice. If you resolve IIngredient, you get an instance
of Steak. The last registration wins, but previous registrations aren’t forgotten. MS.DI
can handle multiple configurations for the same Abstraction, but we’ll get back to
this topic in section 15.4.

Although there are more-advanced options available for configuring MS.DI, you can
configure an entire application with the methods shown here. But to save yourself from
too much explicit maintenance of container configuration, you could instead consider
a more convention-based approach using Auto-Registration.

CONfiguriNg ServiceCollection uSiNg auTO-rEgiSTraTiON

In many cases, registrations will be similar. Such registrations are tedious to maintain,
and explicitly registering each and every component might not be the most productive
approach, as we discussed in section 12.3.3.

Consider a library that contains many IIngredient implementations. You can config-
ure each class individually, but it’ll result in an ever-changing list of Type instances sup-
plied to the Add... methods. What’s worse is that every time you add a new IIngredient
implementation, you must also explicitly register it with the container if you want it to be
available. It would be more productive to state that all implementations of IIngredient
found in a given assembly should be registered.

As stated previously, MS.DI contains no Auto-Registration API. This means you
have to do it yourself. This is possible to some degree, and in this section, we’ll show
how with a simple example but delay more detailed discussions of the possibilities
and limitations until section 15.4. Let’s take a look how you can register a sequence of
IIngredient registrations:

474 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

Assembly ingredientsAssembly = typeof(Steak).Assembly;

var ingredientTypes =
 from type in ingredientsAssembly.GetTypes()
 where !type.IsAbstract
 where typeof(IIngredient).IsAssignableFrom(type)
 select type;

foreach (var type in ingredientTypes)
{
 services.AddTransient(typeof(IIngredient), type);
}

The previous example unconditionally configures all implementations of the
IIngredient interface, but you can provide filters that enable you to select only
a subset. Here’s a convention-based scan where you add only classes whose name
starts with Sauce:

Assembly ingredientsAssembly = typeof(Steak).Assembly;

var ingredientTypes =
 from type in ingredientsAssembly.GetTypes()
 where !type.IsAbstract
 where typeof(IIngredient).IsAssignableFrom(type)
 where type.Name.StartsWith("Sauce")
 select type;

foreach (var type in ingredientTypes)
{
 services.AddTransient(typeof(IIngredient), type);
}

Apart from selecting the correct types from an assembly, another part of Auto-
Registration is defining the correct mapping. In the previous examples, you used the
AddTransient method with a specific interface to register all selected types against that
interface.

But sometimes you’ll want to use different conventions. Let’s say that instead of
interfaces, you use abstract base classes, and you want to register all types in an assembly
where the name ends with Policy by their base type:

Assembly policiesAssembly = typeof(DiscountPolicy).Assembly;

var policyTypes =
 from type in policiesAssembly.GetTypes()
 where type.Name.EndsWith("Policy")
 select type;

foreach (var type in policyTypes)
{
 services.AddTransient(type.BaseType, type);
}

Convention-based scan

Registers each type based
on the IIngredient interface

Removes classes whose names
don’t start with Sauce

Gets all types in the assembly

Filters by the Policy suffix

Registers each policy
component by its base class

 475Introducing Microsoft.Extensions.DependencyInjection

Even though MS.DI contains no convention-based API, by making use of existing .NET
framework APIs, convention-based registrations are possible. This becomes a different
ball game when it comes to generics, as we’ll discuss next.

auTO-rEgiSTraTiON Of gENEriC abSTraCTiONS

During the course of chapter 10, you refactored the big, obnoxious IProductService
interface to the ICommandService<TCommand> interface of listing 10.12. Here’s that
Abstraction again:

public interface ICommandService<TCommand>
{
 void Execute(TCommand command);
}

As discussed in chapter 10, every command Parameter Object represents a use case,
and there’ll be a single implementation per use case. The AdjustInventoryService
of listing 10.8 was given as an example. It implemented the “adjust inventory” use case.
The following listing shows this class again.

Listing 15.2 The AdjustInventoryService from chapter 10

public class AdjustInventoryService : ICommandService<AdjustInventory>
{
 private readonly IInventoryRepository repository;

 public AdjustInventoryService(IInventoryRepository repository)
 {
 this.repository = repository;
 }

 public void Execute(AdjustInventory command)
 {
 var productId = command.ProductId;

 ...
 }
}

Any reasonably complex system will easily implement hundreds of use cases, and
this is an ideal candidate for using Auto-Registration. But because of the lack of
Auto-Registration support by MS.DI, you’ll have to write a fair amount of code to
get this running. The next listing provides an example of this.

Listing 15.3 auTO-rEgiSTraTiON of ICommandService<TCommand> implementations

Assembly assembly = typeof(AdjustInventoryService).Assembly;

var mappings =
 from type in assembly.GetTypes()
 where !type.IsAbstract
 where !type.IsGenericType

Selects concrete types

Selects non-generic types

476 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

 from i in type.GetInterfaces()
 where i.IsGenericType
 where i.GetGenericTypeDefinition()
 == typeof(ICommandService<>)
 select new { service = i, type };

foreach (var mapping in mappings)
{
 services.AddTransient(
 mapping.service,
 mapping.type);
}

As in the previous listings, you make full use of .NET’s LINQ and Reflection APIs to
allow selecting classes from the supplied assembly. Using the supplied open-generic
interface, you iterate through the list of assembly types, and register all types that
implement a closed-generic version of ICommandService<TCommand>. What this
means, for instance, is that AdjustInventory Service is registered because it imple-
ments ICommandService<AdjustInventory>, which is a closed-generic version of
ICommandService<TCommand>.

WARNING The code in listing 15.1 presents many shortcomings. For instance,
in case you accidentally implement the same closed-generic interface on mul-
tiple classes, the registration will fail silently. The code will happily register all
implementations. In case a command service is requested, where multiple
implementations for that type exist, the last registration is resolved. One major
problem, however, is that it’s undetermined which registration is last, and this
could even change after an application restart!1

This section introduced the MS.DI DI Container and demonstrated these fundamental
mechanics: how to configure a ServiceCollection, and, subsequently, how to use the
constructed ServiceProvider to resolve services. Resolving services is done with a single
call to the GetRequiredService method, so the complexity involves configuring the con-
tainer. The API primarily supports Configuration as Code, although to some extend
Auto-Registration can be built on top of it. As you’ll see later, however, the lack of
support for Auto-Registration will lead to quite complex and hard-to-maintain code.
Until now, we’ve only looked at the most basic API, but there’s another area we have yet
to cover — how to manage component lifetime.

15.2 Managing lifetime
In chapter 8, we discussed Lifetime Management, including the most common con-
ceptual lifetime styles such as Transient, Singleton, and Scoped. MS.DI supports
these three Lifestyles and lets you configure the lifetime of all services. The Life-
styles shown in table 15.2 are available as part of the API.

Selects types implementing
ICommandService<TCommand>

Registers the type by its interface

1 The ordering of the list of types returned by Assembly.GetType() is undefined. This can change
when the application is recompiled or even when the application is restarted.

 477Managing lifetime

Table 15.2 Microsoft.Extensions.DependencyInjection lifESTylES

Microsoft name Pattern name Comments

Transient trAnsient Instances are tracked by the container and disposed of.

Singleton singLeton Instances are disposed of when the container is disposed of.

Scoped scoPeD Instances are reused within the same IServiceScope. Instances are
tracked for the lifetime of the scope and are disposed of when the scope
is disposed of.

MS.DI’s implementation of Transient and Singleton are equivalent to the general
Lifestyles described in chapter 8, so we won’t spend much time on them in this chap-
ter. Instead, in this section, you’ll see how you can define Lifestyles for components
in code. By the end of this section, you should be able to use MS.DI’s Lifestyles in
your own application. Let’s start by reviewing how to configure instance scopes for
components.

15.2.1 Configuring lifeStyleS

In this section, we’ll review how to manage Lifestyles with MS.DI. A Lifestyle is con-
figured as part of registering components. It’s as easy as this:

services.AddSingleton<SauceBéarnaise>();

This configures the concrete SauceBéarnaise class as a Singleton so that the same
instance is returned each time SauceBéarnaise is requested. If you want to map an
Abstraction to a concrete class with a specific Lifestyle, you can use the AddSingleton
overload with two generic arguments:

services.AddSingleton<IIngredient, SauceBéarnaise>();

Compared to other DI Containers, there aren’t many options in MS.DI when it comes
to configuring Lifestyles for components. It’s done in a rather declarative fashion.
Although configuration is typically easy, you mustn’t forget that some Lifestyles
involve long-lived objects that use resources as long as they’re around.

15.2.2 Releasing components

As discussed in section 8.2.2, it’s important to release objects when you’re done with
them. Similar to Autofac and Simple Injector, MS.DI has no explicit Release method,
but instead uses a concept called scopes. A scope can be regarded as a request-specific
cache. As figure 15.3 illustrates, it defines a boundary where components can be reused.

An IServiceScope defines a cache that you can use for a particular duration or
purpose; the most obvious example is a web request. When a Scoped component is
requested from an IServiceScope, you always receive the same instance. The differ-
ence from true Singletons is that if you query a second scope, you’ll get another
instance.

478 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

One of the important features of scopes is that they let you properly release compo-
nents when the scope completes. You create a new scope with the CreateScope method
of a particular IServiceProvider implementation, and release all appropriate compo-
nents by invoking its Dispose method:

using (IServiceScope scope = container.CreateScope())
{
 IMeal meal = scope.ServiceProvider
 .GetRequiredService<IMeal>();

 meal.Consume();

}

A new scope is created from the container by invoking the CreateScope method. The
return value implements IDisposable, so you can wrap it in a using block. Because
IServiceScope contains a ServiceProvider property that implements the same inter-
face that the container itself implements, you can use the scope to resolve components
in exactly the same way as with the container itself.

When you’re done with the scope, you can dispose of it. With a using block, this
happens automatically when you exit that block, but you can also choose to explicitly
dispose of it by invoking the Dispose method. When you dispose of the scope, you

A scoped component is a SINGLETON
within that scope. No matter how
many times you ask a scope for such a
component, you get the same instance.

The parent container manages
the truly shared SINGLETONS.

Another IServiceScope
will have its own scoped
instances.

TRANSIENT components
are never shared, but
are decommissioned
when the IServiceScope
is disposed of.

TRANSIENT components
are never shared.
Instances injected into
SINGLETONS are
decommissioned when
the container is
disposed of.

Container

IServiceScope IServiceScope

Singleton

Transient

ScopedScoped

Transient Transient Transient Transient

Figure 15.3 Microsoft.Extensions.DependencyInjection’s scopes act as containers that can share components
for a limited duration or purpose.

Creates a scope from
the root container

Resolves a meal from the
newly created scope

Consumes the meal

Releases the meal by ending the using block

 479Managing lifetime

also release all the components that were created by the scope; here, it means that you
release the meal object graph.

Note that Dependencies of a component are always resolved at or below the com-
ponent’s scope. For example, if you need a Transient Dependency injected into a
Singleton, that Transient Dependency will come from the root container, even if
you’re resolving the Singleton from a nested scope. This tracks the Transient within
the root container and prevents it from being disposed of when the scope gets disposed
of. The Singleton consumer would otherwise break, because it’s kept alive in the root
container while depending on a component that was disposed of.

IMPORTANT With MS.DI, a Transient component is a component that’s
expected to live as long as the consumer it’s injected into. That’s why MS.DI
allows injecting Transients into Singletons, although injection of Scoped
instances into Singletons is blocked.2 Although injecting a Transient into a
Singleton might be exactly the desired behavior, more often it’s not. You need
to take extra care to check that Transients don’t become accidental Captive
Dependencies.

Earlier in this section, you saw how to configure components as Singletons or Tran-
sients. Configuring a component to have a Scoped Lifestyle is done in a similar way:

services.AddScoped<IIngredient, SauceBéarnaise>();

Similar to the AddTransient and AddSingleton methods, you can use the AddScoped
method to state that the component’s lifetime should follow the scope that created the
instance.

WARNING MS.DI tracks most components — even disposable Transients.
This will cause problems when you resolve from the root container instead of a
scope. When resolving from the root container, new instances are still created
on each call to GetService, but those disposable Transients are kept alive
in order to allow them to be disposed of when the container is disposed of.
Because the root container won’t be disposed of until the application stops,
this causes memory leaks, so it’s important to remember to resolve all compo-
nents from a scope and dispose of the scope after use.

Due to their nature, Singletons are never released for the lifetime of the container
itself. Still, you can release even those components if you don’t need the container any
longer. This is done by disposing of the container itself:

container.Dispose();

In practice, this isn’t nearly as important as disposing of a scope, because the lifetime
of a container tends to correlate closely with the lifetime of the application it supports.
You normally keep the container around as long as the application runs, so you’d
only dispose of it when the application shuts down. In this case, memory would be
reclaimed by the operating system.

2 This happens when you enable scope validation, as we discussed in section 15.1.1.

480 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

This completes our tour of Lifetime Management with MS.DI. Components can
be configured with mixed Lifestyles, and this is true even when you register multiple
implementations of the same Abstraction. Until now, you’ve allowed the container
to wire Dependencies by implicitly assuming that all components use Constructor
Injection. But this isn’t always the case. In the next section, we’ll review how to deal
with classes that must be instantiated in special ways.

15.3 Registering difficult APIs
Until now, we’ve considered how you can configure components that use Construc-
tor Injection. One of the many benefits of Constructor Injection is that DI Con-
tainers such as MS.DI can easily understand how to compose and create all classes in a
Dependency graph. This becomes less clear when APIs are less well behaved.

In this section, you’ll see how to deal with primitive constructor arguments and static
factories. These all require your special attention. Let’s start by looking at classes that
take primitive types, such as strings or integers, as constructor arguments.

15.3.1 Configuring primitive DepenDencieS

As long as you inject Abstractions into consumers, all is well. But it becomes more
difficult when a constructor depends on a primitive type, such as a string, a number,
or an enum. This is particularly the case for data access implementations that take a
connection string as constructor parameter, but it’s a more general issue that applies to
all strings and numbers.

Conceptually, it doesn’t always make sense to register a string or number as a compo-
nent in a container. Using generic type constraints, MS.DI even blocks the registration
of value types like numbers and enums from its generic API. With the non-generic API,
on the other hand, this is still possible. Consider as an example this constructor:

public ChiliConCarne(Spiciness spiciness)

In this example, Spiciness is an enum:

public enum Spiciness { Mild, Medium, Hot }

TIP As a rule of thumb, enums are code smells and should be refactored to
polymorphic classes.3 But they serve us well for this example.

If you want all consumers of Spiciness to use the same value, you can register Spiciness
and ChiliConCarne independently of each other:

services.AddSingleton(
 typeof(Spiciness), Spiciness.Medium);

services.AddTransient<ICourse, ChiliConCarne>();

3 See Martin Fowler et al, Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), 82.

Uses the non-generic AddSingleton overload
that accepts a precreated object; in this case,
the value of the enum

Auto-WIres ChiliConCarne
with Spiciness

 481Registering difficult APIs

When you subsequently resolve ChiliConCarne, it’ll have a Medium Spiciness, as will
all other components with a Dependency on Spiciness. If you’d rather control the
relationship between ChiliConCarne and Spiciness on a finer level, you can use a
code block, which is something we get back to in a moment in section 15.3.3.

The option described here uses Auto-Wiring to provide a concrete value to a com-
ponent. A more convenient solution, however, is to extract the primitive Dependencies
into Parameter Objects.

15.3.2 Extracting primitive DepenDencieS to Parameter Objects

In section 10.3.3, we discussed how the introduction of Parameter Objects allowed mit-
igating the Open/Closed Principle violation that IProductService caused. Param-
eter Objects, however, are also a great tool to mitigate ambiguity. For example, the
Spiciness of a course could be described in more general terms as a flavoring. Flavor-
ing might include other properties, such as saltiness, so you can wrap Spiciness and
the saltiness in a Flavoring class:

public class Flavoring
{
 public readonly Spiciness Spiciness;
 public readonly bool ExtraSalty;

 public Flavoring(Spiciness spiciness, bool extraSalty)
 {
 this.Spiciness = spiciness;
 this.ExtraSalty = extraSalty;
 }
}

As we mentioned in section 10.3.3, it’s perfectly fine for Parameter Objects to have one
parameter. The goal is to remove ambiguity, and not just on the technical level. Such
a Parameter Object’s name might do a better job describing what your code does on
a functional level, as the Flavoring class so elegantly does. With the introduction of
the Flavoring Parameter Object, it now becomes possible to Auto-Wire any ICourse
implementation that requires some flavoring without introducing ambiguity:

var flavoring = new Flavoring(Spiciness.Medium, extraSalty: true);
services.AddSingleton<Flavoring>(flavoring);

container.AddTransient<ICourse, ChiliConCarne>();

This code creates a single instance of the Flavoring class. Flavoring becomes a config-
uration object for courses. Because there’ll only be one Flavoring instance, you can reg-
ister it in MS.DI using the AddSingleton<T> overload that accepts a precreated instance.

Extracting primitive Dependencies into Parameter Objects should be your prefer-
ence over the previously discussed option, because Parameter Objects remove ambigu-
ity, at both the functional and technical levels. It does, however, require a change to a
component’s constructor, which might not always be feasible. In this case, registering a
delegate is your second-best pick.

482 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

15.3.3 Registering objects with code blocks

Another option for creating a component with a primitive value is to use one of the
Add... methods, which let you supply a delegate that creates the component:

services.AddTransient<ICourse>(c => new ChiliConCarne(Spiciness.Hot));

You already saw this AddTransient method overload previously, when we discussed
torn Lifestyles in section 15.1.2. The ChiliConCarne constructor is invoked with
a hot Spiciness every time the ICourse service is resolved. The following example
shows the definition of this AddTransient<TService> extension method:

public static IServiceCollection AddTransient<TService>(
 this IServiceCollection services,
 Func<IServiceProvider, TService> implementationFactory)
 where TService : class;

As you can see, this AddTransient method accepts a parameter of type Func<IService
Provider, TService>. With respect to the previous registration, when an ICourse is
resolved, MS.DI will call the supplied delegate and supply it with the IServiceProvider
belonging to the current IServiceScope. With it, your code block can resolve instances
that originate from the same IServiceScope. We’ll demonstrate this in the next section.

When it comes to the ChiliConCarne class, you have a choice between Auto-
Wiring or using a code block. But other classes are more restrictive: they can’t be
instantiated through a public constructor. Instead, you must use some sort of factory to
create instances of the type. This is always troublesome for DI Containers, because, by
default, they look after public constructors. Consider this example constructor for the
public JunkFood class:

internal JunkFood(string name)

Even though the JunkFood class might be public, the constructor is internal. In this
example, instances of JunkFood should instead be created through the static Junk
FoodFactory class:

public static class JunkFoodFactory
{
 public static JunkFood Create(string name)
 {
 return new JunkFood(name);
 }
}

From MS.DI’s perspective, this is a problematic API, because there are no unambigu-
ous and well-established conventions around static factories. It needs help — and you
can give that help by providing a code block it can execute to create the instance:

services.AddTransient<IMeal>(c => JunkFoodFactory.Create("chicken meal"));

This time, you use the AddTransient method to create the component by invoking a
static factory within the code block. JunkFoodFactory.Create will be invoked every
time IMeal is resolved, and the result will be returned.

 483Working with multiple components

If you have to write the code to create the instance, how is this in any way better than
invoking the code directly? By using a code block inside a AddTransient method call,
you still gain something:

¡	You map from IMeal to JunkFood. This allows consuming classes to stay loosely
coupled.

¡	lifeStyleS can still be configured. Although the code block will be invoked to create
the instance, it may not be invoked every time the instance is requested. It is by
default, but if you change it to a Singleton, the code block will only be invoked
once, and the result cached and reused thereafter.

In this section, you’ve seen how you can use MS.DI to deal with more-difficult cre-
ational APIs. Up until this point, the code examples have been fairly straightforward.
This will quickly change when you start to work with multiple components, so let’s now
turn our attention in that direction.

15.4 Working with multiple components
As alluded to in section 12.1.2, DI Containers thrive on distinctness but have a hard
time with ambiguity. When using Constructor Injection, a single constructor is
preferred over overloaded constructors, because it’s evident which constructor to use
when there’s no choice. This is also the case when mapping from Abstractions to
concrete types. If you attempt to map multiple concrete types to the same Abstrac-
tion, you introduce ambiguity.

Despite the undesirable qualities of ambiguity, you often need to work with multiple
implementations of a single Abstraction. This can be the case in these situations:

¡	Different concrete types are used for different consumers.
¡	Dependencies are sequences.
¡	Decorators or Composites are in use.

In this section, we’ll look at each of these cases and see how you can address each with
MS.DI. When we’re done, you should have a good feel for what you can do with MS.DI
and where the boundaries lie when multiple implementations of the same Abstrac-
tion are in play. Let’s first see how you can provide more fine-grained control than
Auto-Wiring provides.

15.4.1 Selecting among multiple candidates

Auto-Wiring is convenient and powerful but provides little control. As long as all
Abstractions are distinctly mapped to concrete types, you have no problems. But as
soon as you introduce more implementations of the same interface, ambiguity rears
its ugly head. Let’s first recap how MS.DI deals with multiple registrations of the same
Abstraction.

484 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

CONfiguriNg mulTiplE implEmENTaTiONS Of ThE SamE SErviCE

As you saw in section 15.1.2, you can register multiple implementations of the same
interface:

services.AddTransient<IIngredient, SauceBéarnaise>();
services.AddTransient<IIngredient, Steak>();

This example registers both the Steak and SauceBéarnaise classes as the IIngredient
service. The last registration wins, so if you resolve IIngredient with GetRequired—
Service<IIngredient>(), you’ll get a Steak instance.

You can also ask the container to resolve all IIngredient components. MS.DI has a
dedicated method to do that, called GetServices. Here’s an example:

IEnumerable<IIngredient> ingredients =
 scope.ServiceProvider.GetServices<IIngredient>();

Under the hood, GetServices delegates to GetRequiredService, while requesting an
IEnumerable<IIngredient>>. You can also ask the container to resolve all IIngredient
components using GetRequiredService instead:

IEnumerable<IIngredient> ingredients = scope.ServiceProvider
 .GetRequiredService<IEnumerable<IIngredient>>();

Notice that you use the normal GetRequiredService method, but that you request
IEnumerable<IIngredient>. The container interprets this as a convention and gives
you all the IIngredient components it has.

When there are multiple implementations of a certain Abstraction, there’ll often
be a consumer that depends on a sequence. Sometimes, however, components need to
work with a fixed set or a subset of Dependencies of the same Abstraction, which is
what we’ll discuss next.

rEmOviNg ambiguiTy uSiNg COdE blOCkS

As useful as Auto-Wiring is, sometimes you need to override the normal behavior to
provide fine-grained control over which Dependencies go where, but it may also be
that you need to address an ambiguous API. As an example, consider this constructor:

public ThreeCourseMeal(ICourse entrée, ICourse mainCourse, ICourse dessert)

In this case, you have three identically typed Dependencies, each of which represents
a different concept. In most cases, you want to map each of the Dependencies to a
separate type.

As stated previously, when compared to both Autofac and Simple Injector, MS.DI is
limited in functionality. Where Autofac provides keyed registrations, and Simple Injec-
tor provides conditional registrations to deal with this kind of ambiguity, MS.DI falls
short in this respect. There isn’t any built-in functionality to do this. To wire up such an
ambiguous API with MS.DI, you have to revert to using a code block.

Gets a sequence with all
registered ingredients

 485Working with multiple components

Listing 15.4 Wiring ThreeCourseMeal by resolving courses in a code block

services.AddTransient<IMeal>(c => new ThreeCourseMeal(
 entrée: c.GetRequiredService<Rillettes>(),
 mainCourse: c.GetRequiredService<CordonBleu>(),
 dessert: c.GetRequiredService<CrèmeBrûlée>()));

This registration reverts from Auto-Wiring and constructs the ThreeCourseMeal
using a delegate instead. Fortunately, the three ICourse implementations themselves
are still Auto-Wired. To bring Auto-Wiring back for the ThreeCourseMeal, you make
use of MS.DI’s ActivatorUtilities class.

rEmOviNg ambiguiTy uSiNg ActivatorUtilities
The lack of Auto-Wiring of ThreeCourseMeal isn’t that problematic in this example
because, in this case, you override all constructor arguments. This could be different if
ThreeCourseMeal contained more Dependencies:

public ThreeCourseMeal(
 ICourse entrée,
 ICourse mainCourse,
 ICourse dessert,
 ...
)

MS.DI contains a utility class called ActivatorUtilities that allows Auto-Wiring a
class’s Dependencies, while overriding other Dependencies by explicitly supplying
their values. Using ActivatorUtilities, you can rewrite the previous registration.

Listing 15.5 Wiring ThreeCourseMeal using ActivatorUtilities

services.AddTransient<IMeal>(c =>
 ActivatorUtilities.CreateInstance<ThreeCourseMeal>(
 c,
 new object[]
 {
 c.GetRequiredService<Rillettes>(),
 c.GetRequiredService<CordonBleu>(),
 c.GetRequiredService<MousseAuChocolat>()
 }));

This example makes use of the ActivatorUtilities’s CreateInstance<T> method,
defined as follows:

public static T CreateInstance<T>(
 IServiceProvider provider,
 params object[] parameters);

Registers IMeal using a lambda expression

Injects the three constructor
arguments by requesting
them from the container

More DepenDencIes

Requests a ThreeCourseMeal
to be created

Supplies the IServiceProvider

Supplies the three courses to
override as an object array

486 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

The CreateInstance<T> method creates a new instance of the supplied T. It goes
through the supplied parameters array and matches each parameter to a compatible
constructor parameter. Then it resolves the remaining, unmatched constructor param-
eters with the supplied IServiceProvider.

Because all three resolved courses implement ICourse, there’s still ambiguity in the call.
CreateInstance<T> resolves this ambiguity by applying the supplied parameters from left
to right. This means that because Rillettes is the first element in the parameters array,
it’ll be applied to the first compatible parameter of the ThreeCourseMeal constructor. This
is the entrée parameter of type ICourse.

NOTE In case you overspecify the parameters, for example, by providing a
fourth ICourse value, CreateInstance<T> throws an exception, because there
isn’t a matching parameter for the overspecified parameter.

When compared to listing 15.4, there’s a big downside to listing 15.5. Listing 15.4 is
verified by the compiler. Any refactoring to the constructor would either allow that
code to stay working or fail with a compile error.

The opposite is true with listing 15.5. If the three ICourse constructor parameters
are rearranged, code will keep compiling, and ActivatorUtilities would even be
able to construct a new ThreeCourseMeal. But unless listing 15.5 is changed according
to that rearrangement, the courses are injected in an incorrect order, which will likely
cause the application to behave incorrectly. Unfortunately, no refactoring tool will sig-
nal that the registration must be changed too.

Even the related registrations of Autofac and Simple Injector (listings 13.7 and 14.9)
do a better job of preventing errors. Although neither listing is type-safe, because both
listings match on exact parameter names, a change to the ThreeCourseMeal would at
least cause an exception when the class is resolved. This is always better than failing
silently, which is what could happen in the case of listing 15.5.

Overriding Auto-Wiring by explicitly mapping parameters to components is a
universally applicable solution. Where you use named registrations with Autofac and
conditional registrations with Simple Injector, with MS.DI, you override parameters by
passing in manually resolved concrete types. This can be brittle if you have many types
to manage. A better solution is to design your own API to get rid of that ambiguity. It
often leads to a better overall design.

In the next section, you’ll see how to use the less ambiguous and more flexible
approach where you allow any number of courses in a meal. To this end, you must learn
how MS.DI deals with sequences.

15.4.2 Wiring sequences

In section 6.1.1, we discussed how Constructor Injection acts as a warning system
for Single Responsibility Principle violations. The lesson then was that instead of

 487Working with multiple components

viewing Constructor Over-injection as a weakness of the Constructor Injection pat-
tern, you should rather rejoice that it makes problematic design so obvious.

When it comes to DI Containers and ambiguity, we see a similar relationship. DI
Containers generally don’t deal with ambiguity in a graceful manner. Although you
can make a DI Container deal with it, it can seem awkward. This is often an indication
that you could improve the design of your code.

In this section, we’ll look at an example that demonstrates how you can refactor away
from ambiguity. It’ll also show how MS.DI deals with sequences.

rEfaCTOriNg TO a bETTEr COurSE by rEmOviNg ambiguiTy

In section 15.4.1, you saw how the ThreeCourseMeal and its inherent ambiguity forced
you to either abandon Auto-Wiring or make use of the rather verbose call to Activator
Utilities. A simple generalization moves toward an implementation of IMeal that takes
an arbitrary number of ICourse instances instead of exactly three, as was the case with
the ThreeCourseMeal class:

public Meal(IEnumerable<ICourse> courses)

Notice that, instead of requiring three distinct ICourse instances in the constructor,
the single dependency on an IEnumerable<ICourse> instance lets you provide any
number of courses to the Meal class — from zero to ... a lot! This solves the issue with
ambiguity, because there’s now only a single Dependency. In addition, it also improves
the API and implementation by providing a single, general-purpose class that can
model different types of meal: from a simple meal with a single course to an elaborate
12-course dinner.

In this section, we’ll look at how you can configure MS.DI to wire up Meal instances
with appropriate ICourse Dependencies. When we’re done, you should have a good
idea of the options available when you need to configure instances with sequences of
Dependencies.

auTO-wiriNg SEQuENCES

MS.DI understands sequences, so if you want to use all registered components of a
given service, Auto-Wiring just works. As an example, you can configure the IMeal
service and its courses like this:

services.AddTransient<ICourse, Rillettes>();
services.AddTransient<ICourse, CordonBleu>();
services.AddTransient<ICourse, MousseAuChocolat>();

services.AddTransient<IMeal, Meal>();

Notice that this is a completely standard mapping from Abstractions to concrete
types. MS.DI automatically understands the Meal constructor and determines that the
correct course of action is to resolve all ICourse components. When you resolve IMeal,
you get a Meal instance with the ICourse components Rillettes, CordonBleu, and
MousseAuChocolat.

488 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

MS.DI automatically handles sequences, and unless you specify otherwise, it does
what you’d expect it to do: it resolves a sequence of Dependencies to all registered
components of that type. Only when you need to explicitly pick only some components
from a larger set do you need to do more. Let’s see how you can do that.

piCkiNg ONly SOmE COmpONENTS frOm a largEr SET

MS.DI’s default strategy of injecting all components is often the correct policy, but as
figure 15.4 shows, there may be cases where you want to pick only some registered com-
ponents from the larger set of all registered components.

NOTE The need to inject a subset of a complete collection isn’t a common sce-
nario, but it does demonstrate how to solve some more-complex needs that you
might encounter.

When you previously let MS.DI Auto-Wire all configured instances, it corresponded
to the situation depicted on the right side of the figure. If you want to register a com-
ponent as shown on the left side, you must explicitly define which components should
be used. In order to achieve this, you can use the AddTransient method that accepts a
delegate. This time around, you’re dealing with the Meal constructor, which only takes
a single parameter.

On the left, you want to
explicitly select only certain
DEPENDENCIES from the
larger list of all registered
components.

This is different from the
situation on the right,
where you indiscriminately
want them all.

ent
rée

mainCourse

dessert

ICourse implementations

Rillettes

Crème brûlée

Lobster bisque

Meal Meal
Cordon bleu

Osso buco

Mousse au chocolat

Figure 15.4 Picking components from a larger set of all registered components

 489Working with multiple components

Listing 15.6 Injecting an ICourse subset into Meal

services.AddScoped<Rillettes>();
services.AddTransient<LobsterBisque>();
services.AddScoped<CordonBleu>();
services.AddScoped<OssoBuco>();
services.AddSingleton<MousseAuChocolat>();
services.AddTransient<CrèmeBrûlée>();

services.AddTransient<ICourse>(
 c => c.GetRequiredService<Rillettes>());
services.AddTransient<ICourse(
 c => c.GetRequiredService<LobsterBisque>());
services.AddTransient<ICourse>(
 c => c.GetRequiredService<CordonBleu>());
services.AddTransient<ICourse(
 c => c.GetRequiredService<OssoBuco>());
services.AddTransient<ICourse>(
 c => c.GetRequiredService<MousseAuChocolat>());
services.AddTransient<ICourse(
 c => c.GetRequiredService<CrèmeBrûlée>());

services.AddTransient<IMeal>(c = new Meal(
 new ICourse[]
 {
 c.GetRequiredService<Rillettes>(),
 c.GetRequiredService<CordonBleu>(),
 c.GetRequiredService<MousseAuChocolat>()
 }));

MS.DI natively understands sequences; unless you need to explicitly pick only some
components from all services of a given type, MS.DI automatically does the right thing.
Auto-Wiring works not only with single instances, but also for sequences, and the
container maps a sequence to all configured instances of the corresponding type. A
perhaps less intuitive use of having multiple instances of the same Abstraction is the
Decorators design pattern, which we’ll discuss next.

15.4.3 Wiring Decorators

In section 9.1.1, we discussed how the Decorator design pattern is useful when imple-
menting Cross-Cutting Concerns. By definition, Decorators introduce multiple
types of the same Abstraction. At the very least, you have two implementations of an
Abstraction: the Decorator itself and the decorated type. If you stack the Decorators,
you can have even more. This is another example of having multiple registrations of
the same service. Unlike the previous sections, these registrations aren’t conceptually
equal, but rather Dependencies of each other.

dECOraTiNg NON-gENEriC abSTraCTiONS

MS.DI has no built-in support for Decorators, and this is one of the areas where the
limitations of MS.DI can hinder productivity. Nonetheless, we’ll show how you can, to
some degree, work around these limitations.

Registers all courses by their concrete
type, instead of their interface. In this
case, multiple lIfestyles are used.

Registers all courses by their
ICourse interface, which
allows each to be resolved as
an IEnumerable<ICourse>.
You prevent torn lIfestyles
by registering delegates.

Resolves three specific courses
by their concrete type and injects
them into the Meal constructor

490 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

You can hack around this omission by, again, making use of the ActivatorUtil
ities class. The following example shows how to use this class to apply Breading to
VealCutlet:

services.AddTransient<IIngredient>(c =>
 ActivatorUtilities.CreateInstance<Breading>(
 c,
 ActivatorUtilities
 .CreateInstance<VealCutlet>(c)));

As you learned in chapter 9, you get veal cordon bleu when you slit open a pocket
in the veal cutlet and add ham, cheese, and garlic into the pocket before breading
the cutlet. The following example shows how to add a HamCheeseGarlic Decorator in
between VealCutlet and the Breading Decorator:

services.AddTransient<IIngredient>(c =>
 ActivatorUtilities.CreateInstance<Breading>(
 c,
 ActivatorUtilities
 .CreateInstance<HamCheeseGarlic>(
 c,
 ActivatorUtilities
 .CreateInstance<VealCutlet>(c))));

By making HamCheeseGarlic become a Dependency of Breading, and VealCutlet a
Dependency of HamCheeseGarlic, the HamCheeseGarlic Decorator becomes the mid-
dle class in the object graph. This results in an object graph equal to the following
Pure DI version:

new Breading(
 new HamCheeseGarlic(
 new VealCutlet()));

As you might guess, chaining Decorators with MS.DI is cumbersome and verbose. Let’s
add insult to injury by taking a look at what happens if you try to apply Decorators to
generic Abstractions.

dECOraTiNg gENEriC abSTraCTiONS

During the course of chapter 10, we defined multiple generic Decorators that could be
applied to any ICommandService<TCommand> implementation. In the remainder of this
chapter, we’ll set our ingredients and courses aside, and we’ll take a look at how to reg-
ister these generic Decorators using MS.DI. The following listing demonstrates how to
register all ICommandService<TCommand> implementations with the three Decorators
presented in section 10.3.

Registers a code block that calls
CreateInstance to construct a
Breading Decorator using Auto-Wiring

By supplying a VealCutlet instance to
the params array, injects Breading
with VealCutlet. Creates VealCutlet
using standard Auto-WIrIng.

Adds a new Decorator

VealCutlet is wrapped by HamCheeseGarlic,
which is wrapped by Breading.

 491Working with multiple components

Listing 15.7 Decorating generic auTO-rEgiSTErEd abSTraCTiONS

Assembly assembly = typeof(AdjustInventoryService).Assembly;

var mappings =
 from type in assembly.GetTypes()
 where !type.IsAbstract
 where !type.IsGenericType
 from i in type.GetInterfaces()
 where i.IsGenericType
 where i.GetGenericTypeDefinition()
 == typeof(ICommandService<>)
 select new { service = i, implementation = type };

foreach (var mapping in mappings)
{
 Type commandType =
 mapping.service.GetGenericArguments()[0];

 Type secureDecoratoryType =
 typeof(SecureCommandServiceDecorator<>)
 .MakeGenericType(commandType);
 Type transactionDecoratorType =
 typeof(TransactionCommandServiceDecorator<>)
 .MakeGenericType(commandType);
 Type auditingDecoratorType =
 typeof(AuditingCommandServiceDecorator<>)
 .MakeGenericType(commandType);

 services.AddTransient(mapping.service, c =>
 ActivatorUtilities.CreateInstance(
 c,
 secureDecoratoryType,
 ActivatorUtilities.CreateInstance(
 c,
 transactionDecoratorType,
 ActivatorUtilities.CreateInstance(
 c,
 auditingDecoratorType,
 ActivatorUtilities.CreateInstance(
 c,
 mapping.implementation)))));
}

Scans the given assembly for non-generic
ICommandService<TCommand> implementations

Extracts the concrete TCommand type from the
closed ICommandService<TCommand> AbstrActIon

Uses the extracted
commandType to build closed
generic implementations of
the Decorators that need to
be applied

Adds a delegate registration for the closed ICommandService<TCommand>
AbstrActIon. This delegate calls ActivatorUtilities’s CreateInstance method

multiple times to Auto-WIre all Decorators and the scanned implementation
as innermost component.

492 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

The result of the configuration of listing 15.7 is fig-
ure 15.5, which we discussed previously in section
10.3.4.

In case you think that listing 15.7 looks rather
complicated, unfortunately, this is just the begin-
ning. That listing presents many shortcomings,
some of which are difficult to work around. These
include the following:

¡	Creation of closed-generic Decorator types
can become difficult when either of the
generic type arguments of the Decorator
don’t exactly match that of the Abstraction.4

¡	It’s impossible to add open-generic implemen-
tations that get Decorators applied without being forced to explicitly make the regis-
tration for each closed-generic Abstraction.

¡	Applying Decorators conditionally, for instance, based on generic type arguments,
gets complicated.

¡	With an alternative Lifestyle, it becomes complex to prevent Torn Lifestyles in
case an implementation implements multiple interfaces.

¡	It’s hard to differentiate Lifestyles; all Decorators in the chain get the same
Lifestyle.

You could try working through these limitations one-by-one and suggest improvements
to listing 15.7, but you’d effectively be developing a new DI Container on top of
MS.DI, which is something we discourage. This wouldn’t be productive. Good alterna-
tives, such as Autofac and Simple Injector, are a better pick for this scenario.5

Although consumers that rely on sequences of Dependencies can be the most intu-
itive use of multiple instances of the same Abstraction, Decorators are another good
example. But there’s a third and perhaps a bit surprising case where multiple instances
come into play, which is the Composite design pattern.

15.4.4 Wiring Composites

During the course of this book, we discussed the Composite design pattern on sev-
eral occasions. In section 6.1.2, for instance, you created a CompositeNotification
Service (listing 6.4) that both implemented INotificationService and wrapped a
sequence of INotificationService implementations.

Security Decorator

Transaction Decorator

Auditing Decorator

Actual
command

service

Figure 15.5 Enriching a real command
service with transaction, auditing, and
security aspects

4 As an example, imagine an CachingDecorator<TRequest, TResponse> that implements an
IHandler<TRequest, ReadOnlyCollection<TResponse>>.

5 As listings 13.10 and 14.11 demonstrated, both Autofac and Simple Injector allowed this scenario to be
completed in a few lines of code.

 493Working with multiple components

wiriNg NON-gENEriC COmpOSiTES

Let’s take a look at how you can register Composites, such as the CompositeNotification—
Service of chapter 6 in MS.DI. The following listing shows this class again.

Listing 15.8 The CompositeNotificationService Composite from chapter 6

public class CompositeNotificationService : INotificationService
{
 private readonly IEnumerable<INotificationService> services;

 public CompositeNotificationService(
 IEnumerable<INotificationService> services)
 {
 this.services = services;
 }

 public void OrderApproved(Order order)
 {
 foreach (INotificationService service in this.services)
 {
 service.OrderApproved(order);
 }
 }
}

Registering a Composite requires it to be added as a default registration, while inject-
ing it with a sequence of resolved instances:

services.AddTransient<OrderApprovedReceiptSender>();
services.AddTransient<AccountingNotifier>();
services.AddTransient<OrderFulfillment>();

services.AddTransient<INotificationService>(c =>
 new CompositeNotificationService(
 new INotificationService[]
 {
 c.GetRequiredService<OrderApprovedReceiptSender>(),
 c.GetRequiredService<AccountingNotifier>(),
 c.GetRequiredService<OrderFulfillment>(),
 }));

In this example, three INotificationService implementations are registered by
their concrete type using the Auto-Wiring API of MS.DI. The CompositeNotifica
tionService, on the other hand, is registered using a delegate. Inside the delegate,
the Composite is newed up manually and injected with an array of INotification
Service instances. By specifying the concrete types, the previously made registrations
are resolved.

Because the number of notification services will likely grow over time, you can reduce
the burden on your Composition Root by applying Auto-Registration. Because
MS.DI lacks any features in this respect, as we discussed previously, you need to scan the
assemblies yourself.

494 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

Listing 15.9 Registering CompositeNotificationService

Assembly assembly = typeof(OrderFulfillment).Assembly;

Type[] types = (
 from type in assembly.GetTypes()
 where !type.IsAbstract
 where typeof(INotificationService).IsAssignableFrom(type)
 select type)
 .ToArray();

foreach (Type type in types)
{
 services.AddTransient(type);
}

services.AddTransient<INotificationService>(c =>
 new CompositeNotificationService(
 types.Select(t =>
 (INotificationService)c.GetRequiredService(t))
 .ToArray()));

Compared to the Decorator example of listing 15.7, listing 15.9 looks reasonably
simple. The assembly is scanned for INotificationService implementations, and
each found type is appended to the services collection. The array of types is used
by the CompositeNotificationService registration. The Composite is injected with
a sequence of INotificationService instances that are resolved by iterating through
the array of types.

NOTE In listing 15.9, the resulting types are materialized into an array. This
prevents the Select statement inside the Composite registration from iterat-
ing over all the types of OrderFulfillment’s assembly over and over again on
each resolve, which would easily drain your application’s performance if the
number of types in the assembly is large.

You might be getting used to the level of complexity and verbosity that you need when
dealing with MS.DI, but unfortunately, we’re not done yet. Our LINQ query will regis-
ter any non-generic implementation that implements INotificationService. When
you try to run the previous code, depending on which assembly your Composite is
located, MS.DI might throw the following exception:

Exception of type 'System.StackOverflowException' was thrown.

Ouch! Stack overflow exceptions are really painful, because they abort the running
process and are hard to debug. Besides, this generic exception gives no detailed infor-
mation about what caused the stack overflow. Instead, you want MS.DI to throw a
descriptive exception explaining the cycle, as both Autofac and Simple Injector do.

Materializes the results of
the query into an array

 495Working with multiple components

NOTE While writing this chapter, we found that exception messages thrown by
MS.DI are often generic or confusing, which makes troubleshooting problems
harder than with most of the other popular DI Containers. Most mature DI
Containers have pretty clear exception messages.

This stack overflow exception is caused by a cyclic Dependency in Composite
NotificationService. The Composite is picked up by the LINQ query and resolved
as part of the sequence. This results in the Composite being dependent on itself. This
is an object graph that’s impossible for MS.DI, or any DI Container for that matter,
to construct. CompositeNotificationService became a part of the sequence because
our LINQ query found all non-generic INotificationService implementations,
which includes the Composite.

There are multiple ways around this. The simplest solution is to move the Compos-
ite to a different assembly; for instance, the assembly containing the Composition
Root. This prevents the LINQ query from selecting the type. Another option is to filter
CompositeNotificationService out of the list:

Type[] types = (
 from type in assembly.GetTypes()
 where !type.IsAbstract
 where typeof(INotificationService)
 .IsAssignableFrom(type)
 where type != typeof(CompositeNotificationService)
 select type)
 .ToArray();

Composite classes, however, aren’t the only classes that might require removal. You’ll
have to do the same for any Decorator. This isn’t particularly difficult, but because
there typically will be more Decorator implementations, you might be better off que-
rying the type information to find out whether the type represents a Decorator or not.
Here’s how you can filter out Decorators as well:

Type[] types = (
 from type in assembly.GetTypes()
 where !type.IsAbstract
 where typeof(INotificationService).IsAssignableFrom(type)
 where type != typeof(CompositeNotificationService)
 where type => !IsDecoratorFor<INotificationService>(type)
 select type)
 .ToArray();

And the following code shows the IsDecoratorFor method:

private static bool IsDecoratorFor<T>(Type type)
{
 return typeof(T).IsAssignableFrom(type) &&
 type.GetConstructors()[0].GetParameters()
 .Any(p => p.ParameterType == typeof(T));
}

Filters the Composite

496 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

The IsDecoratorFor method expects a type to have only a single constructor. A type is
considered to be a Decorator when it both implements the given T Abstraction and
when its constructor also requires a T.

wiriNg gENEriC COmpOSiTES

In section 15.4.3, you saw how to register generic Decorators. In this section, we’ll take
a look at how you can register Composites for generic Abstractions.

In section 6.1.3, you specified the CompositeEventHandler<TEvent> class (listing
6.12) as a Composite implementation over a sequence of IEventHandler<TEvent>
implementations. Let’s see if you can register the Composite with its wrapped event
handler implementations. To pull this off in MS.DI, you’ll have to get creative, because
you have to work around a few unfortunate limitations.

We found that the easiest way to hide event handler implementations behind a Com-
posite is by not registering those implementations at all, and instead moving the con-
struction of the handlers to the Composite. This isn’t pretty, but it gets the job done. In
order to hide handlers behind a Composite, you have to rewrite the CompositeEvent
Handler<TEvent> implementation of listing 6.12 to that in listing 15.10.

Listing 15.10 MS.DI–compatible CompositeEventHandler<TEvent> implementation

public class CompositeSettings
{
 public Type[] AllHandlerTypes { get; set; }
}

public class CompositeEventHandler<TEvent>
 : IEventHandler<TEvent>
{
 private readonly IServiceProvider provider;
 private readonly CompositeSettings settings;

 public CompositeEventHandler(
 IServiceProvider provider,
 CompositeSettings settings)
 {
 this.provider = provider;
 this.settings = settings;
 }

 public void Handle(TEvent e)
 {
 foreach (var handler in this.GetHandlers())
 {
 handler.Handle(e);
 }
 }

Parameter Object that allows
injecting the complete list of event
handlers into the Composite

The Composite depends on both the Parameter
Object and IServiceProvider. IServiceProvider
allows it to resolve handlers.

Iterates through the list of handlers
and invokes them one by one

 497Working with multiple components

 IEnumerable<IEventHandler<TEvent>> GetHandlers()
 {
 return
 from type in this.settings.AllHandlerTypes
 where typeof(IEventHandler<TEvent>)
 .IsAssignableFrom(type)
 select (IEventHandler<TEvent>)
 ActivatorUtilities.CreateInstance(
 this.provider, type);
 }
}

Compared to the original implementation of listing 6.12, this Composite implementa-
tion is more complex. It also takes a hard dependency on MS.DI itself by making use
of its IServiceProvider and ActivatorUtilities. In view of this dependency, this
Composite certainly belongs inside the Composition Root, because the rest of the
application should stay oblivious to the use of a DI Container.

Instead of depending on an IEventHandler<TEvent> sequence, the Composite
depends on a Parameter Object that contains all handler types, which includes types
that can’t be cast to the specific closed-generic IEventHandler<TEvent> of the Com-
posite. Because of this, the Composite takes on part of the job that the DI Container
is supposed to do. It filters out all incompatible types by calling typeof(IEvent
Handler<TEvent>).IsAssignableFrom(type). This leaves you with a registration of
the Composite and the scanning of all event handlers.

Listing 15.11 Registering CompositeEventHandler<TEvent>

var handlerTypes =
 from type in assembly.GetTypes()
 where !type.IsAbstract
 where !type.IsGenericType
 let serviceTypes = type.GetInterfaces()
 .Where(i => i.IsGenericType &&
 i.GetGenericTypeDefinition()
 == typeof(IEventHandler<>))
 where serviceTypes.Any()
 select type;

services.AddSingleton(new CompositeSettings
{
 AllHandlerTypes = handlerTypes.ToArray()
});

services.AddTransient(
 typeof(IEventHandler<>),
 typeof(CompositeEventHandler<>));

Selects only the types that implement the given interface. In case you’re
calling a Composite EventHandler<OrderApproved> handler, only those
types that implement IEventHandler<OrderApproved> will be selected.

Auto-WIres the selected type

Scans the assembly for all concrete,
non-generic classes that implement
IEventHandler<TEvent>

Registers the Parameter Object
that allows passing the list of
types into the Composite

Registers the Composite

498 ChapTEr 15 The Microsoft.Extensions.DependencyInjection DI Container

Together with the fat Composite implementation, this last listing effectively imple-
ments the Composite pattern in combination with MS.DI.

TIP In case you want to apply Decorators to individual event handlers, the
trick is to mix the code of listing 15.7 into the GetHandlers method of listing
15.10. In other words, the Composite becomes responsible for the creation of
the object graph, including the Decorators.

Even though we’ve managed to work around some of the limitations of MS.DI, you
might be less lucky in other cases. For instance, you might run out of luck if the
sequence of elements consists of both non-generic and generic implementations,
when generic implementations contain generic type constraints or when Decorators
need to be conditional.

We do admit that this is an unpleasant solution. We preferred writing less code
to show you how to apply MS.DI to the patterns presented in this book, but not all
is peaches and cream, unfortunately. That’s why, in our day-to-day development jobs,
we prefer Pure DI or one of the mature DI Containers, such as Autofac and Simple
Injector.

No matter which DI Container you select, or even if you prefer Pure DI, we hope
that this book has conveyed one important point — DI doesn’t rely on a particular
technology, such as a particular DI Container. An application can, and should, be
designed using the DI-friendly patterns and practices presented in this book. When you
succeed in doing that, selection of a DI Container becomes of less importance. A DI
Container is a tool that composes your application, but ideally, you should be able to
replace one container with another without rewriting any part of your application other
than the Composition Root.

Summary
¡	The Microsoft.Extensions.DependencyInjection (MS.DI) DI Container has a

limited set of features. A comprehensive API that addresses Auto-Registration,
Decorators, and Composites is missing. This makes it less suited for development
of applications that are designed around the principles and patterns presented
in this book.

¡	MS.DI enforces a strict separation of concerns between configuring and consum-
ing a container. You configure components using a ServiceCollection instance,
but a ServiceCollection can’t resolve components. When you’re done config-
uring a ServiceCollection, you use it to build a ServiceProvider that you can
use to resolve components.

¡	With MS.DI, resolving from the root container directly is a bad practice. This
will easily lead to memory leaks or concurrency bugs. Instead, you should always
resolve from an IServiceScope.

¡	MS.DI supports the three standard Lifestyles: Transient, Singleton, and
Scoped.

499

glossary

Here are brief definitions of selected terms, patterns, and other concepts discussed
in this book. Each definition includes a reference to the chapter or section where the
term is discussed in greater detail.

¡	Abstraction—A unifying term that encompasses both interfaces and (abstract)
base classes. See chapter 1.

¡	Ambient Context—A DI anti-pattern that supplies application code outside the
Composition Root with global access to a Volatile Dependency or its behavior
by the use of static class members. See section 5.3.

¡	Aspect-Oriented Programming (AOP)—An approach to software that aims to
reduce boilerplate code required for implementing Cross-Cutting Concerns
and other coding patterns. It does this by implementing such patterns in a single
place and applying them to a code base either declaratively or based on conven-
tion, without modifying the code itself. See chapter 10.

¡	Auto-Registration—The ability to automatically register components based
on a certain convention in a DI Container by scanning one or more assemblies
for implementations of desired Abstractions. See section 12.2.3.

¡	Auto-Wiring—The ability to automatically compose an object graph from maps
between Abstractions and concrete types by making use of type information sup-
plied by the compiler and the Common Language Runtime. See section 12.1.2.

500 glOSSary

¡	Captive Dependency—A Dependency that’s inadvertently kept alive for too
long, because its consumer was given a lifetime that exceeds the Dependency’s
expected lifetime. See section 8.4.1.

¡	Command-Query Separation—The idea that each method should either
return a result, but not change the observable state of the system, or change the
state, but not produce any value. See section 10.3.3.

¡	Composer—A unifying term that encompasses any object or method that com-
poses Dependencies. See chapter 8.

¡	Composition Root—A central place in an application where the entire applica-
tion is composed from its constituent modules. See section 4.1.

¡	Configuration as Code—Allows a DI Container’s configuration to be stored
as source code. Each mapping between an Abstraction and a particular imple-
mentation is expressed explicitly and directly in code. See section 12.2.2.

¡	Constrained Construction—A DI anti-pattern that forces all implementa-
tions of a certain Abstraction to require their constructors to have an identical
signature. See section 5.4.

¡	Constructor Injection—A DI pattern where Dependencies are statically
defined as a list of parameters to the class’s constructor. See section 4.2.

¡	Control Freak—A DI anti-pattern where you depend on a Volatile Depen-
dency in any place other than a Composition Root. It’s the opposite of Inver-
sion of Control. See section 5.1.

¡	Cross-Cutting Concern—An aspect of a program that affects a larger part
of the application. It’s often a non-functional requirement. Typical examples
include logging, auditing, access control, and validation. See chapter 9.

¡	Dependency—In principle, any reference that a module holds to another mod-
ule. When a module references another module, it depends on it. Informally,
the term Dependency is often used instead of the more formal Volatile Depen-
dency. See chapter 1.

¡	Dependency Inversion Principle—This principle states that higher-level mod-
ules in your applications shouldn’t depend on lower-level modules; instead, both
types should depend on Abstractions. The D in SOLID. See section 3.1.2. See
also SOLID.

¡	Dependency Lifetime—See Object Lifetime.
¡	DI Container—A software library that provides DI functionality and automates

many of the tasks involved in Object Composition, Interception, and Life-
time Management. It’s an engine that resolves and manages object graphs. See
chapter 12.

¡	Entity—A domain object with an inherent, long-term identity. See section 3.1.2.
¡	Foreign Default—A default implementation of a Volatile Dependency that’s

defined in a different module than the consumer. See section 5.1.3.

 501glOSSary

¡	Interception—The ability to intercept calls between two collaborating compo-
nents in such a way that you can enrich or change the behavior of the Dependency
without the need to change the two collaborators themselves. See chapter 9.

¡	Interface Segregation Principle—This principles states that no client should
be forced to depend on methods it doesn’t use. The I in SOLID. See section
6.2.1. See also SOLID.

¡	Inversion of Control—This concept lets a framework control the lifetime of
objects instead of directly controlling them. See chapter 1.

¡	Leaky Abstraction—Even though an Abstraction is defined, the implemen-
tation details show through and thus lock the Abstraction to the implementa-
tion. See section 6.2.1.

¡	Lifestyle—A formalized way of describing the intended lifetime of a Depen-
dency. See chapter 8.

¡	Lifetime Management—See Object Lifetime.
¡	Liskov Substitution Principle—A software design principle that states that a

consumer should be able to use any implementation of an Abstraction without
changing the correctness of the system. The L in SOLID. See section 10.2.3. See
also SOLID.

¡	Local Default—A default implementation of an Abstraction that’s defined
in the same assembly as the consumer. See section 4.2.2.

¡	Method Injection—A DI pattern where Dependencies are injected into the
consumer as method parameters. See section 4.3.

¡	Object Composition—The concept of composing applications from disparate
modules. See chapter 7.

¡	Object Lifetime—Generally speaking, this term covers how any object is cre-
ated and deallocated. In DI context, this term covers the lifetime of Dependen-
cies. See chapter 8.

¡	Open/Closed Principle—This principle states that classes should be open for
extensibility, but closed for modification. The O in SOLID. See section 4.4.2. See
also SOLID.

¡	Property Injection—A DI pattern where Dependencies are injected into the
consumer via writable properties. See section 4.4.

¡	Pure DI—The practice of applying DI without a DI Container. See part 3.
¡	Scoped Lifestyle—A Lifestyle where there’s a single instance within a well-

defined scope or request, and instances aren’t shared across scopes. See section
8.3.3.

¡	Seam—A place in application code where Abstractions are used to separate
modules. See chapter 1.

¡	Service Locator—A DI anti-pattern that supplies application components
outside the Composition Root with access to an unbounded set of Volatile
Dependencies. See section 5.2.

502 glOSSary

¡	Setter Injection—See Property Injection.
¡	Single Responsibility Principle—This principle states that a class should have

only a single responsibility. The S in SOLID. See section 2.1.3. See also SOLID.
¡	Singleton Lifestyle—A Lifestyle where a single instance is reused for all con-

sumers within the scope of a single Composer. See section 8.3.1.
¡	SOLID—An acronym that stands for five fundamental design principles: Single

Responsibility Principle, Open/Closed Principle, Liskov Substitution
Principle, Interface Segregation Principle, and Dependency Inversion
Principle. See chapter 10.

¡	Stable Dependency—A Dependency that can be referenced without any detri-
mental effects. The opposite of a Volatile Dependency. See section 1.3.1.

¡	Temporal Coupling—Code smell that occurs when there’s an implicit relation-
ship between two or more members of a class, requiring clients to invoke one
member before the other. See section 4.3.2.

¡	Testability—The degree to which an application is susceptible to automated
unit tests. See chapter 1.

¡	Transient Lifestyle—A Lifestyle where all consumers get their own instance
of a Dependency. See section 8.3.2.

¡	Volatile Dependency—A Dependency that involves side effects that can be
undesirable at times. This may include modules that don’t yet exist or that have
adverse requirements on its runtime environment. These are the Dependencies
that are addressed by DI. See section 1.3.2.

503

resources
In print

¡	Boike, David. Learning NServiceBus, 2nd Ed. (Packt Publishing, 2015)
¡	Brown, William J., et al. AntiPatterns: Refactoring Software, Architectures, and Projects

in Crisis (Wiley Computer Publishing, 1998)
¡	Chatterjee, Ayan. Building Apps for the Universal Windows Platform (Apress, 2017)
¡	Cwalina, Krzysztof and Brad Abrams, Framework Design Guidelines: Conventions,

Idioms, and Patterns for Reusable .NET Libraries, 2nd Ed. (Addison-Wesley, 2009)
¡	Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software

(Addison-Wesley, 2004)
¡	Feathers, Michael C. Working Effectively with Legacy Code (Prentice Hall, 2004)
¡	Fowler, Martin, et al. Refactoring: Improving the Design of Existing Code

(Addison-Wesley, 1999)
¡	Fowler, Martin. Patterns of Enterprise Application Architecture (Addison-Wesley,

2002)
¡	Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software

(Addison-Wesley, 1994)
¡	Groves, Matthew D. AOP in .NET (Manning, 2013)
¡	Howard, Michael and David LeBlanc. Writing Secure Code, 2nd Ed. (Microsoft

Press, 2003)
¡	Hunt, Andy and Dave Thomas. The Pragmatic Programmer (Addison-Wesley, 2000)
¡	Lock, Andrew. ASP.NET Core in Action (Manning, 2018)
¡	Meyer, Bertrand. Object-Oriented Software Construction (ISE Inc., 1988)

504 rESOurCES

¡	Martin, Robert C., et al. Pattern Languages of Program Design 3 (Addison-Wesley,
1998)

¡	Martin, Robert C. Agile Software Development, Principles, Patterns, and Practices
(Prentice Hall, 2003)

¡	Martin, Robert C. Clean Code (Prentice Hall, 2009)
¡	Meszaros, Gerard. xUnit Test Patterns: Refactoring Test Code (Addison-Wesley, 2007)
¡	Nygard, Michael T. Release It! Design and Deploy Production-Ready Software (Prag-

matic Bookshelf, 2007)
¡	Osherove, Roy. The Art of Unit Testing, 2nd Ed. (Manning, 2013)
¡	Smith, Jon. Entity Framework Core in Action (Manning, 2018)

Online

¡	Atwood, Jeff. “The problem with logging” (2008), https://blog.codinghorror
.com/the-problem-with-logging/

¡	Deursen van, Steven. “Meanwhile, on the query side of my architecture” (2011),
https://www.cuttingedge.it/blogs/steven/pivot/entry.php?id=92

¡	Deursen van, Steven, and Peter Parker. “What’s wrong with the ASP.NET Core DI
abstraction?” (2016), https://simpleinjector.org/blog/2016/06/

¡	Deursen van, Steven, et al. “Implementing Row based security” (2014), https://
github.com/dotnetjunkie/solidservices/issues/4

¡	Deursen van, Steven, et al. “Logger wrapper best practice” (2011), https://
stackoverflow.com/questions/5646820/logger-wrapper-best-practice

¡	Fowler, Martin. “Domain Event” (2005), https://martinfowler.com/eaaDev/
DomainEvent.html

¡	Fowler, Martin. “Event Sourcing” (2005), https://martinfowler.com/eaaDev/
EventSourcing.html

¡	Fowler, Martin. “Introduce Parameter Object” (1999), https://refactoring.com/
catalog/introduceParameterObject.html

¡	Fowler, Martin. “Inversion of Control Containers and the Dependency Injection
pattern” (2004), https://martinfowler.com/articles/injection.html

¡	Fowler, Martin. “InversionOfControl” (2005), https://martinfowler.com/bliki/
InversionOfControl.html

¡	Gorman, Jason. “Reused Abstractions Principle (RAP)” (2010), http://www
.codemanship.co.uk/parlezuml/blog/?postid=934

¡	Heintz, John. “The Outbox pattern” (2014), http://gistlabs.com/2014/05/
the-outbox/

¡	Lippert, Eric. “Immutability in C# Part One: Kinds of Immutability” (2007),
https://blogs.msdn.microsoft.com/ericlippert/2007/11/13/immutability-
in-c-part-one-kinds-of-immutability/

 505rESOurCES

¡	Munsch, John, et al. “How to explain Dependency Injection to a 5-year old”
(2009), https://stackoverflow.com/questions/1638919/

¡	Palermo, Jeffrey. “Constructor over-injection smell—follow up” (2010), https://
jeffreypalermo.com/2010/01/constructor-over-injection-smell-ndash-follow-up/

¡	Seemann, Mark. “Interfaces are not abstractions” (2010), https://blog.ploeh
.dk/2010/12/02/Interfacesarenotabstractions/

¡	Seemann, Mark. “Passive attributes” (2014), https://blog.ploeh.dk/2014/
06/13/passive-attributes/

¡	Seemann, Mark. “Pure DI” (2014), https://blog.ploeh.dk/2014/06/10/pure-di/
¡	Seemann, Mark. “Service Locator 2 Released” (2007), https://blogs.msdn

.microsoft.com/ploeh/2007/03/15/service-locator-2-released/
¡	Seemann, Mark. “The Register Resolve Release pattern” (2010), https://blog

.ploeh.dk/2010/09/29/TheRegisterResolveReleasepattern/
¡	Smith, Josh. “Patterns: WPF Apps With The Model-View-ViewModel Design Pat-

tern” (2009), https://msdn.microsoft.com/en-us/magazine/dd419663.aspx

Other resources

¡	Autofac, https://autofac.org
¡	Common Service Locator, https://github.com/unitycontainer/commonservicelocator
¡	Common.Logging, https://github.com/net-commons/common-logging
¡	JSON.NET, https://www.newtonsoft.com/json
¡	log4net, https://logging.apache.org/log4net/
¡	Microsoft.Extensions.DependencyInjection, https://github.com/aspnet/

DependencyInjection
¡	PostSharp, https://www.postsharp.net/
¡	Simple Injector, https://simpleinjector.org

507

index
A
abstract classes vs. interfaces 68–69
Abstract Factory pattern 7, 130–131, 191–194

abusing 180–194
to overcome lifetime problems 180–187
to select Dependencies based on runtime

data 187–194
Abstractions 4, 65, 67

decorating 457–458
generic

applying transaction handling using 326–327
Auto-Registration of 436–437, 475–476
Auto-Registration using

AsClosedTypesOf 401–402
decorating 458–459, 490–492
decorating with

RegisterGenericDecorator 421–422
fixing LSP using 324–326

mapping to concrete types 396–397, 430–431,
469–470

non-generic
decorating 489–490
decorating with RegisterDecorator 420–421

abstract keyword 69
ActionDescriptor property 397, 431
Activator class 156
Activator.CreateInstance 156
ActivatorUtilities class 485–486, 487, 490, 497
Adapter design pattern 12, 72
AddProductCommand property 224
AddProduct method 224

AddScoped method 378, 473, 479
AddSingleton method 231, 378, 473, 479
AddSingleton<T>() method 175
AddTransient method 378, 472, 479, 482
AdjustInventory command 321, 324
AdjustInventoryService 323, 335, 402, 436, 475
AdjustInventoryViewModel 321
Administrator role 331
ADO.NET Data Services 46
AlertUser method 298
Ambient Context anti-pattern 353

accessing time through 147–148
logging through 149–153
negative effects of 150–152
refactoring toward DI 152–153

ambient scopes 443–444
ambiguity, removing

refactoring by 417–418, 455, 487
using ActivatorUtilities 485–486
using code blocks 484–485
using conditional registrations 453–454

AOP (Aspect-Oriented Programming) 31, 302
overview of 302–305
SOLID as driver for 308–337

adding Cross-Cutting Concerns 327–336
analysis of IProductService from perspective of

SOLID 311–313
applying SOLID principles to improve

design 314–327
implementing product-related features using

IProductService 309–310

508 index

AOP (Aspect-Oriented Programming) (continued)
SOLID principles 305–308

DIP (Dependency Inversion Principle) 308
Interception and 308
ISP (Interface Segregation Principle) 307–308
LSP (Liskov Substitution Principle) 307
OCP (Open/Closed Principle) 306–307
SRP (Single Responsibility Principle) 306

tool-based
compile-time weaving 348–355
dynamic Interception 342–348

APIs (application programming interfaces),
registering 409–412, 447–451, 480–483

configuring primitive Dependencies 409–411,
448–449, 480–481

extracting primitive Dependencies to Parameter
Objects 449–450, 481

registering objects with code blocks 411–412,
450–451, 482–483

App class 227
ApplyDiscountFor method 104, 108
Apply method 108
AsClosedTypesOf 401–402
As method 397, 414
aspect attributes 332, 350
ASP.NET Core framework

IUserContext Adapter specific to 71–73
MVC applications, composing 228–234

constructing custom middleware components
with Pure DI 233–234

creating custom controller activators 230–232
using custom controller activators in 230–231

ASP.NET Core web application 87
AspNetUserContextAdapter class 73, 158, 160,

197, 205, 244, 260, 367, 370, 375
ASP.NET Web Forms 98, 213
Assert.Equal method 24
Assert.Fail method 312
asynchronous application models 276–278
async keyword 233
AsyncScopedLifestyle 444
attribute parameter 111
auditing 288

implementing aspects 328–331
implementing audit trail 203
implementing using Decorators 287–290

composing
AuditingUserRepositoryDecorator 290

for user repository 288–289

AuditingCommand-
ServiceDecorator<TCommand> 330

AuditingUserRepositoryDecorator class 289–290,
306, 307, 327

authorization 334
Autofac container 380

configuring ContainerBuilder 398–404
Lifetime Management 404–409

configuring instance scopes 405–406
releasing components 406–409

overview of 394–404
registering difficult APIs 409–412

configuring primitive Dependencies 409–411
registering objects with code blocks 411–412

resolving objects 395–398
working with multiple components 412–425

selecting among multiple candidates 413–417
wiring Composites 422–425
wiring Decorators 420–422
wiring sequences 417–420

Autofac.Core.KeyedService 425
Auto-Registration 361, 376, 379, 383, 474

configuring containers with 434–436
configuring ServiceCollection with 473–475
of generic Abstractions 401–402, 436–437,

475–476
to configure ContainerBuilder 400–401
to configure DI Containers by convention

379–385
AutoWireContainer 366, 371
Auto-Wiring 363, 370, 410, 413, 415, 417, 430, 453,

489
DI Containers that support 364–371
sequences 418, 455, 487–488

await keyword 233
Azure 18, 46
AzureProductRepository class 132
Azure Table data access layer 46
Azure Table Service 76

B
BCL (Base Class Library) 17, 26, 44, 65
BeginLifetimeScope method 407
BeginScope method 442
big object graphs 98
Binding markup extension 225
Bitmap 108

 509index

BuildServiceProvider 469
bus factor 386

C
caching 291
CalculateRoute 191
Captive Dependencies 110, 266–269, 446–447
Castle Dynamic Proxy 344–346

applying Interceptor inside Composition Root
using Pure DI 345–346

implementing Circuit Breaker Interceptor
344–345

Castle.DynamicProxy.IInterceptor interface 344
Castle.DynamicProxy.IInvocation 347
Chain of Responsibility pattern 287
CircuitBreakerAttribute 353
CircuitBreaker class 295
CircuitBreakerInterceptor 347

applying inside Composition Root using Pure
DI 345–346

implementing 344–345
CircuitBreakerInterceptor 347
Circuit Breaker pattern 293–294

creating for IProductRepository 294–295
implementations of 295–297
intercepting with 292–297

CircuitBreakerProductRepositoryDecorator
class 294, 296, 303, 308, 342

client applications 7
Closed state 295
CLR (Common Language Runtime) 57, 348, 363
code blocks

registering objects with 411–412, 450–451,
482–483

removing ambiguity with 484–485
code cohesion 40
code smells 118, 127, 164

abusing Abstract Factory 180–194
to overcome lifetime problems 180–187
to select Dependencies based on runtime

data 187–194
fixing Dependency cycles 194–206

caused by SRP violations 195–198
common strategies for 204
refactoring from SRP violations to

resolve 200–204
with Property Injection 204–206

large number of Dependencies 190
Leaky Abstraction 182–183

cohesion 40, 306
collaborators 15
Collection.Create method 457
Collection.Register method 434, 440
Command-Query Separation (CQS) 315
commands 315
CommerceContext class 38, 48, 50, 70, 74, 251,

290, 367
CommerceContext. DbContext 203
CommerceControllerActivator class 90, 232, 244,

252, 257
Commerce.Web assembly 375
Common Language Runtime (CLR) 57, 348, 363
Common Service Locator (CSL) 139
compile time

coupling caused by compile-time weaving
354–355

loss of support with dynamic Interception 347
compile-time support 347
compile-time weaving 348–355

analysis of 351–355
applying transaction aspect using 349–351
aspects are DI-unfriendly 352–354
causes coupling at compile time 354–355
unsuitable for use on Volatile Dependencies 355

component elements 404
ComponentNotRegisteredException 396
components

in Autofac, multiple
selecting among multiple candidates 413–417
wiring Composites 422–425
wiring Decorators 420–422
wiring sequences 417–420

in MS.DI, multiple 483–498
selecting among multiple candidates 483–486
wiring Composites 492–498
wiring Decorators 489–492
wiring sequences 486–489

in Simple Injector, multiple 451–464
selecting among multiple candidates 452–454
sequences are streams 462–464
wiring Composites 459–462
wiring Decorators 457–459
wiring sequences 454–457

interaction between 74–75

510 index

components (continued)
named 416–417
releasing 406–409, 440–443, 477–480
selecting from larger set 418–420, 455–457,

488–489
composability

evaluating 45–47
building new data access layers 46
building new UIs 45–46

missing, analysis of 47–50
data access interface analysis 48–50
dependency graph analysis 47–48

Composer class 242, 264
Composite design pattern 12, 170
CompositeEventHandler<TEvent> class 424, 461,

496
CompositeLogger 275
CompositeNotificationService 172, 177, 422–423,

459, 492–493
Composite pattern

generic, wiring 424–425, 461–462, 496–498
non-generic, wiring 422–424, 459–461, 493–496
wiring 422–425, 459–462, 492–498

composite wrapping 177
Composition Root pattern 60, 68, 85–94

applying Interceptor inside 345–346
composing applications in 73–74
DI Containers in 88–89
explosion of dependencies with 92–94
implementing in UWP applications 226–228
implementing using Pure DI 89–91
of UpdateCurrency program 215–216
overview of 87–88

concrete classes 69
Concrete Factory 130
concrete types 396–397, 430–431, 469–470
concurrency bugs, by tying instances to lifetime of

threads 275–278
asynchronous application models cause multi-

threading issues 276–278
thread lifetime is often unclear 276

conditional registrations 453–454
configuration

ContainerBuilder 398–404
Auto-Registration of generic Abstractions using

AsClosedTypesOf 401–402
using Auto-Registration 400–401
using Configuration as Code 398–400
using configuration files 403–404

containers 432–438
Auto-Registration of generic

Abstractions 436–437
using Auto-Registration 434–436
using Configuration as Code 433–434
using configuration files 437–438

DI Containers 372–385
by convention using Auto-Registration

379–385
mixing and matching approaches to 385
using Configuration as Code 377–379
using configuration files 373–376

instance scopes 405–406
configuration files 406
with code 405–406

Lifestyles 439–440, 477
multiple implementations of same service

413–414, 452–453, 484
primitive Dependencies 409–411, 448–449,

480–481
ServiceCollection 471–476

Auto-Registration of generic
Abstractions 475–476

using Auto-Registration 473–475
using Configuration as Code 472–473

Configuration as Code 377
configuring ContainerBuilder with 398–400
configuring containers with 433–434
configuring DI Containers with 377–379
configuring ServiceCollection with 472–473

configuration files
configuring ContainerBuilder with 403–404
configuring containers with 437–438
configuring DI Containers with 373–376
configuring instance scopes with 406

connectionString parameter 367
console applications, composing 213–218

building Composition Root of UpdateCurrency
program 215–216

composing object graphs in
CreateCurrencyParser 216

layering in UpdateCurrency 217–218
updating currencies with UpdateCurrency

program 214
Console class 17
ConsoleMessageWriter class 16, 18, 20, 25, 30
ConsoleWriter class 20

 511index

Constrained Construction anti-pattern 19, 98,
154–161

analysis of 156–161
late binding ProductRepository 154–156
negative effects of 157
refactoring toward DI 157–161

Constructor Chaining 134
Constructor Injection pattern 16, 24, 54, 60, 64, 91,

94–103
adding currency conversions to featured

products 100–102
known use of 99
overview of 95–96
when to use 97–99

Constructor Over-injection code smell 164–180
recognizing 165–168
refactoring from

to domain events 173–180
to Facade Services 168–173

ConstructorResolutionBehavior property 119
ContainerBuilder, configuring 398–404

Auto-Registration of generic Abstractions using
AsClosedTypesOf 401–402

using Auto-Registration 400–401
using Configuration as Code 398–400
using configuration files 403–404

Container class 433
ContainerOptions class 119
containers

configuring 432–438
Auto-Registration of generic

Abstractions 436–437
using Auto-Registration 434–436
using Configuration as Code 433–434
using configuration files 437–438

detecting Captive Dependencies 446–447
diagnosing for lifetime problems 444–447

letting container detect Captive
Dependencies 446–447

suppressing warnings on individual
registrations 447

Content property 225
context parameter 111
Control Freak anti-pattern 88, 97, 127–137, 185

analysis of 135–137
negative effects of 136
refactoring toward DI 136–137

through factories 129–134
Abstract Factory 130–131
Concrete Factory 129–130
Static Factory 131–134

through newing up Dependencies 128
through overloaded constructors 134–135

controller activators, custom
creating 230–232
using in ASP.NET Core 230–231

Controller class 42
controllers 42, 231, 362
ControllerTypeInfo property 397, 431
controllerType variable 397, 431, 470
converter field 102
ConvertTo method 112
coupling at compile time 354–355
CQS (Command-Query Separation) 315
CreateCurrencyParser method 216, 276
CreateHomeController method 252
CreateInstance method 156
CreateInstance<T> method 486
Create method 90, 183, 186, 230, 243
CreateNew method 366
CreatePage method 228
CreateRateDisplayer method 264
CreateScope method 478
create, update, and delete (CUD) operations 299
Cross-Cutting Concerns 12, 28, 31, 49, 150, 282,

348
adding 327–336

composing object graphs using generic
Decorators 335–336

implementing auditing aspects 328–331
implementing security aspects 331–334

implementing 290–300
intercepting with Circuit Breaker 292–297
preventing unauthorized access to sensitive

functionality using Decorators 298–300
reporting exceptions using Decorator

pattern 297–298
with ICommandService 321–323

cross-sellings 310
CSL (Common Service Locator) 139
CUD (create, update, and delete) operations 299
currencies, updating 214
Currency class 217

512 index

currency conversions
adding to featured products 100–102
adding to Product Entity 112–113

CurrencyMonitoring program 262
CurrencyParser class 216
Currency property 102
CurrencyRateDisplayer class 262, 264
Current property 146
CurrentUser property 197
CustomerServices class 107

D
Danish krone symbol 58
data access interface 48–50
data access layers 46, 50, 53, 70–71, 77
data access library 47
database engines 5
DataContext property 221, 225
data layers 36–39
DataTemplate 225
Data Transfer Objects (DTOs) 58, 182
DateTime method 146
DbContext.ChangeTracker property 203
DbContext class 37, 251, 262–266
DbContextOptionsBuilder 38
DbContext.SaveChanges method 203
DbSet<T> class 175
DDD (Domain-Driven Design) 105
DDOS (Distributed Denial of Service) 292
Decorator pattern 284–287

generic 335–336
implementing auditing using 287–290

composing
AuditingUserRepositoryDecorator 290

for user repository 288–289
preventing unauthorized access to sensitive

functionality using 298–300
reporting exceptions using 297–298
wiring 420–422, 457–459, 489–492

decorating Abstractions 457–458
decorating generic Abstractions 458–459,

490–492
decorating generic Abstractions with

RegisterGenericDecorator 421–422
decorating non-generic Abstractions 489–490
decorating non-generic Abstractions with

RegisterDecorator 420–421
defaultAssembly attribute 375, 404

Delete method 248, 303
Dependencies 85

Captive 266–269, 446–447
consumers of 105–108
cyclic, fixing 194–206

caused by SRP violations 195–198
common strategies for 204
refactoring from SRP violations to

resolve 200–204
with Property Injection 204–206

disposable 245–255
consuming 246–249
managing 250–255

injected 108–109
injecting into MainViewModel 221–225
lifecycles of 239–242
named 414–416
newing up 128
primitive

configuring 409–411, 448–449, 480–481
extracting to Parameter Objects 449–450, 481

releasing 250, 254–255
selecting based on runtime data 187–194

analysis of code smell 190
refactoring from Abstract Factory to

Adapter 191–194
Stable 26
Volatile 26–27
with Composition Root 92–94

dependency graphs
analyzing 75–78
evaluating 44–45
for analysis of missing composability 47–48

Dependency Inversion Principle (DIP) 67, 305
Dependency Lifetime, managing 238–245

Lifetime Management 238–242
managing lifetime with Pure DI 242–245

Dependency property 114
deployment artifact 87
diagnosing containers for lifetime problems 444–447

letting container detect Captive
Dependencies 446–447

suppressing warnings on individual
registrations 447

diagnostic warnings 447
DI Containers 8, 26, 77, 85, 261

configuring 372–385
by convention using Auto-Registration 379–385

 513index

DI Containers (continued)
mixing and matching approaches to 385
using Configuration as Code 377–379
with configuration files 373–376

in Composition Root 88–89
overview of 361–371

Auto-Wiring 363–364
Resolve API 361–363

resolving controllers with 362
resolving object graphs with 362–363
supporting Auto-Wiring 364–371
when to use 385–391

Pure DI gives shorter feedback cycle 388–389
third-party libraries involve costs and

risks 386–388
Dictionary<TKey, TValue> class 175
DI (Dependency Injection)

advantages of 17–24
extensibility 19–20
late binding 18–19
maintainability 21
parallel development 20–21
testability 21–23
unit testing logic 23–24

compile-time weaving aspects are unfriendly
to 352–354

myths about 5–8
Abstract Factory 7
DI Containers 8
late binding 5–6
unit testing 6

purpose of 8–14
refactoring from Ambient Context toward

152–153
refactoring from Constrained Construction

toward 157–161
refactoring from Control Freak toward 136–137
refactoring from Service Locator toward 145
scope 27–32

Interception 30–31
Object Composition 29
Object Lifetime 30

three dimensions of 31–32
DIP (Dependency Inversion Principle) 67–68, 305
DiscountedProduct class 60
DisplayRates method 265
disposable Dependencies 245–255

consuming 246–249
managing 250–255

disposables, ephemeral 247–249
disposable Transients 479
Dispose method 442
Distributed Denial of Service (DDOS) 292
Domain-Driven Design (DDD) 105
domain events 173–180
domain layers 36, 39–42
domain models, independent, building 61–69

Dependency Inversion Principle 67–68
interfaces vs. abstract classes 68–69

DoSomething method 110
DRY (Don't Repeat Yourself) principle 117, 306,

342
DTOs (Data Transfer Objects) 58, 182
dynamic Interception 342–348

analysis of 346–348
aspects are strongly coupled to tooling 347
does not fix underlying design problems 348
not universally applicable 347–348
with Castle Dynamic Proxy 344–346

applying Interceptor inside Composition Root
using Pure DI 345–346

implementing Circuit Breaker
Interceptor 344–345

E
e-commerce applications, rebuilding 53–74

building data access layers 70–71
building independent domain models 61–69
building maintainable UIs 56–61
composing applications in Composition

Root 73–74
implementing ASP.NET Core-specific

IUserContext Adapter 71–73
EditProductCommand property 225
EditProduct method 224
EditProductViewModel 248
EndpointAddress 109
EndpointAddressBuilder 109
Entity 63
Entity Framework Core 38, 70
enum 188
ephemeral disposables 248
Equal method 24
error handling 140, 291
ErrorHandlingProductRepositoryDecorator class 298
event handlers 424
exceptions, reporting 297–298

514 index

Exclaim method 16, 24
executables 87
Execute method 323
extensibility 17, 19–20, 48, 118–120

F
Facade Services 168–173
factories, Control Freak through 129–134

Abstract Factory 130–131
Concrete Factory 129–130
Static Factory 131–134

fault tolerance 291, 328
fear, uncertainty, and doubt (FUD) 4
FeaturedProductsViewModel class 57
feedback cycles 388–389
finally statement 254
Fixture Teardown 144
folding 84
Foreign Default 97, 134
FormalGreeter 286
FUD (fear, uncertainty, and doubt) 4

G
general-purpose library 77
Generic Subdomain 361
generic type constraints 431
GetAllInstances method 462
GetAll method 295
GetAttributeAdapter 111
GetById method 289
GetByName method 199, 201
GetCurrentScope method 444
GetCurrentTime method 148
GetFeaturedProducts method 47, 60, 64, 74, 102,

112, 113, 128, 142, 185, 270
GetInstance method 430, 462
GetLogger method 151
GetRequiredService method 470, 476, 484
GetRoute method 188
GetService method 140, 144, 471
GetTypesToRegister method 435
GetWelcomeMessage method 148
GoBack method 224
God Class 166
God Objects 69
Greet method 285

GridView, XAML 225
Guard Clauses 16, 59, 119, 140, 167
Guard method 295

H
Half-Open state 295
Handle method 176
HasTierPrices property 318
Hello DI! 14–24, 28

collaborators 15
implementing application logic 15–17

HomeController class 42, 56, 95, 138, 181, 232, 367
HttpContext 40
HttpContextAccessor 72
HttpContext.Response.RegisterForDispose

method 230, 254

I
IApplicationContext 108
IAttributeAdapter method 111
IAuditTrailAppender interface 195, 198, 200, 206,

288, 306
IBillingSystem 166
ICircuitBreaker interface 295, 303, 353
ICommandService interface 319, 321–323, 326,

382, 401, 436, 475
IComponentContext interface 420
IConstructorResolutionBehavior interface 119, 450
IControllerActivator interface 90, 229, 397, 431
ICurrencyConverter.Exchange method 112
ICurrencyConverter interface 101, 112, 113, 214
ICustomerRepository interface 108
IDisposable interface 30, 184, 239, 245
IEnumerable<T> interface 175, 273–275
IEventHandler<TEvent> interface 175
IExchangeRateProvider interface 216
IGreeter interface 285
IHttpContext interface 182
IIdentity 20
IImageEffectAddIn 109
IInventoryManagement 166, 168
IInvocation interface 345
ILifestyleSelectionBehavior 440
IL (Intermediate Language) 348
ILocationService 166, 168
IMessageService 166

 515index

IMessageWriter interface 16, 18, 19, 20, 25
IMessageWriter.Write method 24
implementation attribute 438
implementations, splitting 315–317
INavigationService.NavigateTo method 222
independent domain models, building 61–69

Dependency Inversion Principle 67–68
interfaces vs. abstract classes 68–69

Index method 42, 44
Index view markup 43
Initialize method 109–110, 222
injected streams 463
INotificationService 170, 173, 179, 422, 459, 492
INotifyPropertyChanged interface 222
Insert method 303
InsertProduct command 318
inside-out technique 55
InstancePerDependency 446
instance-scope attribute 406
instance scopes, configuring 405–406

configuration files 406
with code 405–406

Interception 30–31, 62
dynamic 342–348

analysis of 346–348
aspects are strongly coupled to tooling 347
does not fix underlying design problems 348
not universally applicable 347–348
with Castle Dynamic Proxy 344–346

implementing Cross-Cutting Concerns 290–300
intercepting with Circuit Breaker 292–297
preventing unauthorized access to sensitive

functionality using Decorators 298–300
reporting exceptions using Decorator

pattern 297–298
overview of 283–290

Decorator design pattern 284–287
implementing auditing using

Decorator 287–290
Intercept method 87, 345
interfaces 6

abstract classes vs. 68–69
splitting 315–317

Intermediate Language (IL) 348
InvalidOperationException 469
InventoryController 322

Invoke method 233
IoC (Inversion of Control) 29, 77
I/O operations 347
IOrderFulfillment interface 168
IOrderRepository interface 166, 246
IPrincipal interface 65, 67
IProductCommandServices interface 315, 336
IProductManagementService interface 249
IProductQueryServices interface 336
IProductRepositoryFactory interface 130, 158,

183, 186
IProductRepository interface 62, 70, 76, 128, 130,

132, 154, 158, 183, 257, 294–295, 298, 346,
367, 369, 381

IProductService interface 59, 310, 348, 367,
436, 475

analysis from perspective of SOLID 311–313
implementing product-related features

using 309–310
violates ISP 311–312
violates OCP 312–313
violates SRP 312

IRouteAlgorithmFactory interface 189, 191
IRouteAlgorithm interface 188, 191
IRouteCalculator interface 191
isCustomerPreferred parameter 41
IsDecoratorFor method 424, 496
IServiceCollection 89
IServiceProvider 497
IServiceScope 469, 477, 482
ISP (Interface Segregation Principle) 187, 305

fixing by splitting interfaces and
implementations 315–317

IProductService violates 311–312
ItemClickCommand 225
ITimeProvider interface 146, 196, 329
ITypeDescriptorContext 111
IUIControlFactory interface 7
IUpdateProductReviewTotalsService 318
IUserByNameRetriever 201
IUserContext Adapter 71–73
IUserContext interface 65, 67, 71, 101, 158, 183,

198, 200, 367
IUserRepository 200, 288, 306
IValidationAttributeAdapterProvider interface 111
IViewModel interface 223
IVoucherRedemptionService 107

516 index

J
JIT (Just-In-Time) compiler 348
justification argument 447

K
KeyedService class 425
KeyNotFoundException 141
key-value database 46

L
lambda expression 369
late binding 17, 5–18, 29, 48, 154–156, 377
layering in UpdateCurrency 217–218
LazyAuditTrailAppender 206
Lazy<T> 269–273
LazyUserContextProxy 272
Leaky Abstractions

as parameterless factory methods 183–184
code smells 182–183
IEnumerable<T> as 273–275
Lazy<T> as 269–273
to leak Lifestyle choices to consumers 269–275

legacy applications 22
libraries

resuable 69
third-party 386–388

lifecycles of Dependencies 240
Lifestyles

bad choices 266–278
Captive Dependencies 266–269
causing concurrency bugs by tying instances to

lifetime of threads 275–278
using Leaky Abstractions to leak Lifestyle

choices to consumers 269–275
configuring 439–440, 477
patterns 255–266

Scoped Lifestyle 260–266
Singleton Lifestyle 256–258
Transient Lifestyle 259–260

Lifestyle.Singleton and Lifestyle.Transient 442
Lifetime Management 30, 184, 404–409, 438–447,

476–480
ambient scopes 443–444
configuring instance scopes 405–406

with code 405–406
with configuration files 406

configuring Lifestyles 439–440, 477
diagnosing containers for lifetime

problems 444–447
letting container detect Captive

Dependencies 446–447
suppressing warnings on individual

registrations 447
overview of 238–242

adding complexity to Dependency
lifecycles 240–242

simple Dependency lifecycle 239–240
releasing components 406–409, 440–443,

477–480
lifetime scopes 406
LINQ query 495
Liskov Substitution Principle 11, 22, 30, 241, 284

analyzing accidental violations 323–324
fixing using generic Abstraction 324–326

Local Default 97, 101, 114
Locator class 140, 143
Locator.Reset() method 144
logging 77, 103, 149, 328, 331
LoggingMiddleware class 233
logic

implementing application logic 15–17
unit testing 23–24

logical artifacts 87
LogManager.GetLogger method 151
Log method 275
long-running applications 262–266
loose coupling 5, 26, 284
loosely coupled code

analyzing loosely coupled implementations
74–78

analyzing dependency graphs 75–78
interaction between components 74–75

rebuilding e-commerce applications 53–74
building data access layers 70–71
building independent domain models 61–69
building maintainable UIs 56–61
composing applications in Composition

Root 73–74
implementing ASP.NET Core-specific

IUserContext Adapter 71–73
LSP (Liskov Substitution Principle)

analyzing accidental violations 323–324
fixing using generic Abstraction 324–326

 517index

M
Main method 15, 28, 87, 89, 213
maintainability 17, 21, 49
MainViewModel class 222, 224

injecting Dependencies into 221–225
wiring up 225

MakePreferred method 106
mapping Abstractions to concrete types 396–397,

469–470
messages, intercepting 23
messageWriter application 19
messaging 179
method calls

varying Dependency consumer on each 105–108
varying injected Dependency on each 108–109

MethodExecutionTag property 351
Method Injection pattern 54, 104–113

adding currency conversions to Product
Entity 112–113

known use of 111–112
overview of 104–105
when to use 105–110

Temporal Coupling code smell 109–110
varying Dependency consumer on each

method call 105–108
varying injected Dependency on each method

call 108–109
Microsoft Azure 46
Microsoft Distributed Transaction Coordinator

(MSDTC) 322
Microsoft.Extensions.DependencyInjection 378
middleware 233–234
Model property 57, 225
MS.DI (Microsoft.Extensions.DependencyInjection)

Lifetime Management 476–480
configuring Lifestyles 477
releasing components 477–480

overview of 467–476
configuring ServiceCollection 471–476
resolving objects 468–471

registering difficult APIs 480–483
configuring primitive Dependencies 480–481
extracting primitive Dependencies to

Parameter Objects 481
registering objects with code blocks 482–483

working with multiple components 483–498
selecting among multiple candidates 483–486

wiring Composites 492–498
wiring Decorators 489–492
wiring sequences 486–489

MSDTC (Microsoft Distributed Transaction
Coordinator) 322

multi-threading 276–278
MVC (Model View Controller) applications, for ASP.

NET Core 228–234
constructing custom middleware components

with Pure DI 233–234
creating custom controller activators 230–232

MVVM (Model-View-ViewModel) 218, 220
MyApp.Services.Products namespace 323

N
Named method 414
Navigate method 225
NavigateTo method 222
.NET Core console application; net core 87
.NET events; net events 204
new keyword 50, 127, 135
NewProductViewModel 224
n-layer application 35, 60
no operation 117
NuGet packages 441
null argument 96
Null Object pattern 102, 117
NullReferenceException 11, 115, 293, 353
null value 141

O
Object Composition 28–29, 91, 212, 385
object graphs 73, 98

composing in CreateCurrencyParser 216
composing using generic Decorators 335–336
resolving with DI Containers 362–363

Object Lifetime 30
bad Lifestyle choices 266–278

Captive Dependencies 266–269
causing concurrency bugs by tying instances to

lifetime of threads 275–278
using Leaky Abstractions to leak Lifestyle

choices to consumers 269–275
disposable Dependencies 245–255

consuming 246–249
managing 250–255

Lifestyle patterns 255–266

518 index

Object Lifetime (continued)
Scoped Lifestyle 260–266
Singleton Lifestyle 256–258
Transient Lifestyle 259–260

managing Dependency Lifetime 238–245
Lifetime Management, overview of 238–242
managing lifetime with Pure DI 242–245

objects
Abstractions to concrete types 430–431
resolving 395–398, 429–432, 468–471

mapping Abstractions to concrete
types 396–397, 430–431, 469–470

resolving weakly typed services 397–398,
431–432, 470–471

with code blocks, registering 411–412, 450–451,
482–483

OCP (Open/Closed Principle)
fixing using Parameter Objects 317–321
IProductService violates 312–313

OnLaunched method 219
OnMethodBoundaryAspect 350
OnSuccess method 351
Open/Closed Principle 14, 21, 116, 200, 297, 410
Open state 295
optional method arguments 222
Options property 119
OrderAccepted event 179
OrderApproved class 174
OrderCancelled class 174
OrderFulfillment class 175
OrderService class 167–168, 246
outside-in technique 54
overloaded constructors 134–135

P
parallel development 17, 20–21, 49
parameterless factory methods 183–184
Parameter Objects 318, 450

extracting primitive Dependencies
to 449–450, 481

fixing OCP using 317–321
passive attributes 332
patterns, choosing 120–122
performance monitoring 328
PermittedRoleAttribute 333
persistence ignorance 70
per-thread Lifestyle 266
POCOs (Plain Old CLR Objects) 57, 220

Policy suffix 401
PostSharp tool 350
PowerShell 213
predicate value 454
price value parameter 105
primitive Dependencies

configuring 409–411, 480–481
extracting to Parameter Objects 481

private readonly field 152
Proceed method 345
Product class 37, 50, 63, 70
Product Entity 112–113
product-management rich clients, wiring

up 219–225
injecting Dependencies into

MainViewModel 221–225
wiring up MainViewModel 225

productRepository 239
ProductRepository 74, 154–156
ProductRepositoryFactory class 132
ProductRepositoryStub 142
ProductService class 41, 47, 64, 73, 86, 101, 112,

128, 134, 140–142, 143, 239, 244, 260, 272
ProductViewModel class 57
Program class 87, 213, 264
Property Injection pattern 94, 102, 114–120, 204

as extensibility model of reusable
library 118–120

breaking Dependency cycles with 204–206
known uses of 118
overview of 114–115
when to use 115–118

public keyword 69
Pure DI 15, 89, 145, 216, 376

applying Interceptor inside Composition Root
using 345–346

constructing custom middleware components
with 233–234

implementing with Composition Root 89–91
managing lifetime with 242–245
shorter feedback cycle with 388–389

R
readonly field 145
readonly keyword 245
reads, separating from writes 314–315
RedeemVoucher method 106

 519index

refactoring
by removing ambiguity 417–418, 455, 487
from Abstract Factory to Adapter 191–194
from Ambient Context toward DI 152–153
from Constrained Construction toward

DI 157–161
from Constructor Over-injection to domain

events 173–180
from Constructor Over-injection to Facade

Services 168–173
from Control Freak toward DI 136–137
from Service Locator toward DI 145
from SRP violations to resolve Dependency

cycles 200–204
RegisterAssemblyTypes method 400, 401, 421, 423
RegisterConditional method 453
RegisterDecorator 383, 420–421, 457, 461
registered components 456
RegisterGenericDecorator 420–422, 424
Register method 141, 366, 411
Register Resolve Release pattern 373
RegisterType method 397
registrations

conditional 453–454
difficult APIs 409–412, 447–451, 480–483

configuring primitive Dependencies 409–411,
448–449, 480–481

extracting primitive Dependencies to
Parameter Objects 449–450, 481

named Dependencies 414–416
objects with code blocks 411–412, 450–451,

482–483
suppressing warnings on individual 447

Release method 230, 254
releasing components 406–409, 440–443, 477–480
reliable messaging 179
Repository pattern

resolving multiple 259–260
thread-safe in-memory 257–258

repository variable 128, 242
Reset method 141
Resolve API 361–363
ResolvedParameter class 415
Resolve method 89, 362, 368
Resolve<T> method 397
resolving 394–404

objects 395–398, 429–432, 468–471
weakly typed services 397–398, 431–432, 470–471

reusable libraries 69, 118–120
role-based security 334
RouteCalculator class 192, 243
RouteController 188, 191, 232
RouteType 188
row-based security 334
runtime data, selecting Dependencies based

on 187–194
analysis of code smell 190
refactoring from Abstract Factory to

Adapter 191–194

S
Salutation class 16, 19, 23–24
scoped DbContext 262–266
Scoped Dependencies 261, 278
Scoped Lifestyle pattern 260–266

composing long-running applications using a
ScopedDbContext 262–266

when to use 262
scopes, ambient 443–444
Seams 25, 213, 218
SecureMessageWriter class 20, 30, 287
SecureProductRepositoryDecorator 299, 308, 331
security 19, 291, 328, 331–334
sensitive functionality 298–300
separation of concerns 40, 50
sequences

Auto-Wiring 418, 455, 487–488
streams as 462–464
wiring 417–420, 454–457, 486–489

refactoring by removing ambiguity 417–418,
455, 487

selecting components from larger
set 418–420, 455–457, 488–489

ServiceCollection, configuring 471–476
Auto-Registration of generic

Abstractions 475–476
using Auto-Registration 473–475
using Configuration as Code 472–473

Service Locator anti-pattern 7, 88, 138–145, 353
analysis of 142–145
negative effects of 142–145
ProductService using 140–142
refactoring toward DI 145

ServiceProvider property 468, 478
services, weakly typed 397–398, 431–432, 470–471

520 index

SimpleDecorator class 285
Simple Injector

Lifetime Management 438–447
ambient scopes 443–444
configuring Lifestyles 439–440
diagnosing containers for lifetime

problems 444–447
releasing components 440–443

overview of 428–438
configuring containers 432–438
resolving objects 429–432

registering difficult APIs 447–451
configuring primitive Dependencies 448–449
extracting primitive Dependencies to

Parameter Objects 449–450
registering objects with code blocks 450–451

working with multiple components 451–464
selecting among multiple candidates 452–454
sequences are streams 462–464
wiring Composites 459–462
wiring Decorators 457–459
wiring sequences 454–457

SimpleInjector.Containe 430
SingleInstance method 405
Singleton Dependencies 261
Singleton Lifestyle pattern 242, 256–258, 439

using thread-safe in-memory Repository
257–258

when to use 256
Singletons 245
Site property 118
SOLID

analysis of IProductService from perspective
of 311–313

concluding analysis of IProductService 313
IProductService violates ISP 311–312
IProductService violates OCP 312–313
IProductService violates SRP 312

applying principles to improve design 314–327
analyzing the accidental LSP

violations 323–324
applying transaction handling using generic

Abstraction 326–327
fixing ISP and SRP by splitting interfaces and

implementations 315–317
fixing LSP using generic Abstraction 324–326
fixing OCP using Parameter Objects 317–321

implementing Cross-Cutting Concerns with
ICommandService 321–323

separating reads from writes 314–315
as driver for AOP 308–337

adding Cross-Cutting Concerns 327–336
analysis of IProductService from perspective of

SOLID 311–313
applying SOLID principles to improve

design 314–327
implementing product-related features using

IProductService 309–310
principles for 305–308

DIP (Dependency Inversion Principle) 308
Interception and 308
ISP (Interface Segregation Principle)

307–308
LSP (Liskov Substitution Principle) 307
OCP (Open/Closed Principle) 306–307
SRP (Single Responsibility Principle) 306

split classes 204
splitting

implementations 315–317
interfaces 315–317

SpyMessageWriter 24
SqlAuditTrailAppender 196, 198, 205
SqlExchangeRateProvider 216, 276
SqlProductRepository 66, 73, 128, 132, 134, 158,

185, 239, 243, 283, 350, 367, 370, 381
SqlProductRepositoryFactory 158, 159, 160
SqlProductRepositoryProxy 186
SqlUserByNameRetriever 201
SqlUserRepository class 197, 199, 202, 205, 260
SRP (Single Responsibility Principle) 21, 28, 31,

40, 50, 165
fixing by splitting interfaces and

implementations 315–317
IProductService violates 312
violations of

Dependency cycles caused by 195–198
refactoring from 200–204

Stable Dependencies 26
StackOverflowExceptions 200, 371
Startup class 89, 230, 233, 245
Startup.ConfigureServices method 90
stateless service 259
Static Factory 131–134
string argument 154

 521index

SummaryText property 57
SuppressDiagnosticWarning 447
SUT (System Under Test) 22
System.Activator class 366
System.ComponentModel.DataAnnotations 328
System.ComponentModel.Design.IDesigner 111
System.ComponentModel namespace 111
System.Data.SqlClient.SqlDataReader 462
System.DateTime.Now 27
System.IO.StreamReader class 99
System.IO.StreamWriter class 99
System.Lazy<T> class 269
System.Random 27
System.Security.Cryptography.

RandomNumberGenerator 27
System.Security.Principal.WindowsIdentity class 20
System.Timers.Timer class 265
System.Transactions.TransactionScope class 322
System Under Test (SUT) 22
System.Windows.Input.ICommand 221
System.Xml assembly 25

T
Table Storage Service 46
TCommand argument 382
TDD (Test-Driven Development) 6, 56, 182
Temporal Coupling code smell 109–110
testability 17, 21–23, 49, 182
Test Doubles 22, 24
Test-Driven Development (TDD) 6, 56, 182
testing 6–23, 6–24
TEvent type 175
text messages, intercepting 23
third-party add-ins 5
third-party libraries 386–388
ThreadPool.QueueUserWorkItem 276
threads 260

lifetime is often unclear 276
tying instances to lifetime of 275–278

thread-safe in-memory Repository 257–258
three-layer diagram 35
tightly coupled code

analysis of missing composability 47–50
data access interface analysis 48–50
dependency graph analysis 47–48

building tightly coupled applications 35–44
creating data layers 36–39
creating domain layers 39–42
creating UI layers 42–44

evaluating tightly coupled applications 44–47
evaluating composability 45–47
evaluating dependency graphs 44–45

TimeProvider class 148
TimeSpan 156
TitledGreeterDecorator class 286
ToEndpointAddress method 109
Torn Lifestyles 388, 399
TrackDisposable method 252, 254
transaction aspect, applying using compile-time

weaving 349–351
TransactionAttribute 350
TransactionCommandServiceDecorator class 321
transaction handling, applying using

Abstraction 326–327
TransactionScope class 322, 351, 444
Transient Lifestyle pattern 259–260, 439

resolving multiple Repositories 259–260
when to use 259

Transients, disposible 408, 479
transitivity 93
try statement 254
Type instance 19
type parameters 175, 362

U
UI Layer 36
UIs (user interfaces)

building 45–46
creating layers 42–44
maintainable, building 56–61

UI (user interface) toolkits 7
unauthorized access to sensitive functionality

298–300
uninterrupted power supply (UPS) 11
UnitPrice property 225
unit testing 6–24
UpdateCurrencyCommand 217
UpdateCurrency program 262

building Composition Root of 215–216
layering in 217–218
updating currencies with 214

522 index

UpdateHasDiscountsApplied 312
UpdateHasTierPricesProperty command 310,

312, 318
UpdateProductReviewTotals 324
UpdateProductReviewTotalsService 323
updating currencies 214
UPS (uninterrupted power supply) 11
Uri property 109
Use extension method 233
userContext variable 198
user interface (UI) toolkits 7
UserMailAddressChanged even 203
User property 39, 43
user repository 288–289
userRepository variable 198
UserService class 199
using statement 249
uto-Registered Abstractions 458
UWP (Universal Windows Programming)

applications 87
composing 218–228
implementing Composition Root in 226–228

V
Validate method 247
validateScopes 469
validation 291, 328
ValidationAttribute 111
valueAccessor delegate 415
Value property 270
violations

of LSP, accidental 323–324
of SRP

Dependency cycle caused by 195–198
refactoring from to resolve Dependency

Cycle 200–204
Virtual Proxy 205, 272
Visual Studio 5
Volatile Dependencies 26–27, 51, 53, 127, 355

W
warnings, suppressing 447
WcfProductRepository class 249, 294, 297
WCF (Windows Communication Foundation) 247

web-based UI 76
WelcomeMessageGenerator 152
whenDone action 222
Where method 401
Windows Communication Foundation (WCF) 247
Windows Presentation Foundation (WPF) 45
wiring

Composites 422–425, 459–462, 492–498
generic 424–425, 461–462, 496–498
non-generic 422–424, 459–461, 493–496

Decorators 420–422, 457–459, 489–492
decorating Abstractions 457–458
decorating generic Abstractions 458–459,

490–492
decorating generic Abstractions with

RegisterGenericDecorator 421–422
decorating non-generic Abstractions 489–490
decorating non-generic Abstractions with

RegisterDecorator 420–421
MainViewModel 225
product-management rich clients 219–225
sequences 417–420, 454–457, 486–489

Auto-Wiring sequences 418, 455, 487–488
refactoring by removing ambiguity 417–418,

455, 487
selecting components from larger

set 418–420, 455–457, 488–489
WithParameter method 412, 415, 419, 425
WPF applications 87
WPF-based UI 76
wrapping, composite 177
Write method 16, 20
writer instance 14
writes, separating from reads 314–315
WrittenMessage property 24

X
XmlProductRepository 156
XmlReader argument 156
XmlWriter 24

Y
YAGNI principle 55

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

C# in Depth, Fourth Edition
by Jon Skeet

ISBN: 9781617294532
528 pages
$49.99
March 2019

Functional Programming in C#
How to write better C# code
by Enrico Buonanno

ISBN: 9781617293955
408 pages
$44.99
August 2017

https://www.manning.com/books/c-sharp-in-depth-fourth-edition
https://www.manning.com/books/functional-programming-in-c-sharp

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

.NET Core in Action
by Dustin Metzgar

ISBN: 9781617294273
288 pages
$44.99
July 2018

Microservices in .NET Core
with examples in Nancy
by Christian Horsdal Gammelgaard

ISBN: 9781617293375
344 pages
$49.99
January 2017

https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/dotnet-core-in-action

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Entity Framework 4 in Action
by Stefano Mostarda, Marco De Sanctis,

and Daniele Bochicchio

ISBN: 9781935182184
576 pages
$39.99
April 2011

ASP.NET Core in Action
by Andrew Lock

ISBN: 9781617294617
712 pages
$49.99
June 2018

https://www.manning.com/books/entity-framework-4-in-action
https://www.manning.com/books/asp-net-core-in-action

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Reactive Applications with Akka.NET
by Anthony Brown

ISBN: 9781617292989
150 pages
$44.99
February 2019

Concurrency in .NET
Modern patterns of concurrent and parallel
programming
by Riccardo Terrell

ISBN: 9781617292996
568 pages
$59.99
June 2018

https://www.manning.com/books/reactive-applications-with-akka-net
https://www.manning.com/books/concurrency-in-dot-net

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Get Programming with F#
A guide for .NET developers
by Isaac Abraham

ISBN: 9781617293993
592 pages
$44.99
February 2018

F# Deep Dives
Edited by Tomas Petricek

and Phillip Trelford

ISBN: 9781617291326
372 pages
$49.99
December 2014

https://www.manning.com/books/get-programming-with-f-sharp
https://www.manning.com/books/f-sharp-deep-dives

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Learn Azure in a Month of Lunches
by Iain Foulds

ISBN: 9781617295171
384 pages
$44.99
August 2018

Learn Windows PowerShell in a
Month of Lunches, Third Edition
by Don Jones and Jeffery Hicks

ISBN: 9781617294167
384 pages
$44.99
December 2016

https://www.manning.com/books/learn-azure-in-a-month-of-lunches
https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

AWS Lambda in Action
Event-driven serverless applications
by Danilo Poccia

ISBN: 9781617293719
384 pages
$49.99
November 2016

Google Cloud Platform in Action
by JJ Geewax

ISBN: 9781617293528
632 pages
$59.99
August 2018

https://www.manning.com/books/aws-lambda-in-action
https://www.manning.com/books/google-cloud-platform-in-action

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Linux in Action
by David Clinton

ISBN: 9781617294938
384 pages
$39.99
August 2018

Learn Linux in a Month of Lunches
by Steven Ovadia

ISBN: 9781617293283
304 pages
$39.99
November 2016

https://www.manning.com/books/linux-in-action
https://www.manning.com/books/learn-linux-in-a-month-of-lunches

Van Deursen ● Seemann

D
ependency Injection (DI) is a great way to reduce tight
coupling between software components. Instead of
hard-coding dependencies, such as specifying a database

driver, you make those connections through a third party.
Central to application frameworks like ASP.NET Core, DI
enables you to better manage changes and other complexity in
your software.

Dependency Injection Principles, Practices, and Patterns is a
revised and expanded edition of the bestselling classic Depen-
dency Injection in .NET. It teaches you DI from the ground
up, featuring relevant examples, patterns, and anti-patterns
for creating loosely coupled, well-structured applications.
The well-annotated code and diagrams use C# examples to
illustrate principles that work fl awlessly with modern object-
oriented languages and DI libraries.

What’s Inside
● Refactoring existing code into loosely coupled code
● DI techniques that work with statically typed
 OO languages
● Integration with common .NET frameworks
● Updated examples illustrating DI in .NET Core

For intermediate OO developers.

Mark Seemann is a programmer, software architect, and speaker
who has been working with software since 1995, including six
years with Microsoft. Steven van Deursen is a seasoned .NET
developer and architect, and the author and maintainer of the
Simple Injector DI library.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/dependency-injection-principles-practices-patterns

$59.99 / Can $79.99 [INCLUDING eBOOK]

Dependency Injection
Principles, Practices, and Patterns

.NET/C#

M A N N I N G

“Actually three books in one:
a really good introduction to
DI in .NET, an even better

one to DI in general,
and an absolutely excellent

introduction to OO principles
and software design.”

—Mikkel Arentoft, Danske Bank

“This book is a masterpiece.
It’s amazing and fundamental
for every software developer

who wants to write solid
 and correct code.”

—Emanuele Origgi, Funambol

“A marvelous, clear, and
exhaustive journey into all
aspects of DI in .NET, with
very focused and complete

 real world examples.”—Pasquale Zirpoli
MIED Open Source Initiative

See first page

	Dependency Injection
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the authors
	about the cover illustration
	Part 1: Putting Dependency Injection
	1 The basics of Dependency Injection: What, why, and how
	1.1	Writing maintainable code
	1.1.1	Common myths about DI
	1.1.2	Understanding the purpose of DI

	1.2	A simple example: Hello DI!
	1.2.1	Hello DI! code
	1.2.2	Benefits of DI

	1.3	What to inject and what not to inject
	1.3.1	Stable Dependencies
	1.3.2	Volatile Dependencies

	1.4	DI scope
	1.4.1	Object Composition
	1.4.2	Object Lifetime
	1.4.3	Interception
	1.4.4	DI in three dimensions

	1.5	Conclusion

	2 Writing tightly coupled code
	2.1	Building a tightly coupled application
	2.1.1	Meet Mary Rowan
	2.1.2	Creating the data layer
	2.1.3	Creating the domain layer
	2.1.4	Creating the UI layer

	2.2	Evaluating the tightly coupled application
	2.2.1	Evaluating the dependency graph
	2.2.2	Evaluating composability

	2.3	Analysis of missing composability
	2.3.1	Dependency graph analysis
	2.3.2	Data access interface analysis
	2.3.3	Miscellaneous other issues

	2.4	Conclusion

	3 Writing loosely coupled code
	3.1	Rebuilding the e-commerce application
	3.1.1	Building a more maintainable UI
	3.1.2	Building an independent domain model
	3.1.3	Building a new data access layer
	3.1.4	Implementing an ASP.NET Core?specific IUserContext Adapter
	3.1.5	Composing the application in the Composition Root

	3.2	Analyzing the loosely coupled implementation
	3.2.1	Understanding the interaction between components
	3.2.2	Analyzing the new dependency graph

	Part 2: Catalog
	4 DI patterns
	4.1	Composition Root
	4.1.1	How Composition Root works
	4.1.2	Using a DI Container in a Composition Root
	4.1.3	Example: Implementing a Composition Root using Pure DI
	4.1.4	The apparent dependency explosion

	4.2	Constructor Injection
	4.2.1	How Constructor Injection works
	4.2.2	When to use Constructor Injection
	4.2.3	Known use of Constructor Injection
	4.2.4	Example: Adding currency conversions to the featured products
	4.2.5	Wrap-up

	4.3	Method Injection
	4.3.1	How Method Injection works
	4.3.2	When to use Method Injection
	4.3.3	Known use of Method Injection
	4.3.4	Example: Adding currency conversions to the Product Entity

	4.4	Property Injection
	4.4.1	How Property Injection works
	4.4.2	When to use Property Injection
	4.4.3	Known uses of Property Injection
	4.4.4	Example: Property Injection as an extensibility model of a reusable library

	4.5	Choosing which pattern to use

	5 DI anti-patterns
	5.1	Control Freak
	5.1.1	Example: Control Freak through newing up Dependencies
	5.1.2	Example: Control Freak through factories
	5.1.3	Example: Control Freak through overloaded constructors
	5.1.4	Analysis of Control Freak

	5.2	Service Locator
	5.2.1	Example: ProductService using a Service Locator
	5.2.2	Analysis of Service Locator

	5.3	Ambient Context
	5.3.1	Example: Accessing time through Ambient Context
	5.3.2	Example: Logging through Ambient Context
	5.3.3	Analysis of Ambient Context

	5.4	Constrained Construction
	5.4.1	Example: Late binding a ProductRepository
	5.4.2	Analysis of Constrained Construction

	6 Code smells
	6.1	Dealing with the Constructor Over-injection code smell
	6.1.1	Recognizing Constructor Over-injection
	6.1.2	Refactoring from Constructor Over-injection to Facade Services
	6.1.3	Refactoring from Constructor Over-injection to domain events

	6.2	Abuse of Abstract Factories
	6.2.1	Abusing Abstract Factories to overcome lifetime problems
	6.2.2	Abusing Abstract Factories to select Dependencies based on runtime data

	6.3	Fixing cyclic Dependencies
	6.3.1	Example: Dependency cycle caused by an SRP violation
	6.3.2	Analysis of Mary?s Dependency cycle
	6.3.3	Refactoring from SRP violations to resolve the Dependency cycle
	6.3.4	Common strategies for breaking Dependency cycles
	6.3.5	Last resort: Breaking the cycle with Property Injection

	Part 3: Pure DI
	7 Application composition
	7.1	Composing console applications
	7.1.1	Example: Updating currencies using the UpdateCurrency program
	7.1.2	Building the Composition Root of the UpdateCurrency program
	7.1.3	Composing object graphs in CreateCurrencyParser
	7.1.4	A closer look at UpdateCurrency?s layering

	7.2	Composing UWP applications
	7.2.1	UWP composition
	7.2.2	Example: Wiring up a product-management rich client
	7.2.3	Implementing the Composition Root in the UWP application

	7.3	Composing ASP.NET Core MVC applications
	7.3.1	Creating a custom controller activator
	7.3.2	Constructing custom middleware components using Pure DI

	8 Object lifetime
	8.1	Managing Dependency Lifetime
	8.1.1	Introducing Lifetime Management
	8.1.2	Managing lifetime with Pure DI

	8.2	Working with disposable Dependencies
	8.2.1	Consuming disposable Dependencies
	8.2.2	Managing disposable Dependencies

	8.3	Lifestyle catalog
	8.3.1	The Singleton Lifestyle
	8.3.2	The Transient Lifestyle
	8.3.3	The Scoped Lifestyle

	8.4	Bad Lifestyle choices
	8.4.1	Captive Dependencies
	8.4.2	Using Leaky Abstractions to leak Lifestyle choices to consumers
	8.4.3	Causing concurrency bugs by tying instances to the lifetime of a thread

	9 Interception
	9.1	Introducing Interception
	9.1.1	Decorator design pattern
	9.1.2	Example: Implementing auditing using a Decorator

	9.2	Implementing Cross-Cutting Concerns
	9.2.1	Intercepting with a Circuit Breaker
	9.2.2	Reporting exceptions using the Decorator pattern
	9.2.3	Preventing unauthorized access to sensitive functionality using a Decorator

	10 Aspect-Oriented Programming by design
	10.1	Introducing AOP
	10.2	The SOLID principles
	10.2.1	Single Responsibility Principle (SRP)
	10.2.2	Open/Closed Principle (OCP)
	10.2.3	Liskov Substitution Principle (LSP)
	10.2.4	Interface Segregation Principle (ISP)
	10.2.5	Dependency Inversion Principle (DIP)
	10.2.6	SOLID principles and Interception

	10.3	SOLID as a driver for AOP
	10.3.1	Example: Implementing product-related features using IProductService
	10.3.2	Analysis of IProductService from the perspective of SOLID
	10.3.3	Improving design by applying SOLID principles
	10.3.4	Adding more Cross-Cutting Concerns
	10.3.5	Conclusion

	11 Tool-based Aspect-Oriented Programming
	11.1	Dynamic Interception
	11.1.1	Example: Interception with Castle Dynamic Proxy
	11.1.2	Analysis of dynamic Interception

	11.2	Compile-time weaving
	11.2.1	Example: Applying a transaction aspect using compile-time weaving
	11.2.2	Analysis of compile-time weaving

	Part 4: DI Containers
	12 DI Container introduction
	12.1	Introducing DI Containers
	12.1.1	Exploring containers? Resolve API
	12.1.2	Auto-Wiring

	12.2	Configuring DI Containers
	12.2.1	Configuring containers with configuration files
	12.2.2	Configuring containers using Configuration as Code
	12.2.3	Configuring containers by convention using Auto-Registration
	12.2.4	Mixing and matching configuration approaches

	12.3	When to use a DI Container
	12.3.1	Using third-party libraries involves costs and risks
	12.3.2	Pure DI gives a shorter feedback cycle
	12.3.3	The verdict: When to use a DI Container

	13 The Autofac DI Container
	13.1	Introducing Autofac
	13.1.1	Resolving objects
	13.1.2	Configuring the ContainerBuilder

	13.2	Managing lifetime
	13.2.1	Configuring instance scopes
	13.2.2	Releasing components

	13.3	Registering difficult APIs
	13.3.1	Configuring primitive Dependencies
	13.3.2	Registering objects with code blocks

	13.4	Working with multiple components
	13.4.1	Selecting among multiple candidates
	13.4.2	Wiring sequences
	13.4.3	Wiring Decorators
	13.4.4	Wiring Composites

	14 The Simple Injector DI Container
	14.1	Introducing Simple Injector
	14.1.1	Resolving objects
	14.1.2	Configuring the container

	14.2	Managing lifetime
	14.2.1	Configuring Lifestyles
	14.2.2	Releasing components
	14.2.3	Ambient scopes
	14.2.4	Diagnosing the container for common lifetime problems

	14.3	Registering difficult APIs
	14.3.1	Configuring primitive Dependencies
	14.3.2	Extracting primitive Dependencies to Parameter Objects
	14.3.3	Registering objects with code blocks

	14.4	Working with multiple components
	14.4.1	Selecting among multiple candidates
	14.4.2	Wiring sequences
	14.4.3	Wiring Decorators
	14.4.4	Wiring Composites
	14.4.5	Sequences are streams

	15 The Microsoft.Extensions.DependencyInjection DI Container
	15.1	Introducing Microsoft.Extensions.DependencyInjection
	15.1.1	Resolving objects
	15.1.2	Configuring the ServiceCollection

	15.2	Managing lifetime
	15.2.1	Configuring Lifestyles
	15.2.2	Releasing components

	15.3	Registering difficult APIs
	15.3.1	Configuring primitive Dependencies
	15.3.2	Extracting primitive Dependencies to Parameter Objects
	15.3.3	Registering objects with code blocks

	15.4	Working with multiple components
	15.4.1	Selecting among multiple candidates
	15.4.2	Wiring sequences
	15.4.3	Wiring Decorators
	15.4.4	Wiring Composites

	glossary
	resources
	index

