
Table	of	Contents	
Preface	..............................................................................................................................	8	

What is Nest.js?	................................................................................................................	8	

About the example	...........................................................................................................	9	

About the authors	..........................................................................................................	10	

Chapter 1. Introduction	.................................................................................................	11	

Topics discussed	.............................................................................................................	12	

Nest CLI	.........................................................................................................................	12	

Dependency Injection	.....................................................................................................	13	

Authentication	................................................................................................................	14	

ORM	..............................................................................................................................	15	

REST API	......................................................................................................................	16	

WebSockets	....................................................................................................................	16	

Microservices	.................................................................................................................	17	

GraphQL	.......................................................................................................................	17	

Routing	...........................................................................................................................	17	

Nest specific tools	...........................................................................................................	18	

OpenAPI (Swagger)	.......................................................................................................	19	

Command Query Responsibility Segregation (CQRS)	..................................................	19	

Testing	............................................................................................................................	19	

Server-side rendering with Angular Universal	..............................................................	20	

Summary	........................................................................................................................	20	

Chapter 2. Overview	......................................................................................................	22	

Controllers	.....................................................................................................................	22	

Providers	........................................................................................................................	22	

Modules	..........................................................................................................................	23	

Bootstrapping	.................................................................................................................	24	

Middleware	....................................................................................................................	25	

Guards	...........................................................................................................................	27	

Summary	........................................................................................................................	28	

Chapter	3.	Nest.js	authentication	....................................................................................	30	

Passport	..........................................................................................................................	30	



Manual implementation	.................................................................................................	31	
Implementation	.....................................................................................................................	31	

AUTHENTICATION MODULE 	..........................................................................................	31	
USER MODULE 	.....................................................................................................................	36	
APP MODULE 	........................................................................................................................	42	

Authentication middleware	.................................................................................................	44	
Managing restrictions with guards	...................................................................................	44	

Nest.js passport package	................................................................................................	45	

Summary	........................................................................................................................	48	

Chapter	4.	Dependency	Injection	system	of	Nest.js	.........................................................	49	

Overview of Dependency Injection	................................................................................	49	
Why use Dependency Injection	.........................................................................................	50	
How it works without Dependency Injection	...................................................................	50	
How it works with a manual Dependency Injection	........................................................	51	
Dependency Injection pattern today	.................................................................................	52	

Nest.js Dependency Injection	.........................................................................................	53	

The difference between Nest.js and Angular DI	............................................................	57	

Summary	........................................................................................................................	57	

Chapter	5.	TypeORM	.......................................................................................................	59	

What database to use	.....................................................................................................	59	
About MariaDB	.....................................................................................................................	60	

Getting started	...............................................................................................................	60	
Start the database	................................................................................................................	61	
Connect to the database	.....................................................................................................	62	
Initialize TypeORM	...............................................................................................................	63	

Modelling our data	.........................................................................................................	63	
Our first entity	.......................................................................................................................	63	

Using our models	............................................................................................................	65	
The service	............................................................................................................................	65	
The controller	.......................................................................................................................	67	
Building a new module	........................................................................................................	67	

Improving our models	....................................................................................................	70	
Auto-generated IDs	..............................................................................................................	71	
When was the entry created?	.............................................................................................	72	
Column types	........................................................................................................................	74	

COLUMN TYPES FOR MYSQL / MARIADB 	..................................................................	74	
COLUMN TYPES FOR POSTGRES 	.................................................................................	75	
COLUMN TYPES FOR SQLITE / CORDOVA / REACT-NATIVE 	............................	75	
COLUMN TYPES FOR MSSQL 	.........................................................................................	75	
COLUMN TYPES FOR ORACLE 	......................................................................................	75	

NoSQL in SQL	.......................................................................................................................	75	

Relationships between data models	................................................................................	76	
How to store related entities	..............................................................................................	80	



SAVING RELATED ENTITIES THE EASIER WAY 	.................................................	82	
Retrieving related entities in bulk	......................................................................................	84	
Lazy relationships	................................................................................................................	86	

Other kinds of relationships	...........................................................................................	88	
One-to-one	............................................................................................................................	88	

BI-DIRECTIONAL ONE-TO-ONE RELATIONSHIPS 	..............................................	90	
Many-to-many	.......................................................................................................................	92	

Advanced TypeORM	.....................................................................................................	92	
Security first	..........................................................................................................................	92	
Other listeners	......................................................................................................................	93	
Composing and extending entities	...................................................................................	93	

EMBEDDED ENTITIES 	.......................................................................................................	94	
ENTITY INHERITANCE 	......................................................................................................	96	

Caching	..................................................................................................................................	97	
Building a query	...................................................................................................................	99	
Building our model from a existing database	...............................................................	100	

Summary	......................................................................................................................	100	

Chapter	6.	Sequelize	......................................................................................................	102	

Configure Sequelize	.....................................................................................................	102	

Create a model	.............................................................................................................	105	
@Table	.................................................................................................................................	105	
@column	.............................................................................................................................	106	
Create the User model	.......................................................................................................	107	
LifeCycle hooks	..................................................................................................................	109	

Injecting a model into a service	....................................................................................	110	

Usage of Sequelize transaction	.....................................................................................	111	

Migration	.....................................................................................................................	112	
Configuring the migration script	.....................................................................................	113	
Create a migration	..............................................................................................................	114	

Summary	......................................................................................................................	114	

Chapter	7.	Mongoose	....................................................................................................	116	

A word about MongoDB	..............................................................................................	116	

A word about Mongoose	..............................................................................................	116	
Mongoose and Nest.js	.......................................................................................................	117	

Getting started	.............................................................................................................	117	
Set up the database	...........................................................................................................	117	
Start the containers	...........................................................................................................	118	
Connect to the database	...................................................................................................	118	

THE CONNECTION STRING 	.........................................................................................	119	
THE RIGHT ARGUMENT FOR THE FORROOT() METHOD 	...............................	120	

Modelling our data	.......................................................................................................	120	
Our first schema	.................................................................................................................	120	

INCLUDING THE SCHEMA INTO THE MODULE 	..................................................	122	



INCLUDE THE NEW MODULE INTO THE MAIN MODULE 	...............................	122	

Using the schema	..........................................................................................................	123	
The interface	.......................................................................................................................	123	
The service	..........................................................................................................................	124	
The controller	.....................................................................................................................	125	

The first requests	.........................................................................................................	126	

Relationships	................................................................................................................	127	
Modelling relationships	.....................................................................................................	128	
Saving relationships	..........................................................................................................	129	
Reading relationships	.......................................................................................................	131	

Summary	......................................................................................................................	133	

Chapter 8. Web sockets	................................................................................................	134	

WebSocketGateway	.....................................................................................................	134	

Gateways	......................................................................................................................	135	

Authentication	..............................................................................................................	137	

Adapter	........................................................................................................................	138	

Client side	.....................................................................................................................	141	

Summary	......................................................................................................................	144	

Chapter 9. Microservices	.............................................................................................	145	

Server bootstrap	...........................................................................................................	145	

Configuration	...............................................................................................................	146	

First microservice handler	...........................................................................................	146	

Sending data	.................................................................................................................	147	

Exception filters	...........................................................................................................	149	

Pipes	.............................................................................................................................	151	

Guards	.........................................................................................................................	152	

Interceptors	..................................................................................................................	154	

Built-in transports	........................................................................................................	155	
Redis	....................................................................................................................................	155	
MQTT	....................................................................................................................................	157	
NATS	....................................................................................................................................	158	
gRPC	....................................................................................................................................	160	

Custom transport	.........................................................................................................	165	

Hybrid application	.......................................................................................................	172	

Advanced architecture design	......................................................................................	173	

Summary	......................................................................................................................	175	

	



Chapter	10.	Routing	and	request	handling	in	Nest.js	.....................................................	177	

Request handlers	..........................................................................................................	177	

Generating responses	...................................................................................................	178	
Standard approach	............................................................................................................	178	
Express approach	..............................................................................................................	179	

Route parameters	.........................................................................................................	179	

Request body	................................................................................................................	180	

Request object	..............................................................................................................	180	

Asynchronous handlers	................................................................................................	181	
Async/await	.........................................................................................................................	181	
Promise	................................................................................................................................	182	
Observables	........................................................................................................................	182	

Error responses	............................................................................................................	183	
HttpException	.....................................................................................................................	183	
Unrecognized exceptions	.................................................................................................	184	

Summary	......................................................................................................................	184	

Chapter	11.	OpenAPI	(Swagger)	Specification	................................................................	186	

Document Settings	.......................................................................................................	187	
Documenting authentication	............................................................................................	188	

Swagger UI	...................................................................................................................	190	

API input decorators	....................................................................................................	192	
@Body	.................................................................................................................................	196	
@Param	...............................................................................................................................	200	
@Query	................................................................................................................................	203	
@Headers	............................................................................................................................	206	
Authentication	....................................................................................................................	210	

API request and response decorators	..........................................................................	213	

API metadata decorators	.............................................................................................	219	

Saving the swagger document	......................................................................................	225	

Summary	......................................................................................................................	225	

Chapter	12.	Command	Query	Responsibility	Separation	(CQRS)	....................................	227	

Entry module commands	.............................................................................................	228	
Command handlers	...........................................................................................................	229	
Invoking command handlers	............................................................................................	234	

Linking keywords with events	......................................................................................	239	
Keyword events	..................................................................................................................	249	
Invoking event handlers	....................................................................................................	253	

Retrieving keywords APIs	...........................................................................................	258	

Linking keywords with sagas	.......................................................................................	262	
Keyword saga commands	................................................................................................	262	



Keyword saga	.....................................................................................................................	266	

Summary	......................................................................................................................	270	

Chapter	13.	Architecture	...............................................................................................	272	

Style guide of naming conventions	...............................................................................	272	
Controller	.............................................................................................................................	272	
Service	.................................................................................................................................	272	
Module	.................................................................................................................................	273	
Middleware	..........................................................................................................................	273	
Exception filter	...................................................................................................................	273	
Pipe	.......................................................................................................................................	273	
Guard	...................................................................................................................................	273	
Interceptor	...........................................................................................................................	274	
Custom decorator	..............................................................................................................	274	
Gateway	...............................................................................................................................	274	
Adapter	................................................................................................................................	274	
Unit test	...............................................................................................................................	275	
E2E test	................................................................................................................................	275	

Directory structure	......................................................................................................	275	
Server architecture	............................................................................................................	275	

COMPLETE OVERVIEW 	..................................................................................................	275	
THE SRC DIRECTORY 	......................................................................................................	276	

Angular Universal architecture	........................................................................................	282	
THE SRC DIRECTORY 	......................................................................................................	282	

Summary	......................................................................................................................	284	

Chapter	14.	Testing	.......................................................................................................	285	

Unit testing	...................................................................................................................	285	
Tooling	.................................................................................................................................	286	
Preparation	..........................................................................................................................	286	
Writing our first test	...........................................................................................................	288	
Testing for equality	............................................................................................................	294	
Covering our code in tests	...............................................................................................	296	

FAILING TESTS FOR LOW COVERAGE 	.................................................................	298	

E2E testing	...................................................................................................................	301	
Preparation	..........................................................................................................................	301	
Writing end-to-end tests	...................................................................................................	302	

Summary	......................................................................................................................	303	

Chapter 15. Server-side Rendering with Angular Universal	.......................................	305	

Serving the Angular Universal App with Nest.js	.........................................................	306	

Building and running the Universal App	.....................................................................	312	

Summary	......................................................................................................................	313	
	

 



  



Preface	

What is Nest.js? 
There are so many available web frameworks, and with the advent of Node.js, 
even more have been released. JavaScript frameworks go in and out of style 
very quickly as web technologies change and grow. Nest.js is a good starting 
point for many developers that are looking to use a modern web framework 
because it uses a language that is very similar to that of the most used language 
on the web to this day, JavaScript. Many developers were taught programming 
using languages such as Java or C/C++, which are both strict languages, so 
using JavaScript can be a little awkward and easy to make mistakes given the 
lack of type safety. Nest.js uses TypeScript, which is a happy medium. It is a 
language that provides the simplicity and power of JavaScript with the type 
safety of other languages you may be used to. The type safety in Nest.js is only 
available at compile time, because the Nest.js server is compiled to a Node.js 
Express server that runs JavaScript. This is still a major advantage, however, 
since it allows you to better design programs error free prior to runtime. 

Node.js has a rich ecosystem of packages in NPM (Node Package Manager). 
With over 350,000 packages, it’s the world’s largest package registry. With 
Nest.js making use of Express, you have access to each and every one of these 
packages when developing Nest applications. Many even have type definitions 
for their packages that allow IDE’s to read the package and make 
suggestions/auto fill in code that may not be possible when crossing JavaScript 
code with TypeScript code. One of the largest benefits of Node.js is the huge 
repository of modules that are available to pull from instead of having to write 
your own. Nest.js includes some of these modules already as part of the Nest 
platform, like @nestjs/mongoose, which uses the NPM library mongoose. Prior to 
2009, JavaScript was mainly a front-end language, but after the release of 
Node.js in 2009, it spurred the development of many JavaScript and TypeScript 
projects like: Angular, React, and Vue, among others. Angular was a heavy 
inspiration for the development of Nest.js because both use a 
Module/Component system that allows for reusability. If you are not familiar 
with Angular, it is a TypeScript-based front-end framework that can be used 
cross-platform to develop responsive web apps and native apps, and it functions 
a lot like Nest does. The two also pair very well together with Nest providing 
the ability to run a Universal server to serve pre-rendered Angular web pages to 
speed up website delivering times using Server-Side Rendering (SSR) 
mentioned above. 



About the example 
This book will reference a working Nest.js project that is hosted on GitHub at 
(https://github.com/backstopmedia/nest-book-example). Throughout the book, 
code snippets and chapters will reference parts of the code so that you can see a 
working example of what you are learning about. The example Git repository 
can be cloned within your command prompt. 

git clone https://github.com/backstopmedia/nest-book-
example.git 

This will create a local copy of the project on your computer, which you can run 
locally by building the project with Docker: 

docker-compose up 

Once your Docker container is up and running on port localhost:3000, you will 
want to run the migration before doing anything else. To do this run: 

docker ps 

To get the ID of your running Docker container: 

docker exec -it [ID] npm run migrate up 

This will run the database migrations so that your Nest.js app can read and write 
to the database with the correct schema. 

If you don’t want to use Docker, or cannot use Docker, you can build the 
project with your choice of package managers such as npm or yarn: 

npm install 

or 

yarn 

This installs the dependencies in your node_modules folder. Then run: 

npm start:dev 

Or the following to start your Nest.js server: 

yarn start:dev 



These will run nodemon, which will cause your Nest.js application to restart if 
any changes are made, saving you from having to stop, rebuild, and start your 
application again. 

About the authors 
• Greg Magolan is a Senior Architect, Full-Stack Engineer, 
and Angular Consultant at Rangle.io. He has been developing 
enterprise software solutions for over 15 years working for 
companies suchas Agilent Technologies, Electronic Arts, Avigilon, 
Energy Transfer Partners, FunnelEnvy, Yodel andACM Facility 
Safety. 
• Jay Bell is the CTO of Trellis. He is a Senior Angular 
developer that uses Nest.js in production to develop industry 
leading software to help non-profits and charities in Canada. He is 
a serial entrepreneur that has developed software in a large range 
of industries from helping combat wildfires with drones to building 
mobile apps. 
• David Guijarro is a Front-End Developer at Car2go Group 
GmbH. He has a wide experience working within the JavaScript 
ecosystem. He has successfully built and led multi-cultural, multi-
functional teams. 
• Adrien de Peretti is a Full-Stack JavaScript Developer. He 
is passionate about new technologies and is constantly looking for 
new challenges, and is especially interested in the field of Artificial 
Intelligence and Robotics. When he is not front of his computer, 
Adrien is in nature and playing different sports. 
• Patrick Housley is a Lead Technologist at VML. He is an IT 
professional with over six years of experience in the technology 
industry and is capable of analyzing complex issues spanning 
multiple technologies while providing detailed resolutions and 
explanations. He has strong front-end development skills with 
experience leading development teams in maintenance and 
greenfield projects. 

 
  



Chapter 1. Introduction 
Every web developer relies heavily on one web framework or another 
(sometimes more if their services have different requirements) and 
companies will rely on many frameworks, but each has its own pros and 
cons. These frameworks provide just that, a frame for developers to build 
on top of, providing the basic functionality that any web framework must 
provide in order to be considered as a good choice for a developer or 
company to use in their tech stack. In this book, we will talk about many 
of those parts of the framework you would expect to see in a progressive 
framework such as Nest. These include: 

1. Dependency Injection 
2. Authentication 
3. ORM 
4. REST API 
5. Websockets 
6. Microservices 
7. Routing 
8. Explanation of Nest specific tools 
9. OpenApi (Swagger) Documentation 
10. Command Query Responsibility Segregation (CQRS) 
11. Testing 
12. Server-side rendering with Universal and Angular. 

Nest provides more of these features because it is a modern web 
framework built on top of a Node.js Express server. By leveraging the 
power of modern ES6 JavaScript for flexibility and TypeScript to enforce 
type safety during compile time, Nest helps bring scalable Node.js 
servers to a whole new level when designing and building server-side 
applications. Nest combines three different techniques into a winning 
combination that allows for highly testable, scalable, loosely coupled and 
maintainable applications. These are: 

1. Object-Oriented Programming (OOP): A model that builds 
around objects instead of actions and reusability rather than niche 
functionality. 
2. Functional Programming (FP): The designing of determinate 
functionality that does not rely upon global states, ie. a function f(x) 



returns the same result every time for some set parameters that do 
not change. 
3. Functional Reactive Programming (FRP): An extension of FP 
from above and Reactive programming. Functional Reactive 
Programming is at its core Functional Programming that accounts 
for a flow across time. It is useful in applications such as UI, 
simulations, robotics and other applications where the exact 
answer for a specific time period may differ from that of another 
time period. 

Topics discussed 
Each of the topics below will be discussed in more detail in the following 
chapters. 

Nest CLI 
New in version 5 of Nest there is a CLI that allows for command line generation 
of projects and files. The CLI can be installed globally with: 

npm install -g @nestjs/cli 

Or through Docker with: 

docker pull nestjs/cli:[version] 

A new Nest project can be generated with the command: 

nest new [project-name] 

This process will create the project from a typescript-starter and will ask for 
the name, description, version (defaults to 0.0.0), and author (this would be your 
name). After this process is finished you will have a fully setup Nest project 
with the dependencies installed in your node_modules folder. The newcommand 
will also ask what package manager you would like to use, in the same way that 
either yarnor npm can be used. Nest gives you this choice during creation. 

The most used command from the CLI will be the generate (g) command, this 
will allow you to create new controllers, modules, servies or any other 
components that Nest supports. The list of available components is: 



1. class (cl) 
2. controller (co) 
3. decorator (d) 
4. exception (e) 
5. filter (f) 
6. gateway (ga) 
7. guard (gu) 
8. interceptor (i) 
9. middleware (mi) 
10. module (mo) 
11. pipe (pi) 
12. provider (pr) 
13. service (s) 

Note that the string in the brackets is the alias for that specific command. This 
means that instead of typing: 

nest generate service [service-name] 

In your console, you can enter: 

nest g s [service-name] 

Lastly, the Nest CLI provides the info (i) command to display information 
about your project. This command will output information that looks something 
like: 

[System Information] 
OS Version     : macOS High Sierra 
NodeJS Version : v8.9.0 
YARN Version    : 1.5.1 
[Nest Information] 
microservices version : 5.0.0 
websockets version    : 5.0.0 
testing version       : 5.0.0 
common version        : 5.0.0 
core version          : 5.0.0 

Dependency Injection 



Dependency Injection is the technique of supplying a dependent object, such as 
a module or component, with a dependency like a service, thereby injecting it 
into the component’s constructor. An example of this taken from the sequelize 
chapter is below. Here we are injecting the UserRespository service into the 
constructor of the UserService, thereby providing access to the User Database 
repository from inside the UserService component. 

@Injectable() 
export class UserService implements IUserService { 
    constructor(@Inject('UserRepository') private readonly 
UserRepository: typeof User) { } 
    ... 
} 

In turn this UsersService will be injected into the UsersController in 
the src/users/users.controller.ts file, which will provide access to 
the UsersService from the routes that point to this controller. More about Routes 
and Dependency injection in later chapters. 

Authentication 
Authentication is one of the most important aspects of developing. As 
developers, we always want to make sure that users can only access the 
resources they have permission to access. Authentication can take many forms, 
from showing your drivers license or passport to providing a username and 
password for a login portal. In recent years these authentication methods have 
expanded out to become more complicated, but we still need the same server-
side logic to make sure that these authenticated users are always who they say 
they are and persist this authentication so they do not need to reauthenticate for 
every single call to a REST API or Websocket because that would provide a 
pretty terrible user experience. The chosen library for this is ironically named 
Passport as well, and is very well known and used in the Node.js ecosystem. 
When integrated into Nest it uses a JWT (JSON Web Token) strategy. Passport 
is a Middleware that the HTTP call is passed through before hitting the endpoint 
at the controller. This is the AuthenticationMiddleware written for the example 
project that extends NestMiddleware, authenticating each user based on the email 
in the request payload. 

@Injectable()   
export class AuthenticationMiddleware implements NestMiddleware {   
   constructor(private userService: UserService) { }   



 
   async resolve(strategy: string): Promise<ExpressMiddleware> {   
       return async (req, res, next) => {   
           return passport.authenticate(strategy, async (/*...*/args: 
any[]) => {   
               const [, payload, err] = args;   
                if (err) {   
                    return 
res.status(HttpStatus.BAD_REQUEST).send('Unable to authenticate the user.');   
                }   
 
               const user = await this.userService.findOne({ 
                    where: { email: payload.email } 
               });   
                req.user = user;   
                return next();   
            })(req, res, next);   
        };   
    }   
} 

Nest also implements Guards, which are decoratorated with the 
same @Injectable() as other providers. Guards restrict certain endpoints based 
on what the authenticated user has access to. Guards will be discussed more in 
the Authentication chapter. 

ORM 
An ORM is an Object-relational mapping and is one of the most important 
concepts when dealing with communication between a server and a database. 
An ORM provides a mapping between objects in memory (Defined classes such 
a User or Comment) and Relational tables in a database. This allows you to create 
a Data Transfer Object that knows how to write objects stored in memory to a 
database, and read the results from an SQL or another query language, back into 
memory. In this book, we will talk about three different ORMs: two relational 
and one for a NoSQL database. TypeORM is one of the most mature and 
popular ORMs for Node.js and thus has a very wide and flushed out feature set. 
It is also one of the packages that Nest provides its own packages 
for: @nestjs/typeorm. It is incredibly powerful and has support for many 
databases like MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, 



Oracle, and WebSQL. Along with TypeORM, Sequelize is also another ORM 
for relational data. 

If TypeORM is one of the most popular ORMs, then Sequelize is THE most 
popular in the Node.js world. It is written in plain JavaScript but has TypeScript 
bindings through the sequelize-typescriptand @types/sequelize packages. 
Sequelize boasts strong transaction support, relations, read replication and many 
more features. The last ORM covered in this book is one that deals with a non-
relational, or NoSQL, database. The package mongoose handles object relations 
between MongoDB and JavaScript. The actual mapping between the two is 
much closer than with relational databases, as MongoDB stores its data in JSON 
format, which stands for JavaScript Object Notation. Mongoose is also one of 
the packages that has a @nestjs/mongoose package and provides the ability to 
query the database through query chaining. 

REST API 
REST is one of the main design paradigms for creating APIs. It stands for 
Representative State Transfer, and uses JSON as a transfer format, which is in 
line with how Nest stores objects, thus it is a natural fit for consuming and 
returning HTTP calls. A REST API is a combination of many techniques that 
are talked about in this book. They are put together in a certain way; a client 
makes an HTTP call to a server. That server will Route the call to the correct 
Controller based on the URL and HTTP verb, optionally passing it through one 
or more Middlewares prior to reaching the Controller. The Controller will then 
hand it off to a Service for processing, which could include communication with 
a Database through an ORM. If all goes well, the server will return an OK 
response to the client with an optional body if the client requested resources 
(GET request), or just a 200/201 HTTP OK if it was a POST/PUT/DELETE 
and there is no response body. 

WebSockets 
WebSockets are another way to connect to and send/receive data from a server. 
With WebSockets, a client will connect to the server and then subscribe to 
certain channels. The clients can then push data to a subscribed channel. The 
server will receive this data and then broadcast it to every client that is 
subscribed to that specific channel. This allows multiple clients to all receive 
real-time updates without having to make API calls manually, potentially 
flooding the server with GET requests. Most chat apps use WebSockets to allow 



for real-time communication, and everyone in a group message will receive the 
message as soon as one of the other members sends one. Websockets allow for 
more of a streaming approach to data transfer than traditional Request-Response 
API’s, because Websockets broadcast data as it’s received. 

Microservices 
Microservices allow for a Nest application to be structured as a collection of 
loosely coupled services. In Nest, microservices are slightly different, because 
they are an application that uses a different transport layer other than HTTP. 
This layer can be TCP or Redis pub/sub, among others. Nest supports TCP and 
Redis, although if you are married to another transport layer it can be 
implemented by using the CustomTransportStrategy interface. Microservices are 
great because they allow a team to work on their own service within the global 
project and make changes to the service without affecting the rest of the project 
since it is loosely coupled. This allows for continuous delivery and continuous 
integration independent of other teams microservices. 

GraphQL 
As we saw above, REST is one paradigm when designing APIs, but there is a 
new way to think about creating and consuming APIs: GraphQL. With 
GraphQL, instead of each resource having its own URL pointing to it, a URL 
will accept a query parameter with a JSON object in it. This JSON object 
defines the type and format of the data to return. Nest provides functionality for 
this through the @nestjs/graphql package. This will include the GraphQLModule in 
the project, which is a wrapper around the Apollo server. GraphQL is a topic 
that could have an entire book written about it, so we don’t go into it any further 
in this book. 

Routing 
Routing is one of the core principles when discussing web frameworks. 
Somehow the clients need to know how to access the endpoints for the server. 
Each of these endpoints describes how to retrieve/create/manipulate data that is 
stored on the server. Each Component that describes an API endpoint must have 
a @Controller(‘prefix’) decorator that describes the API prefix for this 
component’s set of endpoints. 



@Controller('hello') 
export class HelloWorldController { 
  @Get(‘world’) 
  printHelloWorld() { 
    return ‘Hello World’; 
  } 
} 

The above Controller is the API endpoint for GET /hello/world and will return 
an HTTP 200 OK with Hello World in the body. This will be discussed more in the 
Routing chapter where you will learn about using URL params, Query params, 
and the Request object. 

Nest specific tools 
Nest provides a set of Nest.js specific tools that can be used throughout the 
application to help with writing reusable code and following SOLID principles. 
These decorators will be used in each of the subsequent chapters, as they define 
a specific functionality: 

1. @Module: The definition for this reusable package of code 
within the project, it accepts the following parameters to define its 
behavior. ⋅⋅ Imports: These are the modules that contain the 
components used within this module. ⋅⋅ Exports: These are the 
components that will be used in other modules, that import this 
module. ⋅⋅ Components: These are the components that will be 
available to be shared across at least this module through the Nest 
Injector. ⋅⋅ Controllers: The controllers created within this module, 
these will define the API endpoints based on the routes defined. 
2. @Injectable: Almost everything in Nest is a provider that can 
be injected through constructors. Providers are annotated 
with @Injectable(). .. Middleware: A function that is run before a 
request is passed to the route handler. In this chapter, we will talk 
about the difference between Middleware, Async Middlewares and 
Functional Middleware. .. Interceptor: Similar to Middleware, they 
bind extra logic before and after the execution of a method, and 
they can both transform or completely override a function. 
Interceptors are inspired by Aspect-Oriented Programming (AOP). 
.. Pipe: Similar to part of an Interceptors functionality, Pipe 
transforms input data to the desired output. ..Guard: A smarter and 



more niche Middleware, Guards have the singular purpose of 
determining if a request should be handled by the router handler or 
not. ..* Catch: Tell an ExceptionFilter what exception to look for and 
then bind data to it. 
3. @Catch: Binds metadata to the exception filter and tells Nest 
that a filter is looking only for the exceptions listed in the @Catch. 

Note: In Nest Version 4 not everything under @Injectable() listed above uses 
the @Injectable() decorator. Components, Middlewares, Interceptors, Pipes, 
and Guards each have their own decorator. In Nest Version 5 these have all 
been combined to @Injectable() to reduced the differences between Nest and 
Angular. 

OpenAPI (Swagger) 
Documentation is very important when writing a Nest server, and is especially 
so when creating an API that will be consumed by others, otherwise the 
developer writing the clients that will eventually be consuming the API do not 
know what to send or what they get back. One of the most popular 
documentation engines out there is Swagger. Like with others, Nest provides a 
dedicated module for the OpenAPI (Swagger) spec, @nestjs/swagger. This 
module provides decorators to help describe the inputs/outputs and endpoints of 
your API. This documentation is then accessible through an endpoint on the 
server. 

Command Query Responsibility Segregation 
(CQRS) 
Command Query Responsibility Segregation (CQRS) is the idea that each 
method should either be one that performs an action (command) or requests data 
(query), but not both. In the context of our sample app, we would not have the 
database access code directly within the Controller for an endpoint, but rather 
create a Component (Database Service) that has a method such 
as getAllUsers() that will return all the users that the Controllers Service can 
call, thus separating the question and the answer into different Components. 

Testing 



Testing your Nest server will be imperative so that once it is deployed their are 
no unforseen issure and it all runs smoothly. There are two different kinds of 
tests you will learn about in this book: Unit Tests and E2E Tests (End-to-end 
Tests). Unit Testing is the art of testing small snippets or blocks of code, and 
this could be as granular as testing individual functions or writing a test for 
a Controller, Interceptor, or any other Injectable. There are many popular unit 
testing frameworks out there, and Jasmine and Jest are two popular ones. Nest 
provides special packages, @nestjs/testing specifically, for writing unit tests 
in *.spec.ts and *.test.ts classes. 

E2E Testing is the other form of testing that is commonly used and is different 
from unit testing only in that it tests entire functionality rather than individual 
functions or components, which is where the name end-to-end testing came 
from. Eventually applications will become so large that it is hard to test 
absolutely every piece of code and endpoint. In this case you can use E2E tests 
to test the application from beginning to the end to make sure everything works 
along the way. For E2E testing a Nest application can use the Jest library again 
to mock up components. Along with Jest you can use the supertest library to 
simulate HTTP requests. 

Testing is a very important part of writing applications and should not be 
ignored. This is a chapter that will be relevant no matter what language or 
framework you end up working with. Most large scale development companies 
have entire teams dedicated to writing tests for the code that is pushed to 
production applications, and these are called QA developers. 

Server-side rendering with Angular Universal 
Angular is a client side application development framework and Angular 
Universal is a technology that allows our Nest server to pre-render the 
webpages and serve them to the client, which has numerous benefits that will be 
discussed in the Server-side Rendering with Angular Universal chapter. Nest 
and Angular pair very well together due to both using TypeScript and Node.js. 
Many of the packages that can be used in the Nest server can also be used in the 
Angular app because they both compile to JavaScript. 

Summary 
Throughout this book, you will go through each of the above topics in more 
detail, continuously building on top of prior concepts. Nest provides a clean 



well-organized framework that implements each of these concepts in a simple 
yet efficient way that is consistent across all modules because of the modular 
design of the framework. 

	 	



Chapter 2. Overview 
In this chapter we’ll take an overview of Nest.js and look at the core 
concepts that you’ll need to build a Nest.js application. 

Controllers 
Controllers in Nest are responsible for handling incoming requests and 
returning responses to the client. Nest will route incoming requests to handler 
functions in controller classes. We use the @Controller() decorator to create a 
controller class. 

import { Controller, Get } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Get() 
    index(): Entry[] { 
        const entries: Entry[] = this.entriesService.findAll(); 
        return entries; 
    } 

We’ll go over the details of routing and handling requests in the Routing and 
Request Handlingchapter. 

Providers 
Providers in Nest are used to create services, factories, helpers, and more that 
can be injected into controllers and other providers using Nest’s built-in 
dependency injection. The @Injectable() decorator is used to create a provider 
class. 

The AuthenticationService in our blog application, for example, is a provider 
that injects and uses the UsersService component. 

@Injectable() 
export class AuthenticationService { 
    constructor(private readonly userService: UserService) {} 
 



    async validateUser(payload: { 
        email: string; 
        password: string; 
    }): Promise<boolean> { 
        const user = await this.userService.findOne({ 
            where: { email: payload.email } 
        }); 
        return !!user; 
    } 
} 

We’ll talk more about dependency injection in the the Dependency 
Injection chapter. 

Modules 
A Nest.js application is organized into modules. If you’re familiar with modules 
in Angular, then the module syntax Nest uses will look very familiar. 

Every Nest.js application will have a root module. In a small application, this 
may be the only module. In a larger application, it makes sense to organize your 
application into multiple modules that split up your code into features and 
related capabilities. 

A module in Nest.js is a class with a @Module() decorator. 
The @Module() decorator takes a single object that describes module using the 
following properties. 

Property Description 

components The components to be instantiated that may be shared across this module and exported 
to be available to other modules 

controllers The controllers that are created by this module 

imports The list of modules to import that export components that are requires in this module 

exports The list of components from this module to be made available to other modules 

In our example application, the root Module is named AppModule and the 
application is split up into a number of sub-modules that handle the major parts 



of the application such as authentication, comments, database access, blog 
entries and users. 

@Module({ 
    components: [], 
    controllers: [], 
    imports: [ 
        DatabaseModule, 
        AuthenticationModule.forRoot('jwt'), 
        UserModule, 
        EntryModule, 
        CommentModule, 
        UserGatewayModule, 
        CommentGatewayModule 
    ], 
    exports: [], 
}) 
export class AppModule implements NestModule {} 

The AppModule imports the modules that are needed for the application. The 
root module in our application doesn’t need to have any exports since no other 
modules import it. 

The root module also doesn’t have any components or controllers, as these are 
all organized within the sub-modules they are related to. The EntryModule, for 
example, includes both components and controllers that are related to blog 
entries. 

@Module({ 
    components: [entryProvider, EntryService], 
    controllers: [EntryController], 
    imports: [], 
    exports: [EntryService], 
}) 
export class EntryModule implements NestModule {} 

Modules in Nest.js are singletons by default. This means that you can share the 
same instance of an exported component, such as the EntryService above, 
between modules without any effort. 

Bootstrapping 



Every Nest.js application needs to be bootstrapped. This is done by by using 
the NestFactory to create the root module and calling the listen() method. 

In our example application, the entry point is main.ts and we use the async / 
await pattern to create the AppModule and call listen(): 

import { NestFactory } from '@nestjs/core'; 
import { AppModule } from './app.module'; 
 
async function bootstrap() { 
  const app = await NestFactory.create(AppModule); 
  await app.listen(3000); 
} 
bootstrap(); 

Middleware 
Nest.js middleware is either a function or a class decorated with 
the @Injectable() decorator that implements the NestMiddleware interface. 
Middleware is called before route handlers. These functions have access to 
the request and response object, and they can makes changes to the request and 
response object. 

One or more middleware functions can be configured for a route, and a 
middleware function can choose to pass the execution to the next middleware 
function on the stack or to end the request-response cycle. 

If a middleware function does not end the request-response cycle, it must 
call next() to pass control to the next middleware function or to the request 
handler if it is the last function on the stack. Failing to do so will leave the 
request hanging. 

The AuthenticationMiddleware in our blog application, for example, is 
responsible for authenticating a user that is accessing the blog. 

import { 
    MiddlewareFunction, 
    HttpStatus, 
    Injectable, 
    NestMiddleware 
} from '@nestjs/common'; 



import * as passport from 'passport'; 
import { UserService } from '../../modules/user/user.service'; 
 
@Injectable() 
export class AuthenticationMiddleware implements NestMiddleware { 
    constructor(private userService: UserService) {} 
 
    async resolve(strategy: string): Promise<MiddlewareFunction> { 
        return async (req, res, next) => { 
            return passport.authenticate(strategy, async (...args: any[]) 
=> { 
                const [, payload, err] = args; 
                if (err) { 
                    return res 
                        .status(HttpStatus.BAD_REQUEST) 
                        .send('Unable to authenticate the user.'); 
                } 
 
                const user = await this.userService.findOne({ 
                    where: { email: payload.email } 
                }); 
                req.user = user; 
                return next(); 
            })(req, res, next); 
        }; 
    } 
} 

If authentication fails, a 400 response is sent back to the client. If authentication 
is successful, then next() is called and the request will continue down the 
middleware stack until it reaches the request handler. 

Middleware is configured on routes in the configure() function of a Nest.js 
module. For example, the AuthenticationMiddle above is configured in 
the AppModule as shown here. 

@Module({ 
    imports: [ 
        DatabaseModule, 
        AuthenticationModule.forRoot('jwt'), 
        UserModule, 



        EntryModule, 
        CommentModule, 
        UserGatewayModule, 
        CommentGatewayModule, 
        KeywordModule 
    ], 
    controllers: [], 
    providers: [] 
}) 
export class AppModule implements NestModule { 
    public configure(consumer: MiddlewareConsumer) { 
        const userControllerAuthenticatedRoutes = [ 
            { path: '/users', method: RequestMethod.GET }, 
            { path: '/users/:id', method: RequestMethod.GET }, 
            { path: '/users/:id', method: RequestMethod.PUT }, 
            { path: '/users/:id', method: RequestMethod.DELETE } 
        ]; 
 
        consumer 
            .apply(AuthenticationMiddleware) 
            .with(strategy) 
            .forRoutes( 
                ...userControllerAuthenticatedRoutes, 
                EntryController, 
                CommentController 
            ); 
    } 
} 

You can apply middleware to all routes on a controller, as is done for 
the EntryController and CommentController. You can also apply middleware to 
specific routes by their path, as is done for the subset of routes from 
the UserController. 

Guards 
Guards are classes that are decorated with the @Injectable() decorator and 
implement the CanActivateinterface. A guard is responsible for determining if a 
request should be handled by a route handler or route. Guards are 
executed after every middleware, but before pipes. Unlike middleware, guards 



have access to the ExecutionContext object, so they know exactly what is going 
to evaluated. 

In our blog application, we use the CheckLoggedInUserGuard in 
the UserController to only allow a user to access and access their own user 
information. 

import { Injectable, CanActivate, ExecutionContext } from 
'@nestjs/common'; 
import { Observable } from 'rxjs'; 
 
@Injectable() 
export class CheckLoggedInUserGuard implements CanActivate { 
    canActivate( 
        context: ExecutionContext 
    ): boolean | Promise<boolean> | Observable<boolean> { 
        const req = context.switchToHttp().getRequest(); 
        return Number(req.params.userId) === req.user.id; 
    } 
} 

The @UseGuards decorator is used to apply a guard to a route. This decorator can 
be used on a controller class to apply the guard to all routes in that controller, or 
it can be used on individual route handlers in a controller as seen in 
the UserController: 

@Controller('users') 
export class UserController { 
    constructor(private readonly userService: UserService) { } 
 
    @Get(':userId') 
    @UseGuards(CheckLoggedInUserGuard) 
    show(@Param('userId') userId: number) { 
        const user: User = this.userService.findById(userId); 
        return user; 
    } 

Summary 



In this chapter we covered Nest.js controllers, providers, modules, 
bootstrapping, and middleware. In the next chapter we will go over Nest.js 
authentication. 

	 	



Chapter 3. Nest.js authentication 
Nest.js, using version 5 the @nestjs/passport package, allows you to 
implement the authentication strategy that you need. Of course you can 
also do this manually using passport. 

In this chapter you will see how to use passport by integrating it into 
your Nest.js project. We also cover what a strategy is, and how to 
configure the strategy to use with passport. 

We will also manage restriction access using an authentication 
middleware, and see how guards can check data before the user accesses 
the handlers. In addition, we’ll show how to use the passport package 
provided by Nest.js in order to cover both possibilities. 

As an example, we will use the following repository files: 

• /src/authentication 
• /src/user 
• /shared/middlewares 
• /shared/guards 

Passport 
Passport is a well known library that is popular and flexible to use. In fact, 
passport is flexible middleware that can be fully customized. Passport allows 
different ways to authenticate a user like the following: 

• local strategy that allows you to authenticate a user just with 
it’s own data email and password in most cases. 
• jwt strategy that allows you to authenticate a user by 
providing a token and verifying this token using jsonwebtoken. This 
strategy is used a lot. 

Some strategies use the social network or Google in order to authenticate the 
user with a profile such as googleOAuth, Facebook, or even Twitter. 

In order to use passport you have to install the following package: npm i 
passport. Before you see how to implement the authentication, you must 
implement the userService and the userModel. 



Manual implementation 
In this section, we will implement the authentication manually using passport 
without using the Nest.js package. 

Implementation 

In order to configure passport, three things need to be configured: 

• The authentication strategy 
• The application middleware 
• The session, which is optional 

Passport uses the strategy to authenticate a request, and the verification of the 
credential is delegated to the strategies in some of the requests. 

Before using passport, you must configure the strategy, and in this case we will 
use the passport-jwtstrategy. 

Before anything else, you must install the appropriate packages: 

• npm i passport-jwt @types/passport-jwt 
• npm i jsonwebtoken @types/jsonwebtoken 

AUTHENTICATION MODULE 

In order to have a working example, you must implement some modules, and 
we will start with AuthenticationModule. The AuthenticationModule will 
configure the strategy using the jwt strategy. To configure the strategy we will 
extend the Strategy class provided by the passport-jwt package. 

Strategy 

Here is an example of a strategy extending the Strategy class in order to 
configure it and use it in passport. 

@Injectable()   
export default class JwtStrategy extends Strategy {   
   constructor(private readonly authenticationService: 
AuthenticationService) {   
       super({   
            jwtFromRequest: ExtractJwt.fromAuthHeaderAsBearerToken(),   



            passReqToCallback: true,   
            secretOrKey: 'secret'   
        }, async (req, payload, next) => {   
            return await this.verify(req, payload, next);   
        });   
        passport.use(this);   
    }   
 
   public async verify(req, payload, done) {   
       const isValid = await 
this.authenticationService.validateUser(payload);   
        if (!isValid) {   
           return done('Unauthorized', null);   
        } else {   
           return done(null, payload);   
        }   
   }   
} 

The constructor allows you to pass some configuration parameters to the 
extended Strategy class. In this case we are using only three parameters: 

• jwtFromRequest option accepts a function in order to extract the 
token from the request. In our case we are using 
the ExtractJwt.fromAuthHeaderAsBearerToken() function provided by 
the passport-jwtpackage. This function will pick the token from the 
header of the request using the Authorizationheader, and pick the 
token that follows the bearer word. 
• passReqToCallback parameter takes a boolean in order to tell if 
you want to get the req in the verify method that you will see later. 
• secretOrKey parameter takes a string or a buffer in order to 
verify the token signature. 

Other parameters are available to configure the strategy, but to implement our 
authentication we don’t need them. 

Also, after passing the different previous parameters, we pass a callback 
function called verify. This function is asynchronous, and has the purpose to 
verify if the token passed and if the payload obtained from the token is valid or 
not. This function executes our verify method, which calls 
the authenticationService in order to validate the user with the payload as a 
parameter. 



If the user is valid, we return the payload, otherwise we return an error to 
indicate that the payload is not valid. 

Authentication service 

As shown in the previous section, in order to verify the payload that you get 
from the token, call the validateUser method provided by 
the AuthenticationService. 

In fact, this service will implement another method in order to generate the 
token for the logged in user. The service can be implemented as the following 
example. 

@Injectable()   
export class AuthenticationService {   
   constructor(private readonly userService: UserService) { }   
 
   createToken(email: string, ttl?: number) {   
        const expiresIn = ttl || 60 * 60;   
        const secretOrKey = 'secret';   
        const user = { email };   
        const token = jwt.sign(user, secretOrKey, { expiresIn });   
        return {   
            expires_in: expiresIn,   
            access_token: token,   
        };   
   }   
 
   async validateUser(payload: { email: string; password: string }): 
Promise<boolean> {   
        const user = await this.userService.findOne({   
            where: { email: payload.email }   
        });   
        return !!user;   
   }   
} 

The service injects the UserService in order to find the user using the payload 
pass to the validateUsermethod. If the email in the payload allows you to find 
the user, and if that user has a valid token, she can continue the authentication 
process. 



In order to provide a token for the user who try to logged in, implement 
the createToken method, which takes as parameters an email and an optional ttl. 
The ttl (Time to live) will configure the token to be valid for a period. The 
value of the ttl is expressed in seconds, and the default value that we have 
defined in 60 * 60, which means 1 hour. 

Authentication controller 

In order to process the authentication of the user, implement the controller and 
provide a handler for the login endpoint. 

@Controller()   
export class AuthenticationController {   
   constructor(   
        private readonly authenticationService: AuthenticationService,   
        private readonly userService: UserService) {}   
 
   @Post('login')   
   @HttpCode(HttpStatus.OK)   
   public async login(@Body() body: any, @Res() res): Promise<any> {   
       if (!body.email || !body.password) {   
           return res.status(HttpStatus.BAD_REQUEST).send('Missing email 

or password.');   
       }   
 
       const user = await this.userService.findOne({   
           where: {   
               email: body.email,   
                password: crypto.createHmac('sha256', 
body.password).digest('hex')   
           }   
       });   
       if (!user) {   
           return res.status(HttpStatus.NOT_FOUND).send('No user found 

with this email and password.');   
       }   
 
       const result = this.authenticationService.createToken(user.email);   
       return res.json(result);   
    }   
} 



The controller provides the login handler, which is accessible by a call on 
the POST /login route. The purpose of this method is to validate the credentials 
provided by the user in order to find him in the database. If the user is found, 
create the appropriate token that will be returned as a response with 
the expiresInvalue corresponding to our previously defined ttl. Otherwise the 
request will be rejected. 

Module 

We have now defined our service and strategy in order to configure passport 
and provide some method to create a token and validate a payload. Let’s 
define AuthenticationModule, which is similar to the following example. 

@Module({})   
export class AuthenticationModule {   
   static forRoot(strategy?: 'jwt' | 'OAuth' | 'Facebook'): 
DynamicModule {   
       strategy = strategy ? strategy : 'jwt';   
        const strategyProvider = {   
            provide: 'Strategy',   
            useFactory: async (authenticationService: 
AuthenticationService) => {   
                const Strategy = (await import 
(`./passports/${strategy}.strategy`)).default;   
                return new Strategy(authenticationService);   
            },   
            inject: [AuthenticationService]   
       };   
        return {   
            module: AuthenticationModule,   
            imports: [UserModule],   
            controllers: [AuthenticationController],   
            providers: [AuthenticationService, strategyProvider],   
            exports: [strategyProvider]   
        };   
    }   
} 

As you can see, the module is not defined as a normal module, so it has no 
components or controller defined in the @Module() decorator. In fact, this module 
is a dynamic module. In order to provide a multiple strategy, we can implement 
a static method on the class in order to call it when we import the module in 



another one. This method forRoot takes as a parameter the name of the strategy 
that you want to use and will create a strategyProvider in order to be added to 
the components list in the returned module. This provider will instanciate the 
strategy and provide the AuthenticationService as a dependency. 

Let’s continue by creating something to protect, such as the UserModule. 

USER MODULE 

The UserModule provides a service, a controller, and a model (see the sequelize 
chapter for the User model). We create some methods in the UserService in 
order to manipulate the data concerning the user. These methods are used in 
the UserController in order to provide some features to the user of the API. 

All of the features can’t be used by the user or restricted in the data that is 
returned. 

User service 

Let’s examine an example of the UserService and some methods in order to 
access and manipulate the data. All of the methods describe in this part will be 
used in the controller, and some of them are restricted by the authentication. 

@Injectable() 
export class UserService() { 
    // The SequelizeInstance come from the DatabaseModule have a look 
to the Sequelize chapter 
    constructor(@Inject('UserRepository') private readonly 
UserRepository: typeof User, 
                @Inject('SequelizeInstance') private readonly 
sequelizeInstance) { } 
 
    /* ... */ 
} 

The service injects the UserRepository that we have described in the Sequelize 
chapter in order to access the model and the data store in the database. We also 
inject the SequelizeInstance, also described in the Sequelize chapter, in order to 
use the transaction. 

The UserService implements the findOne method to find a user with a criteria 
passing in the optionsparameter. The options parameter can look like this: 



{ 

    where: { 
        email: 'some@email.test', 
        firstName: 'someFirstName' 
    } 
} 

Using this criteria, we can find the corresponding user. This method will return 
only one result. 

@Injectable() 
export class UserService() { 
    /* ... */ 
 
    public async findOne(options?: object): Promise<User | null> {   
        return await this.UserRepository.findOne<User>(options);   
    } 
 
    /* ... */ 
} 

Let’s implement the findById method, which takes as a parameter an ID in order 
to find a unique user. 

@Injectable() 
export class UserService() { 
    /* ... */ 
 
    public async findById(id: number): Promise<User | null> {   
        return await this.UserRepository.findById<User>(id);   
    }   
 
    /* ... */ 
} 

Then we need a way to create a new user in the database passing the user 
respecting the IUser interface. This method, as you can see, uses 
a this.sequelizeInstance.transaction transaction to avoid reading the data 
before everything is finished. This method passes a parameter to 
the create function, which is returning in order to get the instance user that has 
been created. 



@Injectable() 
export class UserService() { 
    /* ... */ 
 
    public async create(user: IUser): Promise<User> {   
        return await this.sequelizeInstance.transaction(async 
transaction => {   
            return await this.UserRepository.create<User>(user, {   
                returning: true,   
                transaction,   
            });   
        });   
    }   
 
    /* ... */ 
} 

Of course, if you can create a user, you also need the possibility to update it 
with the following method following the IUser interface. This method too will 
return the instance of the user that has been updated. 

@Injectable() 
export class UserService() { 
    /* ... */ 
 
    public async update(id: number, newValue: IUser): Promise<User | 
null> {   
        return await this.sequelizeInstance.transaction(async 
transaction => {   
            let user = await this.UserRepository.findById<User>(id, { 
transaction });   
            if (!user) throw new Error('The user was not found.');   
 
            user = this._assign(user, newValue);   
            return await user.save({   
                returning: true,   
                transaction,   
            });   
        });   
    }   
 



    /* ... */ 
} 

In order to make a round in all of the methods, we will implement 
the delete method to remove a user completely from the database. 

@Injectable() 
export class UserService() { 
    /* ... */ 
 
    public async delete(id: number): Promise<void> {   
        return await this.sequelizeInstance.transaction(async 
transaction => {   
            return await this.UserRepository.destroy({   
                where: { id },   
                transaction,   
            });   
        });   
    } 
 
    /* ... */ 
} 

In all of the previous examples, we have define a complete UserService that 
allowed us to manipulate the data. We have the possibility to create, read, 
update, and delete a user. 

User model 

If you wish to see the implementation of the user model, you can refer to the 
Sequelize chapter. 

User controller 

Now that we have created our service and model, we need to implement the 
controller to handle all the requests from the client. This controller provides at 
least a create, read, update and delete handler that should be implemented like 
the following example. 

@Controller()   
export class UserController {   
   constructor(private readonly userService: UserService) { } 



 
   /* ... */ 
} 

The controller injects the UserService in order to use the methods implemented 
in the UserService. 

Provide a GET users route that allows access to all users from the database, and 
you will see how we don’t want the user accessing the data of all of the users, 
just only for himself. This is why we are using a guard that only allows a user to 
acces his own data. 

@Controller()   
export class UserController {   
    /* ... */ 
 
    @Get('users')   
    @UseGuards(CheckLoggedInUserGuard) 
    public async index(@Res() res) {   
        const users = await this.userService.findAll();   
        return res.status(HttpStatus.OK).json(users);   
    } 
 
    /* ... */ 
} 

The user has access to a route that allows you to create a new user. Of course, if 
you want, the user can register into the logged in application, which we must 
allow for those without a restriction. 

@Controller()   
export class UserController {   
    /* ... */ 
 
    @Post('users')   
    public async create(@Body() body: any, @Res() res) {   
       if (!body || (body && Object.keys(body).length === 0)) throw new 
Error('Missing some information.');   
 
        await this.userService.create(body);   
        return res.status(HttpStatus.CREATED).send();   
    }   



 
    /* ... */ 
} 

We also provide a GET users/:id route that allows you to get a user by his ID. 
Of course a logged in user should not be able to access the data from another 
user even from this route. This route is also protected by a guard in order to 
allow the user access to himself and not another user. 

@Controller()   
export class UserController {   
    /* ... */ 
 
    @Get('users/:id')   
    @UseGuards(CheckLoggedInUserGuard) 
    public async show(@Param() id: number, @Res() res) {   
       if (!id) throw new Error('Missing id.');   
 
        const user = await this.userService.findById(id);   
        return res.status(HttpStatus.OK).json(user);   
    }    
 
    /* ... */ 
} 

A user can have the idea to update some of his own information, which is why 
we provide a way to update a user through the following PUT users/:id route. 
This route is also protected by a guard to avoid a user updating another user. 

@Controller()   
export class UserController {   
    /* ... */ 
    @Put('users/:id')   
    @UseGuards(CheckLoggedInUserGuard) 
    public async update(@Param() id: number, @Body() body: any, @Res() 
res) {   
       if (!id) throw new Error('Missing id.');   
 
        await this.userService.update(id, body);   
        return res.status(HttpStatus.OK).send();   
    } 



Use deletion to finish the last handler. This route has to also be protected by a 
guard to avoid a user from deleting another user. The only user that can be 
deleted by a user is himself. 

    @Delete('users/:id')   
    @UseGuards(CheckLoggedInUserGuard) 
    public async delete(@Param() id: number, @Res() res) {   
       if (!id) throw new Error('Missing id.');   
 
        await this.userService.delete(id);   
        return res.status(HttpStatus.OK).send();   
    }   
} 

We have implemented all of the methods that we need in this controller. Some 
of them are restricted by a guard in order to apply some security and avoid a 
user from manipulating the data from another user. 

Module 

To finish the implementation of the UserModule, we have to set up the module of 
course. This module contains a service, a controller, and a provider that allows 
you to inject the user model and provides a way to manipulate the stored data. 

@Module({   
    imports: [],   
    controllers: [UserController],   
    providers: [userProvider, UserService], 
    exports: [UserService]   
})   
export class UserModule {} 

This module is imported like the AuthenticationModule into the 
main AppModule in order to use it in the app and be accessible. 

APP MODULE 

The AppModule imports three modules for our example. 

• DatabaseModule accesses the sequelize instance and accesses 
the database. 
• AuthenticationModule allows you to log into a user and use the 
appropriate strategy. 



• UserModule exposes some endpoints that can be requested by 
the client. 

In the end, the module should looks like the following example. 

@Module({   
   imports: [   
        DatabaseModule,   
        // Here we specify the strategy 
        AuthenticationModule.forRoot('jwt'),   
        UserModule   
    ] 
})   
export class AppModule implements NestModule {   
   public configure(consumer: MiddlewaresConsumer) {   
       consumer   
           .apply(AuthenticationMiddleware)   
           .with(strategy)   
           .forRoutes(   
               { path: '/users', method: RequestMethod.GET },   
                { path: '/users/:id', method: RequestMethod.GET },   
                { path: '/users/:id', method: RequestMethod.PUT },   
                { path: '/users/:id', method: RequestMethod.DELETE }   
           );   
    }   
} 

As you can see in this example, we have applied 
the AuthenticationMiddleware to the routes that we want to protect from a non-
logged in user. 

This middleware has the purpose of applying the passport 
middleware passport.authenticate, which verifies the token provided by the 
user and stores in the header the request as the Authorization value. This 
middleware will take the strategy parameter to correspond to the strategy that 
should be applied, which for us is strategy = 'jwt'. 

This middleware is applied on almost all of the routes of the UserController, 
except for the POST /usersthat allows you to create a new user. 



Authentication middleware 

As seen in the previous section, we have applied the AuthenticationMiddleware, 
and we have seen that passport is middleware to authenticate the user. This 
middleware will execute the passport.authenticate method using the 
strategy jwt, taking a callback function that will return the results of the 
authentication method. As a result we can receive the payload corresponding to 
the token or an error in case the authentication doesn’t work. 

@Injectable() 
export class AuthenticationMiddleware implements NestMiddleware { 
    constructor(private userService: UserService) { } 
 
    async resolve(strategy: string): Promise<ExpressMiddleware> { 
        return async (req, res, next) => { 
            return passport.authenticate(strategy, async (...args: any[]) 
=> { 
                const [,  payload, err] = args; 
                if (err) { 
                    return 
res.status(HttpStatus.BAD_REQUEST).send('Unable to authenticate the user.'); 
                } 
 
                const user = await this.userService.findOne({ where: 
{ email: payload.email }}); 
                req.user = user; 
                return next(); 
            })(req, res, next); 
        }; 
    } 
} 

If the authentication work we will be able to store the user into the 
request req in order to be use by the controller or the guard. the middleware 
implement the interface NestMiddleware in order to implement the resolve 
function. It also inject the UserService in order to find the user authenticated. 

Managing restrictions with guards 

Nest.js comes with a guard concept. This injectable has a single responsibility, 
which is to determine if the request has to be handled by the route handler. 



The guard is used on a class that implements the canActivate interface in order 
to implement the canActivate method. 

The guards are executed after every middleware and before any pipes. The 
interest of doing this is to separate the restriction logic of the middleware and 
reorganize this restriction. 

Imagine using a guard to manage the access to a specific route and you want 
this route to only be accessible to the logged in user. To do that we have 
implemented a new guard, which has to return ‘true’ if the user accessing the 
route is the same as the one belonging to the resource that the user want to 
access. With this kind of guard, you avoid a user to access another user. 

@Injectable() 
export class CheckLoggedInUserGuard implements CanActivate { 
    canActivate(context: ExecutionContext): boolean | Promise<boolean> 
| Observable<boolean> { 
        const request = context.switchToHttp().getRequest(); 
        return Number(req.params.userId) === req.user.id; 
    } 
} 

As you can see, you get the handler from the context that corresponds to the 
route handler on the controller where the guard is applied. You also get 
the userId from the request parameters to compare it from to the logged in user 
register into the request. If the user who wants to access the data is the same, 
then he can access the references in the request parameter, otherwise he will 
receive a 403 Forbidden. 

To apply the guard to the route handler, see the following example. 

@Controller() 
@UseGuards(CheckLoggedInUserGuard)   
export class UserController {/*...*/} 

Now that we have protected all of our route handlers of the userController, they 
are all accessible except for the delete one, because the user has to be 
an admin to access it. If the user does not have the appropriate role, they will 
receive a 403 Forbidden response. 

Nest.js passport package 



The @nestjs/passport package is an extensible package that allows you to use 
any strategy from passport into Nest.js. As seen in the previous section, it is 
possible to implement the authentication manually, but if you want to do it in a 
quicker way and have the strategy wrapped, then use the good package. 

In this section, you will see the usage of the package using jwt as shown in the 
previous section. To use it you have to install the following package: 

npm install --save @nestjs/passport passport passport-jwt jsonwebtoken 

To use the package you will have the possibility to use the exact 
same AuthenticationService that you have implemented in the previous section, 
but remember to follow the next code sample. 

@Injectable()   
export class AuthenticationService {   
   constructor(private readonly userService: UserService) { }   
 
   createToken(email: string, ttl?: number) {   
        const expiresIn = ttl || 60 * 60;   
        const secretOrKey = 'secret';   
        const user = { email };   
        const token = jwt.sign(user, secretOrKey, { expiresIn });   
        return {   
            expires_in: expiresIn,   
            access_token: token,   
        };   
   }   
 
   async validateUser(payload: { email: string; password: string }): 
Promise<boolean> {   
        const user = await this.userService.findOne({   
            where: { email: payload.email }   
        });   
        return !!user;   
   }   
} 

To instanciate the jwt strategy, you will also have to implement the JwtStrategy, 
but now you only need to pass the options because the passport is wrapped by 
the package and will apply the strategy to passport automatically under the 
hood. 



@Injectable() 
export default class JwtStrategy extends PassportStrategy(Strategy) {   
   constructor(private readonly authenticationService: 
AuthenticationService) {   
       super({   
            jwtFromRequest: ExtractJwt.fromAuthHeaderAsBearerToken(),   
            passReqToCallback: true,   
            secretOrKey: 'secret'   
        }); 
    }   
 
   public async validate(req, payload, done) {   
       const isValid = await 
this.authenticationService.validateUser(payload);   
        if (!isValid) {   
           return done('Unauthorized', null);   
        } else {   
           return done(null, payload);   
        }   
   }   
} 

As you can see, in this new implementation of the JwtStrategy you don’t need 
to implement the callback anymore. This is because you now extend 
the PassportStrategy(Strategy) where Strategy is the imported member from 
the passport-jwt library. Also, the PassportStrategy is a mixin that will call 
the validate method that we’ve implemented and named according to the 
abstract member of this mixin class. This method will be called by the strategy 
as the validation method of the payload. 

Another feature provided by the package is the AuthGuard that can be used 
with @UseGuards(AuthGuard('jwt')) to enable the authentication on a specific 
controller method instead of using the middleware that we have implemented in 
the previous section. 

The AuthGuard takes as parameters the name of the strategy that you want to 
apply, which in our example is jwt, and can also take some other parameters 
that follow the AuthGuardOptions interface. This interface defines three options 
that can be used: 

• session as a boolean 



• property as a string to define the name of the property that 
you want to be add into the request to attach to the authenticated 
user 
• callback as a function that allows you to implement your own 
logic 

By default the session is set to false and the property is set to user. By default, 
The callback will return the user or an UnauthorizedException. And that’s it, you 
can now authenticate the user on any controller method and get the user from 
the request. 

The only thing you have to do is to create the AuthModule as the following 
sample: 

@Module({ 
  imports: [UserModule], 
  providers: [AuthService, JwtStrategy], 
}) 
export class AuthModule {} 

And as you can see, it isn’t in your hands to create a provider to instanciate the 
strategy, because it’s now wrapped into the package. 

Summary 
In this chapter you have learned what a passport is and strategies to configure 
the different parts of the passport in order to authenticate the user and store it 
into the request. You have also seen how to implement the different 
modules, AuthenticationModule and the UserModule, in order to be logged into 
the user and provide some endpoints accessible by the user. Of course, we have 
restricted the access to some data that applies the AuthenticationMiddleware and 
the CheckLoggedInUserGuard for more security. 

You have also seen the new @nestjs/passport package, which allows you to 
implement in faster ways a few classes 
as AuthenticationService and JwtStrategy, and be able to authenticate any user 
on any controller method using the AuthGuard provided by the package. 

In the next chapter you will learn about the Dependency Injection pattern. 

	 	



Chapter 4. Dependency Injection system of 
Nest.js 
This chapter provides an overview of the Dependency Injection (DI) 
pattern, which is frequently used today by the biggest frameworks. It is a 
way to keep code clean and easier to use. By using this pattern you end 
up with fewer coupled components and more reusable ones, which helps 
accelerate the development process time. 

Here we examine the method that used the injection before the pattern 
existed, and how the injection changed in time to use Nest.js injection 
with a modern approach using TypeScript and decorators. You will also 
see snippets that show the advantage of this type of pattern, and 
modules provided by the framework. 

Nest.js is based on Angular in terms of architecture, and is used to create 
testable, scalable, loosely-coupled and easily maintainable applications. 
As is the case with Angular, Nest.js has its own dependency injection 
system, which is part of the core of the framework, meaning that Nest.js 
is less dependent on a third-party library. 

Overview of Dependency Injection 
Since Typescript 1.5 introduces the notion of the decorator, you can do meta-
programing using the added metadata provided by using a decorator on different 
objects or properties, such as class, function, function parameters or class 
property. The meta-programing is the ability to write some code or program 
using the metadata describing an object. This type of program allows you to 
modify the functioning of a program using its own metadata. In our case this 
metadata is of interest to us, because it helps inject some object into another 
object, whose name is Dependency Injection. 

By using the decorator, you can add metadata on any object or property linked 
to those decorators. This will define, for example, the type of object that takes 
the decorator, but it can also define all of the parameters needed by a function 
that are described in its metadata. To get or define metadata on any object, you 
can also use the reflect-metadata library in order to manipulate them. 



Why use Dependency Injection 

The real interest in using Dependency Injection is that the objects will be less 
coupled between the dependent and its dependencies. With the framework that 
provides the injector system, you can manage your objects without thinking 
about the instanciation of them, because that is managed by the injector, which 
is there to resolve the dependencies of every dependent object. 

This means that it is easier to write tests and mock dependencies, which are 
much cleaner and more readable. 

How it works without Dependency Injection 

Let’s imagine an AuthenticationService that needs a UserService to be injected. 

Here is the UserService: 

export class UserService() { 
    private users: Array<User> = [{ 
        id: 1, 
        email: 'userService1@email.com', 
        password: 'pass' 
    ]}; 
 
    public findOne({ where }: any): Promise<User> { 
        return this.users 
        .filter(u => { 
            return u.email === where.email && 
            u.password === where.password; 
        }); 
    } 
} 

And the AuthenticationService, which instantiates the UserService that is 
needed: 

export class AuthenticationService { 
    public userService: UserService; 
 
    constructor() { 
        this.userService = new UserService(); 
    } 



 
    async validateAUser(payload: { email: string; password: string }): 
Promise<boolean> { 
        const user = await this.userService.findOne({ 
            where: payload 
        }); 
        return !!user; 
    } 
} 
const authenticationService = new AuthenticationService(); 

As you can see, you have to manage all of the related dependencies in the class 
itself to be used inside the AuthenticationService. 

The disadvantage of this is mostly the inflexibility of the AuthenticationService. 
If you want to test this service, you have to think about its own hidden 
dependencies, and of course, you can’t share any services between different 
classes. 

How it works with a manual Dependency Injection 

Let’s see now how you can pass dependencies through the constructor using the 
previous UserService. 

// Rewritted AuthenticationService 
export class AuthenticationService { 
    /*  
       Declare at the same time the public  
       properties belongs to the class 
    */ 
    constructor(public userService: UserService) { } 
} 
// Now you can instanciate the AutheticationService like that 
const userService = new UserService(); 
const authenticationService = new AuthenticationService(userService); 

You can easily share the userService instance through all of the objects, and it is 
no longer the AuthenticationService, which has to create a UserService instance. 

This makes life easier because the injector system will allow you to do all of 
this without needing to instantiate the dependencies. Let’s see this using the 
previous class in the next section. 



Dependency Injection pattern today 

Today, to use Dependency Injection, you just have to use the decorator system 
provided by Typescript and implemented by the framework that you want to 
use. In our case, as you will see in the Tools chapter, Nest.js provides some 
decorators that will do almost nothing except add some metadata on the object 
or property where they will be used. 

This metadata will help make the framework aware that those objects can be 
manipulated, injecting the needed dependencies. 

Here is an example of the usage of the @Injectable() decorator: 

@Injectable() 
export class UserService { /*...*/ } 
 
@Injectable() 
export class AuthenticationService { 
    constructor(private userService: UserService) { } 
} 

This decorator will be transpiled and will add some metadata to it. This means 
that you have accessed design:paramtypes after using a decorator on the class, 
which allows the injector to know the type of the arguments that are dependent 
on the AuthenticationService. 

Generally, if you would like to create your own class decorator, this one will 
take as parameter the target that represents the type of your class. In the 
previous example, the type of the AuthenticationService is 
the AuthenticationService itself. The purpose of this custom class decorator will 
be to register the target in a Map of services. 

export Component = () => { 
    return (target: Type<object>) => { 
        CustomInjector.set(target); 
    }; 
} 

Of course, you have seen how to register a services into a Map of service, so 
let’s look at how this could be a custom injector. The purpose of this injector 
will be to register all of the services into a Map, and also to resolve all the 
dependencies of an object. 



export const CustomInjector = new class { 
  protected services: Map<string, Type<any>> = new Map<string, 
Type<any>>(); 
 
  resolve<T>(target: Type<any>): T { 
    const tokens = Reflect.getMetadata('design:paramtypes', target) || 
[]; 
    const injections = tokens.map(token => 
CustomInjector.resolve<any>(token)); 
    return new target(/*...*/injections); 
  } 
 
  set(target: Type<any>) { 
    this.services.set(target.name, target); 
  } 
}; 

So, if you would like to instanciate our AuthenticationService, which depends 
on the super UserService class, you should call the injector in order to resolve 
the dependencies and return this instance of the wanted object. 

In the following example, we will resolve through the injector 
the UserService that will be passed into the constructor of 
the AuthenticationService in order to be able to instanciate it. 

const authenticationService = 
CustomInjector.resolve<AuthenticationService>(AuthenticationService); 
const isValid = authenticationService.validateUser(/* payload */); 

Nest.js Dependency Injection 
From the @nestjs/common you have access to the decorators provided by the 
framework and one of them is the @Module() decorator. This decorator is the 
main decorator to build all of your modules and work with the Nest.js 
Dependency Injection system between them. 

Your application will have at least one module, which is the main one. The 
application can use only one module (the main one) in the case of a small app. 
Nonetheless, as your app grows, you will have to create several modules to 
arrange your app for the main module. 



From the main module, Nest will know all of the related modules that you have 
imported, and then create the application tree to manage all of the Dependency 
Injections and the scope of the modules. 

To do this, the @Module() decorator respects the ModuleMetadata interface, which 
defines the properties allowed to configure a module. 

export interface ModuleMetadata {   
    imports?: any[];   
    providers?: any[];   
    controllers?: any[];   
    exports?: any[]; 
    modules?: any[]; // this one is deprecated. 
} 

To define a module, you have to register all of the services stored 
in providers that will be instantiated by the Nest.js injector, as well as 
the controllers that can inject the providers, which are services, registered into 
the module or those exported by another module through the exports property. 
In such a case, these have to be registered in imports. 

It is not possible to access an injectable from another module if it has not been 
exported by the module itself, and if the exporting module hasn’t been imported 
into the concerned module, which has to use the external services. 

How does Nest.js create the Dependency injection tree? 

In the previous section, we talked about the main module, generally 
called AppModule, which is used to create the app from NestFactory.create. From 
here, Nest.js will have to register the module itself, and it will also go through 
each module imported to the main module. 

Nest.js will then create a container for the entire app, which will contain all of 
the module, globalModule, and dynamicModuleMetadata of the entire application. 

After it has created the container, it will initialize the app and, during the 
initialization, it will instantiate an InstanceLoader and a DependenciesScanner -> 
scanner.ts, via which Nest.js will have the possibility to scan every module and 
metadata related to it. It does this to resolve all of the dependencies and 
generate the instance of all modules and services with their own injections. 

If you want to know the details of the engine, we recommend that you go deep 
into the two classes: InstanceLoader and DependenciesScanner. 



To have a better understanding of how this works, take a look at an example. 

Imagine that you have three modules: 

• ApplicationModule 
• AuthenticationModule 
• UserModule 

The app will be created from the ApplicationModule: 

@Module({ 
    imports: [UserModule, AuthenticationModule] 
}) 
export class ApplicationModule {/*...*/} 

This imports the AuthenticationModule: 

@Module({ 
    imports: [UserModule], 
    providers: [AuthenticationService] 
}) 
export class AuthenticationModule {/*...*/} 
 
@Injectable() 
export class AuthenticationService { 
    constructor(private userService: UserService) {} 
} 

And the UserModule: 

@Module({ 
    providers: [UserService], 
    exports: [UserService] 
}) 
export class UserModule {/*...*/} 
 
@Injectable() 
export class UserService {/*...*/} 

In this case, the AuthenticationModule must import the UserModule, which 
exports the UserService. 



We have now built our application’s architecture module and have to create the 
app, which will be allowed to resolve all of the dependencies. 

const app = await NestFactory.create(ApplicationModule); 

Essentially, when you create the app, Nest.js will: 

• Scan the module. 
• Store the module and an empty scope array (for the 
main module). The scope will then be populated with the 
module, which imports this scanned module. 
• Look at the related modules through 
the modules metadata. 

• Scan for the modules dependencies as services, controllers, 
related modules, and exports to store them in the module. 
• Bind all of the global modules in each module to the related 
module. 
• Create all of the dependencies by resolving the prototype, 
creating an instance for each one. For dependencies that have 
dependencies themselves, Nest.js will resolve them in the same 
way and include these in the previous level. 

What about the global module? 

Nest.js also provides a @Global() decorator, allowing Nest to store them in a 
global Set of modules, which will be added to the related Set of the module 
concerned. 

This type of module will be registered with the __globalModule__ metadata key 
and added to the globalModule set of the container. They will then be added to 
the related Set of the module concerned. With a global module, you are allowed 
to inject components from the module into another module without importing it 
into the targeted module. This avoids having to import a module, which is 
possibly used by all of the modules, into all of the modules. 

Here is an example: 

@Module({ 
    imports: [DatabaseModule, UserModule] 
}) 
export class ApplicationModule {/*...*/} 
@Global() 



@Module({ 
    providers: [databaseProvider], 
    exports: [databaseProvider] 
}) 
export class DatabaseModule {/*...*/} 
@Module({ 
    providers: [UserService], 
    exports: [UserService] 
}) 
export class UserModule {/*...*/} 
 
@Injectable() 
export class UserService { 
    // SequelizeInstance is provided by the DatabaseModule store as a 
global module 
    constructor(@Inject('SequelizeInstance') private readonly 
sequelizeInstance) {} 
} 

With all the previous information, you should now be familiar with the 
mechanism of the Nest.js dependency injection and have a better understanding 
of how they work together. 

The difference between Nest.js and Angular DI 
Even if Nest.js is widely based on Angular, there is a major difference between 
them. In Angular, each service is a singleton, which is the same as Nest.js, but 
there is a possibility to ask Angular to provide a new instance of the service. To 
do that in Angular, you can use the providers property of 
the @Injectable() decorator to have a new instance of a provider registered in 
the module and available only for this component. That can be useful to have to 
avoid overwriting some properties through different components. 

Summary 
So to recap, we have seen in this chapter how it was unflexible and hard to test 
an object without using the Dependecy Injection. Also, we have learned more 
about the evolution of the method to implement the dependencies into the 
dependent, first by implementing the dependencies into the dependent, then 



changing the method by passing them manually into the constructor to arrive 
with the injector system. This then resolves the dependencies, injecting them in 
the constructor automatically by resolving a tree, which is how Nest.js uses this 
pattern. 

In the next chapter we will see how Nest.js uses TypeORM, an Object 
Relational Mapping (ORM) that works with several different relational 
databases. 

	 	



Chapter 5. TypeORM 
Almost every time you use Nest.js in the real world, you need some kind 
of persistence for your data. That is, you need to save the data that the 
Nest.js app receives somewhere, and you need to read data from 
somewhere so that you can then pass that data as a response to the 
requests that the Nest.js app receives. 

That “somewhere” will be, most of the time, a database. 

TypeORM is a Object Relational Mapping (ORM) that works with several 
different relational databases. An Object Relational Mapping is a tool 
that converts between objects (such as “Entry” or “Comment,” since 
we’re building a blog) and tables in a database. 

The result of this conversion is an entity (called Data Transfer Object) 
that knows how to read data from the database to memory (so you can 
use the data as a response for a request,) as well as how to write to the 
database from memory (so that you are able to store data for later). 

TypeORM is conceptually similar to Sequelize. TypeORM is also written 
in TypeScript and uses decorators extensively, so it’s a great match for 
Nest.js projects. 

We will obviously focus on using TypeORM together with Nest.js, but 
TypeORM can also be used in both the browser and the server side, with 
traditional JavaScript as well as TypeScript. 

TypeORM allows you to use both the data mapper pattern, as well as the 
active record pattern. We will focus on the active record pattern as it 
greatly reduces the amount of boilerplate code needed to use in the 
context of a typical Nest.js architecture, like the one explained 
throughout the book. 

TypeORM can also work with MongoDB, though in this case using a 
dedicated NoSQL ORM such as Mongoose is a more common approach. 

What database to use 
TypeORM supports the following databases: 

• MySQL 



• MariaDB 
• PostgreSQL 
• MS SQL Server 
• sql.js 
• MongoDB 
• Oracle (experimental) 

Considering that in this book we are already using PostgreSQL with Sequelize 
and MongoDB with Mongoose, we decided to use MariaDB with TypeORM. 

About MariaDB 

MariaDB is an open source, community-driven project led by some of the 
original developers of MySQL. It was forked from MySQL when Oracle 
acquired the latter with the intention of keeping it free and open under the GNU 
General Public License. 

The original idea of the project was to act as a drop-in replacement for MySQL. 
This remains largely true for version up to 5.5, while MariaDB kept its version 
numbers in sync with the MySQL ones. 

Nevertheless, newer versions, starting with versions 10.0, have slightly diverted 
from this approach. It’s still true, though, that MariaDB still focuses on being 
highly compatible with MySQL and sharing the same API. 

Getting started 
TypeORM is of course distributed as an npm package. You need to run npm 
install typeorm @nestjs/typeorm. 

You also need a TypeORM database driver; in this case, we will install the 
MySQL/MariaDB one with npm install mysql. 

TypeORM depends on reflect-metadata as well, but luckily we had it 
previously installed as Nest.js depends on it too, so there’s nothing else for us to 
do. Keep in mind that you will need to install this dependency too if you’re 
using TypeORM outside of a Nest.js context. 

NOTE: If you haven’t yet, it’s always a good idea to install Node.js: npm 
install --save-dev @types/node. 



Start the database 

In order to get a database to connect to, we will use Docker Compose, with the 
official MariaDB Docker image, to set up our local development environment. 
We will point to the latest Docker image tag, which at the time of writing, 
corresponds to version 10.2.14. 

version: '3' 
 
volumes: 
  # for persistence between restarts 
  mariadb_data: 
 
services: 
  mariadb: 
    image: mariadb:latest 
    restart: always 
    ports: 
      - "3306:3306" 
    environment: 
      MYSQL_ROOT_PASSWORD: secret 
      MYSQL_DATABASE: nestbook 
      MYSQL_USER: nest 
      MYSQL_PASSWORD: nest 
    volumes: 
        - mariadb_data:/var/lib/mysql 
 
  api: 
    build: 
      context: . 
      dockerfile: Dockerfile 
      args: 
        - NODE_ENV=development 
    depends_on: 
      - mariadb 
    links: 
      - mariadb 
    environment: 
      PORT: 3000 
    ports: 
      - "3000:3000" 



    volumes: 
      - .:/app 
      - /app/node_modules 
    command: > 
      npm run start:dev 

Connect to the database 

Now that we have a database to connect TypeORM, let’s configure the 
connection. 

We have several ways of configuring TypeORM. The most straightforward one, 
which is great for getting started, is creating a ormconfig.json file in the project 
root folder. This file will get grabbed automagically by TypeORM on startup. 

Here is an example configuration file that suits our usecase (i.e. using Docker 
Compose with the configuration previously proposed). 

ormconfig.json 

{ 

  "type": "mariadb", 
  "host": "mariadb", 
  "port": 3306, 
  "username": "nest", 
  "password": "nest", 
  "database": "nestbook", 
  "synchronize": true, 
  "entities": ["src/**/*.entity.ts"] 
} 

Some notes on the configuration file: 

• The properties host, port, username, password and database need 
to match the ones specified earlier in the docker-compose.yml file; 
otherwise, TypeORM will not be able to connect to the MariaDB 
Docker image. 
• The synchronize property tells TypeORM whether to create or 
update the database schema whenever the application starts, so 
that the schemas match the entities declared in the code. Setting 
this property to true can easily lead to loss of data, so make sure 



you know what you’re doing before enabling this property in 
production environments. 

Initialize TypeORM 

Now that the database is running and you are able to successfully establish a 
connection between it and our Nest.js app, we need to instruct Nest.js to use 
TypeORM as a module. 

Thanks to the @nest/typeorm package we previously installed, using TypeORM 
inside our Nest.js application is as easy as importing the TypeOrmModule in our 
main app module (probably the app.module.tsfile.) 

import { TypeOrmModule } from '@nestjs/typeorm'; 
 
@Module({ 
  imports: [ 
    TypeOrmModule.forRoot(), 
    ... 
  ] 
}) 
 
export class AppModule {} 

Modelling our data 
Probably the best thing about using an ORM is that you can take advantage of 
the modelling abstraction that they provide: basically, they allow us to think 
about our data and to shape it with properties (including types and relations), 
generating “object types” (and plugging them to databases tables) that we can 
then use and manipulate as direct interfaces. 

This abstraction layer saves you from writing database-specific code like 
queries, joins, etc. A lot of people love not having to struggle with selects and 
the like; so this abstraction layer comes in handy. 

Our first entity 

When working with TypeORM, this object abstractions are named entities. 



An entity is basically a class that is mapped to a database table. 

With that said, let’s create our first entity, which we will name Entry. We will 
use this entity to store entries (posts) for our blog. We will create a new file 
at src/entries/entry.entity.ts; that way TypeORM will be able to find this 
entity file since earlier in our configuration we specified that entity files will 
follow the src/**/*.entity.ts file naming convention. 

import { Entity } from 'typeorm'; 
 
@Entity() 
export class Entry {} 

The @Entity() decorator from the typeorm npm package is used to mark 
the Entry class as an entity. This way, TypeORM will know that it needs to 
create a table in our database for these kinds of objects. 

The Entry entity is still a bit too simple: we haven’t defined a single property for 
it. We will probably need things like a title, a body, an image and a date for our 
blog entries, right? Let’s do it! 

import { Entity, Column } from 'typeorm'; 
 
@Entity() 
export class Entry { 
  @Column() title: string; 
 
  @Column() body: string; 
 
  @Column() image: string; 
 
  @Column() created_at: Date; 
} 

Not bad! Each property we define for our entity is marked with 
a @Column decorator. Again, this decorator tells TypeORM how to treat the 
property: in this case, we are asking for each property to be stored in a column 
of the database. 

Sadly, this entity will not work with this code. This is because each entity needs 
to have at least one primary column, and we didn’t mark any column as such. 



Our best bet is to create an id property for each entry and store that on a primary 
column. 

import { Entity, Column, PrimaryColumn } from 'typeorm'; 
 
@Entity() 
export class Entry { 
  @PrimaryColumn() id: number; 
 
  @Column() title: string; 
 
  @Column() body: string; 
 
  @Column() image: string; 
 
  @Column() created_at: Date; 
} 

Ah, that’s better! Our first entity is working now. Let’s use it! 

Using our models 
When having to connect requests to data models, the typical approach in Nest.js 
is building dedicated services, which serve as the “touch point” with each 
model, and to build controllers, which link the services to the requests reaching 
the API. Let’s follow the model -> service -> controller approach in the 
following steps. 

The service 

In a typical Nest.js architecture, the application heavy-lifting is done by the 
services. In order to follow this pattern, create a new EntriesService, using it to 
interact with the Entry entity. 

So, let’s create a new file at: src/entries/entries.service.ts 

import { Component } from '@nestjs/common'; 
import { InjectRepository } from '@nestjs/typeorm'; 
import { Repository } from 'typeorm'; 
 
import { Entry } from './entry.entity'; 



 
@Component() 
export class EntriesService { 
  constructor( 
    // we create a repository for the Entry entity 
    // and then we inject it as a dependency in the service 
    @InjectRepository(Entry) private readonly entry: Repository<Entry> 
  ) {} 
 
  // this method retrieves all entries 
  findAll() { 
    return this.entry.find(); 
  } 
 
  // this method retrieves only one entry, by entry ID 
  findOneById(id: number) { 
    return this.entry.findOneById(id); 
  } 
 
  // this method saves an entry in the database 
  create(newEntry: Entry) { 
    this.entry.save(newEntry); 
  } 
} 

The most important part of the service is creating a TypeORM repository 
with Repository<Entry>, and then injecting it in our constructor 
with @InjectRepository(Entry). 

By the way, in case you’re wondering, repositories are probably the most 
commonly used design pattern when dealing with ORMs, because they allow 
you to abstract the database operations as object collections. 

Coming back to the latest service code, once you have created and injected the 
Entry repository, use it to .find() and .save() entries from the database, among 
other things. These helpful methods are added when we create a repository for 
the entity. 

Now that we have taken care of both the data model and the service, let’s write 
the code for the last link: the controller. 



The controller 

Let’s create a controller for exposing the Entry model to the outside world 
through a RESTful API. The code is really simple, as you can see. 

Go ahead and create a new file at: src/entries/entries.controller.ts 

import { Controller, Get, Post, Body, Param } from '@nestjs/common'; 
 
import { EntriesService } from './entry.service'; 
 
@Controller('entries') 
export class EntriesController { 
  constructor(private readonly entriesSrv: EntriesService) {} 
 
  @Get() 
  findAll() { 
    return this.entriesSrv.findAll(); 
  } 
 
  @Get(':entryId') 
  findOneById(@Param('entryId') entryId) { 
    return this.entriesSrv.findOneById(entryId); 
  } 
 
  @Post() 
  create(@Body() entry) { 
    return this.entriesSrv.create(entry); 
  } 
} 

As usual, we are using Nest.js dependency injection to make 
the EntryService available in our EntryController. 

Building a new module 

The last step for our new entity endpoint to work is to include the entity, the 
service, and the controller in the app module. Instead of doing this directly, we 
will follow the “separated modules” approach and create a new module for our 
entries, importing all of the necessary pieces there and then importing the whole 
module in the app module. 



So, let’s create a new file named: src/entries/entries.module.ts 

import { Module } from '@nestjs/common'; 
import { TypeOrmModule } from '@nestjs/typeorm'; 
 
import { Entry } from './entry.entity'; 
import { EntriesController } from './entry.controller'; 
import { EntriesService } from './entry.service'; 
 
@Module({ 
  imports: [TypeOrmModule.forFeature([Entry])], 
  controllers: [EntriesController], 
  components: [EntriesService], 
}) 
export class EntriesModule {} 

Remember when we included the TypeOrmModule in the AppModule as one of the 
first steps of this chapter? We used the TypeOrmModule.forRoot() formula there. 
However, we are using a different one here: TypeOrmModule.forFeature(). 

This distinction coming from the Nest.js TypeORM implementation allows us 
to separate different functionalities (“features”) in different modules. This way 
you can adapt your code to some of the ideas and best practices exposed in the 
Architecture chapter of this book. 

Anyway, let’s import the new EntriesModule into the AppModule. If you neglect 
this step, your main app module won’t be aware of the existence of 
the EntriesModule and your app will not work as intended. 

src/app.module.ts 

import { TypeOrmModule } from '@nestjs/typeorm'; 
import { EntriesModule } from './entries/entries.module'; 
 
@Module({ 
  imports: [ 
    TypeOrmModule.forRoot(), 
    EntriesModule, 
    ... 
  ] 
}) 
 
export class AppModule {} 



That’s it! Now you can fire requests to /entities and the endpoint will invoke 
writes and reads from the database. 

It’s time to give our database a try! We will fire some requests to the endpoints 
that we previously linked to the database and see if everything works as 
expected. 

We will start with a GET request to the /entries endpoint. Obviously, since we 
haven’t created any entries yet, we should receive an empty array as a response. 

> GET /entries HTTP/1.1 

> Host: localhost:3000 

< HTTP/1.1 200 OK 

 

[] 

Let’s create a new entry. 

> GET /entries HTTP/1.1 

> Host: localhost:3000 

| { 

|   "id": 1, 

|   "title": "This is our first post", 

|   "body": "Bla bla bla bla bla", 

|   "image": "http://lorempixel.com/400", 

|   "created_at": "2018-04-15T17:42:13.911Z" 

| } 

 

< HTTP/1.1 201 Created 

Success! Let’s retrieve the new entry by ID. 

> GET /entries/1 HTTP/1.1 

> Host: localhost:3000 

< HTTP/1.1 200 OK 



 

{ 

  "id": 1, 

  "title": "This is our first post", 

  "body": "Bla bla bla bla bla", 

  "image": "http://lorempixel.com/400", 

  "created_at": "2018-04-15T17:42:13.911Z" 

} 

Yes! Our previous POST request triggered a write in the database and now this 
last GET request is triggering a read from the database, and returning the data 
previously saved! 

Let’s try to retrieve all entries once again. 

> GET /entries HTTP/1.1 

> Host: localhost:3000 

< HTTP/1.1 200 OK 

 

[{ 

  "id": 1, 

  "title": "This is our first post", 

  "body": "Bla bla bla bla bla", 

  "image": "http://lorempixel.com/400", 

  "created_at": "2018-04-15T17:42:13.911Z" 

}] 

We just confirmed that requests to the /entries endpoint successfully executed 
reads and writes in our database. This means that our Nest.js app is usable now, 
since the basic functionality of almost any server application (that is, storing 
data and retrieving it on demand) is working properly. 

Improving our models 



Even though we are now reading from and writing to the database through our 
entity, we only wrote a basic, initial implementation; we should review our code 
to see what can be improved. 

Let’s now go back to the entity file, src/entries/entry.entity.ts, and figure out 
what kind of improvements we can do there. 

Auto-generated IDs 

All of the database entries need to have a unique ID. At this point, we are 
simply relying on the ID sent by the client when creating the entity (when 
sending the POST request,) but this is less than desirable. 

Any server-side application will be connected to multiple clients, and all of 
those clients have no way of knowing which ID’s are already in use, so it would 
be impossible for them to generate and send a unique ID with each POST 
request. 

TypeORM provides a couple of ways of generating unique ID’s for entities. The 
first one is using the @PrimaryGeneratedColumn() decorator. By using it, you no 
longer need to include an ID in the body of the POST request, nor do you need 
to manually generate an ID for an entry before saving it. Instead, the ID is 
automagically generated by TypeORM whenever you ask for a new entry to be 
saved to the database. 

Our code looks something like the following: 

import { Entity, Column, PrimaryGeneratedColumn } from 'typeorm'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn() id: number; 
 
  @Column() title: string; 
 
  @Column() body: string; 
 
  @Column() image: string; 
 
  @Column() created_at: Date; 
} 



It’s worth mentioning that these unique ID’s will be generated in a sequential 
way, which means that each ID will be one number higher than the highest 
already present in the database (the exact method for generating the new ID will 
depend on the database type.) 

TypeORM can go one step further, though: if you pass the "uuid" argument to 
the @PrimaryGeneratedColumn() decorator, the generated value will then look like 
a random collection of letters and numbers with some dashes, making sure 
they’re unique (at least reasonably unique.) 

import { Entity, Column, PrimaryGeneratedColumn } from 'typeorm'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column() body: string; 
 
  @Column() image: string; 
 
  @Column() created_at: Date; 
} 

Also, remember to change the type of id from number to string! 

When was the entry created? 

In the original entity definition, the created_at field was also expected to be 
received from the client. We can, however, improve this easily with some more 
TypeORM magic decorators. 

Let’s use the @CreateDateColumn() decorator to dynamically generate the 
insertion date for each entry. In other words, you don’t need to set the date from 
the client or create it manually before saving the entry. 

Let’s update the entity: 

import { 
  Entity, 
  Column, 



  CreateDateColumn, 
  PrimaryGeneratedColumn, 
} from 'typeorm'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column() body: string; 
 
  @Column() image: string; 
 
  @CreateDateColumn() created_at: Date; 
} 

Nice, isn’t it? How about knowing also when the entry was last modified, as 
well as how many revisions have been done to it? Again, TypeORM makes 
both easy to do, and requires no additional code on our side. 

import { 
  Entity, 
  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
} from 'typeorm'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column() body: string; 
 
  @Column() image: string; 
 
  @CreateDateColumn() created_at: Date; 



 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 

Our entity will now automagically handle for us the modification date, as well 
as the revision number, on each subsequent save operations. You can track 
changes made to each instance of the entity without having to implement a 
single line of code! 

Column types 

When defining columns in our entities using decorators, as exposed above, 
TypeORM will infer the type of database column from the used property type. 
This basically means that when TypeORM finds a line like the following 

@Column() title: string; 

This maps the string property type to a varchar database column type. 

This will work just fine a lot of the time, but in some occasions we might find 
ourselves in the position of being more explicit about the type of columns to be 
created in the database. Fortunately, TypeORM allows this kind of custom 
behavior with very little overhead. 

To customize the column type, pass the desired type as a string argument to 
the @Column() decorator. A specific example would be: 

@Column('text') body: string; 

The exact column types that can be used depend on the type of database you are 
using. 

COLUMN TYPES FOR MYSQL / MARIADB 

int, tinyint, smallint, mediumint, bigint, float, double, dec, decimal, numeric, da
te, datetime, timestamp, time, year, char, varchar, nvarchar, text, tinytext, mediu
mtext, blob, longtext, tinyblob, mediumblob, longblob, enum, json, binary, geometr
y, point, linestring, polygon, multipoint, multilinestring, multipolygon, geomet
rycollection 



COLUMN TYPES FOR POSTGRES 

int, int2, int4, int8, smallint, integer, bigint, decimal, numeric, real, float, flo
at4, float8, double precision, money, character 
varying, varchar, character, char, text, citext, hstore, bytea, bit, varbit, bit 
varying, timetz, timestamptz, timestamp, timestamp without time zone, timestamp 
with time zone, date, time, time without time zone, time with time 
zone, interval, bool, boolean, enum, point, line, lseg, box, path, polygon, circle, c
idr, inet, macaddr, tsvector, tsquery, uuid, xml, json, jsonb, int4range, int8range
, numrange, tsrange, tstzrange, daterange 

COLUMN TYPES FOR SQLITE / CORDOVA / REACT-NATIVE 

int, int2, int8, integer, tinyint, smallint, mediumint, bigint, decimal, numeric, f
loat, double, real, double precision, datetime, varying 
character, character, native character, varchar, nchar, nvarchar2, unsigned big 
int, boolean, blob, text, clob, date 

COLUMN TYPES FOR MSSQL 

int, bigint, bit, decimal, money, numeric, smallint, smallmoney, tinyint, float, re
al, date, datetime2, datetime, datetimeoffset, smalldatetime, time, char, varchar,
 text, nchar, nvarchar, ntext, binary, image, varbinary, hierarchyid, sql_variant, 
timestamp, uniqueidentifier, xml, geometry, geography 

COLUMN TYPES FOR ORACLE 

char, nchar, nvarchar2, varchar2, long, raw, long 
raw, number, numeric, float, dec, decimal, integer, int, smallint, real, double 
precision, date, timestamp, timestamp with time zone, timestamp with local 
time zone, interval year to month, interval day to 
second, bfile, blob, clob, nclob, rowid, urowid 

If you’re not ready to commit yourself to one specific database type and you’d 
like to keep your options open for the future, it might not be the best idea to use 
a type that’s not available in every database. 

NoSQL in SQL 

TypeORM has still one last trick in the hat: a simple-json column type that can 
be used in every supported database. With it, you can directly save Plain Old 
JavaScript Objects in one of the relational database columns. Yes, 
mindblowing! 



Let’s put it to use with a new author property in the entity. 

import { 
  Entity, 
  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
} from 'typeorm'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column('text') body: string; 
 
  @Column() image: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 

The simple-json column type allows you to directly store even complex JSON 
trees without needing to define a model for them first. This can come handy in 
situations where you appreciate a bit more flexibility than the traditional 
relational database structure allows. 

Relationships between data models 
If you followed the chapter up to this point, you will have a way of saving new 
blog entries to your database through your API and then reading them back. 



The next step is to create a second entity to handle comments in each blog entry 
and then create a relationship between entries and comments in such a way that 
one blog entry can have several comments that belong to it. 

Let’s create the Comments entity then. 

src/comments/comment.entity.ts 

import { 
  Entity, 
  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
} from 'typeorm'; 
 
@Entity() 
export class Comment { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column('text') body: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 

You have probably noticed that the Comment entity is quite similar to 
the Entry entity. 

The next step will be to create a “one-to-many” relationship between entries and 
comments. For that, include a new property in the Entry entity with 
a @OneToMany() decorator. 

src/entries/entry.entity.ts 

import { 



  Entity, 
  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
  OneToMany, 
} from 'typeorm'; 
 
import { Comment } from '../comments/comment.entity'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column('text') body: string; 
 
  @Column() image: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @OneToMany(type => Comment, comment => comment.id) 
  comments: Comment[]; 
 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 

“One-to-many” relationships have to be bi-directional, so you need to add an 
inverse relationship “many-to-one” in the Comment entity. This way, both will get 
properly “tied up.” 

src/comments/comment.entity.ts 

import { 
  Entity, 



  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
  ManyToOne, 
} from 'typeorm'; 
 
import { Entry } from '../entries/entry.entity'; 
 
@Entity() 
export class Comment { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column('text') body: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @ManyToOne(type => Entry, entry => entry.comments) 
  entry: Entry; 
 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 

The second argument that we’re passing to both the @OneToMany() and 
the @ManyToOne() decorators is used to specify the inverse relationship that we’re 
also creating on the other related entity. In other words, in the Entry we are 
saving the related Comment entity in a property named comments. That’s why, in 
the Comment entity definition, we pass entry => entry.comments as a second 
argument to the decorator, to the point where in Entry the comments be stored. 

NOTE: Not all relationships need to be bi-directional. “One-to-one” 
relationships can very well be both uni-directional or bi-directional. In the case 
of uni-directional “one-to-one” relationships, the owner of the relationship is the 
one declaring it, and the other entity wouldn’t need to know anything about the 
first one. 



That’s it! Now each of our entries can have several comments. 

How to store related entities 

If we talk about code, the most straightforward way of saving a comment that 
belongs to an entry would be to save the comment and then save the entry with 
the new comment included. Create a new Comments service to interact with the 
entity, and then modify the Entry controller to call that new Comments service. 

Let’s see how. It’s not as hard as it sounds! 

This would be our new service: 

src/comments/comments.service.ts 

import { Component } from '@nestjs/common'; 
import { InjectRepository } from '@nestjs/typeorm'; 
import { Repository } from 'typeorm'; 
 
import { Comment } from './comment.entity'; 
 
@Component() 
export class CommentsService { 
  constructor( 
    @InjectRepository(Comment) private readonly comment: 
Repository<Comment> 
  ) {} 
 
  findAll() { 
    return this.comment.find(); 
  } 
 
  findOneById(id: number) { 
    return this.comment.findOneById(id); 
  } 
 
  create(comment: Comment) { 
    return this.comment.save(comment); 
  } 
} 



The code sure looks familiar, doesn’t it? It’s very similar to 
the EntriesService that we already had, since we are providing quite the same 
functionality for both comments and entries. 

This would be the modified Entries controller: 

src/entries/entries.controller.ts 

import { Controller, Get, Post, Body, Param } from '@nestjs/common'; 
 
import { EntriesService } from './entries.service'; 
import { CommentsService } from '../comments/comments.service'; 
 
import { Entry } from './entry.entity'; 
import { Comment } from '../comments/comment.entity'; 
 
@Controller('entries') 
export class EntriesController { 
  constructor( 
    private readonly entriesSrv: EntriesService, 
    private readonly commentsSrv: CommentsService 
  ) {} 
 
  @Get() 
  findAll() { 
    return this.entriesSrv.findAll(); 
  } 
 
  @Get(':entryId') 
  findOneById(@Param('entryId') entryId) { 
    return this.entriesSrv.findOneById(entryId); 
  } 
 
  @Post() 
  async create(@Body() input: { entry: Entry; comments: Comment[] }) { 
    const { entry, comments } = input; 
    entry.comments: Comment[] = []; 
    await comments.forEach(async comment => { 
      await this.commentsSrv.create(comment); 
      entry.comments.push(comment); 
    }); 
    return this.entriesSrv.create(entry); 



  } 
} 

In short, the new create() method: 

• Receives both a blog entry and an array of comments that 
belong to that entry. 
• Creates a new empty array property (named comments) inside 
the blog entry object. 
• Iterates over the received comments, saving each one of 
them and then pushing them one by one to the 
new comments property of entry. 
• Finally, saves the entry, which now includes a “link” to each 
comment inside its own commentsproperty. 

SAVING RELATED ENTITIES THE EASIER WAY 

The code we wrote last works, but it’s not very convenient. 

Fortunately, TypeORM provides us with a easier way to save related entities, 
though: enabling “cascades”. 

Setting cascade to true in our entity will mean that we’ll no longer need to 
separately save each related entity; rather, saving the owner of the relationship 
to the database will save those related entities at the same time. This way, our 
previous code can be simplified. 

First of all, let’s modify our Entry entity (which is the owner of the relationship) 
to enable cascade. 

src/entries/entry.entity.ts 

import { 
  Entity, 
  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
  OneToMany, 
} from 'typeorm'; 
 
import { Comment } from '../comments/comment.entity'; 



 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column('text') body: string; 
 
  @Column() image: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @OneToMany(type => Comment, comment => comment.id, { 
    cascade: true, 
  }) 
  comments: Comment[]; 
 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 

This was really easy: we just added a {cascade: true} object as third argument 
for the @OneToMany()decorator. 

Now, we will refactor the create() method on the Entries controller. 

src/entries/entries.controller.ts 

import { Controller, Get, Post, Body, Param } from '@nestjs/common'; 
 
import { EntriesService } from './entries.service'; 
 
import { Entry } from './entry.entity'; 
import { Comment } from '../comments/comment.entity'; 
 
@Controller('entries') 
export class EntriesController { 



  constructor(private readonly entriesSrv: EntriesService) {} 
 
  @Get() 
  findAll() { 
    return this.entriesSrv.findAll(); 
  } 
 
  @Get(':entryId') 
  findAll(@Param('entryId') entryId) { 
    return this.entriesSrv.findOneById(entryId); 
  } 
 
  @Post() 
  async create(@Body() input: { entry: Entry; comments: Comment[] }) { 
    const { entry, comments } = input; 
    entry.comments = comments; 
    return this.entriesSrv.create(entry); 
  } 
} 

Please compare the new controller with our previous implementations; we were 
able to get rid of the dependency on the Comments service, as well as an iterator 
on the create() method. This makes our code shorter and cleaner, which is 
always good as it reduces the risk of introducing bugs. 

In this section we found out how to save entities that are related one to another, 
while saving their relationship as well. This is a crucial step for the success of 
our related entities. Nice job! 

Retrieving related entities in bulk 

Now that we know how to save an entity and include its relationships, we’ll 
take a look on how to read both an entity from the database, as well as all their 
related entities. 

The idea in this case is that, when we request a blog entry (only one) from the 
database, we also get the comments that belong to it. 

Of course, since you’re familiar with blogs in general (they’ve been around for 
a while, right?), you will be aware that not all blogs load both the blog entry and 
the comments at the same time; many of them load the comments only when 
you reach the bottom of the page. 



To demonstrate the functionality, however, we will assume that our blogging 
platform will retrieve both the blog entry and the comments at the same time. 

We will need to modify the Entries service to achieve this. Again, it’s going to 
be quite easy! 

src/entries/entries.service.ts 

import { Component } from '@nestjs/common'; 
import { InjectRepository } from '@nestjs/typeorm'; 
import { Repository } from 'typeorm'; 
 
import { Entry } from './entry.entity'; 
 
@Component() 
export class EntriesService { 
  constructor( 
    @InjectRepository(Entry) private readonly entry: Repository<Entry> 
  ) {} 
 
  findAll() { 
    return this.entry.find(); 
  } 
 
  findOneById(id: number) { 
    return this.entry.findOneById(id, { relations: ['comments'] }); 
  } 
 
  create(newEntry: Entry) { 
    this.entry.save(newEntry); 
  } 
} 

We only added a { relations: ['comments'] } as second argument to 
the findOneById() method of the Entry repository. The relations property of the 
options object is an array, so we can retrieve as many relationships we need to. 
Also, it can be used with any find() related method (that 
is, find(), findByIds(), findOne() and so on.) 



Lazy relationships 

When working with TypeORM, regular relationships (like the ones we have 
written so far) are eagerrelationships. This means that when we read entities 
from the database, the find*() methods will return the related entities as well, 
without us needing to write joins or manually read them. 

We can also configure our entities to treat relationships as lazy, so that the 
related entities are not retrieved from the database until we say so. 

This is achieved by declaring the type of the field that holds the related entity as 
a Promise instead of a direct type. Let’s see the difference in code: 

// This relationship will be treated as eager 
@OneToMany(type => Comment, comment => comment.id) 
comments: Comment[]; 
 
// This relationship will be treated as lazy 
@OneToMany(type => Comment, comment => comment.id) 
comments: Promise<Comment[]>; 

Of course, using lazy relationships means that we need to change the way we 
save our entity to the database. The next code block demonstrates how to save 
lazy relationships. Pay attention to the create() method. 

src/entries/entries.controller.ts 

import { Controller, Get, Post, Body, Param } from '@nestjs/common'; 
 
import { EntriesService } from './entries.service'; 
import { CommentsService } from '../comments/comments.service'; 
 
import { Entry } from './entry.entity'; 
import { Comment } from '../comments/comment.entity'; 
 
@Controller('entries') 
export class EntriesController { 
  constructor( 
    private readonly entriesSrv: EntriesService, 
    private readonly commentsSrv: CommentsService 
  ) {} 
 
  @Get() 



  findAll() { 
    return this.entriesSrv.findAll(); 
  } 
 
  @Get(':entryId') 
  findAll(@Param('entryId') entryId) { 
    return this.entriesSrv.findOneById(entryId); 
  } 
 
  @Post() 
  async create(@Body() input: { entry: Entry; comments: Comment[] }) { 
    const { entry, comments } = input; 
    const resolvedComments = []; 
    await comments.forEach(async comment => { 
      await this.commentsSrv.create(comment); 
      resolvedComments.push(comment); 
    }); 
    entry.comments = Promise.resolve(resolvedComments); 
    return this.entriesSrv.create(entry); 
  } 
} 

We made the create() method “lazy” by: 

1. Initializing a new resolvedComments empty array. 
2. Going through all of the comments received in the request, 
saving each one and then adding it to the resolvedComments array. 
3. When all comments are saved, we assign a promise to 
the comments property of entry, and then immediately resolve it with 
the array of comments built in step 2. 
4. Save the entry with the related comments as an already 
resolved promise. 

The concept of assigning an immediately resolved promise as value of an entity 
before saving is not easy to digest. Still, we need to resort to this because of the 
asynchronous nature of JavaScript. 

That said, be aware that TypeORM support for lazy relationships is still in the 
experimental phase, so use them with care. 



Other kinds of relationships 
So far we’ve explored “one-to-many” relationships. Obviously, TypeORM 
supports “one-to-one” and “many-to-many” relationships as well. 

One-to-one 

Just in case you’re not familiar with this kind of relationships, the idea behind it 
is that one instance of an entity, and only one, belongs to one instance, and only 
one, of another entity. 

To give a more specific example, let’s imagine that we were going to create a 
new EntryMetadata entity to store new things that we want to keep track of, like, 
let’s say, the number of likes a blog entry got from readers and a shortlink for 
each blog entry. 

Let’s start by creating a new entity called EntryMetadata. We will put the file in 
the /entry folder, next to the entry.entity.ts file. 

src/entries/entry_metadata.entity.ts 

import { Entity, PrimaryGeneratedColumn, Column } from 'typeorm'; 
 
@Entity() 
export class EntryMetadata { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() likes: number; 
 
  @Column() shortlink: string; 
} 

The entity we just created is quite simple: it only has the regular uuid property, 
as well as two other properties for storing likes for an entry, and also 
a shortlink for it. 

Now let’s tell TypeORM to include one instance of the EntryMetadata entity in 
each instance of the Entry entity. 

src/entries/entry.entity.ts 

import { 
  Entity, 



  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
  OneToMany, 
  OneToOne, 
  JoinColumn, 
} from 'typeorm'; 
 
import { EntryMetadata } from './entry-metadata.entity'; 
import { Comment } from '../comments/comment.entity'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column('text') body: string; 
 
  @Column() image: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @OneToOne(type => EntryMetadata) 
  @JoinColumn() 
  metadata: EntryMetadata; 
 
  @OneToMany(type => Comment, comment => comment.id, { 
    cascade: true, 
  }) 
  comments: Comment[]; 
 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 



You might have noticed the @JoinColumn() decorator. Using this decorator in 
“one-to-one” relationships is required by TypeORM. 

BI-DIRECTIONAL ONE-TO-ONE RELATIONSHIPS 

At this point, the relationship between Entry and EntryMetadata is uni-
directional. In this case, it is probably enough. 

Let’s say, however, that we want to have the possibility of accessing an instance 
of EntryMetadata directly and then fetch the Entry instance it belongs to. Well, 
we can’t do that right now; not until we make the relationship bi-directional. 

So, just for the sake of demonstration, we will include the inverse relationship 
in the EntryMetadata instance to the Entry instance, so that you know how it 
works. 

src/entries/entry_metadata.entity.ts 

import { Entity, PrimaryGeneratedColumn, Column, OneToOne } from 
'typeorm'; 
 
import { Entry } from './entry.entity'; 
 
@Entity() 
export class EntryMetadata { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() likes: number; 
 
  @Column() shortlink: string; 
 
  @OneToOne(type => Entry, entry => entry.metadata) 
  entry: Entry; 
} 

Make sure you don’t include the @JoinColumn() decorator on this second entry. 
That decorator should only be used in the owner entity; in our case, in Entry. 

The second adjustment we need to make is pointing to the location of the related 
entity in our original @OneToOne() decorator. Remember, we just saw that this 
needs to be done by passing a second argument to the decorator, like this: 

src/entries/entry.entity.ts 



import { 
  Entity, 
  Column, 
  PrimaryGeneratedColumn, 
  CreateDateColumn, 
  UpdateDateColumn, 
  VersionColumn, 
  OneToMany, 
  OneToOne, 
  JoinColumn, 
} from 'typeorm'; 
 
import { EntryMetadata } from './entry-metadata.entity'; 
import { Comment } from '../comments/comment.entity'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column('text') body: string; 
 
  @Column() image: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @OneToOne(type => EntryMetadata, entryMetadata => entryMetadata.entry) 
  @JoinColumn() 
  metadata: EntryMetadata; 
 
  @OneToMany(type => Comment, comment => comment.id, { 
    cascade: true, 
  }) 
  comments: Comment[]; 
 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 



  @VersionColumn() revision: number; 
} 

That’s it! Now we have a beautiful, working bi-directional one-to-one 
relationship between the Entryand the EntryMetadata entities. 

By the way, if you’re wondering how could we save and then retrieve this two 
related entities, I’ve got good news for you: it works the same way that we saw 
with one-to-many relationships. So, either do it by hand as exposed earlier in 
this chapter, or (my personal favorite) use “cascades” for saving them, 
and find*() to retrieve them! 

Many-to-many 

The last type of relationship that we can establish for our entities is known as 
“many-to-many.” This means that multiple instances of the owning entity can 
include multiple instances of the owned entity. 

A good example might be us wanting to include “tags” to our blog entries. An 
entry might have several tags, and a tag can be used in several blog entries, 
right. That makes the relationship fall under the “many-to-many” typology. 

We will save some code here, because these relationships are declared exactly 
the same way than the “one-to-one” relationships, only changing 
the @OneToOne() decorator to @ManyToMany(). 

Advanced TypeORM 
Let’s take a look at security. 

Security first 

If you went through the Sequelize chapter in this same book, you might be 
familiar with the concept of lifecycle hooks. In that chapter, we are using 
a beforeCreate hook to encrypt the users’ passwords before we save them to our 
database. 

In case you’re wondering if such a thing exists also in TypeORM, the answer is 
yes! Though the TypeORM documentation refers to them as “listeners” instead. 



So, to demonstrate its functionality, let’s write a very simple User entity with a 
username and a password, and we will make sure to encrypt the password 
before we save it to the database. The specific listener we will be using is 
called beforeInsert in TypeORM. 

@Entity 
export class User { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() username: string; 
 
  @Column() password: string; 
 
  @BeforeInsert() 
  encryptPassword() { 
    this.password = crypto.createHmac('sha256', 
this.password).digest('hex'); 
  } 
} 

Other listeners 

In general, a listener is a method that gets triggered upon a specific event within 
TypeORM, be it write-related or read-related. We just learned about 
the @BeforeInsert() listener, but we have a few other ones we can take 
advantage of: 

• @AfterLoad() 
• @BeforeInsert() 
• @AfterInsert() 
• @BeforeUpdate() 
• @AfterUpdate() 
• @BeforeRemove() 
• @AfterRemove() 

Composing and extending entities 

TypeORM offers two different ways of reducing code duplication between 
entities. One of them follows the composition pattern, while the other follows 
the inheritance pattern. 



Even though a lot of authors defend favoring composition over inheritance, we 
will expose here the two possibilities and let the reader decide which one fits 
better his/her own particular needs. 

EMBEDDED ENTITIES 

The way of composing entities in TypeORM is using an artifact known as 
embedded entity. 

Embedded entities are basically entities with some declared table columns 
(properties) that can be included inside other bigger entities. 

Let’s go with the example: after reviewing the code we wrote earlier for the 
entities of both Entry and Comment, we can easily see that there are (among 
others) three duplicated properties: created_at, modified_at and revision. 

It would be a great idea to create an “embeddable” entity to hold those three 
properties and then embed them into both our original entities. Let’s see how. 

We will first create a Versioning entity (the name is not great, I know, but 
should work for you to see the idea) with those three duplicated properties. 

src/common/versioning.entity.ts 

import { CreateDateColumn, UpdateDateColumn, VersionColumn } from 
'typeorm'; 
 
export class Versioning { 
  @CreateDateColumn() created_at: Date; 
 
  @UpdateDateColumn() modified_at: Date; 
 
  @VersionColumn() revision: number; 
} 

Notice that we’re not using the @Entity decorator in this entity. This is because 
it’s not a “real” entity. Think of it as an “abstract” entity, i.e. an entity that we 
will never instantiate directly, but we rather will use to embed it in other 
instantiable entities in order to give them some reusable functionality. Or, in 
other words, composing entities from smaller pieces. 

So, now we will embed this new “embeddable” entity into our two original 
entities. 



src/entries/entry.entity.ts 

import { 
  Entity, 
  Column, 
  PrimaryGeneratedColumn, 
  OneToMany, 
  OneToOne, 
  JoinColumn, 
} from 'typeorm'; 
 
import { EntryMetadata } from './entry-metadata.entity'; 
import { Comment } from '../comments/comment.entity'; 
import { Versioning } from '../common/versioning.entity'; 
 
@Entity() 
export class Entry { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column() title: string; 
 
  @Column('text') body: string; 
 
  @Column() image: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @OneToOne(type => EntryMetadata, entryMetadata => entryMetadata.entry) 
  @JoinColumn() 
  metadata: EntryMetadata; 
 
  @OneToMany(type => Comment, comment => comment.id, { 
    cascade: true, 
  }) 
  comments: Comment[]; 
 
  @Column(type => Versioning) 
  versioning: Versioning; 
} 

src/comments/comment.entity.ts 



import { Entity, Column, PrimaryGeneratedColumn } from 'typeorm'; 
 
import { Versioning } from '../common/versioning.entity'; 
 
@Entity() 
export class Comment { 
  @PrimaryGeneratedColumn('uuid') id: string; 
 
  @Column('text') body: string; 
 
  @Column('simple-json') author: { first_name: string; last_name: 
string }; 
 
  @Column(type => Versioning) 
  versioning: Versioning; 
} 

Even in this really simple case, we’ve reduced the two original entities from 
three different properties to only one! In both the Entry entity and 
the Comment entity, the versioning column will be actually replaced by the 
properties inside the Versioning embedded entity when we invoke any of their 
reading or writing methods. 

ENTITY INHERITANCE 

The second choice that TypeORM offers for reusing code between our entities 
is using entity inheritance. 

If you’re already familiar with TypeScript, entity inheritance is quite easy to 
understand (and implement) when you take into account that entities are nothing 
more (and nothing less!) than regular TS classes with some decorators on top. 

For this particular example, let’s imagine that our Nest.js-based blog has been 
online for some time, and that it has become quite a success. Now we would 
like to introduce sponsored blog entries so that we can make a few bucks and 
invest them in a few more books. 

The thing is, sponsored entries are going to be a lot like regular entries, but with 
a couple of new properties: sponsor name and sponsor URL. 

In this case, we might decide, after quite some thought, to extend our 
original Entry entity and create a SponsoredEntry out of it. 



src/entries/sponsored-entry.entity.ts 

import { Entity, Column } from 'typeorm'; 
 
import { Entry } from './entry.entity'; 
 
@Entity() 
export class SponsoredEntry extends Entry { 
  @Column() sponsorName: string; 
 
  @Column() sponsorUrl: string; 
} 

That’s about it. Any new instance we create from the SponsoredEntry entity will 
have the same columns from the extended Entry entity, plus the two new 
columns we defined for SponsoredEntry. 

Caching 

TypeORM brings a caching layer out of the box. We can take advantage of it 
with only a little overhead. This layer is specially useful if you are designing an 
API that expects a lot of traffic and/or you need the best performance you can 
get. 

Both cases would benefit increasingly from the cache because we use more 
complex data retrieval scenarios, such as complex find*() options, lots of 
related entities, etc. 

The caching needs to be explicitly activated when connecting to the database. In 
our case so far, this will be the ormconfig.json file that we created at the 
beginning of the chapter. 

ormconfig.json 

{ 

  "type": "mariadb", 
  "host": "db", 
  "port": 3306, 
  "username": "nest", 
  "password": "nest", 
  "database": "nestbook", 
  "synchronize": true, 



  "entities": ["src/**/*.entity.ts"], 
  "cache": true 
} 

After activating the caching layer on the connection, we will need to pass 
the cache option to our find*() methods, like in the following example: 

this.entry.find({ cache: true }); 

The line of code above will make the .find() method to return the cached value 
if it’s present and not expired, or the value from the corresponding database 
table otherwise. So, even if the method is fired three thousand times within the 
expiration time window (see below), only one database query would be actually 
executed. 

TypeORM uses a couple of defaults when dealing with caches: 

1. The default cache lifetime is 1,000 milliseconds (i.e. 1 
second.) In case we need to customize the expiration time, we just 
need to pass the desired lifetime as value to the cache property of 
the options object. In the case above, this.entry.find({ cache: 
60000 }) would set a cache TTL of 60 seconds. 
2. TypeORM will create a dedicated table for the cache in the 
same database you’re already using. The table will be 
named query-result-cache. This is not bad, but it can greatly 
improved if we have a Redis instance available. In that cache, we 
will need to include our Redis connection details in 
the ormconfig.json file: 

ormconfig.json 

{ 

  "type": "mariadb", 
  ... 
  "cache": { 
    "type": "redis", 
    "options": { 
      "host": "localhost", 
      "port": 6379 
    } 
  } 
} 



This way we can easily improve the performance of our API under heavy load. 

Building a query 

The TypeORM’s repository methods for retrieving data from our database 
greatly isolates the complexity of querying away from us. They provide a very 
useful abstraction so that we don’t need to bother with actual database queries. 

However, apart from using these various .find*() methods, TypeORM also 
provides a way of manually executing queries. This greatly improves flexibility 
when accessing our data, at the cost of demanding us to write more code. 

The TypeORM tool for executing queries is the QueryBuilder. A very basic 
example could involve refactoring our good old findOneById() method in 
the EntriesService so that it uses the QueryBuilder. 

src/entries/entries.service.ts 

import {getRepository} from "typeorm"; 
... 
 
findOneById(id: number) { 
  return getRepository(Entry) 
    .createQueryBuilder('entry') 
    .where('entry.id = :id', { id }) 
    .getOne(); 
} 
 
... 

Another slightly more complex scenario would be to build a join in order to also 
retrieve the related entities. We will come back once again to 
the findOneById() method we just modified to include the related comments. 

src/entries/entries.service.ts 

import {getRepository} from "typeorm"; 
... 
 
findOneById(id: number) { 
  return getRepository(Entry) 
    .createQueryBuilder('entry') 
    .where('entry.id = :id', { id }) 



    .leftJoinAndSelect('entry.comments', 'comment') 
    .getOne(); 
} 
 
... 

Building our model from a existing database 

Up until this point, we have started with a “clean” database, then created our 
models, leaving to TypeORM the task of transforming the models into database 
columns. 

This is the “ideal” situation, but... What if we found ourselves in the opposite 
situations? What if we already had a database with tables and columns 
populated? 

There’s a nice open source project we can use for that: typeorm-model-
generator. It’s packed as a command line tool and can be run with npx. 

NOTE: In case you’re not familiar with it, npx is a command that comes out of 
the box with npm > 5.2 and that allows us to run npm modules from the 
command line without having to install them first. To use it, you just need to 
prepend npx to the regular commands from the tool. We would use npx ng new 
PROJECT-NAME on our command line, for example, if we wanted to scaffold a new 
project with Angular CLI. 

When it’s executed, typeorm-model-generator will connect to the specified 
database (it supports roughly the same ones that TypeORM does) and will 
generate entities following the settings we pass as command line arguments. 

Since this is a useful tool for only some very specific use cases, we will leave 
the configuration details out of this book. However, if you find yourself using 
this tool, go ahead and check its GitHub repository. 

Summary 
TypeORM is a very useful tool and enables us to do a lot of heavy lifting when 
dealing with databases, while greatly abstracting things like data modelling, 
queries, and complex joins, thus simplifying our code. 

It’s also very suitable for being used in Nest.js-based projects thanks to the great 
support the framework provides through the @nest/typeorm package. 



Some of the things that we covered in this chapter are: 

• The database types supported by TypeORM and some hints 
on how to choose one. 
• How to connect TypeORM to your database. 
• What is an entity and how to create your first one. 
• Storing and retrieving data from your database. 
• Leveraging TypeORM to make it easier working with 
metadata (ID’s, creation and modification dates...). 
• Customizing the type of columns in your database to match 
your needs. 
• Building relationships between your different entities and 
how to handle them when reading from and writing to the 
database. 
• More advanced procedures like reusing code through 
composition or inheritance; hooking into lifecycle events; caching; 
and building queries by hand. 

All in all, we really think the more familiar you grow with Nest.js, the more 
likely you start to feel comfortable writing TypeORM code, since they both 
look alike in a few aspects as their extensive use of TypeScript decorators. 

In the next chapter we cover Sequelize, which is a promise-based ORM. 

	 	



Chapter 6. Sequelize 
Sequelize is a promise-based ORM working for Node.js v4 and later. This 
ORM supports many dialects, such as: 

• PostgreSQL 
• MySQL 
• SQLite 
• MSSQL 

This provides a solid support for transactions. With Sequelize you have 
the possibility of using sequelize-typescript, which provides decorators to 
put in your entity and manages all the fields of your model, with types 
and constraints. 

Also, Sequelize comes from many hooks providing you with the 
significant advantage of being able to check and manipulate your data at 
any level of the transaction. 

In this chapter, we will see how to configure your database 
using postgresql and how to configure the connection to your database. 
After that we will see how to implement our first entity, which will be a 
simple User entity and then how to create a provider for this entity in 
order to inject the entity into a UserService. We will also see the migration 
system through umzung, and how to create our first migration file. 

You can have a look on the on 
the src/modules/database, src/modules/user, /src/shared/config, 
and /src/migrations /migrate.ts of the repository. 

Configure Sequelize 
In order to be able to use Sequelize, we have first to set up the connection 
between sequelize and our database. In order to do that, we will create 
the DatabaseModule, which will contain the provider of the sequelize instance. 

In order to set up this connection, we will define a configuration file, which will 
have as properties all you need to be connected to your database. This 
configuration will have to implement the IDatabaseConfig interface in order to 
void to forget some parameters. 

export interface IDatabaseConfigAttributes { 
    username: string; 



    password: string; 
    database: string; 
    host: string; 
    port: number; 
    dialect: string; 
    logging: boolean | (() => void); 
    force: boolean; 
    timezone: string; 
} 
 
export interface IDatabaseConfig { 
    development: IDatabaseConfigAttributes; 
} 

This configuration should be set up as the following example, and set the 
parameters through the environment variable or the default value. 

export const databaseConfig: IDatabaseConfig = { 
    development: { 
        username: process.env.POSTGRES_USER ||             
'postgres', 
        password: process.env.POSTGRES_PASSWORD || null, 
        database: process.env.POSTGRES_DB || 'postgres', 
        host: process.env.DB_HOST || '127.0.0.1', 
        port: Number(process.env.POSTGRES_PORT) || 5432, 
        dialect: 'postgres', 
        logging: false, 
        force: true, 
        timezone: '+02:00', 
    } 
}; 

After the configuration, you have to create the appropriate provider, which will 
have the purpose to create the instance of sequelize using the right 
configuration. In our case we just set up the environment configuration, but you 
can set up all the configuration with the same pattern, you just need to change 
the values. 

This instance is for you to be aware about the different model that should be 
provided. In order to tell sequelize which model we need, we use 
the addModels method on the instance and pass an array of model. Of course, in 
the following section we will see how to implement a new model. 



export const databaseProvider = { 
    provide: 'SequelizeInstance', 
    useFactory: async () => { 
        let config; 
        switch (process.env.NODE_ENV) { 
            case 'prod': 
            case 'production': 
            case 'dev': 
            case 'development': 
            default: 
                config = databaseConfig.development; 
        } 
 
        const sequelize = new Sequelize(config); 
        sequelize.addModels([User]); 
        return sequelize; 
    } 
}; 

This provider will return the instance of Sequelize. This instance will be useful 
to use the transaction provided by Sequelize. Also, in order to be able to inject 
it, we have provided in the provide parameter, the name of the 
token SequelizeInstance, which will be used to inject it. 

Sequelize also provides a way to immediately synchronize your model and your 
database using sequelize.sync(). This synchronisation should not be used in 
production mode, because it recreates a new database and removes all of the 
data each time. 

We have now set up our Sequelize configuration, and we need to set up 
the DatabaseModule as shown in the following example: 

@Global() 
@Module({ 
    providers: [databaseProvider], 
    exports: [databaseProvider], 
}) 
export class DatabaseModule {} 

We defined the DatabaseModule as a Global in order to be added into all the 
modules as a related module, letting you inject the 
provider SequelizeInstance into any module as following: 



@Inject('SequelizeInstance`) private readonly sequelizeInstance 

We now have a complete working module to access our data in the database. 

Create a model 
After having set up the sequelize connection, we have to implement our model. 
As seen in the previous section, we tell Sequelize that we will have 
the User model using this methodsequelize.addModels([User]);. 

You now see all of the required features to set up it. 

@Table 

This decorator will allow you to configure our representation of the data, and 
here are some parameters: 

{ 

 

    timestamps:  true, 
    paranoid:  true, 
    underscored:  false, 
    freezeTableName:  true, 
    tableName:  'my_very_custom_table_name' 
} 

The timestamp parameter will tell you that you want to have 
an updatedAt and deletedAt columns. The paranoid parameter allows you to soft 
delete data instead of removing it to lose your data. If you pass true, Sequelize 
will expected a deletedAt column in oder to set the date of the remove action. 

The underscored parameter will automatically transform all of the camelcase 
columns into underscored columns. 

The freezTableName will provide a way to avoid Sequelize to pluralize the name 
of the table. 

The tableName allows you to set the name of the table. 

In our case we only use timestamp: true, tableName: 'users' in order to get 
the updatedAt and createdAt column and name the table as users. 



@column 

This decorator will help define our column. You can also not pass any 
parameter, so in this case Sequelize will try to infer the column type. The types 
that can be inferred are string, boolean, number, Dateand Blob. 

Some parameter allows us to define some constraints on the column. Let’s 
imagine the email column, where we would like this email as a string and that 
cannot be null, so the email has to be unique. Sequelize can recognize an email, 
but we have to tell it how to validate the email passing 
the validate#isUnique method. 

Take a look at the following example. 

@Column({ 
    type: DataType.STRING, 
    allowNull: false, 
    validate: { 
        isEmail: true, 
        isUnique: async (value: string, next: any): Promise<any> => { 
            const isExist = await User.findOne({ where: { email: 
value }}); 
            if (isExist) { 
                const error = new Error('The email is already 

used.'); 
                next(error); 
            } 
            next(); 
        }, 
    }, 
}) 

In the previous example, we passed some options, but we could also use some 
decorator as @AllowNull(value: boolean), @Unique or even @Default(value: any). 

To set an id column, the @PrimaryKey and @AutoIncrement decorators are an easy 
way to set up the constraint. 



Create the User model 

Now that we have seen some useful decorator, let’s create our first model, 
the User. In order to do that, we will create the class that has to extend from the 
base class Model<T>, and this class takes a template value for the class itself. 

export class User extends Model<User> {...} 

We now add the @Table() decorator in order to configure our model. This 
decorator takes options corresponding to the interface DefineOptions and as we 
described in the @Table section we will pass as options the timestamp as true 
and the name of the table. 

@Table({ timestamp: true, tableName: 'users' } as IDefineOptions) 
export class User extends Model<User> {...} 

Now we have to define some columns for our model. To do this, sequelize-
typescript provides the @Column() decorator. This decorator allows us to 
provide some options to configure our field. You can pass the data 
type DataType.Type directly. 

@Column(DataTypes.STRING) 
public email: string; 

You can also use the options shown in the @Column section in order to 
validate and ensure the data of the email. 

@Column({ 
    type: DataType.STRING, 
    allowNull: false, 
    validate: { 
        isEmail: true, 
        isUnique: async (value: string, next: any): Promise<any> => { 
            const isExist = await User.findOne({ 
                where: { email: value } 
            }); 
            if (isExist) { 
                const error = new Error('The email is already 

used.'); 
                next(error); 
            } 
            next(); 
        }, 



    }, 
}) 
public email: string; 

You now know how to set up a column, so let’s set up the rest of the model with 
the column that we need for a simple user. 

@Table(tableOptions) 
export class User extends Model<User> { 
    @PrimaryKey 
    @AutoIncrement @Column(DataType.BIGINT) 
    public id: number; 
 
    @Column({ 
        type: DataType.STRING, 
        allowNull: false, 
    }) 
    public firstName: string; 
 
    @Column({ 
        type: DataType.STRING, 
        allowNull: false, 
    }) 
    public lastName: string; 
 
    @Column({ 
        type: DataType.STRING, 
        allowNull: false, 
        validate: { 
            isEmail: true, 
            isUnique: async (value: string, next: any): Promise<any> 
=> { 
                const isExist = await User.findOne({ 
                    where: { email: value } 
                }); 
                if (isExist) { 
                    const error = new Error('The email is already 

used.'); 
                    next(error); 
                } 
                next(); 



            }, 
        }, 
    }) 
    public email: string; 
 
    @Column({ 
        type: DataType.TEXT, 
        allowNull: false, 
    }) 
    public password: string; 
 
    @CreatedAt 
    public createdAt: Date; 
 
    @UpdatedAt 
    public updatedAt: Date; 
 
    @DeletedAt 
    public deletedAt: Date; 
} 

In all the added columns, you can see the password of type TEXT, but of course, 
you cannot store a password as a plain text, so we have to hash it in order to 
protect it. To do that, use the lifeCycle hooks provided by Sequelize. 

LifeCycle hooks 

Sequelize come with many lifeCycle hooks that allow you to manipulate and 
check the data along the process of creating, updating, or deleting a data. 

Here are some interesting hooks from Sequelize. 

  beforeBulkCreate(instances, options) 
  beforeBulkDestroy(options) 
  beforeBulkUpdate(options) 
 
  beforeValidate(instance, options) 
  afterValidate(instance, options) 
 
  beforeCreate(instance, options) 
  beforeDestroy(instance, options) 



  beforeUpdate(instance, options) 
  beforeSave(instance, options) 
  beforeUpsert(values, options) 
 
  afterCreate(instance, options) 
  afterDestroy(instance, options) 
  afterUpdate(instance, options) 
  afterSave(instance, options) 
  afterUpsert(created, options) 
 
  afterBulkCreate(instances, options) 
  afterBulkDestroy(options) 
  afterBulkUpdate(options) 

In this case, we need to use the @BeforeCreate decorator in order to hash the 
password and replace the original value before storing it in the database. 

@Table(tableOptions) 
export class User extends Model<User> { 
    ... 
    @BeforeCreate 
    public static async hashPassword(user: User, options: any) { 
        if (!options.transaction) throw new Error('Missing 

transaction.'); 
 
        user.password = crypto.createHmac('sha256', 
user.password).digest('hex'); 
    } 
} 

The BeforeCreate previously written allows you to override 
the password property value of the user in order to override it before the 
insertion of the object into the database, and to ensure a minimum of security. 

Injecting a model into a service 
Our first User model is now setup. Of course, we will have to inject it into a 
service or even a controller. To inject a model anywhere else, we must first 
create the appropriate provider in order to give it to the module. 



This provider will define the key to use in order to inject it and take as a value 
the User model that we have implemented before. 

export const userProvider = { 
    provide: 'UserRepository', 
    useValue: User 
}; 

To inject it in into a service we will use the @Inject() decorator, which can take 
the string defined in the previous example UserRepository. 

@Injectable() 
export class UserService implements IUserService { 
    constructor(@Inject('UserRepository') private readonly 
UserRepository: typeof User) { } 
    ... 
} 

After injecting the model into the service, you will be able to use it to access 
and manipulate the data as you want. For example, you can 
execute this.UserRepository.findAll() to register the data in your database. 

Finally, we have to set up the module to take as providers, the userProvider that 
provides access to the model and the UserService. The UserService can be 
exported to be used in another module by importing the UserModule. 

@Module({ 
    imports: [], 
    providers: [userProvider, UserService], 
    exports: [UserService] 
}) 
export class UserModule {} 

Usage of Sequelize transaction 
You might remark this line, if (!options.transaction) throw new 
Error('Missing transaction.');, in the hashPassword method decorated with 
the @BeforeCreate. As said before, Sequelize provides a strong support of the 
transaction. So for each action or process of action, you can use a transaction. 
To use the Sequelize transaction, take a look at the following example of 
a UserService. 



@Injectable() 
export class UserService implements IUserService { 
    constructor(@Inject('UserRepository') private readonly 
UserRepository: typeof User, 
                @Inject('SequelizeInstance') private readonly 
sequelizeInstance) { } 
    ... 
} 

We have injected both the model and the Sequelize instance that we talked 
about earlier in this chapter. 

To use a transaction to wrap some access to the database, you can do the 
following: 

public async create(user: IUser): Promise<User> { 
    return await this.sequelizeInstance.transaction(async transaction => 
{ 
        return await this.UserRepository.create<User>(user, { 
            returning: true, 
            transaction, 
        }); 
    }); 
} 

We use the sequelizeInstance to create a new transaction and pass it to 
the create method of the UserRepository. 

Migration 
With Sequelize you have a way to sync your model and your database. The 
thing is, this synchronization will remove all of your data in order to recreate all 
of the tables representing the model. So, this feature is useful in testing, but not 
in a production mode. 

In order to manipulate your database, you have the possibility to use umzung, a 
framework agnostic library and migration tool for Nodejs. It is not related to 
any database, but provides an API in order to migrate or rollback the migration. 

When you are using the command npm run migrate up, which executes ts-node 
migrate.ts, you can pass up/down as a parameter. In order to track all of the 



migration already applied, a new table will be created with the default 
name SequelizeMeta, and all of the applied migrations will be stored in this 
table. 

Our migration file can be found in the repository as the root with the 
name migrate.ts. Also, all of the migrations files will be stored in 
the migrations folder of the repository example. 

Configuring the migration script 

In order to configure the umzung instance, you will be able to set some options: 

• storage, which correspond to the sequelize string key for us 
• storageOptions, which will take Sequelize, and it is in this 
option that you can change the default name of the table of the 
column used to store the name of the migrations applied 
throughout the modelName, tableName and columnName properties. 

Some other configurations are able, in order to set the up method name and the 
down method name, to pass a logging function. The migrations property will 
allow you to provide some params to pass to the method up/down and the path 
of the migrations to apply with the appropriate pattern. 

const umzug = new Umzug({ 
    storage: 'sequelize', 
    storageOptions: { sequelize }, 
 
    migrations: { 
        params: [ 
            sequelize, 
            sequelize.constructor, // DataTypes 
        ], 
        path: './migrations', 
        pattern: /\.ts$/ 
    }, 
 
    logging: function () { 
        console.log.apply(null, arguments); 
    } 
}); 



Create a migration 

To execute the migration script, provide the migration that you want to apply. 
Imagine that you want to create the users table using migration. You must set 
an up and a down method. 

export async function up(sequelize) { 
    // language=PostgreSQL 
    sequelize.query(` 
        CREATE TABLE "users" ( 
            "id" SERIAL UNIQUE PRIMARY KEY NOT NULL, 
            "firstName" VARCHAR(30) NOT NULL, 
            "lastName" VARCHAR(30) NOT NULL, 
            "email" VARCHAR(100) UNIQUE NOT NULL, 
            "password" TEXT NOT NULL, 
            "birthday" TIMESTAMP, 
            "createdAt" TIMESTAMP NOT NULL, 
            "updatedAt" TIMESTAMP NOT NULL, 
            "deletedAt" TIMESTAMP 
        ); 
    `); 
 
    console.log('*Table users created!*'); 
} 
 
export async function down(sequelize) { 
    // language=PostgreSQL 
    sequelize.query(`DROP TABLE users`); 
} 

In each method, the parameter will be sequelize, which is the instance used in 
the configuration file. Throughout this instance you can use the que query 
method in order to write our SQL query. In the previous example, the 
function up will execute the query to create the users table. The down method has 
the purpose to drop this table in case of a rollback. 

Summary 



In this chapter you have seen how to set up the connection to the database by 
instanciating a Sequelize instance, using the factory in order to inject the 
instance directly in another place. 

Also, you have seen decorators provided by sequelize-typescript in order to set 
up a new model. You have also seen how to add some constraints on the 
columns and how to use the lifeCycle hooks to hash a password before saving 
it. Of course, the hooks can be used to validate some data or check some 
information before doing anything else. But you also have seen how to use 
the @BeforeCreate hook. You are therefore ready to use a Sequelize transaction 
system. 

Finally, you have seen how to configure umzung to execute migrations, and 
how to create your first migration in order to create the users table. 

In the next chapter you will learn how to use Mongoose. 

	 	



Chapter 7. Mongoose 
Mongoose is the third and last database mapping tool that we will be 
covering in this book. It is the best known MongoDB mapping tool in the 
JavaScript world. 

A word about MongoDB 
When MongoDB was initially released, in 2009, it took the database world by 
storm. At that point the vast majority of databases in use were relational, and 
MongoDB quickly grew to be the most popular non-relational database (also 
known as “NoSQL”.) 

NoSQL databases difer from relational databases (such as MySQL, 
PostgreSQL, etc.) in that they model the data they store in ways other than 
tables related one to another. 

MongoDB, specifically, is a “document-oriented database.” It saves data in 
“documents” encoded in BSON format (“Binary JSON”, a JSON extension that 
includes various data types specific for MongoDB). The MongoDB documents 
are grouped in “collections.” 

Traditional relational databases separate data in tables and columns, similar to a 
spreadsheet. On the other hand, document-oriented databases store complete 
data objects in single instances of the database, similar to a text file. 

While relational databases are heavily structured, document-oriented ones are 
much more flexible, since developers are free to use non-predefined structures 
in our documents, and even completely change our data structure from 
document instance to document instance. 

This flexibility and lack of defined structure means that is usually easier and 
faster to “map” (transform) our objects in order to store them in the database. 
This brings reduced coding overhead and faster iterations to our projects. 

A word about Mongoose 
Mongoose is technically not an ORM (Object Relational Mapping) though it’s 
commonly referred to as one. Rather, it is an ODM (Object Document 
Mapping) since MongoDB itself is based in documents instead of relational 



tables. The idea behind ODM’s and ORM’s is the same, though: providing an 
easy-to-use solution for data modelling. 

Mongoose works with the notion of “schemas.” A schema is simply an object 
that defines a collection (a group of documents) and the properties and allowed 
types of values that the document instances will have (i.e. what we would call 
“their shape.”). 

Mongoose and Nest.js 

Just like we saw in the TypeORM and the Sequelize chapters, Nest.js provides 
us with a module that we can use with Mongoose. 

Getting started 
As a first step, we need to install the Mongoose npm package, as well as the 
Nest.js/Mongoose npm package. 

Run npm install --save mongoose @nestjs/mongoose in your console, and npm 
install --save-dev @types/mongoose inmediately after. 

Set up the database 

Docker Compose is the easiest way to get started with MongoDB. There’s an 
official MongoDB image in the Docker registry we recommend that you use. 
The latest stable version at the moment of writing this is 3.6.4. 

Let’s create a Docker Compose file to build and start both the database we will 
be using, as well as our Nest.js app, and link them together so that we can 
access the database later from our code. 

version: '3' 
 
volumes: 
  mongo_data: 
 
services: 
  mongo: 
    image: mongo:latest 
    ports: 
    - "27017:27017" 



    volumes: 
    - mongo_data:/data/db 
  api: 
    build: 
      context: . 
      dockerfile: Dockerfile 
      args: 
        - NODE_ENV=development 
    depends_on: 
      - mongo 
    links: 
      - mongo 
    environment: 
      PORT: 3000 
    ports: 
      - "3000:3000" 
    volumes: 
      - .:/app 
      - /app/node_modules 
    command: > 
      npm run start:dev 

We’re pointing to the latest tag of the MongoDB image, which is an alias that 
resolves to the most recent stable version. If you’re feeling adventurous, feel 
free to change the tag to unstable... though be aware that things might break! 

Start the containers 

Now that your Docker Compose file is ready, fire up the containers and start 
working! 

Run docker-compose up in your console to do it. 

Connect to the database 

Our local MongoDB instance is now running and ready to accept connections. 

We need to import the Nest.js/Mongoose module that we installed a couple of 
steps ago into our main app module. 

import { MongooseModule } from '@nestjs/mongoose'; 



 
@Module({ 
  imports: [ 
    MongooseModule.forRoot(), 
    ... 
  ], 
}) 
export class AppModule {} 

We are adding the MongooseModule to the AppModule and we’re relying on 
the forRoot() method to properly inject the dependency. You might find 
the forRoot() method familiar if you read the chapter about TypeORM, or if 
you are familiar with Angular and its official routing module. 

There’s a captcha with the code above: it won’t work, because there’s still no 
way for Mongoose or the MongooseModule to figure out how to connect to our 
MongoDB instance. 

THE CONNECTION STRING 

If you check in the Mongoose documentation or make a quick search on 
Google, you’ll see that the usual way of connecting to a MongoDB instance is 
by using the 'mongodb://localhost/test' string as an argument for 
the .connect() method in Mongoose (or even in the Node MongoDB native 
client.) 

That string is what is known as a “connection string.” The connection string is 
what tells any MongoDB client how to connect to the corresponding MongoDB 
instance. 

The bad news here is that, in our case, the “default” example connection string 
will not work, because we are running our database instance inside a container 
linked from another container, a Node.js one, which is the one that our code 
runs in. 

The good news, though, is that we can use that Docker Compose link to connect 
to our database, because Docker Compose establishes a virtual network 
connection between both containers, the MongoDB one and the Node.js one. 

So, the only thing that we need to do is changing the example connection string 
to 

'mongodb://mongo:27017/nest' 



where mongo is the name of our MongoDB container (we specified this is the 
Docker Compose file), 27017 is the port that the MongoDB container is 
exposing (27017 being the default for MongoDB), and nest is the collection we 
will store our documents on (you’re free to change it to your heart’s content.) 

THE RIGHT ARGUMENT FOR THE FORROOT() METHOD 

Now that we have adjusted our connection string, let’s modify our 
original AppModule import. 

import { MongooseModule } from '@nestjs/mongoose'; 
 
@Module({ 
  imports: [ 
    MongooseModule.forRoot('mongodb://mongo:27017/nest'), 
    ... 
  ], 
}) 
export class AppModule {} 

The connection string is now added as an argument to the forRoot() method, so 
Mongoose is aware of how to connect to the database instance and will start 
successfully. 

Modelling our data 
We already mentioned before that Mongoose works with the concept of 
“schemas.” 

Mongoose schemas play a similar role to TypeORM entities. However, unlike 
the latter, the former are not classes, but rather plain objects that inherit from 
the Schema prototype defined (and exported) by Mongoose. 

In any case, schemas need to be instantiated into “models” when you are ready 
to use them. We like to think about schemas as “blueprints” for objects, and 
about “models” as object factories. 

Our first schema 

With that said, let’s create our first entity, which we will name Entry. We will 
use this entity to store entries (posts) for our blog. We will create a new file 



at src/entries/entry.entity.ts; that way TypeORM will be able to find this 
entity file since earlier in our configuration we specified that entity files will 
follow the src/**/*.entity.ts file naming convention. 

Let’s create our first schema. We will use it as a blueprint for storing our blog 
entries. We will also place the schema next to the other blog entries related files, 
grouping our files by “domain” (that is, by functionality.) 

NOTE: You’re free to organize your schemas as you see fit. We (and the 
official Nest.js documentation) suggest storing them near the module where you 
use each one of them. In any case, you should be good with any other structural 
approach as long as you correctly import your schema files when you need 
them. 

src/entries/entry.schema.ts 

import { Schema } from 'mongoose'; 
 
export const EntrySchema = new mongoose.Schema({ 
  _id: Schema.Types.ObjectId, 
  title: String, 
  body: String, 
  image: String, 
  created_at: Date, 
}); 

The schema we just wrote is: 

1. Creating an object with the properties we need for our blog 
entries. 
2. Instantiating a new mongoose.Schema type object. 
3. Passing our object to the constructor of 
the mongoose.Schema type object. 
4. Exporting the instantiated mongoose.Schema, so that it can be 
used elsewhere. 

NOTE: Storing the ID of our objects in a property called _id, starting with 
underscore, it’s a useful convention when working with Mongoose; it’ll make it 
possible later to rely on the Mongoose .findById() model method. 



INCLUDING THE SCHEMA INTO THE MODULE 

The next step is to “notify” the Nest.js MongooseModule that you intend to use the 
new schema we created. For that, we need to create an “Entry” module (in case 
we didn’t have one just yet) like the following: 

src/entries/entries.module.ts 

import { Module } from '@nestjs/common'; 
import { MongooseModule } from '@nestjs/mongoose'; 
 
import { EntrySchema } from './entry.schema'; 
 
@Module({ 
  imports: [ 
    MongooseModule.forFeature([{ name: 'Entry', schema: EntrySchema }]), 
  ], 
}) 
export class EntriesModule {} 

Quite similarly to what we did in the TypeORM chapter, we now need to use 
the forFeature() method of the MongooseModule in order to define the schemas 
that it needs to register to be used by models in the scope of the module. 

Again, the approach is heavily influenced by Angular modules like the router, 
so it maybe looks familiar to you! 

If not, note that this way of handling dependencies greatly increases the 
decoupling between functional modules in our apps, enabling us to easily 
include, remove and reuse features and functionality just by adding or removing 
modules to the imports in the main AppModule. 

INCLUDE THE NEW MODULE INTO THE MAIN MODULE 

And, talking about the AppModule, don’t forget to import the 
new EntriesModule into the root AppModule, so that we can successfully use the 
new functionality we are writing for our blog. Let’s do it now! 

import { MongooseModule } from '@nestjs/mongoose'; 
 
import { EntriesModule } from './entries/entries.module'; 
 
@Module({ 



  imports: [ 
    MongooseModule.forRoot('mongodb://mongo:27017/nest'), 
    EntriesModule, 
    ... 
  ], 
}) 
export class AppModule {} 

Using the schema 
As mentioned before, we will use the schema we just defined to instantiate a 
new data model that we will be able to use in our code. Mongoose models are 
the ones that do the heavy lifting in regards to mapping objects to database 
documents, and also abstract common methods for operating with the data, such 
as .find() and .save(). 

If you’ve come from the TypeORM chapter, models in Mongoose are very 
similar to repositories in TypeORM. 

When having to connect requests to data models, the typical approach in Nest.js 
is building dedicated services, which serve as the “touch point” with each 
model, and controllers. This links the services to the requests reaching the API. 
We follow the data model -> service -> controller approach in the following 
steps. 

The interface 

Before we create our service and controller, we need to write a small interface 
for our blog entries. This is because, as mentioned before, Mongoose schemas 
are not TypeScript classes, so in order to properly type the object to use it later, 
we will need to define a type for it first. 

src/entries/entry.interface.ts 

import { Document } from 'mongoose'; 
 
export interface Entry extends Document { 
  readonly _id: string; 
  readonly title: string; 
  readonly body: string; 
  readonly image: string; 



  readonly created_at: Date; 
} 

Remember to keep your interface in sync with your schemas so that you don’t 
run into issues with the shape of your objects later. 

The service 

Let’s create a service for our blog entries that interact with the Entry model. 

src/entries/entries.service.ts 

import { Component } from '@nestjs/common'; 
import { InjectModel } from '@nestjs/mongoose'; 
import { Model, Types } from 'mongoose'; 
 
import { EntrySchema } from './entry.schema'; 
import { Entry } from './entry.interface'; 
 
@Component() 
export class EntriesService { 
  constructor( 
    @InjectModel(EntrySchema) private readonly entryModel: Model<Entry> 
  ) {} 
 
  // this method retrieves all entries 
  findAll() { 
    return this.entryModel.find().exec(); 
  } 
 
  // this method retrieves only one entry, by entry ID 
  findById(id: string) { 
    return this.entryModel.findById(id).exec(); 
  } 
 
  // this method saves an entry in the database 
  create(entry) { 
    entry._id = new Types.ObjectId(); 
    const createdEntry = new this.entryModel(entry); 
    return createdEntry.save(); 
  } 



} 

In the code above, the most important bit happens inside the constructor: we are 
using the @InjectModel() decorator to instantiate our model, by passing the 
desired schema (in this case, EntrySchema) as a decorator argument. 

Then, in that same line of code, we are injecting the model as a dependency in 
the service, naming it as entryModel and assigning a Model type to it; from this 
point on, we can take advantage of all the goodies that Mongoose models offer 
to manipulate documents in an abstract, simplified way. 

On the other hand, it’s worth mentioning that, in the create() method, we are 
adding an ID to the received entry object by using the _id property (as we 
previously defined on our schema) and generating a value using Mongoose’s 
built-in Types.ObjectId() method. 

The controller 

The last step we need to cover in the model -> service -> controller chain is the 
controller. The controller will make it possible to make an API request to the 
Nest.js app and either write to or read from the database. 

This is how our controller should look like: 

src/entries/entries.controller.ts 

import { Controller, Get, Post, Body, Param } from '@nestjs/common'; 
 
import { EntriesService } from './entry.service'; 
 
@Controller('entries') 
export class EntriesController { 
  constructor(private readonly entriesSrv: EntriesService) {} 
 
  @Get() 
  findAll() { 
    return this.entriesSrv.findAll(); 
  } 
 
  @Get(':entryId') 
  findById(@Param('entryId') entryId) { 
    return this.entriesSrv.findById(entryId); 
  } 



 
  @Post() 
  create(@Body() entry) { 
    return this.entriesSrv.create(entry); 
  } 
} 

As usual, we are using Nest.js Dependency Injection to make 
the EntryService available in our EntryController. Then we route the three basic 
requests we are expecting to listen to (GET all entries, GET one entry by ID 
and POST a new entry) to the corresponding method in our service. 

The first requests 
At this point, our Nest.js API is ready to listen to requests (both GET and POST) 
and operate on the data stored in our MongoDB instance based on those 
requests. In other words, we are ready to read from and write to our database 
from the API. 

Let’s give it a try. 

We will start with a GET request to the /entries endpoint. Obviously, since we 
haven’t created any entries yet, we should receive an empty array as a response. 

> GET /entries HTTP/1.1 

> Host: localhost:3000 

< HTTP/1.1 200 OK 

 

[] 

Let’s create a new entry by sending a POST request to the entries endpoint and 
including in the request body a JSON object that matches the shape of our 
previously defined EntrySchema. 

> GET /entries HTTP/1.1 

> Host: localhost:3000 

| { 

|   "title": "This is our first post", 



|   "body": "Bla bla bla bla bla", 

|   "image": "http://lorempixel.com/400", 

|   "created_at": "2018-04-15T17:42:13.911Z" 

| } 

 

< HTTP/1.1 201 Created 

Yes! Our previous POST request triggered a write in the database. Let’s try to 
retrieve all entries once again. 

> GET /entries HTTP/1.1 

> Host: localhost:3000 

< HTTP/1.1 200 OK 

 

[{ 

  "id": 1, 

  "title": "This is our first post", 

  "body": "Bla bla bla bla bla", 

  "image": "http://lorempixel.com/400", 

  "created_at": "2018-04-15T17:42:13.911Z" 

}] 

We just confirmed that requests to our /entries endpoint successfully execute 
reads and writes in our database. This means that our Nest.js app is usable now, 
since the basic functionality of almost any server application (that is, storing 
data and retrieving it on demand) is working properly. 

Relationships 
While it’s true that MongoDB is not a relational database, it’s also true that it 
allows “join-like” operations for retrieving two (or more) related documents at 
once. 



Fortunately for us, Mongoose includes a layer of abstraction for these 
operations and allows us to set up relationships between objects in a clear, 
concise way. This is provided by using refs in schemas’ properties, as well as 
the .populate() method (that triggers something known as the “population” 
process; more on it later.) 

Modelling relationships 

Let’s go back to our blog example. Remember that so far we only had a schema 
that defined our blog entries. We will create a second schema that will allow us 
to create comments for each blog entry, and save them to the database in a way 
that allows us later to retrieve both a blog entry as well as the comments that 
belong to it, all in a single database operation. 

So, first, we create a CommentSchema like the following one: 

src/comments/comment.schema.ts 

import * as mongoose from 'mongoose'; 
 
export const CommentSchema = new mongoose.Schema({ 
  _id: Schema.Types.ObjectId, 
  body: String, 
  created_at: Date, 
  entry: { type: Schema.Types.ObjectId, ref: 'Entry' }, 
}); 

This schema is, at this point, a “stripped-down version” of our 
previous EntrySchema. It’s actually dictated by the intended functionality, so we 
shouldn’t care too much about that fact. 

Again, we are relying on the _id named property as a naming convention. 

One notable new thing is the entry property. It will be used to store a reference 
to the entry each comment belongs to. The ref option is what tells Mongoose 
which model to use during population, which in our case is the Entry model. 
All _id’s we store here need to be document _id’s from the Entry model. 

NOTE: We will ignore the Comment interface for brevity; it’s simple enough for 
you to be able to complete it on your own. Don’t forget to do it! 



Second, we need to update our original EntrySchema in order to allow us to save 
references to the Comment instances that belong to each entry. See the following 
example on how to do it: 

src/entries/entry.schema.ts 

import * as mongoose from 'mongoose'; 
 
export const EntrySchema = new mongoose.Schema({ 
  _id: Schema.Types.ObjectId, 
  title: String, 
  body: String, 
  image: String, 
  created_at: Date, 
  comments: [{ type: Schema.Types.ObjectId, ref: 'Comment' }], 
}); 

Note that the comments property that we just added is an array of objects, each of 
which have an ObjectId as well as a reference. The key here is including 
an array of related objects, as this array enables what we could call a “one-to-
many” relationship, if we were in the context of a relational database. 

In other words, each entry can have multiple comments, but each comment can 
only belong to one entry. 

Saving relationships 

Once our relationship is modelled, we need to provide a method for saving them 
into our MongoDB instance. 

When working with Mongoose, storing a model instance and its related 
instances requires some degree of manually nesting methods. 
Fortunately, async/await will make the task much easier. 

Let’s modify our EntryService to save both the receive blog entry and a 
comment associated with it; both will be sent to the POST endpoint as different 
objects. 

src/entries/entries.service.ts 

import { Component } from '@nestjs/common'; 
import { InjectModel } from '@nestjs/mongoose'; 
import { Model, Types } from 'mongoose'; 



 
import { EntrySchema } from './entry.schema'; 
import { Entry } from './entry.interface'; 
 
import { CommentSchema } from './comment.schema'; 
import { Comment } from './comment.interface'; 
 
@Component() 
export class EntriesService { 
  constructor( 
    @InjectModel(EntrySchema) private readonly entryModel: 
Model<Entry>, 
    @InjectModel(CommentSchema) private readonly commentModel: 
Model<Comment> 
  ) {} 
 
  // this method retrieves all entries 
  findAll() { 
    return this.entryModel.find().exec(); 
  } 
 
  // this method retrieves only one entry, by entry ID 
  findById(id: string) { 
    return this.entryModel.findById(id).exec(); 
  } 
 
  // this method saves an entry and a related comment in the database 
  async create(input) { 
    const { entry, comment } = input; 
 
    // let's first take care of the entry (the owner of the 
relationship) 
    entry._id = new Types.ObjectId(); 
    const entryToSave = new this.entryModel(entry); 
    await entryToSave.save(); 
 
    // now we are ready to handle the comment 
    // this is how we store in the comment the reference 
    // to the entry it belongs to 
    comment.entry = entryToSave._id; 
 



    comment._id = new Types.ObjectId(); 
    const commentToSave = new this.commentModel(comment); 
    commentToSave.save(); 
 
    return { success: true }; 
  } 
} 

The modified create() method is now: 

1. Assigning an ID to the entry. 
2. Saving the entry while assigning it to a const. 
3. Assigning an ID to the comment. 
4. Using the ID of the entry we created before as value of 
the entry property of the comment. This is the reference we 
mentioned before. 
5. Saving the comment. 
6. Returning a success status message. 

This way we make sure that, inside the comment, we are successfully storing a 
reference to the entry the comment belongs to. By the way, note that we store 
the reference by entry’s ID. 

The next step should obviously be providing a way of reading from the database 
the related items we now are able to save to it. 

Reading relationships 

As covered a few sections ago, the method that Mongoose provides for 
retrieving related documents from a database at once is called “population,” and 
it’s invoked with the built-in .populate() method. 

We’ll see how to use this method by changing the EntryService once again; at 
this point, we will deal with the findById() method. 

src/entries/entries.service.ts 

import { Component } from '@nestjs/common'; 
import { InjectModel } from '@nestjs/mongoose'; 
import { Model, Types } from 'mongoose'; 
 
import { EntrySchema } from './entry.schema'; 



import { Entry } from './entry.interface'; 
 
import { CommentSchema } from './comment.schema'; 
import { Comment } from './comment.interface'; 
 
@Component() 
export class EntriesService { 
  constructor( 
    @InjectModel(EntrySchema) private readonly entryModel: 
Model<Entry>, 
    @InjectModel(CommentSchema) private readonly commentModel: 
Model<Comment> 
  ) {} 
 
  // this method retrieves all entries 
  findAll() { 
    return this.entryModel.find().exec(); 
  } 
 
  // this method retrieves only one entry, by entry ID, 
  // including its related documents with the "comments" reference 
  findById(id: string) { 
    return this.entryModel 
      .findById(id) 
      .populate('comments') 
      .exec(); 
  } 
 
  // this method saves an entry and a related comment in the database 
  async create(input) { 
    ... 
  } 
} 

The .populate('comments') method that we just included will transform 
the comments property value from an array of IDs to an array of actual 
documents that correspond with those IDs. In other words, their ID value is 
replaced with the Mongoose document returned from the database by 
performing a separate query before returning the results. 



Summary 
NoSQL databases are a powerful alternative to “traditional” relational ones. 
MongoDB is arguably the best known of the NoSQL databases in use today, 
and it works with documents encoded in a JSON variant. Using a document-
based database such as MongoDB allows developers to use more flexible, 
loosely-structured data models and can improve iteration time in a fast-moving 
project. 

The well known Mongoose library is an adaptor for MongoDB that works in 
Node.js and that abstracts quite a lot of complexity when it comes to querying 
and saving operations. 

Over this chapter we’ve covered quite some aspects of working with Mongoose 
and Nest.js, like: 

• How to start up a local MongoDB instance with Docker 
Compose. 
• How to import the @nestjs/mongoose module in our root 
module and connect to our MongoDb instance. 
• What are schemas and how to create one for modelling our 
data. 
• Setting up a pipeline that allows us to write to and read from 
our MongoDB database as a reaction of requests made to our 
Nest.js endpoints. 
• How to establish relationships between different types of 
MongoDB documents and how to store and retrieve those 
relationships in an effective way. 

In the next chapter we cover web sockets. 

	 	



Chapter 8. Web sockets 
As you have seen, Nest.js provides a way to use web sockets into your 
app through the @nestjs/websockets package. Also, inside the framework 
the usage of the Adapter allows you to implement the socket library that 
you want. By default, Nest.js comes with it’s own adapter, which allows 
you to use socket.io, a well known library for web sockets. 

You have the possibility to create a full web socket app, but also, add 
some web socket features inside your Rest API. In this chapter, we will 
see how to implement the web socket over a Rest API using the 
decorators provided by Nest.js, but also how to validate an authenticated 
user using specific middleware. 

The advantage of the web socket is to be able to have some real-time 
features in an application depending on your needs. For this chapter you 
can have a look at the /src/gateways files from the repository, but 
also /src/shared/adapters and /src/middlewares. 

Imagine the following CommentGatewayModule, which looks like this: 

@Module({ 

    imports: [UserModule, CommentModule], 

    providers: [CommentGateway] 

}) 

export class CommentGatewayModule { } 

Import the UserModule in order to have access to the UserService, which 
will be useful later, as well as the CommentModule. Of course, we will create 
the CommentGateway, which is used as an injectable service. 

WebSocketGateway 
To implement your first module using the Nest.js web socket, you will have to 
use the @WebSocketGateway decorator. This decorator can take an argument as an 
object to provide a way to configure how to use the adapter. 

The implementation of the arguments respect the interface GatewayMetadata, 
allowing you to provide: 

• port, which must be use by the adapter 
• namespace, which belongs to the handlers 



• middlewares that have to be applied on the gateway before 
accessing the handlers 

All the parameters are optional. 

To use it, you have to create you first gateway class, so imagine a UserGateway: 

@WebSocketGateway({ 
    middlewares: [AuthenticationGatewayMiddleware] 
})   
export class UserGateway { /*....*/ } 

By default, without any parameters, the socket will use the same port as your 
express server (generally 3000). As you can see, in the previous example we 
used a @WebSocketGateway, which uses the default port 3000 without namespace 
and with one middleware that we will see later. 

Gateways 
The gateways in the class using the decorator previously seen contain all of the 
handlers that you need to provide the results of an event. 

Nest.js comes with a decorator that allows you to access the server 
instance @WebSocketServer. You have to use it on a property of your class. 

export class CommentGateway {   
    @WebSocketServer() server;  
 
    /* ... */ 
} 

Also, throughout the gateway, you have access to the injection of injectable 
services. So, in order to have access of the comment data, inject 
the CommentService exported by the CommentModule, which has been injected into 
this module. 

export class CommentGateway { 
    /* ... */ 
 
    constructor(private readonly commentService: CommentService) { } 
 
    /* ... */ 



} 

The comment service allows you to return the appropriate result for the next 
handlers. 

export class CommentGateway { 
    /* ... */ 
 
    @SubscribeMessage('indexComment') 
    async index(client, data): Promise<WsResponse<any>> { 
        if (!data.entryId) throw new WsException('Missing entry id.'); 
 
        const comments = await this.commentService.findAll({ 
            where: {entryId: data.entryId} 
        }); 
 
        return { event: 'indexComment', data: comments }; 
    } 
 
    @SubscribeMessage('showComment') 
    async show(client, data): Promise<WsResponse<any>> { 
        if (!data.entryId) throw new WsException('Missing entry id.'); 
        if (!data.commentId) throw new WsException('Missing comment 

id.'); 
 
        const comment = await this.commentService.findOne({ 
            where: { 
                id: data.commentId, 
                entryId: data.entryId 
            } 
        }); 
 
        return { event: 'showComment', data: comment }; 
    } 
} 

We now have two handlers, the indexComment and the showComment. To use 
the indexComment handler we expect an entryId in order to provide the 
appropriate comment, and for the showComment we expect an entryId, and of 
course a commentId. 



As you have seen, to create the event handler use 
the @SubscribeMessage decorator provide by the framework. This decorator will 
create the socket.on(event) with the event corresponding to the string passed as 
a parameter. 

Authentication 
We have set up our CommentModule, and now we want to authenticate the user 
using the token (have a look to the Authentication chapter). In this example we 
use a mutualised server for the REST API and the Websocket event handlers. 
So, we will mutualise the authentication token in order to see how to validate 
the token received after a user has been logged into the application. 

It is important to secure the websocket in order to avoid the access of data 
without logging into the application. 

As shown in the previous part, we have used middleware 
named AuthenticationGatewayMiddleware. The purpose of this middleware is to 
get the token from the web socket query, which is brought with 
the auth_token property. 

If the token is not provided, the middleware will return a WsException, otherwise 
we will use the jsonwebtoken library (have a look to the Authentication chapter) 
to verify the token. 

Let’s set up the middleware: 

@Injectable() 
export class AuthenticationGatewayMiddleware implements 
GatewayMiddleware { 
    constructor(private readonly userService: UserService) { } 
    resolve() { 
        return (socket, next) => { 
            if (!socket.handshake.query.auth_token) { 
                throw new WsException('Missing token.'); 
            } 
 
            return jwt.verify(socket.handshake.query.auth_token, 
'secret', async (err, payload) => { 
                if (err) throw new WsException(err); 
 



                const user = await this.userService.findOne({ where: 
{ email: payload.email }}); 
                socket.handshake.user = user; 
                return next(); 
            }); 
        } 
    } 
} 

The middleware used for the web socket is almost the same as the REST API. 
Implementing the GatewayMiddleware interface with the resolve function is now 
nearly the same. The difference is that you have to return a function, which 
takes socket and the next function as its parameters. The socket contains 
the handshake with the query sent by the client, and all of the parameters 
provided, in our case, the auth_token. 

Similar to the classic authentication middleware (have a look to the 
Authentication chapter), the socket will try to find the user with the given 
payload, which here contains the email, and then register the user into the 
handshake in order to be accessible into the gateway handler. This is a flexible 
way to already have the user in hand without finding it again in the database. 

Adapter 
As mentioned in the beginning of this chapter, Nest.js comes with it own 
adapter, which uses socket.io. But the framework needs to be flexible and it can 
be used with any third party library. In order to provide a way to implement 
another library, you have the possibility to create your own adapter. 

The adapter has to implement the WebSocketAdapter interface in order to 
implement the following methods. For example, we will use ws as a socket 
library in our new adapter. To use it, we will have to inject the app into the 
constructor as follows: 

export class WsAdapter implements WebSocketAdapter { 
    constructor(private app: INestApplication) { } 
 
    /* ... */ 
} 



By doing this, we can get the httpServer in order to use it with the ws. After that, 
we have to implement the create method in order to create the socket server. 

export class WsAdapter implements WebSocketAdapter { 
    /* ... */ 
 
    create(port: number) { 
        return new WebSocket.Server({ 
            server: this.app.getHttpServer(), 
            verifyClient: ({ origin, secure, req }, next) => {  
                return (new 
WsAuthenticationGatewayMiddleware(this.app.select(UserModule). 
                get(UserService))).resolve()(req, next); 
            } 
        }); 
    }    
 
    /* ... */ 
} 

As you can see, we have implemented the verifyClient property, which takes a 
method with { origin, secure, req } and next values. We will use the req, 
which is the IncomingMessage from the client and the next method in order to 
continue the process. We use the WsAuthenticationGatewayMiddleware to 
authenticate the client with the token, and to inject the appropriate dependencies 
we select the right module and the right service. 

The middleware in this case processes the authentication: 

@Injectable() 
export class WsAuthenticationGatewayMiddleware implements 
GatewayMiddleware { 
    constructor(private userService: UserService) { } 
    resolve() { 
        return (req, next) => { 
            const matches = req.url.match(/token=([^&].*)/); 
            req['token'] = matches && matches[1]; 
 
            if (!req.token) { 
                throw new WsException('Missing token.'); 
            } 
 



            return jwt.verify(req.token, 'secret', async (err, payload) 
=> { 
                if (err) throw new WsException(err); 
 
                const user = await this.userService.findOne({ where: 
{ email: payload.email }}); 
                req.user = user; 
                return next(true); 
            }); 
        } 
    } 
} 

In this middleware, we have to manually parse the URL to get the token and 
verify it with jsonwebtoken. After that, we have to implement 
the bindClientConnect method to bind the connection event to a callback that 
will be used by Nest.js. It is a simple method, which takes in arguments to the 
server with a callback method. 

export class WsAdapter implements WebSocketAdapter { 
    /* ... */ 
 
    bindClientConnect(server, callback: (...args: any[]) => void) { 
        server.on('connection', callback); 
    } 
 
    /* ... */ 
} 

To finish our new custom adapter, implement the bindMessageHandlers in order 
to redirect the event and the data to the appropriate handler of your gateway. 
This method will use the bindMessageHandlerin order to execute the handler and 
return the result to the bindMessageHandlers method, which will return the result 
to the client. 

export class WsAdapter implements WebSocketAdapter { 
    /* ... */ 
 
        bindMessageHandlers(client: WebSocket, handlers: 
MessageMappingProperties[], process: (data) => Observable<any>) { 
            Observable.fromEvent(client, 'message') 



                .switchMap((buffer) => this.bindMessageHandler(buffer, 
handlers, process)) 
                .filter((result) => !!result) 
                .subscribe((response) => 
client.send(JSON.stringify(response))); 
        } 
 
        bindMessageHandler(buffer, handlers: MessageMappingProperties[], 
process: (data) => Observable<any>): Observable<any> { 
            const data = JSON.parse(buffer.data); 
            const messageHandler = handlers.find((handler) => 
handler.message === data.type); 
            if (!messageHandler) { 
                return Observable.empty(); 
            } 
            const { callback } = messageHandler; 
            return process(callback(data)); 
        } 
 
    /* ... */ 
} 

Now, we have created our first custom adapter. In order to to use it, instead of 
the Nest.js IoAdapter, we have to call the useWebSocketAdapter provided by 
the app: INestApplication in your main.ts file as follows: 

app.useWebSocketAdapter(new WsAdapter(app)); 

We pass in the adapter, the app instance, to be used as we have seen in the 
previous examples. 

Client side 
In the previous section, we covered how to set up the web socket on the server 
side and how to handle the event from the client side. 

Now we will see how to set up your client side, in order to use the 
Nest.js IoAdapter or our custom WsAdapter. In order to use the IoAdapter, we 
have to get the socket.io-client library and set up our first HTML file. 



The file will define a simple script to connect the socket to the server with the 
token of the logged in user. This token we will be used to determine if the user 
is well connected or not. 

Check out the following code: 

<script> 
    const socket = io('http://localhost:3000',  { 
        query: 'auth_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9. 
        eyJlbWFpbCI6InRlc3QzQHRlc3QuZnIiLCJpYXQiOjE1MjQ5NDk3NTgs 
        ImV4cCI6MTUyNDk1MzM1OH0.QH_jhOWKockuV-w-vIKMgT_eLJb3dp6a 
        ByDbMvEY5xc' 
    }); 
</script> 

As you see, we pass at the socket connection a token auth_token into the query 
parameter. We can pick it from the socket handshake and then validate the 
socket. 

To emit an event, which is also easy, see the following example: 

socket.on('connect', function () { 
    socket.emit('showUser', { userId: 4 }); 
    socket.emit('indexComment', { entryId: 2 }); 
    socket.emit('showComment', { entryId: 2, commentId: 1 }); 
}); 

In this example, we are waiting for the connect event to be aware when the 
connection is finished. Then we send three events: one to get the user, then an 
entry, and the comment of the entry. 

Using the following on event, we are able to get the data sent by the server as a 
response to our previously emitted events. 

socket.on('indexComment', function (data) { 
    console.log('indexComment', data); 
}); 
socket.on('showComment', function (data) { 
    console.log('showComment', data); 
}); 
socket.on('showUser', function (data) { 
    console.log('showUser', data); 
}); 



socket.on('exception', function (data) { 
    console.log('exception', data); 
}); 

Here we show in the console all of the data responded by the server, and we 
have also implemented an event exception in order to catch all exceptions that 
the server can return. 

Of course, as we have seen in the authentication chapter, the user can’t access 
the data from another user. 

In cases where we would like to use the custom adapter, the process is similar. 
We will open the connection to the server using the WebSocket as follows: 

const ws = new WebSocket("ws://localhost:3000?token=eyJhbGciO 
iJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJlbWFpbCI6InRlc3QzQHRlc3QuZnIiL 
CJpYXQiOjE1MjUwMDc2NjksImV4cCI6MTUyNTAxMTI2OX0.GQjWzdKXAFTAtO 
kpLjId7tPliIpKy5Ru50evMzf15YE"); 

We open the connection here on the localhost with the same port as our HTTP 
server. We also pass the token as a query parameter in order to pass 
the verifyClient method, which we have seen with 
the WsAuthenticationGatewayMiddleware. 

Then we will wait for the return of the server, to be sure that the connection is 
successful and usable. 

ws.onopen = function() { 
    console.log('open'); 
    ws.send(JSON.stringify({ type: 'showComment', entryId: 2, commentId: 
1 })); 
}; 

When the connection is usable, use the send method in order to send the type of 
event we want to handle, which is here with showComment and where we pass the 
appropriate parameters, just like we did with the socket.io usage. 

We will use the onmessage in order to get the data returned by the server for our 
previous sent event. When the WebSocket receives an event, a message event is 
sent to the manager that we can catch with the following example. 

ws.onmessage = function(ev) { 
    const _data = JSON.parse(ev.data); 



    console.log(_data); 
}; 

You can now use this data as you’d like in the rest of your client app. 

Summary 
In this chapter you learned how to set up the server side, in order to use the: 

• socket.io library provided by the Nest.js IoAdapter 
• ws library with a custom adapter 

You also set up a gateway in order to handle the events sent by the client side. 

You’ve seen how to set up the client side to use the socket.io-
client or WebSocket client to connect the socket to the server. This was done on 
the same port as the HTTP server, and you learned how to send and catch the 
data returned by the server or the exception in case of an error. 

And finally, you learned how to set up the authentication using middleware in 
order to check the socket token provided and identify if the user is authenticated 
or not to be able to access the handler in the cases of an IoAdapter or a custom 
adapter. 

The next chapter will cover microservices with Nest.js. 

	 	



Chapter 9. Microservices 
Using Nest.js microservices, we are able to extract out part of our 
application’s business logic and execute it within a separate Nest.js 
context. By default, this new Nest.js context does not execute in a new 
thread or even a new process. For this reason, the name “microservices” 
is a bit misleading. In fact, if you stick with the default TCP transport, 
users may find that requests take longer to complete. However, there are 
benefits to offloading some pieces of your application to this new 
microservice context. To cover the basics, we will stick with the TCP 
transport, but look for some real-world strategies where Nest.js 
microservices can improve application performance in the Advanced 
Architecture section of this chapter. To see a working example, 
remember you can clone the accompanying Git repository for this book: 

git clone https://github.com/backstopmedia/nest-book-example.git 

Server bootstrap 
To get started, make sure @nestjs/microservices is installed within your project. 
This module provides the client, server, and accompanying utilities needed to 
convert a Nest.js API application into a microservices application. Finally, we 
will modify our blog application’s bootstrap to enable microservices. 

async function bootstrap() { 
    const app = await NestFactory.create(AppModule); 
    app.connectMicroservice({ 
        transport: Transport.TCP, 
        options: { 
            port: 5667 
        } 
    }); 
 
    await app.startAllMicroservicesAsync(); 
    await app.listen(3001); 
} 

The connectMicroservice method instructs the NestApplication to setup a new 
NestMicroservice context. The object provides the options for setting up the 
NestMicroservice context. Here, we are keeping things simple and using the 
standard TCP transport provided with Nest.js. A call 



to startAllMicroservicesAsync starts up the NestMicroservice context. Be sure 
to do this before calling listen on the NestApplication. 

Configuration 
The configuration parameters passed to connectMicroservice depends on the 
transport we use. A transport is a combination of a client and server that work in 
unison to transmit microservice requests and responses between the 
NestApplication and NestMicroservice contexts. Nest.js comes with a number 
of built-in transports and provides the ability to create custom transports. The 
available parameters depend on the transport we use. For now, we will use the 
TCP transport, but will cover other transports later. The possible options for the 
TCP transport are: 

• host: The host that is running the NestMicroservice context. 
The default is to assume localhost but this can be used if the 
NestMicroservice is running as a separate project on a different 
host such as a different Kubernetes pod. 
• port: The port that the NestMicroservice context is listening 
on. The default is to assume 3000, but we will use a different port to 
run our NestMicroservice context. 
• retryAttempts: In the context of the TCP transport, this is 
the number of times the server will attempt to re-establish itself 
after it has received a CLOSE event. 
• retryDelay: Works in conjunction with retryAttempts and 
delays the transports retry process by a set amount of time in 
milliseconds. 

First microservice handler 
For our first microservice handler, let’s convert the UserController index 
method into a microservice handler. To do this, we copy the method and make a 
few simple modifications. Instead of annotating the method with Get, we will 
use MessagePattern. 

@Controller() 
export class UserController { 
 
    @Get('users') 
    public async index(@Res() res) { 



        const users = await this.userService.findAll(); 
        return res.status(HttpStatus.OK).json(users); 
    } 
 
    @MessagePattern({cmd: 'users.index'}) 
    public async rpcIndex() { 
        const users = await this.userService.findAll(); 
        return users; 
    } 
} 

A message pattern provides Nest.js the means for determining which 
microservice handler to execute. The pattern can be a simple string or a 
complex object. When a new microservice message is sent, Nest.js will search 
through all registered microservice handlers to find the handler that matches the 
message pattern exactly. 

The microservice method itself can perform the same business logic that a 
normal controller handler can to respond in almost the same manor. Unlike a 
normal controller handler, a microservice handler has no HTTP context. In fact, 
decorators like @Get, @Body, and @Req make no sense and should not be used in a 
microservice controller. To complete the processing of a message, a simple 
value, promise, or RxJS Observable can be returned from the handler. 

Sending data 
The previous microservice handler was very contrived. It is more likely that 
microservice handlers will be implemented to perform some processing on data 
and return some value. In a normal HTTP handler, we would 
use @Req or @Body to extract the data from the HTTP request’s body. Since 
microservice handlers have no HTTP context, they take input data as a method 
parameter. 

@Controller() 
export class UserController { 
    @Client({transport: Transport.TCP, options: { port: 5667 }}) 
    client: ClientProxy 
 
    @Post('users') 
    public async create(@Req() req, @Res() res) { 
        this.client.send({cmd: 'users.index'}, {}).subscribe({ 



            next: users => { 
                res.status(HttpStatus.OK).json(users); 
            }, 
            error: error => { 
                
res.status(HttpStatus.INTERNAL_SERVER_ERROR).json(error); 
            } 
        }); 
    } 
 
    @MessagePattern({cmd: 'users.create'}) 
    public async rpcCreate(data: any) { 
        if (!data || (data && Object.keys(data).length === 0)) throw new 
Error('Missing some information.'); 
 
        await this.userService.create(data); 
    } 
} 

In this example, we used the @Client decorator to provide Nest.js Dependency 
Injection a place to inject an instance of the microservice client. The client 
decorator takes the same configuration object passed 
to connectMicroservice when bootstrapping the application. The client is how 
the NestApplication context communicates with the NestMicroservice context. 
Using the client, we modified the original @Post('users') API to offload 
processing of creating a new user to NestMicroservice context. 

 

This diagram shows a simplified view of the data flow when a new user is 
created. The client makes a TCP connection with the microservice context and 
offloads the processing of the database operations. The rpcCreate method will 
return a successful response with some data or an exception. While the 



microservice message is being processed, the normal controller handler will 
wait for the response. 

Take note that the microservice client send method returns an Observable. If 
you want to wait for the response from the microservice, simply subscribe to the 
Observable and use the response object to send the results. Alternatively, Nest.js 
treats Observables as first class citizens and can they can be returned from the 
handler. Nest.js will take care of subscribing to the Observable. Keep in mind, 
you lose a little control over the response status code and body. However, you 
can regain some of that control with exceptions and exception filters. 

Exception filters 
Exception filters provide a means to transform exceptions thrown from 
microservice handlers into meaningful objects. For example, 
our rpcCreate method currently throws an error with a string but what happens 
when the UserService throws an error or possibly the ORM. This method could 
throw a number of different errors and the only means that calling method 
knows what happened is to parse the error string. That’s simply unacceptable, 
so let’s fix it. 

Start with creating a new exception class. Notice that our microservice 
exception extends RpcException and does not pass a HTTP status code in the 
constructor. These are the only differences between microservice exceptions 
and normal Nest.js API exceptions. 

export class RpcValidationException extends RpcException { 
    constructor(public readonly validationErrors: ValidationError[]) { 
        super('Validation failed'); 
    } 
} 

We can now change the rpcCreate method to throw this exception when the data 
is not valid. 

@MessagePattern({cmd: 'users.create'}) 
public async rpcCreate(data: any) { 
    if (!data || (data && Object.keys(data).length === 0)) throw new 
RpcValidationException(); 
 
    await this.userService.create(data); 



} 

Finally, create an exception filter. Microservice exception filters differ from 
their normal API counterparts by extending RpcExceptionFilter and returning 
an ErrorObservable. This filter will catch the RpcValidationException we 
created and throw an object containing a specific error code. 

Note the throwError method is from the RxJS version 6 package. If you are still 
using RxJS version 5, use Observable.throw. 

@Catch(RpcValidationException) 
export class RpcValidationFilter implements RpcExceptionFilter { 
    public catch(exception: RpcValidationException): ErrorObservable { 
        return throwError({ 
            error_code: 'VALIDATION_FAILED', 
            error_message: exception.getError(), 
            errors: exception.validationErrors 
        }); 
    } 
} 

All we have left is to act on our new exception when it occurs. Modify 
the create method to catch any exceptions thrown from the microservice client. 
In the catch, check if the error_code field has a value of VALIDATION_FAILED. 
When it does, we can return a 400 HTTP status code back to the user. This will 
allow the user’s client, the browser, to treat the error differently, possibly 
showing the user some messaging and allowing them to fix the data entered. 
This provides a much better user experience compared to throwing all errors 
back to the client as 500 HTTP status code. 

@Post('users') 
public async create(@Req() req, @Res() res) { 
    this.client.send({cmd: 'users.create'}, body).subscribe({ 
        next: () => { 
            res.status(HttpStatus.CREATED).send(); 
        }, 
        error: error => { 
            if (error.error_code === 'VALIDATION_FAILED') { 
                res.status(HttpStatus.BAD_REQUEST).send(error); 
            } else { 
                
res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(error); 



            } 
        } 
    }); 
} 

Pipes 
The most common pipe used with and provided by Nest.js is the 
ValidationPipe. This pipe, however, cannot be used with microservice handlers 
because it throws exceptions extending HttpException. All exceptions thrown in 
a microservice must extend RpcException. To fix this, we can extend the 
ValidationPipe, catch the HttpException, and throw an RpcException. 

@Injectable() 
export class RpcValidationPipe extends ValidationPipe implements 
PipeTransform<any> { 
    public async transform(value: any, metadata: ArgumentMetadata) { 
        try { 
            await super.transform(value, metadata); 
        } catch (error) { 
            if (error instanceof BadRequestException) { 
                throw new RpcValidationException(); 
            } 
 
            throw error; 
        } 
 
        return value; 
    } 
} 

Before we can use the ValidationPipe, we have to create a class that describes 
the format of the data our microservice method expects. 

class CreateUserRequest { 
      @IsEmail() 
      @IsNotEmpty() 
      @IsDefined() 
      @IsString() 
      public email: string; 



 
      @Length(8) 
      @Matches(/^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)\S+$/) 
      @IsDefined() 
      @IsString() 
      public password: string; 
 
      @IsNotEmpty() 
      @IsDefined() 
      @IsString() 
      public firstName: string; 
 
      @IsNotEmpty() 
      @IsDefined() 
      @IsString() 
      public lastName: string; 
} 

The new request class uses the class-validator NPM package to validate the 
object being passed to our microservice method from the Nest.js microservice 
module. The class contains all the properties with specific decorators to describe 
what those properties should contain. For example, the email property should be 
an email address, cannot be empty, must be defined, and must be a string. Now 
we just need to hook it up to our rpcCreate method. 

@MessagePattern({cmd: 'users.create'}) 
@UsePipes(new RpcValidationPipe()) 
@UseFilters(new RpcValidationFilter()) 
public async rpcCreate(data: CreateUserRequest) { 
    await this.userService.create(data); 
} 

Since microservice handlers do not make use of the @Body decorator, we will 
need to use @UsePipes to make use of our new RpcValidationPipe. This will 
instruct Nest.js to validation the input data against it’s class type. Just like you 
would for APIs, use validation classes and the RpcValidationPipe to offload 
input validation out of your controller or microservice method. 

Guards 



Guards in microservices serve the same purpose as they do in normal APIs. 
They determine if a specific microservice handler should handle a request. Up 
to now, we have used guards to protect API handlers from unauthorized access. 
We should do the same thing to our microservice handlers. Although in our 
application, our microservice handler is only called from our already protected 
API handler, we should never assume that will always be the case. 

@Injectable() 
export class RpcCheckLoggedInUserGuard implements CanActivate { 
    canActivate(context: ExecutionContext): boolean | Promise<boolean> 
| Observable<boolean> { 
        const data = context.switchToRpc().getData(); 
        return Number(data.userId) === data.user.id; 
    } 
} 

The new guard looks exactly like the API CheckLoggedInUserGuard guard. The 
difference is in the parameters that are passed to the canActivate method. Since 
this guard is being executed in the context of a microservice, it will be given a 
microservice data object instead of the API request object. 

We use the new microservice guard the same way we did our API guard. 
Simply decorate out microservice handler with @UseGuards and our guard will 
now protect our microservice from misuse. Let’s make a new microservice for 
retrieving the current user’s information. 

@Get('users/:userId') 
@UseGuards(CheckLoggedInUserGuard) 
public async show(@Param('userId') userId: number, @Req() req, @Res() res) 
{ 
    this.client.send({cmd: 'users.show'}, {userId, user: 
req.user}).subscribe({ 
        next: user => { 
            res.status(HttpStatus.OK).json(user); 
        }, 
        error: error => { 
            res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(error); 
        } 
    }); 
} 
 
@MessagePattern({cmd: 'users.show'}) 



@UseGuards(RpcCheckLoggedInUserGuard) 
public async rpcShow(data: any) { 
    return await this.userService.findById(data.userId); 
} 

The show API handler now offloads the heavy lifting of accessing the database 
to the NestMicroservice context. The guard on the microservice handler 
ensures, if the handler is somehow invoked outside of the show API handler, it 
will still protect the user data from being exposed to unauthorized requests. But 
there is still a problem. This example returns the entire user object from the 
database, including the hashed password. This is a security vulnerability best 
solved by interceptors. 

Interceptors 
Microservice interceptors function no differently from normal API interceptors. 
The only difference is that the interceptor is passed the data object sent to the 
microservice handler instead of an API request object. This means you can 
actually write interceptors once and use them in both contexts. Just like API 
interceptors, microservice interceptors are executed before the microservice 
handler and must return an Observable. To secure our rpcShow microservice 
endpoint, we will create a new interceptor that will expect a User database 
object and remove the password field. 

@Injectable() 
export class CleanUserInterceptor implements NestInterceptor { 
    intercept(context: ExecutionContext, stream$: Observable<any>): 
Observable<any> { 
        return stream$.pipe( 
            map(user => JSON.parse(JSON.stringify(user))), 
            map(user => { 
                return { 
                    ...user, 
                    password: undefined 
                }; 
            }) 
        ); 
    } 
} 
@MessagePattern({cmd: 'users.show'}) 
@UseGuards(RpcCheckLoggedInUserGuard) 



@UseInterceptors(CleanUserInterceptor) 
public async rpcShow(data: any) { 
    return await this.userService.findById(data.userId); 
} 

The response from the rpcShow microservice handler will now have 
the password field removed. Notice in the interceptor we had to convert 
the User database object to and from JSON. This may differ depending on the 
ORM you make use of. With Sequelize, we need to get the raw data from the 
database response. This is because the response from the ORM is actually a 
class containing many different ORM methods and properties. By converting it 
to JSON and back, we can use the spread operator with password: undefined to 
delete the password field. 

Built-in transports 
The TCP transport is only one of several transports Nest.js has built-in. Using 
the TCP transport, we had to bind our NestMicroservice context to an additional 
port, taking up yet another port on the server, and ensuring our 
NestMicroservice context was running before starting the NestApplication 
context. Other built-in transports can overcome these limitations and add 
additional benefits. 

Redis 

Redis is a simple in-memory data store that can be used as a pub-sub message 
broker. The Redis transport makes use of the redis NPM package and a Redis 
server to pass messages between the NestApplication and NestMicroservice 
contexts. To use the Redis transport, we need to update our bootstrapmethod to 
use the correct NestMicroservice configuration. 

async function bootstrap() { 
    const app = await NestFactory.create(AppModule); 
    app.connectMicroservice({ 
        transport: Transport.REDIS, 
        options: { 
            url: process.env.REDIS_URL 
        } 
    }); 
 
    await app.startAllMicroservicesAsync(); 



    await app.listen(3001); 
} 

You would also have to update all locations where you have use 
the @Client decorator to the same settings. Instead, let’s centralize this 
configuration so we are not duplicating code and we can switch out the 
transport easier. 

export const microserviceConfig: RedisOptions = { 
    transport: Transport.REDIS, 
    options: { 
        url: process.env.REDIS_URL 
    } 
}; 

The Redis transport can take the following options: 

• url: The url of the Redis server. The default 
is redis://localhost:6379. 
• retryAttempts: The number of times the microservice server 
and client will attempt to reconnect to the Redis server when the 
connection is lost. This is used to create a retry_strategy for 
the redisNPM package. 
• retryDelay: Works in conjunction with retryAttempts and 
delays the transports retry process by a set amount of time in 
milliseconds. 

Now we can update the applications bootstrap to use 
the microserviceConfig object we have created. 

async function bootstrap() { 
    const app = await NestFactory.create(AppModule); 
    app.connectMicroservice(microserviceConfig); 
 
    await app.startAllMicroservicesAsync(); 
    await app.listen(3001); 
} 

Finally, update the @Client decorator in the UserController. 

@Controller() 
export class UserController { 



    @Client(microserviceConfig) 
    client: ClientProxy 
} 

Start up a Redis server, such as the redis docker image and the application and 
all our microservice transaction will now be processing through the Redis 
server. The below diagram shows a simplified view of the data flow when a 
new user is created and we are using the Redis transport. 

 

Both the client and the server make a connection with the Redis server. 
When client.send is called, the client alters the message pattern on the fly to 
create pub and sub channels. The server consumes the message and removes the 
message pattern modification to find the correct microservice handler. Once 
processing is complete in the microservice handler, the pattern is modified again 
to match the sub channel. The client consumes this new message, unsubscribes 
from the sub channel, and passes the response back to the caller. 

MQTT 

MQTT is a simple message protocol designed to be used when network 
bandwidth is a premium. The MQTT transport make use of the mqtt NPM 



package and a remote MQTT server to pass messages between the 
NestApplication and NestMicroservice contexts. The data flow and how the 
microservice client and server operate are almost identical to the Redis 
transport. To make use of the MQTT transport, let’s update the 
microserviceConfig configuration object. 

export const microserviceConfig: MqttOptions = { 
    transport: Transport.MQTT, 
    options: { 
        url: process.env.MQTT_URL 
    } 
}; 

The MQTT transport can take several options, all of which are detailed in the 
Github repository for the mqtt NPM package. Most notably, the transport 
defaults the url option to mqtt://localhost:1883 and there is no connection 
retrying. If the connection to the MQTT server is lost, microservice messages 
will no longer be passed. 

Start up a MQTT server, such as the eclipse-mosquitto docker image, and the 
application and all our microservice transaction will now be processing through 
the MQTT server. 

NATS 

NATS is an open source message broker server that touts extremely high 
throughput. The NATS transport make use of the nats NPM package and a 
remote NATS server to pass messages between the NestApplication and 
NestMicroservice contexts. 

export const microserviceConfig: MqttOptions = { 
    transport: Transport.NATS, 
    options: { 
        url: process.env.NATS_URL 
    } 
}; 

The NATS transport can take the following options: 

• url: The url of the NATS server. The default 
is nats://localhost:4222. 



• name/pass: The username and password used to 
authenticate the Nest.js application with the NATS server. 
• maxReconnectAttempts: The number of times the server 
and client will attempt to reconnect to the NATS server when the 
connection is lost. The default is to attempt to reconnect 10 times. 
• reconnectTimeWait: Works in conjunction 
with maxReconnectAttempts and delays the transports retry process by 
a set amount of time in milliseconds. 
• servers: An array of url strings all of which are NATS 
servers. This allows the transport to take advantage of a cluster of 
NATS servers. 
• tls: A boolean indicating if TLS should be used when 
connecting to the NATS server. Note this defaults to false meaning 
all messages are passed in clear text. An object can also be 
provided instead of a boolean, and can contain the standard Node 
TLS settings like the client certificate. 

Start up a NATS server, such as the nats docker image, and the application and 
all our microservice transaction will now be processing through the NATS 
server. The below diagram shows a simplified view of the data flow when a 
new user is created and we are using the NATS transport. 



 

Both the client and the server make a connection with the NATS server. 
When client.send is called, the client alters the message pattern on the fly to 
create pub and sub queues. One of the most notable differences between the 
Redis transport and the NATS transport is that the NATS transport makes use of 
queue groups. This means we can now have multiple NestMicroservice contexts 
and the NATS server will load balance messages between them. The server 
consumes the message and removes the message pattern modification to find 
the correct microservice handler. Once processing is complete in the 
microservice handler, the pattern is modified again to match the sub channel. 
The client consumes this new message, unsubscribes from the sub channel, and 
passes the response back to the caller. 

gRPC 

gRPC is a remote procedural call client and server designed to be used with 
Googles Protocol Buffers. gRPC and protocol buffers are extensive subjects 
worthy of their own books. For that reason, we will stick to discussing the setup 
and use of gRPC within a Nest.js application. To get started, we will need 
the grpc NPM package. Before we can write any code for our Nest.js 
application, we must write a Protocol Buffer file. 



syntax = "proto3"; 

 

package example.nestBook; 

 

message User { 

    string firstName = 1; 

    string lastName = 2; 

    string email = 3; 

} 

 

message ShowUserRequest { 

    double userId = 1; 

} 

 

message ShowUserResponse { 

    User user = 1; 

} 

 

service UserService { 

    rpc show (ShowUserRequest) returns (ShowUserResponse); 

} 

The above code snippet describes a single gRPC service called UserService. 
This will typically map to a service or controller within your own project. The 
service contains a single method, show, that takes in an object with a userId and 
returns an object with a user property. The syntax value indicates to the gRPC 
package which format of the protocol buffers language we are using. 
The package declaration acts as a namespace for everything we define in our 
proto file. This is most useful when importing and extending other proto files. 

Note: We kept the proto file pretty simple so we can focus on configuring 
Nest.js to use gRPC microservices. 



Like all other transports, we now need to configure the NestMicroservice 
context and the microservice client in our controller. 

export const microserviceConfig: GrpcOptions = { 
    transport: Transport.GRPC, 
    options: { 
        url: '0.0.0.0:5667', 
        protoPath: join(__dirname, './nest-book-example.proto'), 
        package: 'example.nestBook' 
    } 
}; 

The gRPC transport can take the following options: 

• url: The url of the gRPC server. The default is localhost:5000. 
• credentials: A ServerCedentials object from the grpc NPM 
package. The default is to use the grpc.getInsecure method to 
retrieve a default credential object. This will disable TLS 
encryption. In order to setup a secure communication channel, 
use grpc.createSsl and provide the root CA, private, and public 
certificates. More information about credentials can be found here. 
• protoPath: The absolute path to the proto file. 
• root: An absolute path to the root of where all your proto files 
are found. This is an optional option and is most likely not 
necessary if you are not importing other proto files within your own. 
If this option is defined, it will be prepended to the protoPath option. 
• package: The name of the package to be used with the 
client and server. This should match the package name givin in the 
proto file. 

We will need to make some changes to our controller before we can really use 
the gRPC transport. 

@Controller() 
export class UserController implements OnModuleInit { 
    @Client(microserviceConfig) 
    private client: ClientGrpc; 
    private protoUserService: IProtoUserService; 
 
    constructor( 
        private readonly userService: UserService 



    ) { 
    } 
 
    public onModuleInit() { 
        this.protoUserService = 
this.client.getService<IProtoUserService>('UserService'); 
    } 
} 

Notice that we still have the client property decorated with @Client, but we 
have a new type ClientGrpc and a new property protoUserService. The client 
injected when using the gRPC transport no longer contains a send method. 
Instead, it has a getService method that we must use to retrieve the service we 
defined in our proto file. We use the onModuleInit lifecycle hook so the gRPC 
service is retrieved immediately after Nest.js has instantiated our modules and 
before any clients try to use the controller APIs. The getService method is a 
generic and doesn’t actually contain any method definitions. Instead, we need to 
provide our own. 

import { Observable } from 'rxjs'; 
 
export interface IProtoUserService { 
    show(data: any): Observable<any>; 
} 

We could be a little more explicit with our interface but this gets the point 
across. Now the protoUserService property in our controller will have 
a show method allowing us to call the show gRPC service method. 

@Get('users/:userId') 
@UseGuards(CheckLoggedInUserGuard) 
public async show(@Param('userId') userId: number, @Req() req, @Res() res) 
{ 
    this.protoUserService.show({ userId: parseInt(userId.toString(), 10) 
}).subscribe({ 
        next: user => { 
            res.status(HttpStatus.OK).json(user); 
        }, 
        error: error => { 
            res.status(HttpStatus.INTERNAL_SERVER_ERROR).json(error); 
        } 
    }); 



} 
 
@GrpcMethod('UserService', 'show') 
public async rpcShow(data: any) { 
    const user =  await this.userService.findById(data.userId); 
    return { 
        user: { 
            firstName: user.firstName, 
            lastName: user.lastName, 
            email: user.email 
        } 
    }; 
} 

The controller’s show API method gets updated to use 
the protoUserService.show. This will call the rpcShow method, but through the 
gRPC microservice transport. The rpcShow method contains a different 
decorator, @GrpcMethod, instead of @MessagePattern. This is required for all gRPC 
microservice handlers since the microservice is no longer matching a pattern, 
but instead is calling a defined gRPC service method. In fact, that is the 
mapping for the two optional parameters to the @GrpcMethod decorator: service 
name and service method. 

export class UserController implements OnModuleInit { 
    @GrpcMethod() 
    public async rpcShow(data: any) { 
    } 
} 

In the above example, we did not defined the service name and service method 
when calling the @GrpcMethod decorator. Nest.js will automatically map these 
values to the method and class name. In this example, this is equivalent 
to @GrpcMethod('UserController', 'rpcShow'). 

You may have noticed that we are using 0.0.0.0:5667 as the URL of our gRPC 
server. When we start up the Nest.js application, it will create a gRPC server on 
the localhost and listen on port 5667. On the surface, this may look like a more 
complex version of the TCP transport. However, the power of the gRPC 
transport is directly derived from the language and platform agnostic nature of 
protocol buffers. This means we can create a Nest.js application that exposes 
microservices using gRPC that may be used by any other language or platform 
as long is it also uses protocol buffers to connect to our microservices. We can 



also create Nest.js applications that connect to microservices that may be 
exposed in another language like Go. 

 

When using the gRPC transport to connect to services at two or more different 
URLs, we need to create an equal number of gRPC client connections, one for 
each server. The above diagram shows how processing would look if we 
offloaded the crud operations for comments in our example blog application to a 
Go server. We use a gRPC client to connect to the user microservices hosted in 
our Nest.js application and a separate one to connect to the comment 
microservices hosted in the Go application. 

The same setup can be obtained by using any of the other transports. However, 
you would have to write the extra code to serialize and deserialize the messages 
between the Nest.js application and the Go application hosting the microservice. 
By using the gRPC transport, protocol buffers take care of that for you. 

Custom transport 
A custom transport allows you to define a new microservice client and server 
for communicating between the NestApplication and NestMicroservice 
contexts. You may want to create a custom transport strategy for a number of 



reasons: you or your company already have a message broker service that is 
does not have a built-in Nest.js transport, or you need to customize how one of 
the built-in transports works. For the purpose of our example, we will work 
through implementing a new RabbitMQ transport. 

export class RabbitMQTransportServer extends Server implements 
CustomTransportStrategy { 
    private server: amqp.Connection = null; 
    private channel: amqp.Channel = null; 
 
    constructor( 
        private readonly url: string, 
        private readonly queue: string 
    ) { 
        super(); 
    } 
} 

Nest.js requires all custom transports to implement 
the CustomTransportStrategy interface. This forces us to define our 
own listen and close methods. In our example, we connect to the RabbitMQ 
server and listen on a specific channel. Closing the server is as simple as 
disconnecting from the RabbitMQ server. 

public async listen(callback: () => void) { 
    await this.init(); 
    callback(); 
} 
 
public close() { 
    this.channel && this.channel.close(); 
    this.server && this.server.close(); 
} 
 
private async init() { 
    this.server = await amqp.connect(this.url); 
    this.channel = await this.server.createChannel(); 
    this.channel.assertQueue(`${this.queue}_sub`, { durable: false }); 
    this.channel.assertQueue(`${this.queue}_pub`, { durable: false }); 
} 



By extending the Nest.js Server class, our custom transport comes pre-equipped 
with the RxJS handling of messages that makes Nest.js so great. However, our 
custom transport isn’t really handling messages at this point. We need to add 
the logic for how messages will be sent and received through RabbitMQ to our 
custom transport. 

public async listen(callback: () => void) { 
    await this.init(); 
    this.channel.consume(`${this.queue}_sub`, this.handleMessage.bind(this), 
{ 
        noAck: true, 
    }); 
    callback(); 
} 
 
private async handleMessage(message: amqp.Message) { 
    const { content } = message; 
    const packet = JSON.parse(content.toString()) as ReadPacket & 
PacketId; 
    const handler = this.messageHandlers[JSON.stringify(packet.pattern)]; 
 
    if (!handler) { 
        return this.sendMessage({ 
            id: packet.id, 
            err: NO_PATTERN_MESSAGE 
        }); 
    } 
 
    const response$ = this.transformToObservable(await 
handler(packet.data)) as Observable<any>; 
    response$ && this.send(response$, data => this.sendMessage({ 
        id: packet.id, 
        ...data 
    })); 
} 
 
private sendMessage(packet: WritePacket & PacketId) { 
    const buffer = Buffer.from(JSON.stringify(packet)); 
    this.channel.sendToQueue(`${this.queue}_pub`, buffer); 
} 



The custom transport will now listen for incoming messages on the sub channel 
and send responses on the pub channel. The handleMessage method decodes the 
message’s content byte array and uses the embedded pattern object to find the 
correct microservice handler to service the message. For example, the {cmd: 
'users.create'} will be handled by the rpcCreate handler. Finally, we call the 
handler, transform the response into an Observable, and pass that back into the 
Nest.js Server class. Once a response is provided, it will be passed on to 
our sendMessage method and out through the pub channel. 

Since a server is useless without a client, we will need to create one of those 
too. The RabbitMQ client must extend the Nest.js ClientProxy class and provide 
an override for the close, connect, and publishmethods. 

export class RabbitMQTransportClient extends ClientProxy { 
    private server: amqp.Connection; 
    private channel: amqp.Channel; 
    private responsesSubject: Subject<amqp.Message>; 
 
    constructor( 
        private readonly url: string, 
        private readonly queue: string) { 
        super(); 
    } 
 
    public async close() { 
        this.channel && await this.channel.close(); 
        this.server && await this.server.close(); 
    } 
 
    public connect(): Promise<void> { 
        return new Promise(async (resolve, reject) => { 
            try { 
                this.server = await amqp.connect(this.url); 
                this.channel = await this.server.createChannel(); 
 
                const { sub, pub } = this.getQueues(); 
                await this.channel.assertQueue(sub, { durable: false 
}); 
                await this.channel.assertQueue(pub, { durable: false 
}); 
 



                this.responsesSubject = new Subject(); 
                this.channel.consume(pub, (message) => { 
this.responsesSubject.next(message); }, { noAck: true }); 
                resolve(); 
            } catch (error) { 
                reject(error); 
            } 
        }); 
    } 
 
    protected async publish(partialPacket: ReadPacket, callback: 
(packet: WritePacket) => void) { 
    } 
 
    private getQueues() { 
        return { pub: `${this.queue}_pub`, sub: `${this.queue}_sub` }; 
    } 
} 

In our example, we created a new connection to the RabbitMQ server and the 
specified pub and subchannels. The client uses the channels in an opposite 
configuration compared to the server. The client sends messages through 
the sub channel and listens for responses on the pub channel. We also make use 
of the power of RxJS by piping all responses into a Subject to make processing 
simpler in the publish method. Let’s implement the publish method. 

protected async publish(partialPacket: ReadPacket, callback: (packet: 
WritePacket) => void) { 
    if (!this.server || !this.channel) { 
        await this.connect(); 
    } 
 
    const packet = this.assignPacketId(partialPacket); 
    const { sub } = this.getQueues(); 
 
    this.responsesSubject.asObservable().pipe( 
        pluck('content'), 
        map(content => JSON.parse(content.toString()) as WritePacket & 
PacketId), 
        filter(message => message.id === packet.id), 
        take(1) 



    ).subscribe(({err, response, isDisposed}) => { 
        if (isDisposed || err) { 
            callback({ 
                err, 
                response: null, 
                isDisposed: true 
            }); 
        } 
 
        callback({err, response}); 
    }); 
 
    this.channel.sendToQueue(sub, Buffer.from(JSON.stringify(packet))); 
} 

The publish method starts off with assigning a unique ID to the message and 
subscribes to the response subject for sending the response back to the 
microservice caller. Finally, sendToQueue is called to send the message as a byte 
array to the sub channel. Once a response is received, the subscription to the 
response subject is fired. The first thing the subscription stream does is extract 
the content of the response and verify that the message ID matches the one that 
was assigned when publish was initially called. This keeps the client from 
processing a message response that does not belong to the 
specific publish execution context. Put simply, the client will receive every 
microservice response, even those that might be for a different microservice or a 
different execution of the same microservice. If the IDs match, the client checks 
fir errors and uses the callback to send the response back to the microservice 
caller. 

Before we can use our new transport, we will need to update the microservice 
configuration object we created earlier. 

export const microserviceConfig = { 
    url: process.env.AMQP_URL 
}; 
 
export const microserviceServerConfig: (channel: string) => 
CustomStrategy = channel => { 
    return { 
        strategy: new RabbitMQTransportServer(microserviceConfig.url, 
channel) 
    } 



}; 

We now have a method that will instantiate our custom transport server. This is 
used in the bootstrapof our application to connect our NestMicroservice context 
to the RabbitMQ server. 

async function bootstrap() { 
    const app = await NestFactory.create(AppModule); 
    app.connectMicroservice(microserviceServerConfig('nestjs_book')); 
 
    await app.startAllMicroservicesAsync(); 
    await app.listen(3001); 
} 

The last piece of our custom transport is in our controller. Since we are using a 
custom transport, we can no longer use the @ClientProxy decorator. Instead, we 
have to instantiate our custom transport our selves. You could do this in the 
constructor as so: 

@Controller() 
export class UserController { 
    client: ClientProxy; 
 
    constructor(private readonly userService: UserService) { 
        this.client = new 
RabbitMQTransportClient(microserviceConfig.url, 'nestjs_book'); 
    } 
} 

Wait! You have now created a hard binding between the controller and the 
custom transport client. This makes it more difficult to migrate to a different 
strategy in the future and very difficult to test. Instead, let’s make use of 
Nest.js’s fabulous Dependency Injection to create our client. Start off with 
creating a new module to house and expose our custom transport client. 

const ClientProxy = { 
  provide: 'ClientProxy', 
  useFactory: () => new RabbitMQTransportClient(microserviceConfig.url, 
'nestjs_book') 
}; 
 
@Module({ 



    imports: [], 
    controllers: [], 
    components: [ClientProxy], 
    exports: [ClientProxy] 
}) 
export class RabbitMQTransportModule {} 

In our example, we gave our component the injection token 'ClientProxy'. This 
was just to keep things simple, and you can call it whatever you like. The 
import part is to make sure the injection token used to register the component is 
also the one used in the @Inject decorator we place in our controller’s 
constructor. 

@Controller() 
export class UserController { 
 
    constructor( 
        private readonly userService: UserService, 
        @Inject('ClientProxy') 
        private readonly client: ClientProxy 
    ) { 
    } 

Our controller will now have a microservice client injected in at run time 
allowing the API handlers to communicate with the microservice handlers. 
Even better, the client can now be overridden in tests with a mock. Startup a 
RabbitMQ server, such as the rabbitmq docker image , and setup 
the AMQP_URLenvironment variable, ie amqp://guest:guest@localhost:5672, and 
all microservice requests will be processed through the RabbitMQ server. 

The data flow and how the microservice client and server operate in our 
RabbitMQ example are almost identical to the NATS transport. Just like with 
NATS, RabbitMQ provides the ability to have multiple NestMicroservice 
contexts consuming messages. RabbitMQ will work to load balance between all 
the consumers. 

Hybrid application 
When we first started our microservice implementation in this chapter, we 
modified the bootstrap method to call connectMicroservice. This is a special 
method that converts our Nest.js application into a hybrid application. This 



simply means our application now contains multiple context types. Simple 
enough but this has some implications that you should be aware of. Specifically, 
using the hybrid application approach, you will no longer be able to attach 
global filters, pipes, guards, and interceptors for the NestMicroservice context. 
This is because the NestMicroservice context is immediately bootstrapped, but 
not connected, in a hybrid application. To get around this limitation, we can 
create our two contexts independently. 

async function bootstrap() { 
    const app = await NestFactory.create(AppModule); 
    const rpcApp = await NestFactory.createMicroservice(AppModule, 
microserviceServerConfig('nestjs_book')); 
    rpcApp.useGlobalFilters(new RpcValidationFilter()); 
 
    await rpcApp.listenAsync(); 
    await app.listen(process.env.PORT || 3000); 
} 

Now that we are creating the two application contexts independently, we can 
make use of globals for the NestMicroservice context. To test this, we can 
update the rpcCreate handler to remove the RpcValidationFilter. Executing the 
application at this point should still result in validation errors being returned 
when the request to the create API does not contain required fields. 

@MessagePattern({cmd: 'users.create'}) 
public async rpcCreate(data: CreateUserRequest) { 
    if (!data || (data && Object.keys(data).length === 0)) throw new 
RpcValidationException(); 
    await this.userService.create(data); 
} 

We can extend this approach of bootstrapping our application to split even more 
of our application into separate contexts. This still does not make use of 
multiple processes or threads, but employing some more advanced architecture 
design, we can gain those benefits. 

Advanced architecture design 
So far we have covered everything needed to setup and start writing and using 
microservices in Nest.js. Along the way we describe some of the drawbacks 
Nest.js’ implementation of microservices has. Most notably, since the 



microservices does not run in a separate thread or process, you may not be 
gaining much in the way of performance when using Nest.js microservices. 

However, that is not to say you can’t get these benefits. Nest.js just doesn’t 
provide the tools out of the box. In most material found on the subject of 
running a NodeJS application in production, the one thing that is typically 
always covered and recommended is the use of the NodeJS cluster module. We 
can do the same thing with our Nest.js application. 

async function bootstrapApp() { 
    const app = await NestFactory.create(AppModule); 
 
    await app.listen(process.env.PORT || 3000); 
} 
 
async function bootstrapRpc() { 
    const rpcApp = await NestFactory.createMicroservice(AppModule, 
microserviceServerConfig('nestjs_book')); 
    rpcApp.useGlobalFilters(new RpcValidationFilter()); 
 
    await rpcApp.listenAsync(); 
} 
 
if (cluster.isMaster) { 
    const appWorkers = []; 
    const rpcWorkers = []; 
 
    for (let i = 0; i < os.cpus().length; i++) { 
        const app = cluster.fork({ 
            APP_TYPE: 'NestApplication' 
        }); 
        const rpc = cluster.fork({ 
            APP_TYPE: 'NestMicroservice' 
        }); 
 
        appWorkers.push(app); 
        rpcWorkers.push(rpc); 
    } 
 
    cluster.on('exit', function(worker, code, signal) { 
        if (appWorkers.indexOf(worker) > -1) { 



            const index = appWorkers.indexOf(worker); 
            const app = cluster.fork({ 
                APP_TYPE: 'NestApplication' 
            }); 
            appWorkers.splice(index, 1, app); 
        } else if (rpcWorkers.indexOf(worker) > -1) { 
            const index = rpcWorkers.indexOf(worker); 
            const rpc = cluster.fork({ 
                APP_TYPE: 'NestMicroservice' 
            }); 
            rpcWorkers.splice(index, 1, rpc); 
        } 
    }); 
} else { 
    if (process.env.APP_TYPE === 'NestApplication') { 
        bootstrapApp(); 
    } else if (process.env.APP_TYPE === 'NestMicroservice') { 
        bootstrapRpc(); 
    } 
} 

Now, not only does our NestApplication and NestMicroservice contexts run on 
their own threads, they are also clustered according to the number of CPUs 
available on the server. For each CPU, a separate NestApplication and 
NestMicroservice context will be created. The NestApplication context threads 
will share the main application port. Finally, since we are using RabbitMQ, 
having multiple NestMicroservice contexts running, we have multiple 
subscribers waiting for microservice messages. RabbitMQ will take care of load 
balancing message distribution between all of our NestMicroservice instances. 
We have made our application more resilient and better equipped to handle a 
heavier load of users than what it was at the beginning of this chapter. 

Summary 
At the beginning of this chapter, we stated “microservice” was a misleading 
name for this part of Nest.js. In fact, that could still be the case, but it really 
depends on a number of factors. Our initial example using the TCP transport 
could hardly qualify as a microservice by all conventional definitions. Both the 
NestApplication and NestMicroservice context were executing from the same 
process, meaning a catastrophic failure in one could bring both down. 



After highlighting all the transports, Nest.js comes with out-of-the-box, and we 
re-implemented our microservices in the example blog application using a 
custom RabbitMQ transport. We even went as far as running the 
NestApplication and NestMicroservice contexts in their own thread. This was a 
major step in the right direction for fulfilling the “microservice” name. 

Although we didn’t cover specifics in this book, it should now be apparent that 
you’re not limited to using microservices defined in the same Nest.js project or 
repository. Using transports like Redis and RabbitMQ, we could create and use 
multiple Nest.js projects for the sole purpose of executing a NestMicroservice 
context. All of these projects can be running independently inside a Kubernetes 
cluster and accessed by passing messages via Redis or RabbitMQ. Even better, 
we can use the built-in gRPC transport to communicate with microservices 
wrote in other languages and deployed to other platforms. 

In the next chapter we will learn about routing and request handling in Nest.js. 

	 	



Chapter 10. Routing and request handling in 
Nest.js 
Routing and request handling in Nest.js is handled by the controllers 
layer. Nest.js routes requests to handler methods, which are defined 
inside controller classes. Adding a routing decorator such as @Get() to a 
method in a controller tells Nest.js to create an endpoint for this route 
path and route every corresponding request to this handler. 

In this chapter, we’ll go over the various aspects of routing and request 
handling in Nest.js using the EntryController from our blog application 
as a basis for some examples. We’ll be looking at different approaches 
that you can use to write request handlers, so not all examples shown 
will match code from our blog application. 

Request handlers 
A basic GET request handler for the /entries route registered in the 
EntryController could look like this: 

import { Controller, Get } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Get() 
    index(): Entry[] { 
        const entries: Entry[] = this.entriesService.findAll(); 
        return entries; 
    } 

The @Controller('entries') decorator tells Nest.js to add an entries prefix to 
all routes registered in the class. This prefix is optional. An equivalent way to 
setup this route would be as follows: 

import { Controller, Get } from '@nestjs/common'; 
 
@Controller() 
export class EntryController { 
    @Get('entries') 
    index(): Entry[] { 



        const entries: Entry[] = this.entriesService.findAll(); 
        return entries; 
    } 

Here, we don’t specify a prefix in the @Controller() decorator, but instead use 
the full route path in the @Get('entries') decorator. 

In both cases, Nest.js will route all GET requests to /entries to 
the index() method in this controller. The array of entries returned from the 
handler will be automatically serialized to JSON and sent as the response body, 
and the response status code will be 200. This is the standard approach of 
generating a response in Nest.js. 

Nest.js also provides the @Put(), @Delete(), @Patch(), @Options(), 
and @Head() decorators to create handlers for other HTTP methods. 
The @All() decorator tells Nest.js to route all HTTP methods for a given route 
path to the handler. 

Generating responses 
Nest.js provides two approaches for generating responses. 

Standard approach 

Using the standard and recommended approach, which has been available since 
Nest.js 4, Nest.js will automatically serialize the JavaScript object or array 
returned from the handler method to JSON and send it in the response body. If a 
string is returned, Nest.js will just send the string without serializing it to JSON. 

The default response status code is 200, expect for POST requests, which uses 
201. The response code for can easily be changed for a handler method by using 
the @HttpCode(...) decorator. For example: 

@HttpCode(204) 
@Post() 
create() { 
  // This handler will return a 204 status response 
} 



Express approach 

An alternate approach to generating responses in Nest.js is to use a response 
object directly. You can ask Nest.js to inject a response object into a handler 
method using the @Res() decorator. Nest.js uses express response objects]. 

You can rewrite the response handler seen earlier using a response object as 
shown here. 

import { Controller, Get, Res } from '@nestjs/common'; 
import { Response } from 'express'; 
 
@Controller('entries') 
export class EntryController { 
    @Get() 
    index(@Res() res: Response) { 
        const entries: Entry[] = this.entriesService.findAll(); 
        return res.status(HttpStatus.OK).json(entries); 
    } 
} 

The express response object is used directly to serialize the entries array to 
JSON and send a 200 status code response. 

The typings for the Response object come from express. Add 
the @types/express package to your devDependencies in package.json to use these 
typings. 

Route parameters 
Nest.js makes it easy to accept parameters from the route path. To do so, you 
simply specify route parameters in the path of the route as shown below. 

import { Controller, Get, Param } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Get(':entryId') 
    show(@Param() params) { 
        const entry: Entry = this.entriesService.find(params.entryId); 
        return entry; 



    } 
} 

The route path for the above handler method above is /entries/:entryId, with 
the entries portion coming from the controller router prefix and 
the :entryId parameter denoted by a colon. The @Param()decorator is used to 
inject the params object, which contains the parameter values. 

Alternately, you can inject individual param values using the @Param() decorator 
with the parameter named specified as shown here. 

import { Controller, Get, Param } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Get(':entryId') 
    show(@Param('entryId') entryId) { 
        const entry: Entry = this.entriesService.findOne(entryId); 
        return entry; 
    } 
} 

Request body 
To access the body of a request, use the @Body() decorator. 

import { Body, Controller, Post } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Post() 
    create(@Body() body: Entry) { 
        this.entryService.create(body); 
    } 
} 

Request object 



To access the client request details, you can ask Nest.js to inject the request 
object into a handler using the @Req() decorator. Nest.js uses express request 
objects. 

For example, 

import { Controller, Get, Req } from '@nestjs/common'; 
import { Request } from 'express'; 
 
@Controller('entries') 
export class EntryController { 
    @Get() 
    index(@Req() req: Request): Entry[] { 
        const entries: Entry[] = this.entriesService.findAll(); 
        return entries; 
    } 

The typings for the Request object come from express. Add 
the @types/express package to your devDependencies in package.json to use these 
typings. 

Asynchronous handlers 
All of the examples shown so far in this chapter assume that handlers are 
synchronous. In a real application, many handlers will need to be asynchronous. 

Nest.js provides a number of approaches to write asynchronous request 
handlers. 

Async/await 

Nest.js has support for async request handler functions. 

In our example application, the entriesService.findAll() function actually 
returns a Promise<Entry[]>. Using async and await, this function could be 
written as follows. 

import { Controller, Get } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 



    @Get() 
    async index(): Promise<Entry[]> { 
        const entries: Entry[] = await this.entryService.findAll(); 
        return entries; 
    } 

Async functions have to return promises, but using the async/await pattern in 
modern JavaScript, the handler function can appear to be synchronous. Next, 
we’ll resolve the returned promise and generate the response. 

Promise 

Similarly, you can also just return a promise from a handler function directly 
without using async/await. 

import { Controller, Get } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Get() 
    index(): Promise<Entry[]> { 
        const entriesPromise: Promise<Entry[]> = 
this.entryService.findAll(); 
        return entriesPromise; 
    } 

Observables 

Nest.js request handlers can also return RxJS Observables. 

For example, if entryService.findAll() were to return an Observable of entries 
instead of a Promise, the following would be completely valid. 

import { Controller, Get } from '@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Get() 
    index(): Observable<Entry[]> { 
        const entriesPromise: Observable<Entry[]> = 
this.entryService.findAll(); 



        return entriesPromise; 
    } 

There is no recommended way to write asynchronous request handlers. Use 
whichever method you are most comfortable with. 

Error responses 
Nest.js has an exception layer, which is responsible for catching unhandled 
exceptions from request handlers and returning an appropriate response to the 
client. 

A global exception filter handles all exception thrown from request handlers. 

HttpException 

If an exception thrown from a request handler is a HttpException, the global 
exception filter will transform it to the a JSON response. 

For example, you can throw an HttpException from the create() handler 
function if the body is not valid as shown. 

import { Body, Controller, HttpException, HttpStatus, Post } from 
'@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Post() 
    create(@Body() entry: Entry) { 
        if (!entry) throw new HttpException('Bad request', 
HttpStatus.BAD_REQUEST); 
        this.entryService.create(entry); 
    } 
} 

If this exception is thrown, the response would look like this: 

{ 

    "statusCode": 400, 
    "message": "Bad request" 



} 

You can also completely override the response body by passing an object to 
the HttpException constructor as follows. 

import { Body, Controller, HttpException, HttpStatus, Post } from 
'@nestjs/common'; 
 
@Controller('entries') 
export class EntryController { 
    @Post() 
    create(@Body() entry: Entry) { 
        if (!entry) throw new HttpException({ status: 
HttpStatus.BAD_REQUEST, error: 'Entry required' }); 
        this.entryService.create(entry); 
    } 
} 

If this exception is thrown, the response would look like this: 

{ 

    "statusCode": 400, 
    "error": "Entry required" 
} 

Unrecognized exceptions 

If the exception is not recognized, meaning it is not HttpException or a class that 
inherits from HttpException, then the client will receive the JSON response 
below. 

{ 

    "statusCode": 500, 
    "message": "Internal server error" 
} 

Summary 
With the help of using the EntryController from our example blog application, 
this chapter has covered aspects of routing and request handling in Nest.js. You 



should now understand various approaches that you can use to write request 
handlers. 

In the next chapter we detail the OpenAPI specification, which is a JSON 
schema that can be used to construct a JSON or YAML definition of a set of 
restful APIs. 

	 	



Chapter 11. OpenAPI (Swagger) Specification 
The OpenAPI specification, most notably known by it’s former name 
Swagger, is a JSON schema that can be used to construct a JSON or 
YAML definition of a set of restful APIs. OpenAPI itself is language 
agnostic, meaning the underlying APIs can be constructed in any 
language with any tool or framework the developer would like. The sole 
concern of an OpenAPI document is to describe the inputs and outputs, 
among other things, of API endpoints. In this respect, an OpenAPI 
document acts as a documentation tool allowing developers to easily 
describe their public APIs in a format that is widely known, understood, 
and supported. 

The OpenAPI document, however, is not just limited to being 
documentation. Many tools have been developed that are capable of 
using an OpenAPI document to auto-generate client projects, server 
stubs, an API explorer UI for visually inspecting the OpenAPI document, 
and even server generators. Developers can find such tools as the 
Swagger Editor, Codegen, and UI at https://swagger.io. 

While some tools exist to generate an OpenAPI document, a number of 
developers maintain such documents either as individual JSON or 
YAML files. They can break their document up into smaller pieces using 
OpenAPI reference mechanics. In Nest.js, a separate module is available 
for developers to use to generate an OpenAPI document for their 
application. Instead of writing your OpenAPI document by hand, Nest.js 
will use the decorators you provide in your controllers to generate as 
much information that it can about the APIs within your project. Of 
course, it won’t get everything out of the box. For that, the Nest.js 
swagger module provides additional decorators that you can use to fill in 
the gaps. 

In this chapter, we will explore using the Nest.js Swagger module to 
generate a swagger version 2 document. We will begin with configuring 
the Nest.js Swagger module. We will setup our blog example application 
to expose the swagger document using the Swagger UI and begin 
exploring how the Nest.js decorators you are used to using already affect 
the swagger document. We will also explore the new decorators the 
swagger module provides. By the end of this chapter, you will have a 
complete understanding of how Nest.js produces a swagger document. 
Before getting started, be sure you run npm install @nestjs/swagger in your 
project. To see a working example, remember you can clone the 
accompanying Git repository for this book: 



git clone https://github.com/backstopmedia/nest-book-example.git 

Document Settings 
Each swagger document can contain a basic set of properties such as the title of 
the application. This information can be configured using the various public 
methods found on the DocumentBuilder class. These methods all return the 
document instance allowing you to chain as many of the methods as you need. 
Be sure to finish your configuration before calling the build method. Once 
the build method has been called, the document settings are no longer 
modifiable. 

const swaggerOptions = new DocumentBuilder() 
    .setTitle('Blog Application') 
    .setDescription('APIs for the example blog application.') 
    .setVersion('1.0.0') 
    .setTermsOfService('http://swagger.io/terms/') 
    .setContactEmail('admin@example.com') 
    .setLicense('Apache 2.0', 'http://www.apache.org/licenses/LICENSE-
2.0.html') 
    .build(); 

These methods are used to configure the info section of the swagger document. 
The swagger specification requires the title and version fields to be provided, 
but Nest.js will default these values to an empty string and "1.0.0", 
respectively. If your project has terms of service and a license, you can 
use setTermsOfService and setLicense to provide a URL to those resources 
within your application. 

Swagger documents can also contain server information. Users, developers, and 
the UI can use this information to understand how to access the APIs described 
by the document. 

const swaggerOptions = new DocumentBuilder() 
    .setHost('localhost:3000') 
    .setBasePath('/') 
    .setSchemes('http') 
    .build(); 

The setHost should contain only the server and port to access the APIs. If, in 
your application, you use setGlobalPrefix to configure a base path for the 
Nest.js application, set the same value in the swagger document 



using setBasePath. The swagger specification uses a schemes array to describe 
the transfer protocol used by the APIs. While the swagger specification supports 
the ws and wss protocols as well as multiple values, Nest.js limits the value to 
either http or https. Metadata and external documentation can also be added to 
provide users of the swagger document additional details regarding how the 
APIs work. 

const swaggerOptions = new DocumentBuilder() 
    .setExternalDoc('For more information', 'http://swagger.io') 
    .addTag('blog', 'application purpose') 
    .addTag('nestjs', 'framework') 
    .build(); 

Use the first parameter of setExternalDoc to describe the external documentation 
and a URL to the documentation as the second parameter. An endless number of 
tags can be added to the document using addTag. The only requirement is the 
first parameter to addTag be unique. The second parameter should describe the 
tag. The last document setting is how user’s authenticate with the APIs. 

Documenting authentication 

The swagger specification supports three types of authentication: basic, API 
key, and Oauth2. Nest.js provides two different methods that can be used to 
auto-configure the swagger document authentication information with the 
possibility for some settings to be overridden. Keep in mind, this is describing 
how users will authenticate with your application. 

const swaggerOptions = new DocumentBuilder() 
    .addBearerAuth('Authorization', 'header', 'apiKey') 
    .build(); 

If your application is using basic authentication, the username and password as 
a base64 encoded string, or JSON web tokens (JWT), you will make use of 
the addBearerAuth configuration method. The example above uses the defaults 
Nest.js will use if no parameters are passed and establishes that the APIs use an 
API key like a JWT in the authorization header. The first parameter should 
contain the key/header where the authentication key should be provided. This 
same configuration should be used if users will be using an application key to 
access the APIs. Application keys are typically used by public API provides like 
Google Maps to limit access to APIs and associate an API call to a specific 
billing account. 

const swaggerOptions = new DocumentBuilder() 



    .addBearerAuth('token', 'query', 'apiKey') 
    .addBearerAuth('appId', 'query', 'apiKey') 
    .build(); 

This example describes two query parameters that must be included when 
calling APIs that require authentication. The second parameter describes where 
the authentication key should be provided, either as a header, query, or body 
parameter. The third parameter is the type of authentication. When 
using addBearerAuth, use apiKey or basic. In addition to basic and API key 
authentication, swagger also supports documenting an Oauth2 authentication 
flow. 

const swaggerOptions = new DocumentBuilder() 
    .addOAuth2('password', 'https://example.com/oauth/authorize', 
'https://example.com/oauth/token', { 
      read: 'Grants read access', 
      write: 'Grants write access', 
      admin: 'Grants delete access' 
    }) 
    .build(); 

The first parameter to the addOAuth2 method is the OAuth2 flow the APIs use for 
authentication. In this example, we use the password flow to indicate the user 
should send a username and password to the API. You can also 
use implicit, application, and accessCode flow. The second and third 
parameters are the URLs where the user will authorize access to the APIs and 
request a refresh token, respectively. The last parameter is an object of all the 
scopes with descriptions that are available in the application. 

For the blog application, we will keep the configuration simple and store the 
configuration in a new file in the shared/config directory. Having a central 
location will let us write the configuration once and implement multiple times. 

export const swaggerOptions = new DocumentBuilder() 
    .setTitle('Blog Application') 
    .setDescription('APIs for the example blog application.') 
    .setVersion('1.0.0') 
    .setHost('localhost:3000') 
    .setBasePath('/') 
    .setSchemes('http') 
    .setExternalDoc('For more information', 'http://swagger.io') 
    .addTag('blog', 'application purpose') 



    .addTag('nestjs', 'framework') 
    .addBearerAuth('Authorization', 'header', 'apiKey') 
    .build(); 

Our first implementation will use the configuration and the Nest.js swagger 
module to produce two new endpoints in our application: one to serve the 
swagger UI application and one to serve the swagger document as raw JSON. 

Swagger UI 
The swagger module is unlike most other Nest.js modules. Instead of being 
imported into your application’s primary app module, the swagger module is 
configured within the main bootstrap of your application. 

async function bootstrap() { 
    const app = await NestFactory.create(AppModule); 
 
    const document = SwaggerModule.createDocument(app, swaggerOptions); 
    SwaggerModule.setup('/swagger', app, document); 
 
    await app.listen(process.env.PORT || 3000); 
} 

After declaring the Nest application and before calling the listen method, we 
use the swagger document options configured in the last section 
and SwaggerModule.createDocument to create the swagger document. The 
swagger module will inspect all controllers within the application and use 
decorators to construct the swagger document in memory. 

Once we have created the swagger document, we setup and instruct the swagger 
module to serve the swagger UI at a specified 
path, SwaggerModule.setup('/swagger', app, document). Under the hood, the 
swagger module makes use of the swagger-ui-express NodeJS module to turn 
the swagger document into a full web UI application. 



 



The above figure shows a basic Swagger UI application using our example blog 
application. The JSON used to produce the UI is also available by appending -
json to the path we configured for the UI. In our example, accessing /swagger-
json will return the swagger document. This can be used with code generators 
like Swagger Codegen. For more information about Swagger UI and Swagger 
Codegen, refer to https://swagger.io. 

If you have followed along with the book and created the blog application, you 
may find that the Swagger UI produced does not contain a lot of information 
about the APIs in the application. Since the swagger document is built using 
Typescript decorator metadata, you may need to alter your types or make use of 
the additional decorators found in the Nest.js swagger module. 

API input decorators 
The Nest.js swagger module can produce a swagger document using 
the @Body, @Param, @Query, and @Headers decorators. However, depending on how 
you write your API controllers, the swagger document can contain very little 
information. The swagger module will use the types associated with the 
decorated parameters to describe the parameters an API expects within the 
swagger document. To depict this, we will modify the comment PUT API to use 
all four decorators and show how that affects the swagger document by 
reviewing the swagger UI application. 

@Controller('entries/:entryId') 
export class CommentController { 
    @Put('comments/:commentId') 
    public async update( 
        @Body() body: UpdateCommentRequest, 
        @Param('commentId') comment: string, 
        @Query('testQuery') testQuery: string, 
        @Headers('testHeader') testHeader: string 
    ) { 
    } 
} 



 

From the example, we can see the header of this API card uses a combination of 
the @Controller and @Put decorators to construct the path to the API. The 
parameters section is built using the @Body, @Param, @Query, and @Headers query 



params. The types we provide to the decorated parameters is used in the 
Swagger UI as a hint to the user regarding what is expected in the parameter. 



 



Clicking the Try it out button in the header of the API card changes the card 
into a set of inputs. This allows the user to fill in the required and optional 
parameters of the API and execute the API call. We will cover the remaining 
sections of the API card later. For now, let’s review the basic parameter 
decorators in more detail. 

@Body 

You may have noticed in our example, the parameter we decorated 
with @Body had a type of UpdateCommentRequest. Your application may or may 
not have this class already. If not, let’s write it now. 

export class UpdateCommentRequest { 
    @ApiModelPropertyOptional() 
    public body: string; 
} 

The request class is very basic and makes use of the first decorator we will 
cover from the Nest.js swagger module, @ApiModelPropertyOptional. This 
decorator informs the swagger module that the bodyproperty of the request class 
is an optional property that can be included in the request body when calling the 
API. This decorator is actually a shortcut for the @ApiModelProperty decorator. 
We could write our request class as: 

export class UpdateCommentRequest { 
    @ApiModelProperty({ required: false }) 
    public body: string; 
} 

However, if a property is optional, use the @ApiModelPropertyOptional decorator 
to save yourself some typing. Both decorators can take several additional 
properties in an object passed to the decorator that will further define the data 
model for the request body. 

• description: A string that can be used to describe what the 
model property should contain or what it is used for. 
• required: A boolean indicating if the model property is 
required. This only applies to the @ApiModelProperty decorator. 
• type: The Nest.js swagger module will use the type 
associated with the model property or you can pass the type as 
any string or class value. If you use the isArray property, 
the type property should also be used. This property can also be 



used to pass any of the data types defined in the swagger 
specification. 
• isArray: A boolean indicating if the model property should 
take an array of values. If the model does take an array of values, 
be sure to include this value in the decorator or the Nest.js 
swagger module will not know to represent the model property as 
an array. 
• collectionFormat: Maps to the swagger 
specification collectionFormat setting. This is used to depict how 
a model properties array values should be formatted. For the 
request body, this property should probably not be used. Possible 
values are: 

• csv: comma separated values foo,bar 
• ssv: space separated values foo bar 
• tsv: tab separated values foo\tbar 
• pipes: pipe separated values foo|bar 
• multi: corresponds to multiple parameter instances 
instead of multiple values for a single instance 
foo=bar&foo=baz. This is valid only for parameters in “query” 
or “formData”. 

• default: The default value to be used for the model property 
in the swagger document. This value will also be used in the 
example provided in the Swagger UI. The type of this value will 
depend on the type of the model property but could be a string, 
number, or even an object. 
• enum: If your model properties type is an enum, pass the 
same enum to the decorator using this property so the Nest.js 
swagger module can inject those enum values into the swagger 
document. 
• format: If you use the type property with a data type 
described in the swagger specification, you may also need to pass 
the format for that data type. For example, a field that takes a 
number with multiple precision points, values after the decimal, 
the type would be integer but the format may be 
either float or double. 
• multipleOf: A number indicating that the value passed in the 
model property should have a remainder of zero using the 
modulus operator. Setting this property in the decorator is only 
valid if the model properties type is number or the type provided to 
the decorator is integer. 



• maximum: A number indicating that the value passed in the 
model property should be less than or equal to the given value to 
be valid. Setting this property in the decorator is only valid if the 
model properties type is number or the type provided to the 
decorator is integer. This property should not be used 
with exclusiveMaximum. 
• exclusiveMaximum: A number indicating that the value 
passed in the model property should be less than the given value 
to be valid. Setting this property in the decorator is only valid if the 
model properties type is number or the type provided to the 
decorator is integer. This property should not be used 
with maximum. 
• minimum: A number indicating that the value passed in the 
model property should be greater than or equal to the given value 
to be valid. Setting this property in the decorator is only valid if the 
model properties type is number or the type provided to the 
decorator is integer. This property should not be used 
with exclusiveMinimum. 
• exclusiveMinimum: A number indicating that the value 
passed in the model property should be less than the given value 
to be valid. Setting this property in the decorator is only valid if the 
model properties type is number or the type provided to the 
decorator is integer. This property should not be used 
with minimum. 
• maxLength: A number indicating that the value passed in 
the model property should a character length less than or equal to 
the given value to be valid. Setting this property in the decorator is 
only valid if the model properties type is string or the type provided 
to the decorator is string. 
• minLength: A number indicating that the value passed in the 
model property should a character length more than or equal to the 
given value to be valid. Setting this property in the decorator is 
only valid if the model properties type is string or the type provided 
to the decorator is string. 
• pattern: A string containing a JavaScript compatible regular 
expression. The value passed in the model property should match 
the regular expression to be valid. Setting this property in the 
decorator is only valid if the model properties type is string or 
the type provided to the decorator is string. 
• maxItems: A number indicating that the value passed in the 
model property should an array length less than or equal to the 



given value to be valid. Setting this property in the decorator is 
only valid if the the isArray is also provided with a value of true. 
• minItems: A number indicating that the value passed in the 
model property should an array length more than or equal to the 
given value to be valid. Setting this property in the decorator is 
only valid if the the isArray is also provided with a value of true. 
• uniqueItems: A number indicating that the value passed in 
the model property should contain a set of unique array values. 
Setting this property in the decorator is only valid if the 
the isArray is also provided with a value of true. 
• maxProperties: A number indicating that the value passed 
in the model property should contain a number of properties less 
than or equal to the given value to be valid. Setting this property in 
the decorator is only valid if the model property type is a class or 
object. 
• minProperties: A number indicating that the value passed in 
the model property should contain a number of properties more 
than or equal to the given value to be valid. Setting this property in 
the decorator is only valid if the model property type is a class or 
object. 
• readOnly: A boolean indicating the model property MAY be 
sent in the API response body, but should not be provided in the 
request body. Use this if you will be using the same data model 
class to represent the request and response bodies of an API. 
• xml: A string containing XML that represent the format of the 
model property. Only use if the model property will contain XML. 
• example: An example value to place in the swagger 
document. This value will also be used in the example provided in 
the Swagger UI and takes precedence over the default decorator 
property value. 

The property that has been decorated with the @Body decorator should always 
have a type that is a class. Typescript interfaces cannot be decorated and do not 
provide the same metadata that a class with decorators can. If, in your 
application, any of your APIs have a property with the @Body decorator and an 
interface type, the Nest.js swagger module will not be able to correctly create 
the swagger document. In fact, the Swagger UI will most likely note display the 
body parameter at all. 



@Param 

The @Param decorator in our example contained a string value indicating which 
URL parameter to use for the comment parameter of our controller method. When 
the Nest.js swagger module encounters this decorator with the provided string, 
it is able to determine the name of the URL parameter and includes it in the 
swagger document along with the type provided for the method parameter. 
However, we could have also written the controller method without passing a 
string to the @Param decorator to get an object containing all of the URL 
parameters. If we do this, Nest.js will only be able to determine the names and 
types of the URL parameters if we use a class as the type for 
the comment parameter or use the @ApiImplicitParam decorator provided by the 
Nest.js swagger module on the controller method. Let’s create a new class to 
describe our URL params and see how it affects the swagger UI. 

export class UpdateCommentParams { 
    @ApiModelProperty() 
    public entryId: string; 
 
    @ApiModelProperty() 
    public commentId: string; 
} 

In the UpdateCommentParams class, we have created a single property and used 
the @ApiModelPropertydecorator so the Nest.js swagger module knows to include 
the properties with their types in the swagger document. Do not try to split 
the entryId out into it’s own class and extend it because the Nest.js swagger 
module will not be able to pickup the properties of the extended class. It is also 
important that the names of the properties used in the class matches the names 
used in the @Controller and @Put decorators. We can change our comment to use 
the new class. 

@Put('comments/:commentId') 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param() params: UpdateCommentParams, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

We have changed the controller so that all path parameters are provided to the 
controller method’s params parameter as an object. 



 

The swagger UI has been updated to show the comment put API takes two 
required URL parameters: entryId and commentId. If you will be writing APIs 
that use a single parameter in your method controller to hold all of the URL 
parameters, your preferred method of informing the Nest.js swagger module is 
what you should expect as URL parameters. Using a class as the type for your 
URL parameters not only informs the Nest.js swagger module of the URL 
parameters, it also helps in writing your application by providing type checking 
and code auto-completion. 



If, however, you don’t want to make a new class to use as the type for your 
URL parameters, use an interface, or one or more of the URL parameters are in 
a Nest.js guard, or middleware, or in a custom decorator, but not in the 
controller method. You can still inform the Nest.js swagger module about the 
URL parameters using the @ApiImplicitParam decorator. 

@Put('comments/:commentId') 
@ApiImplicitParam({ name: 'entryId' }) 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

If a path param is required to reach the controller method, but the controller 
method does not use the param specifically, the Nest.js swagger module will not 
include it in the swagger document unless the controller method is decorated 
with the @ApiImplicitParam decorator. Use the decorator once for each path 
parameter that is necessary to reach the controller method, but it isn’t used in 
the controller itself. 

@Put('comments/:commentId') 
@ApiImplicitParam({ name: 'entryId' }) 
@ApiImplicitParam({ name: 'commentId' }) 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

For example, the above controller, being a part of the comment controller, 
requires two path parameters: entryId and commentId. Since the controller does 
not contain any @Param decorators in the method 
parameters, @ApiImplicitParam is used to describe both path params. 

The @ApiImplicitParam decorator can take several additional properties in an 
object passed to the decorator that will further define the URL parameter in the 
swagger document. 



• name: A string containing the name of the URL parameter. 
This decorator property is the only one required. 
• description: A string that can be used to describe what the 
URL parameter should contain or what it is used for. 
• required: A boolean indicating if the URL parameter is 
required. 
• type: A string containing one of the types defined in the 
swagger specification. Classes and objects should not be used. 

@Query 

The @Query decorator in our example contained a string value indicating which 
query parameter to use for the testQuery parameter of our controller method. 
When the Nest.js swagger module encounters this decorator with the provided 
string, it is able to determine the name of the query parameter and includes it in 
the swagger document along with the type provided for the method parameter. 
However, we could have also wrote the controller method without passing a 
string to the @Query decorator to get an object containing all the query 
parameters. If we do this, Nest.js will only be able to determine the names and 
types of the query parameters if we use a class as the type for 
the testQuery parameter or use the @ApiImplicitQuery decorator provided by the 
Nest.js swagger module on the controller method. Let’s create a new class to 
describe our query params and see how it affects the Swagger UI. 

export class UpdateCommentQuery { 
    @ApiModelPropertyOptional() 
    public testQueryA: string; 
 
    @ApiModelPropertyOptional() 
    public testQueryB: string; 
} 

In the UpdateCommentQuery class, we have created two properties and used 
the @ApiModelPropertyOptional decorator so the Nest.js swagger module knows 
to include these properties with their types in the swagger document. We can 
change our comment and put the controller method to use the new class. 

@Put('comments/:commentId') 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 



    @Query() queryParameters: UpdateCommentQuery, 
    @Headers('testHeader') testHeader: string 
) { 
} 

We have changed the controller so that all query parameters are provided to the 
controller method’s queryParameters parameter as an object. 

 



The swagger UI has been updated to show the comment, and the put API takes 
two optional query parameters: testQueryA and testQueryB. If you will be 
writing APIs that will use a single parameter in your method controller to hold 
all of the query parameters, this should be your preferred method of informing 
the Nest.js swagger module you are expecting as query parameters. Using a 
class as the type for your query parameters not only informs the Nest.js swagger 
module of the query parameters, it also helps in writing your application by 
providing type checking and code auto-completion. 

However, if you do not wish to make a new class to use as the type for your 
query parameters, you use an interface, or the query parameters are used in a 
Nest.js guard or middleware in a custom decorator, but not in the controller 
method. You can still inform the Nest.js swagger module about the query 
parameters using the @ApiImplicitQuery decorator. 

@Put('comments/:commentId') 
@ApiImplicitQuery({ name: 'testQueryA' }) 
@ApiImplicitQuery({ name: 'testQueryB' }) 
public async update( 
    @Param('commentId') comment: string, 
    @Body() body: UpdateCommentRequest, 
    @Query() testQuery: any, 
    @Headers('testHeader') testHeader: string 
) { 
} 

If a query param is required to reach the controller method, but the controller 
method does not use the query param specifically, the Nest.js swagger module 
will not include it in the swagger document unless the controller method is 
decorated with the @ApiImplicitQuery decorator. Use the decorator once for each 
query parameter that is necessary to reach the controller method, but is not not 
used in the controller itself. 

@Put('comments/:commentId') 
@ApiImplicitQuery({ name: 'testQueryA' }) 
@ApiImplicitQuery({ name: 'testQueryB' }) 
public async update( 
    @Param('commentId') comment: string, 
    @Body() body: UpdateCommentRequest, 
    @Headers('testHeader') testHeader: string 
) { 
} 



For example, the above controller requires two query 
parameters: testQueryA and testQueryB. Since the controller does not contain 
any @Query decorators in the method parameters, @ApiImplicitQuery is used to 
describe both query params. 

The @ApiImplicitQuery decorator can take several additional properties in an 
object passed to the decorator that will further define the query parameter in the 
swagger document. 

• name: A string containing the name of the query parameter. 
This decorator property is the only one required. 
• description: A string that can be used to describe what the 
query parameter should contain or what it is used for. 
• required: A boolean indicating if the query parameter is 
required. 
• type: A string containing one of the types defined in the 
swagger specification. Classes and objects should not be used. 
• isArray: A boolean indicating if the model property should 
take an array of values. If the model does take an array of values, 
be sure to include this value in the decorator or the Nest.js 
swagger module will not know to represent the model property as 
an array. 
• collectionFormat: Maps to the swagger 
specification collectionFormat setting. This is used to depict how 
a model properties array values should be formatted. Possible 
values are: 

• csv: comma separated values foo,bar 
• ssv: space separated values foo bar 
• tsv: tab separated values foo\tbar 
• pipes: pipe separated values foo|bar 
• multi: corresponds to multiple parameter instances 
instead of multiple values for a single instance 
foo=bar&foo=baz. This is valid only for parameters in “query” 
or “formData”. 

@Headers 

The @Headers decorator in our example contained a string value indicating 
which request header value to use for the testHeader parameter of our controller 
method. When the Nest.js swagger module encounters this decorator with the 



provided string, it is able to determine the name of the request header and 
includes it in the swagger document along with the type provided for the 
method parameter. However, we could have also written the controller method 
without passing a string to the @Headers decorator to get an object containing all 
the request headers. If we do this, Nest.js will only be able to determine the 
names and types of the request headers if we use a class as the type for 
the testHeader parameter or use the @ApiImplicitHeader decorator provided by 
the Nest.js swagger module on the controller method. Let’s create a new class to 
describe our query params and see how it affects the swagger UI. 

export class UpdateCommentHeaders { 
    @ApiModelPropertyOptional() 
    public testHeaderA: string; 
 
    @ApiModelPropertyOptional() 
    public testHeaderB: string; 
} 

In the UpdateCommentHeaders class, we have created two properties and used 
the @ApiModelPropertyOptional decorator so the Nest.js swagger module knows 
to include these properties with their types in the swagger document. We can 
change our comment put controller method to use the new class. 

@Put('comments/:commentId') 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers() headers: UpdateCommentHeaders 
) { 
} 

We have changed the controller so that all request parameters the controller 
expects are provided to the controller method’s queryParameters parameter as an 
object. 



 

The swagger UI has been updated to show the comment put API expects two 
headers: testHeaderA and testHeaderB. If you will be writing APIs that will use a 
single parameter in your method controller to hold all of the expected headers, 
and this should be your preferred method of informing the Nest.js swagger 
module that you are expecting as query parameters. Using a class as the type for 



your expected headers not only informs the Nest.js swagger module of the 
headers, it also helps in writing your application by providing type checking and 
code auto-completion. 

If, however, you do not wish to make a new class to use as the type for your 
expected headers, you use an interface, or the headers are used in a Nest.js 
guard or middleware or in a custom decorator, but not in the controller method. 
You can still inform the Nest.js swagger module about the query parameters 
using the @ApiImplicitHeader or the @ApiImplicitHeaders decorators. 

@Put('comments/:commentId') 
@ApiImplicitHeader({ name: 'testHeader' }) 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers() headers: any 
) { 
} 

If a header is required to reach the controller method, but the controller method 
does not use the header specifically. The Nest.js swagger module will not 
include it in the swagger document unless the controller method is decorated 
with the @ApiImplicitHeader or @ApiImplicitHeaders decorators. Use 
the @ApiImplicitHeader decorator once for each header, or 
the @ApiImplicitHeaders decorator once to describe all the headers. This is 
necessary to reach the controller method but it isn’t used in the controller itself. 

@Put('comments/:commentId') 
@ApiImplicitHeader({ name: 'testHeaderA' }) 
@ApiImplicitHeader({ name: 'testHeaderB' }) 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
) { 
} 
 
@Put('comments/:commentId') 
@ApiImplicitHeader([ 
    { name: 'testHeaderA' }, 
    { name: 'testHeaderB' } 



]) 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
) { 
} 

For example, the above controllers requires two 
headers: testHeaderA and testHeaderB. Since the controller does not contain 
and @Headers decorators in the method parameters, @ApiImplicitHeader, 
and @ApiImplicitHeaders that is used to describe both headers. 

The @ApiImplicitHeader and @ApiImplicitHeaders decorators can take several 
additional properties in an object or array of objects, respectively, passed to the 
decorator that will further define the query parameter in the swagger document. 

• name: A string containing the name of the header. This 
decorator property is the only one required. 
• description: A string that can be used to describe what the 
header should contain or what it is used for. 
• required: A boolean indicating if the header is required. 

Note: the @ApiImplicitHeaders decorator is just a shortcut for using 
the @ApiImplicitHeader decorator multiple times. If you need to describe 
multiple headers, use @ApiImplicitHeaders. Also, you should not use these 
headers to describe authentication mechanics. There are other decorators for 
that. 

Authentication 

It is very likely that you will need to have some form of authentication in your 
application at some point. The blog example application uses 
a username and password combination to authenticate a user and provides a JSON 
web token to allow the user to access the APIs. However you decide to setup 
authentication, one thing is for sure: you will require either query parameters or 
headers to maintain an authentication state and you will most likely use Nest.js 
middleware or guards to check a user’s authentication state. You do this 
because writing that code in every controller method creates a lot of code 
duplication and would complicate every controller method. 



If your application does require authentication, first, be sure your document 
settings are properly configured using the addOAuth2 or 
the addBearerAuth method. Refer back to the Document Settings section if you 
are unsure of what those methods do. 

In addition to setting the authentication scheme for the swagger document, you 
should also use the ApiBearerAuth and/or the ApiOAuth2Auth decorators on the 
controller class or controller methods. When used on an entire controller class, 
these decorators inform the Nest.js swagger module that all controller methods 
require authentication. If not all controller methods require authentication, you 
will need to decorate the individual controller methods that do. 

@Put('comments/:commentId') 
@ApiBearerAuth() 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

This example depicts a single controller method, API, that requires a bearer 
token to be able to use the API. 

@Put('comments/:commentId') 
@ApiOAuth2Auth(['test']) 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

This example depicts a single controller method, API, that requires a specific set 
of OAuth2 roles to be able to use the API. The @ApiOAuth2Auth decorator takes 
an array of all the roles the user should have in order to have access to the API. 

These decorators are used in conjunction with 
the ApiBearerAuth and ApiOAuth2Auth document settings to build a form the user 
can enter their credentials, either an API key or an Oauth key, and select their 
roles, if OAuth2 is being used, inside the swagger UI. These values are then 



passed in the appropriate places, either as query params or header values, when 
the user executes a specific API. 

 

Clicking the Authorize button at the top of the swagger UI page will open the 
authorizations form. For a bearer token, log into the application and copy the 
auth token returned into the space provided in the swagger UI authorization. 
The token should be in the form of Bearer <TOKEN VALUE>. For OAuth2 
authentication, enter your credentials and select the roles you are requesting. 
Clicking the Authorizebutton will save the credentials for use when executing 
the APIs in the swagger UI. 



API request and response decorators 
So far we have been primarily focused on decorating controllers, so the Nest.js 
swagger module can build a swagger document containing all of the inputs our 
APIs expect or could use. The Nest.js swagger module also contains decorators 
that can be used to describe with what and how APIs respond and the format of 
the content it expects to receive and send. These decorators help form a 
complete picture of how a specific API works when looking at the swagger 
document or when using the swagger UI. 

All of the APIs we have covered in our example blog application follow a 
typical modal of accepting inputs in the form of JSON. However, it is possible 
that an application may need to take a different input type, often referred to as a 
MIME type. For example, we could allow users of our example blog application 
to upload an avatar image. An image cannot easily be represented as JSON so 
we would need to build an API that takes an input MIME type of image/png. We 
can ensure this information is present in our application’s swagger document by 
using the @ApiConsumes decorator. 

@Put('comments/:commentId') 
@ApiConsumes('image/png') 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

In this example, we have used the @ApiConsumes decorator to inform the Nest.js 
swagger module that the comment put API expects to receive a png image. 



 

The Swagger UI now shows the Parameter content type drop down 
as image/png. The @ApiConsumesdecorator can take any number of MIME types 
as parameters. Multiple values in the decorator will result in the Parameter 
content type drop down containing multiple values with the first value always 
being the default. If a controller is dedicated to handling a specific MIME type, 
like application/json, the @ApiConsumes decorator can be placed on the 
controller class instead of on every single controller method. However, if your 
APIs will be consuming JSON, the decorator can be left off and the Nest.js 
swagger module will default the APIs to application/json. 

In addition to consuming various MIME data types, APIs can also respond with 
various MIME data types. For example, our fictitious avatar upload API may 



store the images in a database or cloud storage provider. Such storage locations 
may not be directly accessible to users so an API can be created to lookup and 
return the avatar image for any user. We can use the @ApiProduces decorator to 
let the Nest.js swagger module know the API returns data using 
the image/png MIME type. 

@Put('comments/:commentId') 
@ApiProduces('image/png') 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

In this example, we have used the @ApiProduces decorator to inform the Nest.js 
swagger module that the comment put API expects to return a png image. 



 

The Swagger UI now shows the Response content type drop down 
as image/png. The @ApiProducesdecorator can take any number of MIME types 
as parameters. Multiple values in the decorator will result in the Response 
content type drop down containing multiple values with the first value always 
being the default. If a controller is dedicated to handling a specific MIME type, 
like application/json, the @ApiConsumes decorator can be placed on the 
controller class instead of on every single controller method. However, if your 
APIs will be consuming JSON, the decorator can be left off and the Nest.js 
swagger module will default the APIs to application/json. 

Request and response MIME type information goes a long way to informing the 
end use of the swagger document, and how to use an API and how an API 



works. However, we have not fully documented everything an API can respond 
with. For example, what data values are contained in the APIs response body 
and what are the potential HTTP status codes it could return? Such information 
can be provided using the @ApiResponse decorator. 

The @ApiResponse decorator can be placed on individual controller methods or 
on the controller class. The Nest.js swagger module will collect the controller 
class level decorator data and pair it with the controller method decorator data 
to produce a list of possible responses each individual API could produce. 

@Controller('entries/:entryId') 
@ApiResponse({ 
    status: 500, 
    description: 'An unknown internal server error occurred' 
}) 
export class CommentController { 
    @Put('comments/:commentId') 
    @ApiResponse({ 
        status: 200, 
        description: 'The comment was successfully updated', 
        type: UpdateCommentResponse 
    }) 
    public async update( 
        @Body() body: UpdateCommentRequest, 
        @Param('commentId') comment: string, 
        @Query('testQuery') testQuery: string, 
        @Headers('testHeader') testHeader: string 
    ) { 
    } 
} 

In this example, we decorated the comment controller so that all the APIs will 
contain a generic response for internal server errors. The update controller 
method has been decorated so that responses with a status code of 200 indicate 
the comment was successfully updated. The type is another data model created 
to provide the Nest.js swagger module with information regarding the 
individual properties in the response body. 

export class UpdateCommentResponse { 
  @ApiModelPropertyOptional() 
  public success?: boolean; 
} 



The UpdateCommentResponse data model contains one optional property, success, 
that could be used to further relay to the UI that the comment was updated 
successfully. 

 



The swagger UI now lists both possible responses in the Responses section of 
the API card. Use the @ApiResponse decorator to inform user’s of your APIs 
about the different success and error scenarios they may need to deal with when 
using the APIs. The @ApiResponse decorator can take additional properties in the 
object passed to it. 

• status: A number containing the HTTP status code the API 
will respond with. This decorator property is the only one required. 
• description: A string that can be used to describe what the 
response indicates or how the user should react when the 
response is encountered. 
• type: Use a data model class any of the data types defined 
in the swagger specification to inform users of the API what they 
can expect in the response body. If you use the isArray property, 
it indicated the response will be an array of values with the 
provided type. 
• isArray: A boolean indicating if the response body will 
contain an array of values. If the response body will contain an 
array of values, be sure to include this value in the decorator or the 
Nest.js swagger module will not know to represent the response 
body an array. 

API metadata decorators 
If you work through any Nest.js project and properly decorate all the controllers 
and controller methods with the decorators we have covered so far, the swagger 
document the Nest.js swagger module produces will have every technical detail 
a user of the APIs would need to understand and use the APIs. The last two 
decorators we will cover in this chapter simply provide more metadata for the 
swagger document. The swagger UI will use this metadata to produce a cleaner 
UI, but functionality will not change. 

The first decorator we will cover is @ApiOperation. Don’t confuse this decorator 
with the HTTP method decorators like @Put. This decorator is used to provide 
a title, description, and unique identifier called an operationId for individual 
controller methods. 

@Put('comments/:commentId') 
@ApiOperation({ 
    title: 'Comment Update', 



    description: 'Updates a specific comment with new content', 
    operationId: 'commentUpdate' 
}) 
public async update( 
    @Body() body: UpdateCommentRequest, 
    @Param('commentId') comment: string, 
    @Query('testQuery') testQuery: string, 
    @Headers('testHeader') testHeader: string 
) { 
} 

In this example, we have provided a brief title and a much 
longer description of the comment put API. The title should be kept short, less 
than 240 character, and is used to populate the summary portion of the swagger 
specification. While the description in the example is short, use verbose 
descriptions in your own projects. This should convey why a user would use the 
API or what they accomplish through the use of the API. The operationId must 
be kept unique per the swagger documentation. The value could be used in 
various swagger codegen projects to reference the specific API. 



 



In the swagger UI, we can see the values we have passed to 
the @ApiOperation decorator, and how they are used to fill in additional details of 
the API card. The title is placed in the header next to the API path. 
The description is the first bit of information in the API card following the 
header. We can see how using a long title and description negatively impacts 
the API card header, but works very well in the API card body. 

 



Looking at the overall swagger UI application, we can see that all of the APIs 
for the example blog application are grouped together. While this works, it 
would be nicer to group the APIs based on the operations they perform or the 
resources, comment, entry, or keyword that they act upon. This is what 
the @ApiUseTags decorator is used for. 

The @ApiUseTags decorator can be placed on a controller class or individual 
controller methods and can take any number of string parameters. These values 
will be placed in the swagger document for each individual API. 

@Controller('entries/:entryId') 
@ApiUseTags('comments') 
export class CommentController { 
 
} 

In this example, we decorated the comment controller class so that all of the 
controller methods will be given the comments tag. 



 

The swagger UI now groups the APIs using the tags. This ensures like APIs are 
grouped and provides a little spacing between each group to produce a nicer UI. 
The groups are also expandable and collapsible giving users the option of 
hiding APIs they may not be interested in. 



Saving the swagger document 
We have covered all of the available decorators in the Nest.js swagger module 
and the decorators already available in Nest.js to produce a swagger document 
and expose the swagger UI. This works great when your APIs are primarily 
used by developers in their own projects or when testing the APIs on a local 
development server or in a staging environment. For APIs that are primarily 
used for a specific front-end application, you may not wish to expose the 
swagger UI for the general public to be able to use. In such a case, you can still 
produce a swagger document for storage and use it on your own or your teams 
other projects. 

To accomplish this, we will write a new Typescript file that can be executed as 
part of a build chain. We will use the fs-extras NodeJS module to make writing 
our file to disk much simpler. 

import * as fs from 'fs-extra'; 
 
async function writeDoc() { 
    const app = await NestFactory.create(AppModule); 
    const document = SwaggerModule.createDocument(app, swaggerOptions); 
 
    fs.ensureDirSync(path.join(process.cwd(), 'dist')); 
    fs.writeJsonSync(path.join(process.cwd(), 'dist', 'api-doc.json'), 
document, { spaces: 2 }); 
} 
 
writeDoc(); 

You can place this file in the root of your project or in the source directory and 
use an NPM script entry to execute it or run it using NodeJS. The example code 
will use the Nest.js swagger module to build a swagger document and fs-
extras to write the document to the dist directory as a JSON file. 

Summary 
In this chapter, we covered how the Nest.js swagger module makes use of the 
existing decorators you use in your application to create a swagger v2 
specification document. We also covered all the additional decorators the 
Nest.js swagger module provides to enhance the information in the swagger 



document. We also setup the example blog application to expose the swagger 
UI. 

Use the Nest.js swagger module to not only document your application’s 
controllers, but to also provide UI for testing your application. If you fully 
document your application, the swagger UI can be an excellent replacement UI 
or provide an easy testing area that you or your users can use instead of having 
to watch for network calls in your applications real UI. The swagger UI can also 
be a great substitute for tools like Postman. 

If you don’t wish to use the Swagger UI or expose your swagger document with 
you application in a production environment, remember you can always write 
the file to disk as a separate build job of your application. This allows you to 
store and use the document in a number of ways, most notably with Swagger 
Codegen. 

The next chapter will bring you up to speed on Command Query Responsibility 
Separation (CQRS). 

	 	



Chapter 12. Command Query Responsibility 
Separation (CQRS) 
Up to this point in this book, we have worked to put together a simple 
blog application using the CRUD pattern: Create, Retrieve, Update, and 
Delete. We have done an excellent job of ensuring services are handling 
our business logic and our controllers are simply gateways into those 
services. The controllers take care of validating the request and then pass 
the request to the service for processing. In a small application like this, 
CRUD works wonderfully. 

But what happens when we are dealing with a large scale application that 
may have unique and complex business logic for saving data? Or maybe 
we would like to initiate some logic in the background so the UI is able to 
call APIs without having to wait for all the business logic to finish. These 
are areas where CQRS makes sense. CQRS can be used to isolate and 
break apart complex business logic, initiate that business logic 
synchronously or asynchronously, and compose the isolated pieces to 
solve new business problems. 

Nest.js implements this pattern by providing two separate streams for 
processing the command aspect of CQRS: a command and an event bus, 
with some sugar in the form of sagas. In this chapter, we will tackle the 
problem of adding keyword metadata to our blog entries. We could 
certainly do this using the CRUD pattern, but having the UI make 
multiple API calls to store a blog entry and all it’s keywords, or even 
having our blog entry module perform this, would complicate the 
business logic of the UI and our application. 

Instead, we will convert the blog entry module to use CQRS commands, 
and the command bus to perform all data persistance, removing it from 
the service in the blog entry module. A new entity and module will be 
created for our keywords. The keyword entity will maintain a last 
updated timestamp and a reference to all associated entries. Two new 
APIs will be created: one to provide a list of “hot keywords” and one to 
provide a list of all entries associated with a keyword. 

To ensure the UI does not suffer any performance loss, all keyword 
entity operations will be done asynchronously. Keywords will be stored 
on the blog entry entity as a string to provide the UI a quick reference 
without having to query the keyword table in the database. Before 
getting started, be sure you ran npm install @nestjs/cqrs in your project. 



To see a working example, remember you can clone the accompanying 
Git repository for this book: 

git clone https://github.com/backstopmedia/nest-book-example.git 

Entry module commands 
To make the business logic around changes to entry models easier to extend, we 
will first need to extract out the methods in the module’s services that update 
the database as individual commands. Let’s start with converting the blog 
entry create method to a command in Nest.js CQRS fashion. 

export class CreateEntryCommand implements ICommand { 
    constructor( 
        public readonly title: string, 
        public readonly content: string, 
        public readonly userId: number 
    ) {} 
} 

Our command is a simple object that implemented the ICommand interface. 
The ICommand interface is used internally by Nest.js to indicate an object is a 
command. This file is typically created in a sub-directory of our module with a 
pattern similar to commands/impl/. Now that we have one example done, let’s 
finish up the remaining commands for the comment module. 

export class UpdateEntryCommand implements ICommand { 
    constructor( 
        public readonly id: number, 
        public readonly title: string, 
        public readonly content: string 
    ) {} 
} 
 
export class DeleteEntryCommand implements ICommand { 
    constructor( 
        public readonly id: number 
    ) {} 
} 



Notice some differences with the update and delete commands? For the update 
command, we need to know which database model we are updating. Likewise, 
for the delete command, we only need to know the id of the database model we 
are deleting. In both cases, having the userId does not make sense since a blog 
entry can never be moved to another user and the userId has no influence on the 
deletion of a blog entry. 

Command handlers 

Now that we have commands for our database write operations, we need some 
command handlers. Each command should have an accompanying handler in a 
one-to-one fashion. The command handler is much like our current blog entry 
service. It will take care of all the database operations. Typically, the command 
handlers are placed in a sub-directory of the module similar 
to commands/handlers. 

@CommandHandler(CreateEntryCommand) 
export class CreateEntryCommandHandler implements 
ICommandHandler<CreateEntryCommand> { 
    constructor( 
        @Inject('EntryRepository') private readonly entryRepository: 
typeof Entry, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance 
    ) { } 
 
    async execute(command: CreateEntryCommand, resolve: () => void) { 
    } 
} 

Command handlers are simple classes with a single method, execute, that is 
responsible for handling the command. Implementing 
the ICommandHandler<CreateEntryCommand> interface helps ensure we write our 
command handler correctly. Nest.js uses the @CommandHandler annotation in our 
example to know this class is meant to handle our 
new CreateEntryCommand command. 

Since the command handler is going to be a drop-in replacement for our 
module’s service, the command handler will also need access to our database. 
This may differ depending on what ORM you are using and how your 
application is configured. Our command handler doesn’t actually do anything at 



this point. In fact, using it would break the application since we have not 
implemented the details of the execute method. 

async execute(command: CreateEntryCommand, resolve: () => void) { 
    await this.sequelizeInstance.transaction(async transaction => { 
        return await this.entryRepository.create<Entry>(command, { 
            returning: true, 
            transaction 
        }); 
    }); 
 
    resolve(); 
} 

If you are following along with the example project, you may notice 
our execute method looks almost like the create method of the blog entry 
service. In fact, almost all of the code for the command handler is a direct copy 
from the blog entry service. The big difference is that we do not return a value. 
Instead, the execute method of all command handlers takes a callback method as 
their second argument. 

Nest.js allows us to do a couple of different things with the callback it provides 
to the execute method. In our example, we use the ORM to create and persist a 
new blog entry. Once the transaction resolves, we call the resolve callback to let 
Nest.js know our command is done executing. If this looks familiar, it is 
because behind the scenes Nest.js is wrapping our execute in a Promise and 
passing in the promise’s own resolve callback as the second argument to 
our execute method. 

Notice that we do not get a reject callback passed to our command handler. 
Nest.js does not perform any type of error handling when invoking command 
handlers. Since our command handler is invoking our ORM to store data in a 
database, it is very possible that an exception could be thrown. If this happens 
with the way our command handler is currently wrote, depending on the version 
of NodeJS being used, an UnhandledPromiseRejectionWarning warning being 
logged to the console and the UI will be stuck waiting for the API to return until 
it times out. To prevent this, we should wrap our command handler logic in 
a try...catch block. 

async execute(command: CreateEntryCommand, resolve: () => void) { 
    try { 
        await this.sequelizeInstance.transaction(async transaction => { 
            return await this.entryRepository.create<Entry>(command, { 



                returning: true, 
                transaction 
            }); 
        }); 
    } catch (error) { 
 
    } finally { 
        resolve(); 
    } 
} 

Notice we invoke the resolve callback in the finally block. This is done to 
ensure that, no matter the outcome, the command handler will complete 
execution and the API will finish processing. But what happens when an 
exception is thrown from our ORM. The blog entry wasn’t saved to the 
database, but since the API controller did not know an error occurred, it will 
return a 200 HTTP status to the UI. To prevent this, we can catch the error and 
pass that as an argument to the resolve method. This might break with the 
CQRS pattern but it is better to let the UI know something went wrong than 
assume the blog entry was saved. 

async execute(command: CreateEntryCommand, resolve: (error?: Error) => 
void) { 
    let caught: Error; 
 
    try { 
        await this.sequelizeInstance.transaction(async transaction => { 
            return await this.entryRepository.create<Entry>(command, { 
                returning: true, 
                transaction 
            }); 
        }); 
    } catch (error) { 
        caught = error 
    } finally { 
        resolve(caught); 
    } 
} 

Note: Nest.js does not provide any stipulation for when the callback method 
must be invoked. We could invoke the callback at the beginning of 
the execute method. Nest.js would return processing back to the controller so 



the UI is immediately updated and process the remaining pieces of 
the executemethod afterwards. 

Let’s finish converting our blog entry module to CQRS by creating commands 
to handle updating and deleting blog entries from the database. 

@CommandHandler(UpdateEntryCommand) 
export class UpdateEntryCommandHandler implements 
ICommandHandler<UpdateEntryCommand> { 
    constructor( 
        @Inject('EntryRepository') private readonly entryRepository: 
typeof Entry, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize, 
        private readonly databaseUtilitiesService: 
DatabaseUtilitiesService 
    ) { } 
 
    async execute(command: UpdateEntryCommand, resolve: (error?: Error) 
=> void) { 
        let caught: Error; 
 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                let entry = await 
this.entryRepository.findById<Entry>(command.id, { transaction }); 
                if (!entry) throw new Error('The blog entry was not 

found.'); 
 
                entry = this.databaseUtilitiesService.assign( 
                    entry, 
                    { 
                        ...command, 
                        id: undefined 
                    } 
                ); 
                return await entry.save({ 
                    returning: true, 
                    transaction, 
                }); 



            }); 
        } catch (error) { 
            caught = error 
        } finally { 
            resolve(caught); 
        } 
    } 
} 

The command handler for our UpdateEntryCommand command needs a couple 
changes from what we have in the blog entry service. Since our command 
contains all of the data for the blog entry being updated, including the id, we 
need to strip out the id and apply the remaining values in the command to the 
entity before saving it back to the database. Just like our last command handler, 
we use a try...catch to handle errors and pass any thrown exceptions back as 
an argument to the resolvecallback. 

@CommandHandler(DeleteEntryCommand) 
export class DeleteEntryCommandHandler implements 
ICommandHandler<DeleteEntryCommand> { 
    constructor( 
        @Inject('EntryRepository') private readonly entryRepository: 
typeof Entry, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize 
    ) { } 
 
    async execute(command: DeleteEntryCommand, resolve: (error?: Error) 
=> void) { 
        let caught: Error; 
 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                return await this.entryRepository.destroy({ 
                    where: { id: command.id }, 
                    transaction, 
                }); 
            }); 
        } catch (error) { 
            caught = error 



        } finally { 
            resolve(caught); 
        } 
 
        resolve(); 
    } 
} 

The command handler for our DeleteEntryCommand is pretty much a copy of 
the delete method in the blog entry service. We now have three new commands 
and their accompanying handlers. All that’s left is to hook them up and begin 
using them. Before we can do that, we must decide on where we are going to 
invoke these new commands. 

Invoking command handlers 

Documentation and the general consensus around separation of concerns within 
NodeJS applications would probably dictate that we invoke our commands from 
the blog entry service. Doing so would leave the controller as simple as it is 
now but would not simplify the service at all. Alternatively, the approach we 
will be taking is to reduce the complexity of our service so it is used strictly for 
data retrieval and invoke our commands from the controller. No matter the route 
taken, the first step in making use of the new commands is to inject the 
Nest.js CommandBus. 

Note: Where you plan to use your commands, whether it be the controller or 
service, makes no difference for the implementation. Feel free to experiment. 

@Controller() 
export class EntryController { 
    constructor( 
        private readonly entryService: EntryService, 
        private readonly commandBus: CommandBus 
    ) { } 
 
    @Post('entries') 
    public async create(@User() user: IUser, @Body() body: any, @Res() 
res) { 
        if (!body || (body && Object.keys(body).length === 0)) return 
res.status(HttpStatus.BAD_REQUEST).send('Missing some information.'); 
 



        const error = await this.commandBus.execute(new 
CreateEntryCommand( 
            body.title, 
            body.content, 
            user.id 
        )); 
 
        if (error) { 
            return 
res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(result); 
        } else { 
            return res.set('location', 
`/entries/${result.id}`).status(HttpStatus.CREATED).send(); 
        } 
    } 

The above example incorporates two key changes. First, we have 
added commandBus to the constructor. Nest.js will take care of injecting an 
instance of the CommandBus into this variable for us. The last change is to 
the create controller method. Instead of invoking the create method in the blog 
entry service, we create and execute a new CreateEntryCommand using the 
command bus. The remaining implementation details for the blog entry 
controller follow almost the same pattern as the create method. 

@Controller() 
export class EntryController { 
    constructor( 
        private readonly entryService: EntryService, 
        private readonly commandBus: CommandBus 
    ) { } 
 
    @Get('entries') 
    public async index(@User() user: IUser, @Res() res) { 
        const entries = await this.entryService.findAll(); 
        return res.status(HttpStatus.OK).json(entries); 
    } 
 
    @Post('entries') 
    public async create(@User() user: IUser, @Body() body: any, @Res() 
res) { 



        if (!body || (body && Object.keys(body).length === 0)) return 
res.status(HttpStatus.BAD_REQUEST).send('Missing some information.'); 
 
        const error = await this.commandBus.execute(new 
CreateEntryCommand( 
            body.title, 
            body.content, 
            user.id 
        )); 
 
        if (error) { 
            return 
res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(result); 
        } else { 
            return res.set('location', 
`/entries/${result.id}`).status(HttpStatus.CREATED).send(); 
        } 
    } 
 
    @Get('entries/:entryId') 
    public async show(@User() user: IUser, @Entry() entry: IEntry, @Res() 
res) { 
        return res.status(HttpStatus.OK).json(entry); 
    } 
 
    @Put('entries/:entryId') 
    public async update(@User() user: IUser, @Entry() entry: IEntry, 
@Param('entryId') entryId: number, @Body() body: any, @Res() res) { 
        if (user.id !== entry.userId) return 
res.status(HttpStatus.NOT_FOUND).send('Unable to find the entry.'); 
        const error = await this.commandBus.execute(new 
UpdateEntryCommand( 
            entryId, 
            body.title, 
            body.content, 
            user.id 
        )); 
 
        if (error) { 
            return 
res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(error); 



        } else { 
            return res.status(HttpStatus.OK).send(); 
        } 
    } 
 
    @Delete('entries/:entryId') 
    public async delete(@User() user: IUser, @Entry() entry: IEntry, 
@Param('entryId') entryId: number, @Res() res) { 
        if (user.id !== entry.userId) return 
res.status(HttpStatus.NOT_FOUND).send('Unable to find the entry.'); 
        const error = await this.commandBus.execute(new 
DeleteEntryCommand(entryId)); 
 
        if (error) { 
            return 
res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(error); 
        } else { 
            return res.status(HttpStatus.OK).send(); 
        } 
    } 
} 

You can see from the example that the controller has been updated so the blog 
entry service is only used for retrievals and all modification methods now 
dispatch commands on the command bus. The last thing we need to configure is 
the blog entry module. To make this easier, let’s first setup a Typescript barrel 
to export all our handlers as a single variable. 

export const entryCommandHandlers = [ 
    CreateEntryCommandHandler, 
    UpdateEntryCommandHandler, 
    DeleteEntryCommandHandler 
]; 

Import the barrel into the blog entry module and hook up the module to the 
command bus. 

@Module({ 
    imports: [CQRSModule, EntryModule], 
    controllers: [CommentController], 
    components: [commentProvider, CommentService, 
...CommentCommandHandlers], 



    exports: [CommentService] 
}) 
export class EntryModule implements NestModule, OnModuleInit { 
    public constructor( 
        private readonly moduleRef: ModuleRef, 
        private readonly commandBus: CommandBus 
    ) {} 
 
    public onModuleInit() { 
        this.commandBus.setModuleRef(this.moduleRef); 
        this.commandBus.register(CommentCommandHandlers); 
    } 
} 

To hook up our module to the command bus, we import CQRSModule into our 
module definition and inject the ModuleRef and CommandBus into the module class 
constructor. The module class also needs to implement 
the OnModuleInit interface. Finally, the magic happens in 
the onModuleInit lifecycle hook. Nest.js will execute this method immediately 
after instantiating our module class. Inside the method, we 
use setModuleRef and register to register the blog entry command handlers to 
the command bus that was created for this module. 

Note: If you followed along and implemented the invocation of the commands 
in the controller, you can remove the create, update, and delete methods from 
the comment service. 



 

The above diagram provides a visual representation of how the command and 
query aspects of the entry controller have been divided. When a user sends a 
request to the create controller method, processing is executed through the 
CQRS command bus, but still uses the ORM to update the database. When the 
users wishes to retrieve all the entries, the entry controller makes use of 
the EntryService that then uses the ORM to query the database. All commands, 
the C in CQRS, are now processed through the command bus while all queries, 
the Q in CQRS, are continue to be processed through the entry service. 

Linking keywords with events 
Now that we have shown the basics of creating commands and using the 
command bus in Nest.js CQRS, we need to tackle storing keywords that are 
associated with a blog entry. Keywords can be added when a blog entry is 
created and removed later. We could create a new entity for our keywords and 
have the entry entity maintain a one-to-many relationship with the keyword 
entity. This would, however, require our database lookups to pull in more data 
from more tables and the response sent back to the UI would become larger. 
Instead, let’s start off with just storing the keywords as a JSON string on the 
blog entry entity. To do this, we will need to update the blog entry entity and 
add a new field. 

@Table(tableOptions) 
export class Entry extends Model<Entry> { 



 
    @Column({ 
        type: DataType.TEXT, 
        allowNull: true, 
 
    }) 
    public keywords: string; 
 
} 

The ORM definition for the new database column will depend on the ORM and 
database server you are using. Here, we are using the TEXT data type. This data 
type is widely supported in many different database servers and offers a large 
limit to the amount of data we can store. For example, Microsoft SQL Server 
limits this field to a maximum of 2^30 - 1 characters, while Postgres does not 
impose a limit. Since we are using an ORM with migrations, we will also need 
to create a migration script. If you are unsure of how to do this, reference back 
to the TypeORM or Sequelize chapters. 

export async function up(sequelize) { 
    // language=PostgreSQL 
    await sequelize.query(` 
        ALTER TABLE entries ADD COLUMN keywords TEXT; 
    `); 
 
    console.log('*keywords column added to entries table*'); 
} 
 
export async function down(sequelize) { 
    // language=PostgreSQL 
    await sequelize.query(` 
        ALTER TABLE entries DROP COLUMN keywords; 
    `); 
} 

If you are following along, your entries database table should now have a 
keywords column. Testing the index API in the blog entries controller should 
now return objects with a keywords value. We still need to update the blog 
entry commands, command handlers, and controller to process keywords for 
new and updated blog entries. 

@Controller() 



export class EntryController { 
 
    @Post('entries') 
    public async create(@User() user: IUser, @Body() body: any, @Res() 
res) { 
        if (!body || (body && Object.keys(body).length === 0)) return 
res.status(HttpStatus.BAD_REQUEST).send('Missing some information.'); 
 
        const error = await this.commandBus.execute(new 
CreateEntryCommand( 
            body.title, 
            body.content, 
            body.keywords, 
            user.id 
        )); 
 
        if (error) { 
            return 
res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(result); 
        } else { 
            return res.set('location', 
`/entries/${result.id}`).status(HttpStatus.CREATED).send(); 
        } 
    } 
 
    @Put('entries/:entryId') 
    public async update(@User() user: IUser, @Entry() entry: IEntry, 
@Param('entryId') entryId: number, @Body() body: any, @Res() res) { 
        if (user.id !== entry.userId) return 
res.status(HttpStatus.NOT_FOUND).send('Unable to find the entry.'); 
        const error = await this.commandBus.execute(new 
UpdateEntryCommand( 
            entryId, 
            body.title, 
            body.content, 
            body.keywords, 
            user.id 
        )); 
 
        if (error) { 



            return 
res.status(HttpStatus.INTERNAL_SERVER_ERROR).send(error); 
        } else { 
            return res.status(HttpStatus.OK).send(); 
        } 
    } 
} 

The blog entry controller will accept the keywords as an array of strings. This 
will help keep the UI simple and prevent the UI from having to perform 
arbitrary string parsing. 

export class CreateEntryCommand implements ICommand, IEntry { 
    constructor( 
        public readonly title: string, 
        public readonly content: string, 
        public readonly keywords: string[], 
        public readonly userId: number 
    ) {} 
} 
 
export class UpdateEntryCommand implements ICommand, IEntry { 
    constructor( 
        public readonly id: number, 
        public readonly title: string, 
        public readonly content: string, 
        public readonly keywords: string[], 
        public readonly userId: number 
    ) {} 
} 

The CreateEntryCommand and UpdateEntryCommand commands are updated to 
accept a new property keywords. We maintain the string array type so the 
processing of the commands is offloaded to the command handler. 

@CommandHandler(CreateEntryCommand) 
export class CreateEntryCommandHandler implements 
ICommandHandler<CreateEntryCommand> { 
 
    async execute(command: CreateEntryCommand, resolve: (error?: Error) 
=> void) { 
        let caught: Error; 



 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                return await this.EntryRepository.create<Entry>({ 
                    ...command, 
                    keywords: JSON.stringify(command.keywords) 
                }, { 
                    returning: true, 
                    transaction 
                }); 
            }); 
        } catch (error) { 
            caught = error; 
        } finally { 
            resolve(caught); 
        } 
    } 
} 
 
@CommandHandler(UpdateEntryCommand) 
export class UpdateEntryCommandHandler implements 
ICommandHandler<UpdateEntryCommand> { 
 
    async execute(command: UpdateEntryCommand, resolve: (error?: Error) 
=> void) { 
        let caught: Error; 
 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                let comment = await 
this.EntryRepository.findById<Entry>(command.id, { transaction }); 
                if (!comment) throw new Error('The comment was not 

found.'); 
 
                comment = this.databaseUtilitiesService.assign( 
                    comment, 
                    { 
                        ...command, 
                        id: undefined, 



                        keywords: JSON.stringify(command.keywords) 
                    } 
                ); 
                return await comment.save({ 
                    returning: true, 
                    transaction, 
                }); 
            }); 
        } catch (error) { 
            caught = error; 
        } finally { 
            resolve(caught); 
        } 
    } 
} 

Both the CreateEntryCommandHandler and UpdateEntryCommandHandler command 
handlers have been updated to convert the keywords string array into a JSON 
string. Keywords also need to be stored individually in their own table with a 
list of blog entries they apply to and the last updated date. To do this, we will 
need to make a new Nest.js module with an entity. We will come back later to 
add more functionality. First, create the new entity. 

const tableOptions: IDefineOptions = { timestamp: true, tableName: 
'keywords' } as IDefineOptions; 
 
@DefaultScope({ 
    include: [() => Entry] 
}) 
@Table(tableOptions) 
export class Keyword extends Model<Keyword> { 
    @PrimaryKey 
    @AutoIncrement 
    @Column(DataType.BIGINT) 
    public id: number; 
 
    @Column({ 
        type: DataType.STRING, 
        allowNull: false, 
        validate: { 



            isUnique: async (value: string, next: any): Promise<any> 
=> { 
                const isExist = await Keyword.findOne({ where: { 
keyword: value } }); 
                if (isExist) { 
                    const error = new Error('The keyword already 

exists.'); 
                    next(error); 
                } 
                next(); 
            }, 
        }, 
    }) 
    public keyword: string; 
 
    @CreatedAt 
    public createdAt: Date; 
 
    @UpdatedAt 
    public updatedAt: Date; 
 
    @DeletedAt 
    public deletedAt: Date; 
 
    @BelongsToMany(() => Entry, () => KeywordEntry) 
    public entries: Entry[]; 
 
    @BeforeValidate 
    public static validateData(entry: Entry, options: any) { 
        if (!options.transaction) throw new Error('Missing 

transaction.'); 
    } 
} 

The BelongsToMany decorator is used to connect keywords to many different blog 
entries. We will not be placing a BelongsToMany column in the blog entry table 
since we are using a string column to keep lookups fast. The () => 
KeywordEntry parameter tells the ORM that we will be using 
the KeywordEntryentity to store the association. We will need to create the entity 
as well. 



const tableOptions: IDefineOptions = { timestamp: true, tableName: 
'keywords_entries', deletedAt: false, updatedAt: false } as 
IDefineOptions; 
 
@Table(tableOptions) 
export class KeywordEntry extends Model<KeywordEntry> { 
    @ForeignKey(() => Keyword) 
    @Column({ 
        type: DataType.BIGINT, 
        allowNull: false 
    }) 
    public keywordId: number; 
 
    @ForeignKey(() => Entry) 
    @Column({ 
        type: DataType.BIGINT, 
        allowNull: false 
    }) 
    public entryId: number; 
 
    @CreatedAt 
    public createdAt: Date; 
} 

Our ORM will use the @ForeignKey decorators to link entries in this database 
table to the keywords and entries tables. We are also adding a createdAt column 
to help us find the latest keywords that have been linked to a blog entry. We 
will use this to create our list of “hot keywords.” Next, create the migration 
script to add the new tables to the database. 

export async function up(sequelize) { 
    // language=PostgreSQL 
    await sequelize.query(` 
        CREATE TABLE "keywords" ( 
            "id" SERIAL UNIQUE PRIMARY KEY NOT NULL, 
            "keyword" VARCHAR(30) UNIQUE NOT NULL, 
            "createdAt" TIMESTAMP NOT NULL, 
            "updatedAt" TIMESTAMP NOT NULL, 
            "deletedAt" TIMESTAMP 
        ); 
        CREATE TABLE "keywords_entries" ( 



            "keywordId" INTEGER NOT NULL 
                CONSTRAINT "keywords_entries_keywordId_fkey" 
                REFERENCES keywords 
                ON UPDATE CASCADE ON DELETE CASCADE, 
            "entryId" INTEGER NOT NULL 
                CONSTRAINT "keywords_entries_entryId_fkey" 
                REFERENCES entries 
                ON UPDATE CASCADE ON DELETE CASCADE, 
            "createdAt" TIMESTAMP NOT NULL, 
            UNIQUE("keywordId", "entryId") 
        ); 
  `); 
 
    console.log('*Table keywords created!*'); 
} 
 
export async function down(sequelize) { 
    // language=PostgreSQL 
    await sequelize.query(`DROP TABLE keywords_entries`); 
    await sequelize.query(`DROP TABLE keywords`); 
} 

Our migration script includes a unique constraint in the keywords_entries table 
to ensure we do not link the same keyword and blog entry more than once. 
The ON DELETE CASCADE portion of the entryIdcolumn definition will ensure that 
when we delete a blog entry, the keyword links will also be deleted. This means 
we do not have to create any code to handle unlinking keywords when blog 
entries are deleted. Be sure to add the new database entities to the database 
provider. 

export const databaseProvider = { 
    provide: 'SequelizeInstance', 
    useFactory: async () => { 
        let config; 
        switch (process.env.NODE_ENV) { 
            case 'prod': 
            case 'production': 
            case 'dev': 
            case 'development': 
            default: 
                config = databaseConfig.development; 



        } 
 
        const sequelize = new Sequelize(config); 
        sequelize.addModels([User, Entry, Comment, Keyword, 
KeywordEntry]); 
        /* await sequelize.sync(); */ 
        return sequelize; 
    }, 
}; 

Finally, create the keyword provider and module. 

export const keywordProvider = { 
    provide: 'KeywordRepository', 
    useValue: Keyword, 
}; 
 
export const keywordEntryProvider = { 
    provide: 'KeywordEntryRepository', 
    useValue: KeywordEntry 
}; 
 
@Module({ 
    imports: [], 
    controllers: [], 
    components: [keywordProvider, keywordEntryProvider], 
    exports: [] 
}) 
export class KeywordModule {} 

Now that we have a working keyword module, we can begin to think about how 
we want to construct the the application logic for storing keywords. To stay 
within the CQRS pattern, we could create new commands and command 
handlers in the keyword module. However, Nest.js imposes module isolation on 
all instances of the command bus. This means that the command handlers must 
be registered within the same module where the commands are executed. For 
example, if we attempted to execute a keyword command from the blog entry 
controller, Nest.js would throw an exception indicating there is no handler 
registered for the command. This is where events within Nest.js CQRS come to 
the rescue. The event bus is not isolated. In fact, the event bus allows events to 
be executed from any module, whether there is a handler registered for them or 
not. 



Keyword events 

Events can be thought of as commands with a few differences. Outside of not 
being module scoped, they are also asynchronous, they are typically dispatched 
by models or entities, and each event can have any number of event handlers. 
This makes them perfect for handling background updates to the keywords 
database table when blog entries are created and updated. 

Before we start writing code, let’s give some thought to how we want our 
application to work. When a new blog entry is created, the application needs to 
inform the keyword module that a blog entry has been associated with a 
keyword. We should leave it up to the keyword module to determine if the 
keyword is new and needs to be created or already exists and simply needs to be 
updated. The same logic should apply to updates made to blog entries but we 
can make our blog entry update process simpler if we do not try to determine 
which keywords are new and which have been removed. To support both 
scenarios, we should create a generic event to update all keyword links for the 
blog entry. 

Now that we have a basic understanding of the logic we are trying to 
accomplish, we can build the event classes. Just like commands, the CQRS 
events feature requires basic classes for the events. Event files are typically 
created in a sub-directory of our module with a pattern similar to events/impl/. 

export class UpdateKeywordLinksEvent implements IEvent { 
    constructor( 
        public readonly entryId: number, 
        public readonly keywords: string[] 
    ) { } 
} 

The event classes should look pretty similar to the command classes we wrote 
earlier in this chapter. The difference is the event classes implement 
the IEvent interface to let Nest.js know instances of these classes are CQRS 
events. We also need to setup handlers for these events. Just like command 
handlers, our event handlers will take care of all the database operations. 
Typically, the event handlers are placed in a sub-directory of the module similar 
to events/handlers. 

@EventsHandler(UpdateKeywordLinksEvent) 
export class UpdateKeywordLinksEventHandler implements 
IEventHandler<UpdateKeywordLinksEvent> { 
    constructor( 



        @Inject('KeywordRepository') private readonly 
keywordRepository: typeof Keyword, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize, 
    ) { } 
 
    async handle(event: UpdateKeywordLinksEvent) { 
    } 
} 

Event handlers are simple classes with a single method, handle, that is 
responsible for handling the event. Implementing 
the IEventHandler<UpdateKeywordLinksEvent> interface helps ensure we write our 
event handler correctly. Nest.js uses the @EventsHandler annotation in our 
example to know this class is meant to handle our 
new UpdateKeywordLinksEvent event. 

One of the key differences in our event handlers compared to command 
handlers is that the event handler do not get a callback method as a second 
argument. Nest.js will invoke the handle method asynchronously. It will not 
wait for it to finish, it will not attempt to capture any return values, and it will 
not catch or handle any errors that may result from invoking our handle method. 
That’s not to say we shouldn’t still use a try...catch to prevent any kind of 
errors causing issues iss with NodeJS. 

For the update links event handler, we should split out the logic into separate 
methods to make the class a little easier to read and manage. Let’s write 
the handle method so it loops through all the keywords and ensures the keyword 
exists and the blog entry is associated with the keyword. Finally, we should 
ensure the blog entry is not associated with any keywords that are not in the 
event keywordsarray. 

@EventsHandler(UpdateKeywordLinksEvent) 
export class UpdateKeywordLinksEventHandler implements 
IEventHandler<UpdateKeywordLinksEvent> { 
    constructor( 
        @Inject('KeywordRepository') private readonly 
keywordRepository: typeof Keyword, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize, 
    ) { } 
 



    async handle(event: UpdateKeywordLinksEvent) { 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                let newKeywords: string[] = []; 
                let removedKeywords: Keyword[] = []; 
 
                const keywordEntities = await 
this.keywordRepository.findAll({ 
                    include: [{ model: Entry, where: { id: 
event.entryId }}], 
                    transaction 
                }); 
 
                keywordEntities.forEach(keywordEntity => { 
                    if (event.keywords.indexOf(keywordEntity.keyword) 
=== -1) { 
                        removedKeywords.push(keywordEntity); 
                    } 
                }); 
 
                event.keywords.forEach(keyword => { 
                    if (keywordEntities.findIndex(keywordEntity => 
keywordEntity.keyword === keyword) === -1) { 
                        newKeywords.push(keyword) 
                    } 
                }); 
 
                await Promise.all( 
                    newKeywords.map( 
                        keyword => 
this.ensureKeywordLinkExists(transaction, keyword, event.entryId) 
                    ) 
                ); 
                await Promise.all( 
                    removedKeywords.map( 
                        keyword => keyword.$remove('entries', 
event.entryId, { transaction }) 
                    ) 
                ); 
            }); 



        } catch (error) { 
            console.log(error); 
        } 
    } 
 
    async ensureKeywordLinkExists(transaction: Transaction, keyword: 
string, entryId: number) { 
        const keywordEntity = await 
this.ensureKeywordExists(transaction, keyword); 
        await keywordEntity.$add('entries', entryId, { transaction }); 
    } 
 
    async ensureKeywordExists(transaction: Transaction, keyword: 
string): Promise<Keyword> { 
        const result = await 
this.keywordRepository.findOrCreate<Keyword>({ 
            where: { keyword }, 
            transaction 
        }); 
        return result[0]; 
    } 
} 

The event handler logic starts with finding all keywords the blog entry is 
currently linked to. We loop through those and pull out any that are not in the 
new keywords array. To find all new keywords, we loop trough the keywords 
array in the event to find those that are not in the keywordEntities array. The 
new keywords are processing through the ensureKeywordLinkExists method. 
The ensureKeywordLinkExists uses ensureKeywordExists to create or find the 
keyword in the keywords database table and adds the blog entry to the 
keywords entries array. The $add and $remove methods are provided 
by sequelize-typescript and are used to quickly add and remove blog entries 
without having to query for the blog entry. All processing is done using 
transactions to ensure any errors will cancel all database updates. If an error 
does happen, the database will become out of sync, but since we are dealing 
with metadata, it’s not a big deal. We log the error out so application admins 
will know they need to re-sync the metadata. 

Even though we only have one event handler, we should still create a Typescript 
barrel to export it in an array. This will ensure adding new events later is a 
simple process. 



export const keywordEventHandlers = [ 
    UpdateKeywordLinksEventHandler, 
    RemoveKeywordLinksEventHandler 
]; 

Import the barrel in the keyword module and connect the event bus. 

@Module({ 
    imports: [CQRSModule], 
    controllers: [], 
    components: [keywordProvider, ...keywordEventHandlers], 
    exports: [] 
}) 
export class KeywordModule implements OnModuleInit { 
    public constructor( 
        private readonly moduleRef: ModuleRef, 
        private readonly eventBus: EventBus 
    ) {} 
 
    public onModuleInit() { 
        this.eventBus.setModuleRef(this.moduleRef); 
        this.eventBus.register(keywordEventHandlers); 
    } 
} 

In the module, import the CQRSModule and add ModuleRef and EventBus as 
constructor params. Implement the OnModuleInit interface and create 
the onModuleInit method. In the onModuleInit method, we set the module 
reference of event bus to the current module using setModuleRef and 
use register to register all of the event handlers. Remember to also add the 
event handlers to the components array or Nest.js will not be able to instantiate 
the event handlers. Now that we have our event and event handler written and 
linked in our keyword module, we are ready to start invoking the event to store 
and update keyword links in the database. 

Invoking event handlers 

Event handlers are invoked from data models. Data models are typically simple 
classes that represent data stored in a database. The one stipulation Nest.js 
places on data models is they must extend the AggregateRoot abstract class. 
Depending on which ORM you are using and how it is configured, you may or 
may not be able to re-use your existing data models for this purpose. Since our 



example is using Sequelize, the sequelize-typescript package requires our data 
models extend the Model class. In Typescript, classes can only extend one other 
class. We will need to create a separate data model for invoking our event 
handlers. 

export class EntryModel extends AggregateRoot { 
  constructor(private readonly id: number) { 
    super(); 
  } 
 
  updateKeywordLinks(keywords: string[]) { 
    this.apply(new UpdateKeywordLinksEvent(this.id, keywords)); 
  } 
} 

We create our data model in the blog entry module since we will be invoking 
our events when blog entries are created and updated. The data model contains a 
single method, updateKeywordLinks, for refreshing blog entry keyword links 
when a blog entry is created or updated. If new events are needed, we will add 
more methods to the model to handle invoking those events. 
The updateKeywordLinks method instantiates the event we created and call 
the apply method found in the AggregateRoot abstract class with the event 
instance. 

With commands, we used the command bus directly to execute our commands. 
With events, we take a less direct approach and use the EventPublisher to link 
our data model to the event bus and then call the method we created in our data 
model to apply an event. Let’s update the CreateEntryCommandHandler to get a 
better idea of what’s going on. 

@CommandHandler(CreateEntryCommand) 
export class CreateEntryCommandHandler implements 
ICommandHandler<CreateEntryCommand> { 
    constructor( 
        @Inject('EntryRepository') private readonly EntryRepository: 
typeof Entry, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize, 
        private readonly eventPublisher: EventPublisher 
    ) { } 
 



    async execute(command: CreateEntryCommand, resolve: (error?: Error) 
=> void) { 
        let caught: Error; 
 
        try { 
            const entry = await 
this.sequelizeInstance.transaction(async transaction => { 
                return await this.EntryRepository.create<Entry>({ 
                    ...command, 
                    keywords: JSON.stringify(command.keywords) 
                }, { 
                    returning: true, 
                    transaction 
                }); 
            }); 
 
            const entryModel = 
this.eventPublisher.mergeObjectContext(new EntryModel(entry.id)); 
            entryModel.updateKeywordLinks(command.keywords); 
            entryModel.commit(); 
        } catch (error) { 
            caught = error; 
        } finally { 
            resolve(caught); 
        } 
    } 
} 

The command handler constructor has been updated to have an instance of the 
Nest.js EventPublisherinjected. The EventPublisher has two methods that we 
care about: mergeClassContext and mergeObjectContext. Both methods can be 
used to achieve the same outcome, just in different ways. In our example, we 
are using mergeObjectContext to merge a new instance of our data model with 
the event bus. This provides the data model instance with a publish method that 
is used inside the abstract AggregateRoot class to publish new events on the 
event bus. 

Events are never dispatched immediately. When we call updateKeywordLinks, the 
event that is created is placed in a queue. The event queue gets flushed when we 
call the commit method on our data model. If you ever find that your event 
handlers are not firing, check to make sure you have called the commitmethod on 
your data model. 



We could have accomplished the same functionality 
using mergeClassContext method on the event publisher. 

const Model = this.eventPublisher.mergeClassContext(EntryModel); 
const entryModel = new Model(entry.id); 
entryModel.updateKeywordLinks(command.keywords); 
entryModel.commit(); 

The same updates need to be made to the UpdateEntryCommandHandler command 
handler so keyword links are updated when blog entries are updated. 

@CommandHandler(UpdateEntryCommand) 
export class UpdateEntryCommandHandler implements 
ICommandHandler<UpdateEntryCommand> { 
    constructor( 
        @Inject('EntryRepository') private readonly EntryRepository: 
typeof Entry, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize, 
        private readonly databaseUtilitiesService: 
DatabaseUtilitiesService, 
        private readonly eventPublisher: EventPublisher 
    ) { } 
 
    async execute(command: UpdateEntryCommand, resolve: (error?: Error) 
=> void) { 
        let caught: Error; 
 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                let entry = await 
this.EntryRepository.findById<Entry>(command.id, { transaction }); 
                if (!entry) throw new Error('The comment was not 

found.'); 
 
                entry = this.databaseUtilitiesService.assign( 
                    entry, 
                    { 
                        ...command, 
                        id: undefined, 



                        keywords: JSON.stringify(command.keywords) 
                    } 
                ); 
                return await entry.save({ 
                    returning: true, 
                    transaction, 
                }); 
            }); 
 
            const entryModel = 
this.eventPublisher.mergeObjectContext(new EntryModel(command.id)); 
            entryModel.updateKeywordLinks(command.keywords); 
            entryModel.commit(); 
        } catch (error) { 
            caught = error; 
        } finally { 
            resolve(caught); 
        } 
    } 
} 

If you have followed along in your own project, you should now be able to 
create or update a blog entry with new or existing keywords and see the 
keyword links being created, updated, and deleted in the database. Of course, 
we could make these changes easier to view by adding a new API to return all 
the keywords and blog entries they are linked to. 



 

The above diagram provides a visual representation of how the entry command 
handlers work to keep the keywords updated. Notice how the flow of control is 
unidirectional. The command handler invokes the event using the entry model 
and then forgets about it. This is the asynchronous nature of the event bus in 
Nest.js CQRS. 

Retrieving keywords APIs 
We will need to create a new controller and service in the keyword module to 
support retrieving keywords. We want to allow the UI to list all keywords, get a 
specific keyword, and get a list of “hot keywords.” Let’s create the service first. 

@Component() 
export class KeywordService implements IKeywordService { 
    constructor(@Inject('KeywordRepository') private readonly 
keywordRepository: typeof Keyword, 



                @Inject('KeywordEntryRepository') private readonly 
keywordEntryRepository: typeof KeywordEntry) { } 
 
    public async findAll(search?: string, limit?: number): 
Promise<Array<Keyword>> { 
        let options: IFindOptions<Keyword> = {}; 
 
        if (search) { 
            if (!limit || limit < 1 || limit === NaN) { 
                limit = 10; 
            } 
 
            options = { 
                where: { 
                    keyword: { 
                        [Op.like]: `%${search}%` 
                    } 
                }, 
                limit 
            } 
        } 
 
        return await this.keywordRepository.findAll<Keyword>(options); 
    } 
 
    public async findById(id: number): Promise<Keyword | null> { 
        return await this.keywordRepository.findById<Keyword>(id); 
    } 
 
    public async findHotLinks(): Promise<Array<Keyword>> { 
        // Find the latest 5 keyword links 
        const latest5 = await 
this.keywordEntryRepository.findAll<KeywordEntry>({ 
            attributes: { 
                exclude: ['entryId', 'createdAt'] 
            }, 
            group: ['keywordId'], 
            order: [[fn('max', col('createdAt')), 'DESC']], 
            limit: 5 
        } as IFindOptions<any>); 
 



        // Find the 5 keywords with the most links 
        const biggest5 = await 
this.keywordEntryRepository.findAll<KeywordEntry>({ 
            attributes: { 
                exclude: ['entryId', 'createdAt'] 
            }, 
            group: 'keywordId', 
            order: [[fn('count', 'entryId'), 'DESC']], 
            limit: 5, 
            where: { 
                keywordId: { 
                    // Filter out keywords that already exist in 
the latest5 
                    [Op.notIn]: latest5.map(keywordEntry => 
keywordEntry.keywordId) 
                } 
            } 
        } as IFindOptions<any>); 
 
        // Load the keyword table data 
        const result = await Promise.all( 
            [...latest5, ...biggest5].map(keywordEntry => 
this.findById(keywordEntry.keywordId)) 
        ); 
 
        return result; 
    } 
} 

The findAll method takes an optional search string and limit that can be used to 
filter the keywords. The UI can use this to support keyword search 
autocomplete. If the limit is not specified when searching, the service will 
automatically limit the results to 10 items. The findById method will support 
loading all information for a single keyword, including the associated entries. 
The methods are relatively basic and mimic methods in the services of the other 
modules. The findHotLinks method, however, is a bit more complex. 

The findHotLinks method is responsible for returning the latest used keywords 
and the keywords with the most linked blog entries. To do this, we need to 
incorporate the ORM provider for the joining table, the KeywordEntry data 
model. The joining table contains the actual link between keywords and blog 
entries as well as the date they we joined. For the latest5, we order the list by 



the maximum createdAtdate to get a list of keywords with the newest first. 
The biggest5 is ordered by the count of entryId to produce a list containing the 
keywords with the most linked blog entries first. In both lists, we group by 
the keywordId to produce a list of unique keywords and limit the results to the 
top five. To ensure we do not produce a list with overlaps, the biggest5 also 
contains a where clause to not include any keywords that were already included 
in the latest5 list. 

Once we have the two lists, we reuse the service’s findById method to load the 
complete data record for all the found keywords. This list is then returned with 
the keywords that have the newest links first, ordered newest to oldest, followed 
by the keywords with the most links, order most to least. All that remains is to 
create a controller so the UI can take advantage of our new query methods. 

Note: Take note of the as IFindOptions<any>. This was required to resolve a 
linting error caused by sequelize-typescript. You may or may not need this in 
your application. 

@Controller() 
export class KeywordController { 
    constructor( 
        private readonly keywordService: KeywordService 
    ) { } 
 
    @Get('keywords') 
    public async index(@Query('search') search: string, @Query('limit') 
limit: string, @Res() res) { 
        const keywords = await this.keywordService.findAll(search, 
Number(limit)); 
        return res.status(HttpStatus.OK).json(keywords); 
    } 
 
    @Get('keywords/hot') 
    public async hot(@Res() res) { 
        const keywords = await this.keywordService.findHotLinks(); 
        return res.status(HttpStatus.OK).json(keywords); 
    } 
 
    @Get('keywords/:keywordId') 
    public async show(@Param('keywordId') keywordId: string, @Res() res) 
{ 



        const keyword = await 
this.keywordService.findById(Number(keywordId)); 
        return res.status(HttpStatus.OK).json(keyword); 
    } 
} 

The controller contains three methods that correspond to the three query 
methods in the service. In all three, we call the appropriate method in the 
service and return the results as JSON. Take note that the hot method is listed 
before the show method. If this order was reversed, calling 
the /keywords/hot API would result in the show method executing. Since Nest.js 
is running on top of ExpressJS, the order in which we declare our controller 
methods matter. ExpressJS will always execute the first route controller that 
matches the path requested by the UI. 

We now have an application that is using Nest.js CQRS to break apart business 
logic and implements pieces of it in an asynchronous manor. The application is 
capable of reacting to blog entry creations and updates to alter the keyword 
metadata. This is all made possible through the use of events. But there is 
another way to accomplish the same goal using sagas instead of the event 
handler we created. 

Linking keywords with sagas 
A saga can be thought of as a special event handler that returns commands. 
Sagas do this by leveraging RxJS to receive and react to all events published to 
the event bus. Using the UpdateKeywordLinksEventevent handler, we can logically 
partition the work into two separate commands: one to create keyword links and 
one to remove them. Since sagas return commands, the saga and command must 
be created in the same module. Otherwise, command module scoping will 
become a problem and Nest.js will throw an exception when our saga attempts 
to return a command found in a different module. To get started, we will need 
setup the commands and command handlers that will be replacing our single 
event handler. 

Keyword saga commands 

Just because we are using sagas to execute our new commands does not change 
how we write those commands and command handlers. We will split 
the UpdateKeywordLinksEvent into two separate commands within the keyword 
module. 



export class LinkKeywordEntryCommand implements ICommand { 
    constructor( 
        public readonly keyword: string, 
        public readonly entryId: number 
    ) { } 
} 
 
export class UnlinkKeywordEntryCommand implements ICommand { 
    constructor( 
        public readonly keyword: string, 
        public readonly entryId: number 
    ) { } 
} 

The commands take two properties: a keyword and an entryId. The commands 
take a simple keywordstring because the command handler should not assume 
the keyword already exists in the database. The entryId is already known to 
exist since it is a parameter of the UpdateKeywordLinksEvent event. 

@CommandHandler(LinkKeywordEntryCommand) 
export class LinkKeywordEntryCommandHandler implements 
ICommandHandler<LinkKeywordEntryCommand> { 
    constructor( 
        @Inject('KeywordRepository') private readonly 
keywordRepository: typeof Keyword, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize 
    ) { } 
 
    async execute(command: LinkKeywordEntryCommand, resolve: (error?: 
Error) => void) { 
        let caught: Error; 
 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                const keyword = await 
this.keywordRepository.findOrCreate({ 
                    where: { 
                        keyword: command.keyword 
                    }, 



                    transaction 
                }); 
 
                await keyword[0].$add('entries', command.entryId, { 
transaction }); 
            }); 
        } catch (error) { 
            caught = error; 
        } finally { 
            resolve(caught); 
        } 
    } 
} 

The LinkKeywordEntryCommandHandler command handler takes care of ensuring 
the keyword exists in the database and then uses the $add method provided 
by sequelize-typescript to link a blog entry to the keyword by it’s id. 

@CommandHandler(UnlinkKeywordEntryCommand) 
export class UnlinkKeywordEntryCommandHandler implements 
ICommandHandler<UnlinkKeywordEntryCommand> { 
    constructor( 
        @Inject('KeywordRepository') private readonly 
keywordRepository: typeof Keyword, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize 
    ) { } 
 
    async execute(command: UnlinkKeywordEntryCommand, resolve: (error?: 
Error) => void) { 
        let caught: Error; 
 
        try { 
            await this.sequelizeInstance.transaction(async transaction 
=> { 
                const keyword = await 
this.keywordRepository.findOrCreate<Keyword>({ 
                    where: { 
                        keyword: command.keyword 
                    }, 
                    transaction 



                }); 
 
                await keyword[0].$remove('entries', command.entryId, { 
transaction }); 
            }); 
        } catch (error) { 
            caught = error; 
        } finally { 
            resolve(caught); 
        } 
    } 
} 

The UnlinkKeywordEntryCommandHandler command handler takes care of ensuring 
the keyword exists in the database and then uses the $remove method provided 
by sequelize-typescript to remove the link of a blog entry to the keyword by its 
id. These commands are substantially simpler 
than UpdateKeywordLinksEventHandler event handler was. They have a single 
purpose, link or unlink a keyword and blog entry. The heavy lifting of 
determining which keywords to link and unlink is reserved for the saga. Don’t 
forget to hook up the command handlers in the keyword module. 

export const keywordCommandHandlers = [ 
    LinkKeywordEntryCommandHandler, 
    UnlinkKeywordEntryCommandHandler 
]; 
 
@Module({ 
    imports: [CQRSModule], 
    controllers: [KeywordController], 
    components: [keywordProvider, keywordEntryProvider, 
...keywordEventHandlers, KeywordService, ...keywordCommandHandlers], 
    exports: [] 
}) 
export class KeywordModule implements OnModuleInit { 
    public constructor( 
        private readonly moduleRef: ModuleRef, 
        private readonly eventBus: EventBus, 
        private readonly commandBus: CommandBus 
    ) {} 
 



    public onModuleInit() { 
        this.commandBus.setModuleRef(this.moduleRef); 
        this.commandBus.register(keywordCommandHandlers); 
        this.eventBus.setModuleRef(this.moduleRef); 
        this.eventBus.register(keywordEventHandlers); 
    } 
} 

Just like the entry module, we created a Typescript barrel to export the 
command handlers as an array. That gets imported into the module definition 
and registered to the command bus using the registermethod. 

Keyword saga 

Sagas are always written as public methods inside component classes to allow 
for Dependency Injection. Typically, you would create a single saga class for 
each module you wish to implement sagas in, but multiple classes would make 
sense when breaking up complex business logic. For the update keyword saga, 
we will need a single saga method that accepts 
the UpdateKeywordLinksEvent event and outputs 
multiple LinkKeywordEntryCommand and UnlinkKeywordEntryCommand commands. 

@Component() 
export class KeywordSagas { 
    constructor( 
        @Inject('KeywordRepository') private readonly 
keywordRepository: typeof Keyword, 
        @Inject('SequelizeInstance') private readonly 
sequelizeInstance: Sequelize, 
    ) { } 
 
    public updateKeywordLinks(events$: EventObservable<any>) { 
        return events$.ofType(UpdateKeywordLinksEvent).pipe( 
            mergeMap(event => 
                merge( // From the rxjs package 
                    this.getUnlinkCommands(event), 
                    this.getLinkCommands(event) 
                ) 
            ) 
        ); 
    } 



} 

The KeywordSagas class contains a single saga updateKeywordLinks and uses 
Dependency Injection to get a reference to the keyword repository and 
Sequelize instance. The parameter passed to the updateKeywordLinks saga is 
provided by the Nest.js CQRS event bus. EventObservable is a special 
observable provided by Nest.js CQRS that contains the ofType method. We use 
this method to filter the events$observable so our saga will only handle 
the UpdateKeywordLinksEvent event. If you forget to use the ofType method, your 
saga will be fired for every event published in your application. 

The remaining pieces to our saga is strictly RxJS functionality. You are free to 
use any RxJS operator, as long as the saga emits one or more CQRS commands. 
For our saga, we will be using mergeMap to flatten an inner observable stream of 
commands. Do not use switchMap here or commands could be lost if the API is 
under heavy load due to how switchMap is cancelled when the outer observable 
fires multiple times. The inner observable is a merging of two different 
observable streams: this.getUnlinkCommands(event) is a stream 
of UnlinkKeywordEntryCommand commands and this.getLinkCommands(event) is a 
stream of LinkKeywordEntryCommand commands. 

private getUnlinkCommands(event: UpdateKeywordLinksEvent) { 
    return from(this.keywordRepository.findAll({ 
        include: [{ model: Entry, where: { id: event.entryId }}] 
    })).pipe( 
        // Filter keywordEntities so only those being removed are left 
        map(keywordEntities => 
            keywordEntities.filter(keywordEntity => 
event.keywords.indexOf(keywordEntity.keyword) === -1) 
        ), 
        // Create new commands for each keywordEntity 
        map(keywordEntities => keywordEntities.map(keywordEntity => new 
UnlinkKeywordEntryCommand(keywordEntity.keyword, event.entryId))), 
        switchMap(commands => Observable.of(...commands)) 
    ); 
} 
 
private getLinkCommands(event: UpdateKeywordLinksEvent) { 
    return from(this.keywordRepository.findAll({ 
        include: [{ model: Entry, where: { id: event.entryId }}] 
    })).pipe( 
        // Filter keywordEntities so only those being add are left 



        map(keywordEntities => 
            event.keywords.filter(keyword => 
keywordEntities.findIndex(keywordEntity => keywordEntity.keyword === 
keyword) === -1) 
        ), 
        // Create new commands for each keyword 
        map(keywords => keywords.map(keyword => new 
LinkKeywordEntryCommand(keyword, event.entryId))), 
        switchMap(commands => Observable.of(...commands)) 
    ); 
} 

The getUnlinkCommands and getLinkCommands methods start off with getting a list 
of existing keyword blog entry links. We use Observable.fromPromise since we 
need to return an observable from these methods. The difference between the 
two commands is how the filtering works. In getUnlinkCommands, we need to 
filter the list of existing keyword blog entry links to find those that do not exist 
in the keywords array of the event. We reverse the logic in getLinkCommands and 
filter the list of keywords in the event to find those that are not already linked to 
the blog entry. Finally, we map the arrays to commands and 
use switchMap(commands => Observable.of(...commands)) so our observable 
stream emits all the commands instead of an array of commands. Since the only 
difference is the filtering, we could clean this up so the database is not queried 
as much. 

public updateKeywordLinks(events$: EventObservable<any>) { 
    return events$.ofType(UpdateKeywordLinksEvent).pipe( 
        mergeMap(event => this.compileKeywordLinkCommands(event)) 
    ); 
} 
 
private compileKeywordLinkCommands(event: UpdateKeywordLinksEvent) { 
    return from(this.keywordRepository.findAll({ 
        include: [{ model: Entry, where: { id: event.entryId }}] 
    })).pipe( 
        switchMap(keywordEntities => 
            of( 
                ...this.getUnlinkCommands(event, keywordEntities), 
                ...this.getLinkCommands(event, keywordEntities) 
            ) 
        ) 
    ); 



} 
 
private getUnlinkCommands(event: UpdateKeywordLinksEvent, 
keywordEntities: Keyword[]) { 
    return keywordEntities 
        .filter(keywordEntity => 
event.keywords.indexOf(keywordEntity.keyword) === -1) 
        .map(keywordEntity => new 
UnlinkKeywordEntryCommand(keywordEntity.keyword, event.entryId)); 
} 
 
private getLinkCommands(event: UpdateKeywordLinksEvent, keywordEntities: 
Keyword[]) { 
    return event.keywords 
        .filter(keyword => keywordEntities.findIndex(keywordEntity => 
keywordEntity.keyword === keyword) === -1) 
        .map(keyword => new LinkKeywordEntryCommand(keyword, 
event.entryId)); 
} 

Now our saga only queries the database for the existing keyword blog entry 
links once and the getUnlinkCommands and getLinkCommands methods have been 
drastically simplified. These methods now take the event and list of existing 
keyword blog entry links and returns an array of commands that need to be 
executed. The heavy lifting of retrieving the existing keyword blog entry links 
has been offloaded to compileKeywordLinkCommands method. This method 
uses switchMap to project the results from the database 
into getUnlinkCommands and getLinkCommands. Observable.of is still used to take 
the array of commands and emit them one at a time. Creating and updating blog 
entries will now process all keyword linking and unlinked through the saga and 
keyword commands. 



 

The above diagram provides a visual representation of how our new sagas hand 
off processing of database updates back to the command bus in the keyword 
module. Once an event to update keyword links is executed, the saga queries the 
database to determine the keywords to be linked and unlinked and finally 
returns the appropriate commands. Remember command handlers contain a 
callback method so it is not explicitly asynchronous. However, since they are 
called from the event bus, any response is never passed back to the sage or the 
entry command bus. 

Summary 
CQRS is not just a Nest.js package. It is a pattern for designing and laying out 
your application. It requires that you split the command, creation and update of 
data, from the query, the retrieving of data, and aspects of your application. For 
small applications, CQRS can add a lot of unnecessary complexity so it’s not 



for every application. For medium and large applications, CQRS can help break 
apart complex business logic into more manageable pieces. 

Nest.js provides two means of implementing the CQRS pattern, the command 
and event bus, and with some sugar in the form of sagas. The command bus 
isolates command execution to each module meaning a command can only be 
executed in the same module it is registered. Command handlers are not always 
asynchronous and limits other parts of the application from reacting to change. 
For this, Nest.js provides the event bus. The event bus is not isolated to a single 
module and provides a way for different modules of the same application to 
react to events published by other modules. In fact, events can have any number 
of handlers allowing business logic to easily scale without changing the existing 
code. 

Sagas are a different way of reacting to events within a module. Sagas are 
simple function that listen for events on the event bus and react by returning a 
command to execute. While seemingly simple, sagas allow you to use the power 
of RxJS to determine if and how your application should react to events. As we 
did with our example application, sagas are not limited to returning just one or 
even one type of command. 

The next time you find yourself writing complex code to perform some business 
logic based on how the user is interacting with your application, consider giving 
the CQRS pattern a try. The complexity of the pattern may be offset by the 
complexity or eventual complexity of your applications business logic. 

In the next chapter we examine the architecture for two different types of 
projects: A server application, and an app using Angular universal with Nest.js 
and Angular 6. 

	
	
	 	



Chapter 13. Architecture 
As you now know, Nest.js is based on the same principles as Angular, so 
it is a good idea to have a similar structure as Angular’s. 

Before going into the file structure, we will see some guidelines about the 
naming and about how to structure our different directories and files in 
order to have an easy and more readable project. 

We will take a look at the architecture for two different type of projects: 

• A server application 
• A more complete app using Angular universal with Nest.js 
and Angular 6 

By the end of the chapter, you should know how to structure your app 
either for a server application or a complete app with a client front-end. 

Style guide of naming conventions 
In this part, we will see the naming conventions that we can use in order to have 
better maintainability and readability. For each decorator, you should use the 
name with a hyphen for a composed name, followed by a dot and the name of 
the decorator or object to which it corresponds. 

Controller 

The naming of the controller should respect the following principle: 

user.controller.ts 

@Controller() 
export class UserController { /* ... */ } 

Service 

The naming of the service should respect the following principle: 

user.service.ts 

@Injectable() 



export class UserService { /* ... */ } 

Module 

The naming of the module should respect the following principle: 

user.module.ts 

@Module() 
export class UserModule { /* ... */ } 

Middleware 

The naming of the middleware should respect the following principle: 

authentication.middleware.ts 

@Injectable() 
export class AuthenticationMiddleware { /* ... */ } 

Exception filter 

The naming of the exception filter should respect the following principle: 

forbidden.exception.ts 

export class ForbiddenException { /* ... */ } 

Pipe 

The naming of the pipe should respect the following principle: 

validation.pipe.ts 

@Injectable() 
export class ValidationPipe { /* ... */ } 

Guard 

The naming of the guard should respect the following principle: 



roles.guard.ts 

@Injectable() 
export class RolesGuard { /* ... */ } 

Interceptor 

The naming of the interceptor should respect the following principle: 

logging.interceptor.ts 

@Injectable() 
export class LoggingInterceptor { /* ... */ } 

Custom decorator 

The naming of the custom decorator should respect the following principle: 

comment.decorator.ts 

export const Comment: (data?: any, ...pipes: Array<PipeTransform<any>>) 
=> { 
    ParameterDecorator = createParamDecorator((data, req) => { 
        return req.comment; 
    } 
}; 

Gateway 

The naming of the gateway should respect the following principle: 

comment.gateway.ts 

@WebSocketGateway() 
export class CommentGateway { 

Adapter 

The naming of the adapter should respect the following principle: 

ws.adapter.ts 



export class WsAdapter { 

Unit test 

The naming of the unit test should respect the following principle: 

user.service.spec.ts 

E2E test 

The naming of the e2e test should respect the following principle: 

user.e2e-spec.ts 

Now we have overviewed the tools provided by Nest.js and have put in place 
some naming guidelines. We can now move onto the next part. 

Directory structure 
It is important to have a project with a well-structured directory file in order for 
it to be much more readable, understandable, and easy to work with. 

So, let’s see how we can structure our directory in order for it to be more clear. 
You will see in the following example the directory file architecture used for the 
repository, which has been created for this book using the naming convention 
described in the previous section. 

Server architecture 

For the server architecture, you will see a proposed architecture used for the 
repository to have clean directories. 

COMPLETE OVERVIEW 

See the base file structure without entering into too much detail: 

. 

├── artillery/ 

├── scripts/ 



├── migrations/ 

├── src/ 

├── Dockerfile 

├── README.md 

├── docker-compose.yml 

├── migrate.ts 

├── nodemon.json 

├── package-lock.json 

├── package.json 

├── tsconfig.json 

├── tslint.json 

└── yarn.lock 

We have four folders for this server that contain all of the files that we need for 
a complete server: 

• artillery directory, if you need this it can contain all of the 
scenarios to test some end points of your API. 
• scripts directory will contain all of the scripts that you need to 
use in your application. In our case the script to wait for the port 
used by RabbitMQ to open in order that the Nest.js application waits 
before starting. 
• migrations A directory exists because we use sequelize and 
we have written some migration files that are stocked in this 
directory. 
• src directory, which will contain all of the code for our server 
application. 

In the repository, we also have a client directory. In this case, however, this 
one is only used as a sample of web socket usage. 

THE SRC DIRECTORY 

The src directory will contain all of the application modules, configurations, 
gateways and more. Let’s take a look at this directory: 

src 



├── app.module.ts 

├── main.cluster.ts 

├── main.ts 

├── gateways 

│   ├── comment 

│   └── user 

├── modules 

│   ├── authentication 

│   ├── comment 

│   ├── database 

│   ├── entry 

│   ├── keyword 

│   └── user 

└── shared 

    ├── adapters 

    ├── config 

    ├── decorators 

    ├── exceptions 

    ├── filters 

    ├── guards 

    ├── interceptors 

    ├── interfaces 

    ├── middlewares 

    ├── pipes 

    └── transports 

This directory will also have to be well-structured. For this, we have created 
three sub-directories that correspond to the web socket gateways, which have all 
been put in the gateways directory. The moduleswill contain all of the modules 
needed for the application. Finally, shared will contain all of the shared content 



as its name suggests, corresponding with all of the adapters, config files, 
and decorators for the custom decorators and elements that can be used 
everywhere without belonging to any module in particular. 

Now we will dive into the modules directory. 

Modules 

The main part of your application will be structured as a module. This module 
will contain many different files. Let’s have a look at how a module can be 
structured: 

src/modules 

├── authentication 

│   ├── authentication.controller.ts 

│   ├── authentication.module.ts 

│   ├── authentication.service.ts 

│   ├── passports 

│   │   └── jwt.strategy.ts 

│   └── tests 

│       ├── e2e 

│       │   └── authentication.controller.e2e-spec.ts 

│       └── unit 

│           └── authentication.service.spec.ts 

├── comment 

│   ├── comment.controller.ts 

│   ├── comment.entity.ts 

│   ├── comment.module.ts 

│   ├── comment.provider.ts 

│   ├── comment.service.ts 

│   ├── interfaces 

│   │   ├── IComment.ts 

│   │   ├── ICommentService.ts 



│   │   └── index.ts 

│   └── tests 

│       ├── unit 

│       │   └── comment.service.spec.ts 

│       └── utilities.ts 

├── database 

│   ├── database-utilities.service.ts 

│   ├── database.module.ts 

│   └── database.provider.ts 

├── entry 

│   ├── commands 

│   │   ├── handlers 

│   │   │   ├── createEntry.handler.ts 

│   │   │   ├── deleteEntry.handler.ts 

│   │   │   ├── index.ts 

│   │   │   └── updateEntry.handler.ts 

│   │   └── impl 

│   │       ├── createEntry.command.ts 

│   │       ├── deleteEntry.command.ts 

│   │       └── updateEntry.command.ts 

│   ├── entry.controller.ts 

│   ├── entry.entity.ts 

│   ├── entry.model.ts 

│   ├── entry.module.ts 

│   ├── entry.provider.ts 

│   ├── entry.service.ts 

│   ├── interfaces 

│   │   ├── IEntry.ts 



│   │   ├── IEntryService.ts 

│   │   └── index.ts 

│   └── tests 

│       ├── unit 

│       │   └── entry.service.spec.ts 

│       └── utilities.ts 

├── keyword 

│   ├── commands 

│   │   ├── handlers 

│   │   │   ├── index.ts 

│   │   │   ├── linkKeywordEntry.handler.ts 

│   │   │   └── unlinkKeywordEntry.handler.ts 

│   │   └── impl 

│   │       ├── linkKeywordEntry.command.ts 

│   │       └── unlinkKeywordEntry.command.ts 

│   ├── events 

│   │   ├── handlers 

│   │   │   ├── index.ts 

│   │   │   └── updateKeywordLinks.handler.ts 

│   │   └── impl 

│   │       └── updateKeywordLinks.event.ts 

│   ├── interfaces 

│   │   ├── IKeyword.ts 

│   │   ├── IKeywordService.ts 

│   │   └── index.ts 

│   ├── keyword.controller.ts 

│   ├── keyword.entity.ts 

│   ├── keyword.module.ts 



│   ├── keyword.provider.ts 

│   ├── keyword.sagas.ts 

│   ├── keyword.service.ts 

│   └── keywordEntry.entity.ts 

└── user 

    ├── interfaces 

    │   ├── IUser.ts 

    │   ├── IUserService.ts 

    │   └── index.ts 

    ├── requests 

    │   └── create-user.request.ts 

    ├── tests 

    │   ├── e2e 

    │   │   └── user.controller.e2e-spec.ts 

    │   ├── unit 

    │   │   └── user.service.spec.ts 

    │   └── utilities.ts 

    ├── user.controller.ts 

    ├── user.entity.ts 

    ├── user.module.ts 

    ├── user.provider.ts 

    └── user.service.ts 

In our repository, we have many modules. Some of them also implement 
the cqrs, and it is in the same directory as the module, because it concerns the 
module and is part of it. The cqrs parts are separated into 
the commands and events directories. A module can also define some interfaces 
and these are put into a separate interfaces directory. Separate directories allow 
us to have something that is much more readable and clear without having lots 
of different files mixed together. Of course, all of the tests concerning the 
modules are also included in their own directory tests and separated into 
the unit and e2e. 



Finally, the main files defining the module itself, including the injectables, the 
controllers, and the entity, are in the root of the module directory. 

In this section, we have seen how to structure our server application in a way to 
keep it clearer and much more readable. You now know where to put all of your 
modules and how to structure a module, as well as where to put your gateways 
or your shared files if you used them. 

Angular Universal architecture 

The Angular Universal part of the repository is a standalone application, using 
the Nest.js server and Angular 6. It will be composed of just two main 
directories: e2e for the end-to-end tests and the src, which contains the server 
and the client. 

Let’s start by seeing an overview of this architecture: 

├── e2e/ 

├── src/ 

├── License 

├── README.md 

├── angular.json 

├── package.json 

├── tsconfig.json 

├── tslint.json 

├── udk.container.js 

└── yarn.lock 

THE SRC DIRECTORY 

This directory will contain the app directory in order to put our client content 
with the Angular architecture using modules. Also, we will find 
the environments, which define if we are in production mode or not exporting 
constant. This environment will be replaced by the production environment 
config for the production mode, and then the server and shared directories. The 
shared directory allows us to share some files as an interface, for example, and 
the server directory will contain all the server applications as we have seen in 
the previous section. 



But in this case, the server has changed a bit and now looks like this: 

├── main.ts 

├── app.module.ts 

├── environments 

│   ├── environment.common.ts 

│   ├── environment.prod.ts 

│   └── environment.ts 

└── modules 

    ├── client 

    │   ├── client.constants.ts 

    │   ├── client.controller.ts 

    │   ├── client.module.ts 

    │   ├── client.providers.ts 

    │   ├── interfaces 

    │   │   └── angular-universal-options.interface.ts 

    │   └── utils 

    │       └── setup-universal.utils.ts 

    └── heroes 

        ├── heroes.controller.ts 

        ├── heroes.module.ts 

        ├── heroes.service.ts 

        └── mock-heroes.ts 

The modules directory will contain all of the Nest.js modules, exactly as we 
have seen in the previous section. One of the modules is the client module and 
will serve the Universal app and all of the required assets, as well as setting up 
the initializer to set the engine and provide some Angular configurations. 

Regarding the environments, this one will contain all of the configuration paths 
related to the Angular application. This configuration references the project 
configured into the angular.json file seen in the base of the previous section’s 
project. 



Summary 
This chapter allows you to set up the architecture of your application in a way 
that is much more understandable, readable and easier to work with. We have 
seen how to define the architecture’s directories for a server application, but 
also for a complete application using Angular Universal. With these two 
examples, you should be able to build your own project in a clearer way. 

The next chapter shows how to use testing in Nest.js. 

	 	



Chapter 14. Testing 
Automated testing is a critical part of software development. Even 
though it cannot (and it’s not intended) to replace manual testing and 
other quality assurance methods. Automated testing is a very valuable 
tool when used properly, to avoid regressions, bugs, or incorrect 
functionality. 

Software development is a tricky discipline: even though many 
developers try to isolate different parts of software, it’s often unavoidable 
that some pieces of the puzzle have effect on other pieces, be it intended 
or unintended. 

One of the main goals of using automated testing is to detect the kind of 
errors in which new code might break previously working functionality. 
These tests are known as regression tests, and they make the most sense 
when triggered as part of the merging or deployment process, as a 
required step. This means that, if the automated tests fail, the merge or 
deployment will be interrupted, thus avoiding the introduction of new 
bugs to the main codebase or to productive environments. 

Automated testing also enables a developmental workflow known as test 
driven development (TDD.)When following a TDD approach, automated 
tests are written beforehand, as very specific cases that reflect the 
requirements. Once the new tests are written, the developer runs all 
tests; the new ones should fail, since no new code has been written yet. 
At that point it’s when the new code has to be written so that the new 
tests pass, while not breaking the old ones. 

The test driven development approach, if done right, can improve the 
confidence in code quality and requirement compliance. They can also 
make refactoring or even full code migrations, less risky. 

There are two main types of automated tests we are going to cover in this 
book: unit tests and end-to-end tests. 

Unit testing 
As the name implies, each unit test cover one specific functionality. The most 
important principles when dealing with unit tests are: 



• isolation; each component has to be tested without any 
other related components; it cannot be affected by side effects 
and, likewise, it cannot emit any side effects. 
• predictability; each test has to yield the same results as 
long as the input doesn’t change. 

In many cases, complying with these two principles means mocking (i.e. 
simulating the functionality of) the component dependencies. 

Tooling 

Unlike Angular, Nest.js doesn’t have an “official” toolset for running tests; this 
means we are free to set up our own tooling for running automated tests when 
we work in Nest.js projects. 

There are multiple tools in the JavaScript ecosystem focused on writing and 
running automated unit tests. The typical solutions involve using several 
different packages for one setup, because those packages used to be limited in 
their scope (one for test running, a second one for assertions, a third one for 
mocking, maybe even another one for code coverage reporting). 

We will, however, be using Jest, an “all-in-one”, “zero-configuration” testing 
solution from Facebook that has greatly decreased the amount of configuration 
effort needed for running automated tests. It also officially supports TypeScript 
so it’s a great match for Nest.js projects! 

Preparation 

As you would expect, Jest is distributed as an npm package. Let’s go and install 
it in our project. Run the following command from your command line or 
terminal: 

npm install --save-dev jest ts-jest @types/jest 

We are installing three different npm packages as development dependencies: 
Jest itself; ts-jest that allows us to use Jest with our TypeScript code; and the 
Jest typings for their valuable contribution to our IDE experience! 

Remember how we mentioned that Jest is a “zero-configuration” testing 
solution? Well, this is what their homepage claims. Unfortunately, it’s not 
entirely true: we still need to define a little amount of configuration before we 
are able to run our tests. In our case, this is mostly because we are using 



TypeScript. On the other hand, the configuration we need to write is really not 
that much, so we can write it as a plain JSON object. 

So, let’s create a new JSON file in our project’s root folder, which we will 
name nest.json. 

/nest.json 

{ 

  "moduleFileExtensions": ["js", "ts", "json"], 
  "transform": { 
    "^.+\\.ts": "<rootDir>/node_modules/ts-jest/preprocessor.js" 
  }, 
  "testRegex": "/src/.*\\.(test|spec).ts", 
  "collectCoverageFrom": [ 
    "src/**/*.ts", 
    "!**/node_modules/**", 
    "!**/vendor/**" 
  ], 
  "coverageReporters": ["json", "lcov", "text"] 
} 

This small JSON file is setting up the following configuration: 

1. Established files with .js, .ts and .json as modules (i.e. 
code) of our app. You might think we would not need .js files, but 
the truth is that our code will not run without that extension, 
because of some of Jest’s own dependencies. 
2. Tells Jest to process files with a .ts extension using the ts-
jest package (which was installed before from the command line). 
3. Specifies that our test files will be inside the /src folder, and 
will have either the .test.ts or the .spec.ts files extension. 
4. Instructs Jest to generate code coverage reports from 
any .ts file on the /src folder, while ignoring the node_modules and 
the vendor folder contents. Also, to generate coverage it reports in 
both JSONand LCOV formats. 

Finally, the last step before we can start writing tests will be to add a couple of 
new scripts to your package.json file: 

{ 

  ... 



  "scripts": { 
    ... 
    "test": "jest --config=jest.json", 
    "test:watch": "jest --watch --config=jest.json", 
    ... 
  } 
} 

The three new scripts will, respectively: run the tests once, run the tests in watch 
mode (they will run after each file save), and run the tests and generate the code 
coverage report (which will be output in a coverage folder). 

NOTE: Jest receives its configuration as a jest property in 
the package.json file. If you decide to do things that way, you will need to omit 
the --config=jest.json arguments on your npm scripts. 

Our testing environment is ready. If we now run npm test in our project folder, 
we will most likely see the following: 

No tests found 

In /nest-book-example 

  54 files checked. 

  testMatch:  - 54 matches 

  testPathIgnorePatterns: /node_modules/ - 54 matches 

  testRegex: /src/.*\.(test|spec).ts - 0 matches 

Pattern:  - 0 matches 

npm ERR! Test failed.  See above for more details. 

The tests have failed! Well, they actually haven’t; we just have not written any 
tests yet! Let’s write some now. 

Writing our first test 

If you have read some more chapters of the book, you probably remember our 
blog entries and the code we wrote for them. Let’s take a look back to 
the EntryController. Depending on the chapters, the code looked something like 
the following: 

/src/modules/entry/entry.controller.ts 



import { Controller, Get, Post, Param } from '@nestjs/common'; 
 
import { EntriesService } from './entry.service'; 
 
@Controller('entries') 
export class EntriesController { 
  constructor(private readonly entriesSrv: EntriesService) {} 
 
  @Get() 
  findAll() { 
    return this.entriesSrv.findAll(); 
  } 
  ... 
} 

Notice that this controller is a dependency to EntriesService. Since we 
mentioned that each component has to be tested in isolation, we will need to 
mock any dependency it might have; in this case, the EntriesService. 

Let’s write a unit test for the controller’s findAll() method. We will be using a 
special Nest.js package called @nestjs/testing, which will alow us to wrap our 
service in a Nest.js module specially for the test. 

Also, it’s important to follow the convention and name the test 
file entry.controller.spec.ts, and place it next to the entry.controller.ts file, 
so it gets properly detected by Jest when we trigger a test run. 

/src/modules/entry/entry.controller.spec.ts 

import { Test } from '@nestjs/testing'; 
import { EntriesController } from './entry.controller'; 
import { EntriesService } from './entry.service'; 
 
describe('EntriesController', () => { 
  let entriesController: EntriesController; 
  let entriesSrv: EntriesService; 
 
  beforeEach(async () => { 
    const module = await Test.createTestingModule({ 
      controllers: [EntriesController], 
    }) 
      .overrideComponent(EntriesService) 



      .useValue({ findAll: () => null }) 
      .compile(); 
 
    entriesSrv = module.get<EntriesService>(EntriesService); 
    entriesController = 
module.get<EntriesController>(EntriesController); 
  }); 
}); 

Let’s now take a close look at what the test code is achieving. 

First of all, we are declaring a test suite on describe('EntriesController', () 
=> {. We also declare a couple of variables, entriesController and entriesSrv, 
to hold both the tested controller itself, as well as the service the controller 
depends on. 

Then, it comes the beforeEach method. The code inside that method will be 
executed right before each of the following tests are run. In that code, we are 
instantiating a Nest.js module for each test. Note that this is a particular kind of 
module, since we are using the .createTestingModule() method from 
the Test class that comes from the @nestjs/testing package. So, let’s think 
about this module as a “mock module,” which will serve us for testing purposes 
only. 

Now comes the fun part: we include the EntriesController as a controller in the 
testing module. We then proceed to use: 

.overrideComponent(EntriesService) 

.useValue({ findAll: () => null }) 

This substitutes the original EntryService, which is a dependency of our tested 
controller. This is for a mock version of the service, which is not even a class, 
since we don’t need it to be, but rather an object with a findAll method that 
takes no arguments and returns null. 

You can think of the result of the two code lines above as an empty, dumb 
service that only repeats the methods we will need to use later, without any 
implementation inside. 

Finally, the .compile() method is the one that actually instantiates the module, 
so it gets bound to the module constant. 



Once the module is properly instantiated, we can bind our 
previous entriesController and entriesSrvvariables to the instances of the 
controller and the service inside the module. This is achieved with 
the module.get method call. 

Once all this initial setup is done, we are good to start writing some actual tests. 
Let’s implement one that checks whether the findAll() method in our controller 
correctly returns an array of entries, even if we only have one entry: 

import { Test } from '@nestjs/testing'; 
import { EntriesController } from './entry.controller'; 
import { EntriesService } from './entry.service'; 
 
describe('EntriesController', () => { 
  let entriesController: EntriesController; 
  let entriesSrv: EntriesService; 
 
  beforeEach(async () => { 
    const module = await Test.createTestingModule({ 
      controllers: [EntriesController], 
    }) 
      .overrideComponent(EntriesService) 
      .useValue({ findAll: () => null }) 
      .compile(); 
 
    entriesSrv = module.get<EntriesService>(EntriesService); 
    entriesController = 
module.get<EntriesController>(EntriesController); 
  }); 
 
  describe('findAll', () => { 
    it('should return an array of entries', async () => { 
      expect(Array.isArray(await entriesController.findAll())).toBe(true); 
    }); 
  }); 
}); 

The describe('findAll', () => { line is the one that starts the actual test suite. 
We expect the resolved value of entriesController.findAll() to be an array. 
This is basically how we wrote the code in the first place, so it should work, 
right? Let’s run the tests with npm test and check the test output. 



FAIL  src/modules/entry/entry.controller.spec.ts 

  EntriesController 

    findAll 

      ✕ should return an array of entries (4ms) 

 

  ● EntriesController › findAll › should return an array 
of entries 

 

    expect(received).toBe(expected) // Object.is equality 

 

    Expected value to be: 

      true 

    Received: 

      false 

 

      30 |       ]; 

      31 |       // jest.spyOn(entriesSrv, 
'findAll').mockImplementation(() => result); 

    > 32 |       expect(Array.isArray(await 
entriesController.findAll())).toBe(true); 

      33 |     }); 

      34 | 

      35 |     // it('should return the entries retrieved 
from the service', async () => { 

 

      at src/modules/entry/entry.controller.spec.ts:32:64 

      at fulfilled 
(src/modules/entry/entry.controller.spec.ts:3:50) 

 

Test Suites: 1 failed, 1 total 



Tests:       1 failed, 1 total 

Snapshots:   0 total 

Time:        1.112s, estimated 2s 

Ran all test suites related to changed files. 

It failed... Well, of course it failed! Remember the beforeEach() method? 

... 

.overrideComponent(EntriesService) 

.useValue({ findAll: () => null }) 

.compile(); 

... 

We told Nest.js to exchange the original findAll() method in the service for 
another one that returns just null. We will need to tell Jest to mock that method 
with something that returns an array, so to check that when 
the EntriesService returns an array, the controller is in fact returning that result 
as an array as well. 

... 

describe('findAll', () => { 
  it('should return an array of entries', async () => { 
    jest.spyOn(entriesSrv, 'findAll').mockImplementationOnce(() => [{}]); 
    expect(Array.isArray(await entriesController.findAll())).toBe(true); 
  }); 
}); 
... 

In order to mock the findAll() method from the service, we are using two Jest 
methods. spyOn() takes an object and a method as arguments, and starts 
watching the method for its execution (in other words, sets up a spy). 
And mockImplementationOnce(), which as its name implies changes the 
implementation of the method when it’s next called (in this case, we change it 
to return an array of one empty object.) 

Let’s try to run the test again with npm test: 

 PASS  src/modules/entry/entry.controller.spec.ts 

  EntriesController 



    findAll 

      ✓ should return an array of entries (3ms) 

 

Test Suites: 1 passed, 1 total 

Tests:       1 passed, 1 total 

Snapshots:   0 total 

Time:        1.134s, estimated 2s 

Ran all test suites related to changed files. 

The test is passing now, so you can be sure that the findAll() method on the 
controller will always behave itself and return an array, so that other code 
components that depend on this output being an array won’t break themselves. 

If this test started to fail at some point in the future, it would mean that we had 
introduced a regression in our codebase. One of the great sides of automated 
testing is that we will be notified about this regression before it’s too late. 

Testing for equality 

Up until this point, we are sure that EntriesController.findAll() returns an 
array. We can’t be sure that it’s not an array of empty objects, or an array of 
booleans, or just an empty array. In other words, we could rewrite the method to 
something like findAll() { return []; } and the test would still pass. 

So, let’s improve our tests to check that the method really returns the output 
from the service, without messing things up. 

import { Test } from '@nestjs/testing'; 
import { EntriesController } from './entry.controller'; 
import { EntriesService } from './entry.service'; 
 
describe('EntriesController', () => { 
  let entriesController: EntriesController; 
  let entriesSrv: EntriesService; 
 
  beforeEach(async () => { 
    const module = await Test.createTestingModule({ 
      controllers: [EntriesController], 
    }) 



      .overrideComponent(EntriesService) 
      .useValue({ findAll: () => null }) 
      .compile(); 
 
    entriesSrv = module.get<EntriesService>(EntriesService); 
    entriesController = 
module.get<EntriesController>(EntriesController); 
  }); 
 
  describe('findAll', () => { 
    it('should return an array of entries', async () => { 
      jest.spyOn(entriesSrv, 'findAll').mockImplementationOnce(() => [{}]); 
      expect(Array.isArray(await entriesController.findAll())).toBe(true); 
    }); 
 
    it('should return the entries retrieved from the service', async () 
=> { 
      const result = [ 
        { 
          uuid: '1234567abcdefg', 
          title: 'Test title', 
          body: 
            'This is the test body and will serve to check whether 
the controller is properly doing its job or not.', 
        }, 
      ]; 
      jest.spyOn(entriesSrv, 'findAll').mockImplementationOnce(() => 
result); 
 
      expect(await entriesController.findAll()).toEqual(result); 
    }); 
  }); 
}); 

We just kept most of the test file as it was before, although we did add a new 
test, the last one, in which: 

• We set an array of one not-empty object 
(the result constant). 
• We mock the implementation of the 
service’s findAll() method once again to return that result. 



• We check that the controller returns the result object exactly 
as the original when called. Note that we are using the 
Jest’s .toEqual() method which, unlike .toBe(), performs a deep 
equality comparison between both objects for all of their 
properties. 

This is what we get when we run npm test again: 

 PASS  src/modules/entry/entry.controller.spec.ts 

  EntriesController 

    findAll 

      ✓ should return an array of entries (2ms) 

      ✓ should return the entries retrieved from the 
service (1ms) 

 

Test Suites: 1 passed, 1 total 

Tests:       2 passed, 2 total 

Snapshots:   0 total 

Time:        0.935s, estimated 2s 

Ran all test suites related to changed files. 

Both our tests pass. We accomplished quite a lot already. Now that we have a 
solid foundation, extending our tests to cover as many test cases as possible will 
be an easy task. 

Of course, we have only written a test for a controller. But testing services and 
the rest of the pieces of our Nest.js app works the same way. 

Covering our code in tests 

One critical aspect in code automation is code coverage reporting. Because, 
how do you know that your tests actually cover as many test cases as possible? 
Well, the answer is checking code coverage. 

If you want to be really confident in your tests as a regression detection 
systems, make sure that they cover as much functionality as possible. Let’s 
imagine we have a class with five methods and we only write tests for two of 
them. We would have roughly two-fifths of the code covered with tests, which 



means that we won’t have any insights about the other three-fifths, and about 
whether they still work as our codebase keeps on growing. 

Code coverage engines analyze our code and tests together, and check the 
amount of lines, statements, and branches that are covered by the tests running 
in our suites, returning a percentage value. 

As mentioned in previous sections, Jest already includes code coverage 
reporting out of the box, you just need to activate it by passing a --
coverage argument to the jest command. 

Let’s add a script in our package.json file that, when executed, will generate the 
coverage report: 

{ 

  ... 
  "scripts": { 
    ... 
    "test:coverage":"jest --config=jest.json --coverage --

coverageDirectory=coverage", 
    ... 
  } 
} 

When running npm run test:coverage on the controller written before, you will 
see the following output: 

 PASS  src/modules/entry/entry.controller.spec.ts 

  EntriesController 

    findAll 

      ✓ should return an array of entries (9ms) 

      ✓ should return the entries retrieved from the 
service (2ms) 

 

---------------------|----------|----------|----------|---
-------|-------------------| 

File                 |  % Stmts | % Branch |  % Funcs |  % 
Lines | Uncovered Line #s | 



---------------------|----------|----------|----------|---
-------|-------------------| 

All files            |      100 |    66.67 |      100 |      
100 |                   | 

 entry.controller.ts |      100 |    66.67 |      100 |      
100 |                 6 | 

---------------------|----------|----------|----------|---
-------|-------------------| 

Test Suites: 1 passed, 1 total 

Tests:       2 passed, 2 total 

Snapshots:   0 total 

Time:        4.62s 

Ran all test suites. 

In order to have a better vision of the console output within this book, we will 
transform the console output to a proper table. 

File % Stmts % Branch % Funcs % Lines Uncovered Line #s 

All files 100 66.67 100 100  

entry.controller.ts 100 66.67 100 100 6 

You can easily see we are covering 100% of our code lines in our tests. This 
makes sense since we wrote two tests for the only method in our controller. 

FAILING TESTS FOR LOW COVERAGE 

Let’s imagine now that we work in a complex project with several developers 
working on the same base at the same time. Let’s imagine also that our 
workflow includes a Continuous Integration/Continuous Delivery pipeline, 
running on something like Travis CI, CircleCI, or even Jenkins. Our pipeline 
would likely include a step that runs our automated tests before merging or 
deploying, so that the pipeline will be interrupted if the tests fail. 

All the imaginary developers working in this imaginary project will add (as well 
as refactor and delete, but those cases don’t really apply to this example) new 
functionality (i.e. new code) all the time, but they might forget about properly 



testing that code. What would happen then? The coverage percentage value of 
the project would go down. 

In order to still be sure that we can rely on our tests as a regression detection 
mechanism, we need to be sure that the coverage never goes too low. What is 
too low? That really depends on multiple factors: the project and the stack it 
uses, the team, etc. However, it’ normally a good rule of thumb not letting the 
coverage value go down on each coding process iteration. 

Anyway, Jest allows you to specify a coverage threshold for tests: if the value 
goes below that threshold, the tests will return failed even if they all passed. 
This way, our CI/CD pipeline will refuse to merge or deploy our code. 

The coverage threshold has to be included in the Jest configuration object; in 
our case, it lives in the jest.json file in our project’s root folder. 

{ 

  ... 
  "coverageThreshold": { 
    "global": { 
      "branches": 80, 
      "functions": 80, 
      "lines": 80, 
      "statements": 80 
    } 
  } 
} 

Each number passed to each property of the object is a percentage value; below 
it, the tests will fail. 

To demonstrate it, let’s run our controller tests with the coverage threshold set 
as above. npm run test:coverage returns this: 

 PASS  src/modules/entry/entry.controller.spec.ts 

  EntriesController 

    findAll 

      ✓ should return an array of entries (9ms) 

      ✓ should return the entries retrieved from the 
service (1ms) 



 

---------------------|----------|----------|----------|---
-------|-------------------| 

File                 |  % Stmts | % Branch |  % Funcs |  % 
Lines | Uncovered Line #s | 

---------------------|----------|----------|----------|---
-------|-------------------| 

All files            |      100 |    66.67 |      100 |      
100 |                   | 

 entry.controller.ts |      100 |    66.67 |      100 |      
100 |                 6 | 

---------------------|----------|----------|----------|---
-------|-------------------| 

Jest: "global" coverage threshold for branches (80%) not 
met: 66.67% 

Test Suites: 1 passed, 1 total 

Tests:       2 passed, 2 total 

Snapshots:   0 total 

Time:        2.282s, estimated 4s 

Ran all test suites. 

npm ERR! code ELIFECYCLE 

npm ERR! errno 1 

npm ERR! nest-book-example@1.0.0 test:coverage: `jest --
config=jest.json --coverage --coverageDirectory=coverage` 

npm ERR! Exit status 1 

npm ERR! 

npm ERR! Failed at the nest-book-example@1.0.0 
test:coverage script. 

npm ERR! This is probably not a problem with npm. There is 
likely additional logging output above. 



As you can see, the tests passed, yet the process failed with status 1 and 
returned an error. Also, Jest reported "global" coverage threshold for branches 
(80%) not met: 66.67%. We have successfully kept non-acceptable code 
coverage away from our main branch or productive environments. 

The following step could be now to implement a few end-to-end tests, along 
with our unit tests, to improve our system. 

E2E testing 
While unit tests are isolated and independent by definition, end-to-end (or E2E) 
tests serve for, in a way, the opposite function: they intend to check the health 
of the system as a whole, and try to include as many components of the solution 
as possible. For this reason, in E2E tests we will focus on testing complete 
modules, rather than isolated components or controllers. 

Preparation 

Fortunately, we can use Jest for E2E testing just like we did for unit testing. We 
will only need to install the supertest npm package to perform API requests and 
assert their result. Let’s install it by running npm install --save-dev 
supertest in your console. 

Also, we will create a folder called e2e in our project’s root folder. This folder 
will hold all of our E2E test files, as well as the configuration file for them. 

This brings us to the next step: create a new jest-e2e.json file inside 
the e2e folder with the following contents: 

{ 

  "moduleFileExtensions": ["js", "ts", "json"], 
  "transform": { 
    "^.+\\.tsx?$": "<rootDir>/node_modules/ts-jest/preprocessor.js" 
  }, 
  "testRegex": "/e2e/.*\\.(e2e-test|e2e-spec).ts|tsx|js)$", 
  "coverageReporters": ["json", "lcov", "text"] 
} 

As you can see, the new E2E configuration object is very similar to the one for 
unit tests; the main difference is the testRegex property, which now points to 
files in the /e2e/ folder that have a .e2e-test or e2e.spec file extension. 



The final step of the preparation will be to include an npm script in 
our package.json file to run the end-to-end tests: 

{ 

  ... 
  "scripts": { 
    ... 
    "e2e": "jest --config=e2e/jest-e2e.json --forceExit" 
  } 
  ... 
} 

Writing end-to-end tests 

The way of writing E2E tests with Jest and Nest.js is also very similar to the one 
we used for unit tests: we create a testing module using 
the @nestjs/testing package, we override the implementation for 
the EntriesService to avoid the need for a database, and then we are ready to 
run our tests. 

Let’s write the code for the test. Create a new folder called entries inside 
the e2e folder, and then create a new file there called entries.e2e-spec.ts with 
the following content: 

import { INestApplication } from '@nestjs/common'; 
import { Test } from '@nestjs/testing'; 
import * as request from 'supertest'; 
 
import { EntriesModule } from '../../src/modules/entry/entry.module'; 
import { EntriesService } from '../../src/modules/entry/entry.service'; 
 
describe('Entries', () => { 
  let app: INestApplication; 
  const mockEntriesService = { findAll: () => ['test'] }; 
 
  beforeAll(async () => { 
    const module = await Test.createTestingModule({ 
      imports: [EntriesModule], 
    }) 
      .overrideComponent(EntriesService) 
      .useValue(mockEntriesService) 



      .compile(); 
 
    app = module.createNestApplication(); 
    await app.init(); 
  }); 
 
  it(`/GET entries`, () => { 
    return request(app.getHttpServer()) 
      .get('/entries') 
      .expect(200) 
      .expect({ 
        data: mockEntriesService.findAll(), 
      }); 
  }); 
 
  afterAll(async () => { 
    await app.close(); 
  }); 
}); 

Let’s review what the code does: 

1. The beforeAll method creates a new testing module, imports 
the EntriesModule in it (the one we are going to test), and overrides 
the EntriesService implementation with the very 
simple mockEntriesService constant. Once that’s done, it uses 
the .createNestApplication() method to create an actual running app 
to make requests to, and then waits for it to be initialized. 
2. The '/GET entries' test uses a supertest to perform a GET 
request to the /entries endpoint, and then asserts whether the 
status code of the response from that request was a 200 and the 
received body of the response matches 
the mockEntriesService constant value. If the test passes, it will 
mean that our API is correctly reacting to requests received. 
3. The afterAll method ends the Nest.js app we created when 
all of the tests have run. This is important to avoid side effects 
when we run the tests the next time. 

Summary 



In this chapter we have explored the importance of adding automated tests to 
our projects and what kind of benefits it brings. 

Also, we got started with the Jest testing framework, and we learned how to 
configure it in order to use it seamlessly with TypeScript and Nest.js 

Lastly, we reviewed how to use the testing utilities that Nest.js provides for us, 
and learned how to write tests, both unit tests as well as end-to-end ones, and 
how to check the percentage of the code our tests are covering. 

In the next and last chapter we cover server-side rendering with Angular 
Universal. 

	 	



Chapter 15. Server-side Rendering with 
Angular Universal 
If you are not familiar with the Angular platform for client-side 
application development it is worth taking a look into. Nest.js has a 
unique symbiotic relationship with Angular because they are both 
written in TypeScript. This allows for some interesting code sharing 
between your Nest.js server and Angular app, because Angular and 
Nest.js both use TypeScript, and classes can be created in a package that 
is shared between the Angular app and the Nest.js app. These classes can 
then be included in either app and help keep the objects that are sent 
and received over HTTP requests between client and server consistent. 
This relationship is taken to another level when we introduce Angular 
Universal. Angular Universal is a technology that allows your Angular 
app to be pre-rendered on your server. This has a number of benefits 
such as: 

1. Facilitate web crawlers for SEO purposes. 
2. Improve the load performance of your site. 
3. Improve performance of the site on low-powered devices and 
mobile. 

This technique is called server-side rendering and can be extremely 
helpful, but, requires some restructuring of the project as the Nest.js 
server and Angular app are built in sequence and the Nest.js server will 
actually run the Angular app itself when a request is made to get a 
webpage. This essentially emulates the Angular app inside a browser 
complete with the API calls and loading any dynamic elements. This 
page built on the server is now served as a static webpage to the client 
and the dynamic Angular app is loaded quietly in the background. 

If you are just hopping into this book now and want to follow along with 
the example repository it can be cloned with: 

git clone https://github.com/backstopmedia/nest-book-example 

Angular is another topic that can, and has, have an entire book written 
about it. We will be using an Angular 6 app that has been adapted for use 
in this book by one of the authors. The original repository can be found 
here. 

https://github.com/patrickhousley/nest-angular-universal.git 



This repository is using Nest 5 and Angular 6 so there have been some 
changes made, because this book is based on Nest 4. Not to worry, 
though, we have included an Angular Universal project inside the main 
repository shown at the start of this chapter. It can be found inside 
the universal folder at the root of the project. This is a self-contained Nest 
+ Angular project, rather than adapting the main repository for this book 
to serve an Angular app, we isolated it to provide a clear and concise 
example. 

Serving the Angular Universal App with Nest.js 
Now that we are going to be serving the Angular app with our Nest.js server, we 
are going to have to compile them together so that when our Nest.js server is 
run, it knows where to look for the Universal app. In our server/src/main.ts file 
there are a couple of key things we need to have in there. Here we create a 
function bootstrap() and then call it from below. 

async function bootstrap() { 
  if (environment.production) { 
    enableProdMode(); 
  } 
 
  const app = await NestFactory.create(ApplicationModule.moduleFactory()); 
 
  if (module.hot) { 
    module.hot.accept(); 
    module.hot.dispose(() => app.close()); 
  } 
 
  await app.listen(environment.port); 
} 
 
bootstrap() 
  .then(() => console.log(`Server started on port ${environment.port}`)) 
  .catch(err => console.error(`Server startup failed`, err)); 

Let’s step through this function line by line. 

if (environment.production) { 
    enableProdMode(); 
  } 



This tells the application to enable production mode for the application. There 
are many differences between production and development modes when writing 
web servers, but this is required if you want to run a web server in a production 
context. 

const app = await NestFactory.create(ApplicationModule.moduleFactory()); 

This will create the Nest app variable of type INestApplication and will be run 
using ApplicationModule in the app.module.ts file as the entry point. app will be 
the instance of the Nest app that is running on port environment.port, which can 
be found in src/server/environment/environment.ts. There are three different 
environment files here: 

1. environment.common.ts-As its name implies, this file is common 
between both production and development builds. It provides 
information and paths on where to find the packaged build files for 
the server and client applications. 
2. environment.ts-This is the default environment used during 
development, and it includes the settings from 
the environment.common.ts file as well as sets production: false and 
the port mentioned above to 3000. 
3. environment.prod.ts-This file mirrors #2 except that it 
sets production: true and does not define a port, instead defaulting 
to default, normally 8888. 

If we are developing locally and want to have hot reloading, where the server 
restarts if we change a file, then we need to have the following included in 
our main.ts file. 

if (module.hot) { 
  module.hot.accept(); 
  module.hot.dispose(() => app.close()); 
} 

This is set within the webpack.server.config.ts file based on 
our NODE_ENV environment variable. 

Finally, to actually start the server, call the .listen() function on 
our INestApplication variable and pass it a port to run on. 

await app.listen(environment.port); 



We then call bootstrap(), which will run the function described above. At this 
stage we now have our Nest server running and able to serve the Angular App 
and listen to serve API requests. 

In the bootstrap() function above when creating the INestApplication object we 
supplied it with ApplicationModule. This is the entry point for the app and 
handles both the Nest and Angular Universal Apps. In app.module.ts we have: 

@Module({ 
  imports: [ 
    HeroesModule, 
    ClientModule.forRoot() 
  ], 
}) 
export class ApplicationModule {} 

Here we are importing two Nest modules, the HeroesModule, which will supply 
the API endpoints for the Tour of Heroes application, and the ClientModule that 
is the module that is handling the Universal stuff. The ClientModule has a lot 
going on, but we will touch on the main things that are handling setting up 
Universal, here is the code for this module. 

@Module({ 
  controllers: [ClientController], 
  components: [...clientProviders], 
}) 
export class ClientModule implements NestModule { 
  constructor( 
    @Inject(ANGULAR_UNIVERSAL_OPTIONS) 
    private readonly ngOptions: AngularUniversalOptions, 
    @Inject(HTTP_SERVER_REF) private readonly app: NestApplication 
  ) {} 
 
  static forRoot(): DynamicModule { 
    const requireFn = typeof __webpack_require__ === "function" ? 
__non_webpack_require__ : require; 
    const options: AngularUniversalOptions = { 
      viewsPath: environment.clientPaths.app, 
      bundle: requireFn(join(environment.clientPaths.server, 'main.js')) 
    }; 
 
    return { 



      module: ClientModule, 
      components: [ 
        { 
          provide: ANGULAR_UNIVERSAL_OPTIONS, 
          useValue: options, 
        } 
      ] 
    }; 
  } 
 
  configure(consumer: MiddlewareConsumer): void { 
    this.app.useStaticAssets(this.ngOptions.viewsPath); 
  } 
} 

We will start with the @Module decorator at the top of the file. As with regular 
Nest.js modules (And Angular, remember how Nest.js is inspired by Angular?), 
there are controllers (for the endpoints) property and a components (for services, 
providers and other components we want to be part of this module) property. 
Here we are including the ClientController in the controllers array 
and ...clientProviders in components. Here the triple dot (...) essentially 
means “insert each of the array elements into this array.” Let’s disect each of 
these a bit more. 

ClientController 

@Controller() 
export class ClientController { 
  constructor( 
    @Inject(ANGULAR_UNIVERSAL_OPTIONS) private readonly ngOptions: 
AngularUniversalOptions, 
  ) { } 
 
  @Get('*') 
  render(@Res() res: Response, @Req() req: Request) { 
    res.render(join(this.ngOptions.viewsPath, 'index.html'), { req }); 
  } 
} 

This is like any other controller that we have learned about, but with one small 
difference. At the URL path /* instead of supplying an API endpoint, the 



Nest.js server will render an HTML page, namely index.html, from that 
same viewsPath we have seen before in the environment files. 

As for the clientProoviders array: 

export const clientProviders = [ 
  { 
    provide: 'UNIVERSAL_INITIALIZER', 
    useFactory: async ( 
      app: NestApplication, 
      options: AngularUniversalOptions 
    ) => await setupUniversal(app, options), 
    inject: [HTTP_SERVER_REF, ANGULAR_UNIVERSAL_OPTIONS] 
  } 
]; 

This is similar to how we define our own provider inside the return statement 
of ClientModule, but instead of useValue we use useFactory, this passes in the 
Nest app and the AngularUniversalOptions we defined earlier to a 
function setupUniversal(app, options). It has taken us a while, but this is where 
the Angular Universal server is actually created. 

setupUniversal(app, options) 

export function setupUniversal( 
  app: NestApplication, 
  ngOptions: AngularUniversalOptions 
) { 
  const { AppServerModuleNgFactory, LAZY_MODULE_MAP } = 
ngOptions.bundle; 
 
  app.setViewEngine('html'); 
  app.setBaseViewsDir(ngOptions.viewsPath); 
  app.engine( 
    'html', 
    ngExpressEngine({ 
      bootstrap: AppServerModuleNgFactory, 
      providers: [ 
        provideModuleMap(LAZY_MODULE_MAP), 
        { 
          provide: APP_BASE_HREF, 
          useValue: `http://localhost:${environment.port}` 



        } 
      ] 
    }) 
  ); 
} 

There are three main functions being called 
here: app.setViewEngine(), app.setBaseViewDir(), and an app.engine. The 
first .setViewEngine() is setting the view engine to HTML so that the engine 
rendering views knows we are dealing with HTML. The 
second .setBaseViewDir() is telling Nest.js where to find the HTML views, 
which again was defined in the environment.common.ts file from earlier. The last 
is very important, .engine() defines the HTML engine to use, in this case, 
because we are using Angular, it is ngExpressEngine, which is the Angular 
Universal engine. Read more about the Universal express-engine 
here: https://github.com/angular/universal/tree/master/modules/express-engine. 
This sets bootstrap to the AppServerModuleNgFactory object, which is discussed 
in the next section. 

In the ClientModule we can see the .forRoot() function that was called when we 
imported the ClientModule in the AppliationModule (server entry point). 
Essentially, forRoot() is defining a module to return in place of the originally 
imported ClientModule, also called ClientModule. This module being returned 
has a single component that provides ANGULAR_UNIVERSAL_OPTIONS, which is an 
interface that defines what kind of object will be passed into 
the useValue property of the component. 

The structure of ANGULAR_UNIVERSAL_OPTIONS is: 

export interface AngularUniversalOptions { 
  viewsPath: string; 
  bundle: { 
    AppServerModuleNgFactory: any, 
    LAZY_MODULE_MAP: any 
  }; 
} 

It follows that the value of useValue is the contents of options defined at the top 
of forRoot(). 

const options: AngularUniversalOptions = { 
  viewsPath: environment.clientPaths.app, 
  bundle: requireFn(join(environment.clientPaths.server, 'main.js')) 



}; 

The value of environment.clientPaths.app can be found in 
the environment.common.ts file we discussed earlier. As a reminder, it points to 
where to find the compiled client code to be served. You may be wondering 
why the value of bundle is a require statement when the interface clearly says it 
should be of the structure: 

bundle: { 
    AppServerModuleNgFactory: any, 
    LAZY_MODULE_MAP: any 
  }; 

Well, if you trace that require statement back (.. means go up one directory) 
then you will see we are setting the bundle property equal to another 
module AppServerModule. This will be discussed in a bit, but the Angular App 
will end up being served. 

The last piece in the ClientModule is in the configure() function that will tell the 
server where to find static assets. 

configure(consumer: MiddlewareConsumer): void { 
    this.app.useStaticAssets(this.ngOptions.viewsPath); 
  } 

Building and running the Universal App 
Now that you have the Nest.js and Angular files setup, it is almost time to run 
the project. There are a number of configuration files that need your attention 
and are found in the example project: https://github.com/backstopmedia/nest-
book-example. Up until now we have been running the project with nodemon so 
that our changes are reflected whenever the project is saved, but, now that we 
are packaging it up to be serving an Angular App we need to build the server 
using a different package. For this, we have chosen udk, which is 
a webpack extension. It can both build our production bundles as well as start a 
development server, much like nodemon did for our plain Nest.js app. It would be 
a good idea to familiarize yourself with the following configuration files: 

1. angular.json-Our Angular config file that handles things like, 
what environment file to use, commands that can be used with ng, 
and the Angular CLI command. 



2. package.json-The project global dependency and command 
file. This file defines what dependencies are needed for production 
and development as well as what commands are available for your 
command line tool, ie. yarn or npm. 
3. tsconfig.server.json-An extension on the 
global tsconfig.json file, this provides some Angular Compiler 
options like where to find the Universal entry point. 

Summary 
And that is it! We have a working Angular Universal project to play around 
with. Angular is a great client side framework that has been gaining a lot of 
ground lately. There is much more that can be done here as this chapter only 
scratched the surface, especially in terms of Angular itself. 

And, this is the last chapter in this book. We hope you are excited to use Nest.js 
to create all sorts of apps. 

	


