

Server

Request
Express.js + Middleware

express.RouterURL: /users/123
Method: GET
params: {_id:123}

Response

Status: 200
Cookie: _j0n.W3x1eR
Content-type: text/html

app.use()

Defines the way requests to certain URLs are handled

Encookie-parser crypts and decrypts info about a user’s status on app

Translates request contents to validate or modify dataexpress.json

Authenticates user login information during app usepassport

express-ejs-
layouts

Renders web page

The EJS templating engine
transforms dynamic data and
layouts to produce an HTML
page in the server’s response.

Mongoose is an object
document modeling (ODM)
library that simplifies your inter-
action between the Node.js
server and MongoDB database.

Mongoose.jsEJS

Get Programming with Node.js

Get Programming with

Node.js

Jonathan Wexler

Foreword by Kyle Simpson

MANNING
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. For
more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Toni Arritola
Technical development editor: John Guthrie
Review editor: Aleksandar Dragosavljević
Production editor: David Novak
Copyeditor: Kathy Simpson
Proofreader: Melody Dolab
Senior technical proofreader: Srihari Sriharan
Technical proofreader: German Frigerio
Typesetter: Dottie Marsico
Cover designer: Monica Kamsvaag

Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781617294747
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 To the ones who got me programming and to my parents
(the two people I always know aren’t reading my book),

with love.

Contents
Foreword xv
Preface xvii
Acknowledgments xix
About this book xxi
About the author xxix

Unit 0

GETTING SET UP 1

Lesson 0 Setting up Node.js and the JavaScript engine 3
What you’re going to learn 3
Understanding Node.js 5
Why learn to develop in Node.js? 9
Preparing yourself for this book 10
Summary 11

Lesson 1 Configuring your environment 12
Installing Node.js 12
Installing a text editor 16
Setting up SCM and deployment tools 17
Working with the Node.js REPL in terminal 19
Summary 21

Lesson 2 Running a Node.js application 22
Creating a JavaScript file 23
Running your JavaScript file with Node.js 24
Running individual JavaScript commands 25
Summary 27
vii

viii Contents
Unit 1

GETTING STARTED WITH NODE.JS 29

Lesson 3 Creating a Node.js module 31
Running npm commands 33
Initializing a Node.js application 35
Summary 39

Lesson 4 Building a simple web server in Node.js 40
Understanding web servers 41
Initializing the application with npm 43
Coding the application 43
Running the application 47
Summary 48

Lesson 5 Handling incoming data 49
Reworking your server code 50
Analyzing request data 51
Adding routes to a web application 55
Summary 58

Lesson 6 Writing better routes and serving external files 59
Serving static files with the fs module 60
Serving assets 64
Moving your routes to another file 67
Summary 72

Lesson 7 Capstone: Creating your first web application 73
Initializing the application 74
Understanding application directory structure 75
Creating main.js and router.js 76
Creating views 79
Adding assets 80
Creating routes 81
Summary 83

Unit 2

EASIER WEB DEVELOPMENT WITH EXPRESS.JS 85

Lesson 8 Setting up an app with Express.js 87
Installing the Express.js package 88
Building your first Express.js application 90

ixContents

Working your way around a web framework 92
Summary 94

Lesson 9 Routing in Express.js 95
Building routes with Express.js 96
Analyzing request data 98
Using MVC 101
Summary 105

Lesson 10 Connecting views with templates 106
Connecting a templating engine 107
Passing data from your controllers 110
Setting up partials and layouts 111
Summary 113

Lesson 11 Configurations and error handling 114
Modifying your start script 115
Handling errors with Express.js 116
Serving static files 119
Summary 119

Lesson 12 Capstone: Enhancing the Confetti Cuisine site with Express.js 121
Initializing the application 121
Building the application 123
Adding more routes 124
Routing to views 125
Serving static views 127
Passing content to the views 128
Handling the errors 129
Summary 131

Unit 3

CONNECTING TO A DATABASE 133

Lesson 13 Setting up a MongoDB database 135
Setting up MongoDB 136
Running commands in the MongoDB shell 140
Connecting MongoDB to your application 144
Summary 146

Lesson 14 Building models with Mongoose 147
Setting up Mongoose with your Node.js application 148
Creating a schema 149
Organizing your models 151
Summary 153

x Contents
Lesson 15 Connecting controllers and models 155
Creating a controller for subscribers 156
Saving posted data to a model 159
Using promises with Mongoose 162
Summary 166

Lesson 16 Capstone: Saving user subscriptions 167
Setting up the database 168
Modeling data 168
Adding subscriber views and routes 171
Summary 173

Unit 4

BUILDING A USER MODEL 175

Lesson 17 Improving your data models 177
Adding validations on the model 178
Testing models in REPL 182
Creating model associations 184
Populating data from associated models 188
Summary 192

Lesson 18 Building the user model 193
Building the user model 194
Adding CRUD methods to your models 199
Building the index page 202
Cleaning up your actions 205
Summary 206

Lesson 19 Creating and reading your models 208
Building the new user form 209
Creating new users from a view 211
Reading user data with show 214
Summary 218

Lesson 20 Updating and deleting your models 219
Building the edit user form 220
Updating users from a view 223
Deleting users with the delete action 226
Summary 229

Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine 230
Getting set up 231
Building the models 231

xiContents
Creating the views 237
Structuring routes 242
Creating controllers 243
Summary 247

Unit 5

AUTHENTICATING USER ACCOUNTS 249

Lesson 22 Adding sessions and flash messages 251
Setting up flash message modules 252
Adding flash messages to controller actions 254
Summary 258

Lesson 23 Building a user login and hashing passwords 260
Implementing the user login form 261
Hashing passwords 265
Adding validation middleware with express-validator 269
Summary 272

Lesson 24 Adding user authentication 274
Implementing Passport.js 275
Modifying the create action to use passport registration 279
Authenticating users at login 280
Summary 284

Lesson 25 Capstone: Adding user authentication to Confetti Cuisine 285
Getting set up 286
Creating a login form 286
Adding encryption with Passport.js 288
Adding flash messaging 289
Adding validation middleware with express-validator 291
Adding authentication with Passport.js 293
Logging in and out 294
Summary 296

Unit 6

BUILDING AN API 297

Lesson 26 Adding an API to your application 299
Organizing your routes 300
Creating an API 304

xii Contents

Calling your API from the client 306
Summary 310

Lesson 27 Accessing your API from your application 311
Applying an API namespace 312
Joining courses via modal 315
Creating an API endpoint to connect models 318
Summary 321

Lesson 28 Adding API security 323
Implementing simple security 324
Adding API tokens 325
Using JSON web tokens 328
Summary 333

Lesson 29 Capstone: Implementing an API 334
Restructuring routes 335
Adding the courses partial 338
Creating the AJAX function 339
Adding an API endpoint 341
Creating an action to enroll users 344
Summary 347

Unit 7

ADDING CHAT FUNCTIONALITY 349

Lesson 30 Working with Socket.io 351
Using socket.io 352
Creating a chat box 355
Connecting the server and client 357
Summary 360

Lesson 31 Saving chat messages 361
Connecting messages to users 362
Displaying user names in chat 366
Creating a message model 369
Summary 372

Lesson 32 Adding a chat notification indicator 373
Broadcasting to all other sockets 374
Creating a chat indicator in navigation 376
Summary 378

Lesson 33 Capstone: Adding a chat feature to Confetti Cuisine 379
Installing socket.io 380
Setting up socket.io on the server 380

xiiiContents
Setting up socket.io on the client 381
Creating a Message model 384
Loading messages on connection 386
Setting up the chat icon 387
Summary 388

Unit 8

DEPLOYING AND MANAGING CODE IN
PRODUCTION 389

Lesson 34 Deploying your application 391
Preparing for deployment 392
Deploying your application 394
Setting up your database in production 396
Summary 397

Lesson 35 Managing in production 398
Loading seed data 399
Linting 401
Debugging your application 404
Summary 407

Lesson 36 Testing your application 408
Basic testing with core modules 409
Testing with mocha and chai 411
Testing with a database and server 415
Summary 419

Lesson 37 Capstone: Deploying Confetti Cuisine 420
Linting and logging 421
Preparing for production 421
Deploying to Heroku 422
Setting up the database 424
Debugging in production 427
Summary 427

Appendix A JavaScript syntax introduced in ES6 429
Appendix B Logging and using Node.js global objects 436

Index 439

Foreword
I was fortunate enough to be among a crowd of about 250 folks who gathered at the first
JSConf.EU conference in Berlin in late 2009, when a relatively unknown-at-the-time
speaker stood up and introduced himself as Ryan Dahl. Over the next hour, he pro-
ceeded to deliver a simple, no-frills talk with dry humor and little affect—not exactly
the kind of talk you’d expect to receive a rousing audience response.

But we all jumped to our feet and gave him a standing ovation, for multiple minutes.
Why? Dahl had just changed the game for all JavaScript developers, and we knew it. He
officially launched Node.js to the world. Nothing in JS would ever be the same again.

In the eight or so years since, Node.js has skyrocketed to practical ubiquity, not only
within the JavaScript world, but also far beyond. Node.js represents a powerful,
respected, first-class, enterprise server-side platform for global-scale web applications.
It sparked an explosion of interest in embedding JS in practically any computing or elec-
tronic device you can imagine, from robots to television sets to light bulbs.

The Node.js ecosystem is built around hundreds of thousands of published module
packages in npm—the largest code repository ever for any programming language by
more than 6 times. That statistic doesn’t include the countless privately installed pack-
ages comprising billions of lines of JavaScript.

With the enormous momentum around and attention to Node.js, it can be painfully
daunting for someone who wants to learn this ecosystem to figure out where to start.

I think that’s why I appreciate this book so much. From the first page, it lays out a
refreshingly down-to-earth, pragmatic, clear path that shows you how to navigate your
way into Node.js. You won’t find unnecessary historical or philosophical fluff here; the
book jumps right into showing you how to install and configure Node.js so that you can
get to the code as quickly as possible.

The book is divided into short, digestible lessons. Each section is clearly organized,
ensuring that you won’t get lost in the weeds and lose sight of the bigger picture.

xvi Foreword
Reading this book is like having Jonathan sit next to you patiently while you dig into
Node.js, prompting you with enough challenges to get you to the next section review.

When you’re about 50 pages into the book, you’ll look up and realize that you’ve
already written a web server that responds to web requests. The feeling of having total
control of your application, with no off-limits black boxes, is so empowering that you
may want to give yourself a standing ovation, too!

As you progress through the book’s lessons (almost 40 in total), you methodically
expand the scope of your Node.js programming capabilities into API handling, data-
bases, authentication, and more. This book lays out a solid checklist of what you need to
learn and master to solidify Node.js as a vital tool in your programming toolbox.

That’s what Node.js always has been to me, from the moment I first heard Ryan talk
about it to the present. Node.js is a powerful tool that gives me, a JavaScript developer,
the capability to own my entire application. I think that you’ll find this book to be the
guide you’ve been looking for as you cross over from knowing about Node.js to know-
ing how to wield it effectively as your favorite web application tool.

Jonathan’s ready for you to begin this journey with him in Lesson 0, so what are you
waiting for? Get programming with Node.js!

KYLE SIMPSON, GETIFY

OPEN WEB EVANGELIST

Preface
Nearly a quarter century after the internet became a public-facing tool for the world to
use, the tech job market has never been larger. From new startups to large corporations,
nearly all entities are looking for an online presence or, even better, sophisticated tools
to push their brand and products. Luckily, you don’t need a computer-science degree or
a master’s degree in data science to meet the needs of the market these days. Moreover,
most of the skills you need to build these tools, you can acquire at little to no cost
through open-sourced technologies.

During my time at The New York Code + Design Academy, instructing intensive
courses on web development and building new curriculums, I recognized the strength
of a full stack education. I’ve taught students with a variety of backgrounds, most of
them without development experience, to realize their programming visions in as little
as three months. So why not you?

I wrote this book to manifest the stages of learning web development in Node.js. Each
unit guides you through a core concept in web development, with instructions on how
to apply code and build your own application. I present the building blocks of a web
server and show you how to piece together the components that your favorite web
applications use. Using the same boot-camp learning strategy, I walk you through the
development of a web application with dynamic web pages, user accounts, a database,
and a live chat feature. By the end of the book, you’ll have a fully functioning applica-
tion published on the internet. The work you produce from this book could spark ideas
for a new application, become the start of a product for your business, or showcase your
development skills as a personal portfolio piece. However you choose to use this book,
you can find everything here that you need to get programming with Node.js.

My goal is to make the learning process less intimidating and more exciting. The frus-
tration that many new engineers feel is twofold: resources are scattered, and they don’t
always deliver the complete picture. Node.js is a relatively new platform for develop-
ment, and although the online community can answer common questions, new web
xvii

https://github.com/JonathanWexler/get-programming-with-nodejs

xviii Preface
developers may struggle to find full ingredient lists and recipes for building a complete
application from scratch. This book covers the surface aspects and a little extra.

Be ambitious while tackling the exercises in this book, and be patient while understand-
ing the core concepts. Ask questions where you get stuck, and communicate with other
readers through the book’s forum. (They’ll be hitting the same walls as you.) With a little
practice and determination, you’ll soon be demonstrating your Node.js talent to the sea
of developer-hungry organizations.

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://atom.io/
https://atom.io/
https://atom.io/
https://www.google.com/chrome

Acknowledgments
I’m grateful for all the support I received in making this book possible. First, I’d like to
thank Manning Publications for choosing me to curate and write its Get Programming
book on Node.js. In particular, I want to thank my development editors for guiding the
book through its many daunting phases. Dan Maharry, you were a great resource in
preparing me for the task. Toni Arritola, your push to fill the book’s gaps and help me
meet important deadlines was the driving force behind its completion. I thank Srihari
Sriharan, the senior technical proofreader, and German Frigerio, the technical proof-
reader, for making sure all the code examples were properly formatted and ran as
intended. Also, to those who volunteered to review my book and offer the feedback that
ultimately improved my final product, I’m appreciative for your time and comments:
Ahmed Chicktay, Aindriu Mac Giolla Eoin, Alberto Manuel Brandão Simões, Alper
Silistre, Barnaby Norman, Bryce Darling, Dan Posey, Daniela Zapata, David Pardo,
Dermot Doran, Edwin Boatswain, Filipe Freire, Foster Haines, Jeremy Lange, Joseph
White, Madhanmohan Savadamuthu, Michael Giambalvo, Michal Paszkiewicz, Patrick
Regan, Rafael Aiquel, Roger Sperberg, Ron Lease, Ronald Muwonge, Vincent Zhu, Vini-
cius Miana Bezerra, and Vipul Gupta.

Thank you to everyone who helped propel my development and teaching career. Each
of you instilled the confidence I needed to focus on the vision of this book and deliver a
product that reflects the work ethic, teaching strategies, and development techniques
we’ve evolved together over the years.

Thank you to The New York Code + Design Academy (NYCDA) and my former stu-
dents for promoting this book and supporting me throughout its development. To all
my students: I’m proud of what you’ve accomplished, and only through your success
have I been convinced that this book can help others change careers and reach new
development milestones.

Thank you, Zach Feldman, for initially hiring me, introducing me to the coding boot-
camp world, and also for continuing to be a great friend, resource, and collaborator.
xix

https://forums.manning.com/forums/get-programming-with-node-js
https://forums.manning.com/forums/get-programming-with-node-js
https://forums.manning.com/forums/get-programming-with-node-js
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

xx Acknowledgments
Thank you to everyone on the NYCDA development team for trusting my leadership
and providing a fun, reliable work environment for me. Thank you, Sharon Kass, for
your unconditional friendship and inclusiveness starting from my first day at
Bloomberg LP.

I want to thank my family for their support of my career choices and for inspiring ambi-
tion over challenges big and small. Thank you, Dad and Eema, for supporting creative
expression and encouraging me to do what makes me happy. Thank you, Kimmy and
Matt, for helping me understand the legal side of this business, and Noa and Emmanu-
elle, for being my youngest reviewers and future students. Thank you, Jessie, for not
losing my ski poles.

Thank you to my fellow developers and to the Philadelphia and New York tech commu-
nities. Thank you, Kevin Skogland, whose teaching style through his tutorial series
influenced the way that I answer technical questions; thank you also for your friendship
and engagement in my former classes. Thank you, Kyle Simpson, for your unique per-
spective on teaching and understanding JavaScript and for your support and willing-
ness to review my book’s draft. Thank you to those who reviewed earlier drafts of this
publication and to my friends Michael “Sybles” Sklaroff, for checking in on me through
development; Gurbakshish Singh, for your code suggestions; and Violeta Soued for per-
suading me to pursue a computer science degree in the first place.

Last, thank you to everyone who purchases this book. I know that you can find a lot of
resources online and in print to learn to program with Node.js, and I thank you for
showing interest in learning through my teaching style. I hope that I get to hear from
many of you, in compliments or critiques, as well as learn how this book helped you
reach new programming revelations and career achievements. As you read, keep this
sentiment in mind: we take on challenges not to tell others that we did, but to remind
our future selves that we can.

About this book
Before you get started, I’ll discuss Node.js and what you’ll learn in this book.

What is Node.js?

According to the Node.js website (https://nodejs.org/en/about/), Node.js is “an asyn-
chronous event driven JavaScript runtime.” Let me break down that definition. Node.js
reads, or interprets, your JavaScript code. You write code in JavaScript and then use
your version of Node.js to run the code. How does that process work, exactly?

The Node.js runtime uses a JavaScript engine, a program that reads JavaScript code and
executes its commands on the fly. Specifically, Node.js uses Google’s Chrome V8 Java-
Script engine, an open-source interpreter that converts JavaScript to machine code—
code that your computer can readily execute. This feature is useful because Google
often updates and monitors its JavaScript engine for use in its Chrome web browser,
where JavaScript engines traditionally run. Node.js adapts this engine to provide an
environment for you to run JavaScript code that doesn’t require a web browser. Now,
instead of reserving JavaScript for scripting on web pages, you can use it to build an
entire application on the server (see unit 1).

Defining the terms asynchronous and event driven is important, as they’re fundamental
elements of how JavaScript is used nowadays. Understanding their impact on Node.js
applications is more important, however.

When a JavaScript application is launched, all the code in that application is loaded into
memory. Every variable, function, and block of code is made available to the applica-
tion, whether or not the code is executed right away. Why might certain code not run
right away? Although defining and assigning a global variable may give that variable a
value as soon as the application is launched, not all functions run unless they have a rea-
son to do so. Some of these functions come in the form of event listeners—function
objects that run a corresponding callback function when an event with a matching name
xxi

https://nodejs.org/en/about/

xxii About this book
is emitted. These functions sit around in memory until event emitters—objects that fire
event names—trigger the event listeners to run their callback functions.

In this way, Node.js can run applications in a particularly fast, efficient manner.
Whereas other platforms may need to recompile or run all of their code every time a
request to run a certain command is made, Node.js loads JavaScript code only once, and
it runs the functions and corresponding callback functions only when triggered to do so
by events. JavaScript as a language supports event-driven development but doesn’t
require it. Node.js takes advantage of this architecture by promoting the use of events as
a way for the server to execute most of an application’s tasks, using the Node.js event-
loop (see unit 1).

Last, why does it matter that Node.js is asynchronous? Well, JavaScript, by nature, is
asynchronous, which means that tasks don’t necessarily run sequentially. If I want to call
a function, log a comment, and change the background color of my web page, all these
commands could potentially run instantaneously, but they won’t necessarily run in
order. In fact, it’s likely that my comment will be logged before anything else happens.

The code in the listing that follows demonstrates this phenomenon. Although I call my
callMe function first, change the background color of my web page to green next, and
log a comment at the end, the order of events is reversed when I run this code in my
web browser’s console.

callMe();
document.body.style.background = "green";
console.log("my comment");

function callMe(){ (4)
 setTimeout(function(){
 console.log("function called");
 }, 1000);
}

Having an asynchronous runtime environment is great for web applications. Think
about every time you’ve visited a website and the average time it took to load the page
you requested. Suppose that you placed an order on Amazon.com and that while the
order was processing (verifying your name, credit card information, shipping address,
and other security measures), no other visitors to Amazon.com could load their web
pages. This system would imply that the website used a single application process

Listing Example of asynchronous flow

Call the callMe function. Change the web page
background style to green.

Log a comment
to the console.

Define the callMe
function.

xxiiiAbout this book
or thread (an operating-system resource dedicated to running a series of commands,
handling every single task, and blocking other tasks from completion). Other web appli-
cations handle this scenario by creating new processes or threads, building bigger and
more powerful machines to handle an influx of task requests.

Node.js requires only one executing thread (used by the event-loop), which can use
other threads only when necessary for larger tasks. As a result, a Node.js application
needs less processing power for creating and running tasks to completion because com-
puter resources aren’t necessarily assigned and dedicated to each incoming task. In the
Amazon example, Node.js might use its main thread to handle your request to process
an order, send your information off to be verified, and continue to process other users’
requests to load web pages. When your order is processed, an event is emitted, trigger-
ing the main thread to let you know that your order was placed successfully. In other
words, Node.js uses asynchrony to run parts of tasks and continue to other tasks before
the first task completes. Instead of waiting for an operation from start to finish, Node.js
registers event listeners, which are called when the task that was sent off is complete.

Ultimately, Node.js offers you a way to write JavaScript code without a web browser,
and you can use this environment to design all types of applications. Most Node.js
applications are web applications that use its asynchronous, event-driven nature to offer
fast-loading, responsive web content.

In this book, you explore the architecture of a Node.js web application by evolving a
basic JavaScript web server, using only the built-in Node.js tools, into a fully dynamic
web application built with external open-source code libraries called Node.js pack-
ages (see unit 1).

Goals of the book

Node.js is only one of many platforms on which you can build an application. Because
of its design, Node.js is particularly useful for building web applications—applications
that handle requests over the internet and provide processed data and views in return.
For many of you, the concept of building an application purely in JavaScript is both new
and your ultimate goal. For others, this book is your introduction to web development.
You’ve never built or fully understood the inner workings of a web application, and
you’ve come here to learn how everything fits together.

Because the focus of this book is teaching web development through Node.js, I’m going
to put a lot of focus on how a web application is architected, including initial setup, the

xxiv About this book
ways dynamic pages are created, how a database is connected, and ways of preserving a
user’s activity on your application. The goal is to clearly explain these concepts through
examples and code that you can use and modify to create your own applications.

Who should read this book

This book is intended, first and foremost, for anyone who’s interested in learning about
Node.js and the tools required to build a web application. If you have some familiarity
with JavaScript but little experience with web development, this book is for you.

Because this book is project-based, readers need to be proficient in navigating their com-
puters, typing, and working with a web browser. No experience in web-connected
applications is expected. Readers with a background in backend or service technologies
are good candidates for this book. New developers should have some familiarity with
the following technologies:

 JavaScript
 HTML
 CSS
 Terminal/command line

Knowledge of JavaScript ES6 is beneficial but not required for this book.

How this book is organized: a road map

This book is divided into nine units. Each unit teaches a group of related concepts and
builds on the preceding unit toward a more-complete, robust application. Unit 0 guides
you through the Node.js installation and setup process, as well as the installation steps
needed for other software used in this book. You continue from there to learn about
some fundamental tools used in the Node.js core installation, including tools that come
prepackaged with your installation of Node.js. In lesson 1, you start writing your first
lines of JavaScript, which are run in the Node.js read-eval-print-loop (REPL), a window
within your terminal window in which you can run JavaScript code. You end the unit by
completing a few more exercises in the REPL environment and learning about Node.js
modules.

Unit 1 jumps into building your first web server. The web server is the backbone of your
web application, as it handles incoming requests for data to be processed and outgoing
responses. Here, you learn how to initialize your Node.js application properly and load

xxvAbout this book
your first web page. Lessons 5 and 6 demonstrate how to use your web server to load
images and other file types from your server. These lessons cover some of the funda-
mental concepts of interaction on the web. The unit concludes with your first capstone
exercise: an opportunity to tie together the concepts you’ve learned by building your
first web application.

The capstone exercise in unit 1 carries over into unit 2, where you learn about Express.js,
a web framework. In this unit, you learn how web frameworks help speed up the devel-
opment process by implementing much of the code you wrote in unit 1. Lessons 9 and
10 cover how to use Express.js to architect a standard web application, and lesson 11
teaches you how to handle errors that occur on your server. Unit 2 concludes with your
second capstone exercise, in which you re-create your web application by using the
Express.js web framework.

Unit 3 shows you how to save application data through the minimum database theory
needed to connect a database and start persisting your application’s data. In this unit,
you learn about MongoDB, a leading database used in Node.js applications. You start
by getting familiar with the MongoDB environment, creating database collections and
documents. Then you connect your database to your application with the help of a
Node.js package called Mongoose. Lessons 14 and 15 teach you how to organize your
data in Mongoose models as one part of the model-view-controller (MVC) architecture
taught in this book. The unit ends with an opportunity to add a database and models to
your capstone project.

Unit 4 builds on the concept of models by discussing the standard functionality
expected of your models. In this unit, you learn about create, read, update, and delete
(CRUD) functions and see why they’re helpful to have for the major models in your
application. At this point, you develop the ability to create and modify data in your
application from the web browser. This unit also helps you complete some of the code
needed in your application controllers and shows you how to link web forms to your
application’s server and models. The unit concludes with a capstone exercise in which
you build the CRUD functions for your user model.

Unit 5 introduces user authentication and the code you need to allow unique users to
sign up for and log in to your application. In lesson 22, you add sessions and cookies to
your application to allow information to be shared between the application server and
your users’ computers. This technique helps preserve a user’s state while they navigate
your application. Next, you learn how to encrypt your user passwords. This lesson
guides you through the standard security practices expected in protecting your applica-
tion data. Last, you set up an authentication system to analyze and approve user data

xxvi About this book
and then apply these techniques to your capstone project. By the end of this unit, you’ll
have an application in which you can selectively display content to logged-in users.

Unit 6 focuses on an often-under-taught element of application development: applica-
tion programming interfaces (APIs). In lesson 26, you’re introduced to some ways that
you can extend your application to serve data in other ways beyond a web page. These
alternative data avenues enable your application to connect with external services that
might use your application’s data. You might later build a mobile app or Amazon Alexa
skill that needs to use your application’s data but can’t read a normal web page’s con-
tents, for example. A useful API can deliver that data in multiple data formats. In les-
sons 27 and 28, you build out your application’s API and use it within the application by
creating a pop-out window with a list of data accessed through an API endpoint. At the
end of the unit, you secure your API by creating an API token system and applying the
same techniques to your capstone project.

When the core of your application is complete, you move to unit 7, where you learn
about building a live-chat feature in your application. In Node.js, you use Socket.io, a
library that connects to your application’s normal web server and enhances it to allow
open streams of communication among users. The lessons in this unit break down the
steps you need to take to set up Socket.io and (later) to associate messages with users
and save those associations in your database. By the end of the unit, you have a fully
functioning chat system running in your capstone project.

In unit 8, you configure your application to get deployed online. Up to this point, you’ve
viewed your work on your own machine, with no opportunity for external users to sign
up for and use your application. In lesson 34, you save your application code to Git and
upload the first live version of your application to Heroku. In this lesson, you’re pro-
vided a URL with which you can share your application with family members, friends,
and co-workers. Lessons 35 and 36 introduce some ways to clean your application code
and monitor your application as it begins its journey on the internet. In the final lesson,
I introduced some ways in which you can test your code. Testing is an important ele-
ment in the development process; it may ensure that your code continues to function as
expected as you make changes and add features.

About the code

This book contains many examples of source code, both in numbered listings and inline
with normal text. In both cases, source code is formatted in a fixed-width font like this
to separate it from ordinary text. Sometimes, code is also in bold to highlight code that

xxviiAbout this book
it has changed from previous steps in the chapter, such as when a new feature adds to
an existing line of code.

In many cases, the original source code has been reformatted; I’ve added line breaks
and reworked indentation to accommodate the available page space in the book. In rare
cases, even reformatting wasn’t enough, so some listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed from
the listings when the code is described in the text. Code annotations accompany many
of the listings, highlighting important concepts.

All code examples in this book are available for download from the Manning website
at https://www.manning.com/books/get-programming-with-node-js and from GitHub
at https://github.com/JonathanWexler/get-programming-with-nodejs. The code exam-
ples are organized by lesson and unit. Within each lesson’s folder, you’ll find a start
folder, containing the code you can use and build on from the beginning of that lesson,
and a finish folder, which contains the final working code for that lesson. Any future
updates to this book’s code will be added to lesson-specific folders titled updated.

Software requirements

For this book, you need a computer with at least 500 MB of RAM and 500 MB persistent
memory. Most modern computers come with plenty of space and the specifications
needed to run a Node.js application.

Node.js supports 32-bit and 64-bit Windows and Linux installations and the standard
64-bit Mac OS installation, as specified at https://nodejs.org/en/download/.

You also need a text editor to write your code. I recommend installing the Atom text edi-
tor, available for free at https://atom.io.

You need a web browser to test your web application. I recommend installing the Google
Chrome browser, which is available for free at https://www.google.com/chrome

You also need to install the Heroku command-line interface and Git on your machine
(instructions listed in unit 0).

liveBook discussion forum

Purchase of Get Programming with Node.js includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the

https://atom.io
https://www.google.com/chrome
https://www.manning.com/books/get-programming-with-node-js
https://github.com/JonathanWexler/get-programming-with-nodejs
https://nodejs.org/en/download/

xxviii About this book
forum, go to https://livebook.manning.com/#!/book/get-programming-with-node-js/dis-
cussion. You can also learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
isn’t a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest that you
try asking the author some challenging questions lest his interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website as
long as the book is in print.

https://livebook.manning.com/#!/book/get-programming-with-node-js/discussion
https://livebook.manning.com/#!/book/get-programming-with-node-js/discussion
https://livebook.manning.com/#!/discussion

About the author
Jonathan Wexler is a Philadelphia-native software engineer with
degrees in neuroscience and computer science from Brandeis Uni-
versity. With years of experience building applications and teach-
ing about web development, Jonathan has helped hundreds of
clients and students unlock their technical potentials. Jonathan
has partnered with organizations in Philadelphia and New York
City to use technology to bridge social and economic gaps with
organizations around the world. From building computer games
for schools in India to leading the development team at The New

York Code + Design Academy and software engineering for Bloomberg LP, Jonathan
hopes to continue to adapt the best practices in program design and share his impres-
sions of the path to development success.
xxix

1

U
N

IT
 0

Getting set up

Before I introduce you to working with Node.js as a
web-development platform, you need to prepare
your environment (the computer on which you’ll be
developing). In this unit, you’ll install all the tools
you need to get started with Node.js. These tools
help you write the code to get your applications
working and eventually running on the internet. By
the end of this unit, you’ll have installed everything
you need to get started coding and running a
Node.js application. Toward this goal, unit 0 covers
the following topics:

 Lesson 0 discusses what you’re going to
learn in this book and why it’s important. I
introduce you to Node.js, giving you a little
background and discussing why it’s a good
platform for web development. This lesson
also covers what you should expect to get
out of this book. I talk about some of the pre-
requisites and things to keep in mind as you
work toward a robust web application.

 Lesson 1 walks you through the installation
process for each tool and library of code
you’ll be using to start the next unit.
Although installing Node.js is the focus of
this lesson, setting up your computer as a
development environment takes a few more
steps.

2 Unit 0 Getting set up
 Lesson 2 introduces your first Node.js application and a few tests to ensure that
you have a compatible version of Node.js running on your computer.

I begin by talking about Node.js.

0LESSON
SETTING UP NODE.JS AND THE
JAVASCRIPT ENGINE

In this lesson, you get an overview of what you’ll be learning in this book and why it’s
important. Whether you’re new to web development or a seasoned developer looking to
build better applications, this lesson acts as a starting guide for entering the world of
Node.js.

This lesson covers
 Reviewing what you’re going to learn
 Understanding Node.js
 Learning why we develop in Node.js
 Preparing yourself for this book

0.1 What you’re going to learn

The goal of this book is to teach you how to build web applications on a platform called
Node.js, using the JavaScript language. Starting with this lesson, each unit aims to build
on the concepts and development skills of the last.

As you work through each lesson, you pick up new web development concepts, termi-
nology, and coding skills that will help you build a web application. Although the book
3

4 Lesson 0 Setting up Node.js and the JavaScript engine
revolves around using Node.js, many of the concepts taught in the following units
apply to other leading platforms and programming languages.

NOTE Web development skills are different from typical software engineering or com-
puter theory knowledge. In addition to teaching coding concepts, this book helps explain how
the internet works beyond your project. I’ll explain as much as I can to make things easier.

Following is an overview of what you’ll learn in each unit:

 Unit 0 gives you the background knowledge you need to get started and walks
you through the installation of Node.js and development tools.

 Unit 1 covers some basic web development concepts and provides guiding steps
toward building your first web application in Node.js from scratch.

 Unit 2 introduces you to Express.js, a web framework that most Node.js develop-
ers use to build applications. You learn what Express.js offers, how it works, and
what you can do to customize it. In this unit, you also learn about the model-
view-controller (MVC) application architecture pattern.

 Unit 3 guides you through connecting your application to a database. This
unit also helps you install a few new tools and structure your database with
MongoDB.

 Unit 4 teaches you about building data models in your application, where CRUD
operations are performed to create, read, update, and delete data from the data-
base.

 Unit 5 helps you build code to represent user accounts in an object-oriented
structure. In this unit, you learn about securing your data and building a login
form for new users.

 Unit 6 introduces building an application programming interface (API). You
learn what constitutes an API, how to secure it, and how to design it by using the
REST architecture.

 Unit 7 invites you to build a live chat system into your application. This unit
introduces polling, web sockets, and broadcasting data with Socket.io, a library
that mainstream applications use to get data to their users faster and more effi-
ciently.

 Unit 8 guides you through the deployment process. This unit helps you set up
the necessary tools and accounts.

To start, let’s talk a bit about exactly what Node.js is.

5Understanding Node.js
Understanding Node.js0.2

Node.js is a platform for interpreting JavaScript code and running applications. Java-
Script has been around for a couple of decades; with every improvement, it has shifted
further from being a client-side scripting language to a full-fledged server-side pro-
gramming language for managing data.

Because Node.js is built with Google Chrome’s JavaScript engine (a tool used to inter-
pret the JavaScript language into meaningful computer commands), it’s considered to
be powerful and able to support JavaScript as a server-side language. JavaScript can be
used to both assist in web-page (client-side) interactions and handle incoming applica-
tion data and database communications. (The latter jobs have often been reserved for
languages such as C, Java, Python, and Ruby, among others). Developers can now com-
mit to mastering JavaScript to build a complete web application instead of having to
master multiple languages to accomplish the same task.

Client-side versus server-side
As a general overview, web development can largely be broken into two categories:

 Client-side—(front-end) refers to the code you write that results in something the
user sees in his web browser. Client-side code typically includes JavaScript used
to animate the user experience when a web page is loaded.

 Server-side—(back-end) refers to code used for application logic (how data is
organized and saved to the database). Server-side code is responsible for
authenticating users on a login page, running scheduled tasks, and even ensur-
ing that the client-side code reaches the client.

In the following figure, the client represents the browser on which a user may view your
application. The server is where your application runs and handles any data submitted
by the user. Also, the server often renders the user interface in many cases in which the
client expects one.

NOTE Application, as used throughout this book, refers to a computer program
written in a programming language and run on a computer. This book focuses on
web applications written in JavaScript and run with Node.js.

6 Lesson 0 Setting up Node.js and the JavaScript engine
Node.js operates on an event loop using a single thread. A thread is the bundle of com-
puting power and resources needed for the execution of a programmed task. Generally,
a thread is responsible for starting and completing a task; the more tasks needed to run
simultaneously, the more threads are needed. In most other software, multiple tasks are
matched and handled by a pool of threads that the computer can offer at the same time
(concurrently). Node.js, however, handles only one task at a time and uses more threads
only for tasks that can’t be handled by the main thread.

This process may sound counterintuitive, but in most applications that don’t require
computationally intensive tasks (tasks requiring a lot of processing power from your
computer), this single thread can quickly manage and execute all the tasks. See a simpli-
fied diagram of the event loop in figure 0.1. As tasks are prepared to run, they enter a
queue to be processed by specific phases of the event loop.

As its name implies, the Node.js event loop cycles forever in a loop, listening for Java-
Script events triggered by the server to notify of some new task or another task’s

(continued)

You’ll hear these two terms used a lot in application development, and because Java-
Script has been used for both types of development, the line separating these two worlds
is disappearing. Full stack development, using JavaScript, defines this new development
in which JavaScript is used on the server and client, as well as on devices, hardware, and
architectures it didn’t exist on before.

1. The client represents the browser on
which a user may view your application.

Client Server

Client-server interaction

2. The client makes requests to the server, letting
it know what data it would like to send or receive.

3. The server is where your application runs
and handles any data submitted by the user.

4. The server responds to the client
by loading a page or sending data.

Client-server interaction

7Understanding Node.js
completion. As the number of tasks increases, tasks line up in a queue to be incremen-
tally processed by the event loop. You don’t code with this fact in mind, though. You
write your code by using asynchronous conventions, and the Node.js architecture
schedules task handling for you behind the scenes. As a result, Node.js has become pop-
ular for creating real-time applications that persistently listen for data being sent back
and forth.

You can think of the event loop as being like an office manager. The office manager’s
role is to handle incoming messages, job assignments, and office-related tasks. The
office manager could have a long list of tasks to complete, from delegating the creation
of complete financial reports to answering the phone and putting up the office-party
decorations. Because some tasks take more time than others, the office manager isn’t
obligated to complete any individual task before handling a new one. If she’s setting up
for a party and the phone rings, for example, she can stop setting up to answer the call.
Better yet, she can answer the call and transfer the caller to another employee so that she
can go back to decorating.

Similarly, the event loop handles a series of tasks, always working on one task at a time
and using the computer’s processing power to offload some larger tasks while the event
loop shortens the list of tasks. On most other platforms, incoming tasks are assigned to

Timers

PollCheck

Callbacks

Callbacks

Task 1

1. Your Node.js application will prepare the
context of your application and configurations.

2. As tasks build up, they are
queued and enter the poll
phase for processing.

3. Callbacks from the queue will run at this
stage in the loop. Additional callbacks
created here go back in the task queue.

4. Near the end of the loop,
operations specified to run
immediately run here.

5. Tasks set in a time
interval or timeout
will get evaluated
at this phase.

Node.js Event-loop

Task 2 Task 3 Task 4

Figure 0.1 Simplified model of the Node.js event loop

8 Lesson 0 Setting up Node.js and the JavaScript engine
new processes, creating a new event loop for each task. Increasing the number of tasks,
however, is like increasing the number of employees in a finite space. You start to run
into new issues such as cost, computing power, and shared resources. (What would you
do if two employees need to use the phone at the same time, for example?)

In this book, I further explore some Node.js strengths in building a web application.
Before I dive deeper, however, let’s talk about why Node.js is beneficial.

Processes and threads
It’s important to note that the Node.js event loop relies on a single thread to manage all
its tasks, but it doesn’t necessarily use that thread only to run each task to completion.
In fact, Node.js is designed to pass larger tasks to the host computer, and the computer
may create new threads and processes to operate those tasks.

A thread is an allocated bundle of computer resources used to run a series of instruc-
tions in a task. Usually, the tasks handled by threads are simple and fast. For this reason,
the Node.js event loop needs only one thread to act as the manager of all other tasks.
Threads are made available through computer processes, and some more-intensive
tasks require their own process to run.

A process is also a bundle of computing power and resources used for a task’s execution,
though usually for larger tasks than those handled by threads. A process must exist to
create a thread, which implies that each Node.js application runs on its own process.

Even though Node.js may be single-threaded, you can have multiple instances of pro-
cesses running in parallel and processing incoming requests and tasks. For this reason,
Node.js scales well; it schedules tasks asynchronously, using additional threads and pro-
cesses only when necessary instead of generating new processes for every task. As
more processes are needed to handle your task list, demand on your computer
increases. Node.js works best to minimize the number of concurrent processes.

You may hear the terms thread and process in conjunction. For this book, you only need
to know that Node.js depends on a single task handler at any given time. For more infor-
mation on threads and processes in Node.js, read the article on Node.js scalability at
https://medium.freecodecamp.org/node-js-child-processes-everything-you-need-to-know-
e69498fe970a.

https://medium.freecodecamp.org/node-js-child-processes-everything-you-need-to-know-e69498fe970a
https://medium.freecodecamp.org/node-js-child-processes-everything-you-need-to-know-e69498fe970a

9Why learn to develop in Node.js?
Why learn to develop in Node.js?0.3

It’s likely that you’ve picked up this book to become a better programmer and to build a
web application, which is also the main reason you’d use Node.js and get better at cod-
ing in JavaScript.

Plenty of other options, such as Ruby on Rails and PHP, could help you build an appli-
cation that’s indistinguishable to a user from a Node.js application. Consider the follow-
ing reasons to learn Node.js instead:

 You can focus on JavaScript as the core language in development instead of bal-
ancing multiple languages to keep your application afloat.

 If you want to stream data continuously or have some chat functionality, Node.js
has gained prominence over other platforms.

 Node.js is backed by Google’s V8 JavaScript interpreter, meaning that it’s widely
supported and expected to grow in performance and features, and won’t go
away soon. Visit http://node.green/ to see what features are supported by each
version of Node.js.

 Node.js has gained a lot of popularity in the web development community.
You’re likely to meet and get support from other developers who may have been
developing with Node.js for up to five years. Additionally, more supportive,
open-source tools are now being built for Node.js than for other, older platforms.

 More jobs are available for developers who have concrete JavaScript skills. You
can apply for front-end or back-end development positions when you know
Node.js.

If you’re trying to enter the web development world as a new programmer, or if you’ve
developed software before and are looking for the new thing that everyone’s talking
about, Node.js is your platform of choice, and this book is your book.

Quick check 0.1 True or false: The Node.js event loop runs each task to completion before
handling the next task.

QC 0.1 answer False. The Node.js event loop removes tasks from a queue sequentially, but it may
offload the task to be handled by the machine on which the application is running or wait for certain
tasks to complete while handling new tasks.

http://node.green/

10 Lesson 0 Setting up Node.js and the JavaScript engine
0.4 Preparing yourself for this book

From the first unit in this book, you’re introduced to web development through the pro-
cess of building a basic web server in Node.js. As the book progresses, you’ll append
code to your application to complete a robust web application.

To prime yourself to learn these new topics, make sure that you go through each lesson
carefully and write all the code examples yourself. If you get into the habit of copying
and pasting code instead, you’ll likely run into some errors; more important, you won’t
learn the concepts.

Because JavaScript is an important prerequisite for this book, research best practices and
other common solutions to your problems online if you struggle through a task.
Throughout this book, you’ll find exercises and “Quick check” questions to test your
knowledge. (You completed your first “Quick check” in section 2.) At the end of each
lesson starting with lesson 3, expect a section called “Try this,” where you can practice
some of the coding concepts presented earlier in the lesson.

The exercises and capstone projects at the end of each unit mark milestones on your
way to creating a web application with all the bells and whistles.

Treat each unit like a course topic and each lesson as a lecture. You may find that some
lessons take longer to comprehend or apply in code than others. Take your time, but
also continually build your development skills through repetition and practice.

The goal of the book is to make you comfortable building a web application like the one
built throughout the capstone lessons. In these capstones, you build a web application
for a company called Confetti Cuisine, which offers cooking classes and allows users to
sign up, connect, and chat with one another about recipes. Try to follow the guidelines
of the capstone and redo part, or all, of the project after your first pass.

TIP Consider working through an exercise three times. The first time, follow the guide; the
second time, work with some reference from the guide; and the third time, work on your
own without any help. By the third time, you’ll have a concrete understanding of the concept
involved.

Most of the exercises in this book ask you to use your computer’s terminal (command
line). Node.js is a cross-platform tool—meaning that it can run on Windows, Mac, and
Linux machines—but I teach it from a UNIX perspective in this book. Windows users
can use their built-in command line to run Node.js but may find some of the terminal
commands to be different. As a result, I recommend that Windows users install Git
Bash, a terminal window where you can use UNIX commands and follow all the

11Summary
examples in this book. You can accomplish a lot, however, with the Node.js command-
line environment that comes with your Node.js installation. For information on install-
ing Git Bash, visit https://git-scm.com/downloads.

After completing each unit, look back at the progress you’ve made since the last cap-
stone exercise. By the end of unit 7, you’ll have built a complete web application with
Node.js.

I’ll remind you about the following items along the way, but you should keep them in
mind as you progress through this book:

 Source files are written in JavaScript and have a .js file extension.
 The main application file used in every example in the book is called main.js

unless otherwise specified.
 I recommend using an up-to-date Google Chrome browser for running book

exercises that require a web browser. You can download that browser from
https://www.google.com/chrome/browser/.

In the lessons I do my best to explain new terms and concepts tangential to the Node.js
learning experience. If you need more information on any topic mentioned in the book,
however, you can reference any of the following resources:

 HTML5 in Action by Rob Crowther, Joe Lennon, Ash Blue, and Greg Wanish
(Manning, 2014)

 CSS in Depth by Keith J. Grant (Manning, 2018)
 You Don’t Know JS: Up & Going (https://github.com/getify/You-Dont-Know-JS),

by Kyle Simpson (O’Reilly Media, 2015)
 ES6 in Motion (https://www.manning.com/livevideo/es6-in-motion), by Wes

Higbee

Summary

In this lesson, my objective was to teach you about the book’s structure, what Node.js is,
and why it’s important. I also talked about how you should approach this book. If you
treat this book as a course with subtopics and lectures, you’ll build your knowledge and
skills incrementally until you become a competent web developer. In the next lesson,
you install the tools that you need to get coding.

https://github.com/getify/You-Dont-Know-JS
https://git-scm.com/downloads
https://www.google.com/chrome/browser/
https://www.manning.com/livevideo/es6-in-motion

1LESSON
CONFIGURING YOUR ENVIRONMENT

In this lesson, you install all the tools you need to start building applications with
Node.js. You install a version of Node.js that’s compatible with the latest JavaScript ES6
updates. Next, you install a text editor—software through which you’ll write your
application’s code. Last, you give Node.js a test drive from your computer’s command-
line terminal by using a Node.js sandbox environment known as REPL.

This lesson covers

 Installing Node.js
 Installing a text editor
 Setting up SCM and deployment tools
 Working with the Node.js REPL in terminal

1.1 Installing Node.js

Node.js is growing in popularity and support. For this reason, new versions to down-
load are being deployed quite frequently, and it’s important to stay up to date with the
latest versions to see how they may benefit or otherwise affect the applications you’re
building. At this writing, the version of Node.js to download is 11.0.0 or later.
12

https://devcenter.heroku.com/articles/heroku-cli#macos
https://devcenter.heroku.com/articles/heroku-cli#macos
https://devcenter.heroku.com/articles/heroku-cli#windows
https://devcenter.heroku.com/articles/heroku-cli#windows
https://cli-assets.heroku.com/install-ubuntu.sh
https://cli-assets.heroku.com/install-ubuntu.sh

13Installing Node.js
NOTE The release of Node.js 8.8.1 comes with support for ES6 syntax. ES6 (ECMAScript
2015) is a recent update to JavaScript, with syntax improvements for defining variables,
functions, and OOP code. To keep up with updates to JavaScript, download the latest stable
version of Node.js as your development progresses.

You have a couple of ways to download and install Node.js, all of which are listed on the
Node.js main site, https://nodejs.org.

Because Node.js is platform-independent, you can download and install it on your Mac,
Windows, or Linux computer and expect full functionality.

The simplest way to install Node.js is to go to the download link at https://nodejs.org/
en/download/ and follow the instructions and prompts to download the installer for the
latest version of Node.js (figure 1.1).

Figure 1.1 Node.js installer page

Node Version Manager
Alternatively, you may want to use the Node.js Version Manager (NVM) to handle your
Node.js installation and manage one version or multiple versions of Node.js on your com-
puter. The benefit of using a version manager is that you can test newer versions of
Node.js as they’re released while still having older, more stable, versions installed in case
of compatibility issues. You can follow the installation instructions at https://github
.com/creationix/nvm or follow these steps on a UNIX machine:

1 Run curl -o https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install
.sh | bash in a new terminal window. You may need to quit and relaunch termi-
nal after this installation completes.

2 Run nvm list in a terminal window to see whether any versions of Node.js are
already installed on your computer.

https://nodejs.org/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh
https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh
https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm

14 Lesson 1 Configuring your environment
NOTE NVM doesn’t support Windows. You may work with one of two alternative version
managers: nvm-windows and nodist, which you can install by following the instructions
at https://github.com/coreybutler/nvm-windows and https://github.com/marcelklehr/
nodist, respectively.

When you install Node.js, you also get npm, the Node.js ecosystem of external libraries
(multiple files of code other people wrote) that can be imported into your future proj-
ects. npm is similar to pip in Python and gem in Ruby. You learn more about npm in
unit 1.

When the installer file is downloaded, double-click the file in your browser’s download
panel or your computer’s download folder. The installer opens a new window that
looks like figure 1.2 and writes all necessary files and core Node.js libraries to your sys-
tem. You may be asked to accept licensing agreements or give the installer permission to
install Node.js on your computer. Follow the prompts to click through the installation.

(continued)
3 Run nvm ls-remote in terminal to check what versions of Node.js are available to

install.
4 Run nvm install 11.0.0 in terminal to install the current Node.js version.
5 Run node -v in terminal to verify that you have version 9.3.0 installed.

If you’re comfortable with installing Node.js through NVM and without a graphical inter-
face to walk you through the process, this setup is right for you. When installation is com-
plete, don’t install Node.js again by using the other set of instructions in this lesson.

Figure 1.2 Node.js writing to
your machine

https://github.com/coreybutler/nvm-windows
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist

15Installing Node.js
Terminal and your PATH
You’ll be working mostly in your computer’s terminal, which is built-in software used
to navigate and run commands on your computer without a graphical interface. This
book teaches using UNIX terminal (Bash) commands. Those of you who are Windows
users can follow along by using Window’s CMD terminal window (but may need to
look up command equivalents throughout the book). You can reference the table at
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/
html/Step_by_Step_Guide/ap-doslinux.html, which compares Windows and UNIX com-
mands. To make things easier in Windows, you can download and install an additional
Bash terminal called Git Bash from http://git-scm.com/downloads.

Make a note of where your version of Node.js and npm are installed on your machine.
That information appears in the final window of the installer. The installer attempts to
add these directory locations to your system’s PATH variable.

PATH is an environmental variable—a variable that can be set to influence the behavior of
operations on your machine. Your computer’s PATH variable specifies where to find direc-
tories and executable files needed to perform operations on your system.

This variable’s value is the first place terminal will look for resources used in develop-
ment. Think of the PATH variable as being like your computer’s index for quickly finding the
tools you need. When you add these tools’ original file paths or directory locations to the
PATH variable, terminal won’t have any problems finding them.

The following figure shows how terminal refers to the PATH variable to identify directories
of certain programs and executable files, as these directories may be in different loca-
tions on different computers. If you experience any problems starting Node.js in your ter-
minal, follow the installation steps at https://www.tutorialspoint.com/nodejs/nodejs_
environment_setup.htm.

Terminal functionality with PATH variable

1. Running commands in terminal requires
terminal to have some knowledge of how
to execute the commands.

4. Terminal completes the operation
and continues to refer to the PATH
variable for future commands.

3. With the help of the PATH variable,
terminal knows where to find Node.js and
any information related to its installation.

2. Terminal consults the PATH variable on
where to find the installation of Node.js.

$ node -v

Terminal

PATH=/usr/local/bin/node

$ node -v
v11.0.0

Terminal

node

https://www.tutorialspoint.com/nodejs/nodejs_environment_setup.htm
https://www.tutorialspoint.com/nodejs/nodejs_environment_setup.htm
https://www.tutorialspoint.com/nodejs/nodejs_environment_setup.htm
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Step_by_Step_Guide/ap-doslinux.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Step_by_Step_Guide/ap-doslinux.html
http://git-scm.com/downloads

16 Lesson 1 Configuring your environment
Now that you have Node.js installed, use terminal to make sure that everything is
installed correctly. Open terminal (or Git Bash), and type the following command at the
prompt: node -v.

The output of this command should show you the version of Node.js you installed. Sim-
ilarly, you can check the version of npm that you installed by running the command
npm -v at the command prompt.

NOTE If your terminal responds with an error or with nothing, it’s possible that your instal-
lation of Node.js was unsuccessful. In the case of an error, try copying and pasting that
error into a search engine to look for common solutions. Otherwise, repeat the steps in this
section.

Now that you have Node.js installed and your terminal running, you need somewhere
to write your code.

TIP If you ever forget where you installed Node.js or npm, you can open a command win-
dow and type which node or which npm at the prompt to see the corresponding location.
From a Windows command-line prompt, use where in place of which.

1.2 Installing a text editor

A text editor is a software application you use to write your code while developing an
application. Although text editors come in many forms and can be used to make non-
code files as well, the text editors designed for developers often come prepackaged with
helpful tools and plugins.

For this book, I recommend downloading and installing the Atom text editor, a free
open-source software application for developing in many programming languages.
Atom was developed by GitHub and offers many additional plugins written in Node.js.
Atom will help you write a Node.js application with ease.

Install Atom by following these steps:

1 In your browser, go to https://atom.io.
2 Click the Download link.
3 Follow the prompts to install the software on a Mac, Windows, or Linux

computer.

When the installation completes, open the folder on your computer where applications
are located. From there, you can launch the Atom editor by double-clicking the program
file.

https://atom.io/

17Setting up SCM and deployment tools
TIP You may be interested in writing your code in an integrated development environment
(IDE). IDEs such as Visual Studio Code (https://code.visualstudio.com/) offer helpful tools
like a terminal window within the editor, code autocomplete, and debuggers for your project.

With your text editor in place, test some Node.js terminal commands.

1.3 Setting up SCM and deployment tools

In this section, you set up Git and the Heroku command-line interface (CLI), which
you’ll use at the end of the book to deploy your applications online. Deployment is a term
used to describe the migration of your application from your computer to a place where
it can be accessed and used publicly online. Software configuration management (SCM) is
the process of managing your application in its different environments as new features
and changes are applied to the code. You can use Git and the Heroku CLI together to
deploy your code from development to production and manage your application.

Git is a version-control tool used to separate layers of your application’s code evolution.
It allows you to save, or take a snapshot, of your code at different stages of develop-
ment, making it easy to return to a working state quickly if you find that your latest
changes break your application’s functionality. More important for this book, you need
Git to send a version of your code to Heroku so that people can start using your applica-
tion on the internet.

If you have a Mac, Git should already be installed. If you’ve installed Git Bash on your
Windows machine, Git came packaged and installed too. If you aren’t sure whether you
have Git, you can enter git --version in a terminal window. Unless your window
responds with a Git version number, you should download it directly from https://git-
scm.com/downloads. Select your operating system, as shown in figure 1.3. The down-
loaded file opens a graphical interface through which you can install Git on your
machine.

When Git is installed, you use it by initializing your project with git init in terminal.
Then you can add individual project files to your new version by running git add fol-
lowed by the relative path to the file. You can also add all the files in your project by
running git add. (including the period in the command). To confirm these files, run git
commit -m "some message", where the message in quotations describes the changes you
made. If you’re familiar with Git, I recommend using it as you run the code in this book.
Otherwise, you won’t need it until unit 8. You learn more about using Git through vid-
eos and documentation at https://git-scm.com/doc.

https://code.visualstudio.com/
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/doc

18 Lesson 1 Configuring your environment
TIP For a useful cheat sheet of Git commands, visit https://services.github.com/on-
demand/downloads/github-git-cheat-sheet.pdf.

Heroku is a service you’ll use to host your application online. To use Heroku, you need to
create a new account at https://signup.heroku.com. Enter your name and other informa-
tion in the required fields, and verify your email address. When your account is created,
Heroku lets you upload three applications for free. The best part is that you can do all
the work directly from terminal.

Next, you need to install the Heroku CLI. On a Mac you can install it with Homebrew.
To install Homebrew, run the command shown in listing 1.1 in a terminal window. This
installation process is described at https:// brew.sh/.

/usr/bin/ruby -e "$(curl -fsSL
 https://raw.githubusercontent.com/Homebrew/install/master/
 install)"

Run brew install heroku/brew/heroku or download the installer at https://devcenter
.heroku.com/articles/heroku-cli#macos. For Windows, you can find an installer at
https:// devcenter.heroku.com/articles/heroku-cli#windows. Linux users can install the
Heroku CLI by running sudo wget -qO- https://toolbelt.heroku.com/install-ubuntu.sh
| sh in terminal. If you use the graphical installer, you can step through the default set-
tings and prompts.

Listing 1.1 Installing Homebrew on Unix computers in terminal

Figure 1.3 Installing Git
from the downloads page

Run install command
in terminal window

https://brew.sh/
https://devcenter.heroku.com/articles/heroku-cli#macos
https://devcenter.heroku.com/articles/heroku-cli#macos
https://devcenter.heroku.com/articles/heroku-cli#windows
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://signup.heroku.com/

19Working with the Node.js REPL in terminal
When the Heroku CLI is set up, you can use the heroku keyword in terminal. The last
part of this setup process is logging in to your Heroku account from terminal. Enter
heroku login and then enter the email address and password you used to set up your
Heroku account. You’re prepared to deploy to Heroku.

1.4 Working with the Node.js REPL in terminal

In this section, you begin using Node.js from terminal through the Node.js REPL envi-
ronment. The interactive Node.js shell is the Node.js version of Read-Evaluate-Print
Loop (REPL). This shell is a space in which you can write pure JavaScript and evaluate
your code in the terminal window in real time. Within the window, your written code is
read and evaluated by Node.js, with results printed back to your console. In this section,
I look at a few things you can do in REPL.

You’ve already used terminal to check whether Node.js was installed correctly. Another
way to see whether the installation was successful is to type node and press the Enter
key. This action places you in the interactive Node.js shell. You’ll know that this com-
mand is successful when you see the terminal prompt change to >. To exit this prompt,
type .exit or press Ctrl-C twice.

Several keywords specific to Node.js allow your terminal and REPL environment to
understand when you’re running a Node.js command. In appendix A, I discuss key-
words in Node.js and how they pertain to application development.

NOTE If you need more practice with terminal commands, look at Part 2 of Learn Linux in
a Month of Lunches by Steven Ovadia (Manning, 2016).

You can get to REPL by entering the node keyword in your terminal window without
any text to follow. When you’re prompted by >, you can enter a command in JavaScript.
Although this environment is reserved for testing and sandbox code, the node shell can
offer a lot of benefits in development. You can enter and evaluate simple mathematical
expressions, for example, or you can execute full JavaScript statements. You can also
store values in variables and instantiate objects from your own custom class here. See
listing 1.2 for some example REPL interactions.

In these code examples, I demonstrate some of the JavaScript ES6 syntax that appears
throughout the book. In addition to the basic arithmetic I run in the REPL shell, I set up
a variable with the let keyword. This keyword allows me to define a variable that’s
scoped to a code block. The blocks include function blocks, to which var-defined vari-
ables are scoped, as well as conditional blocks and loops.

20 Lesson 1 Configuring your environment
I also use the new class syntax to define an object. The syntax here resembles that of
object-oriented programming languages but mainly acts as a wrapper over the existing
JavaScript prototype structure.

$ node
>
> 3 + 3
6
> 3 / 0
Infinity
> console.log("Hello, Universe!");
Hello, Universe!
> let name = "Jon Wexler";
> console.log(name);
Jon Wexler
> class Goat {

eat(foodType) {
 console.log(̀ I love eating ${foodType}`);
 }
}

> let billy = new Goat();
> billy.eat("tin cans");
I love eating tin cans

In the REPL environment, you have access to all the core modules that come with
Node.js. Core modules are JavaScript files that come with your Node.js installation. I talk
more about modules in unit 1. You’ll soon see in your own custom applications that you
need to import some modules to use them in REPL. For a short list of commands to use
in REPL, see table 1.1.

Listing 1.2 REPL command examples

Table 1.1 REPL commands to remember

DescriptionREPL command

.break (or .clear) Exits a block within the REPL session, which is useful if you get stuck in a
block of code

.editor Opens an internal editor for you to write multiple lines of code. ctrl-d
saves and quits the editor

.exit Quits the REPL session

Enter REPL.

Perform basic commands
and expressions.

Log messages to
the console.

Create ES6 classes and
instantiate objects.

21Summary
Explore REPL by running some JavaScript commands you know. In the next lesson, you
learn how to import previously written code into REPL.

Summary

In this lesson, you installed the Atom text editor and Node.js. You also verified that your
Node.js environment is ready to evaluate JavaScript code by running some commands
in REPL. In the next lesson, you learn how to use Node.js and terminal to build and
launch an application.

.help Lists other commands and useful tips to help you feel comfortable with
this interactive shell environment

.load Followed by a local filename; gives REPL access to that file’s code

.save Followed by a new filename of your choice; saves your REPL session’s
code to a file

Table 1.1 REPL commands to remember (continued)

DescriptionREPL command

2LESSON
RUNNING A NODE.JS APPLICATION

In this lesson, you write and run your first JavaScript file with Node.js. At the end, I
show you how to import JavaScript files into REPL so you can work with prewritten
code.

This lesson covers

 Creating and saving a JavaScript file
 Running your JavaScript file with Node.js
 Loading files into REPL

Consider this You’re testing some code that you’ve written in JavaScript. Suppose
that this code is the function shown in the following snippet, which accepts an array of
numbers and prints them to the screen.

NOTE In this code example, I use ES6 syntax to assign the variable printNumbers
to a function defined with a single arr parameter and an arrow symbol in place of
the traditional function keyword. I use another arrow function as the callback func-
tion within my forEach call.

➠

22

23Creating a JavaScript file
2.1 Creating a JavaScript file

To get started with your first Node.js application, create a JavaScript file to print a mes-
sage to the terminal console. To do that, follow these steps:

1 Open your text editor to a new window.
2 Type the following code in that empty file: console.log("Hello, Universe!");
3 Save this file as hello.js on your desktop.

That’s all you need to do. You’ve created a JavaScript file that Node.js can execute. In the
next section, you run that file.

let printNumbers = arr => {
 arr.forEach(num => console.log(num));
};

To test whether this code works, you could save it in a .js file, link it to an .html web
page, and run that file in a browser, viewing the results in your browser’s inspector win-
dow. With Node.js, you get immediate satisfaction by running JavaScript files directly in
terminal.

Print array
elements.

Strict mode
In JavaScript, you can opt to write code in strict mode—a mode in which casual Java-
Script mistakes are caught, even when the Node.js engine or web browsers you use let
those mistakes pass.

To use strict mode, add "use strict"; to the top of every JavaScript file you write (before
any other statements). For strict mode to work, all files in a related project must be
tagged as using strict mode.

See strict mode’s documentation at https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Strict_mode.

NOTE Strict mode changes some previously-accepted mistakes into errors, so
they’re discovered and promptly fixed.

Some mistakes discovered by strict mode include

 Accidentally creating global variables—You won’t be able to create a variable with-
out the var, let, or const keywords.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

24 Lesson 2 Running a Node.js application
Running your JavaScript file with Node.js2.2

The Node.js JavaScript engine can interpret your JavaScript code from the terminal
when you navigate to the location of a JavaScript file and preface the filename with the
node keyword.

Complete the following steps to run your JavaScript file:

1 Open a new terminal window.
2 Navigate to your desktop by entering cd ~/Desktop.
3 Run your JavaScript file by entering the node keyword followed by the file’s

name. You can also run the same command without the file’s extension. Type
node hello at the prompt, for example, for a file named hello.js (figure 2.1).

If your file was created and run correctly, you should see Hello, Universe! printed on
the screen. If you don’t see a response, make sure that hello.js has content in it and that
your latest changes are saved. Also, make sure that you run the command from that
file’s directory.

(continued)
 Assigning variables that can’t be assigned—You can’t use undefined as a variable

name, for example.
 Using non-unique function parameter names or property names in an object lit-

eral—You need to choose names that don’t repeat within the same scope when
assigning values.

NOTE JavaScript has retained "use strict"; as a string for backward compati-
bility. Older JavaScript engines see it as a string and ignore it.

JavaScript can be forgiving, but for learning purposes and in anticipation of the casual
mistakes that most developers make, I use strict mode in my code and recommend that
you do the same. Although I may not show "use strict"; in the book’s code examples,
this line is present at the top of every JavaScript file I write and run.

Figure 2.1 Running a
JavaScript file with Node.js

25Running individual JavaScript commands
Exactly what is happening here? The Node.js console.log function allows you to output
the result of any JavaScript command to the console window (or your terminal’s stan-
dard output window). If you’ve debugged JavaScript in your browser before, you’ll
notice the parallel between using console.log in a Node.js console window and output-
ting to your debugging tool’s console window.

TIP For more information about console.log and other logging types, please reference
appendix B.

Running individual JavaScript commands2.3

Imagine that you’re working on an application to send positive messages to your users.
Before you fully incorporate your file of positive messages into the application, you
want to test it in your Node.js REPL. You create a .js file with your messages as an array
by creating a JavaScript file called messages.js with the code from the following listing.

let messages = [
 "A change of environment can be a good thing!",
 "You will make it!",
 "Just run with the code!"
];

Instead of executing this file with Node.js (which currently wouldn’t offer anything),
you initiate the REPL environment with the node keyword and import this file by using
.load messages.js, as shown in listing 2.2. By importing the file, you give REPL access to
the contents of that file. After the file is imported, the window responds with the file’s
contents. You also have access to the messages variable in your REPL environment.

Listing 2.1 Declaring a JavaScript variable in messages.js

Quick check 2.1 If you have a file called hello.js, what will happen if you run node hello in
terminal?

QC 2.1 answer Because Node.js is primed for executing JavaScript code, it doesn’t require add-
ing the .js file extension when running files. You could run a file as node hello.js or node hello; either
will work.

List an array of
messages.

26 Lesson 2 Running a Node.js application
NOTE Make sure that you start your REPL session from the same directory in which you
saved the messages.js file; otherwise, you’ll need to import the absolute path of the file
instead of its relative path. The absolute path to a file is its location on your computer, start-
ing from your root directory. On my computer, for example, /usr/local/bin/node is the
absolute path to my installation of Node.js. The relative path from the local directory would
be /bin/node.

> .load messages.js
"use strict";
let messages = [
 "A change of environment can be a good thing!",
 "You will make it!",
 "Just run with the code!"
];

You plan to list each of the messages to your users through your Node.js application. To
test this list, loop through the array and broadcast each message by entering the code
from the next listing directly in the REPL window.

> messages.forEach(message => console.log(message));

The messages print in their array order in the terminal window, as shown in the follow-
ing listing.

A change of environment can be a good thing!
You will make it!
Just run with the code!
undefined

Listing 2.2 Loading a JavaScript file into REPL

Listing 2.3 Use a file’s contents in REPL

Listing 2.4 Results from the console.log loop

Loading an array
with three strings

Log each message
by using a single-line
arrow function.

Printing messages and
showing undefined as
the return value

27Summary
If you’re happy with the code you wrote in the REPL window, you can save the code to
a file called positiveMessages.js by typing .save positiveMessages.js in REPL. Doing so
saves you the trouble of retyping any work that you produce in the REPL environment.

Ease in navigating the Node.js REPL environment comes with practice. Remember to
access node in terminal for quick checking and testing of code that might take longer to
modify in a big application. Next, you’re off to start building web applications and set-
ting them up the right way from scratch.

Summary

In this lesson, you learned that JavaScript files can be run with Node.js in your terminal.
In your first outing with Node.js, you created and ran your first application. Then you
explored the REPL environment by loading your JavaScript file and saving your REPL
sandbox code. In the next lesson, you create a Node.js module and install tools with
npm.

Try this

console.log will soon become one of your best friends in web development, as log notes
will help you find bugs. Get to know your new friend with a little practice and variation.
As mentioned earlier in this lesson, console is a global object in Node.js, from the Con-
sole class. log is only one of many instance methods you can run on this object.

Quick check 2.2

1 What are three ways in which you could exit the REPL environment?
2 How do you load a file that isn’t in your project folder into REPL?
3 What happens if you run .save with a filename that already exists?

QC 2.2 answer

1 To exit your Node.js REPL environment, you can type .exit, press Ctrl-C twice, or press Ctrl-D
twice.

2 For files that aren’t located within the directory you navigated to in terminal, you may need to
use that file’s absolute path.

3 Running .save saves your REPL session to a file and overwrites any files that have the same
name.

28 Lesson 2 Running a Node.js application
NOTE String interpolation means inserting a piece of text, represented by a variable, into
another piece of text.

Try printing the following to console:

 A message with an interpolated string variable with
console.log("Hello %s", "Universe");

 A message with an interpolated integer variable with
console.log("Score: %d", 100);

Try building a file called printer.js with the code in the next listing inside.

let x = "Universe";
console.log(`Hello, ${x}`);

What do you expect to happen when you run node printer.js in terminal?

Listing 2.5 String interpolation example

Log an
interpolated string.

29

U
N

IT
 1

Getting started with
Node.js

Now that you’ve gone through unit 0 and have
Node.js installed and running, it’s time to see it
working. Unit 1 is about building from the get-go.
You begin by building a small web application in
Node.js and gradually piece together the compo-
nents that work behind the scenes. In this unit, you
learn all you need to get a web server running on
Node.js that serves some simple static content:
HTML pages, pictures, and a stylesheet. Toward
this goal, you look at the following topics:

 Lesson 3 introduces npm and discusses how
to configure a new Node.js application. In
this lesson, you build a Node.js module, and
learn how packages and modules offer tools
and support to your application.

 Lesson 4 introduces the idea of a web server
running on Node.js as a way to launch a sim-
ple website. You learn how to set up the
server and write code to get your website
content viewable.

 Lesson 5 builds on lesson 2 by giving the app
enough information to load web content
based on different requests. In this lesson,
you build your first application route—a sys-
tem for connecting content to URLs in your
application.

30 Unit 1 Getting started with Node.js
 Lesson 6 teaches you how to serve different HTML files from your web server
rather than simple responses. This lesson adds support for application assets:
CSS, JavaScript that runs on the user’s device, and image loading. Together, these
concepts enable you to organize and structure your application to handle more
requests to your website with less code clutter.

 Finally, lesson 7 shows you how to put everything together by building a com-
plete multipage application. You start a new application from scratch; then you
add three views, routes for the views and assets, and a public client folder.

When you’re solid on how to build a static site from scratch, unit 2 takes you to the next
step: using a framework to build your application faster.

3LESSON
CREATING A NODE.JS MODULE

In this lesson, you kick off Node.js application development by creating a Node.js mod-
ule (JavaScript file). Then you introduce npm to the development workflow and learn
about some common npm commands and tools for setting up a new application.

This lesson covers
 Creating a Node.js module
 Constructing a Node.js application with npm
 Installing a Node.js package with npm

Consider this You want to build an application to help people share food recipes and
learn from one another. Through this application, users can subscribe, join online
courses to practice cooking with the application’s recipes, and connect with other
users.

You plan to use Node.js to build this web application, and you want to start by verifying
users’ ZIP codes to determine the locations and demographics of your audience. Will
you need to build a tool for checking ZIP codes in addition to the application?

Luckily, you can use npm to install Node.js packages—libraries of code others have writ-
ten that add specific features to your application. In fact, a package for verifying loca-
tions based on ZIP codes is available. You take a look at that package and how to install
it in this lesson.
31

32 Lesson 3 Creating a Node.js module
A Node.js application is made up of many JavaScript files. For your application to stay
organized and efficient, these files need to have access to one another’s contents when
necessary. Each JavaScript file or folder containing a code library is called a module.

Suppose that you’re working on a recipe application using the positive messages from
unit 0. You can create a file called messages.js with the following code: let messages =
["You are great!", "You can accomplish anything!", "Success is in your future!"];.

Keeping these messages separate from the code you’ll write to display them makes your
code more organized. To manage these messages in another file, you need to change the
let variable definition to use the exports object, like so: exports.messages = ["You are
great!", "You can accomplish anything!", "Success is in your future!"];. As with other
JavaScript objects, you’re adding a messages property to the Node.js exports object, and
this property can be shared among modules.

NOTE The exports object is a property of the module object. module is both the name of
the code files in Node.js and one of its global objects. exports is shorthand for module
.exports.

The module is ready to be required (imported) by another JavaScript file. You can test
this module by creating another file called printMessages.js, the purpose of which is to
loop through the messages and log them to your console with the code shown in the
next listing. First, require the local module by using the require object and the module’s
filename (with or without the .js extension). Then refer to the module’s array by the vari-
able set up in printMessages.js, as shown in the next listing.

const messageModule = require("./messages");
messageModule.messages.forEach(m => console.log(m));

require is another Node.js global object used to locally introduce methods and objects
from other modules. Node.js interprets require("./messages") to look for a module
called messages.js within your project directory and allows code within printMessages.js
to use any properties on the exports object in messages.js.

Listing 3.1 Log messages to console in printMessages.js

Refer to the module’s
array through
messageModule.messages.

Require the local
messages.js module.

https://www.npmjs.com/package/cities
https://www.npmjs.com/package/cities

33Running npm commands
In the next section, you use npm, another tool for adding modules to your project.

Running npm commands3.1

With your installation of Node.js, you also got npm, a package manager for Node.js.
npm is responsible for managing the external packages (modules that others built and
made available online) in your application.

Throughout application development, you use npm to install, remove, and modify
these packages. Entering npm -l in your terminal brings up a list of npm commands with
brief explanations.

You’ll want to know about the few npm commands listed in table 3.1.

Using require
To load libraries of code and modules in Node.js, use require(). This require function,
like exports, comes from module.require, which means that the function lives on the
global module object.

Node.js uses CommonJS, a tool that helps JavaScript run outside a browser by helping
define how modules are used. For module loading, CommonJS specifies the require
function. For exporting modules, CommonJS provides the exports object for each mod-
ule. Much of the syntax and structure you use in this book results from CommonJS
module designs.

require is responsible for loading code into your module, and it does this by attaching
the loaded module to your module’s exports object. As a result, if the code you’re import-
ing needs to be reused in any way, it doesn’t need to be reloaded each time.

The Module class also performs some extra steps to cache and properly manage
required libraries, but the important thing to remember here is that once a module is
required, the same instance of that module is used throughout your application.

Quick check 3.1 What object is used to make functions or variables within one module avail-
able to others?

QC 3.1 answer exports is used to share module properties and functionality within an application.
module.exports can also be used in its place.

34 Lesson 3 Creating a Node.js module
When you use npm install <package>, appending --save to your command installs the
package as a dependency for your application. Appending --global installs the package
globally on your computer, to be used anywhere within terminal. These command
extensions, called flags, have the shorthand forms -S and -g, respectively. npm uninstall
<package> reverses the install action. In unit 2, you’ll use npm install express -S to
install the Express.js framework for your project and npm install express-generator -g
to install the Express.js generator for use as a command-line tool.

NOTE By default, your package installations appear in your dependencies as production-
ready packages, which means that these packages will be used when your application goes
live online. To explicitly install packages for production, use the --save-prod flag. If the pack-
age is used only for development purposes, use the --save-dev flag.

Later, when you prepare your application for production, making it available for the
world to use, you may distinguish packages by using the --production flag.

Table 3.1 npm commands to know

npm command Description

npm init Initializes a Node.js application and creates a package.json file

npm install
<package>

Installs a Node.js package

npm publish Saves and uploads a package you build to the npm package community

npm start Runs your Node.js application (provided that the package.json file is set
up to use this command)

npm stop Quits the running application

npm docs <package> Opens the likely documentation page (web page) for your specified
package

Modules, packages, and dependencies
Throughout your development with Node.js, you’ll hear the terms modules, packages, and
dependencies thrown around a lot. Here’s what you need to know:

 Modules are individual JavaScript files containing code that pertains to a single
concept, functionality, or library.

 Packages may contain multiple modules or a single module. They’re used to
group files offering relevant tools.

 Dependencies are Node.js modules used by an application or another module. If a
package is considered to be an application dependency, it must be installed (at
the version specified by the application) before the application is expected to run
successfully.

35Initializing a Node.js application
If you’d like to incorporate some functionality in your application, you can likely find a
package that performs this task at https://www.npmjs.com. To your recipe application,
add the ability to find where your users are located based on their ZIP codes. If you
have this information, you can determine whether users live close enough together to
cook with one another.

To add this feature, you need to install the cities package (https://www.npmjs.com/
package/cities), which converts text addresses to location coordinates. But you still need
one more thing for this project before you can install the package successfully. In the
next section, you properly initialize a Node.js project and create a package.json file that
npm will use to install cities.

Initializing a Node.js application3.2

Every Node.js application or module contains a package.json file to define the proper-
ties of that project. This file lives at the root level of your project. Typically, this file is
where you specify the version of your current release, the name of your application, and
the main application file. This file is important for npm to save any packages to the node
community online.

To get started, create a folder called recipe_connection, navigate to your project direc-
tory in terminal, and use the npm init command to initialize your application. You’ll be
prompted to fill out the name of your project, the application’s version, a short descrip-
tion, the name of the file from which you’ll start the app (entry point), test files, Git
repositories, your name (author), and a license code.

For now, be sure to enter your name, use main.js as the entry point, and press Enter to
accept all the default options. When you confirm all these changes, you should see a
new package.json file in your project directory. This file should resemble the contents of
the next listing.

Quick check 3.2 What flag do you use if you want to install a package globally on your
computer?

QC 3.2 answer The --global or -g flag installs a package for use as a command-line tool globally
on your computer. The package can be accessible to other projects, not exclusively to the one you’re
working on.

https://www.npmjs.com/package/cities
https://www.npmjs.com/package/cities

36 Lesson 3 Creating a Node.js module
{
 "name": "recipe_connection",
 "version": "1.0.0",
 "description": "An app to share cooking recipes",
 "main": "main.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Jon Wexler",
 "license": "ISC"
}

Now your application has a starting point for saving and managing application configu-
rations and packages. You should be able to install cities by navigating to your project
folder in terminal and running the following command: npm install cities --save
(figure 3.1).

After you run this command, your package.json gains a new dependencies section with a
reference to your cities package installation and its version, as shown in the following
listing.

{
 "name": "recipe_connection",
 "version": "1.0.0",
 "description": "An app to share cooking recipes",
 "main": "main.js",

Listing 3.2 Result of package.json file in recipe_connection project in terminal

Listing 3.3 Result of your package.json file after package installation in terminal

Display contents of package.json, containing
a name, version, description, starting file,
custom scripts, author, and license.

Figure 3.1 Installing a package in terminal

37Initializing a Node.js application
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Jon Wexler",
 "license": "ISC",
 "dependencies": {
 "cities": "^2.0.0"
 }
}

Also, with this installation, your project folder gains a new folder called node_modules.
Within this folder live the code contents of the cities package you installed (figure 3.2).

NOTE You also see a package-lock.json file created at the root level of your project direc-
tory. This file is automatically created and used by npm to keep track of your package instal-
lations and to better manage the state and history of your project’s dependencies. You
shouldn’t alter the contents of this file.

The --save flag saves the cities package as a dependency for this project. Check your
package.json file now to see how the package is listed under dependencies. Because your
node_modules folder will grow, I recommend that you don’t include it when you share
the project code online. Anyone who downloads the project, however, can enter npm
install to automatically install all the project dependencies listed in this file.

Display dependencies
section of
package.json.

recipe_connection

node_modules

package.json

main.js

1. The main project folder
contains all of your project’s
contents, including
external packages.

2. The main.js file serves as
the starting point for your
application to launch.

3. The package.json file contains
configurations and information
about your specific application
and its package dependencies.

4. Every downloaded external
package lives within this
node_modules folder.

Figure 3.2 Node.js application structure with node_modules

38 Lesson 3 Creating a Node.js module
Test this new package by adding the lines in listing 3.4 to main.js. Start by requiring the
locally installed cities package, and make it available in this file. Then use the zip_
lookup method from the cities package to find a city by that ZIP code. The result is
stored in a variable called myCity.

NOTE I’ll continue to use the var keyword for variable definitions where appropriate.
Because myCity is a variable that could change value, I use var here. The cities variable
represents a module, so I use const. I use the let variable when the scope of my code
could specifically benefit from its use.

const cities = require("cities");
var myCity = cities.zip_lookup("10016");
console.log(myCity);

The resulting data from that ZIP code is printed to console as shown in the following
listing. The zip_lookup method returns a JavaScript object with coordinates.

{
 zipcode: "10016",
 state_abbr: "NY",
 latitude: "40.746180",
 longitude: "-73.97759",
 city: "New York",
 state: "New York"
}

Listing 3.4 Implementing the cities package in main.js

Listing 3.5 Sample result from running main.js in terminal

Require the cities
package.

Assign the resulting
city by using the
zip_lookup method.

Log the results
to your console.

Display the results from
the zip_lookup method.

Quick check 3.3 What terminal command initializes a Node.js application with a pack-
age.json file?

QC 3.3 answer npm init initializes a Node.js app and prompts you to create a package.json file.

39Summary
Summary

In this lesson, you learned about npm and how to use its array of tools to create a new
Node.js application and install external packages. You built your own Node.js module
and required it in your main application file. Last, you installed an external package and
got it working in your sample app. The next step is integrating these tools into a web
application. I discuss the first steps of building a web server in lesson 4.

Try this

Create a couple of new modules, and practice adding simple JavaScript objects and
functions to the exports object.

You can add a function as shown in the following listing.

exports.addNum = (x, y) => {
 return x + y;
};

See what happens when you require modules from within another directory in your
project folder.

Listing 3.6 Exporting a function

Export a function.

4LESSON
BUILDING A SIMPLE WEB SERVER
IN NODE.JS

This lesson covers some basic functions of the http module, a Node.js library of code
used for handling requests over the internet. The tech community raves about Node.js
and its use of JavaScript as a server-side language. In this lesson, you build your first
web server. In a few short steps, you convert a couple of lines of JavaScript to an applica-
tion with which you can communicate on your web browser.

This lesson covers
 Generating a basic web server using Node.js and npm
 Writing code that processes requests from a browser and sends back a response
 Running a web server in your browser

Consider this You’re on your way to building your first web application. Before you
deliver a complete application, the cooking community would like to see a simple site
with the flexibility to improve and add features in the future. How long do you think it will
take you to build a prototype?

With Node.js, you can use the http module to get a web server with sufficient function-
ality built within hours.
40

41Understanding web servers
Understanding web servers4.1

Web servers are the foundation of most Node.js web applications. They allow you to
load images and HTML web pages to users of your app. Before you get started, I’ll dis-
cuss some important web server concepts. After all, the final product will look and feel a
lot better if you have clear expectations of the result.

When you visit https://www.google.com, for example, behind the scenes you’re making
a request to Google’s servers, which in turn send a response back to you, rendering the

Web servers and HTTP
A web server is software designed to respond to requests over the internet by loading or
processing data. Think of a web server like a bank teller, whose job is to process your
request to deposit, withdraw, or view money in your account. Just as the bank teller fol-
lows a protocol to ensure that they process your request correctly, web servers follow
Hypertext Transfer Protocol (HTTP), a standardized system globally observed for the view-
ing of web pages and sending of data over the internet.

One way that a client (your computer) and server communicate is through HTTP verbs.
These verbs indicate what type of request is being made, such as whether the user is
trying to load a new web page or updating information in their profile page. The context
of a user’s interaction with an application is an important part of the request-response
cycle.

Here are the two most widely used HTTP methods you’ll encounter:

 GET—This method requests information from a server. Typically, a server
responds with content that you can view back on your browser (such as by click-
ing a link to see the home page of a site).

 POST—This method sends information to the server. A server may respond with
an HTML page or redirect you to another page in the application after process-
ing your data (such as filling out and submitting a sign-up form).

I discuss a couple more methods in lesson 18.

Most web applications have made changes to adopt HTTP Secure (HTTPS), in which
transmission of data is encrypted. When your application is live on the internet, you’ll
want to create a public key certificate signed by a trusted issuer of digital certificates.
This key resides on your server and allows for encrypted communication with your client.
Organizations such as https://letsencrypt.org offer free certificates that must be
renewed every 90 days. For more information about HTTPS, read the article at https:
//developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https.

https://letsencrypt.org
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://www.google.com

42 Lesson 4 Building a simple web server in Node.js
famous Google Search landing page. This request-response relationship allows for a
channel of communication between the user and the application. In figure 4.1, a bundle
of data is sent to the application’s server in the form of a request, and when the server
processes the request, it issues a bundle of data back in the form of a response. This pro-
cess is how most of your interaction on the internet is facilitated.

When you enter the URL you want to see in your browser, an HTTP request is sent to a
physical computer elsewhere. This request contains some information indicating
whether you want to load a web page or send information to that computer.

You may build a fancy application with many bells and whistles, but at the core lies a
web server to handle its communication on the internet. (These concepts will make
more sense to you as I discuss them throughout the book.) In the next section, you start
building your web server.

Client

Request

Response

Request-response cycle

1. User enters a URL in
 their browser.

2. An HTTP request is submitted to
 the URL’s corresponding server.

3. A physical machine operates
 server logic on the user’s
 request to determine what
 to send back.

4. An HTTP response is sent
 to the user (client) in the
 form of HTML, JSON, plain
 text, or other formats.

5. User receives a response,
 usually in the form of an
 HTML page, which renders
 on their browser window.

Server

Figure 4.1 A web server sends your browser web pages, images, and other resources on
request.

Quick check 4.1 What does a web server receive from the client, and what does it send
back?

QC 4.1 answer The web server receives requests from the client and sends back responses.

43Coding the application
Initializing the application with npm4.2

Before you get started with a Node.js web application, you need to initialize the project
in your project folder in terminal. Open a terminal window, and create a new directory
called simple_server with mkdir. You can initialize the project with npm init.

NOTE npm is Node.js’ package manager. Your Node.js projects rely on this tool to install
and build applications. You can learn more about npm and how it’s used at https://docs
.npmjs.com.

Running the npm init command initiates a prompt to create a package.json file. As the
prompt explains, you’ll walk through configuring the most basic settings of your
Node.js application in this file. For now, you can add main.js as the entry point, along
with a short description and your name as the author, and elect to use the default values
offered by pressing the Enter key until you reach the end of the prompt

Then you’re asked to confirm your settings with a preview of your package.json file.
Press Enter to confirm and return to the regular terminal prompt.

4.3 Coding the application

When you installed Node.js, the core library was installed too. Within that library is a
module called http. You’ll use this module to build your web server. In this section, you
also use a package called http-status-codes to provide constants for use where HTTP
status codes are needed in your application’s responses.

NOTE Modules in Node.js are libraries of code that come packaged to offer specific func-
tionality to your application. Here, the http module helps you communicate across the web
by using HTTP.

In your text editor, create a new file called main.js, and save it in the project folder called
simple_server containing the package.json file you created earlier. This file will serve as
the core application file, where your application will serve web pages to your users.
Within this project’s directory in terminal, run npm i http-status-codes -S to save the
http-status-codes package as an application dependency.

Before I analyze every aspect of what you’re about to build, take a look at all the code in
listing 4.1. The first line of code assigns the port number you’ll use for this application:
3000.

https://docs.npmjs.com
https://docs.npmjs.com
https://docs.npmjs.com

44 Lesson 4 Building a simple web server in Node.js

NOTE Port 3000 is generally used for web servers in development. This number has no
significance, and you can customize it with a few exceptions. Ports 80 and 443 usually are
reserved for HTTP and HTTPS, respectively.

Then you use require to import a specific Node.js module called http and save it as a
constant. This module is saved as a constant because you don’t plan on reassigning the
variable. You also require the http-status-codes package to provide constants represent-
ing HTTP status codes.

Next, you use the http variable as a reference to the HTTP module to create a server,
using that module’s createServer function, and store the resulting server in a variable
called app.

NOTE Using ES6 syntax, you structure callback functions with parameters in parenthe-
ses, followed by instead of the function keyword.

The createServer function generates a new instance of http.Server, a built-in Node.js
class with tools for evaluating HTTP communication. With this newly created server
instance, your app is prepared to receive HTTP requests and send HTTP responses.

WARNING These method names are case-sensitive. Using createserver, for example,
will throw an error.

The argument in createServer is a callback function that’s invoked whenever some event
occurs within the server. When the server is running and your application’s root URL
(home page) is accessed, for example, an HTTP request event triggers this callback and
allows you to run some custom code. In this case, the server returns a simple HTML
response.

You log that a request was received from the client and use the response parameter in the
callback function to send content back to the user, from whom you first received a
request. The first line uses a writeHead method to define some basic properties of the
response’s HTTP header. HTTP headers contain fields of information that describe the
content being transferred in a request or response. Header fields may contain dates,
tokens, information about the origins of the request and response, and data describing
the type of connection.

In this case, you’re returning httpStatus.OK, which represents a 200 response code, and
an HTML content-type to indicate that the server received a request successfully and
will return content in the form of HTML. Following this block, you assign a local vari-
able, responseMessage, with your response message in HTML.

NOTE 200 is the HTTP status code for OK, used to indicate that no issue occurred in
returning content in an HTTP response header. To get a list of other HTTP status codes,
enter http.STATUS_CODES in the Node.js REPL shell. Use httpStatus.OK in place of the
explicit number.

45Coding the application
Right below that line, you’re writing a line of HTML in the response with write and clos-
ing the response with end. You must end your response with end to tell the server that
you’re no longer writing content. Not doing so leaves the connection with the client
open, preventing the client from receiving the response. You also log your response at
this point so you can see that a response was sent from the server itself.

The last line of code takes the server instance, app, and runs the listen method to indi-
cate that the server is ready for incoming requests at port 3000.

const port = 3000,
 http = require("http"),
 httpStatus = require("http-status-codes"),
 app = http.createServer((request, response) => {
 console.log("Received an incoming request!");
 response.writeHead(httpStatus.OK, {

"Content-Type": "text/html"
 });

 let responseMessage = "<h1>Hello, Universe!</h1>";
 response.write(responseMessage);
 response.end();
 console.log(`Sent a response : ${responseMessage}`);
 });

app.listen(port);
console.log(`The server has started and is listening on port number:
➥ ${port}`);

NOTE The response object is used by Node.js and carried throughout the application as a
way to pass information about the current client transaction from function to function.
Some methods on the response object allow you to add data to or remove data from the
object; writeHead and write are two such functions.

There your application is, in all its glory! Not so terrible. In only a few lines of code,
you’ll also build a web server this way.

Listing 4.1 Simple web application code in main.js

Require the http and http-
status-codes modules.

Create the server with
request and response
parameters.

Write the
response to
the client.

Tell the application server
to listen on port 3000.

46 Lesson 4 Building a simple web server in Node.js
NOTE If you don’t specify a port number, your operating system will choose a port for you.
This port number is what you’ll soon use to confirm through your web browser that your
web server is running.

Callbacks in Node.js
Part of what makes Node.js so fast and efficient is its use of callbacks. Callbacks aren’t
new to JavaScript, but they’re overwhelmingly used throughout Node.js and worth men-
tioning here.

A callback is an anonymous function (a function without a name) that’s set up to be
invoked as soon as another function completes. The benefit of using callbacks is that you
don’t have to wait for the original function to complete processing before running other
code.

Consider virtually depositing a check in your bank account by uploading a picture to your
bank’s mobile app. A callback is equivalent to receiving a notification a couple of days
later that the check was verified and deposited. In the meantime, you were able to go
about your normal routine.

In the http web server example, incoming requests from the client are received on a roll-
ing basis and thereupon pass the request and response as JavaScript objects to a call-
back function, as shown in the following figure:

Requests

Responses

Client

Client

1. Multiple clients may make a
 series of requests to the server.

2. As requests are received by the server,
 they are processed asynchronously.

3. The server takes time to
 process each individual
 request. A callback may
 signal when a response
 is ready.

4. Responses may not be
 returned in the order
 requests are received.

5. Clients will receive their
 responses in time relative
 to request processing time.

Response 3 Response 2 Response 1 Response 4

Server

Callbacks on the server indicate when to respond to the client.

47Running the application
With this code in place, you’re ready to start your Node.js application from terminal.

Running the application4.4

The last step is an easy one. Navigate to your project’s directory with terminal, and run
node main in your terminal window. Next, open any browser to the address localhost:
3000. You see a message indicating that the server has started. Your terminal window
should resemble figure 4.2.

The browser window should greet you and the universe with salutations, as shown in
figure 4.3. Congratulations! Your first Node.js web application is complete. It’s big, and
it’s about to get bigger and better.

Quick check 4.2 Why should you use const instead of var to store the HTTP server in your
application?

QC 4.2 answer Because your server will continue to listen for communication from clients, it’s
important not to reassign the variable representing the server. In ES6, it has become convention to
mark these objects as constants, not reassignable variables.

Figure 4.2 Running the a basic Node.js server

Figure 4.3 Display of
your first web page

48 Lesson 4 Building a simple web server in Node.js
To stop the application, press Ctrl-C in your terminal window. You can also close the
terminal window, but you may risk not shutting down the application properly, in
which case the application could continue to run behind the scenes (requiring more
command-line magic to kill the process).

Summary

In this lesson, you learned that Node.js has built-in functionality for creating web serv-
ers via the http module. You configured a new Node.js application via the package.json
file. Using the http module and createServer method, with minimal effort you created a
web server, which is a stepping stone to building robust applications with Node.js.
Through terminal, you were able to run a web-server application.

Complete the “Try this” exercise to check your understanding.

Try this

npm init interactively generates a package.json file, although you could create this file
on your own.

Create a new package.json from scratch for the project in this lesson. Don’t use npm init;
see whether you can construct a similar JSON-structured file.

Quick check 4.3 When you navigate to http://localhost:3000/ while your server is running,
what type of HTTP request are you making?

QC 4.3 answer Nearly every request you can expect to make at this stage in the application’s devel-
opment, including a request to http://localhost:300/, is an HTTP GET request.

5LESSON
HANDLING INCOMING DATA

In lesson 4, I introduced you to the web server and showed how you can create one with
Node.js. Every time a user visits a URL that leads to your application, a request is made,
and each request must be processed by the code you write. In this lesson, you learn how
to gather and process some of the information in these requests. You also build applica-
tion routes—code logic to match requests with appropriate responses.

This lesson covers
 Collecting and processing request data
 Submitting a POST request with the curl command
 Building a web application with basic routes

Consider this As you plan web pages for your recipe application, you realize that the
basic web server you’ve built knows how to respond only with single lines of HTML.
What if you want to show a complete home page and different HTML content for a con-
tact page?

Every web application uses routes alongside its web server to ensure that users get to
see what they specifically requested. With Node.js, you can define these routes in as
few steps as any conditional block.
49

http://localhost:3000/
http://localhost:3000/
http://localhost:3000/testing
http://localhost:3000/contact
http://localhost:3000/contact
http://localhost:3000/info
http://localhost:3000/info
http://localhost:3000/contact
http://localhost:3000/
http://localhost:3000/
http://localhost:3000/

50 Lesson 5 Handling incoming data

5.1 Reworking your server code

To start this lesson, rearrange the code from lesson 4 to get a better idea of how the
server is behaving. Create a new project called second_server within its own project
directory, and inside, add a new main.js file.

NOTE In this lesson and following lessons, I expect you to initialize your Node.js application
with npm init and to follow the guidance in lesson 4 to create a package.json file.

In your code, you have a server object that has a callback function, (req, res) ⇒ {},
which is run every time a request is made to the server. With your server running, if you
visit localhost:3000 in your browser and refresh the page, that callback function is run
twice—once on every refresh.

NOTE req and res represent the HTTP request and response. You can use any variable
names here. Keep the order in mind; request always comes before response in this method.

In other words, upon receiving a request, the server passes a request and response
object to a function where you can run your code. Another way to write the code for this
server is shown in listing 5.1. The server fires the code in a callback function when a
request event is triggered. When a user visits your application’s web page, the code
within the braces runs. Then the server prepares a response by assigning a response
code of 200 and defines the type of content in the response as HTML. Last, the server
sends the HTML content within the parentheses and simultaneously closes the connec-
tion with the client.

const port = 3000,
 http = require("http"),
 httpStatus = require("http-status-codes"),
 app = http.createServer();

app.on("request", (req, res) => {
 res.writeHead(httpStatus.OK, {
 "Content-Type": "text/html"
 });

 let responseMessage = "<h1>This will show on the screen.</h1>";
 res.end(responseMessage);
});

app.listen(port);

Listing 5.1 A simple server with a request event listener in main.js

Listen for
requests.

Prepare a response.

Respond with
HTML.

console.log(`The server has started and is listening on port number:
➥ ${port}`);

https://chocolatey.org/install
https://insomnia.rest/download/
http://localhost:3000/info
http://localhost:3000/info
http://localhost:3000/contact
http://localhost:3000/about
http://localhost:3000/about
http://localhost:3000/about
http://localhost:3000/hello
http://localhost:3000/error
http://localhost:3000/error
http://localhost:3000/error

51Analyzing request data
Run node main in terminal and visit http:// localhost:3000/ in your web browser to view
the response containing one line of HTML on the screen.

NOTE: You may need to reinstall the http-status-codes package again for this new project
by runinng npm i http-status-codes --save-dev.

It’s great to have some content on the screen, but you want to modify the content based
on the type of request you get. If the user is visiting the contact page or submitting a
form they filled out, for example, they’ll want to see different content on the screen. The
first step is determining which HTTP method and URL were in the headers of the
request. In the next section, you look at these request attributes.

Analyzing request data5.2

Routing is a way for your application to determine how to respond to a requesting client.
Some routes are designed by matching the URL in the request object. That method is
how you’re going to build your routes in this lesson.

Each request object has a url property. You can view which URL the client requested
with req.url. Test this property and two other properties by logging them to your con-
sole. Add the code in the next listing to the app.on("request") code block.

console.log(req.method);
console.log(req.url);
console.log(req.headers);

Because some objects in the request can have within them other nested objects, convert
the objects to more-readable strings by using JSON.stringify within your own custom
wrapper function, getJSONString, as shown in listing 5.3. This function takes a JavaScript
object as an argument and returns a string. Now you can change your log statements to

Listing 5.2 Logging request data in main.js

Quick check 5.1 What is the name of the function your server calls every time a request is
received?

QC 5.1 answer The function that’s called after each request is received is a callback function.
Because the function doesn’t have an identifying name, it’s also considered to be an anonymous
function.

Log the HTTP method used.
Log the request URL.

Log request headers.

52 Lesson 5 Handling incoming data
use this function. You can print the request method, for example, by using console.log
(`Method: ${getJSONString(req.method)}`);.

const getJSONString = obj => {
 return JSON.stringify(obj, null, 2);
};

When you restart your server, run main.js again, and access http://localhost:3000 in your
web browser, you’ll notice in your terminal window information indicating that a GET
request was made to the / URL (the home page), followed by that request’s header data.
Try entering a different URL, such as http://localhost:3000/testing or http://localhost:
3000/contact. Notice that you still get the same HTML text on the browser, but your con-
sole continues to log the URLs you type in the browser.

The types of requests you’re largely dealing with are GET requests. If you were building
an application with forms for users to fill out, though, your server should be able to pro-
cess that form data and respond to the user to let them know that the data has been
received.

The request object, like most objects in Node.js, can also listen for events, similarly to the
server. If someone makes a POST request to the server (trying to send data to the server),
the content of that POST lives in the request’s body. Because a server never knows how
much data is being sent, posted data comes into the http server via chunks.

NOTE Data chunks allow information to stream into and out of a server. Instead of waiting
for a large set of information to arrive at the server, Node.js allows you to work with parts of
that information as it arrives via the ReadableStream library.

To collect all the posted data with a server, you need to listen for each piece of data
received and arrange the data yourself. Luckily, the request listens for a specific data
event. req.on("data") is triggered when data is received for a specific request. You need
to define a new array, body, outside this event handler and sequentially add the data
chunks to it as they arrive at the server. Notice the exchange of posted data in figure 5.1.
When all the data chunks are received, they can be collected as a single data item.

Within the app.on("request") code block, add the new request event handlers in listing 5.4
to read incoming data. In this code example, every time a request is made to the server,
you execute the code in the callback function. An array is created and referred to as body,
and every time data from the request is received, you process it in another callback
function. The received data is added to the body array. When the transmission of data is

Listing 5.3 Logging request data in main.js

Convert JavaScript
object to string.

53Analyzing request data

’s
r

complete, you execute code in a third callback function. The body array is turned into a
String of text, and the request’s contents are logged to your console.

app.on("request", (req, res) => {
 var body = [];
 req.on("data", (bodyData) => {
 body.push(bodyData);
 });
 req.on("end", () => {
 body = Buffer.concat(body).toString();
 console.log(`Request Body Contents: ${body}`);
 });

 console.log(`Method: ${getJSONString(req.method)}`);
 console.log(`URL: ${getJSONString(req.url)}`);
 console.log(`Headers: ${getJSONString(req.headers)}`);

Listing 5.4 Handling posted request data in main.js

Chunk A

A

Client

Chunk B Chunk C

1. Client posts to the server. 2. The data is submitted in
multiple manageable chunks.

Posting data

3. The server receives each
chunk of data as a Buffer
object. The chunks need
to be stitched together.

4. The server connects the
data in its original form
and responds to the client.

5. The client may receive
data back in response
to the posted request.

Server

B C

+ +

Figure 5.1 A web server collects posted data and arranges it.

Listen for requests.
Create an array to
hold chunk contents. Process it in another

callback function.

Log the request
contents to you
console.

Add received data
to the body array.

Run code when data
transmission ends.

Convert the body array
to a String of text.

54 Lesson 5 Handling incoming data
 res.writeHead(httpStatus.OK, {
 "Content-Type": "text/html"
 });

 let responseMessage = "<h1>This will show on the screen.</h1>";
 res.end(responseMessage);
});
app.listen(port);
console.log(`The server has started and is listening on port number:
➥ ${port}`);

With this added code, your application is prepared to receive posted data collected into
an array and converted back to String format. When an event is triggered, indicating
that some chunk of data reached the server, you handle that data by adding the chunk
(represented as a Buffer object) to an array. When the event indicating the request’s con-
nected has ended, you follow up by taking all the array’s contents and turn them into
text you can read. To test this process, try sending a POST request to your server from
terminal.

Because you haven’t built a form yet, you can use a curl command. Follow these steps:

1 With your web server running in one terminal window, open a new terminal
window.

2 In the new window. run the following command: curl --data "username=
Jon&password=secret" http://localhost:3000

TIP curl is a simple way of mimicking a browser’s request to a server. Using the curl
keyword, you can use different flags, such as –data, to send information to a server via a
POST request.

NOTE If you’re a Windows user, before you install curl on your computer, install the soft-
ware and package manager called Chocolatey (https://chocolatey.org/install). Then you
can run choco install curl in your command line.

In the first terminal window, you should see the contents of the request’s body logged to
the screen, letting you know that a request was received and processed by your server
(figure 5.2).

Figure 5.2 Results of
running a curl command

https://chocolatey.org/install

55Adding routes to a web application
TIP For a more user-friendly interface for submitting data to your application, install
Insomnia (https://insomnia.rest/download/).

In lesson 8, you learn about simpler ways to handle request contents. For now, try to
control what type of response you write back to the client based on the URL and
method in the request.

Adding routes to a web application5.3

A route is a way of determining how an application should respond to a request made to
a specific URL. An application should route a request to the home page differently from
a request to submit login information.

You’ve established that a user can make a request to your web server; from there, you
can evaluate the type of request and prompt an appropriate response. Consider your
simple HTTP web server code, which so far has one response to any request. This exam-
ple accepts any request made to the server (localhost) at port 3000 and responds with a
line of HTML on the screen.

const port = 3000,
 http = require("http"),
 httpStatus = require("http-status-codes"),
 app = http
 .createServer((req, res) => {

res.writeHead(httpStatus.OK, {
"Content-Type": "text/html"

});
let responseMessage = "<h1>Welcome!</h1>";
res.end(responseMessage);

 })
 .listen(port);

Listing 5.5 Simple server example in main.js

Quick check 5.2 True or false: Every submitted form sends its full contents in a single chunk
of data.

QC 5.2 answer False. Data is streamed to the server in chunks, which allows the server to respond
based on part of the received data or even the size of the collected data.

Respond with HTML
to every request.

https://insomnia.rest/download/

56 Lesson 5 Handling incoming data
As a first web application, this application is a great accomplishment, but you need to
start building an application with more functionality. If this project were a legitimate
application live on the internet, for example, you might want to show content based on
what the user is looking for. If the user wants to see an information page, you may want
them to find that information at the /info URL (http:// localhost:3000/info). Right now, if
users visit those URLs, they’ll be greeted by the same HTML welcome line.

The next step is checking the client’s request and basing the response body on that
request’s contents. This structure is otherwise known as application routing. Routes iden-
tify specific URL paths, which can be targeted in the application logic and which allow
you to specify the information to be sent to the client. Creating these routes is necessary
for a fully integrated application experience.

Duplicate the simple_server project folder with a new name: simple_routes. Then add a
few routes to the main.js file, as shown in listing 5.6.

You set up a mapping of routes to responses called routeResponseMap. When a request is
made to http://localhost:3000/info, you check whether the request’s URL has a match in
routeResponseMap and respond with an info page heading. When a request is made to
http:// localhost:3000/contact, you respond with a contact page heading. To all other
requests, you respond with a generic greeting.

const routeResponseMap = {
 "/info": "<h1>Info Page</h1>",
 "/contact": "<h1>Contact Us</h1>",
 "/about": "<h1>Learn More About Us.</h1>",
 "/hello": "<h1>Say hello by emailing us here</h1>",
 "/error": "<h1>Sorry the page you are looking for is not here.</h1>"
};

const port = 3000,
 http = require("http"),
 httpStatus = require("http-status-codes"),
 app = http.createServer((req, res) => {
 res.writeHead(200, {

"Content-Type": "text/html"
 });

 if (routeResponseMap[req.url]) {
res.end(routeResponseMap[req.url]);

 } else {

Listing 5.6 Simple routing in a web server in main.js

Define mapping of
routes with responses.

Check whether a
request route is
defined in the map.

http://localhost:3000/info
http://localhost:3000/info
http://localhost:3000/contact

57Adding routes to a web application
res.end("<h1>Welcome!</h1>");
 }
 });

app.listen(port);
console.log(`The server has started and is listening on port number:
➥ ${port}`);

With the additions to your code, you can differentiate between a couple of URLs and
offer different content accordingly. You’re still not concerned with the HTTP method
used in the request, but you can check whether the user was searching for the/info
route or the /contact route. Users can more intuitively determine what URLs they need
to type to get to that page’s expected content.

Give the code a try. Save the code in listing 5.6 in a project file called main.js, and run
that file in terminal. Then try accessing http:// localhost:3000/info or http://localhost:
3000/contact in your web browser. Any other URL should result in the original default
welcome HTML line.

To mimic heavy processing or external calls made by your server, you can add the code
in the following listing to a route to manually delay your response to the client.

setTimeout(() => res.end(routeResponseMap[req.url]), 2000);

If you run this file again, you’ll notice that the page’s load time is approximately two
seconds longer. You have full control of what code is executed and what content is
served to your user. Keep this fact in mind: as your application grows, your web pages’
response times will naturally be longer.

Look at the browser screenshot for the /contact URL in figure 5.3.

Listing 5.7 Route with a timer in main.js

Respond with
default HTML.

Wrap a response with
setTimeout to delay
the response manually.

Quick check 5.3 With what URL do you route requests to the home page?

QC 5.3 answer The / route represents the home page of the application.

http://localhost:3000/info
http://localhost:3000/contact
http://localhost:3000/contact

58 Lesson 5 Handling incoming data
Summary

In this lesson, you learned how to handle request content, respond with viewable
HTML, and build a server route. By identifying a request’s contents, you can process
posted data from a request and separate response content based on targeted URLs. The
creation of routes shapes your application logic. As a web application expands, its
routes expand with it, and so do the types of content that it’s able to deliver.

In the next lesson, I talk about serving individual HTML files, images, and web-page
styles.

Try this

Your simple web application is handling two path requests with routes you created for
/info and /contact. A normal application will likely have more pages to visit. Add three
more routes to the application for the following paths:

 /about—When users access http:// localhost:3000/about, respond with a line of
HTML stating Learn More About Us.

 /hello—When users access http:// localhost:3000/hello, respond with a line of
HTML stating Say hello by emailing us here. Include an anchor tag linked to
your email around the word here.

 /error—When users access http://localhost:3000/error, respond with a status
code of 404 (indicating that no page was found) and a line of plain text stating
Sorry, the page you are looking for is not here.

NOTE Open multiple web browsers (such as Apple’s Safari, Google Chrome, and Mozilla
Firefox), and visit different URLs in those browsers. Notice how the request headers
change. You should see the same host but a different user-agent.

Figure 5.3 Browser view
for the /contact URL

http://localhost:3000/about
http://localhost:3000/hello

6LESSON
WRITING BETTER ROUTES AND SERVING
EXTERNAL FILES

In lesson 5, you directed URL traffic with a routing system that matched request URLs
to custom responses. In this lesson, you learn how to serve whole HTML files and assets
such as client-side JavaScript, CSS, and images. Say goodbye to plain-text responses. At
the end of the lesson, you improve your route code and place your logic in its own mod-
ule for cleaner organization.

This lesson covers
 Serving entire HTML files by using the fs module
 Serving static assets
 Creating a router module

Consider this It’s time to build a basic recipe website. The site should have three
static pages with some images and styling. You quickly realize that all the applications
you’ve built so far respond only with individual lines of HTML. How do you respond with
rich content for each page without cluttering your main application file?

Using only the tools that came with your Node.js installation, you can serve HTML files
from your project directory. You can create three individual pages with pure HTML and
no longer need to place your HTML in main.js.
59

http://localhost:3000/
http://localhost:3000/
http://localhost:3000/index.html
http://localhost:3000/test.js.html
http://localhost:3000/test
http://localhost:3000/test
http://localhost:3000/test
http://localhost:3000/index.html
http://localhost:3000/index.html
http://localhost:3000/sample.html
http://localhost:3000/sample.html
http://localhost:3000/sample.html

60 Lesson 6 Writing better routes and serving external files
6.1 Serving static files with the fs module

With the goal of building a three-page static site, using these HTML snippets can get
cumbersome and clutter your main.js file. Instead, build an HTML file that you’ll use in
future responses. This file lives within the same project directory as your server. See the
project file structure in figure 6.1. In this application structure, all content you want to
show the user goes in the views folder, and all the code determining which content you
show goes in the main.js file.

The reason you’re adding your HTML files to the views folder is twofold: All your
HTML pages will be organized in one place. This convention is used by the web frame-
works that you’ll learn about in unit 2.

Follow these steps:

1 Create a new project folder called serve_html.
2 Within that folder, create a blank main.js file.

serve_html

views

package.json

main.js

1. The views folder contains
files that will render on
client browsers.

index.html

Figure 6.1 Application structure with views

61Serving static files with the fs module
3 Create another folder called views within serve_html.
4 Within views, create an index.html file.

Add the HTML boilerplate code in the next listing to main.html.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Home Page</title>
 </head>
 <body>
 <h1>Welcome!</h1>
 </body>
</html>

NOTE This book isn’t about teaching HTML or CSS. For this example, I’ve provided some
basic HTML to use, but for future examples, I won’t provide the HTML so that I can get to
the important stuff more quickly.

The client can see this page rendered in a browser only with the help of another Node.js
core module: fs, which interacts with the filesystem on behalf of your application.
Through the fs module, your server can access and read your index.html. You’re going
to call the fs.readFile method within an http server in your project’s main.js file, as
shown in listing 6.2.

First, require the fs module into a constant such as http. With the fs constant, you can
specify a particular file in the relative directory (in this case, a file called index.html
within the views folder). Then create a routeMap to pair routes with files on your server.

Next, locate and read the file contents of the file in your route mapping. fs.readFile
returns any potential errors that may have occurred and the file’s contents in two sepa-
rate parameters: error and data. Last, use that data value as the response body being
returned to the client.

const port = 3000,
 http = require("http"),
 httpStatus = require("http-status-codes"),
 fs = require("fs");

Listing 6.1 Boilerplate HTML for the index.html page

Listing 6.2 Using the fs module in server responses in main.js

Add a basic HTML
structure to your
views.

Require the
fs module.

62 Lesson 6 Writing better routes and serving external files

const routeMap = {
 "/": "views/index.html"
};

http
 .createServer((req, res) => {
 res.writeHead(httpStatus.OK, {
 "Content-Type": "text/html"
 });
 if (routeMap[req.url]) {

fs.readFile(routeMap[req.url], (error, data) => {
res.write(data);
res.end();

});
 } else {

Set up route
mapping for
HTML files.

Read the contents
of the mapped file.

Respond with
file contents.

res.end("<h1>Sorry, not found.</h1>");
}

})
.listen(port);

console.log(`The server has started and is listening
➥ on port number: ${port}`);

NOTE When files on your computer are being read, the files could be corrupt, unreadable,
or missing. Your code doesn’t necessarily know any of this before it executes, so if some-
thing goes wrong, you should expect an error as the first parameter in the callback function.

Run this file by entering this project’s directory on your command line and entering node

main.js. When you access http:// localhost:3000, you should see your index.html page
being rendered. Your simple route guides the response of any other URL extension
requested to the Sorry, not found message.

TIP If you don’t see the index.html file being rendered, make sure that all the files are in
the correct folders. Also, don’t forget to spell-check!

In the following example, you serve only the files specified in the URL of the request. If
someone visits http:// localhost:3000/sample.html, your code grabs the request’s URL,
/sample.html, and appends it to views to create one string: views/sample.html. Routes
designed this way can look for files dynamically based on the user’s request. Try rewrit-
ing your server to look like the code in listing 6.3. Create a new getViewUrl function to
take the request’s URL and interpolate it into a view’s file path. If someone visits the
/index path, for example, getViewUrl returns views/index.html. Next, replace the hard-
coded filename in fs.readFile with the results from the call to getViewUrl. If the file
doesn’t exist in the views folder, this command will fail, responding with an error mes-
sage and httpStatus.NOT_FOUND code. If there is no error, you pass the data from the read
file to the client.

http://localhost:3000
http://localhost:3000/sample.html

63Serving static files with the fs module
const getViewUrl = (url) => {
 return `views${url}.html`;
};

http.createServer((req, res) => {
 let viewUrl = getViewUrl(req.url);
 fs.readFile(viewUrl, (error, data) => {
 if (error) {
 res.writeHead(httpStatus.NOT_FOUND);
 res.write("<h1>FILE NOT FOUND</h1>");
 } else {
 res.writeHead(httpStatus.OK, {
 "Content-Type": "text/html"
 });
 res.write(data);
 }
 res.end();
 });
})
.listen(port);
console.log(`The server has started and is listening on port number:
➥ ${port}`);

NOTE String interpolation in ES6 allows you to insert some text, number, or function
results by using the ${} syntax. Through this new syntax, you can more easily concatenate
strings and other data types.

Now you should be able to access http:// localhost:3000/index, and your server will look
for the URL at views/index.

WARNING You’ll need to handle any and all errors that may occur as requests come in,
because there will likely be requests made for files that don’t exist.

Add your new HTML files to your views folder, and try to access them by using their
filenames as the URL. The problem now is that the index.html file isn’t the only file you
want to serve. Because the response body depends heavily on the request, you also need
better routing. By the end of this lesson, you’ll implement the design pattern laid out in
figure 6.2.

Listing 6.3 Using fs and routing to dynamically read and serve files in main.js

Create a function to
interpolate the URL
into the file path.

Get the file-path
string.

Interpolate the
request URL into your
fs file search.

Respond with file
contents.

Handle errors
with a 404
response code.

http://localhost:3000/index

64 Lesson 6 Writing better routes and serving external files
Serving assets6.2

Your application’s assets are the images, stylesheets, and JavaScript that work alongside
your views on the client side. Like your HTML files, these file types, such as .jpg and
.css, need their own routes to be served by your application.

To start this process, create a public folder at your project’s root directory, and move all
your assets there. Within the public folder, create a folder each for images, css, and js,
and move each asset into its respective folder. By this point, your file structure should
look like figure 6.3.

1. A user makes a request
to the application.

2. The web server in your
application receives the request
and performs specific logical
steps to return a response.

3. The routes you build in your
server determine what type
of content the user will see
in their browser.

4. The server may communicate with your
application server to perform more data
operations before submitting a response.

5. An HTTP response is returned to
the client in the form of HTML, text,
JSON, or any other valid data format.

Server

Web server

Application
server

Route 1: If user requests homepage
respond with index page

Route 2: If user requests contact page
respond with contact page

Route 3: If user requests an image
respond with an image asset
else respond with an error page

Figure 6.2 Server routing logic to render views

Quick check 6.1 What happens if you try to read a file that doesn’t exist on your computer?

QC 6.1 answer If you try to read a file that doesn’t exist on your computer, the fs module passes an
error in its callback. How you handle that error is up to you. You can have it crash your application or
simply log it to your console.

65Serving assets
Now that your application structure is organized, refine your routes to better match
your goal in listing 6.4. This code may appear to be overwhelming, but all you’re doing
is moving the file-reading logic into its own function and adding if statements to han-
dle specific file-type requests.

Upon receiving a request, save the request’s URL in a variable url. With each condition,
check url to see whether it contains a file’s extension or mime type. Customize the
response’s content type to reflect the file being served. Call your own customReadFile
function at the bottom of main.js to reduce repeated code. The last function uses
fs.readFile to look for a file by the name requested, writes a response with that file’s
data, and logs any messages to your console.

Notice that in the first route, you’re checking whether the URL contains .html; if it does,
you try to read a file with the same name as the URL. You further abstract your routes
by moving the code to read the file into its own readFile function. You need to check for

serve_html

views

main.js

 The public folder can be organized to separate
 your most common assets served to the client.

index.html

package.json router.js

public

images css js

Figure 6.3 Arranging your assets so they’re easier to separate and serve

66 Lesson 6 Writing better routes and serving external files

Call
readF
read f
conte
specific file types, set the response headers, and pass the file path and response object to
this method. With only a handful of dynamic routes, you’re now prepared to respond to
multiple file types.

const sendErrorResponse = res => {
 res.writeHead(httpStatus.NOT_FOUND, {
 "Content-Type": "text/html"
 });
 res.write("<h1>File Not Found!</h1>");
 res.end();
};

http
 .createServer((req, res) => {
 let url = req.url;
 if (url.indexOf(".html") !== -1) {

res.writeHead(httpStatus.OK, {
"Content-Type": "text/html"

});
customReadFile(`./views${url}`, res);

 } else if (url.indexOf(".js") !== -1) {
 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/javascript"
});
customReadFile(`./public/js${url}`, res);

 } else if (url.indexOf(".css") !== -1) {
res.writeHead(httpStatus.OK, {

"Content-Type": "text/css"
});
customReadFile(`./public/css${url}`, res);

 } else if (url.indexOf(".png") !== -1) {
res.writeHead(httpStatus.OK, {

"Content-Type": "image/png"
});
customReadFile(`./public/images${url}`, res);

 } else {
sendErrorResponse(res);

 }
 })
 .listen(3000);

Listing 6.4 A web server with specific routes for each file in your project

Create an error-
handling function.

Store the request’s
URL in a variable url.

Check the URL to see
whether it contains a
file extension.

Customize the
response’s
content type.

ile to
ile
nts.

67Moving your routes to another file
console.log(`The server is listening on port number: ${port}`);

const customReadFile = (file_path, res) => {
 if (fs.existsSync(file_path)) {
 fs.readFile(file_path, (error, data) => {

if (error) {
console.log(error);
sendErrorResponse(res);
return;

}
res.write(data);
res.end();

 });
 } else {
 sendErrorResponse(res);
 }
};

Now your application can properly handle requests for files that don’t exist. You
can visit http:// localhost:3000/test.js.html or even http:// localhost:3000/test to see the
error message! To render the index page with these changes, append the file type to the
URL: http:// localhost:3000/index.html.

The next section shows you how to further redefine your routing structure and give
your routes their own module.

Moving your routes to another file6.3

The goal of this section is to make it easier to manage and edit your routes. If all your
routes are in an if-else block, when you decide to change or remove a route, that
change might affect the others in the block. Also, as your list of routes grows, you’ll find
it easier to separate routes based on the HTTP method used. If the /contact path can
respond to POST and GET requests, for example, your code will route to the appropriate
function as soon as the request’s method is identified.

Look for a file
by the name
requested.

Check
whether the
file exists.

Quick check 6.2 What should be your default response if a route isn’t found?

QC 6.2 answer If your application can’t find a route for some request, you should send back a 404
HTTP status code with a message indicating the page that the client was looking for can’t be found.

http://localhost:3000/test
http://localhost:3000/test.js.html

68 Lesson 6 Writing better routes and serving external files
As the main.js file grows, your ability to filter through all the code you’ve written gets
more complicated. You can easily find yourself with hundreds of lines of code repre-
senting routes alone!

To alleviate this problem, move your routes into a new file called router.js. Also restruc-
ture the way you store and handle your routes. Add the code in listing 6.5 to router.js. In
the source code available at manning.com/books/get-programming-with-node-js, this
code exists in a new project folder called better_routes.

In this file, you define a routes object to store routes mapped to POST and GET requests. As
routes are created in your main.js, they’ll be added to this routes object according to
their method type (GET or POST). This object doesn’t need to be accessed outside this file.

Next, create a function called handle to process the route’s callback function. This func-
tion accesses the routes object by the request’s HTTP method, using routes[req.method],
and then finds the corresponding callback function through the request’s target URL,
using [req.url]. If you make a GET request for the /index.html URL path, for example,
routes["GET"]["/index.html"] gives you the callback function predefined in your routes
object. Last, whatever callback function is found in the routes object is called and passed
the request and response so that you can properly respond to the client. If no route is
found, respond with httpStatus.NOT_FOUND.

The handle function checks whether an incoming request matches a route in the routes
object by its HTTP method and URL; otherwise, it logs an error. Use try-catch to
attempt to route the incoming request and handle the error where the application
would otherwise crash.

You also define get and post functions and add them to exports so that new routes can be
registered from main.js. This way, in main.js you can add new callback associations, such
as a /contact.html page, in the routes object by entering get("contact.html", <callback
function>).

const httpStatus = require("http-status-codes"),
 htmlContentType = {
 "Content-Type": "text/html"
 },
 routes = {
 "GET": {

"/info": (req, res) => {
res.writeHead(httpStatus.OK, {

Listing 6.5 Adding functions to the module’s exports object in router.js

Define a routes object to
store routes mapped to
POST and GET requests.

manning.com/books/get-programming-with-node-js

69Moving your routes to another file
"Content-Type": "text/plain"
})
res.end("Welcome to the Info Page!")

}
 },
 'POST': {}
 };

exports.handle = (req, res) => {
 try {
 if (routes[req.method][req.url]) {

routes[req.method][req.url](req, res);
 } else {

res.writeHead(httpStatus.NOT_FOUND, htmlContentType);
res.end("<h1>No such file exists</h1>");

 }
 } catch (ex) {
 console.log("error: " + ex);
 }
};

exports.get = (url, action) => {
 routes["GET"][url] = action;
};

exports.post = (url, action) => {
 routes["POST"][url] = action;
};

NOTE More HTTP methods could go here, but you don’t need to worry about those methods
until unit 4.

When you call get or post, you need to pass the URL of the route and the function
you want to execute when that route is reached. These functions register your routes by
adding them to the routes object, where they can be reached and used by the handle
function.

Notice that in figure 6.4, the routes object is used internally by the handle, get, and post
functions, which are made accessible to other project files through the module’s exports
object.

Create a function called
handle to process route
callback functions.

Build get and post
functions to register
routes from main.js.

70 Lesson 6 Writing better routes and serving external files
The last step involves importing router.js into main.js. You complete this the same way
you import other modules, with require("./router").

You need to prepend router to every function call you make in main.js, as those func-
tions now belong to the router. You can also import the fs module if you plan to serve
assets and static HTML files as before. The code for your server should look like the
code in listing 6.6.

With the creation of your server, every request is processed by the handle function in
your router module, followed by a callback function. Now you can define your routes
by using router.get or router.post to indicate the HTTP method you expect from
requests to that route. The second argument is the callback you want to run when a
request is received. Create a custom readFile function, called customReadFile, to make
your code more reusable. In this function, you try to read the file passed in and respond
with the file’s contents.

exports.handle = (req, res) => {
 try {

if (routes[req.method][req.url]) {
routes[req.method][req.url](req, res);

} else {
res.writeHead(httpStatus.NOT_FOUND, htmlContentType);
res.end('<h1>No such file exists</h1>');

}
 } catch (ex) {

console.log('error: ' + ex);
 }
};

exports.post = (url, action) => {
 routes['POST'][url] = action;
};

exports.get = (url, action) => {
 routes['GET'][url] = action;
};

router.js

1. Other files that require router.js will have
access to objects within the exports object.

2. The get, post, and handle functions are
accessible within router.js.

Exports

Figure 6.4 The exports object gives other files access to specific functionality.

71Moving your routes to another file
const port = 3000,
 http = require("http"),
 httpStatusCodes = require("http-status-codes"),
 router = require("./router"),
 fs = require("fs"),
 plainTextContentType = {
 "Content-Type": "text/plain"
 },
 htmlContentType = {
 "Content-Type": "text/html"
 },
 customReadFile = (file, res) => {
 fs.readFile(`./${file}`, (errors, data) => {

if (errors) {
console.log("Error reading the file...");

}
res.end(data);

 });
 };

router.get("/", (req, res) => {
 res.writeHead(httpStatusCodes.OK, plainTextContentType);
 res.end("INDEX");
});

router.get("/index.html", (req, res) => {
 res.writeHead(httpStatusCodes.OK, htmlContentType);
 customReadFile("views/index.html", res);
});

router.post("/", (req, res) => {
 res.writeHead(httpStatusCodes.OK, plainTextContentType);
 res.end("POSTED");
});

http.createServer(router.handle).listen(3000);
console.log(`The server is listening on port number:
➥ ${port}`);

After adding these changes, restart your Node.js application, and try to access your
home page or /index.html route. This project structure follows some of the design

Listing 6.6 Handling and managing your routes in main.js

Create a custom
readFile function to
reduce code repetition.

Register routes with
get and post.

Handle all requests
through router.js.

72 Lesson 6 Writing better routes and serving external files
patterns used by application frameworks. In unit 2, you learn more about frameworks
and see why this type of organization makes your code more efficient and readable.

Summary

In this lesson, you learned how to serve individual files. First, you added the fs module
to your application to look for HTML files in your views folder. Then you extended that
functionality to application assets. You also learned how to apply your routing system
to its own module and selectively register routes from your main application file. In
unit 2, I talk about how you can use the application structure provided by Express.js,
a Node.js web framework.

Try this

You currently have one route set up to read an HTML file from this lesson’s examples.
Try adding new routes in the style introduced in this lesson to load assets.

Quick check 6.3 True or false: functions and objects that aren’t added to their module’s
exports object are still accessible by other files.

QC 6.3 answer False. The exports object is intended to allow modules to share functions and
objects. If an object isn’t added to a module’s exports object, it remains local to that module, as defined
by CommonJS.

7LESSON
CAPSTONE: CREATING YOUR FIRST
WEB APPLICATION

When I first got into web development, I really wanted to build a website where people
could go to view interesting recipes. Luckily for me, a local cooking school, Confetti
Cuisine, wants me to build them a site with a landing page to reflect their course offer-
ings, a page of recipes, and a place where prospective students can sign up.

As a cooking enthusiast, I thought this project would be a good one that I could use
daily. What’s more, this site is going to be fun to build in Node.js. Piecing together all the
preceding lessons into a complete multipage application, these steps should sufficiently
prepare me to build a static site for Confetti Cuisine.

I’ll start a new application from scratch and add three views, routes for the views and
assets, and a public client folder. To start, I’ll build out the application logic with the
goal of clean, nonrepetitive code. Then I’ll add some of the public-facing views and cus-
tom styling. At the end of this lesson, I’ll have a web server to handle requests to specific
files and assets in the project. The final product is one that I can gradually build on and
connect to a database at my client’s request.

To create this application, I use the following steps:

 Initialize the application package.json.
 Set up the project directory structure.
73

http://getbootstrap.com/docs/4.0/getting-started/download/
http://localhost:3000/

74 Lesson 7 Capstone: Creating your first web application
 Create application logic in main.js.
 Create three views, each of which should have a clickable image that can be

served independently:
– Index (home)
– Courses
– Contact
– Thanks
– Error

 Add custom assets.
 Build the application’s router.
 Handle application errors.
 Run the application.

I’m ready to get cracking.

7.1 Initializing the application

To start, I use npm to create a package.json file with a summary of the application I’m
developing. I navigate to a directory on my computer where I’d like to save this project
and then create a new project folder, using the following commands in terminal: mkdir
confetti_cuisine && cd confetti_cuisine and npm init.

I follow the command-line instructions and accept all default values except the following:

 Use main.js as the entry point.
 Change the description to “A site for booking classes for cooking.”
 Add my name as the author.

Next, I install the http-status-codes package by running npm install http-status-codes
--save in the project’s terminal window. Within my confetti_cuisine folder, my package
.json file should resemble the example in the next listing.

{
 "name": "confetti_cuisine",
 "version": "1.0.0",
 "description": "A site for booking classes for cooking.",
 "main": "main.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",

Listing 7.1 Project package.json file contents

75Understanding application directory structure
 },
 "author": "Jon Wexler",
 "license": "ISC",
 "dependencies": {

"http-status-codes": "^1.3.0"
 }
}

From this point forward, I’ll be able to refer to this file as a summary of my application’s
configurations.

7.2 Understanding application directory structure

Before I continue with more code, I want to review the application’s directory structure.
In the project structure, I want my main.js, package.json, and router.js files to live at the
root level of my directory. Any HTML content will be represented as individual .html
files, which will live in a views folder within my project folder. My complete application
project directory will look like the structure in the following listing.

.
|____main.js
|____router.js
|____public
| |____css
| | |____confetti_cuisine.css
| | |____bootstrap.css
| |____images
| | |____product.jpg
| | |____graph.png
| | |____cat.jpg
| | |____people.jpg
| |____js
| | |____confettiCuisine.js
|____package-lock.json
|____package.json
|____contentTypes.js
|____utils.js
|____views

Listing 7.2 Project directory structure for confetti_cuisine

Display my package.json
in terminal.

Display of directory tree
from root folder

76 Lesson 7 Capstone: Creating your first web application
| |____index.html
| |____contact.html
| |____courses.html
| |____thanks.html
| |____error.html

My application server will respond with HTML files in my views folder. The assets on
which those files rely will live in a folder called public.

NOTE HTML files will be viewed by the client, but they’re not considered to be assets and
don’t go in the public folder.

The public folder contains an images, js, and css folder to hold the application’s client-
facing assets. These files define the styles and JavaScript interactions between my appli-
cation and its user. To add some quick styling to my application, I download bootstrap
.css from http://getbootstrap.com/docs/4.0/getting-started/download/ and add it to my
css folder in public. I also create a confetti_cuisine.css file for any custom styling rules
that I want to apply to this project.

Next, I set up the application logic.

7.3 Creating main.js and router.js

Now that I’ve set up my folder structure and initialized the project, I need to add the
main application logic to the site to get it serving files on port 3000. I’m going to keep
the routes in a separate file, so I’ll need to require that file along with the fs module so
that I can serve static files.

I create a new file called main.js. Within that file, I assign my application’s port number,
require the http and http-status-codes modules and the soon-to-be-built custom mod-
ules router, contentTypes, and utils, as shown in listing 7.3.

NOTE The contentTypes and utils modules simply help me organize my variables
within main.js.

const port = 3000,
 http = require("http"),
 httpStatus = require("http-status-codes"),
 router = require("./router"),
 contentTypes = require("./contentTypes"),
 utils = require("./utils");

Listing 7.3 Contents of main.js with required modules

Import required modules.

http://getbootstrap.com/docs/4.0/getting-started/download/

77Creating main.js and router.js
The application won’t start until I create my local modules, so I’ll start by creating
contentTypes.js, using the code in the following listing. In this file, I’m exporting an
object that maps file types to their header values for use in my responses. Later, I’ll
access the HTML content type in main.js by using contentTypes.html.

module.exports = {
 html: {
 "Content-Type": "text/html"
 },
 text: {
 "Content-Type": "text/plain"
 },
 js: {
 "Content-Type": "text/js"
 },
 jpg: {
 "Content-Type": "image/jpg"
 },
 png: {
 "Content-Type": "image/png"
 },
 css: {
 "Content-Type": "text/css"
 }
};

Next, I set up the function that I’ll use to read file contents in a new utils module.
Within utils.js, I add the code in the next listing. In this module, I export an object con-
taining a getFile function. This function looks for a file at the provided path. If a file
doesn’t exist, I immediately return an error page.

const fs = require("fs"),
 httpStatus = require("http-status-codes"),
 contentTypes = require("./contentTypes");

module.exports = {
 getFile: (file, res) => {
 fs.readFile(`./${file}`, (error, data) => {

if (error) {

Listing 7.4 Object mapping in contentTypes.js

Listing 7.5 Utility functions in utils.js

Export content type
mapping object.

Import modules
for use in getFile.

Export a
function to read
files and return
a response.

78 Lesson 7 Capstone: Creating your first web application
res.writeHead(httpStatus.INTERNAL_SERVER_ERROR,
contentTypes.html);

res.end("There was an error serving content!");
}
res.end(data);

 });
 }
};

Last, in a new file, I add the code in listing 7.6. This router.js file requires the http-
status-codes and my two custom modules: contentTypes and utils.

The router module includes a routes object that holds key-value pairs mapped to GET
requests through my get function and POST requests through my post function. The
handle function is the one referred to as the callback function to createServer in main.js.
The get and post functions take a URL and callback function and then map them to each
other in the routes object. If no route is found, I use my custom getFile function in the
utils module to respond with an error page.

const httpStatus = require("http-status-codes"),
 contentTypes = require("./contentTypes"),
 utils = require("./utils");

const routes = {
 "GET": {},
 "POST": {}
};

exports.handle = (req, res) => {
 try {
 routes[req.method][req.url](req, res);
 } catch (e) {
 res.writeHead(httpStatus.OK, contentTypes.html);
 utils.getFile("views/error.html", res);
 }
};

exports.get = (url, action) => {
 routes["GET"][url] = action;
};

exports.post = (url, action) => {

Listing 7.6 Handling routes in router.js

Create a routes
object to hold
route functions.

Create the handle function
to handle requests.

Create the get and
post functions to
map route functions.

79Creating views
 routes["POST"][url] = action;
};

To get my application server to run, I need to set up the application’s routes and views.

7.4 Creating views

The views are client-facing and could make or break my user’s experience with the
application. I’ll use a similar template for each page to reduce complexity in this appli-
cation. The top of each HTML page should have some HTML layout, a head, a link to
my soon-to-be-built custom stylesheet, and navigation. The home page for the Confetti
Cuisine site will look like figure 7.1, with links to my three views in the top-left corner.

For the home page, I’ll create a new view called index.html in my views folder and add
the content specific to the index page. Because I’m using bootstrap.css, I need to link to
that file from my HTML pages by adding <link rel="stylesheet" href="/bootstrap.css">
to my HTML head tag. I’ll do the same for my custom stylesheet, confetti_cuisine.css.

Next, I create a courses.html file to show off a list of available cooking classes and a
contact.html file with the following form. This form submits contact information via
POST to the / route. The form’s code should resemble the code in the next listing.

Figure 7.1 Example home page for Confetti Cuisine

80 Lesson 7 Capstone: Creating your first web application
<form class="contact-form" action="/" method="post">
 <input type="email" name="email" required>
 <input class="button" type="submit" value="submit">
</form>

My site’s contact page will look like figure 7.2.

Each page links to the others through a navigation bar. I need to make sure that all the
assets I’m using in these files are accounted for when I create my routes. If any assets are
missing, my application could crash when it tries to look for their corresponding files.

I’ll add these assets so that my pages will have resources for richer content.

7.5 Adding assets

For this application, I’ve created some custom styles to be used by each of the views.
Any color, dimension, or placement changes I want to make in elements of my site will
go in confetti_cuisine.css, which lives in public/css alongside bootstrap.css.

Listing 7.7 Example form that posts to the home-page route in contact.html

Build a form
to submit a
name to the
the home
page.

Figure 7.2 Example contact page for Confetti Cuisine

81Creating routes
When this file is saved, my views will have colors and structure when loaded. If I decide
to use any client-side JavaScript, I’ll need to create a .js file, add it to my public/js folder,
and link to it within each file by using <script> tags. Last, I’ll add my images to public/
images. The names of these images should match the names I use within my HTML
views.

The only step left is registering and handling my routes for each view and asset in my
project.

7.6 Creating routes

The last piece of the puzzle is an important one: routes. The routes of my application
will determine which URLs are accessible to the client and which files I’ll serve.

I’ve specifically created a router.js file to handle my routes, but I still need to register
them. Registering my routes essentially means passing a URL and callback function to
my router.get or router.post function, depending on which HTTP method I’m han-
dling. Those functions add my routes to router.routes, a JavaScript object that maps my
URLs to the callback functions to be invoked when that URL is accessed.

To recap, to register a route, I need to state the following:

 Whether the request is a GET or a POST request
 The URL’s path
 The name of the file to return
 An HTTP status code
 The type of the file being returned (as the content type)

In each callback function, I need to indicate the content type that will go in the response
and use the fs module to read the contents of my views and assets into the response. I
add the routes and code in the next listing below the require lines in main.js.

router.get("/", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.htm);
 utils.getFile("views/index.html", res);
});

router.get("/courses.html", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.html);
 utils.getFile("views/courses.html", res);

Listing 7.8 Registering individual routes with the router module in main.js

Add a series
of routes for
web pages
and assets.

82 Lesson 7 Capstone: Creating your first web application
});

router.get("/contact.html", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.html);
 utils.getFile("views/contact.html", res);
});

router.post("/", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.html);
 utils.getFile("views/thanks.html", res);
});

router.get("/graph.png", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.png);
 utils.getFile("public/images/graph.png", res);
});
router.get("/people.jpg", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.jpg);
 utils.getFile("public/images/people.jpg", res);
});
router.get("/product.jpg", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.jpg);
 utils.getFile("public/images/product.jpg", res);
});
router.get("/confetti_cuisine.css", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.css);
 utils.getFile("public/css/confetti_cuisine.css", res);
});
router.get("/bootstrap.css", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.css);
 utils.getFile("public/css/bootstrap.css", res);
});
router.get("/confetti_cuisine.js", (req, res) => {
 res.writeHead(httpStatus.OK, contentTypes.js);
 utils.getFile("public/js/confetti_cuisine.js", res);
});

http.createServer(router.handle).listen(port);
console.log(`The server is listening on
➥ port number: ${port}`);

NOTE Notice the POST route, which will handle form submissions on the contact.html
page. Instead of responding with another HTML page, this route responds with an HTML
“thank you for supporting the product” page.

Start the server.

83Summary
I should now be able to start my application with node main and navigate to http:// localhost:
3000 to see my web application’s home page.

NOTE I only create routes for the assets (images, js, and css) that I have represented as
files within my project.

Summary

In this capstone exercise, I built a complete web application serving static web pages for
Confetti Cuisine. To accomplish this task, I required my own router module into the
main application file. Then I created a custom system for routing user requests to serve
specific content. After building custom functions to register routes in an organized and
systematic way, I created views and assets to be served from their respective directories.

A lot of code logic is going on here, and the code logic is on its way to a professional
structure used by Node.js applications around the world.

In unit 3, I explore web frameworks and show you how they use this application struc-
ture and some scaffolding (prebuilt folders and structure) to accomplish the same appli-
cation in fewer steps and with fewer headaches.

http://localhost:3000
http://localhost:3000

85

U
N

IT
 2

Easier web development
with Express.js

Unit 1 taught you how web servers work with
Node.js and how to build meaningful content with
built-in modules. This unit is about taking your
application to a more robust and professional level
by using a web framework and dynamic content. A
web framework is a predefined application structure
and a library of development tools designed to
make building a web application easier and more
consistent.

In this unit, you learn how to set up an application
with Express.js and organize your application file
structure to optimize communication of data
among your pages. You’re also introduced to the
model-view-controller (MVC) application architec-
ture, which organizes your code into three distinct
responsibilities:

 Giving structure to your data
 Displaying that data
 Handling requests to interact with that data

With the goals of building on the lessons you
learned in unit 1 and modifying your code to take
full advantage of Express.js, this unit covers the fol-
lowing topics:

 Lesson 8 introduces Express.js and shows
how to configure a new Node.js application.

86 Unit 2 Easier web development with Express.js
In this lesson, you get an overview of how a web framework helps you develop
an application.

 Lesson 9 covers routing with Express.js. You’ve already learned about writing
routes from scratch. This lesson introduces you to the style of routing you’ll use
throughout the rest of the book. You also learn about MVC and see how routes
can behave like controllers in that structure.

 Lesson 10 introduces the concepts of layouts and dynamically rendered views.
So far, you’ve worked only with static content, but in this lesson, you use
Express.js to feed content to your views on every page reload. This lesson also
discusses templating in Node.js. In Express.js, templating engines are at work to
allow you to write placeholders for dynamic content into your HTML pages.

 Lesson 11 builds on the preceding lessons to show how to handle application
errors and configure a start-up script with npm.

 Finally, lesson 12 shows how to rebuild your project from unit 1 by using
Express.js. You re-create the three front-facing views for the cooking school’s
website and add functionality to dynamically fill content from your application
server.

This unit is your first step into web applications that may feel more familiar. Getting
comfortable with Express.js and external packages will make you a more skilled devel-
oper. When your Node.js application is running successfully on Express.js, unit 3 talks
about how to connect your app to a database and save user information.

8LESSON
SETTING UP AN APP WITH EXPRESS.JS

Building a web application has become a simpler task with the addition of web frame-
works. A web framework in Node.js is a module that offers structure to your applica-
tion. Through this structure, you can easily build and customize the way your
application feels without worrying about building certain features from scratch, such as
serving individual files. By the end of this lesson, you’ll know where to begin with web
frameworks and how the one used in this book, Express.js, can reduce the time it takes
you to get your application running.

This lesson covers
 Setting up a Node.js application with Express.js
 Navigating a web framework

Consider this Your static web app from unit 1 is a success. The cooking community
wants you to add more functionality and serve more web pages. You realize that your
application isn’t fully prepared to handle more routes, let alone handling errors or serv-
ing other types of assets. Could there be an easier way to start development with some
structure already in place?

Luckily, you can install a web framework with your Node.js application. Express.js, the
framework you use in this book, handles a lot of the tasks most applications need right out
of the box, such as error handling and static-asset serving. The more familiar you get with
this framework’s methods and keywords, the faster you can build your applications.
87

http://nodeframework.com/
http://nodeframework.com/
http://nodeframework.com/
http://localhost:3000/
http://localhost:3000/?name=jon
http://localhost:3000/?name=jon

88 Lesson 8 Setting up an app with Express.js
8.1 Installing the Express.js package

Express.js increases development speed and provides a stable structure on which to
build applications. Like Node.js, Express.js offers tools that are open-source and man-
aged by a large online community.

First, I’ll talk about why Express.js is the web framework you should learn. With each
passing year, Node.js gains new frameworks, some of which provide convincing rea-
sons to switch to its library. Express.js came out in 2010, and since then, other reliable
frameworks have grown in popularity. Table 8.1 lays out some other frameworks you
can look into.

NOTE For more information about Node.js web frameworks, you can view an updated list
of GitHub repositories at http://nodeframework.com/.

Ultimately, a framework is intended to help you overcome some common development
challenges in building a web application from scratch. Express.js is the most used
framework in the Node.js community, ensuring that you find the support you need
compared with the support offered by other, newer frameworks. Although I recom-
mend using Total.js for its performance and scalability ratings, it’s not necessarily the
best framework to start with.

Because you’re working with Node.js to build a web application for the first time, you
need some tools to help you along the way. A web framework is designed to offer some
of the common tools used in web development. Express.js provides methods and mod-
ules to assist with handling requests, serving static and dynamic content, connecting
databases, and keeping track of user activity, for example. You find out more about how
Express.js provides this support in later lessons.

Table 8.1 Node.js frameworks to know

DescriptionNode.js frameworks

Koa.js Designed by developers who built Express.js with a focus on a library of
methods not offered in Express.js (http://koajs.com/)

Designed with a similar architecture to Express.js and a focus on writingHapi.js
less code (https://hapijs.com/)

Sails.js Built on top of Express.js, offering more structure, as well as a larger
library and less opportunity for customization (https://sailsjs.com/)

Total.js Built on the core HTTP module and acclaimed for its high-performance
request handling and responses (https://www.totaljs.com/)

http://koajs.com/
https://hapijs.com/
https://sailsjs.com/
https://www.totaljs.com/
http://expressjs.com/
http://expressjs.com/
http://localhost:3000/
http://nodeframework.com/

89Installing the Express.js package

Express.js is used by new and professional Node.js developers alike, so if you feel over-
whelmed at any time, know that thousands of others can help you overcome your
development obstacles.

Now you’re ready to jump into initializing an application with Express.js. To begin, you
need to initialize your application by creating a new project directory called first_
express_project, entering that directory within a new terminal window, and entering npm
init. You can follow the prompt to save main.js as the entry point and to save all the
other default values.

NOTE As discussed in lesson 1, initializing a new project creates a package.json file with
which you can define some attributes of your application, including the packages you down-
load and depend on.

Because Express.js is an external package, it doesn’t come preinstalled with Node.js. You
need to download and install it by running the following command within your project
directory in terminal: npm install express --save.

NOTE At this writing, the latest version of Express.js is 4.16.3. To ensure that your ver-
sion of Express.js is consistent with the one used in this book, install the package by running
npm install express@4.16.3 --save.

WARNING If you try to install Express.js in a specific project before you create pack-
age.json, you may see an error complaining that there’s no directory or file with which the
installation can complete.

Use the --save flag so that Express.js is listed as an application dependency. In other
words, your application depends on Express.js to work, so you need to ensure that it’s
installed. Open package.json to see this Express.js package installation under the depen-
dencies listing.

TIP If you want to access the Express.js package documentation from your terminal win-
dow, type npm docs express. This command opens your default web browser to http://
expressjs.com.

In the next section, you create your first Express.js application.

Quick check 8.1 What happens if you don’t use the --save flag when installing Express.js for
your application?

QC 8.1 answer Without the --save flag, your Express.js installation won’t be marked as an applica-
tion dependency. Your application will still run locally, because Express.js will be downloaded to your proj-
ect’s node_modules folder, but if you upload your application code without that folder, there’s no
indication in your package.json file that the Express.js package is needed to run your application.

http://expressjs.com
http://expressjs.com
http://expressjs.com

90 Lesson 8 Setting up an app with Express.js

8.2 Building your first Express.js application

To start using Express.js, you need to create a main application file and require the
express module. Save the code in listing 8.1 to a file called main.js within your project.

You require Express.js by referring to the module name express and storing it as a con-
stant. express offers a library of methods and functionality, including a class with built-
in web server functionality. The express webserver application is instantiated and stored
in a constant to be referred to as app. Throughout the rest of the project, you’ll use app to
access most of Express.js’ resources.

As in the first capstone project, Express.js offers a way to define a GET route and its call-
back function without building out an extra module. If a request is made to the home
page, Express.js catches it and allows you to respond.

A response in plain text is sent to the browser. Notice the Express.js method send, which
behaves similarly to write from the http module. Express.js also supports http module
methods. Remember to use end to complete your response if you use write. Finally, you set
up the application to listen for requests on port 3000 of your local host and ask for a help-
ful message to be logged to your console when the application is running successfully.

const port = 3000,
 express = require("express"),
 app = express();

app.get("/", (req, res) => {
 res.send("Hello, Universe!");
})
.listen(port, () => {

Listing 8.1 Simple Express.js web application in main.js

Add the express module
to your application. Assign the express

application to the
app constant.

Set up a GET
route for the
home page.

Issue a response from
the server to the
client with res.send.

console.log(`The Express.js server has started and is listening
➥ on port number: ${port}`);
});

Set up the application tolisten at port 3000.

Give it a shot. Make sure that you’re in your project directory on your command line.
Run node main, and go to http:// localhost:3000. If you see Hello, Universe! on the screen,
you’ve built your first successful Express.js application.

http://localhost:3000/
http://localhost:3000/

91Building your first Express.js application
NOTE The express constant is still used for some Express.js tools related to configuring
your application. app is used mainly for anything created for the application’s movement of
data and user interaction.

In the next section, I talk about some of the ways that Express.js offers support as a web
framework.

Installing and using nodemon
To see your application server code changes in effect, you need to restart the server in
terminal. Close your existing server by pressing Command-D (Ctrl-C for Windows) and
entering node main.js again.

The more changes you apply to your application, the more tedious this task becomes.
That’s why I recommend installing the nodemon package. You can use this package to start
your application the first time and automatically restart it when application files change.

To install nodemon globally, enter npm i nodemon -g. You may need to prepend that com-
mand with sudo or run it in terminal as an administrator.

Alternatively, you can install nodemon as a development dependency (devDependency) or a
resource that you use only during development of an application. Run npm i nodemon --
save-dev or npm i nodemon -D. nodemon starts with your npm start script (discussed in
lesson 11). The benefit of installing as a devDependency is that each project has its own
nodemon modules, reflecting the most up-to-date version of the package at the time of
development.

When nodemon is installed, it’s simple to use: nodemon picks up on the main property in your
package.json. Your package.json should also be modified to include the npm start script.
Add "start": "nodemon main.js", to the scripts section in package.json so that you may run
your application using nodemon with npm start. Go to your project directory in terminal, and
enter nodemon. This command launches your application, and any future changes you make
signal nodemon to restart without your needing to enter another command.

You can shut down the server by pressing the same key combination (Command-D or
Ctrl-C for Windows) in the nodemon window in terminal.

Quick check 8.2 What’s the difference between the express and app constants?

QC 8.2 answer app represents most of your application, the routes, and access to other modules.
express represents a wider range of methods that aren’t necessarily scoped to your application.
express could offer a method to analyze or parse some text on which your application doesn’t necessar-
ily depend.

92 Lesson 8 Setting up an app with Express.js
8.3 Working your way around a web framework

A web framework is designed to do a lot of the tedious tasks for you and leave you with
an intuitive structure for customizing your app. Express.js provides a way to listen for
requests to specific URLs and respond by using a callback function.

A web framework like Express.js operates through functions considered to be middle-
ware because they sit between HTTP interaction on the web and the Node.js platform.
Middleware is a general term applied to code that assists in listening for, analyzing, filter-
ing, and handling HTTP communication before data interacts with application logic.

You can think of middleware as being like a post office. Before your package can go into
the delivery network, a postal worker needs to inspect the size of your box and to
ensure that it’s properly paid for and adheres to delivery policies (nothing dangerous in
your package). See the diagram on middleware in figure 8.1.

NOTE Middleware can come in smaller packages than Express.js. Some play a security
role in checking incoming requests before data passes through to the core application.

Because you’re still dealing with HTTP methods, the overall interaction between your
application and the browser doesn’t change much from your application that uses the
http module in unit 1. You get the same request and response objects, containing a lot of

1. An HTTP request is
 made to the server.

2. Express.js receives the request and
 processes it before handing it off
 to other parts of the application.

Server

Views and
database

Client
Express.js

• Is the requested URL safe?
• Does a route exist for
 the URL?
• Is there incoming data?

Figure 8.1 Express.js stands between the HTTP requests and your
application code.

93Working your way around a web framework
rich information about the sender and its contents. Express.js offers methods that make
it easier for you to get that information.

In addition to the send method on the response object, Express.js provides simpler ways
to pull and log data from the request body. Add the code in the next listing to your GET
route handler in main.js.

console.log(req.params);
console.log(req.body);
console.log(req.url);
console.log(req.query);

From the request, you can pull the values in table 8.2.

Upon restarting your application and visiting http://localhost:3000, you see these values
logged to your server’s terminal window. You explore how to make better use of the
request body when you learn about Express.js routes in lesson 9.

TIP A query string is text represented as key/value pairs in the URL following a question
mark (?) after the hostname. http://localhost:3000?name=jon, for example, is sending
the name (key) paired with jon (value). This data can be extracted and used in the route
handler.

Listing 8.2 Request object methods in Express.js in main.js

Table 8.2 Request object data items

DescriptionRequest data object
params Allows you to extract IDs and tokens from the URL. When you learn about

RESTful routes in unit 4, this request attribute allows you to identify which
items are being requested in an e-commerce site or what user profile you
should navigate to.

body Contains much of the contents of the request, which often includes data
coming from a POST request, such as a submitted form. From the request
body, you can collect information quickly and save it in a database.

url Provides information about the URL being visited (similar to req.url in
unit 1’s basic web server).

query Like body, lets you pull data being submitted to the application server. This
data isn’t necessarily from a POST request, however, and is often
requested in the URL as a query string.

Access request
parameters.

94 Lesson 8 Setting up an app with Express.js
Summary

In this lesson, you learned how to initialize an Express.js project and started a simple
application that said hello in your web browser. You also learned about Express.js as a
web framework and saw how you’ll benefit from its methods moving forward. In lesson
9, you apply some Express.js methods in building a routing system.

Try this

Change the get method in your index.js file to post. Restart your application, and see
how your application behaves differently when you try to access the home page at
http:// localhost:3000. You should see a default error message from Express, telling you
that there’s no GET route for /.

The reason is that you changed the request method you’re listening for. If you make a
curl POST request to the home page, you see your original response content.

Quick check 8.3 Why do most developers use web frameworks instead of building web appli-
cations from scratch?

QC 8.3 answer Web frameworks make development work a lot easier. Web development is fun,
and the best parts aren’t the tedious tasks that are most subject to errors. With web frameworks,
developers and businesses alike can focus on the more interesting parts of applications.

9LESSON
ROUTING IN EXPRESS.JS

In lesson 8, I introduced Express.js as a framework for Node.js web applications. The
rest of this unit is dedicated to exploring Express.js functionality and using its conve-
nient methods. This lesson covers routing and how a few more Express.js methods
allow you to send meaningful data to the user before building a view. You also walk
through the process of collecting a request’s query string. The lesson ends by touching
on the MVC design pattern.

This lesson covers
 Setting up routes for your application
 Responding with data from another module
 Collecting request URL parameters
 Moving route callbacks to controllers

Consider this You want to build a home-page view for your recipe application that
people can visit to see an estimated date of completion for your application. With your
new, clean Express.js setup, you’d like to keep the date variable in a separate file that
you can easily change without modifying your main.js file.

After setting up your routes, you’ll be able to store some data in a separate module and
respond dynamically with that data. With the separate module, you’ll be able to modify
that file’s contents without needing to edit your main application file. This structure
helps prevent you from making mistakes in your code while constantly changing values.
95

96 Lesson 9 Routing in Express.js
9.1 Building routes with Express.js

In lesson 8, you constructed your first Express.js application, consisting of a route han-
dling GET requests to your home-page URL. Another way to describe this route is as an
application endpoint that takes an HTTP method and path (URL). Routes in Express.js
should look familiar to you because you built the same routing structure at the end of
unit 1. In Express.js, a route definition starts with your app object, followed by a lower-
case HTTP method and its arguments: the route path and callback function.

A route handling POST requests to the /contact path should look like the following list-
ing. This example uses the post method provided by Express.js.

app.post("/contact", (req, res) => {
 res.send("Contact information submitted successfully.");
});

You can use these HTTP methods on the app object because app is an instance of the main
Express.js framework class. By installing this package, you inherited routing methods
without needing to write any other code.

Express.js lets you write routes with parameters in the path. These parameters are a way
of sending data through the request. (Another way is with query strings, which I talk
about at the end of this lesson.) Route parameters have a colon (:) before the parameter
and can exist anywhere in the path. Listing 9.2 shows an example of a route with
parameters. The route in this listing expects a request made to /items/ plus some vege-
table name or number. A request to "/items/lettuce", for example, would trigger the
route and its callback function. The response sends the item from the URL back to the
user through the params property of the request object.

app.get("/items/:vegetable", (req, res) => {
 res.send(req.params.vegetable);
});

Initialize a new project called express_routes, install Express.js, and add the code to
require and instantiate the Express.js module. Then create a route with parameters, and

Listing 9.1 Express.js POST route in main.js

Listing 9.2 Using route parameters to indicate vegetable type in main.js

Handle requests with the
Express.js post method.

Respond with path
parameters.

97Building routes with Express.js
respond with that parameter as shown in listing 9.2. At this point, your main.js should
look like the code in the next listing.

const port = 3000,
 express = require("express"),
 app = express();

app.get("/items/:vegetable", (req, res) => {
 let veg = req.params.vegetable;
 res.send(`This is the page for ${veg}`);
});

app.listen(port, () => {
 console.log(`Server running on port: ${port}`);
});

Route parameters are handy for specifying data objects in your application. When you
start saving user accounts and course listings in a database, for example, you might
access a user’s profile or specific course with the /users/:id and/course/:type paths,
respectively. This structure is necessary for developing a representational state transfer
(REST) architecture, as you learn in unit 4.

One last note on Express.js routes: I talked about how Express.js is a type of middleware
because it adds a layer between a request being received and that request being pro-
cessed. This feature is great, but you may want to add your own custom middleware.
You may want to log the path of every request made to your application for your own
records, for example. You can accomplish this task by adding a log message to every
route or by creating the middleware function in listing 9.4. This listing defines a middle-
ware function with an additional next argument, logs the request’s path to your terminal
console, and then calls the next function to continue the chain in the request-response
cycle.

next is provided as a way of calling the next function in your request-response execution
flow. From the time a request enters the server, it accesses a series of middleware func-
tions. Depending on where you add your own custom middleware function, you can
use next to let Express.js know that your function is complete and that you want to con-
tinue to whatever function is next in the chain.

As with HTTP methods, you can create a route with app.use that runs on every request.
The difference is that you’re adding an additional argument in the callback: the next

Listing 9.3 Complete Express.js example in main.js

Add a route to get
URL parameters.

https://expressjs.com/en/starter/generator.html
https://expressjs.com/en/starter/generator.html

98 Lesson 9 Routing in Express.js
function. This middleware function allows you to run custom code on the request
before its URL path matches with any other routes in your application. When your cus-
tom code completes, next points the request to the next route that matches its path.

Try adding this middleware function to your express_routes application. If a request is
made to /items/lettuce, the request is processed first by your middleware function and
then by the app.get("/items/:vegetable") route you created previously.

app.use((req, res, next) => {
 console.log(`request made to: ${req.url}`);
 next();
});

WARNING Calling next at the end of your function is necessary to alert Express.js that
your code has completed. Not doing so leaves your request hanging. Middleware runs sequen-
tially, so by not calling next, you’re blocking your code from continuing until completion.

You can also specify a path for which you’d like your middleware function to run.
app.use("/items", <callback>), for example, will run your custom callback function for
every request made to a path starting with items. Figure 9.1 shows how middleware
functions can interact with a request on the server.

In the next section, I talk about handling data in your routes and responding with that
data.

Analyzing request data9.2

Preparing fancy and dynamic responses is important in your application, but eventu-
ally, you’ll need to demonstrate the application’s ability to capture data from the user’s
request.

Listing 9.4 Express.js middleware function for logging request path in main.js

Define a middleware
function.

Log the
request’s path
to console.

Call the next
function.

Quick check 9.1 What does the Express.js use method do?

QC 9.1 answer The use method allows you to define the middleware functions you want to use with
Express.js.

99Analyzing request data
You have two main ways to get data from the user:

 Through the request body in a POST request
 Through the request’s query string in the URL

In the first capstone project, you successfully built a form that submits data to a POST
route (a route that listens for posted data to a specific URL). But http incoming data is
represented as a Buffer stream, which is not human-readable and adds an extra step to
making that data accessible for processing.

Express.js makes retrieving the request body easy with the body attribute. To assist in
reading the body contents (as of Express.js version 4.16.0), you add express.json and
express.urlencoded to your app instance to analyze incoming request bodies. Notice the
use of req.body to log posted data to the console in listing 9.5. Add that code to your
project’s main.js. With Express.js’ app.use, specify that you want to parse incoming
requests that are URL-encoded (usually, form post and utf-8 content) and in JSON for-
mat. Then create a new route for posted data. This process is as simple as using the post
method and specifying a URL. Finally, print the contents of a posted form with the
request object and its body attribute.

1. The client makes a
request to the server.

2. The request is received, and the
application begins processing it.

3. Custom middleware logs
the request’s HTTP method,
IP address, and path to
the console before routing

4. The router evaluates the request
and responds with some data.

5. Middleware can also be applied before
the response leaves the server. It wraps
the entire request’s journey.

Client

Server

Middleware

Router

Middleware

Figure 9.1 The role of middleware functions

100 Lesson 9 Routing in Express.js
app.use(
 express.urlencoded({
 extended: false
 })
);
app.use(express.json());

app.post("/", (req, res) => {
 console.log(req.body);
 console.log(req.query);
 res.send("POST Successful!");
});

Test this code by submitting a POST request to http:// localhost:3000, using the following
curl command: curl --data "first_name=Jon&last_name=Wexler" http://localhost:3000.

You should see the body logged to your server’s console window like so: { first_name:
"Jon", last_name: "Wexler" }.

Now when you demo the backend code to your customers, you can show them, through
a mocked form submission, how data will be collected on the server.

Another way to collect data is through the URL parameters. Without the need for an
additional package, Express.js lets you collect values stored at the end of your URL’s
path, following a question mark (?). These values are called query strings, and they are
often used for tracking user activity on a site and storing temporary information about a
user’s visited pages.

Examine the following sample URL: http:// localhost:3000?cart=3&pagesVisited=
4&utmcode=837623. This URL might be passing information about the number of
items in a user’s shopping cart, the number of pages they’ve visited, and a marketing
code to let the site owners know how this user found your app in the first place.

To see these query strings on the server, add console.log(req.query); to your middle-
ware function in main.js. Now try visiting the same URL. You should see { cart: "3",
pagesVisited: "4", utmcode: "837623" } logged to your server’s console window.

In the next section, I talk about MVC architecture and how Express.js routes fit into that
structure.

Listing 9.5 Capturing posted data from the request body in main.js

Tell your Express.js application
to parse URL-encoded data.

Create a new post route
for the home page.

Log the request’s body.

http://localhost:3000?cart=3&pagesVisited=4&utmcode=837623
http://localhost:3000?cart=3&pagesVisited=4&utmcode=837623
http://localhost:3000
http://localhost:3000

101Using MVC

Using MVC9.3

This lesson is about processing request data within your routes. Express.js opens the
door to custom modules and code to read, edit, and respond with data within the
request-response cycle. To organize this growing code base, you’re going to follow an
application architecture known as MVC.

MVC architecture focuses on three main parts of your application’s functionality: mod-
els, views, and controllers. You used views in past applications to display HTML in the
response. See the breakdown and definitions in table 9.1.

To follow the MVC design pattern, move your callback functions to separate modules
that reflect the purposes of those functions. Callback functions related to user account
creation, deletion, or changes, for example, go in a file called usersController.js within
the controllers folder. Functions for routes that render the home page or other informa-
tional pages can go in homeController.js by convention. Figure 9.2 shows the file struc-
ture that your application will follow.

Table 9.1 Model-view-controller parts

Views Rendered displays of data from your application. In unit 3, you learn about models and
even create your own.

Models Classes that represent object-oriented data in your application and database. In your
recipe application, you might create a model to represent a customer order. Within
this model, you define what data an order should contain and the types of functions
you can run on that data.

Controllers The glue between views and models. Controllers perform most of the logic when a
request is received to determine how request body data should be processed and how
to involve the models and views. This process should sound familiar, because in an
Express.js application, your route callback functions act as controllers.

Quick check 9.2 What additional middleware functions are needed to parse incoming data
in a request body with Express.js?

QC 9.2 answer The express.json and express.urlencoded for parsing incoming data to the server.
Other packages, such as body-parser, act as middleware and perform similar tasks.

102 Lesson 9 Routing in Express.js
Figure 9.3 shows Express.js as a layer over your application that handles requests but
also feeds your application’s controllers. The callbacks decide whether a view should be
rendered or some data should be sent back to the client.

To restructure your express_routes application to adhere to this structure, follow these
steps:

1 Create a controllers folder within your project folder.
2 Create a homeController.js file within controllers.
3 Require your home controller file into your application by adding the following

to the top of main.js:
const homeController = require("./controllers/homeController");

4 Move your route callback functions to the home controller, and add them to that
module’s exports object.

serve_html

public

main.js

This new directory structure is mindful
of your application’s MVC design pattern.
Each folder organizes your code based
on functionality.

package.json

index.html

homeController.js

router.js

models

images js css

views

controllers

models

Figure 9.2 Express.js MVC file structure

103Using MVC
Your route to respond with a vegetable parameter, for example, can move to your
home controller to look like listing 9.6.
In homeController.js, you assign exports.sendReqParam to the callback function.
sendReqParam is a variable name, so you can choose your own name that describes
the function.

exports.sendReqParam = (req, res) => {
 let veg = req.params.vegetable;
 res.send(`This is the page for ${veg}`);
};

5 Back in main.js, change the route to look like the next listing.
When a request is made to this path, the function assigned to sendReqParam in the
home controller is run.

Listing 9.6 Moving a callback to homeController.js

1. A request is sent to the server
where it is first handled by the
event loop and request handlers.

2. Express.js and its routes handle
requests and determine whether
to process the request further or
send back a response.

4. Data is sent back to the client,
often through browser views
generated with the help
of templating engines.

3. A specific request may require
interaction with the application
models and database layer.

Server
Client Server

RouterRequest
handler

Controllers

Models

Event loop

Views Templating
engine

Database

Figure 9.3 Express.js can follow the MVC structure with routes feeding controllers

Create a function to
handle route-specific
requests.

104 Lesson 9 Routing in Express.js
app.get("/items/:vegetable", homeController.sendReqParam);

6 Apply this structure to the rest of your routes, and continue to use the controller
modules to store the routes' callback function.
You can move your request-logging middleware to a function in the home con-
troller referenced as logRequestPaths, for example.

7 Restart your Node.js application, and see that the routes still work.
With this setup, your Express.js application is taking on a new form with MVC in
mind.

In the next lesson, I discuss how to serve views and assets with Express.js.

Listing 9.7 Replacing a callback with a controller function in main.js

Handle GET requests
to "/items/:vegetable".

Installing and using express-generator
As you continue to evolve your Express.js application, you adhere to a specific file struc-
ture. You have many ways to construct your application, though, depending on its
intended use. To jump-start your application in the Express.js framework, you can use a
package called express-generator.

express-generator provides some boilerplate code for an application. This tool offers
scaffolding (prebuilt folders, modules, and configurations) that might have taken you a
few hours to build from scratch. To install this package, use the global flag with the npm
install command. Enter the following command in terminal: npm install express-
generator -g. For UNIX machines, you may need to prepend this command with sudo or
run it as an administrator.

When this package is installed, you can create a new project by entering express and
the project name in a new terminal window. If your project is called Generation Genera-
tor, for example, enter express generation_generator in terminal. The express keyword
in this context uses express-generator in terminal to construct the application with
some views and routes.

Although this tool is great for constructing applications quickly, I don’t recommend using
it while running the exercises in this book. You should use a slightly different application
structure from the one provided by express-generator. For more information about this
package, visit https://expressjs.com/en/starter/generator.html.

https://expressjs.com/en/starter/generator.html

105Summary
Summary

In this lesson, you learned how to build routes and middleware functions with
Express.js. Then you used middleware functions to work with Express.js in analyzing
request body contents. At the end of the lesson, you learned about MVC and saw how
routes can be rewritten to use controllers in your application. In lesson 10, you jump
into views and a rich feature known as layouts. With these tools, you can build your
views faster.

Try this

You have the directory structure set up for an MVC Express.js application. Try creating
a POST route for the /sign_up path, using Express.js methods and controller functions for
the route’s callback.

The function’s name in the controller can read something like userSignUpProcessor.

Quick check 9.3 What is the role of controllers in MVC?

QC 9.3 answer Controllers are responsible for processing data by communicating with models, per-
forming code logic, and calling for a view to be rendered in a server’s response.

10LESSON
CONNECTING VIEWS WITH TEMPLATES

In lesson 9, you constructed a routing system for your Express.js application. In this les-
son, you learn about templating engines and see how to connect your routes to views.
You learn how to work with Embedded JavaScript (EJS), a syntax for applying Java-
Script functions and variables within your views, as well as how to pass data into those
views from your controllers. You start by setting up EJS with your application and see-
ing how templating engines work. By the end of the lesson, you’ll understand the syn-
tax needed to master EJS in your Express.js applications. At the end of the lesson, you
install the express-ejs-layouts package to use dynamic layouts in your application.

This lesson covers
 Connecting a templating engine to your application
 Passing data from your controllers to your views
 Setting up Express.js layouts

Consider this You have some wireframes laying out how your application pages will
look, and you notice that many of the pages share components. Your home page and
contact page both use the same navigation bar. Instead of rewriting the HTML repre-
senting the navigation bar for each view, you want to write the code once and reuse it
for each view.

With templating in a Node.js application, you can do just that. In fact, you’ll be able to
render a single layout for all your application pages or share view content in code snip-
pets called partials.
106

107Connecting a templating engine
10.1 Connecting a templating engine

In lesson 9, you reorganized your routes to serve responses with Express.js routing
methods and an MVC application structure. The next step is using your routes to
respond with more than single lines of text. As in unit 1, you’ll render separate files, but
these files aren’t purely HTML, and you won’t explicitly need the fs module to serve
them.

Part of what makes Express.js so popular is its ability to work with other packages and
tools. One such tool is the templating engine. Templating allows you to code your views
with the ability to insert dynamic data. In this book, you’ll be writing your views in
HTML with EJS—data in the form of JavaScript objects embedded in the page with spe-
cial syntax. These files have the .ejs extension. There are many templating languages
like EJS, but this book assumes that you have moderate experience with HTML, and EJS
proves to be the most effective and simplest templating language to learn with that
background. If you want to explore other templating engines, consider some of the ones
listed in table 10.1.

A templating engine is what Express.js uses to process your views and convert them to
browser-readable HTML pages. Any non-HTML lines are converted to HTML, with val-
ues rendered where embedded variables once were. See figure 10.1 to understand the
conversion process.

Table 10.1 Templating engines

DescriptionTemplating engine

Mustache.js Without the custom helpers offered by Handlebars.js, this templating
engine is simple and lightweight, and it compiles for many languages other
than JavaScript (https://mustache.github.io/).

Handlebars.js Functionally similar to EJS, this templating engine focuses on the use of
curly brackets, or handlebars, for inserting dynamic content into your
views (http://handlebarsjs.com/).

Underscore.js In addition to other JavaScript functions and libraries, this engine offers
templating with customizable syntax and symbols (http://underscorejs
.org/).

Pug.js This engine offers syntax similar to Jade in Ruby, abbreviating HTML tag
names for simplicity, and is indentation-sensitive (https://pugjs.org).

http://handlebarsjs.com/
http://underscorejs.org/
http://underscorejs.org/
https://pugjs.org
https://mustache.github.io/

108 Lesson 10 Connecting views with templates
In a new application project called express_templates, initialize your application, install
express as a dependency, and create your controllers folder with a home controller. In
your main.js file, require the normal Express.js module and app object, homeControl-
ler.js, and set your server to listen on port 3000. Next, install the ejs package with the
following terminal command: npm install ejs --save.

NOTE You can also install express and ejs in one line by running npm install express
ejs --save.

index index.ejs index.html

1. The starting file represents
your index page. The goal of
the templating engine is to
produce an HTML page.

2. The extension for an EJS templating engine
is .ejs. This extension helps the engine locate
only the files it knows how to convert into HTML.

3. The templating engine will convert dynamic
content into static HTML nodes and elements.
All JavaScript variables or computations
within EJS tags will be converted.

4. The result of this process is
an HTML page that’s viewable
on any modern browser.

Templating
engine

Templating

Figure 10.1 Converting EJS to HTML

The set method
set is often used to assign values to predefined configuration variables used by your
application. Those variables, called application settings properties, are listed at https://
expressjs.com/en/api.html#app.set. Some variables are used by app itself to allow your
application to function on your computer. Assigning variables with set is another way to
set the application’s configurations.

You’ve been setting the port for your application to 3000. Although 3000 is a conven-
tional port number used in web development, the port number won’t stay the same when
the application is deployed online.

app.set lets you assign a value to some key that you plan to reuse in your application.
The following code will set port to the environment variable PORT value or 3000 if the for-
mer value is undefined. You could use app.set("port", process.env.PORT || 3000);, for
example.

https://expressjs.com/en/api.html#app.set
https://expressjs.com/en/api.html#app.set
https://expressjs.com/en/api.html#app.set
http://localhost:300/name

109Connecting a templating engine
Now that the ejs package is installed, you need to let your Express.js application know
that you plan to use it for templating. To do so, add app.set("view engine", "ejs")
below your require lines in main.js. This line tells your Express.js application to set its
view engine as ejs. This line is how your application knows to expect EJS in your views
folder in your main project directory.

Now that your application is ready to interpret EJS, create an index.ejs file in your views
folder with the code in listing 10.1. In this code, you use the EJS syntax <% %> to define
and assign a variable within your view. Everything within these characters runs as valid
JavaScript. Each line of HTML contains an embedded variable. By using <%= %>, you’re
able to print that variable’s value within the HTML tags.

<% let name = "Jon"; %>
<h1> Hello, <%= name %> </h1>

Last, create a route in main.js for the /name path. You can think of a name for the control-
ler function that relates to what the function will do. The following example calls the
function respondWithName: app.get("/name", homeController.respondWithName). This route
runs when a request is made to the /name path; then it calls the respondWithName function
in the home controller.

In homeController.js, add the respondWithName function as shown in the next listing. You use
the render method on the response object to respond with a view from your views folder.

exports.respondWithName = (req, res) => {
 res.render("index");
};

Listing 10.1 Sample EJS content in your index.ejs view

Listing 10.2 Rendering a view from a controller action in homeController.js

To use this set value, you need to replace your hardcoded 3000 at the end of the application
main.js file with app.get("port"). Similarly, you could run app.get("view engine"). Now
you can even replace your console.log with a more dynamic statement, such as console
.log(`Server running at http://localhost:${ app.get("port") }`);

Restart this application with the added code to make sure that it still runs correctly.

Define and assign
a variable in EJS.

Embed a variable
within HTML.

Respond with a
custom EJS view.

http://localhost:300/name/jon
http://localhost:${ app.get(’port’) }

110 Lesson 10 Connecting views with templates
NOTE Notice that you don’t need the .ejs extension for the index.ejs view, and you don’t
need to specify the folder that this view lives in. Express.js takes care of all that for you. As
long as you continue to add your views to the views folder and use EJS, your application will
know what to do.

Restart your application, and visit http:// localhost:3000/name in your browser. If you
run into any issues, try reinstalling the ejs and express packages, and make sure that
your files are in the correct folders.

In the next section, I talk about passing data from the controller to your EJS views.

10.2 Passing data from your controllers

Now that your templates are rendering, the best way to use them is to pass data from
your controllers to your views instead of defining those variables directly in the view. To
do so, remove the line in index.ejs that defines and assigns the name variable, but keep
the H1 tag and its EJS contents.

Change your route to take a parameter in its path and then send that parameter to
the view. Your route should look like the following code: app.get("/name/:myName",
homeController.respondWithName). Now the route takes a parameter at the end of the
/name path.

To use this parameter, you need to access it from your request params in the home
Controller.respondWithName function. Then you can pass the name variable to your view
in a JavaScript object. Your function should look like the code in the following listing. In
this code block, you set the route parameter to a local variable; then you pass the name
variable as a value for the name key (which should match the variable name in your
view).

Quick check 10.1 What is a templating engine?

QC 10.1 answer A templating engine is the tool that Express.js uses in your application to process
a template view. Because template views contain a mix of HTML and JavaScript content, the engine’s job
is to convert this information to an HTML file that your browser can use.

http://localhost:3000/name

111Setting up partials and layouts
exports.respondWithName = (req, res) => {
 let paramsName = req.params.myName;
 res.render("index", { name: paramsName });
};

Restart your application, and visit http:// localhost:3000/name/jon in your browser.

WARNING /name/jon is a different path from /name/. If you don’t add a name as a route
parameter, your application will complain that no route matches your request. You must
add some text following the second forward slash in the URL.

In the next section, I talk about layouts and partials, and discuss how they allow you to
write less code to get the same results in your views.

10.3 Setting up partials and layouts

In the preceding two sections, you introduced dynamic data to your views. In this sec-
tion, you set up your views a little differently so that you can share view content across
multiple pages.

To start, create an application layout. A layout is a shell in which your views are ren-
dered. Think of layouts as being the content that doesn’t change from page to page
when you browse a website. The bottom (footer) of the page or navigation bar might
stay the same, for example. Instead of re-creating the HTML for these components, add
them to a layout.ejs file that other views can share.

To do so, install the express-ejs-layouts package, and require it in your main.js file by
using const layouts = require("express-ejs-layouts"). Then let Express.js know to use
this package as an additional middleware layer by adding app.use(layouts) to your
main.js file.

Listing 10.3 Passing a route parameter to your view in homeController.js

Assign a local
variable to a
request
parameter.Pass a local

variable to a
rendered view.

Quick check 10.2 What is the format in which you send data from your controller to a view?

QC 10.2 answer To send data from your controller, you can pass a variable within a JavaScript
object. The variable that’s local to your controller’s context follows the key, whose name should match
the variable name in your view.

http://localhost:3000/name/jon

112 Lesson 10 Connecting views with templates
Next, create a layout.ejs file in your views folder. You can start with some simple HTML
in the layout file, as shown in the next listing. The body keyword is used by Express.js
and the layout express-ejs-layouts to fill your other views’ contents in its place.

<body>
 <div id="nav">NAVIGATION</div>
 <%- body %>
 <div id="footer">FOOTER</div>
</body>

When you visit a route that renders a view, you’ll notice the navigation and footer text
with your rendered view in between. This layout will continue to render along with
your view on every page load. To see, restart your application, and visit the
/name/:myName path in your browser.

Partials work similarly to layouts. Partials are snippets of view content that can be
included in other views. In your recipe application, you may want to add a notification
box on a few of the pages. To do so, create a partial called notification.ejs, and add it to
select EJS views by using the include keyword. To create a partial for the navigation ele-
ment, move your code for that div to a new file called navigation.ejs. Place that file in a
new folder called partials within your views folder. Then include that file within your
layout.ejs file by using the following code: <% include partials/navigation %>. With a lit-
tle styling, your view should resemble figure 10.2.

Listing 10.4 EJS layout file contents in layout.ejs

Wrap body with
boilerplate HTML.

Figure 10.2 Example view of name page

113Summary
Within the EJS carets, use the include keyword followed by a relative path to your par-
tial. Because the layout is already in the views folder, it needs to look in the partials
folder on the same directory level to find the navigation partial.

Restart your application, and visit the /name/:myName path again. If everything was set up
correctly, nothing in that view should have changed since the addition of a layout file.
To prove that the partial is working, try changing the text in the navigation partial or
adding new tags to see how content changes in your browser.

NOTE When making changes in your views, you don’t need to restart your application.

Now you have an application using an EJS templating engine, a layout, and partials that
accept dynamic data. In lesson 11, you learn about handling errors and adding some
configurations to your package.json file.

Summary

In this lesson, you learned how to use templates in your application with EJS. You also
learned how to pass data from your controllers to application views. At the end of the
lesson, you learned how to create a layout with the express-ejs-layouts package and
partials to share content across your views. In lesson 11, you add a configuration to start
your application with a different command and handle errors with new middleware
functions.

Try this

Now that you have templates, partials, and a layout in your application, you should use
them to create multiple views. Try creating a contact page for your recipe application
that uses your application layout and a partial that renders a notification box called
notificationBox.ejs. Add this partial to your index.ejs view as well.

Quick check 10.3 What keyword do you use to share partials across multiple views?

QC 10.3 answer The include keyword looks for a partial in the relative path provided and renders
it in place.

11LESSON
CONFIGURATIONS AND ERROR
HANDLING

In lesson 10, you added Embedded JavaScript (EJS) to your application views. In this
lesson, you add finishing touches to your application by modifying your package.json
file to use a start script. This script changes the way that you start your application from
terminal. Then you add error handling middleware functions to log errors and respond
with error pages.

This lesson covers
 Changing your application start script
 Serving static pages with Express.js
 Creating middleware functions for error handling

Consider this You’re in full swing developing your recipe application. As is common in
programming, you run into many errors, but you have no clear indication of those
errors in your browser.

In this lesson, you explore ways to serve error pages to your browser window when
appropriate.
114

115Modifying your start script
11.1 Modifying your start script

To start this lesson, you modify a file that you haven’t touched in a while. The package
.json file is created every time you initialize a new Node.js application, but you’ve
changed hardly any of its values manually. In lesson 4, I talked about using the npm
start command to start your application when that script is configured in your project’s
package.json.

Make a copy of your express_templates application folder from lesson 10. In your
package.json file, locate the scripts property; you should see a placeholder for a test
script. Add a comma to the end of that test script, and add "start": "node main.js". This
script allows you to run npm start to start your application and abstracts the need to
know the name of your main application file. That part of your package.json file should
look like the next listing. Within the scripts object, you can use the key—start—to start
your application by running npm start, npm run start, or npm run-script start.

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "node main.js"
},

Save your file, and run your application with npm start. Functionally, nothing else
should change in your application, which should start as usual.

TIP If you experience any issues restarting your application, try reverting to node main to
rule out any accidental changes made in your main.js file.

In the next section, you improve the way that you handle errors in your application.

Listing 11.1 Add the npm start script to your package.json

Add a start script
to package.json.

Quick check 11.1 What’s the purpose of the scripts object in your package.json file?

QC 11.1 answer The scripts object allows you to define aliases for commands that you want to
run with npm.

116 Lesson 11 Configurations and error handling
11.2 Handling errors with Express.js

So far, Express.js has been a great improvement on the development process. One perk
is that the application doesn’t hang forever when a request is made to a path for which
no route exists. When you make a request to the home page, however, if there’s no route
to handle that request, you see an unfriendly Cannot GET / in your browser.

You can take a few approaches to error handling with Express.js. The first approach is
logging to your console whenever an error occurs. You can log errors the same way that
you logged the requested path in lesson 10. Because I’m dealing with a topic that’s sepa-
rate from serving normal informational pages, I recommend that you create a new con-
troller and install the http-status-codes package by running npm install http-status-
codes --save in the project’s terminal window.

Create errorController.js in your controllers folder, and add the function shown in list-
ing 11.2. This function contains one more argument than the normal middleware func-
tion. If an error occurs in the request-response cycle, it appears as the first argument. As
with console.log, you can use console.error to log the error object’s stack property,
which tells you what went wrong. As in the previous middleware functions, the next
argument calls the next function or route in the chain, this time passing the error object
in case it needs to be processed further.

NOTE You need to accept four arguments in this error handler, with the first argu-
ment always representing the error object. Without all four arguments, the function
will not be interpreted as error handling middleware, but instead as a normal middle-
ware function..

exports.logErrors = (error, req, res, next) => {
 console.error(error.stack);
 next(error);
};

TIP Using console.log is great for general debugging, but as your application gets more
involved, you’ll want to vary your log messages. Tools such as the Chrome browser’s console
window can color-coordinate these messages for you to distinguish between general log
messages and error messages.

Listing 11.2 Adding a function to your error controller, errorController.js

Add middleware
to handle errors.

Pass the error to the
next middleware
function.

Log the error stack.

117Handling errors with Express.js
Next, you need to tell Express.js to use this middleware function by requiring errorCon-
troller.js and adding app.use(errorController.logErrors) to your main.js file. You can
invoke an error by commenting out the line that defines the paramsName variable in the
respondWithName function. Then, when you visit http:// localhost:3000/name/jon, your
logErrors function will run. Remember to uncomment that line when you’re done.

WARNING Make sure to add the middleware line in main.js after the rest of your normal
route definitions.

By default, Express.js handles any errors at the end of processing a request. If you want
to respond with a custom message, however, you can add a catch-all route at the end of
your routes to respond with a 404 status code if the page is not found or a 500 status
code if your application got an error in the process. That code should look like listing
11.3 in errorController.js.

In errorController.js, the first function responds with a message to let the user know that
the request page wasn’t found in your routes. The second function notifies the user of an
internal error that prevented the request from being processed. Here, you use the http-
status-codes module in place of the code values themselves.

const httpStatus = require("http-status-codes");

exports.respondNoResourceFound = (req, res) => {
 let errorCode = httpStatus.NOT_FOUND;
 res.status(errorCode);
 res.send(`${errorCode} | The page does not exist!`);
};
exports.respondInternalError = (error, req, res, next) => {
 let errorCode = httpStatus.INTERNAL_SERVER_ERROR;
 console.log(`ERROR occurred: ${error.stack}`)
 res.status(errorCode);
 res.send(`${errorCode} | Sorry, our application is
➥experiencing a problem!`);
};

In main.js, order matters. respondNoResourceFound will catch requests made with no
matching routes, and respondInternalError will catch any requests where errors
occurred. Add these middleware functions to main.js, as shown in the following listing.

Listing 11.3 Handle missing routes and errors with custom messages in
errorController.js

Respond with
a 404 status
code.

Catch all errors
and respond with a
500 status code.

http://localhost:3000/name/jon

118 Lesson 11 Configurations and error handling
app.use(errorController.respondNoResourceFound);
app.use(errorController.respondInternalError);

If you want to customize your error pages, you can add a 404.html and a 500.html page
in your public folder with basic HTML. Then, instead of responding with a plain-text
message, you can respond with this file. This file won’t use your templating engine to
process the response. Your respondNoResourceFound function in your error controller looks
like the next listing. In this code, res.sendFile allows you to specify an absolute path to
your error page, which is helpful if your normal templating renderer isn’t working.

exports.respondNoResourceFound = (req, res) => {
 let errorCode = httpStatus.NOT_FOUND;
 res.status(errorCode);
 res.sendFile(`./public/${errorCode}.html`, {
 root: "./"
 });
};

Now that you have error messages being served to your users and logged to your termi-
nal, you should make sure that your application is set up for serving static files like your
404.html page.

Listing 11.4 Handle missing routes and errors with custom messages: main.js

Listing 11.5 Handle missing routes and errors with custom messages

Add error-handling
middleware to main.js.

Respond with
a custom
error page.

Send content
in 404.html.

Quick check 11.2 Why does your middleware that handles missing routes go after your nor-
mal application routes?

QC 11.2 answer The middleware function that responds with 404 status codes acts like an else in
and if-else code block. If no other route paths match the request, this function responds with the mes-
sage to your user.

119Summary
11.3 Serving static files

This last section is a short one. In your application from unit 1, serving all different
types of static files and assets would require hundreds of lines of code. With Express.js,
these file types are accounted for automatically. The only thing you need to do is tell
Express.js where to find these static files.

NOTE Static files include your assets and custom error pages, such as 404.html and
500.html. These HTML pages don’t go through a templating engine because they don’t con-
tain any EJS values.

To set up this task, you need to use the static method from the express module. This
method takes an absolute path to the folder containing your static files. Then, as with
any other middleware function, you need to tell the Express.js app instance to use this
feature. To enable the serving of static files, add app.use(express.static("public")) to
main.js. This line of code tells your application to use the corresponding public folder, at
the same level in the project directory as main.js, to serve static files.

With this code in place, you can visit http:// localhost:3000/404.html directly. You can
also place an image or another static asset in your public folder and access it by filename
after the main domain in your URL. If you add an image, such as cat.jpg, within another
subdirectory called images, you can view that image alone by visiting http:// localhost:
3000/ images/cat.jpg.

Summary

In this lesson, you learned how to change your application’s start script. You also
learned how to log and manage some of the errors that occur in your Express.js applica-
tion. At the end of the lesson, you set up Express.js to serve static assets from your pub-
lic folder. Now you have quite a few tools at your disposal to use in building your recipe

Quick check 11.3 What important static files live in your public folder?

QC 11.3 answer Your public folder contains static HTML files for your error pages. If some-
thing goes wrong in your application, these files can be served back to the client.

http://localhost:3000/404.html
http://localhost:3000/images/cat.jpg
http://localhost:3000/images/cat.jpg

120 Lesson 11 Configurations and error handling
application. In lesson 12, you put what you’ve learned to the test by restructuring the
Confetti Cuisine application.

Try this

Now that you have the ability to serve static files, build a creative HTML page for 404
and 500 errors in your application. These files don’t use the normal layout file that you
use for templating, so all your styling must live inside the HTML page.

12LESSON
CAPSTONE: ENHANCING THE CONFETTI
CUISINE SITE WITH EXPRESS.JS

After some consideration, I decided that it would be easier to rely on a web framework
to assist me in building a web application for Confetti Cuisine. Building custom routes
and application logic has become a tedious task, so I’m converting my application to use
Express.js.

I still want the application to have home, courses, and sign-up pages. I need to convert
the routes to use keywords and syntax found in Express.js. I need to make sure that I
serve my static assets out of the public directory and have all necessary package.json
configurations set up for launching the application locally. When I feel ready to make
this transformation, I’ll start by initializing the project with npm init.

12.1 Initializing the application

To begin this site redesign, I’m going to create a new project directory called confetti_
cuisine and enter that folder. Within the project folder in terminal, I’ll initialize the
application package.json with npm init.

Remembering the configurations that I previously set, I’ll keep the default settings for
the project name and use entry point main.js.
121

122 Lesson 12 Capstone: Enhancing the Confetti Cuisine site with Express.js
Now that my package.json is set up, I’m going to add a start script under "scripts",
which will allow me to run the application by using npm start instead of node <filename>.
I add "start": "node main.js" to my list of scripts.

TIP Don’t forget to separate multiple script items with a comma.

The last step in the initialization process is adding the main Express.js web framework,
EJS templating, a layout, and http-status-codes packages to this project. To do so, I run
npm install express ejs express-ejs-layouts http-status-codes --save in the command
line.

NOTE The --save flag saves the express package as a dependency in this project’s
package.json. This way, any future work on this project will ensure that Express.js is installed
before anything is able to work.

My resulting package.json file looks like the following listing.

{
 "name": "confetti_cuisine",
 "version": "1.0.0",
 "description": "A site for booking classes for cooking.",
 "main": "main.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "node main.js"
 },
 "author": "Jon Wexler",
 "license": "ISC",
 "dependencies": {
 "ejs": "^2.6.1",

"express": "^4.16.4",
 "express-ejs-layouts": "^2.5.0",
 "http-status-codes": "^1.3.0"
 }
}

Before I add any new files, I’m going to set up my application’s directory structure. The
final project structure will look like listing 12.2. I’ll add the following:

 A views folder to hold my HTML pages
 A controllers folder to hold any routing functions
 A public folder with css, js, and images folders within to hold my client-side

assets

Listing 12.1 Project configurations in package.json

List dependencies
installed for this project.

123Building the application

.
|____main.js
|____public
| |____css
| | |____confetti_cuisine.css
| | |____bootstrap.css
| |____images
| | |____product.jpg
| | |____graph.png
| | |____cat.jpg
| | |____people.jpg
| |____js
| | |____confettiCuisine.js
|____package-lock.json
|____package.json
|____controllers
| |____homeController.js
| |____errorController.js
|____views
| |____index.ejs
| |____courses.ejs
| |____contact.ejs
| |____error.ejs
| |____thanks.ejs
| |____layout.ejs

Great. Now I’m ready to add application logic.

12.2 Building the application

Listing 12.2 Confetti Cuisine project file structure

List of project directory
from root

Now that the application is set up with Express.js installed, I’ll create my main.js appli-
cation file. Although this file will resemble my http module version, writing it from
scratch will eliminate a ton of headaches in converting line by line. My main.js will look
like the code in listing 12.3.

The first line of main.js requires the contents of the Express.js package, assigning them
to a constant called express. As with the app constant in the first version of this applica-
tion, I’ll instantiate the express object, representing this project’s main application frame-
work as another constant called app. The app constant will have the ability to set up a GET

route, listening for requests made to the root URL (/) and responding with the Express.js
send function called on the response. I can finally set up the server to listen on port 3000
and log a message to my console when it’s up and running.

124 Lesson 12 Capstone: Enhancing the Confetti Cuisine site with Express.js

const express = require("express"),
 app = express();

app.set("port", process.env.PORT || 3000);

app.get("/", (req, res) => {
 res.send("Welcome to Confetti Cuisine!");
});

app.listen(app.get("port"), () => {
 console.log(
 `Server running at http://localhost:${app.get(

"port"
)}`
);
});

With this logic in place, I can start the application by running npm start in my command
line.

The json and urlencoded Express.js middleware functions will be used as middleware
that interpret incoming request bodies for me. In main.js, I’ll add the code in the next
listing.

app.use(
 express.urlencoded({
 extended: false
 })
);
app.use(express.json());

Now my application is ready to analyze data within incoming requests. Next, I need to
create routes to reach views in my application.

12.3 Adding more routes

Listing 12.3 Setting up the main application logic in main.js

Listing 12.4 Adding body parsing to the top of main.js

Require express.

Instantiate the
express application.

Create a route for
the home page.

Set the
application up
to listen on
port 3000.

Tell the Express.js app to use
body-parser for processing URL-
encoded and JSON parameters.

Now that my application has a starting point, I’m going to create routes for the courses
and sign-up pages. Additionally, I’ll add a POST route to handle submissions made from
the form on the sign-up page.

First, I create a home controller in my controllers folder, which is where I’ll store the func-
tions my routes will use. I need to require this controller by adding const homeController =

125Routing to views
require("./controllers/homeController") in main.js. I add the code in the next listing to
my home controller, below my application’s first route. All three of these functions
respond with an EJS page reflecting the requested route. I need to create the following
views: courses.ejs, contact.ejs, and thanks.ejs.

exports.showCourses = (req, res) => {
 res.render("courses");
};
exports.showSignUp = (req, res) => {
 res.render("contact");
};
exports.postedSignUpForm = (req, res) => {
 res.render("thanks");
};

In my main.js, I add the following routes and modify my original home-page route to
use my home controller too, as shown in listing 12.6. The first route handles GET requests
made to view course listings. For the most part, this route behaves similarly to the home
page. The route for the contact page also listens for GET requests, as most people will be
expecting a sign-up form on this page when the /contact URL is requested. The last
route is for POST requests targeting the /contact URL. The GET route is used internally to
view who submitted a request to get in contact. The POST route is used by the sign-up
form on the contact page.

app.get("/courses", homeController.showCourses);
app.get("/contact", homeController.showSignUp);
app.post("/contact", homeController.postedSignUpForm);

Now that all the routes are defined, I’m still missing the bulk of the content. It’s time to
add and render some views.

12.4 Routing to views

Listing 12.5 Adding route actions to my home controller in homeController.js

Listing 12.6 Adding routes for each page and request type in main.js

Add callback
functions for
specific routes.

Add routes for the courses
page, contact page, and
contact form submission.

With Express.js, my views are going to be cleaner and easier to render. I need to create
the views listed in table 12.1.

126 Lesson 12 Capstone: Enhancing the Confetti Cuisine site with Express.js
I’ll start by generating my application’s layout view, which will handle what the naviga-
tion and general site structure looks like from page to page.

For the layout to work, I need to include it in my main application file, right below my
initialization of the Express.js module, as shown in listing 12.7. First, I require the
express-ejs-layouts module to allow me to use the layout.ejs file. Then, I set the applica-
tion server to use the ejs rendering template. Last, I set the application server to use the
recently required layouts module. This way, when a new view is rendered, it goes
through the layout.ejs file.

const layouts = require("express-ejs-layouts");

app.set("view engine", "ejs");
app.use(layouts);

I’ll add this file, called layout.ejs, to my views folder. The key component of this file
includes <%- body %>, which will be replaced by my target route’s rendered content.

Each of the following views will use this layout to provide visual consistency (and to
avoid repetition of code between files). Within the views folder, I’m going to create
index.ejs, courses.ejs, contact.ejs, thanks.ejs, and error.ejs files. Like the layout file, these
views render as Embedded JavaScript, allowing me to dynamically feed content to the
pages from the server file. After creating index.ejs, I change my home-page route (/) to
render the index page in place of sending plain text.

Table 12.1 Confetti Cuisine views

PurposeFilename

layout.ejs Serves as the application’s main styling and navigation foundation

Produces the home page’s contentindex.ejs

courses.ejs Displays course content

Displays the contact formcontact.ejs

thanks.ejs Displays a thank-you message upon form submission

Displays an error message when a page isn’t founderror.ejs

Listing 12.7 Enable EJS layout rendering in main.js

Require the express-
ejs-layouts module.

Set the application
to use the layout
module.

Set the application
to use ejs.

127Serving static views
The one view I need to focus on is contact.ejs, where I’ll have prospective students fill
out a form, submitting a POST request to my application’s /sign-up route. That form will
look like the HTML in the next listing. Notice that the form action is /contact and the
form method is POST. When the form is submitted, it will make a POST request to the
/contact route.

<form action="/contact" method="post">
 <label for="name">Name</label>
 <input type="text" name="name">
 <label for="email">Email</label>
 <input type="email" name="email">
 <input type="submit" value="Submit">
</form>

I should be all set. If I named my routes to match and render their corresponding views,
I should be able to launch my app and see those views rendered within the layout I
built. The only thing missing is my app’s ability to serve images and other static files,
which I cover next.

NOTE The layout file is rendered on every page I visit. Try adding new HTML content above
and below the <%- body %>marker. Notice that these elements are applied to every page.

12.5 Serving static views

In my first take of this application using http, serving static assets became a big mess.
With every new asset I added to my project directory, I needed to create a new route and
handle it appropriately. Luckily, Express.js handles this task nicely, requiring virtually no
effort on my part to handle any and all static files I want my application to serve. To
enable static assets, I’ll use Express.js' static function by adding app.use(express.static
("public")) below the initialization of Express.js in my application file. This addition
allows individual assets in the application to be served directly.

The last major step in converting the app to an Express.js app is using dynamic content
in the views.

Listing 12.8 Contact form in contact.ejs

Display example
contact form.

128 Lesson 12 Capstone: Enhancing the Confetti Cuisine site with Express.js
12.6 Passing content to the views

Confetti Cuisine often modifies its course listings, so the application is better off not
showing those courses on a static web page. With Express.js, passing content from the
server logic to the view is a piece of cake.

For this app, I need to display an array of course offerings as a JavaScript object. Then I can
send the object to my rendered view. I add the code in listing 12.9 to homeController.js. By
assigning the courses variable to an array of JavaScript objects, I can use this list and tar-
get specific keys in my view. The res.render method allows me to pass the courses object
to the view and refer to it as offeredCourses on that page.

NOTE Within the view, I can access this array by using the variable name offered-
Courses. Within the home controller, that array goes by the name courses.

var courses = [
 {
 title: "Event Driven Cakes",
 cost: 50
 },
 {
 title: "Asynchronous Artichoke",
 cost: 25
 },
 {
 title: "Object Oriented Orange Juice",
 cost: 10
 }
];

exports.showCourses = (req, res) => {
 res.render("courses", {
 offeredCourses: courses
 });
};

To benefit from this feature, I need to add some EJS and HTML to loop through the
offeredCourses list in courses.ejs and print the relevant content, as shown in listing 12.10.

Listing 12.9 Set up content on server and pass into rendered view in
homeController.js

Define an array of courses.

Pass the courses
array to the view.

129Handling the errors
<h1>Our Courses</h1>
<% offeredCourses.forEach(course => { %>
 <h5> <%= course.title %> </h5>
 $ <%= course.cost %>
<% }); %>

Now the application is complete. My courses page looks like figure 12.1. Instead of
modifying my courses.ejs view every time a modification is made to the course offer-
ings, I can change the array in my main application file. Running the application is the
easy part now.

I should anticipate that things won’t go exactly as planned, so it’s always smart to pre-
pare for certain errors and handle them accordingly. Soon, when this array of courses is
replaced by contents from a persistent database, I won’t need to make any code changes
to update the course listing.

12.7 Handling the errors

An application handling most expected outcomes ensures a fairly consistent and good
experience for its users. I know that my application may be missing some foolproof

Listing 12.10 Loop through and display dynamic content in view in courses.ejs

Loop through the
array of courses
in the view.

Figure 12.1 View of courses page

130 Lesson 12 Capstone: Enhancing the Confetti Cuisine site with Express.js
logic, though, and I prefer to send my own custom error messages to my client’s audi-
ence when those errors occur.

For error handling, I’ll create an error controller, errorController.js, to store my func-
tions, as shown in listing 12.11. The first function handles all requests not previously
handled, which fits the category of URLs visited without an active route and results in a
404 error, serving error.ejs. The last function handles any internal server errors that
occur. Instead of necessarily crashing and scaring the audience away, I prefer a friend-
lier message.

const httpStatus = require("http-status-codes");

exports.pageNotFoundError = (req, res) => {
 let errorCode = httpStatus.NOT_FOUND;
 res.status(errorCode);
 res.render("error");
};

exports.internalServerError = (error, req, res, next) => {
 let errorCode = httpStatus.INTERNAL_SERVER_ERROR;
 console.log(`ERROR occurred: ${error.stack}`)
 res.status(errorCode);
 res.send(`${errorCode} | Sorry, our application is taking a nap!`);
};

Then I add routes to correspond to these functions. I’ll add the routes in listing 12.12 to
trigger the functions in my error controller if no proceeding routes respond to a request.

NOTE The order of routes matters. These routes must go below any preexisting routes,
as they act as a catch-all and override any routes below them.

app.use(errorController.pageNotFoundError);
app.use(errorController.internalServerError);

I need to require this controller by adding const errorController = require("./
controllers/errorController") to the top of my main.js file. Now my application
is ready to handle errors and launch. When a URL is visited without a corresponding
route, users see my cat, Hendrix, relaxing on the error page (figure 12.2).

Listing 12.11 Adding error handling routes in errorController.ejs

Listing 12.12 Adding error handling routes in main.js

Handle all
requests not
previously
handled.

Handle any
internal server
errors.

Add error handlers
as middleware
functions.

131Summary
Summary

Through this project, I redefined the Node.js project file structure to fit a web frame-
work. I used npm to install three external packages. Then I rebuilt the main application
file, using Express.js syntax. To create a path for specific URLs, I set up new routes,
using Express.js keywords. For a consistent user interface, I used layouts with EJS.
Using Express.js’ static library, I set up static assets to be served to the client through my
public folder. Last, I added content to the main project application file and set up that
content to be served dynamically to one of my views.

With consistent practice of these techniques and proper error handling, I can use
Express.js to build future applications in a few steps. With new features such as layouts
and dynamic content, I can try to send content to other views in my application or try
modifying the layout as it’s used throughout the app.

In unit 3, I discuss how to organize application code around persistent data with
Express.js.

Figure 12.2 View of error page

133

U
N

IT
 3

Connecting to a database

Unit 2 taught you how to set up a Node.js applica-
tion with Express.js. By this point, you should feel
comfortable building a basic web application with
Express.js routing and templating. This unit is
about taking the application you built in unit 2 and
connecting it to a database. A database is where val-
ues can be stored permanently, as opposed to the
data in earlier lessons, which was reset every time
your application restarted.

In this book, you learn to use MongoDB, a popular
database for Node.js. First, you download and
install Mongo on your computer. Then you explore
the MongoDB shell, a database environment similar
to the Node.js REPL shell. Next, you learn some
database theory behind structuring your database
and the data within it. You see how models fit into
the model-view-controller (MVC) architecture and
how they interact with your application’s database
via a package called Mongoose. Last, you explore
how a database schema—an outline of your struc-
tured data—helps you relate data objects to one
another.

With the goal of building a Node.js application that
can store user information and display that infor-
mation back on your screen, this unit covers the fol-
lowing topics:

134 Lesson
 Lesson 13 introduces MongoDB, a NoSQL database that stores data in a JSON
structure. In this lesson, you learn how MongoDB works with Express.js and
install the database program on your computer. You also create a database and
insert some data by using the MongoDB shell.

 Lesson 14 shows how to connect your MongoDB database to an Express.js appli-
cation. After initial setup, you learn how object-oriented programming (OOP)
can help you build reliable models for an MVC-structured Node.js application.
For your models, you install and use the Mongoose package, an object-document
mapper (ODM).

 Lesson 15 discusses the types of query commands you can use with your
MongoDB database from within the Node.js application. You also implement
JavaScript promises to work with Mongoose to build a more streamlined,
ES6-friendly application.

 Finally, lesson 16 shows how to put your skills to the test by implementing a
MongoDB database for the Confetti Cuisine cooking-school application. In this
capstone exercise, you save user data and newsletter emails.

Get ready to collect and store data in lesson 13.

13LESSON
SETTING UP A MONGODB DATABASE

In unit 2, you built web applications with Express.js. Structuring your applications to
use the model-view-controller (MVC) architecture, you can now handle requests
through your controllers and serve views. The third essential piece is models, with
which you’ll organize data that you plan to store permanently. In this lesson, you install
MongoDB, the database system that you’ll use to store persistent data. You also explore
what makes document database structure in MongoDB particularly convenient for
Node.js applications. By the end of the lesson, you’ll have a database set up and con-
nected to your application.

This lesson covers
 Installing MongoDB
 Reading and entering data within the MongoDB shell
 Connecting MongoDB to a Node.js application

Consider this You want to start saving data from your application into a database,
but you’re unsure which database to use. With Node.js, you can work with practically
any common database, such as MySQL, PostgreSQL, Cassandra, Redis, and Neo4j.
You can get a sense of the most supported and popular database management sys-
tems by exploring their associated packages on npm. ➠
135

https://docs.mongodb.com/manual/reference/mongo-shell/

136 Lesson 13 Setting up a MongoDB database

13.1 Setting up MongoDB

Storing data is arguably the most important part of application development. Without
long-term storage, you’re limited in the way you can interact with your users. The data
in every application you’ve built to this point disappeared each time you restarted the
application. If data from a social network were to disappear every time a user closed his
browser or every time you restarted that application, users would have to create new
accounts and start from scratch.

A database is an organization of your data designed for easy access and efficient changes
made by your application. A database is like a warehouse: the more items you need to
store, the happier you’ll be with an organized system that helps you find those items.
Like a web server, your application connects to a MongoDB database and requests data.

Throughout this unit, I discuss how to save information to a database for long-term
storage. Your data will persist, even if the application is shut down.

MongoDB is an open-source database program that organizes data by using documents.
MongoDB documents store data in a JSON-like structure, allowing you to use key-value
pairing to associate data objects with properties.

This system of storage follows a familiar JavaScript syntax. Notice in figure 13.1 that a
document’s contents resemble JSON. In fact, MongoDB stores documents as BSON (a

MongoDB, however, offers a unique style of data storage that resembles JSON—a
JavaScript-friendly format that may make working with databases easier for you as you
delve into saving data with Node.js for the first time.

1. MongoDB documents can store information
representing real-life objects or JavaScript
objects in your application.

2. Documents can be saved with the same
fields (name, email, favoriteFoods), even
though that’s not a requirement.

{
name: “Jon Wexler”,
email: “jon@jonwexler.com”,
favoriteFoods: [”sushi”, “pho”]

},
{

name: “Popeye”,
email: “pop@sailorman.com”,
favoriteFoods: [”spinach”]

}

Figure 13.1 Example document

137Setting up MongoDB
binary form of JSON). Unlike relational databases used by the majority of applications,
MongoDB’s nonrelational database system leads the Node.js application community.

A look at relational databases
This book focuses on MongoDB and on how its documents complement a JavaScript-
based application platform like Node.js. It’s worth noting what MongoDB is not, however,
as well as how the rest of the programming world is working with databases.

Most databases used by software and web applications use a different model of data
storage from the document structure used in MongoDB. Most databases are relational,
meaning that they associate data via tables, like a standard spreadsheet. Within these
tables, columns define the type of data that should be stored, and rows store the values
that correspond to the columns. In the following figure, data representing people,
courses, and which people are enrolled in certain courses is displayed in separate tables.

In this example, the table in the middle represents the
IDs of associated people and courses. Each association
has its own unique ID.

id

1

2

3

4

first

Jon

William

Cookie

Alfredo

last

Wexler

Wonka

Monster

Linguini

enroll

true

true

true

true

id

1

2

3

4

personId

4

2

1

3

Courses tablePeople table

People-courses association table

courseId

3

2

1

1

id

1

2

3

4

title

Wheaties

Sweeties

Tortellinies

Meaties

topic

Bread

Chocolate

Pasta

Steak

max

3

15

10

7

Example relational database structure

138 Lesson 13 Setting up a MongoDB database
In this section, you install MongoDB and look at some data. The installation process is a
bit different for Windows and Macintosh. For the Mac, the recommended approach is a
terminal command-line tool called Homebrew. You can install Homebrew by entering
the command shown in the next listing.

mkdir homebrew && curl -L
➥https://github.com/Homebrew/brew/tarball/master |
➥ tar xz --strip 1 -C homebrew

NOTE Homebrew is a tool that helps you install software and other low-level tools such as
database management systems. For more information, visit https://brew.sh.

When Homebrew is installed, you should be able to enter brew in any new terminal win-
dow and see a list of available Homebrew commands, one of which is brew install.
Install MongoDB by running brew install mongodb.

TIP If your computer throws an error or complains about permissions issues at any point
in the installation, you may need to run the command as a superuser by appending sudo to
the command. Then you’ll be prompted to enter your computer’s login password.

Listing 13.1 Command to install Homebrew on a Mac in terminal

(continued)

In this example, two tables are associated by their ID values. To connect a person with
their desired cooking course, the IDs of the items from the people and courses tables
are added to new rows in a join table. The join table generally holds only IDs of associated
items to define a relationship among those items. This relationship designed through ref-
erence IDs is where the database system gets its name. Databases that use this struc-
ture are often SQL-based, making MongoDB a NoSQL database system.

You could set up a relational database with Node.js—in fact, many applications do—but
to best make use of a SQL database, it helps to know how to write in the SQL language.
The MongoDB query language is simpler to understand for people who have a Java-
Script background.

For more information on relational databases, I recommend reading the overview by
Oracle at https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html.

Run the command in terminal
to install Homebrew on
MacOS machines.

https://brew.sh
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html

139Setting up MongoDB
Next, create a folder called db within another folder called data at your computer’s root
level (as far back as you can cd .. in a terminal window). You can create this folder by
entering mkdir -p /data/db in a terminal window.

You may need to give permissions to your user account to use this folder. To do so, run
sudo chown <your_username> /data/db, and enter your computer’s password. For Win-
dows, the steps are as follows:

 Go to https://www.mongodb.com/download-center#community in your browser.
 Download MongoDB for Windows (.msi).
 When the download is complete, open the file, and click through the default

installation steps.
 When the installer completes, go to your C:\ drive, and create a new folder called

data and a folder within it called db.

NOTE In Windows, you may need to add the MongoDB folder path to your environment’s
PATH variable. To add it, right-click Computer, choose Properties�Advanced system set-
tings�Environment variables�Edit environment variables�PATH, and add your MongoDB
executable path to this string. Your MongoDB path might look something like C:\Program
Files\MongoDB\Server\3.6.2\bin\mongod.exe.

For more installation instructions, including those for Ubuntu Linux machines, go to
https://docs.mongodb.com/v3.0/tutorial/install-mongodb-on-ubuntu.

So far, you’ve gotten MongoDB installed on your computer. Like a web server,
MongoDB needs to be started to create new databases for your applications. You
can start MongoDB by running mongod in a terminal window. This command assigns
MongoDB a port and establishes the location of its databases at data/db.

NOTE To start and stop MongoDB with Homebrew on a Mac, run brew services start
mongodb or brew services stop mongodb. Homebrew runs the database server in the
background, so if mongod doesn’t work, you may have started MongoDB with Homebrew
elsewhere.

You can test whether Mongo was installed successfully by typing mongo in a new termi-
nal window. This command brings up the MongoDB shell, an environment within
which you can run MongoDB commands and view data. This shell environment is sim-
ilar to REPL because it isolates your terminal window to allow you to interact purely
with MongoDB syntax. When you have some data to work with, you can further explore
this environment.

https://docs.mongodb.com/v3.0/tutorial/install-mongodb-on-ubuntu
https://www.mongodb.com/download-center#community

140 Lesson 13 Setting up a MongoDB database
13.2 Running commands in the MongoDB shell

Now that MongoDB is running, it’s ready to receive commands to add, view, delete, or
otherwise change data. Before you connect MongoDB to your application, you can test
some commands in the MongoDB shell.

WARNING Commands that you run in the MongoDB shell are permanent. If you delete
data (or an entire database), there’s no going back.

Run mongo in a new terminal window. This command should prompt the shell to start.
You’ll be greeted by your MongoDB version number, potentially a few warnings (which
you can ignore for now), and the familiar > to indicate that the shell is active and ready
for commands.

MongoDB can store multiple databases; it’s a management system for all your applica-
tions’ databases. To start, the MongoDB shell places you in the test database. You can
see this test database by entering db, to list your current database, after the prompt (fig-
ure 13.2).

To view all available databases, run show dbs. With a clean install of MongoDB, your
shell’s response should look like the next listing. Your test database is one of three that
comes prepackaged with MongoDB. To the right of the database name is the size of the
database. Because you haven’t stored any data yet, the databases are understandably
empty.

Quick check 13.1 What data structure does MongoDB use to store data?

QC 13.1 answer MongoDB uses documents to store data.

Figure 13.2 MongoDB shell
viewing current test database

141Running commands in the MongoDB shell

admin 0.000GB
local 0.000GB
test 0.000GB

You can create a new database and simultaneously switch into it by entering use <new_
database_name>. Try switching to a new database for the recipe application by entering
use recipe_db. Then run db again to see that you’re within the recipe_db database.

NOTE You won’t see your new database in the list of databases until data is added.

To add data to your database, you need to specify a collection name with which that
data is associated. A MongoDB collection is representative of your data model, storing all
documents related to that model within the same grouping. If you want to create a con-
tact list for the recipe application, for example, create a new collection and add a data
item with the command shown in the following listing. The insert method runs on a
MongoDB collection to add elements of a JavaScript object to a new document.

db.contacts.insert({
 name: "Jon Wexler",
 email: "jon@jonwexler.com",
 note: "Decent guy."
})

At this point, there’s no strict collection structure; you can add any values to new docu-
ments without needing to follow previous data patterns. Insert another item into the
contacts collection with these properties: {first_name: "Jon", favoriteSeason: "spring",
countries_visited: 42}. MongoDB lets you add these seemingly conflicting data elements.

NOTE Just because MongoDB lets you store inconsistent data doesn’t mean that you
should. In lesson 14, I discuss ways of organizing data around your application’s models.

To list the collection’s contents, you can enter db.conntacts.find(). You should see a
response that looks like the next listing. Both inserted items are present, with an extra
property added by MongoDB. The id property stores a unique value that you can use to
differentiate and locate specific items in your database.

Listing 13.2 Show all databases in terminal

Listing 13.3 Add data to a new collection in terminal

Listing 13.4 Find all data response in terminal

View local databases.

Insert new data into the
database.

{"_id": ObjectId("5941fce5cda203f026856a5d"), "name": "Jon
➥Wexler", "email": "jon@jonwexler.com", "note":

142 Lesson 13 Setting up a MongoDB database
➥"Nice guy." }
{"_id": ObjectId("5941fe7acda203f026856a5e"), "first_name":
➥"Jon", "favoriteSeason": "spring", "countries_visited": 42}

Try searching for a specific item in the contacts collection by entering db.contacts
.find({_id: ObjectId("5941fce5cda203f026856a5d")}).

NOTE Replace the ObjectId in this example with one from your own database results.

Display results of
database documents.

ObjectId
To keep your data organized and unique, MongoDB uses an ObjectId class to record
some meaningful information about its database documents. ObjectId("5941fe7ac-
da203f026856a5e"), for example, constructs a new ObjectId representing a document in
your database. The hexadecimal value passed into the ObjectId constructor references
the document, a timestamp of the record’s creation, and some information about your
database system.

The resulting ObjectId instance provides many useful methods that you can use to sort
and organize data in your database. As a result, the _id property becomes a more useful
feature in MongoDB than a string representation of the document ID.

MongoDB Compass
As you become familiar with MongoDB, you may want a more user-friendly window into
your MongoDB databases than the MongoDB shell in terminal. The people at MongoDB
agreed and have produced a MongoDB graphical user interface called MongoDB Com-
pass for all major operating systems.

MongoDB Compass is straightforward to use. To view the database that you set up for
your recipe application, follow these steps:

1 Download the software from https://www.mongodb.com/download-center#
compass.

2 Follow the installation steps to add MongoDB Compass to your applications
folder.

3 Run MongoDB Compass and accept the default connection settings to your
existing MongoDB setup.

4 See your databases (including recipe_db) listed with options to view the collec-
tions and documents within them, as in figure 13.3.

https://www.mongodb.com/download-center#compass
https://www.mongodb.com/download-center#compass
https://www.mongodb.com/download-center#compass

143Running commands in the MongoDB shell
You can use many MongoDB commands. Table 13.1 lists a few that you should know
about.

For more practice, view the command cheat sheet at https://docs.mongodb.com/manual/
reference/mongo-shell/.

In the next section, you see how to add MongoDB to your Node.js application.

Table 13.1 MongoDB Shell Commands

DescriptionCommand
show collections Displays all the collections in your database. Later, these

collections should match your models.

db.contacts.findOne Returns a single item from your database at random or a
single item matching the criteria passed in as a parame-
ter, which could look like findOne({name: 'Jon'}).

db.contacts.update({name: "Jon"},
{name: "Jon Wexler"})

Updates any matching documents with the second
parameter’s property values.

db.contacts.delete({name: "Jon
Wexler"})

Removes any matching documents in the collection.

db.contacts.deleteMany({}) Removes all the documents in that collection. These com-
mands can’t be undone.

Figure 13.3 Database view in MongoDB Compass

Database view in MongoDB Compass
I recommend using MongoDB Compass as a supplemental tool while you work with Mon-
goDB in your application.

https://docs.mongodb.com/manual/reference/mongo-shell/
https://docs.mongodb.com/manual/reference/mongo-shell/

144 Lesson 13 Setting up a MongoDB database
13.3 Connecting MongoDB to your application

To add MongoDB to your Node.js recipe application, enter your project folder (or create
a newly initialized project) in terminal, and install the mongodb package by running npm i
mongodb -S. This command saves the mongodb package to your project’s package.json
dependencies.

NOTE In the corresponding code repository for this lesson, some views and styling rules
have been added from the last capstone project.

At the top of your main.js file, add the code shown in listing 13.5. Require the MongoDB
module to use the MongoClient class. MongoClient sets up a connection to your local data-
base at its default port. The callback function returns your connection to the MongoDB
server. Then get the database called recipe_db from your connection to the server. If
there’s no database by the name provided, MongoDB creates one for use in the app.

NOTE Remember to run mongod to ensure that your MongoDB server is running before
you try to connect to it.

Next, ask the database to find all records in the contacts collection and return them in an
array. The resulting data is returned in the callback function. Then you can log the
results to the console.

const MongoDB = require("mongodb").MongoClient,
 dbURL = "mongodb://localhost:27017",
 dbName = "recipe_db";

MongoDB.connect(dbURL, (error, client) => {
 if (error) throw error;

Listing 13.5 Add MongoDB connection to Express.js in main.js

Quick check 13.2 What MongoDB command can you use to view existing collections within
a database?

QC 13.2 answer show collections lists the collections within the active database in your
MongoDB shell.

Require the
MongoDB module.

Set up a connection
to your local
database server.

145Connecting MongoDB to your application
 let db = client.db(dbName);
 db.collection("contacts")
 .find()
 .toArray((error, data) => {

if (error) throw error;
console.log(data);

 });
});

NOTE The find query method here works differently from a find query in a traditional
functional programming language. If you get no match when you use find in MongoDB, you
get an empty array.

You can use the same commands within your Node.js application that you did in the
MongoDB shell. To add a new item to the database, for example, you can add the code
in listing 13.6 within your MongoDB connection callback function.

As when you query all the items in the database, you connect to the contacts collection
and insert an item. If the new data was inserted successfully, you log that database mes-
sage to the console.

db.collection("contacts")
 .insert({
 name: "Freddie Mercury",
 email: "fred@queen.com"
 }, (error, db) => {
 if (error) throw error;
 console.log(db);
 });

In lesson 14, you explore a package called Mongoose, which works with MongoDB to
provide a bit more organization to your application’s storage.

Listing 13.6 Insert data from your Node.js application into terminal

Get the recipe_db database
from your connection to the
MongoDB server.

Find all records in
the contacts
collection.

Print the results
to the console.

Insert a new contact
into the database.

Log the resulting
errors or saved item.

146 Lesson 13 Setting up a MongoDB database
Summary

In this lesson, you learned how to set up MongoDB and how to use certain commands
to manage databases on your computer. At the end of the lesson, you inserted collec-
tions and documents into your own database and connected that database to your
Node.js application. In lesson 14, you build models to represent the types of data that
you want to store in your application.

Try this

Imagine that you’re creating an application to track ice-cream-truck statistics. Create an
appropriately named database with a collection called ice_cream_flavors. Try inserting
some flavors and include fields that would help with your statistics analysis.

Quick check 13.3 True or false: If you try to connect to a database that doesn’t exist,
MongoDB throws an error.

QC 13.3 answer False. MongoDB creates a new database by the name you provided instead of
throwing an error.

14LESSON
BUILDING MODELS WITH MONGOOSE

In lesson 13, you got up and running with MongoDB. With a database connected to
your Node.js application, you’re ready to save and load data. In this lesson, you apply a
more object-oriented approach to your data. First, you install the Mongoose package, a
tool that provides a syntactic layer between your application logic and your database.
Mongoose allows you to convert your application data to fit a model structure. Later in
the lesson, you build your first model and schema to represent newsletter subscribers to
your recipe application.

This lesson covers
 Installing and connecting Mongoose to your Node.js application
 Creating a schema
 Building and instantiating Mongoose data models
 Loading and saving data with custom methods

Consider this You finally have a database connected to your application, but data can
change over time. One day, you may want to require all recipes to follow the same for-
mat. How can you determine such a structure and make sure that all saved data fol-
lows that structure’s rules?

In this lesson, you explore Mongoose, a library used to create model schema. When you
use these schemas, your data begins to follow strict rules that only you can customize.
147

148 Lesson 14 Building models with Mongoose
14.1 Setting up Mongoose with your Node.js application

You’ve already experienced Express.js and seen how it helps you handle HTTP requests
and responses. Similarly, other packages are available to assist with the communication
between your Node.js application and its database. The tool you’re going to use is called
Mongoose. Mongoose is an object-document mapper (ODM) that allows you to run
MongoDB commands in a way that preserves the object-oriented structure of your
application. With MongoDB alone, for example, it’s difficult to keep one saved docu-
ment consistent with the next. Mongoose changes that situation by offering tools to
build models with schemas defining what type of data can be saved.

I discussed model-view-controller (MVC) architecture in unit 2 and described how con-
trollers communicate with both views and models to ensure that the correct data flows
through the application. A model is like a class for a JavaScript object that Mongoose
uses to organize your database queries. In this section, you install Mongoose and see
what a model looks like in your application (figure 14.1).

To install Mongoose, run npm i mongoose -S within your project folder in terminal. With
Mongoose, you no longer need to require mongodb at the top of main.js or use any of the
MongoDB code from lesson 13. Add the code in listing 14.1 to main.js. Require mongoose
into the application file. Set up the application’s connection to your MongoDB database.
(The same rules apply here as in a normal MongoDB connection.) Then assign the
database connection to the db variable, which you can use later in the file for data
changes or database state changes.

A model is defined along with
a schema, which dictates what
type of data can be saved to
the database.

{
name: “Jon Wexler”,
email: “jon@jonwexler.com”,
favoriteFoods: [“sushi”, “pho”]

},
{

name: “Popeye”,
email: “pop@sailorman.com”,
favoriteFoods: [“spinach”]

}

Profile model
name: String
email: String
favoriteFoods: [String]

Figure 14.1 Models created with Mongoose map to documents in MongoDB.

149Creating a schema
const mongoose = require("mongoose");
mongoose.connect(
 "mongodb://localhost:27017/recipe_db",
 {useNewUrlParser: true}
);
const db = mongoose.connection;

NOTE Remember to have the MongoDB server running in the background. To run
MongoDB, enter mongod in a terminal window.

That’s all you need to do to set up Mongoose. You can log a message as soon as the data-
base is connected by adding the code in the next listing to main.js. The database connec-
tion runs the code in the callback function (the log message) only once upon receiving
an "open" event from the database.

db.once("open", () => {
 console.log("Successfully connected to MongoDB using Mongoose!");
});

In the next section, you explore how to model your data to make best use of Mongoose.

14.2 Creating a schema

A schema is like a class definition in some languages or, more broadly, a blueprint for
how you want data to be organized for specific objects in your application. To avoid

Listing 14.1 Configuring Mongoose with your Node.js application in main.js

Listing 14.2 Log a message when the database is connected in main.js

Require mongoose.

Set up the connection
to your database.

Assign the database
to the db variable.

Log a message when the
application connects to
the database.

Quick check 14.1 What is an ODM?

QC 14.1 answer ODM is an object-document mapper, which is the role of Mongoose in your appli-
cation development. ODM (like an object-relational mapper) makes it easier to think purely in terms of
objects in your application and not worry about how your data is structured in the database.

150 Lesson 14 Building models with Mongoose
inconsistent data, where some documents have an email field and others don’t, for
example, you can create a schema stating that all contact objects need to have an email
field to get saved to the database.

Because you want to add a newsletter subscription form to the recipe application, create
a schema for the subscriber. Add the code from listing 14.3 to main.js. mongoose.Schema
offers a constructor that allows you to build a schema object with the given parameters.
Then add object properties to state the name of the object’s field and its data type. Some-
one’s name can’t be a number, for example.

const subscriberSchema = mongoose.Schema({
 name: String,
 email: String,
 zipCode: Number
});

NOTE MongoDB isn’t enforcing your schema; Mongoose is. For more information about
Mongoose schema data types, visit http://mongoosejs.com/docs/schematypes.html.

Now that the schema is defined, you need to apply it to a model by using const Subscriber
= mongoose.model("Subscriber", subscriberSchema). The model is what you’ll use to
instantiate new Subscriber objects, and the schema you created can be used for that
model. The model method takes a model name of your choosing and a previously
defined schema (in this case, the subscriberSchema).

You can instantiate new objects from this model by referring to Subscriber. You have
two ways to generate new objects, as shown in listing 14.4. You can construct a new
instance of the Subscriber model by using the new keyword and by passing properties
that abide by the subscriberSchema earlier in the section. To get this newly created
Subscriber object into the database, you can call save on it and handle any errors or
returned data through a callback function.

An error may have to do with data that doesn’t match the schema types you defined
earlier. The saved item returns data that you can use elsewhere in the application. You
may want to thank the subscriber by name for signing up, for example. create does
what new and save do in one step. If you know that you want to create and save the
object right away, use this Mongoose method.

NOTE Instantiating objects from your Mongoose models is similar to instantiating Java-
Script objects. The new keyword can be used with JavaScript Array and other data types.

Listing 14.3 Subscriber schema in main.js

Add schema
properties.

Create a new schema
with mongoose.Schema.

http://mongoosejs.com/docs/schematypes.html

151Organizing your models
var subscriber1 = new Subscriber({
 name: "Jon Wexler",
 email: "jon@jonwexler.com"
});

subscriber1.save((error, savedDocument) => {
 if (error) console.log(error);
 console.log(savedDocument);
});

Subscriber.create(
 {
 name: "Jon Wexler",
 email: "jon@jonwexler.com"
 },
 function (error, savedDocument) {
 if (error) console.log(error);
 console.log(savedDocument);
 }
);

Add the code from the listings in this section to your main.js file. As soon as you start
the application with node main.js, you should see your MongoDB recipe_db database
populate with a new subscriber.

14.3 Organizing your models

Now that you have a way of saving data in the form of Mongoose models, you’ll want to
organize your models so that they don’t clutter your main.js file. As you do for your
views and controllers, create a models folder at the root level of your application.
Within that folder, create a new file called subscriber.js.

Listing 14.4 Statements to create and save models in main.js

Instantiate a new
subscriber.

Save a subscriber
to the database.

Pass potential errors
to the next
middleware function.Log saved data

document.

Create and save a
subscriber in a
single step.

Quick check 14.2 True or false: Using new Subscriber({ name: "Jon", email:
"jon@jonwexler.com" }) saves a new record to your database.

QC 14.2 answer False. This code only creates a new virtual object. If you store the value of this line
to a variable and call save on that variable, the new subscriber is stored in the database.

jon@jonwexler.com

152 Lesson 14 Building models with Mongoose
This file is where you’ll move your model’s code. Move all the schema and model defini-
tion code to this file and the model to the file’s exports object. (See the following listing.)
Any module that requires subscriber.js will have access to the Subscriber model. The
schema doesn’t need to be made accessible outside the file.

const mongoose = require("mongoose"),
 subscriberSchema = mongoose.Schema({
 name: String,
 email: String,
 zipCode: Number
 });

module.exports = mongoose.model("Subscriber", subscriberSchema);

NOTE You need to require mongoose in this module because both the schema and model
use Mongoose methods to work. Node.js loads a module into the project only once, so
requiring it here shouldn’t slow your application; you’re telling Node.js that you want to use
an already-loaded module.

Next, require this model in your main.js by adding const Subscriber = require("./models/
subscriber") below your other required modules. Now you should be able to use the
model the same way as before.

In main.js, find documents in your database by using Mongoose’s findOne and where
query methods. As an example, you can use Subscriber.findOne({ name: "Jon Wexler" })
.where("email", /wexler/) to find and return one document that matches the criteria
name where the email contains the string "wexler".

This example custom query shows how flexible your queries can be to get the data you
need. Mongoose lets you chain parts of a query and even store queries in a variable. You
could create a variable var findWexlers and assign it to the code querying for emails
with the word wexler. Then you could run the query later by using findWexlers.exec().
(For more on exec, see lesson 15.)

If you plan to run a query immediately without the exec method, you need a callback
function with two arguments. The first argument represents any errors that occur, and
the second argument represents any data returned by the database, as shown in the
following listing. Try creating your own queries by following some of the example que-
ries at http://mongoosejs.com/docs/queries.html.

Listing 14.5 Moving the schema and model to a separate module

Export the
Subscriber model
as the only module
export.

http://mongoosejs.com/docs/queries.html

153Summary
var myQuery = Subscriber.findOne({
 name: "Jon Wexler"
 })
 .where("email", /wexler/);
myQuery.exec((error, data) => {
 if (data) console.log(data.name);
});

NOTE For queries indicating that multiple items will be returned from the database, you
should expect an array. If no documents are found, you get an empty array.

Now you have the freedom to create more modules and save them by using their names
instead of the MongoDB collection names.

In unit 4, you learn how to make a more-robust model whose values can be created,
read, updated, and deleted—the four core model functions in a CRUD application. I dis-
cuss this approach in detail in that unit.

Summary

In this lesson, you learned how to set up Mongoose and use your MongoDB connection
to map data to your database. You also learned about some Mongoose syntax and meth-
ods. Through the steps in this lesson, you learned how to create a schema and model for
storing persistent data. Last, you organized your models, clearing your main.js for new
tools to come. In lesson 15, you clean up some of the functionality that you built in this
lesson by implementing JavaScript promises in your database queries.

Listing 14.6 Example query to run in main.js

Run a query with a
callback function
to handle errors
and data.

Quick check 14.3 What two components are required for each field specified in a Mon-
goose schema?

QC 14.3 answer The schema requires a property name and data type.

154 Lesson 14 Building models with Mongoose
Try this

Eventually, you’ll create more models for your recipe application. Start to think about
what those models will look like. You may need a model to represent the different types
of courses offered through the program, for example. Try creating a schema and model
for a recipe item.

15LESSON
CONNECTING CONTROLLERS AND
MODELS

So far, you’ve set up your Node.js application to handle data and store that data in a
MongoDB database. With the help of Mongoose, you’ve structured your data with a
model and schema. In this lesson, you connect your routes to your controllers and to
these models so that you can start to save meaningful data based on your user’s URL
requests. First, you build a new controller for subscriber routes. Then you will convert
those routes to use JavaScript ES6-enabled promises. Adding promises gives more flexi-
bility to your database calls now and as your application grows. Finally, you wrap up
this lesson with new views and a form where subscribers can post their information.

This lesson covers
 Connecting controllers to models
 Saving data through a controller action
 Implementing database queries with promises
 Handling posted form data
155

156 Lesson 15 Connecting controllers and models
15.1 Creating a controller for subscribers

Recall that controllers are the glue between your models (the data) and your views (the
web page). Now that you have a model set up, you need a controller that handles exter-
nal requests specifically looking for data related to your model. If someone requests the
home path /, you can return a view following logic in the home controller. Now that
someone may request to register as a subscriber, you need to implement a subscriber
controller. Create a new file in your controllers folder called subscribersController.js.

NOTE Conventionally, controllers are named in the plural version of your model. There’s
no strict rule, and as you can see, you already have a homeController.js, but this controller
doesn’t represent a model in the application.

This file needs access to mongoose and your Subscriber model, both of which can be
required at the top of the file. Next, you can create a controller action for when a request
is made to view all subscribers in your database. The code would look like listing 15.1.
You require mongoose so that you have access to the tools needed to save your model to
the database. Next, require the Subscriber model from your subscriber module so that
you can integrate the model into your code logic; you no longer need any reference to
the Subscriber model in main.js. getAllSubscribers will be accessible to any file that
requires this module. You can use this exported callback function to return data from
the database.

In this controller action, you use the Mongoose find method on the Subscriber model to
tell MongoDB that you want an array of all the subscribers in your database.

NOTE Using the find query method without any arguments is the same as an empty
object ({}). Here, you using the empty object to make it clear that you want to get all sub-
scribers with no conditions attached.

Consider this Your recipe application is taking shape with Mongoose models to rep-
resent data in your database. JavaScript, however, is asynchronous in your application,
so database calls require callbacks to run upon completion. Callbacks can be messy,
though, especially with complicated queries.

Luckily, you can use multiple other types of syntax to wrap your callbacks and handle
returned data or errors in a more elegant way. Promises are a way to do that, and
Mongoose offers support for using the promise syntax within your application.

157Creating a controller for subscribers
If an error occurs while reading from the database, send it to the next middleware func-
tion. Otherwise, set the data that comes back from MongoDB to the request object. Then
this object can be accessed by the next function in the middleware chain.

const Subscriber = require("../models/subscriber");

exports.getAllSubscribers = (req, res, next) => {
 Subscriber.find({}, (error, subscribers) => {
 if (error) next(error);
 req.data = subscribers;
 next();
 });
};

NOTE Because the model is in a different folder, you need to use .. to indicate stepping
out of your current folder before entering the models folder and requiring it.

Make sure that you still have Express.js installed and working properly. The next step is
setting up the route in main.js. First, make sure to require the subscribers controller in
main.js by using const subscribersController = require("./controllers/subscribers
Controller"). The route you use looks like the code in listing 15.2.

In this code, you’re looking for GET requests made to the /subscribers path. Upon getting
a request, pass the request to your getAllSubscribers function in subscribersController
.js. Because you aren’t doing anything with the data in that function, attach the results of
your query to the request object, and pass it to the next middleware function. In this
case, that function is a custom callback created to render the data in the browser.

app.get("/subscribers", subscribersController.getAllSubscribers,
➥ (req, res, next) => {

console.log(req.data);
res.send(req.data);

});

Listing 15.1 Building your subscribers controller in subscribersController.js

Listing 15.2 Using the subscribers controller in main.js

Require the
subscriber
module.

Export getAllSubscribers to
pass data from the database to
the next middleware function.

Query with find on
the Subscriber
model.Pass an error

to the next
middleware
function.

Set data that
comes back from
MongoDB on
request object.Continue to the

next middleware
function.

Pass the request to
the getAllSubscribers
function.

Log data from the
request object.Render the data on

the browser window.

158 Lesson 15 Connecting controllers and models
Test this code by running npm start to relaunch your application. If everything worked
as planned, you can visit http:// localhost:3000/subscribers and see a list of all the sub-
scribers in your database by name and email (figure 15.1).

You could immediately improve this action by responding with the data in a view
instead of returning the data. Modify the action’s return statements and replace them
with res.render from Express.js. The line to render a view called subscribers.ejs could
look like res.render("subscribers", {subscribers: req.data}). The response makes a call
to render a view called subscribers.ejs and passes the subscribers from the database to
that view in a variable called subscribers. Now you need to build the view to display
these subscribers.

NOTE Ultimately, this page will be used by administrators of the application to see who
has signed up for the recipe application. But right now, this page is public to anyone who vis-
its its associated route.

Create a file in your views folder called subscribers.ejs, and add the code in listing 15.3.
Using the EJS template syntax, loop through the subscribers array passed in from the
action you just created. For each subscriber, s, you can print some information. You
print the name and email address of the subscriber in a paragraph tag.

<% subscribers.forEach(s => { %>
 <p><%= s.name %></p>
 <p><%= s.email %></p>
<% }); %>

Your view at http:// localhost:3000/subscribers should list your subscribers, as shown in
figure 15.2.

Listing 15.3 Looping and printing subscribers in a subscribers.ejs

Figure 15.1 Example browser response with subscriber data

Loop through
subscribers.

Insert subscriber
data into the view.

http://localhost:3000/subscribers
http://localhost:3000/subscribers

159Saving posted data to a model
In the next section, you add two more routes to handle information posted with a form.

15.2 Saving posted data to a model

So far, you should have data flowing in one direction when a request is made to
your application’s web server. The next step is saving user-submitted data in the
form of a subscriber object. Figure 15.3 shows the flow of information from a form to
your database.

Recall that according to its schema, a subscriber object must contain name, email, and
zipCode fields, so you should have a view with a form that contains these input fields.
Change the form in contact.ejs to use the form shown in the next listing. The form will
submit data to the /subscribe path via an HTTP POST request. The inputs of the form
match the fields of the subscriber model.

Figure 15.2 Example browser view with listed subscriber data

Quick check 15.1 From what module do you pass data to the view?

QC 15.1 answer You can pass data to the view from your controller. Within subscribersControl-
ler.js, you pass an array of subscribers within the rendered subscribers.ejs.

160 Lesson 15 Connecting controllers and models
<form action="/subscribe" method="post">
 <input type="text" name="name" placeholder="Name">
 <input type="text" name="email" placeholder="Email">
 <input type="text" name="zipCode" placeholder="Zip Code"

➥ pattern="[0-9]{5}">
<input type="submit" name="submit">

</form>

Because this form will display when contact.ejs is rendered, create a route to render
this view when requests are made to the /contact path from the subscribers controller.
You need to build a GET route for the /subscribe path and modify the existing POST route
for the /contact path. These routes look like the code in listing 15.5.

The first route listens for requests made to /subscribe and uses the getSubscriptionPage
callback in the subscribersController. The second route uses the saveSubscriber callback
function only for requests made with the POST method.

Listing 15.4 Form to post subscriber data in contact.ejs

MongoDB
Database

{
name: “Jon Wexler”,
email: “jon@jonwexler.com”,

 zipCode: 10016
}

subscribersController.js

route: POST /subscribe

Jon Wexler

jon@jonwexler.com

10016

Sign up

Go

Subscriber model
name: String
email: String
zipCode: Number

2. A route associated with that
form’s path passes data to the
subscribers controller.

3. Incoming data is applied
to an instance of the
subscriber model and
mapped to a document.

4. Data is stored in a document within
the subscribers collection.

1. Data is submitted through a
form on an application view,
targeting a specific path.

Figure 15.3 Flow from a web page form to your database

Add a subscription form.

161Saving posted data to a model
NOTE After these changes, you no longer need the contact form route handlers in home-
Controller.js or their routes in main.js.

app.get("/contact", subscribersController.getSubscriptionPage);
app.post("/subscribe", subscribersController.saveSubscriber);

To complete your work here, create the getSubscriptionPage and saveSubscriber func-
tions. Within subscribersController.js, add the code in listing 15.6. The first action ren-
ders an EJS page from the views folder. saveSubscriber collects data from the request
and allows the body-parser package (installed in unit 2) to read the request body’s con-
tents. A new model instance is created, mapping the subscriber’s fields to the request
body parameters. As a final step, try to save the subscriber. If it fails, respond with the
error that occurred. If it succeeds, respond with thanks.ejs.

exports.getSubscriptionPage = (req, res) => {
 res.render("contact");
};

exports.saveSubscriber = (req, res) => {
 let newSubscriber = new Subscriber({
 name: req.body.name,
 email: req.body.email,
 zipCode: req.body.zipCode
 });

 newSubscriber.save((error, result) => {
 if (error) res.send(error);
 res.render("thanks");
 });
};

NOTE MongoDB returns the _id of the newly created subscriber. The result variable in
the example contains this information.

You can try this code by filling out your own form at http:// localhost/contact. Then
visit http:// localhost:3000/subscribers to see the list of subscribers, including your new

Listing 15.5 Routes for the subscriptions in main.js

Listing 15.6 Controller actions for subscription routes in subscribersController.js

Add a GET route for the
subscription page.

Add a POST route to
handle subscription data.

Add an action to
render the
contact page.

Add an action to
save subscribers.

Create a new subscriber.

Save a new subscriber.

http://localhost/contact
http://localhost:3000/subscribers

162 Lesson 15 Connecting controllers and models
post. In the next section, you add one more touch to your database queries by using
JavaScript promises.

15.3 Using promises with Mongoose

ES6 made popular the idea of using promises to facilitate a chain of functions, usually
callback functions, in asynchronous queries. A promise is a JavaScript object that con-
tains information about the state of a function call and what the next call in the chain
needs to see. Similar to middleware, promises can allow a function to start and patiently
wait for it to complete before passing it off to the next callback function. Ultimately,
promises offer a cleaner way of representing nested callbacks, and with database que-
ries now introduced to your applications, your callback functions can get long.

Luckily, Mongoose is built to work with promises. All you need to do to get set up is let
Mongoose know that you want to use native ES6 promises by adding mongoose.Promise
= global.Promise near the top of main.js. Now with each query made, you can choose to
return the normal database response or a promise containing that response. In listing
15.7, for example, a query to get all subscribers from the database returns a new promise
with the database’s response.

Rewriting this action with a promise still allows querying of all subscribers in the data-
base. Within the query, instead of rendering a view immediately, return a promise that
contains data on whether to resolve by rendering a view or reject by logging an error. By
using the exec call following find, you’re invoking your query to return a promise.

NOTE Without using exec, you’re still able to use then and catch to handle follow-up com-
mands. Without exec, however, you won’t have an authentic promise—only Mongoose’s ver-
sion of a promise query. Some Mongoose methods, however, such as save, return a
promise and won’t work with exec. You can read more about the distinctions at
http://mongoosejs.com/docs/promises.html.

Quick check 15.2 What middleware is needed in addition to Express.js to process data from
a form?

QC 15.2 answer To easily parse the body of a request, you need the help of the express.json and
express.urlencoded middleware function. These modules act as middleware between your request
being received and processed fully with Express.js.

http://mongoosejs.com/docs/promises.html

163Using promises with Mongoose
If an error occurs in the process, the error propagates down the promise chain to the
catch block. Otherwise, data returned from the query passes on to the next then block.
This promise-chain procedure follows the promise convention of rejecting or resolving
code in a promise block to determine what code should be run next (figure 15.4).

When the promise is complete, it calls next to use any following middleware in
Express.js. You chain on a then method to tell the promise to perform this task immedi-
ately after the database responds. This then block is where you render your view. Next,
the catch method is chained to handle any errors rejected in the promise.

NOTE then is used only in the context of promises. next is used in a middleware function.
If both are used, as in listing 15.7, you’re waiting for a promise to resolve with then and
later calling next to go to another middleware function.

You can add as many then chains as you like, ultimately telling your promise to run the
code within that block when everything else is complete. The final then block logs a
message to your console to let you know that the promise completed.

exports.getAllSubscribers = (req, res) => {
 Subscriber.find({})
 .exec()

Listing 15.7 Using promises to get all subscribers in subscribersController.js

1. The initial query is run through Mongoose.js on the
MongoDB database, returning a promise that resolves
with data or rejects an error.

2. At each block in the promise chain, an error can occur,
in which case a promise rejection sends propogation
directly to the catch block. Otherwise, each subsequent
.then block is resolved and handled.

3. At any stage in the promise chain, an error can be
rejected, causing the chain to culminate in the .catch
block. In this block, you can handle the error.

4. If no errors occur at the end of each stage, the resulting
data can be passed to another middleware function or
rendered on the screen.

find({})

promise

.then

.then

.then

.catch

Log results

Run 2nd query

Show error page

Show results

Figure 15.4 Promise chain in Mongoose.js

Rewrite the
getAllSubscribers
action.Return a promise

from the find query.

164 Lesson 15 Connecting controllers and models
 .then((subscribers) => {
res.render("subscribers", {

subscribers: subscribers
});

 })
 .catch((error) => {

console.log(error.message);
return [];

 })
 .then(() => {

console.log("promise complete");
 });
};

You may also modify your save command in saveSubscriber to use promises as shown in
the following listing. In this example, exec isn’t needed.

newSubscriber.save()
 .then(result => {
 res.render("thanks");
 })
 .catch(error => {
 if (error) res.send(error);
 });

Last, if you want to add data in bulk to your application in development instead of
tediously entering new subscribers through the contact form, you can create a module
for that purpose. Create seed.js in your project directory, and add the code in listing
15.9. This file makes a connection to your local database and loops through an array of
subscribers to create. First, clear the existing subscriber database with remove. Then the
promise library’s Promise.all waits for all new subscriber documents to be created
before printing log messages.

const mongoose = require("mongoose"),
 Subscriber = require("./models/subscriber");

Listing 15.8 Modifying saveSubscriber to use promises in subscribers-
Controller.js

Listing 15.9 Creating new data in seed.js

Send saved data to the
next then code block.

Serve results from
the database.

Catch errors that
are rejected in the
promise.

End the promise
chain with a log
message.

Save a new
subscriber with a
promise return.

165Using promises with Mongoose
mongoose.connect(
 "mongodb://localhost:27017/recipe_db",
 { useNewUrlParser: true }
);

mongoose.connection;

var contacts = [
 {
 name: "Jon Wexler",
 email: "jon@jonwexler.com",
 zipCode: 10016
 },
 {
 name: "Chef Eggplant",
 email: "eggplant@recipeapp.com",
 zipCode: 20331
 },
 {
 name: "Professor Souffle",
 email: "souffle@recipeapp.com",
 zipCode: 19103
 }
];

Subscriber.deleteMany()
 .exec()
 .then(() => {
 console.log("Subscriber data is empty!");
 });

var commands = [];

contacts.forEach((c) => {
 commands.push(Subscriber.create({

name: c.name,
email: c.email

 }));
});

Promise.all(commands)
 .then(r => {
 console.log(JSON.stringify(r));
 mongoose.connection.close();
 })
 .catch(error => {

Set up the connection
to the database.

Remove all existing data.

Loop through
subscriber objects
to create promises.

Log confirmation after
promises resolve.

166 Lesson 15 Connecting controllers and models
 console.log(`ERROR: ${error}`);
 });

You can run this file by entering node seed.js in terminal in each subsequent lesson to
avoid having an empty or inconsistent database. I talk more about how to use seed data
in unit 8.

Summary

In this lesson, you learned how to connect your models with controller actions. You also
made a complete connection between models, views, and controllers by loading a list of
subscribers from your database. At the end of the lesson, you were introduced to prom-
ises used with Mongoose and Node.js. In lesson 16, you take everything you learned in
this unit and build a database for an application in the capstone exercise. In unit 4,
you’ll take these steps further by building more-robust models and actions for doing
more than saving and viewing data.

Try this

Try converting your other controller actions to use promises. You can also chain other
Mongoose query methods, such as where and order. Each method passes a promise to the
next command.

Quick check 15.3 True or false: using exec on a Mongoose query is the same as running a
query that returns a new promise.

QC 15.3 answer True. exec is designed to run a query and return a promise if promises are config-
ured with your Mongoose setup.

16LESSON
CAPSTONE: SAVING USER
SUBSCRIPTIONS

I presented the Express.js application to Confetti Cuisine, and they love it. They tell me
that they’re ready to start promoting their cooking courses and want people who visit
the site to subscribe to the school’s newsletter. The subscribers to this newsletter are
potential customers, so Confetti Cuisine wants me to save each subscriber’s name, email
address, and ZIP code.

When I have a database in place, Confetti Cuisine is comfortable with moving to the
next stages of building user accounts. To accomplish this task, I need to build an appli-
cation with

 A MongoDB database
 The Mongoose package
 A data schema with three fields
 A form for subscribing on the site
 A route to handle POST requests and save the subscriber data model
167

168 Lesson 16 Capstone: Saving user subscriptions
16.1 Setting up the database

Now that Confetti Cuisine is ready to save user data, I need to install MongoDB and
Mongoose for this project. First, I install MongoDB with Homebrew on my Mac by run-
ning brew install mongodb. Then I start the MongoDB server locally by running mongod.

In a new terminal window, in my project directory, I install the mongoose package by
entering npm i mongoose -S in a new terminal window within my project folder.

Next, I open the project’s main.js file and require mongoose along with my database con-
figuration by using the code in listing 16.1. I require mongoose in this project to use the
module’s methods for building a connection to my MongoDB database. Then I set up a
connection to the confetti_cuisine database on my local computer. If this database
doesn’t exist yet, it’s created when I first run this application.

const mongoose = require("mongoose");
mongoose.connect(
 "mongodb://localhost:27017/confetti_cuisine",
 {useNewUrlParser: true}
);

Next, I need to build out how my data should look before it goes into the database.

16.2 Modeling data

Because Confetti Cuisine wants me to store three fields for new subscribers, I’ll create a
Mongoose schema defining those fields. First, I create a new models folder and a new
subscriber.js file with the schema from listing 16.2.

I need to require mongoose into this file so that I have access to that module’s tools and
methods. This Mongoose schema defines what a subscriber model should contain. In
this case, every subscriber object should have name and email fields that are both
Strings and a zipCode field that’s a Number.

const mongoose = require("mongoose"),
 subscriberSchema = mongoose.Schema({

Listing 16.1 Setting up Mongoose in the Node.js application in main.js

Listing 16.2 Defining a subscriber schema in subscriber.js

Require mongoose.
Set up the
database connection.

Require mongoose.

169Modeling data
 name: String,
 email: String,
 zipCode: Number
 });

Now that the schema is defined, I need to define a model to use this schema. In other
words, I’ve defined a set of rules, and now I need to create a model to use those rules.

The subscriber model also lives in the subscriber.js file, but unlike the schema, the
model should be accessible by other modules in the application. For that reason, I add
the model to the module’s exports object, as shown in listing 16.3.

I assign my subscriber model to the module.exports object. Other modules will need to
require this file to access the Subscriber model.

module.exports = mongoose.model("Subscriber",
➥ subscriberSchema);

Because I know that I’ll need to save subscribers who submit a form on the site, I’ll pre-
pare a route and some logic to create and save new subscribers to the database. All my
code is related to subscribers, so I’ll create a new subscribersController.js file within the
controllers folder where my actions will exist to respond to a POST route. The code in that
controller appears in listing 16.4.

First, I require the subscriber.js module. Because the module lives within another local
folder, the require line looks for the models folder relative to the controllers folder.
Node.js looks for the subscriber.js file within the models folder and assigns that mod-
ule’s exports content to a local constant called Subscriber. Right now, this module is the
only one in which I need to use the Subscriber model. Now I can create instances of the
Subscriber module or make calls on that model within the main application file.

The first action uses find to run a query finding all subscribers in the database and
returning a promise. I use then to continue the query chain and render a view upon suc-
cessfully receiving data or catching an error with catch. The second action doesn’t
require a promise; it renders a view. The third action creates an instance of Subscriber
and saves to the database. This behavior automatically returns a promise through Mon-
goose and allows me to chain more functionality or catch errors. I add mongoose.Promise =
global.Promise to main.js so that Mongoose will support my promise chains.

Listing 16.3 Creating an exported subscriber model in subscriber.js

Define schema properties.

Export the model.

170 Lesson 16 Capstone: Saving user subscriptions
const Subscriber = require("../models/subscriber");

exports.getAllSubscribers = (req, res) => {
 Subscriber.find({})
 .exec()
 .then((subscribers) => {

res.render("subscribers", {
subscribers: subscribers

});
 })
 .catch((error) => {

console.log(error.message);
return [];

 })
 .then(() => {

console.log("promise complete");
 });
};

exports.getSubscriptionPage = (req, res) => {
 res.render("contact");
};

exports.saveSubscriber = (req, res) => {
 let newSubscriber = new Subscriber({
 name: req.body.name,
 email: req.body.email,
 zipCode: req.body.zipCode
 });

 newSubscriber.save()
 .then(() => {

res.render("thanks");
 })
 .catch(error => {

res.send(error);
 });
};

At this point, my application can launch normally with npm start, but I haven’t created
the routes to connect to my new controller actions. First, I create a form to correspond
with my getSubscriptionPage function.

Listing 16.4 Controller actions for subscribers in subscribersController.js

Retrieve all
subscribers.

Require the
subscriber model.

Render the
contact page.

Save
subscribers.

171Adding subscriber views and routes
16.3 Adding subscriber views and routes

The last piece of the puzzle is adding my views and a form that visitors can use to
submit their information. The subscribers.ejs view contains a loop within the HTML
tags to display all the subscribers in the database, as shown in listing 16.5. EJS allows
basic JavaScript to run side by side with HTML content. Here, I’m looping through the
subscribers I got from the getAllSubscribers action in the subscribers controller.

<% subscribers.forEach(s => {%>
 <p><%= s.name %></p>
 <p><%= s.email %></p>
<% })%>

The other view I need is for the subscription form, which replaces my form in contact
.ejs. The form posts to the /subscribe route and looks like listing 16.6. This form con-
tains input fields with names that match the fields in the Subscriber schema. When the
form is submitted, data can easily be extracted by the model’s field names and saved
within a new Subscriber instance.

NOTE I’m deprecating my postedContactForm in the home controller. The old route and
action can be removed.

<form action="/subscribe" method="post">
 <label for="name">Name</label>
 <input type="text" name="name" placeholder="Name">
 <label for="email">Email</label>
 <input type="email" name="email" placeholder="Email">
 <label for="zipCode">Zip Code</label>
 <input type="text" pattern="[0-9]{5}" name="zipCode"
➥ placeholder="Zip Code">

<input type="submit" name="submit">
</form>

To get these views to display, I need to add and modify some routes in main.js, as
shown in listing 16.7. First, I require subscribersController.js to the top of the file. Then
I add a new route to view all subscribers; this route uses the getAllSubscribers function
in subscribersController.js (figure 16.1).

Listing 16.5 Looping through subscribers in subscribers.ejs

Listing 16.6 For new subscribers in contact.ejs

Loop through the
subscribers array.

Add a
subscription
form.

172 Lesson 16 Capstone: Saving user subscriptions
Instead of creating a new route for the subscription view, I modify the /contact route to
use my getSubscriptionPage function. When users click the contact button in the site’s
navigation, they see my subscription form. Last, I add a POST route to let my save-
Subscriber function handle submissions from the subscription form.

const subscribersController = require(
 "./controllers/subscribersController");

app.get("/subscribers", subscribersController.getAllSubscribers);
app.get("/contact", subscribersController.getSubscriptionPage);
app.post("/subscribe", subscribersController.saveSubscriber);

The result is a form accessible from the contact page where new visitors can send me
their information (figure 16.2).

The pieces are in place, and the application is ready to launch. I’m going to show this
application to Confetti Cuisine. I relaunch my application with npm start and demon-
strate the subscription process to see whether the company is interested. This addition
could be a good way to gauge interest among subscribers to the newsletter.

Listing 16.7 Adding subscriber routes in main.js

Figure 16.1 Listing subscriber data on the subscribers page

Require the
subscribers controller.

Add a route to view
all subscribers.

Add a route to view the
contact page.

Add a route to handle
posted form data.

173Summary
Summary

In this project, I took a largely static Express.js application and modified it to start sav-
ing and displaying dynamic data. With these changes and the help of a templating
engine and middleware in Express.js, this application is taking shape.

I started by connecting the application with Mongoose and using the schema and mod-
eling tools that come with Mongoose to structure application data. Next, I connected
those models with new controllers and routes that handle specific requests to view and
save subscriber data. Last, I incorporated a form where users can finally interact with
and pass along their information to be processed and reviewed by the Confetti Cuisine
team. With the help of promises, the code is clean and ready for errors that may occur.

In unit 4, you learn how to use Mongoose on another level by building a user model.
Through this model, you learn about validation and security steps taken when creating,
reading, updating, and deleting (CRUD) data.

Figure 16.2 Listing subscription form on the contact page

175

U
N

IT
 4

Building a user model

In unit 3, you learned how to connect your applica-
tion to a database. You also constructed your first
schema and model. This unit builds on those les-
sons by introducing more functionality to your
models. First, you learn more about how Mongoose
schemas and methods can be used to interact more
reliably with your models. You build a model to
represent user data and connectivity. Every user
needs to create an account, edit, and delete their
account. In this unit, I discuss create, read, update,
and delete (CRUD) functions in application devel-
opment and show what you need to create a robust
model. By the end of this unit, you’ll have an appli-
cation that supports three models, each associated
with one another and manageable from views in
your browser.

This unit covers the following topics:

 Lesson 17 dives deeper into Mongoose sche-
mas and models. In this lesson, you add
database validations to ensure that data is
saved only if it meets the requirements you
set. You also learn how to associate models
with one another. You start by applying cer-
tain techniques to the Subscriber model and
then move to the application’s other models.

176 Unit 4 Building a user model
 Lesson 18 shows how to construct a user model. This lesson teaches about the
core CRUD controller actions to manage model data. You start by building a
users-index page.

 Lesson 19 guides you through constructing the create and read routes, actions,
and views for your user model. In this lesson, you create everything needed to
save user data from browser views.

 Lesson 20 guides you through constructing the update and delete routes, actions,
and views for your user model. By the end of this lesson, your CRUD functional-
ity will be complete.

 Lesson 21 wraps up the unit by guiding you through the construction of a user
model and the necessary model- associations needed for the Confetti Cuisine
application.

Get ready to collect, store, and associate data in unit 4.

17LESSON
IMPROVING YOUR DATA MODELS

In this lesson, you take advantage of Mongoose’s schema- and model-creation tools. To
start, you improve on your simple model and add properties to the models to restrict
what data can be saved to the database. Next, you see how to associate data in a NoSQL
database such as MongoDB. At the end, you build out static and instance methods for
the model. You can run these methods directly on Mongoose model objects, and create
the necessary controller actions for them to work with the application.

This lesson covers
 Adding validations to your models
 Creating static and instance methods for your models
 Testing your models in REPL
 Implementing data associations on multiple models

Consider this You’ve set up a form for people visiting your recipe application to sub-
scribe to a newsletter. Now you want to populate your application with courses in which
users will be able to enroll and learn to cook.

With the help of Mongoose, you’ll be able to set up your models so that subscribers can
show interest in a particular program before signing up as users.
177

http://mongoosejs.com/docs/queries.html

178 Lesson 17 Improving your data models
17.1 Adding validations on the model

So far, you’ve built a model with Mongoose. The model you created is an abstraction
from the data, represented as a document, in your MongoDB database. Because of this
abstraction, you can create a blueprint of how you want your data to look and behave
using Mongoose schemas.

Take a look at the subscriber data model for your recipe application in listing 17.1. The
subscriber’s schema lets your application know that it’s looking for three properties of a
certain data type. It doesn’t specify, however, whether the properties can be duplicates,
if a size limit exist (the ZIP code could be saved as 15 digits, for example), or whether
the properties are even required for saving to the database. It won’t be any help to have
subscriber records in your database if they’re mostly blank. Next, you add some ways to
validate that your properties ensure that your data is consistent.

const mongoose = require("mongoose");
const subscriberSchema = mongoose.Schema({
 name: String,
 email: String,
 zipCode: Number
});
module.exports = mongoose.model("Subscriber", subscriberSchema);

The schema defined so far works, but it also allows you to save an instance of the Sub-
scriber model without any meaningful data.

Listing 17.1 Defining a subscriber schema in subscriber.js

Define a
subscriberSchema to
contain name, email,
and zipCode properties.

SchemaTypes
Mongoose provides a set of data types that you can specify in your schema; these data
types are appropriately called SchemaTypes. The types resemble data types in JavaScript,
though they have a particular relationship with the Mongoose library that normal Java-
Script data types don’t have. Here are some SchemaTypes you should know about:

 String—This type, like Boolean and Number, is straightforward. Specifying a
schema property of type String means that this property will save data pre-
sented as a JavaScript String (not null or undefined).

 Date—Dates are useful in data documents, as they can tell you when data was
saved or modified, or when anything involving that model occurred. This type
accepts a JavaScript Date object.

179Adding validations on the model
To start improving your model, add some Mongoose validators. Validators are rules that
you apply to model properties, preventing them from saving to your database unless
those rules are met. See the amended schema in listing 17.2. Notice that each model prop-
erty can have a type assigned directly or a bunch of options passed as a JavaScript object.

You want to require the name property and make it type String. The email property should
be required because no two records can have the same email, and it’s also of type String.

NOTE In this example, require means that data must exist for the model instance before
it can be saved to the database. It’s not the same way I’ve been using the term to require
modules.

You also add the lowercase property set to true to indicate that all emails saved to the
database are not case-sensitive. Last, the ZIP code property won’t be required, but it has
a minimum and maximum number of digits. If a number less than 10000 is entered, the
error message "Zip Code too Short" is used. If the number exceeds 99999, or 5 digits in
length, you get a generic error from Mongoose, and the data won’t save.

const mongoose = require("mongoose");

const subscriberSchema = new mongoose.Schema({
 name: {
 type: String,
 required: true
 },
 email: {
 type: String,
 required: true,

Listing 17.2 Adding validators to the subscriber schema in subscriber.js

 Array—The Array type allows a property to store a list of items. When specifying
the Array type, use the array literal, enclosing square brackets [] instead of its
name.

 Mixed—This type is most similar to a JavaScript object, as it stores key-value
pairs on a model. To use the Mixed type, you need to specify mongoose.Schema
.Types.Mixed.

 ObjectId—Like the ObjectId value for each document in your MongoDB data-
base, this type references that object. This type is particularly important when
associating models with one another. To use this type, specify mon-
goose.Schema.Types.ObjectId.

Require the
name property.

Require the email
property, and add the
lowercase property.

http://mongoosejs.com/docs/populate.html

180 Lesson 17 Improving your data models
 lowercase: true,
 unique: true
 },
 zipCode: {
 type: Number,
 min: [10000, "Zip code too short"],
 max: 99999
 }
});

NOTE The unique option used on the email property isn’t a validator, but rather a Mon-
goose schema helper. Helpers are like methods that perform tasks that behave like a valida-
tor in this case.

Because the subscriber’s schema defines how instances of the Subscriber model behave,
you can also add instance and static methods to the schema. As in traditional object-
oriented programming, instance methods operate on an instance (a Mongoose docu-
ment) of the Subscriber model and are defined by subscriberSchema.methods. Static meth-
ods are used for general queries that may relate to many Subscriber instances and are
defined with subscriberSchema.statics.

Next, you add two instance methods from listing 17.3 to your recipe application.

getInfo can be called on a Subscriber instance to return the subscriber’s information in
one line, which could be useful to get a quick read of the subscribers in your database.
findLocalSubscribers works the same way but returns an array of subscribers. This
instance method involves a Mongoose query where this refers to the instance of Sub-
scriber on which the method is called. Here, you’re asking for all subscribers with the
same ZIP code. exec ensures that you get a promise back instead of needing to add an
asynchronous callback here.

subscriberSchema.methods.getInfo = function() {
 return `Name: ${this.name} Email: ${this.email} Zip Code:
➥ ${this.zipCode}`;
};

subscriberSchema.methods.findLocalSubscribers = function() {
 return this.model("Subscriber")

Listing 17.3 Adding instance methods to the schema in subscriber.js

Set up the zipCode
property with a custom
error message.

Add an instance
method to get the full
name of a subscriber.

Add an instance
method to find
subscribers with the
same ZIP code.

181Adding validations on the model
 .find({zipCode: this.zipCode})
 .exec();
};

WARNING As of the writing of this book, when using methods with Mongoose, you won’t
be able to use ES6 arrow functions without drawbacks. Mongoose makes use of binding
this, which is removed with arrow functions. Inside the function, you can use ES6 again.

NOTE Recall that you need to export the Subscriber model by using module.exports =
mongoose.model("Subscriber", subscriberSchema) after setting up these methods.
This line allows you to require the Subscriber model directly by importing this module in
another file.

Mongoose provides dozens of other query methods. You could add more methods and
validations in subscriber.js, but Mongoose already offers many methods for you to
query documents. Table 17.1 lists a few query methods that you may find useful.

NOTE Each of these queries returns a promise, so you need to use then and catch to
handle the resulting data or errors.

For more information about Mongoose queries, visit http:// mongoosejs.com/docs/
queries.html.

Before you get to programming the routes and user interface to interact with your new
models, try another way to test whether everything is working: REPL. In the next sec-
tion, you apply the code from earlier in this lesson to a new REPL session.

Table 17.1 Mongoose queries

DescriptionQuery
find Returns an array of records that match the query parameters. You can search for all

subscribers with the name "Jon" by running Subscriber.find({name: "Jon"}).

findOne Returns a single record when you don’t want an array of values. Running
Subscriber.findOne({name: "Jon"}) results in one returned document.

findById Allows you to query the database by an ObjectId. This query is your most useful tool for
modifying existing records in your database. Assuming that you know a subscriber’s
ObjectId, you can run Subscriber.findById("598695b29ff27740c5715265").

remove Allows you to delete documents in your database by running Subscriber.remove({})
to remove all documents. Be careful with this query. You can also remove specific
instances such as subscriber.remove({}).

Access the Subscriber model
to use the find method.

http://mongoosejs.com/docs/queries.html
http://mongoosejs.com/docs/queries.html

182 Lesson 17 Improving your data models
17.2 Testing models in REPL

To start interacting with your database by using the Subscriber model, you need to go
into REPL by typing the node keyword in a new terminal window and adding the lines
in listing 17.4. Set up the environment by requiring Mongoose. (You need to be in your
project’s directory in terminal for this procedure to work.) Next, set up the connection to
MongoDB. Enter the name of your database—in this case, recipe_db.

const mongoose = require("mongoose"),
 Subscriber = require("./models/subscriber");
mongoose.connect(
 "mongodb://localhost:27017/recipe_db",
 {useNewUrlParser: true}
);
mongoose.Promise = global.Promise;

Now you’re all set to test whether your model and its methods work. In REPL, run the
commands and queries in listing 17.5 to see whether you’ve set up your model correctly.

Create a new subscriber document with the name "Jon" and email "jon@jonwexler.com".
Try running this line twice. The first time, you should see the saved document logged
back to the console. The second time, you should see an error message saying the email
already exists in the database, which means that your email validator is working.

Listing 17.4 Set up subscriber model in REPL in terminal

Quick check 17.1 When you use promises with Mongoose queries, what should a query
always return?

QC 17.1 answer When using promises with Mongoose, you should expect to get a promise as a
result of a database query. Getting back a promise ensures that a result or error can be handled appro-
priately without having to worry about timing issues with asynchronous queries.

Require Mongoose
in REPL.

Assign the Subscriber
model to a variable,
using the model name
and local project file.

Set up a database
connection, using recipe_db.

Tell Mongoose to use native
promises as you did in main.js.

183Testing models in REPL

Next, set up a variable to which you can assign the following results of your query.
Using Mongoose’s findOne query, you’re searching for the document you just created.
Then assign the resulting record to your subscriber variable. You can test that this code
works by logging the subscriber record or, better, the results of your custom getInfo
method on this instance.

The resulting text should read: Name: Jon Email: jon@jonwexler.com Zip Code: 12345.

NOTE Because emails must be unique, you may run into a duplicate key error when sav-
ing new records with the same information. In that case, you can run Subscriber
.remove({}) to clear all subscriber data from your database.

Subscriber.create({
 name: "Jon",
 email: "jon@jonwexler.com",
 zipCode: "12345"
})
 .then(subscriber => console.log(subscriber))
 .catch(error => console.log(error.message));

var subscriber;
Subscriber.findOne({
 name: "Jon"
}).then(result => {
 subscriber = result;
 console.log(subscriber.getInfo());
});

Your terminal console window should resemble the one in figure 17.1.

Listing 17.5 Testing model methods and Mongoose queries in REPL in terminal

Create a new
subscriber
document.

Set up a variable to
hold query results.

Search for the document
you just created.

Log the subscriber record.

Figure 17.1 Example response for Mongoose REPL commands

184 Lesson 17 Improving your data models
Try to create new records with different content. Check that your validators for the zip-
Code property are working by creating a new Subscriber with ZIP code 890876 or 123.
Then try to delete one or all of your subscriber records directly from REPL.

Next, I show you how to associate this new model with other new models.

TIP The code in this section can be saved and reused. Add your REPL code to a file called
repl.js in your project directory. The next time you open REPL, you can load the contents of
this file into the environment. Remember: Node.js runs asynchronously, so if you try to cre-
ate a record in one command and query for that record immediately afterward, those two
commands run virtually at the same time. To avoid any errors, run the commands individu-
ally, or nest queries within each other’s then blocks.

17.3 Creating model associations

In unit 3, I discussed how data is structured with MongoDB and how Mongoose acts as
a layer over the database to map documents to JavaScript objects. The Mongoose pack-
age saves you a lot of time in development by offering methods that make it easy to
query the database and generate results quickly in an object-oriented way.

If your background is relational databases, you may be familiar with the ways you can
associate data in your applications, as shown in figure 17.2.

Because you’re working with a document-based database, you have no tables—and
definitely no join tables. But you do have fairly simple ways to use Mongoose to set up
the data relationships laid out in table 17.2.

Quick check 17.2 Why do you need to require the database connection and Mongoose mod-
els into REPL to test your code?

QC 17.2 answer Until you build views to interact with your database, REPL is a great tool to run
CRUD operations on your models. But you need to require the modules with which you’d like to test so
that your REPL environment will know which database to save to and which Subscriber model you’re
creating.

185Creating model associations
If two models are associated in some way—a user has many pictures, an order has a single
payment, many classes share multiple enrolled students—you add a property with the asso-
ciated model’s name, where the type is Schema.Types.ObjectId, the ref attribute is set to the
associated model’s name, and Schema is mongoose.Schema. The following code might repre-
sent a schema property for users with many pictures: pictures: [{type: Schema.Types
.ObjectId, ref: "Picture"}].

Add another model to this recipe application called Course, and associate it with Sub-
scriber. This course model represents recipe courses to choose from in the application.
Each course has different food offerings in different locations. Add the code from listing
17.6 to a new model file called course.js in your models folder.

Table 17.2 Data relationships

DescriptionRelationship

One-to-one When one model can have an association to another model. This association could
be a User with one Profile; that profile belongs only to the user.

When one model can have many associations to another model, but the otherOne-to-many
model can have only a single association back to the first model. This association
could be a Company with many instances of Employee. In this example, the employ-
ees work for only one company, and that company has many employees.

Many-to-many When many instances of one model can have multiple associations to another
model, and vice versa. Many Theatre instances could show the same Movie
instances, and each Movie can be traced to many Theatre instances. Typically, a
join table is used to map records to one another in a relational database.

1. A user may be associated
with a single profile. This
relationship prevents users
from adding multiple profile
IDs to their profile property.

2. A user may have authored
many posts on a social media
site. These posts may be
represented as an array of
post IDs within the user model.
In this case, no other user may
share authorship of a post.

3. Users may enroll in many
courses in which other users
are also enrolled. This
many-to-many relationship
permits the user model to
store an array of course IDs
that may exist for more than
one user.

Profile

User User

Model associations

Post Post Course Course

User User

Figure 17.2 Relational database associations

186 Lesson 17 Improving your data models
Courses have titles that are required and must not match another course’s title. Courses
have a description property to inform users of the site of what the course offers. They
also have an items property, which is an array of strings to reflect items and ingredients
they include. The zipCode property makes it easier for people to choose the courses that
are nearest them.

const mongoose = require("mongoose");

const courseSchema = new mongoose.Schema({
 title: {
 type: String,
 required: true,
 unique: true
 },
 description: {
 type: String,
 required: true
 },
 items: [],
 zipCode: {
 type: Number,
 min: [10000, "Zip code too short"],
 max: 99999
 }
});

module.exports = mongoose.model("Course", courseSchema);

You could add a subscribers property to the Course model that stores a reference to the
subscribers by each subscriber’s ObjectId, which comes from MongoDB. Then you’d ref-
erence the Mongoose model name, Subscriber, like so: subscribers: [{type: mongoose
.Schema.Types.ObjectId, ref: "Subscriber"}]. Technically, though, you don’t need the
models to reference each other; one model referencing the other is enough. Therefore,
add the association on the Subscriber model.

Head back over to subscriber.js, and add the following property to the subscriberSchema:
courses: [{type: mongoose.Schema.Types.ObjectId, ref: "Course"}]

Add a courses property to subscribers that stores a reference to each associated course
by that course’s ObjectId. The ID comes from MongoDB. Then reference the Mongoose
model name, Course.

Listing 17.6 Creating a new schema and model in course.js

Add properties to the
course schema.

187Creating model associations
NOTE Notice how the property’s name is plural to reflect the potential to have many asso-
ciations between subscribers and courses.

If you wanted to restrict subscribers to one course at a time, you could remove the
brackets around the property. The brackets signify an array of multiple referenced
objects. If a subscriber could sign up for only a single course, the course property would
look like the following: course: {type: mongoose.Schema.Types.ObjectId, ref: "Course"}.

In this case, each subscriber could be associated with only a single course. You can think
of this as allowing subscribers to sign up for only one course at a time. In a way, this
database limitation can also behave like a feature, preventing subscribers from signing
up for multiple courses at a time. Nothing prevents different subscribers from signing
up for the same course, however, as long as each subscriber has one course association.

To associate two instances of separate models in practice, rely on JavaScript assignment
operators. Suppose that you have a subscriber assigned to the variable subscriber1 and a
course instance represented as course1. To associate these two instances, assuming the
subscriber model can have many course associations, you need to run subscrib-
er1.courses.push(course1). Because subscriber1.courses is an array, use the push method
to add the new course.

Alternatively, you can push the ObjectId into subscriber.courses instead of using the
whole course object. If course1 has ObjectID "5c23mdsnn3k43k2kuu", for example, your
code would look like the following: subscriber1.courses.push("5c23mdsnn3k43k2kuu").

To retrieve course data from a subscriber, you can use the course’s ObjectID and query
on the Course model or use the populate method to query the subscriber along with the
contents of its associated courses. Your subscriber1 MongoDB document would come
with the course1 document nested within it. As a result, you get the ObjectIDs of associ-
ated models only.

In the next section, you explore the populate method a little further.

Quick check 17.3 How do you distinguish between a model that’s associated to one
instance of another model versus many instances?

QC 17.3 answer When defining a model’s schema, you can specify that model’s relationship as
one-to-many by wrapping the associated model in brackets. The brackets indicate an array of associated
records. Without the brackets, the association is one-to-one.

188 Lesson 17 Improving your data models
17.4 Populating data from associated models

Population is a method in Mongoose that allows you to get all the documents associated
with your model and add them to your query results. When you populate query results,
you’re replacing the ObjectIds of associated documents with the documents’ contents.
To accomplish this task, you need to chain the populate method to your model queries.
Subscriber.populate(subscriber, "courses"), for example, takes all the courses associ-
ated with the subscriber object and replaces their ObjectIds with the full Course docu-
ment in the subscriber’s courses array.

NOTE You can find some useful examples at http://mongoosejs.com/docs/populate
.html.

With these two models set up, go back to REPL, and test the model associations. See the
commands in listing 17.7. First, require the Course model for use in the REPL environ-
ment. Set up two variables outside the promise chain scope so that you can assign and
use them later. Create a new course instance with values that meet the Course schema
requirements. Upon creation, you’re assigning the saved course object to testCourse.
Alternatively, if you’ve already created a course, you can get it from the database with
Course.findOne({}).then(course => testCourse = course);.

Assuming that you created a subscriber earlier in the lesson, this line pulls a single sub-
scriber from the database and assigns it to testSubscriber. You push the testCourse
course into the testSubscriber array of courses. You need to make sure to save the model
instance again so that changes take effect in the database. Last, use populate on the Sub-
scriber model to locate all the subscriber’s courses and fill in their data in the sub-
scriber’s courses array.

const Course = require("./models/course");
var testCourse, testSubscriber;
Course.create({
 title: "Tomato Land",
 description: "Locally farmed tomatoes only",
 zipCode: 12345,
 items: ["cherry", "heirloom"]
}).then(course => testCourse = course);
Subscriber.findOne({}).then(
 subscriber => testSubscriber = subscriber
);

Listing 17.7 Testing model associations using REPL in terminal

Require the
Course model.

Set up two variables
outside the promise
chain.

Create a new
course instance.

Find a subscriber.

http://mongoosejs.com/docs/populate.html
http://mongoosejs.com/docs/populate.html
http://mongoosejs.com/docs/populate.html

189Populating data from associated models
testSubscriber.courses.push(testCourse);
testSubscriber.save();
Subscriber.populate(testSubscriber, "courses").then(subscriber =>
 console.log(subscriber)
);

NOTE For these examples, you’re not handling potential errors with catch to keep the
code short, though you’ll want to add some error handling while you test. Even a simple
catch(error => console.log(error.message)) can help you debug if some error
occurs in the promise pipeline.

After running these commands, you should see the results in listing 17.8. Notice that the
testSubscriber’s courses array is now populated with the Tomato Land course’s data. To
reveal that course’s items, you can log subscriber.courses[0].items in the last REPL pop-
ulate command you ran.

{ _id: 5986b16782180c46c9126287,
 name: "Jon",
 email: "jon@jonwexler.com",
 zipCode: 12345,
 __v: 1,
 courses:
 [{ _id: 5986b8aad7f31c479a983b42,
 title: "Tomato Land",
 description: "Locally farmed tomatoes only",
 zipCode: 12345,
 __v: 0,
 subscribers: [],
 items: [Array]}]}

Now that you have access to associated model data, your queries have become more
useful. Interested in creating a page to show all subscribers subscribed for the Tomato
Land course with ObjectId 5986b8aad7f31c479a983b42? The query you need is Subscriber
.find({courses: mongoose.Types.ObjectId("5986b8aad7f31c479a983b42")}).

If you want to run all the examples from this lesson in sequence, you can add the code in
listing 17.9 to repl.js, restart your REPL environment by entering node, and load this file
by running .load repl.js.

Listing 17.8 Resulting console log from REPL in terminal

Push the testCourse course
into the courses array of
testSubscriber.

Use populate
on the model.Save the model

instance again.

Display results for a
populated object.

190 Lesson 17 Improving your data models

The code in repl.js clears your database of courses and subscribers. Then, in an organized
promise chain, a new subscriber is created and saved to an external variable called test-
Subscriber. The same is done for a course, which is saved to testCourse. At the end, these
two model instances are associated, and their association is populated and logged. The
commands, in order, demonstrate how powerful REPL can be for testing code.

const mongoose = require("mongoose"),
 Subscriber = require("./models/subscriber"),
 Course = require("./models/course");

var testCourse,
 testSubscriber;

mongoose.connect(
 "mongodb://localhost:27017/recipe_db",
 {useNewUrlParser: true}
);

mongoose.Promise = global.Promise;

Subscriber.remove({})
 .then((items) => console.log(`Removed ${items.n} records!`))
 .then(() => {
 return Course.remove({});
 })
 .then((items) => console.log(`Removed ${items.n} records!`))
 .then(() => {

return Subscriber.create({
name: "Jon",
email: "jon@jonwexler.com",
zipCode: "12345"

});
 })
 .then(subscriber => {

Listing 17.9 Series of commands in REPL.js

Remove all
subscribers
and courses.

Create a new
subscriber.

console.log(`Created Subscriber: ${subscriber.getInfo()}`);
})
.then(() => {
return Subscriber.findOne({

name: "Jon"
});

})
.then(subscriber => {
testSubscriber = subscriber;

191Populating data from associated models

 console.log(`Found one subscriber: ${subscriber.getInfo()}`);
 })
.then(() => {

return Course.create({
title: "Tomato Land",
description: "Locally farmed tomatoes only",
zipCode: 12345,
items: ["cherry", "heirloom"]

});
 })
 .then(course => {
 testCourse = course;
 console.log(`Created course: ${course.title}`);
 })
 .then(() => {

testSubscriber.courses.push(testCourse);
 testSubscriber.save();
 })
 .then(() => {

return Subscriber.populate(testSubscriber, "courses");
 })
 .then(subscriber => console.log(subscriber))
 .then(() => {

return Subscriber.find({ courses: mongoose.Types.ObjectId(
➥ testCourse._id) });

})
.then(subscriber => console.log(subscriber));

TIP Querying with Mongoose and MongoDB can get complicated. I recommend exploring
the sample queries for Mongoose and practicing some of the integrated MongoDB query
syntax. You’ll discover the queries that make the most sense to you as you need them in the
development process.

In lesson 18, you expand on these associations. You add some controller actions to man-
age how you interact with your data.

Create a new course.

Associate the
course with
subscriber.

Populate course
document in subscriber.

Query subscribers
where ObjectId is
same as course.

Quick check 17.4 Why wouldn’t you want to populate every associated model on every
query?

QC 17.4 answer The populate method is useful for collecting all associated data for a record, but if
it’s misused, it can increase the overhead time and space needed to make a query for a record. Generally,
if you don’t need to access the specific details of associated records, you don’t need to use populate.

192 Lesson 17 Improving your data models
Summary

In this lesson, you learned how to create more-robust Mongoose models. You also cre-
ated instance methods for your models that can be run from elsewhere in your applica-
tion on specific model instances. Later, you tested your models for the first time in REPL
and created a new Course model with a many-to-many association to your existing Sub-
scriber model. This relationship allows subscribers on the site to show interest in spe-
cific recipe courses, allowing you to target your users better by location and interest. In
lesson 18, you build a user model along with the CRUD methods that any application
needs to manage its data.

Try this

Now that you have two models set up, it’s time to step up your Mongoose methods
game. First, practice creating a dozen subscribers and half a dozen courses. Then run a
line of code to randomly associate each subscriber in your database to a course. Remem-
ber to save your changes after pushing courses into your subscribers’ courses array.

When you’re done, log each subscriber to your console in REPL, using populate to see
which courses you’ve associated each subscriber with.

18LESSON
BUILDING THE USER MODEL

In lesson 17, you improved your models by adding validators and instance methods.
You also made your first model associations and populated data from referenced mod-
els. In this lesson, you apply some of those techniques to the user model. In doing so,
you also interact with these models through their respective controllers and routes.
Last, you build some forms and tables to make it easier to visualize all the data in the
application.

This lesson covers
 Creating model associations with a user model
 Using virtual attributes
 Implementing a CRUD structure on the user model
 Building an index page to view all users in your database

Consider this You have two models working with your recipe application: Subscriber
and Course. You’d still like visitors to create accounts and start signing up for recipe pro-
grams. The user model is in nearly every modern application, along with a system to cre-
ate, read, update, and delete (CRUD) data from the database. With the help of Mongoose,
Express.js, and CRUD, your users will soon have a way to sign in to your application.
193

194 Lesson 18 Building the user model
18.1 Building the user model

Now that you have models that protect against unwanted data in your database, you
need to do the same for the most important model in the application: user. Your recipe
application currently has a subscriber model and a course model to allow prospective
users to show interest in certain recipe programs. The next step is allowing users to sign
up for and enroll in these courses.

Like the subscriber model, the user model needs some basic information about each per-
son who signs up. The model also needs an association with the course and subscriber
models. (If a former subscriber decides to sign up as a user, for example, you want to
connect the two accounts.) Then you want to track all the courses in which the user
decides to participate.

To create the user model, add the code in listing 18.1 to a new file in your models folder
called user.js. The user schema contains many overlapping properties from the sub-
scriber schema. Instead of a name property that’s one String, here, the name is an object
containing first and last. This separation can help if you want to address the user by
first name or last name only. Notice that the trim property is set to true to make sure that
no extra whitespace is saved to the database with this property. Email and zipCode are
the same as in the subscriber schema. The password property currently stores the user’s
password as a string and is required before an account is created.

WARNING For this unit only, you’ll be saving passwords to the database in plain text. This
approach isn’t secure or recommended, however, as you’ll learn in unit 5.

As in the subscriber schema, you associate the user to many courses. The user may also
be connected to a single subscriber’s account. You can name the property subscribed-
Account and remove brackets to signify that only one object is associated. A new set of
properties, createdAt and updatedAt, populates with dates upon the creation of a user
instance and any time you change values in the model. The timestamps property lets
Mongoose know to include the createdAt and updatedAt values, which are useful for
keeping records on how and when data changes. Add the timestamps property to the
subscriber and course models, too.

NOTE Notice the use of object destructuring for the Mongoose Schema object. {Schema}
assigns the Schema object in mongoose to a constant by the same name. Later, you’ll apply
this new format to other models.

195Building the user model
const mongoose = require("mongoose"),
 {Schema} = mongoose,

 userSchema = new Schema({
 name: {
 first: {

type: String,
trim: true

 },
 last: {

type: String,
trim: true

 }
 },
 email: {
 type: String,
 required: true,
 lowercase: true,
 unique: true
 },
 zipCode: {
 type: Number,
 min: [1000, "Zip code too short"],
 max: 99999
 },
 password: {
 type: String,
 required: true
 },
 courses: [{type: Schema.Types.ObjectId, ref: "Course"}],
 subscribedAccount: {type: Schema.Types.ObjectId, ref:
➥ "Subscriber"}
}, {
 timestamps: true
});

Given that the first and last name may occasionally be useful in one line, you can use a
Mongoose virtual attribute to store that data for each instance. A virtual attribute (also

Listing 18.1 Creating a User model in user.js

Create the user
schema.

Add first and last
name properties.

Add a password
property.

Add a courses
property to
connect users
to courses.

Add a subscribedAccount
to connect users to
subscribers.

Add a timestamps property
to record createdAt and
updatedAt dates.

196 Lesson 18 Building the user model
known as a computed attribute) is similar to a regular schema property but isn’t saved in
the database. To create one, use the virtual method on your schema, and pass the prop-
erty and new virtual attribute name you’d like to use. A virtual attribute for the user’s
full name resembles the code in listing 18.2. This virtual attribute won’t be saved to the
database, but it will behave like any other property on the user model, such as user.zip-
Code. You can retrieve this value with user.fullName. Below that is a line to create the
user model.

userSchema.virtual("fullName")
 .get(function() {
 return `${this.name.first} ${this.name.last}`;
 });

module.exports = mongoose.model("User", userSchema);

NOTE As of the writing of this book, you won’t be able to use arrow functions here
because Mongoose methods use lexical this, on which ES6 arrow functions no longer
depend.

Test this model right away in REPL. Remember to require Mongoose and everything
needed for this environment to work with your new model. With a new REPL session,
you need to require Mongoose again, specify Mongoose to use native promises, and con-
nect to your database by typing mongoose.connect("mongodb://localhost:27017/recipe_db",
{useNewUrlParser: true}). Then require the new user model with const User = require
("./models/user").

Create a new user instance in REPL, and log the returned user or error to see whether
the model was set up correctly. Listing 18.3 shows a working line to create a sample
user. In this example, a user is created and saved to the database with all the required
properties. Notice the extra space in the last field, which should be trimmed through
Mongoose before saving to the database.

TIP You can add the REPL commands in these examples to your REPL.js file for future use.

var testUser;
User.create({
 name: {
 first: "Jon",
 last: "Wexler"

Listing 18.2 Adding a virtual attribute to the user model in user.js

Listing 18.3 Creating a new user in REPL in terminal

Add a virtual
attribute to get
the user’s full
name.

http://localhost:3000/users
http://localhost:3000/users
http://localhost:3000/users

197Building the user model
 },
 email: "jon@jonwexler.com",
 password: "pass123"
})
 .then(user => testUser = user)
 .catch(error => console.log(error.message));

NOTE If you get an error complaining about unique email addresses, it probably means
that you’re trying to create a user with the same information as one in your database (which
isn’t permitted, due to the rules you set in the user schema). To get around this restriction,
create a user with a different email address or use the find() method instead of create,
like so: User.findOne({email: "jon@jonwexler.com"}).then(u=> testUser = u)
.catch(e => console.log(e.message));.

The user variable should now contain the document object shown in the next listing.
Notice that the courses property for this user is an empty array. Later, when you associ-
ate this user with courses, that property will populate with ObjectIds.

{ _id: 598a3d85e1225d0bbe8d88ae,
 email: "jon@jonwexler.com",
 password: "pass123",
 __v: 0,
 courses: [],
 name: { first: "Jon", last: "Wexler" } }

Now you can use the information from this user to link any subscribers in the system
with the same email. To link a subscriber, see the code in listing 18.5. You’re setting up a
targetSubscriber variable scoped outside of the query and assigning it the results of the
query on the subscriber model. This way, you can use your targetSubscriber variable
after the query completes. In this query, you’re using the user’s email from the create
command earlier to search over subscribers.

var targetSubscriber;
Subscriber.findOne({
 email: testUser.email
 })
 .then(subscriber => targetSubscriber = subscriber);

Listing 18.4 Showing the results of a saved user object in terminal

Listing 18.5 Connecting a subscriber to the user in REPL in terminal

Create a new user.

Display of query response

Set the targetSubscriber
variable to a subscriber found
with the user’s email address.

198 Lesson 18 Building the user model
After you run these commands, your targetSubscriber variable should contain the value
of the subscriber object that shares the user’s email address. You can console.log(target
Subscriber); to see that content in your REPL environment.

With promises, you can condense these two operations into one, as shown in listing
18.6. By nesting the call to find associated subscribers, you get a promise chain that can
be moved as a whole into a controller action. First, create the new user. You get back the
new user whose email you use to search for subscribers with the same email. The sec-
ond query returns any subscribers that exist. When you find the subscriber with the
same email, you can link it with the user by its attribute name on the user model,
subscribedAccount. Finally, save the change.

var testUser;
User.create({
 name: {
 first: "Jon",
 last: "Wexler "
 },
 email: "jon@jonwexler.com",
 password: "pass123"
})
 .then(user => {
 testUser = user;
 return Subscriber.findOne({
 email: user.email
 });
 })
 .then(subscriber => {
 testUser.subscribedAccount = subscriber;
 testUser.save().then(user => console.log("user updated"));
 })
 .catch(error => console.log(error.message));

Now that you can create a user and connect it to another model in REPL, the next step is
moving this interaction to the controllers and views.

NOTE You’ve moved to REPL to test your database queries, so you can remove the
required subscriber module from main.js, where it’s no longer needed.

Listing 18.6 Connecting a subscriber to the user in REPL in terminal

Find a subscriber
with the user’s email.

Connect a subscriber
and user.

199Adding CRUD methods to your models
18.2 Adding CRUD methods to your models

In this section, I discuss the next steps you need to take with the user, subscriber, and
group models. All three models have schemas and associations that work in REPL, but
you’re going to want to use them in the browser. More specifically, you want to manage
the data for each model as an admin of the site and allow users to create their own user
accounts. First, I’ll talk about the four major functions in database operations: create,
read, update, and delete (CRUD). Figure 18.1 illustrates these functions.

In web development, a CRUD application lays the groundwork for any larger or more
evolved application, because at the root and in some way, you always need to perform
the actions listed in table 18.1 on each model.

Quick check 18.1 How are virtual attributes different from normal model attributes?

QC 18.1 answer Virtual attributes aren’t saved in the database. These attributes, unlike normal
schema attributes, exist only while the application is running; they can’t be extracted from the database
or found directly through MongoDB.

C
create

R
read

U
update

D
delete

Create user Edit user Delete userUser profile

XName
Email
Password
ZIP code

Figure 18.1 Views for each CRUD action

200 Lesson 18 Building the user model
For the new.ejs and edit.ejs forms, you need to route the form submissions to create and
update routes, respectively. When you submit a form to create a new user, for example,
the form data should be posted to the user/create route. The following examples walk
you through the creation of CRUD actions and views for the user model, but you should
apply the same technique to the course and subscriber models.

Table 18.1 CRUD actions

DescriptionAction

Create The create function has two parts: new and create. new represents the route and
action taken to view the form with which you’ll create a new instance of your model.
To create a new user, for example, you might visit http://localhost:3000/users/
new to view a user-creation form located in new.ejs. The create route and action
handle any POST requests from that form.

Read The read function has only one route, action, and view. In this book, their names are
show to reflect that you’re showing that model’s information, most likely as a profile
page. Although you’re still reading from the database, the show action and
show.ejs view are more conventional names used for this operation.

Update The update function has two parts: edit and update. edit, like new, handles GET
requests to the edit route and edit.ejs view, where you’ll find a form to change a
model’s attribute values. When you modify the values and submit the form by using
a PUT request, the update route and action handle that request. These functions
depend on some instance of the model preexisting in your database.

Delete The delete function can be the simplest of the functions. Although you can create a
view to ask a user whether he’s sure that he wants to delete a record, this function
is usually implemented with a button that sends a DELETE request to a route with a
user’s ID. Then the delete route and action remove the record from your database.

CRUD HTTP methods
Earlier in this book, you learned about the GET and POST HTTP methods, which account
for most of the requests made across the internet. Many other HTTP methods are used
in specific cases, and with the update and delete functions, you can introduce two more,
as shown in table 18.2.

Table 18.2 PUT and DELETE HTTP methods

DescriptionHTTP method
PUT The method used to indicate that you’re submitting data to the application

server with the intention of modifying or updating an existing record. PUT
usually replaces the existing record with a new set of attributes, even if
some haven’t changed. Although PUT is the leading method for updating
records, some people prefer the PATCH method, which is intended to modify
only the attributes that have changed. To handle update routes in
Express.js, you can use app.put.

http://localhost:3000/users/new
http://localhost:3000/users/new

201Adding CRUD methods to your models
Before you get started, take a look at your controllers, and prepare them for a renova-
tion. So far, you’ve created new controller actions by adding them to the module’s
exports object. The more actions you create, the more you repeat that exports object,
which isn’t particularly pretty in the controller module. You can clean up your control-
ler actions by exporting them all together with module.exports in an object literal. Mod-
ify your home controller to the code in listing 18.7.

In this example, your actions are now comma-delimited, which makes the names of the
actions much easier to identify. After you apply this change in the controller, you don’t
need to change any other code for the application to function as it did before.

var courses = [
 {
 title: "Event Driven Cakes",
 cost: 50
},
 {
 title: "Asynchronous Artichoke",
 cost: 25
},
 {
 title: "Object Oriented Orange Juice",
 cost: 10
}];

module.exports = {
 showCourses: (req, res) => {

Listing 18.7 Modifying your actions in homeController.js

Although you can get away with using GET and POST to update and delete records, it’s best
to follow these best practices when using HTTP methods. With consistency, your appli-
cation will run with fewer problems and better transparency when problems arise. I dis-
cuss these methods further in lesson 19.

Table 18.3 PUT and DELETE HTTP methods (continued)

DescriptionHTTP method
DELETE The method used to indicate that you’re removing a record from your data-

base. To handle delete routes in Express.js, you can use app.delete.

Export object literal with
all controller actions.

202 Lesson 18 Building the user model
 res.render("courses", {
offeredCourses: courses

 });
 }
};

Apply this structure to your other controllers (errorController.js and subscribers-
Controller.js) and to all controllers moving forward. These modifications will start
to become important as you build out your CRUD actions and structure your middle-
ware within your routes.

NOTE Also create coursesController.js and usersController.js in your control-
lers folder so that you can create the same actions for the course and user models over
the next few lessons.

In the next section, you build the forms you need for the user model. First, though, create
an often-overlooked view for the application: index.ejs. Also create this index page for
each application model. The purpose of the index route, action, and view is to fetch all
records and display them on a single page. You build the index page in the next section.

18.3 Building the index page

To start, create the index.ejs view by creating a new users folder inside the views folder
and adding the code in listing 18.8.

In this view, you’re looping through a users variable and creating a new table row listing
each user’s attributes. The same type of table can be used for subscribers and courses.
You need to populate the users variable with an array of users at the controller level.

NOTE You should apply the same approach to other models in your application. The sub-
scriber model views will now go in the subscribers folder within the views folder, for example.

Quick check 18.2 What CRUD functions don’t necessarily need a view?

QC 18.2 answer Although every CRUD function can have its own view, some functions could live in
modals or be accessed through a basic link request. The delete function doesn’t necessarily need its
own view because you’re sending a command to delete a record.

203Building the index page
<h2>Users Table</h2>
 <table class="table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th>Zip Code</th>
 </tr>
 </thead>
 <tbody>
 <% users.forEach(user => { %>
 <tr>
 <td><%= user.fullName %></td>
 <td><%= user.email %></td>
 <td><%= user.zipCode %></td>
 </tr>
 <% }); %>
 </tbody>
 </table>

To test this code, you need a route and controller action that will load this view. Create a
usersController.js in the controllers folder with the code in listing 18.9.

You need to require the user model in usersController.js to have access to it in this con-
troller. First, you receive a response from the database with your users. Then you render
your list of users in your index.ejs view. If an error occurs, log the message to the con-
sole and redirect the response to the home page.

const User = require("../models/user");

module.exports = {
 index: (req, res) => {
 User.find({})
 .then(users => {
 res.render("users/index", {
 users: users
 })
 })
 .catch(error => {

Listing 18.8 Listing all users in index.js

Listing 18.9 Creating the index action in usersController.js

Loop through an array of
users in the view.

Require the user model.

Render the index page
with an array of users.

Log error messages and
redirect to the home page.

204 Lesson 18 Building the user model

console.log(`Error fetching users: ${error.message}`)
res.redirect("/");

});
 }
};

NOTE In the subscribers controller, the index action replaces your getAllSubscribers
action. Remember to modify the action’s corresponding route in main.js to point to index
and to change the subscribers.ejs file to index.ejs. This view should now live in a subscribers
folder within views.

The last step is introducing the usersController to main.js and adding the index route by
adding the code in listing 18.10 to main.js.

First, require the usersController into main.js. Add this line below where your subscribers-
Controller is defined. Creating your first user route, take incoming requests to /users,
and use the index action in usersController.

const usersController = require("./controllers/usersController");
app.get("/users", usersController.index);

Fire up your application in terminal, and visit http:// localhost:3000/users. Your screen
should resemble figure 18.2.

Listing 18.10 Adding usersController and a route to main.js

Require usersController. Create the index route.

Figure 18.2 Example of users index page in your browser

http://localhost:3000/users

205Cleaning up your actions
This list is your window into the database without revealing any sensitive data to the
public. Before you continue, though, make one more modification to your routes and
actions.

18.4 Cleaning up your actions

Right now, your index action is designed to serve only an EJS template view with data
from your database. You may not always want to serve your data in a view, however, as
you learn in unit 6. To make better use of your actions, break them into an action to run
your query and an action to serve results through your view.

Modify the users controller to the code shown in listing 18.11. In this revised code, you
have the index action, which calls the find query on the user model. If you successfully
produce results, add those results to the res.locals object—a unique object on the
response that lets you define a variable to which you’ll have access in your view. By
assigning the results to res.locals.users, you won’t need to change your view; the vari-
able name users matches locally in the view. Then call the next middleware function. If
an error occurs in the query, log the error, and pass it to the next middleware function
that will handle the error. In this case, that function is the internalServerError action in
the errors controller. The indexView action renders the index view.

const User = require("../models/user");

module.exports = {
 index: (req, res, next) => {
 User.find()

.then(users => {
res.locals.users = users;

next();
})

Listing 18.11 Revisiting the index action in usersController.js

Quick check 18.3 What is the purpose of the index view?

QC 18.3 answer The index view displays all documents for a particular model. This view can be used
internally by a company to see the names and email addresses of everyone who subscribed. It can also
be visible to all users so that everyone can see who signed up.

Run query in index
action only.

Store the user data on the
response and call the next
middleware function.

206 Lesson 18 Building the user model
.catch(error => {
console.log(`Error fetching users: ${error.message}`);
next(error);

});
 },
 indexView: (req, res) => {
 res.render("users/index");
 }
};

To get your application to load your users on the index page as before, add the indexView
action as the middleware function that follows the index action in your route. To do
so, change the /users route in main.js to the following code: app.get("/users", users
Controller.index, usersController.indexView). When usersController.index completes
your query and adds your data to the response object, usersController.indexView is
called to render the view. With this change, you could later decide to call a different
middleware function after the index action in another route, which is exactly what
you’ll do in unit 6.

Now you have a way, other than REPL and the MongoDB shell, to view the users,
courses, and subscribers in your database. In lesson 19, you pull more functionality into
the views.

Summary

In this lesson, you learned how to create a user model and where to get started with
CRUD functions. You also learned about two new HTTP methods and saw how to cre-
ate an index page to display all your users. With this index page, you started to interact
with your application from the browser. Finally, you modified your controller and

Catch errors, and pass to
the next middleware.

Render view in
separate action.

Quick check 18.4 Why do you need to log error messages to the console if you’re working
mainly in the browser?

QC 18.4 answer Although you’re moving more data and functionality into the views, your terminal is
still the heart of your application. Your console window is where you should expect to see application
errors, requests made, and custom error messages you create so that you’ll know where to look to fix
the problem.

207Summary
routes to make better use of middleware functions and interactivity among your
actions. In lesson 19, you apply the create and read functions to your three models.

Try this

With your index page set up, try to think about how an administrator of your applica-
tion might use this page. You created the table to display user data, but you may want
other columns in this table. Create new user instance methods to give you the number
of characters in each user’s name and then create a new column in this table to show
that number for each user.

Try creating a new virtual attribute for the user model.

19LESSON
CREATING AND READING YOUR MODELS

In lesson 18, you constructed your user model and built an index page to display users
on the same page. In this lesson, you add more functionality to your application by
focusing on the create and read functions of CRUD. You start by creating an EJS form
that handles a user’s attributes as inputs. Then you create the routes and actions to han-
dle that form data. Last, you build a show page to act as the user’s profile page.

This lesson covers
 Constructing a model creation form
 Saving users to your database from the browser
 Displaying associated models in a view

Consider this With a new way to create courses for your recipe application, you’re
finding it tedious to add individual documents to your database on REPL. You decided to
create dedicated routes to create new model instances, edit them, and display their
data. These routes are the foundations of CRUD methods that allow interaction with
your data to flow through your application views.
208

209Building the new user form
19.1 Building the new user form

To create a new user instance in your database, you need some way of retrieving that
user’s data. So far, you’ve been entering that data directly in REPL. Because you’re mov-
ing all your data interactions to the browser, you need a form through which new users
can create their accounts. In CRUD terms, that form lives in a view called new.ejs.

To start, build that form by adding the code in listing 19.1 to new.js in the views/users
folder. The resulting form looks like figure 19.1. This form makes a POST request to the
/users/create route upon submission. You need to make sure to create that route before
you try to submit anything; otherwise, your application will crash.

The form is embellished with bootstrap, but the major takeaways are that each user
attribute is represented as a form input and that the attribute’s name is set to that input’s
name property—in the case of the first name, name="first". You’ll use these name attri-
butes later to identify values in the controller. Notice that the password, email, and zip-
Code fields have some unique properties. These HTML validations are some ways that
you can prevent invalid or insecure information from entering your application from
the web page.

Figure 19.1 Example of user-creation form in your browser

210 Lesson 19 Creating and reading your models
<div class="data-form">
 <form action="/users/create" method="POST">
 <h2>Create a new user:</h2>
 <label for="inputFirstName">First Name</label>
 <input type="text" name="first" id="inputFirstName"
➥ placeholder="First" autofocus>

<label for="inputLastName">First Name</label>
 <input type="text" name="last" id="inputLastName"
➥ placeholder="Last">

<label for="inputPassword">Password</label>
 <input type="password" name="password" id="inputPassword"
➥ placeholder="Password" required>

<label for="inputEmail">Email address</label>
 <input type="email" name="email" id="inputEmail"
➥ placeholder="Email address" required>

<label for="inputZipCode">Zip Code</label>
 <input type="text" name="zipCode" id="inputZipCode" pattern="\d*"
➥ placeholder="Zip Code" required>

<button type="submit">Sign in</button>
</form>

</div>

Now that you have a new view, you need a route and controller actions to serve that
view. You also add the create routes and actions to handle data from that view in the
next section.

Listing 19.1 Building a user creation form in new.ejs

Apply HTML
attributes to
protect password
and email fields.

Add user
properties as
inputs to the form.

Build a form to create
user accounts.

Quick check 19.1 Which form input attribute must have a value for controller actions to
identify form data?

QC 19.1 answer The name attribute must be filled in on the form to create a new record. Whatever
value is mapped to the name attribute is what the controller uses to compare against the model
schema.

211Creating new users from a view
19.2 Creating new users from a view

The form for new users collects data as it pertains to the user schema. Next, you need to
create actions for this form. To get your form to render and process data, add the code
for the user actions in listing 19.2 to usersController.js.

The new action takes incoming requests to create a new user and render the form in
new.ejs. The create action receives incoming posted data from the form in new.ejs and
passes the resulting created user to the next middleware function through the response
object. The next middleware function, redirectView, determines which view to show
based on the redirect path it receives as part of the response object. If a user is created
successfully, redirect to the index page.

In the create action, assign a userParams variable to the collected incoming data. Then
call User.create and pass those parameters, redirecting the user to the /users index page
upon success and to the error page in case of a failure.

NOTE For the subscribers controller, the new and create actions effectively replace the
getSubscriptionPage and saveSubscriber actions you created earlier in the book. After
swapping in these new actions, you need to change the action names in the main.js routes
to match.

new: (req, res) => {
 res.render("users/new");
},

create: (req, res, next) => {
 let userParams = {
 name: {

first: req.body.first,
last: req.body.last

 },
 email: req.body.email,
 password: req.body.password,
 zipCode: req.body.zipCode
 };

 User.create(userParams)
.then(user => {

res.locals.redirect = "/users";
res.locals.user = user;

Listing 19.2 Adding a create action to usersController.js

Add the new action
to render a form.

Add the create action
to save the user to
the database.

Create users with
form parameters.

212 Lesson 19 Creating and reading your models
next();
})
.catch(error => {
console.log(`Error saving user: ${error.message}`);
next(error);

});
},

redirectView: (req, res, next) => {
 let redirectPath = res.locals.redirect;
 if (redirectPath) res.redirect(redirectPath);
 else next();
}

To see this code work, add the new and create routes to main.js, as shown in listing 19.3.
The first route takes incoming GET requests to /users/new and renders new.ejs in the
usersController. The second route accepts POST requests to /users/create and passes
that incoming request body to the create action, followed by the view redirect with the
redirectView action in usersController.js. These routes can go below your user’s index
route.

NOTE The addition of the new and create actions to the subscribers controller means
that you can remove the getAllSubscribers and saveSubscriber actions in favor of the
new CRUD actions. Likewise, the only action you need in the home controller is to serve the
home page: index.ejs.

Now that you’re starting to accumulate the number of routes you’re using in main.js,
you can use the Router module in Express.js by adding const router = express
.Router() to your main.js file. This line creates a Router object that offers its own mid-
dleware and routing alongside the Express.js app object. Soon, you’ll use this router
object to organize your routes. For now, modify your routes to use router instead of app.
Then add app.use("/", router) to the top of your routes in main.js. This code tells your
Express.js application to use the router object as a system for middleware and routing.

router.get("/users/new", usersController.new);
router.post("/users/create", usersController.create,
 usersController.redirectView);

Listing 19.3 Adding new and create routes to main.js

Render the view in a
separate redirectView
action.

Handle requests to
view the creation form.

Handle requests to submit
data from the creation
form, and display a view.

213Creating new users from a view
Restart your application, fill out the form on http:// localhost:3000/users/new, and sub-
mit the form. If you were successful, you should see your newly created user on the
index page.

When you have users successfully saving to your database, add a finishing touch.
You’ve already designed the User schema with an association to the Subscriber model.
Ideally, whenever a new user is created, you’d like to check for an existing subscriber
with the same email address and associate the two. You do so with a Mongoose
pre("save") hook.

Mongoose offers some methods, called hooks, that allow you to perform an operation
before a database change, such as save, is run. You can add this hook to user.js by adding
the code in listing 19.4 after the schema is defined and before the model is registered.
You need to require the Subscriber model into user.js for this hook to work. Use const
Subscriber = require("./subscriber").

This hook runs right before a user is created or saved. It takes the next middleware func-
tion as a parameter so that when this step is complete, it can call the next middleware
function. Because you can’t use arrow functions here, you need to define the user vari-
able outside the promise chain.

NOTE As of the writing of this book, arrow functions don’t work with Mongoose hooks.

You perform this function only if the user doesn’t already have an associated subscriber,
which saves an unneeded database operation. Search for one subscriber account, using
the user’s email address. If a subscriber is found with a matching email address, assign
that subscriber to the user’s subscribedAccount attribute. Unless an error occurs, continue
saving the user in the next middleware function. You also need to add a reference to the
subscriber model in user.js by adding const Subscriber = require("./subscriber") to the
top.

userSchema.pre("save", function (next) {
 let user = this;
 if (user.subscribedAccount === undefined) {
 Subscriber.findOne({

email: user.email
 })

.then(subscriber => {

Listing 19.4 Adding a pre(‘save’) hook to user.js

Set up the
pre(‘save’) hook.

Use the function
keyword in the callback. Add a quick

conditional check for
existing subscriber
connections.

Query for a single
subscriber.

http://localhost:3000/users/new

214 Lesson 19 Creating and reading your models
user.subscribedAccount = subscriber;
next();

})
.catch(error => {
console.log(`Error in connecting subscriber:

➥ ${error.message}`);
next(error);

});
 } else {

next();
 }
});

Give this new code a shot by creating a new subscriber in REPL (or through the sub-
scriber’s new page, if you’ve created that already) and then creating a new user in your
browser with the same email address. Going back to REPL, you can check whether that
user’s subscribedAccount has a value reflecting the associated subscriber’s ObjectId. This
value will come in handy in the next section, when you build the user’s show page.

19.3 Reading user data with show

Now that you can create users, you want a way to display a user’s information on dedi-
cated pages (such as the user’s profile page). The only operation you need to perform on
the database is to read data, finding a user by a specific ID and displaying its contents in
the browser.

Start by creating a new view called show.ejs. Call the view and action show, making it
clear that your intention is to show user data. In show.ejs, create a table similar to the
one in index.ejs, except that you won’t need the loop. You want to show all the user’s
attributes. Add the code in listing 19.5 to show.ejs within the views/users folder.

Connect the user
with a subscriber
account.

Pass any errors to the
next middleware function.

Call next function if user
already has an association.

Quick check 19.2 Why does the Mongoose pre("save") hook take next as a parameter?

QC 19.2 answer The pre("save") hook is Mongoose middleware, and as with other middleware,
when the function completes, it moves on to the next middleware function. next here indicates the next
function in the middleware chain to be called.

215Reading user data with show
This form uses the user variable’s attributes to populate each table data box. At the end,
check whether that user has a subscribedAccount. If not, nothing is displayed. If a sub-
scriber is associated, display some text and link to the subscriber’s show page.

<h1>User Data for <%= user.fullName %></h1>

<table class="table">
 <tr>
 <th>Name</th>
 <td><%= user.fullName %></td>
 </tr>
 <tr>
 <th>Email</th>
 <td><%= user.email %></td>
 </tr>
 <tr>
 <th>Zip Code</th>
 <td><%= user.zipCode %></td>
 </tr>
 <tr>
 <th>Password</th>
 <td><%= user.password %></td>
 </tr>
</table>

<% if (user.subscribedAccount) { %>
 <h4 class="center"> This user has a
 <a href="<%=`/subscribers/${user.subscribedAccount}` %>">
 subscribed account.
 </h4>
<% } %>

NOTE You will need to follow the same steps in creating CRUD functions and views for
the subscriber simultaneously for this linked page to work. The anchor tag href path is
/subscribers/${user.subscribedAccount}, which represents the subscriber’s show
route.

To make it easier to get to a user’s show page, in index.ejs, wrap the user’s name in an
anchor tag that links to users/ plus the user’s ID. The table data there should look like
the next listing. You embed JavaScript in the anchor tag’s href as well as in the table data
content.

Listing 19.5 User show table in show.ejs

Add a table to
display user data.

Check for linked
subscriber
accounts.

216 Lesson 19 Creating and reading your models
<td>
 <a href="<%= `/users/${user._id}` %>">
 <%= user.fullName %>

</td>

If you refresh the users index page, you’ll notice that the names have turned into links
(figure 19.2). If you click one of those links now, though, you’ll get an error because
there isn’t a route to handle the request yet.

Next, add the show action to usersController.js, as shown in listing 19.7. First, collect the
user’s ID from the URL parameters; you can get that information from req.params.id.
This code works only if you define your route by using :id (see listing 19.7).

Use the findById query, and pass the user’s ID. Because each ID is unique, you should
expect a single user in return. If a user is found, add it as a local variable on the
response object, and call the next middleware. Soon, you’ll set up the next function to
be showView, where you render the show page and pass the user object to display that
user’s information. If an error occurs, log the message, and pass the error to the next
middleware function.

Listing 19.6 Updated name data in index.ejs

Embed the user’s
name and ID in HTML.

Figure 19.2 Users’ index page with linked names in your browser

217Reading user data with show
show: (req, res, next) => {
 let userId = req.params.id;
 User.findById(userId)

.then(user => {
res.locals.user = user;

next();
})
.catch(error => {
console.log(`Error fetching user by ID: ${error.message}`);
next(error);

});
 },

showView: (req, res) => {
 res.render("users/show");
}

Last, add the show route for users in main.js with the following code: router.get
("/users/:id", usersController.show, usersController.showView). This show route uses
the /users path along with an :id parameter. This parameter will be filled with the
user’s ID passing in from the index page when you click the user’s name in the table.

NOTE You can group routes that are related to the same model in main.js for better orga-
nization.

Restart your application, and click a user’s name. You should be directed to that user’s
show page, as shown in figure 19.3.

You now have the ability to create data in your application and view it on a few web
pages. In lesson 20, you explore ways of updating and deleting that data.

Listing 19.7 Show action for a specific user in usersController.js

Pass the user through the
response object to the
next middleware function.

Find a user by its ID.

Collect the user ID from
the request params.

Log and pass errors
to next function.

Render show view.

Quick check 19.3 True or false: the URL parameter representing the user’s ID must be
called :id.

QC 19.3 answer False. The :id parameter is essential for getting the ID of the user you’re trying to
display, but this parameter can be referenced by any name you choose. If you decide to use :userId,
make sure that you use that name consistently throughout your code.

218 Lesson 19 Creating and reading your models
Summary

In this lesson, you learned how to create index, new, and show pages for your models. You
also created routes and actions to process user data and create new accounts. Finally,
you customized the user show page to show user data and an indicator for linked sub-
scriber accounts. You have two of the four CRUD building blocks in place. In lesson 20,
you apply the update and delete functions to your three models.

Try this

Your user-account creation form is ready to create new accounts, but you’ve imple-
mented certain validations on the user model that may allow a form to be submitted
with no data saved. Try to test some of your validations to ensure that they’re working
correctly, as follows:

1 What happens when you enter an email address with capital letters?
2 What happens when a required field is missing?

It’s good that you get redirected to the new page again, but you have improvements to
make in the error messages shown on the screen.

Figure 19.3 Users show page in your browser

20LESSON
UPDATING AND DELETING YOUR
MODELS

In lesson 19, you built create and read functionality for your models. Now it’s time to
complete the CRUD methods. In this lesson, you add the routes, actions, and views for
the update and delete functions. First, you create a form to edit the attributes of existing
users. Then you manage the modified data in an update action. At the end of the lesson,
you implement a quick way to delete users from your users index page. To start, make
sure that your MongoDB server is running by entering mongod in a terminal window.

This lesson covers
 Constructing a model edit form
 Updating user records in your database
 Deleting user records

Consider this Your recipe application is ready to accept new users, but you’re getting com-
plaints that multiple unnecessary accounts were made and that some users accidentally typed
the wrong email address. With the update and delete CRUD functions, you’ll be able to clear
unwanted records and modify existing ones to persist in your application.
219

220 Lesson 20 Updating and deleting your models
20.1 Building the edit user form

To update a user’s information, you use some Mongoose methods in a specific update
action. First, though, you create a form to edit user information. The form looks like the
one in create.js, but the form’s action points to users/:id/update instead of users/create
because you want your route to indicate that the form’s contents are updating an exist-
ing user, not creating a new one.

You also want to replace the values in each form input with the user’s existing informa-
tion. The input for the user’s first name might look like the next listing, for example. The
value attribute here uses the existing user’s first name. This code works only if a user
object is being passed into this page.

<input type="text" name="first" id="inputFirstName" value="<%=
➥ user.name.first %>" placeholder="First" autofocus>

To ensure that an existing user’s data populates this form, add another column to the
table in the users index page. Your index page should resemble figure 20.1.

Listing 20.1 Input example with user’s data in edit.ejs

Apply the existing user’s
attribute values in edit form.

Figure 20.1 Users index page with edit links in your browser

221Building the edit user form
This column has a link for editing each specific user. You can add an anchor tag, as
shown in the next listing. The href value for the edit link tag makes a GET request to the
/users plus the user’s Id plus /edit route.

<td>
 <a href="<%=`/users/${user._id}/edit` %>">
 Edit

</td>

Next, you want to modify the form in edit.ejs to submit a PUT request with modified user
data, but your HTML form element supports only GET and POST requests. It’s important
to begin using the intended HTTP methods with your CRUD functions so that there’s no
future confusion about whether a request is adding new data or modifying existing
data.

One problem you need to address is how Express.js will receive this request. Express.js
receives your HTML form submissions as POST requests, so you need some way to inter-
pret the request with the HTTP method you intended. Several solutions to this problem
exist. The solution you use in this lesson is the method-override package.

method-override is middleware that interprets requests according to a specific query
parameter and HTTP method. With the _method=PUT query parameter, you can interpret
POST requests as PUT requests. Install this package by running npm i method-override -S in
your project’s terminal window, and add the lines in listing 20.3 to main.js.

First, require the method-override module into your project. Tell the application to use
methodOverride as middleware. Specifically, you’re telling this module to look for the
_method query parameter in the URL and to interpret the request by using the method
specified as the value of that parameter. A POST request that you want processed as a PUT
request, for example, will have ?_method=PUT appended to the form’s action path.

const methodOverride = require("method-override");
router.use(methodOverride("_method", {
 methods: ["POST", "GET"]
}));

Listing 20.2 Modified table with link to edit users in index.ejs

Listing 20.3 Adding method-override to your application in main.js

Embed the user’s ID in
the edit tag link.

Require the
method-override
module.

Configure the application router to use
methodOverride as middleware.

222 Lesson 20 Updating and deleting your models
You want to modify the form in edit.ejs to submit the form with a POST method to the
/users/:id/update?_method=PUT route. The opening form tag will look like listing 20.4.

The action is dynamic, depending on the user’s ID, and points to the /users/:id/update
route. Your method-override module interprets the query parameter and helps Express.js
match the request’s method with the appropriate route.

<form method="POST" action="<%=`/users/${user._id}/update
➥ ?_method=PUT`%>">

You can reference the complete user edit form in the next listing, which should look like
figure 20.2 in your browser for an existing user.

<div class="data-form">
 <form method="POST" action="<%=`/users/${user._id}/update
➥ ?_method=PUT`%>">

<h2>Edit user:</h2>
 <label for="inputFirstName">First Name</label>
 <input type="text" name="first" id="inputFirstName" value="<%=
➥ user.name.first %>" placeholder="First" autofocus>

<label for="inputLastName">Last Name</label>
 <input type="text" name="last" id="inputLastName" value="<%=
➥ user.name.last %>" placeholder="Last">

<label for="inputPassword">Password</label>
 <input type="password" name="password" id="inputPassword"
➥ value="<%= user.password %>" placeholder="Password" required>

<label for="inputEmail">Email address</label>
 <input type="email" name="email" id="inputEmail" value="<%=
➥ user.email %>" placeholder="Email address" required>

<label for="inputZipCode">Zip Code</label>
 <input type="text" name="zipCode" id="inputZipCode"
➥ pattern="\d*" value="<%= user.zipCode %>" placeholder="Zip
➥ Code" required>

<button type="submit">Update</button>
</form>

</div>

Listing 20.4 Pointing the edit form to the update route in edit.ejs

Listing 20.5 Complete user edit form in edit.ejs

Add a form to
update user data.

Display the user
edit form.

223Updating users from a view
In the next section, you add the routes and actions that get this form to work, as well as
the data from the form processed.

20.2 Updating users from a view

Now that the user edit form is in its own view, add the controller action and route to
complement the form. The edit route and action send users to view edit.ejs. The update
route and action are used internally to make changes to the user in the database. Then
the redirectView action acts as the action following update, redirecting you to a view that
you specify. Add the actions in listing 20.6 to usersController.js.

The edit action, like the show action, gets a user from the database by the user’s ID and
loads a view to //edit the user. Notice that if a user isn’t found by the ID parameter, you

Figure 20.2 User edit page in your browser

Quick check 20.1 Why do you use the PUT method for the edit form and POST for the new
form?

QC 20.1 answer The edit form is updating data for an existing record. By convention, the request to
submit data to your server should use an HTTP PUT method. To create new records, use POST.

224 Lesson 20 Updating and deleting your models
pass an error to the error-handling middleware function. The update action is called
when the edit form is submitted; like the create action, it identifies the user’s ID and
userParams, and passes those values into the Mongoose findByIdAndUpdate method. This
method takes an ID followed by parameters you’d like to replace for that document by
using the $set command. If the user updates successfully, redirect to the user’s show path
in the next middleware function; otherwise, let the error-handling middleware catch
any errors.

edit: (req, res, next) => {
 let userId = req.params.id;
 User.findById(userId)

.then(user => {
res.render("users/edit", {

user: user
});

})
.catch(error => {
console.log(`Error fetching user by ID: ${error.message}`);
next(error);

});
},

update: (req, res, next) => {
 let userId = req.params.id,
 userParams = {

name: {
first: req.body.first,
last: req.body.last

},
email: req.body.email,
password: req.body.password,
zipCode: req.body.zipCode

 };

 User.findByIdAndUpdate(userId, {
 $set: userParams
 })

.then(user => {
res.locals.redirect = `/users/${userId}`;

Listing 20.6 Adding edit and update actions to usersController.js

Add the edit action.

Use findById to locate a user
in the database by their ID.

Render the user edit
page for a specific user
in the database.

Add the update action.

Collect user parameters
from request.

Use findByIdAndUpdate to
locate a user by ID and
update the document
record in one command.

225Updating users from a view
res.locals.user = user;
next();

})
.catch(error => {
console.log(`Error updating user by ID: ${error.message}`);
next(error);

});
}

Last, you need to add the routes in listing 20.7 to main.js. The path to edit a user is a
straightforward route with an id parameter. The POST route to update the user from the
edit form follows the same path structure but uses the update action. You’re also going to
reuse the redirectView action to display the view specified in your response’s locals
object.

router.get("/users/:id/edit", usersController.edit);
router.put("/users/:id/update", usersController.update,
➥ usersController.redirectView);

Relaunch your application, visit the users index page, and click the edit link for a user.
Try to update some values, and save.

With the ability to create, read, and update user data, you’re missing only a way to remove
records that you don’t want anymore. The next section covers the delete function.

Listing 20.7 Adding edit and update routes to main.js

Add user to response as a
local variable, and call the
next middleware function.

Add routes to handle viewing.
Process data from the
edit form, and display
the user show page.

Quick check 20.2 True or false: findByIdAndUpdate is a Mongoose method.

QC 20.2 answer True. findByIdAndUpdate is a Mongoose method used to make your query more
succinct and readable in your server’s code. The method can’t be used unless the Mongoose package is
installed.

226 Lesson 20 Updating and deleting your models
20.3 Deleting users with the delete action

To delete a user, you need only one route and a modification to your users index page.
In index.ejs, add a column titled delete. As you did with the edit column, link each user
to a users/:id/delete route (figure 20.3).

NOTE You can add some basic security with an HTML onclick="return confirm('Are
you sure you want to delete this record?')"

Recall that you need to use the _method=DELETE query parameter so that your application
can interpret GET requests as DELETE requests. Add the code for the delete column in the
users index page, as shown in listing 20.8. With the appended query parameter to send
a DELETE request, this link passes the user’s ID in search of an Express.js route handling
DELETE requests. The confirmation script displays a modal to confirm that you want to
submit the link and delete the record.

<td>
 <a href="<%= `users/${user._id}/delete?_method=DELETE` %>"
➥ onclick="return confirm('Are you sure you want to delete
➥ this record?')">Delete
</td>

Listing 20.8 Delete link in users index.ejs

Figure 20.3 Users index page with delete links in your browser

Add a link to the delete
action on the index page.

227Deleting users with the delete action
Next, add the controller action to delete the user record by its ID. Add the code in listing
20.9 to usersController.js.

You’re using the Mongoose findByIdAndRemove method to locate the record you clicked
and remove it from your database. If you’re successful in locating and removing the
document, log that deleted user to the console and redirect in the next middleware func-
tion to the users index page. Otherwise, log the error as usual, and let your error han-
dler catch the error you pass it.

delete: (req, res, next) => {
 let userId = req.params.id;
 User.findByIdAndRemove(userId)

.then(() => {
res.locals.redirect = "/users";
next();

})
.catch(error => {
console.log(`Error deleting user by ID: ${error.message}`);
next();

});
}

The only missing piece is the following route, which you add to main.js: router.delete
("/users/:id/delete", usersController.delete, usersController.redirectView). This
route handles DELETE requests that match the path users/ plus the user’s ID plus /delete.
Then the route redirects to your specified redirect path when the record is deleted.

Try this new code by running the application again and visiting the users index page.
Click the delete link next to one of the users, and watch it disappear from your page.

Last, to make it easier to use your new CRUD actions from a user’s profile page, add the
links in the following listing to the bottom of show.ejs.

<div>
 View all users
</div>
<div>
 <a href="<%=`/users/${user._id}/edit`%>">

Listing 20.9 Adding the delete action to usersController.js

Listing 20.10 Adding links for user CRUD actions to show.ejs

Deleting a user with the
findByIdAndRemove
method

228 Lesson 20 Updating and deleting your models
 Edit User Details

</div>
<div>
 <a href="<%= `/users/${user._id}/delete?_method=DELETE` %>"
➥ onclick="return confirm('Are you sure you want to delete
➥ this record?')">Delete
</div>

The user’s show page should resemble figure 20.4.

Add links to edit and delete a user’s
account from their profile page.

Figure 20.4 User’s show page with links to edit and delete

Quick check 20.3 Why is ?_method=DELETE needed at the end of your link’s path?

QC 20.3 answer method-override looks for the _method query parameter and its mapped
method. Because you’re using this package to filter incoming GET and POST requests as alternative
methods, you need to append this parameter and value.

229Summary
Summary

In this lesson, you learned how to edit records and delete records from your database.
You also saw how to use the method-override package to assist with HTML limitations
in submitting certain request methods. With your CRUD functionality complete, it’s
time to build an application with associated models and a user interface to save mean-
ingful data to your database. In the next capstone exercise (lesson 21), try to apply
everything you’ve learned in this unit to build the Confetti Cuisine application.

Try this

Now that you have each CRUD function working for user accounts, make sure that the
same setup is in place for groups and subscribers. Before you move on to the capstone
exercise (lesson 21), make sure that all three models have working index, new, edit, and
show pages. Then, as in lesson 19, try to incorporate associated models into each
record’s show page.

21LESSON
CAPSTONE: ADDING CRUD MODELS TO
CONFETTI CUISINE

Confetti Cuisine is satisfied with the progress I made connecting their application to a
database and setting it up to process subscriber information. They’ve sent me a list of
cooking courses that they’d like to begin to advertise on their site. Essentially, they want
subscribers to pick the courses they’re most interested in attending. Then, if a subscriber
later creates a user account, the business wants those two accounts to be linked.

To accomplish this task, I need to improve the Subscriber model and build the User and
Course models. I need to keep the relationships between these models in mind and pop-
ulate data from associated models when necessary. Last, I need to generate all the func-
tionality needed to allow the creation, reading, updating, and deletion (CRUD) of
model records. In this capstone, I’m going to create a user login form that allows a user
to create an account and then edit, update, and delete the account. I’ll repeat most of the
process for courses and subscribers to Confetti Cuisine’s newsletter.

When I’m done, I’ll have an application to show the team at Confetti Cuisine that
allows them to sign up new users and monitor their courses before officially launching
the program.
230

231Building the models

For this purpose, I need the following:
 Schemas for the user, subscriber, and course models
 CRUD actions for all models in the application
 Views showing links between models

21.1 Getting set up

Picking up where I left off, I have a MongoDB database connected to my application,
with the Mongoose package driving communication between my Subscriber model and
raw documents. I’ll need the same core and external packages moving forward. Addi-
tionally, I need to install the method-override package to assist with HTTP methods not
currently supported by HTML links and forms. I can install this package by running the
following code in my project directory in a new terminal window: npm i method-override
-S. Then I require the method-override module into main.js by adding const method
Override = require("method-override") to the top of the file. I configure the application
to use method-override to identify GET and POST requests as other methods by adding the
following line: app.use(methodOverride("_method", {methods: ["POST", "GET"]})).

Next, I need to think about how this project’s directory structure will look by the time
I’m done. Because I’m adding CRUD functionality to three models, I’m going to create
three new controllers, three new folders within views, and three model modules. The
structure resembles figure 21.1.

Notice that I’m creating only four views: index, new, show, and edit. Although delete can
have its own view as a deletion confirmation page, I’ll handle deletion through a link on
the index page for each model.

Next, I start by improving the Subscriber model and simultaneously build out my User
and Course models.

21.2 Building the models

My Subscriber model collected meaningful data for Confetti Cuisine, but they want
more security on the data layer. I need to add some validators on the Subscriber schema
to ensure that subscriber data meets the client’s expectations before entering the data-
base. My new schema looks like listing 21.1.

I start by requiring Mongoose into this module and pulling the Mongoose Schema
object into its own constant. I create my subscriber schema by using the Schema construc-
tor and passing some properties for the subscriber. Each subscriber is required to enter a

232 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine
name and an email address that doesn’t already exist in the database. Each subscriber
can opt to enter a five-digit ZIP code. The timestamps property is an add-on provided by
Mongoose to record the createdAt and updatedAt attributes for this model.

Each subscriber may subscribe to show interest in multiple courses, so this association
allows subscribers to associate with an array of referenced courses. I need to create the
Course model for this feature to work. getInfo is an instance method added to the sub-
scriber schema to quickly pull any subscriber’s name, email, and zipCode in one line.
Exporting the Subscriber model with this new schema makes it accessible to other mod-
ules in the application.

main.js

users courses subscribers

models

images js css

user.js

course.js

subscriber.js

usersController.js

coursesController.js

subscribersController.js

index.ejs

new.ejs

show.ejs

edit.ejs

index.ejs

new.ejs

show.ejs

edit.ejs

index.ejs

new.ejs

show.ejs

edit.ejs

views controllers public

confetti_cuisine

Figure 21.1 Capstone file structure

233Building the models
const mongoose = require("mongoose"),
 { Schema } = mongoose,
 subscriberSchema = new Schema({
 name: {
 type: String,
 required: true
 },
 email: {
 type: String,
 required: true,
 lowercase: true,
 unique: true
 },
 zipCode: {
 type: Number,
 min: [10000, "Zip code too short"],
 max: 99999
 },
 courses: [{type: Schema.Types.ObjectId, ref: "Course"}]
}, {
 timestamps: true
});

subscriberSchema.methods.getInfo = function () {
 return `Name: ${this.name} Email: ${this.email}
➥ Zip Code: ${this.zipCode}`;
};

module.exports = mongoose.model("Subscriber",
➥ subscriberSchema);

This model looks good, so I’ll apply some of the same techniques to the Course and User
model in course.js and user.js, respectively. Every course is required to have a title and
description with no initial limitations. A course has maxStudents and cost attributes that
default to 0 and can’t be saved as a negative number; otherwise, my custom error mes-
sages appear.

The Course schema contains the properties in the following listing.

Listing 21.1 Improved Subscriber schema in subscriber.js

Require mongoose.

Add schema
properties.

Associate
multiple
courses.

Add a getInfo
instance
method.

Export the
Subscriber model.

234 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine
const mongoose = require("mongoose"),
 { Schema } = require("mongoose"),
 courseSchema = new Schema(
 {

title: {
type: String,
required: true,
unique: true

},
description: {
type: String,
required: true

},
maxStudents: {
type: Number,
default: 0,
min: [0, "Course cannot have a negative number of students"]

},
cost: {
type: Number,
default: 0,
min: [0, "Course cannot have a negative cost"]

}
 },
 {

timestamps: true
 }
);
module.exports = mongoose.model("Course", courseSchema);

The User model contains the most fields and validations because I want to prevent a
new user from entering invalid data. This model needs to link to both the Course and
Subscriber models. The User schema is shown in listing 21.3.

Each user’s name is saved as a first and last name attribute. The email and zipCode
properties behave the same way as in Subscriber. Each user is required to have a pass-
word. As for subscribers, users are linked to multiple courses. Because subscribers may
eventually create user accounts, I need to link those two accounts here. I also add the
timestamps property to keep track of changes to user records in the database.

Listing 21.2 Properties for the Course schema in course.js

Require title
and description.

Default maxStudents and
cost to 0, and disallow
negative numbers.

235Building the models
const mongoose = require("mongoose"),
 { Schema } = require("mongoose"),
 Subscriber = require("./subscriber"),
 userSchema = new Schema(
 {

name: {
first: {
type: String,
trim: true

},
last: {
type: String,
trim: true

}
},
email: {
type: String,
required: true,
unique: true

},
zipCode: {
type: Number,
min: [10000, "Zip code too short"],
max: 99999

},
password: {
type: String,
required: true

},
courses: [

{
type: Schema.Types.ObjectId,
ref: "Course"

}
],
subscribedAccount: {

type: Schema.Types.ObjectId,
ref: "Subscriber"

}
 },
 {

timestamps: true

Listing 21.3 Creating the User model in user.js

Add first and last
name attributes.

Require password.

Associate users with
multiple courses.

Associate users
with subscribers.

Add timestamps property.

236 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine

 }
);
module.exports = mongoose.model("User", userSchema);

Two more additions I make to the user model are a virtual attribute to return the user’s
full name and a Mongoose pre("save") hook to link subscribers and users with the same
email address. Those additions can be added directly below the schema definition in
user.js and are shown in listing 21.4.

This first virtual attribute allows me to call fullName on a user to get the user’s first and
last names as one value. The pre("save") hook runs right before a user is saved to the
database. I’m passing the next parameter so that when this function is complete, I can
call the next step in the middleware chain. To link to the current user, I save the user to a
new variable outside the scope of my next query. I run the query only if the user doesn’t
already have a linked subscribedAccount. I search the Subscriber model for documents
that contain that user’s email address. If a subscriber exists, I set the returned subscriber
to the user’s subscribedAccount attribute before saving the record and calling the next
function in the middleware chain.

userSchema.virtual("fullName").get(function() {
 return `${this.name.first} ${this.name.last}`;
});

userSchema.pre("save", function (next) {
 let user = this;
 if (user.subscribedAccount === undefined) {
 Subscriber.findOne({

email: user.email
 })

.then(subscriber => {
user.subscribedAccount = subscriber;
next();

})
.catch(error => {

Listing 21.4 Adding a virtual attribute and pre("save") hook in user.js

Add the fullName
virtual attribute.

Add a pre(‘save’)
hook to link a
subscriber.

Check for a linked
subscribedAccount.

Call the next
middleware function.

Search the Subscriber
model for documents that
contain that user’s email.

console.log(`Error in connecting subscriber:
➥ ${error.message}`);

next(error);
});

} else {
next();

}
});

237Creating the views
With this model set up, I need to build the CRUD functionality. I start by creating the
views: index.ejs, new.ejs, show.ejs, and edit.ejs.

21.3 Creating the views

For the Subscriber model, index.ejs lists all the subscribers in the database through an
HTML table like the one shown in listing 21.5. This view is a table with five columns.
The first three columns display subscriber data, and the last two columns link to edit
and delete pages for individual subscribers. For my subscribers index page, I added
some new styling (figure 21.2).

NOTE Because these views have the same names across different models, I need to
organize them within separate folders by model name. The views/users folder has its own
index.ejs, for example.

To generate a new row for each subscriber, I loop through the subscribers variable, an
array of Subscriber objects, and access each subscriber’s attributes. The subscriber’s
name is wrapped in an anchor tag that links to that subscriber’s show page by using the
user’s _id. The delete link requires the ?_method=DELETE query parameter appended to the
path so that my method-override middleware can process this request as a DELETE
request. I must remember to close my code block in EJS.

Figure 21.2 Subscribers index page in the browser

238 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine
<h2 class="center">Subscribers Table</h2>
 <table class="table">
 <thead>
 <tr>

<th>Name</th>
<th>Email</th>
<th>Edit</th>
<th>Delete</th>

 </tr>
 </thead>

 <tbody>
 <% subscribers.forEach(subscriber => { %>
 <tr>

<td>
<a href="<%= `/subscribers/${subscriber._id}` %>">

<%= subscriber.name %>

 </td>

<td><%= subscriber.email %></td>
<td>
<a href="<%=`subscribers/${subscriber._id}/edit` %>">
Edit

</td>
<td>
<a href="<%=`subscribers/${subscriber._id}/delete?_method=DELETE` %>"

➥ onclick="return confirm('Are you sure you want to delete this
➥ record?')">Delete

</td>
 </tr>
 <% }); %>
 </tbody>
 </table>

I’ll follow this exact same structure for the course and user index pages, making sure to
swap out the variable names and attributes to match their respective models.

With this index page in place, I need a way to create new records. I start with the sub-
scriber’s new.ejs form in listing 21.6. This form will submit data to the /subscribers/
create path, from which I’ll create new subscriber records in the subscriber’s controller.
Notice that the form submits data via POST request. Each input reflects the model’s attri-

Listing 21.5 Listing subscribers in index.ejs

Add a table to the
index page.

Generate a new
row for each
subscriber.

Wrap the subscriber’s
name in an anchor tag.

Add a delete link.

239Creating the views
butes. The name attribute of each form input is important, as I’ll use it in the controller to
collect the data I need to save new records. At the end of the form is a submit button.

<div class="data-form">
 <form action="/subscribers/create" method="POST">
 <h2>Create a new subscriber:</h2>
 <label for="inputName">Name</label>
 <input type="text" name="name" id="inputName" placeholder="Name"
➥ autofocus>

<label for="inputEmail">Email address</label>
 <input type="email" name="email" id="inputEmail"
➥ placeholder="Email address" required>

<label for="inputZipCode">Zip Code</label>
 <input type="text" name="zipCode" id="inputZipCode"
➥ pattern="[0-9]{5}" placeholder="Zip Code" required>

<button type="submit">Create</button>
</form>

</div>

I re-create this form for users and courses, making sure to replace the form’s action and
inputs to reflect the model I’m creating. My subscriber edit form looks like the one in
figure 21.3.

Listing 21.6 Creating the new subscriber form in new.ejs

Add a form to
create new
subscribers.

Figure 21.3 Subscriber edit page in the browser

240 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine
While I’m working on forms, I create the edit.ejs view, whose form resembles the one in
new.ejs. The only changes to keep in mind are the following:

 The edit form—This form needs access to the record I’m editing. In this case, a
subscriber comes from the subscriber’s controller.

 The form action—This action points to /subscribers/${subscriber._id}/
update?_method=PUT instead of the create action.

 Attributes—Each input’s value attribute is set to the subscriber variable’s attri-
butes, as in <input type="text" name="name" value="<%= subscriber.name %>">.

These same points apply to the edit.ejs forms for users and courses. The next listing
shows my complete subscriber edit page.

<form action="<%=`/subscribers/${subscriber._id}/update
➥ ?_method=PUT` %>" method="POST">
 <h2>Create a new subscriber:</h2>
 <label for="inputName">Name</label>
 <input type="text" name="name" id="inputName" value="<%=
➥ subscriber.name %>" placeholder="Name" autofocus>

<label for="inputEmail">Email address</label>
<input type="email" name="email" id="inputEmail" value="<%=

➥ subscriber.email %>" placeholder="Email address" required>
<label for="inputZipCode">Zip Code</label>
<input type="text" name="zipCode" id="inputZipCode"

➥ pattern="[0-9]{5}" value="<%= subscriber.zipCode %>"
➥ placeholder="Zip Code" required>
<button type="submit">Save</button>

</form>

Last, I build the show page for each model. For subscribers, this page acts like a profile
page, detailing each subscriber’s information in their row on the index page. This page
is fairly straightforward: I show enough data to summarize a single subscriber record.
The subscribers show page has a table, created with the EJS template elements shown in
the following listing. This page uses attributes from a subscriber variable to display the
name, email, and zipCode.

Listing 21.7 The edit page for a subscriber in edit.ejs

Display the edit form
for a subscriber.

241Creating the views
<h1>Subscriber Data for <%= subscriber.name %></h1>

<table>
 <tr>
 <th>Name</th>
 <td><%= subscriber.name %></td>
 </tr>
 <tr>
 <th>Email</th>
 <td><%= subscriber.email %></td>
 </tr>
 <tr>
 <th>Zip Code</th>
 <td><%= subscriber.zipCode %></td>
 </tr>
</table>

NOTE For some of these views, I’ll add links to navigate to other relevant pages for that
model.

Something else I want to add to the show page is code that shows whether the record is
associated with any other records in the database. For a user, that code showing an asso-
ciated record could display using an additional tag at the bottom of the page to show
whether the user has a subscribedAccount or associated courses. For subscribers, I’ll add
a line to show the number of subscribed courses, as shown in listing 21.9.

This one line gives Confetti Cuisine insight into the number of courses to which people
are subscribing. I could take this line a step further by using the Mongoose populate
method on this subscriber to show the associated course details.

<p>This subscriber has <%= subscriber.courses.length %> associated
➥ course(s)</p>

The last step is bringing the models and views together with the controller actions and
routes.

Listing 21.8 The show page for a subscriber in show.ejs

Listing 21.9 Show the number of subscribed courses in show.ejs

Display
subscriber
attributes.

Display the number of
associated courses.

242 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine
21.4 Structuring routes

The forms and links for Confetti Cuisine are ready to be displayed, but there’s still no
way to reach them via a browser. In main.js, I’m going to add the necessary CRUD
routes and require the controllers needed to get everything working.

First, I add the routes for subscribers from listing 21.10 to main.js. To make sure that the
subscribersController is required near the top of the file alongside my other controllers, I
add const subscribersController = require("./controllers/subscribersController"). I
also introduce the Express.js Router to my project to help distinguish application routes
from other configurations in main.js by adding const router = express.Router(). With
this router object in place, I change every route and middleware handled by my app
object to use the router object. Then I tell my application to use this router object by add-
ing app.use("/", router) to main.js.

GET requests to the /subscribers path lead me to the index action on the subscribers-
Controller. Then I render the index.ejs page through another action called indexView. The
same strategy applies to the other GET routes. The first POST route is for create. This route
handles requests from forms to save new subscriber data. l need to create the logic to
save new subscribers in the create action. Then I use an action called redirectView that
will redirect to one of my views after I successfully create a subscriber record.

The show route is the first case in which I need to get the subscriber’s ID from the path. In
this case, :id represents the subscriber’s ObjectId, allowing me to search for that specific
subscriber in the database in the show action. Then I use a showView to display the sub-
scriber’s data in a view. The update route works like the create route, but I’m specifying
the router to accept only PUT requests, indicating that a request is being made specifi-
cally to update an existing record. Similarly, I use the redirectView action after this to
display a view. The last route, delete, accepts only DELETE requests. Requests will be
made from the link on index.ejs and use the redirectView to link back to the index page.

router.get("/subscribers", subscribersController.index,
➥ subscribersController.indexView);
router.get("/subscribers/new", subscribersController.new);
router.post("/subscribers/create", subscribersController.create,
➥ subscribersController.redirectView);

Listing 21.10 Adding subscriber CRUD routes to main.js

Add GET routes to
show views.

Add the first
POST route
for create.

243Creating controllers
router.get("/subscribers/:id", subscribersController.show,
➥ subscribersController.showView);
router.get("/subscribers/:id/edit", subscribersController.edit);
router.put("/subscribers/:id/update", subscribersController.update,
➥ subscribersController.redirectView);
router.delete("/subscribers/:id/delete",
➥ subscribersController.delete,
➥ subscribersController.redirectView);

The same seven routes need to be made for users and courses. I’ll also update the navi-
gation links: the contact link will point to the subscribers’ new view, and the course-
listings link will point to the courses’ index view.

NOTE At this point, I can remove some of my deprecated routes, such as the ones that
point to getAllSubscribers, getSubscriptionPage, and saveSubscriber in the sub-
scribers controller, as well as showCourses in the home controller. I can also move my
home-page route to the home controller’s index action. Finally, I want to make sure that I
update my navigation links to point to /subscribers/new instead of /contact.

All I have left to do is create the corresponding controllers.

21.5 Creating controllers

The routes I created in main.js require a subscribersController, coursesController, and
usersController. I start by creating those files in the controllers folder.

NOTE I’ve also cleaned up my error controller to use http-status-codes and an
error.ejs view, as in previous application examples.

Next, for the subscriber’s controller, I add the actions shown in listing 21.11 to handle
requests made to my existing routes. After requiring the Subscriber model into this file,
I create the index action to find all subscriber documents in my database and pass them
through the subscribers variable into index.ejs via the indexView action. The new and edit
actions also render a view to subscribe and edit subscriber data.

The create action collects request body parameters in my custom getSubscriberParams
function, listed as the second constant in the code listing, to create a new subscriber
record. If I’m successful, I’ll pass the user object through the locals variables object in
my response. Then I’ll specify to redirect to the index page in the redirectView action.

Add a route to show
a subscriber based
on ObjectId.

Add a route to
update subscribers.

Add a route to delete
subscribers.

244 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine
The show action pulls the subscriber’s ID from the URL with req.params.id. This value is
used to search the database for one matching record and then pass that record to the
next middleware function through the response object. In showView, the show page dis-
plays the contents of this subscriber variable. The update action behaves like create and
uses the findByIdAndUpdate Mongoose method to set new values for an existing sub-
scriber document. Here, I also pass the updated user object through the response object
and specify a view to redirect to in the redirectView action.

The delete action uses the subscriber’s ID in the request parameters to findByIdAndRemove
a matching document from the database. The getSubscriberParams function is designed
to have less repetition in my code. Because the create and update actions use form
parameters, they can call this function instead. The redirectView action is also intended
to reduce code repetition by allowing multiple actions, including the delete action, to
specify what view to render when the main function is complete.

const Subscriber = require("../models/subscriber"),
 getSubscriberParams = (body) => {
 return {

name: body.name,
email: body.email,
zipCode: parseInt(body.zipCode)

 };
 };

module.exports = {
 index: (req, res, next) => {
 Subscriber.find()

.then(subscribers => {
res.locals.subscribers = subscribers;
next();

})
.catch(error => {
console.log(`Error fetching subscribers: ${error.message}`);
next(error);

});
 },
 indexView: (req, res) => {
 res.render("subscribers/index");
 },

Listing 21.11 Adding subscriber controller actions in subscribersController.js

Create a custom function
to pull subscriber data
from the request.

Create the index
action to find all
subscriber documents.

245Creating controllers
 new: (req, res) => {
 res.render("subscribers/new");
 },

 create: (req, res, next) => {
 let subscriberParams = getSubscriberParams(req.body);
 Subscriber.create(subscriberParams)

.then(subscriber => {
res.locals.redirect = "/subscribers";
res.locals.subscriber = subscriber;
next();

})
.catch(error => {
console.log(`Error saving subscriber:${error.message}`);
next(error);

});
 },

 redirectView: (req, res, next) => {
 let redirectPath = res.locals.redirect;
 if (redirectPath) res.redirect(redirectPath);
 else next();
 },
 show: (req, res, next) => {
 var subscriberId = req.params.id;
 Subscriber.findById(subscriberId)

.then(subscriber => {
res.locals.subscriber = subscriber;
next();

})
.catch(error => {
console.log(`Error fetching subscriber by ID:

➥ ${error.message}`)
next(error);

});
 },

 showView: (req, res) => {
 res.render("subscribers/show");
 },

 edit: (req, res, next) => {
 var subscriberId = req.params.id;
 Subscriber.findById(subscriberId)

.then(subscriber => {

Create the create
action to create a
new subscriber.

Create the show
action to display
subscriber data.

246 Lesson 21 Capstone: Adding CRUD models to Confetti Cuisine
 res.render("subscribers/edit", {
 subscriber: subscriber
 });
 })
 .catch(error => {
 console.log(`Error fetching subscriber by ID:
➥ ${error.message}`);
 next(error);
 });
 },

 update: (req, res, next) => {
 let subscriberId = req.params.id,
 subscriberParams = getSubscriberParams(req.body);

 Subscriber.findByIdAndUpdate(subscriberId, {
 $set: subscriberParams
 })
 .then(subscriber => {
 res.locals.redirect = `/subscribers/${subscriberId}`;
 res.locals.subscriber = subscriber;
 next();
 })
 .catch(error => {
 console.log(`Error updating subscriber by ID:
➥ ${error.message}`);
 next(error);
 });
 },

 delete: (req, res, next) => {
 let subscriberId = req.params.id;
 Subscriber.findByIdAndRemove(subscriberId)
 .then(() => {
 res.locals.redirect = "/subscribers";
 next();
 })
 .catch(error => {
 console.log(`Error deleting subscriber by ID:
➥ ${error.message}`);
 next();
 });
 }
};

Create the update action to
set new values for an existing
subscriber document.

Create the delete action
to remove a subscriber
document.

247Summary
With these controller actions in place for each model, the application is ready to boot
and manage records. I load the views for each model and then create new subscribers,
courses, and users. In unit 5, I improve Confetti Cuisine’s site by adding user authenti-
cation and a login form.

Summary

In this capstone exercise, I improved Confetti Cuisine’s application by adding CRUD
functionality to three new models. These models allow subscribers to sign up for Con-
fetti Cuisine’s upcoming course offerings and create user accounts to get involved with
the cooking class product. In unit 5, I clean up these views by adding flash messaging,
password security, and user authentication with the passport module.

249

U
N

IT
 5

Authenticating user
accounts

In unit 4, you built CRUD functions for the models
in your application. You also learned how Mon-
goose and some external packages can help you
define associations between your models and dis-
play data from referenced models in your browser.

In this unit, you learn about flash messaging with
sessions and cookies, data encryption, and user
authentication. You start by implementing basic
session storage to handle small messages called
flash messages between requests. Then you modify
your User model to handle password encryption
with the bcrypt package. After setting up your first
login form, you use bcrypt to authenticate users by
comparing their login data with their encrypted
passwords in your database. In the last lesson, you
reimplement user authentication—the process of
confirming that an account is valid before allowing
users access to the application. You explore meth-
ods of authenticating accounts, encrypting pass-
words for security, and offering tools for normal
users to move around in your application with tools
provided by Passport.js. By the end of the unit,
you’ll be able to sign up new users and even begin
building logic based on user data in your database.

250 Unit 5 Authenticating user accounts
This unit covers the following topics:

 Lesson 22 discusses sessions and shows how to preserve your users’ login status
by storing information on the client side. You learn how to apply flash messages;
these short messages, passed between pages, let you know whether some server
operation was successful.

 Lesson 23 guides you through the process of building a sign-up form. You’ve built
forms before in this book, but this form handles a user’s email and password, so
you need to take a slightly different approach to ensure that your data is safe and
consistent. With the help of the bcrypt package, an encryption algorithm makes
sure that no plain-text passwords are saved to your database. At the end of the les-
son, you apply additional validation middleware with express-validator.

 Lesson 24 teaches you how to add application authentication for your users. With
the help of the Passport.js middleware and some helpful npm packages, this les-
son adds a layer of security to your application and the User model. You also
modify your view layout to access your login form quickly, display any currently
logged-in users, and provide a way to log out quickly.

 Lesson 25 wraps up the unit by guiding you through the construction of neces-
sary user encryption and authentication for the Confetti Cuisine application. You
apply flash messages, validation middleware, encryption, and a robust authenti-
cation process.

Start cooking in lesson 22 by adding cookies to your application.

22LESSON
ADDING SESSIONS AND FLASH
MESSAGES

In this lesson, you clean up the flow between CRUD functions by passing messages
between pages to find out whether the server operations were successful or certain
types of errors occurred. Currently, error messages are logged to the console, and users
of the application have no way to know what they could do differently. You use sessions
and cookies alongside the connect-flash package to deliver these messages to your
views. By the end of the lesson, you’ll have an application that gives you a visual
description of the success or failure of operations.

This lesson covers

 Setting up sessions and cookies
 Creating flash messages in your controller actions
 Setting up validation middleware on incoming data

Consider this Your recipe application is starting to collect data through the view
forms you created in unit 4. Users are beginning to get frustrated, though, because
they don’t know what validations you have in place, and if they fail to meet your validator
expectations, they’re redirected to a different page without notice.

With some helpful packages, you can incorporate flash messaging into your application
to inform your users of specific errors that occur in your application.
251

252 Lesson 22 Adding sessions and flash messages

22.1 Setting up flash message modules

Flash messages are semipermanent data used to display information to users of an appli-
cation. These messages originate in your application server and travel to your users’
browsers as part of a session. Sessions contain data about the most recent interaction
between a user and the application, such as the current logged-in user, length of time
before a page times out, or messages intended to be displayed once.

You have many ways to incorporate flash messages into your application. In this lesson,
you use the connect-flash middleware module by typing npm i connect-flash -S in ter-
minal to install its package to your application as a dependency.

NOTE Sessions used to be a dependency of Express.js, but because not everyone uses
every Express.js dependency and because it’s difficult to keep dependencies up to date with
the main package, independent packages cookie-parser and express-session must be
installed.

Now you need to install two more packages by running npm i cookie-parser express-

session -S in terminal. Then require these three modules—connect-flash, cookie-parser,
and express-session—in your main.js file, along with some code to use the modules
(listing 22.1).

You need the express-session module to pass messages between your application and
the client. These messages persist on the user’s browser but are ultimately stored in the
server. express-session allows you to store your messages in a few ways on the user’s
browser. Cookies are one form of session storage, so you need the cookie-parser pack-
age to indicate that you want to use cookies and that you want your sessions to be able
to parse (or decode) cookie data sent back to the server from the browser.

Use the connect-flash package to create your flash messages. This package is dependent
on sessions and cookies to pass flash messages between requests. You tell your
Express.js application to use cookie-parser as middleware and to use some secret pass-
code you choose. cookie-parser uses this code to encrypt your data in cookies sent to the
browser, so choose something that’s hard to guess. Next, you have your application use
sessions by telling express-session to use cookie-parser as its storage method and to
expire cookies after about an hour.

You also need to provide a secret key to encrypt your session data. Specify that you
don’t want to send a cookie to the user if no messages are added to the session by setting
saveUninitialized to false. Also specify that you don’t want to update existing session
data on the server if nothing has changed in the existing session. Last, have the applica-
tion use connect-flash as middleware.

253Setting up flash message modules
NOTE In this example, the secret key is shown in plain text in your application server file. I
don’t recommend displaying your secret key here, however, because it opens your applica-
tion to security vulnerabilities. Instead, store your secret key in an environment variable, and
access that variable with process.env. I discuss this topic further in unit 8.

const expressSession = require("express-session"),
 cookieParser = require("cookie-parser"),
 connectFlash = require("connect-flash");
router.use(cookieParser("secret_passcode"));
router.use(expressSession({
 secret: "secret_passcode",
 cookie: {
 maxAge: 4000000
 },
 resave: false,
 saveUninitialized: false
}));
router.use(connectFlash());

All together, these three packages provide middleware to help you process incoming
requests and outgoing responses with necessary cookie data.

Listing 22.1 Requiring flash messaging in main.js

Require the three
modules.

Configure your
Express.js application
to use cookie-parser
as middleware.

Configure express-
session to use
cookie-parser.

Configure your application
to use connect-flash as
middleware.

Cookie parsing
With each request and response made between the server and client, an HTTP header
is bundled with the data sent across the internet. This header contains a lot of useful
information about the data being transferred, such as the size of the data, the type of
data, and the browser the data is being sent from.

Another important element in the request header is the cookies. Cookies are small files
of data sent from the server to the user’s browser, containing information about the
interaction between the user and the application. A cookie might indicate which user
accessed the application last, whether the user logged in successfully, and even what
requests the user made, such as whether he successfully, created an account or made
multiple failed attempts.

In this application, you use encrypted cookies with a secret passcode encryption key to
store information about each user’s activity on the application and whether the user is
still logged in, as well as short messages to display in the user’s browser to let them
know if any errors occurred on their most recent request.

254 Lesson 22 Adding sessions and flash messages
NOTE Because requests are independent of one another, if one request to create a new
user fails and you’re redirected to the home page, that redirect is another request, and
nothing is sent in the response to the user to let them know that their attempt to create an
account failed. Cookies prove to be helpful in this case.

As you create your custom secret keys, remember to make them a bit more difficult for
someone else to guess. Next, you use these added modules by setting up flash messag-
ing on your controller actions.

22.2 Adding flash messages to controller actions

To get flash messages working, you need to attach them to the request made before you
render a view to the user. Generally, when a user makes a GET request for a page—say, to
load the home page—you don’t need to send a flash message.

Flash messages are most useful when you want to notify the user of a successful or failed
request, usually involving the database. On these requests, such as for user creation,
you’re typically redirecting to another page, depending on the outcome. If a user is cre-
ated, you redirect to the /users route; otherwise, you can redirect to /user/new. A flash
message is no different from a local variable being made available to the view. For that
reason, you need to set up another middleware configuration for express to treat your
connectFlash messages like a local variable on the response, as shown in listing 22.2.

By adding this middleware function, you’re telling Express to pass a local object called
flashMessages to the view. The value of that object is equal to the flash messages you cre-
ate with the connect-flash module. In this process, you’re transferring the messages
from the request object to the response.

Quick check 22.1 How does a cookie’s secret key change the way that data is sent and
stored on a browser?

QC 22.1 answer The secret key used with cookies allows data to have some encryption. Encryption
is important for securing the data sent over the internet and for making sure that the data living in the
user’s browser isn’t exposed to modifications.

255Adding flash messages to controller actions
router.use((req, res, next) => {
 res.locals.flashMessages = req.flash();
 next();
});

With this middleware in place, you can add messages to req.flash at the controller
level and access the messages in the view through flashMessages. Next, add a flash mes-
sage to the create action in your usersController by changing the action’s code to match
listing 22.3.

In this action, you’re modifying the way that you handle errors in the catch block.
Instead of passing the error to the error-handler action, set the error flash message, and
allow the redirectView action to display the user’s new.ejs page again. The first flash
message is of type success and delivers the message that the user’s account was created.
The flash message delivered when the account isn’t created is of type error.

NOTE getUserParams has been borrowed from the last capstone exercise (lesson 21).
This function is reused throughout the controller to organize user attributes in one object.
You should create the same functions for your other model controllers.

create: (req, res, next) => {
 let userParams = getUserParams(req.body);
 User.create(userParams)
 .then(user => {

req.flash("success", `${user.fullName}'s account created
➥ successfully!`);

res.locals.redirect = "/users";
res.locals.user = user;
next();

 })
 .catch(error => {

console.log(`Error saving user: ${error.message}`);
res.locals.redirect = "/users/new";
req.flash(

"error",
`Failed to create user account because: ➥${error.message}.`

);
 next();
 });

Listing 22.2 Middleware to associate connectFlash to flashes on response

Listing 22.3 Adding flash messages to the create action in usersController.js

Assign flash messages to the
local flashMessages variable
on the response object.

Respond with a
success flash
message.

Respond with a failure
flash message.

},

256 Lesson 22 Adding sessions and flash messages
NOTE Although you use the request object here to store the flash messages temporarily,
because you connected these messages to a local variable on the response, the messages
ultimately make it to the response object.

As soon as the page is redirected to /users or /users/new, your flash message is available
to the view.

NOTE error and success are two flash-message types that I made up. You can custom-
ize these types however you like. If you want a flash message of type superUrgent, you can
use req.flash("superUrgent", "Read this message ASAP!"). Then superUrgent will
be the key used to get whatever message you attach.

The last step in getting flash messages working is adding some code to the view to
receive and display the messages. Because you want every view to show potential suc-
cess or failures, add the code in listing 22.4 to layout.ejs. You may also want to add cus-
tom styles in your public/css folder so that the messages can be differentiated from
normal view content.

First, check whether any flashMessages exist. If success messages exist, display the suc-
cess messages in a div. If error messages exist, display those messages with a differently
styled class.

<div class="flashes">
 <% if (flashMessages) { %>
 <% if (flashMessages.success) { %>

<div class="flash success"><%= flashMessages.success %></div>
 <% } else if (flashMessages.error) { %>

<div class="flash error"><%= flashMessages.error %></div>
 <% } %>
 <% } %>
</div>

TIP If you don’t see any messages on the screen at first, try removing all styling surround-
ing the message to get the plain-text message in the view.

Test the new code to display flash messages by starting the Node.js application, visiting
/users/new, and filling out the form to create a new user. If you create a new user suc-
cessfully, your page on redirect should look like figure 22.1.

Listing 22.4 Adding flash messages in layout.ejs

Check whether
flashMessages exist. Display success

messages.

Display error
messages.

257Adding flash messages to controller actions
If you try to create a new user with an existing email address, your redirect screen
should resemble figure 22.2.

Figure 22.1 Successful flash message shown on the /users page

Figure 22.2 Error flash message shown on the home page

258 Lesson 22 Adding sessions and flash messages
When you refresh the page or create any new request, this message disappears. Because
you may choose to send multiple success or error messages, you may find it useful to
loop through the messages on the view instead of displaying everything mapped to the
error and success keys.

If you need to show a flash message on a view you’re rendering, pass the message
directly as a local variable. The next listing shows how to add a success message to the
user’s index page. When you pass the flashMessages object directly to the view, you
don’t need to wait for a redirect or use connect-flash.

res.render("users/index", {
 flashMessages: {
 success: "Loaded all users!"
 }
});

Summary

In this lesson, you learned about sessions and cookies, and saw why they’re integral
parts of how data is transferred between the server and client. You also set up connect-
flash to use cookies and temporarily show success and failure messages on certain
views. In lesson 23, you see how to encrypt more than cookie data by implementing
encryption on user passwords.

Listing 22.5 Adding a flash message to the rendered index view

Pass the flash messages
with a rendered view.

Quick check 22.2 What two arguments are needed for the req.flash method?

QC 22.2 answer req.flash needs a flash-message type and a message.

259Summary
Try this

Now that you have flash messaging set up, it’s time to add it to all your CRUD actions.
You want your users to see whether their attempt to subscribe, create an account, delete
an account, or update user information was successful. Add flash messages for each
action involving your database for all three models.

23LESSON
BUILDING A USER LOGIN AND HASHING
PASSWORDS

In lesson 22, you added flash messages to your controller actions and views. In this les-
son, you dive deeper into the User model by creating a sign-up and login form. Then
you add a layer of security to your application by hashing users’ passwords and saving
your users’ login state. Next, you add some more validations at the controller level with
the help of the express-validator package. By the end of this lesson, a user should be
able to create an account, have their password saved securely in your database, and log
in or log out as they like.

This lesson covers
 Creating a user log-in form
 Hashing data in your database with bcrypt

Consider this You deliver a prototype of your recipe application in which users can
create accounts and store their unencrypted passwords in your database. You’re rea-
sonably concerned that your database might get hacked or (even more embarrassing)
that you might show user passwords in plain text to all users. Luckily, security is a big
concern in the programming world, and tools and security techniques are available to
protect sensitive data from being exposed. bcrypt is one such tool you’ll use to mask
passwords in your database so that they can’t be hacked easily in the future.
260

261Implementing the user login form
23.1 Implementing the user login form

Before you dive into the logic that will handle users logging into the recipe application,
establish what their sign-up and login forms will look like.

The sign-up form will look and behave like the form in new.ejs. Because most users will
create their own accounts through a sign-up form, you’ll refer to the create view and
create action for new user registrations. The form you need but don’t have yet is the
user login form. This form takes two inputs: email and password.

First, create a basic user login view, and connect it with a new route and controller
actions. Then create a new login.ejs view in the users folder with the code from the next
listing. Notice the important addition here: the /users/login action in the form tag. You
need to create a route to handle POST requests to that path.

<form action="/users/login" method="POST">
 <h2>Login:</h2>
 <label for="inputEmail">Email address</label>
 <input type="email" name="email" id="inputEmail"
➥ placeholder="Email address" required>
<label for="inputPassword">Password</label>
<input type="password" name="password" id="inputPassword"

➥ placeholder="Password" required>
<button type="submit">Login</button>

</form>

Next, add the login route by adding the code in listing 23.2 to main.js. The first route
allows you to see the login form when a GET request is made to the /users/login path.
The second route handles POST requests to the same path. In this case, you route the
request to the authenticate action, followed by the redirectView action to load a page.

NOTE You’ll want to add these routes above the lines where you have your show and edit
routes; otherwise, Express.js will mistake the word login in the path for a user ID and try to
find that user. When you add the route above those lines, your application will identify the full
path as the login route before looking for a user ID in the URL.

Listing 23.1 Creating a user login form in login.ejs

Add a form
for user login.

262 Lesson 23 Building a user login and hashing passwords
router.get("/users/login", usersController.login);
router.post("/users/login", usersController.authenticate,
➥ usersController.redirectView);

Create the necessary controller actions in your users controller to get the login form
working. Add the code from listing 23.3 to usersController.js.

The login action renders the login view for user login. The authenticate action finds one
user with the matching email address. Because this attribute is unique in the database, it
should find that single user or no user at all. Then the form password is compared with
the database password and redirected to that user’s show page if the passwords match.
As in previous actions, set the res.locals.redirect variable to a path that the redirect-
View action will handle for you. Also set a flash message to let the user know they’ve
logged in successfully, and pass the user object as a local variable to that user’s show
page. By calling next here, you invoke the next middleware function, which is redirect-
View. If no user is found, but no error occurred in the search for a user, set an error flash
message, and set the redirect path to take the user back to the login form to try again.

If an error occurs, log it to the console, and pass the error to the next middleware func-
tion that handles errors (in your errors controller).

login: (req, res) => {
 res.render("users/login");
},

authenticate: (req, res, next) => {
 User.findOne({
 email: req.body.email
 })
 .then(user => {

if (user && user.password === req.body.password){
res.locals.redirect = `/users/${user._id}`;
req.flash("success", `${user.fullName}'s logged in successfully!`);
res.locals.user = user;
next();

Listing 23.2 Adding the login route to main.js

Listing 23.3 Adding login and authenticate actions to usersController.js

Add a route to handle POST
requests to the same path.

Add a route to handle
GET requests made to
the /users/login path.

Add the
login action. Add the

authenticate action.

Compare the form
password with the
database password.

263Implementing the user login form

 } else {
 req.flash("error", "Your account or password is incorrect.
➥ Please try again or contact your system administrator!");
 res.locals.redirect = "/users/login";
 next();
 }
 })
 .catch(error => {

console.log(`Error logging in user: ${error.message}`);
next(error);

 });
}

At this point, you should be able to relaunch your Node.js application and visit the
users/login URL to see the form in figure 23.1. Try logging in with the email address
and password of a user in your database.

Log errors to the
console, and redirect.

Figure 23.1 Example of user login page in your browser

If you type an incorrect email or password, you’re redirected to the login screen with a
flash message like the one in figure 23.2. If you log in successfully, your screen will look
like figure 23.3.

You have a problem, though: the passwords are still being saved in plain text. In the
next section, I talk about ways to hash that information.

264 Lesson 23 Building a user login and hashing passwords

Figure 23.2 Failed user login page in your browser

Figure 23.3 Successful user login page in your browser

Quick check 23.1 Why does the placement of the /users/login route matter in main.js?

QC 23.1 answer Because you have routes that handle parameters in the URL, if those routes
(such as /users/:id) come first, Express.js will treat a request to /users/login as a request to the
user’s show page, where login is the :id. Order matters: if the /users/login route comes first,
Express.js will match that route before checking the routes that handle parameters.

265Hashing passwords
23.2 Hashing passwords

Encryption is the process of combining some unique key or passphrase with sensitive
data to produce a value that represents the original data but is otherwise useless. The
process includes hashing data, the original value of which can be retrieved with a pri-
vate key used for the hashing function. This hashed value is stored in the database
instead of the sensitive data. When you want to encrypt new data, pass that data
through the encryption algorithm. When you want to retrieve that data or compare it
with, say, a user’s input password, the application can use the same unique key and
algorithm to decrypt the data.

bcrypt is a sophisticated hashing function that allows you to combine certain unique
keys in your application to store data such as passwords in your database. Fortunately,
you can use a few Node.js packages to implement bcrypt hashing. First, install the
bcrypt package by typing npm i bcrypt@3.0.0 -S in a new terminal window. Next,
require bcrypt into the module where you’ll perform the hashing. Hashing can occur in
the usersController, but a better approach is to create a Mongoose pre-save hook in the
User model. Require bcrypt in user.js with const bcrypt = require("bcrypt"). Then add
the code in listing 23.4 to your User model, above the module.exports line but after your
schema definition.

NOTE You’ll only be hashing passwords, not encrypting them, because you technically
don’t want to retrieve the original value of a password. In fact, your application should have
no knowledge of a user’s password. The application should be able only to hash a password.
Later, hash password attempts, and compare the hashed values. I talk more about this
topic later in this section.

The Mongoose pre and post hooks are great ways to run some code on the User instance
before and after the user is saved to the database. Attach the hook to the userSchema,
which (like other middleware) takes next as a parameter. The bcrypt.hash method takes
a password and a number. The number represents the level of complexity against which
you’d like to hash your password, and 10 is generally accepted as a reliable number.
When the hashing of the password is complete, the next part of the promise chain
accepts the resulting hash (your hashed password).

Assign the user’s password to this hash, and call next, which saves the user to the data-
base. If any errors occur, they’ll be logged and passed to the next middleware.

NOTE Because you lose context within this pre-hook when you run bcrypt.hash, I sug-
gest preserving this in a variable that can be accessed within the hashing function.

266 Lesson 23 Building a user login and hashing passwords
passwordComparison is your custom method on the userSchema, allowing you to compare
passwords from a form’s input with the user’s stored and hashed password. To perform
this check asynchronously, use the promise library with bcrypt. bcrypt.compare returns a
Boolean value comparing the user’s password with the inputPassword. Then return the
promise to whoever called the passwordComparison method.

userSchema.pre("save", function(next) {
 let user = this;

 bcrypt.hash(user.password, 10).then(hash => {
 user.password = hash;
 next();
 })
 .catch(error => {

console.log(`Error in hashing password: ${error.message}`);
next(error);

 });
});

userSchema.methods.passwordComparison = function(inputPassword){
 let user = this;
 return bcrypt.compare(inputPassword, user.password);
};

NOTE A pre hook on save is run any time the user is saved: on creation and after an
update via the Mongoose save method.

The final step is rewriting the authenticate action in usersController.js to compare pass-
words with bcrypt.compare. Replace the code block for the authenticate action with the
code in listing 23.5.

First, explicitly query for one user by email. If a user is found, assign the result to user.
Then check whether a user was found or null is returned. If a user with the specified
email address is found, call your custom passwordComparison method on the user
instance, passing the form’s input password as an argument.

Because passwordComparison returns a promise that resolves with true or false, nest
another then to wait for a result. If passwordsMatch is true, redirect to the user’s show
page. If a user with the specified email doesn’t exist or the input password is incorrect,

Listing 23.4 Adding a hashing pre hook in user.js

Add a pre hook to
the user schema.

Hash the user’s
password.

Add a function to compare
hashed passwords.

Compare the user
password with the
stored password.

267Hashing passwords

d
od
el.

Che
pas

return to the login screen. Otherwise, throw an error, and pass it in your next object.
Any errors thrown or occurring during this process are caught and logged.

authenticate: (req, res, next) => {
 User.findOne({email: req.body.email})

.then(user => {
if (user) {

user.passwordComparison(req.body.password)
.then(passwordsMatch => {

if (passwordsMatch) {
 res.locals.redirect = `/users/${user._id}`;

req.flash("success", `${user.fullName}'s logged in
➥ successfully!`);

res.locals.user = user;
} else {

req.flash("error", "Failed to log in user account:
➥ Incorrect Password.");

res.locals.redirect = "/users/login";
}
next();

});
} else {

req.flash("error", "Failed to log in user account: User
➥ account not found.");

res.locals.redirect = "/users/login";
next();

 }
 })

.catch(error => {

Listing 23.5 Modifying the authenticate action in usersController.js

Query for one user by email.

Check whether
a user is found.

Call the passwor
comparison meth
on the User mod

ck whether the
swords match.

Call the next middleware
function with redirect path
and flash message set.

Log errors to console and
pass to the next
middleware error handler.

console.log(`Error logging in user: ${error.message}`);
next(error);

});
}

Relaunch your Node.js application, and create a new user. You’ll need to create new
accounts moving forward because previous account passwords weren’t securely hashed
with bcrypt. If you don’t, bcrypt will try to hash and compare your input password with
a plain-text password. After the account is created, try logging in again with the same
password at /users/login. Then change the password field in the user’s show page to
display the password on the screen. Visit a user’s show page to see the new hashed pass-
word in place of the old plain-text one (figure 23.4).

268 Lesson 23 Building a user login and hashing passwords

NOTE You can also verify that passwords are hashed at the database level by entering
the MongoDB shell with mongo in a new terminal window and then typing use recipe_db
and db.users.find({}). Alternatively, you can use the MongoDB Compass software to
see the new records in this database.

Now when you log in for a user with a hashed password, you should be redirected to
that user’s show page upon successful authentication. If you type an incorrect password,
you get a screen like figure 23.5.

Figure 23.4 Show hashed password in user’s show page in browser

Figure 23.5 Incorrect password screen in browser

269Adding validation middleware with express-validator
In the next section, you add some more security to the create and update actions by add-
ing validation middleware before those actions are called.

23.3 Adding validation middleware with express-validator

So far, your application offers validation at the view and model levels. If you try to cre-
ate a user account without an email address, your HTML forms should prevent you
from doing so. If you get around the forms, or if someone tries to create an account via
your application programming interface (API), as you see in unit 6, your model schema
restrictions should prevent invalid data from entering your databases—though more
validation can’t hurt. In fact, if you could add more validation before your models are
reached in the application, you could save a lot of computing time and machine energy
spent making Mongoose queries and redirecting pages.

For those reasons, you’ll validate middleware, and as is true of most common needs in
Node.js, some packages are available to help you build those middleware functions. The
package you’ll install is express-validator, which provides a library of methods you can
use to check whether incoming data follows a certain format and methods that modify
that data to remove unwanted characters. You can use express-validator to check
whether some input data is entered in the format of a U.S. phone number, for example.

You can install this package by typing npm i express-validator -S in your project folder
in terminal. When this package is installed, require it with const expressValidator =
require("express-validator") in main.js, and tell your Express.js app to use it by adding
router.use(expressValidator()). You need to add this line after the line where
express.json() and express.urlencoded() middleware is introduced, because the request
body must be parsed before you can validate it.

Quick check 23.2 True or false: bcrypt’s compare method compares the plain-text pass-
word in your database with the plain-text value from the user’s input.

QC 23.2 answer False. The only password value in the database is a hashed password, so there’s
no plain-text value to compare against. The comparison works by hashing the user’s new input and com-
paring the newly created hashed value with the stored hash value in the database. This way, the applica-
tion still won’t know your actual password, but if two hashed passwords match, you can safely say that
your input matched the original password you set up.

270 Lesson 23 Building a user login and hashing passwords

Then you can add this middleware to run directly before the call to the create action in the
usersController. To accomplish this task, you need to create a validate action between the
path and create action in the POST route to /users/create in main.js, as shown in listing
23.6. Between the path, /users/create, and the usersController.create action, you intro-
duce a middleware function called validate. Through this validate action, you’ll deter-
mine whether data meets your requirements to continue to the create action.

router.post("/users/create", usersController.validate,
➥ usersController.create, usersController.redirectView);

Listing 23.6 Adding the validate middleware to the users create route in main.js

Add the validate
middleware to the
users create route.

Finally, create the validate action in usersController.js to handle requests before they
reach the create action. In this action, you add the following:

 Validators—Check whether incoming data meets certain criteria.
 Sanitizers—Modify incoming data by removing unwanted elements or casting

the data type before it enters the database.

Add the code in listing 23.7 to your usersController.js.

The first validation function uses the request and response, and it may pass on to the next
function in the middleware chain, so you need the next parameter. Start with a sanitization
of the email field, using express-validator’s normalizeEmail method to convert all email
addresses to lowercase and then trim whitespace away. Follow with the validation of email
to make sure that it follows the email-format requirements set by express-validator.

The zipCode validation ensures that the value isn’t empty and is an integer, and that the
length is exactly five digits. The last validation checks that the password field isn’t empty.
req.getValidationResult collects the results of the previous validations and returns a
promise with those error results.

If errors occur, you can collect their error messages and add them to your request’s flash
messages. Here, you’re joining the series of messages with " and " in one long String. If
errors have occurred in the validations, set req.skip = true. Here, set is the new custom
property you’re adding to the request object. This value tells your next middleware
function, create, not to process your user data because of validation errors and instead
to skip to your redirectView action. For this code to work, you need to add if (req.skip)

next() as the first line in the create action. This way, when req.skip is true, you continue
to the next middleware immediately.

271Adding validation middleware with express-validator

d.

f
.

In the event of validation errors, render the new view again. Your flashMessages also indi-
cate to the user what errors occurred with her input data.

validate: (req, res, next) => {
 req.sanitizeBody("email").normalizeEmail({
 all_lowercase: true
 }).trim();
 req.check("email", "Email is invalid").isEmail();
 req.check("zipCode", "Zip code is invalid")
➥.notEmpty().isInt().isLength({
 min: 5,
 max: 5
 }).equals(req.body.zipCode);
 req.check("password", "Password cannot be empty").notEmpty();

 req.getValidationResult().then((error) => {
 if (!error.isEmpty()) {

let messages = error.array().map(e => e.msg);
req.skip = true;
req.flash("error", messages.join(" and "));
res.locals.redirect = "/users/new";
next();

 } else {
next();

 }
 });
}

NOTE You can take many creative approaches to repopulating form data. You may find
that some packages are helpful in assisting with this task. When you find the technique that
works best for you, change all the forms in your application to handle repopulating data.

You’re ready to give these validations a shot. Launch your application, and create a new
user in ways that should fail your validations. You may need to remove the required
tags from your HTML forms first if you want to test the notEmpty validations. Your failed
password and zipCode validations should send you to a screen resembling figure 23.6.

Because express-validator uses the validator package, you can get more information
about the sanitizers to use at https://github.com/chriso/validator.js#sanitizers.

Listing 23.7 Creating a validate controller in usersController.js

Add the validate function.

Remove
whitespace with
the trim method.

Validate the
zipCode field.

Validate the
password fiel

Call the next
middleware function.

Set redirect path
for the new view.

Add error
messages as
flash messages.

Set skip property
to true.

Collect the results o
previous validations

https://github.com/chriso/validator.js#sanitizers

272 Lesson 23 Building a user login and hashing passwords
Summary

In this lesson, you implemented a hashing function for your users’ passwords. Then you
created a login form and action by using the bcrypt.compare method to match hashed
passwords against user input on login. At the end, you added more validations on input
data through an additional middleware function to sanitize data before it’s saved to
your database. In lesson 24, you take another look at encryption and authentication
through Passport.js tools, which make setting up secure user accounts much easier.

Figure 23.6 Failed express-validator validation messages

Quick check 23.3 What’s the difference between a sanitizer and a validator?

QC 23.3 answer A sanitizer cleans data by trimming whitespace, changing the case, or removing
unwanted characters. A validator tests data quality to ensure that the way it was entered meets your
database requirements.

273Summary
Try this

Hashing user passwords is probably the leading scenario for using hashing functions,
but you can use hashing functions on other fields on your models. You might hash a
user’s email address to prevent that data from getting into the wrong hands, for exam-
ple. After all, getting access to a user’s email is getting halfway to hacking that user’s
account. Try adding hashing to user emails in addition to passwords.

NOTE When you hash a user’s email address, you won’t be able to display it in any views.
Although you may choose to keep user emails in plain text, this practice is good to follow
when other sensitive data enters your application.

24LESSON
ADDING USER AUTHENTICATION

In lesson 23, you learned about manual hashing of passwords and the importance of
securing user data. In this lesson, you explore some popular and useful tools that make
the hashing process less messy. You modify your hashing methods to use the passport-
local-mongoose package, which uses passport and mongoose together to perform hashing
for you behind the scenes. Next, you learn how to use Passport.js to authenticate user
accounts on your application. This process involves session cookies, similar to the way
that flash messages use them. By the end of this lesson, you’ll have a sign-up and login
form that permits only true users of your application to have access.

This lesson covers
 Using the passport package to authenticate users throughout your application
 Implementing the passport-local-mongoose plugin on your user model
 Creating authentication actions before user login

Consider this You’ve added a popular hashing method to your application, but you’d
like to simplify the code or, better, put it behind the scenes. It’s great to know how hash-
ing works, and tools are available to perform the hashing you want without the need to
manually set up your own criteria for hashing. Packages such as passport.js hash and
authenticate user interactions without your needing to specify a password field in the
schema. In this lesson, you look at the quickest and most efficient implementations of
the passport package.
274

275Implementing Passport.js
24.1 Implementing Passport.js

Passport.js is middleware used by Node.js to hash new user passwords and authenticate
their activity on an application. Passport.js uses different methods to create and log in
user accounts, ranging from basic login with username and password to login with
third-party services such as Facebook. These login methods are called strategies, and the
strategy you’ll use for your recipe application is a local strategy because you aren’t
using external services.

These strategies check whether incoming data is authentic by managing hashing and
comparison of passwords and data relating to the user’s login state. For more informa-
tion about the Passport.js strategies, visit www.passportjs.org.

To start, install the necessary packages for your application. You need to install the pass-
port package along with the passport-local-mongoose packages by running npm i pass-
port passport-local-mongoose -S in your project’s terminal window. The modules from
these packages work together to provide hashing and authentication methods and sup-
port to communicate directly with your Mongoose schemas. After you install these
packages as dependencies, require them where needed in the application. Add the fol-
lowing lines from listing 24.1 to main.js.

Start by requiring the passport module. Passport.js uses methods called strategies for
users to log in. The local strategy refers to the username and password login method.
You initialize the passport module and have your Express.js app use it. Now you have
passport ready as middleware in your application. passport.session tells passport to use
whatever sessions you’ve already set up with your application. In this case, before this
line, you have express-session set up for flash messaging.

const passport = require("passport");
router.use(passport.initialize());
router.use(passport.session());

Listing 24.1 Requiring and initializing passport in main.js

Require the
passport module.

Configure passport
to use sessions in
Express.js.

Initialize passport.

www.passportjs.org

276 Lesson 24 Adding user authentication
Next, you need to set up your login strategy on the user model and tell passport to han-
dle the hashing of user data in sessions for you. passport-local-mongoose makes this pro-
cess simple and pretty much automatic. Add the lines in listing 24.2 to main.js.

NOTE passport.session tells passport to use any previously used Express.js sessions
defined. Sessions must be defined before this line.

You need to make sure that your user model is made available in main.js before you
continue to connect it with passport. Normally, you’d need to set up some configura-
tions to create a login strategy for a model, but because you’re using the default local
login strategy, you only need to tell passport to use the strategy created for the user
model. The next two lines tell passport to serialize and deserialize your users through
the User model. These lines direct the process of encrypting and decrypting user data
stored in sessions.

const User = require("./models/user");
passport.use(User.createStrategy());
passport.serializeUser(User.serializeUser());
passport.deserializeUser(User.deserializeUser());

Passport serializes and deserializes user data to pass into a session. The session stores
this serialized data—a condensed form of user information, which is sent back to the
server to verify the user as the last one logged in from the client. Deserializing extracts
the user data from its condensed version so that you can verify the user’s information.

Listing 24.2 Setting up passport serializing in main.js

Require the
User model.

Set up passport to
serialize and deserialize
your user data.

Configure the user’s
login strategy.

Serializing data
When working with objects in an application, you want to preserve the data structure
that allows you to access and modify properties easily. Your user objects, for example,
allow you to retrieve information such as email or even to use the User model’s virtual
attribute fullName. Although the model is particularly useful within your application, you
have no straightforward way to send this user object, along with its methods and Mon-
goose object-document mapper (ODM) tools, to a client. As a result, you need to serialize
the user data.

277Implementing Passport.js
The last step before building the authentication action to log users into your application
is to connect your user model to the passport-local-mongoose module. Add const pass-
portLocalMongoose = require("passport-local-mongoose") to the top of user.js, which is
where you’ll add a Passport.js plugin to the user schema, as shown in listing 24.3. Using
the Mongoose plugin method, you’re telling your userSchema to use passportLocalMon-
goose for password hashing and storage. You’re also telling passportLocalMongoose to use
the email field as the user’s login parameter instead of a username because username is
the default field for this module.

NOTE This line must appear before you register your User model.

userSchema.plugin(passportLocalMongoose, {
 usernameField: "email"
});

When this line is in place, Passport.js automatically takes care of password storage, so
you can remove the password property from userSchema. This plugin modifies your
schema behind the scenes to add hash and salt fields to your User model in place of the
normal password field.

Listing 24.3 Adding the passport-local-mongoose plugin to the user schema

Serialization is the process of converting data from some data structure to a compact
readable format. This data can take on many formats, such as JSON, YAML, and XML.
The user data is flattened, often into strings, so that it can be sent within an HTTP trans-
action.

Passport.js performs the serialization process and encrypts your user’s data so that it
can be stored as part of the session cookie on the client’s browser. Because this cookie
contains information about the user, it lets your application server know, the next time a
request occurs, that this user has logged in before, which is your way of validating some-
one’s state in your application.

When the same user makes another request to your application, Passport.js deserial-
izes the data to restore the user to its original model object form. When that process
completes and you verify that the user is valid, you can use the user object again as
before, applying model methods and using Mongoose queries.

Apply the passport-local-
mongoose module as a plugin
to the user schema.

278 Lesson 24 Adding user authentication
NOTE Make sure that any reference to the password attribute in your application is
removed. Because passport-local-mongoose adds new password fields to the User
model, you won’t be using it anymore.

In the next section, you use the passport package to simplify the authentication process
even more.

Hash and salt
You learned about hashing in lesson 24, but you let bcrypt perform the hashing process
through an algorithm that you didn’t need to understand. Exactly how do bcrypt and
Passport.js hash user passwords?

Modern hashing takes the user’s input password and converts it into an undecipherable
hash. This hash is a jumble of characters and numbers, making it safer to store in a data-
base than the plain-text password. If anyone hacks the database, he has only the hashed
passwords. The best he can do at that point is enter his own guesses at a password into
his own hashing function to see whether the resulting hash matches yours. That task is
a tedious one, but it’s not impossible for hackers to find a way to crack your hashed pass-
words. Salts were introduced to battle this vulnerability.

Salts are short strings of random characters that are added to a plain-text password
before the password is hashed. This way, if someone maliciously guessed your pass-
word, they would also need to know the salt associated with it and where to place it in
the original password. Hacking has become a lot more difficult.

Passport.js stores both the hashed password and salt in your database so that you can
perform hashing consistently within your application. When you register your first users
with Passport.js, take a look at their data in MongoDB to see those values by following
these steps:

 In a new terminal window, run mongo.
 Run use recipe_db to load your recipe database.
 Run db.users.find({}, { password: 1}) to view all user passwords.
 Compare the hashed and nonhashed passwords.

Quick check 24.1 True or false: A salt is needed to hash passwords.

QC 24.1 answer False. Salts help make the hashing of passwords stronger by mixing random text
with plain-text passwords before they’re hashed, but salts aren’t required.

279Modifying the create action to use passport registration
24.2 Modifying the create action to use passport registration

Using Passport.js has already simplified your code and made it easier to specify which
models you’d like to hash and authenticate. The next step is modifying your create
action, so instead of using your bcrypt hashing function before creating a user account,
you’ll use Passport.js. By incorporating the Passport.js modules, you have access to a
library of methods to streamline the account registration process. Change the create
action in usersController.js to use the register method, as shown in listing 24.4.

NOTE You must comment out or remove the userSchema.methods.passwordComparison
and pre("save") hook for bcrypt in the User model. If you don’t remove these hooks,
bcrypt will still try to hash user passwords before passport is able to, which also results in
an unhandled promise error.

The register method comes with Passport.js. Because you’re using passport-local-mon-
goose as a plugin for the User model, you can use this method to register users. If you
successfully save a new user, create a flash message and redirect to the /users route.
Otherwise, handle any errors that occur by redirecting to the users/new route so that
another attempt to create a user account can be made.

create: (req, res, next) => {
 if (req.skip) next();

 let newUser = new User(getUserParams(req.body));

 User.register(newUser, req.body.password, (error, user) => {
 if (user) {

req.flash("success", `${user.fullName}'s account created
➥ successfully!`);

res.locals.redirect = "/users";
next();

 } else {
req.flash("error", `Failed to create user account because:

➥ ${error.message}.`);
res.locals.redirect = "/users/new";
next();

 }
 });
}

Listing 24.4 Registering new users in the create action in main.js

Register new users.

Set redirect for successful
user creation.

Set redirect and log
errors in flash
messages.

280 Lesson 24 Adding user authentication
With this action in place, you can use the form in /users/new.ejs to create user accounts
through Passport.js. Try launching your application and creating a new user. You
shouldn’t notice a change in behavior; your user account will be created, and you’ll see
the success flash message.

If you look at the raw documents in MongoDB by typing mongo in a new terminal win-
dow, then type use recipe_db and db.users.find({}) to see the users in your database.
Any users saved with bcrypt still have their password field with a hashed password
saved. Your latest user has two properties added by Passport.js: salt and hash.

TIP Update your seed.js file to register user accounts with passport instead of the Mon-
goose create method. This practice makes it easier to repopulate your database as your
application grows in development.

Update your seed.js file to register user accounts with Passport instead of the Mongoose
create method, which will make it easier to repopulate your database as your applica-
tion grows in development.

Your users are still secure, but you still need a way to log them in. In the next section,
you modify the login form to use Passport.js.

24.3 Authenticating users at login

The final step in allowing users to log in to the application is replacing the bcrypt
authentication method with passport middleware. Modify your authenticate action in
usersController.js with the new action, as shown in listing 24.5. You also need to require
passport into the users controller by adding const passport = require("passport") to the
top of the file.

This authenticate action is set to call passport.authenticate method directly with passport
redirect and flash-message options. When you call usersController.authenticate, you’re
calling passport.authenticate. In this function, passport attempts to compare the incoming

Quick check 24.2 Why does Passport.js need you to save the hash and the salt in your
database?

QC 24.2 answer Passport.js saves the salt and the hash so that each user can have their own
unique hashing factors. It’s possible to use the same salt for every user account and only store the
hash in the database, but this approach is less secure.

281Authenticating users at login
request data, describing a user, with the database records. If a user account is found and
the input password aligns with the hashed password, you redirect from this action.

authenticate: passport.authenticate("local", {
 failureRedirect: "/users/login",
 failureFlash: "Failed to login.",
 successRedirect: "/",
 successFlash: "Logged in!"
}),

The login route no longer needs your usersController.redirectView action as a follow-
up function. With your router.post("/users/login", usersController.authenticate);
route set up from lesson 23, your application is ready to authenticate existing users.
Restart your application, and log in with a user account you’ve created at /users/login.
If you’re successful, you should see the success flash message.

It would be nice to have a visual indication that you’re logged in and maybe a way to
log out. Add the code from listing 24.6 to your navigation bar in layout.ejs. You’re
checking whether the local variable loggedIn is set to true. If so, display the text Signed
in as followed by the user’s fullName, which you get from the currentUser local variable.
This list item is wrapped in an anchor tag that, when clicked, takes you to the currently
logged-in user’s show page. If the loggedIn status is false, show a link to Sign In, taking
you to the /users/login route.

<% if (loggedIn) { %>
 Logged in as <a href="<%=`/users/${currentUser._id}`%>">
➥ <%= currentUser.fullName %>
<%} else {%>
 Log In
<% } %>

If you refresh your application, you may not see anything change in the navigation bar
yet. You need to create the loggedIn and currentUser variables so that they appear
locally in each view. To do so, add some custom middleware so that on every new

Listing 24.5 Adding passport authentication middleware in usersController.js

Listing 24.6 Adding login status to navigation bar in layout.ejs

Set up success and failure
flash messages and redirect
paths based on the user’s
authentication status.

Call on passport to
authenticate a user via
the local strategy.

Check whether a
user is logged in.

Display a link to log in.

282 Lesson 24 Adding user authentication
request, you add these variables to the response. Because you’ve already created a mid-
dleware function to set up flashMessages as a local object, you can add the code in listing
24.7 within that middleware function in main.js.

isAuthenticated is a method provided by Passport.js, which you can call on the incom-
ing request to see whether an existing user is stored in the request’s cookies. loggedIn is
either true or false. If a user is in the request, you can pull it out and assign it to your
own currentUser variable. After adding this code, you gain access to both of these vari-
ables, along with flashMessages, on every page.

res.locals.loggedIn = req.isAuthenticated();
res.locals.currentUser = req.user;

Restart your application to see whether your name appears in the navigation bar. Your
screen may look like figure 24.1.

This figure includes a logout link in the navigation bar. To create this link, add Log out below the line where the name of the currentUser
appears. To get this link working, you need to create a route and action for logging out.

Listing 24.7 Adding local variables to custom middleware

Set up the loggedIn
variable to reflect
passport login status.

Set up the currentUser to
reflect a logged-in user.

Figure 24.1 Example of a successful login in the browser

283Authenticating users at login
First, add router.get("/users/logout", usersController.logout, usersController.redirect-
View) to main.js next to where your login routes are located. Then add the logout action
from listing 24.8 to usersController.js.

This action uses the logout method provided by Passport.js on the request to clear the
user’s session. During the next pass through your custom middleware, isAuthenticated
returns false, and there’ll no longer be a current user. Follow this operation with a flash
message to indicate that the user has been logged out and a redirect to the home page
through the redirectView action.

logout: (req, res, next) => {
 req.logout();
 req.flash("success", "You have been logged out!");
 res.locals.redirect = "/";
 next();
}

With this action in place, it’s time to test the full login process. Restart your application,
log in, and then click the logout link in the navigation bar (figure 24.2). Your session
should be cleared and your account successfully logged out.

In lesson 25, you apply user authentication to the capstone project.

Listing 24.8 Adding a logout action in usersController.js

Add an action to
log users out.

Figure 24.2 Example of a successful user logout in the browser

284 Lesson 24 Adding user authentication
Summary

In this lesson, you added a few Passport.js packages to assist in the encryption and
authentication of user data. By connecting an additional validation action to your user-
login middleware chain, you can ensure that user passwords are secure and the login
experience is consistent. In the next capstone lesson (lesson 25), you apply these valida-
tion, hashing, encryption, and authentication techniques to improve the Confetti Cui-
sine application experience.

Try this

You’ve successfully implemented Passport.js to work with your User model and Mon-
goose ODM. Because Passport.js does a lot of the heavy lifting for you, it may seem that
there isn’t much else to add to the login process, but you always have room for more
middleware. Add a middleware function, called logEmail, between validation and
encryption. This middleware should log to console the user’s email address domain
(such as gmail, yahoo, or live) and pass to the next middleware function.

Quick check 24.3 How do you have access to Passport.js methods on the request through-
out the application?

QC 24.3 answer Because you added the passport module as middleware within Express.js, you
have access to the library of methods provided by Passport.js. These methods are extended to the
request as it enters the application. As that request is passed through the middleware chain, you can
call these passport methods on it anywhere you like.

25LESSON
CAPSTONE: ADDING USER
AUTHENTICATION TO CONFETTI CUISINE

My contacts at Confetti Cuisine are delighted with the progress on their application.
They’ve already started to add new course offerings, manage new subscribers, and
spread the word about creating new user accounts. I warn them that although user
accounts can be created, the application isn’t ready to handle users securely.

The client and I agree that data encryption and proper user authentication are the way
forward, so for my next improvements to the application, I’m going to add a couple of
packages that use Passport.js to assist in setting up a secure user-login process. I’ll also
add flash messaging so that users can tell after a redirect or page render whether their
last operation was successful. Then I’ll add some additional validations with the help of
the express-validator middleware package.

By the end of this stage of development, I can comfortably encourage Confetti Cuisine
to sign users up for their application. Because the application isn’t yet live online,
though, the client will have to run it locally on their machines when users sign up.

For this capstone exercise, I’ll need to do the following:

 Add sessions and cookies between page requests
 Add new custom middleware for validations and setting up local variables in the

views
285

286 Lesson 25 Capstone: Adding user authentication to Confetti Cuisine
 Create a login form
 Add passport authentication and encryption for the User model
 Add a visual indicator to show which user is logged in

25.1 Getting set up

Working off the code I wrote in the last capstone exercise (lesson 21), I currently have
three models implemented with CRUD actions for each. To move forward with the
improvements to Confetti Cuisine’s application, I need to install a few more packages:

 express-session allows me to store temporary data about the user interaction
with the application. The resulting sessions let me know whether a user has
logged in recently.

 cookie-parser allows me to store session data on the client. The resulting cookies
are sent with each request and response, carrying within them messages and
data reflecting the user who last used that client.

 connect-flash allows me to use sessions and cookies to generate flash messages in
the user’s browser.

 express-validator allows me to add a layer of validations to incoming user data
through a middleware function.

 passport allows me to set up a painless encryption and authentication process for
the User model.

 passport-local-mongoose allows me to integrate passport even further by simplify-
ing the code I need to write through a plugin I can use on the User model.

To install these packages, I’ll run npm i express-session cookie-parser connect-flash
express-validator passport passport-local-mongoose -S in my projects terminal window.
I’ve already set up the create action and new form for users. I need to modify those soon,
but first, I’ll create the login form needed for users to log in to the application.

25.2 Creating a login form

I want this form to contain two straightforward inputs: email and password. I’ll create a
new login.ejs view in the users folder and add the code in the next listing. This form will
submit a POST request to the /users/login route. The inputs of this form will handle the
user’s email and password.

287Creating a login form
<form class="form-signin" action="/users/login" method="POST">
 <h2 class="form-signin-heading">Login:</h2>
 <label for="inputEmail" class="sr-only">Email</label>
 <input type="text" name="email" id="inputEmail" class="form-
➥ control" placeholder="Email" autofocus required>

<label for="inputPassword" class="sr-only">Password</label>
<input type="password" name="password" id="inputPassword"

➥ class="form-control" placeholder="Password" required>
<button class="btn btn-lg btn-primary btn-block" type="submit">

➥ Login</button>
</form>

Before this form can work or be viewed, I’ll add the login routes and actions. The login
will accept GET and POST requests, as shown in the following listing.

NOTE I add all routing-specific code on the router object.

router.get("/users/login", usersController.login);
router.post("/users/login", usersController.authenticate);
router.get("/users/logout", usersController.logout,
➥ usersController.redirectView);

With these routes in place, I need to create their corresponding actions before my form
is viewable at /users/login. First, I’ll add the login action from the next listing to users-
Controller.js.

login: (req, res) => {
 res.render("users/login");
}

In the next section, I use the passport package to start encrypting user data so that this
login form will have a purpose.

Listing 25.1 Adding a login form to users/login.ejs

Listing 25.2 Adding a login route to main.js

Listing 25.3 Adding the login action to usersController.js

Create a login form.

Route to the
login action. Add a route to logout

and redirect to a view.

Send posted data
to an authenticate
action.

Add an action to
render my form for
browser viewing.

288 Lesson 25 Capstone: Adding user authentication to Confetti Cuisine
25.3 Adding encryption with Passport.js

To start using Passport.js, I need to require the passport module in main.js and in users-
Controller.js by adding const passport = require("passport") to the top of both files.
These files are ones within which I’ll set up hashing and authentication. Next, I need to
initialize and use passport within Express.js as middleware. Because passport uses ses-
sions and cookies, I also need to require express-session and cookie-parser to main.js,
adding the lines in listing 25.4 to that file.

To start using passport, I need to configure cookieParser with a secret key to encrypt the
cookies stored on the client. Then I’ll have Express.js use sessions as well. This stage in
the setup process is where passport starts to store information about active users of the
application. passport officially becomes middleware by telling Express.js to initialize
and use it on this line. Because sessions were set up before this line, I instruct Express.js
to have passport use those preexisting sessions for its user data storage.

I set up the default login strategy, provided through the passport-local-mongoose module
that I’ll soon add to the User model, to enable authentication for users with passport. The
last two lines allow passport to compact, encrypt, and decrypt user data as it’s sent
between the server and client.

const passport = require("passport"),
 cookieParser = require("cookie-parser"),
 expressSession = require("express-session"),
 User = require("./models/user");

router.use(cookieParser("secretCuisine123"));
router.use(expressSession({
 secret: "secretCuisine123",
 cookie: {
 maxAge: 4000000
 },
 resave: false,
 saveUninitialized: false
}));
router.use(passport.initialize());
router.use(passport.session());
passport.use(User.createStrategy());

Listing 25.4 Adding passport with Express.js in main.js

Configure
cookieParser
with a secret key.

Configure
Express.js to
use sessions.

Configure Express.js
to initialize and
use passport.

Instruct passport to
use sessions.

Set up the default login strategy.

289Adding flash messaging
passport.serializeUser(User.serializeUser());
passport.deserializeUser(User.deserializeUser());

NOTE I need to make sure that the User model is required in main.js before I can use
the createStrategy method. This method works only after I set up the User model with
passport-local-mongoose.

With this configuration set up, I can move to the User model in user.js to add passport-
local-mongoose. I need to require passport-local-mongoose in my User model by adding
const passportLocalMongoose = require("passport-local-mongoose") to the top of user.js.

In this file, I attach the module as a plugin to userSchema, as shown in listing 25.5. This
line sets up passportLocalMongoose to create salt and hash fields for the User model in my
database. It also treats the email attribute as a valid field for logging in an authenticat-
ing. This code should be placed just above the module.exports line.

userSchema.plugin(passportLocalMongoose, {
 usernameField: "email"
});

NOTE With this addition to my User model, I no longer need the plain-text password prop-
erty in the user schema. I’ll remove that property now, as well as the password table row on
the user show page.

In the next section, I modify the create action in usersController.js to use passport for
registering new users, and I set up flash messaging so that the user will know whether
account creation is successful.

25.4 Adding flash messaging

With sessions and cookies ready to attach data to the request and respond to the user,
I’m ready to integrate flash messaging by using connect-flash. To configure connect-
flash, I need to require it in main.js as a constant, called connectFlash, by adding the fol-
lowing line: const connectFlash = require("connect-flash"). Then I tell my Express.js
app to use it as middleware by adding router.use(connectFlash()) to main.js.

Listing 25.5 Adding passport-local-mongoose as a plugin to the User model

Set up passport to compact, encrypt,
and decrypt user data.

Add the passport-local-
mongoose module as a
user schema plugin.

290 Lesson 25 Capstone: Adding user authentication to Confetti Cuisine
Now that the middleware is installed, I can call flash on any request in my application,
which allows me to attach messages to the request. To get these request flash messages
to my response, I add some custom middleware in main.js, as shown in listing 25.6. By
telling the Express.js app to use this custom middleware, I’m able to assign a local vari-
able called flashMessages to objects containing flash messages created in my controller
actions. From here, I’ll be able to access the flashMessages object in my views.

router.use((req, res, next) => {
 res.locals.flashMessages = req.flash();
 next();
});

Because I want flash messages to appear on every page, I’ll add some code to my layout
.ejs file to look for flashMessages and display them if they exist. I’ll add the code in list-
ing 25.7 to layout.ejs above the <%- body %>.

I intend to show only success and error messages. First, l check whether flashMessages is
defined; then I display success messages or error messages that are attached to the
object.

<div class="flashes">
<% if (flashMessages) { %>
 <% if (flashMessages.success) { %>
 <div class="flash success"><%= flashMessages.success %></div>
 <% } else if (flashMessages.error) { %>
 <div class="flash error"><%= flashMessages.error %></div>
 <% } %>
<% } %>
</div>

Finally, I test this newly added code by modifying my user’s create action to use
passport and flash messaging by adding the code in listing 25.8 to usersController.js.
The create action uses the register method provided by Passport.js to create a new user
account. The result is a user document in my database with a hashed password and salt.
If the user is saved successfully, I add a success flash message to be displayed in the
index view. Otherwise, I show an error message on the user creation page.

Listing 25.6 Adding custom middleware to use flash messaging in main.js

Listing 25.7 Adding logic to use flash messaging in layout.ejs

Assign flash
messages to a
local variable.

Display flash
messages in the view.

291Adding validation middleware with express-validator
create: (req, res, next) => {
 if (req.skip) next();

 let newUser = new User(getUserParams(req.body));

 User.register(newUser, req.body.password, (e, user) => {
 if (user) {

req.flash("success", `${user.fullName}'s account
➥ created successfully!`);

res.locals.redirect = "/users";
next();

 } else {
req.flash("error", `Failed to create user account

➥ because: ${e.message}.`);
res.locals.redirect = "/users/new";
next();

 }
 });
}

With this action in place, I’m ready to demo my new Passport.js registration process
with flash messaging. Next, I add some custom validations before users are created.

25.5 Adding validation middleware with express-validator

The express-validator module provides useful methods for sanitizing and validating data
as it enters this application. I start by requiring the module in main.js by adding const
expressValidator = require("express-validator") and telling my Express.js application to
use this module as middleware by adding router.use(expressValidator()) to the same file.

I know that I want data to pass through some middleware validation function before it
reaches the create action in the usersController, so I change my /users/create route to
take that requirement into consideration, as shown in listing 25.9. This validate action
lives in usersController and runs before the create action, which ensures that my cus-
tom validation middleware filters bad data before it gets a chance to reach my User
model.

Listing 25.8 Adding passport registration and flash messaging in the create
action

Add the create action
to register users.

Respond with
flash messages.

292 Lesson 25 Capstone: Adding user authentication to Confetti Cuisine
router.post("/users/create", usersController.validate,
➥ usersController.create, usersController.redirectView);

Then I create the validate action in usersController.js by using the code in listing 25.10.
This validate action parses incoming requests and cleans the data in the request body. In
this case, I’m trimming whitespace from the first and last name fields.

I use some other methods provided by express-validator to keep the emails in my data-
base consistent and the ZIP codes at the required length. I’ll also check to make sure that
users entered some password when they signed up. I collect any errors that may have
occurred during the validation steps. Then I concatenate the error messages into a single
string. I set a property on the request object, req.skip = true, so that I skip the create
action and go directly back to the view. All flash messages display in the users/new view.
If there are no errors, I call next to move to the create action.

validate: (req, res, next) => {
 req
 .sanitizeBody("email")
 .normalizeEmail({

all_lowercase: true
 })
 .trim();
 req.check("email", "Email is invalid").isEmail();
 req
 .check("zipCode", "Zip code is invalid")
 .notEmpty()
 .isInt()
 .isLength({

min: 5,
max: 5

 })
 .equals(req.body.zipCode);
 req.check("password", "Password cannot be empty").notEmpty();
 req.getValidationResult().then((error) => {
 if (!error.isEmpty()) {

let messages = error.array().map(e => e.msg);

Listing 25.9 Adding a validation action before create in main.js

Listing 25.10 Adding a validate action in usersController.js

Add validation
middleware to the
user create route.

Add the validate action.

Sanitize and check
input field data.

293Adding authentication with Passport.js
req.skip = true;
req.flash("error", messages.join(" and "));
res.locals.redirect = '/users/new';
next();

 } else {
next();

 }
 });
}

The application is ready to validate data for user creation. The last step is connecting my
login form to an authentication action I set up earlier.

25.6 Adding authentication with Passport.js

Passport.js makes my life easier by providing some default methods to use as middle-
ware on requests. When I added passport-local-mongoose, my User model inherited
even more useful methods than passport offered alone. Because the passport-local-
mongoose module was added as a plugin on the User model, a lot of the authentication
setup was taken care of behind the scenes.

The register method is one of the most powerful and intuitive methods provided by
passport. To use it, I need to call passport.register and pass the login strategy that I plan
to use. Because I’m using the default local strategy, I can create my authenticate action
in usersController.js to use the passport.authenticate method as shown in listing 25.11.

NOTE I need to make sure that const passport = require("passport") is at the top
of my users controller.

This action points directly to the passport.register method. I’ve already created a local
strategy for my User model in main.js and told passport to serialize and deserialize user
data upon successful authentication. The options I add here determine which path to
take if authentication succeeds or fails, with flash messages to go along.

authenticate: passport.authenticate("local", {
 failureRedirect: "/users/login",
 failureFlash: "Failed to login.",
 successRedirect: "/",
 successFlash: "Logged in!"
})

Listing 25.11 Adding an authenticate action in usersController.js

Collect errors, and
respond with flash
messages.

Add authentication
middleware with
redirect and flash-
message options.

294 Lesson 25 Capstone: Adding user authentication to Confetti Cuisine
I’m ready to test authentication with my login form at /users/login. Everything should
be working at this point to log an existing user into the application. I need only to put
some finishing touches on my layout file and add a logout link.

25.7 Logging in and out

I’ve already gotten the login process working. Now I’d like to add some visual indica-
tion that a user is logged in. First, I set up some variables that help me know whether
there’s an unexpired session for a logged-in user. To do so, I add the code in listing 25.12
to my custom middleware, where I added the flashMessages local variable, in main.js.

With this middleware function, I have access to loggedIn to determine whether an
account is logged in via the client from which the request was sent. isAuthenticated tells
me whether there’s an active session for a user. currentUser is set to the user who’s
logged in if that user exists.

res.locals.loggedIn = req.isAuthenticated();
res.locals.currentUser = req.user;

Now I can use these variables by adding the code in listing 25.13 to the navigation bar in
my layout. I check to see whether loggedIn is true, telling me that a user is logged in. If
so, I display the fullName of the currentUser linked to that user’s show page and a logout
link. Otherwise, I display a sign-in link.

<div class="login">
 <% if (loggedIn) { %>

<p>Logged in as
<a href="<%=`/users/${currentUser._id}`%>">

 <%= currentUser.fullName %>
Log out

 </p>
 <%} else {%>
 Log In
 <% } %>
</div>

Listing 25.12 Adding local variables to the response through middleware

Listing 25.13 Adding a login status to my navigation bar in layout.ejs

Set up the currentUser variable
to reflect a logged-in user.

Set up the loggedIn
variable to reflect
passport login
status.

Check whether a
user is logged in.

Display the current user’s
name and logout link.

295Logging in and out
Finally, with my /users/logout route already in place, I need to add the logout action to
my usersController, as shown in listing 25.14. This action uses the logout method on the
incoming request. This method, provided by passport, clears the active user’s session.
When I redirect to the home page, no currentUser exists, and the existing user is success-
fully logged out. Then I call the next middleware function to display the home page.

logout: (req, res, next) => {
 req.logout();
 req.flash("success", "You have been logged out!");
 res.locals.redirect = "/";
 next();
}

With this last piece working, I can tell my contacts at Confetti Cuisine to advertise user
accounts. When they log in successfully, the screen will look like figure 25.1. I’m confi-
dent that the registration and login process is safer, more reliable, and more intuitive
than it was before.

Listing 25.14 Adding a logout action to usersController.js

Add an action to
log users out.

Figure 25.1 Successful login on Confetti Cuisine

296 Lesson 25 Capstone: Adding user authentication to Confetti Cuisine
Summary

In this capstone exercise, I improved the Confetti Cuisine application by adding a few
packages to make incoming data secure and more transparent to the user. With sessions
and cookies installed, I’m able to use packages like passport and connect-flash to share
information between the server and client about a user’s interaction with the Confetti
Cuisine application. I added encryption to user passwords and two new user attributes
set up by the passport-local-mongoose plugin on the User model. With stricter valida-
tions, my custom validate action serves as middleware to filter unwanted data and
make sure form data meets my schema requirements. Last, with authentication in place,
passport offers a way to track which users are logged in to my application, allowing me
to cater specific content to registered users who are actively involved. In the next unit,
I’ll add a few features to search content within the application, and in doing so, build an
API on the server.

297

U
N

IT
 6

Building an API

In unit 5, you added some new features to allow
users to log in to your application securely. This
addition allows you to start distinguishing content
that you’d like to show only to logged-in users, not
the general public. After all, you probably want
users to be able to delete only their own content, not
that of others. These improvements increase the
possibilities of browser interaction by your users.
Internet browsers, however, are only one of many
types of clients that may want to interact with your
data.

In this lesson, I discuss how to make better use of
your application programming interfaces (APIs).
An API is the method through which clients can
interact with your application data. Currently, that
interaction is through rendered HTML pages, avail-
able to only web clients, though you may want to
modify your controller actions to respond to differ-
ent types of requests with various formats of the
same data. You can use other data formats through
XML or JSON. You may want to access the course
listings from within a user’s edit page without
switching views, for example. Maybe you have
unsaved content in the edit form, and you’d like to
look quickly at the list of courses without having to
update your user data.

298 Unit 6 Building an API
In the first lesson, you set up a basic API with RESTful routes to respond with course
listings in JSON format. Then you use client-side JavaScript to display the data on the
screen. At the end of the unit, you’ll apply some security barriers to your API to prevent
unwanted requests from getting access to your database.

This unit covers the following topics:

 Lesson 26 introduces you to the way APIs are used in the tech industry and ways
of responding with different data formats. In this lesson, you organize your
routes for a more maintainable API and use query params to determine the type
of data with which you respond.

 Lesson 27 shows how to use AJAX through the client-side JavaScript to load data
in a view without refreshing the page. In this lesson, you create a new route and
handle incoming requests to a /api namespace.

 Lesson 28 guides you through basic approaches you can take to secure your API
when there’s no way to sign in users visually.

Lesson 29 wraps up the unit by providing the steps you need to make AJAX requests to
load Confetti Cuisine course data from the user’s profile page. Then you can enroll a
user without leaving the profile page.

26LESSON
ADDING AN API TO YOUR APPLICATION

In this lesson, you take a first look at reorganizing your routing structure and respond-
ing with data. First, you create new folders to house the routes you’ve built in main.js.
The new structure follows some of the application programming interface (API) con-
ventions you set up in earlier lessons. Next, you modify some controller actions to
respond with Embedded JavaScript (EJS) and JSON, depending on the query parame-
ters. Last, you test your new API connection by creating an Ajax GET request from your
client-side JavaScript.

This lesson covers

 Organizing your routes with namespacing
 Creating API endpoints to respond with JSON
 Making Ajax requests from your views

Consider this Your recipe application renders many pages and offers specific func-
tionality on each page. To make the user experience less complicated, you’d like to allow
users to view available programs from their profile pages. To do so, you decide to condi-
tionally serve data in JSON format and display that data through JavaScript and HTML
on the client. When you modify your controller actions, your application can offer an API
that goes beyond serving web pages.
299

300 Lesson 26 Adding an API to your application
26.1 Organizing your routes

As your application grows, the routes in your main.js file start to overwhelm other mid-
dleware and configurations. Routes are important parts of your application, and keep-
ing your routes organized in a way that multiple developers can manage and
understand is arguably as important.

To start this lesson, you break down the routing structure you’ve set up in an easy-to-
follow directory structure. In units 4 and 5, you created routes to reflect CRUD function-
ality in what’s called a REST architecture. Representational state transfer (REST) is a way
of programming your application to represent the involvement of its resources across
the web. Your application’s resources are the users, subscribers, and courses stored in
the database and displayed in the views. You implemented a RESTful structure by con-
structing your routes to contain the model name, HTTP method, action being per-
formed, and model ID if necessary. router.get("users/:id/edit" , usersController
.edit) tells you that an HTTP GET request was made to the users/:id/edit path, for
example.

These routes make it easy for users to know exactly what information is needed to get
the data they want to see—in this case, an edit form for an existing user. From the path
alone, you know that you’re trying to edit a specific user record. From there, you can
connect to the appropriate action and redirect to another RESTful route.

NOTE Redirecting is often a secondary action when you’re creating or updating informa-
tion in the database. After arriving at the initial controller action to modify data, you redirect
to another route to send the user to another page to view.

In this section, you reorganize your routes into individual modules to reflect the models
that they use. This structure will be useful when you decide to expand the types of
routes and response data you use in the application.

Start by creating a new folder called routes at the root level of your project and create
the following new modules within that folder:

 userRoutes.js
 courseRoutes.js
 subscriberRoutes.js
 errorRoutes.js
 homeRoutes.js
 index.js

301Organizing your routes
These six modules will divide the routes that are currently in main.js. For now, focus on
the user routes.

Start by requiring the Express.js Router and the usersController at the top of the module.
Then import the login routes and CRUD routes, and add them to the local router object.
Doing so allows these routes to be handled by the same router. With all the working
routes attached to the router, you can export the router object. Notice in this example that
you’re leaving users out of the path. You’ll define that part of the path in index.js later.

Copy all the routes in main.js that pertain to the user (CRUD operations, login, and
authentication), and move them into userRoutes.js, as shown in the next listing.

const router = require("express").Router(),
 usersController = require("../controllers/usersController");

router.get("/", usersController.index,
➥ usersController.indexView);
router.get("/new", usersController.new);
router.post("/create", usersController.validate,
➥ usersController.create, usersController.redirectView);
router.get("/login", usersController.login);
router.post("/login", usersController.authenticate);
router.get("/logout", usersController.logout,
➥ usersController.redirectView);
router.get("/:id/edit", usersController.edit);
router.put("/:id/update", usersController.update,
➥ usersController.redirectView);
router.get("/:id", usersController.show,
➥ usersController.showView);
router.delete("/:id/delete", usersController.delete,
➥ usersController.redirectView);

module.exports = router;

Listing 26.1 Moving user routes to userRoutes.js

Require Express.js
Router and users
controller.

Add CRUD routes.

Add login and
authentication
routes.

Export the
module router.

302 Lesson 26 Adding an API to your application
Follow the same strategy for the other route files. Subscriber routes go in subscriber-
Routes.js, and error routes go in errorRoutes.js.

The index.js module requires all route modules to be in one place. This convention
makes it easier to identify all the route types in one file and requires only a single file
into main.js. As with the route modules, you require the Express.js Router in index.js.
Next, require each relative route module. With those modules added, tell the local
router object to use those routes with specific namespaces.

For the home and error routes, no namespace is necessary. By adding the /users name-
space for the user routes defined in listing 26.1, you return to the original functionality
of your routes. The last step is requiring this index.js module in main.js. Add const
router = require("./routes/index") to the top of main.js and app.use("/", router) after
your middleware functions.

To tie all these routes to the same router used by your application, add the code in the
next listing to index.js.

const router = require("express").Router(),
 userRoutes = require("./userRoutes"),
 subscriberRoutes = require("./subscriberRoutes"),
 courseRoutes = require("./courseRoutes"),
 errorRoutes = require("./errorRoutes"),
 homeRoutes = require("./homeRoutes");

router.use("/users", userRoutes);
router.use("/subscribers", subscriberRoutes);
router.use("/courses", courseRoutes);

Listing 26.2 Importing all routes into index.js

Namespaces
Namespacing is a way of defining routes, paths, and other application items under the
umbrella of a specific string or path. Instead of defining dozens of routes with the same
path prefix, /users, you can make that prefix a namespace for those routes.

Namespacing is particularly helpful in separating routes in your API based on the format
of the content returned. If an iOS application wants to access the data in your recipe
application, for example, you might create specific routes with the namespace /ios.
Then you could define paths such as /ios/courses and /ios/subscribers. Through the
routes defined under this namespace, the iOS application can access data.

Require the
Express.js Router.

Require all the
route modules
within the same
directory.

Use the routes
from the relative
route modules
with namespaces.

303Organizing your routes
router.use("/", homeRoutes);
router.use("/", errorRoutes);

module.exports = router;

NOTE Order matters. Make sure to have the more-detailed routes closer to the top of
index.js. Otherwise, the error routes will handle all incoming requests before they can
reach the routes you intended.

The Express.js router object operates through middleware. Within it, you can define
specific tasks that you want to perform on incoming requests. In this case, you’re using
router to load routes under different namespaces. As with other middleware, if you
want the router middleware to be part of the main application’s middleware flow, you
need to add it with app.use. In main.js, remove all the controllers’ require statements, as
well as the require statement for express.Router(). The rest of the middleware in main.js
is used by the app object.

NOTE It’s important to change all remaining middleware in main.js to be used by app
instead of router because you’ll want the app to parse requests and use your templating
engine before the request reaches your router at the bottom of the file. Order of middle-
ware matters!

Restart your application, and confirm the original functionality of your application is
intact. If you get any errors or if some routes aren’t found, make sure that all the route
namespaces are defined correctly and that the resource name prefixes are stripped from
the original paths. Under the new namespace, your user index route, for example,
should read router.get("/", usersController.index, usersController.indexView) instead
of router.get("/users" , usersController.index, usersController.indexView).

In the next section, you learn how to use your existing routes to return two types of data
formats.

Export the router
from index.js.

Quick check 26.1 Why do you add app.use("/", router) in main.js?

QC 26.1 answer When the router is defined in main.js, you need to tell the Express.js application to
use it as middleware.

304 Lesson 26 Adding an API to your application
26.2 Creating an API

An API is a structure set up within your application to allow external sources to access
your application data. In effect, you’ve already built an API by creating your Express.js
web server. By serving HTML and EJS, you’ve provided an avenue through which users
of your application can access your data: the web browser. Not every user, however, will
want to see your application data exclusively through the browser on a web page with
the styling and formatting you’ve applied.

Think of your current Express.js application as being like a restaurant menu. It’s likely
that most people will refer to the printed menu to find out what food items a restaurant
offers. Getting access to the hard-copy menu requires traveling to the restaurant itself.
By providing a phone number to call to inquire about menu items and a website to dis-
play the restaurant’s menu, you give customers more options to get the information
they need. Similarly, a robust API provides application data in different formats that
you access in different ways.

In this section, you reconstruct some of your application routes and actions to respond
with data in JSON format in addition to rendered EJS views. Responding with JSON is
simple in Express.js. Change the res.render("courses/index") line in the indexView action
of coursesController.js to res.json(res.locals.courses). When you restart your applica-
tion and visit http:// locatlhost:3000/courses, your browser should display all the courses
in your database in JSON format (figure 26.1).

This output should resemble the output from your MongoDB server when you run
mongo in a new terminal window: use recipe_db and db.courses.find({}), as shown in
figure 26.2. Running these commands starts your MongoDB environment and lists all
the courses in your recipe database. In the application, you’re essentially showing the
full database documents in the browser.

Figure 26.1 Display of JSON course results in browser

http://locatlhost:3000/courses

305Creating an API
You can further improve the index action by responding with JSON only when
requested. You can accomplish this task in many ways. One way is to use query params.
In this code, you perform a check for the format query param. If it exists and equals json,
respond with the course data in JSON format. Otherwise, respond with a rendered EJS
view as usual. Change the courses indexView action to the code in the next listing.

indexView: (req, res) => {
 if (req.query.format === "json") {
 res.json(res.locals.courses);
 } else {
 res.render("courses/index");
 }
}

Restart your application, and visit http:// localhost:3000/courses to ensure that your
original EJS index view is still rendering. To display JSON data instead of the normal
view, append ?format=json to the end of your URL: visit http:// localhost:3000/courses?
format=json. This additional query parameter tells your courses controller to render
data in JSON format instead of EJS.

With this change in place, if an external application wants to access the list of courses, it
can make a request to the URL with the query parameter. External applications are only
one group of consumers that can benefit from this implementation, though. You can use

Listing 26.3 Responding with JSON when query param exists in
usersController.js

Figure 26.2 Display of courses in MongoDB

Respond with JSON if the
format query param
equals json.

Respond with an EJS view
if the format query param
doesn’t equal json.

http://localhost:3000/courses
http://localhost:3000/courses?format=json
http://localhost:3000/courses?format=json

306 Lesson 26 Adding an API to your application
this data endpoint from within your own application in many ways. (An API endpoint is
a reference to one or more application paths whose routes accept web requests.)

26.3 Calling your API from the client

In the restaurant analogy, a menu’s items could be made available through different
media: print, phone, or web. This variety makes it easier for customers to learn more
about the food served in the restaurant and also could make it easier for restaurant staff
to access the menu items more quickly. After all, pulling up a web page is a convenient
alternative to finding a menu on a busy night.

In many places within your application, you could benefit from application routes that
return JSON data. Primarily, you could benefit by making Ajax requests from the client
to access data from pages you don’t want to refresh. What if you want users to be able to
view the course listings without having to change their current page, for example?

Implement a solution by populating a modal (a window that overlays the main browser
screen with some instruction or content) with course data via an Ajax request. To start,
create a partial view called _coursesModal.ejs in the views/courses folder. Use a simple
bootstrap modal, as shown in the next listing.

In this modal, you have a button that triggers a modal to appear. The modal has a tag
with the modal-body class. Target this class to populate course data.

<button id="modal-button" type="button" data-toggle="modal"
➥ data-target="#myModal">Latest Courses</button>

<div id="myModal" class="modal fade" role="dialog">
 <div class="modal-dialog">
 <div class="modal-body">

Listing 26.4 Simple bootstrap modal in _coursesModel.ejs

Quick check 26.2 What method do you use on the response to send data as JSON back to
the client?

QC 26.2 answer In Express.js, you can use res.json followed by the parameters you’d like to send
in JSON format.

Add a modal where you’ll
populate modal-body.

307Calling your API from the client
 </div>
 <div class="modal-footer">

<button type="button" data-dismiss="modal">Close</button>
 </div>
 </div>
</div>

Include this partial view in your layout.ejs file so that you can access it from anywhere
in your application by adding <%- include courses/_coursesModal %> as an item
in your layout’s navigation. To get this modal to work, you also need to have the boot-
strap client-side JavaScript as well as jQuery. You can get the minified code for
jQuery.min.js at https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js and
bootstrap.min.js at https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap
.min.js.

NOTE I recommend copying the code from this content delivery network and saving the
code locally to files with the same name in public/js.

Then, in layout.ejs, link to these JavaScript files, as shown in the following listing.

<script type="text/javascript" src="/js/jquery.min.js"></script>
<script type="text/javascript" src="/js/bootstrap.min.js"></script>

With a few styling changes, you can restart your application. You should see a button in
your top navigation bar that opens a modal, as shown in figure 26.3.

To give this modal some data, create recipeApp.js in your public folder’s js folder. This
JavaScript file will run on the client side. Make sure that this file is linked in your layout
.ejs file below bootstrap and jQuery by adding <script type="text/javascript"
src="/js/recipeApp.js"></script>.

Within recipeApp.js, add the code in listing 26.6. You wrap the code block in $(document)
.ready to ensure that no JavaScript is run until the DOM is loaded and ready. Then you
add a click listener on the modal-button ID. When that button is clicked in the navigation
bar, perform an Ajax GET request, using $.get to the /courses?format=json path. With the
added query param, you expect the response to include data as an array in JSON. Then
you loop through that array to access individual course records and use $(".modal-
body").append to add some HTML with each course’s title and description.

Listing 26.5 Import jquery and bootstrap into layout.ejs

Add local JavaScript
files from public/js.

https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js
https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js
https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js

308 Lesson 26 Adding an API to your application
$(document).ready(() => {
 $("#modal-button").click(() => {
 $(".modal-body").html('');
 $.get("/courses?format=json", (data) => {

data.forEach((course) => {
$(".modal-body").append(

`<div>

${course.title}

<div class="course-description">
${course.description}
</div>
</div>`

);
});

 });
 });
});

Listing 26.6 Ajax function to load data in modal in recipeApp.js

Figure 26.3 Simple modal button in navigation bar

Wait for DOM to load.
Listen for a click
event on the
modal button. Clear the modal

from any
previous content.

Request data from
/courses?format=js
on asynchronously.

Loop through
array of data in
the response.

Append each course
to the modal.

309Calling your API from the client
With this Ajax request in place, restart the application and load course data into the modal.
Clicking the modal button fetches new data from the server, as shown in figure 26.4.

Now users can view the list of courses from any page. Even if new courses are added to
the database, clicking the modal button fetches that new list.

Figure 26.4 Populating course data within modal

Ajax
Asynchronous JavaScript and XML (Ajax) is a technology that allows client-side requests
to be made asynchronously without interfering with any behavior or display of the appli-
cation page. Ajax uses JSON and XML to format data and requests to be sent to a
server. By managing only the data layer of an application on your browser, Ajax allows
you to make a request asynchronously and handle data in the resulting response
through a callback function.

Because of the way that Ajax interacts with a backend server without the need to reload
your web page, it’s widely used to update content dynamically in real time. Through mul-
tiple Ajax requests, a web page theoretically might never have to reload.

310 Lesson 26 Adding an API to your application
Summary

In this lesson, you learned about modifying your application route structure to make
room for an extensive API. First, you reorganized your routes into individual modules.
Next, you added a way to respond with JSON data from your controller action. Last,
you added client-side JavaScript to make asynchronous requests to your server from
within a view. In lesson 27, you explore namespacing further and see ways in which you
can enroll users in courses from the modal itself.

Try this

With one action modified to respond with JSON data, try applying the same technique
to other actions. Start by adding the query param condition to the other model index
actions; then implement it for the show actions.

Keep in mind that the show actions return individual records, not arrays.

Quick check 26.3 What do you expect will happen if there are no courses in the database
when you make an Ajax request?

QC 26.3 answer The Ajax request returns an array of items from the database. If there are no
records, the response contains an empty array.

27LESSON
ACCESSING YOUR API FROM YOUR
APPLICATION

In this lesson, you change the way that you access JSON-formatted data by adding an
API namespace. Then you modify your AJAX function to allow users to join courses
directly from a modal. Last, you create the action to link users and courses through a
new route.

This lesson covers

 Creating an API namespace
 Building a UI modal to fetch data asynchronously
 Connecting models with MongoDB methods

Consider this Users can now view course listings from any page on your application,
but they want to do more than view that list. With AJAX requests, you can not only pull
data asynchronously into the page, but also perform other actions, such as creating
new records and editing existing records.

In this lesson, you explore ways in which you can make better use of your API and how
AJAX can help.
311

312 Lesson 27 Accessing your API from your application
27.1 Applying an API namespace

I discussed namespacing in lesson 26. Now you’re going to implement a namespace for
API endpoints that return JSON data or perform actions asynchronously. To get started,
create a new route module called apiRoutes.js in your routes folder. This module will
contain all the API routes with JSON response bodies. Require this new module in
index.js by adding const apiRoutes = require("./apiRoutes"). Then tell your router to
use this module under the api namespace with router.use("/api", apiRoutes).

NOTE You must add this new route above the home and error routes. Those routes are
namespaced for /, meaning that any URL entered that doesn’t match a route name before
reaching the error or home routes defaults to an error page.

Create your first route, and have it point to your coursesController.js. Add the code in
listing 27.1 to apiRoutes.js. Require the Express.js router along with your courses con-
troller at ../controllers/coursesController. Then point GET requests to the /courses path
to the index action of coursesController.js and export the router, followed by respond-
JSON. As with your other error-handling middleware, tell this router to use errorJSON in
case actions run earlier don’t return a response.

NOTE If an action doesn’t explicitly respond to the client, the connection is still open, and
the request continues to flow through the chain of middleware functions. Typically, this situa-
tion means that an error has occurred, and that error will propagate through until error-
handling middleware catches it.

const router = require("express").Router(),
 coursesController =
➥ require("../controllers/coursesController");

router.get("/courses", coursesController.index,
➥ coursesController.respondJSON);
router.use(coursesController.errorJSON);

module.exports = router;

To get this code to work, create the respondJSON and errorJSON actions in courses-
Controller.js. Add the code in listing 27.2 to the courses controller for this action.

The index action in coursesController.js already attaches courses to the response’s locals
object. Take that locals object and display it in JSON format instead of rendering the

Listing 27.1 Adding a route to show all courses in apiRoutes.js

Require courses
controller.

Add API error-handling
middleware.

Add the API route
to the Express.js
Router.

313Applying an API namespace
data in EJS. If an error occurs in the courses query, pass the error to your errorJSON
action. Your normal errors controller actions respond only with browser views. If an
error occurs, instead of redirecting to another page, respond with a status code of 500,
indicating that an internal error has occurred.

respondJSON: (req, res) => {
 res.json({
 status: httpStatus.OK,
 data: res.locals
 });
},

errorJSON: (error, req, res, next) => {
 let errorObject;

 if (error) {
 errorObject = {

status: httpStatus.INTERNAL_SERVER_ERROR,
message: error.message

 };
 } else {
 errorObject = {

status: httpStatus.INTERNAL_SERVER_ERROR,
message: "Unknown Error."

 };
 }

 res.json(errorObject);
},

NOTE You will also need to add const httpStatus = require("http-status-codes")
to the top of coursesController.js.

Restart your application, and visit http:// localhost:3000/api/courses in your browser to
see course data in JSON. Having these routes and controllers separate from your web
application routes and controllers prevents you from making mistakes in the future. As
things stand now, you always want to render EJS or redirect if you visit /courses, and
you always expect a JSON response from/api/courses.

With this new API namespace, route, and controller action in place, change the AJAX
GET request in recipeApp.js to call /api/courses instead of /courses?format=json. Then

Listing 27.2 Adding JSON responses for courses in coursesController.js

Handle the request from
previous middleware,
and submit response.

Respond with the
response’s local data
in JSON format.

Respond with a 500
status code and
error message in
JSON format.

http://localhost:3000/api/courses

314 Lesson 27 Accessing your API from your application
remove the conditional block checking for the format query param in your courses
indexView action. Restart your application, and check whether you can still load the
course data in the modal.

Also, because you’re now returning your data wrapped in another JavaScript object con-
taining your status code, you need to modify your AJAX call to handle returned data
properly. Change the AJAX call in recipeApp.js as shown in the next listing.

$.get("/api/courses", (results = {}) => {
 let data = results.data;
 if (!data || !data.courses) return;
 data.courses.forEach((course) => {
 $(".modal-body").append(

`<div>

${course.title}

<div class='course-description'>
${course.description}
</div>
</div>`

);
 });
});

Restart your application, and click the modal button to see that functionality hasn’t
changed from the last section.

In the next section, you add more functionality to the modal to allow users to join
courses.

Listing 27.3 Modifying AJAX call in recipeApp.js

Set up a local variable
to represent data.

Check that the data
object contains
course information.

Loop through
course data, and
add elements to
modal.

Quick check 27.1 Why do you create a new folder for API controllers?

QC 27.1 answer Having a separate folder for API controllers and actions makes it easier to split
the application in two. One part of the application serves data with a visual aspect, and the other serves
data to sources looking for the raw data.

315Joining courses via modal
27.2 Joining courses via modal

Listing the courses in a modal is a great accomplishment. In this section, you improve
the modal even more by allowing users to join a course asynchronously through the
modal. Add a button that allows users to join the course. Through AJAX, you submit a
request to an API endpoint where a controller action attempts to add the user to the
course and responds with a success or failure message in JSON.

First, add the link to join the course by adding the HTML code in listing 27.4 to the bot-
tom of the HTML rendered from the original AJAX call in recipeApp.js. This button
needs a custom class join-button and can be placed next to the course title in the modal.
It also needs the data-id set to ${course._id}, which allows you to know which course
listing you selected.

NOTE The data attribute in HTML is helpful in situations like these. You can mark each
button with a data-id attribute so that each button’s unique ID matches some correspond-
ing course ID.

<button class="join-button" data-id="${course._id}">
 Join
</button>

If you restart the application now, you should see a button next to each course item, as
shown in figure 27.1. These buttons don’t have any functionality yet, though.

To get these buttons to work, change the code in recipeApp.js to use the code in listing
27.5. In this example, you create a function called addJoinButtonListener that sets up a
click-event listener for each button with the class join-button. You need to call this func-
tion right after the AJAX request completes because you want to attach the listener to
the buttons after they’re created on the page. To do this, append a then block to the
AJAX request.

NOTE AJAX functions use promises, so you can chain then and catch blocks to the end
of requests to run code after you get a response. The success block behaves the same way.

In addJoinButtonListener, you grab the target of the click—the button—and then pull the
data ID you set earlier with the course’s ID. With this information, you can make a new
AJAX GET request to the /api/courses/:id/join endpoint. For this request to work, you

Listing 27.4 Adding a button to join a course in recipeApp.js

Add a button with
target-class join-button
to join a course.

316 Lesson 27 Accessing your API from your application
need to make sure that the user is logged in. This route allows you to target specific
courses to join by using the course ID.

The route and action that handle that request return the JSON value success: true if
you’re able to add the user to the course. If you’re successful, change the text and color
of the button to indicate that the user has joined by adding a new joined-button class
and removing the old join-button class. This swapping of classes allows you to style
each button with different style rules in recipe_app.css and also prevents the click event
from triggering another request. If you don’t see the color of the button change, make
sure that you’re targeting the correct button class. If joining the course results in an
error, change the button’s text to tell the user to try again.

NOTE The variable $button has only the $ in front to indicate that it represents a jQuery
object. This syntax is stylistic and conventional but not required to get your code to work.

$(document).ready(() => {
 $("#modal-button").click(() => {
 $(".modal-body").html("");
 $.get("/api/courses", (results = {}) => {

let data = results.data;
if (!data || !data.courses) return;
data.courses.forEach((course) => {

$(".modal-body").append(

Listing 27.5 Adding an event listener to each button in recipeApp.js

Figure 27.1 Adding a join button

317Joining courses via modal
`<div>

${course.title}

<button class="join-button" data-id="${course._id}">
Join
</button>
<div class="course-description">
${course.description}
</div>
</div>`

);
});

 }).then(() => {
addJoinButtonListener();

 });
 });
});

let addJoinButtonListener = () => {
 $(".join-button").click((event) => {
 let $button = $(event.target),

courseId = $button.data("id");
 $.get(`/api/courses/${courseId}/join`, (results = {}) => {

let data = results.data;
if (data && data.success) {

$button
.text("Joined")
.addClass("joined-button")
.removeClass("join-button");

} else {
$button.text("Try again");

}
 });
 });
}

Now your application is prepared to send an AJAX request and handle its response
when the join button is clicked. In the next section, you create the API endpoint to han-
dle this request.

Call addJoinButtonListener to add
an event listener on your buttons
after the AJAX request completes.

Create the event
listener for the
modal button.

Grab the button
and button ID
data.

Check whether the
join action was
successful, and
modify the button.

Make an AJAX
request with the
course’s ID to join.

318 Lesson 27 Accessing your API from your application
27.3 Creating an API endpoint to connect models

To complete the course modal, you need to create a route to handle requests made for
the current user to join a course. To do so, add router.get("/courses/:id/join", courses-
Controller.join, coursesController.respondJSON) to apiRoutes.js. This route allows get
requests to go through a join action and feed results to your respondJSON action, which
returns to the client. At the top of coursesController.js, require the User model with
const User = require("../models/user"). Then, in coursesController.js, add the join
action in listing 27.6.

In this join action, you get the current logged-in user and the course’s ID from the URL
params. If a currentUser exists, use the Mongoose findByIdAndUpdate to locate the user
object and update its courses array to contain the target course ID. Here, you use the
MongoDB $addToSet method, which ensures that the array has no duplicate IDs. If
you’re successful, add a success property to the response’s locals object, which in turn is
passed to respondJSON and passed back to the client. In case the user isn’t logged in or an
error occurs while updating the user’s association, pass an error to be handled by your
error-handling middleware.

join: (req, res, next) => {
 let courseId = req.params.id,
 currentUser = req.user;

 if (currentUser) {
 User.findByIdAndUpdate(currentUser, {

$addToSet: {

Listing 27.6 Creating an action to join a course in coursesController.js

Quick check 27.2 Why do you need to call the addJoinButtonListener function after the
modal contents are created?

QC 27.2 answer addJoinButtonListener sets an event listener for a specific class within the
modal contents. To set the listener, you must first create the content in the modal.

Add the join action to let
users join a course.

Get the course id and
current user from the
request.

Check whether
a current user
is logged in.

319Creating an API endpoint to connect models
courses: courseId
}

 })
.then(() => {

res.locals.success = true;
next();

})
.catch(error => {

next(error);
});

 } else {
 next(new Error("User must log in."));
 }
}

With this action in place, restart your application, and try joining courses in the modal.
If you’re not signed in, you may see the Try Again text appear over the button. Other-
wise, depending on your custom styling, your button should turn green and change text
for every button you click, as shown in figure 27.2.

Update the user’s
courses field to contain
the targeted course.

Respond with a JSON
object with a success
indicator.

Pass an error through
to the next middleware
function.

Respond with a JSON
object with an error
indicator.

Figure 27.2 Example modal after a course has been joined

320 Lesson 27 Accessing your API from your application
You can improve the user experience by letting users know whether they’re already part
of one or more courses in the modal.

Given your application structure and model schemas, you can filter your results by add-
ing the middleware function filterUserCourses to coursesController.js, as shown in list-
ing 27.7. In this code, you’re checking whether a user is logged in before you continue. If
a user is logged in, use the map function on your array of courses. Within this function,
look at each course and check whether its _id is found in your logged-in user’s array of
courses. The some function returns a Boolean value to let you know if a match occurs. If a
user has joined a course with ID 5a98eee50e424815f0517ad1, for example, that ID should
exist in currentUser.courses, and the userJoined value for that course is true. Last, con-
vert the courses Mongoose document object to JSON so that you can append an addi-
tional property by using Object.assign. This property, joined, lets you know in the user
interface whether the user previously joined the course. If no user is logged in, call next
to pass along the unmodified course results.

filterUserCourses: (req, res, next) => {
 let currentUser = res.locals.currentUser;
 if (currentUser) {
 let mappedCourses = res.locals.courses.map((course) => {

let userJoined = currentUser.courses.some((userCourse) => {
return userCourse.equals(course._id);

});
return Object.assign(course.toObject(), {joined: userJoined});

 });
 res.locals.courses = mappedCourses;
 next();
 } else {
 next();
 }
}

To use this middleware function, you need to add it to your APU route for /courses
before you return the JSON response. The route will look like router.get("/courses",
coursesController.index, coursesController.filterUserCourses, coursesController

Listing 27.7 Adding an action to filter courses in coursesController.js

Check whether a
user is logged in. Modify course data to

add a flag indicating
user association.

Check whether the
course exists in the
user’s courses array.

321Summary
.respondJSON), where coursesController.filterUserCourses sits after your query for
courses in coursesController.index.

The last step is changing the client-side JavaScript in recipeApp.js to check whether the
current user has already joined the course and modifying the button in the course listing
modal. In listing 27.8, you use a ternary operator in the button’s class attribute and main
text content. These operators check whether the course data’s joined property is true or
false. If the property is true, create the button to indicate that the user has already
joined. Otherwise, display a button inviting users to join.

<button class='${course.joined ? "joined-button" : "join-button"}'
➥ data-id="${course._id}">
${course.joined ? "Joined" : "Join"}

</button>

After applying these changes, relaunch your application and log in. The color and text
of your course-listing buttons will correctly reflect the status of your associations in the
database.

NOTE If you experience problems maintaining a logged-in account, make sure to use ses-
sions and cookies prior to initializing passport and your custom middleware.

Summary

In this lesson, you learned how to modify your namespacing structure to accommodate
an API for JSON data responses. You also improved your courses modal by allowing
users to join specific courses without needing to change pages. Through the AJAX
requests and API endpoints you created, more of your application’s functionality can

Listing 27.8 Adding dynamic button styling in recipeApp.js

Add the appropriate class
to reflect join status.

Add the button’s text to
reflect join status.

Quick check 27.3 Why do you need to use the findByIdAndUpdate method?

QC 27.3 answer The findByIdAndUpdate Mongoose method combines the find and update
methods, so you can conveniently perform a single step to update a user document.

322 Lesson 27 Accessing your API from your application
move to a single page and away from individual views for each action. In lesson 28, I
discuss some ways in which you can secure your API.

Try this

With this new API in place, you’ll want to create endpoints for every route that might
return data. You may want to add every index and show action to the controllers in the
api directory, for example.

Create those actions and one additional action to create a user, and return JSON with a
confirmation of success or failure instead of a rendered view.

28LESSON
ADDING API SECURITY

In this lesson, you apply a few security strategies to your API routes. Without a browser
to store cookies, some external applications may find it difficult to use your API without
a way to verify the user’s identity. First, you implement some basic security by provid-
ing an API token that must be appended to each request. Then you improve that strat-
egy by generating a unique API key for each user upon account creation. Last, you
explore JSON Web Tokens (JWT), a system of hashing user data and exchanging tokens
to authenticate user accounts without a browser.

This lesson covers

 Adding security-token-verification middleware
 Creating a pre("save") hook to generate API keys
 Implementing JWT header authentication

Consider this You built a robust API for the recipe application. Your endpoints
include routes to create new users and update existing users. Because an API endpoint
can be accessed from any device that can make an HTTP request, there’s no telling
who might make a request to your API without first creating an account and storing
session data on the server.

Having some form of security on your API routes ensures that your data doesn’t fall into
the wrong hands.
323

324 Lesson 28 Adding API security
28.1 Implementing simple security

Unit 5 guided you through user-account creation and authentication. With the help of a
few packages, you created a thorough process of validating and encrypting user data
and of ensuring that those users were authenticated before getting access to certain
pages.

Even without the help of external packages, you can take some simple steps to protect
your API. The first method you’ll use in this lesson is generating an API token that must
be used by users accessing your API. Users need to have a token because they may not
be using a browser to access the API, so your current implementation with Passport.js,
cookies, and sessions may not work with the client. An additional token reduces this
risk, ensuring that only users who make requests with a valid token can see data. You
could add app.set("token", process.env.TOKEN || "recipeT0k3n") to main.js, for exam-
ple. Then this application variable would be set to whatever you use as the TOKEN envi-
ronment variable or default to recipeT0k3n. The token could be retrieved by using
app.get("token").

Because you want to monitor incoming requests to the API in the apiRoutes module,
set the token as a constant in usersController.js in the api folder, using const token =
process.env.TOKEN || "recipeT0k3n". This token will be used by middleware within
usersController.js to verify incoming API requests. Create that middleware function
by adding the code in listing 28.1 to usersController.js.

This middleware function, verifyToken, checks for a query param called apiToken that
matches the token you set earlier. If the tokens match, call next to continue the middle-
ware chain; otherwise, pass an error with a custom message. This error reaches your
error-handling middleware and displays the message as JSON.

verifyToken: (req, res, next) => {
 if (req.query.apiToken === token) next();
 else next(new Error("Invalid API token."));
}

Listing 28.1 Adding middleware function to verify API token in
usersController.js

Create the verifyToken
middleware function with
the next parameter.

Respond with error
message if tokens
don’t match.

Call the next
middleware
function if
tokens match.

https://github.com/auth0/node-jsonwebtoken
http://localhost:3000/api/login

325Adding API tokens
To add the usersController.verifyToken middleware so that it runs before every API
request is handled, you can add router.use(usersController.verifyToken), as the first
function in apiRoutes.js. You also need to require the users controller by adding const
usersController = require("../controllers/usersController") to apiRoutes.js.

Restart your application, and when you visit http:// localhost:3000/api/courses, notice
the following error message: {"status":500, "message":"Invalid API token."}. This mes-
sage is a good sign. It means that your API validation is working because you didn’t
make a request by using a valid API token.

To bypass this message, add the apiToken query parameter. Visiting http://localhost:
3000/api/courses?apiToken=recipeT0k3n should result in a display of the original course
data in JSON format. If you choose to implement your API security this way, you need
to share this token with your trusted users. To get your AJAX requests to work, add the
?apiToken=recipeT0k3n query parameter to those URLs as well in recipeApp.js.

This simple security barrier is definitely a start, but you can imagine that it quickly
becomes an unreliable system as more users require the token to access your API. The
more users who have access to the same token, the more likely it is for that token to fall
into the hands of nonusers. When you’re quickly building an application that requires a
thin layer of security, this approach may be sufficient. When the application is live
online, however, you’ll want to modify the API security to treat each user request
uniquely.

In the next section, you explore ways to keep the token unique for each user.

28.2 Adding API tokens

You just constructed a middleware function to verify API tokens passed as query
parameters in the URL. This method is effective at securing your API, but it doesn’t pre-
vent nonusers from getting their hands on the one and only token.

Quick check 28.1 Why might you store a secret token in process.env.TOKEN?

QC 28.1 answer You can store sensitive or secret data in process.env as environmental vari-
ables. These variables are normally stored on the server but don’t need to appear in the code. This prac-
tice makes it easier to change the token directly on the server (you don’t have to change the code each
time), and it’s a more-secure convention.

http://localhost:3000/api/courses
http://localhost:3000/api/courses?apiToken=recipeT0k3n
http://localhost:3000/api/courses?apiToken=recipeT0k3n

326 Lesson 28 Adding API security
To improve this system, add a custom token to each user account. Do this by adding a
new apiToken field to the user schema that’s of type String. Next, build a pre("save")
hook on the User model to generate an API token that’s unique to that user upon account
creation. Before you get to the code, use a Node.js package to help with the token gener-
ation.

The rand-token package provides some simple tools for creating new alphanumeric
tokens of your desired length. Run npm install rand-token -S to install the rand-token
package in this project, and require it in user.js by adding const randToken = require
("rand-token").

Add the code in the next listing to user.js. This code first checks whether the user’s
apiToken field is set. If it isn’t, generate a new unique 16-character token with rand-
Token.generate.

userSchema.pre("save", function(next) {
 let user = this;
 if (!user.apiToken) user.apiToken =
➥ randToken.generate(16);
 next();
});

NOTE You can improve the functionality here by comparing the generated token with
other users’ tokens to ensure that no duplicity occurs.

Next, add the apiToken field as an item in the table on the user’s show page. This way,
when a new user visits their profile page, they’ll have access to their API token. In figure
28.1, for example, my user account has the token 2plMh5yZMFULOzpx.

To use this token, you need to modify the verifyToken middleware to check the apiToken
query param against the tokens in your database. Change verifyToken in /api/users-
Controller.js to use the code in listing 28.3.

In this modified middleware function, you grab the token as the query parameter. If a
token appears in the URL, search the user database for a single user who has that API
token. If such a user exists, continue to the next middleware function. If no user with
that token exists, if an error occurs in the query, or if no query parameter was used, pass
an error.

Listing 28.2 Creating a pre("save") hook to generate an API token in user.js

Check for an existing
API token and generate
a new one with
randToken.generate.

327Adding API tokens
verifyToken: (req, res, next) => {
 let token = req.query.apiToken;
 if (token) {
 User.findOne({ apiToken: token })

.then(user => {
if (user) next();
else next(new Error("Invalid API token."));

})
.catch(error => {

next(new Error(error.message));
});

 } else {
 next(new Error("Invalid API token."));
 }
}

Listing 28.3 Improving the token verification action in usersController.js

Figure 28.1 Displaying the API token on the user’s show page

Check whether a token exists
as the query parameter. Search for a user

with the provided
API token.

Call next if a user
with the API
token exists.

Pass an error to
error handler.

328 Lesson 28 Adding API security
Restart your application, and create a new user account. Visit that new user’s show
page, and locate the apiToken value. Then visit http:// localhost:3000/api/courses?
apiToken= followed by the API token for that user. The jon@jonwexler.com user, for
example, would use the following URL: http:// localhost:3000/api/courses?apiToken=
2plMh5yZMFULOzpx. You should see the list of courses in JSON as before.

This new system reduces the vulnerability of having a single API token for all users. With
the API token connected to a user account, you could also verify the user’s information in
your database and keep metrics on the number or quality of that user’s API requests. To
get your client-side JavaScript to use this token in your API calls, you can add a hidden
element to layout.ejs with the current user’s token. You could add <div id="apiToken"
data-token="<%= currentUser.apiToken %>" style="display: none;"> within the block to
check whether a user is logged in, for example. Then, when the document is ready in
recipeApp.js, you can locate the token, use it with let apiToken = $("#apiToken").data
("token"), and call your Ajax request on /api/courses?apiToken=${apiToken}.

Still, you can take a more-secure approach to building API authentication in which a
web browser isn’t necessarily involved. That method uses JSON web tokens (JWT).

28.3 Using JSON web tokens

You can build a secure API by using cookies, but the API’s functionality still depends on
its clients to support and store those cookies. Consider someone who writes a script to
run requests against your API solely from their terminal window, for example. In this
case, if you want to apply user authentication on incoming requests, you need some
way to keep track of which users are requesting and whether they’ve recently logged in.
Without a visual login page, that task can be difficult. You can try some alternative solu-
tions, one of which is using JSON web tokens.

JSON web tokens (JWT) are signed or encrypted data passed between the server and cli-
ent as a means of representing an authenticated user request. Ultimately, JWTs are like
sessions in a different format and used differently in web communication. You can think

Quick check 28.2 What does randToken.generate(16) do?

QC 28.2 answer This method generates a random 16-character alphanumeric token.

http://localhost:3000/api/courses?apiToken= followed
http://localhost:3000/api/courses?apiToken= followed
http://localhost:3000/api/courses?apiToken=2plMh5yZMFULOzpx
http://localhost:3000/api/courses?apiToken=2plMh5yZMFULOzpx

329Using JSON web tokens
of JWTs as being like API tokens that are regenerated on every login. JWTs contain three
parts, as defined in table 28.1.

TIP The smaller the payload, the smaller the JWT and the faster it’s sent with each
response.

These three values together offer a unique arrangement of data indicating the recent
login status for a specific user. First, the user makes a request and passes their email and
password. The server responds with an encoded JWT verifying the user’s correct login
information. For each subsequent user request, that same JWT must be sent back to the
server. Then the server verifies the JWT by decoding its values and locating the user
specified in the payload. Unlike in password encryption with Passport.js and bcrypt,
JWTs aren’t encrypted through hashing and salting. JWTs are encoded, which means
that the server can decode the JWT to reveal its contents without needing to know some
secret value set by the user.

In this section, you apply JWT API security with the help of the jsonwebtoken package.
Install the jsonwebtoken package by running npm i jsonwebtoken -S in terminal. Because
you’re going to use JWTs for user verification in the API, require jsonwebtoken in users-
Controller.js with const jsonWebToken = require("jsonwebtoken").

To use JWTs, you need to allow the user to log in without a browser. Create a new API
login action by adding the code in listing 28.4 to usersController.js.

NOTE You can find more information on the jsonwebtoken package at https://github
.com/auth0/node-jsonwebtoken.

This action uses the Passport.js local strategy that you set up in lesson 24. Through the
authenticate method, verify that the user email address and password match that of a
user in the database. Then, through a callback function, if a user is found with the
matching email and password, use jsonWebToken.sign to create a token with the user’s ID
and an expiration date set to one day from the time of signing. Finally, respond with a
JSON object with a success tag and the signed token; otherwise, respond with the error
message.

Table 28.1 Parts of JWTs

DescriptionJWT part

Header A JSON object detailing how the data in the JWT is prepared and hashed.

The data stored in the JWT, used to verify the user who previously authenticated. ThePayload
payload normally includes the user’s ID.

Signature A hashed code using the header and payload values.

https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken

330 Lesson 28 Adding API security

Auth
with
pass
auth
meth
apiAuthenticate: (req, res, next) => {
 passport.authenticate("local", (errors, user) => {
 if (user) {

let signedToken = jsonWebToken.sign(
 {
 data: user._id,
 exp: new Date().setDate(new Date().getDate() + 1)

},
"secret_encoding_passphrase"

);
res.json({

success: true,
token: signedToken

});
 } else

res.json({
success: false,
message: "Could not authenticate user."

});
 })(req, res, next);
}

Now this token can be used for 24 hours to make requests to secured API endpoints.

Next, add the following POST route to apiRoutes.js: router.post("/login", usersController
.apiAuthenticate). You can generate the token without a browser by making a POST
request to the /api/login route with your email and password in the body. To do so, run
a curl command in terminal, such as curl -d "email=jon@jonwexler.com&password=12345"
http://localhost:3000/api/login. In this example, the -d flag indicates that the user is
posting their email and password as data to the provided URL. After running this com-
mand, you should expect a response similar to the response in the next listing.

{"success":true,"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9
➥ .eyJkYXRhIjoiNTljOWNkN2VmNjU5YjMwMjk4YzkzMjY4IiwiZXhwIjox
➥ NTA2NDk2NDMyODc5LCJpYXQiOjE1MDY0MTAwMzJ9.Gr7gPyodobTAXh1p
➥ VuycIDxMEf9LyPsbrR4baorAbw0"}

Listing 28.4 Creating a login action for the API in usersController.js

Listing 28.5 Example response for a successful JWT authentication in terminal

Respond with an
error message.

Respond with the JWT.

Sign the JWT if
a user exists with
matching email
and password.

enticate
the
port.
enticate
od.

Display of a successful
response with a JWT
after authentication.

331Using JSON web tokens

C
m
fu
is
JW
To secure all the API endpoints, add an action to verify incoming JWTs and add that
middleware for every API route. Add the code in listing 28.6 to usersController.js.

First, pull the incoming token from the request header. Then, if a token exists, use json-
WebToken.verify along with the token and secret passphrase to decode the token and
verify its authenticity. The following callback provides any errors that may have
occurred, as well as the decoded payload. You can check whether the payload has a
value. If so, pull the user’s ID from payload.data, and query the database for a user with
that ID. If no such user exists, that user’s account may have been deleted, or the JWT
may have been tampered with, so return an error message. If the user ID matches, call
next and move on to the API endpoint. This method of communication continues until
the token expires and the user creates a new JWT.

verifyJWT: (req, res, next) => {
 let token = req.headers.token;
 if (token) {
 jsonWebToken.verify(

token,
"secret_encoding_passphrase",
(errors, payload) => {

if (payload) {
User.findById(payload.data).then(user => {
if (user) {

next();
} else {

res.status(httpStatus.FORBIDDEN).json({
 error: true,
 message: "No User account found."
 });
 }

});
} else {

res.status(httpStatus.UNAUTHORIZED).json({
error: true,
message: "Cannot verify API token."

});
next();

}
}

);

Listing 28.6 Creating a verification action for the API in usersController.js

Retrieve the JWT from
request headers.

Verify the JWT, and
decode its payload.

Check for a user
with the decoded
user ID from the
JWT payload.all the next

iddleware
nction if a user
 found with the

T ID.

Respond with an
error message if
the token can’t be
verified.

332 Lesson 28 Adding API security
 } else {
 res.status(httpStatus.UNAUTHORIZED).json({
 error: true,
 message: "Provide Token"
 });
 }
}

The final step is placing this verifyJWT middleware function before any API request is
processed. Add router.use(usersController.verifyJWT) to apiRoute.js below the login
route and above all other routes. This step ensures that every route needs to use the
verifyJWT middleware except for the login route, which is used to generate your JWT.

NOTE At this point, you no longer need your token generator hook on the User model or
any remnants of the past two API security techniques to use JWTs. You may want to keep
these recently implemented API security techniques in place, however, as a fallback to
access your API. More work is needed to get these security approaches to work together.

You can test your JWT by running another curl command in terminal and identifying
the token in the request headers. With the token from listing 28.5, that command looks
like listing 28.7.

In this command, you use the -H flag to indicate a header key-value pair for your JWT in
quotation marks. By making a request and passing a valid JWT, you should gain access
to the application’s data.

NOTE You need to remove the usersController.verifyToken action to make this new
approach work. Otherwise, your application will look for both a JWT header and an apiToken.

curl -H "token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkY
➥ XRhIjoiNTljOWNkN2VmNjU5YjMwMjk4YzkzMjY4IiwiZXhwIjoxNT
➥ A2NDk2NDMyODc5LCJpYXQiOjE1MDY0MTAwMzJ9.Gr7gPyodobTAX
➥ h1pVuycIDxMEf9LyPsbrR4baorAbw0" http://localhost:3000
➥ /api/courses

WARNING The way you’re building your API to use JWTs will interfere with the work
you’ve already done in your client-side Ajax request. Consider this section to be an introduc-
tion to using JWTs, not necessarily a replacement for the security you’ve implemented in
the recipe application so far.

Listing 28.7 Creating a verification action for the API in usersController.js

Respond with an error
message if no token is found
in the request headers.

Make a request with
JWT in the headers.

333Summary
If your request is successful, you should expect to see the same list of courses as the
JSON from the first section of this lesson. If you plan to use JWTs for securing your API,
you need to specify to the users of your API exactly how you expect them to authenti-
cate and verify their tokens. One way is to create a view with an additional login form
where a user can post their email and password to get an API token in response. That
token can be stored temporarily on the User model like the random token in the preced-
ing section.

NOTE Using JWTs requires the client to store the token in some way. Not being able to
store the JWT temporarily makes it impossible to create future requests after the token is
created on login.

JWTs can help prevent attacks on your application’s data and secure access through
your API, but this requires more steps to implement. Ultimately, you may find that it
makes more sense to start with a simpler approach, such as generating random tokens
for each user.

Summary

In this lesson, you learned how to implement three security tokens on your API. The
first strategy is a simple security token that can be used by all clients. The second strat-
egy requires generating a new random token for each user upon creation. In the third
approach, you use JWTs to provide the most-secure option for authenticating users to
access your API. In lesson 29 (this unit’s capstone exercise), you have an opportunity to
build an API with some of the functionality introduced in this unit.

Try this

Now that you have some basic security options to choose among, try creating more API
routes that require JWTs. You can also exclude certain routes from requiring a token,
such as the login route. Pick two routes to exclude from your API security.

Quick check 28.3 Why do you pass the JWT in the header of the request?

QC 28.3 answer You could pass the JWT in the body of the request, but because not all requests
will be POST, the headers offer a more convenient place.

29LESSON
CAPSTONE: IMPLEMENTING AN API

Confetti Cuisine raves about the user interaction with the application. To encourage
more users to enroll in their courses, however, they’d like me to add more data on indi-
vidual pages. More specifically, they want me to include a modal on every page that
lists the offered courses and a link to enroll in each one.

To accomplish this task, I’m going to make requests to my application server by using
Ajax on the client side. By making an asynchronous call to my server behind the scenes,
I won’t need to load the course data until the user clicks a button to enroll. This change
to use Ajax should help with the initial page-load time and ensure that course data is up
to date when the user views it.

First, I’m going to need to modify my application layout view to include a partial con-
taining the Embedded JavaScript (EJS) for my modal. Next, I’m going to create the
client-side JavaScript code to request for course data. To get this data to appear, I need
to create an API endpoint to respond with course data as JSON. When I have that end-
point working, I’ll add an action to handle enrolling users in courses and respond with
JSON upon completion. This endpoint will allow users to enroll in classes from any
page without needing to leave or refresh the page they’re on.

Before I begin, I’m going to restructure my routes to pave the way for my new API end-
points.
334

335Restructuring routes
29.1 Restructuring routes

To start with the application’s improvements, I’ll move my routes into their own mod-
ules to clean up my main application file. As this application grows, the routes will
increase as well. I’d like future developers on this project to be able to locate the routes
they need easily. Because my routes for each model resource are already RESTful—
meaning that the route paths take my application’s models and CRUD functions into
consideration—the restructuring process is much simpler. My new application structure
will separate my routes based on controller name, as shown in figure 29.1.

main.js

users courses subscribers

models

images js css

userRoutes.js

courseRoutes.js

subscriberRoutes.js

user.js

course.js

subscriber.js

usersController.js

coursesController.js

subscribersController.js

index.ejs

new.ejs

show.ejs

edit.ejs

index.ejs

new.ejs

show.ejs

edit.ejs

index.ejs

new.ejs

show.ejs

edit.ejs

views controllers public routes

confetti_cuisine

Figure 29.1 Application structure
with routes folder

336 Lesson 29 Capstone: Implementing an API
First, I create a new routes folder at the root level of my application directory. Within
that folder, I create three modules to hold my models’ respective routes:

 userRoutes.js
 courseRoutes.js
 subscriberRoutes.js

Next, I move all the user routes out of main.js and into userRoutes.js. This new routes
file resembles the code in listing 29.1.

NOTE I’ll also move my home and error routes into their own home: Routes.js and error-
Routes.js, respectively.

At the top of this file, I require the Express.js Router and usersController.js. These two
modules allow me to attach my routes to the same object across my application and link
those routes to actions in the users controller. Then I apply the get, post, put, and delete
routes for users, which include the routes for CRUD actions as well as the routes to sign
in and log in. Before I continue, I remove all occurrences of the text users in the route
path. Instead, I’ll apply these routes under the users namespace later. These routes are
bound to the router object, which I export with this module to make it available to other
modules in the project.

const router = require("express").Router(),
 usersController = require("../controllers/usersController");

router.get("/", usersController.index,
➥ usersController.indexView);
router.get("/new", usersController.new);
router.post("/create", usersController.validate,
➥ usersController.create, usersController.redirectView);
router.get("/login", usersController.login);
router.post("/login", usersController.authenticate);
router.get("/logout", usersController.logout,
➥ usersController.redirectView);
router.get("/:id/edit", usersController.edit);
router.put("/:id/update", usersController.update,
➥ usersController.redirectView);
router.get("/:id", usersController.show,
➥ usersController.showView);
router.delete("/:id/delete", usersController.delete,
➥ usersController.redirectView);

module.exports = router;

Listing 29.1 User routes in userRoutes.js

Export the router object
from the module.

Define user
routes on the
router object.

Require the
Express.js
Router and
usersController.

337Restructuring routes
Then I apply the same strategy to the other model routes and export the router object in
each module. Exporting the router object allows any other module to require these
routes. My routes are better organized, with each module requiring only the controllers
it needs to use. To get these routes accessible in main.js, I create a new file called index.js
in the routes folder. This file requires all relevant routes so that they can be accessed in
one place. Then I’ll require index.js in main.js.

NOTE All remaining middleware in main.js should be applied to app.use and should no
longer use router.

I start by requiring the Express.js Router along with all my route modules. In this exam-
ple, I include model routes and routes for errors and my home controller. router.use
tells my router to use the first parameter as the namespace and the second parameter as
the routes module specific to that namespace. At the end of the file, I export my router
object, which now contains all the previously defined routes. The code in index.js is
shown in the next listing.

const router = require("express").Router(),
 userRoutes = require("./userRoutes"),
 subscriberRoutes = require("./subscriberRoutes"),
 courseRoutes = require("./courseRoutes"),
 errorRoutes = require("./errorRoutes"),
 homeRoutes = require("./homeRoutes");

router.use("/users", userRoutes);
router.use("/subscribers", subscriberRoutes);
router.use("/courses", courseRoutes);
router.use("/", homeRoutes);
router.use("/", errorRoutes);

module.exports = router;

With these routes reorganized, I’ll still be able to access my index of courses and indi-
vidual courses at the /courses and/courses/:id paths, respectively. Because my routes
are more organized, I have room to introduce new route modules without complicating
my code structure. To import these routes into the application, I need to require index.js
at the top of main.js by using const router = require("./routes/index"). This router
object replaces the one I had before. Then I tell my Express.js app to use this router in
the same way that I told the router to use previously defined routes by making sure that
app.use("/", router) is in main.js.

Listing 29.2 All routes in index.js

Require the
Express.js
Router and
route modules.

Define namespaces for
each route module.

Export the
complete
router object.

338 Lesson 29 Capstone: Implementing an API
NOTE I also need to remove my require lines for all controllers in main.js, as they’re no
longer referenced in that module.

With this new routing structure in place, my application continues to function as before.
I can start implementing my API modifications by creating the modal that will display
courses.

29.2 Adding the courses partial

To create a modal, I use the default bootstrap modal HTML, which provides the code
for a button that displays a simple modal in the center of the screen. I add that code to a
new file called _coursesModal.ejs in my courses folder. The underscore distinguishes
the names of partials from regular views.

This partial, which contains only the modal code shown in the next listing, needs to be
included in my layout.ejs file. I include the partial as a list item in my navigation bar,
with <%- include courses/_coursesModal %>.

<button id="modal-button" type="button"
➥ data-toggle="modal"
➥ data-target="#myModal"> Latest Courses</button>

<div id="myModal" class="modal fade" role="dialog">
 <div class="modal-dialog">
 <h4 class="modal-title">Latest Courses</h4>
 <div class="modal-body">
 </div>
 <div class="modal-footer">

<button type="button" data-dismiss="modal">Close</button>
 </div>
 </div>
</div>

NOTE I also need to make sure that the JavaScript files for bootstrap and jQuery are
added to my public/js folder and imported into my layout.ejs through script tags. Otherwise,
my modal won’t animate on the screen. I can download the latest jQuery code from
https://code.jquery.com and bootstrap code from https://www.bootstrapcdn.com.

When I restart my application, I see a button in my navigation bar, which opens an
empty modal when clicked (figure 29.2).

Listing 29.3 Code for modal in _coursesModal.ejs

Add code for the
modal window.

Add the button
to open modal.

https://code.jquery.com
https://www.bootstrapcdn.com

339Creating the AJAX function
The next step is populating this modal by using course data with AJAX and a new API
endpoint.

29.3 Creating the AJAX function

One way to access application data without needing to refresh my web page is to make
an asynchronous Ajax request to my server. This request occurs behind the scenes on
the browser used by the application’s clients and originates from the client’s JavaScript
file in the public folder.

To get this Ajax function to work, I need to ensure that jQuery is added to my project
and linked from the layout file, because I’ll use some of its methods to populate my
modal. Then, through my custom confettiCuisine.js file in my public/js folder, I can add
the code in listing 29.4. I can reference this file in layout.ejs using the following script
tag: <script type="text/javascript" src="js/confettiCuisine.js"></script>.

This Ajax function runs only when the Document Object Model (DOM) is loaded and
the modal button is clicked. I handle the click event by making a GET request to my API
endpoint at /api/courses. This request is equivalent to making a GET request to
http:// localhost:3000/api/courses in my web browser and receiving a page of JSON data.
I’ll create this route soon.

Figure 29.2 Modal button in layout navigation

http://localhost:3000/api/courses

340 Lesson 29 Capstone: Implementing an API
Next, I handle the results in the response through the results object. Within this object, I
expect to see a data object. If there’s no data or course object, I return to exit the function.
I parse the data object for JSON and loop through its array of contents to populate my
modal. For each item in my data object, I display the title, cost, and description within
HTML tags.

To the side of each course listing, I link a button to an enrollment route for that course. I
create a function called addJoinButtonListener to add an event listener on each course
listing after its elements are added to the DOM. That function listens for a click event on
the join button, marked with the .join-button class. When that button is clicked, I make
another AJAX request through my API namespace to /api/courses/${courseId}/join for
the specific course listing I selected. If my server returns a response saying that I was
successfully added to the course, I change the color and text of the button. Using the ter-
nary operator ${course.joined ? "joined-button" : "join-button" }, I determine the
class of the button’s styling, depending on the value of course.joined. I’ll create this
property on each course object to let my user interface know whether the currently
logged-in user has already joined the course.

$(document).ready(() => {
 $("#modal-button").click(() => {
 $(".modal-body").html("");
 $.get(`/api/courses`, (results = {}) => {

let data = results.data;
if (!data || !data.courses) return;

data.courses.forEach((course) => {
$(".modal-body").append(

`<div>
$${course.cost}

${course.title}

<button class="${course.joined ? "joined-button" :

➥"join-button"} btn btn-info btn-sm" data-id="${course._id}">
${course.joined ? "Joined" : "Join"}

Listing 29.4 Creating an Ajax function to retrieve course data in
confettiCuisine.js

Wait for the DOM to load. Handle a click event
on the modal button.

Fetch course data
via an AJAX GET
request.

Reset the modal
body’s contents to
an empty string.

Loop through
each course, and append
to the modal body.

341Adding an API endpoint
</button>
<div class="course-description">

${course.description}
</div>

</div>`
);

});
 }).then(() => {

addJoinButtonListener();
 });
 });
});

let addJoinButtonListener = () => {
 $(".join-button").click((event) => {
 let $button = $(event.target),

courseId = $button.data("id");
 $.get(`/api/courses/${courseId}/join`, (results = {}) => {

let data = results.data;
if (data && data.success) {

$button
.text("Joined")
.addClass("joined-button")
.removeClass("join-button");

} else {
$button.text("Try again");

}
 });
 });
}

To get this code to work, I need to create two new API endpoints. One endpoint
retrieves course data as JSON; the other handles my requests to enroll users at
/api/course/${courseId}/join. I’ll add these endpoints in the next section.

29.4 Adding an API endpoint

Now that my Confetti Cuisine application is configured to communicate with two new
API endpoints, I need to create the routes to handle these requests. The first step is add-
ing the routes to my index.js file in the routes folder. For the AJAX request, I need a spe-
cific route under an api namespace because I want requests to go to /api/courses, not

Link to enroll the current user.

Call addJoinButtonListener
to add an event listener on
the course listing.

Make an API call to join
the selected course.

342 Lesson 29 Capstone: Implementing an API
only /courses. To accomplish this task, I create apiRoutes.js within the routes folder with
the code in listing 29.5.

This file requires the Express.js Router and my coursesController. Then I have that
router object handle GET requests made to the /courses path. This route gets the course
listing from the index action in the courses controller. Then the course listing goes
through a filterUserCourses middleware function to mark the courses that the current
user has already joined, and results are sent back through the respondJSON function.
Under the api namespace, this path is /api/courses. The second route handles GET
requests to a new action called join. I have one more piece of middleware for this API. I
make reference to the errorJSON action, which handles all errors resulting from any of
the routes in this API. Last, I export the router.

const router = require("express").Router(),
 coursesController = require("../controllers/
➥ coursesController");

router.get("/courses", coursesController.index,
➥ coursesController.filterUserCourses,
➥ coursesController.respondJSON);
router.get("/courses/:id/join", coursesController.join,
➥ coursesController.respondJSON);
router.use(coursesController.errorJSON);

module.exports = router;

Next, I need to add this router to the router defined in index.js. I require apiRoutes.js
into index.js by adding const apiRoutes = require("./apiRoutes"). I add router.use
("/api", apiRoutes) to index.js to use the routes defined in apiRoutes.js under the /api
namespace. I’ve already created the index action to fetch the courses from my database.
Now I need to create the filterUserCourses, respondJSON, and errorJSON actions in my
courses controller so that I can return my data in JSON format. To do so, I add the code
in the following listing to coursesController.js.

Listing 29.5 Creating an API route in apiRoutes

Require the
Express.js Router
and
coursesController.

Handle all API errors.

Create a route
to join a course
by ID.

Create a route
for the courses
data endpoint.

343Adding an API endpoint
respondJSON: (req, res) => {
 res.json({
 status: httpStatus.OK,
 data: res.locals
 });
},
errorJSON: (error, req, res, next) => {
 let errorObject;
 if (error) {
 errorObject = {

status: httpStatus.INTERNAL_SERVER_ERROR,
message: error.message

 };
 } else {
 errorObject = {

status: httpStatus.OK,
message: "Unknown Error."

 };
 }
 res.json(errorObject);
},
filterUserCourses: (req, res, next) => {
 let currentUser = res.locals.currentUser;
 if (currentUser) {
 let mappedCourses = res.locals.courses.map((course) => {

let userJoined = currentUser.courses.some((userCourse) => {
return userCourse.equals(course._id);

});
return Object.assign(course.toObject(), {joined: userJoined});

 });
 res.locals.courses = mappedCourses;
 next();
 } else {
 next();
 }
}

Listing 29.6 Creating an action to enroll users in courses in
coursesController.js

Return a courses
array through the
data property.

Return an error
message and status
code of 500 if an
error occurs.

Check whether the
user is logged in and
return an array of
courses with joined
property reflecting
user association.

344 Lesson 29 Capstone: Implementing an API
With these new endpoints in place, I can restart my application and see the course list-
ings populate my modal when the navigation button is clicked (figure 29.3).

NOTE While testing that this API endpoint works, I need to comment out my route to
join until the action is added to my courses controller. Otherwise, my application will com-
plain that it’s looking for a callback that doesn’t exist.

The last phase is creating a route and action to handle users who are looking to enroll in
a class and filter the course listing to reflect those users who have already joined.

29.5 Creating an action to enroll users

To enroll a user in a cooking class, I need the current user’s ID and the selected course’s
ID. I can get the user’s ID from the user object on the request, provided by passport. I
need to use req.user._id or the currentUser variable I created the last time I worked on
this project (lesson 25). I also have easy access to the course ID through the RESTful
route. The course ID is the second element in the route’s path. My second route,
'/courses/:id/join' in apiRoutes.js, points to the join action in my courses controller.

Figure 29.3 Showing course listing through modal in browser

345Creating an action to enroll users
The last step is adding a controller action to enroll the user in the selected course. I start
by creating a new action called join and defining local variables for the course and user
IDs. Because I’m referencing the User model in this controller, I need to require that
model in coursesController.js by adding const User = require("../models/user"). Then I
check whether a user is signed in. If not, I return an error message in JSON format.

NOTE You will also need to add const httpStatus = require("http-status-codes")
and const User = require("../models/user") to the top of coursesController.js.

If the user is logged in, I use the Mongoose findByIdAndUpdate query method to search
for the user by the user object, the currentUser, and the MongoDB array update operator
$addToSet to insert the selected course into the user’s courses list. This association signi-
fies an enrollment. I accomplish all these tasks by using the code in listing 29.7.

NOTE $addToSet ensures that no duplicate values appear in the courses array. I could
have used the MongoDB $push operator to add the course ID to the user’s courses array,
but this operator may have allowed users to enroll in the same course multiple times by
accident.

join: (req, res, next) => {
 let courseId = req.params.id,
 currentUser = req.user;

 if (currentUser) {
 User.findByIdAndUpdate(currentUser, {

$addToSet: {
courses: courseId

}
 })

.then(() => {
res.locals.success = true;
next();

})
.catch(error => {

next(error);
});

 } else {
 next(new Error("User must log in."));
 }
}

Listing 29.7 Creating an action to enroll users in courses in coursesController.js

Define local variables for
course and user IDs.

Check whether the
user is logged in.

Find and update the
user to connect the
selected course.

Continue to next middleware.

Continue to error middleware
with an error message if the
user failed to enroll.

346 Lesson 29 Capstone: Implementing an API
With this action in place, I can restart the application. When I try to enroll in a course
before logging in, I see the message in figure 29.4.

After I successfully log in and click the button to join a course, the screen resembles fig-
ure 29.5. Also, after joining a course, I can refresh my window and still see my joined
status preserved in the modal.

With a new API namespace, I can open this application to more Ajax requests and other
applications that want to access Confetti Cuisine’s raw JSON data. I could secure the
API, but doing so isn’t required for this small change.

Now that I’ve implemented a new feature to allow users to enroll in courses, I’ll work
on improving other parts of the application that may benefit from single-page asynchro-
nous calls to my API.

Figure 29.4 Trying to enroll before logging in

347Summary
Summary

In this capstone exercise, I improved the Confetti Cuisine application experience by
introducing an Ajax request to a new API endpoint. I started by reorganizing my appli-
cation’s routes and separating the web routes from the API routes. Then I created an
Ajax function on the client-side JavaScript to populate a modal with course-listing
results from a custom API endpoint. Last, I created a route and action to allow users to
enroll in courses from any page in the application. With this new improvement in place,
Confetti Cuisine’s marketing team feels better about informing users and encouraging
them to join their classes.

Figure 29.5 Successfully enrolling in a course

349

U
N

IT
 7

Adding chat functionality

By this point, the main structure of your application
is complete. It’s time to think about new features
that could improve the overall interaction on your
application but aren’t necessary for the fundamen-
tal functionalities. In earlier lessons, I discussed
how particularly useful Node.js is for handling
streams of data. If you want to send a big batch of
data across the internet, Node.js makes the process
simpler by supporting data chunking. Chunks of
data are connected as they arrive at the server and
processed when there’s enough data to do some-
thing meaningful with them. This approach is use-
ful in various types of data streams, and it’s made
possible through the event-emitting and event-
handling features of Node.js.

In this unit, you explore how to use Node.js to facil-
itate a real-time chat application through event-
driven communication over web sockets. I discuss
how chat applications can be built with the simplest
of HTML tools and how web sockets and socket.io
are more-efficient, sophisticated options than his-
toric client-server communication. You apply the
chat functionality to your existing application to
allow existing users to communicate in a group set-
ting. Then you take things a step further by creating
a data model for your chat messages and loading
messages from the database when you open the

350 Unit 7 Adding chat functionality
application’s chat page. Last, you implement an icon in the navigation bar that acts as an
indicator when the chat page is active, even when the user is on a different page.

This unit covers the following topics:

 Lesson 30 introduces web sockets and shows how the socket.io package can help
you connect users of your application through a real-time chat application. In
this lesson, you learn how to create a simple chat page on your existing recipe
application.

 Lesson 31 shows you how to take your chat application to the next level by sav-
ing the messages to your MongoDB database. In this lesson, you create a message
model and connect the message to the sender. This way, you’ll be able to identify
which messages belong to the user who’s logged in.

 Lesson 32 guides you through the implementation of an active chat indicator in
the navigation bar. This icon animates as messages are shared on the chat page.

In lesson 33 (the capstone lesson), you use the concepts learned in this unit to build a
chat feature for the Confetti Cuisine application.

30LESSON
WORKING WITH SOCKET.IO

Building a web application in Node.js can be exciting. Often, you’ll find that the most
challenging aspects stem primarily from architecting the application from a web-
development perspective. It’s easy to forget what Node.js is capable of outside the
normal request-response cycle. In this lesson, you explore communication between
the client and server via an open TCP connection. This connection is made available
by means of the socket.io package, which runs on web sockets and long polling, using
normal HTTP requests held for longer periods on the server before responses are
returned to facilitate a live-stream of data between client and server. You start by learn-
ing how to implement socket.io with Express.js. Then you create a chat box in a new
application view. Last, you connect the client-side JavaScript and server code through
custom events triggered and handled by socket.io.

This lesson covers
 Implementing socket.io in a Node.js application
 Structuring your socket.io listeners within a controller
 Creating a simple chat feature
351

352 Lesson 30 Working with Socket.io
30.1 Using socket.io

You’ve built Node.js web applications that feature client-to-server communication.
When the client wants to view a web page or post data, your application generates an
HTTP request to the server. This method of communication over the internet has been
around for a long time, celebrating its 20th birthday in 2017. In technology years, that’s
old. Although developers still heavily rely on the request-response cycle, it isn’t the
most effective method of communication for every use case.

What if you want to view the scores of an NBA basketball game in real time, for exam-
ple? You can load the page containing scores and statistics, but you’d need to reload the
page every time you wanted to see an update in information. For a basketball game,
these changes can come as rapidly as every second. Repeatedly creating GET requests to
the server is a lot of work to expect from the client. Polling is used to generate repeated
requests from the client to the server in anticipation of updated server data. Polling uses
the standard techniques you’ve used so far to transfer data between the client and
server, but it sends requests so frequently that it creates an illusion of an open channel of
communication between both participants (figure 30.1).

To further improve on this technique, long polling was developed to reduce the number
of requests needed to get updated data. Long polling behaves similarly to polling, in that
the client makes repeated requests to the server for updated data, but fewer requests are
made. Instead of making hundreds of requests when only dozens of them receive
updated data, long polling allows requests to stay open as long as HTTP allows before
the requests time out. Within that time—say, 10 seconds—the server can hold on to the
request and either respond with updated data when the server receives it or respond
with no changes before the request times out. This more-efficient approach has allowed

Consider this You built a perfectly functional application with tons of users flocking to
sign up. Unfortunately, these users have no way of communicating with one another.
Given that you’re building an application that’s community-driven, communication
among members is important. The user data is already in the database. All you need to
do is associate that data through a tool that supports real-time communication.

With a little help from socket.io, you’ll soon be able to connect users so that they can
chat with one another.

353Using socket.io
web browsers and devices to experience a sense of real-time informational exchange
over a protocol that hasn’t changed much for decades.

Although these two methods are widely used, a recent new addition has allowed plat-
forms like Node.js to thrive. Web sockets were introduced in 2011 to allow an open
stream of communication between clients and server, creating a true open channel that
allows information to flow in either direction as long as the server or clients are avail-
able. Web sockets use a different internet protocol from HTTP but are supported in use
with a normal HTTP server. In most cases, a server running with web sockets enabled
allows its open channels to be reached over the same application ports you’d use for a
typical request-response exchange (figure 30.2).

Although web sockets are a preferred method for live communication, they’re not sup-
ported by many older browsers and clients. This relatively new technology allows
developers to build applications that stream data in real time, and you can incorporate it
into your existing Node.js application: socket.io, a JavaScript library that uses web
sockets when it can and polling where web sockets are unsupported.

socket.io is also a package that can be installed within a Node.js application, providing
library support for web sockets. It uses the event-driven communication in Node.js and

1. The client makes repeated
 requests to the server to
 check for updated data.

2. After a response is issued,
 the client makes another
 request hoping the server
 will have new data to return.

3. The server continues to respond
 as it does for normal requests.
 The response may contain no
 updated data until there is new
 data to publish.

4. In long polling, each request may wait on the server for a longer period of
 time before a response is issued. This reduces the number of requests made.

Client

Server

Long polling

New
data

Figure 30.1 Polling between a client and server

354 Lesson 30 Working with Socket.io
web sockets to allow the client and server to send data by triggering events. As a client
looking for updated basketball-game statistics, for example, you might have client-side
JavaScript listening for an updated data event triggered by the server. Then your browser
would handle the updated data event along with any data passed with it to modify the
contents of your web page. These events can come in a continuous stream or hours
apart, if needed. If you wanted to signal to the server to send a message to all other lis-
tening clients, you could trigger an event that the server knows how to handle. Luckily,
you have control of both the client-side and server-side code, so you can implement the
firing and handling of any events you want.

To start, install socket.io in your recipe application by running npm i socket.io -S in
your project’s terminal window. You’ll use this library in the following sections to build
a live-chat feature for users to communicate.

1. The client makes an initial
HTTP request to upgrade the
connection through sockets.

4. Multiple clients may be connected to
the server through an open socket
connection at the same time.

2. The server responds, opening
a connection with the client
(an HTTP handshake).

3. Data can now be sent in two directions,
between the client and server over this
socket connection.

Client A
Request

Response

Server

Client CClient B

Web sockets

Figure 30.2 Opening a web socket connection between a client and server

355Creating a chat box
30.2 Creating a chat box

To get started with a chat feature, you need to build a basic view with a chat box and
submit button. As you build the code to allow the client to handle server events, this
chat box will populate with data.

Create a new view called chat.ejs in your views folder. Within this view, add the code in
listing 30.1. In this code, you have a form that takes an input and a submit button. Below
the form code is the tag created for the chat box. With some simple CSS styling, you can
add a border and size dimensions to the chat box, prompting users to type the form
input and submit it to add the content to the chat window below.

<div class="container">
 <h1>Chat</h1>
 <form id="chatForm">
 <input id="chat-input" type="text">
 <input type="submit" value="Send">
 </form>
 <div id="chat"></div>
</div>

To load this view, add a new route and action. Add router.get("/chat", homeController
.chat) to homeRoutes.js in your routes folder. This new route will be absorbed by the
index.js route file and used by main.js. Now you need to create the chat action in home-
Controller.js, as shown in the next listing. In this action, you simply render the chat.ejs
view.

Listing 30.1 Creating a chat box in chat.ejs

Quick check 30.1 How is long polling different from polling?

QC 30.1 answer Long polling works by sending the server requests that are sustained longer than
typical requests. Polling depends on many individual GET requests. Long polling is more efficient because
it keeps a single GET request alive for a longer period, allowing the server to receive updates and
respond before the client makes another request.

Add an HTML form
for chat input.

Add a custom input
element for chat content.

Create a tag for
the chat box.

356 Lesson 30 Working with Socket.io
chat: (req, res) => {
 res.render("chat");
}

Relaunch your application, and visit http:// localhost:3000/chat to see the chat box
shown in figure 30.3.

NOTE Your chat page will not look exactly like figure 30.3 unless you add custom styling to it.

With this chat page set up, you need to remember the tag IDs that you used in the
HTML. In the next section, you target the #chat box with chat messages and send new
messages found in #chat-input to the server.

Listing 30.2 Adding a chat action in homeController.js

Render a chat view.

Figure 30.3 Displaying chat view

Quick check 30.2 Why does the HTML element with ID chat not have any content?

QC 30.2 answer The #chat element starts empty on each page load. You’ll use client-side Java-
Script to populate the element with content as it’s received by the server.

http://localhost:3000/chat

357Connecting the server and client
30.3 Connecting the server and client

Now that you have a chat page, you need the guts to get it working. With socket.io
installed, you need to require it into your project. Because you want your socket server
to run on your existing Express.js HTTP server, require socket.io, and pass it to your
Express.js server. Add the require line to main.js below the line where you tell your app
to listen on a specified port, as shown in listing 30.3. In this code, you save the running
server instance into a constant server so that you can pass the same Express.js HTTP
server to socket.io. This process allows socket.io (which I’ll refer to as io) to attach to
your application server.

const server = app.listen(app.get("port"), () => {
 console.log(`Server running at http://localhost:
➥ ${ app.get("port") }`);
}),
io = require("socket.io")(server);

Now you can start using io to build out your socket logic. As with your other code,
though, compartmentalize this code into its own controller. Create a new chatController
.js in your controllers folder, and require it below where you required socket.io. To
require the controller, add require("./controllers/chatController")(io) to main.js. In
this line, you’re passing the io object to your chat controller so that you can manage
your socket connections from there. You don’t need to store this module in a constant
because you won’t be using it further in main.js, so you can require it.

NOTE It’s important that you require chatController.js after defining the io object. Other-
wise, you won’t have socket.io configured for use in your controller.

Within chatController.js, add the code in listing 30.4. In this code block, you’re exporting
all the controller’s contents and taking a single parameter: the io object from main.js. In
this file, you use io to listen for certain events. To start, io listens for the connection
event, indicating that a client has connected to the socket channel. In handling this
event, you can use the specific client socket to listen for when the user disconnects or for
custom events, such as the message event you created. If the server receives a message
event, it uses io to send a string of data to all connected clients, using its emit method.

Listing 30.3 Adding the server io object in main.js

Save the server
instance to server.

Pass the server
instance to socket.io.

358 Lesson 30 Working with Socket.io
module.exports = io => {
 io.on("connection", client => {
 console.log("new connection");

 client.on("disconnect", () => {
console.log("user disconnected");

 });

 client.on("message", () => {
io.emit("message", {

content: "Hello"
});

 });
 });
};

NOTE Notice that you’re using the argument name client because this code will run
with each new client connect. client represents the connected entity on the other side of
the socket with the server. Client listeners run only if an initial io connection is made.

With this code in place, you need to set up the client-side code to handle data from and
send events to the server. To accomplish this task, add some code to your recipeApp.js
JavaScript code in your public folder.

In this code, initialize socket.io on the client side, allowing your server to detect that a
new user has connected. Then, using jQuery, handle the form submission by emitting a
message event to the server, and prevent the form from submitting naturally with return
false. socket.emit takes a string argument as the event name and emits the event back to
the server. Using socket.on, you listen for the message from the server, along with a string
message. You display that message by appending it as a list item in your #chat element.
On the server, you’ve already set up a handler in chatController.js for the message event
to send back the message content "Hello" to the client.

const socket = io();

$("#chatForm").submit(() => {
 socket.emit("message");
 $("#chat-input").val("");
 return false;
});

Listing 30.4 Handling chat socket connections in chatController.js

Listing 30.5 Adding client-side JavaScript for socket.io in recipeApp.js

Broadcast a
message to all
connected users.

Listen for a custom
message event.

Listen for when
the user
disconnects.

Listen for new
user connections.

Export the chat
controller contents.

Emit an event
when the form
is submitted.

Initialize socket.io
on the client.

359Connecting the server and client
socket.on("message", (message) => {
 displayMessage(message.content);
});

let displayMessage = (message) => {
 $("#chat").prepend($("").html(message));
};

The last step is loading the socket.io library on the client by adding a script tag to the
view on which the chat is generated. To simplify this task, add the tag to your layout
file. In layout.ejs, add <script src="/socket.io/socket.io.js"></script> below your
other script and link tags. This tag tells your Node.js application to find the socket.io
library in your node_modules folder.

Relaunch your application, visit http:// localhost:3000/chat, enter some text in the input
box, and click Send. You should see "Hello" in your chat box (figure 30.4). A new line
should appear with each new text submission.

In lesson 31, you improve this chat to allow the application to save these messages to
your database.

Listen for an event, and
populate the chat box.

Display messages from
the server in the chat box.

Figure 30.4 Displaying text in the chat box

http://localhost:3000/chat

360 Lesson 30 Working with Socket.io

Summary

In this lesson, you learned about socket.io and saw how to install it in a Node.js appli-
cation. Then you created your first chat application by using web sockets over your
Express.js server to facilitate event and data exchange between client and server. When
this chat feature is installed, users can communicate with one another in real time.
When a client refreshes the web page, however, the chat history is erased. What’s more,
you have no indication of which user sent which message. In lesson 31, you create a new
data model and associate user accounts so that message authors can be identified and
chats can persist across user sessions.

Try this

With a chat feature implemented, try sending more meaningful data between the client
and server. The message content allows all clients to see the same messages at the same
time, but maybe you want to see more than the message itself. Try sending the date
stamp showing when the message was sent to the server. Then, with client-side Java-
Script, collect that date stamp and display it next to the message in the chat box.

Quick check 30.3 What does io.emit do?

QC 30.3 answer The io object controls much of the communication between the server and the cli-
ent. emit allows io to send some specific data by triggering an event and notifying all connected client
sockets.

31LESSON
SAVING CHAT MESSAGES

Your chat feature is coming together, and you can take it in many directions to improve
it. Though the chat feature allows for real-time communication, when you refresh your
page, all messages disappear. The next step is persisting these messages in your data-
base. In this lesson, you implement a simple model to represent each chat message.
Then you connect that model to the user model, allowing senders to associate with their
own messages. Last, you query the database for the most recent messages whenever a
page is reloaded. When you complete these steps, the chat will start to resemble ones
that you’ve used on familiar websites and in familiar applications.

This lesson covers
 Creating a message model
 Saving messages in a socket.io event handler
 Querying messages upon new socket connections

Consider this You have a chat page working, finally allowing users to talk to one
another. As soon as a user refreshes their page, their chat history is gone. Although
this feature could be marketed as a security implementation, it’s impractical. You want
to save the message and do so without interrupting the fast-paced, event-driven system
on which your chat application functions. In this lesson, you use Mongoose and your
existing application structure to support saving and loading chat messages.
361

362 Lesson 31 Saving chat messages
31.1 Connecting messages to users

In lesson 30, you created a chat feature for your application, allowing users to trigger a
message event, prompting the server to respond with the same "Hello" text-message con-
tent. You can improve this feature by sending the actual content you type in the chat
input box to the server. To do so, modify your client-side code so that your event han-
dler on form submission looks like listing 31.1.

This small change allows you to grab the text the user typed right after he clicks the sub-
mit button. Then you send the text within an object as you emit the message event to the
server.

$("#chatForm").submit(() => {
 let text = $("#chat_input").val();
 socket.emit("message", {
 content: text
 });
 $("#chat_input").val("");
 return false;
});

In response, have the server emit this form data to all listening clients. You can do so by
modifying the message event handler in the chat controller to emit the data back to all cli-
ents. Change the code around the io.emit line in chatController.js to the code in listing
31.2. Here, you grab the data from the client and emit it back. If you relaunch your
application and try to type a new chat message, that specific message appears in the
chat box. You can also open a second browser window to mimic two users, and these
two browsers allow for multiple socket connections to submit data and display new
messages in the other browser’s chat box in real time (figure 31.1).

client.on("message", data => {
 io.emit("message", { content: data.content });
});

Listing 31.1 Emitting an event from the client in recipeApp.js

Listing 31.2 Change emit message to data in chatController.js

Grab text from the
view input field.

Emit form data to
the server.

Collect data as
a parameter.

Return data in the
message event as
content.

363Connecting messages to users
The next thing you want to do is add some information about the user who posted the
chat message. Currently, you’re sending only the message content to the server, but you
can send the user’s name and ID as well. Modify your chat form to include two pieces of
hidden data, as shown in listing 31.3. In this example, you check whether a currentUser
is logged in, using data on the response provided by passport. If there’s a user, use that
user’s _id attribute in the form as a hidden field. Then this value can be passed to the
server when you submit your message.

<% if (currentUser) { %>
 <h1>Chat</h1>
 <form id="chatForm">
 <input id="chat-input" type="text">
 <input id="chat-user-name" type="hidden"
➥ value="<%= currentUser.fullName %>">
 <input id="chat-user-id" type="hidden"
➥ value="<%= currentUser._id %>">
 <input type="submit" value="Send">
 </form>
 <div id="chat"></div>
<% } %>

Listing 31.3 Adding hidden fields in chat form in chat.ejs

Figure 31.1 Displaying chats with two sockets

Check for a
logged-in user.

Add a hidden field
contain user data.

364 Lesson 31 Saving chat messages
Now that you’ve included a user field in your chat form, you’ll display the chat box
only if a user is signed in. Try loading /chat before logging in. Then try again after
logging in with one of your local user accounts. The second try yields the chat-page
contents.

Next, modify your custom client-side JavaScript to pull these values when the form is
submitted. Replace your form-submission event listener with the code in the next list-
ing. In this modified code, you grab the user’s ID and pass the value to the server, using
the same local variable name.

$("#chatForm").submit(() => {
 let text = $("#chat-input").val(),
 userId = $("#chat-user-id").val();
 socket.emit("message", {
 content: text,
 userId: userId
 });
 $("#chat-input").val("");
 return false;
});

Now you can handle this data on the server side by changing your code in the message
event handler in chatController.js to collect all the individual attributes passed to the
server (listing 31.5). By saving these values to a new object, you can filter out any
unwanted values outside what you specify in the messageAttributes object. Then emit
those values containing the message contents and user information to the other clients.

NOTE This code must exist within the io.on("connection"… block. You can listen for
specific events only from client sockets that are connected.

client.on("message", (data) => {
 let messageAttributes = {
 content: data.content,
 userName: data.userName,
 user: data.userId
 };
 io.emit("message", messageAttributes);
});

Listing 31.4 Pulling hidden field values from chat form in recipeApp.js

Listing 31.5 Receiving socket data in chatController.js

Pull hidden field
data from the form.

Emit an event with
message content
and user data.

Emit the message
with user data.

Collect all incoming data.

365Connecting messages to users
Last, you need to arrange this data and display it appropriately in the view. Back in
recipeApp.js, change the code in displayMessage to match the code in listing 31.6. This
function adds an HTML class attribute to the messages associated with the logged-in
user. By comparing the ID of the user in the form with the ID associated with the chat
message, you can filter out the logged-in user’s messages.

To accomplish this task, add getCurrentUserClass to determine whether the message in
the chat belongs to the user who’s currently logged in. If so, add a current-user class,
which you can use to distinguish the messages for that user visually. After this change,
each message identified as belonging to the current signed-in user will have this style
class associated. Because you’re using the user’s ID and message content in this func-
tion, you need to pass the entire message object, not only the message content as you did
before, to displayMessage.

NOTE Change your call displayMessage(message.content) to displayMessage
(message) so that you can use all properties of the message object.

let displayMessage = (message) => {
 $("#chat").prepend(
 $("").html(`
<div class="message ${getCurrentUserClass(message.user)}">
${message.content}
</div>`)
);
};

let getCurrentUserClass = (id) => {
 let userId = $("#chat-user-id").val();
 return userId === id ? "current-user": "";
};

Now add some styling to the current-user class elements and distinguish chat messages
from one another. With two browser windows side by side, and two users logged in, the
chat can look like figure 31.2.

You’ve implemented the logic to associate messages with users and distinguish those
messages on the view. This chat still seems to lack a few points, however. Although the
logged-in user can identify their own messages, they don’t know the identity of the
other users. In the next section, you add user names to the chat messages.

Listing 31.6 Pulling hidden field values from chat form in recipeApp.js

Display the message
contents along with the
user name in chat box.

Check whether the
message’s user ID
matches the form’s
user ID.

366 Lesson 31 Saving chat messages
31.2 Displaying user names in chat

The closer you get to coupling messages with the user accounts that created them, the
easier it will be for users to communicate with one another. To eliminate confusion, you
want to use the user’s name as an identifier on the chat message. To do so, implement a
few small changes in your code from section 1.

You’ve already added a hidden input field on the chat form to submit the user’s full-
Name. When the logged-in user submits their chat message, their name is sent along too.

Next, grab this field value in recipeApp.js by pulling the value from the #chat_user_name
input on form submission, and save it to a variable. The new submit event handler looks

Figure 31.2 Styling user messages with two sockets

Quick check 31.1 Why do you need to compare the chat message’s user ID with the user ID
on the chat form in the client-side JavaScript?

QC 31.1 answer The form’s user ID reflects that of the logged-in user. If the user ID in the chat’s
message matches the one in the form, you can safely mark that message as belonging to the logged-in
user and apply styling to indicate that fact.

367Displaying user names in chat
like the code in the next listing. Then emit that value within the same object paired with
the userName key. You’ll use this key in the server later.

$("#chatForm").submit(() => {
 let text = $("#chat-input").val(),
 userName = $("#chat-user-name").val(),
 userId = $("#chat-user-id").val();
 socket.emit("message", {
 content: text,
 userName: userName,
 userId: userId
 });
 $("#chat_input").val("");
 return false;
});

On the server, you need to include this user name in the message attributes you collect
so that they can be emitted to other client sockets. You could use the user’s ID to retrieve
their name, but this approach saves you from communicating with the database. In the
message event handler in chatController.js, your message attributes variable assignment
should read let messageAttributes = {content: data.content, userName: data.userName,
user: data.userId}.

Last, arrange this data, and display it appropriately in the view. Back in recipeApp.js,
change the code in the displayMessage function to the code in listing 31.8. This change
displays the name of the user associated with the posted message. You can still use the
getCurrentUserClass function to determine whether the message in the chat belongs to
the currently logged-in user.

$("#chat").prepend($("").html(`
<strong class="message ${getCurrentUserClass(
➥ message.user)}">
${message.userName}
: ${message.content}
`));

Listing 31.7 Pulling an additional hidden field value from chat form in recipeApp.js

Listing 31.8 Displaying the user name in the chat in recipeApp.js

Pull the user’s name.

Emit a custom event
with message contents
to the server.

Display the user name
in bold and stylize if
currentUser.

368 Lesson 31 Saving chat messages
After implementing these changes, you can see the names of the users posting in the
chat (figure 31.3).

With this improvement, users can identify the author of specific chat messages by that
sender’s name. This feature is great, as it reduces the anonymity of chat and allows reg-
istered users to connect with one another. You still have the problem of chat messages
disappearing with each page load, however. You need to connect these chat messages to
your database, and the best way to do so is through a Mongoose data model. In the next
section, you explore the model schema needed for a chat message.

Figure 31.3 Showing user names with two sockets

Quick check 31.2 Why do you pass the user’s name to the server instead of using the
user’s ID to find the name in your database?

QC 31.2 answer Using the user’s ID to look up their name can work, but it adds another layer of
work involving the database. With no immediate need to use your database for this chat, you can pass
the extra string values.

369Creating a message model
31.3 Creating a message model

To make this chat page worth revisiting, you need to save the messages being shared. To
do so, you need to save the messages to your database, and you have a few ways to save
them:

 You can modify your user schema to save an array of messages. With each new
message that any user submits, that message is added to the user’s messages array.
This approach can work, but you’ll quickly end up with long lists that aren’t effi-
cient or necessary to store in the user model.

 You could also create a new model to represent the chat and its messages. This
approach requires a new model module but ultimately saves you some work and
makes it easier to understand exactly what data you’re working with and saving.

In this section, you build a Message model to contain the values you’ve been working
with in this lesson. Create a new message.js file in your project’s models folder, and add
the code in listing 31.9 to that file.

In this code, you’re defining a message schema that contains content, userName, and user
properties. The content of the chat message is required, as are the user’s name and ID. In
essence, every message needs some text and an author. If someone tries to save a mes-
sage somehow without logging in and authenticating, your database won’t allow the
data to save. You also set timestamps to true so that you can keep track of when the chat
message was added to your database. This feature allows you to show the timestamp in
the chat box, if you want.

const mongoose = require("mongoose"),
 { Schema } = require("mongoose");

const messageSchema = new Schema({
 content: {
 type: String,
 required: true
 },
 userName: {
 type: String,
 required: true
 },
 user: {

Listing 31.9 Creating the message schema in message.js

Require content
in each message.

Require the
user’s name with
each message.

370 Lesson 31 Saving chat messages
 type: Schema.Types.ObjectId,
 ref: "User",
 required: true
 }
}, { timestamps: true });

module.exports = mongoose.model("Message", messageSchema);

Next, require this new model in chatController.js by adding const Message = require
("../models/message") to the top of the file.

NOTE ../models/message means you’re stepping out of the controllers folder and into
the models folder to find message.js.

To start saving incoming data to message models, you need to use your messageAttributes
as the properties of a new message object. Then try to save that message to your MongoDB
database, and emit the message if you’re successful. Modify your code with the code in
the next listing to change the client.on("message") block in chatController.js.

client.on("message", (data) => {
 let messageAttributes = {

content: data.content,
userName: data.userName,
user: data.userId

 },
 m = new Message(messageAttributes);

m.save()
 .then(() => {

io.emit("message", messageAttributes);
 })
 .catch(error => console.log(`error: ${error.message}`));
});

That’s all it takes to start saving your messages. You can relaunch your application, log
in, and send messages to have them save behind the scenes. You won’t notice any
changes, because as soon as you refresh the chat page, you still wipe the chat history,
even though messages are saved in your database. To correct this problem, you need to
load some recent chat messages whenever a user reconnects to the chat socket. Within
chatController.js, add the code in listing 31.11 to find the ten most recent chat messages

Listing 31.10 Saving a message in chatController.js

Require a user ID
with each message.

Save the timestamp with each message.

Create a new
message object with
messageAttributes.

Save the message.

Emit the message values
if the save is successful,
or log any errors.

371Creating a message model
and emit them with a new custom event. Use sort({createdAt: -1}) to sort your data-
base results in descending order. Then chain limit(10) to limit those results to the ten
most recent. When you emit your custom "load all messages" events on the client
socket, only newly connected users’ chat boxes will refresh with the latest chat mes-
sages. Reverse the list of messages with messages.reverse() so that you can prepend
them in the view.

Message.find({})
 .sort({ createdAt: -1 })
 .limit(10)
 .then(messages => {
 client.emit("load all messages", messages.reverse());
 });

The last step is handling this new custom event in your client-side JavaScript. In recipe-
App.js, add the event handler in listing 31.12. This code listens for the "load all mes-
sages" event emitted to this specific socket. Any data received here is handled by
sending each message in the data array to your displayMessage function to prepend the
message contents to your chat box.

socket.on("load all messages", (data) => {
 data.forEach(message => {
 displayMessage(message);
 });
});

Try comparing views of two adjacent sockets before and after one of the sockets
refreshes its connection. A user’s new connection refreshes the chat box with messages
from the database. Now it’s much easier for users to participate in the chat with a pre-
served history of messages shared.

Listing 31.11 Loading most recent messages in chatController.js

Listing 31.12 Displaying most recent messages in recipeApp.js

Query the ten
most recent
messages.

Emit a custom event
with ten messages to
the new socket only.

Send each message to
displayMessage to
display in the chat box.

Handle 'load all
messages' by parsing
incoming data.

372 Lesson 31 Saving chat messages
Summary

In this lesson, you learned how to curate messages in your chat box to display informa-
tion about the message’s author. You also displayed the names of users alongside their
messages to increase transparency in the chat page. At the end of the lesson, you created
a Message model and started saving messages to your application’s database. This
implementation allows messages to persist across multiple socket connections. By load-
ing the most recent messages on every new socket connection, you immediately involve
users in the conversation. In lesson 32, you look at one way to use socket.io events to
notify users of new messages even when they aren’t actively on the chat page.

Try this

Now that you have messages saving to your database and associated with user
accounts, add another layer of security at the controller layer. Although you’re saving
user IDs to the message, you aren’t making sure that the user ID is valid in your data-
base. Add some code within the promise chain where the message is saved in chat-
Controller.js to check the database for a user by the same ID and verify it before you
officially save the message. For this task, you need to require the user model in this
controller.

Quick check 31.3 What is the purpose of the "load all messages" event?

QC 31.3 answer "load all messages" is a custom event you created to communicate with your
client socket to load database messages to the chat box as soon as they connect. You can use any cus-
tom event name. This unique name is descriptive and can be handled however you like in the client-side
JavaScript.

32LESSON
ADDING A CHAT NOTIFICATION
INDICATOR

Your chat page is coming together. Now users can log in and view the most recent chat
messages, whether they were sent moments or weeks ago. The chat page currently facil-
itates all the visual aspects of your application’s chat functionality. The nice thing about
socket.io is that it doesn’t need to exist on one page. Because your chat works by emit-
ting and handling events, you can use those events in other ways. In this lesson, you
build a custom event emitter to notify all active users when chat messages are being
submitted. Then you build a small visual indicator in the navigation bar that animates
when new messages are being shared. Through this small feat, users get a visual indica-
tion of an active chat room even when they’re browsing a different page.

This lesson covers

 Broadcasting a custom event
 Animating an icon in response to an event
373

374 Lesson 32 Adding a chat notification indicator

ge
ed
32.1 Broadcasting to all other sockets

One thing to know about socket.io is that it can be configured to work over multiple
specific chat rooms and different namespaces. It can even allow users to be added and
removed from specific groups. In addition to these features, messages don’t always
need to be emitted to every client. In fact, it doesn’t always make sense to emit a mes-
sage to everyone if, for example, the client emitting the message is disconnecting.

In this section, you implement a new feature to notify all other users in the chat when a
user’s socket disconnects. To do so, add the code in listing 32.1 to chatController.js
within the io.on("connect") block.

In this code, you’re listening for when a certain client disconnects. You used this code
block before to log a message to your console. In addition to logging this information,
use client.broadcast.emit("user disconnected") to send a message to every socket aside
from the one emitting the message. client.broadcast sends a custom event called 'user
disconnected' to the connected chat users.

The reason you’re broadcasting the message instead of emitting it is because the client
that’s emitting the message is disconnected and can no longer handle that custom event.
You can use broadcast to emit to all other sockets even when the emitting socket isn’t
disconnected, though.

client.on("disconnect", () => {
 client.broadcast.emit("user disconnected");
 console.log("user disconnected");
});

Listing 32.1 Broadcasting event to all other users in chatController.js

Consider this Users are enjoying the chat page in your application, but they’d like to
browse other pages in your application instead of waiting for new messages to arrive
on the chat page. They don’t want to miss out when the chat is active again, however. In
this lesson, you rely on a custom event emitted by the server to animate a navigation-
bar icon. When this icon is animated, users on any page of the application know that a
chat is active.

Broadcast a messa
to all otherconnect
sockets.

375Broadcasting to all other sockets
With this new event being emitted, you need to handle it on the client side. As with your
other events, listen for the "user disconnected" event, and print some indication in the
chat box. Add the event handler in listing 32.2 to recipeApp.js. In this code, you reuse
your displayMessage to post a hardcoded message to let other users know that someone
disconnected.

socket.on("user disconnected", () => {
 displayMessage({
 userName: "Notice",
 content: "User left the chat"
 });
});

Now relaunch your application, and log into multiple accounts by logging in on two
different browsers or by using your browser’s incognito mode to log in with a new ses-
sion. With two chat windows open side by side, you should see when one of the users is
connected in the other chat box. In figure 32.1, the left chat window shows that a user
disconnected when the right window is refreshed. In this case, a page refresh results in
an immediate connection thereafter.

Listing 32.2 Displaying a message when a user disconnects in recipeApp.js

Listen for the 'user
disconnected' event, and
display a custom message.

Figure 32.1 Displaying user disconnects in chat

376 Lesson 32 Adding a chat notification indicator
32.2 Creating a chat indicator in navigation

The last addition you’ll make to your chat application is a feature to let users on other
pages in the application know when there’s activity on the chat page. This feature could
be helpful to users who are viewing their profiles or recipes, or hanging out on the
home page; they might like to know that other users are awake and talking to one
another in the chat room. To add this feature, add an icon to the navigation bar. When a
message is submitted in the chat room, you animate the chat icon in the navigation bar
to let users elsewhere know of chat activity.

First, add the icon to your navigation bar by adding
@ in layout.ejs. With this icon in place, you should see @ in your navigation bar the
next time you relaunch your application. If you click this icon, it takes you to the /chat
route.

Next, animate the icon by having it flash twice when any user sends a message. To
accomplish this task, use jQuery’s fadeOut and fadeIn methods on the chat icon when-
ever a "message" event is received. Modify your socket.on("message") handler in recipe-
App.js to look like the code in the next listing. In this example, you still use the
displayMessage function to post the message to your chat view; then, with a simple for
loop, you animate the chat icon to flash twice.

socket.on("message", (message) => {
 displayMessage(message);
 for (let i = 0; i < 2; i++) {
 $(".chat-icon").fadeOut(200).fadeIn(200);
 }
});

Listing 32.3 Animating chat icon when messages are sent in recipeApp.js

Quick check 32.1 What’s the difference between client.broadcast.emit and client
.emit?

QC 32.1 answer client.broadcast.emit emits an event to all sockets except for itself, and
client.emit emits an event to all sockets including itself.

Animate the chat
icon to flash when a
message is sent.

377Creating a chat indicator in navigation
Relaunch your application, and log in to two browsers under two different accounts.
Notice that now when one user sends a message, the other user sees the chat icon flash
twice in the navigation bar, no matter where in the application they are (figure 32.2).

In lesson 33, you apply these steps and fully implement a chat feature in your capstone
project.

Figure 32.2 Animating the chat icon in the navigation bar

Quick check 32.2 True or false: You can handle socket.io events on any page in your appli-
cation.

QC 32.2 answer True. For the example in this lesson, you imported the socket.io library in the
layout.ejs file, which is used in every view. Similarly, your client-side JavaScript lives in files also imported
to your layout file. If you were to import socket.io client only on a specific view, you’d be able to handle
events only on that specific page.

378 Lesson 32 Adding a chat notification indicator
Summary

In this lesson, you learned how to customize your socket.io events for use outside the
normal chat feature. Because events can be used in any part of the application that has a
socket.io client, you can create events for many types of data transfer over an open con-
nection. First, you created a new event to notify other users when a user disconnects.
Then you used an existing event to trigger a nonchat feature in your layout’s navigation.
With this chat feature functioning, it’s time to apply the same tools to your capstone
project (lesson 33). Then it’s time to deploy!

Try this

Now that your chat application has a feature that lets users know when a user has dis-
connected, it would be useful to know when a user connects. Use io.on("connection") to
trigger a new event to your client to let them know that a new user has joined the chat.

When you’re done, see whether you can add the user’s name in the connection message,
as in Notice: Jon Wexler has joined the chat.

33LESSON
CAPSTONE: ADDING A CHAT FEATURE TO
CONFETTI CUISINE

At this stage, my application’s foundation is complete. I can continue to improve exist-
ing functionality or build new features. Before the application is released to production
and made available for everyone to use, Confetti Cuisine asked me to add an interesting
feature to engage users. Without hesitation, I tell them that this is a perfect opportunity
to build a chat feature within their Node.js application. Because I don’t want to compli-
cate the application too much before deployment, I’ll keep the chat simple.

The chat will allow only users with accounts to communicate with one another. Every
time a message is sent, I’ll save the message and associate it with the sender behind the
scenes. Also, I’ll take advantage of socket.io to maintain an open connection between
connected clients and the server for real-time communication. Through this library’s
event-driven tools, I can emit events from the server to individual clients or all clients
and from the client to the server. I could also emit events to a select group of clients, but
I won’t need to implement that feature for this application.

Later, I’ll connect a chat icon in the navigation bar to animate whenever a chat message
is sent. All users see this icon animate whenever a message is emitted. This icon doubles
as a link to the chat page. It’s time to put the finishing touches on the Confetti Cuisine
application.
379

380 Lesson 33 Capstone: Adding a chat feature to Confetti Cuisine
33.1 Installing socket.io

First, I need to install the socket.io package. socket.io offers a JavaScript library that
helps me build a real-time communication portal through its use of web sockets and
long polling to maintain open connections between the client and the server. To install
this package as a dependency, I run npm i socket.io -S in my project’s terminal window.

With this package installed, I need to require it in my main application file and on the
client side.

33.2 Setting up socket.io on the server

Before I require socket.io, I need to save the server instance I’m creating with Express.js
by assigning my app.listen line in main.js to a constant called server. Below this line, I’ll
require socket.io in my project by adding const io = require("socket.io")(server). In
this line, I’m simultaneously requiring the socket.io module and passing it the instance
of my HTTP server used by Express.js. This way, the connection used by socket.io will
share the same HTTP server as my main application. With my socket.io instance stored
in the io constant, I can start using io to build out my chat functionality.

First, I set up a new controller for chat functionality. Though all the socket.io code can
exist in main.js, it’s easier to read and maintain in its own controller. I start by requiring
a new controller in main.js and passing it the io object by adding const chatController =
require("./controllers/chatController")(io) to the bottom of main.js. Next, I create
chatController.js in my controllers folder. In this file, I add the code from listing 33.1.

I use the same io object created in main.js to listen for specific socket events. io.on
("connection") reacts when a new client connects to my socket server. client.on
("disconnect") reacts when a connected client disconnects. client.on("message") reacts
when a client socket sends a custom message event to the server. I can name this event
whatever I want. Because I’m working with chat messages, this event name seems to be
appropriate. Within that last block, I use io.emit to send a message event back to all con-
nected clients with the same data I received from an individual client. This way, every-
one gets the same message that a single user submits.

381Setting up socket.io on the client
module.exports = io => {
 io.on("connection", client => {
 console.log("new connection");

 client.on("disconnect", () => {
console.log("user disconnected");

 });

 client.on("message", (data) => {
let messageAttributes = {

content: data.content,
userName: data.userName,
user: data.userId

};
io.emit("message");

 });
 });
};

The last line of code sends a specific set of message attributes that I expect to receive
from the client. That is, I expect the client to emit a message event along with content,
user name, and user ID. I need to send those three attributes from the view.

33.3 Setting up socket.io on the client

To build a successful chat connection, I need a view that facilitates the socket connection
from the client side. I want to build my chat box in a view called chat.ejs that’s reachable
at the /chat URL path. I create a new route for this path in my homeRoutes.js by adding
router.get("/chat", homeController.chat).

Then I add the controller action to match this route by adding the code in the next list-
ing to homeController.js. This code renders my chat.ejs view.

chat: (req, res) => {
 res.render("chat");
}

Listing 33.1 Adding a chat action in chatController.js

Listing 33.2 Adding a chat action in homeController.js

Broadcast a
message to all
connected users.

Listen for a custom
message event.

Listen for when the
user disconnects.

Export the chat
controller contents.

Listen for new
user connections.

Render a chat view.

382 Lesson 33 Capstone: Adding a chat feature to Confetti Cuisine
To render my chat view, I need to build the view. I create a new file in my views folder
called chat.ejs and add the code in listing 33.3. In this Embedded JavaScript (EJS) code, I
first check for a currentUser in the view. Earlier, I set up the currentUser as a local vari-
able to reflect an active user session through Passport.js. If a user is logged in, I display
the chat form. The form contains three inputs. Two of the inputs are hidden but carry
the user’s name and ID. I’ll use these inputs later to send the identity of the message
author to the server. The first input is for the actual message content. Later, I’ll grab the
value of this input as the content that I submit to the server.

<% if (currentUser) { %>
 <h1>Chat</h1>
 <form id="chatForm">
 <input id="chat-input" type="text">
 <input id="chat-user-id" type="hidden" value="<%=
➥ currentUser._id %>">

<input id="chat-user-name" type="hidden" value="<%=
➥ currentUser.fullName %>">

<input type="submit" value="Send">
</form>
<div id="chat"></div>

<% } %>

The last pieces of this puzzle are adding some client-side JavaScript to monitor user
interaction on this chat page and submitting the socket.io events needed to notify the
server of new messages. In my public folder, I locate confettiCuisine.js and add to it the
code in listing 33.4. In this code, I import socket.io for the client and add logic to inter-
act over web sockets with my server. In the first code block, I use jQuery to handle my
form’s submission and grab all the values from my form’s three inputs. I expect to
receive these same three attributes in my server’s client.on("message") event handler.

The second block of code uses the socket object to represent the specific client on which
this code will run. socket.on("message") sets up the client to listen for the message event,
which emits from the server. When that event is emitted, each client takes the message
delivered with that event and passes it to a custom displayMessage function that I cre-
ated. This function locates my chat box in the view and prepends the message to the
screen.

Listing 33.3 Adding hidden fields in chat form in chat.ejs

Check for a logged-in user.

Add hidden fields
containing user data.

383Setting up socket.io on the client
const socket = io();

$("#chatForm").submit(() => {
 let text = $("#chat-input").val(),
 userName = $("#chat-user-name").val(),
 userId = $("#chat-user-id").val();
 socket.emit("message", {
 content: text,
 userName: userName,
 userId: userId
 });
 $("#chat-input").val("");
 return false;
});

socket.on("message", (message) => {
 displayMessage(message);
});

let displayMessage = (message) => {
 $("#chat").prepend($("").html(message.content));
};

Before my application can use the io object in this file, I need to require it within my lay-
out.ejs by adding the following script tag above my confettiCuisine.js import line:
<script src="/socket.io/socket.io.js"></script>. This line loads socket.io for the client
from my node_modules folder.

I’m ready to launch my application and see chat messages stream from one user to the
next. With some styling, I can make it easier for users to distinguish their messages from
others. I can also use the user’s name in the chat box so the sender’s name and message
appear side by side. To do so, I modify my displayMessage function to print the user’s
name, as shown in the next listing. I check whether the message being displayed
belongs to that user by comparing the current user’s ID with the ID in the message
object.

let displayMessage = (message) => {
 $("#chat").prepend($("").html(`
 <div class='message ${getCurrentUserClass(message.user)}'>

Listing 33.4 Adding socket.io on the client in confettiCuisine.js

Listing 33.5 Pulling hidden field values from chat form in confettiCuisine.js

Initialize socket.io on the client.

Listen for a submit
event in the chat form.

Emit an event when the
form is submitted.

Listen for an event, and
populate the chat box.

Display messages
in the chat box.

384 Lesson 33 Capstone: Adding a chat feature to Confetti Cuisine

 ${message.userName}:

 ${message.content}
 </div>
 `));
};

let getCurrentUserClass = (id) => {
 let userId = $("#chat-user-id").val();
 if (userId === id) return "current-user";
 else return "";
};

Next, I need to preserve these messages in my database by creating a Message model.

33.4 Creating a Message model

To ensure that my chat feature is worth using and a practical tool for users on the Con-
fetti Cuisine application, the messages can’t disappear every time a user refreshes the
page. To fix this problem, I’ll build a Message model to contain the message attributes in
the chat form. I create a new message.js file in my project’s models folder and add the
code in listing 33.6 to that file.

In this code, I’m defining a message schema that contains content, userName, and user
properties. The content of the chat message is required, as are the user’s name and ID. In
essence, every message needs some text and an author. If someone tries to save a mes-
sage somehow without logging in and authenticating, the database won’t allow the data
to save. I also set timestamps to true so that I can keep track of when the chat message
was added to the database. This feature allows me to show the timestamp in the chat
box, if I want.

const mongoose = require("mongoose"),
 { Schema } = require("mongoose");

const messageSchema = new Schema({
 content: {
 type: String,
 required: true
 },

Listing 33.6 Creating the message schema in message.js

Display the user’s name
along with the message. Check whether

the message
belongs to the
current user.

Require content
in each message.

385Creating a Message model
 userName: {
 type: String,
 required: true
 },
 user: {
 type: Schema.Types.ObjectId,
 ref: "User",
 required: true
 }
}, { timestamps: true });

module.exports = mongoose.model("Message", messageSchema);

This Mongoose model is ready for use in my chat controller. Effectively, when a new
message arrives in my chat controller, I attempt to save it and then emit it to other users’
chats. I require this new model in chatController.js by adding const Message = require
("../models/message") to the top of the file. The code in my chatController.js block
for client.on("message") is shown in listing 33.7. I start by using the same message-
Attributes from earlier in the controller to create a new Message instance. Then I try to
save that message. If the message saves successfully, I emit it to all connected sockets;
otherwise, I log the error, and the message never gets sent out from the server.

client.on("message", (data) => {
 let messageAttributes = {

content: data.content,
userName: data.userName,
user: data.userId

 },
 m = new Message(messageAttributes);

m.save()
.then(() => {

io.emit("message",
➥ messageAttributes);

})
 .catch(error => console.log(`error: ${error.message}`));
});

Listing 33.7 Saving a message in chatController.js

Require the user’s
name with each
message.

Require a user ID with
each message.

Save the timestamp
with each message.

Create a new
message object with
messageAttributes.

Save the message.

Emit the message values if save
is successful, and log any errors.

386 Lesson 33 Capstone: Adding a chat feature to Confetti Cuisine
This code allows messages to save to my database, but chat message history still doesn’t
appear for users who are connecting for the first time. I’ll correct that problem by load-
ing older messages into my database.

33.5 Loading messages on connection

The second task in preserving messages in the chat box is maintaining a consistent num-
ber of messages from the chat’s history in the chat box. I decide to allow the chat box to
contain the ten most recent chats at any given moment. To do so, I need to load those ten
most recent chats from my database and emit them to every client as soon as they con-
nect to the chat.

Within chatController.js, I add the code in listing 33.8 to find the ten most recent chat
messages and emit them with a new custom event. I use sort({createdAt: -1}) to sort
my database results in descending order. Then I append limit(10) to limit those results
to the ten most recent. By emitting the custom "load all messages" event on the client
socket, only newly connected users will have their chat boxes refresh with the latest chat
messages. Then, I reverse the list of messages with messages.reverse() so that I can pre-
pend them in the view.

Message.find({})
 .sort({
 createdAt: -1
 })
 .limit(10)
 .then(messages => {
 client.emit("load all messages",
➥ messages.reverse());
});

To handle the "load all messages" event on the client side, I add the event handler in the
next listing to confettiCuisine.js. In this block of code, I listen for the "load all messages"
event to occur. When it does emit, I cycle through the messages received on the client
and individually display them in the chat box through the displayMessage function.

Listing 33.8 Loading most recent messages in chatController.js

Query the ten most
recent messages.

Emit a custom event
with ten messages to
the new socket only.

387Setting up the chat icon
socket.on("load all messages", (data) => {
 data.forEach(message => {
 displayMessage(message);
 });
});

The chat is finally complete and ready to test locally. To mimic two separate users com-
municating, I relaunch my application and log in on two separate web browsers. I navi-
gate to the chat page and see that my chats are being sent in real time over my Node.js
application with socket.io.

33.6 Setting up the chat icon

I want to make one final addition to this application: an icon that lets users elsewhere in
the application know when the chat is active. I can easily add this feature with the exist-
ing socket.io event set up. All I need to do is add an icon to the navigation bar in my
application by adding @ to layout.ejs. With this
line alone, I have an icon in my navigation bar that links to the /chat route.

Next, I animate the icon by having it flash twice whenever a chat message is sent.
Because I’m already emitting the message event from the server every time a new mes-
sage is submitted, I can add the icon animation to the client’s handler for that event.

In confettiCuisine.js, I modify the socket.on("message") code block to look like the code
in the following listing. In this code, I display the message in the chat box as usual and
additionally target an element with the chat-icon class. This element represents my chat
icon in the navigation bar. Then I rapidly fade the icon out and back in, twice.

socket.on("message", (message) => {
 displayMessage(message);
 for (let i = 0; i < 2; i++) {
 $(".chat-icon").fadeOut(200).fadeIn(200);
 }
});

Listing 33.9 Displaying most recent messages in confettiCuisine.js

Listing 33.10 Animating chat icon when messages are sent in confettiCuisine.js

Send each message to
displayMessage to
display in the chat box.

Handle 'load all
messages' by parsing
incoming data.

Animate the chat
icon to flash when
a message is sent.

388 Lesson 33 Capstone: Adding a chat feature to Confetti Cuisine
With this extra feature, users have some indication that conversations are taking place
on the chat page.

I could add to this chat feature in plenty of ways. I could create separate chats for each
Confetti Cuisine class, for example, or use socket.io events to notify users when they’ve
been tagged in a chat. I’ll consider implementing these features in the future.

Summary

In this capstone exercise, I added a real-time chat feature to my Confetti Cuisine appli-
cation. I used socket.io to simplify connections between the server and multiple clients.
I used some built-in and custom events to transfer data between open sockets. At the
end, I added a feature to notify users who aren’t in the chat room that others are actively
communicating. With this feature added, I’m ready to deploy the application.

389

U
N

IT
 8

Deploying and managing
code in production

At just about any stage of your application develop-
ment, you likely wonder when people can start
using what you’ve built. The eagerness is justified.
Luckily, you have many ways to get your applica-
tion online. Deploying an application is one of the
most daunting tasks for new developers building
web applications. Part of the struggle is under-
standing the resources and services that assist with
deployment. The deployment process is much more
than uploading your application code somewhere,
at least during your first attempt. If done correctly,
making changes in a production application can be
simple. Some problems with making changes in
your production application include running into
restrictions that limit the database content that you
can modify, accidentally removing code used to
verify incoming data, and making changes in your
local environment that don’t work in your produc-
tion environment, such as configuration changes.

In this unit, you set up your application to deploy
on Heroku, a cloud service that hosts and runs your
application for you. First, you prepare your applica-
tion’s configuration files to ensure that functionality
will work locally and in production. Then you fol-
low a few steps to launch your application on Her-
oku and set up your MongoDB database. After a

390 Unit 8 Deploying and managing code in production
short lesson, you’ll have your recipe application running under a URL that you can
share with family and friends. In a subsequent lesson, you explore ways to improve
your code for future refinement. I talk about linting your code, a process used to identify
inefficient code with the help of an external package. At the end of the unit, you’ll get a
chance to apply unit and integration testing to your code. These tests provide funda-
mental protection against accidentally breaking your code in the future. You install the
mocha and chai packages to help set up tests for Express.js actions and routes.

This unit covers the following topics:

 Lesson 34 guides you through the preparation steps to complete before your
application is production-ready. In this lesson, you set up your application to
deploy to Heroku along with a new MongoDB database provided as a plugin on
Heroku’s services.

 Lesson 35 shows how to catch small bugs in your code through the linting pro-
cess and how to correct those bugs with the help of a debugging tool. By the end
of this lesson, you’ll have a set of tricks to pull out of your back pocket whenever
you need to clean up your code.

 Lesson 36 introduces testing concepts in Node.js. This lesson touches the surface
of test code you can write to ensure that functionality in your application doesn’t
break over time.

Lesson 37 (the capstone lesson) walks through using the deployment steps you learned
in this unit to deploy the Confetti Cuisine application.

34LESSON
DEPLOYING YOUR APPLICATION

At this stage, you’ve completed a few iterations of your application, and it’s time to
make it available to the World Wide Web. This lesson introduces application deploy-
ment with Heroku. First, you set up your application to work with Heroku’s services
and plugins. In a few easy steps, you’ll have your application live, with a unique URL
that you can share with your friends. Next, you see how to set up your MongoDB data-
base and populate your application with content. Last, you learn about tools you can
use with Heroku to monitor your application in production, as well as guidelines for
making future changes in your production code and Heroku plugins worth exploring
further.

This lesson covers

 Configuring a Node.js application for Heroku
 Deploying a Node.js application
 Setting up a remote MongoDB database

Consider this You’ve spent countless hours adding features and functionality to your
application, only to have it run locally on your personal computer. It’s about time that
you expose your work on the recipe application to the public. The final step in the devel-
opment process is deployment. In this lesson, I discuss the necessary steps to get your
application ready for production.
391

392 Lesson 34 Deploying your application
34.1 Preparing for deployment

Deployment is the process of taking your application code from your development envi-
ronment and publishing and running it on the internet to make it accessible to the pub-
lic. Until this point, you’ve been developing your application in a local environment.
Developers would refer to the application running at http:// localhost:3000 as running in
your development environment.

One option is to set up a new environment. You need to re-create the system settings
and resources that made it possible to run your application on your own machine: a
physical computer with Node.js installed, the ability to install any external packages,
and a JavaScript engine to run the application. There’s no escaping the fact that your
application depends on physical hardware to function. For this reason, deploying your
application to a production environment, somewhere accessible to others online, requires
some machine or service to run your application.

You could set up your own computer to run your application and configure your home
network to permit users to reach your application via your home’s external IP address.
The configuration steps are a bit involved, though; they might pose security threats to
your home internet network; and they’re beyond the scope of this book. Also, if your
computer shut down, your application would be unreachable.

The popular alternative is to use one of many cloud services to host and run your appli-
cation. These services often come at a cost, but for demonstration purposes, you can
deploy your application through Heroku’s free account services. Heroku is a cloud-
based platform that offers servers—the physical processing computers and memory—to
run your application. What’s more, these computers often come prepackaged with the
installation of Node.js that you need and require very little setup on the developer’s
part.

To get started with deployment, ensure that you have the Heroku command-line inter-
face installed by running heroku --version in terminal (heroku version in the Windows
command line). Also make sure that you have Git installed by running git --version. If
you see some version of these tools printed on the screen, you can continue to the
deployment steps.

NOTE If you haven’t yet created your Heroku account, set up the command-line interface
(CLI), or installed Git, please follow the instructions in lesson 2.

http://localhost:3000

393Preparing for deployment
Before you can deploy to Heroku, you need to make a couple of changes to your appli-
cation to make it compatible with the services that Heroku provides. Heroku will run
your application by using the application’s PORT environment variable, so you need to
have your application ready to listen at both ports, as shown in the next listing. In this
code, you create a constant, port, and assign it to the PORT environmental variable, if it
exists. Otherwise, the port defaults to 3000. This port number should remain the same as
in previous lessons.

app.set("port", process.env.PORT || 3000);
const server = app.listen(app.get("port"), () => {
 console.log(`Server running at http://localhost:
➥ ${app.get("port")}`);
});

Similar to the way that Heroku specifies the application’s port, the database you’ll use
also can be defined in an environmental variable. In main.js, change the database con-
nection line to mongoose.connect(process.env.MONGODB_URI || "mongodb://local-
host:27017/recipe_db", {useNewUrlParser: true}). This line tells Mongoose to connect to
the database defined in MONGODB_URI or to default to your local recipe_db database loca-
tion. (See section 3 for details on why this environmental variable exists.)

Last, create a new file called Procfile at the application’s root. This file has no extensions
or suffix, and its name is case-sensitive. Heroku uses this file to find out how to launch
your application. Add web: node main.js to this file. This single line tells Heroku to cre-
ate a new server, called a dyno, intended for web interaction, and to use node main.js to
start the application.

With these three changes in place, you can finally deploy the application.

Listing 34.1 Changing the application’s port in main.js

Listen at the port
assigned to port.

Assign the
port
constant.

Quick check 34.1 Why do you need the Procfile in your project folder?

QC 34.1 answer Heroku uses the Procfile as a configuration file to start your application.

394 Lesson 34 Deploying your application
34.2 Deploying your application

With the appropriate configurations in place, you can use Git and the Heroku CLI to
deploy your application. Throughout this book, you haven’t used Git for version con-
trol. Although versioning your code isn’t necessary in your development environment,
it’s good practice, and in the case of deployment, it’s required to get your application to
its production environment on Heroku. If you’re using Git for the first time, go to your
project’s root directory in terminal, and initialize the project with Git by running git
init. In the next step, you add the files that you want in your Git repo, but you don’t
want some files in this repo.

You may recall that the node_modules folder gets created when you run npm install. This
folder can get pretty large, and adding it to your Git repo isn’t recommended. To ignore
this folder, create a new file called .gitignore at the root of your application directory.
Add /node_modules to that file in your text editor, and save. That’s all you need to do for
Git to know not to add those files within this folder.

To bundle your application code into a specific version, add the rest of the application’s
files to Git’s staging level by running git add . (including the period). Then run the
command git commit -m "Initial application commit" to save and commit this version
of your code and receive a feedback message.

NOTE Any other changes you make that aren’t added and committed following the same
process won’t appear in your production environment.

With your code in version control, you can use the heroku keyword in terminal to initiate a
new application for deployment. Run the command heroku create in your project direc-
tory in terminal to generate a new URL for your project. The response detailing the name
of your Heroku application, its URL, and Git repository should resemble the following
listing. This command also creates a connection to Heroku’s remote Git repository for
your code. You can run the command git remote -v to reveal the URL to that repository.

Creating app... done, crazy-lion-1990
https://crazy-lion-1990.herokuapp.com/ |
➥https://git.heroku.com/crazy-lion-1990.git

Next, push your latest versioned code from your computer to the Heroku repository
you set up. Publishing your code is the same as uploading your code to a server that

Listing 34.2 Creating a new Heroku app

Display the results
of creating a new
Heroku app.

395Deploying your application

will host your application on the internet. You can publish by running the command git
push heroku master. This step is the most important part of the process because it’s where
all your code gets uploaded and published on Heroku’s services. This step is also when
Heroku runs npm install to download all your application’s package dependencies.

This process may take about a minute, depending on your internet connection. If you
experience any issue or notice an error in the process, make sure that you can still run
your application locally before trying again.

If your application didn’t depend on a database, you could go directly to the URL provided
after the heroku create command in your browser. If you try visiting your application’s
/courses URL, you may see an error page (figure 34.1). Because your home page doesn’t
depend on any persistent data, however, that page should load without any errors.

NOTE If you still have remnants of the bcrypt package in your project, you might run into
issues with deployment to heroku depending on your version of Node.js. Try unninstalling
bcrypt and replacing it with bcrypt-nodejs in usersController.js. In terminal you'll need to
run npm uninstall bcrypt && npm i bcrypt-nodejs -S.

Figure 34.1 Displaying the Heroku error page

This error likely has to do with the fact that you haven’t set up your database yet. You
can verify, though, by running the command heroku logs --tail in your project’s termi-
nal window. This command provides a live feed of logs from the application online.
You’ll find a lot of messages here, and it’s the first place I recommend checking if you
experience any issue with your application in the future. Suppose that you see an error
for a missing database. You can fix the problem by connecting to a MongoDB database.

NOTE If you need some assistance with your Heroku CLI commands, run the command
heroku help in terminal or visit https://devcenter.heroku.com/articles/heroku-cli-
commands.

https://devcenter.heroku.com/articles/heroku-cli-commands
https://devcenter.heroku.com/articles/heroku-cli-commands

396 Lesson 34 Deploying your application

34.3 Setting up your database in production

Because you don’t have direct access to the server on which your production application
is running, you can’t download, install, and run a MongoDB database on the same
server, as you do in development. Heroku provides a free plugin, however, that you can
use to set up a small MongoDB database. To add this plugin from terminal, run the com-
mand heroku addons:create mongolab:sandbox. This line provisions a sandbox database
from MongoLab (mLab).

With the help of other cloud services such as Amazon and Google, mLab provides data-
bases and MongoDB servers that can be accessed remotely via a URL. The URL you get is
added to your application as the environmental variable MONGODB_URI. This variable means
that your application can use the variable MONGODB_URI to get the URL of the database.

WARNING The URL provided by mLab is a direct link to your application’s data. Only your
application on Heroku should use this URL; otherwise, you risk database-security vulnerabilities.

You previously set up your application to use this variable. You can verify that it exists
in your application by running the heroku config command in terminal. The result of
running this command is a list of configuration variables used by the application. You
should see only one variable for your database at this time.

NOTE You can add new environmental variables by running the command heroku
config:set NAME=VALUE, where Name is the name of the variable you want to set and
VALUE is its value. I might set heroku config:set AUTHOR_EMAIL=jon@jonwexler.com.

After a few minutes, your application should be ready to view. In your web browser,
visit the URL provided earlier by Heroku, and add the /courses path to see an empty
table, as shown in figure 34.2. You should see the home page of your application. Try
creating new user accounts, subscribers, and groups through the forms you created in
past lessons.

You may be wondering whether there’s an easier way to populate your new database
online with data than manually entering information in the browser forms. There is! I
show you that technique, and some other tools and tips, in lesson 35.

Quick check 34.2 What does the heroku create command do?

 QC 34.2 answer heroku create registers a new application name and code repository for your
application on Heroku’s services. It also links your local Git repository to the remote repository by the
name of heroku.

397Summary
Summary

In this lesson, you learned about preparing your application for production and deploy-
ing it to Heroku. First, you changed some application configurations to help your Her-
oku dyno handle and run your application. Next, you deployed the application through
your terminal Heroku CLI. Last, you set up a remote MongoDB database by using the
mLab plugin through Heroku. In lesson 35, you discover how to manage your applica-
tion in production, add data, and debug problems.

Try this

With your application on Heroku, test all the functionality to make sure that it works.
Everything may seem to work as intended at first, but keep in mind that the environ-
ment is different, and sometimes your code may not work as expected. Try opening one
terminal window with heroku logs --tail running alongside a browser window with
your production application, and watch the log messages that Heroku prints.

Figure 34.2 Displaying the Heroku courses page

Quick check 34.3 How do you view and set environmental variables on your Heroku application?

QC 34.3 answer To view environmental variables on your Heroku application, run heroku config in
your project’s terminal window. You can set new variables by using heroku config:set.

35LESSON
MANAGING IN PRODUCTION

Your application is finally online, and you want to ensure that it stays there, fully func-
tional. In this lesson, I discuss ways of getting data into your application even before
any forms are used. You may want to add some of the course data you used in develop-
ment so that your application has a fresh start online with data to view. Adding course
data to your live application will reduce the time it takes to make the pages of your site
presentable. Then I discuss some ways to improve your code quality and make sure that
you don’t make mistakes that could cause your application to crash in production. Last,
I talk about ways to log, debug, and monitor your application in production to help you
investigate when things begin to break.

This lesson covers
 Loading seed data into your production application
 Setting up linting for you code
 Debugging your application

Consider this Your application is finally online, and it’s a proud moment, except that
your client quickly discovers bugs that went undetected in development. What protocol
do you follow to fix your code locally and upload to production?

In this lesson, you learn how to maintain your application in production with a few tools.
398

399Loading seed data

35.1 Loading seed data

In lesson 34, you got your database set up, but you may be wondering whether there’s a
simple way to populate your production application with data. You can upload data
into your application on Heroku in a few ways.

Seed data is the database records you feed into your application when you first set it up
in a new environment. Other languages and platforms have conventions for loading a
file with seed data in different environments. In Node.js, you can create a JavaScript file
containing the data you’d like to load. You may want to populate your application with
recipe courses before any users even sign up, for example. To do so, you can use an
existing seed file or create a new file in your application directory called seed.js. This file
defines and creates new records that communicate with your Mongoose plugin. For that
reason, you need to require Mongoose and the models you intend to use, as shown in
listing 35.1.

To avoid conflict with a preexisting seed file, create courseSeed.js. In this example, you
include the necessary modules needed for creating new data objects with Mongoose.
Then you create multiple records with values that you’d like to see in your production
application. When this file contains the data that you want to use, run the code in this
file, using the Heroku command-line interface (CLI).

const mongoose = require("mongoose"),
 Course = require("./models/course");

mongoose.Promise = global.Promise;
mongoose.connect(
 process.env.MONGODB_URI || "mongodb://localhost:27017/recipe_db",
 { useNewUrlParser: true }
);
Course.remove({})
 .then(() => {
 return Course.create({

title: "Beets sitting at home",

Listing 35.1 Adding content through seed data in courseSeed.js

Require models
for seeding data.

Run code to create new
database documents.

Remove all existing
documents.

description: "Seasonal beets from the guy down
➥ the street.",

zipCode: 12323,
items: ["beets"]

});
})

400 Lesson 35 Managing in production
 .then(course => console.log(course.title))
 .then(() => {
 return Course.create({

title: "Barley even listening",
description: "Organic wheats and barleys for bread,

➥ soup, and fun!",
zipCode: 20325,
items: ["barley", "rye", "wheat"]

 });
 })
 .then(course => console.log(course.title))
 .then(() => {
 return Course.create({

title: "Peaching to the choir",
description: "Get fresh peaches from the local farm.",
zipCode: 10065,
items: ["peaches", "plums"]

 });
 })
 .then(course => console.log(course.title))
 .catch(error => console.log(error.message))
 .then(() => {
 console.log("DONE");
 mongoose.connection.close();
 });

TIP As an alternative, you could use the mLab URL to load seed data directly into your pro-
duction database. Although this approach is quick, I don’t recommend it because it exposes
your production database to security risks.

Two other alternatives are using Heroku CLI tools to launch your production applica-
tion’s REPL or terminal environment. You may recall that REPL has access to the files
and folders in your projects directory, so it’s a great way to insert data from terminal.
Launch REPL by running the command heroku run node in your project’s terminal win-
dow. With this REPL-like environment for your production application, you can simply
copy and paste the contents of courseSeed.js into terminal. The other approach is to run
heroku run bash in your project’s terminal window. This command brings up a prompt
where you can run node courseSeed to load all the contents directly. First, you'll need to
commit your courseSeed.js file to git and push to heroku.

If you’re successful, you should see the log outputs of each course created, which also
appear immediately on the /courses route in your application online (figure 35.1).

401Linting

NOTE To upload new changes to your project, run git add . followed by git commit -m
"some commit message" and git push heroku master.

In the next section, I discuss ways to maintain the integrity of your code and ensure that
new errors don’t pop up.

35.2 Linting

Bugs and coding mistakes are part of the development process. What can you do to pre-
vent the inevitable mistakes that halt production? Along with code quality, the process
of linting to hold your code to a particular standard is a way to reduce errors. Linting
involves running a program to read through your code and notify you of bugs or errors
that you may not have caught. You also might miss (and some browsers might ignore)
syntax errors during development that could break your application in a different envi-
ronment. To lint your code, globally install a package called eslint by running npm
install -g eslint. ESLint is an open-source tool used in terminal to run static analysis

Figure 35.1 Display of the populated courses page

Quick check 35.1 What happens when you run heroku run node?

 QC 35.1 answer heroku run node opens a new REPL window for you within the context of your
production application. From there, you can run JavaScript commands and load application-specific
modules as you would locally, with access to your production database.

402 Lesson 35 Managing in production
on your code. Through this analysis, you can identify code style and structure prob-
lems. Other linting libraries that you can use include JSLint and JSHint. You can learn
more about ESLint at https://eslint.org/.

NOTE You could also install the package for this project by running npm install eslint
--save-dev within your project directory in terminal. The --save-dev flag signifies that this
package doesn’t need to be installed in your production environment; it will be marked that
way in your application’s package.json. To use eslint after installing it as a development
dependency, you need to access it from ./node_modules/.bin/eslint.

As you initialized a new package.json file with npm init, initialize a .eslintrc.js file by
running eslint --init in your project’s terminal window. Choose to set up your file by
answering the questions in terminal, as shown in listing 35.2. You need to let the linter
know to look for ES6 syntax and methods because you use them throughout your appli-
cation. You also tell the linter to analyze your code on the server and client because
you’ve written JavaScript for both.

? How would you like to configure ESLint? Answer questions about
➥ your style
? Are you using ECMAScript 6 features? Yes
? Are you using ES6 modules? Yes
? Where will your code run? Browser, Node
? Do you use CommonJS? No
? Do you use JSX? No
? What style of indentation do you use? Tabs
? What quotes do you use for strings? Double
? What line endings do you use? Unix
? Do you require semicolons? Yes
? What format do you want your config file to be in? JavaScript

Take a look at the .eslintrc.js file that’s produced at the end of this prompt in listing 35.3.
Notice that you’re formatting the linter’s configurations in JavaScript, not JSON, like
your package.json file. As in your other JavaScript modules, these configurations are
assigned to module.exports. Most of the configurations that follow are fairly straightfor-
ward. Your environments are specified to include node, web browsers, and ES6 syntax.
Then there are eslint rules, which define when to warn you of inconsistencies. In this
case, you throw a linter error when spaces are used instead of tabs, semicolons are miss-
ing at the end of statements, or single quotation marks are used around text. You can
change these configurations to suit your preferences.

Listing 35.2 Setting up your .eslintrc.js file in terminal

Answers to questions
to set up your linter

https://eslint.org/

403Linting
module.exports = {
 "env": {
 "browser": true,
 "es6": true,
 "node": true
 },
 "extends": "eslint:recommended",
 "parserOptions": {
 "sourceType": "module"
 },
 "rules": {
 "indent": [
 "error",
 "tab"
],
 "linebreak-style": [
 "error",
 "unix"
],
 "quotes": [
 "error",
 "double"
],
 "semi": [
 "error",
 "always"
]
 }
};

Test your linter on the main.js file by running eslint main.js. I hope that you don’t see
any errors up front. Try deleting a semicolon or defining a variable that you don’t use
later. Notice how eslint outputs errors with line numbers so that you can correct your
code easily. Clean code helps ensure the integrity and readability of your application.

NOTE Keep in mind that some linter rules are stricter than others. The rules are intended
to maintain consistency in your code. If you see errors referring to spaces versus tabs,
those errors don’t mean that your code is bad—only that it could use a cleanup.

The output of errors in your terminal window details which files and line numbers you
need to visit to correct your syntax or code structure.

Listing 35.3 Example .eslintrc.js configuration file

Specify the
environments
to analyze.

Define eslint rules.

404 Lesson 35 Managing in production
35.3 Debugging your application

You looked at a few ways to debug your application earlier in the book. You used
console.log to print custom messages, error messages, and request/response-specific
data in your Express.js middleware functions. Then you used the logs in your terminal
window to determine where to fix certain problems. If an error occurred while saving a
user to the database, for example, you caught the error in your promise chain and
logged it to the console.

Logging is helpful when it’s used correctly. Logs provide a recorded history of transac-
tions and interaction with your application. Even if your application is running
smoothly, you want your development logs to tell you more about the application’s per-
formance, and you want your production logs to inform you of suspicious activity.

Locally, you can get more information about the request-response cycle by starting your
application in debug mode. In your project’s terminal window, type the command
DEBUG=* node main to set the DEBUG environment variable to logging from all elements of
your application as it runs.

NOTE On Windows machines, first set the environment variable and then run the applica-
tion by running the command set DEBUG=* & node main.

You’ll notice right away that the number of log lines in your terminal window reflects
the operations Express.js performs to register your routes, along with some configura-
tions it makes before your web server launches (listing 35.4). Now when you visit any
page in your application locally, the debug logs stream down your terminal window.
Conveniently, Express.js also tells you how much time each operation takes in its log
messages. During development, this information can help you determine whether some
parts of the application aren’t performing well so that you can investigate further.

Quick check 35.2 What does .eslintrc.js do?

QC 35.2 answer Like package.json, .eslintrc.js stores the configuration settings for eslint that you
set up in the initialization process in terminal. This file contains rules by which the linter determines
whether your code needs to be fixed.

405Debugging your application
express:router:route new "/new" +0ms
express:router:layer new "/new" +0ms
express:router:route get "/new" +0ms
express:router:layer new "/" +0ms
express:router:route new "/create" +0ms
express:router:layer new "/create" +0ms

If you find it helpful to run your application with debug logs, you can add a start script
in your package.json file to avoid writing the whole command each time. Add "debug":
"DEBUG=* node main" after your start script. Then, whenever you want to see these logs,
run the npm run debug command.

These logs can be valuable in production as well, though you don’t want to run your
production application in debug mode. Instead, install another package to handle log-
ging the important data that you want to see in production. Install a package called
morgan to provide your Node.js application better console log messages.

Install the morgan package by running the command npm i morgan -S. Then, in main.js,
require the morgan module by adding const morgan = require("morgan"). Then the pro-
cess is as simple as telling your Express.js application to use morgan and passing in some
formatting options. You can add app.use(morgan(":method :url :status * :response-time
ms")) to log the request method, URL, status code, and time taken to process a response,
for example.

This output should immediately resemble the logs that Express.js generated in debug
mode. Launch your application with npm start, and notice the logs for each request
made, as shown in the next listing. I recommend using the morgan("combined") format, in
which the combined formatting options provides a lot of the information you’ll need to
monitor the request-response cycle in your production application.

GET / 200 * 20.887 ms
GET /js/jquery.min.js 304 * 2.504 ms
GET /js/bootstrap.min.js 304 * 1.402 ms
GET /js/recipeApp.js 304 * 0.893 ms
GET /css/recipeApp.css 304 * 1.432 ms

Listing 35.4 Example of log messages through Express.js in terminal

Listing 35.5 Example of log messages with morgan

Log Express.js
route registration
in debug mode.

Log custom
messages
with morgan.

406 Lesson 35 Managing in production
With logging set up, the best approach to debugging problems is to pause your applica-
tion where issues occur and analyze the code surrounding those issues. This practice is
easier said than done, but tools are available to help you identify the troubled code.
Built into Node.js is a debug tool that lets you step through your code one line at a time.
After each line of code, you can evaluate the variables and data to determine whether
their values are what you expect.

To run the built-in debugger, run the node inspect main.js command in your project’s
terminal window. After running this command, you’ll immediately see the first lines of
your main.js file display in your terminal window. The tool pauses as soon as your
application starts, stating Break on start in main.js:1. You can start evaluating your
code by typing n to go to the next line, incrementally jumping over a single line at a
time, or typing c to continue running your application. If you type c, your application
runs as usual. The debugger becomes particularly useful when you have an idea of
where your code isn’t working properly. If you think that your code isn’t finding users
correctly on the user’s show page, for example, you may want to pause the code within
that controller action. To pause in specific locations, add debugger; at that location in
your code, as shown in listing 35.6.

By adding this line, running the debugger again in terminal, and typing c to let your
application run, you’re setting the application up to stop for you when it queries the
database for a user in the show action before the view is rendered.

User.findById(userId)
 .then(user => {
 debugger;
 res.render("users/show", {

user: user
 });
});

As soon as you visit a user’s show page in your browser, the page pauses, and your termi-
nal window displays the code where you placed your debugger;. From there, you can
investigate the variables within this code by entering the REPL environment. By typing
repl in the debugger window in terminal, you can run normal REPL commands within
the context of the code that’s being debugged. In this example, you’re checking whether
the user being retrieved from the database has a valid email address, so run the following
statement: console.log(user.email). If you get undefined or some value other than the

Listing 35.6 Debugging the show action in usersController.js

Add a debugger
breakpoint when a user
is found in the database.

407Summary
user’s email address, you know that the issue has to do with the email, and you can inves-
tigate further. When you’re done debugging, type c to continue and press Ctrl-D to exit.
For more information about this debugger, visit https://nodejs.org/api/debugger.html.

The built-in debugging tool can be a helpful way to analyze the data in your application
as it runs. Fully debugging your code this way involves a few steps, however, so I rec-
ommend exploring other debugging tools, such as node-inspector, which lets you use
the console in Google Chrome to debug. You can also use Node.js with an integrated
development environment like TernJS in Atom, which offers debugging tools while you
edit your code.

Summary

In this lesson, you learned how to add data to your production application through the
Heroku console. Then you installed eslint to lint your application for errors or syntactic
inconsistencies in your code. Last, I introduced some debugging tips to help you iden-
tify production errors and know immediately where to go to fix them.

Try this

Try using the debugger in Node.js to evaluate the values of different variables in your
application. Try running your application in debug mode and breaking within the user’s
create action to evaluate the incoming request parameters.

Quick check 35.3 What happens when you add debugger to your application code?

QC 35.3 answer Adding debugger to your code allows the debugging tool in Node.js to pause at
that specific location as your application runs. Outside the debug tool, this addition won’t prevent your
application from running normally.

https://nodejs.org/api/debugger.html

36LESSON
TESTING YOUR APPLICATION

Continual maintenance of your application in production requires fixing bugs. Fixing
bugs means writing new code. Writing new code has the unforgiving tendency to break
existing functionality. In this lesson, you take some steps to prevent the breaking of
working code by implementing tests on your Node.js application. Writing tests in
Node.js is similar to testing in other platforms and languages. First, you learn how to
write simple tests for a function in your application. Then you implement tests for the
controller actions and models to cover the bulk of your application’s code. By the end of
this lesson, you’ll have the fundamental skills you need to get started testing your
Node.js application.

This lesson covers
 Using core modules to write assertion tests
 Writing a Node.js test with mocha and chai
 Building and running tests for controller actions with chai-http
 Implementing tests for your API

Consider this Your recipe application is looking great in production, and you’ve
gained development support from some local developers. Your application code is
being worked on by multiple people, and the new developers don’t necessarily know how
their implementation of new features will affect the features you’ve already built.

➠

408

409Basic testing with core modules
36.1 Basic testing with core modules

In the tech industry, application testing is a standard practice. When you write some
code with explicit functionality, you want to make sure that functionality doesn’t change
unless it’s intended to change. To help ensure that your code isn’t accidentally affected
by changes and new features that you implement (or that another developer imple-
ments), you can write tests. Tests contain three components:

 Test data representing sample data that you’d expect to receive in your
application

 Expectations detailing what a function or series of operations should output,
given your test data and application code

 A testing framework to run your tests and determine whether your defined
expectations were met

Before learning about some external tools that you can use to test your application, you
can use a core module that comes with Node.js. The assert module offers some basic
functions that you can use to confirm the equality of two values. You can think of these
functions as being conditional statements wrapped in testing language.

You can use this module by navigating to a new project folder called simple_test and
creating a new file called test.js with the code shown in listing 36.1. In this example, you
require the assert module. Then you write an assertion test by using assert.equal to
determine whether the first value, the result of a call to your custom add function, equals
the second argument, 0. Last, you write the add function to take two values and return
their sum. In this example, you expect the addition of 5 and 4 to equal 0. As you’d
expect, this test should fail, and when it fails, the message in the final argument should
appear in terminal.

Run this file to see the assertion error in terminal by entering node test within the
simple_test project directory. That error should read AssertionError [ERR_ASSERTION]: 5
plus 4 should equal 9.

A new developer adds a new index action on the users controller. This new action
doesn’t respond with all the user data you originally planned for, which affects your API
and views. If you write tests for your index action specifying what data you expect it to
return, new developers will have a point of reference regarding what functionality is
allowed to change with their modifications.

410 Lesson 36 Testing your application
const assert = require("assert");

assert.equal(add(5, 4), 0, "5 plus 4 should equal 9");

let add = (x, y) => {
 return x + y;
};

To correct this test, you need to change 0 to 9. You could also add another assertion test
here to specify what your add function shouldn’t return. You could write assert.notEqual
(add(5, 4), 0) , for example. If this test ever fails, you’ll know that something is wrong
with your add function that needs modification.

The assert module is a great way to start writing tests for Node.js. For your application,
however, you’ll benefit from external packages that test more-complicated functionality.
For more information about the assert module, visit https://nodejs.org/api/assert.html.

Listing 36.1 Simple assertion test in test.js

Implement the
function specified
in your test.

Write the
assertion test.

Require the
assert module.

Test-driven development
Test-driven development (TDD) is an application development strategy in which tests
specifying the expectations of your code are written first, followed by the feature imple-
mentation designed to pass your initial tests.

You want to make sure that your tests comprehensively cover your application’s func-
tionality, which means writing tests that specify how your application should work when
it’s provided valid and invalid data. Sometimes, when you write your tests after you’ve
already implemented the application code, it’s easy to miss edge cases that aren’t
accounted for in your test suite. For this reason, TDD can offer a more wholesome devel-
opment experience.

TDD involves the following steps:

1 Write your tests with sample data and expectations of the results, using that
sample data through some method or function that you’ll build later.

2 Run your tests. At this point, all your tests should fail.
3 Implement code for your testing to behave according to the expectations you

defined in your tests.
4 Run your tests again. At this point, all your tests should pass.

https://nodejs.org/api/assert.html

411Testing with mocha and chai
36.2 Testing with mocha and chai

To start testing your application, install the mocha and chai packages in your recipe-
application terminal window by running the command npm i mocha -g and npm i chai
-S. mocha is a testing framework. Much like Express.js, mocha offers a structure and meth-
ods that can be used in conjunction to test your application code. You install mocha glob-
ally because you need to use the mocha keyword in terminal, and you’ll likely test other
projects. chai should be installed as a development dependency because you’ll be test-
ing your code only locally; you don’t need this package to be installed in your produc-
tion environment.

To use the mocha module, run mocha in your project’s directory in terminal. Running this
command directs mocha to look for a test folder within your project folder. As with any
framework, a conventional directory structure is used to keep your tests organized and
separate from your other code files, so you need to create that test folder at the root of
your application directory.

NOTE Visit https://mochajs.org for more information about the mocha framework, from
installation to use in terminal.

If your tests don’t pass after you’ve written your application’s code, it could mean that
your application code isn’t perfected yet.

If you were using TDD to implement a function called reverse that takes a string as a
parameter and reverses it, for example, you might follow these steps:

1 Write a test for the reverse function, using a test string, var s = "Hello", such
that when you run reverse(s), you expect the result to be "olleH".

2 Run the tests, and expect them to fail.
3 Write the code to reverse strings.
4 Rerun the tests until all of them pass.

Quick check 36.1 What is an assertion test?

QC 36.1 answer An assertion test is code that you write to express your expectations of how some
sample data might change, equal, or otherwise relate to another value. This test could be a comparison
of two pieces of raw data or a comparison of data resulting from a function call or series of operations.

https://mochajs.org

412 Lesson 36 Testing your application
mocha helps you describe and run tests, but it doesn’t provide the tools you need to
determine whether the outcomes of your code are what you expected. For that purpose,
you need an assertion engine to run assertions, which describe how code should output
a specified value.

chai is the assertion engine that you’ll use in this lesson. To use chai, require it in each test
file you plan to run. Then, like the assert method from your core module, you can use
expect, should, or assert as function verbs to check whether your code returns the
intended results in your tests. For the following examples, use the expect function. chai
also has descriptive functions to help you explain your tests before the assertions them-
selves. You’ll use the describe function to specify the module and function you’re testing.

NOTE describe functions can be nested.

For the actual tests, use the it function to explain what you expect to happen in the test.
Semantically, this function allows your test to read this way: In a specific module, for a
specific function, your code (it) should behave in a certain way when it’s provided with
some specific data. You take a closer look at this semantic structure in the next example.

The last steps in using these packages are creating the test file, requiring any custom
modules with methods you want to test, and providing sample data within your tests.
Write a simple test for your recipe application, using mocha and chai. Create a new file
called usersControllerSpec.js in the test folder within your project’s directory. Per devel-
opment convention, Spec is used in filenames to indicate a test suite.

Within this file, test the getUserParams function used in your user’s controller from the
capstone exercise in lesson 25. For testing purposes, add the getUserParams function to
usersController.js, as shown in listing 36.2.

NOTE You can make use of this function in the create action by creating a new User
instance with the following line: let newUser = new User(module.exports.getUser-
Params(req.body)). You can reference the getUserParamsthrough module.exports.

Unless you export this function, there’s no way for any other module to access the
function.

getUserParams: (body) => {
 return {
 name: {

first: body.first,
last: body.last

 },

Listing 36.2 Exporting the getUserParams function

Export
getUserParams in
usersController.js.

413Testing with mocha and chai
 email: body.email,
 password: body.password,
 zipCode: body.zipCode
 };
}

In usersControllerSpec.js, require chai along with usersController.js. The code for your
test file resembles the code in listing 36.3. Because you use the expect assertion function,
you can require it directly from the chai module; you won’t need chai for anything else.
Then define your first describe block by stating the module you’re testing. The follow-
ing describe block specifies the function you’re testing. Within that nested describe, you
can run multiple tests that pertain to getUserParams. In this case, you’re testing whether
getUserParams returns data that includes your name properties when provided a sample
request body. The second test ensures that a blank request body results in an empty
object. You use deep.include to compare the contents of one JavaScript object with
another. For more information about chai assertion methods, visit http://chaijs.com/
api/bdd/.

const chai = require("chai"),
 { expect } = chai,
 usersController = require("../controllers/usersController");

describe("usersController", () => {
 describe("getUserParams", () => {
 it("should convert request body to contain
➥ the name attributes of the user object", () => {

var body = {
first: "Jon",
last: "Wexler",
email: "jon@jonwexler.com",
password: 12345,
zipCode: 10016

};
expect(usersController.getUserParams(body))

.to.deep.include({
name: {

first: "Jon",
last: "Wexler"

}
});

Listing 36.3 Exporting the getUserParams function in usersControllerSpec.js

Require the expect function.

Detail your test
expectations.

Define the focus
of your test in a
describe block.

Provide sample
input data.

Expect some object to be
included in the results.

http://chaijs.com/api/bdd/
http://chaijs.com/api/bdd/

414 Lesson 36 Testing your application
 });

 it("should return an empty object with empty request
➥ body input", () => {

var emptyBody = {};
expect(usersController.getUserParams(emptyBody))

.to.deep.include({});
 });
 });
});

To run this test, enter the mocha command in your project’s terminal window. You should
see an indication that both tests passed (figure 36.1). If you get an error or if a test fails,
make sure that your modules are accessible from each other and that your code matches
the code listings.

NOTE To exit your mocha test in terminal, press Ctrl-D.

In the next section, you implement a test that covers more than a single function.

Figure 36.1 Displaying passing tests in terminal

Quick check 36.2 What’s the difference between describe and it?

QC 36.2 answer describe wraps the tests that relate to a particular module or function, which
makes it easier to categorize your test results as they appear in terminal. it blocks contain the actual
assertion tests that you write.

415Testing with a database and server
36.3 Testing with a database and server

To test a web framework, you need more than some sample data and access to the mod-
ules you’re testing. Ideally, you want to re-create the environment in which your appli-
cation normally runs, which means providing a functioning web server, database, and
all the packages your application uses.

You aim to set up an environment in addition to your development environment. You
can define a test environment through the process.env.NODE_ENV environment variable.
At the top of any test file, add process.env.NODE_ENV = "test" to let Node.js know that
you’re running your application in a testing environment. This distinction can help you
differentiate between databases and server ports. If you’re running your application in
the test environment, you can tell the application to use a recipe_test_db database and
run on port 3001, for example. This way, you can test saving and retrieving data from a
database without interfering with your development data or development server.

Now indicate to your application to use the recipe_test_db test database in the test envi-
ronment and to otherwise default to the production and development databases, as
shown in the next listing. In this example, you define a db variable earlier in the code and
assign it to a local database. If the environmental variable, process.env.NODE_ENV, tells you
that you’re in the test environment, the db variable points to your test database URL.

if (process.env.NODE_ENV === "test") "mongoose.
➥ connect(mongodb://localhost:27017/recipe_test_db", {
➥ useNewUrlParser: true});
else mongoose.connect(process.env.MONGODB_URI ||
➥ "mongodb://localhost:27017/recipe_db",{ useNewUrlParser: true });

NOTE MongoDB creates this test database for you if it doesn’t exist.

You apply the same logic to your server port, as shown in the following listing. Here,
you use port 3001 if you’re in the test environment. Otherwise, you use the normal ports
that you’ve used so far.

Listing 36.4 Separating environment databases in main.js

Assign to your test
database while in the
test environment.

Default to the production and
development databases.

416 Lesson 36 Testing your application
if (process.env.NODE_ENV === "test")
➥ app.set("port", 3001);
else app.set("port", process.env.PORT || 3000);

Last, you need to export your application contained in app by adding module.exports =
app to the bottom of main.js. Exporting your application allows you to access it from the
test files you write. Also, in your controller tests, you need the help of another package
to make requests to your server. Install the chai-http package by running the npm i
chai-http -S command to save this package as a development dependency.

With these changes in place, you’re ready to write a comprehensive test on your models
and controllers. In the following examples, you test the user’s controller actions and
User model. First, test the User model by creating a file called userSpec.js in your test
folder with the code in listing 36.6.

In this file, you can create multiple tests on the User model. The first tests you write are
to ensure that users can be created and saved to your database. You need to require the
User module, mongoose, and chai. From chai, pull the expect function into its own con-
stant so that your tests are more readable.

Next, implement the beforeEach function provided by mocha to remove any and all users
from your test database before you run each test. This function ensures that the results
of previous tests don’t affect other tests in this file. Your describe block indicates that
you’re testing the save functionality on the User model. Your it block contains two
expectations to determine whether you can successfully save a single user to the data-
base. First, provide some sample data that your application might naturally receive as
input data. Then set up two promises to save the user and find all users in the database.
The inner nested promise is where you run your expectations.

Last, create two assertions where you expect the results of your promises to yield an
array, where the second item contains all the users in your database. Because you cre-
ated a single user, you expect the size of the array of users to be 1. Similarly, you expect
the only user in that array to have an _id property, indicating that it has been saved to
your MongoDB database. When your test is complete, call done to indicate that the tests
are complete and promises are resolved.

Listing 36.5 Setting up a test server port in main.js

Assign the port to 3001 (test),
default to port 3000 (production).

417Testing with a database and server
process.env.NODE_ENV = "test";

const User = require("../models/user"),
 { expect } = require("chai");

require("../main");

beforeEach(done => {
 User.remove({})
 .then(() => {

done();
 });
});

describe("SAVE user", () => {
 it("it should save one user", (done) => {
 let testUser = new User({

name: {
first: "Jon",
last: "Wexler"

},
email: "Jon@jonwexler.com",
password: 12345,
zipCode: 10016

 });
 testUser.save()

.then(() => {
User.find({})

.then(result => {
expect(result.length)

.to.eq(1);
expect(result[0])

.to.have.property("_id");
done();

});
});

 });
});

Run your tests by running the mocha command in your project’s terminal window. This
command starts your MongoDB test database and saves a test user. If your test doesn’t
pass, make sure that your modules are connected correctly and that users are saving in

Listing 36.6 Testing saving a Mongoose user in userSpec.js

Call done to complete
the test with promises.

Expect one user with
an ID to exist in the
database.

Set up promises to save
a user with sample data,
and fetch all users from
the database thereafter.

Define a test for
saving a single user.

Describe a series of
tests for saving users.

Remove all users
from the database
before each test.

Assign a variable
to the chai.expect
function.

Require necessary
modules and set the
environment as test.

418 Lesson 36 Testing your application

Make
reque
your
serve
your application in the browser. It’s helpful to know that the user model works correctly,
and you can add more tests to this file. You can use sample data that shouldn’t save or
try saving two users with the same email address, for example. Your validations should
prevent both users from saving.

Next, test a controller action. After all, the controller action connects your models and
views, providing a lot more of the experience you’d like to preserve in your application.
In the following example, you test the user index action, which fetches all the users in
the database and sends those users to your view in the response body.

For this test file, you need to require chai-http by adding const chaiHTTP = require
("chai-http") and your main app module by adding const app = require("../main").
Then tell chai to use chaiHTTP by adding chai.use(chaiHTTP), and you’re ready to make
server requests. In the following example, you use chai.request(app) to communicate
with the server. To test the index action specifically, add the code in listing 36.7 to users-
ControllerSpec.js in your test folder.

You can wrap your tests with a describe block indicating that the tests are for users-
Controller. Another describe block specifies that the tests are for GET requests to /users.

NOTE The first argument in describe is any string of your choice that explains what the
tests are testing. You don’t need to follow the text shown in this example.

Your test to show all users in the database uses chai.request to communicate with your
application, which in turn sets up a web server running at port 3001. Then you chain a
get request with a chai helper method to reach the /users route. In your application, this
should take you to the users index action in the users controller. You end your request
with end and write your expectations on the response that’s returned from the server.
You expect the response to have a status code of 200 and no errors.

describe("/users GET", () => {
 it("it should GET all the users", (done) => {
 chai.request(app)

.get("/users")
 .end((errors, res) => {
 expect(res).to.have.status(200);

expect(errors).to.be.equal(null);

Listing 36.7 Testing the users index action

Describe your test
block for the users
index action.

End the request with
a callback to run
your expectations.

 a GET
st to
test
r.

Expect your
application’s response
status to be 200.

419Summary
done();
});

 });
});

Run this test by entering mocha in your project’s terminal window to see two tests pass.
Your test suite contains all the tests contained in files in the test folder. If you want to test
only usersControllerSpec, you can run mocha test/usersControllerSpec.

Summary

In this lesson, you learned about testing your Node.js application. You started with the
assert core module and quickly jumped into testing your models and controllers with
chai, mocha, and chai-http. With these tools and others, you’ll be able to re-create most of
the actual experiences that users have with your application. If you can stay ahead by
predicting user experiences and edge cases, and testing them before they go to produc-
tion, you’ll face far fewer production crashes.

Try this

Writing a test suite isn’t a simple task, because you can write an endless number of tests.
You want to make sure that you cover most scenarios in your application, using a vari-
ety of sample data.

Create a test module for each controller and model in your application. Then try to
build describe blocks and tests for each action.

Call done to complete
the server interaction
in your test.

Quick check 36.3 What does chai.request do?

QC 36.3 answer chai.request takes a Node.js web server and allows your test environment to
make requests. These requests mimic the ones in your production application, allowing for a more inte-
grated, comprehensive test of your code.

37LESSON
CAPSTONE: DEPLOYING CONFETTI
CUISINE

It’s time to move my application to production. I’ve coordinated with Confetti Cuisine
on original expectations and feature changes along the way. The result is a Node.js
application running with Express.js, MongoDB, and a variety of packages to connect
users with the Confetti Cuisine cooking school. I’ve had multiple opportunities to
deploy this application without a database or the ability to save meaningful data. Now
that I’ve cleaned up my code and written a few tests, I turn to Heroku to demo the effect
of my application on the world.

Although the steps are short and don’t involve much more coding, I want to be careful
not to make any mistakes in the deployment process. Troubleshooting in development
is a lot simpler than in production.

I’ll start by preparing my application for Heroku. Then I’ll create a new Heroku applica-
tion through the Heroku command-line interface (CLI) in terminal. After using Git to
save and version my changes locally, I’ll push my code up to Heroku.

Next, I’ll set up my application’s MongoDB database, and add some seed data to start.
When those tasks are complete, I’ll use a couple of production tools to monitor my
application’s logs and prepare for meaningful user data and interaction with my appli-
cation to roll in.
420

421Preparing for production
37.1 Linting and logging

Before I deploy my application, I want to ensure that I’m not submitting code with any
bugs or inefficiencies. Although I’ve made a point to code consciously, there’s always
the possibility that a mistake could affect my application in production. To prevent
potential issues in the deployment process, I install eslint globally to lint my code by
running npm install -g eslint.

Linting my code provides me a list of lines in my application code that could be fixed,
which range from removing unused variables to not properly handling promises and
asynchronous functions. I initialize eslint by running the command eslint --init in
my project’s terminal window. Following the prompts in terminal, I choose to lint for
ES6 syntax and both server-side and client-side JavaScript. Running eslint in terminal
creates a .eslintrc.js configuration file that eslint uses to evaluate my code. I run the
global eslint keyword in my project’s terminal window to see where my code can be
improved.

I’d also like to have better logging in my application before it goes to production. I
decide to use morgan to log request and response information. First, I install the package
locally by running npm i morgan -S to save it as an application dependency. Then I
require morgan in main.js by adding const morgan = require("morgan"). Last, I want to use
a specific configuration of morgan that combines meaningful data from the request in the
logs. I add app.use(morgan("combined")) to main.js to let my Express.js application know
to use morgan with the combined logging format.

With my code cleaned up, I run my application one last time in development to make
sure that no persistent errors prevent my application from launching. Then I move on to
prepare my application for deployment.

37.2 Preparing for production

Confetti Cuisine has given me the choice of production platform to use. Because I’m
comfortable with Heroku, I decide to begin preparing my application to live on Her-
oku’s servers.

NOTE The following steps allow me to work with Heroku, but they don’t prevent my appli-
cation from working with other services.

422 Lesson 37 Capstone: Deploying Confetti Cuisine
I start by verifying that Heroku CLI and Git are installed on my machine. Running
heroku --version and git --version in terminal should let me know whether they’re
installed and what versions they are. I need Heroku to allow the server’s port to use an
environmental variable in production, not just port 3000. I’ll make sure in main.js that
my port is set by app.set("port", process.env.PORT || 3000). The port number will ini-
tially be assigned to the port number at process.env.PORT if such a value exists. Other-
wise, the port will default to 3000.

Next, I modify my database connect to use the MONGO_URI environmental variable if it’s
present. I add mongoose.connect(process.env.MONGODB_URI || "mongodb://local-
host:27017/confetti_cuisine",{ useNewUrlParser: true }) to main.js. Later, when I pro-
vision a database for my production application, MONGODB_URI appears as one of the
application’s configuration variable set to the database’s external URL.

The last step is creating a Procfile, a file that Heroku uses as a starting point to launch
my application. Heroku can work with a few internet protocols. I’ll be setting this
application to work over HTTP, so I add web: node main.js to the Procfile. This line of
code tells Heroku to run my application as a web server that should expect requests
and responses over HTTP. Additionally, I’m telling Heroku to use main.js to start the
application.

My code is almost ready to deploy. I need to save my changes and follow a few more
steps to send my code to production.

37.3 Deploying to Heroku

Now that I’m happy with the state of my code, I’ll add and commit my changes to Git.
First, I want to run git init to initialize my project with Git. If I’ve already performed
this line, Git harmlessly reinitializes the project; none of my previous changes are
affected. Git bundles all my code together, so I want to make sure that nothing gets bun-
dled that I don’t want to send across the internet, including passwords, sensitive data of
any kind, and my node_modules folder. I’ve kept sensitive data out of my application,
so I want to keep my node_modules folder from going to production; the folder can get
pretty large, slowing my deployment process. Also, Heroku runs npm install for me,
once deployed. I create a file called .gitignore and add node_modules to that file.

Next, I run git add . to add all my files to a staging area, ready to be committed. I run
git status to confirm the files that will be committed and run git commit -m "first
production deployment" to indicate this version of my code before going to production.

423Deploying to Heroku
With my code saved, I use the heroku keyword in terminal to register my application
with Heroku. From my project’s directory in terminal, I run heroku create confetti-
cuisine.

WARNING If the name confetti-cuisine isn’t already used by another application on
Heroku, this command generates a URL through which I’ll be able to access my application.
Anyone following my steps will need to choose a different name for their heroku app in this
command.

That URL is https://confetti-cuisine.herokuapp.com. This command also creates a
remote Git repository on Heroku for me. This configuration allows me to submit my
local Git repository to that address; from there, Heroku will install and run my applica-
tion. I can verify the URL of the remote repository by running git remote -v. I see that
my remote repository is referenced by the name heroku, so when I’m ready, I can use the
name heroku to push my code to production.

Making sure that I have a reliable internet connection, I run git push heroku master
. master is the name of the container holding my code within Git, and I’m uploading the
code in that container to a similarly named container at the URL associated with heroku.
Running this command initiates a series of operations that Heroku uses to set up the
application and install its package dependencies. The whole process takes less than a
minute for my application. When it’s complete, I can run heroku open to launch my pro-
duction URL in a web browser.

Right away, I notice that the application isn’t working (figure 37.1) because my database
isn’t set up yet, and my application depends on a database for any page to load.

In the next section, I set up a MongoDB database for my production application.

Figure 37.1 Application not loading on Heroku

https://confetti-cuisine.herokuapp.com

424 Lesson 37 Capstone: Deploying Confetti Cuisine

37.4 Setting up the database

I chose to use MongoDB as my application’s database for a few reasons. One reason is
that it’s so simple to set up in production. Setting up a development and test database is
an effortless task. Now I need to add a Heroku plugin to associate a database service,
and in a single step, my application will start working.

I run heroku addons:create mongolab:sandbox in my project’s terminal window to create
an mLab MongoDB database for my application. Because I’ve associated my local proj-
ect with my registered Heroku application, I can continue to use the Heroku CLI in ter-
minal to manage my production application. This command provides a free-tier
database hosted by mLab. This sandbox database isn’t recommended for use in produc-
tion, however, because of its size and availability limitations.

NOTE If Confetti Cuisine likes the way that my application looks and behaves on Heroku, I
can increase my mLab plan at a cost by running heroku addons:create mongolab:
shared-cluster-1.

WARNING I don’t want to upgrade my database account until I’m sure that I need the
extra space. Upgrading from terminal may incur fees in my Heroku account.

Alternatively, I can set up my MongoDB database at any external location and set the
MONGODB_URI variable to that external database’s URL.

I verify the database URL setup with Heroku by running heroku config:get MONGODB_URI.
This command responds with my mLab database URL, along with the security creden-
tials I need to use to access the database. If I want to view the contents of my database
on a web browser, I can run heroku addons:open mongolab to open a new web page point-
ing to my database on mLab’s site through Heroku (figure 37.2).

Figure 37.2 Displaying contents of mLab database

425Setting up the database
Now when I visit https://confetti-cuisine.herokuapp.com/, I finally see my home page
load (figure 37.3).

With my application in production, I’d like to make it more presentable by preloading it
with some data. I have a few ways to load seed data into my application, including link-
ing directly to my mLab database and pushing data into my database. Instead, I’m
going to run heroku run node in my project’s terminal window to enter the production
REPL environment. As with REPL in development, I can interact with my Node.js
application here and even save to my database. I’ve prepared some courses that I want
to save, so I copy the lines of code where those courses are created and paste them into
this REPL shell. First, I need to copy the lines requiring the modules I need, such as
mongoose and the Course model itself. I enter the code in listing 37.1 into my terminal
window and watch as courses are populated into my application. I can click my Ajax
courses modal to see those new listings.

NOTE It may help to first format the code into your text editor before pasting into your ter-
minal window.

const mongoose = require("mongoose"),
 Course = require("./models/course");

mongoose.Promise = global.Promise;
mongoose.connect(
process.env.MONGODB_URI ||
➥ "mongodb://localhost:27017/confetti_cuisine",

Listing 37.1 Adding seed data to my production application

Figure 37.3 Loading the home page

Require the necessary
modules and database
connection for REPL.

https://confetti-cuisine.herokuapp.com/

426 Lesson 37 Capstone: Deploying Confetti Cuisine
 { useNewUrlParser: true }
);
Course.remove({})
 .then(() => {
 return Course.create({
 title: "Chocolate World",
 description: "Dive into the divine world of sweet
➥ and bitter chocolate making.",
 cost: 22,
 maxStudents: 14
 });
 })
 .then(course => console.log(course.title))
 .then(() => {
 return Course.create({
 title: "Pasta Boat",
 description: "Swim through original recipes and
➥ paddle your way through linguine",
 cost: 43,
 maxStudents: 8
 });
 })
 .then(course => console.log(course.title))
 .then(() => {
 return Course.create({
 title: "Hot Potato",
 description: "Potatoes are back and they are hot!
➥ Learn 7 different ways you can make potatoes
➥ relevant again.",
 cost: 12,
 maxStudents: 28
 });
 })
 .then(course => console.log(course.title))
 .catch(error => console.log(error.message))
 .then(() => {
 console.log("DONE");
 mongoose.connection.close();
 });

With this data loaded, I can finally show the finished application to Confetti Cuisine. I
need to keep an eye on the logs, though, in case any new users experience an issue with
the live application.

Create new courses
for my production
database.

427Summary

37.5 Debugging in production

My role has transitioned from developer to bug-fixer and maintainer. I need to make
sure that the code I’ve written preserves the functionality I’ve promised, and I’ll quickly
repair the code that doesn’t uphold that promise.

Because my code isn’t running from my personal computer, I need to access the logs
from Heroku by running heroku logs --tail in my project’s terminal window. This com-
mand communicates with Heroku to provide a live stream of logs. The logs tell me
when an error occurs, whether my application crashes, and everything I need to know
about the incoming requests and outgoing responses.

As I make sense of the log messages, if I come across an issue, I can try to reproduce it
locally on my computer. I can run heroku local web in my project’s terminal window to
launch my application code that’s in production locally. This command runs my appli-
cation at http:// localhost:5000/. If I see the error occur while testing here, I can get a bet-
ter sense of what needs to be fixed. Last, I can use the Node.js debug tool by adding a
breakpoint on the line of code that I suspect is causing the error. By adding debugger to
my code, I can step through my running application, pause, and analyze the values in
specific functions.

I’m confident that this application will experience few issues and offer Confetti Cuisine
a great new way to interact with its audience. Meanwhile, I’ll be around in case the com-
pany needs my help. I’m only a git add ., git commit -m "<some message>", and git push
heroku master away from deploying an update.

Summary

In this final capstone exercise, I deployed my application to be accessible to the public.
With the right configurations in place and a working Node.js application, I was able to
upload my application to a production server. From this server, incoming requests will
be handled and queries made to an external database. My application now depends on
a variety of resources that may incur fees as my application collects more data and pop-
ularity. As traffic and demand increase on my application, more resources will be
required, and I’ll need to consider the costs of hosting my Node.js application some-
where that can support its growing database and popularity. Scalability, high availabil-
ity, and performance improvements are all topics of my next iteration with this
application, and I hope that Confetti Cuisine will be happy to collaborate as I implement
future improvements.

http://localhost:5000/

AAPPENDIX
JAVASCRIPT SYNTAX INTRODUCED
IN ES6

In this appendix, I cover JavaScript syntax introduced in ES6 as it applies to Node.js. I
start with variable definitions and the new style of String interpolation. Then I talk
about arrow functions.

A.1 New in ES6

Since 2015, ECMAScript 6 has offered new syntax and conventions for developing with
JavaScript. For that reason, this book covers some of the ES6 keywords and formats
you’ll use. Keywords are terms that have a reserved meaning in JavaScript and are used
to provide the syntax and interpretability of your code.

A.1.1 The let keyword

You’re probably used to declaring variables with the var keyword. With ES6, it’s more
appropriate to use the let keyword to define variables as they apply to a specific scoped
block. Until a variable is defined within a particular block of code, you can’t access it.
429

430 Appendix A JavaScript syntax introduced in ES6
A let variable defined in an if block can’t be accessed outside the block, for example,
whereas a var variable is scoped to the function within which it’s defined, as shown in
the next listing.

function sample() {
 var num = 60;
 if (num > 50){
 let num = 0;
 }
 console.log(num);
}

Because let variables are scoped to code blocks beyond functions, they could be global
variables to a module or an entire application. As a result, let gives variable definition
more security and is preferred to var.

NOTE When using "use strict"; you can’t redefine the same let variable, whereas you
can with var.

A.1.2 The const variable

A const variable can’t be reassigned. Typically, you should use this keyword in place
of let for variables whose values you don’t expect to manipulate in your code. This
guideline can also apply to loading libraries or modules in Node.js, as you see in unit 1.
If you try to reassign a const variable, you get a Duplicate Declaration Error.

The code in the next listing crashes because a new let variable is being declared with
the name of an existing constant.

function applyDiscount(discountPrice) {
 const basePrice = 1000;
 let basePrice = basePrice - discountPrice;
 console.log(basePrice);
}

A.1.3 String interpolation

Until ES6, to print or log a variable’s value within a string, you had to append the string
around the variable, as shown in the following listing.

Listing A.1 Example use of the let keyword

Listing A.2 Example use of the const variable

431New in ES6
var x = 45;
console.log("It is " + x + " degrees outside!");

With ES6, you can use backticks (`) and ${} to interpolate variables into a string, as
shown in the next listing.

var x = 45;
console.log(`It is ${x} degrees outside!`);

The resulting code is cleaner, easier to read, and easier to edit.

A.1.4 Arrow functions

Arrow functions are one way that ES6 is making code more succinct and easier to read.
With the => arrow symbol and a change in the conventional function syntax, you can
turn a multiline function into one line. Take the example in the following listing.

function printName(name) {
 console.log(`My name is ${name}`);
}

You can rewrite this code as shown in the next listing.

let printName = name => console.log(`My name is ${name}`);

More important, arrow functions in ES6 preserve the this variable from its outer scope,
as shown in the following listing.

let dog = {
 name: "Sparky",
 printNameAfterTime: function() {

Listing A.3 Example of string concatenation

Listing A.4 Interpolating strings with backticks

Listing A.5 Defining a function with the function keyword

Listing A.6 Defining an arrow function

Listing A.7 Example use of the this keyword within functions

432 Appendix A JavaScript syntax introduced in ES6
 setTimeout(function() {
console.log(`My name is ${this.name}`);

 }, 1000);
 }
}

In this example, dog.printNameAfterTime() prints My name is undefined because this
.name is out of the setTimeout function scope despite the assumption that this refers to
the dog object. With arrow functions, however, this persists within the setTimeout func-
tion, as shown in the next listing.

let dog = {
 name: "Sparky",
 printNameAfterTime() {
 setTimeout(() => {

console.log(`My name is ${this.name}`);
 }, 1000);
 }
}

Now you can print My name is Sparky, and the code is more compact!

To succeed with Node.js, you need to succeed with JavaScript in general. Because
Node.js requires sufficient knowledge of some core JavaScript and programming con-
cepts, this lesson reviews what you need to know to get started. If you haven’t had
much experience with JavaScript, I recommend reading Secrets of the JavaScript Ninja,
Second Edition by John Resig and Bear Bibeault (Manning, 2016).

A.2 REPL

When you have Node.js installed, your first stop in running your code is in the Read-
Evaluate-Print Loop (REPL). This interactive environment is similar to the console win-
dow in a Chrome web browser. In REPL, you’re able to run any JavaScript code. You can
also require Node.js modules to test aspects of your application.

A.2.1 Running JavaScript in REPL

To start REPL, navigate to any terminal window on your computer and enter node. This
command immediately returns a prompt (>), after which you may enter any JavaScript

Listing A.8 Example use of the this keyword with arrow functions

433REPL
statements. You can think of REPL as a running Node.js application that responds to
your commands instantaneously. That is, you don’t need to write your JavaScript code
in a separate file and then run it; you can type that JavaScript code directly in the REPL
window. Try defining a couple of variables, as shown in the next listing. You’ll notice
that with each JavaScript statement you run, REPL outputs the return value of that state-
ment. For variable assignment, the return value is undefined.

> let x = 42;
undefined
> let sentence = "The meaning of life is ";
undefined

Now perform some operation on these variables. You can concatenate the two values,
for example, as shown in the following listing.

> sentence + x;
The meaning of life is 42

There’s no limit to the ways you can use the REPL environment to behave like any
Node.js application you’ve used or seen before. You can also use the tab key to autocom-
plete variable or function names and list object properties. If you defined a string by the
variable name sentence, for example, but you’re unsure what functions you can call on
that string, you can add a dot (.) to the end of the variable name and press Tab to list
that variable’s available functions and properties, as shown in the next listing.

> sentence.
sentence.anchor sentence.big
sentence.blink sentence.bold
sentence.charAt sentence.charCodeAt
sentence.codePointAt sentence.concat
sentence.endsWith sentence.fixed
sentence.fontcolor sentence.fontsize
sentence.includes sentence.indexOf
sentence.italics sentence.lastIndexOf

Listing A.9 Defining variables in REPL

Listing A.10 Concatenating variables in REPL

Listing A.11 Listing variable properties in REPL

434 Appendix A JavaScript syntax introduced in ES6
You can find additional REPL commands in lesson 1.

A.2.2 Using REPL in application development

One other useful way to use REPL is through the repl module within your Node.js
application code. As you build more custom modules in your project, you’ll notice that
it’s tedious to load all those files into REPL to test the functionality of the code you’ve
written. If you wrote a module called multiply.js (listing A.12) that contains a function to
multiply two numbers, you’d need to require that module into REPL by entering
require("./multiply") along with every other module you created. What’s more, you’d
need to enter these lines for every new REPL session.

module.exports = {
 multiply: (x, y) => {
 return x * y;
 }
};

Instead of requiring your modules into each REPL session, you could bring REPL into
your modules. Listing A.13 shows how you could use the repl module within your proj-
ect. You can create a module within your project directory called customRepl.js that
requires all the modules you want to test at the same time. This file shows the repl mod-
ule being required and then a REPL server starting. Like a Node.js HTTP server, this
REPL server has a context within which you can load custom variables. After the REPL
server is started, add a name variable and your multiply module.

const repl = require("repl"),
 replServer = repl.start({
 prompt: "> ",
 });

replServer.context.name = "Jon Wexler";
replServer.context.multiply = require("./multiply").multiply;

All you need to do now is navigate to your project directory in terminal and enter node
customRepl. You’ll see the REPL prompt, only this time, the context of your REPL session
contains all the modules you want to test. This technique comes in handy when you

Listing A.12 Creating a single-function module in multiply.js

Listing A.13 Using the repl module in customRepl.js

435Summary
want to test creating or modifying records in your database without having to copy and
paste the code to require your database configurations.

Summary

This appendix provided an overview of the JavaScript keywords and syntax you should
be aware of in this book. With ES6 now widely used in the development community, it’s
important to start writing code that reflects the latest and greatest JavaScript changes.
The more familiar you get with using REPL and JavaScript commands, the easier it will
be to develop your applications quickly.

BAPPENDIX
LOGGING AND USING NODE.JS
GLOBAL OBJECTS

B.1 Logging

Logging helps you understand what functions and middleware are being run, shows
you what errors your application is producing, and provides better insight into what’s
going on in your application.

The console module is a core Node.js module and a global object, which means that you
can access the console keyword anywhere in your application code. When you run
console.log(), passing some message as a string of text, the output typically is printed in
a terminal window or a file. For the purposes of this book, the console module offers the
right logging tools for dissecting your application code. Aside from the logging tips in
lesson 2, a few logging commands are important to keep in mind.

The console module has two outputs: standard and error. Although both of these out-
puts show text in your terminal window, they behave differently in a browser console.
The next listing shows some of the other logging functions you can use with console.
436

437Global objects
console.log("Standard output log message");
console.error("Error output log message");
console.info("Standard output log message");
console.warn("Error output log message");

In a Node.js application, these four functions behave similarly on the server. When you
use these logging functions in client-side JavaScript, you’ll notice that your browser’s
console window prints your log messages in formats that correspond to the message
type. Warning messages have an orange background, for example, and error messages
appear in red.

Two other functions that you may find useful are console.time and console.timeEnd.
These two functions can be used in tandem to log the time it takes between the begin-
ning and end of certain operations in your code. The text within these functions needs to
match for the timer to work. In the next listing, function xyz takes one second and then
logs a message. The resulting time for this operation logs slightly more than one second.

console.time("function xyz");
(function xyz() {
 setTimeout(function() {
 console.log("prints first");
 console.timeEnd("function xyz");
 }, 1000);
})();

console.log will become one of your best friends in web development, as log notes help
you find bugs. Get to know your new friend with a little practice and variation.

B.2 Global objects

In Node.js, global objects are accessible throughout any application. You can use these
objects at any point in a Node.js application. These objects can contain information

Listing B.1 Using logging functions

Listing B.2 Logging time of an operation

Prints a log
message to your
console

Prints a log message
using the error output

Prints a log message
as an alias for
console.logPrints a log message

as an alias for
console.error

Starts the console timer

Prints the console.log
message as part of the
function operation

Records time
at the end

438 Appendix B Logging and using Node.js global objects
about the application or filesystem. The following global objects are used most often in
Node.js applications:

 console prints to the console or standard output wherever your application is
running.

 __dirname returns the absolute path to the directory location on your machine, as
follows:
console.log(__dirname);
>> /Users/Jon/Desktop

 __filename provides the absolute path to the application directory on your
machine, as follows:
console.log(__filename);
>> /Users/Jon/Desktop/filename_example.js

 process references the process (thread) on which your application is running.
This object is the main source of your application’s resources and connections to
the filesystem.

Some objects appear to be similar to the Node.js global objects but come from other
libraries required into your project. These objects are available in most Node.js applica-
tions. As you learn to work with the following objects, their use cases will make more
sense:

 module references the current module (JavaScript file) in which you’re working
and allows you to access other variables within that file.

 exports references a key/value pairing object to store a module’s functions or
objects so they can be shared across other modules. Using this object is mostly
the same as using module.exports. In the following example, accessibleFunction is
exported for use in other modules:
exports.accessibleFunction = () => {
 console.log("hello!");
}

 require allows you to import other modules’ code into a current module and
gives you access to code written outside the current working file. The require
keyword is used as follows:
const http = require("http");

INDEX
A

absolute path 26
actions

cleaning up 205–207
creating to enroll users

344–347
addJoinButtonListener

function 315, 318, 340
AJAX functions, creating

339–341
API (application program-

ming interface) 4, 269,
334–347

accessing applications
from 311–322

adding courses partials
338–339

adding security 323–333
adding API tokens

325–328
implementing simple

security 324–325
using JWT (JSON web

tokens) 328–333
adding to applications

299–310
applying namespaces

312–314
calling from clients

306–310
creating 304–306
creating actions to enroll

users 344–347
creating AJAX

functions 339–341
endpoints 306

adding 342–344
creating to connect

models 318–322

restructuring routes
335–338

apiToken parameter 325
app constant 123
application routing 56
application settings

properties 108
applications

accessing APIs from
311–322

applying API name-
spaces 312–314

creating API endpoints
to connect models
318–322

joining courses via
modal 315–317

adding APIs to 299–310
calling APIs from clients

306–310
creating APIs 304–306
organizing routes

300–303
building

in Express.js 90–91
overview of 123–124

coding 43–47
connecting MongoDB

database to 144–146
debugging 404–407
deploying 391, 394–397,

420–427
linting 421
logging 421
preparing for 392–393
preparing for

production 421–422
setting up databases

424–426

setting up databases in
production 396–397

to Heroku 422–423
directory structures of

75–76
initializing 35–39, 43, 74,

121–123
REPL in development

of 434–435
running 22–28, 47–48
setting up Mongoose with

148–149
setting up with Express.js

87–94
installing Express.js

package 88–89
web framework 92–94

testing 408–419
with Chai 411–414
with core modules

409–410
with databases 415–419
with Mocha 411–414
with servers 415–419

arrow functions 213, 431–432
assert method 409, 412
assertion test 411
assets

adding 80–81
serving 64–67

associations, creating for
models 184–187

Atom text editor 16
authenticating users 274–295

at login 280–284
implementing

Passport.js 275–278
modifying create action to

use passport
registration 279–280
439

440 Index
B

backticks 431
bcrypt tool 260, 265
beforeEach function 416
body attribute 52, 99, 112
body-parser package 122,

161
boilerplate code 61
brew install command 138
brew install mongodb

command 168

C

callbacks 156
Chai framework, testing

applications with
411–414

chat boxes, creating 355–356
chats 379–388

creating Message models
384–386

displaying user names in
366–368

installing Socket.io 380
loading messages on

connection 386–387
messages, saving 361–372

connecting messages to
users 362–365

creating Message
models 369–372

displaying user names
in chats 366–368

notification indicators
adding 373–378
creating in navigation

376–378
setting up chat icons

387–388
setting up Socket.io

on clients 381–384
on servers 380–381

CLI (command-line
interface) 17, 392, 399

client.broadcast.emit 376
clients

calling APIs from 306–310
connecting to servers

357–360

setting up Socket.io
on 381–384

client-side interactions 5
command-line interface

(CLI) 17, 392, 399
compare method 269
computed attribute 196
confetti_cuisine database

168
configuration

environments 12–21
installing Node.js 12–16
installing text editor

16–17
Node.js REPL in

terminals 19–21
setting up deployment

tools 17–19
setting up SCM 17–19

overview of 114–120
connectFlash messages 254
connect-flash package 251,

286
console.log() function 25,

436
console.time function 437
console.timeEnd function

437
const variables 430
contact.ejs file 127, 160
content, passing to views

128–129
content-types module 76
controllers 155–166

adding flash messages to
actions 254–259

creating
for CRUD models

243–247
for subscribers 156–159

passing data from 110–111
promises with Mongoose

162–166
cookie-parser package

252–253, 286
core modules, testing appli-

cations with 409–410
courses

joining via modal 315–317
partials, adding 338–339

courses property 186, 197

create actions, modifying to
use passport registration
279–280

createServer function 78
createStrategy method 289
CRUD (create, read, update

and delete) models
230–247

building 231–237
controllers 243–247
methods, adding to user

models 199–202
setting up 231
structuring routes 242–243
views 237–241

curl command 54
current-user class 365
currentUser variable 281,

344
customReadFile function 65,

70

D

data
modeling 168–170
passing from controllers

110–111
populating from associ-

ated models 188–192
posted data, saving to

models 159–162
request data, analyzing

51–55, 98–100
seed data, loading 399–401
user data, reading with

show 214–218
data chunks 52
databases

setting up 168, 396–397,
424–426

testing applications with
415–419

data-id attribute 315
db variable 148
db.contacts.find command

141
db.contacts.findOne

command 143
DEBUG environment

variable 404
debugging 404–407, 427

441Index
delete function 219
deleting users 430–432
dependencies 34
deployment 391, 394–397,

420–427
debugging in production

427
linting 421
logging 421
preparing for 392–393
preparing for production

421–422
setting up databases

424–426
setting up databases in

production 396–397
to Heroku 422–423

deployment tools 17–19
describe function 412
devDependency 91
directory structures of

applications 75–76
displayMessage function

365, 371, 382
dyno server 393

E

edit user forms, building
220–223

EJS (Embedded JavaScript)
106, 382

ejs package 108
emit method 357
encryption

adding with Passport.js
288–289

overview of 265
endpoints, API

adding 342–344
creating to connect models

318–322
enrolling users 344–347
environmental variable 15
environments, configuring

12–21
installing Node.js 12–16
installing text editor 16–17
Node.js REPL in terminals

19–21
setting up deployment

tools 17–19
setting up SCM 17–19

error handling 114–120, 129
Express.js 116–118
modifying start scripts 115
serving static files 119–120

error parameter 116
error.ejs file 126
errorJSON action 312
ES6 (ECMAScript 6)

arrow functions 432
const variable 430–432
JavaScript syntax in

429–435
let keyword 429–430
string interpolation

430–431
event loop 6
expect function 412
exports object 32
exports.sendReqParam 103
express module 90
Express.js framework

applications
building 90–91
setting up 87–94
web framework 92–94

building routes with
96–98

handling errors with
116–118

installing package 88–89
routing in 95

analyzing request data
98–100

using MVC 101–105
express-ejs-layouts package

106, 111, 113
express-generator package

104
express_routes application

98
express-session package 252,

286
express-validator 269–273,

291–293
external files 59–72

F

fadeIn method 376
fadeOut method 376
file system modules 60–64

files
external, serving 59–72
moving routes to 67–72

filterUserCourses function
320, 342

find query method 145, 156,
181

findById query method 181,
216

findByIdAndRemove
method 227

findByIdAndUpdate method
224, 321

findLocalSubscribers 180
findOne query method 181
findWexlers 152
flags 34
flash messages 251–259

adding
overview of 289–291
to controller actions

254–259
setting up modules

252–254
flashMessages variable 255,

290
forEach method 22
fs (file system) modules

60–64, 70, 107
fs.readFile method 61
full stack development 6
function keyword 22

G

GET request 52, 200
getAllSubscribers function

156–157, 171, 243
getCurrentUserClass

function 367
getFile function 77–78
getInfo method 183
getJSONString function 51
getSubscriptionPage function

160, 170, 211, 243
getUserParams function 412
getViewUrl function 62
git add command 17
git init command 17
git push heroku master

command 395

442 Index
global objects 437–438
global variables 23

H

handle function 68
Handlebars.js engine 107
Hapi.js 88
hash field 278
hashed value 265
hashing passwords 260,

265–273
heroku config command 396
heroku create command 396
heroku local web command

427
heroku logs --tail command

395, 427
Heroku platform, deploying

to 422–423
heroku run bash command

400
heroku run node command

400–401
Homebrew 18
homeController.respond-

WithName function 110
hooks 213
href value 221
HTTP methods 200
httpStatus.NOT_FOUND

code 62
http-status-codes module 76,

117, 122

I

icons for chats 387–388
id parameter 225
id property 141
IDE (integrated develop-

ment environment) 17
if statements 65
if-else block 67
include keyword 112
incoming data 49–58

adding routes to web
applications 55–58

analyzing request data
51–55

reworking server code
50–51

index pages 202–205
index.ejs file 215
indexView action 205, 314
initializing applications

35–39, 43, 74, 121–123
inputPassword method 266
insert method 141
installing

Express.js package 88–89
Node.js 12–16
Socket.io 380
text editor 16–17

integrated development
environment (IDE) 17

internalServerError action
205

isAuthenticated method 282

J

JavaScript language
creating files 23
running files with Node.js

24–25
running in REPL 432–434
running individual

commands 25–28
syntax in ES6 429, 432–435

arrow functions
431–432

const variable 430
let keyword 429–430
REPL 432–435
string interpolation

430–431
join table 138
join-button class 315
joined property 321
jsonwebtoken package 329
JWT (JSON Web Tokens)

323, 328–333

K

Koa.js 88

L

layout.ejs file 126
layouts 111–113, 126
let keyword 19, 429–430

variable 38

linting 401–403, 421
logErrors function 117
logging 421, 436–437
login forms

creating 286–287
implementing 261–263

logins
authenticating users at

280–284
for users, building

260–273
adding validation

middleware with
express-validator
269–273

implementing user login
forms 261–263

logRequestPaths 104
long polling 352
lowercase property 179

M

main.js files 76–79
many-to-many relationship

185
Message models 369–372,

384–386
messageAttributes object

364, 370, 385
messages

connecting to users
362–365

loading on connection
386–387

messages.reverse() function
386

method-override package
221, 228, 231

middleware 92
Mocha framework, testing

applications with
411–414

modal-body class 306
modals, joining courses via

315–317
model method 150
models 155–166, 177–192

adding validations on
178–181

building edit user forms
220–223

443Index
models (continued)
building with Mongoose

147–154
creating schema

149–151
organizing models

151–154
creating 208–218

building new user forms
209–210

creating new users from
views 211–214

creating API endpoints to
connect 318–322

creating associations
184–187

deleting 219–229
deleting users with delete

action 226–229
Message models 369–372,

384–386
organizing in Mongoose

151–154
populating data from

associated 188–192
promises with Mongoose

162–166
reading 208–218
saving posted data to

159–162
testing in REPL 182–184
updating 219–229
updating users from view

223–225
model-view-controller

(MVC) 4, 101–105, 135,
148

module object 32
module.exports object 169
modules 34

creating 31–39
initializing Node.js

applications 35–39
running npm commands

33–35
setting up flash message

modules 252–254
MongoClient class 144
MongoDB database

connecting to applications
144–146

running commands in
shell 140–143

setting up 135–146
MONGODB_URI variable

424
Mongoose framework

building models with
147–154

creating schema
149–151

organizing models
151–154

promises with 162–166
setting up with Node.js

applications 148–149
multiply module 434
Mustache.js engine 107
MVC (model-view-

controller) 4, 101–105,
135, 148

N

name attribute 210, 239
names of users, displaying in

chats 366–368
namespaces 302, 312–314
navigation, creating chat

indicators in 376–378
new user forms 209–210
next function 97
node keyword 19, 24
Node version manager

(NVM) 13
Node.js

advantages of 9
installing 12–16
overview of 5–9
REPL in terminals 19–21
running Javascript files

with 24–25
node_modules folder 422
nodemon package 91
nodist 14
notEmpty validations 271
npm (node package man-

ager)
commands, running 33–35
initializing applications

with 43
npm docs express

command 89

npm init command 35, 89,
121

npm start command 115
NVM (Node version

manager) 13
nvm-windows 14

O

Object.assign property 320
ObjectId class 142
ODM (object-document

mapper) 148, 276
offeredCourses variable 128
one-to-many relationship

185
one-to-one relationship 185

P

package-lock.json file 37
packages 31, 34
paramsName variable 117
partials

adding courses partials
338–339

overview of 106
setting up 111–113

passport package 287
passport registration

279–280
passport.authenticate

method 293
Passport.js

adding authentication
with 293–294

adding encryption with
288–289

implementing 275–278
passport.register method

293
passport-local-mongoose

package 274
password property 194
passwordComparison

method 266
passwords, hashing 260,

265–273
passwordsMatch method

266
PATH variable 15
polling 352

444 Index
populate method 187, 191,
241

post function 78
post hooks 265
POST request 52, 200
posted data, saving to

models 159–162
postedContactForm 171
pre hooks 265
printNumbers variable 22
process.env.NODE_ENV

variable 415
processes 8
production

debugging in 427
managing 398–407

debugging applications
404–407

linting 401–403
loading seed data

399–401
preparing for 421–422
setting up databases in

396–397
production environment 392
promises with Mongoose

162–166
Pug.js engine 107

Q

query strings 93, 100
question marks 100

R

rand-token package 326
ReadableStream library 52
readFile function 65
redirectView function 211,

261
register method 279, 290
relational databases 137
remove query method 181
REPL (Read-Evaluate-Print

Loop) 432–435
in application

development 432–435
in terminals 19–21
running JavaScript in

432–434
testing models in 182–184

representational state trans-
fer (REST) 97, 300

request data, analyzing
51–55, 98–100

request event 50
require() function 33
res.locals.redirect variable

262
res.render method 128
respondInternalError

function 117
respondJSON function 312,

342
respondNoResourceFound

function 117
respondWithName function

109, 117
REST (representational state

transfer) 97, 300
restructuring routes 335–338
result variable 161
reverse function 411
route mapping 61
route parameters 96
router.get function 81
router.js library 76–79
router.post function 81
routeResponseMap 56
routes

adding
overview of 124–125
to web applications

55–58
building with Express.js

96–98
creating 81–83
in Express.js 95

analyzing request data
98–100

using MVC 101–105
moving to another file

67–72
organizing 300–303
restructuring 335–338
structuring for CRUD

models 242–243
to views 125–127
writing 59–72

S

Sails.js 88
salt field 278

sanitizers 270
save flag 89
saveSubscriber function 160,

211, 243
saveUninitialized 252
scaffolding 104
schema, creating with

Mongoose 149–151
Schema.Types.ObjectId 185
SchemaTypes 178
SCM (software configuration

management) 17–19
<script> tags 81
scripts property 115
security

API, adding 323–333
adding API tokens

325–328
using JWT (JSON web

tokens) 328–333
implementing 324–325

seed data 399–401
send method 93
sendReqParam variable 103
serializing data 276
servers

connecting to clients
357–360

reworking code 50–51
setting up Socket.io on

380–381
testing applications with

415–419
server-side interactions 5
serving

assets 64–67
external files 59–72
static files

overview of 119–120
with fs module 60–64

static views 127
sessions 251–259
set method 108
setTimeout function 432
show collections command

143
show, reading user data

with 214–218
show.ejs file 214
Socket.io library 351–360

connecting servers and
clients 357–360

445Index
Socket.io library
(continued)

creating chat boxes
355–356

installing 380
setting up

on clients 381–384
on servers 380–381

sockets, broadcasting chat
notification to 374–375

start scripts, modifying 115
static files, serving

overview of 119–120
with fs module 60–64

static function 127
static views 127
strict mode 23
String format 54
string interpolation 430–431
subscribedAccount property

194, 213
Subscriber model 156
subscriber routes 171–173
subscriber views 171–173
subscribers, creating control-

lers for 156–159
subscribersController.js 171,

204
superUrgent 256

T

targetSubscriber variable 197
TDD (test-driven

development) 410
templates, connecting views

with 106–113
connecting templating

engines 107–110
passing data from

controllers 110–111
setting up layouts 111–113
setting up partials 111–113

templating engines 107–110
terminals, Node.js REPL in

19–21
test-driven development

(TDD) 410
testing

applications 408–419
with Chai 411–414
with core modules

409–410

with databases 415–419
with Mocha 411–414
with servers 415–419

models in REPL 182–184
testSubscriber array 188
text editors, installing 16–17
then method 163
thesubscribersController

function 160
threads 6, 8
timestamps property 194,

232
Total.js 88
trim property 194

U

Underscore.js engine 107
unique option 180
UNIX terminal (Bash)

commands 15
update function 219
updatedAt attribute 232
updating users from views

223–225
url property 51
url variable 65
use method 98
user login forms 261–263
user models 193–207

adding CRUD methods to
199–202

building 194–198
building index pages

202–205
cleaning up actions

205–207
user subscriptions, saving

167–173
adding subscriber routes

171–173
adding subscriber views

171–173
modeling data 168–170
setting up databases 168

user variable 197
userParams variable 211
users

authenticating 274–295
adding authentication

with Passport.js
293–294

adding encryption with
Passport.js 288–289

adding flash messaging
289–291

adding validation mid-
dleware with
express-validator
291–293

at login 280–284
creating login forms

286–287
implementing

Passport.js 275–278
logging in and out

294–295
modifying create action

to use passport reg-
istration
279–280

building logins for
260–273

connecting messages to
362–365

creating actions to enroll
344–347

creating new from views
211–214

deleting with delete action
226–229

displaying names in chats
366–368

edit user forms, building
220–223

login forms, implementing
261–263

new user forms, building
209–210

reading data with show
214–218

updating from views
223–225

userSchema.methods
.passwordComparison
279

usersController 204, 270
utils module 76

V

validate action 291
validation middleware

269–273, 291–293

446 Index
validations, adding on
models 178–181

validators 179
value attribute 220
var keyword 38, 430
var-defined variables 19
verifyJWT function 332
verifyToken function 324,

326
views

connecting with templates
106–113

connecting templating
engines 107–110

passing data from
controllers 110–111

setting up layouts
111–113

setting up partials
111–113

creating
for CRUD models

237–241

overview of 79–80
creating new users from

211–214
passing content to 128–129
routing to 125–127
updating users from

223–225
virtual attributes 196, 199
virtual method 196
Visual Studio Code 17

W

web applications
adding routes to 55–58
creating 73–83

adding assets 80–81
application directory

structures, over-
view of 75–76

initializing applications
74

main.js 76–79
router.js 76–79
routes 81–83
views 79–80

web framework 92–94
web servers

building 40–48
coding applications

43–47
initializing applications

with npm 43
running applications

47–48
overview of 41–42

web sockets 353

Z

ZIP codes 31
zipCode property 186
zip_lookup method 38

MORE TITLES FROM MANNING

Node.js in Action, Second Edition
by Alex Young, Bradley Meck, and Mike Cantelon

ISBN: 9781617292576
392 pages
$49.99
August 2017

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages
$44.99
August 2016

Get Programming with JavaScript
by John R. Larsen

ISBN: 9781617293108
432 pages
$39.99
August 2016

For ordering information go to www.manning.com

https://www.manning.com/books/node-js-in-action-second-edition
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/get-programming-with-javascript

MORE TITLES FROM MANNING

Serverless Applications with Node.js
Using AWS Lambda and Claudia.js
by Slobodan Stojanović and Aleksandar Simović

ISBN: 9781617294723
352 pages
$44.99
January 2019

Node.js in Motion
by PJ Evans

Course duration: 6h 14m
50 exercises
$59.99

Single Page Web Applications
JavaScript end-to-end
by Michael S. Mikowski and Josh C. Powell

ISBN: 9781617290756
432 pages
$44.99
September 2013

For ordering information go to www.manning.com

https://www.manning.com/books/serverless-applications-with-node-js
https://www.manning.com/livevideo/nodejs-in-motion
https://www.manning.com/books/single-page-web-applications

Server
Client Server

Router

Controller

Models

Event loop

Views
Templating

engine

Database

	Get Programming with Node.js
	Contents
	Foreword
	Preface
	Acknowledgments
	About this book
	What is Node.js?
	Goals of the book
	Who should read this book
	How this book is organized: a road map
	About the code
	Software requirements
	liveBook discussion forum

	About the author
	Unit 0 Getting set up
	0 Setting up Node.js and the JavaScript engine
	0.1 What you’re going to learn
	0.2 Understanding Node.js
	0.3 Why learn to develop in Node.js?
	0.4 Preparing yourself for this book
	Summary

	1 Configuring your environment
	1.1 Installing Node.js
	1.2 Installing a text editor
	1.3 Setting up SCM and deployment tools
	1.4 Working with the Node.js REPL in terminal
	Summary

	2 Running a Node.js application
	2.1 Creating a JavaScript file
	2.2 Running your JavaScript file with Node.js
	2.3 Running individual JavaScript commands
	Summary

	Unit 1 Getting started with Node.js
	3 Creating a Node.js module
	3.1 Running npm commands
	3.2 Initializing a Node.js application
	Summary

	4 Building a simple web server in Node.js
	4.1 Understanding web servers
	4.2 Initializing the application with npm
	4.3 Coding the application
	4.4 Running the application
	Summary

	5 Handling incoming data
	5.1 Reworking your server code
	5.2 Analyzing request data
	5.3 Adding routes to a web application
	Summary

	6 Writing better routes and serving external files
	6.1 Serving static files with the fs module
	6.2 Serving assets
	6.3 Moving your routes to another file
	Summary

	7 Capstone: Creating your first web application
	7.1 Initializing the application
	7.2 Understanding application directory structure
	7.3 Creating main.js and router.js
	7.4 Creating views
	7.5 Adding assets
	7.6 Creating routes
	Summary

	Unit 2 Easier web development with Express.js
	8 Setting up an app with Express.js
	8.1 Installing the Express.js package
	8.2 Building your first Express.js application
	8.3 Working your way around a web framework
	Summary

	9 Routing in Express.js
	9.1 Building routes with Express.js
	9.2 Analyzing request data
	9.3 Using MVC
	Summary

	10 Connecting views with templates
	10.1 Connecting a templating engine
	10.2 Passing data from your controllers
	10.3 Setting up partials and layouts
	Summary

	11 Configurations and error handling
	11.1 Modifying your start script
	11.2 Handling errors with Express.js
	11.3 Serving static files
	Summary

	12 Capstone: Enhancing the Confetti Cuisine site with Express.js
	12.1 Initializing the application
	12.2 Building the application
	12.3 Adding more routes
	12.4 Routing to views
	12.5 Serving static views
	12.6 Passing content to the views
	12.7 Handling the errors
	Summary

	Unit 3 Connecting to a database
	13 Setting up a MongoDB database
	13.1 Setting up MongoDB
	13.2 Running commands in the MongoDB shell
	13.3 Connecting MongoDB to your application
	Summary

	14 Building models with Mongoose
	14.1 Setting up Mongoose with your Node.js application
	14.2 Creating a schema
	14.3 Organizing your models
	Summary

	15 Connecting controllers and models
	15.1 Creating a controller for subscribers
	15.2 Saving posted data to a model
	15.3 Using promises with Mongoose
	Summary

	16 Capstone: Saving user subscriptions
	16.1 Setting up the database
	16.2 Modeling data
	16.3 Adding subscriber views and routes
	Summary

	Unit 4 Building a user model
	17 Improving your data models
	17.1 Adding validations on the model
	17.2 Testing models in REPL
	17.3 Creating model associations
	17.4 Populating data from associated models
	Summary

	18 Building the user model
	18.1 Building the user model
	18.2 Adding CRUD methods to your models
	18.3 Building the index page
	18.4 Cleaning up your actions
	Summary

	19 Creating and reading your models
	19.1 Building the new user form
	19.2 Creating new users from a view
	19.3 Reading user data with show
	Summary

	20 Updating and deleting your models
	20.1 Building the edit user form
	20.2 Updating users from a view
	20.3 Deleting users with the delete action
	Summary

	21 Capstone: Adding CRUD models to Confetti Cuisine
	21.1 Getting set up
	21.2 Building the models
	21.3 Creating the views
	21.4 Structuring routes
	21.5 Creating controllers
	Summary

	Unit 5 Authenticating user accounts
	22 Adding sessions and flash messages
	22.1 Setting up flash message modules
	22.2 Adding flash messages to controller actions
	Summary

	23 Building a user login and hashing passwords
	23.1 Implementing the user login form
	23.2 Hashing passwords
	23.3 Adding validation middleware with express-validator
	Summary

	24 Adding user authentication
	24.1 Implementing Passport.js
	24.2 Modifying the create action to use passport registration
	24.3 Authenticating users at login
	Summary

	25 Capstone: Adding user authentication to Confetti Cuisine
	25.1 Getting set up
	25.2 Creating a login form
	25.3 Adding encryption with Passport.js
	25.4 Adding flash messaging
	25.5 Adding validation middleware with express-validator
	25.6 Adding authentication with Passport.js
	25.7 Logging in and out
	Summary

	Unit 6 Building an API
	26 Adding an API to your application
	26.1 Organizing your routes
	26.2 Creating an API
	26.3 Calling your API from the client
	Summary

	27 Accessing your API from your application
	27.1 Applying an API namespace
	27.2 Joining courses via modal
	27.3 Creating an API endpoint to connect models
	Summary

	28 Adding API security
	28.1 Implementing simple security
	28.2 Adding API tokens
	28.3 Using JSON web tokens
	Summary

	29 Capstone: Implementing an API
	29.1 Restructuring routes
	29.2 Adding the courses partial
	29.3 Creating the AJAX function
	29.4 Adding an API endpoint
	29.5 Creating an action to enroll users
	Summary

	Unit 7 Adding chat functionality
	30 Working with Socket.io
	30.1 Using socket.io
	30.2 Creating a chat box
	30.3 Connecting the server and client
	Summary

	31 Saving chat messages
	31.1 Connecting messages to users
	31.2 Displaying user names in chat
	31.3 Creating a message model
	Summary

	32 Adding a chat notification indicator
	32.1 Broadcasting to all other sockets
	32.2 Creating a chat indicator in navigation
	Summary

	33 Capstone: Adding a chat feature to Confetti Cuisine
	33.1 Installing socket.io
	33.2 Setting up socket.io on the server
	33.3 Setting up socket.io on the client
	33.4 Creating a Message model
	33.5 Loading messages on connection
	33.6 Setting up the chat icon
	Summary

	Unit 8 Deploying and managing code in production
	34 Deploying your application
	34.1 Preparing for deployment
	34.2 Deploying your application
	34.3 Setting up your database in production
	Summary

	35 Managing in production
	35.1 Loading seed data
	35.2 Linting
	35.3 Debugging your application
	Summary

	36 Testing your application
	36.1 Basic testing with core modules
	36.2 Testing with mocha and chai
	36.3 Testing with a database and server
	Summary

	37 Capstone: Deploying Confetti Cuisine
	37.1 Linting and logging
	37.2 Preparing for production
	37.3 Deploying to Heroku
	37.4 Setting up the database
	37.5 Debugging in production
	Summary

	Appendix A JavaScript syntax introduced in ES6
	A.1 New in ES6
	A.1.1 The let keyword
	A.1.2 The const variable
	A.1.3 String interpolation
	A.1.4 Arrow functions

	A.2 REPL
	A.2.1 Running JavaScript in REPL
	A.2.2 Using REPL in application development

	Summary

	Appendix B Logging and using Node.js global objects
	B.1 Logging
	B.2 Global objects

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides true
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

