

Node.js Web Development
Fifth Edition

Server-side web development made easy with Node 14
using practical examples

David Herron

BIRMINGHAM - MUMBAI

Node.js Web Development
Fifth Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Ashwin Nair
Acquisition Editor: Larissa Pinto
Content Development Editor: Aamir Ahmed
Senior Editor: Hayden Edwards
Technical Editor: Deepesh Patel
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Joshua Misquitta

First published: August 2011
Second edition: July 2013
Third edition: June 2016
Fourth edition: May 2018
Fifth edition: July 2020

Production reference: 1300720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-757-2

www.packt.com

http://www.packt.com

I wish to thank my mother, Evelyn, for everything, and my father, Jim, my sister, Patti,

and my brother, Ken, for having launched me on this journey in life. To my partner,
Maggie, may we have many years of mutual encouragement together. I wish to thank Dr.

Kubota, of the University of Kentucky, for believing in me, for giving me a start in the
computer industry, and for all the other students he nurtured in the same way. I am
grateful to the Node.js core team members and the programming platform they've

created.

- David Herron

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
David Herron is a software engineer living in Silicon Valley who has worked on
projects ranging from an X.400 email server to being part of the team that launched
the OpenJDK project, to Yahoo's Node.js application-hosting platform, and a solar
array performance monitoring service. That took David through several companies
until he grew tired of communicating primarily with machines, and
developed a longing for human communication. Today, David is an independent
writer of books and blog posts covering topics related to technology, programming,
electric vehicles, and clean energy technologies. The blog posts appear on TechSparx,
Medium, GreenTransportation, and LongTailPipe. Using Node.js, he is the creator of
AkashaCMS, a static website generator, and AkashaEPUB, a tool for generating
eBooks.

About the reviewers
Esref Durna has worked as a full stack engineer since 2004. He has worked as first
engineer at several Silicon Valley start-ups, and currently works at American Express
as a full stack engineer focused on micro-frontends.

Migsar Navarro is a full stack developer who loves programming in JavaScript
because he finds it one of the most flexible and expressive programming languages.
He enjoys building web applications that are as useful for the users as they are for the
programmers that who the code. He is passionate about sharing knowledge,
demystifying engineering, software architecture, and geographical information
systems. He lives in Porto with his girl and his daughter.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Introduction to Node.js
Chapter 1: About Node.js 9

Overview of Node.js 10
The capabilities of Node.js 11

What are folks doing with Node.js? 12
Server-side JavaScript 13

Why should you use Node.js? 14
Popularity 14
JavaScript everywhere 15
Leveraging Google's investment in V8 16
Leaner, asynchronous, event-driven model 16
Microservice architecture 16
Node.js is stronger after a major schism and hostile fork 17

The Node.js event-driven architecture 17
The Node.js answer to complexity 19
Asynchronous requests in Node.js 20
Performance and utilization 22

Is Node.js a cancerous scalability disaster? 24
Server utilization, overhead costs, and environmental impact 27

Embracing advances in the JavaScript language 28
Deploying ES2015/2016/2017/2018 JavaScript code 30
TypeScript and Node.js 31

Developing microservices or maxiservices with Node.js 31
Summary 32

Chapter 2: Setting Up Node.js 34
System requirements 34
Installing Node.js using package managers 35

Installing Node.js on macOS with MacPorts 35
Installing Node.js on macOS with Homebrew 36
Installing Node.js on Linux, *BSD, or Windows from package
management systems 37

Installing Node.js in WSL 38
Opening an administrator-privileged PowerShell on Windows 39

Installing the Node.js distribution from nodejs.org 39
Installing from the source on POSIX-like systems 40

Installing prerequisites 41

Table of Contents

[ii]

Installing developer tools on macOS 42
Installing from the source for all POSIX-like systems 43
Installing from the source on Windows 45

Installing multiple Node.js instances with nvm 45
Installing nvm on Windows 47

Requirements for installing native code modules 48
Choosing Node.js versions to use and the version policy 50
Choosing editors and debuggers for Node.js 51
Running and testing commands 52

Using Node.js's command-line tools 52
Running a simple script with Node.js 54

Writing inline async arrow functions 56
Converting to async functions and the Promise paradigm 58
Launching a server with Node.js 59
Using npm, the Node.js package manager 60
Using npx to execute Node.js packaged binaries 62

Advancing Node.js with ECMAScript 2015, 2016, 2017, and
beyond 62

Using Babel to use experimental JavaScript features 66
Summary 70

Chapter 3: Exploring Node.js Modules 72
Defining a Node.js module 73

Examining the traditional Node.js module format 73
Examining the ES6/ES2015 module format 77

Injected objects in ES6 modules 81
Computing the missing __dirname variable in ES6 modules 82

Using CommonJS and ES6 modules together 83
Using ES6 modules from CommonJS using import() 85

Hiding implementation details with encapsulation in CommonJS and
ES6 modules 87
Using JSON modules 88
Supporting ES6 modules on older Node.js versions 90

Finding and loading modules using require and import 92
Understanding File modules 92

The ES6 import statement takes a URL 94
Understanding the Node.js core modules 94
Using a directory as a module 95
Comparing installed packages and modules 96
Finding the installed package in the file system 97

Handling multiple versions of the same installed package 99
Searching for globally installed packages 100
Reviewing module identifiers and pathnames 101
Using deep import module specifiers 102

Overriding a deep import module identifier 103
Studying an example project directory structure 103

Table of Contents

[iii]

Loading modules using require, import, and import() 105
Using npm – the Node.js package management system 108

The npm package format 108
Accessing npm helpful documentation 109
Initializing a Node.js package or project with npm init 109
Finding npm packages 111

The package.json fields that help finding packages 112
Installing an npm package 113
Installing a package by version number 114
Installing packages from outside the npm repository 115
Global package installs 116

Avoiding global module installation 116
Maintaining package dependencies with npm 117

Automatically updating package.json dependencies 119
Fixing bugs by updating package dependencies 119

Explicitly specifying package dependency version numbers 120
Packages that install commands 121

Configuring the PATH variable to handle locally installed commands 122
Configuring the PATH variable on Windows 123
Avoiding modifications to the PATH variable 124

Updating packages you've installed when they're outdated 125
Automating tasks with scripts in package.json 126
Declaring Node.js version compatibility 127
Publishing an npm package 128

The Yarn package management system 128
Summary 130

Chapter 4: HTTP Servers and Clients 131
Sending and receiving events with EventEmitter 132

JavaScript classes and class inheritance 133
The EventEmitter class 135
The EventEmitter theory 137

Understanding HTTP server applications 138
ES2015 multiline and template strings 142

HTTP Sniffer – listening to the HTTP conversation 144
Web application frameworks 146
Getting started with Express 147

Setting environment variables in the Windows cmd.exe command line 151
Walking through the default Express application 153
Understanding Express middleware 156
Contrasting middleware and request handlers 159
Error handling 161

Creating an Express application to compute Fibonacci
numbers 162

Computationally intensive code and the Node.js event loop 168
Algorithmic refactoring 170

Table of Contents

[iv]

Making HTTPClient requests 174
Calling a REST backend service from an Express application 176

Implementing a simple REST server with Express 177
Refactoring the Fibonacci application to call the REST service 181
Some RESTful modules and frameworks 184

Summary 185

Section 2: Developing the Express Application
Chapter 5: Your First Express Application 187

Exploring Promises and async functions in Express router
functions 188

Promises and error handling in Express router functions 191
Integrating async functions with Express router functions 193

Architecting an Express application in the MVC paradigm 196
Creating the Notes application 197

Rewriting the generated router module as an ES6 module 198
Creating the Notes application wiring – app.mjs 199
Implementing the Notes data storage model 203

Data hiding in ES-2015 class definitions 205
Implementing an in-memory Notes datastore 208
The Notes home page 209
Adding a new note – create 213
Viewing notes – read 217
Editing an existing note – update 219
Deleting notes – destroy 220

Theming your Express application 222
Scaling up – running multiple Notes instances 224
Summary 226

Chapter 6: Implementing the Mobile-First Paradigm 227
Understanding the problem – the Notes app isn't mobile-
friendly 228
Learning the mobile-first paradigm theory 230
Using Twitter Bootstrap on the Notes application 232

Setting up Bootstrap 232
Adding Bootstrap to the Notes application 234
Alternative layout frameworks 237

Flexbox and CSS Grids 238
Mobile-first design for the Notes application 238

Laying the Bootstrap grid foundation 239
Responsive page structure for the Notes application 241
Using icon libraries and improving visual appeal 242
Responsive page header navigation bar 243
Improving the Notes list on the front page 245

Table of Contents

[v]

Cleaning up the note viewing experience 248
Cleaning up the add/edit note form 249
Cleaning up the delete-note window 251

Customizing a Bootstrap build 253
Using third-party custom Bootstrap themes 258

Summary 260

Chapter 7: Data Storage and Retrieval 261
Remembering that data storage requires asynchronous code 262
Logging and capturing uncaught errors 262

Request logging with morgan 264
Debugging messages 267
Capturing stdout and stderr 269
Capturing uncaught exceptions and unhandled rejected Promises 270

Storing notes in a filesystem 271
Dynamically importing ES6 modules 275
Running the Notes application with filesystem storage 278

Storing notes with the LevelDB datastore 279
Closing database connections when closing the process 283

Storing notes in SQL with SQLite3 285
The SQLite3 database schema 285
The SQLite3 model code 287
Running Notes with SQLite3 291

Storing notes the ORM way with Sequelize 293
Configuring Sequelize and connecting to a database 294
Creating a Sequelize model for the Notes application 297
Running the Notes application with Sequelize 301

Storing notes in MongoDB 303
A MongoDB model for the Notes application 304
Running the Notes application with MongoDB 309

Summary 310

Chapter 8: Authenticating Users with a Microservice 312
Creating a user information microservice 313

Developing the user information model 315
Creating a REST server for user information 319

Creating a command-line tool to test and administer the user
authentication server 323
Creating a user in the user information database 327
Reading user data from the user information service 331
Updating user information in the user information service 334
Deleting a user record from the user information service 335
Checking the user's password in the user information service 337

Providing login support for the Notes application 339
Accessing the user authentication REST API 340

Table of Contents

[vi]

Incorporating login and logout routing functions in the Notes
application 344

Login/logout changes to app.mjs 349
Login/logout changes in routes/index.mjs 351
Login/logout changes required in routes/notes.mjs 352
Viewing template changes supporting login/logout 354

Running the Notes application with user authentication 358
Providing Twitter login support for the Notes application 360

Registering an application with Twitter 361
Storing authentication tokens 363

Implementing TwitterStrategy 365
Keeping secrets and passwords secure 374

Adding password encryption to the user information service 375
Implementing encrypted password support in the Notes application 379

Running the Notes application stack 380
Summary 381

Chapter 9: Dynamic Client/Server Interaction with Socket.IO 383
Introducing Socket.IO 384
Initializing Socket.IO with Express 386
Real-time updates on the Notes homepage 389

Refactoring the NotesStore classes to emit events 389
Real-time changes in the Notes home page 392

Changing the home page and layout templates 394
Adding a Socket.IO client to the Notes home page 396
Running Notes with real-time home page updates 398

A word on enabling debug tracing in Socket.IO code 399
Real-time action while viewing notes 400

Changing the note view template for real-time action 402
Running Notes with pseudo-real-time updates while viewing a note 404

Inter-user chat and commenting for Notes 404
Data model for storing messages 405
Adding support for messages to the Notes router 410
Changing the note view template for messages 413

Composing messages on the Note view page 413
Showing any existing messages on the Note view page 417
Deleting messages on the Notes view page 420
Running Notes and passing messages 421

Summary 422

Section 3: Deployment
Chapter 10: Deploying Node.js Applications to Linux Servers 425

Notes application architecture and deployment considerations 426
Traditional Linux deployment for Node.js services 427

Installing Multipass 429
Handling a failure to launch Multipass instances on Windows 431

Table of Contents

[vii]

Provisioning a server for the user authentication service 433
Testing the deployed user authentication service 438

Script execution in PowerShell on Windows 440
Provisioning a server for the Notes service 441

Adjusting Twitter authentication to work on the server 446
Setting up PM2 to manage Node.js processes 448

Familiarizing ourselves with PM2 448
Scripting the PM2 setup on Multipass 450
Integrating the PM2 setup as persistent background processes 454

Summary 456

Chapter 11: Deploying Node.js Microservices with Docker 458
Setting up Docker on your laptop or computer 460

Installing and starting Docker with Docker for Windows or macOS 461
Familiarizing ourselves with Docker 462

Setting up the user authentication service in Docker 464
Launching a MySQL container in Docker 465
The ephemeral nature of Docker containers 468
Defining the Docker architecture for the authentication service 469
Creating the MySQL container for the authentication service 472

Security in the database container 476
Dockerizing the authentication service 479

Creating the authentication service Dockerfile 480
Building and running the authentication service Docker container 482

Exploring AuthNet 485
Creating FrontNet for the Notes application 487

MySQL container for the Notes application 488
Dockerizing the Notes application 489

Managing multiple containers with Docker Compose 497
Docker Compose file for the Notes stack 498
Building and running the Notes application with Docker Compose 502

Using Redis for scaling the Notes application stack 507
Testing session management with multiple Notes service instances 508
Storing Express/Passport session data in a Redis server 509
Distributing Socket.IO messages using Redis 512

Summary 514

Chapter 12: Deploying a Docker Swarm to AWS EC2 with
Terraform 516

Signing up with AWS and configuring the AWS CLI 518
Finding your way around the AWS account 519
Setting up the AWS CLI using AWS authentication credentials 520
Creating an IAM user account, groups, and roles 523

Creating an EC2 key pair 527
An overview of the AWS infrastructure to be deployed 528
Using Terraform to create an AWS infrastructure 531

Table of Contents

[viii]

Configuring an AWS VPC with Terraform 534
Configuring the AWS gateway and subnet resources 537

Deploying the infrastructure to AWS using Terraform 540
Setting up a Docker Swarm cluster on AWS EC2 545

Deploying a single-node Docker Swarm on a single EC2 instance 547
Adding an EC2 instance and configuring Docker 547
Launching the EC2 instance on AWS 551
Handling the AWS EC2 key-pair file 554
Testing the initial Docker Swarm 554

Setting up remote control access to a Docker Swarm hosted on EC2 558
Setting up ECR repositories for Notes Docker images 561

Using environment variables for AWS CLI commands 563
Defining a process to build Docker images and push them to the AWS
ECR 564

Creating a Docker stack file for deployment to Docker Swarm 569
Creating a Docker stack file from the Notes Docker compose file 571

Placing containers across the swarm 574
Configuring secrets in Docker Swarm 576
Persisting data in a Docker swarm 580

Provisioning EC2 instances for a full Docker swarm 582
Configuring EC2 instances and connecting to the swarm 583
Implementing semi-automatic initialization of the Docker Swarm 587
Preparing the Docker Swarm before deploying the Notes stack 590

Deploying the Notes stack file to the swarm 594
Preparing to deploy the Notes stack to the swarm 595
Deploying the Notes stack to the swarm 596

Verifying the correct launch of the Notes application stack 597
Diagnosing a failure to launch the database services 599

Testing the deployed Notes application 600
Logging in with a regular account on Notes 601
Diagnosing an inability to log in with Twitter credentials 603

Scaling the Notes instances 604
Summary 607

Chapter 13: Unit Testing and Functional Testing 609
Assert – the basis of testing methodologies 610
Testing a Notes model 612

Mocha and Chai – the chosen test tools 612
Notes model test suite 613

Creating the initial Notes model test case 614
Running the first test case 616
Adding some tests 618
More tests for the Notes model 620
Diagnosing test failures 623
Testing against databases that require server setup – MySQL and
MongoDB 626

Using Docker Swarm to manage test infrastructure 627

Table of Contents

[ix]

Using Docker Swarm to deploy test infrastructure 628
Executing tests under Docker Swarm 632

MongoDB setup under Docker and testing Notes against MongoDB 635
Testing REST backend services 638
Automating test results reporting 644
Frontend headless browser testing with Puppeteer 646

Setting up a Puppeteer-based testing project directory 647
Creating an initial Puppeteer test for the Notes application stack 648

Executing the initial Puppeteer test 651
Testing login/logout functionality in Notes 652
Testing the ability to add Notes 655
Implementing negative tests with Puppeteer 659

Testing login with a bad user ID 660
Testing a response to a bad URL 661

Improving testability in the Notes UI 662
Summary 663

Chapter 14: Security in Node.js Applications 665
Implementing HTTPS in Docker for deployed Node.js
applications 666

Assigning a domain name for an application deployed on AWS EC2 668
Updating the Twitter application 669
Planning how to use Let's Encrypt 670
Using NGINX and Let's Encrypt in Docker to implement HTTPS for
Notes 672

Adding the Cronginx container to support HTTPS on Notes 672
Creating an NGINX configuration to support registering domains with
Let's Encrypt 675
Adding the required directories on the EC2 host 676
Deploying the EC2 cluster and Docker swarm 677
Registering a domain with Let's Encrypt 678

Implementing an NGINX HTTPS configuration using Let's Encrypt
certificates 680
Testing HTTPS support for the Notes application 685

Using Helmet for across-the-board security in Express
applications 686

Using Helmet to set the Content-Security-Policy header 687
Making the ContentSecurityPolicy configurable 689

Using Helmet to set the X-DNS-Prefetch-Control header 691
Using Helmet to control enabled browser features using the Feature-
Policy header 692
Using Helmet to set the X-Frame-Options header 693
Using Helmet to remove the X-Powered-By header 693
Improving HTTPS with Strict Transport Security 694
Mitigating XSS attacks with Helmet 695

Addressing Cross-Site Request Forgery (CSRF) attacks 696

Table of Contents

[x]

Denying SQL injection attacks 698
Scanning for known vulnerabilities in Node.js packages 699
Using good cookie practices 702
Hardening the AWS EC2 deployment 703
AWS EC2 security best practices 708
Summary 709

Other Books You May Enjoy 711

Index 714

Preface
Node.js is a server-side JavaScript platform that allows developers to build fast and
scalable applications using JavaScript outside of web browsers. It is playing an ever-
wider role in the software development world, having started as a platform for server
applications but now seeing wide use in command-line developer tools and even in
GUI applications, thanks to toolkits such as Electron. Node.js has liberated JavaScript
from being stuck in the browser.

It runs on top of the ultra-fast JavaScript engine at the heart of Google's Chrome
browser, V8. The Node.js runtime follows an ingenious event-driven model that's
widely used for concurrent processing capacity despite using a single-thread model.

The primary focus of Node.js is high-performance, highly scalable web applications,
but it is seeing adoption in other areas. For example, Electron, the Node.js-based
wrapper around the Chrome engine, lets Node.js developers create desktop GUI
applications and is the foundation on which many popular applications have been
built, including the Atom and Visual Studio Code editors, GitKraken, Postman,
Etcher, and the desktop Slack client. Node.js is popular on Internet of Things devices.
Its architecture is especially well suited to microservice development and often helps
form the server side of full-stack applications.

The key to providing high throughput on a single-threaded system is Node.js's model
for asynchronous execution. It's very different from platforms that rely on threads for
concurrent programming, as those systems often have high overheads and
complexity. By contrast, Node.js uses a simple event dispatch model that originally
relied on callback functions but today relies on the JavaScript Promise object and
async functions.

Because Node.js is on top of Chrome's V8 engine, the platform is able to quickly
adopt the latest advances in the JavaScript language. The Node.js core team works
closely with the V8 team, letting it quickly adopt new JavaScript language features as
they are implemented in V8. Node.js 14.x is the current release and this book is
written for that release.

Preface

[2]

Who this book is for
Server-side engineers may find JavaScript to be an excellent alternative programming
language. Thanks to advances in the language, JavaScript long ago stopped being a
simplistic toy language suitable only for animating buttons in browsers. We can now
build large systems with the language, and Node.js has many built-in features, such
as a top-notch module system, that help in larger projects.

Developers experienced with browser-side JavaScript may find it attractive to
broaden their horizons to include server-side development using this book.

What this book covers
Chapter 1, About Node.js, introduces you to the Node.js platform. It covers its uses,
the technological architecture choices in Node.js, its history, the history of server-side
JavaScript, why JavaScript should be liberated from the browser, and important
recent advances in the JavaScript scene.

Chapter 2, Setting Up Node.js, goes over setting up a Node.js developer environment.
This includes installing Node.js on Windows, macOS, and Linux. Important tools are
covered, including the npm and yarn package management systems and Babel, which
is used to transpile modern JavaScript into a form that's runnable on older JavaScript
implementations.

Chapter 3, Exploring Node.js Modules, delves into the module as the unit of
modularity in Node.js applications. We will dive deep into understanding and
developing Node.js modules and using npm to maintain dependencies. We will learn
about the new module format, ES6 modules, and how to use it in Node.js now that it
is natively supported.

Chapter 4, HTTP Servers and Clients, starts exploring web development with Node.js.
We will develop several small webserver and client applications in Node.js. We
will use the Fibonacci algorithm to explore the effects of heavy-weight, long-running
computations on a Node.js application. We will also learn several mitigation
strategies and get our first experience with developing REST services.

Chapter 5, Your First Express Application, begins the main journey of this book, which
is developing an application for creating and editing notes. In this chapter, we get a
basic notes application running and get started with the Express framework.

Preface

[3]

Chapter 6, Implementing the Mobile-First Paradigm, uses the Bootstrap V4 framework
to implement responsive web design in the notes application. This includes
integrating a popular icon set and the steps required to customize Bootstrap.

Chapter 7, Data Storage and Retrieval, explores several database engines and a method
to easily switch between databases at will. The goal is to robustly persist data to disk.

Chapter 8, Authenticating Users with a Microservice, adds user authentication to the
notes application. We will learn about handling login and logout using PassportJS.
Authentication is supported both for locally stored user credentials and for using
OAuth with Twitter.

Chapter 9, Dynamic Client/Server Interaction with Socket.IO, looks at letting our users
talk with each other in real time. We will use a popular framework for dynamic
interaction between client and server, Socket.IO, to support dynamic updates of
content and a simple commenting system. Everything is dynamically updated by
users in pseudo-real time, giving us the opportunity to learn about real-time dynamic
updating.

Chapter 10, Deploying Node.js Applications to Linux Servers, is where we begin the
deployment journey. In this chapter, we will use the traditional methods of deploying
background services on Ubuntu using Systemd.

Chapter 11, Deploying Node.js Microservices with Docker, sees us start to explore cloud-
based deployment using Docker to treat the notes application as a cluster of
microservices.

Chapter 12, Deploying a Docker Swarm to AWS EC2 with Terraform, literally takes us to
the cloud by looking at building a cloud hosting system using AWS EC2 systems. We
will use a popular tool, Terraform, to create and manage an EC2 cluster, and we
will learn how to almost completely automate the deployment of a Docker Swarm
cluster using Terraform features.

Chapter 13, Unit Testing and Functional Testing, has us explore three testing modes:
unit testing, REST testing, and functional testing. We will use popular test
frameworks, Mocha and Chai, to drive test cases in all three modes. For function
testing, we will use Puppeteer, a popular framework for automating test execution in
a Chrome instance.

Preface

[4]

Chapter 14, Security in Node.js Applications, is where we integrate security techniques
and tools to mitigate security intrusions. We will start by implementing HTTPS on the
AWS EC2 deployment using Let's Encrypt. We will then discuss several tools in
Node.js to implement security settings and discuss the best security practices for both
Docker and AWS environments.

To get the most out of this book
The basic requirement is installing Node.js and having a programmer-oriented text
editor. The editor need not be anything fancy; even vi/vim will do in a pinch. We
will show you how to install everything that's needed, and it's all open source, so
there's no barrier to entry.

The most important tool is the one between your ears, and we aren't referring to ear
wax.

Software/hardware covered in the book OS requirements
Node.js and related frameworks such as Express, Sequelize, and
Socket.IO Any

The npm/yarn package management tools Any
Python and C/C++ compilers Any
MySQL, SQLite3, and MongoDB databases Any
Docker Any
Multipass Any
Terraform Any
Mocha and Chai Any

Every piece of software concerned is readily available. For C/C++ compilers on
Windows and macOS, you will need to get either Visual Studio (Windows) or Xcode
(macOS), but both are freely available.

It will be helpful to have some experience with JavaScript programming. It is a fairly
easy language to learn if you are already experienced with other programming
languages.

Preface

[5]

Download the example code files
While we aim to have identical code snippets in the book and in the repository, there
are going to be minor differences in some places. The repository may contain
comments, debugging statements, or alternate implementations (commented-out)
that are not shown in the book.

You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Node.js-Web-Development-Fifth-Editio
n. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Start by changing package.json to have the
following scripts section."

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Node.js-Web-Development-Fifth-Edition
https://github.com/PacktPublishing/Node.js-Web-Development-Fifth-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

A block of code is set as follows:

function readFile(filename) {
 return new Promise((resolve, reject) => {
 fs.readFile(filename, (err, data) => {
 if (err) reject(err);
 else resolve(data);
 });
 });
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

function asyncFunction(arg1, arg2) {
 return new Promise((resolve, reject) => {
 // perform some task or computation that's asynchronous
 // for any error detected:
 if (errorDetected) return reject(dataAboutError);
 // When the task is finished
 resolve(theResult);
 });
};

Any command-line input or output is written as follows:

$ mkdir notes
$ cd notes

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Click on the Submit button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[7]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction to

Node.js
This is a high-level overview of the Node.js landscape. The reader will have taken the
first steps in using Node.js.

This section comprises the following chapters:

Chapter 1, About Node.js
Chapter 2, Setting Up Node.js
Chapter 3, Exploring Node.js Modules
Chapter 4, HTTP Servers and Clients

1
About Node.js

JavaScript is at the fingertips of every frontend web developer, making it a very
popular programming language, so much so that it is stereotyped as being for client-
side code in web pages. The chances are that, having picked up this book, you've
heard of Node.js, a programming platform for coding in JavaScript outside web
browsers. Now about ten years old, Node.js is becoming a mature programming
platform that's widely used in projects both big and small.

This book will give you an introduction to Node.js. By the end of this book, you will
have learned about the complete lifecycle of developing server-side web applications
using Node.js, from concept to deployment and security. In writing this book, we
have presumed the following:

You already know how to write software.
You are familiar with JavaScript.
You know something about developing web applications in other
languages.

When we evaluate a new programming tool, do we latch on because it's the popular
new tool? Maybe some of us do that, but the mature approach is to weigh one tool
against another. That's what this chapter is about, presenting the technical rationale
for using Node.js. Before getting to the code, we must consider what Node.js is and
how it fits in the overall marketplace of software development tools. Then we will
dive right into developing working applications and recognize that often the best way
to learn is by rummaging around in working code.

We will cover the following topics in this chapter:

An introduction to Node.js
What you can do with Node.js
Why you should use Node.js
The architecture of Node.js

About Node.js Chapter 1

[10]

Performance, utilization, and scalability with Node.js
Node.js, microservice architecture, and testing
Implementing the twelve-factor app model with Node.js

Overview of Node.js
Node.js is an exciting new platform for developing web applications, application
servers, any sort of network server or client, and general-purpose programming. It is
designed for extreme scalability in networked applications through an ingenious
combination of server-side JavaScript, asynchronous I/O, and asynchronous
programming.

While only ten years old, Node.js has quickly grown in prominence and is now
playing a significant role. Companies, both large and small, are using it for large-scale
and small-scale projects. PayPal, for example, has converted many services from Java
to Node.js.

The Node.js architecture departs from a typical choice made by other application
platforms. Where threads are widely used to scale an application to fill the CPU,
Node.js eschews threads because of their inherent complexity. It's claimed that with
single-thread event-driven architectures, the memory footprint is low, throughput is
high, the latency profile under load is better, and the programming model is simpler.
The Node.js platform is in a phase of rapid growth, and many see it as a compelling
alternative to the traditional web application architectures using Java, PHP, Python,
or Ruby on Rails.

At its heart, it is a standalone JavaScript engine with extensions that is suitable for
general-purpose programming and that has a clear focus on application server
development. Even though we're comparing Node.js to application-server platforms,
it is not an application server. Instead, Node.js is a programming runtime akin to
Python, Go, or Java SE. While there are web application frameworks and application
servers written in Node.js, it is simply a system to execute JavaScript programs.

The key architectural choice is that Node.js is event-driven, rather than
multithreaded. The Node.js architecture rests on dispatching blocking operations to a
single-threaded event loop, with results arriving back to the caller as an event that
invokes an event handler function. In most cases, the event is converted into a
promise that is handled by an async function. Because Node.js is based on Chrome's
V8 JavaScript engine, the performance and feature improvements implemented in
Chrome quickly flow through to the Node.js platform.

About Node.js Chapter 1

[11]

The Node.js core modules are general enough to implement any sort of server that is
executing any TCP or UDP protocol, whether it's a Domain Name System (DNS),
HTTP, internet relay chat (IRC), or FTP. While it supports the development of
internet servers or clients, its biggest use case is regular website development, in
place of technology such as an Apache/PHP or Rails stack, or to complement existing
websites—for example, adding real-time chat or monitoring existing websites can
easily be done with the Socket.IO library for Node.js. Its lightweight, high-
performance nature often sees Node.js used as a glue service.

A particularly intriguing combination is the deployment of small services on modern
cloud infrastructure using tools such as Docker and Kubernetes, or function-as-a-
service platforms, such as AWS Lambda. Node.js works well when dividing a large
application into easily deployable microservices at scale.

With a high-level understanding of Node.js under our belt, let's dig a little deeper.

The capabilities of Node.js
Node.js is a platform for writing JavaScript applications outside web browsers. This is
not the JavaScript environment we are familiar with in web browsers! While Node.js
executes the same JavaScript language that we use in browsers, it doesn't have some
of the features associated with the browser. For example, there is no HTML DOM
built into Node.js.

Beyond its native ability to execute JavaScript, the built-in modules provide
capabilities of the following sort:

Command-line tools (in shell script style)
An interactive-terminal style of program—that is, a read-eval-print loop
(REPL)
Excellent process control functions to oversee child processes
A buffer object to deal with binary data
TCP or UDP sockets with comprehensive, event-driven callbacks
DNS lookup
An HTTP, HTTPS, and HTTP/2-client server layered on top of the TCP
library filesystem access
Built-in rudimentary unit testing support through assertions

About Node.js Chapter 1

[12]

The network layer of Node.js is low level while being simple to use—for example, the
HTTP modules allow you to write an HTTP server (or client) using a few lines of
code. This is powerful, but it puts you, the programmer, very close to the protocol
requests and makes you implement precisely those HTTP headers that you should
return in request responses.

Typical web-application developers don't need to work at a low level of the HTTP or
other protocols; instead, we tend to be more productive working with higher-level
interfaces—for example, PHP coders assume that Apache/Nginx/and so on are
already there providing the HTTP, and that they don't have to implement the HTTP
server portion of the stack. By contrast, a Node.js programmer does implement an
HTTP server, to which their application code is attached.

To simplify the situation, the Node.js community has several web application
frameworks, such as Express, providing the higher-level interfaces required by
typical programmers. You can quickly configure an HTTP server with baked-in
capabilities, such as sessions, cookies, serving static files, and logging, letting
developers focus on their business logic. Other frameworks provide OAuth 2 support
or focus on REST APIs, and so on.

The community of folks using Node.js has built an amazing variety of things on this
foundation.

What are folks doing with Node.js?
Node.js is not limited to web service application development; the community
around Node.js has taken it in many other directions:

Build tools: Node.js has become a popular choice for developing
command-line tools that are used in software development or
communicating with service infrastructure. Grunt, Gulp, and Webpack are
widely used by frontend developers to build assets for websites. Babel is
widely used for transpiling modern ES-2016 code to run on older browsers.
Popular CSS optimizers and processors, such as PostCSS, are written in
Node.js. static website generation systems, such as Metalsmith, Punch, and
AkashaCMS, run at the command line, and generate website content that
you upload to a web server.
Web UI testing: Puppeteer gives you control over a headless Chrome web-
browser instance. With it, you can develop Node.js scripts by controlling a
modern, full-featured web browser. Some typical use cases are web
scraping and web application testing.

About Node.js Chapter 1

[13]

Desktop applications: Both Electron and node-webkit (NW.js) are
frameworks for developing desktop applications for Windows, macOS, and
Linux. These frameworks utilize a large chunk of Chrome, wrapped by
Node.js libraries, to develop desktop applications using web UI
technologies. Applications are written with modern HTML5, CSS3, and
JavaScript, and can utilize leading-edge web frameworks, such as
Bootstrap, React, VueJS, and AngularJS. Many popular applications have
been built using Electron, including the Slack desktop client application,
the Atom, Microsoft Visual Code programming editors, the Postman REST
client, the GitKraken GIT client, and Etcher, which makes it incredibly easy
to burn OS images to flash drives to run on single-board computers.
Mobile applications: The Node.js for Mobile Systems project lets you
develop smartphone or tablet computer applications using Node.js for both
iOS and Android. Apple's App Store rules preclude incorporating a
JavaScript engine with JIT capabilities, meaning that normal Node.js cannot
be used in an iOS application. For iOS application development, the project
uses Node.js-on-ChakraCore to skirt around the App Store rules. For
Android application development, the project uses regular Node.js on
Android. At the time of writing, the project is in an early stage of
development, but it looks promising.
Internet of things (IoT): Node.js is a very popular language for Internet-of-
Things projects, and Node.js runs on most ARM-based, single-board
computers. The clearest example is the NodeRED project. It offers a
graphical programming environment, letting you draw programs by
connecting blocks together. It features hardware-oriented input and output
mechanisms—for example, to interact with General Purpose I/O (GPIO)
pins on Raspberry Pi or Beaglebone single-board computers.

You may already be using Node.js applications without realizing it! JavaScript has a
place outside the web browser, and it's not just thanks to Node.js.

Server-side JavaScript
Quit scratching your head, already! Of course, you're doing it, scratching your head
and mumbling to yourself, "What's a browser language doing on the server?" In truth,
JavaScript has a long and largely unknown history outside the browser. JavaScript is
a programming language, just like any other language, and the better question to ask
is "Why should JavaScript remain trapped inside web browsers?"

About Node.js Chapter 1

[14]

Back in the dawn of the web age, the tools for writing web applications were at a
fledgling stage. Some developers were experimenting with Perl or TCL to write CGI
scripts, and the PHP and Java languages had just been developed. Even then,
JavaScript saw use on the server side. One early web application server was
Netscape's LiveWire server, which used JavaScript. Some versions of Microsoft's ASP
used JScript, their version of JavaScript. A more recent server-side JavaScript project
is the RingoJS application framework in the Java universe. Java 6 and Java 7 were
both shipped with the Rhino JavaScript engine. In Java 8, Rhino was dropped in favor
of the newer Nashorn JavaScript engine.

In other words, JavaScript outside the browser is not a new thing, even if it is
uncommon.

You have learned that Node.js is a platform for writing JavaScript applications
outside of web browsers. The Node.js community uses this platform for a huge array
of application types, far more than was originally conceived for the platform. This
proves that Node.js is popular, but we must still consider the technical rationale for
using it.

Why should you use Node.js?
Of the many available web-application development platforms, why should you
choose Node.js? There are many stacks to choose from; what is it about Node.js that
makes it rise above the others? We will learn the answer to this in the following
sections.

Popularity
Node.js is quickly becoming a popular development platform, and is being adopted
by plenty of big and small players. One of these players is PayPal, who are replacing
their incumbent Java-based system with one written in Node.js. Other large Node.js
adopters include Walmart's online e-commerce platform, LinkedIn, and eBay.

For PayPal's blog post about this, visit
https://www.paypal-engineering.com/2013/11/22/node-js-at-pa

ypal/.

https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/

About Node.js Chapter 1

[15]

According to NodeSource, Node.js usage is growing rapidly (for more information,
visit https://nodesource. com/ node- by-numbers). The evidence for this growth
includes increasing bandwidth for downloading Node.js releases, increasing activity
in Node.js-related GitHub projects, and more.

Interest in JavaScript itself remains very strong but has been at a plateau for years,
measured in search volume (Google Insights) and its use as a programming skill
(Dice Skills Center). Node.js interest has been growing rapidly, but is showing signs
of plateauing.

For more on this, see https:/ /itnext. io/ choosing- typescript-
vs- javascript- technology- popularity- ea978afd6b5f or http:/ /
bit. ly/ 2q5cu0w.

It's best to not just follow the crowd because there are different crowds, and each one
claims that their software platform does cool things. Node.js does some cool things,
but what is more important is its technical merit.

JavaScript everywhere
Having the same programming language on the server and client has been a long-
time dream on the web. This dream dates back to the early days of Java, where Java
applets in the browser were to be the frontend to server applications written in Java,
and JavaScript was originally envisioned as a lightweight scripting language for those
applets. Java never fulfilled its hype as a client-side programming language, and even
the phrase "Java Applets" is fading into a dim memory of the abandoned client-side
application model. We ended up with JavaScript as the principle in-browser, client-
side language, rather than Java. Typically, the frontend JavaScript developers were in
a different language universe than the server-side team, which was likely to be coding
in PHP, Java, Ruby, or Python.

Over time, in-browser JavaScript engines became incredibly powerful, letting us write
ever-more-complex browser-side applications. With Node.js, we are finally able to
implement applications with the same programming language on the client and
server by having JavaScript at both ends of the web, in the browser and server.

A common language for frontend and backend offers several potential benefits:

The same programming staff can work on both ends of the wire.
Code can be migrated between the server and client more easily.
Common data formats (JSON) between the server and client.

https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://nodesource.com/node-by-numbers
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
https://itnext.io/choosing-typescript-vs-javascript-technology-popularity-ea978afd6b5f
http://bit.ly/2q5cu0w
http://bit.ly/2q5cu0w
http://bit.ly/2q5cu0w
http://bit.ly/2q5cu0w
http://bit.ly/2q5cu0w
http://bit.ly/2q5cu0w
http://bit.ly/2q5cu0w
http://bit.ly/2q5cu0w

About Node.js Chapter 1

[16]

Common software tools exist for the server and client.
Common testing or quality-reporting tools for the server and client.
When writing web applications, view templates can be used on both sides.

The JavaScript language is very popular because of its ubiquity in web browsers. It
compares favorably with other languages while having many modern, advanced
language concepts. Thanks to its popularity, there is a deep talent pool of experienced
JavaScript programmers out there.

Leveraging Google's investment in V8
To make Chrome a popular and excellent web browser, Google invested in making
V8 a super-fast JavaScript engine. Google, therefore, has a huge motivation to keep on
improving V8. V8 is the JavaScript engine for Chrome, and it can also be executed in a
standalone manner.

Node.js is built on top of the V8 JavaScript engine, letting it take advantage of all that
work on V8. As a result, Node.js was able to quickly adopt new JavaScript language
features as they were implemented by V8 and reap performance wins for the same
reason.

Leaner, asynchronous, event-driven model
The Node.js architecture, built on a single execution thread, with an ingenious event-
oriented, asynchronous-programming model, and a fast JavaScript engine, is claimed
to have less overhead than thread-based architectures. Other systems using threads
for concurrency tend to have memory overhead and complexity, which Node.js does
not have. We'll get into this more later in the chapter.

Microservice architecture
A new sensation in software development is the idea of the microservice.
Microservices are focused on splitting a large web application into small, tightly-
focused services that can be easily developed by small teams. While they aren't
exactly a new idea—they're more of a reframing of old client–server computing
models—the microservice pattern fits well with agile project-management techniques,
and gives us a more granular application deployment.

About Node.js Chapter 1

[17]

Node.js is an excellent platform for implementing microservices. We'll get into this
later.

Node.js is stronger after a major schism and
hostile fork
During 2014 and 2015, the Node.js community faced a major split over policy,
direction, and control. The io.js project was a hostile fork driven by a group that
wanted to incorporate several features and change who was in the decision-making
process. The end result was a merge of the Node.js and io.js repositories, an
independent Node.js foundation to run the show, and the community working
together to move forward in a common direction.

A concrete result of healing that rift is the rapid adoption of
new ECMAScript language features. The V8 engine is adopting these new features
quickly to advance the state of web development. The Node.js team, in turn, is
adopting these features as quickly as they show up in V8, meaning that promises and
async functions are quickly becoming a reality for Node.js programmers.

The bottom line is that the Node.js community not only survived the io.js fork and the
later ayo.js fork, but the community and the platform it nurtured grew stronger as a
result.

In this section, you have learned several reasons to use Node.js. Not only is it a
popular platform, with a strong community behind it, but there are also serious
technical reasons to use it. Its architecture has some key technical benefits, so let's take
a deeper look at these.

The Node.js event-driven architecture
Node.js's blistering performance is said to be because of its asynchronous event-
driven architecture and its use of the V8 JavaScript engine. This enables it to handle
multiple tasks concurrently, such as juggling between requests from multiple web
browsers. The original creator of Node.js, Ryan Dahl, followed these key points:

A single-thread, event-driven programming model is simpler to code and
has less complexity and less overhead than application servers that rely on
threads to handle multiple concurrent tasks.

About Node.js Chapter 1

[18]

By converting blocking function calls into asynchronous code execution,
you can configure the systems so that it issues an event when the blocking
request is satisfied.
You can leverage the V8 JavaScript engine from the Chrome browser, and
all the work goes into improving V8; all the performance enhancements
going into V8, therefore, benefits Node.js.

In most application servers, concurrency, or the ability to handle multiple concurrent
requests, is implemented with a multithreaded architecture. In such a system, any
request for data, or any other blocking function call, causes the current execution
thread to suspend and wait for the result. Handling concurrent requests requires
there to be multiple execution threads. When one thread is suspended, another thread
can execute. This causes churn as the application server starts and stops the threads to
handle requests. Each suspended thread (typically waiting on an input/output
operation to finish) consumes a full call stack of memory, adding to overhead.
Threads add complexity to the application server as well as server overhead.

To help us wrap our heads around why this would be, Ryan Dahl, the creator of
Node.js, offered the following example. In his Cinco de NodeJS presentation in May
2010 (https:// www. youtube. com/ watch? v=M- sc73Y- zQA) Dahl asked us what happens
when we execute a line of code such as this:

result = query('SELECT * from db.table');
// operate on the result

Of course, the program pauses at this point while the database layer sends the query
to the database and waits for the result or the error. This is an example of a blocking
function call. Depending on the query, this pause can be quite long (well, a few
milliseconds, which is ages in computer time). This pause is bad because the
execution thread can do nothing while it waits for the result to arrive. If your software
is running on a single-threaded platform, the entire server would be blocked and
unresponsive. If instead your application is running on a thread-based server
platform, a thread-context switch is required to satisfy any other requests that arrive.
The greater the number of outstanding connections to the server, the greater the
number of thread-context switches. Context switching is not free because more
threads require more memory per thread state and more time for the CPU to spend
on thread management overheads.

https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA

About Node.js Chapter 1

[19]

The key inspiration guiding the original development of Node.js was the simplicity of
a single-threaded system. A single execution thread means that the server doesn't
have the complexity of multithreaded systems. This choice meant that Node.js
required an event-driven model for handling concurrent tasks. Instead of the code
waiting for results from a blocking request, such as retrieving data from a database,
an event is instead dispatched to an event handler.

Using threads to implement concurrency often comes with admonitions, such as
expensive and error-prone, the error-prone synchronization primitives of Java, or designing
concurrent software can be complex and error-prone. The complexity comes from access to
shared variables and various strategies to avoid deadlock and competition between
threads. The synchronization primitives of Java are an example of such a strategy, and
obviously many programmers find them difficult to use. There's a tendency to create
frameworks such as java.util.concurrent to tame the complexity of threaded
concurrency, but some argue that papering over complexity only makes things more
complex.

A typical Java programmer might object at this point. Perhaps their application code
is written against a framework such as Spring, or maybe they're directly using Java
EE. In either case, their application code does not use concurrency features or deal
with threads, and therefore where is the complexity that we just described? Just
because that complexity is hidden within Spring and Java EE does not mean that
there is no complexity and overhead.

Okay, we get it: while multithreaded systems can do amazing things, there is inherent
complexity. What does Node.js offer?

The Node.js answer to complexity
Node.js asks us to think differently about concurrency. Callbacks fired
asynchronously from an event loop are a much simpler concurrency model—simpler
to understand, simpler to implement, simpler to reason about, and simpler to debug
and maintain.

Node.js has a single execution thread with no waiting on I/O or context switching.
Instead, there is an event loop that dispatches events to handler functions as things
happen. A request that would have blocked the execution thread instead executes
asynchronously, with the results or errors triggering an event. Any operation that
would block or otherwise take time to complete must use the asynchronous model.

About Node.js Chapter 1

[20]

The original Node.js paradigm delivered the dispatched event to an anonymous
function. Now that JavaScript has async functions, the Node.js paradigm is shifting
to deliver results and errors via a promise that is handled by the await keyword.
When an asynchronous function is called, control quickly passes to the event loop
rather than causing Node.js to block. The event loop continues handling the variety of
events while recording where to send each result or error.

By using an asynchronous event-driven I/O, Node.js removes most of this overhead
while introducing very little of its own.

One of the points Ryan Dahl made in the Cinco de Node presentation is a hierarchy of
execution time for different requests. Objects in memory are more quickly accessed
(in the order of nanoseconds) than objects on disk or objects retrieved over the
network (milliseconds or seconds). The longer access time for external objects is
measured in zillions of clock cycles, which can be an eternity when your customer is
sitting at their web browser ready to move on if it takes longer than two seconds to
load the page.

Therefore, concurrent request handling means using a strategy to handle the requests
that take longer to satisfy. If the goal is to avoid the complexity of a multithreaded
system, then the system must use asynchronous operations as Node.js does.

What do these asynchronous function calls look like?

Asynchronous requests in Node.js
In Node.js, the query that we looked at previously will read as follows:

query('SELECT * from db.table', function (err, result) {
 if (err) throw err; // handle errors
 // operate on result
});

The programmer supplies a function that is called (hence the name callback function)
when the result (or error) is available. The query function still takes the same amount
of time. Instead of blocking the execution thread, it returns to the event loop, which is
then free to handle other requests. The Node.js will eventually fire an event that
causes this callback function to be called with the result or error indication.

A similar paradigm is used in client-side JavaScript, where we write event handler
functions all the time.

About Node.js Chapter 1

[21]

Advances in the JavaScript language have given us new options. When used with
ES2015 promises, the equivalent code would look like this:

query('SELECT * from db.table')
.then(result => {
 // operate on result
})
.catch(err => {
 // handle errors
});

This is a little better, especially in instances of deeply nested event handling.

The big advance came with the ES-2017 async function:

try {
 const result = await query('SELECT * from db.table');
 // operate on result
} catch (err) {
 // handle errors
}

Other than the async and await keywords, this looks like code we'd write in other
languages, and is much easier to read. Because of what await does, it is still
asynchronous code execution.

All three of these code snippets perform the same query that we wrote earlier. Instead
of query being a blocking function call, it is asynchronous and does not block the
execution thread.

With both the callback functions and the promise's asynchronous coding, Node.js had
its own complexity issue. Oftentimes, we call one asynchronous function after
another. With callback functions, that meant deeply nested callback functions, and
with promises, that meant a long chain of .then handler functions. In addition to the
complexity of the coding, we have errors and results landing in unnatural places.
Instead of landing on the next line of code, the asynchronously executed callback
function is invoked. The order of execution is not one line after another, as it is in
synchronous programming languages; instead, the order of execution is determined
by the order of the callback function execution.

The async function approach solves that coding complexity. The coding style is more
natural since the results and errors land in the natural place, at the next line of
code. The await keyword integrates asynchronous result handling without blocking
the execution thread. A lot is buried under the covers of the async/await feature,
and we'll be covering this model extensively throughout this book.

About Node.js Chapter 1

[22]

But does the asynchronous architecture of Node.js actually improve performance?

Performance and utilization
Some of the excitement over Node.js is due to its throughput (the requests per second
that it can serve). Comparative benchmarks of similar applications—for example,
Apache—show that Node.js has tremendous performance gains.

One benchmark going around is the following simple HTTP server (borrowed
from https://nodejs.org/en/), which simply returns a Hello
World message directly from memory:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8124, "127.0.0.1");
console.log('Server running at http://127.0.0.1:8124/');

This is one of the simpler web servers that you can build with Node.js. The http
object encapsulates the HTTP protocol, and its http.createServer method creates
a whole web server, listening on the port specified in the listen method. Every
request (whether a GET or POST on any URL) on that web server calls the provided
function. It is very simple and lightweight. In this case, regardless of the URL, it
returns a simple text/plain that is the Hello World response.

Ryan Dahl showed a simple benchmark in a video titled Ryan Dahl: Introduction to
Node.js (on the YUI Library channel on YouTube, https:/ /www. youtube. com/watch?
v=M-sc73Y-zQA). It used a similar HTTP server to this, but that returned a one-
megabyte binary buffer; Node.js gave 822 req/sec, while Nginx gave 708 req/sec, for a
15% improvement over Nginx. He also noted that Nginx peaked at four megabytes of
memory, while Node.js peaked at 64 megabytes.

The key observation was that Node.js, running an interpreted, JIT-compiled, high-
level language, was about as fast as Nginx, built of highly optimized C code, while
running similar tasks. That presentation was in May 2010, and Node.js has improved
hugely since then, as shown in Chris Bailey's talk that we referenced earlier.

https://nodejs.org/en/
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA
https://www.youtube.com/watch?v=M-sc73Y-zQA

About Node.js Chapter 1

[23]

Yahoo! search engineer Fabian Frank published a performance case study of a real-
world search query suggestion widget implemented with Apache/PHP and two
variants of Node.js stacks
(http://www.slideshare.net/FabianFrankDe/nodejs-performance-case-study).
The application is a pop-up panel showing search suggestions as the user types in
phrases using a JSON-based HTTP query. The Node.js version could handle eight
times the number of requests per second with the same request latency. Fabian Frank
said both Node.js stacks scaled linearly until CPU usage hit 100%.

LinkedIn did a massive overhaul of their mobile app using Node.js for the server-side
to replace an old Ruby on Rails app. The switch lets them move from 30 servers down
to 3, and allowed them to merge the frontend and backend team because everything
was written in JavaScript. Before choosing Node.js, they'd evaluated Rails with Event
Machine, Python with Twisted, and Node.js, chose Node.js for the reasons that we
just discussed. For a look at what LinkedIn did, see
http://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-

look-at-linkedins-mobile-engineering/.

Most existing Node.js performance tips tend to have been written for older V8
versions that used the CrankShaft optimizer. The V8 team has completely dumped
CrankShaft, and it has a new optimizer called TurboFan—for example, under
CrankShaft, it was slower to use try/catch, let/const, generator functions, and so
on. Therefore, common wisdom said to not use those features, which is depressing
because we want to use the new JavaScript features because of how much it has
improved the JavaScript language. Peter Marshall, an engineer on the V8 team at
Google, gave a talk at Node.js Interactive 2017 claiming that, using TurboFan, you
should just write natural JavaScript. With TurboFan, the goal is for across-the-board
performance improvements in V8. To view the presentation, see the video titled High
Performance JS in V8 at https:/ / www. youtube. com/watch? v=YqOhBezMx1o.

A truism about JavaScript is that it's no good for heavy computation work because of
the nature of JavaScript. We'll go over some ideas that are related to this in the next
section. A talk by Mikola Lysenko at Node.js Interactive 2016 went over some issues
with numerical computing in JavaScript, and some possible solutions. Common
numerical computing involves large numerical arrays processed by numerical
algorithms that you might have learned in calculus or linear algebra classes. What
JavaScript lacks is multidimensional arrays and access to certain CPU instructions.
The solution that he presented is a library to implement multidimensional arrays in
JavaScript, along with another library full of numerical computing algorithms. To
view the presentation, see the video titled Numerical Computing in JavaScript by
Mikola Lysenko at https:/ /www. youtube. com/watch? v=1ORaKEzlnys.

http://www.slideshare.net/FabianFrankDe/nodejs-performance-case-study
http://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-look-at-linkedins-mobile-engineering/
http://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-look-at-linkedins-mobile-engineering/
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys
https://www.youtube.com/watch?v=1ORaKEzlnys

About Node.js Chapter 1

[24]

At the Node.js Interactive conference in 2017, IBM's Chris Bailey made a case for
Node.js being an excellent choice for highly scalable microservices. Key performance
characteristics are I/O performance (measured in transactions per second), startup
time (because that limits how quickly your service can scale up to meet demand), and
memory footprint (because that determines how many application instances can be
deployed per server). Node.js excels on all those measures; with every subsequent
release, it either improves on each measure or remains fairly steady. Bailey presented
figures comparing Node.js to a similar benchmark written in Spring Boot showing
Node.js to perform much better. To view his talk, see the video titled Node.js
Performance and Highly Scalable Micro-Services - Chris Bailey, IBM at https:/ /www.
youtube.com/watch? v= Fbhhc4jtGW4.

The bottom line is that Node.js excels at event-driven I/O throughput. Whether a
Node.js program can excel at computational programs depends on your ingenuity in
working around some limitations in the JavaScript language.

A big problem with computational programming is that it prevents the event loop
from executing. As we will see in the next section, that can make Node.js look like a
poor candidate for anything.

Is Node.js a cancerous scalability disaster?
In October 2011, a blog post (since pulled from the blog where it was published) titled
Node.js is a cancer called Node.js a scalability disaster. The example shown for proof
was a CPU-bound implementation of the Fibonacci sequence algorithm. While the
argument was flawed—since nobody implements Fibonacci that way—it made the
valid point that Node.js application developers have to consider the following: where
do you put the heavy computational tasks?

A key to maintaining high throughput of Node.js applications is by ensuring that
events are handled quickly. Because it uses a single execution thread, if that thread is
bogged down with a big calculation, Node.js cannot handle events, and event
throughput will suffer.

The Fibonacci sequence, serving as a stand-in for heavy computational tasks, quickly
becomes computationally expensive to calculate for a naïve implementation such as
this:

const fibonacci = exports.fibonacci = function(n) {
 if (n === 1 || n === 2) {
 return 1;
 } else {
 return fibonacci(n-1) + fibonacci(n-2);

https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=Fbhhc4jtGW4

About Node.js Chapter 1

[25]

 }
}

This is a particularly simplistic approach to calculating Fibonacci numbers. Yes, there
are many ways to calculate Fibonacci numbers more quickly. We are showing this as
a general example of what happens to Node.js when event handlers are slow and not
to debate the best ways to calculate mathematical functions. Consider the following
server:

const http = require('http');
const url = require('url');

http.createServer(function (req, res) {
 const urlP = url.parse(req.url, true);
 let fibo;
 res.writeHead(200, {'Content-Type': 'text/plain'});
 if (urlP.query['n']) {
 fibo = fibonacci(urlP.query['n']); // Blocking
 res.end('Fibonacci '+ urlP.query['n'] +'='+ fibo);
 } else {
 res.end('USAGE: http://127.0.0.1:8124?n=## where ##
 is the Fibonacci number desired');
 }
}).listen(8124, '127.0.0.1');
console.log('Server running at http://127.0.0.1:8124');

This is an extension of the simple web server shown earlier. It looks in the request
URL for an argument, n, for which to calculate the Fibonacci number. When it's
calculated, the result is returned to the caller.

For sufficiently large values of n (for example, 40), the server becomes completely
unresponsive because the event loop is not running. Instead, this function has
blocked event processing because the event loop cannot dispatch events while the
function is grinding through the calculation.

In other words, the Fibonacci function is a stand-in for any blocking operation.

Does this mean that Node.js is a flawed platform? No, it just means that the
programmer must take care to identify code with long-running computations and
develop solutions. These include rewriting the algorithm to work with the event loop,
rewriting the algorithm for efficiency, integrating a native code library, or foisting
computationally expensive calculations to a backend server.

About Node.js Chapter 1

[26]

A simple rewrite dispatches the computations through the event loop, letting the
server continue to handle requests on the event loop. Using callbacks and closures
(anonymous functions), we're able to maintain asynchronous I/O and concurrency
promises, as shown in the following code:

const fibonacciAsync = function(n, done) {
 if (n === 0) {
 return 0;
 } else if (n === 1 || n === 2) {
 done(1);
 } else if (n === 3) {
 return 2;
 } else {
 process.nextTick(function() {
 fibonacciAsync(n-1, function(val1) {
 process.nextTick(function() {
 fibonacciAsync(n-2, function(val2) {
 done(val1+val2); });
 });
 });
 });
 }
}

This is an equally silly way to calculate Fibonacci numbers, but by using
process.nextTick, the event loop has an opportunity to execute.

Because this is an asynchronous function that takes a callback function, it necessitates
a small refactoring of the server:

const http = require('http');
const url = require('url');

http.createServer(function (req, res) {
 let urlP = url.parse(req.url, true);
 res.writeHead(200, {'Content-Type': 'text/plain'});
 if (urlP.query['n']) {
 fibonacciAsync(urlP.query['n'], fibo => { // Asynchronous
 res.end('Fibonacci '+ urlP.query['n'] +'='+ fibo);
 });
 } else {
 res.end('USAGE: http://127.0.0.1:8124?n=## where ## is the
 Fibonacci number desired');
 }
}).listen(8124, '127.0.0.1'); console.log('Server running at
http://127.0.0.1:8124');

About Node.js Chapter 1

[27]

We've added a callback function to receive the result. In this case, the server is able to
handle multiple Fibonacci number requests. But there is still a performance issue
because of the inefficient algorithm.

Later in this book, we'll explore this example a little more deeply to explore
alternative approaches.

In the meantime, we can discuss why it's important to use efficient software stacks.

Server utilization, overhead costs, and
environmental impact
The striving for optimal efficiency (handling more requests per second) is not just
about the geeky satisfaction that comes from optimization. There are real business
and environmental benefits. Handling more requests per second, as Node.js servers
can do, means the difference between buying lots of servers and buying only a few
servers. Node.js potentially lets your organization do more with less.

Roughly speaking, the more servers you buy, the greater the monetary cost and the
greater the environmental cost. There's a whole field of expertise around reducing
costs and the environmental impact of running web-server facilities to which that
rough guideline doesn't do justice. The goal is fairly obvious—fewer servers, lower
costs, and a lower environmental impact by using more efficient software.

Intel's paper, Increasing Data Center Efficiency with Server Power Measurements (https:/
/www.intel.com/ content/ dam/ doc/ white-paper/ intel- it-data- center-
efficiency-server- power- paper. pdf), gives an objective framework for
understanding efficiency and data center costs. There are many factors, such as
buildings, cooling systems, and computer system designs. Efficient building design,
efficient cooling systems, and efficient computer systems (data center efficiency, data
center density, and storage density) can lower costs and environmental impact. But
you can destroy these gains by deploying an inefficient software stack, compelling
you to buy more servers than you would if you had an efficient software stack.
Alternatively, you can amplify gains from data center efficiency with an efficient
software stack that lets you decrease the number of servers required.

This talk about efficient software stacks isn't just for altruistic environmental
purposes. This is one of those cases where being green can help your business bottom
line.

https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf

About Node.js Chapter 1

[28]

In this section, we have learned a lot about how Node.js architecture differs from
other programming platforms. The choice to eschew threads to implement
concurrency simplifies away the complexity and overhead that comes from using
threads. This seems to have fulfilled the promise of being more efficient. Efficiency
has a number of benefits to many aspects of a business.

Embracing advances in the JavaScript
language
The last couple of years have been an exciting time for JavaScript programmers. The
TC-39 committee that oversees the ECMAScript standard has added many new
features, some of which are syntactic sugar, but several of which have propelled us
into a whole new era of JavaScript programming. By itself, the async/await feature
promises us a way out of what's called callback fell, the situation that we find
ourselves in when nesting callbacks within callbacks. It's such an important feature
that it should necessitate a broad rethinking of the prevailing callback-oriented
paradigm in Node.js and the rest of the JavaScript ecosystem.

A few pages ago, you saw this:

query('SELECT * from db.table', function (err, result) {
 if (err) throw err; // handle errors
 // operate on result
});

This was an important insight on Ryan Dahl's part, and is what propelled Node.js's
popularity. Certain actions take a long time to run, such as database queries, and
should not be treated the same as operations that quickly retrieve data from memory.
Because of the nature of the JavaScript language, Node.js had to express this
asynchronous coding construct in an unnatural way. The results do not appear at the
next line of code, but instead appear within this callback function. Furthermore,
errors have to be handled in an unnatural way, inside that callback function.

The convention in Node.js is that the first parameter to a callback function is an error
indicator and the subsequent parameters are the results. This is a useful convention
that you'll find all across the Node.js landscape; however, it complicates working
with results and errors because both land in an inconvenient location—that callback
function. The natural place for errors and results to land is on the subsequent line(s)
of code.

About Node.js Chapter 1

[29]

We descend further into callback hell with each layer of callback function nesting. The
seventh layer of callback nesting is more complex than the sixth layer of callback
nesting. Why? If nothing else, it's because the special considerations for error
handling become ever more complex as callbacks are nested more deeply.

But as we saw earlier, this is the new preferred way to write asynchronous code in
Node.js:

const results = await query('SELECT * from db.table');

Instead, ES2017 async functions return us to this very natural expression of
programming intent. Results and errors land in the correct location while preserving
the excellent event-driven asynchronous programming model that made Node.js
great. We'll see how this works later in the book.

The TC-39 committee added many more new features to JavaScript, such as the
following:

An improved syntax for class declarations, making object inheritance and
getter/setter functions very natural.
A new module format that is standardized across browsers and Node.js.
New methods for strings, such as the template string notation.
New methods for collections and arrays—for example, operations for
map/reduce/filter.
The const keyword to define variables that cannot be changed and the let
keyword to define variables whose scope is limited to the block in which
they're declared, rather than hoisted to the front of the function.
New looping constructs and an iteration protocol that works with those
new loops.
A new kind of function, the arrow function, which is lighter in weight,
meaning less memory and execution time impact.
The Promise object represents a result that is promised to be delivered in
the future. By themselves, promises can mitigate the callback hell problem,
and they form part of the basis for async functions.
Generator functions are an intriguing way to represent asynchronous
iteration over a set of values. More importantly, they form the other half of
the basis for async functions.

You may see the new JavaScript described as ES6 or ES2017. What's the preferred
name to describe the version of JavaScript that is being used?

About Node.js Chapter 1

[30]

ES1 through ES5 marked various phases of JavaScript's development. ES5 was
released in 2009 and is widely implemented in modern browsers. Starting with ES6,
the TC-39 committee decided to change the naming convention because of their
intention to add new language features every year. Therefore, the language version
name now includes the year—for example, ES2015 was released in 2015, ES2016 was
released in 2016, and ES2017 was released in 2017.

Deploying ES2015/2016/2017/2018 JavaScript
code
The elephant in the room is that often JavaScript developers are unable to use the
latest features. Frontend JavaScript developers are limited by the deployed web
browsers and the large number of old browsers in use on machines whose OS hasn't
been updated for years. Internet Explorer version 6 has fortunately been almost
completely retired, but there are still plenty of old browsers installed on older
computers that are still serving a valid role for their owners. Old browsers mean old
JavaScript implementations, and if we want our code to work, we need it to be
compatible with old browsers.

One of the uses for Babel and other code-rewriting tools is to deal with this issue.
Many products must be usable by folks using an old browser. Developers can still
write their code with the latest JavaScript or TypeScript features, then use Babel to
rewrite their code so that it runs on the old browser. This way, frontend JavaScript
programmers can adopt (some of) the new features at the cost of a more complex
build toolchain and the risk of bugs being introduced by the code-rewriting process.

The Node.js world doesn't have this problem. Node.js has rapidly adopted
ES2015/2016/2017 features as quickly as they were implemented in the V8 engine.
Starting with Node.js 8, we were able to freely use async functions as a native
feature. The new module format was first supported in Node.js version 10.

In other words, while frontend JavaScript programmers can argue that they must
wait a couple of years before adopting ES2015/2016/2017 features, Node.js
programmers have no need to wait. We can simply use the new features without
needing any code-rewriting tools, unless our managers insist on supporting older
Node.js releases that predate the adoption of these features. In that case, it is
recommended that you use Babel.

Some advances in the JavaScript world are happening outside the TC-39 community.

About Node.js Chapter 1

[31]

TypeScript and Node.js
The TypeScript language is an interesting offshoot of the JavaScript environment.
Because JavaScript is increasingly able to be used for complex applications, it is
increasingly useful for the compiler to help catch programming errors. Enterprise
programmers in other languages, such as Java, are accustomed to strong type
checking as a way of preventing certain classes of bugs.

Strong type checking is somewhat anathema to JavaScript programmers, but is
demonstrably useful. The TypeScript project aims to bring enough rigor from
languages such as Java and C# while leaving enough of the looseness that makes
JavaScript so popular. The result is compile-time type checking without the heavy
baggage carried by programmers in some other languages.

While we won't use TypeScript in this book, its toolchain is very easy to adopt in
Node.js applications.

In this section, we've learned that as the JavaScript language changes, the Node.js
platform has kept up with those changes.

Developing microservices or
maxiservices with Node.js
New capabilities, such as cloud deployment systems and Docker, make it possible to
implement a new kind of service architecture. Docker makes it possible to define
server process configuration in a repeatable container that's easy to deploy by the
millions into a cloud-hosting system. It lends itself best to small, single-purpose
service instances that can be connected together to make a complete system. Docker
isn't the only tool to help simplify cloud deployments; however, its features are well
attuned to modern application deployment needs.

Some have popularized the microservice concept as a way to describe this kind of
system. According to the microservices.io website, a microservice consists of a set
of narrowly focused, independently deployable services. They contrast this with the
monolithic application-deployment pattern where every aspect of the system is
integrated into one bundle (such as a single WAR file for a Java EE app server). The
microservice model gives developers much-needed flexibility.

http://microservices.io/

About Node.js Chapter 1

[32]

Some advantages of microservices are as follows:

Each microservice can be managed by a small team.
Each team can work on its own schedule, so long as the service API
compatibility is maintained.
Microservices can be deployed independently should this be required, such
as for easier testing.
It's easier to switch technology stack choices.

Where does Node.js fit in with this? Its design fits the microservice model like a
glove:

Node.js encourages small, tightly focused, single-purpose modules.
These modules are composed into an application by the excellent npm
package management system.
Publishing modules is incredibly simple, whether via the NPM repository
or a Git URL.
While an app framework such as Express can be used with large services, it
works very well for small lightweight services and supports easy, simple
deployment.

In short, it's easy to use Node.js in a lean and agile fashion, building large or
small services depending on your architecture preferences.

Summary
You learned a lot in this chapter. Specifically, you saw that JavaScript has a life
outside web browsers and that Node.js is an excellent programming platform with
many interesting attributes. While it is a relatively young project, Node.js has become
very popular and is widely used not just for web applications but for command-line
developer tools and much more. Because the Node.js platform is based on Chrome's
V8 JavaScript engine, the project has been able to keep up with the rapid
improvements to the JavaScript language.

The Node.js architecture consists of asynchronous functions managed by an event
loop triggering callback functions, rather than using threads and blocking I/O. This
architecture has claimed performance benefits that seem to offer many benefits,
including the ability to do more work with less hardware. But we also learned that
inefficient algorithms can erase any performance benefits.

About Node.js Chapter 1

[33]

Our focus in this book is the real-world considerations of developing and deploying
Node.js applications. We'll cover as many aspects of developing, refining, testing, and
deploying Node.js applications as we can.

Now that we've had this introduction to Node.js, we're ready to dive in and start
using it. In Chapter 2, Setting up Node.js, we'll go over how to set up a Node.js
development environment on Mac, Linux, or Windows, and even write some code. So
let's get started.

2
Setting Up Node.js

Before getting started with using Node.js, you must set up your development
environment. While it's very easy to set up, there are a number of considerations to
think about, including whether to install Node.js using the package management
system, satisfying the requirements for installing native code Node.js packages, and
deciding what the best editor is to use with Node.js. In the following chapters, we'll
use this environment for development and non-production deployment.

In this chapter, we will cover the following topics:

How to install Node.js from source and prepackaged binaries on Linux,
macOS, or Windows
How to install node package manager (npm) and some other popular
tools
The Node.js module system
Node.js and JavaScript language improvements from the ECMAScript
committee

System requirements
Node.js runs on POSIX-like OSes, various UNIX derivatives (Solaris, for example),
and UNIX-workalike OSes (such as Linux, macOS, and so on), as well as on Microsoft
Windows. It can run on machines both large and small, including tiny ARM devices,
such as Raspberry Pi—a microscale embeddable computer for DIY
software/hardware projects.

Node.js is now available via package management systems, limiting the need to
compile and install from the source.

Setting Up Node.js Chapter 2

[35]

Because many Node.js packages are written in C or C++, you must have a C compiler
(such as GCC), Python 2.7 (or later), and the node-gyp package. Since Python 2 will
be end-of-lifed by the end of 2019, the Node.js community is rewriting its tools for
Python 3 compatibility. If you plan on using encryption in your networking code, you
will also need the OpenSSL cryptographic library. Modern UNIX derivatives almost
certainly come with this and Node.js's configure script—used when installing from
the source—will detect their presence. If you need to install it, Python is available at
http://python.org and OpenSSL is available at http://openssl.org.

Now that we have covered the requirements for running Node.js, let's learn how to
install it.

Installing Node.js using package
managers
The preferred method for installing Node.js is to use the versions available in
package managers, such as apt-get, or MacPorts. Package managers make your life
easier by helping to maintain the current version of the software on your computer,
ensuring to update dependent packages as necessary, all by typing a simple
command, such as apt-get update. Let's go over installation from a package
management system first.

For the official instructions on installing from package managers, go
to https:/ /nodejs. org/ en/download/ package- manager/ .

Installing Node.js on macOS with MacPorts
The MacPorts project (http://www.macports.org/) has been packaging a long list of
open-source software packages for macOS for years and they have packaged Node.js.
The commands it manages are, by default, installed on /opt/local/bin. After you
have installed MacPorts using the installer on their website, installing Node.js is
very simple, making the Node.js binaries available in the directory where MacPorts
installs commands:

$ port search nodejs npm
...
nodejs8 @8.16.2 (devel, net)

http://python.org
http://openssl.org
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
http://www.macports.org/

Setting Up Node.js Chapter 2

[36]

 Evented I/O for V8 JavaScript

nodejs10 @10.16.3 (devel, net)
 Evented I/O for V8 JavaScript

nodejs12 @12.13.0 (devel, net)
 Evented I/O for V8 JavaScript

nodejs14 @14.0.0 (devel, net)
 Evented I/O for V8 JavaScript
...

npm6 @6.14.4 (devel)
 node package manager

$ sudo port install nodejs14 npm6
.. long log of downloading and installing prerequisites and Node
$ which node
/opt/local/bin/node
$ node --version
v14.0.0

If you have followed the directions for setting up MacPorts, the MacPorts directory is
already in your PATH environment variable. Running the node, npm, or
npx commands is then simple. This proves Node.js has been installed and the
installed version matched what you asked for.

MacPorts isn't the only tool for managing open source software packages on macOS.

Installing Node.js on macOS with Homebrew
Homebrew is another open source software package manager for macOS, which
some say is the perfect replacement for MacPorts. It is available through their home
page at http://brew.sh/. After installing Homebrew using the instructions on their
website and ensuring that it is correctly set up, use the following code:

$ brew update
... long wait and lots of output
$ brew search node
==> Searching local taps...
node libbitcoin-node node-build node@8 nodeenv
leafnode llnode node node@10 node@12 nodebrew nodenv
==> Searching taps on GitHub...
caskroom/cask/node-profiler
==> Searching blacklisted, migrated and deleted formulae...

http://brew.sh/

Setting Up Node.js Chapter 2

[37]

Then, install like this:

$ brew install node
...
==> Installing node
==> ownloading
https://homebrew.bintray.com/bottles/node-14.0.0_1.high_sierra.bottle.
tar.gz
########################... 100.0%
==> Pouring node-14.0.0_1.high_sierra.bottle.tar.gz
==> Caveats
Bash completion has been installed to:
 /usr/local/etc/bash_completion.d
==> Summary
 /usr/local/Cellar/node/14.0.0_1: 4,660 files, 60MB

Like MacPorts, Homebrew installs commands on a public directory, which defaults to
/usr/local/bin. If you have followed the Homebrew instructions to add that
directory to your PATH variable, run the Node.js command as follows:

$ node --version
v14.0.0

This proves Node.js has been installed and the installed version matched what you
asked for.

Of course, macOS is only one of many operating systems we might use.

Installing Node.js on Linux, *BSD, or Windows
from package management systems
Node.js is now available through most package management systems. Instructions on
the Node.js website currently list packaged versions of Node.js for a long list of
Linux, as well as FreeBSD, OpenBSD, NetBSD, macOS, and even Windows. Visit
https://nodejs.org/en/download/package-manager/ for more information.

For example, on Debian and other Debian-based Linux distributions (such as
Ubuntu), use the following commands:

$ curl -sL https://deb.nodesource.com/setup_14.x | sudo -E bash -
[sudo] password for david:

Installing the NodeSource Node.js 14.x repo...

https://nodejs.org/en/download/package-manager/

Setting Up Node.js Chapter 2

[38]

Populating apt-get cache...

... much apt-get output
Run `sudo apt-get install -y nodejs` to install Node.js 13.x and
npm
You may also need development tools to build native addons:
 sudo apt-get install gcc g++ make
$ sudo apt-get install -y nodejs
... Much output
$ sudo apt-get install -y gcc g++ make build-essential
... Much output

This adds the NodeSource APT repository to the system, updates the package data,
and prepares the system so that you can install Node.js packages. It also instructs us
on how to install Node.js and the required compiler and developer tools.

To download other Node.js versions (this example shows version 14.x), modify the
URL to suit you:

$ node --version
v14.0.0

The commands will be installed in /usr/bin and we can test whether the version
downloaded is what we asked for.

Windows is starting to become a place where Unix/Linux geeks can work, thanks to a
new tool called the Windows subsystem for Linux (WSL).

Installing Node.js in WSL
WSL lets you install Ubuntu, openSUSE, or SUSE Linux Enterprise on Windows. All
three are available via the store built into Windows 10. You may need to update your
Windows device for the installation to work. For the best experience, install WSL2,
which is a major overhaul of WSL, offering an improved integration between
Windows and Linux.

Once installed, the Linux-specific instructions will install Node.js in the Linux
subsystem.

To install WSL, see https:/ /msdn. microsoft. com/ en- us/
commandline/ wsl/ install- win10.

To learn about and install WSL2, see https:/ /docs. microsoft. com/
en- us/ windows/ wsl/ wsl2- index.

https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index

Setting Up Node.js Chapter 2

[39]

The process may require elevated privileges on Windows.

Opening an administrator-privileged PowerShell on
Windows
Some of the commands that you'll run while installing tools on Windows are to be
executed in a PowerShell window with elevated privileges. We are mentioning this
because during the process of enabling WSL, a command will need to be run in a
PowerShell window.

The process is simple:

In the Start menu, enter PowerShell in the application's search box. The1.
resulting menu will list PowerShell.
Right-click the PowerShell entry.2.
The context menu that comes up will have an entry called Run as3.
Administrator. Click on that.

The resulting command window will have administrator privileges and the title bar
will say Administrator: Windows PowerShell.

In some cases, you will be unable to use Node.js from package management systems.

Installing the Node.js distribution from
nodejs.org
The https://nodejs.org/en/ website offers built-in binaries for Windows, macOS,
Linux, and Solaris. We can simply go to the website, click on the Install button, and
run the installer. For systems with package managers, such as the ones we've just
discussed, it's better to use the package management system. That's because you'll
find it easier to stay up to date with the latest version. However, that doesn't serve all
people because of the following reasons:

Some will prefer to install a binary rather than deal with the package
manager.
Their chosen system doesn't have a package management system.
The Node.js implementation in their package management system is out of
date.

https://nodejs.org/en/

Setting Up Node.js Chapter 2

[40]

Simply go to the Node.js website and you'll see something as in the following
screenshot. The page does its best to determine your OS and supply the appropriate
download. If you need something different, click on the DOWNLOADS link in the
header for all possible downloads:

For macOS, the installer is a PKG file that gives the typical installation process. For
Windows, the installer simply takes you through the typical install wizard process.

Once you are finished with the installer, you have command-line tools, such as node
and npm, which you can run Node.js programs with. On Windows, you're supplied
with a version of the Windows command shell preconfigured to work nicely with
Node.js.

As you have just learned, most of us will be perfectly satisfied with installing prebuilt
packages. However, there are times when we must install Node.js from a source.

Installing from the source on POSIX-like
systems
Installing the prepackaged Node.js distributions is the preferred installation method.
However, installing Node.js from a source is desirable in a few situations:

It can let you optimize the compiler settings as desired.
It can let you cross-compile, say, for an embedded ARM system.
You might need to keep multiple Node.js builds for testing.
You might be working on Node.js itself.

Setting Up Node.js Chapter 2

[41]

Now that you have a high-level view, let's get our hands dirty by mucking around in
some build scripts. The general process follows the usual configure, make, and
make install routine that you may have already performed with other open source
software packages. If not, don't worry, we'll guide you through the process.

The official installation instructions are in README.md, contained in
the source distribution
at https://github.com/nodejs/node/blob/master/README.md.

Installing prerequisites
There are three prerequisites: a C compiler, Python, and the OpenSSL libraries. The
Node.js compilation process checks for their presence and will fail if the C compiler or
Python is not present. These sorts of commands will check for their presence:

$ cc --version
Apple LLVM version 10.0.0 (clang-1000.11.45.5)
Target: x86_64-apple-darwin17.7.0
Thread model: posix
InstalledDir:
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xct
oolchain/usr/bin
$ python
Python 2.7.16 (default, Oct 16 2019, 00:35:27)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.31)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Go to https:/ / github. com/nodejs/ node/ blob/ master/ BUILDING.
md for details on the requirements.

The specific method for installing these depends on your OS.

The Node.js build tools are in the process of being updated to support Python 3.x.
Python 2.x is in an end-of-life process, slated for the end of 2019, so it is therefore
recommended that you update to Python 3.x.

Before we can compile the Node.js source, we must have the correct tools installed
and on macOS, there are a couple of special considerations.

https://github.com/nodejs/node/blob/master/README.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md

Setting Up Node.js Chapter 2

[42]

Installing developer tools on macOS
Developer tools (such as GCC) are an optional installation on macOS. Fortunately,
they're easy to acquire.

You start with Xcode, which is available for free through the Macintosh app store.
Simply search for Xcode and click on the Get button. Once you have Xcode installed,
open a Terminal window and type the following:

$ xcode-select --install

This installs the Xcode command-line tools:

For additional information, visit
http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/.

Now that we have the required tools installed, we can proceed with compiling the
Node.js source.

http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/

Setting Up Node.js Chapter 2

[43]

Installing from the source for all POSIX-like
systems
Compiling Node.js from the source follows this familiar process:

Download the source from http://nodejs.org/download.1.
Configure the source for building using ./configure.2.
Run make, then make install.3.

The source bundle can be downloaded through your browser or as follows,
substituting your preferred version:

$ mkdir src
$ cd src
$ wget https://nodejs.org/download/release/v14.0.0/node-v14.0.0.tar.gz
$ tar xvfz node-v14.0.0.tar.gz
$ cd node-v14.0.0

Now, we configure the source so that it can be built. This is just like with many other
open source packages and there is a long list of options to customize the build:

$./configure --help

To cause the installation to land in your home directory, run it this way:

$./configure --prefix=$HOME/node/14.0.0
..output from configure

If you're going to install multiple Node.js versions side by side, it's useful to put the
version number in the path like this. That way, each version will sit in a separate
directory. It will then be a simple matter of switching between Node.js versions by
changing the PATH variable appropriately:

On bash shell:
$ export PATH=${HOME}/node/VERSION-NUMBER/bin:${PATH}
On csh
$ setenv PATH ${HOME}/node/VERSION-NUMBER/bin:${PATH}

A simpler way to install multiple Node.js versions is by using the nvm script, which
will be described later.

If you want to install Node.js in a system-wide directory, simply leave off the --
prefix option and it will default to installing in /usr/local.

http://nodejs.org/download

Setting Up Node.js Chapter 2

[44]

After a moment, it'll stop and will likely have successfully configured the source tree
for installation in your chosen directory. If this doesn't succeed, the error messages
that are printed will describe what needs to be fixed. Once the configure script is
satisfied, you can move on to the next step.

With the configure script satisfied, you compile the software:

$ make
.. a long log of compiler output is printed
$ make install

If you are installing on a system-wide directory, perform the last step this way
instead:

$ make
$ sudo make install

Once installed, you should make sure that you add the installation directory to your
PATH variable, as follows:

$ echo 'export PATH=$HOME/node/14.0.0/bin:${PATH}' >>~/.bashrc
$. ~/.bashrc

Alternatively, for csh users, use this syntax to make an exported environment
variable:

$ echo 'setenv PATH $HOME/node/14.0.0/bin:${PATH}' >>~/.cshrc
$ source ~/.cshrc

When the build is installed, it creates a directory structure, as follows:

$ ls ~/node/14.0.0/
bin include lib share
$ ls ~/node/14.0.0/bin
node npm npx

Now that we've learned how to install Node.js from the source on UNIX-like systems,
we get to do the same on Windows.

Setting Up Node.js Chapter 2

[45]

Installing from the source on Windows
The BUILDING.md document referenced previously has instructions. You can use the
build tools from Visual Studio or the full Visual Studio 2017 or 2019 product:

Visual Studio 2019: https:/ /www. visualstudio. com/ downloads/

The build tools: https:/ /visualstudio. microsoft. com/ downloads/
#build- tools- for- visual- studio- 2019

Three additional tools are required:

Git for Windows: http:/ / git- scm.com/ download/ win
Python: https:/ /www. python. org/

OpenSSL: https:/ /www. openssl. org/ source/ and https:/ /wiki.
openssl. org/ index. php/ Binaries

The Netwide Assembler (NASM) for OpenSSL: https:/ /www. nasm. us/

Then, run the included .\vcbuild script to perform the build.

We've learned how to install one Node.js instance, so let's now take it to the next level
by installing multiple instances.

Installing multiple Node.js instances with
nvm
Normally, you wouldn't install multiple versions of Node.js—doing so adds
complexity to your system. But if you are hacking on Node.js itself or testing your
software against different Node.js releases, you may want to have multiple Node.js
installations. The method to do so is a simple variation on what we've already
discussed.

Earlier, while discussing building Node.js from the source, we noted that you can
install multiple Node.js instances in separate directories. It's only necessary to build
from the source if you need a customized Node.js build but most folks would be
satisfied with pre-built Node.js binaries. They, too, can be installed on separate
directories.

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://www.openssl.org/source/
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://wiki.openssl.org/index.php/Binaries
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/
https://www.nasm.us/

Setting Up Node.js Chapter 2

[46]

Switching between Node.js versions is simply a matter of changing the PATH variable
(on POSIX systems), as in the following code, using the directory where you installed
Node.js:

$ export PATH=/usr/local/node/VERSION-NUMBER/bin:${PATH}

It starts to get a little tedious maintaining this after a while. For each release, you have
to set up Node.js, npm, and any third-party modules you desire in your Node.js
installation. Also, the command shown to change PATH is not quite optimal. Inventive
programmers have created several version managers to simplify managing multiple
Node.js/npm releases and provide commands to change PATH the smart way:

Node version manager: https:/ /github. com/ tj/ n

Node version manager: https:/ /github. com/ creationix/ nvm

Both maintain multiple, simultaneous versions of Node.js and let you easily switch
between versions. Installation instructions are available on their respective websites.

For example, with nvm, you can run commands such as these:

$ nvm ls
...
 v6.4.0
 ...
 v6.11.2
 v8.9.3
 v10.15.2
 ...
 v12.13.1
 ...
 v14.0.0
 -> system
default -> 12.9.1 (-> v12.9.1)
node -> stable (-> v12.13.1) (default)
stable -> 12.13 (-> v12.13.1) (default)
$ nvm use 10
Now using node v10.15.2 (npm v6.4.1)
$ node --version
v10.15.2
$ nvm use 4.9
Now using node v4.9.1 (npm v2.15.11)
$ node --version
v4.9.1
$ nvm install 14
Downloading and installing node v14.0.0...
Downloading

https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/tj/n
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm

Setting Up Node.js Chapter 2

[47]

https://nodejs.org/dist/v14.0.0/node-v14.0.0-darwin-x64.tar.xz...
############... 100.0%
Computing checksum with shasum -a 256
Checksums matched!
Now using node v14.0.0 (npm v6.14.4)
$ node --version
v14.0.0
$ which node
/Users/david/.nvm/versions/node/v14.0.0/bin/node
$ /usr/local/bin/node --version
v13.13.0
$ /opt/local/bin/node --version
v13.13.0

In this example, we first listed the available versions. Then, we demonstrated how to
switch between Node.js versions, verifying the version changed each time. We also
installed and used a new version using nvm. Finally, we showed the directory where
nvm installs Node.js packages versus Node.js versions that are installed using
MacPorts or Homebrew.

This demonstrates that you can have Node.js installed system-wide, keep multiple
private Node.js versions managed by nvm, and switch between them as needed.
When new Node.js versions are released, they are simple to install with nvm, even if
the official package manager for your OS hasn't yet updated its packages.

Installing nvm on Windows
Unfortunately, nvm doesn't support Windows. Fortunately, a couple of Windows-
specific clones of the nvm concept exist:

Node.js version management utility for Windows: https:/ /github. com/
coreybutler/ nvm- windows

Natural Node.js and npm version manager for Windows: https:/ /github.
com/ marcelklehr/ nodist

Another route is to use WSL. Because in WSL you're interacting with a Linux
command line, you can use nvm itself. But let's stay focused on what you can do in
Windows.

Many of the examples in this book were tested using the nvm-windows application.
There are slight behavior differences but it acts largely the same as nvm for Linux and
macOS. The biggest change is the version number specifier in the nvm use and nvm
install commands.

https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist
https://github.com/marcelklehr/nodist

Setting Up Node.js Chapter 2

[48]

With nvm for Linux and macOS, you can type a simple version number, such as nvm
use 8, and it will automatically substitute the latest release of the named Node.js
version. With nvm-windows, the same command acts as if you typed nvm use
8.0.0. In other words, with nvm-windows, you must use the exact version number.
Fortunately, the list of supported versions is easily available using the nvm list
available command.

Using a tool such as nvm simplifies the process of testing a Node.js application against
multiple Node.js versions.

Now that we can install Node.js, we need to make sure we are installing any Node.js
module that we want to use. This requires having build tools installed on our
computer.

Requirements for installing native code
modules
While we won't discuss native code module development in this book, we do need to
make sure that they can be built. Some modules in the npm repository are native code
and they must be compiled with a C or C++ compiler to build the
corresponding .node files (the .node extension is used for binary native code
modules).

The module will often describe itself as a wrapper for some other library. For
example, the libxslt and libxmljs modules are wrappers around the C/C++
libraries of the same name. The module includes the C/C++ source code and when
installed, a script is automatically run to do the compilation with node-gyp.

The node-gyp tool is a cross-platform command-line tool written in Node.js for
compiling native add-on modules for Node.js. We've mentioned native code modules
several times and it is this tool that compiles them for use with Node.js.

You can easily see this in action by running these commands:

$ mkdir temp
$ cd temp
$ npm install libxmljs libxslt

Setting Up Node.js Chapter 2

[49]

This is done in a temporary directory, so you can delete it afterward. If your system
does not have the tools installed to compile native code modules, you'll see error
messages. Otherwise, you'll see a node-gyp execution in the output, followed by
many lines of text obviously related to compiling C/C++ files.

The node-gyp tool has prerequisites similar to those for compiling Node.js from the
source—namely, a C/C++ compiler, a Python environment, and other build tools, such
as Git. For Unix, macOS, and Linux systems, those are easy to come by. For Windows,
you should install the following:

Visual Studio build tools: https:/ /www. visualstudio. com/ downloads/
#build- tools- for- visual- studio- 2017

Git for Windows: http:/ / git- scm.com/ download/ win

Python for Windows: https:/ /www. python. org/

Normally, you don't need to worry about installing node-gyp. That's because it is
installed behind the scenes as part of npm. That's done so that npm can automatically
build native code modules.

Its GitHub repository contains documentation; go
to https://github.com/nodejs/node-gyp.

Reading the node-gyp documentation in its repository will give you a clearer
understanding of the compilation prerequisites discussed previously and of
developing native code modules.

This is an example of a non-explicit dependency. It is best to explicitly declare all the
things that a software package depends on. In Node.js, dependencies are declared
in package.json so that the package manager (npm or yarn) can download and set
up everything. But these compiler tools are set up by the OS package management
system, which is outside the control of npm or yarn. Therefore, we cannot explicitly
declare those dependencies.

We've just learned that Node.js supports modules written not just in JavaScript, but
also in other programming languages. We've also learned how to support the
installation of such modules. Next, we will learn about Node.js version numbers.

https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://github.com/nodejs/node-gyp

Setting Up Node.js Chapter 2

[50]

Choosing Node.js versions to use and the
version policy
We just threw around so many different Node.js version numbers in the previous
section that you may have become confused about which version to use. This book is
targeted at Node.js version 14.x and it's expected that everything we'll cover is
compatible with Node.js 10.x and any subsequent release.

Starting with Node.js 4.x, the Node.js team has followed a dual-track approach. The
even-numbered releases (4.x, 6.x, 8.x, and so on) are what they're calling long term
support (LTS), while the odd-numbered releases (5.x, 7.x, 9.x, and so on) are where
current new feature development occurs. While the development branch is kept
stable, the LTS releases are positioned as being for production use and will receive
updates for several years.

At the time of writing, Node.js 12.x is the current LTS release; Node.js 14.x has been
released and will eventually become the LTS release.

A major impact of each new Node.js release, beyond the usual performance
improvements and bug fixes, is the bringing in of the latest V8 JavaScript engine
release. In turn, this means bringing in more of the ES2015/2016/2017 features as
the V8 team implements them. In Node.js 8.x, the async/await functions arrived
and in Node.js 10.x, support for the standard ES6 module format has arrived. In
Node.js 14.x that module format will be completely supported.

A practical consideration is whether a new Node.js release will break your code. New
language features are always being added as V8 catches up with ECMAScript and the
Node.js team sometimes makes groundbreaking changes to the Node.js API. If you've
tested on one Node.js version, will it work on an earlier version? Will a Node.js
change break some assumptions we made?

What npm does is ensure that our packages execute on the correct Node.js version.
This means that we can specify the compatible Node.js versions for a package in the
package.json file (which we'll explore in Chapter 3, Exploring Node.js Modules).

We can add an entry to package.json as follows:

engines: {
 "node": ">=8.x"
}

Setting Up Node.js Chapter 2

[51]

This means exactly what it implies—that the given package is compatible with
Node.js version 8.x or later.

Of course, your development environment(s) could have several Node.js versions
installed. You'll need the version your software is declared to support, plus any later
versions you wish to evaluate.

We have just learned how the Node.js community manages releases and version
numbers. Our next step is to discuss which editor to use.

Choosing editors and debuggers for
Node.js
Since Node.js code is JavaScript, any JavaScript-aware editor will be useful. Unlike
some other languages that are so complex that an IDE with code completion is a
necessity, a simple programming editor is perfectly sufficient for Node.js
development.

Two editors are worth shouting out because they are written in Node.js: Atom and
Microsoft Visual Studio Code.

Atom (https:/ /atom. io/) describes itself as a hackable editor for the 21st century. It
is extendable by writing Node.js modules using the Atom API and the configuration
files are easily editable. In other words, it's hackable in the same way plenty of other
editors have been—going back to Emacs, meaning you write a software module to
add capabilities to the editor. The Electron framework was invented in order to build
Atom and it is is a super-easy way of building desktop applications using Node.js.

Microsoft Visual Studio Code (https:/ /code. visualstudio. com/) is a
hackable editor (well, the home page says extensible and customizable, which means
the same thing) that is also open source and implemented in Electron. However, it's
not a hollow me-too editor, copying Atom while adding nothing of its own. Instead,
Visual Studio Code is a solid programmer's editor in its own right, bringing
interesting functionality to the table.

As for debuggers, there are several interesting choices. Starting with Node.js 6.3, the
inspector protocol has made it possible to use the Google Chrome debugger. Visual
Studio Code has a built-in debugger that also uses the inspector protocol.

https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Setting Up Node.js Chapter 2

[52]

For a full list of debugging options and tools, see https:/ / nodejs.
org/ en/ docs/ guides/ debugging- getting- started/ .

Another task related to the editor is adding extensions to help with the editing
experience. Most programmer-oriented editors allow you to extend the behavior and
assist with writing the code. A trivial example is syntax coloring for JavaScript, CSS,
HTML, and so on. Code completion extensions are where the editor helps you write
the code. Some extensions scan code for common errors; often these extensions use
the word lint. Some extensions help to run unit test frameworks. Since there are so
many editors available, we cannot provide specific suggestions.

For some, the choice of programming editor is a serious matter defended with fervor,
so we carefully recommend that you use whatever editor you prefer, as long as it
helps you edit JavaScript code. Next, we will learn about the Node.js commands and
a little about running Node.js scripts.

Running and testing commands
Now that you've installed Node.js, we want to do two things—verify that the
installation was successful and familiarize ourselves with the Node.js command-line
tools and running simple scripts with Node.js. We'll also touch again on async
functions and look at a simple example HTTP server. We'll finish off with the npm and
npx command-line tools.

Using Node.js's command-line tools
The basic installation of Node.js includes two commands: node and npm. We've
already seen the node command in action. It's used either for running command-line
scripts or server processes. The other, npm, is a package manager for Node.js.

The easiest way to verify that your Node.js installation works is also the best way to
get help with Node.js. Type the following command:

$ node --help
Usage: node [options] [-e script | script.js | -] [arguments]
 node inspect script.js [arguments]

Options:
 -v, --version print Node.js version

https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/

Setting Up Node.js Chapter 2

[53]

 -e, --eval script evaluate script
 -p, --print evaluate script and print result
 -c, --check syntax check script without executing
 -i, --interactive always enter the REPL even if stdin
 does not appear to be a terminal
 -r, --require module to preload (option can be repeated)
 - script read from stdin (default; interactive mode if a tty)

... many more options

Environment variables:
NODE_DEBUG ','-separated list of core modules that should print debug
information
NODE_DEBUG_NATIVE ','-separated list of C++ core debug categories that
should print debug output
NODE_DISABLE_COLORS set to 1 to disable colors in the REPL
NODE_EXTRA_CA_CERTS path to additional CA certificates file
NODE_NO_WARNINGS set to 1 to silence process warnings
NODE_OPTIONS set CLI options in the environment via a space-separated
list
NODE_PATH ':'-separated list of directories prefixed to the module
search path
... many more environment variables

That was a lot of output but don't study it too closely. The key takeaway is that node
--help provides a lot of useful information.

Note that there are options for both Node.js and V8 (not shown in the previous
command line). Remember that Node.js is built on top of V8; it has its own universe
of options that largely focus on details of bytecode compilation or garbage collection
and heap algorithms. Enter node --v8-options to see the full list of these options.

On the command line, you can specify options, a single script file, and a list of
arguments to that script. We'll discuss script arguments further in the following
section, Running a simple script with Node.js.

Running Node.js with no arguments drops you in an interactive JavaScript shell:

$ node
> console.log('Hello, world!');
Hello, world!
undefined

Setting Up Node.js Chapter 2

[54]

Any code you can write in a Node.js script can be written here. The command
interpreter gives a good terminal-oriented user experience and is useful for
interactively playing with your code. You do play with your code, don't you? Good!

Running a simple script with Node.js
Now, let's look at how to run scripts with Node.js. It's quite simple; let's start by
referring to the help message shown previously. The command-line pattern is just a
script filename and some script arguments, which should be familiar to anyone who
has written scripts in other languages.

Creating and editing Node.js scripts can be done with any text
editor that deals with plain text files, such as VI/VIM, Emacs,
Notepad++, Atom, Visual Studio Code, Jedit, BB Edit, TextMate, or
Komodo. It's helpful if it's a programmer-oriented editor, if only for
the syntax coloring.

For this and other examples in this book, it doesn't truly matter where you put the
files. However, for the sake of neatness, you can start by making a directory named
node-web-dev in the home directory of your computer and inside that, creating one
directory per chapter (for example, chap02 and chap03).

First, create a text file named ls.js with the following content:

const fs = require('fs').promises;

async function listFiles() {
 try {
 const files = await fs.readdir('.');
 for (const file of files) {
 console.log(file);
 }
 } catch (err) {
 console.error(err);
 }
 }

listFiles();

Setting Up Node.js Chapter 2

[55]

Next, run it by typing the following command:

$ node ls.js
ls.js

This is a pale and cheap imitation of the Unix ls command (as if you couldn't figure
that out from the name!). The readdir function is a close analog to the Unix readdir
system call used to list the files in a directory. On Unix/Linux systems, we can run the
following command to learn more:

$ man 3 readdir

The man command, of course, lets you read manual pages and section 3 covers the C
library.

Inside the function body, we read the directory and print its contents. Using
require('fs').promises gives us a version of the fs module (filesystem
functions) that returns Promises; it, therefore, works well in an async function.
Likewise, the ES2015 for..of loop construct lets us loop over entries in an array in a
way that works well in async functions.

By default, the fs module functions use the callback paradigm
originally created for Node.js. As a result, most Node.js modules use
the callback paradigm. Within async functions, it is more
convenient if functions return Promises instead so that the await
keyword can be used. The util module provides a
function, util.promisify, which generates a wrapper function for
old-style callback-oriented functions so it instead returns a Promise.

This script is hardcoded to list files in the current directory. The real ls command
takes a directory name, so let's modify the script a little.

Command-line arguments land in a global array named process.argv. Therefore,
we can modify ls.js, copying it as ls2.js (as follows) to see how this array works:

const fs = require('fs').promises;

async function listFiles() {
 try {
 var dir = '.';
 if (process.argv[2]) dir = process.argv[2];
 const files = await fs.readdir(dir);
 for (let fn of files) {
 console.log(fn);
 }

Setting Up Node.js Chapter 2

[56]

 } catch (err) {
 console.error(err);
 }
 }

listFiles();

You can run it as follows:

$ pwd
/Users/David/chap02
$ node ls2 ..
chap01
chap02
$ node ls2
app.js
ls.js
ls2.js

We simply checked whether a command-line argument was present, if
(process.argv[2]). If it was, we override the value of the dir variable, dir =
process.argv[2], and we then use that as the readdir argument:

$ node ls2.js /nonexistent
{ Error: ENOENT: no such file or directory, scandir '/nonexistent'
 errno: -2,
 code: 'ENOENT',
 syscall: 'scandir',
 path: '/nonexistent' }

If you give it a non-existent directory pathname, an error will be thrown and printed
using the catch clause.

Writing inline async arrow functions
There is a different way to write these examples that some feel is more concise. These
examples were written as a regular function—with the function keyword—but with
the async keyword in front. One of the features that came with ES2015 is the arrow
function, which lets us streamline the code a little bit.

Combined with the async keyword, an async arrow function looks like this:

async () => {
 // function body
}

Setting Up Node.js Chapter 2

[57]

You can use this anywhere; for example, the function can be assigned to a variable or
it can be passed as a callback to another function. When used with the async
keyword, the body of the arrow function has all of the async function's behavior.

For the purpose of these examples, an async arrow function can be wrapped for
immediate execution:

(async () => {
 // function body
})()

The final parenthesis causes the inline function to immediately be invoked.

Then, because async functions return a Promise, it is necessary to add a .catch
block to catch errors. With all that, the example looks as follows:

const fs = require('fs');

(async () => {
 var dir = '.';
 if (process.argv[2]) dir = process.argv[2];
 const files = await fs.readdir(dir);
 for (let fn of files) {
 console.log(fn);
 }
})().catch(err => { console.error(err); });

Whether this or the previous style is preferable is perhaps a matter of taste. However,
you will find both styles in use and it is necessary to understand how both work.

When invoking an async function at the top level of a script, it is necessary to capture
any errors and report them. Failure to catch and report errors can lead to mysterious
problems that are hard to pin down. For the original version of this example, the
errors were explicitly caught with a try/catch block. In this version, we catch errors
using a .catch block.

Before we had async functions, we had the Promise object and before that, we had the
callback paradigm. All three paradigms are still used in Node.js, meaning you'll need
to understand each.

Setting Up Node.js Chapter 2

[58]

Converting to async functions and the
Promise paradigm
In the previous section, we discussed util.promisify and its ability to convert a
callback-oriented function into one that returns a Promise. The latter plays well with
async functions and therefore, it is preferable for functions to return a Promise.

To be more precise, util.promisify is to be given a function that uses the error-
first-callback paradigm. The last argument of such functions is a callback function,
whose first argument is interpreted as an error indicator, hence the phrase error-first-
callback. What util.promisify returns is another function that returns a Promise.

The Promise serves the same purpose as error-first-callback. If an error is indicated,
the Promise resolves to the rejected status, while if success is indicated, the Promise
resolves to a success status. As we see in these examples, the Promise is handled very
nicely within an async function.

The Node.js ecosystem has a large body of functions that use error-first-callback. The
community has began a conversion process where functions will return a Promise
and possibly also take an error-first-callback for API compatibility.

One of the new features in Node.js 10 is an example of such a conversion. Within the
fs module is a submodule, named fs.promises, with the same API but producing
Promise objects. We wrote the previous examples using that API.

Another choice is a third-party module, fs-extra. This module has an extended API
beyond the standard fs module. On one hand, its functions return a Promise if no
callback function is provided or else invokes the callback. In addition, it includes
several useful functions.

In the rest of this book, we will often use fs-extra because of those
additional functions. For documentation on the module, go
to https:/ /www. npmjs. com/package/ fs- extra.

The util module has another function, util.callbackify, which does as the name
implies—it converts a function that returns a Promise into one that uses a callback
function.

Now that we've seen how to run a simple script, let's look at a simple HTTP server.

https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-extra

Setting Up Node.js Chapter 2

[59]

Launching a server with Node.js
Many scripts that you'll run are server processes; we'll be running lots of these scripts
later on. Since we're still trying to verify the installation and get you familiar with
using Node.js, we want to run a simple HTTP server. Let's borrow the simple server
script on the Node.js home page (http://nodejs.org).

Create a file named app.js, containing the following:

const http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello, World!\n');
}).listen(8124, '127.0.0.1');
console.log('Server running at http://127.0.0.1:8124');

Run it as follows:

$ node app.js
Server running at http://127.0.0.1:8124

This is the simplest of web servers you can build with Node.js. If you're interested in
how it works, flip forward to Chapter 4, HTTP Servers and Clients, Chapter 5, Your
First Express Application, and Chapter 6, Implementing the Mobile-First Paradigm. But
for now, just type http://127.0.0.1:8124 in your browser to see the Hello,
World! message:

A question to ponder is why this script didn't exit when ls.js did. In both cases,
execution of the script reaches the end of the file; the Node.js process does not exit in
app.js, while it does in ls.js.

The reason for this is the presence of active event listeners. Node.js always starts up
an event loop and in app.js, the listen function creates an event, listener, that
implements the HTTP protocol. This listener event keeps app.js running until
you do something, such as press Ctrl + C in the terminal window. In ls.js, there is
nothing there to create a long-running listener event, so when ls.js reaches the
end of its script, the node process will exit.

http://nodejs.org

Setting Up Node.js Chapter 2

[60]

To carry out more complex tasks with Node.js, we must use third-party modules. The
npm repository is the place to go.

Using npm, the Node.js package manager
Node.js, being a JavaScript interpreter with a few interesting asynchronous I/O
libraries, is by itself a pretty basic system. One of the things that makes Node.js
interesting is the rapidly growing ecosystem of third-party modules for Node.js.

At the center of that ecosystem is the npm module repository. While Node.js modules
can be downloaded as source and assembled manually for use with Node.js
programs, that's tedious to do and it's difficult to implement a repeatable build
process. npm gives us a simpler method; npm is the de facto standard package
manager for Node.js and it greatly simplifies downloading and using these modules.
We will talk about npm at length in the next chapter.

The sharp-eyed among you will have noticed that npm is already installed via all the
installation methods discussed previously. In the past, npm was installed separately,
but today it is bundled with Node.js.

Now that we have npm installed, let's take it for a quick spin. The hexy program is a
utility used for printing hex dumps of files. That's a very 1970s thing to do, but it is
still extremely useful. It serves our purpose right now as it gives us something to
quickly install and try out:

$ npm install -g hexy
/opt/local/bin/hexy ->
/opt/local/lib/node_modules/hexy/bin/hexy_cmd.js
+ hexy@0.2.10
added 1 package in 1.107s

Adding the -g flag makes the module available globally, irrespective of the present
working directory of your command shell. A global install is most useful when the
module provides a command-line interface. When a package provides a command-
line script, npm sets that up. For a global install, the command is installed correctly for
use by all users of the computer.

Setting Up Node.js Chapter 2

[61]

Depending on how Node.js is installed for you, it may need to be run with sudo:

$ sudo npm install -g hexy

Once it is installed, you'll be able to run the newly–installed program this way:

$ hexy --width 12 ls.js
00000000: 636f 6e73 7420 6673 203d 2072 const.fs.=.r
0000000c: 6571 7569 7265 2827 6673 2729 equire('fs')
00000018: 3b0a 636f 6e73 7420 7574 696c ;.const.util
00000024: 203d 2072 6571 7569 7265 2827 .=.require('
00000030: 7574 696c 2729 3b0a 636f 6e73 util');.cons
0000003c: 7420 6673 5f72 6561 6464 6972 t.fs_readdir
00000048: 203d 2075 7469 6c2e 7072 6f6d .=.util.prom
00000054: 6973 6966 7928 6673 2e72 6561 isify(fs.rea
00000060: 6464 6972 293b 0a0a 2861 7379 ddir);..(asy
0000006c: 6e63 2028 2920 3d3e 207b 0a20 nc.().=>.{..
00000078: 2063 6f6e 7374 2066 696c 6573 .const.files
00000084: 203d 2061 7761 6974 2066 735f .=.await.fs_
00000090: 7265 6164 6469 7228 272e 2729 readdir('.')
0000009c: 3b0a 2020 666f 7220 2866 6e20 ;...for.(fn.
000000a8: 6f66 2066 696c 6573 2920 7b0a of.files).{.
000000b4: 2020 2020 636f 6e73 6f6c 652econsole.
000000c0: 6c6f 6728 666e 293b 0a20 207d log(fn);...}
000000cc: 0a7d 2928 292e 6361 7463 6828 .})().catch(
000000d8: 6572 7220 3d3e 207b 2063 6f6e err.=>.{.con
000000e4: 736f 6c65 2e65 7272 6f72 2865 sole.error(e
000000f0: 7272 293b 207d 293b rr);.});

The hexy command was installed as a global command, making it easy to run.

Again, we'll be doing a deep dive into npm in the next chapter. The hexy utility is
both a Node.js library and a script for printing out these old-style hex dumps.

In the open source world, a perceived need often leads to creating
an open source project. The folks who launched the Yarn project saw
needs that weren't being addressed by npm and created an
alternative package manager tool. They claim a number of
advantages over npm, primarily in the area of performance. To learn
more about Yarn, go to https:/ /yarnpkg. com/.

For every example in this book that uses npm, there is a close
equivalent command that uses Yarn.

For npm-packaged command-line tools, there is another, simpler way to use the tool.

https://yarnpkg.com/
https://yarnpkg.com/
https://yarnpkg.com/
https://yarnpkg.com/
https://yarnpkg.com/
https://yarnpkg.com/
https://yarnpkg.com/
https://yarnpkg.com/

Setting Up Node.js Chapter 2

[62]

Using npx to execute Node.js packaged
binaries
Some packages in the npm repository are command-line tools, such as the hexy
program we looked at earlier. Having to first install such a program before using it is
a small hurdle. The sharp-eyed among you will have noticed that npx is installed
alongside the node and npm commands when installing Node.js. This tool is meant to
simplify running command-line tools from the npm repository by removing the need
to first install the package.

The previous example could have been run this way:

$ npx hexy --width 12 ls.js

Under the covers, npx uses npm to download the package to a cache directory, unless
the package is already installed in the current project directory. Because the package
is then in a cache directory, it is only downloaded once.

There are a number of interesting options to this tool; to learn more, go to https:/ /
www.npmjs.com/ package/ npx.

We have learned a lot in this section about the command-line tools delivered with
Node.js, as well as ran a simple script and HTTP server. Next, we will learn how
advances in the JavaScript language affect the Node.js platform.

Advancing Node.js with ECMAScript
2015, 2016, 2017, and beyond
In 2015, the ECMAScript committee released a long-awaited major update of the
JavaScript language. The update brought in many new features to JavaScript, such as
Promises, arrow functions, and class objects. The language update sets the stage for
improvement since it should dramatically improve our ability to write clean,
understandable JavaScript code.

The browser makers are adding those much-needed features, meaning the V8 engine
is adding those features as well. These features are making their way to Node.js,
starting with version 4.x.

https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx

Setting Up Node.js Chapter 2

[63]

To learn about the current status of ES2015/2016/2017/and so on in
Node.js, visit https://nodejs.org/en/docs/es6/.

By default, only the ES2015, 2016, and 2017 features that V8 considers stable are
enabled by Node.js. Further features can be enabled with command-line options. The
almost-complete features are enabled with the --es_staging option. The website
documentation gives more information.

The Node green website (http:/ / node. green/) has a table that lists
the status of a long list of features in Node.js versions.

The ES2019 language spec is published at https:/ / www.ecma-
international. org/ publications/ standards/ Ecma- 262. htm.

The TC-39 committee does its work on GitHub at https:/ /github.
com/ tc39.

The ES2015 (and later) features make a big improvement to the JavaScript language.
One feature, the Promise class, should mean a fundamental rethinking of common
idioms in Node.js programming. In ES2017, a pair of new keywords, async and
await, simplifies writing asynchronous code in Node.js, which should encourage the
Node.js community to further rethink the common idioms of the platform.

There's a long list of new JavaScript features but let's quickly go over the two of them
that we'll use extensively.

The first is a lighter-weight function syntax called the arrow function:

fs.readFile('file.txt', 'utf8', (err, data) => {
 if (err) ...; // do something with the error
 else ...; // do something with the data
});

This is more than the syntactic sugar of replacing the function keyword with the fat
arrow. Arrow functions are lighter weight as well as being easier to read. The lighter
weight comes at the cost of changing the value of this inside the arrow function. In
regular functions, this has a unique value inside the function. In an arrow function,
this has the same value as the scope containing the arrow function. This means that,
when using an arrow function, we don't have to jump through hoops to bring this
into the callback function because this is the same at both levels of the code.

https://nodejs.org/en/docs/es6/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
http://node.green/
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://github.com/tc39
https://github.com/tc39
https://github.com/tc39
https://github.com/tc39
https://github.com/tc39
https://github.com/tc39
https://github.com/tc39
https://github.com/tc39

Setting Up Node.js Chapter 2

[64]

The next feature is the Promise class, which is used for deferred and asynchronous
computations. Deferred code execution to implement asynchronous behavior is a key
paradigm for Node.js and it requires two idiomatic conventions:

The last argument to an asynchronous function is a callback function,
which is called when an asynchronous execution is to be performed.
The first argument to the callback function is an error indicator.

While convenient, these conventions have resulted in multilayer code pyramids that
can be difficult to understand and maintain:

doThis(arg1, arg2, (err, result1, result2) => {
 if (err) ...;
 else {
 // do some work
 doThat(arg2, arg3, (err2, results) => {
 if (err2) ...;
 else {
 doSomethingElse(arg5, err => {
 if (err) .. ;
 else ..;
 });
 }
 });
 }
});

You don't need to understand the code; it's just an outline of what happens in practice
as we use callbacks. Depending on how many steps are required for a specific task, a
code pyramid can get quite deep. Promises will let us unravel the code pyramid and
improve reliability because error handling is more straightforward and easily
captures all errors.

A Promise class is created as follows:

function doThis(arg1, arg2) {
 return new Promise((resolve, reject) => {
 // execute some asynchronous code
 if (errorIsDetected) return reject(errorObject);
 // When the process is finished call this:
 resolve(result1, result2);
 });
}

Setting Up Node.js Chapter 2

[65]

Rather than passing in a callback function, the caller receives a Promise object. When
properly utilized, the preceding pyramid can be coded as follows:

doThis(arg1, arg2)
.then(result => {
 // This can receive only one value, hence to
 // receive multiple values requires an object or array
 return doThat(arg2, arg3);
})
.then((results) => {
 return doSomethingElse(arg5);
})
.then(() => {
 // do a final something
})
.catch(err => {
 // errors land here
});

This works because the Promise class supports chaining if a then function returns a
Promise object.

The async/await feature implements the promise of the Promise class to simplify
asynchronous coding. This feature becomes active within an async function:

async function mumble() {
 // async magic happens here
}

An async arrow function is as follows:

const mumble = async () => {
 // async magic happens here
};

To see how much of an improvement the async function paradigm gives us, let's
recode the earlier example as follows:

async function doSomething(arg1, arg2, arg3, arg4, arg5) {
 const { result1, result2 } = await doThis(arg1, arg2);
 const results = await doThat(arg2, arg3);
 await doSomethingElse(arg5);
 // do a final something
 return finalResult;
}

Setting Up Node.js Chapter 2

[66]

Again, we don't need to understand the code but just look at its shape. Isn't this a
breath of fresh air compared to the nested structure we started with?

The await keyword is used with a Promise. It automatically waits for the Promise to
resolve. If the Promise resolves successfully, then the value is returned and if it
resolves with an error, then that error is thrown. Both handling results and throwing
errors are handled in the usual manner.

This example also shows another ES2015 feature: destructuring. The fields of an
object can be extracted using the following code:

const { value1, value2 } = {
 value1: "Value 1", value2: "Value 2", value3: "Value3"
};

This demonstrates having an object with three fields but only extracting two of the
fields.

To continue our exploration of advances in JavaScript, let's take a look at Babel.

Using Babel to use experimental JavaScript
features
The Babel transpiler is the leading tool for using cutting-edge JavaScript features or
experimenting with new JavaScript features. Since you've probably never seen the
word transpiler, it means to rewrite source code from one language to another. It is
like a compiler in that Babel converts computer source code into another form, but
instead of directly executable code, Babel produces JavaScript. That is, it converts
JavaScript code into JavaScript code, which may not seem useful until you realize that
Babel's output can target older JavaScript releases.

Put more simply, Babel can be configured to rewrite code with ES2015, ES2016,
ES2017 (and so on) features into code conforming to the ES5 version of JavaScript.
Since ES5 JavaScript is compatible with practically every web browser on older
computers, a developer can write their frontend code in modern JavaScript then
convert it to execute on older browsers using Babel.

To learn more about Babel, go to https:/ / babeljs. io.

https://%20babeljs.io
https://%20babeljs.io
https://%20babeljs.io
https://%20babeljs.io
https://%20babeljs.io
https://%20babeljs.io
https://%20babeljs.io

Setting Up Node.js Chapter 2

[67]

The Node Green website makes it clear that Node.js supports pretty much all of the
ES2015, 2016, and 2017 features. Therefore, as a practical matter, we no longer need to
use Babel for Node.js projects. You may possibly be required to support an older
Node.js release and you can use Babel to do so.

For web browsers, there is a much longer time lag between a set of ECMAScript
features and when we can reliably use those features in browser-side code. It's not
that the web browser makers are slow in adopting new features as the Google,
Mozilla, and Microsoft teams are proactive about adopting the latest features. Apple's
Safari team seems slow to adopt new features, unfortunately. What's slower,
however, is the penetration of new browsers into the fleet of computers in the field.

Therefore, modern JavaScript programmers need to familiarize themselves with
Babel.

We're not ready to show example code for these features yet, but we
can go ahead and document the setting up of the Babel tool. For
further information on setup documentation,
visit http://babeljs.io/docs/setup/ and click on the CLI button.

To get a brief introduction to Babel, we'll use it to transpile the scripts we saw earlier
to run on Node.js 6.x. In those scripts, we used async functions, a feature that is not
supported on Node.js 6.x.

In the directory containing ls.js and ls2.js, type these commands:

$ npm install babel-cli \
 babel-plugin-transform-es2015-modules-commonjs \
 babel-plugin-transform-async-to-generator

This installs the Babel software, along with a couple of transformation plugins. Babel
has a plugin system so that you can enable the transformations required by your
project. Our primary goal in this example is converting the async functions shown
earlier into Generator functions. Generators are a new sort of function introduced
with ES2015 that form the foundation for the implementation of async functions.

Because Node.js 6.x does not have either the fs.promises function
or util.promisify, we need to make some substitutions to create a file named ls2-
old-school.js:

const fs = require('fs');

const fs_readdir = dir => {
 return new Promise((resolve, reject) => {

http://babeljs.io/docs/setup/

Setting Up Node.js Chapter 2

[68]

 fs.readdir(dir, (err, fileList) => {
 if (err) reject(err);
 else resolve(fileList);
 });
 });
};

async function listFiles() {
 try {
 let dir = '.';
 if (process.argv[2]) dir = process.argv[2];
 const files = await fs_readdir(dir);
 for (let fn of files) {
 console.log(fn);
 }
 } catch(err) { console.error(err); }
}
listFiles();

We have the same example we looked at earlier, but with a couple of changes. The
fs_readdir function creates a Promise object then calls fs.readdir, making sure to
either reject or resolve the Promise based on the result we get. This is more or less
what the util.promisify function does.

Because fs_readdir returns a Promise, the await keyword can do the right thing
and wait for the request to either succeed or fail. This code should run as is on
Node.js releases, which support async functions. But what we're interested in—and
the reason why we added the fs_readdir function—is how it works on older
Node.js releases.

The pattern used in fs_readdir is what is required to use a callback-oriented
function in an async function context.

Next, create a file named .babelrc, containing the following:

{
 "plugins": [
 "transform-es2015-modules-commonjs",
 "transform-async-to-generator"
]
}

This file instructs Babel to use the named transformation plugins that we installed
earlier. As the name implies, it will transform the async functions to generator
functions.

Setting Up Node.js Chapter 2

[69]

Because we installed babel-cli, a babel command is installed, such that we can
type the following:

$./node_modules/.bin/babel -help

To transpile your code, run the following command:

$./node_modules/.bin/babel ls2-old-school.js -o ls2-babel.js

This command transpiles the named file, producing a new file. The new file is as
follows:

'use strict';

function _asyncToGenerator(fn) { return function ()
 { var gen = fn.apply(this, arguments);
 return new Promise(function (resolve, reject)
 { function step(key, arg) { try { var info =
 gen[key](arg); var value = info.value; } catch (error)
 { reject(error); return; } if (info.done) { resolve(value);
 } else { return Promise.resolve(value).then(function (value)
 { step("next", value); }, function (err) { step("throw",
 err); }); } } return step("next"); }); }; }

const fs = require('fs');

const fs_readdir = dir => {
 return new Promise((resolve, reject) => {
 fs.readdir(dir, (err, fileList) => {
 if (err) reject(err);
 else resolve(fileList);
 });
 });
};

_asyncToGenerator(function* () {
 var dir = '.';
 if (process.argv[2]) dir = process.argv[2];
 const files = yield fs_readdir(dir);
 for (let fn of files) {
 console.log(fn);
 }
})().catch(err => {
 console.error(err);
});

Setting Up Node.js Chapter 2

[70]

This code isn't meant to be easy to read for humans. Instead, it means that you edit
the original source file and then convert it for your target JavaScript engine. The main
thing to notice is that the transpiled code uses a Generator function (the notation
function* indicates a generator function) in place of the async function and the
yield keyword in place of the await keyword. What a generator function is—and
precisely what the yield keyword does—is not important; the only thing to note is
that yield is roughly equivalent to await and that the _asyncToGenerator
function implements functionality similar to async functions. Otherwise, the
transpiled code is fairly clean and looks rather similar to the original code.

The transpiled script is run as follows:

$ nvm use 4
Now using node v4.9.1 (npm v2.15.11)
$ node --version
v4.9.1
$ node ls2-babel
.babelrc
app.js
ls.js
ls2-babel.js
ls2-old-school.js
ls2.js
node_modules

In other words, it runs the same as the async version but on an older Node.js release.
Using a similar process, you can transpile code written with modern ES2015 (and so
on) constructions so it can run in an older web browser.

In this section, we learned about advances in the JavaScript language, especially
async functions, and then learned how to use Babel to use those features on older
Node.js releases or in older web browsers.

Summary
You learned a lot in this chapter about installing Node.js using its command-line tools
and running a Node.js server. We also breezed past a lot of details that will be
covered later in this book, so be patient.

Setting Up Node.js Chapter 2

[71]

Specifically, we covered downloading and compiling the Node.js source code,
installing Node.js—either for development use in your home directory or for
deployment in system directories—and installing npm, the de facto standard package
manager used with Node.js. We also saw how to run Node.js scripts or Node.js
servers. We then took a look at the new features in ES2015, 2016, and 2017. Finally, we
looked at how to use Babel to implement those features in your code.

Now that we've seen how to set up a development environment, we're ready to start
working on implementing applications with Node.js. The first step is to learn the
basic building blocks of Node.js applications and modules, meaning taking a more
careful look at Node.js modules, how they are used, and how to use npm to manage
application dependencies. We will cover all of that in the next chapter.

3
Exploring Node.js Modules

Modules and packages are the building blocks for breaking down your application
into smaller pieces. A module encapsulates some functionality, primarily JavaScript
functions, while hiding implementation details and exposing an API for the module.
Modules can be distributed by third parties and installed for use by our modules. An
installed module is called a package.

The npm package repository is a huge library of modules that's available for all
Node.js developers to use. Within that library are hundreds of thousands of packages
you can be used to accelerate the development of your application.

Since modules and packages are the building blocks of your application,
understanding how they work is vital to your success with Node.js. By the end of this
chapter, you will have a solid grounding in both CommonJS and ES6 modules, how
to structure the modules in an application, how to manage dependencies on third-
party packages, and how to publish your own packages.

In this chapter, we will cover the following topics:

Definitions of all types of Node.js modules and how to structure both
simple and complex modules
Using CommonJS and ES2015/ES6 modules and when to use each
Understanding how Node.js finds modules and installed packages, so you
can better structure your application
Using the npm package management system (and Yarn) to manage
application dependencies, to publish packages, and to record
administrative scripts for the project

So, let's get on with it.

Exploring Node.js Modules Chapter 3

[73]

Defining a Node.js module
Modules are the basic building blocks for constructing Node.js applications. A
Node.js module encapsulates functions, hiding details inside a well-protected
container, and exposing an explicitly declared API.

When Node.js was created, the ES6 module system, of course, did not yet exist. Ryan
Dahl, therefore, based on the Node.js module system on the CommonJS standard. The
examples we've seen so far are modules written to that format. With ES2015/ES2016, a
new module format was created for use with all JavaScript implementations. This
new module format is used by both front-end engineers in their in-browser JavaScript
code and by Node.js engineers, and for any other JavaScript implementation.

Because ES6 modules are now the standard module format, the Node.js Technical
Steering Committee (TSC) committed to first-class support for ES6 modules
alongside the CommonJS format. Starting with Node.js 14.x, the Node.js TSC
delivered on that promise.

Every source file used in an application on the Node.js platform is a module. Over the
next few sections, we'll examine the different types of modules, starting with the
CommonJS module format.

Throughout this book, we'll identify traditional Node.js modules as
CommonJS modules, and the new module format as ES6 modules.

To start our exploration of Node.js modules, we must, of course, start at the
beginning.

Examining the traditional Node.js module
format
We already saw CommonJS modules in action in the previous chapter. It's now time
to see what they are and how they work.

Exploring Node.js Modules Chapter 3

[74]

In the ls.js example in Chapter 2, Setting Up Node.js, we wrote the following code
to pull in the fs module, giving us access to its functions:

const fs = require('fs');

The require function is given a module identifier, and it searches for the module
named by that identifier. If found, it loads the module definition into the Node.js
runtime and making its functions available. In this case, the fs object contains the
code (and data) exported by the fs module. The fs module is part of the Node.js core
and provides filesystem functions.

By declaring fs as const, we have a little bit of assurance against making coding
mistakes. We could mistakenly assign a value to fs, and then the program would fail,
but as a const we know the reference to the fs module will not be changed.

The file, ls.js, is itself a module because every source file we use on Node.js is a
module. In this case, it does not export anything but is instead a script that consumes
other modules.

What does it mean to say the fs object contains the code exported by the fs module?
In a CommonJS module, there is an object, module, provided by Node.js, with which
the module's author describes the module. Within this object is a field,
module.exports, containing the functions and data exported by the module. The
return value of the require function is the object. The object is the interface provided
by the module to other modules. Anything added to the module.exports object is
available to other pieces of code, and everything else is hidden. As a convenience, the
module.exports object is also available as exports.

The module object contains several fields that you might find useful.
Refer to the online Node.js documentation for details.

Because exports is an alias of module.exports, the following two lines of code are
equivalent:

exports.funcName = function(arg, arg1) { ... };
module.exports.funcName = function(arg, arg2) { .. };

Exploring Node.js Modules Chapter 3

[75]

Whether you use module.exports or exports is up to you. However, do not ever
do anything like the following:

exports = function(arg, arg1) { ... };

Any assignment to exports will break the alias, and it will no longer be equivalent
to module.exports. Assignments to exports.something are okay, but assigning to
exports will cause failure. If your intent is to assign a single object or function to be
returned by require, do this instead:

module.exports = function(arg, arg1) { ... };

Some modules do export a single function because that's how the module author
envisioned delivering the desired functionality.

When we said ls.js does not export anything, we meant that ls.js did not assign
anything to module.exports.

To give us a brief example, let's create a simple module, named simple.js:

var count = 0;
exports.next = function() { return ++count; };
exports.hello = function() {
 return "Hello, world!";
};

We have one variable, count, which is not attached to the exports object, and a
function, next, which is attached. Because count is not attached to exports, it is
private to the module.

Any module can have private implementation details that are not exported and are
therefore not available to any other code.

Now, let's use the module we just wrote:

$ node
> const s = require('./simple');
undefined
> s.hello();
'Hello, world!'
> s.next();
1
> s.next();
2
> s.next();
3

Exploring Node.js Modules Chapter 3

[76]

> console.log(s.count);
undefined
undefined
>

The exports object in the module is the object that is returned by
require('./simple'). Therefore, each call to s.next calls the next function in
simple.js. Each returns (and increments) the value of the local variable, count. An
attempt to access the private field, count, shows it's unavailable from outside the
module.

This is how Node.js solves the global object problem of browser-based JavaScript. The
variables that look like they are global variables are only global to the module
containing the variable. These variables are not visible to any other code.

The Node.js package format is derived from the CommonJS module
system (http://commonjs.org). When developed, the CommonJS
team aimed to fill a gap in the JavaScript ecosystem. At that time,
there was no standard module system, making it trickier to package
JavaScript applications. The require function, the exports object,
and other aspects of Node.js modules come directly from the
CommonJS Modules/1.0 spec.

The module object is a global-to-the-module object injected by Node.js. It also injects
two other variables: __dirname and __filename. These are useful for helping code
in a module know where it is located in the filesystem. Primarily, this is used for
loading other files using a path relative to the module's location.

For example, one can store assets like CSS or image files in a directory relative to the
module. An app framework can then make the files available via an HTTP server. In
Express, we do so with this code snippet:

app.use('/assets/vendor/jquery', express.static(
 path.join(__dirname, 'node_modules', 'jquery')));

This says that HTTP requests on the /assets/vendor/jquery URL are to be
handled by the static handler in Express, from the contents of a directory relative to
the directory containing the module. Don't worry about the details because we'll
discuss this more carefully in a later chapter. Just notice that __dirname is useful to
calculate a filename relative to the location of the module source code.

http://commonjs.org

Exploring Node.js Modules Chapter 3

[77]

To see it in action, create a file named dirname.js containing the following:

console.log(`dirname: ${__dirname}`);
console.log(`filename: ${__filename}`);

This lets us see the values we receive:

$ node dirname.js
dirname: /home/david/Chapter03
filename: /home/david/Chapter03/dirname.js

Simple enough, but as we'll see later these values are not directly available in ES6
modules.

Now that we've got a taste for CommonJS modules, let's take a look at ES2015
modules.

Examining the ES6/ES2015 module format
ES6 modules are a new module format designed for all JavaScript environments.
While Node.js has always had a good module system, browser-side JavaScript has
not. That meant the browser-side community had to use non-standardized solutions.
The CommonJS module format was one of those non-standard solutions, which was
borrowed for use in Node.js. Therefore, ES6 modules are a big improvement for the
entire JavaScript world, by getting everyone on the same page with a common
module format and mechanisms.

An issue we have to deal with is the file extension to use for ES6 modules. Node.js
needs to know whether to parse using the CommonJS or ES6 module syntax. To
distinguish between them, Node.js uses the file extension .mjs to denote ES6
modules, and .js to denote CommonJS modules. However, that's not the entire story
since Node.js can be configured to recognize the .js files as ES6 modules. We'll give
the exact particulars later in this chapter.

The ES6 and CommonJS modules are conceptually similar. Both support exporting
data and functions from a module, and both support hiding implementation inside a
module. But they are very different in many practical ways.

Let's start with defining an ES6 module. Create a file named simple2.mjs in the
same directory as the simple.js example that we looked at earlier:

let count = 0;
export function next() { return ++count; }
function squared() { return Math.pow(count, 2); }

Exploring Node.js Modules Chapter 3

[78]

export function hello() {
 return "Hello, world!";
}
export default function() { return count; }
export const meaning = 42;
export let nocount = -1;
export { squared };

This is similar to simple.js but with a few additions to demonstrate further
features. As before count is a private variable that isn't exported, and next is an
exported function that increments count.

The export keyword declares what is being exported from an ES6 module. In this
case, we have several exported functions and two exported variables. The export
keyword can be put in front of any top-level declaration, such as variable, function, or
class declarations:

 export function next() { .. }

The effect of this is similar to the following:

module.exports.next = function() { .. }

The intent of both is essentially the same: to make a function or other object available
to code outside the module. But instead of explicitly creating an object,
module.exports, we're simply declaring what is to be exported. A statement such
as export function next() is a named export, meaning the exported function (as
here) or object has a name, and that code outside the module uses that name to access
the object. As we see here, named exports can be functions or objects, and they may
also be class definitions.

The default export from a module, defined with export default, can be done once
per module. The default export is what code outside the module accesses when using
the module object itself, rather than when using one of the exports from the module.

You can also declare something, such as the squared function, and then export it
later.

Exploring Node.js Modules Chapter 3

[79]

Now let's see how to use the ES2015 module. Create a simpledemo.mjs file with the
following:

import * as simple2 from './simple2.mjs';

console.log(simple2.hello());
console.log(`${simple2.next()} ${simple2.squared()}`);
console.log(`${simple2.next()} ${simple2.squared()}`);
console.log(`${simple2.default()} ${simple2.squared()}`);
console.log(`${simple2.next()} ${simple2.squared()}`);
console.log(`${simple2.next()} ${simple2.squared()}`);
console.log(`${simple2.next()} ${simple2.squared()}`);
console.log(simple2.meaning);

The import statement does what it says: it imports objects exported from a module.
Because it uses the import * as foo syntax, it imports everything from the module,
attaching everything to an object, in this case named simple2. This version of
the import statement is most similar to a traditional Node.js require statement
because it creates an object with fields containing the objects exported from the
module.

This is how the code executes:

$ node simpledemo.mjs
Hello, world!
1 1
2 4
2 4
3 9
4 16
5 25
42

In the past, the ES6 module format was hidden behind an option flag, --
experimental-module, but as of Node.js 13.2 that flag is no longer required.
Accessing the default export is accomplished by accessing the field
named default. Accessing an exported value, such as the meaning field, is done
without parentheses because it is a value and not a function.

Now to see a different way to import objects from a module, create another file,
named simpledemo2.mjs, containing the following:

import {
 default as simple, hello, next, meaning
} from './simple2.mjs';
console.log(hello());

Exploring Node.js Modules Chapter 3

[80]

console.log(next());
console.log(next());
console.log(simple());
console.log(next());
console.log(next());
console.log(next());
console.log(meaning);

In this case, the import is treated similarly to an ES2015 destructuring assignment.
With this style of import, we specify exactly what is to be imported, rather than
importing everything. Furthermore, instead of attaching the imported things to a
common object, and therefore executing simple2.next(), the imported things are
executed using their simple name, as in next().

The import for default as simple is the way to declare an alias of an imported
thing. In this case, it is necessary so that the default export has a name other than
default.

Node.js modules can be used from the ES2015 .mjs code. Create a file
named ls.mjs containing the following:

import { promises as fs } from 'fs';

async function listFiles() {
 const files = await fs.readdir('.');
 for (const file of files) {
 console.log(file);
 }
}

listFiles().catch(err => { console.error(err); });

This is a reimplementation of the ls.js example in Chapter 2, Setting Up Node.js. In
both cases, we're using the promises submodule of the fs package. To do this with
the import statement, we access the promises export from the fs module, and use
the as clause to rename fs.promises to fs. This way we can use an async function
rather than deal with callbacks.

Otherwise, we have an async function, listFiles, that performs filesystem
operations to read filenames from a directory. Because listFiles is async, it
returns a Promise, and we must catch any errors using a .catch clause.

Exploring Node.js Modules Chapter 3

[81]

Executing the script gives the following:

$ node ls.mjs
ls.mjs
module1.js
module2.js
simple.js
simple2.mjs
simpledemo.mjs
simpledemo2.mjs

The last thing to note about ES2015 module code is that
the import and export statements must be top-level code. Try putting
an export inside a simple block like this:

{
 export const meaning = 42;
}

That innocent bit of code results in an error:

$ node badexport.mjs
file:///home/david/Chapter03/badexport.mjs:2
 export const meaning = 42;
 ^^^^^^

SyntaxError: Unexpected token 'export'
 at Loader.moduleStrategy
(internal/modules/esm/translators.js:83:18)
 at async link (internal/modules/esm/module_job.js:36:21)

While there are a few more details about the ES2015 modules, these are their most
important attributes.

Remember that the objects injected into CommonJS modules are not available to ES6
modules. The __dirname and __filename objects are the most important, since
there are many cases where we compute a filename relative to the currently executing
module. Let us explore how to handle that issue.

Injected objects in ES6 modules
Just as for CommonJS modules, certain objects are injected into ES6 modules.
Furthermore, ES6 modules do not receive the __dirname, and __filename objects or
other objects that are injected into CommonJS modules.

Exploring Node.js Modules Chapter 3

[82]

The import.meta meta-property is the only value injected into ES6 modules. In
Node.js it contains a single field, url. This is the URL from which the currently
executing module was loaded.

Using import.meta.url, we can compute __dirname and __filename.

Computing the missing __dirname variable in ES6
modules
If we make a duplicate of dirname.js as dirname.mjs, so it will be interpreted as
an ES6 module, we get the following:

$ cp dirname.js dirname.mjs
$ node dirname.mjs
console.log(`dirname: ${__dirname}`);
 ^
ReferenceError: __dirname is not defined
 at file:///home/david/Chapter03/dirname.mjs:1:25
 at ModuleJob.run (internal/modules/esm/module_job.js:109:37)
 at async Loader.import (internal/modules/esm/loader.js:132:24)

Since __dirname and __filename are not part of the JavaScript specification, they
are not available within ES6 modules. Enter the import.meta.url object, from
which we can compute __dirname and __filename. To see it in action, create
a dirname-fixed.mjs file containing the following:

import { fileURLToPath } from 'url';
import { dirname } from 'path';

console.log(`import.meta.url: ${import.meta.url}`);

const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);

console.log(`dirname: ${__dirname}`);
console.log(`filename: ${__filename}`);

Exploring Node.js Modules Chapter 3

[83]

We are importing a couple of useful functions from the url and path core packages.
While we could take the import.meta.url object and do our own computations,
these functions already exist. The computation is to extract the pathname portion of
the module URL, to compute __filename, and then use dirname to compute
__dirname.

$ node dirname-fixed.mjs
import.meta.url: file:///home/david/Chapter03/dirname-fixed.mjs
dirname: /home/david/Chapter03
filename: /home/david/Chapter03/dirname-fixed.mjs

And we see the file:// URL of the module, and the computed values for
__dirname and __filename using the built-in core functions.

We've talked about both the CommonJS and ES6 module formats, and now it's time
to talk about using them together in an application.

Using CommonJS and ES6 modules together
Node.js supports two module formats for JavaScript code: the CommonJS format
originally developed for Node.js, and the new ES6 module format. The two are
conceptually similar, but there are many practical differences. Because of this, we will
face situations of using both in the same application and will need to know how to
proceed.

First is the question of file extensions and recognizing which module format to use.
The ES6 module format is used in the following situations:

Files where the filename ends in .mjs.
If the package.json has a field named type with the value module, then
filenames ending with .js.
If the node binary is executed with the --input-type=module flag, then
any code passed through the --eval or --print argument, or piped in via
STDIN (the standard input), is interpreted as ES6 module code.

That's fairly straight-forward. ES6 modules are in files named with the .mjs
extension, unless you've declared in the package.json that the package defaults to
ES6 modules, in which case files named with the .js extension are also interpreted as
ES6 modules.

Exploring Node.js Modules Chapter 3

[84]

The CommonJS module format is used in the following situations:

Files where the file name ends in .cjs.
If the package.json does not contain a type field, or if it contains a type
field with a value of commonjs, the filenames will end with .js.
If the node binary is executed with the --input-type flag or with the --
type-type=commonjs flag, then any code passed through the --eval or -
-print argument, or piped in via STDIN (the standard input), is
interpreted as CommonJS module code.

Again this is straight-forward, with Node.js defaulting to CommonJS modules for
the .js files. If the package is explicitly declared to default to CommonJS modules,
then Node.js will interpret the .js files as CommonJS.

The Node.js team strongly recommends that package authors include a type field in
package.json, even if the type is commonjs.

Consider a package.json with this declaration:

{
 "type": "module" ...
}

This, of course, informs Node.js that the package defaults to ES6 modules. Therefore,
this command interprets the module as an ES6 module:

$ node my-module.js

This command will do the same, even without the package.json entry:

$ node --input-type=module my-module.js

If instead, the type field had the commonjs, or the --input-type flag specified as
commonjs, or if both those were completely missing, then my-module.js would be
interpreted as a CommonJS module.

These rules also apply to the import statement, the import() function, and
the require() function. We will cover those commands in more depth in a later
section. In the meantime, let's learn how the import() function partly resolves the
inability to use ES6 modules in a CommonJS module.

Exploring Node.js Modules Chapter 3

[85]

Using ES6 modules from CommonJS using import()
The import statement in ES6 modules is a statement, and not a function like
require(). This means that import can only be given a static string, and you cannot
compute the module identifier to import. Another limitation is that import only
works in ES6 modules, and therefore a CommonJS module cannot load an ES6
module. Or, can it?

Since the import() function is available in both CommonJS and ES6 modules, that
means we should be able to use it to import ES6 modules in a CommonJS module.

To see how this works, create a file named simple-dynamic-import.js containing
the following:

async function simpleFn() {
 const simple2 = await import('./simple2.mjs');
 console.log(simple2.hello());
 console.log(simple2.next());
 console.log(simple2.next());
 console.log(`count = ${simple2.default()}`);
 console.log(`Meaning: ${simple2.meaning}`);
}

simpleFn().catch(err => { console.error(err); });

This is a CommonJS module that's using an ES6 module we created earlier. It simply
calls a few of the functions, nothing exciting except that it is using an ES6 module
when we said earlier import only works in ES6 modules. Let's see this module in
action:

$ node simple-dynamic-import.js
Hello, world!
1
2
count = 2
Meaning: 42

This is a CommonJS module successfully executing code contained in an ES6 module
simply by using import().

Notice that import() was called not in the global scope of the module, but inside an
async function. As we saw earlier, the ES6 module keyword statements like export
and import must be called in the global scope. However, import() is an
asynchronous function, limiting our ability to use it in the global scope.

Exploring Node.js Modules Chapter 3

[86]

The import statement is itself an asynchronous process, and by extension
the import() function is asynchronous, while the Node.js require() function is
synchronous.

In this case, we executed import() inside an async function using the await
keyword. Therefore, even if import() were used in the global scope, it would be
tricky getting a global-scope variable to hold the reference to that module. To see,
why let's rewrite that example as simple-dynamic-import-fail.js:

const simple2 = import('./simple2.mjs');
console.log(simple2);
console.log(simple2.hello());
console.log(simple2.next());
console.log(simple2.next());
console.log(`count = ${simple2.default()}`);
console.log(`Meaning: ${simple2.meaning}`);

It's the same code but running in the global scope. In the global scope, we cannot use
the await keyword, so we should expect that simple2 will contain a pending
Promise. Running the script gives us this failure:

$ node simple-dynamic-import-fail.js
Promise { <pending> }
/home/david/Chapter03/simple-dynamic-import-fail.js:4
console.log(simple2.hello());
 ^
TypeError: simple2.hello is not a function
 at Object.<anonymous> (/home/david/Chapter03/simple-dynamic-import-
fail.js:4:21)
 at Module._compile (internal/modules/cjs/loader.js:1139:30)
 at Object.Module._extensions..js
(internal/modules/cjs/loader.js:1159:10)
 at Module.load (internal/modules/cjs/loader.js:988:32)
 at Function.Module._load (internal/modules/cjs/loader.js:896:14)
 at Function.executeUserEntryPoint [as runMain]
(internal/modules/run_main.js:71:12)
 at internal/main/run_main_module.js:17:47

We see that simple2 does indeed contain a pending Promise, meaning that
import() has not yet finished. Since simple2 does not contain a reference to the
module, attempts to call the exported function fail.

The best we could do in the global scope is to attach the .then and .catch handlers
to the import() function call. That would wait until the Promise transitions to either
a success or failure state, but the loaded module would be inside the callback
function. We'll see this example later in the chapter.

Exploring Node.js Modules Chapter 3

[87]

Let's now see how modules hide implementation details.

Hiding implementation details with
encapsulation in CommonJS and ES6
modules
We've already seen a couple of examples of how modules hide implementation
details with the simple.js example and the programs we examined in Chapter 2,
Setting up Node.js. Let's take a closer look.

Node.js modules provide a simple encapsulation mechanism to hide implementation
details while exposing an API. To review, in CommonJS modules the exposed API is
assigned to the module.exports object, while in ES6 modules the exposed API is
declared with the export keyword. Everything else inside a module is not available
to code outside the module.

In practice, CommonJS modules are treated as if they were written as follows:

(function(exports, require, module, __filename, __dirname) {
// Module code actually lives in here
});

Thus, everything within the module is contained within an anonymous private
namespace context. This is how the global object problem is resolved: everything in a
module that looks global is actually contained within a private context. This also
explains how the injected variables are actually injected into the module. They are
parameters to the function that creates the module.

The other advantage is code safety. Because the private code in a module is stashed in
a private namespace, it is impossible for code outside the module to access the private
code or data.

Let's take a look at a practical demonstration of the encapsulation. Create a file
named module1.js, containing the following:

const A = "value A";
const B = "value B";
exports.values = function() {
 return { A: A, B: B };
}

Exploring Node.js Modules Chapter 3

[88]

Then, create a file named module2.js, containing the following:

const util = require('util');
const A = "a different value A";
const B = "a different value B";
const m1 = require('./module1');
console.log(`A=${A} B=${B} values=${util.inspect(m1.values())}`);
console.log(`${m1.A} ${m1.B}`);
const vals = m1.values();
vals.B = "something completely different";
console.log(util.inspect(vals));
console.log(util.inspect(m1.values()));

Using these two modules we can see how each module is its own protected bubble.

Then run it as follows:

$ node module2.js
A=a different value A B=a different value B values={ A: 'value A', B:
'value B' }
undefined undefined
{ A: 'value A', B: 'something completely different' }
{ A: 'value A', B: 'value B' }

This artificial example demonstrates encapsulation of the values in module1.js from
those in module2.js. The A and B values in module1.js don't
overwrite A and B in module2.js because they're encapsulated within module1.js.
The values function in module1.js does allow code in module2.js access to the
values; however, module2.js cannot directly access those values. We can modify the
object module2.js received from module1.js. But doing so does not change the
values within module1.js.

In Node.js modules can also be data, not just code.

Using JSON modules
Node.js supports using require('./path/to/file-name.json') to import a
JSON file in a CommonJS module. It is equivalent to the following code:

const fs = require('fs');
module.exports = JSON.parse(
 fs.readFileSync('/path/to/file-name.json', 'utf8'));

Exploring Node.js Modules Chapter 3

[89]

That is, the JSON file is read synchronously, and the text is parsed as JSON. The
resultant object is available as the object exported from the module. Create a file
named data.json, containing the following:

{
 "hello": "Hello, world!",
 "meaning": 42
}

Now create a file named showdata.js containing the following:

const data = require('./data.json');
console.log(data);

It will execute as follows:

$ node showdata.js
{ hello: 'Hello, world!', meaning: 42 }

The console.log function outputs information to the Terminal. When it receives an
object, it prints out the object content like this. And this demonstrates that require
correctly read the JSON file since the resulting object matched the JSON.

In an ES6 module, this is done with the import statement and requires a special flag.
Create a file named showdata-es6.mjs containing the following:

import * as data from './data.json';
console.log(data);

So far that is equivalent to the CommonJS version of this script, but using import
rather than require.

$ node --experimental-modules --experimental-json-modules showdata-
es6.mjs
(node:12772) ExperimentalWarning: The ESM module loader is
experimental.
[Module] { default: { hello: 'Hello, world!', meaning: 42 } }

Currently using import to load a JSON file is an experimental feature. Enabling the
feature requires these command-line arguments, causing this warning to be printed.
We also see that instead of data being an anonymous object, it is an object with the
type Module.

Now let's look at how to use ES6 modules on some older Node.js releases.

Exploring Node.js Modules Chapter 3

[90]

Supporting ES6 modules on older Node.js
versions
Initially, ES6 module support was an experimental feature in Node.js 8.5 and became
a fully supported feature in Node.js 14. With the right tools, we can use it on earlier
Node.js implementations.

For an example of using Babel to transpile ES6 code for older
Node.js versions, see https:/ /blog. revillweb. com/ using- es2015-
es6- modules- with- babel- 6-3ffc0870095b.

The better method of using ES6 modules on Node.js 6.x is the esm package. Simply do
the following:

$ nvm install 6
Downloading and installing node v6.14.1...
Downloading
https://nodejs.org/dist/v6.14.1/node-v6.14.1-darwin-x64.tar.xz...
##
100.0%
Computing checksum with shasum -a 256
Checksums matched!
Now using node v6.14.1 (npm v3.10.10)
$ nvm use 6
Now using node v6.14.1 (npm v3.10.10)
$ npm install esm
... npm output
$ node --require esm simpledemo.mjs
Hello, world!
1 1
2 4
2 4
3 9
4 16
5 25
42

There are two ways to use this module:

In a CommonJS module, invoke require('esm').
On the command line, use --require esm, as shown here.

https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b
https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b

Exploring Node.js Modules Chapter 3

[91]

In both cases, the effect is the same, to load the esm module. This module only needs
to be loaded once, and we do not have to call any of its methods. Instead esm retrofits
ES6 module support into the Node.js runtime, and is compatible with version 6.x and
later.

So, we can use this module to retrofit ES6 module support; it does not retrofit other
features such as async functions. Successfully executing the ls.mjs example
requires support for both the async functions and arrow functions. Since Node.js 6.x
does not support either, the ls.mjs example will load correctly, but will still fail
because it uses other unsupported features.

$ node --version
v6.14.1
$ node --require esm ls.mjs
/Users/David/chap03/ls.mjs:5
(async () => {
 ^

SyntaxError: Unexpected token (
 at exports.runInThisContext (vm.js:53:16)
 at Module._compile (module.js:373:25)

It is, of course, possible to use Babel in such cases to convert the full set of ES2015+
features to run on older Node.js releases.

For more information about esm, see:
https:/ / medium. com/ web- on-the- edge/ es- modules- in- node-
today- 32cff914e4b. The article describes an older release of the esm
module, at the time named @std/esm.

Th current documentation for the esm package is available
at: https:/ / www. npmjs. com/ package/ esm.

In this section, we've learned about how to define a Node.js module and various ways
to use both CommonJS and ES6 modules. But we've left out some very important
things: what is the module identifier and all the ways to locate and use modules. In
the next section, we cover these topics.

https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm
https://www.npmjs.com/package/esm

Exploring Node.js Modules Chapter 3

[92]

Finding and loading modules using
require and import
In the course of learning about modules for Node.js, we've used the require and
import features without going into detail about how modules are found and all the
options available. The algorithm for finding Node.js modules is very flexible. It
supports finding modules that are siblings of the currently executing module, or have
been installed local to the current project, or have been installed globally.

For both require and import, the command takes a module identifier. The algorithm
Node.js uses is in charge of resolving the module identifier into a file containing the
module, so that Node.js can load the module.

The official documentation for this is in the Node.js documentation,
at https:/ / nodejs. org/ api/ modules. html.

The official documentation for ES6 modules also discusses
how the algorithm differs, at https:/ /nodejs. org/ api/ esm.
html.

Understanding the module resolution algorithm is one key to success with Node.js.
This algorithm determines how best to structure the code in a Node.js
application. While debugging problems with loading the correct version of a given
package, we need to know how Node.js finds packages.

First, we must consider several types of modules, starting with the simple file
modules we've already used.

Understanding File modules
The CommonJS and ES6 modules we've just looked at are what the Node.js
documentation describes as a file module. Such modules are contained within a
single file, whose filename ends with .js, .cjs, .mjs, .json, or .node. The latter
are compiled from C or C++ source code, or even other languages such as Rust, while
the former are, of course, written in JavaScript or JSON.

The module identifier of a file module must start with ./ or ../. This signals Node.js
that the module identifier refers to a local file. As should already be clear, this module
identifier refers to a pathname relative to the currently executing module.

https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/modules.html

Exploring Node.js Modules Chapter 3

[93]

It is also possible to use an absolute pathname as the module identifier. In a
CommonJS module, such an identifier might be /path/to/some/directory/my-
module.js. In an ES6 module, since the module identifier is actually a URL, then we
must use a file:// URL like file:///path/to/some/directory/my-
module.mjs. There are not many cases where we would use an absolute module
identifier, but the capability does exist.

One difference between CommonJS and ES6 modules is the ability to use
extensionless module identifiers. The CommonJS module loader allows us to do this,
which you should save as extensionless.js:

const simple = require('./simple');

console.log(simple.hello());
console.log(`${simple.next()}`);
console.log(`${simple.next()}`);

This uses an extension-less module identifier to load a module we've already
discussed, simple.js:

$ node ./extensionless
Hello, world!
1
2

And we can run it with the node command using an extension-less module identifier.

But if we specify an extension-less identifier for an ES6 module:

$ node ./simpledemo2
internal/modules/cjs/loader.js:964
 throw err;
 ^
Error: Cannot find module '/home/david/Chapter03/simpledemo2'
 at Function.Module._resolveFilename
(internal/modules/cjs/loader.js:961:17)
 at Function.Module._load (internal/modules/cjs/loader.js:854:27)
 at Function.executeUserEntryPoint [as runMain]
(internal/modules/run_main.js:71:12)
 at internal/main/run_main_module.js:17:47 {
 code: 'MODULE_NOT_FOUND',
 requireStack: []
}

Exploring Node.js Modules Chapter 3

[94]

We get the error message making it clear that Node.js could not resolve the file name.
Similarly, in an ES6 module, the file name given to the import statement must have
the file extension.

Next, let's discuss another side effect of ES6 module identifiers being a URL.

The ES6 import statement takes a URL
The module identifier in the ES6 import statement is a URL. There are several
important considerations.

Since Node.js only supports the file:// URLs, we're not allowed to retrieve a
module over from a web server. There are obvious security implications, and the
corporate security team would rightfully get anxious if modules could be loaded from
http:// URLs.

Referencing a file with an absolute pathname must use the
file:///path/to/file.ext syntax, as mentioned earlier. This is different from
require, where we would use /path/to/file.ext instead.

Since ? and # have special significance in a URL, they also have special significance to
the import statement, as in the following example:

import './module-name.mjs?query=1'

This loads the module named module-name.mjs with a query string containing
query=1. By default, this is ignored by the Node.js module loader, but there is an
experimental loader hook feature by which you can do something with the module
identifier URL.

The next type of module to consider is those baked into Node.js, the core modules.

Understanding the Node.js core modules
Some modules are pre-compiled into the Node.js binary. These are the core Node.js
modules documented on the Node.js website at https:/ /nodejs. org/api/ index.
html.

They start out as source code within the Node.js build tree. The build process
compiles them into the binary so that the modules are always available.

https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html

Exploring Node.js Modules Chapter 3

[95]

We've already seen how the core modules are used. In a CommonJS module, we
might use the following:

const http = require('http');
const fs = require('fs').promises;

And the equivalent in an ES6 module would be as follows:

import http from 'http';
import { promises as fs } from 'fs';

In both cases, we're loading the http and fs core modules that would then be used
by other code in the module.

Moving on, we will next talk about more complex module structures.

Using a directory as a module
We commonly organize stuff into a directory structure. The stuff here is a technical
term referring to internal file modules, data files, template files, documentation, tests,
assets, and more. Node.js allows us to create an entry-point module into such a
directory structure.

For example, with a module identifier like ./some-library that refers to a directory,
then there must be a file named index.js, index.cjs, index.mjs, or index.node
in the directory. In such a case, the module loader loads the appropriate index
module even though the module identifier did not reference a full pathname. The
pathname is computed by appending the file it finds in the directory.

One common use for this is that the index module provides an API for a library
stored in the directory and that other modules in the directory contain what's meant
to be private implement details.

This may be a little confusing because the word module is being
overloaded with two meanings. In some cases, a module is a file,
and in other cases, a module is a directory containing one or more
file modules.

While overloading the word module this way might be a little confusing, it's going to
get even more so as we consider the packages we install from other sources.

Exploring Node.js Modules Chapter 3

[96]

Comparing installed packages and modules
Every programming platform supports the distribution of libraries or packages that
are meant to be used in a wide array of applications. For example, where the Perl
community has CPAN, the Node.js community has the npm registry. A
Node.js installed package is the same as we just described as a folder as a module, in that
the package format is simply a directory containing a package.json file along with
the code and other files comprising the package.

There is the same risk of confusion caused by overloading the
word module since an installed package is typically the same as the
directories as modules concept just described. Therefore, it's useful to
refer to an installed package with the word package.

The package.json file describes the package. A minimal set of fields are defined by
Node.js, specifically as follows:

{ "name" : "some-library",
 "main" : "./lib/some-library.js" }

The name field gives the name of the package. If the main field is present, it names the
JavaScript file to use instead of index.js to load when the package is loaded. The
package manager applications like npm and Yarn support many more fields in
package.json, which they use to manage dependencies and versions and
everything else.

If there is no package.json, then Node.js will look for
either index.js or index.node. In such a case, require('some-library') will
load the file module in /path/to/some-library/index.js.

Installed packages are kept in a directory named node_modules. When JavaScript
source code has require('some-library') or import 'some-library', Node.js
searches through one or more node_modules directories to find the named package.

Notice that the module identifier, in this case, is just the package name. This is
different from the file and directory module identifiers we studied earlier since both
those are pathnames. In this case, the module identifier is somewhat abstract, and
that's because Node.js has an algorithm for finding packages within the nested
structure of the node_modules directories.

To understand how that works, we need a deeper dive into the algorithm.

Exploring Node.js Modules Chapter 3

[97]

Finding the installed package in the file
system
One key to why the Node.js package system is so flexible is the algorithm used to
search for packages.

For a given require, import(), or import statement, Node.js searches upward in
the file system from the directory containing the statement. It is looking for a
directory named node_modules containing a module satisfying the module
identifier.

For example, with a source file named /home/david/projects/notes/foo.js and
a require or import statement requesting the module identifier bar.js, Node.js
tries the following options:

As just said, the search starts at the same level of the file system as foo.js. Node.js
will look either for a file module named bar.js or else a directory named bar.js
containing a module as described earlier in Using a Directory as a module. Node.js will
check for this package in the node_modules directory next to foo.js and in
every directory above that file. It will not, however, descend into any directory such
as express or express/node_modules. The traversal only moves upward in the file
system, not downward.

While some of the third-party packages have a name ending in .js, the vast majority
do not. Therefore, we will typically use require('bar'). Also typically the 3rd
party installed packages are delivered as a directory containing a package.json file
and some JavaScript files. Therefore, in the typical case, the package module identifier
would be bar, and Node.js will find a directory named bar in one of the
node_modules directories and access the package from that directory.

Exploring Node.js Modules Chapter 3

[98]

This act of searching upward in the file system means Node.js supports the nested
installation of packages. A Node.js package that in turn depends on other modules
that will have its own node_modules directory; that is, the bar package might
depend on the fred package. The package manager application might install fred
as /home/david/projects/notes/node_modules/bar/node_modules/fred:

In such a case, when a JavaScript file in the bar package uses require('fred') its
search for modules starts
in /home/david/projects/notes/node_modules/bar/node_modules, where it
will find the fred package. But if the package manager detects that other packages
used by notes also use the fred package, the package manager will install it
as /home/david/projects/notes/node_modules/fred.

Because the search algorithm traverses the file system upwards, it will find fred in
either location.

The last thing to note is that this nesting of node_modules directories can be
arbitrarily deep. While the package manager applications try to install packages in a
flat hierarchy, it may be necessary to nest them deeply.

One reason for doing so is to enable using two or more versions of the same package.

Exploring Node.js Modules Chapter 3

[99]

Handling multiple versions of the same installed
package
The Node.js package identifier resolution algorithm allows us to install two or more
versions of the same package. Returning to the hypothetical notes project, notice that
the fred package is installed not just for the bar package but also for the express
package.

Looking at the algorithm, we know that require('fred') in the bar package, and
in the express package, will be satisfied by the corresponding fred package
installed locally to each.

Normally, the package manager applications will detect the two instances of the fred
package and install only one. But, suppose the bar package required the fred
version 1.2, while the express package required the fred version 2.1.

In such a case, the package manager application will detect the incompatibility and
install two versions of the fred package as so:

In /home/david/projects/notes/node_modules/bar/node_modules,
it will install fred version 1.2.
In /home/david/projects/notes/node_modules/express/node_mod
ules, it will install fred version 2.1.

When the express package executes require('fred') or import 'fred', it will
be satisfied by the package
in /home/david/projects/notes/node_modules/express/node_modules/fre
d. Likewise, the bar package will be satisfied by the package
in /home/david/projects/notes/node_modules/bar/node_modules/fred.
In both cases, the bar and express packages have the correct version of the fred
package available. Neither is aware there is another version of fred installed.

The node_modules directory is meant for packages required by an application.
Node.js also supports installing packages in a global location so they can be used by
multiple applications.

Exploring Node.js Modules Chapter 3

[100]

Searching for globally installed packages
We've already seen that with npm we can perform a global install of a package. For
example, command-line tools like hexy or babel are convenient if installed globally.
In such a case the package is installed in another folder outside of the project
directory. Node.js has two strategies for finding globally installed packages.

Similar to the PATH variable, the NODE_PATH environment variable can be used to list
additional directories in which to search for packages. On Unix-like operating
systems, NODE_PATH is a colon-separated list of directories, and on Windows it is
semicolon-separated. In both cases, it is similar to how the PATH variable is
interpreted, meaning that NODE_PATH has a list of directory names in which to find
installed modules.

The NODE_PATH approach is not recommended, because of
surprising behavior that can happen if people are unaware that this
variable must be set. If a specific module located in a specific
directory referenced in NODE_PATH is required for a proper function
and the variable is not set, the application will likely fail. The best
practice is for all dependencies to be explicitly declared, and with
Node.js that means listing all dependencies in
the package.json file so that npm or yarn can manage the
dependencies.

This variable was implemented before the module resolution
algorithm just described was finalized. Because of that
algorithm, NODE_PATH is largely unnecessary.

There are three additional locations that can hold modules:

$HOME/.node_modules

$HOME/.node_libraries

$PREFIX/lib/node

In this case, $HOME is what you expect (the user's home directory), and $PREFIX is the
directory where Node.js is installed.

Exploring Node.js Modules Chapter 3

[101]

Some recommend against using global packages. The rationale is the desire
for repeatability and deployability. If you've tested an app and all its code is
conveniently located within a directory tree, you can copy that tree for deployment to
other machines. But, what if the app depended on some other file that was magically
installed elsewhere on the system? Will you remember to deploy such files? The
application author might write documentation saying to install this then install that
and install something-else before running npm install, but will the users of the
application correctly follow all those steps?

The best installation instructions is to simply run npm install or yarn install. For that to
work, all dependencies must be listed in package.json.

Before moving forward, let's review the different kinds of module identifiers.

Reviewing module identifiers and pathnames
That was a lot of details spread out over several sections. It's useful, therefore, to
quickly review how the module identifiers are interpreted when using the require,
import(), or import statements:

Relative module identifiers: These begin with ./ or ../, and absolute
identifiers begin with /. The module name is identical to POSIX filesystem
semantics. The resultant pathname is interpreted relative to the location of
the file being executed. That is, a module identifier beginning with ./ is
looked for in the current directory, whereas one starting with ../ is looked
for in the parent directory.
Absolute module identifiers: These begin with / (or file:// for ES6
modules) and are, of course, looked for in the root of the filesystem. This is
not a recommended practice.
Top-level module identifiers: These do not begin with those strings and
are just the module name. These must be stored in a node_modules
directory, and the Node.js runtime has a nicely flexible algorithm for
locating the correct node_modules directory.
Core modules: These are the same as the top-level module identifiers, in that
there is no prefix, but the core modules are prebaked into the Node.js
binary.

Exploring Node.js Modules Chapter 3

[102]

In all cases, except for the core modules, the module identifier resolves to a file that
contains the actual module, and which is loaded by Node.js. Therefore, what Node.js
does is to compute the mapping between the module identifier and the actual file
name to load.

Using a package manager application is not required. The Node.js
module resolution algorithm does not depend on a package
manager, like npm or Yarn, to set up the node_modules directories.
There is nothing magical about those directories, and it is possible to
use other means to construct a node_modules directory containing
installed packages. But the simplest mechanism is to use a package
manager application.

Some packages offer what we might call a sub-package included with the main
package, let's see how to use them.

Using deep import module specifiers
In addition to a simple module identifier like require('bar'), Node.js lets us
directly access modules contained within a package. A different module specifier is
used that starts with the module name, adding what's called a deep import path. For a
concrete example, let's look at the mime module (https:/ /www. npmjs. com/ package/
mime), which handles mapping a file name to its corresponding MIME type.

In the normal case, you use require('mime') to use the package. However, the
authors of this package developed a lite version of this package that leaves out a lot of
vendor-specific MIME types. For that version, you
use require('mime/lite') instead. And of course, in an ES6 module, you use
import 'mime' and import 'mime/lite', as appropriate.

The specifier mime/lite is an example of a deep import module specifier.

With such a module identifier, Node.js first locates the node_modules directory
containing the main package. In this case, that is the mime package. By default, the
deep import module is simply a path-name relative to the package directory, for
example, /path/to/node_modules/mime/lite. Going by the rules we've already
examined, it will be satisfied by a file named lite.js or a by a directory named
lite containing a file named index.js or index.mjs.

https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime
https://www.npmjs.com/package/mime

Exploring Node.js Modules Chapter 3

[103]

But it is possible to override the default behavior and have the deep import specifier
refer to a different file within the module.

Overriding a deep import module identifier
The deep import module identifier used by code using the package does not have to
be the pathname used within the package source. We can put declarations in
package.json describing the actual pathname for each deep import identifier. For
example, a package with interior modules named ./src/cjs-module.js and
./src/es6-module.mjs can be remapped with this declaration in package.json:

{
 "exports": {
 "./cjsmodule": "./src/cjs-module.js",
 "./es6module": "./src/es6-module.mjs"
 }
}

With this, code using such a package can load the inner module using
require('module-name/cjsmodule') or import 'module-name/es6module'.
Notice that the filenames do not have to match what's exported.

In a package.json file using this exports feature, a request for an inner module not
listed in exports will fail. Supposing the package has a ./src/hidden-
module.js file, calling require('module-name/src/hidden-module.js') will
fail.

All these modules and packages are meant to be used in the context of a Node.js
project. Let's take a brief look at a typical project.

Studying an example project directory
structure
A typical Node.js project is a directory containing a package.json file declaring the
characteristics of the package, especially its dependencies. That, of course, describes a
directory module, meaning that each module is its own project. At the end of the day,
we create applications, for example, an Express application, and these applications
depend on one or more (possibly thousands of) packages that are to be installed:

Exploring Node.js Modules Chapter 3

[104]

This is an Express application (we'll start using Express in Chapter 5, Your First
Express Application) containing a few modules installed in the node_modules
directory. A typical Express application uses app.js as the main module for the
application, and has code and asset files distributed in the public, routes, and
views directories. Of course, the project dependencies are installed in
the node_modules directory.

But let's focus on the content of the node_modules directory versus the actual project
files. In this screenshot, we've selected the express package. Notice it has a
package.json file and there is an index.js file. Between those two files, Node.js
will recognize the express directory as a module, and calling require('express')
or import 'express' will be satisfied by this directory.

The express directory has its own node_modules directory, in which are installed
two packages. The question is, why are those packages installed in
express/node_modules rather than as a sibling of the express package?

Exploring Node.js Modules Chapter 3

[105]

Earlier we discussed what happens if two modules (modules A and B) list a
dependency on different versions of the same module (C). In such a case, the package
manager application will install two versions of C, one as A/node_modules/C and
the other as B/node_modules/C. The two copies of C are thus located such that the
module search algorithm will cause module A and module B to have the correct
version of module C.

That's the situation we see with express/node_modules/cookie. To verify this, we
can use an npm command to query for all references to the module:

$ npm ls cookie
notes@0.0.0 /Users/David/chap05/notes
├─┬ cookie-parser@1.3.5
│ └── cookie@0.1.3
└─┬ express@4.13.4
 └── cookie@0.1.5

This says the cookie-parser module depends on version 0.1.3 of cookie, while
Express depends on version 0.1.5.

Now that we can recognize what a module is and how they're found in the file
system, let's discuss when we can use each of the methods to load modules.

Loading modules using require, import, and
import()
Obviously require is used in CommonJS modules, and import is used in ES6
modules, but there are some details to go over. We've already discussed the format
and filename differences between CommonJS and ES6 modules, so let's focus here on
loading the modules.

The require function is only available in CommonJS modules, and it is used for
loading a CommonJS module. The module is loaded synchronously, meaning that
when the require function returns, the module is completely loaded.

Exploring Node.js Modules Chapter 3

[106]

By default, a CommonJS module cannot load an ES6 module. But as we saw with the
simple-dynamic-import.js example, a CommonJS module can load an ES6
module using import(). Since the import() function is an asynchronous operation,
it returns a Promise, and we, therefore, cannot use the resulting module as a top-level
object. But we can use it inside a function:

module.exports.usesES6module = async function() {
 const es6module = await import('./es6-module.mjs');
 return es6module.functionCall();
}

And at the top-level of a Node.js script, the best we can do is the following:

import('./simple2.mjs')
.then(simple2 => {
 console.log(simple2.hello());
 console.log(simple2.next());
 console.log(simple2.next());
 console.log(`count = ${simple2.default()}`);
 console.log(`Meaning: ${simple2.meaning}`);
})
.catch(err => {
 console.error(err);
});

It's the same as the simple-dynamic-import.js example, but we are explicitly
handling the Promise returned by import() rather than using an async function.
While we could assign simple2 to a global variable, other code using that variable
would have to accommodate the possibility the assignment hasn't yet been made.

The module object provided by import() contains the fields and functions exported
with the export statements in the ES6 module. As we see here, the default export has
the default name.

In other words, using an ES6 module in a CommonJS module is possible, so long as
we accommodate waiting for the module to finish loading before using it.

The import statement is used to load ES6 modules, and it only works inside an ES6
module. The module specifier you hand to the import statement is interpreted as a
URL.

An ES6 module can have multiple named exports. In the simple2.mjs we used
earlier, these are the functions next, squared, and hello, and the values meaning
and nocount. ES6 modules can have a single default export, as we saw in
simple2.mjs.

Exploring Node.js Modules Chapter 3

[107]

With simpledemo2.mjs, we saw that we can import only the required things from
the module:

import { default as simple, hello, next } from './simple2.mjs';

In this case, we use the exports as just the name, without referring to the
module: simple(), hello(), and next().

It is possible to import just the default export:

import simple from './simple2.mjs';

In this case, we can invoke the function as simple(). We can also use what's called a
namespace import; that is similar to how we import CommonJS modules:

import * as simple from './simple2.mjs';

console.log(simple.hello());
console.log(simple.next());
console.log(simple.next());
console.log(simple.default());
console.log(simple.meaning);

In this case, each property exported from the module is a property of the named
object in the import statement.

An ES6 module can also use import to load a CommonJS module. Loading the
simple.js module we used earlier is accomplished as follows:

import simple from './simple.js';
console.log(simple.next());
console.log(simple.next());
console.log(simple.hello());

This is similar to the default export method shown for ES6 modules, and we can think
of the module.exports object inside the CommonJS module as the default export.
Indeed, the import can be rewritten as follows:

import { default as simple } from './simple.js';

This demonstrates that the CommonJS module.exports object is surfaced as
default when imported.

We've learned a lot about using modules in Node.js. This included the different types
of modules, and how to find them in the file system. Our next step is to learn about
package management applications and the npm package repository.

Exploring Node.js Modules Chapter 3

[108]

Using npm – the Node.js package
management system
As described in Chapter 2, Setting up Node.js, npm is a package management and
distribution system for Node.js. It has become the de facto standard for distributing
modules (packages) for use with Node.js. Conceptually, it's similar to tools such as
apt-get (Debian), rpm/yum (Red Hat/Fedora), MacPorts/Homebrew (macOS), CPAN
(Perl), or PEAR (PHP). Its purpose is to publish and distributing Node.js packages
over the internet using a simple command-line interface. In recent years, it has also
become widely used for distributing front-end libraries like jQuery and Bootstrap that
are not Node.js modules. With npm, you can quickly find packages to serve specific
purposes, download them, install them, and manage packages you've already
installed.

The npm application extends on the package format for Node.js, which in turn is
largely based on the CommonJS package specification. It uses the same
package.json file that's supported natively by Node.js, but with additional fields for
additional functionality.

The npm package format
An npm package is a directory structure with a package.json file describing the
package. This is exactly what was referred to earlier as a directory module, except
that npm recognizes many more package.json tags than Node.js does. The starting
point for npm's package.json file is the CommonJS Packages/1.0 specification. The
documentation for the npm package.json implementation is accessed using the
following command:

$ npm help package.json

A basic package.json file is as follows:

{ "name": "packageName",
 "version": "1.0",
 "main": "mainModuleName".
 "bin": "./path/to/program"
}

Exploring Node.js Modules Chapter 3

[109]

Npm recognizes many more fields than this, and we'll go over some of them in the
coming sections. The file is in JSON format, which, as a JavaScript programmer, you
should be familiar with.

There is a lot to cover concerning the npm package.json format, and we'll do so
over the following sections.

Accessing npm helpful documentation
The main npm command has a long list of subcommands for specific package
management operations. These cover every aspect of the life cycle of publishing
packages (as a package author), and downloading, using, or removing packages (as
an npm consumer).

You can view the list of these commands just by typing npm (with no arguments). If
you see one you want to learn more about, view the help information:

$ npm help <command>

The help text will be shown on your screen.

Help information is also available on the npm website at: https:/ /
docs. npmjs. com/ cli- documentation/ .

Before we can look for and install Node.js packages, we must have a project directory
initialized.

Initializing a Node.js package or project with
npm init
The npm tool makes it easy to initialize a Node.js project directory. Such a directory
contains at the minimum a package.json file and one or more Node.js JavaScript
files.

https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/
https://docs.npmjs.com/cli-documentation/

Exploring Node.js Modules Chapter 3

[110]

All Node.js project directories are therefore modules, going by the definition we
learned earlier. However, in many cases, a Node.js project is not meant to export any
functionality but instead is an application. Such a project will likely require other
Node.js packages, and those packages will be declared in the package.json file so
that they're easy to install using npm. The other common use case of a Node.js project
is a package of functionality meant to be used by other Node.js packages or
applications. These also consist of a package.json file plus one or more Node.js
JavaScript files, but in this case, they're Node.js modules that export functions and can
be loaded using require, import(), or import.

What this means is the key to initializing a Node.js project directory is creating the
package.json file.

While the package.json file can be created by hand – it's just a JSON file after all -
the npm tool provides a convenient method:

$ mkdir example-package
$ cd example-package/
$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible
defaults.

See `npm help json` for definitive documentation on these fields
and exactly what they do.

Use `npm install <pkg>` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
package name: (example-package)
version: (1.0.0)
description: This is an example of initializing a Node.js project
entry point: (index.js)
test command: mocha
git repository:
keywords: example, package
author: David Herron <david@davidherron.com>
license: (ISC)
About to write to /home/david/example-package/package.json:

{
 "name": "example-package",
 "version": "1.0.0",
 "description": "This is an example of initializing a Node.js
project",

Exploring Node.js Modules Chapter 3

[111]

 "main": "index.js",
 "scripts": {
 "test": "mocha"
 },
 "keywords": [
 "example",
 "package"
],
 "author": "David Herron <david@davidherron.com>",
 "license": "ISC"
}

Is this OK? (yes) yes

In a blank directory, run npm init, answer the questions, and as quick as that you
have the starting point for a Node.js project.

This is, of course, a starting point, and as you write the code for your project it will
often be necessary to use other packages.

Finding npm packages
By default, npm packages are retrieved over the internet from the public package
registry maintained on http://npmjs.com. If you know the module name, it can be
installed simply by typing the following:

$ npm install moduleName

But what if you don't know the module name? How do you discover the interesting
modules? The website http://npmjs.com publishes a searchable index of the modules
in the registry. The npm package also has a command-line search function to consult
the same index:

http://npmjs.com
http://npmjs.com

Exploring Node.js Modules Chapter 3

[112]

Of course, upon finding a module, it's installed as follows:

$ npm install acoustid

The npm repository uses a few package.json fields to aid in finding packages.

The package.json fields that help finding packages
For a package to be easily found in the npm repository requires a good package
name, package description, and keywords. The npm search function scans those
package attributes and presents them in search results.

The relevant package.json fields are as follows:

{ ...
 "description": "My wonderful package that walks dogs",
 "homepage": "http://npm.dogs.org/dogwalker/",
 "author": "dogwhisperer@dogs.org",
 "keywords": ["dogs", "dog walking"]
... }

The npm view command shows us information from package.json file for a given
package, and with the --json flag we're shown the raw JSON.

The name tag is of course the package name, and it is used in URLs and command
names, so choose one that's safe for both. If you desire to publish a package in the
public npm repository, it's helpful to check whether a particular name is already being
used by searching on https:/ / npmjs. com or by using the npm search command.

The description tag is a short description that's meant as a brief/terse description of
the package.

https://npmjs.com
https://npmjs.com
https://npmjs.com
https://npmjs.com
https://npmjs.com
https://npmjs.com
https://npmjs.com

Exploring Node.js Modules Chapter 3

[113]

It is the name and description tags that are shown in npm search results.

The keywords tag is where we list attributes of the package. The npm website
contains pages listing all packages using a particular keyword. These keyword
indexes are useful when searching for a package since it lists the related packages in
one place, and therefore when publishing a package it's useful to land on the correct
keyword pages.

Another source is the contents of the README.md file. This file should be added to the
package to provide basic package documentation. This file is shown on the package
page on npmjs.com, and therefore it is important for this file to convince potential
users of your package to actually use it. As the file name implies, this is a Markdown
file.

Once you have found a package to use, you must install it in order to use the package.

Installing an npm package
The npm install command makes it easy to install packages upon finding one of
your dreams, as follows:

$ npm install express
/home/david/projects/notes/
- express@4.13.4
...

The named module is installed in node_modules in the current directory. During the
installation process, the package is set up. This includes installing any packages it
depends on and running the preinstall and postinstall scripts. Of course,
installing the dependent packages also involves the same installation process of
installing dependencies and executing pre-install and post-install scripts.

Some packages in the npm repository have a package scope prepended to the package
name. The package name in such cases is presented as @scope-name/package-
name, or, for example, @akashacms/plugins-footnotes. In such a package, the
name field in package.json contains the full package name with its @scope.

We'll discuss dependencies and scripts later. In the meantime, we notice that a
version number was printed in the output, so let's discuss package version numbers.

Exploring Node.js Modules Chapter 3

[114]

Installing a package by version number
Version number matching in npm is powerful and flexible. With it, we can target a
specific release of a given package or any version number range. By default, npm
installs the latest version of the named package, as we did in the previous section.
Whether you take the default or specify a version number, npm will determine what
to install.

The package version is declared in the package.json file, so let's look at the relevant
fields:

{ ...
 "version": "1.2.1",
 "dist-tags": {
 "latest": "1.2.1"
 },
... }

The version field obviously declares the current package version. The dist-tags
field lists symbolic tags that the package maintainer can use to aid their users in
selecting the correct version. This field is maintained by the npm dist-tag
command.

The npm install command supports these variants:

$ npm install package-name@tag
$ npm install package-name@version
$ npm install package-name@version-range

The last two are what they sound like. You can specify express@4.16.2 to target a
precise version, or express@">4.1.0 < 5.0" to target a range of Express V4
versions. We might use that specific expression because Express 5.0 might include
breaking changes.

The version match specifiers include the following choices:

Exact version match: 1.2.3
At least version N: >1.2.3
Up to version N: <1.2.3
Between two releases: >=1.2.3 <1.3.0

Exploring Node.js Modules Chapter 3

[115]

The @tag attribute is a symbolic name such as @latest, @stable, or @canary. The
package owner assigns these symbolic names to specific version numbers and can
reassign them as desired. The exception is @latest, which is updated whenever a
new release of the package is published.

For more documentation, run these commands: npm help
json and npm help npm-dist-tag.

In selecting the correct package to use, sometimes we want to use packages that are
not in the npm repository.

Installing packages from outside the npm
repository
As awesome as the npm repository is, we don't want to push everything we do
through their service. This is especially true for internal development teams who
cannot publish their code for all the world to see. Fortunately, Node.js packages can
be installed from other locations. Details about this are in npm help
package.json in the dependencies section. Some examples are as follows:

URL: You can specify any URL that downloads a tarball, that is,
a .tar.gz file. For example, GitHub or GitLab repositories can easily
export a tarball URL. Simply go to the Releases tab to find them.
Git URL: Similarly, any Git repository can be accessed with the right URL,
for example:

$ npm install git+ssh://user@hostname:project.git#git-tag

GitHub shortcut: For GitHub repositories, you can list just the repository
specifier, such as expressjs/express. A tag or a commit can be
referenced using expressjs/express#tag-name.
GitLab, BitBucket, and GitHub URL shortcuts: In addition to the GitHub
shortcut, npm supports a special URL format for specific Git services with
URLs like github:user/repo, bitbucket:user/repo, and
gitlab:user/repo.
Local filesystem: You can install from a local directory using a URL with
the: file:../../path/to/dir.

Exploring Node.js Modules Chapter 3

[116]

Sometimes we need to install a package for use by several projects, without requiring
that each project installs the package.

Global package installs
In some instances, you want to install a module globally, so that it can be used from
any directory. For example, the Grunt or Babel build tools are widely useful, and
conceivably you will find it useful if these tools are installed globally. Simply add
the -g option:

$ npm install -g grunt-cli

If you get an error, and you're on a Unix-like system (Linux/Mac), you may need to
run this with sudo:

$ sudo npm install -g grunt-cli

This variant, of course, runs npm install with elevated permissions.

The npm website offers a guideline with more information
at https:/ / docs. npmjs. com/ resolving- eacces- permissions-
errors- when- installing- packages- globally.

If a local package install lands in node_modules, where does a global package install
land? On a Unix-like system, it lands in PREFIX/lib/node_modules, and on
Windows, it lands in PREFIX/node_modules. In this case, PREFIX means the
directory where Node.js is installed. You can inspect the location of the directory as
follows:

$ npm config get prefix
/opt/local

The algorithm used by Node.js for the require function automatically searches the
directory for packages if the package is not found elsewhere.

ES6 modules do not support global packages.

Many believe it is not a good idea to install packages globally, which we will look at
next.

https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally

Exploring Node.js Modules Chapter 3

[117]

Avoiding global module installation
Some in the Node.js community now frown on installing packages globally. One
rationale is that a software project is more reliable if all its dependencies are explicitly
declared. If a build tool such as Grunt is required but is not explicitly declared
in package.json, the users of the application would have to receive instructions to
install Grunt, and they would have to follow those instructions.

Users being users, they might skip over the instructions, fail to install the
dependency, and then complain the application doesn't work. Surely, most of us have
done that once or twice.

It's recommended to avoid this potential problem by installing everything locally via
one mechanism—the npm install command.

There are two strategies we use to avoid using globally installed Node.js packages.
For the packages that install commands, we can configure the PATH variable, or use
npx to run the command. In some cases, a package is used only during development
and can be declared as such in package.json.

Maintaining package dependencies with npm
The npm install command by itself, with no package name specified, installs the
packages listed in the dependencies section of package.json. Likewise, the npm
update command compares the installed packages against the dependencies and
against what's available in the npm repository and updates any package that is out of
date in regards to the repository.

These two commands make it easy and convenient to set up a project, and to keep it
up to date as dependencies are updated. The package author simply lists all the
dependencies, and npm installs or updates the dependencies required for using the
package. What happens is npm looks in package.json for
the dependencies or devDependencies fields, and it works out what to do from
there.

Exploring Node.js Modules Chapter 3

[118]

You can manage the dependencies manually by editing package.json. Or you can
use npm to assist you with editing the dependencies. You can add a new dependency
like so:

$ npm install akasharender --save

With the --save flag, npm will add a dependencies tag to package.json:

"dependencies": {
 "akasharender": "^0.7.8"
}

With the added dependency, when your application is installed, npm will now install
the package along with any other dependencies listed in package.json file.

The devDependencies lists modules used during development and testing. The field
is initialized the same as the preceding one, but with the --save-dev flag. The
devDependencies can be used to avoid some cases where one might instead
perform a global package install.

By default, when npm install is run, modules listed in
both dependencies and devDependencies are installed. Of course, the purpose of
having two dependency lists is to control when each set of dependencies is installed.

$ npm install --production

This installs the "production" version, which means to install only the modules listed
in dependencies and none of the devDependencies modules. For example, if we
use a build tool like Babel in development, the tool should not be installed in
production.

While we can manually maintain dependencies in package.json, npm can handle
this for us.

Exploring Node.js Modules Chapter 3

[119]

Automatically updating package.json dependencies
With npm@5 (also known as npm version 5), one change was that it's no longer
required to add --save to the npm install command. Instead, npm by default acts
as if you ran the command with --save, and will automatically add the dependency
to package.json. This is meant to simplify using npm, and it is arguably more
convenient that npm now does this. At the same time, it can be very surprising and
inconvenient for npm to go ahead and modify package.json for you. The behavior
can be disabled by using the --no-save flag, or it can be permanently disabled using
the following:

$ npm config set save false

The npm config command supports a long list of settable options for tuning the
behavior of npm. See npm help config for the documentation and npm help 7
config for the list of options.

Now let's talk about the one big use for package dependencies: to fix or avoid bugs.

Fixing bugs by updating package dependencies
Bugs exist in every piece of software. An update to the Node.js platform may break
an existing package, as might an upgrade to packages used by the application.
Your application may trigger a bug in a package it uses. In these and other cases,
fixing the problem might be as simple as updating a package dependency to a later
(or earlier) version.

First, identify whether the problem exists in the package or in your code. After
determining it's a problem in another package, investigate whether the package
maintainers have already fixed the bug. Is the package hosted on GitHub or another
service with a public issue queue? Look for an open issue on this problem. That
investigation will tell you whether to update the package dependency to a later
version. Sometimes, it will tell you to revert to an earlier version; for example, if the
package maintainer introduced a bug that doesn't exist in an earlier version.

Sometimes, you will find that the package maintainers are unprepared to issue a new
release. In such a case, you can fork their repository and create a patched version of
their package. In such a case, your package might use a Github URL referencing your
patched package.

Exploring Node.js Modules Chapter 3

[120]

One approach to fixing this problem is pinning the package version number to one
that's known to work. You might know that version 6.1.2 was the last release against
which your application functioned and that starting with version 6.2.0 your
application breaks. Hence, in package.json:

"dependencies": {
 "module1": "6.1.2"
}

This freezes your dependency on the specific version number. You're free, then, to
take your time updating your code to work against later releases of the module. Once
your code is updated, or the upstream project is updated, change the dependency
appropriately.

When listing dependencies in package.json, it's tempting to be lazy, but that leads
to trouble.

Explicitly specifying package dependency
version numbers
As we've said several times in this chapter, explicitly declaring your dependencies is
A Good Thing. We've already touched on this, but it's worth reiterating and to see
how npm makes this easy to accomplish.

The first step is ensuring that your application code is checked into a source code
repository. You probably already know this, and even have the best of intentions to
ensure that everything is checked in. With Node.js, each module should have its own
repository rather than putting every single last piece of code in one repository.

Each module can then progress on its own timeline. A breakage in one module is easy
to back out by changing the version dependency in package.json.

The next step is to explicitly declare all dependencies of every module. The goal is
simplifying and automating the process of setting up every module. Ideally, on the
Node.js platform, the module setup is as simple as running npm install.

Any additional required steps can be forgotten or executed incorrectly. An automated
setup process eliminates several kinds of potential mistakes.

With the dependencies and devDependencies sections of package.json, we can
explicitly declare not only the dependencies but the precise version numbers.

Exploring Node.js Modules Chapter 3

[121]

The lazy way of declaring dependencies is putting * in the version field. That uses the
latest version in the npm repository. This will seem to work, until that one day the
maintainers of that package introduce a bug. You'll type npm update, and all of a
sudden your code doesn't work. You'll head over to the GitHub site for the package,
look in the issue queue, and possibly see that others have already reported the
problem you're seeing. Some of them will say that they've pinned on the previous
release until this bug is fixed. What that means is their package.json file does not
depend on * for the latest version, but on a specific version number before the bug
was created.

Don't do the lazy thing, do the smart thing.

The other aspect of explicitly declaring dependencies is to not implicitly depend on
global packages. Earlier, we said that some people in the Node.js community caution
against installing modules in the global directories. This might seem like an easy
shortcut to sharing code between applications. Just install it globally, and you don't
have to install the code in each application.

But, doesn't that make deployment harder? Will the new team member be instructed
on all the special files to install here and there to make the application run? Will you
remember to install that global module on all destination machines?

For Node.js, that means listing all the module dependencies in package.json, and
then the installation instructions are simply npm install, followed perhaps by
editing a configuration file.

While most packages in the npm repository are libraries with an API, some are tools
we can run from the command line.

Packages that install commands
Some packages install command-line programs. A side effect of installing such
packages is a new command that you can type at the shell prompt or use in shell
scripts. An example is the hexy program that we briefly used in Chapter 2, Setting Up
Node.js. Another example is the widely used Grunt or Babel build tools.

Exploring Node.js Modules Chapter 3

[122]

The recommendation to explicitly declare all dependencies in package.json applies
to command-line tools as well as any other package. Therefore these packages will
typically be installed locally. This requires special care in setting up the PATH
environment variable correctly. As you should already be aware, the PATH variable is
used on both Unix-like systems and Windows to list the directories in which the
command-line shell searches for commands.

The command can be installed to one of two places:

Global install: It is installed either to a directory, such as /usr/local, or
to the bin directory where Node.js was installed. The npm bin -
g command tells you the absolute pathname for this directory. In this case,
it's unlikely you'll have to modify the PATH environment variable.
Local install: Installs to node_modules/.bin in the package where the
module is being installed, the npm bin command tells you the absolute
pathname for the directory. Because the directory is inconveniently located
to run commands, a change to the PATH variable is useful.

To run the command, simply type the command name at a shell prompt. This works
correctly if the directory where the command is installed happens to be in the PATH
variable. Let's look at how to configure the PATH variable to handle locally installed
commands.

Configuring the PATH variable to handle locally
installed commands
Assume we have installed the hexy command like so:

$ npm install hexy

As a local install, this creates a command as node_modules/.bin/hexy. We can
attempt to use it as follows:

$ hexy package.json
-bash: hexy: command not found

But this breaks because the command is not in a directory listed in the PATH. The
workaround is to use the full pathname or relative pathname:

$./node_modules/.bin/hexy package.json
... hexy output

Exploring Node.js Modules Chapter 3

[123]

But obviously typing the full or partial pathname is not a user-friendly way to execute
the command. We want to use the commands installed by modules, and we want a
simple process for doing so. This means, we must add an appropriate value in
the PATH variable, but what is it?

For global package installations, the executable lands in a directory that is probably
already in your PATH variable, like /usr/bin or /usr/local/bin. Local package
installations require special handling. The full path for
the node_modules/.bin directory varies for each project, and obviously it won't
work to add the full path for every node_modules/.bin directory to your PATH.

Adding ./node_modules/.bin to the PATH variable (or, on
Windows, .\node_modules\.bin) works great. Any time your shell is in the root of
a Node.js project, it will automatically find locally installed commands from Node.js
packages.

How we do this depends on the command shell you use and your operating system.

On a Unix-like system, the command shells are bash and csh. Your PATH variable
would be set up in one of these ways:

$ export PATH=./node_modules/.bin:${PATH} # bash
$ setenv PATH ./node_modules/.bin:${PATH} # csh

The next step is adding the command to your login scripts so the variable is always
set. On bash, add the corresponding line to ~/.bashrc, and on csh add it
to ~/.cshrc.

Once this is accomplished the command-line tool executes correctly.

Configuring the PATH variable on Windows
On Windows, this task is handled through a system-wide settings panel:

Exploring Node.js Modules Chapter 3

[124]

This pane of the System Properties panel is found by searching for PATH in
the Windows Settings screen. Click on the Environment Variables button, then
select the Path variable, and finally click on the Edit button. On the screen here, click
the New button to add an entry to this variable, and enter .\node_modules\.bin as
shown. You'll have to restart any open command shell windows. Once you do, the
effect will be as shown previously.

As easy as it is to modify the PATH variable, we don't want to do this in all
circumstances.

Avoiding modifications to the PATH variable
What if you don't want to add these variables to your PATH at all times? The npm-
path module may be of interest. This is a small program that computes the
correct PATH variable for your shell and operating system. See the package at https:/
/www.npmjs.com/ package/ npm- path.

https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path
https://www.npmjs.com/package/npm-path

Exploring Node.js Modules Chapter 3

[125]

Another option is to use the npx command to execute such commands. This tool is
automatically installed alongside the npm command. This command either executes
commands from a locally installed package or it silently installs commands in a global
cache:

$ npx hexy package.json

Using npx is this easy.

Of course, once you've installed some packages, they'll go out of date and need to be
updated.

Updating packages you've installed when
they're outdated
The coder codes, updating their package, leaving you in the dust unless you keep up.

To find out whether your installed packages are out of date, use the following
command:

$ npm outdated

The report shows the current npm packages, the currently installed version, as well as
the current version in the npm repository. Updating outdated packages is very simple:

$ npm update express
$ npm update

Specifying a package name updates just the named package. Otherwise, it updates
every package that would be printed by npm outdated.

Npm handles more than package management, it has a decent built-in task
automation system.

Exploring Node.js Modules Chapter 3

[126]

Automating tasks with scripts in package.json
The npm command handles not just installing packages, it can also be used to
automate running tasks related to the project. In package.json, we can add a field,
scripts, containing one or more command strings. Originally scripts were meant to
handle tasks related to installing an application, such as compiling native code, but
they can be used for much more. For example, you might have a deployment task
using rsync to copy files to a server. In package.json, you can add this:

{ ...
 "scripts: {
 "deploy": "rsync --archive --delete local-dir
user@host:/path/to/dest-dir
 }
... }

What's important here is that we can add any script we like, and the scripts entry
records the command to run:

$ npm run deploy

Once it has been recorded in scripts, running the command is this easy.

There is a long list of "lifecycle events" for which npm has defined script names. These
include the following:

install, for when the package is installed
uninstall, for when it is uninstalled
test, for running a test suite
start and stop, for controlling a server defined by the package

Package authors are free to define any other script they like.

For the full list of predefined script names, see the
documentation: https:/ / docs.npmjs. com/ misc/ scripts

Npm also defines a pattern for scripts that run before or after another script, namely
to prepend pre or post to the script name. Therefore the pretest script runs before
the test script, and the posttest script runs afterward.

https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts

Exploring Node.js Modules Chapter 3

[127]

A practical example is to run a test script in a prepublish script to ensure the
package is tested before publishing it to the npm repository:

{
 "scripts": {
 "test": "cd test && mocha",
 "prepublish": "npm run test"
 }
}

With this combination, if the test author types npm publish, the prepublish script
will cause the test script to run, which in turn uses mocha to run the test suite.

It is a well-known best practice to automate all administrative tasks, if only so that
you never forget how to run those tasks. Creating the scripts entries for every such
task not only prevents you from forgetting how to do things, but it also documents
the administrative tasks for the benefit of others.

Next, let's talk about how to ensure the Node.js platform on which a package is
executed supports the required features.

Declaring Node.js version compatibility
It's important that your Node.js software runs on the correct version of Node.js. The
primary reason being that the Node.js platform features required by your package are
available every time your package is run. Therefore, the package author must know
which Node.js releases are compatible with the package, and then describe in
package.json that compatibility.

This dependency is declared in package.json using the engines tag:

"engines": {
 "node": ">= 8.x <=10.x"
}

The version string is similar to what we can use in dependencies and
devDependencies. In this case, we've defined that the package is compatible with
Node.js 8.x, 9.x, and 10.x.

Now that we know how to construct a package, let's talk about publishing packages.

Exploring Node.js Modules Chapter 3

[128]

Publishing an npm package
All those packages in the npm repository came from people like you with an idea of a
better way of doing something. It is very easy to get started with publishing
packages.

Online docs about publishing packages can be found
at https://docs.npmjs.com/getting-started/publishing-npm-pac
kages.

Also consider this: https:/ / xkcd. com/927/ .

You first use the npm adduser command to register yourself with the npm
repository. You can also sign up with the website. Next, you log in using the npm
login command.

Finally, while sitting in the package root directory, use the npm publish command.
Then, stand back so that you don't get stampeded by the crush of thronging fans, or,
maybe not. There are several zillion packages in the repository, with hundreds of
packages added every day. To get yours to stand out, you will require some
marketing skill, which is another topic beyond the scope of this book.

It is suggested that your first package be a scoped package, for example, @my-user-
name/my-great-package.

We've learned a lot in this section about using npm to manage and publish packages.
But npm is not the only game in town for managing Node.js packages.

The Yarn package management system
As powerful as npm is, it is not the only package management system for Node.js.
Because the Node.js core team does not dictate a package management system, the
Node.js community is free to roll up their sleeves and develop any system they feel
best. That the vast majority of us use npm is a testament to its value and usefulness.
But, there is a significant competitor.

https://docs.npmjs.com/getting-started/publishing-npm-packages
https://docs.npmjs.com/getting-started/publishing-npm-packages
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/
https://xkcd.com/927/

Exploring Node.js Modules Chapter 3

[129]

Yarn (see https:/ /yarnpkg. com/ en/) is a collaboration between engineers at
Facebook, Google, and several other companies. They proclaim that Yarn is ultrafast,
ultra-secure (by using checksums of everything), and ultrareliable (by using a yarn-
lock.json file to record precise dependencies).

Instead of running their own package repository, Yarn runs on top of the npm
package repository at npmjs.com. This means that the Node.js community is not
forked by Yarn, but enhanced by having an improved package management tool.

The npm team responded to Yarn in npm@5 (also known as npm version 5) by
improving performance and by introducing a package-lock.json file to improve
reliability. The npm team has implemented additional improvements in npm@6.

Yarn has become very popular and is widely recommended over npm. They perform
extremely similar functions, and the performance is not that different from npm@5.
The command-line options are worded differently. Everything we've discussed for
npm is also supported by Yarn, albeit with slightly different command syntax. An
important benefit Yarn brings to the Node.js community is that the competition
between Yarn and npm seems to be breeding faster advances in Node.js package
management overall.

To get you started, these are the most important commands:

yarn add: Adds a package to use in your current package
yarn init: Initializes the development of a package
yarn install: Installs all the dependencies defined in a package.json
file
yarn publish: Publishes a package to a package manager
yarn remove: Removes an unused package from your current package

Running yarn by itself does the yarn install behavior. There are several other
commands in Yarn, and yarn help will list them all.

https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/

Exploring Node.js Modules Chapter 3

[130]

Summary
You learned a lot in this chapter about modules and packages for
Node.js. Specifically, we covered implementing modules and packages for Node.js,
the different module structures we can use, the difference between CommonJS and
ES6 modules, managing installed modules and packages, how Node.js locates
modules, the different types of modules and packages, how and why to declare
dependencies on specific package versions, how to find third-party packages, and we
gained a good grounding in using npm or Yarn to manage the packages we use and
to publish our own packages.

Now that you've learned about modules and packages, we're ready to use them to
build applications, which we'll look at in the next chapter.

4
HTTP Servers and Clients

Now that you've learned about Node.js modules, it's time to put this knowledge to
use by building a simple Node.js web application. The goal of this book is to learn
about web application development with Node.js. The next step in that journey is
getting a basic understanding of the HTTPServer and HTTPClient objects. To do
that, we'll create a simple application that will enable us to explore a popular
application framework for Node.js—Express. In later chapters, we'll do more complex
work on the application, but before we can walk, we must learn to crawl.

The goal of this chapter is to start to understand how to create applications on the
Node.js platform. We'll create a handful of small applications, which means we'll be
writing code and talking about what it does. Beyond learning about some specific
technologies, we want to get comfortable with the process of initializing a work
directory, creating the Node.js code for an application, installing dependencies
required by the application, and running/testing the application.

The Node.js runtime includes objects such as EventEmitter, HTTPServer, and
HTTPClient, which provide a foundation on which we can build applications. Even
if we rarely use these objects directly, it is useful to understand how they work, and
in this chapter, we will cover a couple of exercises using these specific objects.

We'll first build a simple application directly using the HTTPServer object. Then,
we'll move on to using Express to create an application for computing Fibonacci
numbers. Because this can be computationally expensive, we'll use this to explore
why it's important to not block the event queue in Node.js and what happens to
applications that do. This will give us an excuse to develop a simple background
Representational State Transfer (REST) server, an HTTP client for making requests
on that server, and the implementation of a multi-tier web application.

HTTP Servers and Clients Chapter 4

[132]

In today's world, the microservice application architecture implements background
REST servers, which is what we'll do in this chapter.

We will cover the following topics in this chapter:

Sending and receiving events using the EventEmitter pattern
Understanding an HTTP server application by building a simple
application
Web application frameworks
Using the Express framework to build a simple application
Handling computationally intensive calculations in an Express application
and the Node.js event loop
Making HTTP Client requests
Creating a simple REST service with Express

By going through these topics, you'll gain an understanding of several aspects of
designing HTTP-based web services. The goal is for you to understand how to create
or consume an HTTP service and to get an introduction to the Express framework. By
the end of this chapter, you'll have a basic understanding of these two tools.

That's a lot to cover, and it will give us a good foundation for the rest of this book.

Sending and receiving events with
EventEmitter
EventEmitter is one of the core idioms of Node.js. If Node.js's core idea is an event-
driven architecture, emitting events from an object is one of the primary mechanisms
of that architecture. EventEmitter is an object that gives notifications (events) at
different points in its life cycle. For example, an HTTPServer object emits events
concerning each stage of the startup/shutdown of the Server object and at each stage
of processing HTTP requests from HTTP clients.

Many core Node.js modules are EventEmitter objects, and EventEmitter objects
are an excellent skeleton on which to implement asynchronous programming.
EventEmitter objects are so much a part of the Node.js woodwork that you may
skip over their existence. However, because they're used everywhere, we need some
understanding of what they are and how to use them when necessary.

HTTP Servers and Clients Chapter 4

[133]

In this chapter, we'll work with the HTTPServer and HTTPClient objects. Both are
subclasses of the EventEmitter class and rely on it to send events for each step of
the HTTP protocol. In this section, we'll first learn about using JavaScript classes, and
then we will create an EventEmitter subclass so that we can learn about
EventEmitter.

JavaScript classes and class inheritance
Before getting started on the EventEmitter class, we need to take a look at another
one of the ES2015 features: classes. JavaScript has always had objects and the concept
of a class hierarchy, but nothing as formal as in other languages. The ES2015 class
object builds on the existing prototype-based inheritance model, but with a syntax
that looks a lot like class definitions in other languages.

For example, consider the following class, which we'll be using later in this book:

class Note {
 constructor(key, title, body) {
 this._key = key;
 this._title = title;
 this._body = body;
 }
 get key() { return this._key; }
 get title() { return this._title; }
 set title(newTitle) { return this._title = newTitle; }
 get body() { return this._body; }
 set body(newBody) { return this._body = newBody; }
}

This should look familiar to anyone who's implemented a class definition in other
languages. The class has a name—Note. There is also a constructor method and
attributes for each instance of the class.

Once you've defined the class, you can export the class definition to other modules:

module.exports.Note = class Note { .. } # in CommonJS modules
export class Note { .. } # in ES6 modules

HTTP Servers and Clients Chapter 4

[134]

Functions marked with the get or set keywords are getters and setters, used as
follows:

const aNote = new Note("key", "The Rain in Spain", "Falls mainly on
the plain");
const key = aNote.key;
var title = aNote.title;
aNote.title = "The Rain in Spain, which made me want to cry with joy";

New instances of a class are created with new. You access a getter or setter function as
if it is a simple field on the object. Behind the scenes, the getter/setter function is
invoked.

The preceding implementation is not the best because the _title and
_body fields are publicly visible and there is no data-hiding or encapsulation. There is
a technique to better hide the field data, which we'll go over in Chapter 5, Your First
Express Application.

You can test whether a given object is of a certain class by using the instanceof
operator:

if (anotherNote instanceof Note) {
 ... it's a Note, so act on it as a Note
}

Finally, you declare a subclass using the extends operator, similar to how you would
in other languages:

class LoveNote extends Note {
 constructor(key, title, body, heart) {
 super(key, title, body);
 this._heart = heart;
 }
 get heart() { return this._heart; }
 set heart(newHeart) { return this._heart = newHeart; }
}

In other words, the LoveNote class has all the fields of Note, plus a new field named
heart.

This was a brief introduction to JavaScript classes. By the end of this book, you'll have
had lots of practice with this feature. The EventEmitter class gives us a practical use
for classes and class inheritance.

HTTP Servers and Clients Chapter 4

[135]

The EventEmitter class
The EventEmitter object is defined in the events module of Node.js. Using the
EventEmitter class directly means performing require('events'). In most cases,
we don't do this. Instead, our typical use of EventEmitter objects is via an existing
object that uses EventEmitter internally. However, there are some cases where
needs dictate implementing an EventEmitter subclass.

Create a file named pulser.mjs, containing the following code:

import EventEmitter from 'events';

export class Pulser extends EventEmitter {
 start() {
 setInterval(() => {
 console.log(`${new Date().toISOString()} >>>> pulse`);
 this.emit('pulse');
 console.log(`${new Date().toISOString()} <<<< pulse`);
 }, 1000);
 }
}

This is an ES6 module that defines a class named Pulser. The class inherits from
EventEmitter and provides a few methods of its own.

Another thing to examine is how this.emit in the callback function refers to the
Pulser object instance. This implementation relies on the ES2015 arrow function.
Before arrow functions, our callbacks used a regular function, and this would not
have referred to the Pulser object instance. Instead, this would have referred to
some other object related to the setInterval function. One of the attributes of arrow
functions is that this inside the arrow function has the same value as this in the
surrounding context. This means, in this case, that this does refer to the Pulser
object instance.

Back when we had to use function, rather than an arrow function, we had to assign
this to another variable, as follows:

class Pulser extends EventEmitter {
 start() {
 var self = this;
 setInterval(function() {
 self.emit(...);
 });
 }
}

HTTP Servers and Clients Chapter 4

[136]

What's different is the assignment of this to self. The value of this inside the
function is different—it is related to the setInterval function—but the value of
self remains the same in every enclosed scope. You'll see this trick used widely, so
remember this in case you come across this pattern in code that you're maintaining.

If you want to use a simple EventEmitter object but with your own class name, the
body of the extended class can be empty:

class HeartBeat extends EventEmitter {}
const beatMaker = new HeartBeat();

The purpose of the Pulser class is to send a timed event once a second to any
listeners. The start method uses setInterval to kick off a repeated callback
execution that is scheduled for every second and calls emit to send the pulse events
to any listeners.

Now, let's see how we can use the Pulser object. Create a new file called
pulsed.mjs, containing the following code:

import { Pulser } from './pulser.mjs';

// Instantiate a Pulser object
const pulser = new Pulser();
// Handler function
pulser.on('pulse', () => {
 console.log(`${new Date().toISOString()} pulse received`);
});
// Start it pulsing
pulser.start();

Here, we create a Pulser object and consume its pulse events. Calling
pulser.on('pulse') sets up an event listener for the pulse events to invoke the
callback function. It then calls the start method to get the process going.

When it is run, you should see the following output:

$ node pulsed.mjs
2020-01-06T06:12:29.530Z >>>> pulse
2020-01-06T06:12:29.534Z pulse received
2020-01-06T06:12:29.534Z <<<< pulse
2020-01-06T06:12:30.538Z >>>> pulse
2020-01-06T06:12:30.539Z pulse received
2020-01-06T06:12:30.539Z <<<< pulse

For each pulse event received, a pulse received message is printed.

HTTP Servers and Clients Chapter 4

[137]

That gives you a little practical knowledge of the EventEmitter class. Let's now look
at its operational theory.

The EventEmitter theory
With the EventEmitter class, your code emits events that other code can receive.
This is a way of connecting two separated sections of your program, kind of like how
quantum entanglement means two electrons can communicate with each other from
any distance. It seems simple enough.

The event name can be anything that makes sense to you, and you can define as many
event names as you like. Event names are defined simply by calling .emit with the
event name. There's nothing formal to do and no registry of event names is required.
Simply making a call to .emit is enough to define an event name.

By convention, the error event name indicates an error.

An object sends events using the .emit function. Events are sent to any listeners that
have registered to receive events from the object. The program registers to receive an
event by calling that object's .on method, giving the event name and an event
handler function.

There is no central distribution point for all events. Instead, each instance of an
EventEmitter object manages its own set of listeners and distributes its events to
those listeners.

Often, it is required to send data along with an event. To do so, simply add the data
as arguments to the .emit call, as follows:

this.emit('eventName', data1, data2, ..);

When the program receives the event, the data appears as arguments to the callback
function. Your program listens to this event, as follows:

emitter.on('eventName', (data1, data2, ...theArgs) => {
 // act on event
});

HTTP Servers and Clients Chapter 4

[138]

There is no handshaking between event receivers and the event sender. That is, the
event sender simply goes on with its business and it gets no notifications about any
events that were received, any action taken, or any errors that occurred.

In this example, we used another one of the ES2015
features—the rest operator—used here in the form of ...theArgs. The
rest operator catches any number of remaining function parameters into an array.
Since EventEmitter can pass along any number of parameters and
the rest operator can automatically receive any number of parameters, it's a match
made in heaven—or at least in the TC-39 committee.

We've now learned how to use JavaScript classes and how to use the EventEmitter
class. What's next is examining how the HTTPServer object uses EventEmitter.

Understanding HTTP server applications
The HTTPServer object is the foundation of all Node.js web applications. The object
itself is very close to the HTTP protocol, and its use requires knowledge of this
protocol. Fortunately, in most cases, you'll be able to use an application framework,
such as Express, to hide the HTTP protocol details. As application developers, we
want to focus on business logic.

We already saw a simple HTTP server application in Chapter 2, Setting Up
Node.js. Because HTTPServer is an EventEmitter object, the example can be written
in another way to make this fact explicit by separately adding the event listener:

import * as http from 'http';

const server = http.createServer();
server.on('request', (req, res) => {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello, World!\n');
});
server.listen(8124, '127.0.0.1');
console.log('Server running at http://127.0.0.1:8124');

Here, we created an HTTP server object, then attached a listener to the request
event, and then told the server to listen to connections from localhost (127.0.0.1)
on port 8124. The listen function causes the server to start listening and arranges to
dispatch an event for every request arriving from a web browser.

HTTP Servers and Clients Chapter 4

[139]

The request event is fired any time an HTTP request arrives on the server. It takes a
function that receives the request and response objects. The request object has
data from the web browser, while the response object is used to gather data to be
sent in the response.

Now, let's look at a server application that performs different actions based on the
URL.

Create a new file named server.mjs, containing the following code:

import * as http from 'http';
import * as util from 'util';
import * as os from 'os';

const listenOn = 'http://localhost:8124';
const server = http.createServer();
server.on('request', (req, res) => {
 var requrl = new URL(req.url, listenOn);
 if (requrl.pathname === '/') homePage(req, res);
 else if (requrl.pathname === "/osinfo") osInfo(req, res);
 else {
 res.writeHead(404, {'Content-Type': 'text/plain'});
 res.end("bad URL "+ req.url);
 }
});

server.listen(new URL(listenOn).port);
console.log(`listening to ${listenOn}`);

function homePage(req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(
 `<html><head><title>Hello, world!</title></head>
 <body><h1>Hello, world!</h1>
 <p>OS Info</p>
 </body></html>`);
}

function osInfo(req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(
 `<html><head><title>Operating System Info</title></head>
 <body><h1>Operating System Info</h1>
 <table>
 <tr><th>TMP Dir</th><td>${os.tmpdir()}</td></tr>
 <tr><th>Host Name</th><td>${os.hostname()}</td></tr>
 <tr><th>OS Type</th><td>${os.type()} ${os.platform()}

HTTP Servers and Clients Chapter 4

[140]

 ${os.arch()} ${os.release()}</td></tr>
 <tr><th>Uptime</th><td>${os.uptime()}
${util.inspect(os.loadavg())}</td></tr>
 <tr><th>Memory</th><td>total: ${os.totalmem()} free:
${os.freemem()}</td></tr>
 <tr><th>CPU's</th><td><pre>${util.inspect(os.cpus())}</pre></td></tr>
<tr><th>Network</th><td><pre>${util.inspect(os.networkInterfaces())}</
pre></td></tr>
 </table>
 </body></html>`);
}

The request event is emitted by HTTPServer every time a request arrives from a
web browser. In this case, we want to respond differently based on the request URL,
which arrives as req.url. This value is a string containing the URL from the HTTP
request. Since there are many attributes to a URL, we need to parse the URL so that
we can correctly match the pathname for one of two paths: / and /osinfo.

Parsing a URL with the URL class requires a base URL, which we've supplied in the
listenOn variable. Notice how we're reusing this same variable in a couple of other
places, using one string to configure multiple parts of the application.

Depending on the path, either the homePage or osInfo functions are called.

This is called request routing, where we look at attributes of the incoming request,
such as the request path, and route the request to handler functions.

In the handler functions, the req and res parameters correspond
to the request and response objects. Where req contains data about the incoming
request, we send the response using res. The writeHead function sets up the return
status (200 means success, while 404 means the page is not found) and the end
function sends the response.

If the request URL is not recognized, the server sends back an error page using
a 404 result code. The result code informs the browser about the status of the request,
where a 200 code means everything is fine and a 404 code means the requested page
doesn't exist. There are, of course, many other HTTP response codes, each with their
own meaning.

There are plenty more functions attached to both objects, but that's enough to get us
started.

HTTP Servers and Clients Chapter 4

[141]

To run it, type the following command:

$ node server.mjs
listening to http://localhost:8124

Then, if we paste the URL into a web browser, we see something like this:

This application is meant to be similar to PHP's sysinfo function.
Node.js's os module is consulted to provide information about the computer. This
example can easily be extended to gather other pieces of data.

A central part of any web application is the method of routing requests to request
handlers. The request object has several pieces of data attached to it, two of which
are useful for routing requests: the request.url and request.method fields.

In server.mjs, we consult the request.url data to determine which page to show
after parsing using the URL object. Our needs are modest in this server, and a simple
comparison of the pathname field is enough. Larger applications will use pattern
matching to use part of the request URL to select the request handler function and
other parts to extract request data out of the URL. We'll see this in action when we
look at Express later in the Getting started with Express section.

HTTP Servers and Clients Chapter 4

[142]

Some web applications care about the HTTP verb that is used (GET, DELETE, POST,
and so on) and so we must consult the request.method field of the request object.
For example, POST is frequently used for any FORM submissions.

That gives us a taste of developing servers with Node.js. Along the way, we breezed
past one big ES2015 feature—template strings. The template strings feature simplifies
substituting values into strings. Let's see how that works.

ES2015 multiline and template strings
The previous example showed two of the new features introduced with ES2015:
multiline and template strings. These features are meant to simplify our lives when
creating text strings.

The existing JavaScript string representations use single quotes and double quotes.
Template strings are delimited with the backtick character, which is also known as
the grave accent:

`template string text`

Before ES2015, one way to implement a multiline string was to use the following
construct:

["<html><head><title>Hello, world!</title></head>",
 "<body><h1>Hello, world!</h1>",
 "<p>OS Info</p>",
 "</body></html>"]
.join('\n')

This is an array of strings that uses the join function to smash them together into one
string. Yes, this is the code used in the same example in previous versions of this
book. This is what we can do with ES2015:

`<html><head><title>Hello, world!</title></head>
<body><h1>Hello, world!</h1>
<p>OS Info</p>
</body></html>`

This is more succinct and straightforward. The opening quote is on the first line, the
closing quote is on the last line, and everything in between is part of our string.

The real purpose of the template strings feature is to support easily substituting
values directly into strings. Many other programming languages support this ability,
and now JavaScript does, too.

HTTP Servers and Clients Chapter 4

[143]

Pre-ES2015, a programmer would have written their code like this:

[...
 "<tr><th>OS Type</th><td>{ostype} {osplat} {osarch}
{osrelease}</td></tr>"
 ...].join('\n')
.replace("{ostype}", os.type())
.replace("{osplat}", os.platform())
.replace("{osarch}", os.arch())
.replace("{osrelease}", os.release())

Similar to the previous snippet, this relied on the replace function to insert values
into the string. Again, this is extracted from the same example that was used in
previous versions of this book. With template strings, this can be written as follows:

`...<tr><th>OS Type</th><td>${os.type()} ${os.platform()} ${os.arch()}
${os.release()}</td></tr>...`

Within a template string, the part within the ${ .. } brackets is interpreted as an
expression. This can be a simple mathematical expression, a variable reference, or, as
in this case, a function call.

Using template strings to insert data carries a security risk. Have you verified that the
data is safe? Will it form the basis of a security attack? As always, data coming from
an untrusted source, such as user input, must be properly encoded for the target
context where the data is being inserted. In the example here, we should have used a
function to encode this data as HTML, perhaps. But for this case, the data is in the
form of simple strings and numbers and comes from a known, safe data source—the
built-in os module—and so we know that this application is safe.

For this and many other reasons, it is often safer to use an external template engine.
Applications such as Express make it easy to do so.

We now have a simple HTTP-based web application. To gain more experience with
HTTP events, let's add to one to a module for listening to all HTTP events.

HTTP Servers and Clients Chapter 4

[144]

HTTP Sniffer – listening to the HTTP
conversation
The events emitted by the HTTPServer object can be used for additional purposes
beyond the immediate task of delivering a web application. The following code
demonstrates a useful module that listens to all of the HTTPServer events. It could
be a useful debugging tool, which also demonstrates how HTTPServer objects
operate.

Node.js's HTTPServer object is an EventEmitter object, and HTTP Sniffer simply
listens to every server event, printing out information pertinent to each event.

Create a file named httpsniffer.mjs, containing the following code:

import * as util from 'util';
import * as url from 'url';

const timestamp = () => { return new Date().toISOString(); }

export function sniffOn(server) {
 server.on('request', (req, res) => {
 console.log(`${timestamp()} request`);
 console.log(`${timestamp()} ${reqToString(req)}`);
 });

 server.on('close', errno => { console.log(`${timestamp()}
 close errno=${errno}`); });

 server.on('checkContinue', (req, res) => {
 console.log(`${timestamp()} checkContinue`);
 console.log(`${timestamp()} ${reqToString(req)}`);
 res.writeContinue();
 });

 server.on('upgrade', (req, socket, head) => {
 console.log(`${timestamp()} upgrade`);
 console.log(`${timestamp()} ${reqToString(req)}`);
 });

 server.on('clientError', () => { console.log('clientError'); });

 // server.on('connection', e_connection);
}

export function reqToString(req) {

HTTP Servers and Clients Chapter 4

[145]

 var ret = `request ${req.method} ${req.httpVersion} ${req.url}`
 +'\n';
 ret += JSON.stringify(url.parse(req.url, true)) +'\n';
 var keys = Object.keys(req.headers);
 for (var i = 0, l = keys.length; i < l; i++) {
 var key = keys[i];
 ret += `${i} ${key}: ${req.headers[key]}` +'\n';
 }
 if (req.trailers)
 ret += util.inspect(req.trailers) +'\n';
 return ret;
}

The key here is the sniffOn function. When given an HTTPServer object, it attaches
listener functions to each HTTPServer event to print relevant data. This gives us a
fairly detailed trace of the HTTP traffic on an application.

In order to use it, make two simple modifications to server.mjs. To the top, add the
following import statement:

import { sniffOn } from '../events/httpsniffer.mjs';

Then, change the server setup, as follows:

server.listen(new URL(listenOn).port);
sniffOn(server);
console.log(`listening to ${listenOn}`);

Here, we're importing the sniffOn function and then using it to attach listener
methods to the server object.

With this in place, run the server as we did earlier. You can visit
http://localhost:8124/ in your browser and see the following console output:

$ node server.mjs
listening to http://localhost:8124
2020-01-05T02:33:09.864Z request
2020-01-05T02:33:09.868Z request GET 1.1 /osinfo
{"protocol":null,"slashes":null,"auth":null,"host":null,"port":null,"h
ostname":null,"hash":null,"search":null,"query":{},"pathname":"/osinfo
","path":"/osinfo","href":"/osinfo"}
0 host: localhost:8124
1 connection: keep-alive
2 cache-control: max-age=0
3 dnt: 1
4 upgrade-insecure-requests: 1
5 user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6)

HTTP Servers and Clients Chapter 4

[146]

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108
Safari/537.36
6 sec-fetch-user: ?1
7 accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image
/apng,*/*;q=0.8,application/signed-exchange;v=b3
8 sec-fetch-site: same-origin
9 sec-fetch-mode: navigate
10 referer: http://localhost:8124/
11 accept-encoding: gzip, deflate, br
12 accept-language: en-US,en;q=0.9
{}

You now have a tool for snooping on HTTPServer events. This simple technique
prints a detailed log of event data. This pattern can be used for any EventEmitter
objects. You can use this technique as a way to inspect the actual behavior of
EventEmitter objects in your program.

Before we move on to using Express, we need to discuss why we use application
frameworks at all.

Web application frameworks
The HTTPServer object is very close to the HTTP protocol. While this is powerful in
the same way that driving a stick shift car gives you low-level control over the
driving experience, typical web application programming is better done at a higher
level. Does anyone use assembly language to write web applications? It's better to
abstract away the HTTP details and concentrate on your application.

The Node.js developer community has developed quite a few application frameworks
to help with different aspects of abstracting away HTTP protocol details. Of these
frameworks, Express is the most popular, and Koa (http:/ /koajs. com/) should be
considered because it has fully integrated support for async functions.

The Express.js wiki has a list of frameworks built on top of Express.js or tools that
work with it. This includes template engines, middleware modules, and more. The
Express.js wiki is located at https:/ /github. com/ expressjs/ express/ wiki.

http://koajs.com/
http://koajs.com/
http://koajs.com/
http://koajs.com/
http://koajs.com/
http://koajs.com/
http://koajs.com/
http://koajs.com/
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki
https://github.com/expressjs/express/wiki

HTTP Servers and Clients Chapter 4

[147]

One reason to use a web framework is that they often have well-tested
implementations of the best practices used in web application development for over
20 years. The usual best practices include the following:

Providing a page for bad URLs (the 404 page)
Screening URLs and forms for any injected scripting attacks
Supporting the use of cookies to maintain sessions
Logging requests for both usage tracking and debugging
Authentication
Handling static files, such as images, CSS, JavaScript, or HTML
Providing cache-control headers to caching proxies
Limiting things such as the page size or execution time

Web frameworks help you invest your time in a task without getting lost in the
details of implementing the HTTP protocol. Abstracting away details is a time-
honored way for programmers to be more efficient. This is especially true when using
a library or framework that provides prepackaged functions that take care of the
details.

With that in mind, let's turn to a simple application implemented with Express.

Getting started with Express
Express is perhaps the most popular Node.js web app framework. Express is
described as being Sinatra-like, which refers to a popular Ruby application
framework. It is also regarded as not being an opinionated framework, meaning the
framework authors don't impose their opinions about structuring an application. This
means Express is not at all strict about how your code is structured; you just write it
the way you think is best.

You can visit the home page for Express at http://expressjs.com/.

As of the time of writing this book, Express 4.17 is the current version, and Express 5
is in alpha testing. According to the Express.js website, there are very few differences
between Express 4 and Express 5.

http://expressjs.com/

HTTP Servers and Clients Chapter 4

[148]

Let's start by installing express-generator. While we can just start with writing
some code, express-generator provides a blank starting application, which we'll
take and modify.

Install express-generator using the following commands:

$ mkdir fibonacci
$ cd fibonacci
$ npm install express-generator@4.x

This is different from the suggested installation method on the Express website,
which says to use the -g tag for a global installation. We're also using an explicit
version number to ensure compatibility. As of the time of writing, express-
generator@5.x does not exist, but it should exist sometime in the future. The
instructions here are written for Express 4.x, and by explicitly naming the version,
we're ensuring that we're all on the same page.

Earlier, we discussed how many people now recommend against installing modules
globally. Maybe they would consider express-generator as an exception to that
rule, or maybe not. In any case, we're not following the recommendation on the
Express website, and toward the end of this section, we'll have to uninstall express-
generator.

The result of this is that an express command is installed in the
./node_modules/.bin directory:

$ ls node_modules/.bin/
express

Run the express command, as follows:

$./node_modules/.bin/express --help

 Usage: express [options] [dir]

 Options:

 --version output the version number
 -e, --ejs add ejs engine support
 --pug add pug engine support
 --hbs add handlebars engine support
 -H, --hogan add hogan.js engine support
 -v, --view <engine> add view <engine> support
 (dust|ejs|hbs|hjs|jade|pug|twig|vash) (defaults to jade)
 --no-view use static html instead of view engine
 -c, --css <engine> add stylesheet <engine> support

HTTP Servers and Clients Chapter 4

[149]

 (less|stylus|compass|sass) (defaults to plain css)
 --git add .gitignore
 -f, --force force on non-empty directory
 -h, --help output usage information

We probably don't want to type ./node_modules/.bin/express every time we
run the express-generator application, or, for that matter, any of the other
applications that provide command-line utilities. Refer back to the discussion we had
in Chapter 3, Exploring Node.js Modules, about adding this directory to the
PATH variable. Alternatively, the npx command, also described in Chapter 3,
Exploring Node.js Modules, is useful for this.

For example, try using the following instead of installing express-generator:

$ npx express-generator@4.x --help
npx: installed 10 in 4.26s

 Usage: express [options] [dir]
...

This executes exactly the same, without having to install express-generator and
(as we'll see in a moment) remembering to uninstall it when you're done using the
command.

Now that you've installed express-generator in the fibonacci directory, use it to
set up the blank framework application:

$ express --view=hbs --git .
destination is not empty, continue? [y/N] y

 create : public/
 create : public/javascripts/
 create : public/images/
 create : public/stylesheets/
 create : public/stylesheets/style.css
 create : routes/
 create : routes/index.js
 create : routes/users.js
 create : views/
 create : views/error.hbs
 create : views/index.hbs
 create : views/layout.hbs
 create : .gitignore
 create : app.js
 create : package.json
 create : bin/
 create : bin/www

HTTP Servers and Clients Chapter 4

[150]

 install dependencies:
 $ npm install

 run the app:
 $ DEBUG=fibonacci:* npm start

This creates a bunch of files for us, which we'll walk through in a minute. We asked it
to initialize the use of the Handlebars template engine and to initialize a git
repository.

The node_modules directory still has the express-generator module, which is no
longer useful. We can just leave it there and ignore it, or we can add it to
devDependencies of the package.json file that it generated. Most likely, we will
want to uninstall it:

$ npm uninstall express-generator
added 62 packages from 78 contributors, removed 9 packages and audited
152 packages in 4.567s

This uninstalls the express-generator tool. The next thing to do is to run the blank
application in the way that we're told. The npm start command relies on a section of
the supplied package.json file:

"scripts": {
 "start": "node ./bin/www"
},

It's cool that the Express team showed us how to run the server by initializing the
scripts section in package.json. The start script is one of the scripts that
correspond to the npm sub-commands. The instructions we were given, therefore, say
to run npm start.

The steps are as follows:

Install the dependencies with npm install.1.
Start the application by using npm start.2.
Optionally, modify package.json to always run with debugging.3.

To install the dependencies and run the application, type the following commands:

$ npm install
$ DEBUG=fibonacci:* npm start

> fibonacci@0.0.0 start /Users/David/chap04/fibonacci

HTTP Servers and Clients Chapter 4

[151]

> node ./bin/www

 fibonacci:server Listening on port 3000 +0ms

Setting the DEBUG variable this way turns on the debugging output, which includes a
message about listening on port 3000. Otherwise, we aren't told this information.
This syntax is what's used in the Bash shell to run a command with an environment
variable. If you get an error when running npm start, then refer to the next section.

We can modify the supplied npm start script to always run the app with debugging
enabled. Change the scripts section to the following:

"scripts": {
 "start": "DEBUG=fibonacci:* node ./bin/www"
},

Since the output says it is listening on port 3000, we direct our browser to
http://localhost:3000/ and see the following output:

Cool, we have some running code. Before we start changing the code, we need to
discuss how to set environment variables in Windows.

Setting environment variables in the Windows
cmd.exe command line
If you're using Windows, the previous example may have failed, displaying an error
that says DEBUG is not a known command. The problem is that the Windows shell, the
cmd.exe program, does not support the Bash command-line structure.

HTTP Servers and Clients Chapter 4

[152]

Adding VARIABLE=value to the beginning of a command line is specific to some
shells, such as Bash, on Linux and macOS. It sets that environment variable only for
the command line that is being executed and is a very convenient way to temporarily
override environment variables for a specific command.

Clearly, a solution is required if you want to be able to use your package.json file
across different operating systems.

The best solution appears to be using the cross-env package in the
npm repository; refer to https:/ / www.npmjs. com/package/ cross-
env for more information.

With this package installed, commands in the scripts section in package.json can
set environment variables just as in Bash on Linux/macOS. The use of this package
looks as follows:

"scripts": {
 "start": "cross-env DEBUG=fibonacci:* node ./bin/www"
},
"dependencies": {
 ...
 "cross-env": "^6.0.3"
}

Then, the command is executed, as follows:

C:\Users\david\Documents\chap04\fibonacci>npm install
... output from installing packages
C:\Users\david\Documents\chap04\fibonacci>npm run start

> fibonacci@0.0.0 start C:\Users\david\Documents\chap04\fibonacci
> cross-env DEBUG=fibonacci:* node ./bin/www

fibonacci:server Listening on port 3000 +0ms
GET / 304 90.597 ms - -
GET /stylesheets/style.css 304 14.480 ms - -

We now have a simple way to ensure the scripts in package.json are cross-
platform. Our next step is a quick walkthrough of the generated application.

https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env

HTTP Servers and Clients Chapter 4

[153]

Walking through the default Express
application
We now have a working, blank Express application; let's look at what was generated
for us. We do this to familiarize ourselves with Express before diving in to start
coding our Fibonacci application.

Because we used the --view=hbs option, this application is set up to use the
Handlebars.js template engine.

For more information about Handlebars.js, refer to its home page
at http:/ /handlebarsjs. com/ . The version shown here has been
packaged for use with Express and is documented at https:/ /
github. com/ pillarjs/ hbs.

Generally speaking, a template engine makes it possible to insert data into generated
web pages. The Express.js wiki has a list of template engines for Express (https:/ /
github.com/expressjs/ express/ wiki#template- engines).

Notice that the JavaScript files are generated as CommonJS modules. The views
directory contains two files—error.hbs and index.hbs. The hbs extension is used
for Handlebars files. Another file, layout.hbs, is the default page layout.
Handlebars has several ways to configure layout templates and even partials
(snippets of code that can be included anywhere).

The routes directory contains the initial routing setup—that is, code to handle
specific URLs. We'll modify this later.

The public directory contains assets that the application doesn't generate but are
simply sent to the browser. What's initially installed is a CSS file,
public/stylesheets/style.css. The package.json file contains our
dependencies and other metadata.

The bin directory contains the www script that we saw earlier. This is a Node.js script
that initializes the HTTPServer objects, starts listening on a TCP port, and calls the
last file that we'll discuss, app.js. These scripts initialize Express and hook up the
routing modules, as well as other things.

http://handlebarsjs.com/
http://handlebarsjs.com/
http://handlebarsjs.com/
http://handlebarsjs.com/
http://handlebarsjs.com/
http://handlebarsjs.com/
http://handlebarsjs.com/
http://handlebarsjs.com/
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/pillarjs/hbs
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines
https://github.com/expressjs/express/wiki#template-engines

HTTP Servers and Clients Chapter 4

[154]

There's a lot going on in the www and app.js scripts, so let's start with the application
initialization. Let's first take a look at a couple of lines in app.js:

const express = require('express');
...
const app = express();
...
module.exports = app;
...

This means that app.js is a CommonJS module that exports the application object
generated by the express module. Our task in app.js is to configure that
application object. This task does not include starting the HTTPServer object,
however.

Now, let's turn to the bin/www script. It is in this script where the HTTP server is
started. The first thing to notice is that it starts with the following line:

#!/usr/bin/env node

This is a Unix/Linux technique to make a command script. It says to run the following
as a script using the node command. In other words, we have Node.js code and we're
instructing the operating system to execute that code using the Node.js runtime:

$ ls -l bin/www
-rwx------ 1 david staff 1595 Feb 5 1970 bin/www

We can also see that the script was made executable by express-generator.

It calls the app.js module, as follows:

var app = require('../app');
...
var port = normalizePort(process.env.PORT || '3000');
app.set('port', port);
...
var server = http.createServer(app);
...
server.listen(port);
server.on('error', onError);
server.on('listening', onListening);

Namely, it loads the module in app.js, gives it a port number to use, creates the
HTTPServer object, and starts it up.

HTTP Servers and Clients Chapter 4

[155]

We can see where port 3000 comes from; it's a parameter to the normalizePort
function. We can also see that setting the PORT environment variable will override the
default port 3000. Finally, we can see that the HTTPServer object is created here and
is told to use the application instance created in app.js. Try running the following
command:

$ PORT=4242 DEBUG=fibonacci:* npm start

By specifying an environment variable for PORT, we can tell the application to listen
in on port 4242, where you can ponder the meaning of life.

The app object is next passed to http.createServer(). A look at the Node.js
documentation tells us that this function takes requestListener, which is simply a
function that takes the request and response objects that we saw previously.
Therefore, the app object is the same kind of function.

Finally, the bin/www script starts the server listening process on the port we specified.

Let's now go through app.js in more detail:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'hbs');

This tells Express to look for templates in the views directory and to use the
Handlebars templating engine.

The app.set function is used to set the application properties. It'll be useful to
browse the API documentation as we go through
(http://expressjs.com/en/4x/api.html).

Next is a series of app.use calls:

app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);
app.use('/users', usersRouter);

http://expressjs.com/en/4x/api.html

HTTP Servers and Clients Chapter 4

[156]

The app.use function mounts middleware functions. This is an important piece of
Express jargon, which we will discuss shortly. At the moment, let's say that
middleware functions are executed during the processing of requests. This means all
the features named here are enabled in app.js:

Logging is enabled using the morgan request logger. Refer
to https://www.npmjs.com/package/morgan for its documentation.
The body-parser module handles parsing HTTP request bodies. Refer
to https://www.npmjs.com/package/body-parser for its documentation.
The cookie-parser module is used to parse HTTP cookies. Refer
to https://www.npmjs.com/package/cookie-parser for its documentation.
A static file web server is configured to serve the asset files in the public
directory. Refer to http:/ /expressjs. com/ en/starter/ static- files.
html for its documentation.
Two router modules—routes and users—to set up which functions
handle which URLs.

The static file web server arranges to serve, via HTTP requests, the files in the named
directory. With the configuration shown here, the
public/stylesheets/style.css file is available
at http://HOST/stylesheets/style.css.

We shouldn't feel limited to setting up an Express application this way. This is the
recommendation of the Express team, but there is nothing constraining us from
setting it up another way. For example, later in this book, we'll rewrite this entirely as
ES6 modules, rather than sticking to CommonJS modules. One glaring omission is
handlers for uncaught exceptions and unhandled Promise rejections. We'll go over
both of these later in this book.

Next, we will discuss Express middleware functions.

Understanding Express middleware
Let's round out our walkthrough of app.js by discussing what Express middleware
functions do for our application. Middleware functions are involved in processing
requests and sending results to HTTP clients. They have access to the request and
response objects and are expected to process their data and perhaps add data to
these objects. For example, the cookie parser middleware parses HTTP cookie headers
to record in the request object the cookies sent by the browser.

https://www.npmjs.com/package/morgan
https://www.npmjs.com/package/body-parser
https://www.npmjs.com/package/cookie-parser
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/static-files.html

HTTP Servers and Clients Chapter 4

[157]

We have an example of this at the end of our script:

app.use(function(req, res, next) {
 const err = new Error('Not found');
 err.status = 404;
 next(err);
});

The comment says catch 404 and forward it to the error handler. As you
probably know, an HTTP 404 status means the requested resource was not found.
We need to tell the user that their request wasn't satisfied, and maybe show them
something such as a picture of a flock of birds pulling a whale out of the ocean. This is
the first step in doing this. Before getting to the last step of reporting this error, you
need to learn how middleware works.

The name middleware implies software that executes in the middle of a chain of
processing steps.

Refer to the documentation about middleware at
http://expressjs.com/en/guide/writing-middleware.html.

Middleware functions take three arguments. The first two—request and
response—are equivalent to the request and response objects of the Node.js
HTTP request object. Express expands these objects with additional data and
capabilities. The last argument, next, is a callback function that controls when the
request-response cycle ends, and it can be used to send errors down the middleware
pipeline.

As an aside, one critique of Express is that it was written prior to the existence of
Promises and async functions. Therefore, its design is fully enmeshed with the
callback function pattern. We can still use async functions, but integrating with
Express requires using the callback functions it provides.

The overall architecture is set up so that incoming requests are handled by zero or
more middleware functions, followed by a router function, which sends the response.
The middleware functions call next, and in a normal case, provide no arguments by
calling next(). If there is an error, the middleware function indicates the error by
calling next(err), as shown here.

http://expressjs.com/en/guide/writing-middleware.html

HTTP Servers and Clients Chapter 4

[158]

For each middleware function that executes, there is, in theory, several other
middleware functions that have already been executed, and potentially several other
functions still to be run. It is required to call next to pass control to the next
middleware function.

What happens if next is not called? There is one case where we must not call next. In
all other cases, if next is not called, the HTTP request will hang because no response
will be given.

What is the one case where we must not call next? Consider the following
hypothetical router function:

app.get('/hello', function(req, res) {
 res.send('Hello World!');
});

This does not call next but instead calls res.send. The HTTP response is sent for
certain functions on the response object, such as res.send or res.render. This is
the correct method for ending the request-response cycle, by sending a response
(res.send) to the request. If neither next nor res.send are called, the request never
gets a response and the requesting client will hang.

So, a middleware function does one of the following four things:

Executes its own business logic. The request logger middleware shown
earlier is an example of this.
Modifies the request or response objects. Both body-parser and
cookie-parser do this, looking for data to add to the request object.
Calls next to proceed to the next middleware function or otherwise signals
an error.
Sends a response, ending the cycle.

The ordering of middleware execution depends on the order that they're added to the
app object. The first function added is executed first, and so on.

The next thing to understand is request handlers and how they differ from
middleware functions.

HTTP Servers and Clients Chapter 4

[159]

Contrasting middleware and request handlers
We've seen two kinds of middleware functions so far. In one, the first argument is the
handler function. In the other, the first argument is a string containing a URL snippet
and the second argument is the handler function.

What's actually going on is app.use has an optional first argument: the path that the
middleware is mounted on. The path is a pattern match against the request URL, and
the given function is triggered if the URL matches the pattern. There's even a method
to supply named parameters in the URL:

app.use('/user/profile/:id', function(req, res, next) {
 userProfiles.lookup(req.params.id, (err, profile) => {
 if (err) return next(err);
 // do something with the profile
 // Such as display it to the user
 res.send(profile.display());
 });
});

This path specification has a pattern, id, and the value will land in req.params.id.
In an Express route, this :id pattern marks a route parameter. The pattern will match
a URL segment, and the matching URL content will land and be available through the
req.params object. In this example, we're suggesting a user profile service and that
for this URL, we want to display information about the named user.

As Express scans the available functions to execute, it will try to match this pattern
against the request URL. If they match, then the router function is invoked.

It is also possible to match based on the HTTP request method, such as GET or PUT.
Instead of app.use, we would write app.METHOD—for example, app.get or
app.put. The preceding example would, therefore, be more likely to appear as
follows:

app.get('/user/profile/:id', function(req, res, next) {
 // ... as above
});

The required behavior of GET is to retrieve data, while the behavior of PUT is to store
data. However, as the example was written above, it would match either of the HTTP
methods when the handler function is only correct for the GET verb. However, using
app.get, as is the case here, ensures that the application correctly matches the
desired HTTP method.

HTTP Servers and Clients Chapter 4

[160]

Finally, we get to the Router object. This is the kind of middleware used explicitly for
routing requests based on their URL. Take a look at routes/users.js:

const express = require('express');
const router = express.Router();
router.get('/', function(req, res, next) {
 res.send('respond with a resource');
});
module.exports = router;

We have a module that creates a router object, then adds one or more router
functions. It makes the Router object available through module.exports so that
app.js can use it. This router has only one route, but router objects can have any
number of routes that you think is appropriate.

This one route matches a GET request on the / URL. That's fine until you notice that in
routes/index.js, there is a similar router function that also matches GET requests
on the / URL.

Back in app.js, usersRouter is added, as follows:

app.use('/users', usersRouter);

This takes the router object, with its zero-or-more router functions, and mounts it on
the /users URL. As Express looks for a matching routing function, it first scans the
functions attached to the app object, and for any router object, it scans its functions as
well. It then invokes any routing functions that match the request.

Going back to the issue of the / URL, the fact that the router is mounted on the /users
URL is important. That's because the actual URL it considers matching is the mount
point (/users) concatenated with the URL in the router function.

The effect is that the mount prefix is stripped from the request URL for the purpose of
matching against the router functions attached to the router object. So, with that
mount point, an incoming URL of /users/login would be stripped to just /login
in order to find a matching router function.

Since not everything goes according to plan, our applications must be capable of
handling error indications and showing error messages to users.

HTTP Servers and Clients Chapter 4

[161]

Error handling
Now, we can finally get back to the generated app.js file, the 404 Error page not
found error, and any other errors that the application might show to the user.

A middleware function indicates an error by passing a value to the next function call,
namely by calling next(err). Once Express sees the error, it skips over any
remaining non-error routings and only passes the error to error handlers instead. An
error handler function has a different signature than what we saw earlier.

In app.js, which we're examining, the following is our error handler, provided by
express-generator:

app.use(function(err, req, res, next) {
 // set locals, only providing error in development
 res.locals.message = err.message;
 res.locals.error = req.app.get('env') === 'development' ? err : {};

 res.status(err.status || 500);
 res.render('error');
});

Error handler functions take four parameters, with err added to the familiar req,
res, and next functions.

Remember that res is the response object, and we use it to set up the HTTP response
sent to the browser; even though there is an error, we still send a response.

Using res.status sets the HTTP response status code. In the simple application that
we examined earlier, we used res.writeHead to set not only the status code but also
the Multipurpose Internet Mail Extensions (MIME) type of the response.

The res.render function takes data and renders it through a template. In this case,
we're using the template named error. This corresponds to the
views/error.hbs file, which looks as follows:

<h1>{{message}}</h1>
<h2>{{error.status}}</h2>
<pre>{{error.stack}}</pre>

In a Handlebars template, the {{value}} markup means to substitute into the
template the value of the expression or variable. The values referenced by this
template—message and error—are provided by setting res.locals as shown here.

HTTP Servers and Clients Chapter 4

[162]

To see the error handler in action, let's add the following to routes/index.js:

router.get('/error', function(req, res, next) {
 next({
 status: 404,
 message: "Fake error"
 });
});

This is a route handler, and going by what we've said, it simply generates an error
indication. In a real route handler, the code would make some kind of query,
gathering up data to show to the user, and it would indicate an error only if
something happened along the way. However, we want to see the error handler in
action.

By calling next(err), as mentioned, Express will call the error handler function,
causing an error response to pop up in the browser:

Indeed, at the /error URL, we get the Fake error message, which matches the error
data sent by the route handler function.

In this section, we've created for ourselves a foundation for how Express works. Let's
now turn to an Express application that actually performs a function.

Creating an Express application to
compute Fibonacci numbers
As we discussed in Chapter 1, About Node.js we'll be using an inefficient algorithm to
calculate Fibonacci numbers to explore how to mitigate performance problems, and
along the way, we'll learn how to build a simple REST service to offload computation
to the backend server.

HTTP Servers and Clients Chapter 4

[163]

The Fibonacci numbers are the following integer sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Each Fibonacci number is the sum of the previous two numbers in the sequence. This
sequence was discovered in 1202 by Leonardo of Pisa, who was also known as
Fibonacci. One method to calculate entries in the Fibonacci sequence is using the
recursive algorithm, which we discussed in Chapter 1, About Node.js. We will create
an Express application that uses the Fibonacci implementation and along the way, we
will get a better understanding of Express applications, as well as explore several
methods to mitigate performance problems in computationally intensive algorithms.

Let's start with the blank application we created in the previous step. We named that
application Fibonacci for a reason—we were thinking ahead!

In app.js, make the following changes to the top portion of the file:

const express = require('express');
const hbs = require('hbs');
const path = require('path');
const favicon = require('serve-favicon');
const logger = require('morgan');
const cookieParser = require('cookie-parser');
const bodyParser = require('body-parser');

const indexRouter = require('./routes/index');
const fibonacciRouter = require('./routes/fibonacci');

const app = express();

// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'hbs');
hbs.registerPartials(path.join(__dirname, 'partials'));

app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', indexRouter);
app.use('/fibonacci', fibonacciRouter);

HTTP Servers and Clients Chapter 4

[164]

Most of this is what express-generator gave us. The var statements have been
changed to const for that little teensy bit of extra comfort. We explicitly imported the
hbs module so that we could do some configuration. We also imported a router
module for Fibonacci, which we'll see in a minute.

For the Fibonacci application, we don't need to support users and so we have
deleted the routing module. The routes/fibonacci.js module, which we'll show
next, serves to query a number for which we'll calculate the Fibonacci number.

In the top-level directory, create a file, math.js, containing the following extremely
simplistic Fibonacci implementation:

exports.fibonacci = function(n) {
 if (n === 0) return 0;
 else if (n === 1 || n === 2) return 1;
 else return exports.fibonacci(n-1) + exports.fibonacci(n-2);
};

In the views directory, look at the file named layout.hbs, which was created
by express-generator:

<!DOCTYPE html>
<html>
 <head>
 <title>{{title}}</title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>
 <body>
 {{{body}}}
 </body>
</html>

This file contains the structure that we'll use for the HTML pages. Going by the
Handlebars syntax, we can see that {{title}} appears within the HTML title tag.
This means that when we call res.render, we should supply a title attribute. The
{{{body}}} tag is where the view template content lands.

Change views/index.hbs to just contain the following:

<h1>{{title}}</h1>
{{> navbar}}
<p>Welcome to {{title}}</p>

HTTP Servers and Clients Chapter 4

[165]

This serves as the front page of our application. It will be inserted in place
of {{{body}}} in views/layout.hbs. The marker, {{> navbar}}, refers to a
partially named navbar object. Earlier, we configured a directory named
partials to hold partials. Now, let's create a file, partials/navbar.html,
containing the following:

<div class='navbar'>
<p>home | Fibonacci's</p>
</div>

This will serve as a navigation bar that's included on every page.

Create a file, views/fibonacci.hbs, containing the following code:

<h1>{{title}}</h1>
{{> navbar}}
{{#if fiboval}}
 <p>Fibonacci for {{fibonum}} is {{fiboval}}</p>
 <hr/>
{{/if}}
<p>Enter a number to see its' Fibonacci number</p>
<form name='fibonacci' action='/fibonacci' method='get'>
<input type='text' name='fibonum' />
<input type='submit' value='Submit' />
</form>

If fiboval is set, this renders a message that for a given number (fibonum), we have
calculated the corresponding Fibonacci number. There is also an HTML form that we
can use to enter a fibonum value.

Because it is a GET form, when the user clicks on the Submit button, the browser will
issue an HTTP GET method to the /fibonacci URL. What distinguishes
one GET method on /fibonacci from another is whether the URL contains a query
parameter named fibonum. When the user first enters the page, there is
no fibonum number and so there is nothing to calculate. After the user has entered a
number and clicked on Submit, there is a fibonum number and so something to
calculate.

Remember that the files in views are templates into which data is
rendered. They serve the view aspect of the Model-View-Controller
(MVC) paradigm, hence the directory name.

HTTP Servers and Clients Chapter 4

[166]

In routes/index.js, change the router function to the following:

router.get('/', function(req, res, next) {
 res.render('index', { title: "Welcome to the Fibonacci Calculator"
});
});

The anonymous object passed to res.render contains the data values we provide to
the layout and view templates. We're now passing a new welcome message.

Then, finally, in the routes directory, create a file named fibonacci.js, containing
the following code:

const express = require('express');
const router = express.Router();

const math = require('../math');
router.get('/', function(req, res, next) {
 if (req.query.fibonum) {
 // Calculate directly in this server
 res.render('fibonacci', {
 title: "Calculate Fibonacci numbers",
 fibonum: req.query.fibonum,
 fiboval: math.fibonacci(req.query.fibonum)
 });
 } else {
 res.render('fibonacci', {
 title: "Calculate Fibonacci numbers",
 fiboval: undefined
 });
 }
});

module.exports = router;

This route handler says it matches the / route. However, there is a route handler in
index.js that matches the same route. We haven't made a mistake, however. The
router object created by this module becomes fibonacciRouter when it lands in
app.js. Refer back to app.js and you will see that fibonacciRouter is mounted
on /fibonacci. The rule is that the actual URL path matched by a router function is
the path that the router is mounted on plus the path given for the router function. In
this case, that is /fibonacci plus /, and for a URL, that equates to /fibonacci.

The handler checks for the existence of req.query.fibonum. Express automatically
parses the HTTP request URL and any query parameters will land in req.query.
Therefore, this will trigger a URL such as /fibonacci?fibonum=5.

HTTP Servers and Clients Chapter 4

[167]

If this value is present, then we call res.render('fibonacci') with data including
fibonum, the number for which we want its Fibonacci number, and fiboval, the
corresponding Fibonacci number. Otherwise, we pass undefined for fiboval. If you
refer back to the template, if fiboval is not set, then the user only sees the form to
enter a fibonum number. Otherwise, if fiboval is set, both fibonum and fiboval
are displayed.

The package.json file is already set up, so we can use npm start to run the script
and always have debugging messages enabled. Now, we're ready to do this:

$ npm start
> fibonacci@0.0.0 start /Users/david/chap04/fibonacci
> DEBUG=fibonacci:* node ./bin/www
fibonacci:server Listening on port 3000 +0ms

As this suggests, you can visit http://localhost:3000/ and see what we have:

This page is rendered from the views/index.hbs template. Simply click on the
Fibonacci's link to go to the next page, which is, of course, rendered from the
views/fibonacci.hbs template. On that page, you'll be able to enter a number,
click on the Submit button, and get an answer (hint—pick a number below 40 if you
want your answer in a reasonable amount of time):

HTTP Servers and Clients Chapter 4

[168]

We asked you to enter a number less than 40. Go ahead and enter a larger number,
such as 50, but go take a coffee break because this is going to take a while to calculate.
Or, proceed on to reading the next section, where we will start to discuss the use of
computationally intensive code.

Computationally intensive code and
the Node.js event loop
This Fibonacci example is purposely inefficient to demonstrate an important
consideration for your applications. What happens to the Node.js event loop when
long computations are run? To see the effect, open two browser windows, each
viewing the Fibonacci page. In one, enter the number 55 or greater, and in the other,
enter 10. Note how the second window freezes, and if you leave it running long
enough, the answer will eventually pop up in both windows. What's happening in
the Node.js event loop is blocked from processing events because the Fibonacci
algorithm is running and does not ever yield to the event loop.

Since Node.js has a single execution thread, processing requests depends on request
handlers quickly returning to the event loop. Normally, the asynchronous coding
style ensures that the event loop executes regularly.

This is true even for requests that load data from a server halfway around the globe
because the asynchronous request is non-blocking and control is quickly returned to
the event loop. The naïve Fibonacci function we chose doesn't fit into this model
because it's a long-running blocking operation. This type of event handler prevents
the system from processing requests and stops Node.js from doing what it's meant to
do—namely, to be a blisteringly fast web server.

In this case, the long-response-time problem is obvious. The response time to
calculate a Fibonacci number quickly escalates to the point where you can take a
vacation to Tibet, become a Lama, and perhaps get reincarnated as a llama in Peru in
the time it takes to respond! However, it's also possible to create a long-response-time
problem without it being as obvious as this one. Of the zillion-and-one asynchronous
operations in a large web service, which one is both blocking and takes a long time to
compute the result? Any blocking operations like this will cause a negative effect on
the server throughput.

HTTP Servers and Clients Chapter 4

[169]

To see this more clearly, create a file named fibotimes.js, containing the following
code:

const math = require('./math');
for (var num = 1; num < 80; num++) {
 let now = new Date().toISOString();
 console.log(`${now} Fibonacci for ${num} = ${math.fibonacci(num)}`);
}

Now, run it. You will get the following output:

$ node fibotimes.js
2020-01-06T00:26:36.092Z Fibonacci for 1 = 1
2020-01-06T00:26:36.105Z Fibonacci for 2 = 1
2020-01-06T00:26:36.105Z Fibonacci for 3 = 2
2020-01-06T00:26:36.105Z Fibonacci for 4 = 3
2020-01-06T00:26:36.105Z Fibonacci for 5 = 5
...
2020-01-06T00:26:36.106Z Fibonacci for 10 = 55
2020-01-06T00:26:36.106Z Fibonacci for 11 = 89
2020-01-06T00:26:36.106Z Fibonacci for 12 = 144
2020-01-06T00:26:36.106Z Fibonacci for 13 = 233
2020-01-06T00:26:36.106Z Fibonacci for 14 = 377
...
2020-01-06T00:26:37.895Z Fibonacci for 40 = 102334155
2020-01-06T00:26:38.994Z Fibonacci for 41 = 165580141
2020-01-06T00:26:40.792Z Fibonacci for 42 = 267914296
2020-01-06T00:26:43.699Z Fibonacci for 43 = 433494437
2020-01-06T00:26:48.985Z Fibonacci for 44 = 701408733
...
2020-01-06T00:33:45.968Z Fibonacci for 51 = 20365011074
2020-01-06T00:38:12.184Z Fibonacci for 52 = 32951280099
^C

This quickly calculates the first 40 or so members of the Fibonacci sequence, but after
the 40th member, it starts taking a couple of seconds per result and quickly degrades
from there. It is untenable to execute code of this sort on a single-threaded system that
relies on a quick return to the event loop. A web service containing code like this
would give a poor performance to the users.

HTTP Servers and Clients Chapter 4

[170]

There are two general ways to solve this problem in Node.js:

Algorithmic refactoring: Perhaps, like the Fibonacci function we chose, one
of your algorithms is suboptimal and can be rewritten to be faster. Or, if it
is not faster, it can be split into callbacks dispatched through the event loop.
We'll look at one method for this in a moment.
Creating a backend service: Can you imagine a backend server that is
dedicated to calculating Fibonacci numbers? Okay, maybe not, but it's quite
common to implement backend servers to offload work from frontend
servers, and we will implement a backend Fibonacci server at the end of
this chapter.

With that in mind, let's examine these possibilities.

Algorithmic refactoring
To prove that we have an artificial problem on our hands, here is a much more
efficient Fibonacci function:

exports.fibonacciLoop = function(n) {
 var fibos = [];
 fibos[0] = 0;
 fibos[1] = 1;
 fibos[2] = 1;
 for (let i = 3; i <= n; i++) {
 fibos[i] = fibos[i-2] + fibos[i-1];
 }
 return fibos[n];
}

If we substitute a call to math.fibonacciLoop in place of math.fibonacci, the
fibotimes program runs much faster. Even this isn't the most efficient
implementation; for example, a simple, prewired lookup table is much faster at the
cost of some memory.

Edit fibotimes.js as follows and rerun the script. The numbers will fly by so fast
that your head will spin:

for (var num = 1; num < 8000; num++) {
 let now = new Date().toISOString();
 console.log(`${now} Fibonacci for ${num} =
${math.fibonacciLoop(num)}`);
}

HTTP Servers and Clients Chapter 4

[171]

Sometimes, your performance problems will be this easy to optimize, but other times,
they won't.

The discussion here isn't about optimizing mathematics libraries but about dealing
with inefficient algorithms that affect event throughput in a Node.js server. For that
reason, we will stick with the inefficient Fibonacci implementation.

It is possible to divide the calculation into chunks and then dispatch the computation
of those chunks through the event loop. Add the following code to math.js:

module.exports.fibonacciAsync = function(n, done) {
 if (n === 0) done(undefined, 0);
 else if (n === 1 || n === 2) done(undefined, 1);
 else {
 setImmediate(() => {
 exports.fibonacciAsync(n-1, (err, val1) => {
 if (err) done(err);
 else setImmediate(() => {
 exports.fibonacciAsync(n-2, (err, val2) => {
 if (err) done(err);
 else done(undefined, val1+val2);
 });
 });
 });
 });
 }
};

This converts the fibonacci function from a synchronous function into a traditional
callback-oriented asynchronous function. We're using setImmediate at each stage of
the calculation to ensure that the event loop executes regularly and that the server can
easily handle other requests while churning away on a calculation. It does nothing to
reduce the computation required; this is still the inefficient Fibonacci algorithm. All
we've done is spread the computation through the event loop.

In fibotimes.js, we can use the following:

const math = require('./math');

(async () => {
 for (var num = 1; num < 8000; num++) {
 await new Promise((resolve, reject) => {
 math.fibonacciAsync(num, (err, fibo) => {
 if (err) reject(err);
 else {
 let now = new Date().toISOString();

HTTP Servers and Clients Chapter 4

[172]

 console.log(`${now} Fibonacci for ${num} =
 ${fibo}`);
 resolve();
 }
 })
 })
 }
})().catch(err => { console.error(err); });

We're back to an inefficient algorithm, but one where calculations are distributed
through the event loop. Running this version of fibotimes.js demonstrates its
inefficiency. To demonstrate it in the server, we need to make a few changes.

Because it's an asynchronous function, we will need to change our router code. Create
a new file, named routes/fibonacci-async1.js, containing the following code:

const express = require('express');
const router = express.Router();

const math = require('../math');

router.get('/', function(req, res, next) {
 if (req.query.fibonum) {
 // Calculate using async-aware function, in this server
 math.fibonacciAsync(req.query.fibonum, (err, fiboval) => {
 if (err) next(err);
 else {
 res.render('fibonacci', {
 title: "Calculate Fibonacci numbers",
 fibonum: req.query.fibonum,
 fiboval: fiboval
 });
 }
 });
 } else {
 res.render('fibonacci', {
 title: "Calculate Fibonacci numbers",
 fiboval: undefined
 });
 }
});

module.exports = router;

This is the same code as earlier, just rewritten for an asynchronous Fibonacci
calculation. The Fibonacci number is returned via a callback function, and even
though we have the beginnings of a callback pyramid, it is still manageable.

HTTP Servers and Clients Chapter 4

[173]

In app.js, make the following change to the application wiring:

// const fibonacci = require('./routes/fibonacci');
const fibonacci = require('./routes/fibonacci-async1');

With this change, the server no longer freezes when calculating a large Fibonacci
number. The calculation, of course, still takes a long time, but at least other users of
the application aren't blocked.

You can verify this by again opening two browser windows in the application. Enter
60 in one window, and in the other, start requesting smaller Fibonacci numbers.
Unlike with the original fibonacci function, using fibonacciAsync allows both
windows to give answers, although if you really did enter 60 in the first window, you
might as well take that three-month vacation to Tibet:

It's up to you and your specific algorithms to choose how best to optimize your code
and handle any long-running computations you may have.

HTTP Servers and Clients Chapter 4

[174]

We've created a simple Express application and demonstrated that there is a flaw that
affects performance. We've also discussed algorithmic refactoring, which just leaves
us to discuss how to implement a backend service. But first, we need to learn how to
create and access a REST service.

Making HTTPClient requests
Another way to mitigate computationally intensive code is to push the calculation to
a backend process. To explore that strategy, we'll request computations from a
backend Fibonacci server, using the HTTPClient object to do so. However, before we
look at that, let's first talk in general about using the HTTPClient object.

Node.js includes an HTTPClient object, which is useful for making HTTP requests. It
has the capability to issue any kind of HTTP request. In this section, we'll use the
HTTPClient object to make HTTP requests similar to calling a REST web service.

Let's start with some code inspired by the wget or curl commands to make HTTP
requests and show the results. Create a file named wget.js, containing the following
code:

const http = require('http');
const url = require('url');
const util = require('util');

const argUrl = process.argv[2];
const parsedUrl = url.parse(argUrl, true);

// The options object is passed to http.request
// telling it the URL to retrieve
const options = {
 host: parsedUrl.hostname,
 port: parsedUrl.port,
 path: parsedUrl.pathname,
 method: 'GET'
};

if (parsedUrl.search) options.path += `?${parsedUrl.search}`;

const req = http.request(options);
// Invoked when the request is finished
req.on('response', res => {
 console.log(`STATUS: ${res.statusCode}`);
 console.log(`HEADERS: ${util.inspect(res.headers)}`);
 res.setEncoding('utf8');

HTTP Servers and Clients Chapter 4

[175]

 res.on('data', chunk => { console.log(`BODY: ${chunk}`); });
 res.on('error', err => { console.log(`RESPONSE ERROR: ${err}`); });
});
// Invoked on errors
req.on('error', err => { console.log(`REQUEST ERROR: ${err}`); });
req.end();

We invoke an HTTP request by using http.request, passing in an options object
describing the request. In this case, we're making a GET request to the server
described in a URL we provide on the command line. When the response arrives, the
response event is fired and we can print out the response. Likewise, an error event
is fired on errors, and we can print out the error.

This corresponds to the HTTP protocol, where the client sends a request and receives
a response.

You can run the script as follows:

$ node wget.js http://example.com
STATUS: 200
HEADERS: {
 'accept-ranges': 'bytes',
 'cache-control': 'max-age=604800',
 'content-type': 'text/html; charset=UTF-8',
 date: 'Mon, 06 Jan 2020 02:29:51 GMT',
 etag: '"3147526947"',
 expires: 'Mon, 13 Jan 2020 02:29:51 GMT',
 'last-modified': 'Thu, 17 Oct 2019 07:18:26 GMT',
 server: 'ECS (sjc/4E73)',
 vary: 'Accept-Encoding',
 'x-cache': 'HIT',
 'content-length': '1256',
 connection: 'close'
}
BODY: <!doctype html>
<html>
...

Yes, example.com is a real website—visit it someday. There's more in the printout,
namely the HTML of the page at http://example.com/. What we've done is
demonstrated how to invoke an HTTP request using the http.request function.

HTTP Servers and Clients Chapter 4

[176]

The options object is fairly straightforward, with the host, port, and path fields
specifying the URL that is requested. The method field must be one of the HTTP
verbs (GET, PUT, POST, and so on). You can also provide a headers array for the
headers in the HTTP request. For example, you might need to provide a cookie:

var options = {
 headers: { 'Cookie': '.. cookie value' }
};

The response object is itself an EventEmitter object that emits the data and error
events. The data event is called as data arrives and the error event is, of course,
called on errors.

The request object is a WritableStream object, which is useful for HTTP requests
containing data, such as PUT or POST. This means the request object has a write
function, which writes data to the requester. The data format in an HTTP request is
specified by the standard MIME type, which was originally created to give us a better
email service. Around 1992, the World Wide Web (WWW) community worked with
the MIME standard committee, who were developing a format for multi-part, multi-
media-rich electronic mail. Receiving fancy-looking email is so commonplace today
that you might not be aware that email used to come in plaintext. MIME types were
developed to describe the format of each piece of data, and the WWW community
adopted this for use on the web. HTML forms will post with a content type of
multipart/form-data, for example.

The next step in offloading some computation to a backend service is to implement
the REST service and to make HTTP client requests to that service.

Calling a REST backend service from an
Express application
Now that we've seen how to make HTTP client requests, we can look at how to make
a REST query within an Express web application. What that effectively means is
making an HTTP GET request to a backend server, which responds to the Fibonacci
number represented by the URL. To do so, we'll refactor the Fibonacci application to
make a Fibonacci server that is called from the application. While this is overkill for
calculating Fibonacci numbers, it lets us see the basics of implementing a multi-tier
application stack in Express.

HTTP Servers and Clients Chapter 4

[177]

Inherently, calling a REST service is an asynchronous operation. That means calling
the REST service will involve a function call to initiate the request and a callback
function to receive the response. REST services are accessed over HTTP, so we'll use
the HTTPClient object to do so. We'll start this little experiment by writing a REST
server and exercising it by making calls to the service. Then, we'll refactor the
Fibonacci service to call that server.

Implementing a simple REST server with
Express
While Express can also be used to implement a simple REST service, the
parameterized URLs we showed earlier (/user/profile/:id) can act like
parameters to a REST call. Express makes it easy to return data encoded in JSON
format.

Now, create a file named fiboserver.js, containing the following code:

const math = require('./math');
const express = require('express');
const logger = require('morgan');
const app = express();
app.use(logger('dev'));
app.get('/fibonacci/:n', (req, res, next) => {
 math.fibonacciAsync(Math.floor(req.params.n), (err, val) => {
 if (err) next(`FIBO SERVER ERROR ${err}`);
 else {
 res.send({
 n: req.params.n,
 result: val
 });
 }
 });
});
app.listen(process.env.SERVERPORT);

This is a stripped-down Express application that gets right to the point of providing a
Fibonacci calculation service. The one route it supports handles the Fibonacci
computation using the same functions that we've already worked with.

This is the first time we've seen res.send used. It's a flexible way to send responses
that can take an array of header values (for the HTTP response header) and an HTTP
status code. As used here, it automatically detects the object, formats it as JSON text,
and sends it with the correct Content-Type parameter.

HTTP Servers and Clients Chapter 4

[178]

In package.json, add the following to the scripts section:

"server": "cross-env SERVERPORT=3002 node ./fiboserver"

This automates launching our Fibonacci service.

Note that we're specifying the TCP/IP port via an environment
variable and using that variable in the application. Some suggest
that putting configuration data in the environment variable is the
best practice.

Now, let's run it:

$ npm run server
> fibonacci@0.0.0 server /Users/David/chap04/fibonacci
> cross-env SERVERPORT=3002 node ./fiboserver

Then, in a separate command window, we can use the curl program to make some
requests against this service:

$ curl -f http://localhost:3002/fibonacci/10
{"n":"10","result":55}
$ curl -f http://localhost:3002/fibonacci/11
{"n":"11","result":89}
$ curl -f http://localhost:3002/fibonacci/12
{"n":"12","result":144}

Over in the window where the service is running, we'll see a log of GET requests and
how long each request took to process:

$ npm run server

> fibonacci@0.0.0 server /Users/David/chap04/fibonacci
> cross-env SERVERPORT=3002 node ./fiboserver

GET /fibonacci/10 200 0.393 ms - 22
GET /fibonacci/11 200 0.647 ms - 22
GET /fibonacci/12 200 0.772 ms - 23

That's easy—using curl, we can make HTTP GET requests. Now, let's create a simple
client program, fiboclient.js, to programmatically call the Fibonacci service:

const http = require('http');
[
 "/fibonacci/30", "/fibonacci/20", "/fibonacci/10",
 "/fibonacci/9", "/fibonacci/8", "/fibonacci/7",
 "/fibonacci/6", "/fibonacci/5", "/fibonacci/4",

HTTP Servers and Clients Chapter 4

[179]

 "/fibonacci/3", "/fibonacci/2", "/fibonacci/1"
].forEach((path) => {
 console.log(`${new Date().toISOString()} requesting ${path}`);
 var req = http.request({
 host: "localhost",
 port: process.env.SERVERPORT,
 path,
 method: 'GET'
 }, res => {
 res.on('data', (chunk) => {
 console.log(`${new Date().toISOString()} BODY: ${chunk}`);
 });
 });
 req.end();
});

This is our good friend http.request with a suitable options object. We're
executing it in a loop, so pay attention to the order that the requests are made versus
the order the responses arrive.

Then, in package.json, add the following to the scripts section:

"scripts": {
 "start": "node ./bin/www",
 "server": "cross-env SERVERPORT=3002 node ./fiboserver" ,
 "client": "cross-env SERVERPORT=3002 node ./fiboclient"
}

Then, run the client app:

$ npm run client

> fibonacci@0.0.0 client /Volumes/Extra/nodejs/Node.js-14-Web-
Development/Chapter04/fibonacci
> cross-env SERVERPORT=3002 node ./fiboclient

2020-01-06T03:18:19.048Z requesting /fibonacci/30
2020-01-06T03:18:19.076Z requesting /fibonacci/20
2020-01-06T03:18:19.077Z requesting /fibonacci/10
2020-01-06T03:18:19.077Z requesting /fibonacci/9
2020-01-06T03:18:19.078Z requesting /fibonacci/8
2020-01-06T03:18:19.079Z requesting /fibonacci/7
2020-01-06T03:18:19.079Z requesting /fibonacci/6
2020-01-06T03:18:19.079Z requesting /fibonacci/5
2020-01-06T03:18:19.080Z requesting /fibonacci/4
2020-01-06T03:18:19.080Z requesting /fibonacci/3
2020-01-06T03:18:19.080Z requesting /fibonacci/2
2020-01-06T03:18:19.081Z requesting /fibonacci/1

HTTP Servers and Clients Chapter 4

[180]

2020-01-06T03:18:19.150Z BODY: {"n":"10","result":55}
2020-01-06T03:18:19.168Z BODY: {"n":"4","result":3}
2020-01-06T03:18:19.170Z BODY: {"n":"5","result":5}
2020-01-06T03:18:19.179Z BODY: {"n":"3","result":2}
2020-01-06T03:18:19.182Z BODY: {"n":"6","result":8}
2020-01-06T03:18:19.185Z BODY: {"n":"1","result":1}
2020-01-06T03:18:19.191Z BODY: {"n":"2","result":1}
2020-01-06T03:18:19.205Z BODY: {"n":"7","result":13}
2020-01-06T03:18:19.216Z BODY: {"n":"8","result":21}
2020-01-06T03:18:19.232Z BODY: {"n":"9","result":34}
2020-01-06T03:18:19.345Z BODY: {"n":"20","result":6765}
2020-01-06T03:18:24.682Z BODY: {"n":"30","result":832040}

We're building our way toward adding the REST service to the web application. At
this point, we've proved several things, one of which is the ability to call a REST
service in our program.

We also inadvertently demonstrated an issue with long-running calculations. You'll
notice that the requests were made from the largest to the smallest, but the results
appeared in a very different order. Why? This is because of the processing time
required for each request, and the inefficient algorithm we're using. The computation
time increases enough to ensure that larger request values have enough processing
time to reverse the order.

What happens is that fiboclient.js sends all of its requests right away, and then
each one waits for the response to arrive. Because the server is using
fibonacciAsync, it will work on calculating all the responses simultaneously. The
values that are quickest to calculate are the ones that will be ready first. As the
responses arrive in the client, the matching response handler fires, and in this case,
the result prints to the console. The results will arrive when they're ready, and not a
millisecond sooner.

We now have enough on our hands to offload Fibonacci calculation to a backend
service.

HTTP Servers and Clients Chapter 4

[181]

Refactoring the Fibonacci application to call
the REST service
Now that we've implemented a REST-based server, we can return to the Fibonacci
application, applying what we've learned to improve it. We will lift some of the code
from fiboclient.js and transplant it into the application to do this. Create a new
file, routes/fibonacci-rest.js, with the following code:

const express = require('express');
const router = express.Router();
const http = require('http');
const math = require('../math');

router.get('/', function (req, res, next) {
 if (req.query.fibonum) {
 var httpreq = http.request({
 host: "localhost",
 port: process.env.SERVERPORT,
 path: `/fibonacci/${Math.floor(req.query.fibonum)}`,
 method: 'GET'
 });
 httpreq.on('response', (response) => {
 response.on('data', (chunk) => {
 var data = JSON.parse(chunk);
 res.render('fibonacci', {
 title: "Calculate Fibonacci numbers",
 fibonum: req.query.fibonum,
 fiboval: data.result
 });
 });
 response.on('error', (err) => { next(err); });
 });
 httpreq.on('error', (err) => { next(err); });
 httpreq.end();
 } else {
 res.render('fibonacci', {
 title: "Calculate Fibonacci numbers",
 fiboval: undefined
 });
 }
});

module.exports = router;

HTTP Servers and Clients Chapter 4

[182]

This is a new variant of the Fibonacci route handler, this time calling the REST
backend service. We've transplanted the http.request call from
fiboclient.js and integrated the events coming from the client object with the
Express route handler. In the normal path of execution, the HTTPClient issues a
response event, containing a response object. When that object issues a data event,
we have our result. The result is JSON text, which we can parse and then return to the
browser as the response to its request.

In app.js, make the following change:

const index = require('./routes/index');
// const fibonacci = require('./routes/fibonacci');
// const fibonacci = require('./routes/fibonacci-async1');
// const fibonacci = require('./routes/fibonacci-await');
const fibonacci = require('./routes/fibonacci-rest');

This, of course, reconfigures it to use the new route handler. Then, in package.json,
change the scripts entry to the following:

"scripts": {
 "start": "cross-env DEBUG=fibonacci:* node ./bin/www",
 "startrest": "cross-env DEBUG=fibonacci:* SERVERPORT=3002 node
./fiboserver",
 "server": "cross-env DEBUG=fibonacci:* SERVERPORT=3002 node
./bin/www",
 "client": "cross-env DEBUG=fibonacci:* SERVERPORT=3002 node
./fiboclient"
},

How can we have the same value for SERVERPORT for all three scripts entries? The
answer is that the variable is used differently in different places. In startrest, this
variable is used in routes/fibonacci-rest.js to know at which port the REST
service is running. Likewise, in client, fiboclient.js uses this variable for the
same purpose. Finally, in server, the fiboserver.js script uses the SERVERPORT
variable to know which port to listen on.

In start and startrest, no value is given for PORT. In both cases, bin/www defaults
to PORT=3000 if a value is not specified.

HTTP Servers and Clients Chapter 4

[183]

In a command window, start the backend server, and in another, start the application.
Open a browser window, as before, and make a few requests. You should see an
output similar to the following:

$ npm run startrest

> fibonacci@0.0.0 startrest /Users/David/chap04/fibonacci
> cross-env DEBUG=fibonacci:* SERVERPORT=3002 node ./fiboserver

GET /fibonacci/34 200 21124.036 ms - 27
GET /fibonacci/12 200 1.578 ms - 23
GET /fibonacci/16 200 6.600 ms - 23
GET /fibonacci/20 200 33.980 ms - 24
GET /fibonacci/28 200 1257.514 ms - 26

The output looks like this for the application:

$ npm run server

> fibonacci@0.0.0 server /Users/David/chap04/fibonacci
> cross-env DEBUG=fibonacci:* SERVERPORT=3002 node ./bin/www

 fibonacci:server Listening on port 3000 +0ms
GET /fibonacci?fibonum=34 200 21317.792 ms - 548
GET /stylesheets/style.css 304 20.952 ms - -
GET /fibonacci?fibonum=12 304 109.516 ms - -
GET /stylesheets/style.css 304 0.465 ms - -
GET /fibonacci?fibonum=16 200 83.067 ms - 544
GET /stylesheets/style.css 304 0.900 ms - -
GET /fibonacci?fibonum=20 200 221.842 ms - 545
GET /stylesheets/style.css 304 0.778 ms - -
GET /fibonacci?fibonum=28 200 1428.292 ms - 547
GET /stylesheets/style.css 304 19.083 ms - -

Because we haven't changed the templates, the screen will look exactly as it did
earlier.

We may run into another problem with this solution. The asynchronous
implementation of our inefficient Fibonacci algorithm may cause the Fibonacci service
process to run out of memory. In the Node.js FAQs,
https://github.com/nodejs/node/wiki/FAQ, it's suggested to use the --
max_old_space_size flag. You'd add this to package.json, as follows:

"server": "cross-env SERVERPORT=3002 node ./fiboserver --
max_old_space_size 5000",

https://github.com/nodejs/node/wiki/FAQ

HTTP Servers and Clients Chapter 4

[184]

However, the FAQs also say that if you're running into maximum memory space
problems, your application should probably be refactored. This goes back to the point
we made earlier that there are several approaches to addressing performance
problems, one of which is the algorithmic refactoring of your application.

Why go through the trouble of developing this REST server when we could just
directly use fibonacciAsync?

The main advantage is the ability to push the CPU load for this heavyweight
calculation to a separate server. Doing so preserves the CPU capacity on the frontend
server so that it can attend to the web browsers. GPU coprocessors are now widely
used for numerical computing and can be accessed via a simple network API. The
heavy computation can be kept separate, and you can even deploy a cluster of
backend servers sitting behind a load balancer, evenly distributing requests.
Decisions such as this are made all the time to create multi-tier systems.

What we've demonstrated is that it's possible to implement simple multi-tier REST
services in a few lines of Node.js and Express. This whole exercise gave us a chance to
think about computationally intensive code in Node.js and the value of splitting a
larger service into multiple services.

Of course, Express isn't the only framework that can help us create REST services.

Some RESTful modules and frameworks
Here are a few available packages and frameworks to assist your REST-based
projects:

Restify (>http://restify.com/): This offers both client-side and server-
side frameworks for both ends of REST transactions. The server-side API is
similar to Express.
Loopback (http:/ /loopback. io/): This is an offering from StrongLoop. It
offers a lot of features and is, of course, built on top of Express.

In this section, we've done a big thing in creating a backend REST service.

http://restify.com/
http://restify.com/
http://loopback.io/
http://loopback.io/
http://loopback.io/
http://loopback.io/
http://loopback.io/
http://loopback.io/
http://loopback.io/
http://loopback.io/

HTTP Servers and Clients Chapter 4

[185]

Summary
You learned a lot in this chapter about Node.js's EventEmitter pattern,
HTTPClient, and server objects, at least two ways to create an HTTP service, how to
implement web applications, and even how to create a REST client and REST service
integrated into a customer-facing web application. Along the way, we again explored
the risks of blocking operations, the importance of keeping the event loop running,
and a couple of ways to distribute work across multiple services.

Now, we can move on to implementing a more complete application: one for taking
notes. We will use the Notes application in several upcoming chapters as a vehicle to
explore the Express application framework, database access, deployment to cloud
services or on your own server, user authentication, semi-real-time communication
between users, and even hardening an application against several kinds of attacks.
We'll end up with an application that can be deployed to cloud infrastructure.

There's still a lot to cover in this book, and it starts in the next chapter with creating a
basic Express application.

2
Section 2: Developing the

Express Application
The core of this book is developing an Express application from the initial concept of
storing data in a database and supporting multiple users.

This section comprises the following chapters:

Chapter 5, Your First Express Application
Chapter 6, Implementing the Mobile-First Paradigm
Chapter 7, Data Storage and Retrieval
Chapter 8, Authenticating Users with a Microservice
Chapter 9, Dynamic Client/Server Interaction with Socket.IO

5
Your First Express

Application
Now that we've got our feet wet building an Express application for Node.js, let's
start developing an application that performs a useful function. The application we'll
build will keep a list of notes and will eventually have users who can send messages
to each other. Over the course of this book, we will use it to explore some aspects of
real Express web applications.

In this chapter, we'll start with the basic structure of an application, the initial UI, and
the data model. We'll also lay the groundwork for adding persistent data storage and
all the other features that we will cover in later chapters.

The topics covered in this chapter include the following:

Using Promises and async functions in Express router functions
JavaScript class definitions and data hiding in JavaScript classes
The architecture of an Express application using the MVC paradigm
Building an Express application
Implementing the CRUD paradigm
Express application theming and Handlebars templates

To get started, we will talk about integrating Express router callbacks with async
functions.

Your First Express Application Chapter 5

[188]

Exploring Promises and async functions
in Express router functions
Before we get into developing our application, we need to take a deeper look at using
the Promise class and async functions with Express because Express was invented
before these features existed, and so it does not directly integrate with them. While
we should be using async functions wherever possible, we have to be aware of how
to properly use them in certain circumstances, such as in an Express application.

The rules in Express for handling asynchronous execution are as follows:

Synchronous errors are caught by Express and cause the application to go
to the error handler.
Asynchronous errors must be reported by calling next(err).
A successfully executing middleware function tells Express to invoke the
next middleware by calling next().
A router function that returns a result to the HTTP request does not call
next().

In this section, we'll discuss three ways to use Promises and async functions in a way
that is compatible with these rules.

Both Promises and async functions are used for deferred and asynchronous
computation and can make intensely nested callback functions a thing of the past:

A Promise class represents an operation that hasn't completed yet but is
expected to be completed in the future. We've used Promises already, so
we know that the .then or .catch functions are invoked asynchronously
when the promised result (or error) is available.
Inside an async function, the await keyword is available to automatically
wait for a Promise to resolve. It returns the result of a Promise, or else
throws errors, in the natural location at the next line of code, while also
accommodating asynchronous execution.

The magic of async functions is that we can write asynchronous code that looks like
synchronous code. It's still asynchronous code—meaning it works correctly with the
Node.js event loop—but instead of results and errors landing inside callback
functions, errors are thrown naturally as exceptions and results naturally land on the
next line of code.

Your First Express Application Chapter 5

[189]

Because this is a new feature in JavaScript, there are several traditional asynchronous
coding practices with which we must correctly integrate. You may come across some
other libraries for managing asynchronous code, including the following:

The async library is a collection of functions for various asynchronous
patterns. It was originally completely implemented around the callback
function paradigm, but the current version can handle async functions and
is available as an ES6 package. Refer to https:/ /www. npmjs. com/ package/
async for more information.
Before Promises were standardized, at least two implementations were
available: Bluebird (http:/ /bluebirdjs. com/) and Q (https:/ /www. npmjs.
com/ package/ q). Nowadays, we focus on using the standard, built-in
Promise object, but both of these packages offer additional features.
What's more likely is that we will come across older code that uses these
libraries.

These and other tools were developed to make it easier to write asynchronous code
and to solve the pyramid of doom problem. This is named after the shape that the
code takes after a few layers of nesting. Any multistage process written as callbacks
can quickly escalate to code that is nested many levels deep. Consider the following
example:

router.get('/path/to/something', (req, res, next) => {
 doSomething(req.query.arg1, req.query.arg2, (err, data1) => {
 if (err) return next(err);
 doAnotherThing(req.query.arg3, req.query.arg2, data1, (err2,
 data2) => {
 if (err2) return next(err2);
 somethingCompletelyDifferent(req.query.arg1, req.query.arg42,
 (err3, data3) => {
 if (err3) return next(err3);
 doSomethingElse((err4, data4) => {
 if (err4) return next(err4);
 res.render('page', { data1, data2, data3, data4 });
 });
 });
 });
 });
});

https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
https://www.npmjs.com/package/async
http://bluebirdjs.com/
http://bluebirdjs.com/
http://bluebirdjs.com/
http://bluebirdjs.com/
http://bluebirdjs.com/
http://bluebirdjs.com/
http://bluebirdjs.com/
http://bluebirdjs.com/
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q
https://www.npmjs.com/package/q

Your First Express Application Chapter 5

[190]

We don't need to worry about the specific functions, but we should instead recognize
that one callback tends to lead to another. Before you know it, you've landed in the
middle of a deeply nested structure like this. Rewriting this as an async function will
make it much clearer. To get there, we need to examine how Promises are used to
manage asynchronous results, as well as get a deeper understanding of async
functions.

A Promise is either in an unresolved or resolved state. This means that we create a
Promise using new Promise, and initially, it is in the unresolved state. The Promise
object transitions to the resolved state, where either its resolve or reject functions
are called. If the resolve function is called, the Promise is in a successful state, and if
instead its reject function is called, the Promise is in a failed state.

More precisely, Promise objects can be in one of three states:

Pending: This is the initial state, which is neither fulfilled nor rejected.
Fulfilled: This is the final state, where it executes successfully
and produces a result.
Rejected: This is the final state, where execution fails.

We generate a Promise in the following way:

function asyncFunction(arg1, arg2) {
 return new Promise((resolve, reject) => {
 // perform some task or computation that's asynchronous
 // for any error detected:
 if (errorDetected) return reject(dataAboutError);
 // When the task is finished
 resolve(theResult);
 });
};

A function like this creates the Promise object, giving it a callback function, within
which is your asynchronous operation. The resolve and reject functions are
passed into that function and are called when the Promise is resolved as either a
success or failure state. A typical use of new Promise is a structure like this:

function readFile(filename) {
 return new Promise((resolve, reject) => {
 fs.readFile(filename, (err, data) => {
 if (err) reject(err);
 else resolve(data);
 });
 });
}

Your First Express Application Chapter 5

[191]

This is the pattern that we use when promisifying an asynchronous function that uses
callbacks. The asynchronous code executes, and in the callback, we invoke either
resolve or reject, as appropriate. We can usually use
the util.promisify Node.js function to do this for us, but it's very useful to know
how to construct this as needed.

Your caller then uses the function, as follows:

asyncFunction(arg1, arg2)
.then((result) => {
 // the operation succeeded
 // do something with the result
 return newResult;
})
.catch(err => {
 // an error occurred
});

The Promise object is fluid enough that the function passed in a .then handler can
return something, such as another Promise, and you can chain the .then calls
together. The value returned in a .then handler (if any) becomes a new Promise
object, and in this way, you can construct a chain of .then and .catch calls to
manage a sequence of asynchronous operations.

With the Promise object, a sequence of asynchronous operations is called a Promise
chain, consisting of chained .then handlers, as we will see in the next section.

Promises and error handling in Express router
functions
It is important that all errors are correctly handled and reported to Express. With
synchronous code, Express will correctly catch a thrown exception and send it to the
error handler. Take the following example:

app.get('/', function (req, res) {
 throw new Error('BROKEN');
});

Your First Express Application Chapter 5

[192]

Express catches that exception and does the right thing, meaning it invokes the error
handler, but it does not see a thrown exception in asynchronous code. Consider the
following error example:

app.get('/', (req, res) => {
 fs.readFile('/does-not-exist', (err, data) => {
 if (err) throw new Error(err);
 // do something with data, like
 res.send(data);
 });
});

This is an example of the error indicator landing in an inconvenient place in the
callback function. The exception is thrown in a completely different stack frame than
the one invoked by Express. Even if we arranged to return a Promise, as is the case
with an async function, Express doesn't handle the Promise. In this example, the error
is lost; the caller would never receive a response and nobody would know why.

It is important to reliably catch any errors and respond to the caller with results or
errors. To understand this better, let's rewrite the pyramid of doom example:

router.get('/path/to/something', (req, res, next) => {
 let data1, data2, data3, data4;
 doSomething(req.query.arg1, req.query.arg2)
 .then(_data1 => {
 data1 = _data1;
 return doAnotherThing(req.query.arg3, req.query.arg2, data1);
 })
 .then(_data2 => {
 data2 = _data2;
 return somethingCompletelyDifferent(req.query.arg1,
req.query.arg42);
 })
 .then(_data3 => {
 data3 = _data3;
 return doSomethingElse();
 })
 .then(_data4 => {
 data4 = _data4;
 res.render('page', { data1, data2, data3, data4 });
 })
 .catch(err => { next(err); });
});

This is rewritten using a Promise chain, rather than nested callbacks. What had been a
deeply nested pyramid of callback functions is now arguably a little cleaner thanks to
Promises.

Your First Express Application Chapter 5

[193]

The Promise class automatically captures all the errors and searches down the chain
of operations attached to the Promise to find and invoke the first .catch function. So
long as no errors occur, each .then function in the chain is executed in turn.

One advantage of this is that error reporting and handling is much easier. With the
callback paradigm, the nature of the callback pyramid makes error reporting trickier,
and it's easy to miss adding the correct error handling to every possible branch of the
pyramid. Another advantage is that the structure is flatter and, therefore, easier to
read.

To integrate this style with Express, notice the following:

The final step in the Promise chain uses res.render or a similar function
to return a response to the caller.
The final catch function reports any errors to Express using next(err).

If instead we simply returned the Promise and it was in the rejected state, Express
would not handle that failed rejection and the error would be lost.

Having looked at integrating asynchronous callbacks and Promise chains with
Express, let's look at integrating async functions.

Integrating async functions with Express
router functions
There are two problems that need to be addressed that are related to asynchronous
coding in JavaScript. The first is the pyramid of doom, an unwieldily nested callback
structure. The second is the inconvenience of where results and errors are delivered
in an asynchronous callback.

To explain, let's reiterate the example that Ryan Dahl gives as the primary Node.js
idiom:

db.query('SELECT ..etc..', function(err, resultSet) {
 if (err) {
 // Instead, errors arrive here
 } else {
 // Instead, results arrive here
 }
});
// We WANT the errors or results to arrive here

Your First Express Application Chapter 5

[194]

The goal here is to avoid blocking the event loop with a long operation. Deferring the
processing of results or errors using callback functions is an excellent solution and is
the founding idiom of Node.js. The implementation of callback functions led to this
pyramid-shaped problem. Promises help flatten the code so that it is no longer in a
pyramid shape. They also capture errors, ensuring delivery to a useful location. In
both cases, errors and results are buried inside an anonymous function and are not
delivered to the next line of code.

Generators and the iteration protocol are an intermediary
architectural step that, when combined with Promises, lead to the
async function. We won't use either of these in this book, but they
are worth learning about.

For the documentation for the iteration protocol, refer to https:/ /
developer. mozilla. org/ en-US/ docs/ Web/ JavaScript/ Reference/
Iteration_ protocols.

For the documentation for the generator functions, refer to https:/ /
developer. mozilla. org/ en-US/ docs/ Web/ JavaScript/ Reference/
Global_ Objects/ Generator.

We've already used async functions and learned about how they let us write clean-
looking asynchronous code. For example, the db.query example as an async function
looks as follows:

async function dbQuery(params) {
 const resultSet = await db.query('SELECT ..etc..');
 // results and errors land here
 return resultSet;
}

This is much cleaner, with results and errors landing where we want them to.

However, to discuss integration with Express, let's return to the pyramid of doom
example from earlier, rewriting it as an async function:

router.get('/path/to/something', async (req, res, next) => {
 try {
 const data1 = await doSomething(req.query.arg1, req.query.arg2);
 const data2 = await doAnotherThing(req.query.arg3,
 req.query.arg2, data1);
 const data3 = await somethingCompletelyDifferent(req.query.arg1,
 req.query.arg42);
 const data4 = await doSomethingElse();
 res.render('page', { data1, data2, data3, data4 });

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator

Your First Express Application Chapter 5

[195]

 } catch(err) {
 next(err);
 }
});

Other than try/catch, this example is very clean compared to its earlier forms, both
as a callback pyramid and as a Promise chain. All the boilerplate code is erased, and
the intent of the programmer shines through clearly. Nothing is lost inside a callback
function. Instead, everything lands on the next line of code where it is convenient.

The await keyword looks for a Promise. Therefore, doSomething and the other
functions are expected to return a Promise, and await manages its resolution. Each of
these functions could be an async function, and thereby automatically returns a
Promise, or it could explicitly create a Promise to manage an asynchronous function
call. A generator function is also involved, but we don't need to know how that
works. We just need to know that await manages the asynchronous execution and
the resolution of the Promise.

More importantly, each statement with an await keyword executes asynchronously.
That's a side effect of await—managing asynchronous execution to ensure the
asynchronous result or error is delivered correctly. However, Express cannot catch an
asynchronous error and requires us to notify it of asynchronous results using next().

The try/catch structure is needed for integration with Express. For the reasons just
given, we must explicitly catch asynchronously delivered errors and notify Express
with next(err).

In this section, we discussed three methods for notifying Express about
asynchronously delivered errors. The next thing to discuss is some architectural
choices to structure the code.

Your First Express Application Chapter 5

[196]

Architecting an Express application in the
MVC paradigm
Express doesn't enforce an opinion on how you should structure the Model, View,
and Controller (MVC) modules of your application, or whether you should follow
any kind of MVC paradigm at all. The MVC pattern is widely used and involves three
main architectural pieces. The controller accepts inputs or requests from the user,
converting that into commands sent to the model. The model contains the data, logic,
and rules by which the application operates. The view is used to present results to the
user.

As we learned in the previous chapter, the blank application created by the Express
generator provides two aspects of the MVC model:

The views directory contains template files, controlling the display
portion, corresponding to the view.
The routes directory contains code implementing the URLs recognized by
the application and coordinates the data manipulation required to generate
the response to each URL. This corresponds to the controller.

Since the router functions also call the function to generate the result using
a template, we cannot strictly say that the router functions are the controller and that
the views templates are the view. However, it's close enough to the MVC model for it
to be a useful analogy.

This leaves us with a question of where to put the model code. Since the same data
manipulation can be used by multiple router functions, clearly the router functions
should use a standalone module (or modules) containing the model code. This will
also ensure a clean separation of concerns—for example, to ease the unit testing of
each.

The approach we'll use is to create a models directory as a sibling of the views and
routes directories. The models directory will hold modules to handle data storage
and other code that we might call business logic. The API of the modules in the
models directory will provide functions to create, read, update, or delete data
items—a Create, Read, Update, and Delete/Destroy (CRUD) model—and other
functions necessary for the view code to do its thing.

The CRUD model includes the four basic operations of persistent data storage. The
Notes application is structured as a CRUD application to demonstrate the
implementation each of these operations.

Your First Express Application Chapter 5

[197]

We'll use functions named create, read, update, and destroy to implement each
of the basic operations.

We're using the destroy verb, rather than delete,
because delete is a reserved word in JavaScript.

With that architectural decision in mind, let's proceed with creating the Notes
application.

Creating the Notes application
Since we're starting a new application, we can use the Express generator to give us a
starting point. It is not absolutely necessary to use this tool since we can definitely
write the code ourselves. The advantage, however, is that it gives us a fully fleshed
out starting point:

$ mkdir notes
$ cd notes
$ npx express-generator@4.x --view=hbs --git .
destination is not empty, continue? [y/N] y

 create : .
 create : ./package.json
 create : ./app.js
 create : ./.gitignore
 create : ./public
 create : ./routes
 create : ./routes/index.js
 create : ./routes/users.js
 create : ./views
 create : ./views/index.hbs
 create : ./views/layout.hbs
 create : ./views/error.hbs
 create : ./bin
 create : ./bin/www
 create : ./public/stylesheets
 create : ./public/stylesheets/style.css

 install dependencies:
 $ cd . && npm install

 run the app:

Your First Express Application Chapter 5

[198]

 $ DEBUG=notes:* npm start

 create : ./public/javascripts
 create : ./public/images
$ npm install
added 82 packages and removed 5 packages in 97.188s

As in the previous chapter, we will use cross-env to ensure that the scripts run
cross-platform. Start by changing package.json to have the following scripts
section:

"scripts": {
 "start": "cross-env DEBUG=notes:* node ./app.mjs"
}

The supplied script uses bin/www, but shortly, we'll restructure the generated code to
put everything into a single ES6 script named app.mjs.

Then, install cross-env, as follows:

$ npm install cross-env --save

With cross-env, the scripts are executable on either Unix-like systems or Windows.

If you wish, you can run npm start and view the blank application in your browser.
Instead, let's rewrite this starting-point code using ES6 modules, and also combine the
contents of bin/www with app.mjs.

Rewriting the generated router module as an
ES6 module
Let's start with the routes directory. Since we won't have a Users concept right now,
delete users.js. We need to convert the JavaScript files into ES6 format, and we can
recall that the simplest way for a module to be recognized as an ES6 module is to use
the .mjs extension. Therefore, rename index.js to index.mjs, rewriting it as
follows:

import { default as express } from 'express';
export const router = express.Router();

router.get('/', async (req, res, next) => {
 //... placeholder for Notes home page code
 res.render('index', { title: 'Notes' });
});

Your First Express Application Chapter 5

[199]

We'll finish this up later, but what we've done is restructured the code we were given.
We can import the Express package, and then export the router object. Adding
router functions is, of course, the done in the same way, whether it is a CommonJS or
an ES6 module. We made the router callback an async function because it will be
using async code.

We'll need to follow the same pattern for any other router modules we create.

Having converted this to an ES6 module, the next step is to merge code
from bin/www and app.js into an ES6 module named app.mjs.

Creating the Notes application wiring
– app.mjs
Since the express-generator tool gives us a slightly messy application structure
that does not use ES6 modules, let's reformulate the code it gave us appropriately.
The first, app.mjs, contains the wiring of the application, meaning it configures the
objects and functions from which the application is built while not containing any
functions of its own. The other code, appsupport.mjs, contains the callback
functions that appeared in the generated app.js and bin/www modules.

In app.mjs, start with this:

import { default as express } from 'express';
import { default as hbs } from'hbs';
import * as path from 'path';
// import * as favicon from 'serve-favicon';
import { default as logger } from 'morgan';
import { default as cookieParser } from 'cookie-parser';
import { default as bodyParser } from 'body-parser';
import * as http from 'http';
import { approotdir } from './approotdir.mjs';
const __dirname = approotdir;
import {
 normalizePort, onError, onListening, handle404, basicErrorHandler
} from './appsupport.mjs';

import { router as indexRouter } from './routes/index.mjs';
// import { router as notesRouter } from './routes/notes.mjs';

Your First Express Application Chapter 5

[200]

The generated app.js code had a series of require statements. We have rewritten
them to use corresponding import statements. We also added code to calculate
the __filename and __dirname variables, but presented a little differently. To
support this, add a new module, approotdir.mjs, containing the following:

import * as path from 'path';
import * as url from 'url';
const __filename = url.fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);
export const approotdir = __dirname;

In the dirname-fixed.mjs example in Chapter 3, Exploring Node.js Modules, we
imported specific functions from the path and url core modules. We have used that
code and then exported the value for __dirname as approotdir. Other parts of the
Notes application simply need the pathname of the root directory of the application
in order to calculate the required pathnames.

Return your attention to app.mjs and you'll see that the router modules are imported
as indexRouter and notesRouter. For the moment, notesRouter is commented
out, but we'll get to that in a later section.

Now, let's initialize the express application object:

export const app = express();

// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'hbs');
hbs.registerPartials(path.join(__dirname, 'partials'));

// uncomment after placing your favicon in /public
//app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

// Router function lists
app.use('/', indexRouter);
// app.use('/notes', notesRouter);

// error handlers
// catch 404 and forward to error handler
app.use(handle404);
app.use(basicErrorHandler);

Your First Express Application Chapter 5

[201]

export const port = normalizePort(process.env.PORT || '3000');
app.set('port', port);

This should look familiar to the app.js code we used in the previous chapter.
Instead of inline functions, however, they're pushed into appsupport.mjs.

The app and port objects are exported in case some other code in the application
needs those values.

This section of code creates and configures the Express application instance. To make
it a complete running server, we need the following code:

export const server = http.createServer(app);

server.listen(port);
server.on('error', onError);
server.on('listening', onListening);

This section of code wraps the Express application in an HTTP server and gets it
listening to HTTP requests. The server object is also exported in case other code
wants to access it.

Compare app.mjs with the generated app.js and bin/www code and you will see
that we've covered everything in those two modules except for the inline functions.
These inline functions could be written at the end of app.mjs, but we've elected
instead to create a second module to hold them.

Create appsupport.mjs to hold the inline functions, starting with the following:

import { port } from './app.mjs';

export function normalizePort(val) {
 const port = parseInt(val, 10);
 if (isNaN(port)) {
 return val;
 }
 if (port >= 0) {
 return port;
 }
 return false;
}

Your First Express Application Chapter 5

[202]

This function handles safely converting a port number string that we might be given
into a numerical value that can be used in the application. The isNaN test is used to
handle cases where instead of a TCP port number, we want to use a named pipe.
Look carefully at the other functions and you'll see that they all accommodate either a
numerical port number or a string described as a pipe:

export function onError(error) {
 if (error.syscall !== 'listen') {
 throw error;
 }
 const bind = typeof port === 'string'
 ? 'Pipe ' + port
 : 'Port ' + port;

 switch (error.code) {
 case 'EACCES':
 console.error(`${bind} requires elevated privileges`);
 process.exit(1);
 break;
 case 'EADDRINUSE':
 console.error(`${bind} is already in use`);
 process.exit(1);
 break;
 default:
 throw error;
 }
}

The preceding code handles errors from the HTTP server object. Some of these errors
will simply cause the server to exit:

import { server } from './app.mjs';
export function onListening() {
 const addr = server.address();
 const bind = typeof addr === 'string'
 ? 'pipe ' + addr
 : 'port ' + addr.port;
 console.log(`Listening on ${bind}`);
}

The preceding code prints a user-friendly message saying where the server is
listening for HTTP connections. Because this function needs to reference the server
object, we have imported it:

export function handle404(req, res, next) {
 const err = new Error('Not Found');
 err.status = 404;

Your First Express Application Chapter 5

[203]

 next(err);
}

export function basicErrorHandler(err, req, res, next) {
 // Defer to built-in error handler if headersSent
 // See: http://expressjs.com/en/guide/error-handling.html
 if (res.headersSent) {
 return next(err)
 }
 // set locals, only providing error in development
 res.locals.message = err.message;
 res.locals.error = req.app.get('env') === 'development' ?
 err : {};

 // render the error page
 res.status(err.status || 500);
 res.render('error');
}

These were previously inline functions implementing error handling for the Express
application.

The result of these changes is that app.mjs is now clean of distracting code, and it
instead focuses on connecting together the different parts that make up the
application. Since Express is not opinionated, it does not care that we restructured the
code like this. We can structure the code in any way that makes sense to us and that
correctly calls the Express API.

Since this application is about storing data, let's next talk about the data storage
modules.

Implementing the Notes data storage model
Remember that we decided earlier to put data model and data storage code into a
directory named models to go along with the views and routes directories.
Together, these three directories will separately store the three sides of the MVC
paradigm.

The idea is to centralize the implementation details of storing data. The data storage
modules will present an API for storing and manipulating application data, and over
the course of this book, we'll make several implementations of this API. To switch
between one storage engine to another, we will just require a configuration change.
The rest of the application will use the same API methods, regardless of the storage
engine being used.

Your First Express Application Chapter 5

[204]

To start, let's define a pair of classes to describe the data model. Create a file named
models/Notes.mjs with the following code in it:

const _note_key = Symbol('key');
const _note_title = Symbol('title');
const _note_body = Symbol('body');

export class Note {
 constructor(key, title, body) {
 this[_note_key] = key;
 this[_note_title] = title;
 this[_note_body] = body;
 }

 get key() { return this[_note_key]; }
 get title() { return this[_note_title]; }
 set title(newTitle) { this[_note_title] = newTitle; }
 get body() { return this[_note_body]; }
 set body(newBody) { this[_note_body] = newBody; }
}

export class AbstractNotesStore {
 async close() { }
 async update(key, title, body) { }
 async create(key, title, body) { }
 async read(key) { }
 async destroy(key) { }
 async keylist() { }
 async count() { }
}

This defines two classes—Note and AbstractNotesStore—whose purpose is as
follows:

The Note class describes a single note that our application will manage.
The AbstractNotesStore class describes methods for managing some
note instances.

In the Note class, key is how we look for the specific note, and title and body are
the content of the note. It uses an important data hiding technique, which we'll
discuss in a minute.

Your First Express Application Chapter 5

[205]

The AbstractNotesStore class documents the methods that we'll use for accessing
notes from a data storage system. Since we want the Notes application to implement
the CRUD paradigm, we have the create, read, update, and destroy methods,
plus a couple more to assist in searching for notes. What we have here is an empty
class that serves to document the API, and we will use this as the base class for
several storage modules that we'll implement later.

The close method is meant to be used when we're done with a datastore. Some
datastores keep an open connection to a server, such as a database server, and the
close method should be used to close that connection.

This is defined with async functions because we'll store data in the filesystem or in
databases. In either case, we need an asynchronous API.

Before implementing our first data storage model, let's talk about data hiding in
JavaScript classes.

Data hiding in ES-2015 class definitions
In many programming languages, class definitions let us designate some data fields
as private and others as public. This is so that programmers can hide implementation
details. However, writing code on the Node.js platform is all about JavaScript, and
JavaScript, in general, is very lax about everything. So, by default, fields in an
instance of a JavaScript class are open to any code to access or modify.

One concern arises if you have several modules all adding fields or functions to the
same object. How do you guarantee that one module won't step on fields added by
another module? By default, in JavaScript, there is no such guarantee.

Another concern is hiding implementation details so that the class can be changed
while knowing that internal changes won't break other code. By default, JavaScript
fields are open to all other code, and there's no guarantee other code won't access
fields that are meant to be private.

Your First Express Application Chapter 5

[206]

The technique used in the Note class gates access to the fields through getter and
setter functions. These in turn set or get values stored in the instance of the class. By
default, those values are visible to any code, and so these values could be modified in
ways that are incompatible with the class. The best practice when designing classes is
to localize all manipulation of class instance data to the member functions. However,
JavaScript makes the fields visible to the world, making it difficult to follow this best
practice. The pattern used in the Note class is the closest we can get in JavaScript to
data hiding in a class instance.

The technique we use is to name the fields using instances of the Symbol class.
Symbol, another ES-2015 feature, is an opaque object with some interesting attributes
that make it attractive for use as keys for private fields in objects. Consider the
following code:

$ node
Welcome to Node.js v12.13.0.
Type ".help" for more information.
> Symbol('a') === Symbol('a')
false
> let b = Symbol('b')
undefined
> console.log(b)
Symbol(b)
undefined
> let b1 = Symbol('b')
undefined
> console.log(b1)
Symbol(b)
undefined
> b === b1
false
> b === b
true

Creating a Symbol instance is done with Symbol('symbol-name'). The resulting
Symbol instance is a unique identifier, and even if you call Symbol('symbol-
name') again, the uniqueness is preserved. Each Symbol instance is unique from all
other Symbol instances, even ones that are formed from the same string. In this
example, the b and b1 variables were both formed by calling Symbol('b'), but they
are not equivalent.

Your First Express Application Chapter 5

[207]

Let's see how we can use a Symbol instance to attach fields to an object:

> const obj = {};
undefined
> obj[Symbol('b')] = 'b';
'b'
> obj[Symbol('b')] = 'b1';
'b1'
> obj
{ [Symbol(b)]: 'b', [Symbol(b)]: 'b1' }
>

We've created a little object, then used those Symbol instances as field keys to store
data in the object. Notice that when we dump the object's contents, the two fields both
register as Symbol(b), but they are two separate fields.

With the Note class, we have used the Symbol instances to provide a small measure
of data hiding. The actual values of the Symbol instances are hidden inside
Notes.mjs. This means the only code that can directly access the fields is the code
running inside Notes.mjs:

> let note = new Note('key', 'title', 'body')
undefined
> note
Note {
 [Symbol(key)]: 'key',
 [Symbol(title)]: 'title',
 [Symbol(body)]: 'body'
}
> note[Symbol('key')] = 'new key'
'new key'
> note
Note {
 [Symbol(key)]: 'key',
 [Symbol(title)]: 'title',
 [Symbol(body)]: 'body',
 [Symbol(key)]: 'new key'
}

With the Note class defined, we can create a Note instance, and then dump it and see
the resulting fields. The keys to these fields are indeed Symbol instances. These
Symbol instances are hidden inside the module. The fields themselves are visible to
code outside the module. As we can see here, an attempt to subvert the instance
with note[Symbol('key')] = 'new key' does not overwrite the field but instead
adds a second field.

Your First Express Application Chapter 5

[208]

With our data types defined, let's start implementing the application, beginning with
a simple in-memory datastore.

Implementing an in-memory Notes datastore
Eventually, we will create a Notes data storage module that persists the notes to
long-term storage. But to get us started, let's implement an in-memory datastore so
that we can get on with implementing the application. Because we designed an
abstract base class, we can easily create new implementations of that class for various
storage services.

Create a file named notes-memory.mjs in the models directory with the following
code:

import { Note, AbstractNotesStore } from './Notes.mjs';

const notes = [];

export class InMemoryNotesStore extends AbstractNotesStore {

 async close() { }

 async update(key, title, body) {
 notes[key] = new Note(key, title, body);
 return notes[key];
 }

 async create(key, title, body) {
 notes[key] = new Note(key, title, body);
 return notes[key];
 }

 async read(key) {
 if (notes[key]) return notes[key];
 else throw new Error(`Note ${key} does not exist`);
 }

 async destroy(key) {
 if (notes[key]) {
 delete notes[key];
 } else throw new Error(`Note ${key} does not exist`);
 }

 async keylist() {
 return Object.keys(notes);

Your First Express Application Chapter 5

[209]

 }

 async count() {
 return notes.length;
 }
}

This should be fairly self-explanatory. The notes are stored in a private array, named
notes. The operations, in this case, are defined in terms of adding or removing items
in that array. The key object for each Note instance is used as the index to the notes
array, which in turn holds the Note instance. This is simple, fast, and easy to
implement. It does not support any long-term data persistence, and any data stored in
this model will disappear when the server is killed.

We need to initialize an instance of NotesStore so that it can be used in the
application. Let's add the following to app.mjs, somewhere near the top:

import { InMemoryNotesStore } from './models/notes-memory.mjs';
export const NotesStore = new InMemoryNotesStore();

This creates an instance of the class and exports it as NotesStore. This will work so
long as we have a single NotesStore instance, but in Chapter 7, Data Storage and
Retrieval, we will change this around to support dynamically selecting a NotesStore
instance.

We're now ready to start implementing the web pages and associated code for the
application, starting with the home page.

The Notes home page
We're going to modify the starter application to support creating, editing, updating,
viewing, and deleting notes. Let's start by changing the home page to show a list of
notes, and have a top navigation bar linking to an ADD Note page so that we can
always add a new note.

There's no change required in app.mjs because the home page is generated in routes
controlled in this router module:

import { router as indexRouter } from './routes/index.mjs';
..
app.use('/', indexRouter);

In app.mjs, we configured the Handlebars template engine to use the partials
directory to hold partial files. Therefore, make sure you create that directory.

Your First Express Application Chapter 5

[210]

To implement the home page, update routes/index.mjs to the following:

import * as express from 'express';
import { NotesStore as notes } from '../app.mjs';
export const router = express.Router();

/* GET home page. */
router.get('/', async (req, res, next) => {
 try {
 const keylist = await notes.keylist();
 // console.log(`keylist ${util.inspect(keylist)}`);
 const keyPromises = keylist.map(key => {
 return notes.read(key);
 });
 const notelist = await Promise.all(keyPromises);
 // console.log(util.inspect(notelist));
 res.render('index', { title: 'Notes', notelist: notelist });
 } catch (err) {
 next(err); }
});

We showed the outline for this earlier, and having defined the Notes data storage
model, we can fill in this function.

This uses the AbstractNotesStore API that we designed earlier. The keylist
method returns a list of the key values for notes currently stored by the application.
Then, it uses the read method to retrieve each note and pass that list to a template
that renders the home page. This template will render a list of the notes.

What's the best way to retrieve all the notes? We could have written a
simple for loop, as follows:

const keylist = await notes().keylist();
const notelist = [];
for (key of keylist) {
 let note = await notes.read(key);
 notelist.push({ key: note.key, title: note.title });
}

This has the advantage of being simple to read since it's a simple for loop. The
problem is that this loop reads the notes one at a time. It's possible that reading the
notes in parallel is more efficient since there's an opportunity to interweave the
processing.

Your First Express Application Chapter 5

[211]

The Promise.all function executes an array of Promises in parallel, rather than one
at a time. The keyPromises variable ends up being an array of Promises, each of
which is executing notes.read to retrieve a single note.

The map function in the arrays converts (or maps) the values of an input array to
produce an output array with different values. The output array has the same length
as the input array, and the entries are a one-to-one mapping of the input value to an
output value. In this case, we map the keys in keylist to a Promise that's waiting on
a function that is reading each note. Then, Promise.all waits for all the Promises to
resolve into either success or failure states.

The output array, notelist, will be filled with the notes once all the Promises
succeed. If any Promises fail, they are rejected—in other words, an exception will be
thrown instead.

The notelist array is then passed into the view template that we're about to write.

But first, we need a page layout template. Create a file, views/layout.hbs,
containing the following:

<!DOCTYPE html>
<html>
 <head>
 <title>{{title}}</title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>
 <body>
 {{> header }}
 {{{body}}}
 </body>
</html>

This is the file generated by express-generator, with the addition of a header
partial for the page header.

Remember that in the Fibonacci application, we used a partial to store the HTML
snippet for the navigation. Partials are just that—HTML template snippets that can be
reused in one or more templates. In this case, the header partial will appear on every
page and serve as a common navigation bar across the application. Create
partials/header.hbs, containing the following:

<header>
 <h1>{{ title }}</h1>
 <div class='navbar'>
 <p>Home | ADD Note</p>

Your First Express Application Chapter 5

[212]

 </div>
</header>

This simply looks for a variable, title, which should have the page title. It also
outputs a navigation bar containing a pair of links—one to the home page and
another to /notes/add, where the user will be able to add a new note.

Now, let's rewrite views/index.hbs to this:

{{#each notelist}}
 {{ key }}:
 {{ title }}

{{/each}}

This simply steps through the array of note data and formats a simple listing. Each
item links to the /notes/view URL with a key parameter. We have yet to write code
to handle that URL, but will obviously display the note. Another thing to note is that
no HTML for the list is generated if notelist is empty.

There is, of course, a whole lot more that could be put into this. For example, it's easy
to add jQuery support to every page just by adding the appropriate script tags here.

We have now written enough to run the application, so let's view the home page:

$ DEBUG=notes:* npm start

> notes@0.0.0 start /Users/David/chap05/notes
> node ./bin/www

 notes:server Listening on port 3000 +0ms
GET / 200 87.300 ms - 308
GET /stylesheets/style.css 200 27.744 ms - 111

If we visit http://localhost:3000, we will see the following page:

Your First Express Application Chapter 5

[213]

Because there aren't any notes (yet), there's nothing to show. Clicking on the Home
link just refreshes the page. Clicking on the ADD Note link throws an error because
we haven't (yet) implemented that code. This shows that the provided error handler
in app.mjs is performing as expected.

Having implemented the home page, we need to implement the various pages of the
application. We will start with the page for creating new notes, and then we will
implement the rest of the CRUD support.

Adding a new note – create
If we click on the ADD Note link, we get an error because the application doesn't
have a route configured for the /notes/add URL; we need to add one. To do that, we
need a controller module for the notes that defines all the pages for managing notes in
the application.

In app.mjs, uncomment the two lines dealing with notesRouter:

import { router as indexRouter } from './routes/index.mjs';
import { router as notesRouter } from './routes/notes.mjs';
...
app.use('/', indexRouter);
app.use('/notes', notesRouter);

We'll end up with this in app.mjs. We import both routers and then add them to the
application configuration.

Create a file named routes/notes.mjs to hold notesRouter, starting with the
following content:

// const util = require('util');
import { default as express } from 'express';
import { NotesStore as notes } from '../app.mjs';

Your First Express Application Chapter 5

[214]

export const router = express.Router();

// Add Note.
router.get('/add', (req, res, next) => {
 res.render('noteedit', {
 title: "Add a Note",
 docreate: true,
 notekey: '',
 note: undefined
 });
});

This handles the /notes/add URL corresponding to the link in
partials/header.hbs. It simply renders a template, noteedit, using the provided
data.

In the views directory, add the corresponding template, named noteedit.hbs,
containing the following:

<form method='POST' action='/notes/save'>
<input type='hidden' name='docreate' value='<%=
 docreate ? "create" : "update"%>'>
<p>Key:
{{#if docreate }}
 <input type='text' name='notekey' value=''/>
{{else}}
 {{#if note }}{{notekey}}{{/if}}
 <input type='hidden' name='notekey'
 value='{{#if note }}{{notekey}}{{/if}}'/>
{{/if}}
</p>
<p>Title: <input type='text' name='title'
 value='{{#if note }}{{note.title}}{{/if}}' /></p>

<textarea rows=5 cols=40 name='body'>
 {{#if note }}{{note.body}}{{/if}}</textarea>

<input type='submit' value='Submit' />
</form>

This template supports both creating new notes and updating existing notes. We'll
reuse this template to support both scenarios via the docreate flag.

Notice that the note and notekey objects passed to the template are empty in this
case. The template detects this condition and ensures that the input areas are empty.
Additionally, a flag, docreate, is passed in so that the form records whether it is
being used to create or update a note. At this point, we're adding a new note, so no
note objects exist. The template code is written defensively to not throw errors.

Your First Express Application Chapter 5

[215]

When creating HTML forms like this, you have to be careful with using whitespace in
the elements holding the values. Consider a scenario where the <textarea> element
was instead formatted like this:

<textarea rows=5 cols=40 name='body'>
 {{#if note }}{{note.body}}{{/if}}
</textarea>

By normal coding practices, this looks alright, right? It's nicely indented, with the
code arranged for easy reading. The problem is that extra whitespace ends up being
included in the body value when the form is submitted to the server. That extra
whitespace is added because of the nicely indented code. To avoid that extra
whitespace, we need to use the angle brackets in the HTML elements that are directly
adjacent to the Handlebars code to insert the value. Similar care must be taken with
the elements with the value= attributes, ensuring no extra whitespace is within the
value string.

This template is a form that will post its data to the /notes/save URL. If you were to
run the application now, it would give you an error message because no route is
configured for that URL.

To support the /notes/save URL, add it to routes/notes.mjs:

// Save Note (update)
router.post('/save', async (req, res, next) => {
 try {
 let note;
 if (req.body.docreate === "create") {
 note = await notes.create(req.body.notekey,
 req.body.title, req.body.body);
 } else {
 note = await notes.update(req.body.notekey,
 req.body.title, req.body.body);
 }
 res.redirect('/notes/view?key='+ req.body.notekey);
 } catch (err) { next(err); }
});

Because this URL will also be used for both creating and updating notes, we check the
docreate flag to call the appropriate model operation.

Both notes.create and notes.update are async functions, meaning we must use
await.

Your First Express Application Chapter 5

[216]

This is an HTTP POST handler. Because of the bodyParser middleware, the form
data is added to the req.body object. The fields attached to req.body correspond
directly to elements in the HTML form.

In this, and most of the other router functions, we use the try/catch construct that
we discussed earlier to ensure errors are caught and forwarded correctly to Express.
The difference between this and the preceding /notes/add router function is
whether the router uses an async callback function. In this case, it is an async
function, whereas for /notes/add, it is not async. Express knows how to handle
errors in non-async callbacks, but it does not know how to handle errors in async
callback functions.

Now, we can run the application again and use the Add a Note form:

However, upon clicking on the Submit button, we get an error message. This is
because there isn't anything (yet) to implement the /notes/view URL.

You can modify the URL in the Location box to revisit
http://localhost:3000, and you'll see something similar to the following
screenshot on the home page:

Your First Express Application Chapter 5

[217]

The note is actually there; we just need to implement /notes/view. Let's get on with
that.

Viewing notes – read
Now that we've looked at how to create notes, we need to move on to reading them.
This means implementing controller logic and view templates for the /notes/view
URL.

Add the following router function to routes/notes.mjs:

// Read Note (read)
router.get('/view', async (req, res, next) => {
 try {
 let note = await notes.read(req.query.key);
 res.render('noteview', {
 title: note ? note.title : "",
 notekey: req.query.key, note: note
 });
 } catch (err) { next(err); }
});

Because this route is mounted on a router handling, /notes, this route
handles /notes/view.

The handler simply calls notes.read to read the note. If successful, the note is
rendered with the noteview template. If something goes wrong, we'll instead display
an error to the user through Express.

Your First Express Application Chapter 5

[218]

Add the noteview.hbs template to the views directory, referenced by the following
code:

{{#if note}}<h3>{{ note.title }}</h3>{{/if}}
{{#if note}}<p>{{ note.body }}</p>{{/if}}
<p>Key: {{ notekey }}</p>
{{#if notekey }}
 <hr/>
 <p>Delete
 | Edit</p>
{{/if}}

This is straightforward; we are taking data out of the note object and displaying it
using HTML. At the bottom are two links—one to /notes/destroy to delete the
note and the other to /notes/edit to edit it.

Neither of these corresponding codes exists at the moment, but that won't stop us
from going ahead and executing the application:

Your First Express Application Chapter 5

[219]

As expected, with this code, the application correctly redirects to /notes/view, and
we can see our handiwork. Also, as expected, clicking on either the Delete or Edit
links will give us an error because the code hasn't yet been implemented.

We'll next create the code to handle the Edit link and later, one to handle the Delete
link.

Editing an existing note – update
Now that we've looked at the create and read operations, let's look at how to
update or edit a note.

Add the following router function to routes/notes.mjs:

// Edit note (update)
router.get('/edit', async (req, res, next) => {
 try {
 const note = await notes.read(req.query.key);
 res.render('noteedit', {
 title: note ? ("Edit " + note.title) : "Add a Note",
 docreate: false,
 notekey: req.query.key, note: note
 });
 } catch (err) { next(err); }
});

This handles the /notes/edit URL.

We're reusing the noteedit.hbs template because it can be used for both
the create and update/edit operations. Notice that we pass false for docreate,
informing the template that it is to be used for editing.

In this case, we first retrieve the note object and then pass it through to the template.
This way, the template is set up for editing, rather than note creation. When the user
clicks on the Submit button, we end up in the same /notes/save route handler
shown in the preceding screenshot. It already does the right thing—calling the
notes.update method in the model, rather than notes.create.

Your First Express Application Chapter 5

[220]

Because that's all we need to do, we can go ahead and rerun the application:

Click on the Submit button here and you will be redirected to the /notes/view
screen, where you will then be able to read the newly edited note. Back at the
/notes/view screen, we've just taken care of the Edit link, but the Delete link still
produces an error.

Therefore, we next need to implement a page for deleting notes.

Deleting notes – destroy
Now, let's look at how to implement the /notes/destroy URL to delete notes.

 Add the following router function to routes/notes.mjs:

// Ask to Delete note (destroy)
router.get('/destroy', async (req, res, next) => {
 try {
 const note = await notes.read(req.query.key);
 res.render('notedestroy', {
 title: note ? note.title : "",
 notekey: req.query.key, note: note
 });
 } catch (err) { next(err); }
});

Your First Express Application Chapter 5

[221]

Destroying a note is a significant step, if only because there's no trash can to retrieve it
from if the user makes a mistake. Therefore, we need to ask the user whether they're
sure that they want to delete the note. In this case, we retrieve the note and then
render the following page, displaying a question to ensure they definitely want to
delete the note.

Add a notedestroy.hbs template to the views directory:

<form method='POST' action='/notes/destroy/confirm'>
<input type='hidden' name='notekey' value='{{#if
note}}{{notekey}}{{/if}}'>
<p>Delete {{note.title}}?</p>

<input type='submit' value='DELETE' />
Cancel
</form>

This is a simple form that asks the user to confirm by clicking on the button. The
Cancel link just sends them back to the /notes/view page. Clicking on the Submit
button generates a POST request on the /notes/destroy/confirm URL.

This URL needs a request handler. Add the following code to routes/notes.mjs:

// Really destroy note (destroy)
router.post('/destroy/confirm', async (req, res, next) => {
 try {
 await notes.destroy(req.body.notekey);
 res.redirect('/');
 } catch (err) { next(err); }
});

This calls the notes.destroy function in the model. If it succeeds, the browser is
redirected to the home page. If not, an error message is shown to the user. Rerunning
the application, we can now view it in action:

Your First Express Application Chapter 5

[222]

Now that everything is working in the application, you can click on any button or
link and keep all the notes you want.

We've implemented a bare-bones application for managing notes. Let's now see how
to change the look, since in the next chapter, we'll implement a mobile-first UI.

Theming your Express application
The Express team has done a decent job of making sure Express applications look
okay out of the gate. Our Notes application won't win any design awards, but at least
it isn't ugly. There's a lot of ways to improve it, now that the basic application is
running. Let's take a quick look at theming an Express application. In Chapter 6,
Implementing the Mobile-First Paradigm, we'll take a deeper dive into this, focusing on
that all-important goal of addressing the mobile market.

If you're running the Notes application using the recommended method, npm
start, a nice log of activity is being printed in your console window. One of these is
the following:

GET /stylesheets/style.css 304 0.702 ms - -

This is due to the following line of code, which we put into layout.hbs:

<link rel='stylesheet' href='/stylesheets/style.css' />

This file was autogenerated for us by the Express generator at the outset and was
dropped in the public directory. The public directory is managed by the Express
static file server, using the following line in app.mjs:

app.use(express.static(path.join(__dirname, 'public')));

Therefore, the CSS stylesheet is at public/stylesheets/style.css, so let's open it
and take a look:

body {
 padding: 50px;
 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;
}

a {
 color: #00B7FF;
}

Your First Express Application Chapter 5

[223]

Something that leaps out is that the application content has a lot of whitespace at the
top and left-hand sides of the screen. The reason for this is that the body tags have the
padding: 50px style. Changing it is a quick business.

Since there is no caching in the Express static file server, we can simply edit the CSS
file and reload the page, and the CSS will be reloaded as well.

Let's make a couple of tweaks:

body {
 padding: 5px;
 ..
}
..
header {
 background: #eeeeee;
 padding: 5px;
}

This changes the padding and also adds a gray box around the header area.

As a result, we'll have the following:

We're not going to win any design awards with this either, but there's the beginning
of some branding and theming possibilities. More importantly, it proves that we can
make edits to the theming.

Generally speaking, through the way that we've structured the page templates,
applying a site-wide theme is just a matter of adding appropriate code to
layout.hbs, along with appropriate stylesheets and other assets.

Your First Express Application Chapter 5

[224]

In Chapter 6, Implementing the Mobile-First Paradigm, we will look at a simple method
to add these frontend libraries to your application.

Before closing out this chapter, we want to think ahead to scaling the application to
handle multiple users.

Scaling up – running multiple Notes
instances
Now that we've got ourselves a running application, you'll have played around a bit
and created, read, updated, and deleted many notes.

Suppose for a moment that this isn't a toy application, but one that is interesting
enough to draw millions of users a day. Serving a high load typically means adding
servers, load balancers, and many other things. A core part of this is to have multiple
instances of the application running at the same time to spread the load.

Let's see what happens when you run multiple instances of the Notes application at
the same time.

The first thing is to make sure the instances are on different ports. In app.mjs, you'll
see that setting the PORT environment variable controls the port being used. If the
PORT variable is not set, it defaults to http://localhost:3000, or what we've been
using all along.

Let's open up package.json and add the following lines to the scripts section:

"scripts": {
 "start": "cross-env DEBUG=notes:* node ./app.mjs",
 "server1": "cross-env DEBUG=notes:* PORT=3001 node ./app.mjs",
 "server2": "cross-env DEBUG=notes:* PORT=3002 node ./app.mjs"
},

The server1 script runs on PORT 3001, while the server2 script runs on PORT
3002. Isn't it nice to have all of this documented in one place?

Your First Express Application Chapter 5

[225]

Then, in one command window, run the following:

$ npm run server1

> notes@0.0.0 server1 /Users/David/chap05/notes
> cross-env DEBUG=notes:* PORT=3001 node ./bin/www

 notes:server Listening on port 3001 +0ms

In another command window, run the following:

$ npm run server2

> notes@0.0.0 server2 /Users/David/chap05/notes
> cross-env DEBUG=notes:* PORT=3002 node ./bin/www

 notes:server Listening on port 3002 +0ms

This gives us two instances of the Notes application. Use two browser windows to
visit http://localhost:3001 and http://localhost:3002. Enter a couple of
notes, and you might see something like this:

After editing and adding some notes, your two browser windows could look as in the
preceding screenshot. The two instances do not share the same data pool; each is
instead running in its own process and memory space. You add a note to one and it
does not show on the other screen.

Your First Express Application Chapter 5

[226]

Additionally, because the model code does not persist data anywhere, the notes are
not saved. You might have written the greatest Node.js programming book of all
time, but as soon as the application server restarts, it's gone.

Typically, you run multiple instances of an application to scale performance. That's
the old throw more servers at it trick. For this to work, the data, of course, must be
shared, and each instance must access the same data source. Typically, this involves a
database, and when it comes to user identity information, it might even entail armed
guards.

All that means databases, more data models, unit testing, security implementation, a
deployment strategy, and much more. Hold on—we'll get to all of that soon!

Summary
We've come a long way in this chapter.

We started by looking at the pyramid of doom and how Promise objects and async
functions can help us tame asynchronous code. Because we're writing an Express
application, we looked at how to use async functions in Express. We'll be using these
techniques throughout this book.

We quickly moved on to writing the foundation of a real application with Express. At
the moment, our application keeps its data in memory, but it has the basic
functionality of what will become a note-taking application that supports real-time
collaborative commenting on notes.

In the next chapter, we'll dip our toes into the water of responsive, mobile-friendly
web design. Due to the growing popularity of mobile computing devices, it's become
necessary to address mobile devices first before desktop computer users. In order to
reach those millions of users a day, the Notes application users need a good user
experience when using their smartphones.

In the following chapters, we'll keep growing the capabilities of the Notes
application, starting with database storage models. But first, we have an important
task in the next chapter—implementing a mobile-first UI using Bootstrap.

6
Implementing the Mobile-First

Paradigm
Now that our first Express application is usable, we should act on the mantra of this
age of software development: mobile-first. Mobile devices, whether they be
smartphones, tablet computers, automobile dashboards, refrigerator doors, or
bathroom mirrors, are taking over the world.

The primary considerations in designing for mobiles are the small screen sizes, the
touch-oriented interaction, the fact that there's no mouse, and the somewhat different
User Interface (UI) expectations. In 1997-8, when streaming video was first
developed, video producers had to learn how to design video experiences for a
viewport the size of a fig newton (an American snack food). Today, application
designers have to contend with an application window the size of a playing card.

With the Notes application, our UI needs are modest, and the lack of a mouse doesn't
make any difference to us.

In this chapter, we won't do much Node.js development. Instead, we'll do the
following:

Modify the Notes application templates for better mobile presentation.
Edit Bootstrap SASS files to customize application theming.
Install a third-party Bootstrap theme.
Learn about Bootstrap 4.5, a popular framework for responsive UI design.

Implementing the Mobile-First Paradigm Chapter 6

[228]

As of the time of writing, Bootstrap v5 has just entered the alpha phase. That makes it
premature to adopt at this time, but we may wish to do so in the future. Going by the
migration guide, much of Bootstrap will stay the same, or very similar, in version 5.
However, the biggest change in version 5 is the dropping of the requirement for
jQuery. Because we use jQuery fairly heavily in Chapter 9, Dynamic Client/Server
Interaction with Socket.IO, this is a significant consideration.

By completing the tasks in the preceding list, we'll dip our toes in the water of what it
means to be a full-stack web engineer. The goal of this chapter is to gain an
introduction to an important part of application development, namely the UI, and one
of the leading toolkits for web UI development.

Rather than just do mobile-first development because it's the popular thing, let's first
try to understand the problem being solved.

Understanding the problem – the Notes
app isn't mobile-friendly
Let's start by quantifying the problem. We need to explore how well (or not) the
application behaves on a mobile device. This is simple to do:

Start the Notes application. Determine the IP address of the host system.1.
Using your mobile device, connect to the service using the IP address, and2.
browse around the Notes application, putting it through its paces and
noting any difficulties.

Another way to approach this is to use your desktop browser, resizing it to be very
narrow. The Chrome DevTools also includes a mobile device emulator. Either way,
you can mimic the small screen size of a smartphone on your desktop.

To see a real UI problem on a mobile screen, edit views/noteedit.hbs and make
this change:

<textarea rows=5 cols=80 name='body'
 >{{#if note }}{{note.body}}{{/if}}</textarea>

Implementing the Mobile-First Paradigm Chapter 6

[229]

What's changed is that we've added the cols=80 parameter to set its width to be
fixed at 80 columns. We want this textarea element to be overly large so that you
can experience how a non-responsive web app appears on a mobile device. View the
application on a mobile device and you'll see something like one of the screens in this
screenshot:

Viewing a note works well on an iPhone 6, but the screen for editing/adding a note is
not good. The text entry area is so wide that it runs off the side of the screen. Even
though interaction with FORM elements works well, it's clumsy. In general, browsing
the Notes application gives an acceptable mobile user experience that doesn't suck, but
won't make our users leave rave reviews.

In other words, we have an example of a screen that works well on the developers'
laptop but is horrid on the target platform. By following the mobile-first paradigm,
the developer is expected to constantly check the behavior in a mobile web browser,
or else the mobile view in the Chrome developer tool, and to design accordingly.

This gives us an idea of the sort of problem that responsive web design aims to
correct. Before implementing a mobile-first design in our Notes app, let's discuss some
of the theory behind responsive web design.

Implementing the Mobile-First Paradigm Chapter 6

[230]

Learning the mobile-first paradigm theory
Mobile devices have a smaller screen, are generally touch-oriented, and have different
user experience expectations than a desktop computer.

To accommodate smaller screens, we use responsive web design techniques. This
means designing the application to accommodate the screen size and ensuring
websites provide optimal viewing and interaction across a wide range of devices.
Techniques include changing font sizes, rearranging elements on the screen, using
collapsible elements that open when touched, and resizing images or videos to fit
available space. This is called responsive because the application responds to device
characteristics by making these changes.

By mobile-first, we mean that you design the application to work well
on a mobile device first, and then move on to devices with larger
screens. It's about prioritizing mobile devices first.

The primary technique is using media queries in stylesheets to detect device
characteristics. Each media query section targets a range of devices, using a CSS
declaration to appropriately restyle content.

Let's consult a concrete example. The Twenty Twelve theme for WordPress has a
straightforward responsive design implementation. It's not built with any framework,
so you can see clearly how the mechanism works, and the stylesheet is small enough
to be easily digestible. We're not going to use this code anywhere; instead, it is
intended as a useful example of implementing a responsive design.

You can refer to the source code for the Twenty Twelve theme in the
WordPress repository at
https://themes.svn.wordpress.org/twentytwelve/1.9/style.css

.

The stylesheet starts with a number of resets, where the stylesheet overrides some
typical browser style settings with clear defaults. Then, the bulk of the stylesheet
defines styling for mobile devices. Toward the bottom of the stylesheet is a section
labeled Media queries where, for certain sized screens, the styles defined for mobile
devices are overridden to work on devices with larger screens.

https://themes.svn.wordpress.org/twentytwelve/1.9/style.css

Implementing the Mobile-First Paradigm Chapter 6

[231]

It does this with the following two media queries:

@media screen and (min-width: 600px) { /* Screens above 600px width */
}
@media screen and (min-width: 960px) { /* Screens above 960px width */
}

The first segment of the stylesheet configures the page layout for all devices. Next, for
any browser viewport at least 600px wide, it reconfigures the page to display on the
larger screen. Then, for any browser viewport at least 960px wide, it is reconfigured
again. The stylesheet has a final media query to cover print devices.

These widths are what's called a breakpoint. Those threshold viewport widths are the
points where the design changes itself around. You can see breakpoints in action by
going to any responsive website, then resizing the browser window. Watch how the
design jumps at certain sizes. Those are the breakpoints chosen by the author of that
website.

There's a wide range of differing opinions about the best strategy to choose your
breakpoints. Do you target specific devices or do you target general characteristics?
The Twenty Twelve theme did fairly well on mobile devices using only
two viewport-size media queries. The CSS-Tricks blog has posted an extensive list of
specific media queries for every known device, which is available at
https://css-tricks.com/snippets/css/media-queries-for-standard-devices/.

We should at least target these devices:

Small: This includes iPhone 5 SE.
Medium: This can refer to tablet computers or larger smartphones.
Large: This includes larger tablet computers or smaller desktop computers.
Extra-large: This refers to larger desktop computers and other large
screens.
Landscape/portrait: You may want to create a distinction between
landscape mode and portrait mode. Switching between the two of course
changes viewport width, possibly pushing it past a breakpoint. However,
your application may need to behave differently in the two modes.

That's enough theory of responsive web design to get us started. In our Notes
application, we'll work on using touch-friendly UI components and using Bootstrap
to scale the user experience based on screen size. Let's get started.

https://css-tricks.com/snippets/css/media-queries-for-standard-devices/

Implementing the Mobile-First Paradigm Chapter 6

[232]

Using Twitter Bootstrap on the Notes
application
Bootstrap is a mobile-first framework consisting of HTML5, CSS3, and JavaScript
code providing a comprehensive set of world-class, responsive web design
components. It was developed by engineers at Twitter and then released to the world
in August 2011.

The framework includes code to retrofit modern features onto older browsers, a
responsive 12-column grid system, and a long list of components (some using
JavaScript) for building web applications and websites. It's meant to provide a strong
foundation on which to build your application.

Refer to http://getbootstrap.com for more details about Bootstrap.

With this introduction to Bootstrap, let's proceed to set it up.

Setting up Bootstrap
The first step is to duplicate the code you created in the previous chapter. If, for
example, you created a directory named chap05/notes, then create one named
chap06/notes from the content of chap05/notes.

Now, we need to go about adding Bootstrap's code in the Notes application. The
Bootstrap website suggests loading the required CSS and JavaScript files out of the
Bootstrap (and jQuery) public CDN. While that's easy to do, we won't do this for two
reasons:

It violates the principle of keeping all dependencies local to the application
and not relying on global dependencies.
It makes our application dependent on whether the CDN is functioning.
It prevents us from generating a custom theme.

Instead, we'll install a local copy of Bootstrap. There are several ways to install
Bootstrap locally. For example, the Bootstrap website offers a downloadable
TAR/GZIP archive (tarball). The better approach is an automated dependency
management tool, and fortunately, the npm repository has all the packages we need.

http://getbootstrap.com

Implementing the Mobile-First Paradigm Chapter 6

[233]

The most straightforward choice is to use the Bootstrap (https:/ /www. npmjs. com/
package/bootstrap), Popper.js (https:/ /www. npmjs. com/ package/ popper. js), and
jQuery (https:/ / www. npmjs. com/ package/ jquery) packages in the npm repository.
These packages provide no Node.js modules and instead are frontend code
distributed through npm. Many frontend libraries are distributed through the npm
repository.

We install the packages using the following command:

$ npm install bootstrap@4.5.x --save
npm WARN bootstrap@4.5.0 requires a peer of jquery@1.9.1 - 3 but none
is installed. You must install peer dependencies yourself.
npm WARN bootstrap@4.5.0 requires a peer of popper.js@^1.16.0 but none
is installed. You must install peer dependencies yourself.

+ bootstrap@4.5.0
...

$ npm install jquery@3.5.x --save
+ jquery@3.5.1
$ npm install popper.js@1.16.x --save
+ popper.js@1.16.0

As we can see here, when we install Bootstrap, it helpfully tells us the corresponding
versions of jQuery and Popper.js to use. But according to the Bootstrap website, we
are to use a different version of jQuery than what's shown here. Instead, we are to use
jQuery 3.5.x instead of 1.9.1, because 3.5.x has many security issues fixed.

On the npm page for the Popper.js package (https:/ /www. npmjs. com/ package/
popper.js), we are told this package is deprecated, and that Popper.js v2 is available
from the @popperjs/core npm package. However, the Bootstrap project tells us to
use this version of Popper.js, so that's what we'll stick with.

The Bootstrap Getting Started documentation explicitly says to use
jQuery 3.5.1 and Popper 1.16.0, as of the time time of writing, as you
can see at https:/ / getbootstrap. com/ docs/ 4. 5/getting- started/
introduction/ .

What's most important is to see what got downloaded:

$ ls node_modules/bootstrap/dist/*
... directory contents
$ ls node_modules/jquery/dist
... directory contents
$ ls node_modules/popper.js/dist
... directory contents

https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/jquery
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/popper.js
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/

Implementing the Mobile-First Paradigm Chapter 6

[234]

Within each of these directories are the CSS and JavaScript files that are meant to be
used in the browser. More importantly, these files are located in a given directory
whose pathname is known—specifically, the directories we just inspected.

Let's see how to configure our Notes app to use those three packages on the browser
side, as well as set up Bootstrap support in the page layout templates.

Adding Bootstrap to the Notes application
In this section, we'll first load Bootstrap CSS and JavaScript in the page layout
templates, and then we'll ensure that the Bootstrap, jQuery, and Popper packages are
available to be used. We have made sure those libraries are installed in
node_modules, so we need to make sure Notes knows to serve the files as static
assets to web browsers.

On the Bootstrap website, they give a recommended HTML structure for pages. We'll
be interpolating from their recommendation to instead use the local copies of
Bootstrap, jQuery, and Popper that we just installed.

Refer to the Getting Started page at https:/ /getbootstrap. com/
docs/ 4.5/ getting- started/ introduction/ .

What we'll do is modify views/layout.hbs to match the template recommended by
Bootstrap, by making the changes shown in bold text:

<!doctype html>
<html lang="en">
 <head>
 <title>{{title}}</title>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1, shrink-to-
 fit=no">

 <link rel="stylesheet"
 href="/assets/vendor/bootstrap/css/bootstrap.min.css">
 <link rel='stylesheet' href='/assets/stylesheets/style.css' />
 </head>
 <body>
 {{> header }}
 {{{body}}}
 <!-- jQuery first, then Popper.js, then Bootstrap JS -->

https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/
https://getbootstrap.com/docs/4.5/getting-started/introduction/

Implementing the Mobile-First Paradigm Chapter 6

[235]

 <script src="/assets/vendor/jquery/jquery.min.js"></script>
 <script src="/assets/vendor/popper.js/popper.min.js"></script>
 <script src=
 "/assets/vendor/bootstrap/js/bootstrap.min.js"></script>
 </body>
</html>

This is largely the template shown on the Bootstrap site, incorporated into the
previous content of views/layout.hbs. Our own stylesheet is loaded following the
Bootstrap stylesheet, giving us the opportunity to override anything in Bootstrap we
want to change. What's different is that instead of loading Bootstrap, Popper.js, and
jQuery packages from their respective CDNs, we use the path
/assets/vendor/product-name instead.

This is the same as recommended on the Bootstrap website except
the URLs point to our own site rather than relying on the public
CDN. The pathname prefix, /assets/vendor, is routinely used to
hold code provided by a third party.

This /assets/vendor URL is not currently recognized by the Notes application. To
add this support, edit app.mjs to add these lines:

app.use(express.static(path.join(__dirname, 'public')));
app.use('/assets/vendor/bootstrap', express.static(
 path.join(__dirname, 'node_modules', 'bootstrap', 'dist')));
app.use('/assets/vendor/jquery', express.static(
 path.join(__dirname, 'node_modules', 'jquery', 'dist')));
app.use('/assets/vendor/popper.js', express.static(
 path.join(__dirname, 'node_modules', 'popper.js', 'dist', 'umd')));

We're again using the express.static middleware to serve asset files to browsers
visiting the Notes application. Each of these pathnames is where npm installed the
Bootstrap, jQuery, and Popper libraries.

There is a special consideration for the Popper.js library. In the popper.js/dist
directory, the team distributes a library in the ES6 module syntax. At this time, we
cannot trust all browsers to support ES6 modules. In popper.js/dist/umd is a
version of the Popper.js library that works in all browsers. We have therefore set the
directory appropriately.

Implementing the Mobile-First Paradigm Chapter 6

[236]

Within the public directory, we have a little house-keeping to do. When express-
generator set up the initial project, it generated public/images,
public/javascripts, and public/stylesheets directories. Hence the URLs for
each start with /images, /javascripts, and /stylesheets. It's cleaner to give
such files a URL starting with the /assets directory. To implement that change, start
by moving the files around as follows:

$ mkdir public/assets
$ mv public/images/ public/javascripts/ public/stylesheets/
public/assets/

We now have our asset files, including Bootstrap, Popper.js, and jQuery, all available
to the Notes application under the /assets directory. Referring back to
views/layout.hbs, notice that we said to change the URL for our stylesheet
to /assets/stylesheets/style.css, which matches this change.

We can now try this out by running the application:

$ npm start
> notes@0.0.0 start /Users/David/chap06/notes
> cross-env DEBUG=notes:* node ./bin/www

 notes:server Listening on port 3000 +0ms
GET / 200 306.660 ms - 883
GET /stylesheets/style.css 404 321.057 ms - 2439
GET /assets/stylesheets/style.css 200 160.371 ms - 165
GET /assets/vendor/bootstrap/js/bootstrap.min.js 200 157.459 ms -
50564
GET /assets/vendor/popper.js/popper.min.js 200 769.508 ms - 18070
GET /assets/vendor/jquery/jquery.min.js 200 777.988 ms - 92629
GET /assets/vendor/bootstrap/css/bootstrap.min.css 200 788.028 ms -
127343

The onscreen differences are minor, but this is the necessary proof that the CSS and
JavaScript files for Bootstrap are being loaded. We have accomplished the first major
goal—using a modern, mobile-friendly framework to implement a mobile-first
design.

Before going on to modify the look of the application, let's talk about other available
frameworks.

Implementing the Mobile-First Paradigm Chapter 6

[237]

Alternative layout frameworks
Bootstrap isn't the only JavaScript/CSS framework providing a responsive layout and
useful components. Of course, all the other frameworks have their own claims to
fame. As always, it is up to each project team to choose the technologies they use, and
of course, the marketplace is always changing as new libraries become available.
We're using Bootstrap in this project because of its popularity. These other
frameworks are worthy of a look:

Pure.css (https:/ / purecss. io/): A responsive CSS framework with an
emphasis on a small code footprint.
Picnic CSS (https:/ /picnicss. com/): A responsive CSS framework
emphasizing small size and beauty.
Bulma (https:/ /bulma. io/): A responsive CSS framework that's self-billed
as very easy to use.
Shoelace (https:/ /shoelace. style/): A CSS framework emphasizing
using future CSS, meaning it uses CSS constructs at the bleeding edge of
CSS standardization. Since most browsers don't support those features,
cssnext (http:/ / cssnext. io/) is used to retrofit that support. Shoelace uses
a grid layout system based on Bootstrap's grid.
PaperCSS (https:/ /www. getpapercss. com/): An informal CSS framework
that looks like it was hand-drawn.
Foundation (https:/ /foundation. zurb. com/): Self-described as the most
advanced responsive frontend framework in the world.
Base (http:/ /getbase. org/): A lightweight modern CSS framework.

HTML5 Boilerplate (https:/ / html5boilerplate. com/) is an extremely useful basis
from which to code the HTML and other assets. It contains the current best practices
for the HTML code in web pages, as well as tools to normalize CSS support and
configuration files for several web servers.

Browser technologies are also improving rapidly, with layout techniques being one
area. The Flexbox and CSS Grid layout systems are a significant advance in making
HTML content layout much easier than older techniques.

https://purecss.io/
https://purecss.io/
https://purecss.io/
https://purecss.io/
https://purecss.io/
https://purecss.io/
https://purecss.io/
https://purecss.io/
https://picnicss.com/
https://picnicss.com/
https://picnicss.com/
https://picnicss.com/
https://picnicss.com/
https://picnicss.com/
https://picnicss.com/
https://picnicss.com/
https://bulma.io/
https://bulma.io/
https://bulma.io/
https://bulma.io/
https://bulma.io/
https://bulma.io/
https://bulma.io/
https://bulma.io/
https://shoelace.style/
https://shoelace.style/
https://shoelace.style/
https://shoelace.style/
https://shoelace.style/
https://shoelace.style/
https://shoelace.style/
https://shoelace.style/
http://cssnext.io/
http://cssnext.io/
http://cssnext.io/
http://cssnext.io/
http://cssnext.io/
http://cssnext.io/
http://cssnext.io/
http://cssnext.io/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://www.getpapercss.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
https://foundation.zurb.com/
http://getbase.org/
http://getbase.org/
http://getbase.org/
http://getbase.org/
http://getbase.org/
http://getbase.org/
http://getbase.org/
http://getbase.org/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/

Implementing the Mobile-First Paradigm Chapter 6

[238]

Flexbox and CSS Grids
Two new technologies impacting web application development are these new CSS
layout methodologies. The CSS3 committee has been working on several fronts,
including page layout.

In the distant past, we used nested HTML tables for page layout. That is a bad
memory that we don't have to revisit. More recently, we've been using a box model
using <div> elements, and even at times using absolute or relative placement
techniques. All these techniques have been suboptimal in several ways, some more
than others.

One popular layout technique is to divide the horizontal space into columns and
assign a certain number of columns to each thing on the page. With some
frameworks, we can even have nested <div> elements, each with their own set of
columns. Bootstrap 3, and other modern frameworks, used that layout technique.

The two new CSS layout methodologies, Flexbox (https:/ /en.wikipedia. org/ wiki/
CSS_flex-box_layout) and CSS Grids (https:/ /developer. mozilla. org/en- US/
docs/Web/CSS/CSS_ Grid_ Layout), are a significant improvement over all previous
methodologies. We are mentioning these technologies because they're both worthy of
attention.

With Bootstrap 4, the Bootstrap team chose to go with Flexbox. Therefore, under the
hood are Flexbox CSS constructs.

Having set up Bootstrap, and having learned some background to responsive web
design, let's dive right in and start implementing responsive design in Notes.

Mobile-first design for the Notes
application
When we added CSS and JavaScript for Bootstrap et al., that was only the start. To
implement a responsive mobile-friendly design, we need to modify every template to
use Bootstrap components. Bootstrap's features, in version 4.x, are grouped into four
areas:

Layout: Declarations to control the layout of HTML elements, supporting
different layouts based on device size

https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

Implementing the Mobile-First Paradigm Chapter 6

[239]

Content: For regularizing the look of HTML elements, typography, images,
tables, and more
Components: A comprehensive set of UI elements including navigation
bars, buttons, menus, popups, forms, carousels, and more to make it easy
to implement applications
Utilities: Additional tools to aid in tweaking the presentation and layout of
HTML elements

The Bootstrap documentation is full of what we might call recipes, to implement the
structure of HTML elements for certain Bootstrap components or effects. A key to the
implementation is that Bootstrap effects are triggered by adding the correct HTML
class declaration to each HTML component.

Let's start with page layout using Bootstrap.

Laying the Bootstrap grid foundation
Bootstrap uses a 12-column grid system to control layout, giving applications a
responsive mobile-first foundation on which to build. When correctly set up, a layout
using Bootstrap components can automatically rearrange components for different
sized screens between extra small up to large desktop computers. The method relies
on <div> elements with classes to describe the role each <div> plays in the layout.

The basic layout pattern in Bootstrap is as follows:

<div class="container-fluid"> <!-- or just .container -->
 <div class="row">
 <div class="col-sm-3">Column 1 content</div> <!-- 25% -->
 <div class="col-sm-9">Column 2 content</div> <!-- 75% -->
 </div>
 <div class="row">
 <div class="col-sm-3">Column 1 content</div> <!-- 25% -->
 <div class="col-sm-6">Column 2 content</div> <!-- 50% -->
 <div class="col-sm-3">Column 3 content</div> <!-- 25% -->
 </div>
</div>

This is a generic Bootstrap layout example, not anything we're putting into the Notes
app. Notice how each layer of the layout relies on different class declarations. This fits
Bootstrap's pattern of declaring behavior by using classes.

Implementing the Mobile-First Paradigm Chapter 6

[240]

In this case, we're showing a typical page layout of a container, containing two rows,
with two columns on the first row and three columns on the second. The outermost
layer uses the .container or .container-fluid elements. Containers provide a
means to center or horizontally pad the content. Containers marked as .container-
fluid act as if they have width: 100%, meaning they expand to fill the horizontal
space.

A .row is what it sounds like, a "row" of a structure that's somewhat like a table.
Technically, a row is a wrapper for columns. Containers are wrappers for rows, and
rows are wrappers for columns, and columns contain the content displayed to our
users.

Columns are marked with variations of the .col class. With the basic column class,
.col, the columns are divided equally into the available space. You can specify a
numerical column count to assign different widths to each column. Bootstrap
supports up to 12 numbered columns, hence each row in the example adds up to 12
columns.

You can also specify a breakpoint to which the column applies:

Using col-xs targets extra-small devices (smartphones, <576px).
Using col-sm targets small devices (>= 576px).
Using col-md targets medium devices (>= 768px).
Using col-lg targets large devices (>= 992px).
Using col-xl targets extra-large devices (>= 1200px).

Specifying a breakpoint, for example, col-sm, means that the declaration applies to
devices matching that breakpoint or larger. Hence, in the example shown earlier, the
column definitions were applied to col-sm, col-md, col-lg, and col-xl devices,
but not to col-xs devices.

The column count is appended to the class name. That means using col-# when not
targeting a breakpoint, for example, col-4, or col-{breakpoint}-# when targeting
a breakpoint, for example, col-md-4, to target a space four columns wide on
medium devices. If the columns add up to more than 12, the columns beyond the
twelfth column wrap around to become a new row. The word auto can be used
instead of a numerical column count to size the column to the natural width of its
contents.

Implementing the Mobile-First Paradigm Chapter 6

[241]

It's possible to mix and match to target multiple breakpoints:

<div class="container-fluid">
 <div class="row">
 <div class="col-xs-9 col-md-3 col-lg-6">Column 1 content</div>
 <div class="col-xs-3 col-md-9 col-lg-6">Column 2 content</div>
 </div>
 ...
</div>

This declares three different layouts, one for extra-small devices, another for medium
devices, and the last for large devices.

The grid system can do a lot more. For details, see the
documentation at https:/ /getbootstrap. com/ docs/ 4.5/layout/
overview/ .

This introduction gives us enough knowledge to start modifying the Notes
application. Our next task is to better understand the structure of the application
pages.

Responsive page structure for the Notes
application
We could go through a whole user experience analysis of Notes, or get designers
involved, and get the perfect page design for each screen of the Notes application. But
the current Notes application design is the result of a developer coding up page
designs that are functional and not ugly. Let's start by discussing the logic behind
the structure of the page designs we have. Consider the following structure:

<!DOCTYPE html>
<html>
<head> .. headerStuff </head>
<body>
.. pageHeader
.. main content
.. bottomOfPageStuff
</body>
</html>

https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/
https://getbootstrap.com/docs/4.5/layout/overview/

Implementing the Mobile-First Paradigm Chapter 6

[242]

This is the general structure of the pages in Notes. The page content has two visible
rows: the header and the main content. At the bottom of the page are invisible things
such as the JavaScript files for Bootstrap and jQuery.

As it currently stands, the header contains a title for each page as well as navigation
links so the user can browse the application. The content area is what changes from
page to page, and is either about viewing content or editing content. The point is that
for every page we have two sections for which to handle layout.

The question is whether views/layout.hbs should have any visible page layout.
This template is used for the layout of every page in the application. The content of
those pages is different enough that it seems layout.hbs cannot have any visible
elements.

That's the decision we'll stick with for now. The next thing to set up is an icon library
we can use for graphical buttons.

Using icon libraries and improving visual
appeal
The world around us isn't constructed of words, but instead things. Hence, pictorial
elements and styles, such as icons, can help computer software to be more
comprehensible. Creating a good user experience should make our users reward us
with more likes in the app store.

There are several icon libraries that can be used on a website. The Bootstrap team has
a curated list at https:/ /getbootstrap. com/ docs/ 4. 5/extend/ icons/ . For this
project, we'll use Feather Icons (https:/ / feathericons. com/). It is a conveniently
available npm package at https:/ /www.npmjs. com/package/ feather- icons.

To install the package, run this command:

$ npm install feather-icons@4.25.x --save

You can then inspect the downloaded package and see
that ./node_modules/feather-icons/dist/feather.js contains browser-side
code, making it easy to use the icons.

https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://getbootstrap.com/docs/4.5/extend/icons/
https://feathericons.com/
https://feathericons.com/
https://feathericons.com/
https://feathericons.com/
https://feathericons.com/
https://feathericons.com/
https://feathericons.com/
https://feathericons.com/
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons
https://www.npmjs.com/package/feather-icons

Implementing the Mobile-First Paradigm Chapter 6

[243]

We make that directory available by mounting it in app.mjs, just as we did for the
Bootstrap and jQuery libraries. Add this code to app.mjs:

app.use('/assets/vendor/feather-icons', express.static(
 path.join(__dirname, 'node_modules', 'feather-icons', 'dist')));

Going by the documentation, we must put this at the bottom of
views/layout.hbs to enable feather-icons support:

<script src="/assets/vendor/feather-icons/feather.js"></script>
<script>
 feather.replace();
</script>

This loads the browser-side library and then invokes that library to cause the icons to
be used.

To use one of the icons, use a data-feather attribute specifying one of the icon
names, like so:

<i data-feather="circle"></i>

As suggested by the icon name, this will display a circle. The Feather Icons library
looks for elements with the data-feather attribute, which the Feather Icons library
uses to identify the SVG file to use. The Feather Icons library completely replaces the
element where it finds the data-feather attribute. Therefore, if you want the icon to
be a clickable link, it's necessary to wrap the icon definition with an <a> tag, rather
than adding data-feather to the <a> tag.

Let's now redesign the page header to be a navigation bar, and use one of the Feather
icons.

Responsive page header navigation bar
The header section we designed before contains a page title and a little navigation
bar. Bootstrap has several ways to spiff this up, and even give us a responsive
navigation bar that neatly collapses to a menu on small devices.

In views/header.hbs, make this change:

<header class="page-header">
<h1>{{ title }}</h1>
<nav class="navbar navbar-expand-md navbar-dark bg-dark">
 <i data-feather="home"></i>

Implementing the Mobile-First Paradigm Chapter 6

[244]

 <button class="navbar-toggler" type="button"
 data-toggle="collapse" data-target="#navbarSupportedContent"
 aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarSupportedContent">
 <div class="navbar-nav col">
 {{#if breadcrumb}}

 {{breadcrumb.title}}
 {{/if}}
 </div>
 <a class="nav-item nav-link btn btn-light col-auto"
 href='/notes/add'>ADD Note
 </div>
</nav>
</header>

Adding class="page-header" informs Bootstrap that this is, well, the page header.
Within that, we have the <h1> header as before, providing the page title, and then a
responsive Bootstrap navbar.

By default, the navbar is expanded—meaning the components inside the navbar are
visible—because of the navbar-expand-md class. This navbar uses a navbar-
toggler button that governs the responsiveness of the navbar. By default, this
button is hidden and the body of the navbar is visible. If the screen is small enough,
the navbar-toggler is switched so it's visible and the body of the navbar becomes
invisible, and when clicking on the now-visible navbar-toggler, a menu drops
down containing the body of the navbar:

Implementing the Mobile-First Paradigm Chapter 6

[245]

We chose the Feather Icons' home icon because that link goes to the home page. It's
intended that the middle portion of the navbar will contain a breadcrumb trail as we
navigate around the Notes application.

The ADD Note button is glued to the right-hand side with a little Flexbox magic. The
container is a Flexbox, meaning we can use the Bootstrap classes to control the space
consumed by each item. The breadcrumb area is the blank spot between the home
icon and the ADD Note button. It is empty in this case, but the <div> element that
would contain it is there and declared with class="col", meaning that it takes up a
column unit. The ADD Note button is, on the other hand, declared with
class="col-auto", meaning it takes up only the room required for itself. Therefore,
the empty breadcrumb area that will expand to fill the available space, while the
ADD Note button fills only its own space, and is therefore pushed over to the side.

Because it's the same application, the functionality all works; we're simply working
on the presentation. We've added a few notes but the presentation of the list on the
front page leaves a lot to be desired. The small size of the title is not very touch-
friendly since it doesn't present a large target area for a fingertip. And can you
explain why the notekey value has to be displayed on the home page? With that in
mind, let's move on to fixing up the front page.

Improving the Notes list on the front page
The current home page has some simple text list that's not terribly touch-friendly, and
showing the key at the front of the line might be inexplicable to the user. Let's fix this.

Edit views/index.hbs as follows, with the changed lines shown in bold:

<div class="container-fluid">
 <div class="row">
 <div class="col-12 btn-group-vertical" role="group">
 {{#each notelist}}
 <a class="btn btn-lg btn-block btn-outline-dark"
 href="/notes/view?key={{ key }}">{{ title }}
 {{/each}}
 </div>
 </div>
</div>

Implementing the Mobile-First Paradigm Chapter 6

[246]

The first change is to switch away from using a list and to use a vertical button group.
The button group is a Bootstrap component that's what it sounds like, a group of
buttons. By making the text links look and behave like buttons, we're improving the
UI, especially its touch-friendliness. We chose the btn-outline-dark button style
because it looks good in the UI. We use large buttons (btn-lg) that fill the width
of the container (btn-block).

We eliminated showing the notekey value to the user. This information doesn't add
anything to the user experience. Running the application, we get the following:

This is beginning to take shape, with a decent-looking home page that handles
resizing very nicely and is touch-friendly. The buttons have been enlarged nicely to
be large enough for big fingers to easily tap.

There's still something more to do with this since the header area is taking up a fair
amount of space. We should always feel free to rethink a plan as we look at
intermediate results. Earlier, we created a design for the header area, but on
reflection, that design looks to be too large. The intention had been to insert a
breadcrumb trail just to the right of the home icon, and to leave the <h1> title at the
top of the header area. But this takes up too much vertical space, so we can tighten up
the header and possibly improve the appearance.

Edit partials/header.hbs with the following line in bold:

<header class="page-header">
<nav class="navbar navbar-expand-md navbar-dark bg-dark">
 <i data-feather="home"></i>
 <button class="navbar-toggler" type="button"
 data-toggle="collapse" data-target="#navbarSupportedContent"

Implementing the Mobile-First Paradigm Chapter 6

[247]

 aria-controls="navbarSupportedContent"
 aria-expanded="false"
 aria-label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarSupportedContent">
 {{ title }}
 <a class="nav-item nav-link btn btn-light col-auto"
 href='/notes/add'>ADD Note
 </div>
</nav>
</header>

This removes the <h1> tag at the top of the header area, immediately tightening up
the presentation.

Within the navbar-collapse area, we've replaced what had been intended as the
breadcrumb with a simple navbar-text component containing the page title. To
keep the ADD Note button glued to the right, we're maintaining the class="col"
and class="col-auto" settings:

Which header area design is better? That's a good question. Since beauty is in the eye
of the beholder, both designs are probably equally good. What we have demonstrated
is the ease with which we can update the design by editing the template files.

Let's now take care of the page for viewing notes.

Implementing the Mobile-First Paradigm Chapter 6

[248]

Cleaning up the note viewing experience
Viewing a note isn't bad, but the user experience can be improved. For example, the
user does not need to see the notekey, meaning we might remove that from the
display. Additionally, Bootstrap has nicer-looking buttons we can use.

In views/noteview.hbs, make these changes:

<div class="container-fluid">
 <div class="row"><div class="col-xs-12">
 {{#if note}}<h3>{{ note.title }}</h3>{{/if}}
 {{#if note}}<p>{{ note.body }}</p>{{/if}}
 <p>Key: {{ notekey }}</p>
 </div></div>
 {{#if notekey }}
 <div class="row"><div class="col-xs-12">
 <div class="btn-group">
 <a class="btn btn-outline-dark"
 href="/notes/destroy?key={{notekey}}"
 role="button">Delete
 <a class="btn btn-outline-dark"
 href="/notes/edit?key={{notekey}}"
 role="button">Edit
 </div>
 </div></div>
 {{/if}}
</div>

We have declared two rows, one for the note, and another for buttons for actions
related to the note. Both are declared to consume all 12 columns, and therefore take
up the full available width. The buttons are again contained within a button group,
but this time a horizontal group rather than vertical.

Running the application, we get the following:

Implementing the Mobile-First Paradigm Chapter 6

[249]

Do we really need to show the notekey to the user? We'll leave it there, but that's an
open question for the user experience team. Otherwise, we've improved the note-
reading experience.

Next on our list is the page for adding and editing notes.

Cleaning up the add/edit note form
The next major glaring problem is the form for adding and editing notes. As we said
earlier, it's easy to get the text input area to overflow a small screen. Fortunately,
Bootstrap has extensive support for making nice-looking forms that work well on
mobile devices.

Change the form in views/noteedit.hbs to this:

<form method='POST' action='/notes/save'>
 <div class="container-fluid">
 {{#if docreate}}
 <input type='hidden' name='docreate' value="create">
 {{else}}
 <input type='hidden' name='docreate' value="update">
 {{/if}}
 <div class="form-group row align-items-center">
 <label for="notekey" class="col-1 col-form-label">Key</label>
 {{#if docreate }}
 <div class="col">
 <input type='text' class="form-control"
 placeholder="note key" name='notekey' value=''/>
 </div>
 {{else}}
 {{#if note }}
 {{notekey}}
 {{/if}}
 <input type='hidden' name='notekey'
 value='{{#if note }}{{notekey}}{{/if}} '/>
 {{/if}}
 </div>

 <div class="form-group row">
 <label for="title" class="col-1 col-form-label">Title</label>
 <div class="col">
 <input type="text" class="form-control"
 id='title' name='title' placeholder="note title"
 value='{{#if note }}{{note.title}}{{/if}}'>
 </div>

Implementing the Mobile-First Paradigm Chapter 6

[250]

 </div>

 <div class="form-group row">
 <textarea class="form-control" name='body'
 rows="5">{{#if note }}{{note.body}}{{/if}}</textarea>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </div>
</form>

There's a lot going on here. What we've done is reorganize the form so Bootstrap can
do the right things with it. The first thing to note is that we have several instances of
this:

<div class="form-group row"> .. </div>

The entire form is contained within a container-fluid, meaning that it will
automatically stretch to fit the screen. The form has three of these rows with the
form-group class.

Bootstrap uses form-group elements to add structure to forms and to encourage
proper use of <label> elements, along with other form elements. It's good practice to
use a <label> element with every <input> element to improve assistive behavior in
the browser, rather than simply leaving some dangling text.

For horizontal layout, notice that for each row there is a <label> with a col-1 class,
and the <input> element is contained within a <div> that has a col class. The effect
is that the <label> has a controlled width and that the labels all have the same
width, while the <input> elements take up the rest of the horizontal space.

Every form element has class="form-control". Bootstrap uses this to identify the
controls so it can add styling and behavior.

The placeholder='key' attribute puts sample text in an otherwise empty text input
element. It disappears as soon as the user types something and is an excellent way to
prompt the user with what's expected.

Finally, we changed the Submit button to be a Bootstrap button. These look nice, and
Bootstrap makes sure that they work great:

Implementing the Mobile-First Paradigm Chapter 6

[251]

The result looks good and works well on the iPhone. It automatically sizes itself to
whatever screen it's on. Everything behaves nicely. In the preceding screenshot, we've
resized the window small enough to cause the navbar to collapse. Clicking on the so-
called hamburger icon on the right (the three horizontal lines) causes the navbar
contents to pop up as a menu.

We have learned how to improve forms using Bootstrap. We have a similar task in
the form to confirm deleting notes.

Cleaning up the delete-note window
The window used to verify the user's choice to delete a note doesn't look bad, but it
can be improved.

Edit views/notedestroy.hbs to contain the following:

<form method='POST' action='/notes/destroy/confirm'>
 <div class="container-fluid">
 <input type='hidden' name='notekey' value='
 {{#if note}}{{notekey}}{{/if}}'>
 <p class="form-text">Delete {{note.title}}?</p>
 <div class="btn-group">
 <button type="submit" value='DELETE'
 class="btn btn-outline-dark">DELETE</button>
 <a class="btn btn-outline-dark"
 href="/notes/view?key={{#if note}}{{notekey}}{{/if}}"
 role="button">

Implementing the Mobile-First Paradigm Chapter 6

[252]

 Cancel
 </div>
 </div>
</form>

We've reworked it to use similar Bootstrap form markup. The question about deleting
the note is wrapped with class="form-text" so that Bootstrap can display it
properly.

The buttons are wrapped with class="btn-group" as before. The buttons have
exactly the same styling as on other screens, giving a consistent look across the
application:

There is an issue in that the title text in the navbar does not use the word Delete. In
routes/notes.mjs, we can make this change:

// Ask to Delete note (destroy)
router.get('/destroy', async (req, res, next) => {
 var note = await notes.read(req.query.key);
 res.render('notedestroy', {
 title: note ? `Delete ${note.title}` : "",
 notekey: req.query.key, note: note
 });
});

What we've done is to change the title parameter passed to the template. We'd
done this in the /notes/edit route handler and seemingly missed doing so in this
handler.

That handles rewriting the Notes application to use Bootstrap. Having a complete
Bootstrap-based UI, let's look at what it takes to customize the Bootstrap look and
feel.

Implementing the Mobile-First Paradigm Chapter 6

[253]

Customizing a Bootstrap build
One reason to use Bootstrap is that you can easily build a customized version. The
primary reason to customize a Bootstrap build is to adjust the theme from the default.
While we can use stylesheet.css to adjust the presentation, it's much more
effective to adjust theming the Bootstrap way. That means changing the SASS
variables and recompiling Bootstrap to generate a new bootstrap.css file.

Bootstrap stylesheets are built using the build process described in
the package.json file. Therefore, customizing a Bootstrap build means first
downloading the Bootstrap source tree, making modifications, then using the npm
run dist command to build the distribution. By the end of this section, you'll know
how to do all that.

The Bootstrap uses SASS, which is one of the CSS preprocessors used to simplify CSS
development. In Bootstrap's code, one file (scss/_variables.scss) contains
variables used throughout the rest of Bootstrap's .scss files. Change one variable
and it automatically affects the rest of Bootstrap.

The official documentation on the Bootstrap website (https:/ /
getbootstrap. com/ docs/ 4.5/getting- started/ build- tools/) is
useful for reference on the build process.

If you've followed the directions given earlier, you have a directory, chap06/notes,
containing the Notes application source code. Create a directory
named chap06/notes/theme, within which we'll set up a custom Bootstrap build
process.

In order to have a clear record of the steps involved, we'll use a package.json file in
that directory to automate the build process. There isn't any Node.js code involved;
npm is also a convenient tool to automate the software build processes.

To start, we need a script for downloading the Bootstrap source tree from https:/ /
github.com/twbs/ bootstrap. While the bootstrap npm package includes SASS
source files, it isn't sufficient to build Bootstrap, and therefore we must download the
source tree. What we do is navigate to the GitHub repository, click on the Releases
tab, and select the URL for the most recent release. But instead of downloading it
manually, let's automate the process.

https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://getbootstrap.com/docs/4.5/getting-started/build-tools/
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap

Implementing the Mobile-First Paradigm Chapter 6

[254]

With theme/package.json can contain this scripts section:

{
 "scripts": {
 "download": "wget -O -https://
 github.com/twbs/bootstrap/archive/v4.5.0.tar.gz | tar xvfz -",
 "postdownload": "cd bootstrap-4.5.0 && npm install"
 }
}

This will automatically download and unpack the Bootstrap source distribution, and
then the postdownload step will run npm install to install the dependencies
declared by the Bootstrap project. This gets the source tree all set up and ready to
modify and build.

Type this command:

$ npm run download

This executes the steps to download and unpack the Bootstrap source tree. The scripts
we gave will work for a Unix-like system, but if you are on Windows it will be easiest
to run this in the Windows Subsystem for Linux.

This much only installs the tools necessary to build Bootstrap. The documentation on
the Bootstrap website also discusses installing Bundler from the Ruby Gems
repository, but that tool only seems to be required to bundle the built distribution. We
do not need that tool, so skip that step.

To build Bootstrap, let's add the following lines to the scripts section in our
theme/package.json file:

"scripts": {
...
 "clean": "rm -rf bootstrap-4.5.0",
 "build": "cd bootstrap-4.5.0 && npm run dist",
 "watch": "cd bootstrap-4.5.0 && npm run watch"
...
}

Obviously, you'll need to adjust these directory names when a new Bootstrap release
is issued.

Implementing the Mobile-First Paradigm Chapter 6

[255]

In the Bootstrap source tree, running npm run dist builds Bootstrap using a process
recorded in the Bootstrap package.json file. Likewise, npm run watch sets up an
automated process to scan for changed files and rebuilds Bootstrap upon changing
any file. Running npm run clean will delete the Bootstrap source tree. By adding
these lines to our theme/package.json file, we can start this in the Terminal and we
can now rerun the build as needed without having to scratch our heads, struggling to
remember what to do.

To avoid having the Bootstrap source code checked into your Git repository, add a
theme/.gitignore file:

bootstrap-4.*

This will tell Git to not commit the Bootstrap source tree to the source repository.
There's no need to commit third-party sources to your source tree since we have
recorded in the package.json file the steps required to download the sources.

Now run a build with this command:

$ npm run build

The built files land in the theme/bootstrap-4.5.0/dist directory. The content of
that directory will match the contents of the npm package for Bootstrap.

Before proceeding, let's take a look around the Bootstrap source tree. The scss
directory contains the SASS source that will be compiled into the Bootstrap CSS files.
To generate a customized Bootstrap build will require a few modifications in that
directory.

The bootstrap-4.5.0/scss/bootstrap.scss file contains @import directives to
pull in all Bootstrap components. The
file bootstrap-4.5.0/scss/_variables.scss contains definitions used in the
remainder of the Bootstrap SASS source. Editing or overriding these values will
change the look of websites using the resulting Bootstrap build.

For example, these definitions determine the main color values:

$white: #fff !default;
$gray-100: #f8f9fa !default;
...
$gray-800: #343a40 !default;
...
$blue: #007bff !default;
...
$red: #dc3545 !default;

Implementing the Mobile-First Paradigm Chapter 6

[256]

$orange: #fd7e14 !default;
$yellow: #ffc107 !default;
$green: #28a745 !default;
...
$primary: $blue !default;
$secondary: $gray-600 !default;
$success: $green !default;
$info: $cyan !default;
$warning: $yellow !default;
$danger: $red !default;
$light: $gray-100 !default;
$dark: $gray-800 !default;

These are similar to normal CSS statements. The !default attribute designates these
values as the default. Any !default values can be overridden without editing
_values.scss.

To create a custom theme we could change _variables.scss, then rerun the build.
But what if Bootstrap makes a considerable change to _variables.scss that we
miss? It's better to instead create a second file that overrides values in
_variables.scss.

With that in mind, create a file, theme/_custom.scss, containing the following:

$white: #fff !default;
$gray-900: #212529 !default;
$body-bg: $gray-900 !default;
$body-color: $white !default;

This reverses the values for the $body-bg and $body-color settings in
_variables.scss. The Notes app will now use white text on a dark background,
rather than the default white background with dark text. Because these declarations
do not use !default, they'll override the values in _variables.scss.

Then, make a copy of scss/bootstrap.scss in the theme directory and modify it
like so:

@import "custom";
@import "functions";
@import "variables";
...

This adds an @import header for the _custom.scss file we just created. That way,
Bootstrap will load our definitions during the build process.

Implementing the Mobile-First Paradigm Chapter 6

[257]

Finally, add this line to the scripts section of theme/package.json:

 "prebuild": "cp _custom.scss bootstrap.scss bootstrap-4.5.0/scss",
 "postbuild": "mkdir -p dist && cp -r bootstrap-4.5.0/dist .",

With these scripts, before building Bootstrap, these two files will be copied in place,
and afterward, the built files will be copied to a directory named dist. The prebuild
step lets us commit our copy of the _custom.scss and bootstrap.scss files into
our source repository, while being free to delete the Bootstrap source at any time.
Likewise, the postbuild step lets us commit the custom theme we built to the source
repository.

Next, rebuild Bootstrap:

$ npm run build

> @ prebuild /Users/David/chap06/notes/theme
> cp _custom.scss bootstrap.scss bootstrap-4.5.0/scss

> @ build /Users/David/chap06/notes/theme
> cd bootstrap-4.5.0 && npm run dist
...

While that's building, let's modify notes/app.mjs to mount the build directory:

// app.use('/assets/vendor/bootstrap', express.static(
// path.join(__dirname, 'node_modules', 'bootstrap', 'dist')));
app.use('/assets/vendor/bootstrap', express.static(
 path.join(__dirname, 'theme', 'dist')));

What we've done is switch from the Bootstrap configuration in node_modules to
what we just built in the theme directory.

Then reload the application, and you'll see the coloring change.

There are two changes required to get this exact presentation. The button elements we
used earlier have the btn-outline-dark class, which works well on a light
background. Because the background is now dark, these buttons need to use light
coloring.

To change the buttons, in views/index.hbs, make this change:

<a class="btn btn-lg btn-block btn-outline-light"
 href="/notes/view?key={{ key }}"> {{ title }}

Implementing the Mobile-First Paradigm Chapter 6

[258]

Make a similar change in views/noteview.hbs:

<a class="btn btn-outline-light" href="/notes/destroy?key={{notekey}}"
 role="button"> Delete
<a class="btn btn-outline-light" href="/notes/edit?key={{notekey}}"
 role="button"> Edit

That's cool, we can now rework the Bootstrap color scheme any way we want. Don't
show this to your user experience team, because they'll throw a fit. We did this to
prove the point that we can edit _custom.scss and change the Bootstrap theme.

The next thing to explore is using a pre-built, third-party Bootstrap theme.

Using third-party custom Bootstrap themes
If all this is too complicated for you, several websites provide pre-built Bootstrap
themes, or else simplified tools to generate a Bootstrap build. To get our feet wet, let's
download a theme from Bootswatch (https:/ / bootswatch. com/). This is both a
collection of free and open source themes and a build system for generating custom
Bootstrap themes (https:/ /github. com/thomaspark/ bootswatch/).

Let's use the Minty theme from Bootswatch to explore the needed changes. You can
download the theme from the website or add the following to the scripts section
of package.json:

"dl-minty": "mkdir -p minty && npm run dl-minty-css && npm run dl-
minty-min-css",
"dl-minty-css": "wget https://bootswatch.com/4/minty/bootstrap.css -O
minty/bootstrap.css",
"dl-minty-min-css": "wget
https://bootswatch.com/4/minty/bootstrap.min.css -O
minty/bootstrap.min.css"

This will download the prebuilt CSS files for our chosen theme. In passing, notice that
the Bootswatch website offers _variables.scss and _bootswatch.scss files,
which should be usable with a workflow similar to what we implemented in the
previous section. The GitHub repository matching the Bootswatch website has a
complete build procedure for building custom themes.

https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://bootswatch.com/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/
https://github.com/thomaspark/bootswatch/

Implementing the Mobile-First Paradigm Chapter 6

[259]

Perform the download with the following command:

$ npm run dl-minty

> notes@0.0.0 dl-minty /Users/David/chap06/notes
> mkdir -p minty && npm run dl-minty-css && npm run dl-minty-min-css

> notes@0.0.0 dl-minty-css /Users/David/chap06/notes
> wget https://bootswatch.com/4/minty/bootstrap.css -O
minty/bootstrap.css

> notes@0.0.0 dl-minty-min-css /Users/David/chap06/notes
> wget https://bootswatch.com/4/minty/bootstrap.min.css -O
minty/bootstrap.min.css

In app.mjs we will need to change the Bootstrap mounts to separately mount the
JavaScript and CSS files. Use the following:

// app.use('/assets/vendor/bootstrap', express.static(
// path.join(__dirname, 'node_modules', 'bootstrap', 'dist')));
// app.use('/assets/vendor/bootstrap', express.static(
// path.join(__dirname, 'theme', 'bootstrap-4.0.0', 'dist')));
app.use('/assets/vendor/bootstrap/js', express.static(
 path.join(__dirname, 'node_modules', 'bootstrap', 'dist', 'js')));
app.use('/assets/vendor/bootstrap/css', express.static(
 path.join(__dirname, 'minty')));

Instead of one mount for /vendor/bootstrap, we now have two mounts for each of
the subdirectories. While the Bootswatch team provides bootstrap.css and
bootstrap.min.css, they do not provide the JavaScript source. Therefore, we use
the /vendor/bootstrap/css mount point to access the CSS files you downloaded
from the theme provider, and the /vendor/bootstrap/js mount point to access the
JavaScript files in the Bootstrap npm package.

Because Minty is a light-colored theme, the buttons now need to use the dark style.
We had earlier changed the buttons to use a light style because of the dark
background. We must now switch from btn-outline-light back to btn-
outline-dark. In partials/header.hbs, the color scheme requires a change in the
navbar content:

<div class="collapse navbar-collapse" id="navbarSupportedContent">
 {{ title }}
 <a class="nav-item nav-link btn btn-dark col-auto"
href='/notes/add'>ADD Note
</div>

Implementing the Mobile-First Paradigm Chapter 6

[260]

We selected the text-dark and btn-dark classes to provide some contrast against
the background.

Re-run the application and you'll see something like this:

With that, we have completed our exploration of customizing the look and feel of a
Bootstrap-based application. We can now wrap up the chapter.

Summary
The possibilities for using Bootstrap are endless. While we covered a lot of material,
we have only touched the surface, and we could have done much more with
our Notes application. But since our focus in this book is not on the UI, but on the
backend Node.js code, we purposely limited ourselves to making the application
work acceptably well on mobile devices.

You learned what the Twitter Bootstrap framework can do by using it to implement a
simple responsive website design. Even the little changes we made improved the way
the Notes app looks and feels. We also created a customized Bootstrap theme, along
with using a third-party theme, to explore how easy it is to make a Bootstrap build
look unique.

Now, we want to get back to writing Node.js code. We left off Chapter 5, Your First
Express Application, with the problem of persistence, where the Notes
application could be stopped and restarted without losing our notes. In Chapter 7,
Data Storage and Retrieval, we'll dive into using several database engines to store our
data.

7
Data Storage and Retrieval

In the previous two chapters, we built a small and somewhat useful application for
storing notes, and then made it work on mobile devices. While our application works
reasonably well, it doesn't store these notes anywhere on a long-term basis, meaning
the notes are lost when you stop the server, and if you run multiple instances of
Notes, each instance has its own set of notes. Our next step is to introduce a database
tier to persist the notes to long-term storage.

In this chapter, we will look at database support in Node.js, with the goal being to
gain exposure to several kinds of databases. For the Notes application, the
user should see the same set of notes for any Notes instance accessed, and the user
should be able to reliably access notes at any time.

We'll start with the Notes application code used in the previous chapter. We started
with a simple in-memory data model, using an array to store the notes, and then
made it mobile-friendly. In this chapter, we will cover the following topics:

The relationship between databases and asynchronous code
Configuring the logging of operational and debugging information
Catching important system errors
Using import() to enable the runtime selection of the database to use
Implementing data persistence for the Notes objects using several database
engines
Designing simple configuration files with YAML

The first step is to duplicate the code from the previous chapter. For instance, if you
were working in chap06/notes, duplicate it and change its name to chap07/notes.

Let's start by reviewing a little theory on why database code in Node.js is
asynchronous.

Let's get started!

Data Storage and Retrieval Chapter 7

[262]

Remembering that data storage requires
asynchronous code
By definition, external data storage systems require asynchronous coding techniques,
such as the ones we discussed in previous chapters. The core principle of the Node.js
architecture is that any operation that requires a long time to perform must have an
asynchronous API in order to keep the event loop running. The access time to retrieve
data from a disk, another process, or a database always needs to take sufficient time
to require deferred execution.

The existing Notes data model is an in-memory datastore. In theory, in-memory data
access does not require asynchronous code and, therefore, the existing model module
could use regular functions, rather than async functions.

We know that Notes should use databases and it requires an asynchronous API to
access the Notes data. For this reason, the existing Notes model API uses async
functions, so in this chapter, we can persist the Notes data to databases.

That was a useful refresher. Let's now talk about one of the administrative details
required for a production application—using a logging system to store the usage
data.

Logging and capturing uncaught errors
Before we get into databases, we have to address one of the attributes of a high-
quality web application—managing logged information, including normal system
activity, system errors, and debugging information. Logs give us an insight into the
behavior of the system. They answer the following questions for the developers:

How much traffic is the application getting?
If it's a website, which pages are people hitting the most?
How many errors occur and of what kind? Do attacks occur? Are
malformed requests being sent?

Data Storage and Retrieval Chapter 7

[263]

Log management is also an issue. Unless managed well, log files can quickly fill the
disk space. So, it becomes high priority to process old logs, hopefully extracting
useful data before deleting the old logs. Commonly, this includes log rotation, which
means regularly moving the existing log file to an archive directory and then starting
with a fresh log file. Afterward, processing can occur to extract useful data, such as
errors or usage trends. Just as your business analyst looks at profit/loss statements
every few weeks, your DevOps team needs various reports to know whether there
are enough servers to handle the traffic. Furthermore, log files can be screened for
security vulnerabilities.

When we used the Express generator to initially create the Notes application, it
configured an activity-logging system using morgan with the following code:

import { default as logger } from 'morgan';
..
app.use(logger('dev'));

This module is what prints messages about HTTP requests on the terminal window.
We'll look at how to configure this in the next section.

Visit https://github.com/expressjs/morgan for more information
about morgan.

Another useful type of logging is debugging messages about an application.
Debugging traces should be silent in most cases; they should only print information
when debugging is turned on, and the level of detail should be configurable.

The Express team uses the debug package for debugging logs. These are turned on
using the DEBUG environment variable, which we've already seen in use. We will see
how to configure this shortly and put it to use in the Notes application. For more
information, refer to https://www.npmjs.com/package/debug.

Finally, the application might generate uncaught exceptions or unhandled Promises.
The uncaughtException and unhandledRejection errors must be captured,
logged, and dealt with appropriately. We do not use the word must lightly; these
errors must be handled.

Let's get started.

https://github.com/expressjs/morgan
https://www.npmjs.com/package/debug

Data Storage and Retrieval Chapter 7

[264]

Request logging with morgan
The morgan package generates log files from the HTTP traffic arriving on an Express
application. It has two general areas for configuration:

Log format
Log location

As it stands, Notes uses the dev format, which is described as a concise status output
for developers. This can be used to log web requests as a way to measure website
activity and popularity. The Apache log format already has a large ecosystem of
reporting tools and, sure enough, morgan can produce log files in this format.

To enable changing the logging format, simply change the following line in app.mjs:

app.use(logger(process.env.REQUEST_LOG_FORMAT || 'dev'));

This is the pattern we are following throughout this book; namely, to have a default
value baked into the application and to use an environment variable to override the
default. If we don't supply a configuration value through the environment variable,
the program uses the dev format. Next, we need to run Notes, as follows:

$ REQUEST_LOG_FORMAT=common npm start
> notes@0.0.0 start /Users/david/chap07/notes
> cross-env node ./app.mjs
::1 - - [12/Jan/2020:05:51:21 +0000] "GET / HTTP/1.1" 304 -
::1 - - [12/Jan/2020:05:51:21 +0000] "GET
/vendor/bootstrap/css/bootstrap.min.css HTTP/1.1" 304 -
::1 - - [12/Jan/2020:05:51:21 +0000] "GET
/assets/stylesheets/style.css HTTP/1.1" 304 -
::1 - - [12/Jan/2020:05:51:21 +0000] "GET
/vendor/bootstrap/js/bootstrap.min.js HTTP/1.1" 304 -

To revert to the previous logging output, simply do not set this environment variable.
If you've looked at Apache access logs, this logging format will look familiar. The ::1
notation at the beginning of the line is IPV6 notation for localhost, which you may
be more familiar with as 127.0.0.1.

Looking at the documentation for morgan, we learn that it has several predefined
logging formats available. We've seen two of them—the dev format is meant to
provide developer-friendly information, while the common format is compatible with
the Apache log format. In addition to these predefined formats, we can create a
custom log format by using various tokens.

Data Storage and Retrieval Chapter 7

[265]

We could declare victory on request logging and move on to debugging messages.
However, let's look at logging directly to a file. While it's possible to capture stdout
through a separate process, morgan is already installed on Notes and it provides the
capability to direct its output to a file.

The morgan documentation suggests the following:

// create a write stream (in append mode)
const accessLogStream =
fs.createWriteStream(`${__dirname}/access.log`, {flags: 'a'});
// setup the logger
app.use(morgan('combined', {stream: accessLogStream}));

However, this has a problem; it's impossible to perform log rotation without killing
and restarting the server. The phrase log rotation refers to a DevOps practice of
keeping log file snapshots, where each snapshot covers a few hours of activity.
Typically, an application server will not keep a file handle continuously open to the
log file, and the DevOps team can write a simple script that runs every few hours and
uses the mv command to move log files around and the rm command to delete old
files. Unfortunately, morgan, when configured as it is here, keeps a continuously
open file handle to the log file.

Instead, we'll use the rotating-file-stream package. This package even
automates the log rotation task so that the DevOps team doesn't have to write a script
for that purpose.

For the documentation on this, refer to the package page at https:/ /
www. npmjs. com/ package/ rotating- file- stream.

First, install the package:

$ npm install rotating-file-stream --save

Then, add the following code to app.mjs:

import { default as rfs } from 'rotating-file-stream';
...
app.use(logger(process.env.REQUEST_LOG_FORMAT || 'dev', {
 stream: process.env.REQUEST_LOG_FILE ?
 rfs.createStream(process.env.REQUEST_LOG_FILE, {
 size: '10M', // rotate every 10 MegaBytes written
 interval: '1d', // rotate daily
 compress: 'gzip' // compress rotated files

https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/rotating-file-stream

Data Storage and Retrieval Chapter 7

[266]

 })
 : process.stdout
}));

In the import section at the top, we're loading rotating-file-stream as rfs. If
the REQUEST_LOG_FILE environment variable is set, we'll take that as the filename to
record to. The stream argument to morgan simply takes a writable stream.
If REQUEST_LOG_FILE is not set, we use a ?: operator to supply the value of
process.stdout as the writable stream. If it is set, then we use rfs.createStream
to create a writable stream that handles log rotation through the rotating-file-
stream module.

In rfs.createStream, the first argument is the filename of the log file and the
second is an options object describing the behavior to use. Quite a comprehensive
set of options are available for this. The configuration shown here rotates the log file
when it reaches 10 megabytes in size (or after 1 day) and the rotated log file is
compressed using the gzip algorithm.

It's possible to set up multiple logs. For example, if we wanted to log to the console, in
addition to logging to the file, we could add the following logger declaration:

if (process.env.REQUEST_LOG_FILE) {
 app.use(logger(process.env.REQUEST_LOG_FORMAT || 'dev'));
}

If the REQUEST_LOG_FILE variable is set, the other logger will direct logging to the
file. Then, because the variable is set, this logger will be created and will direct
logging to the console. Otherwise, if the variable is not set, the other logger will send
logging to the console and this logger will not be created.

We use these variables as before, specifying them on the command line, as follows:

$ REQUEST_LOG_FILE=log.txt REQUEST_LOG_FORMAT=common DEBUG=notes:*
node ./app.mjs

With this configuration, an Apache format log will be created in log.txt. After
making a few requests, we can inspect the log:

$ ls -l log.txt
-rw-r--r-- 1 david admin 18831 Jan 17 21:10 log.txt
$ head log.txt
::1 - - [18/Jan/2020:04:32:02 +0000] "GET / HTTP/1.1" 304 -
::1 - - [18/Jan/2020:04:32:02 +0000] "GET
/assets/vendor/bootstrap/css/bootstrap.min.css HTTP/1.1" 304 -
::1 - - [18/Jan/2020:04:32:02 +0000] "GET

Data Storage and Retrieval Chapter 7

[267]

/assets/stylesheets/style.css HTTP/1.1" 304 -
::1 - - [18/Jan/2020:04:32:02 +0000] "GET
/assets/vendor/jquery/jquery.min.js HTTP/1.1" 304 -

As expected, our log file has entries in Apache format. Feel free to add one or both of
these environment variables to the script in package.json as well.

We've seen how to make a log of the HTTP requests and how to robustly record it in a
file. Let's now discuss how to handle debugging messages.

Debugging messages
How many of us debug our programs by inserting console.log statements? Most of
us do. Yes, we're supposed to use a debugger, and yes, it is a pain to manage the
console.log statements and make sure they're all turned off before committing our
changes. The debug package provides a better way to handle debug tracing, which is
quite powerful.

For the documentation on the debug package, refer to https:/ / www.
npmjs. com/ package/ debug.

The Express team uses DEBUG internally, and we can generate quite a detailed trace of
what Express does by running Notes this way:

$ DEBUG=express:* npm start

This is pretty useful if you want to debug Express. However, we can use this in our
own code as well. This works similarly to inserting console.log statements, but
without having to remember to comment out the debugging code.

To use this in our code, add the following declaration to the top of any module where
you want the debugging output:

import { default as DBG } from 'debug';
const debug = DBG('notes:debug');
const dbgerror = DBG('notes:error');

This creates two functions—debug and dbgerror—which will generate debugging
traces if enabled. The Debug package calls functions debuggers. The debugger named
debug has a notes:debug specifier, while dbgerror has a notes:error specifier.
We'll talk in more detail about specifiers shortly.

https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug

Data Storage and Retrieval Chapter 7

[268]

Using these functions is as simple as this:

debug('some message');
..
debug(`got file ${fileName}`);

When debugging is enabled for the current module, this causes a message to be
printed. If debugging is not enabled for the current module, no messages are printed.
Again, this is similar to using console.log, but you can dynamically turn it on and
off without modifying your code, simply by setting the DEBUG variable appropriately.

The DEBUG environment variable contains a specifier describing which code will have
debugging enabled. The simplest specifier is *, which is a wildcard that turns on
every debugger. Otherwise, debug specifiers use
the identifer:identifier format. When we said to use DEBUG=express:*, the
specifier used express as the first identifier and used the * wildcard for the second
identifier.

By convention, the first identifier should be the name of your application or library.
So, we used notes:debug and notes:error earlier as specifiers. However, that's
just a convention; you can use any specifier format you like.

To add debugging to Notes, let's add a little more code. Add the following to the
bottom of app.mjs:

server.on('request', (req, res) => {
 debug(`${new Date().toISOString()} request ${req.method}
${req.url}`);
});

This is adapted from the httpsniffer.mjs example from Chapter 4, HTTP Servers
and Clients, and for every HTTP request, a little bit of information will be printed.

Then, in appsupport.mjs, let's make two changes. Add the following to the top of
the onError function:

export function onError(error) {
 dbgerror(error);
 ..
}

This will output an error trace on any errors captured by Express.

Data Storage and Retrieval Chapter 7

[269]

Then, change onListening to the following:

export function onListening() {
 const addr = server.address();
 const bind = typeof addr === 'string'
 ? 'pipe ' + addr
 : 'port ' + addr.port;
 debug(`Listening on ${bind}`);
}

This changes the console.log call to a debug call so that a Listening on message
is printed only if debugging is enabled.

If we run the application with the DEBUG variable set appropriately, we get the
following output:

$ REQUEST_LOG_FORMAT=common DEBUG=notes:* node ./app.mjs
 notes:debug Listening on port 3000 +0ms
 notes:debug 2020-01-18T05:48:27.960Z request GET /notes/add +0ms
::1 - - [18/Jan/2020:05:48:28 +0000] "GET /notes/add HTTP/1.1" 304 -
 notes:debug 2020-01-18T05:48:28.143Z request GET
/assets/vendor/bootstrap/css/bootstrap.min.css +183ms
::1 - - [18/Jan/2020:05:48:28 +0000] "GET
/assets/vendor/bootstrap/css/bootstrap.min.css HTTP/1.1" 304 -
...

Look at this carefully and you'll see that the output is both the logging output from
morgan and the debugging output from the debug module. The debugging output, in
this case, starts with notes:debug. The logging output is, because of the
REQUEST_LOG_FORMAT variable, in Apache format.

We now have a debug tracing system that's ready to be used. The next task to cover is
seeing whether it's possible to capture this or other console output in a file.

Capturing stdout and stderr
Important messages can be printed to process.stdout or process.stderr, which
can be lost if you don't capture the output. It is best practice to capture this output for
future analysis because there can be useful debugging information contained in it. An
even better practice is to use a system facility to capture these output streams.

Data Storage and Retrieval Chapter 7

[270]

A system facility can include a process manager application that launches
applications while connecting the standard output and standard error streams to a
file.

While it lacks this sort of facility, it turns out that JavaScript code running in Node.js
can intercept the process.stdout and process.stderr streams. Among the
available packages, let's look at capture-console. For a writable stream, this
package will invoke a callback function that you provided for any output.

Refer to the capture-console package page for the relevant
documentation at https:/ /www. npmjs. com/ package/ capture-
console.

The last administrative item to cover is ensuring we capture otherwise uncaught
errors.

Capturing uncaught exceptions and
unhandled rejected Promises
Uncaught exceptions and unhandled rejected Promises are other areas where
important information can be lost. Since our code is supposed to capture all errors,
anything that's uncaught is an error on our part. Important information might be
missing from our failure analysis if we do not capture these errors.

Node.js indicates these conditions with events sent by the process object,
uncaughtException and unhandledRejection. In the documentation for these
events, the Node.js team sternly says that in either condition, the application is in an
unknown state because something failed and that it may not be safe to keep the
application running.

To implement these handlers, add the following to appsupport.mjs:

process.on('uncaughtException', function(err) {
 console.error(`I've crashed!!! - ${(err.stack || err)}`);
});

import * as util from 'util';
process.on('unhandledRejection', (reason, p) => {
 console.error(`Unhandled Rejection at: ${util.inspect(p)} reason:
${reason}`);
});

https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console
https://www.npmjs.com/package/capture-console

Data Storage and Retrieval Chapter 7

[271]

Because these are events that are emitted from the process object, the way to handle
them is to attach an event listener to these events. That's what we've done here.

The names of these events describe their meaning well. An uncaughtException
event means an error was thrown but was not caught by a try/catch construct.
Similarly, an unhandledRejection event means a Promise ended in a rejected state,
but there was no .catch handler.

Our DevOps team will be happier now that we've handled these administrative
chores. We've seen how to generate useful log files for HTTP requests, how to
implement debug tracing, and even how to capture it to a file. We wrapped up this
section by learning how to capture otherwise-uncaught errors.

We're now ready to move on to the real purpose of this chapter—storing notes in
persistent storage, such as in a database. We'll implement support for several
database systems, starting with a simple system using files on a disk.

Storing notes in a filesystem
Filesystems are an often-overlooked database engine. While filesystems don't have
the sort of query features supported by database engines, they are still a reliable place
to store files. The Notes schema is simple enough, so the filesystem can easily serve as
its data storage layer.

Let's start by adding two functions to the Note class in models/Notes.mjs:

export default class Note {
 ...
 get JSON() {
 return JSON.stringify({
 key: this.key, title: this.title, body: this.body
 });
 }

 static fromJSON(json) {
 const data = JSON.parse(json);
 if (typeof data !== 'object'
 || !data.hasOwnProperty('key')
 || typeof data.key !== 'string'
 || !data.hasOwnProperty('title')
 || typeof data.title !== 'string'
 || !data.hasOwnProperty('body')
 || typeof data.body !== 'string') {

Data Storage and Retrieval Chapter 7

[272]

 throw new Error(`Not a Note: ${json}`);
 }
 const note = new Note(data.key, data.title, data.body);
 return note;
 }
}

We'll use this to convert the Note objects into and from JSON-formatted text.

The JSON method is a getter, which means it retrieves the value of the object. In this
case, the note.JSON attribute/getter (with no parentheses) will simply give us the
JSON representation of the note. We'll use this later to write to JSON files.

fromJSON is a static function, or factory method, to aid in constructing the Note
objects if we have a JSON string. Since we could be given anything, we need to test
the input carefully. First, if the string is not in JSON format, JSON.parse will fail and
throw an exception. Secondly, we have what the TypeScript community calls a type
guard, or an if statement, to test whether the object matches what is required of a
Note object. This checks whether it is an object with the key, title, and body fields,
all of which must be strings. If the object passes these tests, we use the data to
construct a Note instance.

These two functions can be used as follows:

const note = new Note("key", "title", "body");
const json = note.JSON; // produces JSON text
const newnote = Note.fromJSON(json); // produces new Note instance

This example code snippet produces a simple Note instance and then generates the
JSON version of the note. Then, a new note is instantiated from that JSON string
using from JSON().

Now, let's create a new module, models/notes-fs.mjs, to implement the filesystem
datastore:

import fs from 'fs-extra';
import path from 'path';
import util from 'util';
import { approotdir } from '../approotdir.mjs';
import { Note, AbstractNotesStore } from './Notes.mjs';
import { default as DBG } from 'debug';
const debug = DBG('notes:notes-fs');
const error = DBG('notes:error-fs');

Data Storage and Retrieval Chapter 7

[273]

This imports the required modules; one addition is the use of the fs-extra module.
This module is used because it implements the same API as the core fs module while
adding a few useful additional functions. In our case, we are interested
in fs.ensureDir, which verifies whether the named directory structure exists and if
not, a directory path is created. If we did not need fs.ensureDir, we would simply
use fs.promises since it, too, supplies filesystem functions that are useful in async
functions.

For the documentation on fs-extra, refer
to https://www.npmjs.com/package/fs-extra.

Now, add the following to models/notes-fs.mjs:

export default class FSNotesStore extends AbstractNotesStore {

 async close() { }
 async update(key, title, body) { return crupdate(key, title, body);
 }
 async create(key, title, body) { return crupdate(key, title, body);
 }

 async read(key) {
 const notesdir = await notesDir();
 const thenote = await readJSON(notesdir, key);
 return thenote;
 }

 async destroy(key) {
 const notesdir = await notesDir();
 await fs.unlink(filePath(notesdir, key));
 }

 async keylist() {
 const notesdir = await notesDir();
 let filez = await fs.readdir(notesdir);
 if (!filez || typeof filez === 'undefined') filez = [];
 const thenotes = filez.map(async fname => {
 const key = path.basename(fname, '.json');
 const thenote = await readJSON(notesdir, key);
 return thenote.key;
 });
 return Promise.all(thenotes);
 }

https://www.npmjs.com/package/fs-extra

Data Storage and Retrieval Chapter 7

[274]

 async count() {
 const notesdir = await notesDir();
 const filez = await fs.readdir(notesdir);
 return filez.length;
 }
}

The FSNotesStore class is an implementation of AbstractNotesStore, with a
focus on storing the Note instances as JSON in a directory. These methods implement
the API that we defined in Chapter 5, Your First Express Application. This
implementation is incomplete since a couple of helper functions still need to be
written, but you can see that it relies on files in the filesystem. For example, the
destroy method simply uses fs.unlink to delete the note from the disk. In
keylist, we use fs.readdir to read each Note object and construct an array of
keys for the notes.

Let's add the helper functions:

async function notesDir() {
 const dir = process.env.NOTES_FS_DIR
 || path.join(approotdir, 'notes-fs-data');
 await fs.ensureDir(dir);
 return dir;
}

const filePath = (notesdir, key) => path.join(notesdir,
`${key}.json`);

async function readJSON(notesdir, key) {
 const readFrom = filePath(notesdir, key);
 const data = await fs.readFile(readFrom, 'utf8');
 return Note.fromJSON(data);
}

async function crupdate(key, title, body) {
 const notesdir = await notesDir();
 if (key.indexOf('/') >= 0) {
 throw new Error(`key ${key} cannot contain '/'`);
 }
 const note = new Note(key, title, body);
 const writeTo = filePath(notesdir, key);
 const writeJSON = note.JSON;
 await fs.writeFile(writeTo, writeJSON, 'utf8');
 return note;
}

Data Storage and Retrieval Chapter 7

[275]

The crupdate function is used to support both the update and create methods. For
this Notes store, both of these methods are the same and write the content to the disk
as a JSON file.

As the code is written, the notes are stored in a directory determined by the
notesDir function. This directory is either specified in the
NOTES_FS_DIR environment variable or in notes-fs-data within the Notes root
directory (as learned from the approotdir variable). Either way, fs.ensureDir is
used to make sure that the directory exists.

The pathname for Notes is calculated by the filePath function.

Because the pathname is ${notesDir}/${key}.json, the key cannot use characters
that cannot be used in filenames. For that reason, crupdate throws an error if the key
contains a / character.

The readJSON function does what its name suggests—it reads a Note object as a
JSON file from the disk.

We're also adding another dependency:

$ npm install fs-extra --save

We're now almost ready to run the Notes application, but there's an issue that first
needs to be resolved with the import() function.

Dynamically importing ES6 modules
Before we start modifying the router functions, we have to consider how to account
for multiple AbstractNotesStore implementations. By the end of this chapter, we
will have several of them, and we want an easy way to configure Notes to use any of
them. For example, an environment variable, NOTES_MODEL, could be used to specify
the Notes data model to use, and the Notes application would dynamically load the
correct module.

In Notes, we refer to the Notes datastore module from several places. To change
from one datastore to another requires changing the source in each of these places. It
would be better to locate that selection in one place, and further, to make it
dynamically configurable at runtime.

Data Storage and Retrieval Chapter 7

[276]

There are several possible ways to do this. For example, in a CommonJS module, it's
possible to compute the pathname to the module for a require statement. It would
consult the environment variable, NOTES_MODEL, to calculate the pathname for the
datastore module, as follows:

const notesStore = require(`../models/notes-
${process.env.NOTES_MODEL}.js`);

However, our intent is to use ES6 modules, and so let's see how this works within
that context. Because in the regular import statement the module name cannot be an
expression like this, we need to load modules using dynamic import. The dynamic
import feature—the import() function, in other words—does allow us to
dynamically compute a module name to load.

To implement this idea, let's create a new file, models/notes-store.mjs,
containing the following:

import { default as DBG } from 'debug';
const debug = DBG('notes:notes-store');
const error = DBG('notes:error-store');

var _NotesStore;

export async function useModel(model) {
 try {
 let NotesStoreModule = await import(`./notes-${model}.mjs`);
 let NotesStoreClass = NotesStoreModule.default;
 _NotesStore = new NotesStoreClass();
 return _NotesStore;
 } catch (err) {
 throw new Error(`No recognized NotesStore in ${model} because
 ${err}`);
 }
}

export { _NotesStore as NotesStore };

This is what we might call a factory function. It uses import() to load a module
whose filename is calculated from the model parameter. We saw in notes-fs.mjs
that the FSNotesStore class is the default export. Therefore, the NotesStoreClass
variable gets that class, then we call the constructor to create an instance, and then we
stash that instance in a global scope variable. That global scope variable is then
exported as NotesStore.

Data Storage and Retrieval Chapter 7

[277]

We need to make one small change in models/notes-memory.mjs:

export default class InMemoryNotesStore extends AbstractNotesStore {
... }

Any module implementing AbstractNotesStore will export the defined class as
the default export.

In app.mjs, we need to make another change to call this useModel function. In
Chapter 5, Your First Express Application, we had app.mjs import models/notes-
memory.mjs and then set up NotesStore to contain an instance of
InMemoryNotesStore. Specifically, we had the following:

import { InMemoryNotesStore } from './models/notes-memory.mjs';
export const NotesStore = new InMemoryNotesStore();

We need to remove these two lines of code from app.mjs and then add the
following:

import { useModel as useNotesModel } from './models/notes-store.mjs';
useNotesModel(process.env.NOTES_MODEL ? process.env.NOTES_MODEL :
 “memory”)
.then(store => { })
.catch(error => { onError({ code: 'ENOTESSTORE', error }); });

We are importing useModel, renaming it useNotesModel, and then calling it by
passing in the NOTES_MODEL environment variable. In case the NOTES_MODEL variable
is not set, we’ll default to the “memory” NotesStore. Since useNotesModel is an
async function, we need to handle the resulting Promise. .then handles the success
case, but there is nothing to do, so we supply an empty function. What's important is
that any errors will shut down the application, so we have added .catch, which
calls onError to do so.

To support this error indicator, we need to add the following to the onError function
in appsupport.mjs:

 case 'ENOTESSTORE':
 console.error(`Notes data store initialization failure because `,
 error.error);
 process.exit(1);
 break;

This added error handler will also cause the application to exit.

Data Storage and Retrieval Chapter 7

[278]

These changes also require us to make another change. The NotesStore variable is
no longer in app.mjs, but is instead in models/notes-store.mjs. This means we
need to go to routes/index.mjs and routes/notes.mjs, where we make the
following change to the imports:

import { default as express } from 'express';
import { NotesStore as notes } from '../models/notes-store.mjs';
export const router = express.Router();

We are importing the NotesStore export from notes-store.mjs, renaming it
notes. Therefore, in both of the router modules, we will make calls such
as notes.keylist() to access the dynamically selected AbstractNotesStore
instance.

This layer of abstraction gives the desired result—setting an environment variable
that lets us decide at runtime which datastore to use.

Now that we have all the pieces, let's run the Notes application and see how it
behaves.

Running the Notes application with filesystem
storage
In package.json, add the following to the scripts section:

"fs-start": "cross-env DEBUG=notes:* PORT=3000 NOTES_MODEL=fs node
./app.mjs",
"fs-server1": "cross-env NOTES_MODEL=fs PORT=3001 node ./app.mjs",
"fs-server2": "cross-env NOTES_MODEL=fs PORT=3002 node ./app.mjs",

When you add these entries to package.json, make sure you use
the correct JSON syntax. In particular, if you leave a comma at the
end of the scripts section, it will fail to parse and npm will throw
an error message.

With this code in place, we can now run the Notes application, as follows:

$ DEBUG=notes:* npm run fs-start
> notes@0.0.0 fs-start /Users/david/chap07/notes
> cross-env DEBUG=notes:* PORT=3000 NOTES_MODEL=fs node ./app.mjs
 notes:debug Listening on port 3000 +0ms
 notes:notes-fs keylist dir /home/david/Chapter07/notes/notes-fs-data
files=[] +0ms

Data Storage and Retrieval Chapter 7

[279]

We can use the application at http://localhost:3000 as before. Because we did
not change any template or CSS files, the application will look exactly as you left it at
the end of Chapter 6, Implementing the Mobile-First Paradigm.

Because debugging is turned on for notes:*, we'll see a log of whatever the Notes
application is doing. It's easy to turn this off by simply not setting the DEBUG variable.

You can now kill and restart the Notes application and see the exact same notes. You
can also edit the notes in the command line using regular text editors such as vi. You
can now start multiple servers on different ports, using the fs-server1 and fs-
server2 scripts, and see exactly the same notes.

As we did at the end of Chapter 5, Your First Express Application, we can start the two
servers' separate command windows. This runs two instances of the application, each
on different ports. Then, visit the two servers in separate browser windows, and you
will see that both browser windows show the same notes.

Another thing to try is specifying NOTES_FS_DIR to define a different directory to
store notes.

The final check is to create a note where the key has a / character. Remember that the
key is used to generate the filename where we store the note, and so the key cannot
contain a / character. With the browser open, click on ADD Note and enter a note,
ensuring that you use a / character in the key field. On clicking the Submit button,
you'll see an error saying that this isn't allowed.

We have now demonstrated adding persistent data storage to Notes. However, this
storage mechanism isn't the best, and there are several other database types to
explore. The next database service on our list is LevelDB.

Storing notes with the LevelDB datastore
To get started with actual databases, let's look at an extremely lightweight, small-
footprint database engine: level. This is a Node.js-friendly wrapper that wraps
around the LevelDB engine and was developed by Google. It is normally used in web
browsers for local data persistence and is a non-indexed, NoSQL
datastore originally designed for use in browsers. The Level Node.js module uses the
LevelDB API and supports multiple backends, including leveldown, which integrates
the C++ LevelDB database into Node.js.

Data Storage and Retrieval Chapter 7

[280]

Visit https://www.npmjs.com/package/level for information on
this module.

To install the database engine, run the following command:

$ npm install level@6.x --save

This installs the version of level that the following code was written against.

Then, create the models/notes-level.mjs module, which will contain the
AbstractNotesStore implementation:

import util from 'util';
import { Note, AbstractNotesStore } from './Notes.mjs';
import level from 'level';
import { default as DBG } from 'debug';
const debug = DBG('notes:notes-level');
const error = DBG('notes:error-level');

let db;

async function connectDB() {
 if (typeof db !== 'undefined' || db) return db;
 db = await level(
 process.env.LEVELDB_LOCATION || 'notes.level', {
 createIfMissing: true,
 valueEncoding: "json"
 });
 return db;
}

We start the module with the import statements and a couple of declarations. The
connectDB function is used for what the name suggests—to connect with a database.
The createIfMissing option also does what it suggests, which is creating a
database if there isn't one already one with the name that is used. The import from
the module, level, is a constructor function that creates a level instance connected
to the database specified by the first argument. This first argument is a location in the
filesystem—a directory, in other words—where the database will be stored.

The level constructor returns a db object through which to interact with the
database. We're storing db as a global variable in the module for ease of use. In
connectDB, if the db object is set, we just return it immediately; otherwise, we open
the database using the constructor, as just described.

https://www.npmjs.com/package/level

Data Storage and Retrieval Chapter 7

[281]

The location of the database defaults to notes.level in the current directory.
The LEVELDB_LOCATION environment variable can be set, as the name implies, to
specify the database location.

Now, let's add the rest of this module:

export default class LevelNotesStore extends AbstractNotesStore {

 async close() {
 const _db = db;
 db = undefined;
 return _db ? _db.close() : undefined;
 }

 async update(key, title, body) { return crupdate(key, title, body);
 }
 async create(key, title, body) { return crupdate(key, title, body);
 }

 async read(key) {
 const db = await connectDB();
 const note = Note.fromJSON(await db.get(key));
 return note;
 }

 async destroy(key) {
 const db = await connectDB();
 await db.del(key);
 }

 async keylist() {
 const db = await connectDB();
 const keyz = [];
 await new Promise((resolve, reject) => {
 db.createKeyStream()
 .on('data', data => keyz.push(data))
 .on('error', err => reject(err))
 .on('end', () => resolve(keyz));
 });
 return keyz;
 }

 async count() {
 const db = await connectDB();
 var total = 0;
 await new Promise((resolve, reject) => {
 db.createKeyStream()
 .on('data', data => total++)

Data Storage and Retrieval Chapter 7

[282]

 .on('error', err => reject(err))
 .on('end', () => resolve(total));
 });
 return total;
 }
}

async function crupdate(key, title, body) {
 const db = await connectDB();
 const note = new Note(key, title, body);
 await db.put(key, note.JSON);
 return note;
}

As expected, we're creating a LevelNotesStore class to hold the functions.

In this case, we have code in the close function that calls db.close to close down
the connection. The level documentation suggests that it is important to close the
connection, so we'll have to add something to app.mjs to ensure that the database
closes when the server shuts down. The documentation also says that level does not
support concurrent connections to the same database from multiple clients, meaning
if we want multiple Notes instances to use the database, we should only have the
connection open when necessary.

Once again, there is no difference between the create and update operations, and so
we use a crupdate function again. Notice that the pattern in all the functions is to
first call connectDB to get db, and then to call a function on the db object. In this case,
we use db.put to store the Note object in the database.

In the read function, db.get is used to read the note. Since the Note data was stored
as JSON, we use Note.fromJSON to decode and instantiate the Note instance.

The destroy function deletes a record from the database using the db.del function.

Both keylist and count use the createKeyStream function. This function uses an
event-oriented interface to stream through every database entry, emitting events as it
goes. A data event is emitted for each key in the database, while the end event is
emitted at the end of the database, and the error event is emitted on errors. Since
there is no simple way to present this as a simple async function, we have wrapped it
with a Promise so that we can use await. We then invoke createKeyStream, letting
it run its course and collect data as it goes. For keylist, in the data events, we add
the data (in this case, the key to a database entry) to an array.

Data Storage and Retrieval Chapter 7

[283]

For count, we use a similar process, and in this case, we simply increment a counter.
Since we have this wrapped in a Promise, in an error event, we call reject, and in
an end event, we call resolve.

Then, we add the following to package.json in the scripts section:

"level-start": "cross-env DEBUG=notes:* PORT=3000 NOTES_MODEL=level
node ./app.mjs",

Finally, you can run the Notes application:

$ npm run level-start
> notes@0.0.0 start /Users/david/chap07/notes
> cross-env DEBUG=notes:* PORT=3000 NOTES_MODEL=level node ./app.mjs
 notes:server Listening on port 3000 +0ms

The printout in the console will be the same, and the application will also look the
same. You can put it through its paces to check whether everything works correctly.

Since level does not support simultaneous access to a database from multiple
instances, you won't be able to use the multiple Notes application scenario. You will,
however, be able to stop and restart the application whenever you want to without
losing any notes.

Before we move on to looking at the next database, let's deal with a issue mentioned
earlier—closing the database connection when the process exits.

Closing database connections when closing
the process
The level documentation says that we should close the database connection with
db.close. Other database servers may well have the same requirement. Therefore,
we should make sure we close the database connection before the process exits, and
perhaps also on other conditions.

Node.js provides a mechanism to catch signals sent by the operating system. What
we'll do is configure listeners for these events, then close NotesStore in response.

Data Storage and Retrieval Chapter 7

[284]

 Add the following code to appsupport.mjs:

import { NotesStore } from './models/notes-store.mjs';

async function catchProcessDeath() {
 debug('urk...');
 await NotesStore.close();
 await server.close();
 process.exit(0);
}

process.on('SIGTERM', catchProcessDeath);
process.on('SIGINT', catchProcessDeath);
process.on('SIGHUP', catchProcessDeath);

process.on('exit', () => { debug('exiting...'); });

We import NotesStore so that we can call its methods, and server was already
imported elsewhere.

The first three process.on calls listen to operating system signals. If you're familiar
with Unix process signals, these terms will be familiar. In each case, the event calls
the catchProcessDeath function, which then calls the close function on
NotesStore and, for good measure, on server.

Then, to have a measure of confirmation, we attached an exit listener so that we can
print a message when the process is exiting. The Node.js documentation says that
the exit listeners are prohibited from doing anything that requires further event
processing, so we cannot close database connections in this handler.

Let's try it out by running the Notes application and then immediately pressing Ctrl +
C:

$ npm run level-start
> notes@0.0.0 level-start /home/david/Chapter07/notes
> cross-env DEBUG=notes:* PORT=3000 NOTES_MODEL=level node ./app.mjs
 notes:debug Listening on port 3000 +0ms
^C notes:debug urk... +1s
 notes:debug exiting... +3s

Sure enough, upon pressing Ctrl + C, the exit and catchProcessDeath listeners are
called.

That covers the level database, and we also have the beginning of a handler to
gracefully shut down the application. The next database to cover is an embedded SQL
database that requires no server processes.

Data Storage and Retrieval Chapter 7

[285]

Storing notes in SQL with SQLite3
To get started with more normal databases, let's see how we can use SQL from
Node.js. First, we'll use SQLite3, which is a lightweight, simple-to-set-up database
engine eminently suitable for many applications.

To learn more about this database engine, visit
http://www.sqlite.org/.
To learn more about the Node.js module, visit
https://github.com/mapbox/node-sqlite3/wiki/API or
https://www.npmjs.com/package/sqlite3.

The primary advantage of SQLite3 is that it doesn't require a server; it is a self-
contained, no-set-up-required SQL database. The SQLite3 team also claims that it is
very fast and that large, high-throughput applications have been built with it. The
downside to the SQLite3 package is that its API requires callbacks, so we'll have to
use the Promise wrapper pattern.

The first step is to install the module:

$ npm install sqlite3@5.x --save

This, of course, installs the sqlite3 package.

To manage a SQLite3 database, you'll also need to install the SQLite3 command-line
tools. The project website has precompiled binaries for most operating systems. You'll
also find the tools available in most package management systems.

One management task that we can use is setting up the database tables, as we will see
in the next section.

The SQLite3 database schema
Next, we need to make sure that our database is configured with a database table
suitable for the Notes application. This is an example database administrator task, as
mentioned at the end of the previous section. To do this, we'll use the sqlite3
command-line tool. The sqlite3.org website has precompiled binaries, or the tool
can be installed through your operating system's package management system—for
example, you can use apt-get on Ubuntu/Debian and MacPorts on macOS.

http://www.sqlite.org/
https://github.com/mapbox/node-sqlite3/wiki/API
https://www.npmjs.com/package/sqlite3

Data Storage and Retrieval Chapter 7

[286]

For Windows, make sure you have installed the Chocolatey package manager tool
from https://chocolatey. org. Then start a PowerShell with Administrator
privileges, and run "choco install sqlite". That installs the SQLite3 DLL's and
its command-line tools, letting you run the following instructions.

We're going to use the following SQL table definition for the schema (save it as
models/schema-sqlite3.sql):

CREATE TABLE IF NOT EXISTS notes (
 notekey VARCHAR(255),
 title VARCHAR(255),
 body TEXT
);

To initialize the database table, we run the following command:

$ sqlite3 chap07.sqlite3
SQLite version 3.30.1 2019-10-10 20:19:45
Enter ".help" for usage hints.
sqlite> CREATE TABLE IF NOT EXISTS notes (
 ...> notekey VARCHAR(255),
 ...> title VARCHAR(255),
 ...> body TEXT
 ...>);
sqlite> .schema notes
CREATE TABLE notes (
 notekey VARCHAR(255),
 title VARCHAR(255),
 body TEXT
);
sqlite> ^D
$ ls -l chap07.sqlite3
-rwx------ 1 david staff 8192 Jan 14 20:40 chap07.sqlite3

While we can do this, however, the best practice is to automate all the administrative
processes. To that end, we should instead write a little bit of script to initialize the
database.

Fortunately, the sqlite3 command offers us a way to do this. Add the following to
the scripts section of package.json:

"sqlite3-setup": "sqlite3 chap07.sqlite3 --init models/schema-
sqlite3.sql",

https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/

Data Storage and Retrieval Chapter 7

[287]

Run the setup script:

$ npm run sqlite3-setup

> notes@0.0.0 sqlite3-setup /home/david/Chapter07/notes
> sqlite3 chap07.sqlite3 --init models/schema-sqlite3.sql

-- Loading resources from models/schema-sqlite3.sql
SQLite version 3.30.1 2019-10-10 20:19:45
Enter ".help" for usage hints.
sqlite> .schema notes
CREATE TABLE notes (
 notekey VARCHAR(255),
 title VARCHAR(255),
 body TEXT
);
sqlite> ^D

This isn't fully automated since we have to press Ctrl + D at the sqlite prompt, but
at least we don't have to use our precious brain cells to remember how to do this.
We could have easily written a small Node.js script to do this; however, by using the
tools provided by the package, we have less code to maintain in our own project.

With the database table set up, let's move on to the code to interface with SQLite3.

The SQLite3 model code
We are now ready to implement an AbstractNotesStore implementation for
SQLite3.

Create the models/notes-sqlite3.mjs file:

import util from 'util';
import { Note, AbstractNotesStore } from './Notes.mjs';
import { default as sqlite3 } from 'sqlite3';
import { default as DBG } from 'debug';
const debug = DBG('notes:notes-sqlite3');
const error = DBG('notes:error-sqlite3');

let db;

async function connectDB() {
 if (db) return db;
 const dbfile = process.env.SQLITE_FILE || "notes.sqlite3";
 await new Promise((resolve, reject) => {
 db = new sqlite3.Database(dbfile,

Data Storage and Retrieval Chapter 7

[288]

 sqlite3.OPEN_READWRITE | sqlite3.OPEN_CREATE,
 err => {
 if (err) return reject(err);
 resolve(db);
 });
 });
 return db;
}

This imports the required packages and makes the required declarations.
The connectDB function has a similar purpose to the one in notes-level.mjs: to
manage the database connection. If the database is not open, it'll go ahead and open
it, and it will even make sure that the database file is created (if it doesn't exist). If the
database is already open, it'll simply be returned.

Since the API used in the sqlite3 package requires callbacks, we will have to wrap
every function call in a Promise wrapper, as shown here.

Now, add the following to models/notes-sqlite3.mjs:

export default class SQLITE3NotesStore extends AbstractNotesStore {
 // See implementation below
}

Since there are many member functions, let's talk about them individually:

async close() {
 const _db = db;
 db = undefined;
 return _db ?
 new Promise((resolve, reject) => {
 _db.close(err => {
 if (err) reject(err);
 else resolve();
 });
 }) : undefined;
}

In close, the task is to close the database. There's a little dance done here to make
sure the global db variable is unset while making sure we can close the database by
saving db as _db. The sqlite3 package will report errors from db.close, so we're
making sure we report any errors:

async update(key, title, body) {
 const db = await connectDB();
 const note = new Note(key, title, body);
 await new Promise((resolve, reject) => {

Data Storage and Retrieval Chapter 7

[289]

 db.run("UPDATE notes "+
 "SET title = ?, body = ? WHERE notekey = ?",
 [title, body, key], err => {
 if (err) return reject(err);
 resolve(note);
 });
 });
 return note;
}

async create(key, title, body) {
 const db = await connectDB();
 const note = new Note(key, title, body);
 await new Promise((resolve, reject) => {
 db.run("INSERT INTO notes (notekey, title, body) "+
 "VALUES (?, ? , ?);", [key, title, body], err => {
 if (err) return reject(err);
 resolve(note);
 });
 });
 return note;
}

We are now justified in defining to have separate create and update
operations for the Notes model because the SQL statement for each function is
different. The create function, of course, requires an INSERT INTO statement, while
the update function, of course, requires an UPDATE statement.

The db.run function, which is used several times here, executes a SQL query while
giving us the opportunity to insert parameters in the query string.

This follows a parameter substitution paradigm that's common in SQL programming
interfaces. The programmer puts the SQL query in a string and then places a question
mark anywhere that the aim is to insert a value in the query string. Each question
mark in the query string has to match a value in the array provided by the
programmer. The module takes care of encoding the values correctly so that the
query string is properly formatted, while also preventing SQL injection attacks.

The db.run function simply runs the SQL query it is given and does not retrieve any
data:

async read(key) {
 const db = await connectDB();
 const note = await new Promise((resolve, reject) => {
 db.get("SELECT * FROM notes WHERE notekey = ?",
 [key], (err, row) => {

Data Storage and Retrieval Chapter 7

[290]

 if (err) return reject(err);
 const note = new Note(row.notekey, row.title, row.body);
 resolve(note);
 });
 });
 return note;
}

To retrieve data using the sqlite3 module, you use the db.get, db.all, or
db.each functions. Since our read method only returns one item, we use
the db.get function to retrieve just the first row of the result set. By contrast, the
db.all function returns all of the rows of the result set at once, and the db.each
function retrieves one row at a time, while still allowing the entire result set to be
processed.

By the way, this read function has a bug in it—see whether you can spot the error.
We'll read more about this in Chapter 13, Unit Testing and Functional Testing, when
our testing efforts uncover the bug:

async destroy(key) {
 const db = await connectDB();
 return await new Promise((resolve, reject) => {
 db.run("DELETE FROM notes WHERE notekey = ?;", [key], err =>
{
 if (err) return reject(err);
 resolve();
 });
 });
}

In our destroy method, we simply use db.run to execute the DELETE FROM
statement to delete the database entry for the associated note:

async keylist() {
 const db = await connectDB();
 const keyz = await new Promise((resolve, reject) => {
 const keyz = [];
 db.all("SELECT notekey FROM notes", (err, rows) => {
 if (err) return reject(err);
 resolve(rows.map(row => {
 return row.notekey;
 }));
 });
 });
 return keyz;
}

Data Storage and Retrieval Chapter 7

[291]

In keylist, the task is to collect the keys for all of the Note instances. As we said,
db.get returns only the first entry of the result set, while the db.all function
retrieves all the rows of the result set. Therefore, we use db.all, although db.each
would have been a good alternative.

The contract for this function is to return an array of note keys. The rows object from
db.all is an array of results from the database that contains the data we are to
return, but we use the map function to convert the array into the format required by
this function:

async count() {
 const db = await connectDB();
 const count = await new Promise((resolve, reject) => {
 db.get("select count(notekey) as count from notes",
 (err, row) => {
 if (err) return reject(err);
 resolve(row.count);
 });
 });
 return count;
}

In count, the task is similar, but we simply need a count of the rows in the table. SQL
provides a count() function for this purpose, which we've used, and then because
this result only has one row, we can again use db.get.

This enables us to run Notes with NOTES_MODEL set to sqlite3. With our code now
set up, we can now proceed to run Notes with this database.

Running Notes with SQLite3
We're now ready to run the Notes application with SQLite3. Add the following code
to the scripts section of package.json:

"sqlite3-setup": "sqlite3 chap07.sqlite3 --init models/schema-
sqlite3.sql",
"sqlite3-start": "cross-env SQLITE_FILE=chap07.sqlite3 DEBUG=notes:*
NOTES_MODEL=sqlite3 node ./app.mjs",
"sqlite3-server1": "cross-env SQLITE_FILE=chap07.sqlite3
NOTES_MODEL=sqlite3 PORT=3001 node ./app.mjs",
"sqlite3-server2": "cross-env SQLITE_FILE=chap07.sqlite3
NOTES_MODEL=sqlite3 PORT=3002 node ./app.mjs",

Data Storage and Retrieval Chapter 7

[292]

This sets up the commands that we'll use to test Notes on SQLite3.

We can run the server as follows:

$ npm run sqlite3-start

> notes@0.0.0 sqlite3-start /home/david/Chapter07/notes
> cross-env SQLITE_FILE=chap07.sqlite3 DEBUG=notes:*
NOTES_MODEL=sqlite3 node ./app.mjs

 notes:debug Listening on port 3000 +0ms

You can now browse the application at http://localhost:3000 and run it through
its paces, as before.

Because we still haven't made any changes to the View templates or CSS files, the
application will look the same as before.

Of course, you can use the sqlite command, or other SQLite3 client applications, to
inspect the database:

$ sqlite3 chap07.sqlite3
SQLite version 3.30.1 2019-10-10 20:19:45
Enter ".help" for usage hints.
sqlite> select * from notes;
hithere|Hi There||ho there what there
himom|Hi Mom||This is where we say thanks

The advantage of installing the SQLite3 command-line tools is that we can perform
any database administration tasks without having to write any code.

We have seen how to use SQLite3 with Node.js. It is a worthy database for many sorts
of applications, plus it lets us use a SQL database without having to set up a server.

The next package that we will cover is an Object Relations Management
(ORM) system that can run on top of several SQL databases.

Data Storage and Retrieval Chapter 7

[293]

Storing notes the ORM way with
Sequelize
There are several popular SQL database engines, such as PostgreSQL, MySQL, and
MariaDB. Corresponding to each are Node.js client modules that are similar in nature
to the sqlite3 module that we just used. The programmer is close to SQL, which can
be good in the same way that driving a stick shift car is fun. But what if we want a
higher-level view of the database so that we can think in terms of objects, rather than
rows of a database table? ORM systems provide a suitable higher-level interface, and
even offer the ability to use the same data model with several databases. Just as
driving an electric car provides lots of benefits at the expense of losing out on the fun
of stick-shift driving, ORM produces lots of benefits, while also distancing ourselves
from the SQL.

The Sequelize package (http://www.sequelizejs.com/) is Promise-based, offers
strong, well-developed ORM features, and can connect to SQLite3, MySQL,
PostgreSQL, MariaDB, and MSSQL databases. Because Sequelize is Promise-based, it
will fit naturally with the Promise-based application code we're writing.

A prerequisite to most SQL database engines is having access to a database server. In
the previous section, we skirted around this issue by using SQLite3, which requires
no database server setup. While it's possible to install a database server on your
laptop, right now, we want to avoid the complexity of doing so, and so we will use
Sequelize to manage a SQLite3 database. We'll also see that it's simply a matter of
using a configuration file to run the same Sequelize code against a hosted database
such as MySQL. In Chapter 11, Deploying Node.js Microservices with Docker, we'll learn
how to use Docker to easily set up a service, including database servers, on our laptop
and deploy the exact same configuration to a live server. Most web-hosting providers
offer MySQL or PostgreSQL as part of their service.

Before we start on the code, let's install two modules:

$ npm install sequelize@6.x --save
$ npm install js-yaml@3.13.x --save

The first obviously installs the Sequelize package. The second, js-yaml, is installed
so that we can implement a YAML-formatted file to store the Sequelize connection
configuration. YAML is a human-readable data serialization language, which simply
means it is an easy-to-use text file format to describe data objects.

http://www.sequelizejs.com/

Data Storage and Retrieval Chapter 7

[294]

Perhaps the best place to learn about YAML is its Wikipedia page,
which can be found at https://en.wikipedia.org/wiki/YAML.

Let's start this by learning how to configure Sequelize, then we will create an
AbstractNotesStore instance for Sequelize, and finally, we will test Notes using
Sequelize.

Configuring Sequelize and connecting to a
database
We'll be organizing the code for Sequelize support a little differently from before. We
foresee that the Notes table is not the only data model that the Notes application will
use. We could support additional features, such as the ability to upload images for a
note or to allow users to comment on notes. This means having additional database
tables and setting up relationships between database entries. For example, we might
have a class named AbstractCommentStore to store comments, which will have its
own database table and its own modules to manage the commented data. Both the
Notes and Comments storage areas should be in the same database, and so they
should share a database connection.

With that in mind, let's create a file, models/sequlz.mjs, to hold the code to
manage the Sequelize connection:

import { promises as fs } from 'fs';
import { default as jsyaml } from 'js-yaml';
import Sequelize from 'sequelize';

let sequlz;

export async function connectDB() {
 if (typeof sequlz === 'undefined') {
 const yamltext = await fs.readFile(process.env.SEQUELIZE_CONNECT,
 'utf8');
 const params = jsyaml.safeLoad(yamltext, 'utf8');

 if (typeof process.env.SEQUELIZE_DBNAME !== 'undefined'
 && process.env.SEQUELIZE_DBNAME !== '') {
 params.dbname = process.env.SEQUELIZE_DBNAME;
 }
 if (typeof process.env.SEQUELIZE_DBUSER !== 'undefined'
 && process.env.SEQUELIZE_DBUSER !== '') {

https://en.wikipedia.org/wiki/YAML

Data Storage and Retrieval Chapter 7

[295]

 params.username = process.env.SEQUELIZE_DBUSER;
 }
 if (typeof process.env.SEQUELIZE_DBPASSWD !== 'undefined'
 && process.env.SEQUELIZE_DBPASSWD !== '') {
 params.password = process.env.SEQUELIZE_DBPASSWD;
 }
 if (typeof process.env.SEQUELIZE_DBHOST !== 'undefined'
 && process.env.SEQUELIZE_DBHOST !== '') {
 params.params.host = process.env.SEQUELIZE_DBHOST;
 }
 if (typeof process.env.SEQUELIZE_DBPORT !== 'undefined'
 && process.env.SEQUELIZE_DBPORT !== '') {
 params.params.port = process.env.SEQUELIZE_DBPORT;
 }
 if (typeof process.env.SEQUELIZE_DBDIALECT !== 'undefined'
 && process.env.SEQUELIZE_DBDIALECT !== '') {
 params.params.dialect = process.env.SEQUELIZE_DBDIALECT;
 }

 sequlz = new Sequelize(params.dbname,
 params.username, params.password,
 params.params);
 await sequlz.authenticate();
 }
 return sequlz;
}

export async function close() {
 if (sequlz) sequlz.close();
 sequlz = undefined;
}

As with the SQLite3 module, the connectDB function manages the connection
through Sequelize to a database server. Since the configuration of the Sequelize
connection is fairly complex and flexible, we're not using environment variables for
the whole configuration, but instead we use a YAML-formatted configuration file that
will be specified in an environment variable. Sequelize uses four items of data—the
database name, the username, the password, and a parameters object.

When we read in a YAML file, its structure directly corresponds to the object
structure that's created. Therefore, with a YAML configuration file, we don't need to
use up any brain cells developing a configuration file format. The YAML structure is
dictated by the Sequelize params object, and our configuration file simply has to use
the same structure.

Data Storage and Retrieval Chapter 7

[296]

We also allow overriding any of the fields in this file using environment variables.
This will be useful when we deploy Notes using Docker so that we can configure
database connections without having to rebuild the Docker container.

For a simple SQLite3-based database, we can use the following YAML file for
configuration and name it models/sequelize-sqlite.yaml:

dbname: notes
username:
password:
params:
 dialect: sqlite
 storage: notes-sequelize.sqlite3

The params.dialect value determines what type of database to use; in this case,
we're using SQLite3. Depending on the dialect, the params object can take different
forms, such as a connection URL to the database. In this case, we simply need a
filename, which is given here.

The authenticate call is there to test whether the database connected correctly.

The close function does what you expect—it closes the database connection.

With this design, we can easily change the database to use other database servers, just
by adding a runtime configuration file. For example, it is easy to set up a MySQL
connection; we just create a new file, such as models/sequelize-mysql.yaml,
containing something similar to the following code:

dbname: notes
username: .. user name
password: .. password
params:
 host: localhost
 port: 3306
 dialect: mysql

This is straightforward. The username and password fields must correspond to the
database credentials, while host and port will specify where the database is hosted.
Set the database's dialect parameter and other connection information and you're
good to go.

Data Storage and Retrieval Chapter 7

[297]

To use MySQL, you will need to install the base MySQL driver so that Sequelize can
use MySQL:

$ npm install mysql@2.x --save

Running Sequelize against the other databases it supports, such as PostgreSQL, is just
as simple. Just create a configuration file, install the Node.js driver, and
install/configure the database engine.

The object returned from connectDB is a database connection, and as we'll see that it
is used by Sequelize. So, let's get going with the real goal of this section—to define the
SequelizeNotesStore class.

Creating a Sequelize model for the Notes
application
As with the other data storage engines we've used, we need to create a subclass of
AbstractNotesStore for Sequelize. This class will manage a set of notes using a
Sequelize Model class.

Let's create a new file, models/notes-sequelize.mjs:

import { Note, AbstractNotesStore } from './Notes.mjs';
import Sequelize from 'sequelize';
import {
 connectDB as connectSequlz,
 close as closeSequlz
} from './sequlz.mjs';
import DBG from 'debug';
const debug = DBG('notes:notes-sequelize');
const error = DBG('notes:error-sequelize');

let sequelize;
export class SQNote extends Sequelize.Model {}

async function connectDB() {
 if (sequelize) return;
 sequelize = await connectSequlz();
 SQNote.init({
 notekey: { type: Sequelize.DataTypes.STRING,
 primaryKey: true, unique: true },
 title: Sequelize.DataTypes.STRING,
 body: Sequelize.DataTypes.TEXT
 }, {

Data Storage and Retrieval Chapter 7

[298]

 sequelize,
 modelName: 'SQNote'
 });
 await SQNote.sync();
}

The database connection is stored in the sequelize object, which is established by
the connectDB function that we just looked at (which we renamed connectSequlz)
to instantiate a Sequelize instance. We immediately return if the database is already
connected.

In Sequelize, the Model class is where we define the data model for a given object.
Each Model class corresponds to a database table. The Model class is a normal ES6
class, and we start by subclassing it to define the SQNote class. Why do we call it
SQNote? That's because we already defined a Note class, so we had to use a different
name in order to use both classes.

By calling SQNote.init, we initialize the SQNote model with the fields—that is, the
schema—that we want it to store. The first argument to this function is the schema
description and the second argument is the administrative data required by
Sequelize.

As you would expect, the schema has three fields: notekey, title, and body.
Sequelize supports a long list of data types, so consult the documentation for more on
that. We are using STRING as the type for notekey and title since both handle a
short text string up to 255 bytes long. The body field is defined as TEXT since it does
not need a length limit. In the notekey field, you see it is an object with other
parameters; in this case, it is described as the primary key and the notekey values
must be unique.

Online documentation can be found at the following locations:
Sequelize class: http:/ /docs. sequelizejs. com/en/ latest/ api/
sequelize/
Defining
models: http://docs.sequelizejs.com/en/latest/api/model/

That manages the database connection and sets up the schema. Now, let's add the
SequelizeNotesStore class to models/notes-sequelize.mjs:

export default class SequelizeNotesStore extends AbstractNotesStore {

 async close() {
 closeSequlz();
 sequelize = undefined;

http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/model/

Data Storage and Retrieval Chapter 7

[299]

 }

 async update(key, title, body) {
 await connectDB();
 const note = await SQNote.findOne({ where: { notekey: key
 } })
 if (!note) {
 throw new Error(`No note found for ${key}`);
 } else {
 await SQNote.update({ title, body },
 { where: { notekey: key } });
 return this.read(key);
 }
 }

 async create(key, title, body) {
 await connectDB();
 const sqnote = await SQNote.create({
 notekey: key, title, body
 });
 return new Note(sqnote.notekey, sqnote.title, sqnote.body);
 }

 async read(key) {
 await connectDB();
 const note = await SQNote.findOne({ where: { notekey: key
 } });
 if (!note) {
 throw new Error(`No note found for ${key}`);
 } else {
 return new Note(note.notekey, note.title, note.body);
 }
 }

 async destroy(key) {
 await connectDB();
 await SQNote.destroy({ where: { notekey: key } });
 }

 async keylist() {
 await connectDB();
 const notes = await SQNote.findAll({ attributes: ['notekey'
] });
 const notekeys = notes.map(note => note.notekey);
 return notekeys;
 }

 async count() {

Data Storage and Retrieval Chapter 7

[300]

 await connectDB();
 const count = await SQNote.count();
 return count;
 }
}

The first thing to note is that in each function, we call static methods defined in the
SQNote class to perform database operations. Sequelize model classes work this way,
and there is a comprehensive list of these static methods in its documentation.

When creating a new instance of a Sequelize model class—in this case, SQNote—there
are two patterns to follow. One is to call the build method and then to create the
object and the save method to save it to the database. Alternatively, we can, as is
done here, use the create method, which does both of these steps. This function
returns an SQNote instance, called sqnote here, and if you consult the Sequelize
documentation, you will see that these instances have a long list of methods available.
The contract for our create method is to return a note, so we construct a Note object
to return.

In this, and some other methods, we do not want to return a Sequelize object to our
caller. Therefore, we construct an instance of our own Note class in order to return a
clean object.

Our update method starts by calling SQNote.findOne. This is done to ensure that
there is an entry in the database corresponding to the key that we're given. This
function looks for the first database entry where notekey matches the supplied key.
Following the happy path, where there is a database entry, we then use
SQNote.update to update the title and body values, and by using the same where
clause, it ensures the update operation targets the same database entry.

The Sequelize where clause offers a comprehensive list of matching operators. If you
ponder this, it's clear it roughly corresponds to SQL as follows:

SELECT SQNotes SET title = ?, body = ? WHERE notekey = ?

That's what Sequelize and other ORM libraries do—convert the high-level API into
database operations such as SQL queries.

To read a note, we use the findOne operation again. There is the possibility of it
returning an empty result, and so we have to throw an error to match. The contract
for this function is to return a Note object, so we take the fields retrieved using
Sequelize to create a clean Note instance.

Data Storage and Retrieval Chapter 7

[301]

To destroy a note, we use the destroy operation with the same where clause to
specify which entry to delete. This means that, as in the equivalent SQL statement
(DELETE FROM SQNotes WHERE notekey = ?), if there is no matching note, no
error will be thrown.

Because the keylist function acts on all Note objects, we use the findAll operation.
The difference between findOne and findAll is obvious from the names.
While findOne returns the first matching database entry, findAll returns all of
them. The attributes specifier limits the result set to include the named
field—namely, the notekey field. This gives us an array of objects with a field named
notekey. We then use a .map function to convert this into an array of note keys.

For the count function, we can just use the count() method to calculate the required
result.

This allows us to use Sequelize by setting NOTES_MODEL to sequelize.

Having set up the functions to manage the database connection and defined the
SequelizeNotesStore class, we're now ready to test the Notes application.

Running the Notes application with Sequelize
Now, we can get ready to run the Notes application using Sequelize. We can run it
against any database server, but let's start with SQLite3. Add the following
declarations to the scripts entry in package.json:

"sequelize-start": "cross-env DEBUG=notes:*
SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml NOTES_MODEL=sequelize
node ./app.mjs",
"sequelize-server1": "cross-env SEQUELIZE_CONNECT=models/sequelize-
sqlite.yaml NOTES_MODEL=sequelize PORT=3001 node ./app.mjs",
"sequelize-server2": "cross-env SEQUELIZE_CONNECT=models/sequelize-
sqlite.yaml NOTES_MODEL=sequelize PORT=3002 node ./a[[.mjs",

This sets up commands to run a single server instance (or two).

Data Storage and Retrieval Chapter 7

[302]

Then, run it as follows:

$ npm run sequelize-start

> notes@0.0.0 sequelize-start /home/david/Chapter07/notes
> cross-env DEBUG=notes:* SEQUELIZE_CONNECT=models/sequelize-
sqlite.yaml NOTES_MODEL=sequelize node ./app.mjs

 notes:debug Listening on port 3000 +0ms

As before, the application looks exactly the same because we haven't changed the
View templates or CSS files. Put it through its paces and everything should work.

You will be able to start two instances; use separate browser windows to visit both
instances and see whether they show the same set of notes.

To reiterate, to use the Sequelize-based model on a given database server, do the
following:

Install and provision the database server instance; otherwise, get the1.
connection parameters for an already-provisioned database server.
Install the corresponding Node.js driver.2.
Write a YAML configuration file corresponding to the connection3.
parameters.
Create new scripts entries in package.json to automate starting Notes4.
against the database.

By using Sequelize, we have dipped our toes into a powerful library for managing
data in a database. Sequelize is one of several ORM libraries available for Node.js.
We've already used the word comprehensive several times in this section as it's
definitely the best word to describe Sequelize.

An alternative that is worthy of exploration is not an ORM library but is what's called
a query builder. knex supports several SQL databases, and its role is to simplify
creating SQL queries by using a high-level API.

In the meantime, we have one last database to cover before wrapping up this chapter:
MongoDB, the leading NoSQL database.

Data Storage and Retrieval Chapter 7

[303]

Storing notes in MongoDB
MongoDB is widely used with Node.js applications, a sign of which is the popular
MEAN acronym: MongoDB (or MySQL), Express, Angular, and Node.js. MongoDB
is one of the leading NoSQL databases, meaning it is a database engine that does not
use SQL queries. It is described as a scalable, high-performance, open source, document-
oriented database. It uses JSON-style documents with no predefined, rigid schema and
a large number of advanced features. You can visit their website for more information
and documentation at http://www.mongodb.org.

Documentation on the Node.js driver for MongoDB can be found at
https://www.npmjs.com/package/mongodb and
http://mongodb.github.io/node-mongodb-native/.

Mongoose is a popular ORM for MongoDB (http://mongoosejs.com/). In this
section, we'll use the native MongoDB driver instead, but Mongoose is a worthy
alternative.

First, you will need a running MongoDB instance. The Compose-
(https://www.compose.io/) and ScaleGrid- (https://scalegrid.io/) hosted service
providers offer hosted MongoDB services. Nowadays, it is straightforward to host
MongoDB as a Docker container as part of a system built of other Docker containers.
We'll do this in Chapter 13, Unit Testing and Functional Testing.

It's possible to set up a temporary MongoDB instance for testing on, say, your laptop.
It is available in all the operating system package management systems, or you can
download a compiled package from mongodb.com. The MongoDB website also has
instructions (https://docs.mongodb.org/manual/installation/).

For Windows, it may be most expedient to use a cloud-hosted MongoDB instance.

Once installed, it's not necessary to set up MongoDB as a background service. Instead,
you can run a couple of simple commands to get a MongoDB instance running in the
foreground of a command window, which you can kill and restart any time you like.

In a command window, run the following:

$ mkdir data
$ mongod --dbpath data

This creates a data directory and then runs the MongoDB daemon against the
directory.

http://www.mongodb.org
https://www.npmjs.com/package/mongodb
http://mongodb.github.io/node-mongodb-native/
http://mongoosejs.com/
https://www.compose.io/
https://scalegrid.io/
https://www.mongodb.com
https://docs.mongodb.org/manual/installation/

Data Storage and Retrieval Chapter 7

[304]

In another command window, you can test it as follows:

$ mongo
MongoDB shell version v4.2.2
connecting to:
mongodb://127.0.0.1:27017/?compressors=disabled&gssapiServiceName=mong
odb
Implicit session: session { "id" : UUID("308e285e-5496-43c5-81ca-
b04784927734") }
MongoDB server version: 4.2.2
> db.foo.save({ a: 1});
WriteResult({ "nInserted" : 1 })
> db.foo.find();
{ "_id" : ObjectId("5e261ffc7e36ca9ed76d9552"), "a" : 1 }
>
bye

This runs the Mongo client program with which you can run commands. The
command language used here is JavaScript, which is comfortable for us.

This saves a document in the collection named foo. The second command finds all
documents in foo, printing them out for you. There is only one document, the one we
just inserted, so that's what gets printed. The _id field is added by MongoDB and
serves as a document identifier.

This setup is useful for testing and debugging. For a real deployment, your MongoDB
server must be properly installed on a server. See the MongoDB documentation for
these instructions.

With a working MongoDB installation in our hands, let's get started with
implementing the MongoNotesStore class.

A MongoDB model for the Notes application
The official Node.js MongoDB driver (https:/ /www. npmjs. com/ package/ mongodb) is
created by the MongoDB team. It is very easy to use, as we will see, and its
installation is as simple as running the following command:

$ npm install mongodb@3.x --save

This sets us up with the driver package and adds it to package.json.

https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongodb

Data Storage and Retrieval Chapter 7

[305]

Now, create a new file, models/notes-mongodb.mjs:

import { Note, AbstractNotesStore } from './Notes.mjs';
import mongodb from 'mongodb';
const MongoClient = mongodb.MongoClient;
import DBG from 'debug';
const debug = DBG('notes:notes-mongodb');
const error = DBG('notes:error-mongodb');

let client;

const connectDB = async () => {
 if (!client) client = await
MongoClient.connect(process.env.MONGO_URL);
}
const db = () => { return client.db(process.env.MONGO_DBNAME); };

This sets up the required imports, as well as the functions to manage a connection
with the MongoDB database.

The MongoClient class is used to connect with a MongoDB instance. The required
URL, which will be specified through an environment variable, uses a
straightforward format: mongodb://localhost/. The database name is specified via
another environment variable.

The documentation for the MongoDB Node.js driver can be found
at http:/ /mongodb. github. io/node- mongodb- native/ .

There are both reference and API documentation available. In the
API section, the MongoClient and Db classes are the ones that most
relate to the code we are writing (http:/ /mongodb. github. io/ node-
mongodb- native/).

The connectDB function creates the database client object. This object is only created
as needed. The connection URL is provided through the MONGO_URL environment
variable.

The db function is a simple wrapper around the client object to access the database
that is used for the Notes application, which we specify via the MONGO_DBNAME
environment variable. Therefore, to access the database, the code will have to call
db().mongoDbFunction().

http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/
http://mongodb.github.io/node-mongodb-native/

Data Storage and Retrieval Chapter 7

[306]

Now, we can implement the MongoDBNotesStore class:

export default class MongoDBNotesStore extends AbstractNotesStore {

 async close() {
 if (client) client.close();
 client = undefined;
 }

 async update(key, title, body) {
 await connectDB();
 const note = new Note(key, title, body);
 const collection = db().collection('notes');
 await collection.updateOne({ notekey: key },
 { $set: { title: title, body: body } });
 return note;
 }

 async create(key, title, body) {
 await connectDB();
 const note = new Note(key, title, body);
 const collection = db().collection('notes');
 await collection.insertOne({
 notekey: key, title: title, body: body
 });
 return note;
 }

 async read(key) {
 await connectDB();
 const collection = db().collection('notes');
 const doc = await collection.findOne({ notekey: key });
 const note = new Note(doc.notekey, doc.title, doc.body);
 return note;
 }

 async destroy(key) {
 await connectDB();
 const collection = db().collection('notes');
 const doc = await collection.findOne({ notekey: key });
 if (!doc) {
 throw new Error(`No note found for ${key}`);
 } else {
 await collection.findOneAndDelete({ notekey: key });
 this.emitDestroyed(key);
 }
 }

Data Storage and Retrieval Chapter 7

[307]

 async keylist() {
 await connectDB();
 const collection = db().collection('notes');
 const keyz = await new Promise((resolve, reject) => {
 const keyz = [];
 collection.find({}).forEach(
 note => { keyz.push(note.notekey); },
 err => {
 if (err) reject(err);
 else resolve(keyz);
 }
);
 });
 return keyz;
 }

 async count() {
 await connectDB();
 const collection = db().collection('notes');
 const count = await collection.count({});
 return count;
 }
}

MongoDB stores all documents in collections. A collection is a group of related
documents and is analogous to a table in a relational database. This means creating a
new document or updating an existing one starts by constructing it as a JavaScript
object and then asking MongoDB to save the object to the database. MongoDB
automatically encodes the object into its internal representation.

The db().collection method gives us a Collection object with which we can
manipulate the named collection. In this case, we access the notes collection with
db().collection('notes').

For the documentation of the Collection class, see the MongoDB
Node.js driver documentation referenced earlier.

In the create method, we use insertOne; as the method name implies, it inserts one
document into the collection. This document is used for the fields of the Note class.
Likewise, in the update method, the updateOne method first finds a document (in
this case, by looking up the document with the matching notekey field) and then
changes fields in the document, as specified, before saving the modified document
back to the database.

Data Storage and Retrieval Chapter 7

[308]

The read method uses db().findOne to search for the note.

The findOne method takes what is called a query selector. In this case, we are
requesting a match against the notekey field. MongoDB supports a comprehensive
set of operators for query selectors.

On the other hand, the updateOne method takes what is called a query filter. As
an update operation, it searches the database for a record that matches the filter,
updates its fields based on the update descriptor, and then saves it back to the
database.

For an overview of the MongoDB CRUD operations, including
inserting documents, updating documents, querying for documents,
and deleting documents, refer to https:/ /docs. mongodb. com/
manual/ crud/ .

For the documentation on query selectors, refer to https:/ /docs.
mongodb. com/ manual/ reference/ operator/ query/ #query-
selectors.

For the documentation on query filters, refer to https:/ /docs.
mongodb. com/ manual/ core/ document/ #query- filter- documents.

For the documentation on update descriptors, refer to https:/ /
docs. mongodb. com/ manual/ reference/ operator/ update/ .

MongoDB has many variations of base operations. For example, findOne is a
variation on the basic find method.

In our destroy method, we see another find variant, findOneAndDelete. As the
name implies, it finds a document that matches the query descriptor and then deletes
the document.

In the keylist method, we need to process every document in the collection, and so
the find query selector is empty. The find operation returns a Cursor, which is an
object used to navigate query results. The Cursor.forEach method takes two
callbacks and is not a Promise-friendly operation, so we have to use a Promise
wrapper. The first callback is called for every document in the query result, and in
this case, we simply push the notekey field into an array. The second callback is
called when the operation is finished, and we notify the Promise whether it
succeeded or failed. This gives us our array of keys, which is returned to the caller.

https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/reference/operator/query/#query-selectors
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/core/document/#query-filter-documents
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/

Data Storage and Retrieval Chapter 7

[309]

For the documentation on the Cursor class, refer to http:/ /
mongodb. github. io/ node- mongodb- native/ 3.1/ api/Cursor. html.

In our count method, we simply call the MongoDB count method. The count
method takes a query descriptor and, as the name implies, counts the number of
documents that match the query. Since we've given an empty query selector, it ends
up counting the entire collection.

This allows us to run Notes with NOTES_MODEL set to mongodb to use a MongoDB
database.

Now that we have everything coded for MongoDB, we can proceed with testing
Notes.

Running the Notes application with MongoDB
We are ready to test Notes using a MongoDB database. By now, you know the drill;
add the following to the scripts section of package.json:

"mongodb-start": "cross-env DEBUG=notes:*
MONGO_URL=mongodb://localhost/ MONGO_DBNAME=chap07 NOTES_MODEL=mongodb
node ./app.mjs",
"mongodb-server1": "cross-env DEBUG=notes:*
MONGO_URL=mongodb://localhost/ MONGO_DBNAME=chap07 NOTES_MODEL=mongodb
PORT=3001 node ./app.mjs",
"mongodb-server2": "cross-env DEBUG=notes:*
MONGO_URL=mongodb://localhost/ MONGO_DBNAME=chap07 NOTES_MODEL=mongodb
PORT=3002 node ./app.mjs",

The MONGO_URL environment variable is the URL to connect with your MongoDB
database. This URL is the one that you need to use to run MongoDB on your laptop,
as outlined at the top of this section. If you have a MongoDB server somewhere else,
you'll be provided with the relevant URL to use.

You can start the Notes application as follows:

$ npm run mongodb-start
> notes@0.0.0 mongodb-start /home/david/Chapter07/notes
> cross-env DEBUG=notes:* MONGO_URL=mongodb://localhost/
MONGO_DBNAME=chap07 NOTES_MODEL=mongodb node ./app.mjs

 notes:debug Listening on port 3000 +0ms

http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html
http://mongodb.github.io/node-mongodb-native/3.1/api/Cursor.html

Data Storage and Retrieval Chapter 7

[310]

The MONGO_URL environment variable should contain the URL for connecting with
your MongoDB database. The URL shown here is correct for a MongoDB server
started on the local machine, as would be the case if you started MongoDB at the
command line as shown at the beginning of this section. Otherwise, if you have a
MongoDB server provisioned somewhere else, you will have been told what the
access URL is, and your MONGO_URL variable should have that URL.

You can start two instances of the Notes application and see that both share the same
set of notes.

We can verify that the MongoDB database ends up with the correct value. First, start
the MongoDB client program as so:

$ mongo chap07
 MongoDB shell version v3.6.8
 connecting to: mongodb://127.0.0.1:27017/chap07

Again, this is assuming the MongoDB configuration presented so far, and if your
configuration differs then add the URL on the command line. This starts the
interactive MongoDB shell, connected to the database configured for use by Notes. To
inspect the content of the database, simply enter the
command: db.notes.find(). That will print out every database entry.

With that, we have completed support not only for MongoDB but also for several
other databases in the Notes application, and so we are now ready to wrap up the
chapter.

Summary
In this chapter, we went through a real whirlwind of different database technologies.
While we looked at the same seven functions over and over, it's useful to be exposed
to the various data storage models and ways of getting things done. Even so, we only
touched on the surface of options for accessing databases and data storage engines in
Node.js.

By abstracting the model implementations correctly, we were able to easily switch
data storage engines without changing the rest of the application. This technique lets
us explore how subclassing works in JavaScript and the concept of creating different
implementations of the same API. Additionally, we got a practical introduction to the
import() function and saw how it can be used to dynamically choose which module
to load.

Data Storage and Retrieval Chapter 7

[311]

In real-life applications, we frequently create abstractions for a similar purpose. They
help us hide details or allow us to change implementations while insulating the rest
of the application from the change. A dynamic import, which we used for our app, is
useful for dynamically stitching together an application; for example, to load each
module in a given directory.

We avoided the complexity of setting up database servers. As promised, we'll get into
that in Chapter 10, Deploying Node.js Applications to Linux Servers, when we explore
the production deployment of Node.js applications.

By focusing our model code for the purpose of storing data, both the model and the
application should be easier to test. We'll look at this in more depth in Chapter 13,
Unit Testing and Functional Testing.

In the next chapter, we'll focus on supporting multiple users, allowing them to log in
and out, and authenticating users using OAuth 2.

8
Authenticating Users with a

Microservice
Now that our Notes application can save its data in a database, we can think about
the next phase of making this a real application—namely, authenticating our users.

It's so natural to log in to a website to use its services. We do it every day, and we
even trust banking and investment organizations to secure our financial information
through login procedures on a website. The HyperText Transfer Protocol (HTTP) is a
stateless protocol, and a web application cannot tell much about one HTTP request
compared with another. Because HTTP is stateless, HTTP requests do not natively
know the user's identity, whether the user driving the web browser is logged in, or
even whether the HTTP request was initiated by a human being.

The typical method for user authentication is to send a cookie containing a token to
the browser, to carry the user's identity, and indicate whether that browser is logged
in.

With Express, the best way to do this is with the express-session middleware,
which handles session management with a cookie. It is easy to configure but is not a
complete solution for user authentication since it does not handle user login/logout.

The package that appears to be leading the pack in user authentication is Passport
(http://passportjs.org/). In addition to authenticating users against local user
information, it supports a long list of third-party services against which to
authenticate. With this, a website can be developed that lets users sign up with
credentials from another website—Twitter, for example.

http://passportjs.org/

Authenticating Users with a Microservice Chapter 8

[313]

We will use Passport to authenticate users against either a locally stored database or a
Twitter account. We'll also take this as an opportunity to explore a representational
state transfer (REST)-based microservice with Node.js.

The rationale is the greater opportunity to increase security by storing user
information in a highly protected enclave. Many application teams store user
information in a well-protected barricaded area with a strictly controlled application
programming interface (API), and even physical access to the user information
database, implementing as many technological barriers as possible against
unapproved access. We're not going to go quite that far, but by the end of the book,
the user information service will be deployed in its own Docker container.

 In this chapter, we'll discuss the following three aspects of this phase:

Creating a microservice to store user profile/authentication data.
Authenticating a user with a locally stored password.
Using OAuth2 to support authentication via third-party services.
Specifically, we'll use Twitter as a third-party authentication service.

Let's get started!

The first thing to do is to duplicate the code used for the previous chapter. For
example, if you kept that code in the chap07/notes directory, create a new
directory, chap08/notes.

Creating a user information microservice
We could implement user authentication and accounts by simply adding a user
model and a few routes and views to the existing Notes application. While that's easy,
is this what is done in a real-world production application?

Consider the high value of user identity information and the super-strong need for
robust and reliable user authentication. Website intrusions happen regularly, and it
seems the item most frequently stolen is user identities. To that end, we declared
earlier an intention to develop a user information microservice, but we must first
discuss the technical rationale for doing so.

Authenticating Users with a Microservice Chapter 8

[314]

Microservices are not a panacea, of course, meaning we shouldn't try to force-fit every
application into the microservice box. By analogy, microservices fit with the Unix
philosophy of small tools, each doing one thing well, which we mix/match/combine
into larger tools. Another word for this is composability. While we can build a lot of
useful software tools with that philosophy, does it work for applications such as
Photoshop or LibreOffice?

This is why microservices are popular today among application teams. Microservice
architectures are more agile if used well. And, as we noted earlier, we're aiming for a
highly secured microservice deployment.

With that decision out of the way, there are two other decisions to be made with
regard to security implications. They are as follows:

Do we create our own REST application framework?
Do we create our own user login/authentication framework?

In many cases, it is better to use a well-regarded existing library where the
maintainers have already stomped out lots of bugs, just as we used the Sequelize
ORM (Object-Relational Mapping) library in the previous chapter, because of its
maturity. We have identified two libraries for this phase of the Notes project.

We already mentioned using Passport for user login support, as well as
authenticating Twitter users.

For REST support, we could have continued using Express, but instead will use
Restify (http://restify.com/), which is a popular REST-centric application
framework.

To test the service, we'll write a command-line tool for administering user
information in the database. We won't be implementing an administrative user
interface in the Notes application, and will instead rely on this tool to administer the
users. As a side effect, we'll have a tool for testing the user service.

Once this service is functioning correctly, we'll set about modifying the Notes
application to access user information from the service, while using Passport to
handle authentication.

The first step is to create a new directory to hold the user information microservice.
This should be a sibling directory to the Notes application. If you created a directory
named chap08/notes to hold the Notes application, then create a directory named
chap08/users to hold the microservice.

http://restify.com/

Authenticating Users with a Microservice Chapter 8

[315]

Then, in the chap08/users directory, run the following commands:

$ cd users
$ npm init
.. answer questions
.. name - user-auth-server
$ npm install debug@^4.1.x fs-extra@^9.x js-yaml@^3.14.x \
restify@^8.5.x restify-clients@^2.6.x sequelize@^6.x \ sqlite3@^5.x
commander@^5.x cross-env@7.x --save

This gets us ready to start coding. We'll use the debug module for logging messages,
js-yaml to read the Sequelize configuration file, restify for its REST framework,
and sequelize/sqlite3 for database access.

In the sections to come, we will develop a database model to store user information,
and then create a REST service to manage that data. To test the service, we'll create a
command-line tool that uses the REST API.

Developing the user information model
We'll be storing the user information using a Sequelize-based model in a SQL
database. We went through that process in the previous chapter, but we'll do it a little
differently this time. Rather than go for the ultimate flexibility of using any kind of
database, we'll stick with Sequelize since the user information model is very simple
and a SQL database is perfectly adequate.

The project will contain two modules. In this section, we'll create users-
sequelize.mjs, which will define the SQUser schema and a couple of utility
functions. In the next section, we'll start on user-server.mjs, which contains the
REST server implementation.

First, let's ponder an architectural preference. Just how much should we separate
between the data model code interfacing with the database from the REST server
code? In the previous chapter, we went for a clean abstraction with several
implementations of the database storage layer. For a simple server such as this, the
REST request handler functions could contain all database calls, with no abstraction
layer. Which is the best approach? We don't have a hard rule to follow. For this
server, we will have database code more tightly integrated to the router functions,
with a few shared functions.

Authenticating Users with a Microservice Chapter 8

[316]

Create a new file named users-sequelize.mjs in users containing the following
code:

import Sequelize from "sequelize";
import { default as jsyaml } from 'js-yaml';
import { promises as fs } from 'fs';
import * as util from 'util';
import DBG from 'debug';
const log = DBG('users:model-users');
const error = DBG('users:error');

var sequlz;

export class SQUser extends Sequelize.Model {}

export async function connectDB() {
 if (sequlz) return sequlz;

 const yamltext = await fs.readFile(process.env.SEQUELIZE_CONNECT,
 'utf8');
 const params = await jsyaml.safeLoad(yamltext, 'utf8');

 if (typeof process.env.SEQUELIZE_DBNAME !== 'undefined'
 && process.env.SEQUELIZE_DBNAME !== '') {
 params.dbname = process.env.SEQUELIZE_DBNAME;
 }
 if (typeof process.env.SEQUELIZE_DBUSER !== 'undefined'
 && process.env.SEQUELIZE_DBUSER !== '') {
 params.username = process.env.SEQUELIZE_DBUSER;
 }
 if (typeof process.env.SEQUELIZE_DBPASSWD !== 'undefined'
 && process.env.SEQUELIZE_DBPASSWD !== '') {
 params.password = process.env.SEQUELIZE_DBPASSWD;
 }
 if (typeof process.env.SEQUELIZE_DBHOST !== 'undefined'
 && process.env.SEQUELIZE_DBHOST !== '') {
 params.params.host = process.env.SEQUELIZE_DBHOST;
 }
 if (typeof process.env.SEQUELIZE_DBPORT !== 'undefined'
 && process.env.SEQUELIZE_DBPORT !== '') {
 params.params.port = process.env.SEQUELIZE_DBPORT;
 }
 if (typeof process.env.SEQUELIZE_DBDIALECT !== 'undefined'
 && process.env.SEQUELIZE_DBDIALECT !== '') {
 params.params.dialect = process.env.SEQUELIZE_DBDIALECT;
 }

 log('Sequelize params '+ util.inspect(params));

Authenticating Users with a Microservice Chapter 8

[317]

 sequlz = new Sequelize(params.dbname, params.username,
 params.password, params.params);
 SQUser.init({
 username: { type: Sequelize.STRING, unique: true },
 password: Sequelize.STRING,
 provider: Sequelize.STRING,
 familyName: Sequelize.STRING,
 givenName: Sequelize.STRING,
 middleName: Sequelize.STRING,
 emails: Sequelize.STRING(2048),
 photos: Sequelize.STRING(2048)
 }, {
 sequelize: sequlz,
 modelName: 'SQUser'
 });
 await SQUser.sync();
}

As with our Sequelize-based model for Notes, we will use a YAML Ain't Markup
Language (YAML) file to store connection configuration. We're even using the same
environment variable, SEQUELIZE_CONNECT, and the same approach to overriding
fields of the configuration. The approach is similar, with a connectDB function
setting up the connection and initializing the SQUsers table.

With this approach, we can use a base configuration file in the SEQUELIZE_CONNECT
variable and then use the other environment variables to override its fields. This will
be useful when we start deploying Docker containers.

The user profile schema shown here is derived from the normalized
profile provided by Passport—for more information, refer
to http://www.passportjs.org/docs/profile.

The Passport project developed this object by harmonizing the user information given
by several third-party services into a single object definition. To simplify our code,
we're simply using the schema defined by Passport.

There are several functions to create that will be an API to manage user data. Let's
add them to the bottom of users-sequelize.mjs, starting with the following code:

export function userParams(req) {
 return {
 username: req.params.username,
 password: req.params.password,
 provider: req.params.provider,
 familyName: req.params.familyName,

http://www.passportjs.org/docs/profile

Authenticating Users with a Microservice Chapter 8

[318]

 givenName: req.params.givenName,
 middleName: req.params.middleName,
 emails: JSON.stringify(req.params.emails),
 photos: JSON.stringify(req.params.photos)
 };
}

In Restify, the route handler functions supply the same sort of request and
response objects we've already seen. We'll go over the configuration of the REST
server in the next section. Suffice to say that REST parameters arrive in the request
handlers as the req.params object, as shown in the preceding code block. This
function simplifies the gathering of those parameters into a simple object that
happens to match the SQUser schema, as shown in the following code block:

export function sanitizedUser(user) {
 var ret = {
 id: user.username,
 username: user.username,
 provider: user.provider,
 familyName: user.familyName,
 givenName: user.givenName,
 middleName: user.middleName
 };
 try {
 ret.emails = JSON.parse(user.emails);
 } catch(e) { ret.emails = []; }
 try {
 ret.photos = JSON.parse(user.photos);
 } catch(e) { ret.photos = []; }
 return ret;
}

When we fetch an SQUser object from the database, Sequelize obviously gives us a
Sequelize object that has many extra fields and functions used by Sequelize. We don't
want to send that data to our callers. Furthermore, we think it will increase security to
not provide the password data beyond the boundary of this server. This function
produces a simple, sanitized, anonymous JavaScript object from the SQUser instance.
We could have defined a full JavaScript class, but would that have served any
purpose? This anonymous JavaScript class is sufficient for this simple server, as
illustrated in the following code block:

export async function findOneUser(username) {
 let user = await SQUser.findOne({ where: { username: username } });
 user = user ? sanitizedUser(user) : undefined;
 return user;
}

Authenticating Users with a Microservice Chapter 8

[319]

export async function createUser(req) {
 let tocreate = userParams(req);
 await SQUser.create(tocreate);
 const result = await findOneUser(req.params.username);
 return result;
}

The pair of functions shown in the preceding code block provides some database
operations that are used several times in the user-server.mjs module.

In findOneUser, we are looking up a single SQUser, and then returning a sanitized
copy. In createUser, we gather the user parameters from the request object, create
the SQUser object in the database, and then retrieve that newly created object to
return it to the caller.

If you refer back to the connectDB function, there is a SEQUELIZE_CONNECT
environment variable for the configuration file. Let's create one for SQLite3 that we
can name sequelize-sqlite.yaml, as follows:

dbname: users
username:
password:
params:
 dialect: sqlite
 storage: users-sequelize.sqlite3

This is just like the configuration files we used in the previous chapter.

That's what we need for the database side of this service. Let's now move on to
creating the REST service.

Creating a REST server for user information
The user information service is a REST server to handle user information data and
authentication. Our goal is, of course, to integrate that with the Notes application, but
in a real project, such a user information service could be integrated with several web
applications. The REST service will provide functions we found useful while
developing the user login/logout support in Notes, which we'll show later in the
chapter.

Authenticating Users with a Microservice Chapter 8

[320]

In the package.json file, change the main tag to the following line of code:

 "main": "user-server.mjs",

This declares that the module we're about to create, user-server.mjs, is the main
package of this project.

Make sure the scripts section contains the following script:

"start": "cross-env DEBUG=users:* PORT=5858
SEQUELIZE_CONNECT=sequelize-sqlite.yaml node ./user-server.mjs"

Clearly, this is how we'll start our server. It uses the configuration file from the
previous section and specifies that we'll listen on port 5858.

Then, create a file named user-server.mjs containing the following code:

import restify from 'restify';
import * as util from 'util';
import { SQUser, connectDB, userParams, findOneUser,
 createUser, sanitizedUser } from './users-sequelize.mjs';

import DBG from 'debug';
const log = DBG('users:service');
const error = DBG('users:error');

///////////// Set up the REST server

var server = restify.createServer({
 name: "User-Auth-Service",
 version: "0.0.1"
});

server.use(restify.plugins.authorizationParser());
server.use(check);
server.use(restify.plugins.queryParser());
server.use(restify.plugins.bodyParser({
 mapParams: true
}));

server.listen(process.env.PORT, "localhost", function() {
 log(server.name +' listening at '+ server.url);
});

process.on('uncaughtException', function(err) {
 console.error("UNCAUGHT EXCEPTION - "+ (err.stack || err));
 process.exit(1);
});

Authenticating Users with a Microservice Chapter 8

[321]

process.on('unhandledRejection', (reason, p) => {
 console.error(`UNHANDLED PROMISE REJECTION: ${util.inspect(p)}
reason: ${reason}`);
 process.exit(1);
});

We're using Restify, rather than Express, to develop this server. Obviously, the
Restify API has similarities with Express, since both point to the Ruby framework
Sinatra for inspiration. We'll see even more similarities when we talk about the route
handler functions.

What we have here is the core setup of the REST server. We created the server
object and added a few things that, in Express, were called middleware, but what
Restify simply refers to as handlers. A Restify handler function serves the same
purpose as an Express middleware function. Both frameworks let you define a
function chain to implement the features of your service. One calls it
a middleware function and the other calls it a handler function, but they're almost
identical in form and function.

We also have a collection of listener functions that print a startup message and handle
uncaught errors. You do remember that it's important to catch the uncaught errors?

An interesting thing is that, since REST services are often versioned, Restify has built-
in support for handling version numbers. Restify supports semantic versioning
(SemVer) version matching in the Accept-Version HTTP header.

In the handlers that were installed, they obviously have to do with authorization and
parsing parameters from the Uniform Resource Locator (URL) query string and from
the HTTP body. The handlers with names starting with restify.plugins are
maintained by the Restify team, and documented on their website.

That leaves the handler simply named check. This handler is in user-
server.mjs and provides a simple mechanism of token-based authentication for
REST clients.

Add the following code to the bottom of user-server.mjs:

// Mimic API Key authentication.

var apiKeys = [
 { user: 'them', key: 'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF' }];

function check(req, res, next) {
 if (req.authorization && req.authorization.basic) {
 var found = false;

Authenticating Users with a Microservice Chapter 8

[322]

 for (let auth of apiKeys) {
 if (auth.key === req.authorization.basic.password
 && auth.user === req.authorization.basic.username) {
 found = true;
 break;
 }
 }
 if (found) next();
 else {
 res.send(401, new Error("Not authenticated"));
 next(false);
 }
 } else {
 res.send(500, new Error('No Authorization Key'));
 next(false);
 }
}

This handler executes for every request and immediately
follows restify.plugins.authorizationParser. It looks for authorization
data—specifically, HTTP basic authorization—to have been supplied in the HTTP
request. It then loops through the list of keys in the apiKeys array, and if the Basic
Auth parameters supplied matched, then the caller is accepted.

This should not be taken as an example of a best practice since HTTP Basic Auth is
widely known to be extremely insecure, among other issues. But it demonstrates the
basic concept, and also shows that enforcing token-based authorization is easily done
with a similar handler.

This also shows us the function signature of a Restify handler function—namely, that
it is the same signature used for Express middleware, the request and result
objects, and the next callback.

There is a big difference between Restify and Express as to how the next callback is
used. In Express, remember that a middleware function calls next unless that
middleware function is the last function on the processing chain—for example if the
function has called res.send (or equivalent) to send a response to the caller. In
Restify, every handler function calls next. If a handler function knows it should be
the last function on the handler chain, then it uses next(false); otherwise, it calls
next(). If a handler function needs to indicate an error, it calls next(err), where
err is an object where instanceof Error is true.

Authenticating Users with a Microservice Chapter 8

[323]

Consider the following hypothetical handler function:

server.use((req, res, next) => {
 // ... processing
 if (foundErrorCondition) {
 next(new Error('Describe error condition'));
 } else if (successfulConclusion) {
 res.send(results);
 next(false);
 } else {
 // more processing must be required
 next();
 }
});

This shows the following three cases:

Errors are indicated with next(new Error('Error description')).1.
Completion is indicated with next(false). 2.
The continuation of processing is indicated with next(). 3.

We have created the starting point for a user information data model and the
matching REST service. The next thing we need is a tool to test and administer the
server.

What we want to do in the following sections is two things. First, we'll create the
REST handler functions to implement the REST API. At the same time, we'll create a
command-line tool that will use the REST API and let us both test the server and add
or delete users.

Creating a command-line tool to test and administer
the user authentication server
To give ourselves assurance that the user authentication server works, let's write a
tool with which to exercise the server that can also be used for administration. In a
typical project, we'd create not only a customer-facing web user interface, but also an
administrator-facing web application to administer the service. Instead of doing that
here, we'll create a command-line tool.

The tool will be built with Commander, a popular framework for developing
command-line tools in Node.js. With Commander, we can easily build a command-
line interface (CLI) tool supporting the program verb --option optionValue
parameter pattern.

Authenticating Users with a Microservice Chapter 8

[324]

For documentation on Commander, see https:/ /www. npmjs. com/
package/ commander.

Any command-line tool looks at the process.argv array to know what to do. This
array contains strings parsed from what was given on the command line. The concept
for all this goes way back to the earliest history of Unix and the C programming
language.

For documentation on the process.argv array, refer to https:/ /
nodejs. org/ api/ process. html#process_ process_ argv.

By using Commander, we have a simpler path of dealing with the command line. It
uses a declarative approach to handling command-line parameters. This means we
use Commander functions to declare the options and sub-commands to be used by
this program, and then we ask Commander to parse the command line the user
supplies. Commander then calls the functions we declare based on the content of the
command line.

Create a file named cli.mjs containing the following code:

import { default as program } from 'commander';
import { default as restify } from 'restify-clients';
import * as util from 'util';

var client_port;
var client_host;
var client_version = '*';
var client_protocol;
var authid = 'them';
var authcode = 'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF';

const client = (program) => {
 if (typeof process.env.PORT === 'string')
 client_port = Number.parseInt(process.env.PORT);
 if (typeof program.port === 'string')
 client_port = Number.parseInt(program.port);
 if (typeof program.host === 'string') client_host = program.host;
 if (typeof program.url === 'string') {
 let purl = new URL(program.url);
 if (purl.host && purl.host !== '') client_host = purl.host;
 if (purl.port && purl.port !== '') client_port = purl.port;
 if (purl.protocol && purl.protocol !== '') client_protocol =

https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/commander
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv

Authenticating Users with a Microservice Chapter 8

[325]

 purl.protocol;
 }
 let connect_url = new URL('http://localhost:5858');
 if (client_protocol) connect_url.protocol = client_protocol;
 if (client_host) connect_url.host = client_host;
 if (client_port) connect_url.port = client_port;
 let client = restify.createJsonClient({
 url: connect_url.href,
 version: client_version
 });
 client.basicAuth(authid, authcode);
 return client;
}

program
 .option('-p, --port <port>',
 'Port number for user server, if using localhost')
 .option('-h, --host <host>',
 'Port number for user server, if using localhost')
 .option('-u, --url <url>',
 'Connection URL for user server, if using a remote server');

This is just the starting point of the command-line tool. For most of the REST handler
functions, we'll also implement a sub-command in this tool. We'll take care of that
code in the subsequent sections. For now, let's focus on how the command-line tool is
set up.

The Commander project suggests we name the default import program, as shown in
the preceding code block. As mentioned earlier, we declare the command-line options
and sub-commands by calling methods on this object.

In order to properly parse the command line, the last line of code in cli.mjs must be
as follows:

program.parse(process.argv);

The process.argv variable is, of course, the command-line arguments split out into
an array. Commander, then, is processing those arguments based on the options'
declarations.

For the REST client, we use the restify-clients package. As the name implies, this
is a companion package to Restify and is maintained by the Restify team.

At the top of this script, we declare a few variables to hold connection parameters.
The goal is to create a connection URL to access the REST service. The connect_url
variable is initialized with the default value, which is port 5858 on the localhost.

Authenticating Users with a Microservice Chapter 8

[326]

The function named client looks at the information Commander parses from the
command line, as well as a number of environment variables. From that data, it
deduces any modification to the connect_url variable. The result is that we can
connect to this service on any server from our laptop to a faraway cloud-hosted
server.

We've also hardcoded the access token and the use of Basic Auth. Put on the backlog
a high-priority task to change to a stricter form of authentication.

Where do the values of program.port, program.host, and program.url come
from? We declared those variables—that's where they came from.

Consider the following line of code:

program.option('-p, --port <port>', 'Long Description of the option');

This declares an option, either -p or --port, that Commander will parse out of the
command line. Notice that all we do is write a text string and, from that, Commander
knows it must parse these options. Isn't this easy?

When it sees one of these options, the <port> declaration tells Commander that this
option requires an argument. It will parse that argument out of the command line,
and then assign it to program.port.

Therefore, program.port, program.host, and program.url were all declared in a
similar way. When Commander sees those options, it will create the matching
variables, and then our client function will take that data and modify connect_url
appropriately.

One of the side effects of these declarations is that Commander can generate help text
automatically. The result we'll achieve is being able to type the following code:

$ node cli.mjs --help
Usage: cli.mjs [options] [command]

Options:
 -p, --port <port> Port number for user server, if using localhost
 -h, --host <host> Port number for user server, if using localhost
 -u, --url <url> Connection URL for user server, if using a remote
 server
 -h, --help output usage information

Commands:
 add [options] <username> Add a user to the user server
 find-or-create [options] <username> Add a user to the user server

Authenticating Users with a Microservice Chapter 8

[327]

 update [options] <username> Add a user to the user server
 destroy <username> Destroy a user on the user server
 find <username> Search for a user on the user server
 list-users List all users on the user server

The text comes directly from the descriptive text we put in the declarations. Likewise,
each of the sub-commands also takes a --help option to print out corresponding
help text.

With all that out of the way, let's start creating these commands and REST functions.

Creating a user in the user information database
We have the starting point for the REST server, and the starting point for a command-
line tool to administer the server. Let's start creating the functions—and, of course,
the best place to start is to create an SQUser object.

In user-server.mjs, add the following route handler:

server.post('/create-user', async (req, res, next) => {
 try {
 await connectDB();
 let result = await createUser(req);
 res.contentType = 'json';
 res.send(result);
 next(false);
 } catch(err) {
 res.send(500, err);
 next(false);
 }
});

This handles a POST request on the /create-user URL. This should look very
similar to an Express route handler function, apart from the use of the next callback.
Refer back to the discussion on this. As we did with the Notes application, we declare
the handler callback as an async function and then use a try/catch structure to catch
all errors and report them as errors.

The handler starts with connectDB to ensure the database is set up. Then, if you refer
back to the createUser function, you see it gathers up the user data from the request
parameters and then uses SQUser.create to create an entry in the database. What
we will receive here is the sanitized user object, and we simply return that to the
caller.

Authenticating Users with a Microservice Chapter 8

[328]

Let's also add the following code to user-server.mjs:

server.post('/find-or-create', async (req, res, next) => {
 try {
 await connectDB();
 let user = await findOneUser(req.params.username);
 if (!user) {
 user = await createUser(req);
 if (!user) throw new Error('No user created');
 }
 res.contentType = 'json';
 res.send(user);
 return next(false);
 } catch(err) {
 res.send(500, err);
 next(false);
 }
});

This is a variation on creating an SQUser. While implementing login support in the
Notes application, there was a scenario in which we had an authenticated user that
may or may not already have an SQUser object in the database. In this case, we look
to see whether the user already exists and, if not, then we create that user.

Let's turn now to cli.mjs and implement the sub-commands to handle these two
REST functions, as follows:

program
 .command('add <username>')
 .description('Add a user to the user server')
 .option('--password <password>', 'Password for new user')
 .option('--family-name <familyName>',
 'Family name, or last name, of the user')
 .option('--given-name <givenName>', 'Given name, or first name,
 of the user')
 .option('--middle-name <middleName>', 'Middle name of the user')
 .option('--email <email>', 'Email address for the user')
 .action((username, cmdObj) => {
 const topost = {
 username, password: cmdObj.password, provider: "local",
 familyName: cmdObj.familyName,
 givenName: cmdObj.givenName,
 middleName: cmdObj.middleName,
 emails: [], photos: []
 };
 if (typeof cmdObj.email !== 'undefined')
 topost.emails.push(cmdObj.email);

Authenticating Users with a Microservice Chapter 8

[329]

 client(program).post('/create-user', topost,
 (err, req, res, obj) => {
 if (err) console.error(err.stack);
 else console.log('Created '+ util.inspect(obj));
 });
 });

By using program.command, we are declaring a sub-command—in this case, add.
The <username> declaration says that this sub-command takes an argument.
Commander will provide that argument value in the username parameter to the
function passed in the action method.

The structure of a program.command declaration is to first declare the syntax of the
sub-command. The description method provides user-friendly documentation.
The option method calls are options for this sub-command, rather than global
options. Finally, the action method is where we supply a callback function that will
be invoked when Commander sees this sub-command in the command line.

Any arguments declared in the program.command string end up as parameters to
that callback function.

Any values for the options for this sub-command will land in the cmdObj object. By
contrast, the value for global options is attached to the program object.

With that understanding, we can see that this sub-command gathers information
from the command line and then uses the client function to connect to the server. It
invokes the /create-user URL, passing along the data gathered from the command
line. Upon receiving the response, it will print either the error or the result object.

Let's now add the sub-command corresponding to the /find-or-create URL, as
follows:

program
 .command('find-or-create <username>')
 .description('Add a user to the user server')
 .option('--password <password>', 'Password for new user')
 .option('--family-name <familyName>',
 'Family name, or last name, of the user')
 .option('--given-name <givenName>', 'Given name, or first name,
 of the user')
 .option('--middle-name <middleName>', 'Middle name of the user')
 .option('--email <email>', 'Email address for the user')
 .action((username, cmdObj) => {
 const topost = {
 username, password: cmdObj.password, provider: "local",

Authenticating Users with a Microservice Chapter 8

[330]

 familyName: cmdObj.familyName,
 givenName: cmdObj.givenName,
 middleName: cmdObj.middleName,
 emails: [], photos: []
 };
 if (typeof cmdObj.email !== 'undefined')
 topost.emails.push(cmdObj.email);
 client(program).post('/find-or-create', topost,
 (err, req, res, obj) => {
 if (err) console.error(err.stack);
 else console.log('Found or Created '+ util.inspect(obj));
 });
 });

This is very similar, except for calling /find-or-create.

We have enough here to run the server and try the following two commands:

$ npm start

> user-auth-server@1.0.0 start /home/david/Chapter08/users
> DEBUG=users:* PORT=5858 SEQUELIZE_CONNECT=sequelize-sqlite.yaml node
./user-server.mjs

 users:service User-Auth-Service listening at http://127.0.0.1:5858
+0ms

We run this in one command window to start the server. In another command
window, we can run the following command:

$ node cli.mjs add --password w0rd --family-name Einarrsdottir --
given-name Ashildr --email me@stolen.tardis me
Created {
 id: 'me',
 username: 'me',
 provider: 'local',
 familyName: 'Einarrsdottir',
 givenName: 'Ashildr',
 middleName: null,
 emails: ['me@stolen.tardis'],
 photos: []
}

Authenticating Users with a Microservice Chapter 8

[331]

Over in the server window, it will print a trace of the actions taken in response to this.
But it's what we expect: the values we gave on the command line are in the database,
as shown in the following code block:

$ node cli.mjs find-or-create --password foooo --family-name Smith --
given-name John --middle-name Snuffy --email snuffy@example.com
snuffy-smith
Found or Created {
 id: 'snuffy-smith',
 username: 'snuffy-smith',
 provider: 'local',
 familyName: 'Smith',
 givenName: 'John',
 middleName: 'Snuffy',
 emails: ['snuffy@example.com'],
 photos: []
}

Likewise, we have success with the find-or-create command.

That gives us the ability to create SQUser objects. Next, let's see how to read from the
database.

Reading user data from the user information service
The next thing we want to support is to look for users in the user information service.
Instead of a general search facility, the need is to retrieve an SQUser object for a given
username. We already have the utility function for this purpose; it's just a matter of
hooking up a REST endpoint.

In user-server.mjs, add the following function:

server.get('/find/:username', async (req, res, next) => {
 try {
 await connectDB();
 const user = await findOneUser(req.params.username);
 if (!user) {
 res.send(404, new Error("Did not find "+ req.params.username));
 } else {
 res.contentType = 'json';
 res.send(user);
 }
 next(false);
 } catch(err) {
 res.send(500, err);
 next(false);

Authenticating Users with a Microservice Chapter 8

[332]

 }
});

And, as expected, that was easy enough. For the /find URL, we need to supply the
username in the URL. The code simply looks up the SQUser object using the existing
utility function.

A related function retrieves the SQUser objects for all users. Add the following code
to user-server.mjs:

server.get('/list', async (req, res, next) => {
 try {
 await connectDB();
 let userlist = await SQUser.findAll({});
 userlist = userlist.map(user => sanitizedUser(user));
 if (!userlist) userlist = [];
 res.contentType = 'json';
 res.send(userlist);
 next(false);
 } catch(err) {
 res.send(500, err);
 next(false);
 }
});

We know from the previous chapter that the findAll operation retrieves all
matching objects and that passing an empty query selector such as this causes
findAll to match every SQUser object. Therefore, this performs the task we
described, to retrieve information on all users.

Then, in cli.mjs, we add the following sub-command declarations:

program
 .command('find <username>')
 .description('Search for a user on the user server')
 .action((username, cmdObj) => {
 client(program).get(`/find/${username}`,
 (err, req, res, obj) => {
 if (err) console.error(err.stack);
 else console.log('Found '+ util.inspect(obj));
 });
 });

program
 .command('list-users')
 .description('List all users on the user server')
 .action((cmdObj) => {

Authenticating Users with a Microservice Chapter 8

[333]

 client(program).get('/list', (err, req, res, obj) => {
 if (err) console.error(err.stack);
 else console.log(obj);
 });
 });

This is similarly easy. We pass the username provided on our command line in the
/find URL and then print out the result. Likewise, for the list-users sub-
command, we simply call /list on the server and print out the result.

After restarting the server, we can test the commands, as follows:

$ node cli.mjs find me
Found {
 id: 'me',
 username: 'me',
 provider: 'local',
 familyName: 'Einarrsdottir',
 givenName: 'Ashildr',
 middleName: null,
 emails: ['me@stolen.tardis'],
 photos: []
}
$ node cli.mjs list-users
[
 {
 id: 'snuffy-smith',
 username: 'snuffy-smith',
 provider: 'local',
 familyName: 'Smith',
 givenName: 'John',
 middleName: 'Snuffy',
 emails: ['snuffy2@gmail.com'],
 photos: []
 },
 {
 id: 'me',
 username: 'me',
 provider: 'local',
 familyName: 'Einarrsdottir',
 givenName: 'Ashildr',
 middleName: null,
 emails: ['me@stolen.tardis'],
 photos: []
 }
]

Authenticating Users with a Microservice Chapter 8

[334]

And, indeed, the results came in as we expected.

The next operation we need is to update an SQUser object.

Updating user information in the user information
service
The next functionality to add is to update user information. For this, we can use the
Sequelize update function, and simply expose it as a REST operation.

To that end, add the following code to user-server.mjs:

server.post('/update-user/:username', async (req, res, next) => {
 try {
 await connectDB();
 let toupdate = userParams(req);
 await SQUser.update(toupdate, { where: { username:
 req.params.username }});
 const result = await findOneUser(req.params.username);
 res.contentType = 'json';
 res.send(result);
 next(false);
 } catch(err) {
 res.send(500, err);
 next(false);
 }
});

The caller is to provide the same set of user information parameters, which will be
picked up by the userParams function. We then use the update function, as
expected, and then retrieve the modified SQUser object, sanitize it, and send it as the
result.

To match that function, add the following code to cli.mjs:

program
 .command('update <username>')
 .description('Add a user to the user server')
 .option('--password <password>', 'Password for new user')
 .option('--family-name <familyName>',
 'Family name, or last name, of the user')
 .option('--given-name <givenName>', 'Given name, or first name,
 of the user')
 .option('--middle-name <middleName>', 'Middle name of the user')
 .option('--email <email>', 'Email address for the user')

Authenticating Users with a Microservice Chapter 8

[335]

 .action((username, cmdObj) => {
 const topost = {
 username, password: cmdObj.password,
 familyName: cmdObj.familyName,
 givenName: cmdObj.givenName,
 middleName: cmdObj.middleName,
 emails: [], photos: []
 };
 if (typeof cmdObj.email !== 'undefined')
 topost.emails.push(cmdObj.email);
 client(program).post(`/update-user/${username}`, topost,
 (err, req, res, obj) => {
 if (err) console.error(err.stack);
 else console.log('Updated '+ util.inspect(obj));
 });
 });

As expected, this sub-command must take the same set of user information
parameters. It then bundles those parameters into an object, posting it to the
/update-user endpoint on the REST server.

Then, to test the result, we run the command, like so:

$ node cli.mjs update --password fooooey --family-name Smith --given-
name John --middle-name Snuffy --email snuffy3@gmail.com snuffy-smith
Updated {
 id: 'snuffy-smith',
 username: 'snuffy-smith',
 provider: 'local',
 familyName: 'Smith',
 givenName: 'John',
 middleName: 'Snuffy',
 emails: ['snuffy3@gmail.com'],
 photos: []
}

And, indeed, we managed to change Snuffy's email address.

The next operation is to delete an SQUser object.

Deleting a user record from the user information
service
Our next operation will complete the create, read, update, and delete (CRUD)
operations by letting us delete a user.

Authenticating Users with a Microservice Chapter 8

[336]

Add the following code to user-server.mjs:

server.del('/destroy/:username', async (req, res, next) => {
 try {
 await connectDB();
 const user = await SQUser.findOne({
 where: { username: req.params.username } });
 if (!user) {
 res.send(404,
 new Error(`Did not find requested ${req.params.username}
 to delete`));
 } else {
 user.destroy();
 res.contentType = 'json';
 res.send({});
 }
 next(false);
 } catch(err) {
 res.send(500, err);
 next(false);
 }
});

This is simple enough. We first look up the user to ensure it exists, and then call the
destroy function on the SQUser object. There's no need for any result, so we send an
empty object.

To exercise this function, add the following code to cli.mjs:

program
 .command('destroy <username>')
 .description('Destroy a user on the user server')
 .action((username, cmdObj) => {
 client(program).del(`/destroy/${username}`,
 (err, req, res, obj) => {
 if (err) console.error(err.stack);
 else console.log('Deleted - result= '+ util.inspect(obj));
 });
 });

This is simply to send a DELETE request to the server on the /destroy URL.

And then, to test it, run the following command:

$ node cli.mjs destroy snuffy-smith
Deleted - result= {}
$ node cli.mjs find snuffy-smith
finding snuffy-smith

Authenticating Users with a Microservice Chapter 8

[337]

NotFoundError: {}
 at Object.createHttpErr
(/home/david/Chapter08/users/node_modules/restify-
clients/lib/helpers/errors.js:91:26)
 at ClientRequest.onResponse
(/home/david/Chapter08/users/node_modules/restify-
clients/lib/HttpClient.js:309:26)
 at Object.onceWrapper (events.js:428:26)
 at ClientRequest.emit (events.js:321:20)
 at HTTPParser.parserOnIncomingClient [as onIncoming]
(_http_client.js:602:27)
 at HTTPParser.parserOnHeadersComplete (_http_common.js:116:17)
 at Socket.socketOnData (_http_client.js:471:22)
 at Socket.emit (events.js:321:20)
 at addChunk (_stream_readable.js:305:12)
 at readableAddChunk (_stream_readable.js:280:11)

First, we deleted Snuffy's user record, and it gave us an empty response, as expected.
Then, we tried to retrieve his record and, as expected, there was an error.

While we have completed the CRUD operations, we have one final task to cover.

Checking the user's password in the user
information service
How can we have a user login/logout service without being able to check their
password? The question is: Where should the password check occur? It seems,
without examining it too deeply, that it's better to perform this operation inside the
user information service. We earlier described the decision that it's probably safer to
never expose the user password beyond the user information service. As a result, the
password check should occur in that service so that the password does not stray
beyond the service.

Let's start with the following function in user-server.mjs:

server.post('/password-check', async (req, res, next) => {
 try {
 await connectDB();
 const user = await SQUser.findOne({
 where: { username: req.params.username } });
 let checked;
 if (!user) {
 checked = {
 check: false, username: req.params.username,
 message: "Could not find user"

Authenticating Users with a Microservice Chapter 8

[338]

 };
 } else if (user.username === req.params.username
 && user.password === req.params.password) {
 checked = { check: true, username: user.username };
 } else {
 checked = {
 check: false, username: req.params.username,
 message: "Incorrect password"
 };
 }
 res.contentType = 'json';
 res.send(checked);
 next(false);
 } catch(err) {
 res.send(500, err);
 next(false);
 }
});

This lets us support the checking of user passwords. There are three conditions to
check, as follows:

Whether there is no such user
Whether the passwords matched
Whether the passwords did not match

The code neatly determines all three conditions and returns an object indicating, via
the check field, whether the user is authenticated. The caller is to send username
and password parameters that will be checked.

To check it out, let's add the following code to cli.mjs:

program
 .command('password-check <username> <password>')
 .description('Check whether the user password checks out')
 .action((username, password, cmdObj) => {
 client(program).post('/password-check', { username, password },
 (err, req, res, obj) => {
 if (err) console.error(err.stack);
 else console.log(obj);
 });
 });

And, as expected, the code to invoke this operation is simple. We take the username
and password parameters from the command line, send them to the server, and then
print the result.

Authenticating Users with a Microservice Chapter 8

[339]

To verify that it works, run the following command:

$ node cli.mjs password-check me w0rd
{ check: true, username: 'me' }
$ node cli.mjs password-check me w0rdy
{ check: false, username: 'me', message: 'Incorrect password' }

Indeed, the correct password gives us a true indicator, while the wrong password
gives us false.

We've done a lot in this section by implementing a user information service. We
successfully created a REST service while thinking about architectural choices around
correctly handling sensitive user data. We were also able to verify that the REST
service is functioning using an ad hoc testing tool. With this command-line tool, we
can easily try any combination of parameters, and we can easily extend it if the need
arises to add more REST operations.

Now, we need to start on the real goal of the chapter: changing the Notes user
interface to support login/logout. We will see how to do this in the following sections.

Providing login support for the Notes
application
Now that we have proved that the user authentication service is working, we can set
up the Notes application to support user logins. We'll be using Passport to support
login/logout, and the authentication server to store the required data.

Among the available packages, Passport stands out for simplicity and flexibility. It
integrates directly with the Express middleware chain, and the Passport community
has developed hundreds of so-called strategy modules to handle authentication
against a long list of third-party services.

Refer to http:/ /www. passportjs. org/ for information and
documentation.

Let's start this by adding a module for accessing the user information REST server we
just created.

http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/

Authenticating Users with a Microservice Chapter 8

[340]

Accessing the user authentication REST API
The first step is to create a user data model for the Notes application. Rather than
retrieving data from data files or a database, it will use REST to query the server we
just created. Recall that we created this REST service in the theory of walling off the
service since it contains sensitive user information.

Earlier, we suggested duplicating Chapter 7, Data Storage and Retrieval, code for
Notes in the chap08/notes directory and creating the user information server as
chap08/users.

Earlier in this chapter, we used the restify-clients module to access the REST
service. That package is a companion to the Restify library; the restify package
supports the server side of the REST protocol and restify-clients supports the
client side.

However nice the restify-clients library is, it doesn't support a Promise-oriented
API, as is required to play well with async functions. Another library, SuperAgent,
does support a Promise-oriented API and plays well in async functions, and there is
a companion to that package, SuperTest, that's useful in unit testing. We'll use
SuperTest in Chapter 13, Unit Testing and Functional Testing when we talk about unit
testing.

For documentation, refer to https:/ /www. npmjs. com/ package/
superagent and http:/ / visionmedia. github. io/ superagent/ .

To install the package (again, in the Notes application directory), run the following
command:

 $ npm install superagent@^5.2.x --save

Then, create a new file, models/users-superagent.mjs, containing the following
code:

import { default as request } from 'superagent';
import util from 'util';
import url from 'url';
const URL = url.URL;
import DBG from 'debug';
const debug = DBG('notes:users-superagent');
const error = DBG('notes:error-superagent');

https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/
http://visionmedia.github.io/superagent/

Authenticating Users with a Microservice Chapter 8

[341]

var authid = 'them';
var authcode = 'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF';

function reqURL(path) {
 const requrl = new URL(process.env.USER_SERVICE_URL);
 requrl.pathname = path;
 return requrl.toString();
}

The reqURL function is similar in purpose to the connectDB functions that we wrote
in earlier modules. Remember that we used connectDB in earlier modules to open a
database connection that will be kept open for a long time. With SuperAgent, we
don't leave a connection open to the service. Instead, we open a new server
connection on each request. For every request, we will formulate the request URL.
The base URL, such as http://localhost:3333/, is to be provided in the
USER_SERVICE_URL environment variable. The reqURL function modifies that URL,
using the new Web Hypertext Application Technology Working Group
(WHATWG) URL support in Node.js, to use a given URL path.

We also added the authentication ID and code required for the server. Obviously,
when the backlog task comes up to use a better token authentication system, this will
have to change.

To handle creating and updating user records, run the following code:

export async function create(username, password,
 provider, familyName, givenName, middleName,
 emails, photos) {
 var res = await request
 .post(reqURL('/create-user'))
 .send({ username, password, provider,
 familyName, givenName, middleName, emails, photos
 })
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authid, authcode);
 return res.body;
}

export async function update(username, password,
 provider, familyName, givenName, middleName,
 emails, photos) {
 var res = await request
 .post(reqURL(`/update-user/${username}`))
 .send({ username, password, provider,
 familyName, givenName, middleName, emails, photos

Authenticating Users with a Microservice Chapter 8

[342]

 })
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authid, authcode);
 return res.body;
}

These are our create and update functions. In each case, they take the data
provided, construct an anonymous object, and POST it to the server. The function is to
be provided with the values corresponding to the SQUser schema. It bundles the data
provided in the send method, sets various parameters, and then sets up the Basic
Auth token.

The SuperAgent library uses an API style called method chaining. The coder chains
together method calls to construct a request. The chain of method calls can end in a
.then or .end clause, either of which takes a callback function. But leave off both,
and it will return a Promise, and, of course, Promises let us use this directly from an
async function.

The res.body value at the end of each function contains the value returned by the
REST server. All through this library, we'll use the .auth clause to set up the required
authentication key.

These anonymous objects are a little different than normal. We're
using a new ECMAScript 2015 (ES-2015) feature here that we
haven't discussed so far. Rather than specifying the object fields
using the fieldName: fieldValue notation, ES-2015 gives us the
option to shorten this when the variable name used
for fieldValue matches the desired fieldName. In other words,
we can just list the variable names, and the field name will
automatically match the variable name.

In this case, we've purposely chosen variable names for the parameters to match the
field names of the object with parameter names used by the server. In doing so, we
can use this shortened notation for anonymous objects, and our code is a little cleaner
by using consistent variable names from beginning to end.

Now, add the following function to support the retrieval of user records:

export async function find(username) {
 var res = await request
 .get(reqURL(`/find/${username}`))
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')

Authenticating Users with a Microservice Chapter 8

[343]

 .auth(authid, authcode);
 return res.body;
}

This is following the same pattern as before. The set methods are, of course, used for
setting HTTP headers in the REST call. This means having at least a passing
knowledge of the HTTP protocol.

The Content-Type header says the data sent to the server is in JavaScript Object
Notation (JSON) format. The Accept header says that this REST client can handle
JSON data. JSON is, of course, easiest for a JavaScript program—such as what we're
writing—to utilize.

Let's now create the function for checking passwords, as follows:

export async function userPasswordCheck(username, password) {
 var res = await request
 .post(reqURL(`/password-check`))
 .send({ username, password })
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authid, authcode);
 return res.body;
}

One point about this method is worth noting. It could have taken the parameters in
the URL instead of the request body, as is done here. But since request URLs are
routinely logged to files, putting the username and password parameters in the URL
means user identity information would be logged to files and be part of activity
reports. That would obviously be a very bad choice. Putting those parameters in the
request body not only avoids that bad result but if an HTTPS connection to the
service were used, the transaction would be encrypted.

Then, let's create our find-or-create function, as follows:

export async function findOrCreate(profile) {
 var res = await request
 .post(reqURL('/find-or-create'))
 .send({
 username: profile.id, password: profile.password,
 provider: profile.provider,
 familyName: profile.familyName,
 givenName: profile.givenName,
 middleName: profile.middleName,
 emails: profile.emails, photos: profile.photos
 })

Authenticating Users with a Microservice Chapter 8

[344]

 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authid, authcode);
 return res.body;
}

The /find-or-create function either discovers the user in the database or creates a
new user. The profile object will come from Passport, but take careful note of what
we do with profile.id. The Passport documentation says it will provide the
username in the profile.id field, but we want to store it as username instead.

Let's now create a function to retrieve the list of users, as follows:

export async function listUsers() {
 var res = await request
 .get(reqURL('/list'))
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authid, authcode);
 return res.body;
}

As before, this is very straightforward.

With this module, we can interface with the user information service, and we can
now proceed with modifying the Notes user interface.

Incorporating login and logout routing
functions in the Notes application
What we've built so far is a user data model, with a REST API wrapping that model to
create our authentication information service. Then, within the Notes application, we
have a module that requests user data from this server. As yet, nothing in the Notes
application knows that this user model exists. The next step is to create a routing
module for login/logout URLs and to change the rest of Notes to use user data.

Authenticating Users with a Microservice Chapter 8

[345]

The routing module is where we use passport to handle user authentication. The
first task is to install the required modules, as follows:

$ npm install passport@^0.4.x passport-local@1.x --save

The passport module gives us the authentication algorithms. To support different
authentication mechanisms, the passport authors have developed several strategy
implementations—the authentication mechanisms, or strategies, corresponding to the
various third-party services that support authentication, such as using OAuth to
authenticate against services such as Facebook, Twitter, or GitHub.

Passport also requires that we install Express Session support. Use the following
command to install the modules:

$ npm install express-session@1.17.x session-file-store@1.4.x --save

Express Session support, including all the various Session Store
implementations, is documented on its GitHub project page
at https://github.com/expressjs/session.

The strategy implemented in the passport-local package authenticates solely
using data stored locally to the application—for example, our user authentication
information service. Later, we'll add a strategy module to authenticate the use of
OAuth with Twitter.

Let's start by creating the routing module, routes/users.mjs, as follows:

import path from 'path';
import util from 'util';
import { default as express } from 'express';
import { default as passport } from 'passport';
import { default as passportLocal } from 'passport-local';
const LocalStrategy = passportLocal.Strategy;
import * as usersModel from '../models/users-superagent.mjs';
import { sessionCookieName } from '../app.mjs';

export const router = express.Router();

import DBG from 'debug';
const debug = DBG('notes:router-users');
const error = DBG('notes:error-users');

https://github.com/expressjs/session

Authenticating Users with a Microservice Chapter 8

[346]

This brings in the modules we need for the /users router. This includes the two
passport modules and the REST-based user authentication model.

In app.mjs, we will be adding session support so our users can log in and log out.
That relies on storing a cookie in the browser, and the cookie name is found in this
variable exported from app.mjs. We'll be using that cookie in a moment.

Add the following functions to the end of routes/users.mjs:

export function initPassport(app) {
 app.use(passport.initialize());
 app.use(passport.session());
}

export function ensureAuthenticated(req, res, next) {
 try {
 // req.user is set by Passport in the deserialize function
 if (req.user) next();
 else res.redirect('/users/login');
 } catch (e) { next(e); }
}

The initPassport function will be called from app.mjs, and it installs the Passport
middleware in the Express configuration. We'll discuss the implications of this later
when we get to app.mjs changes, but Passport uses sessions to detect whether this
HTTP request is authenticated. It looks at every request coming into the application,
looks for clues about whether this browser is logged in, and attaches data to the
request object as req.user.

The ensureAuthenticated function will be used by other routing modules and is to
be inserted into any route definition that requires an authenticated logged-in user.
For example, editing or deleting a note requires the user to be logged in and,
therefore, the corresponding routes in routes/notes.mjs must use
ensureAuthenticated. If the user is not logged in, this function redirects them to
/users/login so that they can log in.

Add the following route handlers in routes/users.mjs:

router.get('/login', function(req, res, next) {
 try {
 res.render('login', { title: "Login to Notes", user: req.user, });
 } catch (e) { next(e); }
});

router.post('/login',

Authenticating Users with a Microservice Chapter 8

[347]

 passport.authenticate('local', {
 successRedirect: '/', // SUCCESS: Go to home page
 failureRedirect: 'login', // FAIL: Go to /user/login
 })
);

Because this router is mounted on /users, all these routes will have /user
prepended. The /users/login route simply shows a form requesting a username
and password. When this form is submitted, we land in the second route declaration,
with a POST on /users/login. If passport deems this a successful login attempt
using LocalStrategy, then the browser is redirected to the home page. Otherwise, it
is redirected back to the /users/login page.

Add the following route for handling logout:

router.get('/logout', function(req, res, next) {
 try {
 req.session.destroy();
 req.logout();
 res.clearCookie(sessionCookieName);
 res.redirect('/');
 } catch (e) { next(e); }
});

When the user requests to log out of Notes, they are to be sent to /users/logout.
We'll be adding a button to the header template for this purpose. The req.logout
function instructs Passport to erase their login credentials, and they are then
redirected to the home page.

This function deviates from what's in the Passport documentation. There, we are told
to simply call req.logout, but calling only that function sometimes results in the
user not being logged out. It's necessary to destroy the session object, and to clear the
cookie, in order to ensure that the user is logged out. The cookie name is defined in
app.mjs, and we imported sessionCookieName for this function.

Add the LocalStrategy to Passport, as follows:

passport.use(new LocalStrategy(
 async (username, password, done) => {
 try {
 var check = await usersModel.userPasswordCheck(username,
 password);
 if (check.check) {
 done(null, { id: check.username, username: check.username });
 } else {
 done(null, false, check.message);

Authenticating Users with a Microservice Chapter 8

[348]

 }
 } catch (e) { done(e); }
 }
));

Here is where we define our implementation of LocalStrategy. In the callback
function, we call usersModel.userPasswordCheck, which makes a REST call to the
user authentication service. Remember that this performs the password check and
then returns an object indicating whether the user is logged in.

A successful login is indicated when check.check is true. In this case, we tell
Passport to use an object containing username in the session object. Otherwise, we
have two ways to tell Passport that the login attempt was unsuccessful. In one case,
we use done(null, false) to indicate an error logging in, and pass along the error
message we were given. In the other case, we'll have captured an exception, and pass
along that exception.

You'll notice that Passport uses a callback-style API. Passport provides a done
function, and we are to call that function when we know what's what. While we use
an async function to make a clean asynchronous call to the backend service, Passport
doesn't know how to grok the Promise that would be returned. Therefore, we have to
throw a try/catch around the function body to catch any thrown exception.

Add the following functions to manipulate data stored in the session cookie:

passport.serializeUser(function(user, done) {
 try {
 done(null, user.username);
 } catch (e) { done(e); }
});

passport.deserializeUser(async (username, done) => {
 try {
 var user = await usersModel.find(username);
 done(null, user);
 } catch(e) { done(e); }
});

The preceding functions take care of encoding and decoding authentication data for
the session. All we need to attach to the session is the username, as we did in
serializeUser. The deserializeUser object is called while processing an
incoming HTTP request and is where we look up the user profile data. Passport will
attach this to the request object.

Authenticating Users with a Microservice Chapter 8

[349]

Login/logout changes to app.mjs
A number of changes are necessary in app.mjs, some of which we've already
touched on. We did carefully isolate the Passport module dependencies to
routes/users.mjs. The changes required in app.mjs support the code in
routes/users.mjs.

Add an import to bring in functions from the User router module, as follows:

import { router as indexRouter } from './routes/index.mjs';
import { router as notesRouter } from './routes/notes.mjs';
import { router as usersRouter, initPassport } from
'./routes/users.mjs';

The User router supports the /login and /logout URLs, as well as using Passport
for authentication. We need to call initPassport for a little bit of initialization.

And now, let's import modules for session handling, as follows:

import session from 'express-session';
import sessionFileStore from 'session-file-store';
const FileStore = sessionFileStore(session);
export const sessionCookieName = 'notescookie.sid';

Because Passport uses sessions, we need to enable session support in Express, and
these modules do so. The session-file-store module saves our session data to
disk so that we can kill and restart the application without losing sessions. It's also
possible to save sessions to databases with appropriate modules. A filesystem session
store is suitable only when all Notes instances are running on the same server
computer. For a distributed deployment situation, you'll need to use a session store
that runs on a network-wide service, such as a database.

We're defining sessionCookieName here so that it can be used in multiple places. By
default, express-session uses a cookie named connect.sid to store the session
data. As a small measure of security, it's useful when there's a published default to
use a different non-default value. Any time we use the default value, it's possible that
an attacker might know a security flaw, depending on that default.

Add the following code to app.mjs:

app.use(session({
 store: new FileStore({ path: "sessions" }),
 secret: 'keyboard mouse',
 resave: true,
 saveUninitialized: true,

Authenticating Users with a Microservice Chapter 8

[350]

 name: sessionCookieName
}));
initPassport(app);

Here, we initialize the session support. The field named secret is used to sign the
session ID cookie. The session cookie is an encoded string that is encrypted in part
using this secret. In the Express Session documentation, they suggest the keyboard
cat string for the secret. But, in theory, what if Express has a vulnerability, such that
knowing this secret can make it easier to break the session logic on your site? Hence,
we chose a different string for the secret, just to be a little different and—perhaps—a
little more secure.

Similarly, the default cookie name used by express-session is connect.sid.
Here's where we change the cookie name to a non-default name.

FileStore will store its session data records in a directory named sessions. This
directory will be auto-created as needed.

In case you see errors on Windows that are related to the files used by session-
file-store, there are several alternate session store packages that can be used. The
attraction of the session-file-store is that it has no dependency on a service like
a database server. Two other session stores have a similar advantage, LokiStore,
and MemoryStore. Both are configured similarly to the session-file-
store package. For example, to use MemoryStore, first use npm to install
the memorystore package, then use these lines of code in app.mjs:

import sessionMemoryStore from 'memorystore';
const MemoryStore = sessionMemoryStore(session);
...
app.use(session({
 store: new MemoryStore({}),
 secret: 'keyboard mouse',
 resave: true,
 saveUninitialized: true,
 name: sessionCookieName
}));

Authenticating Users with a Microservice Chapter 8

[351]

This is the same initialization, but using MemoryStore instead of FileStore.

To learn more about session store implementations see: http:/ /
expressjs. com/ en/ resources/ middleware/ session.
html#compatible- session- stores

Mount the User router, as follows:

app.use('/', indexRouter);
app.use('/notes', notesRouter);
app.use('/users', usersRouter);

These are the three routers that are used in the Notes application.

Login/logout changes in routes/index.mjs
This router module handles the home page. It does not require the user to be logged
in, but we want to change the display a little if they are logged in. To do so, run the
following code:

router.get('/', async (req, res, next) => {
 try {
 let keylist = await notes.keylist();
 let keyPromises = keylist.map(key => { return notes.read(key) });
 let notelist = await Promise.all(keyPromises);
 res.render('index', {
 title: 'Notes', notelist: notelist,
 user: req.user ? req.user : undefined
 });
 } catch (e) { next(e); }
});

Remember that we ensured that req.user has the user profile data, which we did in
deserializeUser. We simply check for this and make sure to add that data when
rendering the views template.

We'll be making similar changes to most of the other route definitions. After that,
we'll go over the changes to the view templates, in which we use req.user to show
the correct buttons on each page.

http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores

Authenticating Users with a Microservice Chapter 8

[352]

Login/logout changes required in routes/notes.mjs
The changes required here are more significant but still straightforward, as shown in
the following code snippet:

import { ensureAuthenticated } from './users.mjs';

We need to use the ensureAuthenticated function to protect certain routes from
being used by users who are not logged in. Notice how ES6 modules let us import
just the function(s) we require. Since that function is in the User router module, we
need to import it from there.

Modify the /add route handler, as shown in the following code block:

router.get('/add', ensureAuthenticated, (req, res, next) => {
 try {
 res.render('noteedit', {
 title: "Add a Note",
 docreate: true, notekey: "",
 user: req.user, note: undefined
 });
 } catch (e) { next(e); }
});

We'll be making similar changes throughout this module, adding calls to
ensureAuthenticated and using req.user to check whether the user is logged in.
The goal is for several routes to ensure that the route is only available to a logged-in
user, and—in those and additional routes—to pass the user object to the template.

The first thing we added is to call usersRouter.ensureAuthenticated in the
route definition. If the user is not logged in, they'll be redirected to
/users/login thanks to that function.

Because we've ensured that the user is authenticated, we know that req.user will
already have their profile information. We can then simply pass it to the view
template.

For the other routes, we need to make similar changes.

Authenticating Users with a Microservice Chapter 8

[353]

Modify the /save route handler, as follows:

router.post('/save', ensureAuthenticated, (req, res, next) => {
 ..
});

The /save route only requires this change to call ensureAuthenticated in order to
ensure that the user is logged in.

Modify the /view route handler, as follows:

router.get('/view', (req, res, next) => {
 try {
 var note = await notes.read(req.query.key);
 res.render('noteview', {
 title: note ? note.title : "",
 notekey: req.query.key,
 user: req.user ? req.user : undefined,
 note: note
 });
 } catch (e) { next(e); }
});

For this route, we don't require the user to be logged in. We do need the user's profile
information, if any, sent to the view template.

Modify the /edit and /destroy route handlers, as follows:

router.get('/edit', ensureAuthenticated, (req, res, next) => {
 try {
 var note = await notes.read(req.query.key);
 res.render('noteedit', {
 title: note ? ("Edit " + note.title) : "Add a Note",
 docreate: false,
 notekey: req.query.key,
 user: req.user,
 note: note
 });
 } catch (e) { next(e); }
});
router.get('/destroy', ensureAuthenticated, (req, res, next) => {
 try {
 var note = await notes.read(req.query.key);
 res.render('notedestroy', {
 title: note ? `Delete ${note.title}` : "",
 notekey: req.query.key,
 user: req.user,
 note: note

Authenticating Users with a Microservice Chapter 8

[354]

 });
 } catch (e) { next(e); }
});
router.post('/destroy/confirm', ensureAuthenticated, (req, res, next)
=> {
 ..
});

Remember that throughout this module, we have made the following two changes to
router functions:

We protected some routes using ensureAuthenticated to ensure that the1.
route is available only to logged-in users.
We passed the user object to the template.2.

For the routes using ensureAuthenticated, it is guaranteed that req.user will
contain the user object. In other cases, such as with the /view router function,
req.user may or may not have a value, and in case it does not, we make sure to pass
undefined. In all such cases, the templates need to change in order to use the user
object to detect whether the user is logged in, and whether to show HTML
appropriate for a logged-in user.

Viewing template changes supporting login/logout
So far, we've created a backend user authentication service, a REST module to access
that service, a router module to handle routes related to logging in and out of the
website, and changes in app.mjs to use those modules. We're almost ready, but
we've got a number of changes left that need to be made to the templates. We're
passing the req.user object to every template because each one must be changed to
accommodate whether the user is logged in.

This means that we can test whether the user is logged in simply by testing for the
presence of a user variable.

In partials/header.hbs, make the following additions:

...
<nav class="navbar navbar-expand-md navbar-dark bg-dark">
 <i data-feather="home"></i>
 <button class="navbar-toggler" type="button"
 data-toggle="collapse" data-target="#navbarLogIn"
 aria-controls="navbarLogIn"
 aria-expanded="false"
 aria-label="Toggle navigation">

Authenticating Users with a Microservice Chapter 8

[355]

 </button>
 {{#if user}}
 <div class="collapse navbar-collapse" id="navbarLogIn">
 {{ title }}

 Log Out {{ user.username
 }}

 <a class="nav-item nav-link btn btn-dark col-auto"
 href='/notes/add'>ADD Note
 </div>
 {{else}}
 <div class="collapse navbar-collapse" id="navbarLogIn">
 Log in
 </div>
 {{/if}}
</nav>
...

What we're doing here is controlling which buttons to display at the top of the screen,
depending on whether the user is logged in. The earlier changes ensure that the user
variable will be undefined if the user is logged out; otherwise, it will have the user
profile object. Therefore, it's sufficient to check the user variable, as shown in the
preceding code block, to render different user interface elements.

A logged-out user doesn't get the ADD Note button and gets a Log in button.
Otherwise, the user gets an ADD Note button and a Log Out button. The Log
in button takes the user to /users/login, while the Log Out button takes them
to /users/logout. Both of those buttons are handled in routes/users.js and
perform the expected function.

The Log Out button has a Bootstrap badge component displaying the username. This
adds a little visual splotch in which we'll put the username that's logged in. As we'll
see later, it will serve as a visual clue to the user as to their identity.

Because nav is now supporting login/logout buttons, we have changed the navbar-
toggler button so that it controls a <div> with id="navbarLogIn".

We need to create views/login.hbs, as follows:

<div class="container-fluid">
 <div class="row">
 <div class="col-12 btn-group-vertical" role="group">

 <form method='POST' action='/users/login'>

Authenticating Users with a Microservice Chapter 8

[356]

 <div class="form-group">
 <label for="username">User name:</label>
 <input class="form-control" type='text' id='username'
 name='username' value='' placeholder='User Name'/>
 </div>
 <div class="form-group">
 <label for="password">Password:</label>
 <input class="form-control" type='password' id='password'
 name='password' value='' placeholder='Password'/>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </form>

 </div>
 </div>
</div>

This is a simple form decorated with Bootstrap goodness to ask for the username and
password. When submitted, it creates a POST request to /users/login, which
invokes the desired handler to verify the login request. The handler for that URL will
start the Passport process to decide whether the user is authenticated.

In views/notedestroy.hbs, we want to display a message if the user is not logged
in. Normally, the form to cause the note to be deleted is displayed, but if the user is
not logged in, we want to explain the situation, as illustrated in the following code
block:

<form method='POST' action='/notes/destroy/confirm'>
<div class="container-fluid">
 {{#if user}}
 <input type='hidden' name='notekey' value='{{#if
 note}}{{notekey}}{{/if}}'>
 <p class="form-text">Delete {{note.title}}?</p>

 <div class="btn-group">
 <button type="submit" value='DELETE'
 class="btn btn-outline-dark">DELETE</button>
 <a class="btn btn-outline-dark"
 href="/notes/view?key={{#if note}}{{notekey}}{{/if}}"
 role="button">Cancel
 </div>
 {{else}}
 {{> not-logged-in }}
 {{/if}}
</div>
</form>

Authenticating Users with a Microservice Chapter 8

[357]

That's straightforward—if the user is logged in, display the form; otherwise, display
the message in partials/not-logged-in.hbs. We determine which of these to
display based on the user variable.

We could insert something such as the code shown in the following block in
partials/not-logged-in.hbs:

<div class="jumbotron">
 <h1>Not Logged In</h1>
 <p>You are required to be logged in for this action, but you are not.
 You should not see this message. It's a bug if this message appears.
 </p>
 <p>Log in</p>
</div>

As the text says, this will probably never be shown to users. However, it is useful to
put something such as this in place since it may show up during development,
depending on the bugs you create.

In views/noteedit.hbs, we require a similar change, as follows:

..
<div class="container-fluid">
{{#if user}}
..
{{else}}
{{> not-logged-in }}
{{/if}}
</div>
..

That is, at the bottom we add a segment that, for non-logged-in users, pulls in the
not-logged-in partial.

The Bootstrap jumbotron component makes a nice and large text display that stands
out nicely and will catch the viewer's attention. However, the user should never see
this because each of those templates is used only when we've pre-verified the fact that
the user is logged in.

A message such as this is useful as a check against bugs in your code. Suppose that
we slipped up and failed to properly ensure that these forms were displayed only to
logged-in users. Suppose that we had other bugs that didn't check the form
submission to ensure it's requested only by a logged-in user. Fixing the template in
this way is another layer of prevention against displaying forms to users who are not
allowed to use that functionality.

Authenticating Users with a Microservice Chapter 8

[358]

We have now made all the changes to the user interface and are ready to test the
login/logout functionality.

Running the Notes application with user
authentication
We have created the user information REST service, created a module to access that
service from Notes, modified the router modules to correctly access the user
information service, and changed other things required to support login/logout.

The final task that is necessary is to change the scripts section of package.json, as
follows:

"scripts": {
 "start": "cross-env DEBUG=notes:*
 SEQUELIZE_CONNECT=models/sequelize-
 sqlite.yaml NOTES_MODEL=sequelize
 USER_SERVICE_URL=http://localhost:5858
 node ./app.mjs",
 "dl-minty": "mkdir -p minty && npm run dl-minty-css && npm run dl-
 minty-min-css",
 "dl-minty-css": "wget https://bootswatch.com/4/minty/bootstrap.css
 -O minty/bootstrap.css",
 "dl-minty-min-css": "wget
 https://bootswatch.com/4/minty/bootstrap.min.css
 -O minty/bootstrap.min.css"
},

In the previous chapters, we built up quite a few combinations of models and
databases for running the Notes application. Since we don't need those, we can strip
most of them out from package.json. This leaves us with one, configured to use the
Sequelize model for Notes, using the SQLite3 database, and to use the new user
authentication service that we wrote earlier. All the other Notes data models are still
available, just by setting the environment variables appropriately.

USER_SERVICE_URL needs to match the port number that we designated for that
service.

In one window, start the user authentication service, as follows:

$ cd users
$ npm start
> user-auth-server@0.0.1 start /Users/david/chap08/users
> DEBUG=users:* PORT=5858 SEQUELIZE_CONNECT=sequelize-sqlite.yaml node

Authenticating Users with a Microservice Chapter 8

[359]

user-server
users:server User-Auth-Service listening at http://127.0.0.1:5858 +0ms

Then, in another window, start the Notes application, as follows:

$ cd notes
$ DEBUG=notes:* npm start
> notes@0.0.0 start /Users/david/chap08/notes
> cross-env DEBUG=notes:* SEQUELIZE_CONNECT=models/sequelize-
 sqlite.yaml NOTES_MODEL=sequelize
 USER_SERVICE_URL=http://localhost:5858 node ./app.mjs
 notes:server Listening on port 3000 +0ms

You'll be greeted with the following message:

Notice the new button, Log in, and the lack of an ADD Note button. We're not logged
in, and so partials/header.hbs is rigged to show only the Log in button.

Click on the Log in button, and you will see the login screen, as shown in the
following screenshot:

Authenticating Users with a Microservice Chapter 8

[360]

This is our login form from views/login.hbs. You can now log in, create a note or
three, and you might end up with the following messages on the home page:

You now have both Log Out and ADD Note buttons. You'll notice that the Log Out
button has the username (me) shown. After some thought and consideration, this
seemed the most compact way to show whether the user is logged in, and which user
is logged in. This might drive the user experience team nuts, and you won't know
whether this user interface design works until it's tested with users, but it's good
enough for our purpose at the moment.

In this section, we've learned how to set up a basic login/logout functionality using
locally stored user information. This is fairly good, but many web applications find it
useful to allow folks to log in using their Twitter or other social media accounts for
authentication. In the next section, we'll learn about that by setting up Twitter
authentication.

Providing Twitter login support for the
Notes application
If you want your application to hit the big time, it's a great idea to ease the
registration process by using third-party authentication. Websites all over the internet
allow you to log in using accounts from other services such as Facebook or Twitter.
Doing so removes hurdles to prospective users signing up for your service. Passport
makes it extremely easy to do this.

Authenticating users with Twitter requires installation of TwitterStrategy from
the passport-twitter package, registering a new application with Twitter, adding
a couple of routes to routes/user.mjs, and making a small change in
partials/header.hbs. Integrating other third-party services requires similar steps.

Authenticating Users with a Microservice Chapter 8

[361]

Registering an application with Twitter
Twitter, as with every other third-party service, uses OAuth to handle authentication.
OAuth is a standard protocol through which an application or a person can
authenticate with one website by using credentials they have on another website. We
use this all the time on the internet. For example, we might use an online graphics
application such as draw.io or Canva by logging in with a Google account, and then
the service can save files to our Google Drive.

Any application author must register with any sites you seek to use for
authentication. Since we wish to allow Twitter users to log in to Notes using Twitter
credentials, we have to register our Notes application with Twitter. Twitter then gives
us a pair of authentication keys that will validate the Notes application with Twitter.
Any application, whether it is a popular site such as Canva, or a new site such as Joe's
Ascendant Horoscopes, must be registered with any desired OAuth authentication
providers. The application author must then be diligent about keeping the
registration active and properly storing the authentication keys.

The authentication keys are like a username/password pair. Anyone who gets a hold
of those keys could use the service as if they were you, and potentially wreak havoc
on your reputation or business.

Our task in this section is to register a new application with Twitter, fulfilling
whatever requirements Twitter has.

To register a new application with Twitter, go to https:/ /
developer. twitter. com/ en/apps.

As you go through this process, you may be shown the following message:

http://draw.io
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps
https://developer.twitter.com/en/apps

Authenticating Users with a Microservice Chapter 8

[362]

Recall that in recent years, concerns began to arise regarding the misuse of third-party
authentication, the potential to steal user information, and the negative results that
have occurred thanks to user data being stolen from social networks. As a result,
social networks have increased scrutiny over developers using their APIs. It is
necessary to sign up for a Twitter developer account, which is an easy process that
does not cost anything.

As we go through this, realize that the Notes application needs a minimal amount of
data. The ethical approach to this is to request only the level of access required for
your application, and nothing more.

Once you're registered, you can log in to developer.twitter.com/apps and see a
dashboard listing the active applications you've registered. At this point, you
probably do not have any registered applications. At the top is a button
marked Create an App. Click on that button to start the process of submitting a
request to register a new application.

Every service offering OAuth authentication has an administrative backend similar to
developer.twitter.com/apps. The purpose is so that certified application
developers can administer the registered applications and authorization tokens. Each
such service has its own policies for validating that those requesting authorization
tokens have a legitimate purpose and will not abuse the service. The authorization
token is one of the mechanisms to verify that API requests come from approved
applications. Another mechanism is the URL from which API requests are made.

In the normal case, an application will be deployed to a regular server, and is
accessed through a domain name such as MyNotes.xyz. In our case, we are
developing a test application on our laptop, and do not have a public IP address, nor
is there a domain name associated with our laptop. Not all social networks allow
interactions from an application on an untrusted computer—such as a developer's
laptop—to make API requests; however, Twitter does.

At the time of writing, there are several pieces of information requested by the
Twitter sign-up process, listed as follows:

Name: This is the application name, and it can be anything you like. It
would be a good form to use "Test" in the name, in case Twitter's staff
decide to do some checking.
Description: Descriptive phrase—and again, it can be anything you like.
The description is shown to users during the login process. It's good form
to describe this as a test application.

Authenticating Users with a Microservice Chapter 8

[363]

Website: This would be your desired domain name. Here, the help text
helpfully suggests If you don't have a URL yet, just put a placeholder here but
remember to change it later.
Allow this application to be used to sign in with Twitter: Check this, as it
is what we want.
Callback URL: This is the URL to return to following successful
authentication. Since we don't have a public URL to supply, this is where
we specify a value referring to your laptop. It's been found
that http://localhost:3000 works just fine. macOS users have another
option because of the .local domain name that is automatically assigned
to their laptop.
Tell us how this app will be used: This statement will be used by Twitter
to evaluate your request. For the purpose of this project, explain that it is a
sample app from a book. It is best to be clear and honest about your
intention.

The sign-up process is painless. However, at several points, Twitter reiterated the
sensitivity of the information provided through the Twitter API. The last step before
granting approval warned that Twitter prohibits the use of its API for various
unethical purposes.

The last thing to notice is the extremely sensitive nature of the authentication keys. It's
bad form to check these into a source code repository or otherwise put them in a place
where anybody can access the key. We'll tackle this issue in Chapter 14, Security in
Node.js Applications.

The Twitter developers' site has documentation describing best
practices for storing authentication tokens. Visit https:/ /
developer. twitter. com/ en/docs/ basics/ authentication/ guides/
authentication- best- practices.

Storing authentication tokens
The Twitter recommendation is to store configuration values in a .env file. The
contents of this file are to somehow become environment variables, which we can
then access using process.env, as we've done before. Fortunately, there is a third-
party Node.js package to do just this, called dotenv.

https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices
https://developer.twitter.com/en/docs/basics/authentication/guides/authentication-best-practices

Authenticating Users with a Microservice Chapter 8

[364]

Learn about the dotenv package at https:/ /www. npmjs. com/
package/ dotenv.

First, install the package, as follows:

$ npm install dotenv@8.2.x --save

The documentation says we should load the dotenv package and then call
dotenv.config() very early in the start up phase of our application, and that we
must do this before accessing any environment variables. However, reading the
documentation more closely, it seems best to add the following code to app.mjs:

import dotenv from 'dotenv/config.js';

With this approach, we do not have to explicitly call the dotenv.config function.
The primary advantage is avoiding issues with referencing environment variables
from multiple modules.

The next step is to create a file, .env, in the notes directory. The syntax of this file is
very simple, as shown in the following code block:

VARIABLE1=value for variable 1
VARIABLE2=value for variable 2

This is exactly the syntax we'd expect since it is the same as for shell scripts. In this
file, we need two variables to be defined, TWITTER_CONSUMER_KEY
and TWITTER_CONSUMER_SECRET. We will use these variables in the code we'll write
in the next section. Since we are putting configuration values in the scripts section
of package.json, feel free to add those environment variables to .env as well.

The next step is to avoid committing this file to a source code control system such as
Git. To ensure that this does not happen, you should already have a .gitignore file
in the notes directory, and make sure its contents are something like this:

notes-fs-data
notes.level
chap07.sqlite3
notes-sequelize.sqlite3
package-lock.json
data
node_modules
.env

https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv

Authenticating Users with a Microservice Chapter 8

[365]

These values mostly refer to database files we generated in the previous chapter. In
the end, we've added the .env file, and because of this, Git will not commit this file to
the repository.

This means that when deploying the application to a server, you'll have to arrange to
add this file to the deployment without it being committed to a source repository.

With an approved Twitter application, and with our authentication tokens recorded
in a configuration file, we can move on to adding the required code to Notes.

Implementing TwitterStrategy
As with many web applications, we have decided to allow our users to log in using
Twitter credentials. The OAuth protocol is widely used for this purpose and is the
basis for authentication on one website using credentials maintained by another
website.

The application registration process you just followed at developer.twitter.com
generated for you a pair of API keys: a consumer key, and a consumer secret. These
keys are part of the OAuth protocol and will be supplied by any OAuth service you
register with, and the keys should be treated with the utmost care. Think of them as
the username and password your service uses to access the OAuth-based service
(Twitter et al.). The more people who can see these keys, the more likely it becomes
that a miscreant can see them and then cause trouble. Anybody with those secrets can
access the service API as if they are you.

Let's install the package required to use TwitterStrategy, as follows:

$ npm install passport-twitter@1.x --save

In routes/users.mjs, let's start making some changes, as follows:

import passportTwitter from 'passport-twitter';
const TwitterStrategy = passportTwitter.Strategy;

This imports the package, and then makes its Strategy variable available as
TwitterStrategy.

Let's now install the TwitterStrategy, as follows:

const twittercallback = process.env.TWITTER_CALLBACK_HOST
 ? process.env.TWITTER_CALLBACK_HOST
 : "http://localhost:3000";
export var twitterLogin;

Authenticating Users with a Microservice Chapter 8

[366]

if (typeof process.env.TWITTER_CONSUMER_KEY !== 'undefined'
 && process.env.TWITTER_CONSUMER_KEY !== ''
 && typeof process.env.TWITTER_CONSUMER_SECRET !== 'undefined'
 && process.env.TWITTER_CONSUMER_SECRET !== '') {
 passport.use(new TwitterStrategy({
 consumerKey: process.env.TWITTER_CONSUMER_KEY,
 consumerSecret: process.env.TWITTER_CONSUMER_SECRET,
 callbackURL: `${twittercallback}/users/auth/twitter/callback`
 },
 async function(token, tokenSecret, profile, done) {
 try {
 done(null, await usersModel.findOrCreate({
 id: profile.username, username: profile.username, password:
 "",
 provider: profile.provider, familyName: profile.displayName,
 givenName: "", middleName: "",
 photos: profile.photos, emails: profile.emails
 }));
 } catch(err) { done(err); }
 }));

 twitterLogin = true;
} else {
 twitterLogin = false;
}

This registers a TwitterStrategy instance with passport, arranging to call the user
authentication service as users register with the Notes application. This callback
function is called when users successfully authenticate using Twitter.

If the environment variables containing the Twitter tokens are not set, then this code
does not execute. Clearly, it would be an error to set up Twitter authentication
without the keys, so we avoid the error by not executing the code.

To help other code know whether Twitter support is enabled, we export a flag
variable - twitterLogin.

We defined the usersModel.findOrCreate function specifically to handle user
registration from third-party services such as Twitter. Its task is to look for the user
described in the profile object and, if that user does not exist, to create that user
account in Notes.

The consumerKey and consumerSecret values are supplied
by Twitter, after you've registered your application. These secrets
are used in the OAuth protocol as proof of identity to Twitter.

Authenticating Users with a Microservice Chapter 8

[367]

The callbackURL setting in the TwitterStrategy configuration is a holdover from
Twitter's OAuth1-based API implementation. In OAuth1, the callback URL was
passed as part of the OAuth request. Since TwitterStrategy uses Twitter's OAuth1
service, we have to supply the URL here. We'll see in a moment where that URL is
implemented in Notes.

The callbackURL, consumerKey, and consumerSecret settings are all injected
using environment variables. Earlier, we discussed how it is a best practice to not
commit the values for consumerKey and consumerSecret to a source repository,
and therefore we set up the dotenv package and a .env file to hold those
configuration values. In Chapter 10, Deploying Node.js Applications to Linux
Servers, we'll see that these keys can be declared as environment variables in a
Dockerfile.

Add the following route declaration:

router.get('/auth/twitter', passport.authenticate('twitter'));

To start the user logging in with Twitter, we'll send them to this URL. Remember that
this URL is really /users/auth/twitter and, in the templates, we'll have to use
that URL. When this is called, the passport middleware starts the user authentication
and registration process using TwitterStrategy.

Once the user's browser visits this URL, the OAuth dance begins. It's called a dance
because the OAuth protocol involves carefully designed redirects between several
websites. Passport sends the browser over to the correct URL at Twitter, where
Twitter asks the user whether they agree to authenticate using Twitter, and then
Twitter redirects the user back to your callback URL. Along the way, specific tokens
are passed back and forth in a very carefully designed dance between websites.

Once the OAuth dance concludes, the browser lands at the URL designated in the
following router declaration:

router.get('/auth/twitter/callback',
 passport.authenticate('twitter', { successRedirect: '/',
 failureRedirect: '/users/login' }));

This route handles the callback URL, and it corresponds to the callbackURL setting
configured earlier. Depending on whether it indicates a successful registration,
Passport will redirect the browser to either the home page or back to the
/users/login page.

Authenticating Users with a Microservice Chapter 8

[368]

Because router is mounted on /user, this URL is actually
/user/auth/twitter/callback. Therefore, the full URL to use in configuring the
TwitterStrategy, and to supply to Twitter,
is http://localhost:3000/user/auth/twitter/callback.

In the process of handling the callback URL, Passport will invoke the callback
function shown earlier. Because our callback uses the usersModel.findOrCreate
function, the user will be automatically registered if necessary.

We're almost ready, but we need to make a couple of small changes elsewhere in
Notes.

In partials/header.hbs, make the following changes to the code:

...
{{else}}
<div class="collapse navbar-collapse" id="navbarLogIn">

 <a class="nav-item nav-link btn btn-dark col-auto"
href="/users/login">
 Log in
 {{#if twitterLogin}}
 <a class="nav-item nav-link btn btn-dark col-auto"
 href="/users/auth/twitter">
 <img width="15px"
 src="/assets/vendor/twitter/Twitter_SocialIcon
 _Rounded_Square_Color.png"/>
 Log in with Twitter
 {{/if}}
</div>
{{/if}}

This adds a new button that, when clicked, takes the user to /users/auth/twitter,
which—of course—kicks off the Twitter authentication process. The button is enabled
only if Twitter support is enabled, as determined by the twitterLogin variable. This
means that the router functions must be modified to pass in this variable.

Authenticating Users with a Microservice Chapter 8

[369]

This button includes a little image we downloaded from the official
Twitter brand assets page at
https://about.twitter.com/company/brand-assets. Twitter
recommends using these branding assets for a consistent look across
all services using Twitter. Download the whole set, and then pick
the one you like.

For the URL shown here, the corresponding project directory is
named public/assets/vendor/twitter. Notice that we force the
size to be small enough for the navigation bar.

In routes/index.mjs, make the following change:

...
import { twitterLogin } from './users.mjs';
...
router.get('/', async (req, res, next) => {
 ...
 res.render('index', {
 title: 'Notes', notelist: notelist,
 user: req.user ? req.user : undefined,
 twitterLogin: twitterLogin
 });
 ...
});

This imports the variable, and then, in the data passed to res.render, we add this
variable. This will ensure that the value reaches partials/header.hbs.

In routes/notes.mjs, we have a similar change to make in several router functions:

...
import { twitterLogin } from './users.mjs';
...
router.get('/add', ensureAuthenticated, (req, res, next) => {
 res.render('noteedit', {
 ... twitterLogin: twitterLogin, ...
 });
});

router.get('/view', (req, res, next) => {
 res.render('noteview', {
 ... twitterLogin: twitterLogin, ...
 });
});

https://about.twitter.com/company/brand-assets

Authenticating Users with a Microservice Chapter 8

[370]

router.get('/edit', ensureAuthenticated, (req, res, next) => {
 res.render('noteedit', {
 ... twitterLogin: twitterLogin, ...
 });
});

router.get('/destroy', ensureAuthenticated, (req, res, next) => {
 res.render('notedestroy', {
 ... twitterLogin: twitterLogin, ...
 });
});

This is the same change, importing the variable and passing it to res.render.

With these changes, we're ready to try logging in with Twitter.

Start the user information server as shown previously, and then start the Notes
application server, as shown in the following code block:

$ npm start

> notes@0.0.0 start /Users/David/chap08/notes
> DEBUG=notes:* SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml
NOTES_MODEL=sequelize USER_SERVICE_URL=http://localhost:5858 node --
experimental-modules ./app.mjs

 notes:server-debug Listening on port 3000 +0ms

Then, use a browser to visit http://localhost:3000, as follows:

Notice the new button. It looks about right, thanks to having used the official Twitter
branding image. The button is a little large, so maybe you want to consult a designer.
Obviously, a different design is required if you're going to support dozens of
authentication services.

Run it while leaving out the Twitter token environment variables, and the Twitter
login button should not appear.

Authenticating Users with a Microservice Chapter 8

[371]

Clicking on this button takes the browser to /users/auth/twitter, which is meant
to start Passport running the OAuth protocol transactions necessary to authenticate.
Instead, you may receive an error message that states Callback URL not approved
for this client application. Approved callback URLs can be adjusted in your
application settings. If this is the case, it is necessary to adjust the application
configuration on developer.twitter.com. The error message is clearly saying that
Twitter saw a URL being used that was not approved.

On the page for your application, on the App Details tab, click the Edit button. Then,
scroll down to the Callback URLs section and add the following entries:

As it explains, this box lists the URLs that are allowed to be used for Twitter OAuth
authentication. At the moment, we are hosting the application on our laptop using
port 3000. If you are accessing it from other base URLs, such as
http://MacBook-Pro-4.local, then that base URL should be used in addition.

Once you have the callback URLs correctly configured, clicking on the Login with
Twitter button will take you to a normal Twitter OAuth authentication page. Simply
click for approval, and you'll be redirected back to the Notes application.

And then, once you're logged in with Twitter, you'll see something like the following
screenshot:

Authenticating Users with a Microservice Chapter 8

[372]

We're now logged in, and will notice that our Notes username is the same as our
Twitter username. You can browse around the application and create, edit, or delete
notes. In fact, you can do this to any note you like, even ones created by others. That's
because we did not create any sort of access control or permissions system, and
therefore every user has complete access to every note. That's a feature to put on the
backlog.

By using multiple browsers or computers, you can simultaneously log in as different
users, one user per browser.

You can run multiple instances of the Notes application by doing what we did earlier,
as follows:

 "scripts": {
 "start": "cross-env DEBUG=notes:*
SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml
NOTES_MODEL=models/notes-sequelize USERS_MODEL=models/users-rest
USER_SERVICE_URL=http://localhost:5858 node ./bin/www",
 "start-server1": "SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml
NOTES_MODEL=models/notes-sequelize USERS_MODEL=models/users-rest
USER_SERVICE_URL=http://localhost:5858 PORT=3000 node ./bin/www",
 "start-server2": "SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml
NOTES_MODEL=models/notes-sequelize USERS_MODEL=models/users-rest
USER_SERVICE_URL=http://localhost:5858 PORT=3002 node ./bin/www",
 "dl-minty": "mkdir -p minty && npm run dl-minty-css && npm run dl-
minty-min-css",
 "dl-minty-css": "wget https://bootswatch.com/4/minty/bootstrap.css
-O minty/bootstrap.css",
 "dl-minty-min-css": "wget
https://bootswatch.com/4/minty/bootstrap.min.css -O
minty/bootstrap.min.css"
 },

Then, in one command window, run the following command:

$ npm run start-server1

> notes@0.0.0 start-server1 /Users/David/chap08/notes
> DEBUG=notes:* SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml
NOTES_MODEL=sequelize USER_SERVICE_URL=http://localhost:5858 PORT=3000
node --experimental-modules ./app.mjs

 notes:server-debug Listening on port 3000 +0ms

Authenticating Users with a Microservice Chapter 8

[373]

In another command window, run the following command:

$ npm run start-server2

> notes@0.0.0 start-server2 /Users/David/chap08/notes
> DEBUG=notes:* SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml
NOTES_MODEL=sequelize USER_SERVICE_URL=http://localhost:5858 PORT=3002
node --experimental-modules ./app.mjs

 notes:server-debug Listening on port 3002 +0ms

As previously, this starts two instances of the Notes server, each with a different
value in the PORT environment variable. In this case, each instance will use the same
user authentication service. As shown here, you'll be able to visit the two instances at
http://localhost:3000 and http://localhost:3002. As before, you'll be able
to start and stop the servers as you wish, see the same notes in each, and see that the
notes are retained after restarting the server.

Another thing to try is to fiddle with the session store. Our session data is being
stored in the sessions directory. These are just files in the filesystem, and we can
take a look with normal tools such as ls, as shown in the following code block:

$ ls -l sessions/
total 32
-rw-r--r-- 1 david wheel 139 Jan 25 19:28 -
QOS7eX8ZBAfmK9CCV8Xj8v-3DVEtaLK.json
-rw-r--r-- 1 david wheel 139 Jan 25 21:30
T7VT4xt3_e9BiU49OMC6RjbJi6xB7VqG.json
-rw-r--r-- 1 david wheel 223 Jan 25 19:27
ermh-7ijiqY7XXMnA6zPzJvsvsWUghWm.json
-rw-r--r-- 1 david wheel 139 Jan 25 21:23
uKzkXKuJ8uMN_ROEfaRSmvPU7NmBc3md.json $ cat
sessions/T7VT4xt3_e9BiU49OMC6RjbJi6xB7VqG.json
{"cookie":{"originalMaxAge":null,"expires":null,"httpOnly":true,"path"
:"/"},"__lastAccess":1516944652270,"passport":{"user":"7genblogger"}}

This is after logging in using a Twitter account. You can see that the Twitter account
name is stored here in the session data.

What if you want to clear a session? It's just a file in the filesystem. Deleting the
session file erases the session, and the user's browser will be forcefully logged out.

The session will time out if the user leaves their browser idle for long enough. One of
the session-file-store options, ttl, controls the timeout period, which defaults
to 3,600 seconds (an hour). With a timed-out session, the application reverts to a
logged-out state.

Authenticating Users with a Microservice Chapter 8

[374]

In this section, we've gone through the full process of setting up support for login
using Twitter's authentication service. We created a Twitter developer account and
created an application on Twitter's backend. Then, we implemented the required
workflow to integrate with Twitter's OAuth support. To support this, we integrated
the storage of user authorizations from Twitter in the user information service.

Our next task is extremely important: to keep user passwords encrypted.

Keeping secrets and passwords secure
We've cautioned several times about the importance of safely handling user
identification information. The intention to handle that data safely is one thing, but it
is important to follow through and actually do so. While we're using a few good
practices so far, as it stands, the Notes application would not withstand any kind of
security audit for the following reasons:

User passwords are kept in clear text in the database.
The authentication tokens for Twitter et al. are in clear text.
The authentication service API key is not a cryptographically secure
anything; it's just a clear text universally unique identifier (UUID).

If you don't recognize the phrase clear text, it simply means unencrypted. Anyone
could read the text of user passwords or the authentication tokens. It's best to keep
both encrypted to avoid information leakage.

Keep this issue in the back of your mind because we'll revisit these—and
other—security issues in Chapter 14, Security in Node.js Applications.

Before we leave this chapter, let's fix the first of those issues: storing passwords in
plain text. We made the case earlier that user information security is extremely
important. Therefore, we should take care of this from the beginning.

The bcrypt Node.js package makes it easy to securely store passwords. With it, we
can easily encrypt the password right away, and never store an unencrypted
password.

For bcrypt documentation, refer to https:/ /www. npmjs. com/
package/ bcrypt.

https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt

Authenticating Users with a Microservice Chapter 8

[375]

To install bcrypt in both the notes and users directories, execute the following
command:

$ npm install bcrypt@5.x --save

The bcrypt documentation says that the correct version of this package must be used
precisely for the Node.js version in use. Therefore, you should adjust the version
number appropriately to the Node.js version you are using.

The strategy of storing an encrypted password dates back to the earliest days of Unix.
The creators of the Unix operating system devised a means for storing an encrypted
value in /etc/passwd, which was thought sufficiently safe that the password file
could be left readable to the entire world.

Let's start with the user information service.

Adding password encryption to the user
information service
Because of our command-line tool, we can easily test end-to-end password
encryption. After verifying that it works, we can implement encryption in the Notes
application.

In cli.mjs, add the following code near the top:

import { default as bcrypt } from 'bcrypt';
const saltRounds = 10;

This brings in the bcrypt package, and then we configure a constant that governs the
CPU time required to decrypt a password. The bcrypt documentation points to a
blog post discussing why the algorithm of bcrypt is excellent for storing encrypted
passwords. The argument boils down to the CPU time required for decryption. A
brute-force attack against the password database is harder, and therefore less likely to
succeed if the passwords are encrypted using strong encryption, because of the CPU
time required to test all password combinations.

The value we assign to saltRounds determines the CPU time requirement. The
documentation explains this further.

Next, add the following function:

async function hashpass(password) {
 let salt = await bcrypt.genSalt(saltRounds);

Authenticating Users with a Microservice Chapter 8

[376]

 let hashed = await bcrypt.hash(password, salt);
 return hashed;
}

This takes a plain text password and runs it through the encryption algorithm. What's
returned is the hash for the password.

Next, in the commands for add, find-or-create, and update, we make this same
change, as follows:

.action(async (username, cmdObj) => {
 const topost = {
 username,
 password: await hashpass(cmdObj.password),
 ...
 };
 ...
 })

That is, in each, we make the callback function an async function so that we can use
await. Then, we call the hashpass function to encrypt the password.

This way, we are encrypting the password right away, and the user information
server will be storing an encrypted password.

Therefore, in user-server.mjs, the password-check handler must be rewritten to
accommodate checking an encrypted password.

At the top of user-server.mjs, add the following import:

import { default as bcrypt } from 'bcrypt';

Of course, we need to bring in the module here to use its decryption function. This
module will no longer store a plain text password, but instead, it will now store
encrypted passwords. Therefore, it does not need to generate encrypted passwords,
but the bcrypt package also has a function to compare a plain text password against
the encrypted one in the database, which we will use.

Next, scroll down to the password-check handler and modify it, like so:

server.post('/password-check', async (req, res, next) => {
 try {
 const user = await SQUser.findOne({
 where: { username: req.params.username } });
 let checked;
 if (!user) {
 checked = {

Authenticating Users with a Microservice Chapter 8

[377]

 check: false, username: req.params.username,
 message: "Could not find user"
 };
 } else {
 let pwcheck = false;
 if (user.username === req.params.username) {
 pwcheck = await bcrypt.compare(req.params.password,
 user.password);
 }
 if (pwcheck) {
 checked = { check: true, username: user.username };
 } else {
 checked = {
 check: false, username: req.params.username,
 message: "Incorrect username or password"
 };
 }
 }
 ...
 } catch (e) { .. }
});

The bcrypt.compare function compares a plain text password, which will be
arriving as req.params.password, against the encrypted password that we've
stored. To handle encryption, we needed to refactor the checks, but we are testing for
the same three conditions. And, more importantly, this returns the same objects for
those conditions.

To test it, start the user information server as we've done before, like this:

$ npm start

> user-auth-server@1.0.0 start /home/david/Chapter08/users
> DEBUG=users:* PORT=5858 SEQUELIZE_CONNECT=sequelize-sqlite.yaml node
./user-server.mjs

 users:service User-Auth-Service listening at http://127.0.0.1:5858
+0ms

In another window, we can create a new user, as follows:

$ node cli.mjs add --password w0rd --family-name Einarsdottir --given-
name Ashildr --email me@stolen.tardis me
Created {
 id: 'me',
 username: 'me',
 provider: 'local',
 familyName: 'Einarsdottir',

Authenticating Users with a Microservice Chapter 8

[378]

 givenName: 'Ashildr',
 middleName: null,
 emails: ['me@stolen.tardis'],
 photos: []
}

We've done both these steps before. Where it differs is what we do next.

Let's check the database to see what was stored, as follows:

$ sqlite3 users-sequelize.sqlite3
SQLite version 3.31.1 2020-01-27 19:55:54
Enter ".help" for usage hints.
sqlite> select * from SQUsers;
1|me|$2b$10$stjRlKjSlQVTigPkRmRfnOhN7uDnPA56db0lUTgip8E6/n4PP7Jje|loca
l|Einarsdottir|Ashildr||["me@stolen.tardis"]|[]|2020-02-05
20:59:21.042 +00:00|2020-02-05 20:59:21.042 +00:00
sqlite> ^D

Indeed, the password field no longer has a plain text password, but what
is—surely—encrypted text.

Next, we should check that the password-check command behaves as expected:

$ node cli.mjs password-check me w0rd
{ check: true, username: 'me' }
$ node cli.mjs password-check me w0rdy
{
 check: false,
 username: 'me',
 message: 'Incorrect username or password'
}

We performed this same test earlier, but this time, it is against the encrypted
password.

We have verified that a REST call to check the password will work. Our next step is to
implement the same changes in the Notes application.

Authenticating Users with a Microservice Chapter 8

[379]

Implementing encrypted password support in
the Notes application
Since we've already proved how to implement encrypted password checking, all we
need to do is duplicate some code in the Notes server.

In users-superagent.mjs, add the following code to the top:

import { default as bcrypt } from 'bcrypt';
const saltRounds = 10;

async function hashpass(password) {
 let salt = await bcrypt.genSalt(saltRounds);
 let hashed = await bcrypt.hash(password, salt);
 return hashed;
}

As before, this imports the bcrypt package and configures the complexity that will
be used, and we have the same encryption function because we will use it from
multiple places.

Next, we must change the functions that interface with the backend server, as follows:

export async function create(username, password,
 provider, familyName, givenName, middleName, emails, photos)
{
 var res = await request.post(reqURL('/create-user')).send({
 username, password: await hashpass(password), provider,
 familyName, givenName, middleName, emails, photos
 })
 ...
}

export async function update(username, password,
 provider, familyName, givenName, middleName, emails, photos)
{
 var res = await request.post(reqURL(`/update-user/${username}`))
 .send({
 username, password: await hashpass(password), provider,
 familyName, givenName, middleName, emails, photos
 })
 ...
}

export async function findOrCreate(profile) {
 var res = await request.post(reqURL('/find-or-create')).send({

Authenticating Users with a Microservice Chapter 8

[380]

 username: profile.id,
 password: await hashpass(profile.password),
 ...
 })
...
}

In those places where it is appropriate, we must encrypt the password. No other
change is required.

Because the password-check backend performs the same checks, returning the same
object, no change is required in the frontend code.

To test, start both the user information server and the Notes server. Then, use the
application to check logging in and out with both a Twitter-based user and a local
user.

We've learned how to use encryption to safely store user passwords. If someone steals
our user database, cracking the passwords will take longer thanks to the choices
made here.

We're almost done with this chapter. The remaining task is simply to review the
application architecture we've created.

Running the Notes application stack
Did you notice earlier when we said to run the Notes application stack? It's time to
explain to the marketing team what's meant by that phrase. They may want to put an
architecture diagram on marketing brochures or websites. It's also useful for
developers such as us to take a step back and draw a picture of what we've created, or
are planning to create.

Authenticating Users with a Microservice Chapter 8

[381]

Here's the sort of diagram that an engineer might draw to show the marketing team
the system design (the marketing team will, of course, hire a graphics artist to clean it
up):

The box labeled Notes Application in the preceding diagram is the public-facing code
implemented by the templates and the router modules. As currently configured, it's
visible from our laptop on port 3000. It can use one of several data storage services. It
communicates with the User Authentication Service backend over port 5858 (or port
3333, as shown in the preceding diagram).

In Chapter 10, Deploying Node.js Applications to Linux Servers, we'll be expanding this
picture a bit as we learn how to deploy on a real server.

Summary
You've covered a lot of ground in this chapter, looking at not only user authentication
in Express applications, but also microservices development.

Specifically, you covered session management in Express, using Passport for user
authentication—including Twitter/OAuth, using router middleware to limit access,
creating a REST service with Restify, and when to create a microservice. We've even
used an encryption algorithm to ensure that we only store encrypted passwords.

Authenticating Users with a Microservice Chapter 8

[382]

Knowing how to handle login/logout, especially OAuth login from third-party
services, is an essential skill for web application developers. Now that you've learned
this, you'll be able to do the same for your own applications.

In the next chapter, we'll take the Notes application to a new level with semi-real-time
communication between application users. To do this, we'll write some browser-side
JavaScript and explore how the Socket.io package can let us send messages between
users.

9
Dynamic Client/Server

Interaction with Socket.IO
The original design model of the web is similar to the way that mainframes worked in
the 1970s. Both old-school dumb terminals, such as the IBM 3270, and web browsers
follow a request-response paradigm. The user sends a request and the far-off
computer sends a response. That request-response paradigm is evident in the Node.js
HTTP Server API, as shown in the following code:

http.createServer(function (request, response) {
 ... handle request
}).listen();

The paradigm couldn't be more explicit than this. The request and the response are
right there.

It wasn't until JavaScript improved that we had a quite different paradigm. The new
paradigm is interactive communication driven by browser-side JavaScript. This
change in the web application model is called, by some, the real-time web. In some
cases, websites keep an open connection to the web browser, send notifications, or
update the page as it changes.

For some deep background on this, read about the Comet
application architecture introduced by Alex Russell in his blog in
2006
(http://infrequently.org/2006/03/comet-low-latency-data-for
-the-browser/). That blog post called for a platform very similar to
Node.js, years before Node.js existed.

http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[384]

In this chapter, we'll explore interactive dynamically updated content, as well as
inter-user messaging, in the Notes application. To do this, we'll lean on the Socket.IO
library (http://socket.io/). This library simplifies two-way communication
between the browser and server and can support a variety of protocols with fallback
to old-school web browsers. It keeps a connection open continuously between
browser and server, and it follows the EventEmitter model, allowing us to send
events back and forth.

We'll be covering the following topics:

An introduction to the Socket.IO library
Integrating Socket.IO with an Express application, and with Passport
Real-time communications in modern web browsers
Using Socket.IO events:

To update application content as it changes
To send messages between users

User experience for real-time communication
Using Modal windows to support a user experience that eliminates page
reloads

These sorts of techniques are widely used in many kinds of websites. This includes
online chat with support personnel, dynamically updated pricing on auction sites,
and dynamically updated social network sites.

To get started, let's talk about what Socket.IO is and what it does.

Introducing Socket.IO
The aim of Socket.IO is to make real-time apps possible in every browser and mobile
device. It supports several transport protocols, choosing the best one for the specific
browser.

Look up the technical definition for the phrase real-time and you'll see the real-time
web is not truly real-time. The actual meaning of real-time involves software with
strict time boundaries that must respond to events within a specified time constraint.
It is typically used in embedded systems to respond to button presses, for
applications as diverse as junk food dispensers and medical devices in intensive care
units. Eat too much junk food and you could end up in intensive care, and you'll be
served by real-time software in both cases. Try and remember the distinction between
different meanings for this phrase.

http://socket.io/

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[385]

The proponents of the so-called real-time web should be calling it the pseudo-real-
time-web, but that's not as catchy a phrase.

What does it mean that Socket.IO uses the best protocol for the specific browser? If
you were to implement your application with WebSockets, it would be limited to the
modern browsers supporting that protocol. Because Socket.IO falls back on so many
alternative protocols (WebSockets, Flash, XHR, and JSONP), it supports a wider range
of web browsers.

As the application author, you don't have to worry about the specific protocol
Socket.IO uses with a given browser. Instead, you can implement the business logic
and the library takes care of the details for you.

The Socket.IO package includes both a server-side package and a client library. After
an easy configuration, the two will communicate back and forth over a socket. The
API between the server side and client side is very similar. Because a Socket.IO
application runs code in both browser and server, in this chapter we will be writing
code for both.

The model that Socket.IO provides is similar to the EventEmitter object. The
programmer uses the .on method to listen for events and the .emit method to send
them. But with Socket.IO, an event is sent not just using its event name, but is
targeted to a combination of two spaces maintained by Socket.IO – the namespace and
the room. Further, the events are sent between the browser and the server rather than
being limited to the Node.js process.

Information about Socket.IO is available at https:/ /socket. io/.

On the server side, we wrap the HTTP Server object using the Socket.IO library,
giving us the Socket.IO Server object. The Server object lets us create two kinds of
communication spaces, namespaces, and rooms. With it we can send messages, using
the emit method, either globally or into one of those spaces. We can also listen for
messages, using the on method, either globally or from a namespace or room.

On the client side, we load the library from the Socket.IO server. Then, client code
running in the browser opens one or more communication channels to the server, and
the client can connect to namespaces or rooms.

This high-level overview should help to understand the following work. Our next
step is to integrate Socket.IO into the initialization of the Notes application.

https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[386]

Initializing Socket.IO with Express
Socket.IO works by wrapping itself around an HTTP Server object. Think back to
Chapter 4, HTTP Servers and Clients, where we wrote a module that hooked into
HTTP Server methods so that we could spy on HTTP transactions. The HTTP Sniffer
attaches a listener to every HTTP event to print out the events. But what if you used
that idea to do real work? Socket.IO uses a similar concept, listening to HTTP requests
and responding to specific ones by using the Socket.IO protocol to communicate with
client code in the browser.

To get started, let's first make a duplicate of the code from the previous chapter. If
you created a directory named chap08 for that code, create a new directory named
chap09 and copy the source tree there.

We won't make changes to the user authentication microservice, but we will use it for
user authentication, of course.

In the Notes source directory, install these new modules:

$ npm install socket.io@2.x passport.socketio@3.7.x --save

We will incorporate user authentication with the passport module, used in Chapter
8, Authenticating Users with a Microservice, into some of the real-time interactions we'll
implement.

At the beginning of app.mjs, add this to the import statements:

import socketio from 'socket.io';
import passportSocketIo from 'passport.socketio';

This code brings in the required modules. The socket.io package supplies the core
event-passing service. The passport.socketio module integrates Socket.IO with
PassportJS-based user authentication. We will be reorganizing app.mjs so
that session management will be shared between Socket.IO, Express, and Passport.

The first change is to move the declaration of some session-related values to the top of
the module, as we've done here:

import session from 'express-session';
import sessionFileStore from 'session-file-store';
const FileStore = sessionFileStore(session);
export const sessionCookieName = 'notescookie.sid';
const sessionSecret = 'keyboard mouse';
const sessionStore = new FileStore({ path: "sessions" });

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[387]

What this does is create a couple of global scope variables to hold objects related to
the session configuration. We had been using these values as constants when setting
up the Express session support. We now need to share those values with both the
Socket.IO and the Express session managers. When we initialize both Express and
Socket.IO session handlers, there is an initialization object taking initialization
parameters. In each, we will pass in the same values for
the secret and sessionStore fields, to ensure they are in agreement.

The next change is moving some code related to setting up the server object from the
bottom of app.mjs closer to the top, as shown here:

export const app = express();

export const port = normalizePort(process.env.PORT || '3000');
app.set('port', port);

export const server = http.createServer(app);

server.listen(port);
server.on('request', (req, res) => {
 debug(`${new Date().toISOString()} request ${req.method}
${req.url}`);
});
server.on('error', onError);
server.on('listening', onListening);

export const io = socketio(server);

io.use(passportSocketIo.authorize({
 cookieParser: cookieParser,
 key: sessionCookieName,
 secret: sessionSecret,
 store: sessionStore
}));

In addition to moving some code from the bottom of app.mjs, we've added the
initialization for Socket.IO. This is where the Socket.IO library wraps itself around the
HTTP server object. Additionally, we're integrating it with the Passport library so that
Socket.IO knows which sessions are authenticated.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[388]

The creation of the app and server objects is the same as before. All that's changed is
the location in app.mjs where that occurred. What's new is the io object, which is
our entry point into the Socket.IO API, and it is used for all Socket.IO operations. This
precise object must be made available to other modules wishing to use Socket.IO
operations since this object was created by wrapping the HTTP server object. Hence,
the io object is exported so that other modules can import it.

By invoking socketio(server), we have given Socket.IO access to the HTTP server.
It listens for incoming requests on the URLs through which Socket.IO does its work.
That's invisible to us, and we don't have to think about what's happening under the
covers.

According to the Socket.IO internals, it looks like Socket.IO uses the
/socket.io URL. That means our applications must avoid using
this URL. See https:/ /socket. io/ docs/ internals/ .

The io.use function installs functions in Socket.IO that are similar to Express
middleware, which the Socket.IO documentation even calls middleware. In this case,
the middleware function is returned by calling passportSocketIO.authorize, and
is how we integrate Passport authentication into Socket.IO.

Because we are sharing session management between Express and Socket.IO, we
must make the following change:

app.use(session({
 store: sessionStore,
 secret: sessionSecret,
 resave: true,
 saveUninitialized: true,
 name: sessionCookieName
}));
initPassport(app);

This is the same configuration of Express session support that we added in Chapter
8, Authenticating Users with a Microservice, but modified to use the configuration
variables we set up earlier. Done this way, both Express and Socket.IO session
handling is managed from the same set of information.

We have accomplished the basic setup of Socket.IO in our Express application. First,
we connected the Socket.IO library to the HTTP Server so that it can handle requests
on the Socket.IO service. Then we integrated it with Passport session management.

Let's now learn how we can use Socket.IO to add real-time updating in Notes.

https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/
https://socket.io/docs/internals/

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[389]

Real-time updates on the Notes
homepage
The goal we're working toward is for the Notes home page to automatically update
the list of notes as notes are edited or deleted. What we've done so far is to restructure
the application startup so that Socket.IO is initialized in the Notes application. There's
no change of behavior yet.

What we will do is send an event whenever a note is created, updated, or deleted.
Any interested part of the Notes application can listen to those events and act
appropriately. For example, the Notes home page router module can listen for events,
and then send an update to the browser. The code in the web browser will listen for
an event from the server, and in response, it would rewrite the home page. Likewise,
when a Note is modified, a listener can send a message to the web browser with the
new note content, or if the Note is deleted, a listener can send a message so that the
web browser redirects to the home page.

These changes are required:

Refactoring the Notes Store implementations to send create, update, and
delete events
Refactoring the templates to support both Bootstrap on every page and a
custom Socket.IO client for each page
Refactoring the home page and Notes' viewing router modules to listen for
Socket.IO events and send updates to the browser

We'll handle this over the next few sections, so let's get started.

Refactoring the NotesStore classes to emit
events
In order to automatically update the user interface when a Note is changed or deleted
or created, the NotesStore must send events to notify interested parties of those
changes. We will employ our old friend, the EventEmitter class, to manage the
listeners to the events we must send.

Recall that we created a class, AbstractNotesStore, and that every storage module
contains a subclass of AbstractNotesStore. Hence we can add listener support in
AbstractNotesStore, making it automatically available to the implementations.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[390]

In models/Notes.mjs, make this change:

import EventEmitter from 'events';

export class AbstractNotesStore extends EventEmitter {
 static store() { }
 async close() { }
 async update(key, title, body) { }
 async create(key, title, body) { }
 async read(key) { }
 async destroy(key) { }
 async keylist() { }
 async count() { }

 emitCreated(note) { this.emit('notecreated', note); }
 emitUpdated(note) { this.emit('noteupdated', note); }
 emitDestroyed(key) { this.emit('notedestroyed', key); }
}

We imported the EventEmitter class, made AbstractNotesStore a subclass of
EventEmitter, and then added some methods to emit events. As a result, every
NotesStore implementation now has an on and emit method, plus these three
helper methods.

This is only the first step since nothing is emitting any events. We have to rewrite the
create, update, and destroy methods in NotesStore implementations to call these
methods so the events are emitted.

In the interest of space, we'll show the modifications to one of the
NotesStore implementations, and leave the rest as an exercise for
you.

Modify these functions in models/notes-sequelize.mjs as shown in the
following code:

async update(key, title, body) {
...
 const note = await this.read(key);
 this.emitUpdated(note);
 return note;
...
}
async create(key, title, body) {
...
 const note = new Note(sqnote.notekey, sqnote.title, sqnote.body);

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[391]

 this.emitCreated(note);
 return note;
}

async destroy(key) {
 ...
 this.emitDestroyed(key);
}

The changes do not change the original contract of these methods, since they still
create, update, and destroy notes. The other NotesStore implementations require
similar changes. What's new is that now those methods emit the appropriate events
for any code that may be interested.

Another task to take care of is initialization, which must happen after NotesStore is
initialized. Recall that setting up NotesStore is asynchronous. Therefore, calling the
.on function to register an event listener must happen after NotesStore is
initialized.

In both routes/index.mjs and routes/notes.mjs, add the following function:

export function init() {
}

This function is meant to be in place of such initialization.

Then, in app.mjs, make this change:

import {
 router as indexRouter, init as homeInit
} from './routes/index.mjs';
import {
 router as notesRouter, init as notesInit
} from './routes/notes.mjs';

...
import { useModel as useNotesModel } from './models/notes-store.mjs';
useNotesModel(process.env.NOTES_MODEL)
.then(store => {
 homeInit();
 notesInit();
})
.catch(error => { onError({ code: 'ENOTESSTORE', error }); });

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[392]

This imports the two init functions, giving them unique names, then calling them
once NotesStore is set up. At the moment, both functions do nothing, but that will
change shortly. The important thing is these two init functions will be called after
NotesStore is completely initialized.

We have our NotesStore sending events when a Note is created, updated, or
destroyed. Let's now use those events to update the user interface appropriately.

Real-time changes in the Notes home page
The Notes model now sends events as Notes are created, updated, or destroyed. For
this to be useful, the events must be displayed to our users. Making the events visible
to our users means the controller and view portions of the application must consume
those events.

At the top of routes/index.mjs, add this to the list of imports:

import { io } from '../app.mjs';

Remember that this is the initialized Socket.IO object we use to send messages to and
from connected browsers. We will use it to send messages to the Notes home page.

Then refactor the router function:

router.get('/', async (req, res, next) => {
 try {
 const notelist = await getKeyTitlesList();
 res.render('index', {
 title: 'Notes', notelist: notelist,
 user: req.user ? req.user : undefined
 });
 } catch (e) { next(e); }
});

async function getKeyTitlesList() {
 const keylist = await notes.keylist();
 const keyPromises = keylist.map(key => notes.read(key));
 const notelist = await Promise.all(keyPromises);
 return notelist.map(note => {
 return { key: note.key, title: note.title };
 });
};

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[393]

This extracts what had been the body of the router function into a separate function.
We need to use this function not only in the home page router function but also
when we emit Socket.IO messages for the home page.

We did change the return value. Originally, it contained an array of Note objects, and
now it contains an array of anonymous objects containing key and title data. We
did this because providing the array of Note objects to Socket.IO resulted in an array
of empty objects being sent to the browser while sending the anonymous objects
worked correctly.

Then, add this at the bottom:

const emitNoteTitles = async () => {
 const notelist = await getKeyTitlesList();
 io.of('/home').emit('notetitles', { notelist });
 };

export function init() {
 io.of('/home').on('connect', socket => {
 debug('socketio connection on /home');
 });
 notes.on('notecreated', emitNoteTitles);
 notes.on('noteupdate', emitNoteTitles);
 notes.on('notedestroy', emitNoteTitles);
 }

The primary purpose of this section is to listen to the create/update/destroy events, so
we can update the browser. For each, the current list of Notes is gathered, then sent to
the browser.

As we said, the Socket.IO package uses a model similar to the EventEmitter class.
The emit method sends an event, and the policy of event names and event data is the
same as with EventEmitter.

Calling io.of('/namespace') creates a Namespace object for the named
namespace. Namespaces are named in a pattern that looks like a pathname in Unix-
like filesystems.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[394]

Calling io.of('/namespace').on('connect'...) has the effect of letting server-
side code know when a browser connects to the named namespace. In this case, we
are using the /home namespace for the Notes home page. This has the side-effect of
keeping the namespace active after it is created. Remember that init is called during
the initialization of the server. Therefore, we will have created the /home namespace
long before any web browser tries to access that namespace by visiting the Notes
application home page.

Calling io.emit(...) sends a broadcast message. Broadcast messages are sent to
every browser connected to the application server. That can be useful in some
situations, but in most situations, we want to avoid sending too many messages. To
limit network data consumption, it's best to target each event to the browsers that
need the event.

Calling io.of('/namespace').emit(...) targets the event to browsers connected
to the named namespace. When the client-side code connects to the server, it connects
with one or more namespaces. Hence, in this case, we target the notetitles event to
browsers attached to the /home namespace, which we'll see later is the Notes home
page.

Calling io.of('/namespace').to('room') accesses what Socket.IO calls a room.
Before a browser receives events in a room, it must join the room. Rooms and
namespaces are similar, but different, things. We'll use rooms later.

The next task accomplished in the init function is to create the event listeners for
the notecreated, noteupdate, and notedestroy events. The handler function for
each emits a Socket.IO event, notetitles, containing the list of note keys and titles.

As Notes are created, updated, and destroyed, we are now sending an event to the
home page that is intended to refresh the page to match the change. The home page
template, views/index.hbs, must be refactored to receive that event and rewrite the
page to match.

Changing the home page and layout templates
Socket.IO runs on both the client and the server, with the two communicating back
and forth over the HTTP connection. So far, we've seen the server side of using
Socket.IO to send events. The next step is to install a Socket.IO client on the Notes
home page.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[395]

Generally speaking, every application page is likely to need a different Socket.IO
client, since each page has different requirements. This means we must change how
JavaScript code is loaded in Notes pages.

Initially, we simply put JavaScript code required by Bootstrap and FeatherJS at the
bottom of layout.hbs. That worked because every page required the same set of
JavaScript modules, but now we've identified the need for different JavaScript code
on each page. Because the custom Socket.IO clients for each page use jQuery for DOM
manipulation, they must be loaded after jQuery is loaded. Therefore, we need to
change layout.hbs to not load the JavaScript. Instead, every template will now be
required to load the JavaScript code it needs. We'll supply a shared code snippet for
loading the Bootstrap, Popper, jQuery, and FeatherJS libraries but beyond that, each
template is responsible for loading any additional required JavaScript.

Create a file, partials/footerjs.hbs, containing the following code:

<!-- jQuery first, then Popper.js, then Bootstrap JS -->
<script src="/assets/vendor/jquery/jquery.min.js"></script>
<script src="/assets/vendor/popper.js/popper.min.js"></script>
<script src="/assets/vendor/bootstrap/js/bootstrap.min.js"></script>
<script src="/assets/vendor/feather-icons/feather.js"></script>
<script>
 feather.replace();
</script>

This code had been at the bottom of views/layout.hbs, and it is the shared code
snippet we just mentioned. This is meant to be used on every page template, and to
be followed by custom JavaScript.

We now need to modify views/layout.hbs as follows:

<html>
<head>...</head>
<body>
 {{> header }}
 {{{body}}}
</body>
</html>

That is, we'll leave layout.hbs pretty much as it was, except for removing the
JavaScript tags from the bottom. Those tags are now in footerjs.hbs.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[396]

We'll now need to
modify every template (error.hbs, index.hbs, login.hbs, notedestroy.hbs, no
teedit.hbs, and noteview.hbs) to, at the minimum, load the footerjs partial.

{{> footerjs}}

With this, every one of the templates explicitly loads the JavaScript code for Bootstrap
and FeatherJS at the bottom of the page. They were previously loaded at the bottom
of the page in layout.hbs. What this bought us is the freedom to load Socket.IO
client code after Bootstrap and jQuery are loaded.

We have changed every template to use a new policy for loading the JavaScript. Let's
now take care of the Socket.IO client on the home page.

Adding a Socket.IO client to the Notes home page
Remember that our task is to add a Socket.IO client to the home page so that the
home page receives notifications about created, updated, or deleted Notes.

In views/index.hbs, add this at the bottom, after the footerjs partial:

{{> footerjs}}

<script src="/socket.io/socket.io.js"></script>
<script>
$(document).ready(function () {
 var socket = io('/home');
 socket.on('connect', socket => {
 console.log('socketio connection on /home');
 });
 socket.on('notetitles', function(data) {
 var notelist = data.notelist;
 $('#notetitles').empty();
 for (var i = 0; i < notelist.length; i++) {
 notedata = notelist[i];
 $('#notetitles')
 .append('<a class="btn btn-lg btn-block btn-outline-dark"
 href="/notes/view?key='+ notedata.key +'">'+
 notedata.title +'');
 }
 });
});
</script>

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[397]

This is what we meant when we said that each page will have its own Socket.IO client
implementation. This is the client for the home page, but the client for the Notes view
page will be different. This Socket.IO client connects to the /home namespace, then
for notetitles events, it redraws the list of Notes on the home page.

The first <script> tag is where we load the Socket.IO client library, from
/socket.io/socket.io.js. You'll notice that we never set up any Express route to
handle the /socket.io URL. Instead, the Socket.IO library did that for
us. Remember that the Socket.IO library handles every request starting with
/socket.io, and this is one of such request it handles. The second <script> tag is
where the page-specific client code lives.

Having client code within a $(document).ready(function() { .. }) block is
typical when using jQuery. This, as the code implies, waits until the web page is fully
loaded, and then calls the supplied function. That way, our client code is not only
held within a private namespace; it executes only when the page is fully set up.

On the client side, calling io() or io('/namespace') creates a socket object. This
object is what's used to send messages to the server or to receive messages from the
server.

In this case, the client connects a socket object to the /home namespace, which is the
only namespace defined so far. We then listen for the notetitles events, which is
what's being sent from the server. Upon receiving that event, some jQuery DOM
manipulation erases the current list of Notes and renders a new list on the screen. The
same markup is used in both places.

Additionally, for this script to function, this change is required elsewhere in the
template:

<div class="col-12 btn-group-vertical" id="notetitles" role="group">
...
</div>

You'll notice in the script that it references $("#notetitles") to clear the existing
list of note titles, then to add a new list. Obviously, that requires an
id="notetitles" attribute on this <div>.

Our code in routes/index.mjs listened to various events from the Notes model
and, in response, sent a notetitles event to the browser. The browser code takes
that list of note information and redraws the screen.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[398]

You might notice that our browser-side JavaScript is not using
ES-2015/2016/2017 features. This code would, of course, be cleaner if
we were to do so. How can we know whether our visitors use a
browser modern enough for those language features? We could use
Babel to transpile ES-2015/2016/2017 code into ES5 code capable of
running on any browser. However, it is a pragmatic trade-off to still
write ES5 code in the browser.

Running Notes with real-time home page updates
We now have enough implemented to run the application and see some real-time
action.

As you did earlier, start the user information microservice in one window:

$ npm start

> user-auth-server@0.0.1 start /Users/david/chap09/users
> DEBUG=users:* PORT=5858 SEQUELIZE_CONNECT=sequelize-sqlite.yaml node
 ./user-server.mjs

 users:service User-Auth-Service listening at http://127.0.0.1:5858
 +0ms

Then, in another window, start the Notes application:

$ npm start

> notes@0.0.0 start /Users/david/chap09/notes
> DEBUG=notes:* SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml
NOTES_MODEL=sequelize USER_SERVICE_URL=http://localhost:5858 node --
experimental-modules ./app

(node:11998) ExperimentalWarning: The ESM module loader is
 experimental.
 notes:debug-INDEX Listening on port 3000 +0ms

Then, in a browser window, go to http://localhost:3000 and log in to the Notes
application. To see the real-time effects, open multiple browser windows. If you can
use Notes from multiple computers, then do that as well.

In one browser window, start creating and deleting notes, while leaving the other
browser windows viewing the home page. Create a note, and it should show up
immediately on the home page in the other browser windows. Delete a note and it
should disappear immediately as well.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[399]

One scenario you might try requires three browser windows. In one window, create a
new note, and then leave that browser window showing the newly created note. In
another window, show the Notes home page. And in the third window, show the
newly created note. Now, delete this newly created note. Of those windows, two are
correctly updated and are now showing the home page. The third, where we were
simply viewing the note, is still showing that note even though it no longer exists.

We'll get to that shortly, but first, we need to talk about how to debug your Socket.IO
client code.

A word on enabling debug tracing in
Socket.IO code
It is useful to inspect what Socket.IO is doing in case you're having trouble.
Fortunately, the Socket.IO package uses the same Debug package that Express uses,
and we can turn on debug tracing just by setting the DEBUG environment variable. It
even uses a variable, localStorage.debug, with the same syntax on the client side,
and we can enable debug tracing in the browser as well.

On the server side, this is a useful DEBUG environment variable setting:

DEBUG=notes:*,socket.io:*

This enables debug tracing for the Notes application and the Socket.IO package.

Enabling this in a browser is a little different since there are no environment
variables. Simply open up the JavaScript console in your browser and enter this
command:

localStorage.debug = 'socket.io-client:*,socket.io-parser';

Immediately, you will start seeing a constant chatter of messages from Socket.IO. One
thing you'll learn is that even when the application is idle, Socket.IO is
communicating back and forth.

There are several other DEBUG strings to use. For example, Socket.IO relies on the
Engine.IO package for its transport layer. If you want debug tracing of that package,
add engine* to the DEBUG string. The strings shown were most helpful during the
testing of this chapter.

Now that we've learned about debug tracing, we can take care of changing the
/notes/view pages to react so they changes to the Note being viewed.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[400]

Real-time action while viewing notes
It's cool how we can now see real-time changes in a part of the Notes application.
Let's turn to the /notes/view page to see what we can do. What comes to mind is
this functionality:

Update the note if someone else edits it.
Redirect the viewer to the home page if someone else deletes the note.
Allow users to leave comments on the note.

For the first two features, we can rely on the existing events coming from the Notes
model. Therefore, we can implement those two features in this section. The third
feature will require a messaging subsystem, so we'll get to that later in this chapter.

To implement this, we could create one Socket.IO namespace for each Note, such
as /notes/${notekey}. Then, when the browser is viewing a Note, the client code
added to the noteview.hbs template would connect to that namespace. However,
that raises the question of how to create those namespaces. Instead, the
implementation selected was to have one namespace, /notes, and to create one room
per Note.

In routes/notes.mjs, make sure to import the io object as shown here:

import { emitNoteTitles } from './index.mjs';
import { io } from '../app.mjs';

This, of course, makes the io object available to code in this module. We're also
importing a function from index.mjs that is not currently exported. We will need to
cause the home page to be updated, and therefore in index.mjs, make this change:

export const emitNoteTitles = async () => { ... };

This simply adds the export keyword so we can access the function from elsewhere.

Then, change the init function to this:

export function init() {
 io.of('/notes').on('connect', socket => {
 if (socket.handshake.query.key) {
 socket.join(socket.handshake.query.key);
 }
 });
 notes.on('noteupdated', note => {
 const toemit = {
 key: note.key, title: note.title, body: note.body

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[401]

 };
 io.of('/notes').to(note.key).emit('noteupdated', toemit);
 emitNoteTitles();
 });
 notes.on('notedestroyed', key => {
 io.of('/notes').to(key).emit('notedestroyed', key);
 emitNoteTitles();
 });
}

First, we handle connect events on the /notes namespace. In the handler, we're
looking for a query object containing the key for a Note. Therefore, in the client code,
when calling io('/notes') to connect with the server, we'll have to arrange to send
that key value. It's easy to do, and we'll learn how in a little while.

Calling socket.join(roomName) does what is suggested—it causes this connection
to join the named room. Therefore, this connection will be addressed as being in the
/notes namespace, and in a room whose name is the key for a given Note.

The next thing is to add listeners
for the noteupdated and notedestroyed messages. In both, we are using this
pattern:

io.of('/namespace').to(roomName).emit(..);

This is how we use Socket.IO to send a message to any browser connected to the
given namespace and room.

For noteupdated, we simply send the new Note data. We again had to convert the
Note object into an anonymous JavaScript object, because otherwise, an empty object
arrived in the browser. The client code will have to use, as we will see shortly, jQuery
operations to update the page.

For notedestroyed, we simply send the key. Since the client code will respond by
redirecting the browser to the home page, we don't have to send anything at all.

In both, we also call emitNoteTitles to ensure the home page is updated if it is
being viewed.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[402]

Changing the note view template for real-time action
As we did in the home page template, the data contained in these events must be
made visible to the user. We must not only add client code to the template,
views/noteview.hbs; we need a couple of small changes to the template:

<div class="container-fluid">
 <div class="row"><div class="col-xs-12">
 {{#if note}}<h3 id="notetitle">{{ note.title }}</h3>{{/if}}
 {{#if note}}<div id="notebody">{{ note.body }}</div>{{/if}}
 <p>Key: {{ notekey }}</p>
 </div></div>
 {{#if user }}{{#if notekey }}
 <div class="row"><div class="col-xs-12">
 <div class="btn-group">
 <a class="btn btn-outline-dark"
 href="/notes/destroy?key={{notekey}}"
 role="button">Delete
 <a class="btn btn-outline-dark"
 href="/notes/edit?key={{notekey}}"
 role="button">Edit
 </div></div></div>
 {{/if}}{{/if}}
</div>

In this section of the template, we add a pair of IDs to two elements. This enables the
JavaScript code to target the correct elements.

Add this client code to noteview.hbs:

{{> footerjs}}

{{#if notekey }}
<script src="/socket.io/socket.io.js"></script>
<script>
$(document).ready(function () {
 let socket = io('/notes', {
 query: { key: '{{ notekey }}' }
 });
 socket.on('noteupdated', note => {
 $('h3#notetitle').empty();
 $('h3#notetitle').text(note.title);
 $('#navbartitle').empty();
 $('#navbartitle').text(note.title);
 $('#notebody').empty();
 $('#notebody').text(note.body);
 });
 socket.on('notedestroyed', key => {

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[403]

 window.location.href = "/";
 });
});
</script>
{{/if}}

In this script, we first connect to the /notes namespace and then create listeners for
the noteupdated and notedestroyed events.

When connecting to the /notes namespace, we are passing an extra parameter. The
optional second parameter to this function is an options object, and in this case, we
are passing the query option. The query object is identical in form to the query
object of the URL class. This means the namespace is as if it were a URL such
as /notes?key=${notekey}. Indeed, according to the Socket.IO documentation, we
can pass a full URL, and it also works if the connection is created like this:

let socket = io('/notes?key={{ notekey }}');

While we could set up the URL query string this way, it's cleaner to do it the other
way.

We need to call out a technique being used. These code snippets are written in a
Handlebars template, and therefore the syntax {{ expression }} is executed on
the server, with the result of that expression to be substituted into the template.
Therefore, the {{ expression }} construct accesses server-side data. Specifically,
query: { key: '{{ notekey }}' } is a data structure on the client side, but the
{{ notekey }} portion is evaluated on the server. The client side does not see {{
notekey }}, it sees the value notekey had on the server.

For the noteupdated event, we take the new note content and display it on the
screen. For this to work, we had to add id= attributes to certain HTML elements so
we could use jQuery selectors to manipulate the correct elements.

Additionally in partials/header.hbs, we needed to make this change as well:

{{ title
}}

We needed to update the title at the top of the page as well, and this id attribute
helps to target the correct element.

For the notedestroyed event, we simply redirect the browser window back to the
home page. The note being viewed has been deleted, and there's no point the user
continuing to look at a note that no longer exists.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[404]

Running Notes with pseudo-real-time updates while
viewing a note
At this point, you can now rerun the Notes application and try the new real-time
updates feature.

By now you have put Notes through its paces many times, and know what to do.
Start by launching the user authentication server and the Notes application. Make
sure there is at least one note in the database; add one if needed. Then, open multiple
browser windows with one viewing the home page and two viewing the same note.
In a window viewing the note, edit the note to make a change, making sure to change
the title. The text change should change on both the home page and the page viewing
the note.

Then delete the note and watch it disappear from the home page, and further, the
browser window that had viewed the note is now on the home page.

We took care of a lot of things in this section, and the Notes application now has
dynamic updates happening. To do this, we created an event-based notification
system, then used Socket.IO in both browser and server to communicate data back
and forth.

We have implemented most of what we've set out to do. By refactoring the Notes
Store implementations to send events, we are able to send events to Socket.IO clients
in the browser. That in turn is used to automatically update the Notes home page,
and the /notes/view page.

The remaining feature is for users to be able to write comments on Notes. In the next
section, we will take care of that by adding a whole new database table to handle
messages.

Inter-user chat and commenting for Notes
This is cool! We now have real-time updates in Notes as we edit delete or create
notes. Let's now take it to the next level and implement something akin to inter-user
chatting.

Earlier, we named three things we could do with Socket.IO on /notes/view pages.
We've already implemented live updating when a Note is changed and a redirect to
the home page if a Note is deleted; the remaining task is to allow users to make
comments on Notes.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[405]

It's possible to pivot our Notes application concept and take it in the direction of a
social network. In the majority of such networks, users post things (notes, pictures,
videos, and so on), and other users comment on those things. Done well, these basic
elements can develop a large community of people sharing notes with each other.
While the Notes application is kind of a toy, it's not too terribly far from being a basic
social network. Commenting the way we will do now is a tiny step in that direction.

On each note page, we'll have an area to display messages from Notes users. Each
message will show the username, a timestamp, and their message. We'll also need a
method for users to post a message, and we'll also allow users to delete messages.

Each of those operations will be performed without refreshing the screen. Instead,
code running inside the web page will send commands to/from the server and take
action dynamically. By doing this, we'll learn about Bootstrap modal dialogs, as well
as more about sending and receiving Socket.IO messages. Let's get started.

Data model for storing messages
We need to start by implementing a data model for storing messages. The basic fields
required are a unique ID, the username of the person sending the message, the
namespace and the room associated with the message, the message, and finally a
timestamp for when the message was sent. As messages are received or deleted,
events must be emitted from the data model so we can do the right thing on the web
page. We associate messages with a room and namespace combination because in
Socket.IO that combination has proved to be a good way to address a specific page in
the Notes application.

This data model implementation will be written for Sequelize. If you prefer a different
storage solution, you can, by all means, re-implement the same API on other data
storage systems.

Create a new file, models/messages-sequelize.mjs, containing the following:

import Sequelize from 'sequelize';
import {
 connectDB as connectSequlz,
 close as closeSequlz
} from './sequlz.mjs';

import EventEmitter from 'events';
class MessagesEmitter extends EventEmitter {}
export const emitter = new MessagesEmitter();

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[406]

import DBG from 'debug';
const debug = DBG('notes:model-messages');
const error = DBG('notes:error-messages');

This sets up the modules being used and also initializes the EventEmitter interface.
We're also exporting the EventEmitter as emitter so other modules can be notified
about messages as they're created or deleted.

Now add this code for handling the database connection:

let sequelize;
export class SQMessage extends Sequelize.Model {}

async function connectDB() {
 if (sequelize) return;
 sequelize = await connectSequlz();

 SQMessage.init({
 id: { type: Sequelize.INTEGER, autoIncrement: true,
 primaryKey: true },
 from: Sequelize.STRING,
 namespace: Sequelize.STRING,
 room: Sequelize.STRING,
 message: Sequelize.STRING(1024),
 timestamp: Sequelize.DATE
 }, {
 hooks: {
 afterCreate: (message, options) => {
 const toEmit = sanitizedMessage(message);
 emitter.emit('newmessage', toEmit);
 },
 afterDestroy: (message, options) => {
 emitter.emit('destroymessage', {
 id: message.id,
 namespace: message.namespace,
 room: message.room
 });
 }
 },
 sequelize,
 modelName: 'SQMessage'
 });
 await SQMessage.sync();
}

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[407]

The structure of connectDB is similar to what we did in notes-sequelize.mjs. We
use the same connectSequlz function to connect with the same database, and we
return immediately if the database is already connected.

With SQMessage.init, we define our message schema in the database. We have a
simple database schema that is fairly self-explanatory. To emit events about
messages, we're using a Sequelize feature to be called at certain times.

The id field won't be supplied by the caller; instead, it will be autogenerated. Because
it is an autoIncrement field, each message that's added will be assigned a new id
number by the database. The equivalent in MySQL is the AUTO_INCREMENT attribute
on a column definition.

The namespace and room fields together define which page in Notes each message
belongs to. Remember that when emitting an event with Socket.IO we can target the
event to one or both of those spaces, and therefore we will use these values to target
each message to a specific page.

So far we defined one namespace, /home, for the Notes home page, and another
namespace, /notes, for viewing an individual note. In theory, the Notes application
could be expanded to have messages displayable in other areas. For example, a
/private-message namespace could be used for private messages. Therefore, the
schema is defined with both a namespace and room field so that, in due course, we
could use messages in any future part of the Notes application that may be
developed.

For our current purposes, messages will be stored with namespace equal to /home,
and room equal to the key of a given Note.

We will use the timestamp to present messages in the order of when they were sent.
The from field is the username of the sender.

To send notifications about created and destroyed messages, let's try something
different. If we follow the pattern we used earlier, the functions we're about to create
will have emitter.emit calls with corresponding messages. But Sequelize offers a
different approach.

With Sequelize, we can create what are called hook methods. Hooks can also be
called life cycle events, and they are a series of functions we can declare. Hook
methods are invoked when certain trigger states exist for the objects managed by
Sequelize. In this case, our code needs to know when a message is created, and when
a message is deleted.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[408]

Hooks are declared as shown in the options object. A field named hooks in the
schema options object defines hook functions. For each hook we want to use, add an
appropriately named field containing the hook function. For our needs, we need to
declare hooks.afterCreate and hooks.afterDestroy. For each, we've declared a
function that takes the instance of the SQMessage object that has just been created or
destroyed. And, with that object, we call emitter.emit with either the newmessage
or destroymessage event name.

Continue by adding this function:

function sanitizedMessage(msg) {
 return {
 id: msg.id,
 from: msg.from,
 namespace: msg.namespace,
 room: msg.room,
 message: msg.message,
 timestamp: msg.timestamp
 };
}

The sanitizedMessage function performs the same function as sanitizedUser. In
both cases, we are receiving a Sequelize object from the database, and we want to
return a simple object to the caller. These functions produce that simplified object.

Next, we have several functions to store new messages, retrieve messages, and delete
messages.

The first is this function:

export async function postMessage(from, namespace, room, message) {
 await connectDB();
 const newmsg = await SQMessage.create({
 from, namespace, room, message, timestamp: new Date()
 });
}

This is to be called when a user posts a new comment/message. We store it in the
database, and the hook emits an event saying the message was created.

Remember that the id field is auto-created as the new message is stored. Therefore, it
is not supplied when calling SQMessage.create.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[409]

This function, and the next, could have contained the emitter.emit call to send the
newmessage or destroymessage events. Instead, those events are sent in the hook
functions we created earlier. The question is whether it is correct to place
emitter.emit in a hook function, or to place it here.

The rationale used here is that by using hooks we are assured of always emitting the
messages.

Then, add this function:

export async function destroyMessage(id) {
 await connectDB();
 const msg = await SQMessage.findOne({ where: { id } });
 if (msg) {
 msg.destroy();
 }
}

This is to be called when a user requests that a message should be deleted. With
Sequelize, we must first find the message and then delete it by calling its destroy
method.

Add this function:

export async function recentMessages(namespace, room) {
 await connectDB();
 const messages = await SQMessage.findAll({
 where: { namespace, room },
 order: [['timestamp', 'DESC']],
 limit: 20
 });
 const msgs = messages.map(message => {
 return sanitizedMessage(message);
 });
 return (msgs && msgs.length >= 1) ? msgs : undefined;
}

This function retrieves recent messages, and the immediate use case is for this to be
used while rendering /notes/view pages.

While our current implementation is for viewing a Note, it is generalized to work for
any Socket.IO namespace and room. This is for possible future expansion, as we
explained earlier. It finds the most recent 20 messages associated with the given
namespace and room combination, then returns a cleaned-up list to the caller.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[410]

In findAll, we specify an order attribute. This is similar to the ORDER BY phrase in
SQL. The order attribute takes an array of one or more descriptors declaring how
Sequelize should sort the results. In this case, there is one descriptor, saying to sort by
the timestamp field in descending order. This will cause the most recent message to
be displayed first.

We have created a simple module to store messages. We didn't implement the full set
of create, read, update, and delete (CRUD) operations because they weren't
necessary for this task. The user interfaces we're about to create only let folks add
new messages, delete existing messages, and view the current messages.

Let's get on with creating the user interface.

Adding support for messages to the Notes
router
Now that we can store messages in the database, let's integrate this into the Notes
router module.

Integrating messages to the /notes/view page will require some new HTML and
JavaScript in the notesview.hbs template, and some new Socket.IO
communications endpoints in the init function in routes/notes.mjs. In this
section, let's take care of those communications endpoints, then in the next section
let's talk about how to set it up in the user interface.

In routes/notes.mjs, add this to the import statements:

import {
 postMessage, destroyMessage, recentMessages,
 emitter as msgEvents
} from '../models/messages-sequelize.mjs';

import DBG from 'debug';
const debug = DBG('notes:home');
const error = DBG('notes:error-home');

This imports the functions we just created so we can use them. And we also set up
debug and error functions for tracing.

Add these event handlers to the init function in routes/notes.mjs:

msgEvents.on('newmessage', newmsg => {
 io.of(newmsg.namespace).to(newmsg.room).emit('newmessage',

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[411]

newmsg);
});
msgEvents.on('destroymessage', data => {
 io.of(data.namespace).to(data.room).emit('destroymessage', data);
});

These receive notifications of new messages, or destroyed messages, from
models/messages-sequelize.mjs, then forwards the notification to the browser.
Remember that the message object contains the namespace and room, therefore this
lets us address this notification to any Socket.IO communication channel.

Why didn't we just make the Socket.IO call in models/messages-sequelize.mjs?
Clearly, it would have been slightly more efficient, require fewer lines of code, and
therefore fewer opportunities for a bug to creep in, to have put the Socket.IO call in
messages-sequelize.mjs. But we are maintaining the separation between model,
view, and controller, which we talked of earlier in Chapter 5, Your First Express
Application. Further, can we predict confidently that there will be no other use for
messages in the future? This architecture allows us to connect multiple listener
methods to those message events, for multiple purposes.

In the user interface, we'll have to implement corresponding listeners to receive these
messages, then take appropriate user interface actions.

In the connect listener in the init function, add these two new event listeners:

io.of('/notes').on('connect', async (socket) => {
 let notekey = socket.handshake.query.key;
 if (notekey) {
 socket.join(notekey);

 socket.on('create-message', async (newmsg, fn) => {
 try {
 await postMessage(
 newmsg.from, newmsg.namespace, newmsg.room,
 newmsg.message);
 fn('ok');
 } catch (err) {
 error(`FAIL to create message ${err.stack}`);
 }
 });

 socket.on('delete-message', async (data) => {
 try {
 await destroyMessage(data.id);
 } catch (err) {
 error(`FAIL to delete message ${err.stack}`);

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[412]

 }
 });
 }
});

This is the existing function to listen for connections from /notes/view pages, but
with two new Socket.IO event handler functions. Remember that in the existing client
code in notesview.hbs, it connects to the /notes namespace and supplies the note
key as the room to join. In this section, we build on that by also setting up listeners
for create-message and delete-message events when a note key has been
supplied.

As the event names imply, the create-message event is sent by the client side when
there is a new message, and the delete-message event is sent to delete a given
message. The corresponding data model functions are called to perform those
functions.

For the create-message event, there is an additional feature being used. This uses
what Socket.IO calls an acknowledgment function.

So far, we've used the Socket.IO emit method with an event name and a data object.
We can also include a callback function as an optional third parameter. The receiver
of the message will receive the function and can call the function, and any data
passed to the function is sent to the callback function. The interesting thing is this
works across the browser-server boundary.

This means our client code will do this:

io.of('/notes').to(note.key).emit('create-message', {
... message data
},
function (result) {
 ... acknowledgement action
});

That function in the third parameter becomes the fn parameter in the create-
message event handler function. Then, anything supplied to a call to fn will arrive in
this function as the result parameter. It doesn't matter that it's a browser supplying
that function across a connection to the server and that the call to the function
happens on the server, Socket.IO takes care of transporting the response data back to
the browser code and invoking the acknowledgment function there. The last thing to
note is that we're being lazy with error reporting. So, put a task on the backlog to
improve error reporting to the users.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[413]

The next task is to implement code in the browser to make all this visible to the user.

Changing the note view template for
messages
We need to dive back into views/noteview.hbs with more changes so that we can
view, create, and delete messages. This time, we will add a lot of code, including
using a Bootstrap modal popup to get the message, the Socket.IO messages we just
discussed, and the jQuery manipulations to make everything appear on the screen.

We want the /notes/view page to not cause unneeded page reloads. Instead, we
want the user to add a comment by having a pop-up window collect the message text,
and then the new message is added to the page, without causing the page to reload.
Likewise, if another user adds a message to a Note, we want the message to show up
without the page reloading. Likewise, we want to delete messages without causing
the page to reload, and for messages to be deleted for others viewing the note without
the page reloading.

Of course, this will involve several Socket.IO messages going back and forth between
browser and server, along with some jQuery DOM manipulations. We can do both
without reloading the page, which generally improves the user experience.

Let's start by implementing the user interface to create a new message.

Composing messages on the Note view page
The next task for the /notes/view page is to let the user add a message. They'll click
a button, a pop-up window lets them enter the text, they'll click a button in the
popup, the popup will be dismissed, and the message will show up. Further, the
message will be shown to other viewers of the Note.

The Bootstrap framework includes support for Modal windows. They serve a similar
purpose to Modal dialogs in desktop applications. Modal windows appear above
existing windows of an application, while preventing interaction with other parts of
the web page or application. They are used for purposes such as asking a question of
the user. The typical interaction is to click a button, then the application pops up a
Modal window containing some UI elements, the user interacts with the Modal, then
dismisses it. You will certainly have interacted with many thousands of Modal
windows while using computers.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[414]

Let's first add a button with which the user will request to add a comment. In the
current design, there is a row of two buttons below the Note text. In
views/noteview.hbs, let's add a third button:

<div class="row"><div class="col-xs-12">
 <div class="btn-group">
 <a class="btn btn-outline-dark"
 href="/notes/destroy?key={{notekey}}"
 role="button">Delete
 <a class="btn btn-outline-dark"
 href="/notes/edit?key={{notekey}}"
 role="button">Edit
 <button type="button" class="btn btn-outline-dark"
 data-toggle="modal"
 data-target="#notes-comment-modal">Comment</button>
 </div>
</div></div>

This is directly out of the documentation for the Bootstrap Modal component. The
btn-outline-dark style matches the other buttons in this row, and between the
data-toggle and the data-target attributes, Bootstrap knows which Modal
window to pop up.

Let's insert the definition for the matching Modal window in views/noteview.hbs:

{{#if notekey}}{{#if user}}
<div class="modal fade" id="notes-comment-modal" tabindex="-1"
 role="dialog" aria-labelledby="noteCommentModalLabel" aria-
 hidden="true">
<div class="modal-dialog modal-dialog-centered" role="document">
 <div class="modal-content"><div class="modal-header">
 <h5 class="modal-title" id="noteCommentModalLabel">Leave
 a Comment</h5>
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close">×
 </button>
 </div>
 <div class="modal-body">
 <form id="submit-comment">
 <input id="comment-from" type="hidden"
 name="from" value="{{ user.id }}">
 <input id="comment-namespace" type="hidden"
 name="namespace" value="/notes">
 <input id="comment-room" type="hidden"
 name="room" value="{{notekey}}">
 <input id="comment-key" type="hidden"
 name="key" value="{{notekey}}">

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[415]

 <fieldset>
 <div class="form-group">
 <label for="noteCommentTextArea">Your Excellent
 Thoughts</label>
 <textarea id="noteCommentTextArea" name="message"
 class="form-control" rows="3"></textarea>
 </div>
 <div class="form-group">
 <button id="submitNewComment" type="submit"
 class="btn btn-primary col-sm-offset-2 col-sm-10">
 Make Comment</button>
 </div>
 </fieldset>
 </form>
 </div>
</div></div>
</div>
{{/if}}{{/if}}

Again, this comes directly from the Bootstrap documentation for the Modal
component, along with a simple form to collect the message.

Notice there is <div class="modal-dialog">, and within that, <div
class="model-content">. Together, these form what is shown within the dialog
window. The content is split between a <div class="modal-header"> for the top
row of the dialog, and a <div class="modal-body"> for the main content.

The id value on the outermost element, id="notes-comment-modal", matches the
target declared in the button, data-target="#notes-comment-modal". Another
connection to make is aria-labelledby, which matches the id of the <h5
class="modal-title"> element.

<form id="submit-comment"> is minimal because we will not use it to submit
anything over an HTTP connection to a regular URL. Therefore, it does not have
action and method attributes. Otherwise, this is a normal everyday Bootstrap form,
with a fieldset and various form elements.

The next step is to add the client-side JavaScript code to make this functional. When
clicking the button, we want some client code to run, which will send a create-
message event matching the code we added to routes/notes.mjs.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[416]

In views/noteview.hbs, we have a section using $(document).ready that
contains the client code. In that function, add a section that exists only if the user
object exists, as follows:

$(document).ready(function () {
...
{{#if user}}
...
{{/if}}
});

That is, we want a section of jQuery code that's active only when there is
a user object, meaning that this Note is being shown to a logged-in user.

Within that section, add this event handler:

$('#submitNewComment').on('click', function(event) {
 socket.emit('create-message', {
 from: $('#comment-from').val(),
 namespace: $('#comment-namespace').val(),
 room: $('#comment-room').val(),
 key: $('#comment-key').val(),
 message: $('#noteCommentTextArea').val()
 },
 response => {
 $('#notes-comment-modal').modal('hide');
 $('#noteCommentTextArea').empty();
 });
 });

This matches the button in the form we just created. Normally in the event handler
for a type="submit" button, we would use event.preventDefault to prevent the
normal result, which is to reload the page. But that's not required in this case.

The function gathers various values from the form elements and sends the create-
message event. If we refer back to the server-side code, create-message calls
postMessage, which saves the message to the database, which then sends a
newmessage event, which makes its way to the browser.

Therefore, we will need a newmessage event handler, which we'll get to in the next
section. In the meantime, you should be able to run the Notes application, add some
messages, and see they are added to the database.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[417]

Notice that this has a third parameter, a function that when called causes the Modal
to be dismissed, and clears any message that was entered. This is the
acknowledgment function we mentioned earlier, which is invoked on the server, and
Socket.IO arranges to then invoke it here in the client.

Showing any existing messages on the Note view
page
Now that we can add messages, let's learn how to display messages. Remember that
we've defined an SQMessage schema and that we've defined a function,
recentMessages, to retrieve the recent messages.

We have two possible methods to display existing messages when rendering Note
pages. One option is for the page, when it initially displays, to send an
event requesting the recent messages, and rendering those messages on the client
once they're received. The other option is to render the messages on the server,
instead. We've chosen the second option, server-side rendering.

In routes/notes.mjs, modify the /view router function like so:

router.get('/view', async (req, res, next) => {
 try {
 const note = await notes.read(req.query.key);
 const messages = await recentMessages('/notes', req.query.key);
 res.render('noteview', {
 title: note ? note.title : "",
 notekey: req.query.key,
 user: req.user ? req.user : undefined,
 note, messages
 });
 } catch (err) { error(err); next(err); }
});

That's simple enough: we retrieve the recent messages, then supply them to the
noteview.hbs template. When we retrieve the messages, we supply the /notes
namespace and a room name of the note key. It is now up to the template to render
the messages.

In the noteview.hbs template, just below the delete, edit, and comment buttons,
add this code:

<div id="noteMessages">
{{#if messages}}
 {{#each messages}}

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[418]

 <div id="note-message-{{ id }}" class="card">
 <div class="card-body">
 <h5 class="card-title">{{ from }}</h5>
 <div class="card-text">{{ message }}
 <small style="display: block">{{ timestamp }}</small>
 </div>
 <button type="button" class="btn btn-primary message-del
 -button"
 data-id="{{ id }}"
 data-namespace="{{ namespace }}" data-room="{{ room }}">
 Delete
 </button>
 </div>
 </div>
 {{/each}}
{{/if}}
</div>

If there is a messages object, these steps through the array, and for each entry, it sets
up a Bootstrap card component to display the message. The messages are displayed
within <div id="noteMessages">, which we'll target in DOM manipulations later.
The markup for each message comes directly from the Bootstrap documentation, with
a few modifications.

In each case, the card component has an id attribute we can use to associate with a
given message in the database. The button component will be used to cause a
message to be deleted, and it carries data attributes to identify which message would
be deleted.

With this, we can view a Note, and see any messages that have been attached. We did
not select the ordering of the messages but remember that in models/messages-
sequelize.mjs the database query orders the messages in reverse chronological
order.

In any case, our goal was for messages to automatically be added without having to
reload the page. For that purpose, we need a handler for the newmessage event,
which is a task left over from the previous section.

Below the handler for the submitNewComment button, add this:

socket.on('newmessage', newmsg => {
 var msgtxt = [
 '<div id="note-message-%id%" class="card">',
 '<div class="card-body">',
 '<h5 class="card-title">%from%</h5>',
 '<div class="card-text">%message%',

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[419]

 '<small style="display: block">%timestamp%</small>',
 '</div>',
 '<button type="button" class="btn btn-primary message-del
 -button" ',
 'data-id="%id%" data-namespace="%namespace%" ',
 'data-room="%room%">',
 'Delete',
 '</button>',
 '</div>',
 '</div>'
].join('\n')
 .replace(/%id%/g, newmsg.id)
 .replace(/%from%/g, newmsg.from)
 .replace(/%namespace%/g, newmsg.namespace)
 .replace(/%room%/g, newmsg.room)
 .replace(/%message%/g, newmsg.message)
 .replace(/%timestamp%/g, newmsg.timestamp);
 $('#noteMessages').prepend(msgtxt);
});

This is a handler for the Socket.IO newmessage event. What we have done is taken
the same markup as is in the template, substituted values into it, and used jQuery to
prepend the text to the top of the noteMessages area.

Remember that we decided against using any ES6 goodness because a template string
would sure be handy in this case. Therefore, we have fallen back on an older
technique, the JavaScript String.replace method.

There is a common question, how do we replace multiple occurrences of a target
string in JavaScript? You'll notice that the target %id% appears twice. The best answer
is to use replace(/pattern/g, newText); in other words, you pass a regular
expression and specify the g modifier to make it a global action. To those of us who
grew up using /bin/ed and for whom /usr/bin/vi was a major advance, we're
nodding in recognition that this is the JavaScript equivalent to
s/pattern/newText/g.

With this event handler, the message will now appear automatically when it is added
by the user. Further, for another window simply viewing the Note the new message
will appear automatically.

Because we use the jQuery prepend method, the message appears at the top. If you
want it to appear at the bottom, then use append. And in models/messages-
sequelize.mjs, you can remove the DESC attribute in recentMessages to change
the ordering.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[420]

The last thing to notice is the markup includes a button with the id="message-del-
button". This button is meant to be used to delete a message, and in the next section,
we'll implement that feature.

Deleting messages on the Notes view page
To make the message-del-button button active, we need to listen to click events on
the button.

Below the newmessage event handler, add this button click handler:

$('button.message-del-button').on('click', function(event) {
 socket.emit('delete-message', {
 id: $(event.target).data('id'),
 namespace: $(event.target).data('namespace'),
 room: $(event.target).data('room')
 })
});

The socket object already exists and is the Socket.IO connection to the room for this
Note. We send to the room a delete-message event giving the values stored in data
attributes on the button.

As we've already seen, on the server the delete-message event invokes the
destroyMessage function. That function deletes the message from the database and
also emits a destroymessage event. That event is received in routes/notes.mjs,
which forwards the message to the browser. Therefore, we need an event listener in
the browser to receive the destroymessage event:

socket.on('destroymessage', data => {
 $('#note-message-'+data.id).remove();
});

Refer back and see that every message display card has an id parameter fitting the
pattern shown here. Therefore, the jQuery remove function takes care of removing
the message from the display.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[421]

Running Notes and passing messages
That was a lot of code, but we now have the ability to compose messages, display
them on the screen, and delete them, all with no page reloads.

You can run the application as we did earlier, first starting the user authentication
server in one command-line window and the Notes application in another:

It shows us any existing messages on a Note.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[422]

While entering a message, the Modal looks like this:

Try this with multiple browser windows viewing the same note or different notes.
This way, you can verify that notes show up only on the corresponding note window.

Summary
We came a long way in this chapter, but maybe Facebook doesn't have anything to
fear from the baby steps we took toward converting the Notes application into a
social network. Still, we added interesting new features to the application, which gave
us the opportunity to explore some really cool technology for pseudo-real-time
communication between browser sessions.

Dynamic Client/Server Interaction with Socket.IO Chapter 9

[423]

We learned about using Socket.IO for pseudo-real-time web experiences. As we
learned, it is a framework for dynamic interaction between server-side code and client
code running in the browser. It follows an event-driven model for sending events
between the two. Our code used this both for notifications to the browser of events
occurring on the server and for users who wish to write comments.

We learned about the value of events being sent from one part of the server-side code
to another. This lets us have client-side updates based on changes occurring in the
server. This used the EventEmitter class with listener methods that directed events
and data to the browser.

In the browser, we used jQuery DOM manipulation to change the user interface in
response to these dynamically sent messages. By using Socket.IO and normal DOM
manipulation, we were able to refresh the page content while avoiding page reloads.

We also learned about Modal windows, using that technique to create comments. Of
course, there is much more that could be done, such as a different experience of
creating, deleting, or editing notes.

To support all this, we added another kind of data, the message, and an accompanying
database table, managed by a new Sequelize schema. It is used for representing the
comments our users can make on notes, but is general enough to be used in other
ways.

Socket.IO, as we've seen, gives us a rich foundation of events passing between server
and client that can build multiuser, multichannel communication experiences for
your users.

In the next chapter, we will look into Node.js application deployment on real servers.
Running code on our laptop is cool, but to hit the big time, the application needs to be
properly deployed.

3
Section 3: Deployment

In addition to the traditional method of deploying Node.js applications, using
systemd, the new best practice is to use Kubernetes or similar systems.

This section comprises the following chapters:

Chapter 10, Deploying Node.js Applications to Linux Servers
Chapter 11, Deploying Node.js Microservices with Docker
Chapter 12, Deploying a Docker Swarm to AWS EC2 with Terraform
Chapter 13, Unit Testing and Functional Testing
Chapter 14, Security in Node.js Applications

10
Deploying Node.js

Applications to Linux Servers
Now that the Notes application is fairly complete, it's time to think about how to
deploy it to a real server. We've created a minimal implementation of the
collaborative note concept that works fairly well. To grow, Notes must escape our
laptop and live on a real server.

The user story to fulfill is access to a hosted application that's available even when
your laptop is turned off, for evaluation. The developer stories are to identify one of
several deployment solutions, to have enough reliability so that the system restarts
when it crashes, and for the users can access the app without taking too much of the
developers time.

In this chapter, we will cover the following topics:

A discussion of the application architecture, and thoughts on how to
implement the deployment
A traditional LSB-compliant Node.js deployment on a Linux server
Configuring Ubuntu to manage background tasks
Adjusting Twitter settings for application authentication
Using PM2 to reliably manage background tasks
Deployment to a virtual Ubuntu instance, which could be a Virtual
Machine (VM) on our laptop or a Virtual Private Server (VPS) provider

There are two services making up the Notes application: Notes itself, and the user
authentication service, along with the corresponding database instances. For them to
be reliably available to the users, these services must be deployed on servers visible
on the public internet, along with system management tools to keep the services
running, handle service failures, and scale the service up to handle large traffic loads.
One common way to do this is the traditional method of relying on scripts executing
during server boot-up to start the required background processes.

Deploying Node.js Applications to Linux Servers Chapter 10

[426]

Even though our end goal is deployment on a cloud-based platform with auto-scaling
and all the buzzwords, you must still start from the basics of how to get an
application to run in the background on a Unix-like system.

Let's start the chapter by again reviewing the architecture, and think about how to
best deploy on a server.

Notes application architecture and
deployment considerations
Before we get into deploying the Notes application, we need to review its architecture
and understand what we're planning to do. We have segmented the services into two
groups, as shown in the following diagram:

The user-facing portion is the Notes service along with its database. The backend, the
user authentication service, and its database require more security. On our laptop, we
weren't able to create the envisioned protective wall around that service, but we're
about to implement one form of such protection.

Deploying Node.js Applications to Linux Servers Chapter 10

[427]

One strategy to enhance security is to expose as few ports as possible. That reduces
the so-called attack surface, simplifying our work in hardening the application
against security bugs. With the Notes application, we have exactly one port to expose:
the HTTP service through which users access the application. The other ports – two
for the MySQL servers, and one for the user authentication service port – should not
be visible to the public internet since they are for internal use only. Therefore, in the
final system, we should arrange to expose that one HTTP port and keep everything
else walled off from the public internet.

Internally, the Notes application needs to access both the Notes database and the user
authentication service. That service, in turn, needs to access the user authentication
database. The Notes service does not need to access the user authentication database,
and the user authentication service does not need to access the Notes database. As
currently envisaged, no external access to either database or the authentication
service is required.

This gives us a sense of what will be implemented. To get started, let's learn the
traditional way to deploy applications on Linux.

Traditional Linux deployment for Node.js
services
In this section, we will explore the traditional Linux/Unix service deployment. We'll
do this with a virtual Ubuntu instance running on our laptop. The goal is to create
background processes that automatically start during boot-up, restart if the process
crashes, and allow us to monitor log files and system state.

Traditional Linux/Unix server application deployment uses an init script to manage
background processes. They are to start every time the system boots, and cleanly shut
down when the system is halted. The name "init script" comes from the name of the
first process launched in the system, whose traditional name is /etc/init. The init
scripts are usually stored in /etc/init.d, and are typically simple shell
scripts. Some operating systems use other process managers, such
as upstart, systemd, or launchd, while following the same model. While it's
a simple model, the specifics of this vary widely from one operating system (OS) to
another.

The Node.js project itself does not include any scripts to manage server processes on
any OS. Implementing a complete web service based on Node.js means that we must
create the scripting to integrate with process management on your OS.

Deploying Node.js Applications to Linux Servers Chapter 10

[428]

Having a web service on the internet requires having background processes running
on a server, and those processes have to be the following:

Reliable: For example, they should auto-restart when the server process
crashes.
Manageable: They should integrate well with system management
practices.
Observable: The administrator must be able to get status and activity
information from the service.

To demonstrate what's involved, we'll use PM2 to implement background server
process management for Notes. PM2 bills itself as a process manager, meaning it tracks
the state of processes it is managing and makes sure the processes execute reliably
and are observable. PM2 detects the system type and can automatically integrate itself
with the native process management system. It will create an LSB-style init script
(http://wiki.debian.org/LSBInitScripts), or other scripts as required for your
server.

Our goal in this chapter is exploring how to do this, and there are several routes to
achieving this goal:

Traditional VM management applications including VirtualBox, Parallels,
and VMware let us install Ubuntu or any other OS within a virtual
environment. On Windows, Hyper-V comes with Windows 10 Pro and
offers a similar capability. In these cases, you download an ISO image of
the boot CD-ROM, boot the VM from that ISO image, and run the full OS
installation as if it was a regular computer.
You can rent inexpensive VPSes from one of hundreds of web hosting
providers around the world. Often the choice is limited to Ubuntu servers.
In these cases, you're handed a pre-baked server system ready to go for
installing server software to run websites.
A new product, Multipass, is a lightweight VM management tool, based on
lightweight hypervisor technology, and is available for every desktop
computer OS. It gives you the exact same starting point as you'd get by
renting a VPS or using VM software like VirtualBox, with a much lower
system impact than traditional VM applications such as VirtualBox. It is
like getting a VPS from a hosting provider, but it's on your laptop.

http://wiki.debian.org/LSBInitScripts

Deploying Node.js Applications to Linux Servers Chapter 10

[429]

There is no practical difference between these choices from the standpoint of the tools
and commands required to launch background processes. The Ubuntu instance
installed in VirtualBox is the same as the Ubuntu on the VPS rented from a web-
hosting provider, and is the same as the Ubuntu launched in a Multipass instance. It's
the same OS, the same command-line tools, and the same system management
practices. The difference is in the performance impact on your laptop. With
Multipass, we can set up a virtual Ubuntu instance in a few seconds, and it is easy to
have multiple instances running on a laptop with little or no performance impact. The
experience of using VirtualBox, Hyper-V, or other VM solutions is that using the
laptop feels quickly like walking through molasses, especially when running multiple
VMs at once.

Therefore, in this chapter, we will run this exercise on Multipass. Everything shown
in this chapter is easily transferrable to Ubuntu on VirtualBox/VMware/and so on or
to a VPS rented from a web hosting provider.

For this deployment, we will create two Ubuntu instances with Multipass: one
instance for the Notes service and the other for the user service. In each instance,
there will be a MySQL instance for the corresponding database. Then we'll use PM2
to configure these systems to start our services in the background when launched.

Because of apparent incompatibilities between Multipass and WSL2, there might be
difficulties using Multipass on Windows. If you run into problems, we have a section
describing what to do.

The first task is to duplicate the source code from the previous chapter. It's suggested
you create a new directory, chap10, as a sibling of the chap09 directory, and copy
everything from chap09 to chap10.

To get started, let's install Multipass, and after that we'll start by deploying and
testing the user authentication service, followed by deploying and testing Notes.
We'll also cover setup issues on Windows.

Installing Multipass
Multipass is an open source tool developed by Canonical. It is an extremely
lightweight tool for managing VMs, specifically Ubuntu-based VMs. It is light enough
to enable running a mini-sized cloud hosting system on your laptop.

Deploying Node.js Applications to Linux Servers Chapter 10

[430]

To install Multipass, get an installer from https:/ /multipass. run/ .
It may also be available through package management systems.

With Multipass installed, you can run some of the following commands to try it out:

$ multipass launch
Launched: pleased-mustang
$ multipass list
Name State IPv4 Image
pleased-mustang Running 192.168.64.5 Ubuntu 18.04 LTS
$ multipass exec pleased-mustang -- lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04.3 LTS
Release: 18.04
Codename: bionic
$ multipass shell pleased-mustang
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-76-generic x86_64)

 ...

ubuntu@pleased-mustang:~$

Because we did not supply a name for the machine, Multipass created a random
name. It isn't shown in the preceding snippet, but the first command included the
download and setup of a VM image. The shell command starts a login shell inside
the newly created VM, where you can use tools like ps or htop to see that there is
indeed a full complement of processes running already.

Since one of the first things you do with a new Ubuntu install is to update the system,
let's do so the Multipass way:

$ multipass exec pleased-mustang -- sudo apt-get update
... much output
$ multipass exec pleased-mustang -- sudo apt-get upgrade
... much output

This works as expected, in that you see apt-get first update its list of available
packages, and then ask you to approve downloading and installing the packages to
update, after which it does so. Anyone who is familiar with Ubuntu will find this
normal. The difference is doing this from the command-line environment of the host
computer.

https://multipass.run/
https://multipass.run/
https://multipass.run/
https://multipass.run/
https://multipass.run/
https://multipass.run/
https://multipass.run/
https://multipass.run/

Deploying Node.js Applications to Linux Servers Chapter 10

[431]

That was fun, but we have some work to do, and we're not pleased with this
mustang-based machine name Multipass saddled us with. Let's learn how to delete
Multipass instances:

$ multipass list
Name State IPv4 Image
pleased-mustang Running 192.168.64.5 Ubuntu 18.04 LTS
$ multipass delete pleased-mustang
$ multipass list
Name State IPv4 Image
pleased-mustang Deleted -- Not Available
$ multipass purge
$ multipass list
Name State IPv4 Image

We can easily delete a VM image with the delete command; it is then marked
as Deleted. To truly remove the VM, we must use the purge command.

We've learned how to create, manage, and delete VMs using Multipass. This was a lot
faster than some of the alternative technologies. With VirtualBox, for example, we
would have had to find and download an ISO, then boot a VirtualBox VM instance
and run the Ubuntu installer, taking a lot more time.

There might be difficulties using Multipass on Windows, so let's talk about that and
how to rectify it.

Handling a failure to launch Multipass instances on
Windows
The Multipass team makes their application available to on run Windows systems,
but issues like the following can crop up:

PS C:\Users\david> multipass launch
launch failed: The following errors occurred:
unassuming-tailorbird: timed out waiting for response

It goes through all the steps of setting up an instance, but in the last step, we get this
message instead of success. Running multipass list might show the instance in a
Running state, but no IP address has been assigned, and running multipass
shell also results in a timeout.

Deploying Node.js Applications to Linux Servers Chapter 10

[432]

This timeout is observed if WSL2 is installed on the computer along with Multipass.
WSL2 is a lightweight Linux subsystem for Windows, that is billed as an excellent
environment for running Linux commands on Windows. Running WSL2 and
Multipass at the same time may result in unwanted behavior.

For the purposes of this chapter, WSL2 is not useful. This is because WSL2 does not,
at this time, support installing a background service that persists after a reboot,
because it does not support systemd. Remember that our goal is to learn about
setting up persistent background services.

It may be necessary to disable WSL2. To do so, use the Search box in the Windows
taskbar to look for the Turn Windows Features On or Off control panel. Because
WSL2 is a feature rather than an application that is installed or uninstalled, it is
turned off or on using this control panel. Simply scroll down to find the feature,
untick the checkbox, and then reboot the computer.

The Multipass online documentation has a troubleshooting page for
Windows that has some useful hints, at https:/ /multipass. run/
docs/ troubleshooting- networking- on-windows.

Both WSL2 and Multipass use Hyper-V. This is a virtualization engine for Windows,
and it also supports installing VMs in a mode similar to VirtualBox or VMware. It is
easy to download an ISO for Ubuntu or any other OS and install it on Hyper-V. This
results in a full OS in which to experiment with background process deployment. You
may prefer to run these examples inside Hyper-V instead.

Once the virtual machine is installed most of the instructions in the rest of this chapter
will work. Specifically, the install-packages.sh script will be useful for installing
the Ubuntu packages required to complete the instructions, and the two configure-svc
scripts are useful for "deploying" the services into /opt/notes and
/opt/userauth. It is recommended to use Git inside the virtual machine to clone the
repository associated with this book. Finally, the scripts in the pm2-single directory
are useful for running the Notes and Users services under PM2.

Our purpose is to learn how to deploy Node.js services on a Linux system, without
having to leave our laptop. For that purpose, we've familiarized ourselves with
Multipass since it is an excellent tool for managing Ubuntu instances. We've also
learned about alternatives such as Hyper-V or VirtualBox that also can be used for
managing Linux instances.

Let's start exploring deployment with the user authentication service.

https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows
https://multipass.run/docs/troubleshooting-networking-on-windows

Deploying Node.js Applications to Linux Servers Chapter 10

[433]

Provisioning a server for the user
authentication service
Since we want to have a segmented infrastructure, with the user authentication
service in a walled-off area, let's make the first attempt at building that architecture.
Using Multipass we will create two server instances, svc-userauth and svc-notes.
Each will contain its own MySQL instance and the corresponding Node.js-based
service. In this section, we'll set up svc-userauth, then in another section, we'll
replicate the process to set up svc-notes.

Feeling kindly to our DevOps team, who've requested automation for all
administrative tasks, we'll create some shell scripts to manage the server setup and
configuration.

The scripts shown here handle deployment to two servers, with one server holding
the authentication service and the other holding the Notes application. In the GitHub
repository accompanying this book, you'll find other scripts to handle deployment to
a single server. The single server scenario might be required if you're using a heavier-
weight virtualization tool such as VirtualBox rather than Multipass.

In this section, we will create the user authentication backend server, svc-userauth,
and in a later section, we will create the server for the Notes frontend, svc-notes.
Since the two server instances will be set up similarly, we might question why we're
setting up two servers. It's because of the security model we decided on.

There are several steps involved, including a few scripts for automating Multipass
operations, as follows:

Create a directory named chap10/multipass for scripts related to1.
managing Multipass instances.
Then, in that directory, create a file named create-svc-userauth.sh,2.
containing the following:

multipass launch --name svc-userauth
multipass mount ../users svc-userauth:/build-users
multipass mount `pwd` svc-userauth:/build

On Windows, instead create a file named create-svc-
userauth.ps1 containing the following:

multipass launch --name svc-userauth
multipass mount ../users svc-userauth:/build-users
multipass mount (get-location) svc-userauth:/build

Deploying Node.js Applications to Linux Servers Chapter 10

[434]

The two are nearly the same, except for the method to compute the current
directory.

The mount command in Multipass attaches a host directory into the instance
at the given location. Therefore, we attach the multipass directory
as /build and users as /build-users.

The `pwd` notation is a feature of the Unix/Linux shell environment. It
means to run the pwd process and capture its output, supplying it as a
command-line argument to the multipass command. For Windows, we
use (get-location) for the same purpose in PowerShell.

Create the instance by running the script:3.

$ sh ./create-svc-userauth.sh

Or, on Windows, run this:

PS C:\Path> .\create-svc-userauth.ps1

Either one runs the commands in the scripts that will launch the instance
and mount directories from the host filesystem.

Create a file named install-packages.sh containing the following:4.

curl -sL https://deb.nodesource.com/setup_14.x | sudo -E bash
-
sudo apt-get update
sudo apt-get upgrade -y
sudo apt-get install -y nodejs build-essential mysql-server
mysql-client

This installs Node.js 14.x and sets up other packages required to run the
authentication service. This includes a MySQL server instance and the
MySQL client.

The Node.js documentation
(https://nodejs.org/en/download/package-manager/) has
documentation on installing Node.js from package managers for
several OSes. This script uses the recommended installation for
Debian and Ubuntu systems because that's the OS used in the
Multipass instance.

https://nodejs.org/en/download/package-manager/

Deploying Node.js Applications to Linux Servers Chapter 10

[435]

A side effect of installing the mysql-server package is that it launches a
running MySQL service with a default configuration. Customizing that
configuration is up to you, but for our purposes here and now, the default
configuration will work.

Execute this script inside the instance like so:5.

$ multipass exec svc-userauth -- sh -x /build/install-
packages.sh

The exec command, as we discussed earlier, causes a command to execute
inside the container by running this command on the host system.

In the users directory, edit user-server.mjs and change the following:6.

server.listen(process.env.PORT,
 process.env.REST_LISTEN ? process.env.REST_LISTEN :
'localhost',
 function() {
 log(`${server.name} listening at ${server.url}`);
});

Previously, we had specified a hardcoded 'localhost' here. The effect of
this was that the user authentication service only accepted connections from
the same computer. To implement our vision of Notes and the user
authentication services running on different computers, this service must
support connections from elsewhere.

This change introduces a new environment variable, REST_LISTEN, where
we will declare where the server should listen for connections.

As you edit the source files, notice that the changes are immediately
reflected inside the Multipass machine in the /build-users directory.

Create a file called users/sequelize-mysql.yaml containing the7.
following:

dbname: userauth
username: userauth
password: userauth
params:
 host: localhost
 port: 3306
 dialect: mysql

Deploying Node.js Applications to Linux Servers Chapter 10

[436]

This is our configuration for allowing the user service to connect with a
local MySQL instance. The dbname, username, and password parameters
must match the values in the configuration script shown earlier.

Then, in the users/package.json file, add these entries to the scripts8.
section:

 "scripts": {
 "start": "cross-env DEBUG=users:* PORT=5858
SEQUELIZE_CONNECT=sequelize-sqlite.yaml node ./user-
server.mjs",

The on-server script contains the runtime configuration we'll use on the
server.

Next, in the users directory, run this command:9.

$ npm install mysql2 --save

Since we're now using MySQL, we must have the driver package installed.

Now create a file named configure-svc-userauth.sh containing the10.
following:

Create the database for the UserAuthentication service

sudo mysql --user=root <<EOF
CREATE DATABASE userauth;
CREATE USER 'userauth'@'localhost' IDENTIFIED BY 'userauth';
GRANT ALL PRIVILEGES ON userauth.* TO 'userauth'@'localhost'
WITH GRANT OPTION;
EOF

Set up the UserAuthentication service code

sudo mkdir -p /opt/userauth
sudo chmod 777 /opt/userauth
(cd /build-users; tar cf - .) | (cd /opt/userauth; tar xf -)
(
 cd /opt/userauth
 rm -rf node_modules package-lock.json users
 -sequelize.sqlite3
 npm install
)

Deploying Node.js Applications to Linux Servers Chapter 10

[437]

This script is meant to execute inside the Ubuntu system managed by
Multipass. The first section sets a user identity in the database. The second
section copies the user authentication service code, from /build-
users to /userauth, into the instance, followed by installing the required
packages.

Since the MySQL server is already running, the mysql command will access
the running server to create the database, and create the userauth user. We
will use this user ID to connect with the database from the user
authentication service.

But, why are some files removed before copying them into the instance? The
primary goal is to delete the node_modules directory; the other files are
simply unneeded. The node_modules directory contains modules that were
installed on your laptop, and surely your laptop has a different OS than the
Ubuntu instance running on the server? Therefore, rerunning npm
install on the Ubuntu server ensures the packages are installed correctly.

Run the configure-svc-userauth script like so:11.

$ multipass exec svc-userauth -- sh -x /build/configure-svc-
userauth.sh

Remember that the multipass directory in the source tree is mounted
inside the instance as /build. As soon as we created this file, it showed up
in the /build directory, and we can execute it inside the instance.

Several times in this book, we've talked about the value of explicitly
declaring all dependencies and of automating everything. This
demonstrates this value, because now, we can just run a couple of shell
scripts and the server is configured. And we don't have to remember how to
launch the server because of the scripts section in package.json.

We can now start the user authentication server, like so:12.

$ multipass shell svc-userauth
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-96-generic
x86_64)
...
ubuntu@svc-userauth:~$ cd /opt/userauth/
ubuntu@svc-userauth:/opt/userauth$ npm run on-server

> user-auth-server@1.0.0 on-server /opt/userauth
> DEBUG=users:* REST_LISTEN=0.0.0.0 PORT=5858

Deploying Node.js Applications to Linux Servers Chapter 10

[438]

SEQUELIZE_CONNECT=sequelize-mysql.yaml node ./user-server.mjs

 users:service User-Auth-Service listening at
 http://0.0.0.0:5858

Notice that our notation is to use $ to represent a command typed on the host
computer, and ubuntu@svc-userauth:~$ to represent a command typed inside the
instance. This is meant to help you understand where the commands are to be
executed.

In this case, we've logged into the instance, changed directory to /opt/userauth,
and started the server using the corresponding npm script.

Testing the deployed user authentication service
Our next step at this point is to test the service. We created a script, cli.mjs, for that
purpose. In the past, we ran this script on the same computer where the
authentication service was running. But this time, we want to ensure the ability to
access the service remotely.

Notice that the URL printed is http://[::]:5858. This is shorthand for listening to
connections from any IP address.

On our laptop, we can see the following:

$ multipass list
Name State IPv4 Image
svc-userauth Running 192.168.64.8 Ubuntu 18.04 LTS

Multipass assigned an IP address to the instance. Your IP address will likely be
different.

On our laptop is a copy of the source code, including a copy of cli.mjs. This means
we can run cli.mjs on our laptop, telling it to access the service on svc-userauth.
That's because we thought ahead and added --host and --port options
to cli.mjs. In theory, using those options, we can access this server anywhere on the
internet. At the moment, we simply need to reach into the virtual environment on our
laptop.

On your laptop, in the regular command environment rather than inside Multipass,
run these commands:

$ node cli.mjs --host 192.168.64.8 --port 5858 add --password w0rd --
family-name Einarsdottir --given-name Ashildr --email me@stolen.tardis

Deploying Node.js Applications to Linux Servers Chapter 10

[439]

me
Created {
 id: 'me',
 username: 'me',
 provider: 'local',
 familyName: 'Einarsdottir',
 givenName: 'Ashildr',
 middleName: null,
 emails: ['me@stolen.tardis'],
 photos: []
}
$ node cli.mjs --host 192.168.64.8 --port 5858 add --password foooo --
family-name Smith --given-name John --middle-name Snuffy --email
snuffy@example.com snuffy-smith
Created {
 id: 'snuffy-smith',
 username: 'snuffy-smith',
 provider: 'local',
 familyName: 'Smith',
 givenName: 'John',
 middleName: 'Snuffy',
 emails: ['snuffy@example.com'],
 photos: []
}

Make sure to specify the correct host IP address and port number.

If you remember, the script retrieves the newly created user entry and prints it out.
But we need to verify this and can do so using the list-users command. But let's
do something a little different, and learn how to access the database server.

In another command window on your laptop, type these commands:

$ multipass shell svc-userauth
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-76-generic x86_64)
...
ubuntu@userauth:~$ mysql -u userauth -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
...
mysql> USE userauth;
mysql> SHOW tables;
+--------------------+
| Tables_in_userauth |
+--------------------+
| SQUsers |
+--------------------+
1 row in set (0.00 sec)

Deploying Node.js Applications to Linux Servers Chapter 10

[440]

mysql> SELECT id,username,familyName,givenName,emails FROM SQUsers;
+----+--------------+--------------+-----------+----------------------
--+
| id | username | familyName | givenName | emails
|
+----+--------------+--------------+-----------+----------------------
--+
| 1 | me | Einarsdottir | Ashildr | ["me@stolen.tardis"]
|
| 2 | snuffy-smith | Smith | John |
["snuffy@example.com"] |
+----+--------------+--------------+-----------+----------------------
--+
2 rows in set (0.00 sec)

This shows database entries for the users we created. Notice that while logged in to
the Multipass instance, we can use any Ubuntu command because we have the full
OS in front of us.

We have not only launched the user authentication service on an Ubuntu server, but
we've verified that we can access that service from outside the server.

In this section, we set up the first of the two servers we want to run. We still have to
create the svc-notes server.

But before we do that, we first need to discuss running scripts on Windows.

Script execution in PowerShell on Windows
In this chapter, we'll write several shell scripts. Some of these scripts need to run on
your laptop, rather than on a Ubuntu-hosted server. Some developers use Windows,
and therefore we need to discuss running scripts on PowerShell.

Executing scripts on Windows is different because it uses PowerShell rather
than Bash, along with a large number of other considerations. For this and the scripts
that follow, make the following changes.

PowerShell script filenames must end with the .ps1 extension. For most of these
scripts, all that is required is to duplicate the .sh scripts as .ps1 files, because the
scripts are so simple. To execute the script, simply type .\scriptname.ps1 in the
PowerShell window. In other words, on Windows, the script just shown must be
named configure-svc-userauth.ps1, and is executed as .\configure-svc-
userauth.ps1.

Deploying Node.js Applications to Linux Servers Chapter 10

[441]

To execute the scripts, you may need to change the PowerShell execution policy:

PS C:\Users\david\chap10\authnet> Get-ExecutionPolicy
Restricted
PS C:\Users\david\chap10\authnet> Set-ExecutionPolicy Unrestricted

Obviously, there are security considerations with this change, so change the execution
policy back when you're done.

A simpler method on Windows is to simply paste these commands into a PowerShell
window.

It was useful to discuss script execution on PowerShell. Let's return to the task at
hand, which is provisioning the Notes stack on Ubuntu. Since we have a functioning
user authentication service, the remaining task is the Notes service.

Provisioning a server for the Notes service
So far, we have set up the user authentication service on Multipass. Of course, to have
the full Notes application stack running, the Notes service must also be running. So
let's take care of that now.

The first server, svc-userauth, is running the user authentication service. Of course,
the second server will be called svc-notes, and will run the Notes service. What
we'll do is very similar to how we set up svc-userauth.

There are several tasks in the multipass directory to prepare this second server. As
we did with the svc-userauth server, here, we set up the svc-notes server by
installing and configuring required Ubuntu packages, then set up the Notes
application:

Create a script named multipass/create-svc-notes.sh containing the1.
following:

multipass launch --name svc-notes
multipass mount ../notes svc-notes:/build-notes
multipass mount `pwd` svc-notes:/build

This is tasked with launching the Multipass instance, and is very similar
to create-svc-userauth but changed to use the word notes.

Deploying Node.js Applications to Linux Servers Chapter 10

[442]

For Windows, instead create a file called multipass/create-svc-
notes.ps1 containing the following:

multipass launch --name svc-notes
multipass mount ../notes svc-notes:/build-notes
multipass mount (get-location) svc-notes:/build

This is the same as before, but using (get-location) this time.

Create the instance by running the script as follows:2.

$ sh ./create-svc-notes.sh

Or, on Windows, run the following command:

PS C:\Path> .\create-svc-notes.ps1

Either one runs the commands in the scripts that will launch the instance
and mount directories from the host filesystem.

Install the required packages like so:3.

$ multipass exec svc-notes -- sh -x /build/install-packages.sh

This script installs Node.js, the MySQL server, and a few other required
packages.

Now create a file, notes/models/sequelize-mysql.yaml, containing4.
the following:

dbname: notes
username: notes
password: notes
params:
 host: localhost
 port: 3306
 dialect: mysql

This is the database name, username, and password credentials for the
database configured previously.

Deploying Node.js Applications to Linux Servers Chapter 10

[443]

Because we are now using MySQL, run this command:5.

$ npm install mysql2 --save

We need the MySQL driver package to use MySQL.

Then, in the notes/package.json file, add this entry to6.
the scripts section:

 "on-server": "cross-env DEBUG=notes:*
 SEQUELIZE_CONNECT=models/sequelize-mysql.yaml
 NOTES_MODEL=sequelize TWITTER_CALLBACK_HOST=
 http://172.23.89.142:3000 USER_SERVICE_URL=
 http://172.23.83.119:5858 PORT=3000 node./app.mjs"

This uses the new database configuration for the MySQL server and the IP
address for the user authentication service. Make sure that the IP address
matches what Multipass assigned to svc-userauth.

You'll, of course, get the IP address in the following way:

$ multipass list
Name State IPv4 Image
svc-notes Running 172.23.89.142 Ubuntu 18.04 LTS
svc-userauth Running 172.23.83.119 Ubuntu 18.04 LTS

The on-server script will have to be updated appropriately.

Duplicate multipass/configure-svc-userauth.sh to create a script7.
named multipass/configure-svc-notes.sh, and change the final two
sections to the following:

Create the database for the UserAuthentication service

sudo mysql --user=root <<EOF
CREATE DATABASE notes;
CREATE USER 'notes'@'localhost' IDENTIFIED BY 'notes';
GRANT ALL PRIVILEGES ON notes.* TO 'notes'@'localhost' WITH
GRANT OPTION;
EOF

Set up the UserAuthentication service code

sudo mkdir -p /opt/notes
sudo chmod 777 /opt/notes
(cd /build-notes; tar cf - .) | (cd /opt/notes; tar xf -)
(

Deploying Node.js Applications to Linux Servers Chapter 10

[444]

 cd /opt/notes
 rm -rf node_modules package-lock.json *.sqlite3
 npm install
)

This is also similar to what we did for svc-userauth. This also changes
things to use the word notes where we used userauth before.

Something not explicitly covered here is ensuring the .env file you created
to hold Twitter secrets is deployed to this server. We suggested ensuring
this file is not committed to a source repository. That means you'll be
handling it semi-manually perhaps, or you'll have to use some developer
ingenuity to create a process for managing this file securely.

Run the configure-svc-notes script like so:8.

$ multipass exec svc-notes-- sh -x /build/configure-svc-
notes.sh

Remember that the multipass directory in the source tree is mounted
inside the instance as /build. As soon as we created this file, it showed up
in the /build directory, and we can execute it inside the instance.

We can now run the Notes service with the following command:9.

$ multipass shell svc-notes
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-96-generic
x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

...
ubuntu@svc-notes:~$ cd /opt/notes/
approotdir.mjs minty node_modules package.json public theme
ubuntu@svc-notes:/opt/notes$ npm run on-server

> notes@0.0.0 on-server /opt/notes
> cross-env DEBUG=notes:* SEQUELIZE_CONNECT=models/sequelize-
mysql.yaml NOTES_MODEL=sequelize
TWITTER_CALLBACK_HOST=http://172.23.89.142:3000
USER_SERVICE_URL=http://172.23.83.119:5858 PORT=3000 node
./app.mjs

 notes:debug Listening on port 3000 +0ms
 notes:notes-store [Module] { SQNote: SQNote, default:

Deploying Node.js Applications to Linux Servers Chapter 10

[445]

[Function: SequelizeNotesStore] } +0ms
 notes:notes-store [Function: SequelizeNotesStore] +14ms
 notes:debug Using NotesStore [object Object] +0ms

As with svc-userauth, we shell into the server, change the directory
to /opt/notes, and run the on-server script. If you want Notes to be
visible on port 80, simply change the PORT environment variable. After that,
the URL in the TWITTER_CALLBACK_HOST variable must contain the port
number on which Notes is listening. For that to work, the on-server script
needs to run as root, so therefore we will run the following:

ubuntu@svc-notes:/opt/notes$ sudo npm run on-server

The change is to use sudo to execute the command as root.

To test this we must of course use a browser to connect with the Notes service. For
that, we need to use the IP address for svc-notes, which we learned from Multipass
earlier. Using that example, the URL is http://172.23.89.142:3000.

You'll find that since we haven't changed anything in the look-and-feel category, that
our Notes application looks like it has all along. Functionally, you will be unable to log
in using Twitter credentials, but you can log in using one of the local accounts we
created during testing.

Once both services are running, you can use your browser to interact with the Notes
application and run it through its paces.

What we've done is build the second of two servers, svc-userauth and svc-notes,
on which we'll run the Notes application stack. That gives us two Ubuntu instances
each of which are configured with a database and a Node.js service. We were able to
manually run the authentication and Notes services together, connecting from one
Ubuntu instance to the other, each working with their corresponding database. To
have this as a fully deployed server, we will use PM2 in a later section.

We have learned a little about configuring Ubuntu servers, though there is an
outstanding issue of running the services as background processes. Before we get to
that, let's rectify the situation with the Twitter login functionality. The issue with
Twitter login is that the application is now on a different IP address, so to resolve this,
we now have to add that IP address in Twitter's management backend.

Deploying Node.js Applications to Linux Servers Chapter 10

[446]

Adjusting Twitter authentication to work
on the server
As we just noted, the Notes application as currently deployed does not support
Twitter-based logins. Any attempt will result in an error. Obviously we can't deploy it
like this.

The Twitter application we set up for Notes previously won't work because the
authentication URL that refers to our laptop is incorrect for the server. To get OAuth
to work with Twitter, while deployed on this new server, go
to developer.twitter.com/en/apps and reconfigure the application to use the IP
address of your server.

That page is the dashboard of your applications that you've registered with Twitter.
Click on the Details button, and you'll see the details of the configuration. Click on
the Edit button, and edit the list of Callback URLs like so:

Of course, you must substitute the IP address of your server. The URL shown here is
correct if your Multipass instance was assigned an IP address of 192.168.64.9. This
informs Twitter of a new correct callback URL that will be used. Likewise, if you have
configured Notes to listen to port 80, the URL you point Twitter to must also use port
80. You must update this list for any callback URL you use in the future.

Deploying Node.js Applications to Linux Servers Chapter 10

[447]

The next thing is to change the Notes application so as to use this new callback URL
on the svc-notes server. In routes/users.mjs, the default value
was http://localhost:3000 for use on our laptop. But we now need to use the IP
address for the server. Fortunately, we thought ahead and the software has an
environment variable for this purpose. In notes/package.json, add the following
environment variable to the on-server script:

TWITTER_CALLBACK_HOST=http://192.168.64.9:3000

Use the actual IP address or domain name assigned to the server being used. In a real
deployment, we'll have a domain name to use here.

Additionally, to enable Twitter login support, it is required to supply Twitter
authentication tokens in the environment variables:

 TWITTER_CONSUMER_KEY="... key" TWITTER_CONSUMER_SECRET="... key"

This should not be added in package.json, but supplied via another means. We
have not yet identified a suitable method, but we did identify that adding these
variables to package.json means committing them to a source code repository,
which might allow those values to leak to the public.

For now, the server can be started as follows:

ubuntu@svc-notes:/opt/notes$ TWITTER_CONSUMER_KEY="... key"
TWITTER_CONSUMER_SECRET="... key" npm run on-server

This is still a semi-manual process of starting the server and specifying the Twitter
keys, but you'll be able to log in using Twitter credentials. Keep in mind that we still
need a solution for this that avoids committing these keys to a source repository.

The last thing for us to take care of is ensuring the two service processes restart when
the respective servers restart. Right now, the services are running at the command
line. If we ran multipass restart, the service instances will reboot and the service
processes won't be running.

In the next section, we'll learn one way to configure a background process that
reliably starts when a computer is booted.

Deploying Node.js Applications to Linux Servers Chapter 10

[448]

Setting up PM2 to manage Node.js
processes
We have two servers, svc-notes and svc-userauth, configured so we can run the
two services making up the Notes application stack. A big task remaining is to ensure
the Node.js processes are properly installed as background processes.

To see the problem, start another command window and run these commands:

$ multipass restart svc-userauth
$ multipass restart svc-notes

The server instances were running under Multipass, and the restart command
caused the named instance to stop and then start. This emulates a server reboot.
Since both were running in the foreground, you'll see each command window exit to
the host command shell, and running multipass list again will show both
instances in the Running state. The big takeaway is that both services are no longer
running.

There are many ways to manage server processes, to ensure restarts if the process
crashes, and so on. We'll use PM2 (http://pm2.keymetrics.io/) because it's
optimized for Node.js processes. It bundles process management and monitoring into
one application.

Let's now see how to use PM2 to correctly manage the Notes and user authentication
services as background processes. We'll start by familiarizing ourselves with PM2,
then creating scripts to use PM2 to manage the services, and finally, we'll see how to
integrate it with the OS so that the services are correctly managed as background
processes.

Familiarizing ourselves with PM2
To get ourselves acquainted with PM2, let's set up a test using the svc-
userauth server. We will create a directory to hold a pm2-userauth project, install
PM2 in that directory, then use it to start the user authentication service. Along the
way, we'll learn how to use PM2.

Start by running these commands on the svc-userauth server:

ubuntu@svc-userauth:~$ sudo su -
root@svc-userauth:~#

http://pm2.keymetrics.io/

Deploying Node.js Applications to Linux Servers Chapter 10

[449]

root@svc-userauth:~# cd /opt
root@svc-userauth:/opt# mkdir pm2-test
root@svc-userauth:/opt# cd pm2-test
root@svc-userauth:/opt/pm2-test# npm init
This utility will walk you through creating a package.json file.
... answer questions
root@svc-userauth:/opt/pm2-test# npm install pm2 --save
... installation output
root@svc-userauth:/opt/pm2-test# node_modules/.bin/pm2
... help output

The result of these commands is an npm project directory containing the PM2
program and a package.json file that we can potentially use to record some scripts.

Now let's start the user authentication server using PM2:

root@svc-userauth:/opt/pm2-test# cd ../userauth/
root@svc-userauth:/opt/userauth# DEBUG=users:* PORT=5858
REST_LISTEN=0.0.0.0 SEQUELIZE_CONNECT=sequelize-mysql.yaml /opt/pm2-
test/node_modules/.bin/pm2 start ./user-server.mjs
...
[PM2] Spawning PM2 daemon with pm2_home=/root/.pm2
[PM2] PM2 Successfully daemonized
[PM2] Starting /opt/userauth/user-server.mjs in fork_mode (1 instance)
[PM2] Done.
...

This boils down to running pm2 start ./user-server.mjs, except that we are
adding the environment variables containing configuration values, and we are
specifying the full path to PM2. This runs our user server in the background.

We can repeat our test of using cli.mjs to list users known to the authentication
server:

root@svc-userauth:/opt/userauth# node cli.mjs list-users
[
 { ... }, { ... }
]

Since we had previously launched this service and tested it, there should be user IDs
already in the authentication server database. The server is running, but because it's
not in the foreground, we cannot see the output. Try this command:

root@svc-userauth:/opt/userauth# /opt/pm2-test/node_modules/.bin/pm2
logs user-server
... log output

Deploying Node.js Applications to Linux Servers Chapter 10

[450]

Because PM2 captures the standard output from the server process, any output is
saved away. The logs command lets us view that output.

Some other useful commands are as follows:

pm2 status: Lists all the commands PM2 is currently managing, and their
status
pm2 stop SERVICE: Stops the named service
pm2 start SERVICE or pm2 restart SERVICE: Starts the named service
pm2 delete SERVICE: Makes PM2 forget about the named service

There are several other commands, and the PM2 website contains complete
documentation for them. https:/ / pm2. keymetrics. io/ docs/ usage/ pm2- doc-single-
page/

For the moment, let's shut it down and delete the managed process:

root@svc-userauth:/opt/userauth# /opt/pm2-test/node_modules/.bin/pm2
stop user-server
root@svc-userauth:/opt/userauth# /opt/pm2-test/node_modules/.bin/pm2
delete user-server
root@svc-userauth:/opt/userauth# rm -rf /opt/pm2-test

We have familiarized ourselves with PM2, but this setup is not quite suitable for any
kind of deployment. Let's instead set up scripts that will manage the Notes services
under PM2 more cleanly.

Scripting the PM2 setup on Multipass
We have two Ubuntu systems onto which we've copied the Notes and user
authentication services, and also configured a MySQL server for each machine. On
these systems, we've manually run the services and know that they work, and now
it's time to use PM2 to manage these services as persistent background processes.

With PM2 we can create a file, ecosystem.json, to describe precisely how to launch
the processes. Then, with a pair of PM2 commands, we can integrate the process
setup so it automatically starts as a background process.

Let's start by creating two directories, multipass/pm2-notes and multipass/pm2-
userauth. These will hold the scripts for the corresponding servers.

https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/
https://pm2.keymetrics.io/docs/usage/pm2-doc-single-page/

Deploying Node.js Applications to Linux Servers Chapter 10

[451]

In pm2-notes, create a file, package.json, containing the following:

{
 "name": "pm2-notes",
 "version": "1.0.0",
 "description": "PM2 Configuration for svc-notes",
 "scripts": {
 "start": "pm2 start ecosystem.json",
 "stop": "pm2 stop ecosystem.json",
 "restart": "pm2 restart ecosystem.json",
 "status": "pm2 status",
 "save": "pm2 save",
 "startup": "pm2 startup",
 "monit": "pm2 monit",
 "logs": "pm2 logs"
 },
 "dependencies": {
 "pm2": "^4.4.x"
 }
}

This records for us the dependency on PM2, so it can easily be installed, along with
some useful scripts we can run with PM2.

Then in the same directory, create an ecosystem.json file, containing the following:

{
 "apps" : [{
 "name": "Notes",
 "script": "app.mjs",
 "cwd": "/opt/notes",
 "env": {
 "REQUEST_LOG_FORMAT": "common",
 "PORT": "80",
 "SEQUELIZE_CONNECT": "models/sequelize-mysql.yaml",
 "NOTES_MODEL": "sequelize",
 "USER_SERVICE_URL": "http://172.23.83.119:5858",
 "TWITTER_CALLBACK_HOST": "http://172.23.89.142"
 },
 "env_production": {
 "NODE_ENV": "production"
 }
 }]
}

The ecosystem.json file is how we describe a process to be monitored to PM2.

Deploying Node.js Applications to Linux Servers Chapter 10

[452]

In this case, we've described a single process, called Notes. The cwd value declares
where the code for this process lives, and the script value describes which script to
run to launch the service. The env value is a list of environment variables to set.

This is where we would specify the Twitter authentication tokens. But since this file is
likely to be committed to a source repository, we shouldn't do so. Instead, we'll forego
Twitter login functionality for the time being.

The USER_SERVICE_URL and TWITTER_CALLBACK_HOST variables are set according
to the multipass list output we showed earlier. These values will, of course, vary
based on what was selected by your host system.

These environment variables are the same as we set in notes/package.json –
except, notice that we've set PORT to 80 so that it runs on the normal HTTP port. To
successfully specify port 80, PM2 must execute as root.

In pm2-userauth, create a file named package.json containing the folllowing:

{
 "name": "pm2-userauth",
 "version": "1.0.0",
 "description": "PM2 Configuration for svc-userauth",
 "scripts": {
 "start": "pm2 start ecosystem.json",
 "stop": "pm2 stop ecosystem.json",
 "restart": "pm2 restart ecosystem.json",
 "status": "pm2 status",
 "save": "pm2 save",
 "startup": "pm2 startup",
 "monit": "pm2 monit",
 "logs": "pm2 logs"
 },
 "dependencies": {
 "pm2": "^4.4.x"
 }
}

This is the same as for pm2-notes, with the names changed.

Then, in pm2-userauth, create a file named ecosystem.json containing the
following:

{
 "apps" : [{
 "name": "User Authentication",
 "script": "user-server.mjs",

Deploying Node.js Applications to Linux Servers Chapter 10

[453]

 "cwd": "/opt/userauth",
 "env": {
 "REQUEST_LOG_FORMAT": "common",
 "PORT": "5858",
 "REST_LISTEN": "0.0.0.0",
 "SEQUELIZE_CONNECT": "sequelize-mysql.yaml"
 },
 "env_production": {
 "NODE_ENV": "production"
 }
 }]
}

This describes the user authentication service. On the server, it is stored in
the /userauth directory and is launched using the user-server.mjs script, with
that set of environment variables.

Next, on both servers create a directory called /opt/pm2. Copy the files in pm2-
notes to the /opt/pm2 directory on svc-notes, and copy the files in pm2-
userauth to the /opt/pm2 directory on svc-userauth.

On both svc-notes and svc-userauth, you can run these commands:

ubuntu@svc-userauth:/opt/pm2$ sudo npm install
... much output
ubuntu@svc-userauth:/opt/pm2$ sudo npm start

> pm2-userauth@1.0.0 start /pm2
> pm2 start ecosystem.json

[PM2] Spawning PM2 daemon with pm2_home=/home/ubuntu/.pm2
[PM2] PM2 Successfully daemonized
[PM2][WARN] Applications User Authentication not running, starting...
[PM2] App [User Authentication] launched (1 instances)

ubuntu@svc-userauth:/opt/pm2$ sudo npm run status

> pm2-userauth@1.0.0 status /opt/pm2
> pm2 status
...
ubuntu@svc-userauth:/opt/pm2$ sudo npm run logs

> pm2-userauth@1.0.0 status /opt/pm2
> pm2 logs
...

Deploying Node.js Applications to Linux Servers Chapter 10

[454]

Doing so starts the service running on both server instances. The npm run
logs command lets us see the log output as it happens. We've configured both
services in a more DevOps-friendly logging configuration, without the DEBUG log
enabled, and using the common log format.

For testing, we go to the same URL as before, but to port 80 rather than port 3000.

Because the Notes service on svc-notes is now running on port 80, we need to
update the Twitter application configuration again, as follows:

This drops the port 3000 from the URLs on the server. The application is no longer on
port 3000, but on port 80, and we need to tell Twitter about this change.

Integrating the PM2 setup as persistent
background processes
The Notes application should be fully functioning. There is one remaining small task
to perform, and that is to integrate it with the OS.

The traditional way on Unix-like systems is to add a shell script in a directory
in /etc. The Linux community has defined the LSB Init Script format for this
purpose, but since each OS has a different standard for scripts to manage background
processes, PM2 has a command to generate the correct script for each.

Let's start with svc-userauth, and run these commands:

ubuntu@svc-userauth:/opt/pm2$ sudo npm run save

> pm2-userauth@1.0.0 save /opt/pm2
> pm2 save

[PM2] Saving current process list...

Deploying Node.js Applications to Linux Servers Chapter 10

[455]

[PM2] Successfully saved in /home/ubuntu/.pm2/dump.pm2
ubuntu@svc-userauth:/opt/pm2$ sudo npm run startup

> pm2-userauth@1.0.0 startup /opt/pm2
> pm2 startup

[PM2] Init System found: systemd
Platform systemd
... much output
Target path
/etc/systemd/system/pm2-root.service
Command list
['systemctl enable pm2-root']
... much output

With npm run save, we run the pm2 save command. This command saves the
current configuration into a file in your home directory.

With npm run startup, we run the pm2 startup command. This converts the
saved current configuration into a script for the current OS that will manage the PM2
system. PM2, in turn, manages the set of processes you've configured with PM2.

In this case, it identified the presence of the systemd init system, which is the
standard for Ubuntu. It generated a file, /etc/systemd/system/pm2-
root.service, that tells Ubuntu about PM2. In amongst the output, it tells us how
to use systemctl to start and stop the PM2 service.

Do the same on svc-notes to implement the background service there as well.

And now we can test restarting the two servers with the following commands:

$ multipass restart svc-userauth
$ multipass restart svc-notes
$ multipass list
Name State IPv4 Image
svc-notes Running 192.168.64.9 Ubuntu 18.04 LTS
svc-userauth Running 192.168.64.8 Ubuntu 18.04 LTS

The machines should restart correctly, and with no intervention on our part, the
services will be running. You should be able to put the Notes application through its
paces and see that it works. The Twitter login functionality will not work at this time
because we did not supply Twitter tokens.

Deploying Node.js Applications to Linux Servers Chapter 10

[456]

It is especially informative to run this on each server:

ubuntu@svc-notes:~$ cd /opt/pm2
ubuntu@svc-notes:/opt/pm2$ sudo ./node_modules/.bin/pm2 monit

The monit command starts a monitoring console showing some statistics including
CPU and memory use, as well as logging output.

When done, run the following command:

$ multipass stop svc-userauth
$ multipass stop svc-notes

This, of course, shuts down the service instances. Because of the work we've done,
you'll be able to start them back up at any time.

We've learned a lot in this section about configuring the Notes application as a
managed background process. With a collection of shell scripts and configuration
files, we put together a system to manage these services as background processes
using PM2. By writing our own scripts, we got a clearer idea of how the underlying
plumbing works.

With that, we are ready to wrap up the chapter.

Summary
In this chapter, we started a journey to learn about deploying Node.js services to live
servers. The goal was to learn deployment to cloud hosting, but to get there we
learned the basics of getting reliable background processes on Linux systems.

We started by reviewing the Notes application architecture and seeing how that will
affect deployment. That enabled us to understand the requirements for server
deployment.

Then we learned the traditional way to deploy services on Linux using an init script.
To do that, we learned how to use PM2 to manage processes, and used it to integrate
as a persistent background process. PM2 is a useful tool for managing background
processes on Unix/Linux systems. Deploying and managing persistence is a key skill
for anyone developing web applications.

Deploying Node.js Applications to Linux Servers Chapter 10

[457]

While that was performed on your laptop, the exact same steps could be used on a
public server such as a VPS rented from a web hosting company. With a little bit of
work, we could use these scripts to set up a test server on a public VPS. We do need
to work on better automation since the DevOps team requires fully automated
deployments.

Even in this age of cloud hosting platforms, many organizations deploy services
using the same techniques we discussed in this chapter. Instead of cloud-based
deployments, they rent one or a few VPSes. But even in cloud-based deployments
using Docker, Kubernetes, and the like, the developer must know how to implement
a persistent service on Unix-like systems. Docker containers are typically Linux
environments, and must contain reliable persistent background tasks that are
observable and maintainable.

In the next chapter, we will pivot to a different deployment technology: Docker.
Docker is a popular system for packaging application code in a container that can be
executed on our laptop or executed unchanged at scale on a cloud hosting platform.

11
Deploying Node.js

Microservices with Docker
Now that we've experienced the traditional Linux way to deploy an application, let's
turn to Docker, which is a popular new way to manage application deployment.

Docker (http://docker.com) is a cool new tool in the software industry. It is
described as an open platform for distributed applications for developers and sysadmins. It is
designed around Linux containerization technology and focuses on describing
the configuration of software on any variant of Linux.

A Docker container is a running instantiation of a Docker image. A Docker image is a
bundle containing a specific Linux OS, system configuration, and application
configuration. Docker images are described using a Dockerfile, which is a fairly
simple-to-write script describing how to build a Docker image. The Dockerfile starts
by specifying a base image from which to build, meaning we derive Docker images
from other images. The rest of the Dockerfile describes what files to add to the image,
which commands to run in order to build or configure the image, which network
ports to expose, which directories to mount in the image, and more.

Docker images are stored on a Docker Registry server, with each image stored in its
own repository. The largest registry is Docker Hub, but there are also third-party
registries available, including registry servers that you can install on your own
hardware. Docker images can be uploaded to a repository, and, from the repository,
deployed to any Docker server.

We instantiate a Docker image to launch a Docker container. Typically, launching a
container is very fast, and often, containers are instantiated for a short time and then
discarded when no longer needed.

http://docker.com

Deploying Node.js Microservices with Docker Chapter 11

[459]

A running container feels like a virtual server running on a virtual machine.
However, Docker containerization is very different from a virtual machine system
such as VirtualBox or Multipass. A container is not a virtualization of a complete
computer. Instead, it is an extremely lightweight shell creating the appearance of an
installed OS. For example, the processes running inside the container are actually
running on the host OS with certain Linux technologies (cgroups, kernel namespaces,
and so on) creating the illusion of running a specific Linux variant. Your host OS
could be Ubuntu and the container OS could be Fedora or OpenSUSE, or even
Windows; Docker makes it all work.

While Docker is primarily targeted at x86 flavors of Linux, it is available on several
ARM-based OSes, as well as other processors. You can even run Docker on single-
board computers, such as Raspberry Pi, for hardware-oriented Internet of Things
(IoT) projects.

The Docker ecosystem contains many tools, and their number is increasing rapidly.
For our purposes, we'll focus on the following two tools:

Docker Engine: This is the core execution system that orchestrates
everything. It runs on a Linux host system, exposing a network-based API
that client applications use to make Docker requests, such as building,
deploying, and running containers.
Docker Compose: This helps you define, in a single file, a multi-container
application with all of its dependencies defined.

There are other tools closely associated with Docker, such as Kubernetes, but it all
starts with building a container to house your application. By learning about Docker,
we learn how to containerize an application, a skill we can use with both Docker and
Kubernetes.

Learning how to use Docker is a gateway to learning about other popular systems,
such as Kubernetes or AWS ECS. These are two popular orchestration systems for
managing container deployments at a large scale on cloud-hosting infrastructure.
Typically, the containers are Docker containers, but they are deployed and managed
by other systems, whether that is Kubernetes, ECS, or Mesos. That makes learning
how to use Docker an excellent starting point for learning these other systems.

In this chapter, we will cover the following topics:

Installing Docker on our laptop
Developing our own Docker containers and using third-party containers
Setting up the user authentication service and its database in Docker

Deploying Node.js Microservices with Docker Chapter 11

[460]

Setting up the Notes service and its database in Docker
Deploying MySQL instances in Docker infrastructure, and data persistence
for applications such as databases in Docker
Using Docker Compose to describe the Docker deployment of a full
application
Scaling container instances in Docker infrastructure and using Redis to
mitigate scaling issues

The first task is to duplicate the source code from the previous chapter. It's suggested
that you create a new directory, chap11, as a sibling of the chap10 directory and
copy everything from chap10 to chap11.

By the end of this chapter, you will have a solid grounding of using Docker, creating
Docker containers, and using Docker Compose to manage the services required by
the Notes application.

With the help of Docker, we will design, on our laptop, the system shown in the
diagram in Chapter 10, Deploying Node.js Applications to Linux Servers. That chapter,
this one, and Chapter 12, Deploying a Docker Swarm to AWS EC2 with Terraform, form
an arc covering three styles of Node.js deployment to servers.

Setting up Docker on your laptop or
computer
The best place to learn how to install Docker on your laptop is the
Docker documentation. What we're looking for is the Docker Community
Edition (CE), which is all we need:

macOS installation: https:/ / docs.docker. com/ docker- for- mac/ install/

Windows installation: https:/ /docs. docker. com/ docker- for-windows/
install/

Ubuntu installation: https:/ /docs. docker. com/ install/ linux/ docker-
ce/ubuntu/

Instructions are also available for several other distributions. Some useful post-install
Linux instructions are available at https:/ / docs. docker. com/ install/ linux/ linux-
postinstall/.

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/

Deploying Node.js Microservices with Docker Chapter 11

[461]

Docker runs natively on Linux, and the installation is simply the Docker daemon and
command-line tools. To run Docker on macOS or Windows, you need to install
the Docker for Windows or Docker for Mac applications. These applications manage
a virtual Linux environment in a lightweight virtual machine, within which is
a Docker Engine instance running on Linux. In the olden days (a few years ago), we
had to handcraft that setup. Thanks must be given to the Docker team, who
have made this as easy as installing an application, and all the complexity is hidden
away. The result is very lightweight, and Docker containers can be left running in the
background with little impact.

Let's now learn how to install Docker on a Windows or macOS machine.

Installing and starting Docker with Docker for
Windows or macOS
The Docker team has made installing Docker on Windows or macOS very easy. You
simply download an installer and, as with most other applications, you run the
installer. It takes care of installation and provides you with an application icon that is
used to launch Docker. On Linux, the installation is a little more involved, so it is best
to read and follow the official instructions.

Starting Docker for Windows or macOS is very simple, once you've followed the
installation instructions. You simply find and double-click on the application icon.
There are settings available so that Docker automatically launches every time you
start your laptop.

On both Docker for Windows and Docker for Mac, the CPU must
support virtualization. Bundled inside Docker for Windows and Docker for Mac is an
ultra-lightweight hypervisor, which, in turn, requires virtualization support from the
CPU.

For Windows, this may require a BIOS configuration. Refer to https:/ /docs. docker.
com/docker-for- windows/ troubleshoot/ #virtualization- must- be- enabled for
more information.

For macOS, this requires hardware from 2010 or later, with Intel's hardware support
for Memory Management Unit (MMU) virtualization, including Extended Page
Tables (EPTs) and unrestricted mode. You can check for this support by
running sysctl kern.hv_support. It also requires macOS 10.11 or later.

Having installed the software, let's try it out and familiarize ourselves with Docker.

https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled
https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled

Deploying Node.js Microservices with Docker Chapter 11

[462]

Familiarizing ourselves with Docker
With the setup accomplished, we can use the local Docker instance to create Docker
containers, run a few commands, and, in general, learn how to use it.

As in so many software journeys, this one starts with Hello World:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
ca4f61b1923c: Pull complete
Digest: sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c94415
 8df3ee0176d32b751
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

...

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

...

The docker run command downloads a Docker image, named on the command
line, initializes a Docker container from that image, and then runs that container. In
this case, the image, named hello-world, was not present on the local computer and
had to be downloaded and initialized. Once that was done, the hello-
world container was executed and it printed out these instructions.

The docker run hello-world command is a quick way to verify that Docker is
installed correctly.

Let's follow the suggestion and start an Ubuntu container:

$ docker run -it ubuntu bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
5c939e3a4d10: Pull complete
c63719cdbe7a: Pull complete
19a861ea6baf: Pull complete
651c9d2d6c4f: Pull complete
Digest: sha256:8d31dad0c58f552e890d68bbfb735588b6b820a46e4596
 72d96e585871acc110
Status: Downloaded newer image for ubuntu:latest

Deploying Node.js Microservices with Docker Chapter 11

[463]

root@83058f30a327:/# uname -a
Linux 83058f30a327 4.14.131-linuxkit #1 SMP Fri Jul 19 12:31:17 UTC
2019 x86_64 x86_64 x86_64 GNU/Linux
root@83058f30a327:/# exit
$ uname -a
Darwin MacBook-Pro-4 17.7.0 Darwin Kernel Version 17.7.0: Thu Jan 23
07:05:23 PST 2020; root:xnu-4570.71.69~1/RELEASE_X86_64 x86_64

The Unable to find image phrase means that Docker has not downloaded the
named image yet. Therefore, it downloaded not only the Ubuntu image but also the
images it depends on. Any Docker image can be built in layers, meaning we always
define an image in terms of a base image. In this instance, we see that the Ubuntu
image required four layers in total.

Images are identified by an SHA-256 hash, and there is both a long-form identifier
and a short-form identifier. We can see both the long and short identifiers in this
output.

The docker run command downloads an image, configures it for execution, and
executes the image. The -it flag means to run the image interactively in the terminal.

In the docker run command line, the part after the image name to execute is passed
into the container as command options to execute. In this case, the command option
says to run bash, which is the default command shell. Indeed, we were given a
command prompt and can run Linux commands.

You can query your computer to see that while the hello-world container has
executed and finished, it still exists:

The docker ps command lists the running Docker containers. As we see here,
the hello-world container is no longer running, but the Ubuntu container is. With
the -a switch, docker ps also shows those containers that exist but are not currently
running.

The last column is the container name. Since we didn't specify a container name when
launching the container, Docker created a semi-random name for us.

Deploying Node.js Microservices with Docker Chapter 11

[464]

When you're done using a container, you can clean up with the following command:

$ docker rm clever_napier
clever_napier

The clever_napier name is the container name automatically generated by Docker.
While the image name was hello-world, that was not the container name. Docker
generated the container name so that you have a more user-friendly identifier for the
containers than the hex ID shown in the CONTAINER ID column:

$ docker rm 83058f30a327
83058f30a327

It's also possible to specify the hex ID. However, it is, of course, more user friendly to
have a name for the container than a hex ID. When creating a container, it's easy to
specify any container name you like.

We've installed Docker on our laptop or computer and tried a couple of simple
commands to familiarize ourselves with Docker. Let's now get down to some work.
We'll start by setting up the user authentication service in Docker containers.

Setting up the user authentication service
in Docker
With all that theory spinning around in our heads, it's time to do something practical.
Let's start by setting up the user authentication service. We'll call this AuthNet, and
it comprises a MySQL instance to store the user database, the authentication
server, and a private subnet to connect them.

It is best for each container to focus on providing one service. Having one service per
container is a useful architectural decision because we can focus on optimizing each
container for a specific purpose. Another rationale has to do with scaling, in that each
service has different requirements to satisfy the traffic it serves. In our case, we might
need a single MySQL instance, and 10 user authentication instances, depending on
the traffic load.

There is a large library of predefined Docker images available on
Docker Hub (https:/ /hub. docker. com). It is best to reuse one of
those images as a starting point to build our desired service.

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Deploying Node.js Microservices with Docker Chapter 11

[465]

The Docker environment lets us not only define and instantiate Docker containers but
also the networking connections between containers. That's what we meant by a
private subnet earlier. With Docker, we not only manage containers, but we can also
configure subnets, data storage services, and more.

In the next few sections, we'll carefully dockerize the user authentication service
infrastructure. We'll learn how to set up a MySQL container for Docker and launch a
Node.js service in Docker.

Let's start by learning how to launch a MySQL container in Docker.

Launching a MySQL container in Docker
Among the publicly available Docker images, there are over 11,000 available for
MySQL. Fortunately, the image provided by the MySQL team, mysql/mysql-
server, is easy to use and configure, so let's use that.

A Docker image name can be specified, along with a tag that is usually the software
version number. In this case, we'll use mysql/mysql-server:8.0,
where mysql/mysql-server is the image repository URL, mysql-server is the
image name, and 8.0 is the tag. The MySQL 8.x release train is the current version as
of the time of writing. As with many projects, the MySQL project tags the Docker
images with the version number.

Download the image, as follows:

$ docker pull mysql/mysql-server:8.0
8.0.13: Pulling from mysql/mysql-server
e64f6e679e1a: Pull complete
799d60100a25: Pull complete
85ce9d0534d0: Pull complete
d3565df0a804: Pull complete
Digest: sha256:59a5854dca16488305aee60c8dea4d88b68d816aee62
 7de022b19d9bead48d04
Status: Downloaded newer image for mysql/mysql-server:8.0.13
docker.io/mysql/mysql-server:8.0.13

Deploying Node.js Microservices with Docker Chapter 11

[466]

The docker pull command retrieves an image from a Docker repository and is
conceptually similar to the git pull command, which retrieves changes from a git
repository.

This downloaded four image layers in total because this image is built on top of three
other images. We'll see later how that works when we learn how to build a
Dockerfile.

We can query which images are stored on our laptop with the following command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
mysql/mysql-server 8.0 716286be47c6 8 days ago 381MB
hello-world latest bf756fb1ae65 4 months ago 13.3kB

There are two images currently available—the mysql-server image we just
downloaded and the hello-world image we ran earlier.

We can remove unwanted images with the following command:

$ docker rmi hello-world
Untagged: hello-world:latest
Untagged: hello-world@sha256:8e3114318a995a1ee497790535e
 7b88365222a21771ae7e53687ad76563e8e76
Deleted: sha256:bf756fb1ae65adf866bd8c456593cd24beb6a0
 a061dedf42b26a993176745f6b
Deleted: sha256:9c27e219663c25e0f28493790cc0b88bc973ba
 3b1686355f221c38a36978ac63

Notice that the actual delete operation works with the SHA256 image identifier.

A container can be launched with the image, as follows:

$ docker run --name=mysql --env MYSQL_ROOT_PASSWORD=w0rdw0rd
mysql/mysql-server:8.0
[Entrypoint] MySQL Docker Image 8.0.13-1.1.8
[Entrypoint] Initializing database
2020-02-17T00:08:15.685715Z 0 [System] [MY-013169] [Server]
/usr/sbin/mysqld (mysqld 8.0.13) initializing of server in progress as
process 25
...
2020-02-17T00:08:44.490724Z 0 [System] [MY-013170] [Server]
/usr/sbin/mysqld (mysqld 8.0.13) initializing of server has completed
[Entrypoint] Database initialized
2020-02-17T00:08:48.625254Z 0 [System] [MY-010116] [Server]
/usr/sbin/mysqld (mysqld 8.0.13) starting as process 76
...

Deploying Node.js Microservices with Docker Chapter 11

[467]

[Entrypoint] MySQL init process done. Ready for start up.

[Entrypoint] Starting MySQL 8.0.13-1.1.8
2020-02-17T00:09:14.611614Z 0 [System] [MY-010116] [Server]
/usr/sbin/mysqld (mysqld 8.0.13) starting as process 1
...

The docker run command takes an image name, along with various arguments, and
launches it as a running container.

We started this service in the foreground, and there is a tremendous amount of
output as MySQL initializes its container. Because of the --name option, the container
name is mysql. Using an environment variable, we tell the container to initialize
the root password.

Since we have a running server, let's use the MySQL CLI to make sure it's actually
running. In another window, we can run the MySQL client inside the container, as
follows:

$ docker exec -it mysql mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 14
Server version: 8.0.13 MySQL Community Server - GPL
...
Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+
4 rows in set (0.02 sec)

mysql>

The docker exec command lets you run programs inside the container. The -
it option says the command is run interactively on an assigned terminal. In this case,
we used the mysql command to run the MySQL client so that we could interact with
the database. Substitute bash for mysql, and you will land in an
interactive bash command shell.

Deploying Node.js Microservices with Docker Chapter 11

[468]

This mysql command instance is running inside the container. The container is
configured by default to not expose any external ports, and it has a
default my.cnf file.

Docker containers are meant to be ephemeral, created and destroyed as needed, while
databases are meant to be permanent, with lifetimes sometimes measured in decades.
A very important discussion on this point and how it applies to database containers is
presented in the next section.

It is cool that we can easily install and launch a MySQL instance. However, there are
several considerations to be made:

Access to the database from other software, specifically from another
container
Storing the database files outside the container for a longer lifespan
Custom configuration, because database admins love to tweak the settings
We need a path to connect the MySQL container to the AuthNet network
that we'll be creating

Before proceeding, let's clean up. In a terminal window, type the following:

$ docker stop mysql
mysql
$ docker rm mysql
mysql

This closes out and cleans up the container we created. To reiterate the point made
earlier, the database in that container went away. If that database contained critical
information, you just lost it, with no chance of recovering the data.

Before moving on, let's discuss how this impacts the design of our services.

The ephemeral nature of Docker containers
Docker containers are designed to be easy to create and easy to destroy. In the course
of kicking the tires, we've already created and destroyed three containers.

In the olden days (a few years ago), setting up a database required the provisioning of
specially configured hardware, hiring a database admin with special skills, and
carefully optimizing everything for the expected workload. In the space of a few
paragraphs, we just instantiated and destroyed three database instances. What a
brave new world this is!

Deploying Node.js Microservices with Docker Chapter 11

[469]

In terms of databases and Docker containers, the database is relatively eternal, and
the Docker container is ephemeral. Databases are expected to last for years, or
perhaps even decades. In computer years, that's practically immortal. By contrast, a
Docker container that is used and then immediately thrown away is merely a brief
flicker of time compared to the expected lifetime of a database.

Those containers can be created and destroyed quickly, and this gives us a lot of
flexibility. For example, orchestration systems, such as Kubernetes or AWS ECS, can
automatically increase or decrease the number of containers to match traffic volume,
restart containers that crash, and more.

But where does the data in a database container live? With the commands we ran in
the previous section, the database data directory lives inside the container. When the
container was destroyed, the data directory was destroyed, and any data in our
database was vaporized. Obviously, this is not compatible with the life cycle
requirements of the data we store in a database.

Fortunately, Docker allows us to attach a variety of mass storage services to a Docker
container. The container itself might be ephemeral, but we can attach eternal data to
the ephemeral container. It's just a matter of configuring the database container so
that the data directory is on the correct storage system.

Enough theory, let's now do something. Specifically, let's create the infrastructure for
the authentication service.

Defining the Docker architecture for the
authentication service
Docker supports the creation of virtual bridge networks between containers.
Remember that a Docker container has many of the features of an installed Linux OS.
Each container can have its own IP address and exposed ports. Docker supports the
creation of what amounts to a virtual Ethernet segment, called a bridge network.
These networks live solely within the host computer and, by default, are not
reachable by anything outside the host computer.

Deploying Node.js Microservices with Docker Chapter 11

[470]

A Docker bridge network, therefore, has strictly limited access.
Any Docker containers attached to a bridge network can communicate with other
containers attached to that network and, by default, that network does not allow
external traffic. The containers find each other by hostname, and Docker includes an
embedded DNS server to set up the hostnames required. That DNS server is
configured to not require dots in domain names, meaning the DNS/hostname of each
container is simply the container name. We'll find later that the hostname of the
container is actually container-name.network-name, and that the DNS
configuration lets you skip using the network-name portion of the hostname. This
policy of using hostnames to identify containers is Docker's implementation of service
discovery.

Create a directory named authnet as a sibling to the users and notes directories.
We'll be working on authnet in that directory.

In that directory, create a file—package.json—which we'll use solely to record
commands for managing AuthNet:

{
 "name": "authnet",
 "version": "1.0.0",
 "description": "Scripts to define and manage AuthNet",
 "scripts": {
 "build-authnet": "docker network create --driver bridge authnet"
 },
 "license": "ISC"
}

We'll be adding more scripts to this file. The build-authnet command builds a
virtual network using the bridge driver, as we just discussed. The name for this
network is authnet.

Having created authnet, we can attach containers to it so that the containers can
communicate with one another.

Our goal for the Notes application stack is to use private networking between
containers to implement a security firewall around the containers. The containers will
be able to communicate with one another, but the private network is not reachable by
any other software and is, therefore, more or less safe from intrusion.

Deploying Node.js Microservices with Docker Chapter 11

[471]

Type the following command:

$ npm run build-authnet

> authnet@1.0.0 build-authnet /home/david/Chapter10/authnet
> docker network create --driver bridge authnet

876232c4f2268c5fb192702cd2a339036dc2e74fe777d863620dded498fc56d0
$ docker network ls
NETWORK ID NAME DRIVER SCOPE
876232c4f226 authnet bridge local

This creates a Docker bridge network. The long coded string is the identifier for this
network. The docker network ls command lists the existing networks in the
current Docker system. In addition to the short hex ID, the network has the name we
specified.

Look at details regarding the network with this command:

$ docker network inspect authnet
 ... much JSON output

At the moment, this won't show any containers attached to authnet. The output
shows the network name, the IP range of this network, the default gateway, and other
useful network configuration information. Since nothing is connected to the network,
let's get started with building the required containers:

$ docker network rm authnet
authnet
$ docker network ls
NETWORK ID NAME DRIVER SCOPE

This command lets us remove a network from the Docker system. However, since we
need this network, rerun the command to recreate it.

We have explored setting up a bridge network, and so our next step is to populate it
with a database server.

Deploying Node.js Microservices with Docker Chapter 11

[472]

Creating the MySQL container for the
authentication service
Now that we have a network, we can start connecting containers to that network. In
addition to attaching the MySQL container to a private network, we'll be able to
control the username and password used with the database, and we'll also give it
external storage. That will correct the issues we named earlier.

To create the container, we can run the following command:

$ docker run --name db-userauth \
 --env MYSQL_USER=userauth \
 --env MYSQL_PASSWORD=userauth \
 --env MYSQL_DATABASE=userauth \
 --mount type=bind,src=`pwd`/userauth-data,dst=/var/lib/mysql \
 --network authnet -p 3306:3306 \
 --env MYSQL_ROOT_PASSWORD=w0rdw0rd \
 mysql/mysql-server:8.0 \
 --bind_address=0.0.0.0 \
 --socket=/tmp/mysql.sock

This does several useful things all at once. It initializes an empty database configured
with the named users and passwords, it mounts a host directory as the MySQL data
directory, it attaches the new container to authnet, and it exposes the MySQL port to
connections from outside the container.

The docker run command is only run the first time the container is started. It
combines building the container by running it for the first time. With the MySQL
container, its first run is when the database is initialized. The options that are passed
to this docker run command are meant to tailor the database initialization.

The --env option sets environment variables inside the container. The scripts driving
the MySQL container look to these environment variables to determine the user IDs,
passwords, and database to create.

In this case, we configured a password for the root user, and we configured a second
user—userauth—with a matching password and database name.

Deploying Node.js Microservices with Docker Chapter 11

[473]

There are many more environment variables available.

The official MySQL Docker documentation provides more
information on configuring a MySQL Docker container (https:/ /
dev. mysql. com/ doc/ refman/ 8. 0/en/ docker- mysql- more- topics.
html).

The MySQL server recognizes an additional set of environment
variables (https:/ /dev. mysql.com/ doc/ refman/ 8. 0/en/
environment- variables. html).

The MySQL server recognizes a long list of configuration options
that can be set on the command line or in the MySQL configuration
file (https:/ / dev. mysql. com/ doc/refman/ 8.0/ en/server- option-
variable- reference. html).

The --network option attaches the container to the authnet network.

The -p option exposes a TCP port from inside the container so that it is visible outside
the container. By default, containers do not expose any TCP ports. This means we can
be very selective about what to expose, limiting the attack surface for any miscreants
seeking to gain illicit access to the container.

The --mount option is meant to replace the older --volume option. It is a powerful
tool for attaching external data storage to a container. In this case, we are attaching a
host directory, userauth-data, to the /var/lib/mysql directory inside the
container. This ensures that the database is not inside the container, and that it will
last beyond the lifetime of the container. For example, while creating this example, we
deleted this container several times to fine-tune the command line, and it kept using
the same data directory.

We should also mention that the --mount option requires the src= option be a full
pathname to the file or directory that is mounted. We are using `pwd` to determine
the full path to the file. However, this is, of course, specific to Unix-like OSes. If you
are on Windows, the command should be run in PowerShell and you can use
the $PSScriptRoot variable. Alternatively, you can hardcode an absolute pathname.

https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-more-topics.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html

Deploying Node.js Microservices with Docker Chapter 11

[474]

It is possible to inject a custom my.cnf file into the container by adding this option to
the docker run command:

--mount type=bind,src=`pwd`/my.cnf,dst=/etc/my.cnf

In other words, Docker lets you mount not only a directory but also a single file.

The command line follows this pattern:

$ docker run \
 docker run options \
 mysql/mysql-server:8.0 \
 mysqld options

So far, we have talked about the options for the docker run command. Those
options configure the characteristics of the container. Next on the command line is the
image name—in this case, mysql/mysql-server:8.0. Any command-line tokens
appearing after the image name are passed into the container. In this case, they are
interpreted as arguments to the MySQL server, meaning we can configure this server
using any of the extensive sets of command-line options it supports. While we can
mount a my.cnf file in the container, it is possible to achieve most configuration
settings this way.

The first of these options, --bind_address, tells the server to listen for connections
from any IP address.

The second, --socket=/tmp/mysql.sock, serves two purposes. One is security, to
ensure that the MySQL Unix domain socket is accessible only from inside the
container. By default, the scripts inside the MySQL container put this socket in the
/var/lib/mysql directory, and when we attach the data directory, the socket is
suddenly visible from outside the container.

On Windows, if this socket is in /var/lib/mysql, when we attach a data directory
to the container, that would put the socket in a Windows directory. Since Windows
does not support Unix domain sockets, the MySQL container will mysteriously fail to
start and give a misleadingly obtuse error message. The --socket option ensures
that the socket is instead on a filesystem that supports Unix domain sockets, avoiding
the possibility of this failure.

Deploying Node.js Microservices with Docker Chapter 11

[475]

When experimenting with different options, it is important to delete the mounted
data directory each time you recreate the container to try a new setting. If the MySQL
container sees a populated data directory, it skips over most of the container
initialization scripts and will not run. A common mistake when trying different
container MySQL configuration options is to rerun docker run without deleting the
data directory. Since the MySQL initialization doesn't run, nothing will have changed
and it won't be clear why the behavior isn't changing.

Therefore, to try a different set of MySQL options, execute the following command:

$ rm -rf userauth-data
$ mkdir userauth-data
$ docker run ... options ... mysql/mysql-server:8.0 ...

This will ensure that you are starting with a fresh database each time, as well as
ensuring that the container initialization runs.

This also suggests an administrative pattern to follow. Any time you wish to update
to a later MySQL release, simply stop the container, leaving the data directory in
place. Then, delete the container and re-execute the docker run command with a
new mysql/mysql-server tag. That will cause Docker to recreate the container
using a different image, but using the same data directory. Using this technique, you
can update the MySQL version by pulling down a newer image.

Once you have the MySQL container running, type this command:

This will show the current container status. If we use docker ps -a, we see that the
PORTS column says 0.0.0.0:3306->3306/tcp, 33060/tcp. That says that the
container is listening to access from anywhere (0.0.0.0) to port 3306, and this traffic
will connect to port 3306 inside the container. Additionally, there is a port 33060 that
is available, but it is not exposed outside the container.

Even though it is configured to listen to the whole world, the container is attached
to authnet, which limits where connections can come from. Limiting the scope of
processes that can attach to the database is a good thing. However, since we used
the -p option, the database port is exposed to the host, and it's not as secure as we
want. We'll fix this later.

Deploying Node.js Microservices with Docker Chapter 11

[476]

Security in the database container
A question to ask is whether setting the root password like this is a good idea.
The root user has broad access to the entire MySQL server, where other users, such
as userauth, have limited access to the given database. Since one of our goals is
security, we must consider whether this has created a secure or insecure database
container.

We can log in as the root user with the following command:

$ docker exec -it db-userauth mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 115
Server version: 8.0.19 MySQL Community Server - GPL
...

This executes the MySQL CLI client inside the newly created container. There are a
few commands we can run to check the status of the root and userauth user IDs.
These include the following:

mysql> use mysql;
...
mysql> select host,user from user;
+-----------+------------------+
| host | user |
+-----------+------------------+
%	userauth
localhost	healthchecker
localhost	mysql.infoschema
localhost	mysql.session
localhost	mysql.sys
localhost	root
+-----------+------------------+
6 rows in set (0.00 sec)

A connection to a MySQL server includes a user ID, a password, and the source of the
connection. This connection might come from inside the same computer, or it might
come over a TCP/IP socket from another computer. To approve the connection, the
server looks in the mysql.user table for a row matching the user, host (source of
connection), and password fields. The username and password are matched as a
simple string comparison, but the host value is a more complex comparison. Local
connections to the MySQL server are matched against rows where the host value
is localhost.

Deploying Node.js Microservices with Docker Chapter 11

[477]

For remote connections, MySQL compares the IP address and domain name of the
connection against entries in the host column. The host column can contain IP
addresses, hostnames, or wildcard patterns. The wildcard character for SQL is %. A
single % character matches against any connection source, while a pattern
of 172.% matches any IP address where the first IPv4 octet is 172,
or 172.20.%.% matches any IP address in the 172.20.x.x range.

Therefore, since the only row for userauth specifies a host value of %, we can
use userauth from anywhere. By contrast, the root user can only be used with
a localhost connection.

The next task is to examine the access rights for the userauth and root user IDs:

mysql> show grants for userauth@'%';
+--+
| Grants for userauth@% |
+--+
| GRANT USAGE ON *.* TO `userauth`@`%` |
| GRANT ALL PRIVILEGES ON `userauth`.* TO `userauth`@`%` |
+--+
2 rows in set (0.01 sec)

mysql> show grants for root@localhost;
... too wide

This says that the userauth user has full access to the userauth database.
The root user, on the other hand, has full access to every database and has so many
permissions that the output of that does not fit here. Fortunately, the root user is
only allowed to connect from localhost.

To verify this, try connecting from different locations using these commands:

$ docker exec -it db-userauth mysql -u userauth -p
Enter password:
...
Server version: 8.0.19 MySQL Community Server - GPL
...
$ docker run -it --rm --network authnet mysql/mysql-server:8.0 mysql -
u userauth -h db-userauth -p
Enter password:
...
Server version: 8.0.19 MySQL Community Server - GPL
...
$ docker run -it --rm --network authnet mysql/mysql-server:8.0 mysql -
u root -h db-userauth -p
Enter password:

Deploying Node.js Microservices with Docker Chapter 11

[478]

ERROR 1045 (28000): Access denied for user 'root'@'172.20.0.4' (using
password: YES)

We've demonstrated four modes of accessing the database, showing that indeed,
the userauth ID can be accessed either from the same container or from a remote
container, while the root ID can only be used from the local container.

Using docker run --it --rm ... container-name .. starts a container, runs
the command associated with the container, and then exits the container and
automatically deletes it when it's done.

Therefore, with those last two commands, we created a separate mysql/mysql-
server:8.0 container, connected to authnet, to run the mysql CLI program.
The mysql arguments are to connect using the given username (root or userauth)
to the MySQL server on the host named db-userauth. This demonstrates connecting
to the database from a separate connector and shows that we can connect remotely
with the userauth user, but not with the root user.

Then, the final access experiment involves leaving off the --network option:

$ docker run -it --rm mysql/mysql-server:8.0 mysql -u userauth -h db-
userauth -p
[Entrypoint] MySQL Docker Image 8.0.19-1.1.15
Enter password:
ERROR 2005 (HY000): Unknown MySQL server host 'db-userauth' (0)

This demonstrates that if the container is not attached to authnet, it cannot access the
MySQL server because the db-userauth hostname is not even known.

Where did the db-userauth hostname come from? We can find out by inspecting a
few things:

$ docker network inspect authnet
...
"Config": [
 { "Subnet": "172.20.0.0/16",
 "Gateway": "172.20.0.1" }]
...
 "Containers": {
 "7c3836505133fc145743cd74b7220be72fd53ddd408227e961392e881d3b81b8":
{
 "Name": "db-userauth",
 "EndpointID":
 "6005381b72caed482c699a3b00cf2e0019c
 e4edd666b45e35be2afc6192314e4",
 "MacAddress": "02:42:ac:14:00:02",

Deploying Node.js Microservices with Docker Chapter 11

[479]

 "IPv4Address": "172.20.0.2/16",
 "IPv6Address": ""
 } },
...

In other words, the authnet network has the 172.20.0.0/16 network number, and
the db-userauth container was assigned the 172.20.0.2 IP address. This level of
detail is rarely important, but it is useful on the first occasion to carefully examine the
setup so that we understand what we're dealing with.

There is a gaping security issue that violates our design. Namely, the database port is
visible to the host, and therefore, anyone with access to the host can access the
database. This happened because we used -p 3306:3306 in a misguided belief that
this was required so that svc-userauth, which we'll build in the next section, can
access the database. We'll fix this later by removing that option.

Now that we have the database instance set up for the authentication service, let's see
how to Dockerize it.

Dockerizing the authentication service
The word Dockerize means to create a Docker image for a piece of software. The
Docker image can then be shared with others or be deployed to a server. In our case,
the goal is to create a Docker image for the user authentication service. It must be
attached to authnet so that it can access the database server we just configured in
the db-userauth container.

We'll name this new container svc-userauth to indicate that this is the user
authentication REST service, while the db-userauth container is the database.

Docker images are defined using Dockerfiles, which are files to describe the
installation of an application on a server. They document the setup of the Linux OS,
installed software, and configuration required in the Docker image. This is literally a
file named Dockerfile, containing Dockerfile commands. Dockerfile commands are
used to describe how the image is constructed.

 Refer to https:/ / docs. docker. com/ engine/ reference/ builder/
 for the documentation.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Deploying Node.js Microservices with Docker Chapter 11

[480]

Creating the authentication service Dockerfile
In the users directory, create a file named Dockerfile containing the following
content:

FROM node:14

RUN apt-get update -y \
 && apt-get upgrade -y \
 && apt-get -y install curl python build-essential git ca
 -certificates

ENV DEBUG="users:*"
ENV PORT="5858"
ENV SEQUELIZE_CONNECT="sequelize-docker-mysql.yaml"
ENV REST_LISTEN="0.0.0.0"

RUN mkdir -p /userauth
COPY package.json *.yaml *.mjs /userauth/
WORKDIR /userauth
RUN npm install --unsafe-perm

EXPOSE 5858
CMD ["node", "./user-server.mjs"]

The FROM command specifies a pre-existing image, called the base image, from which
to derive a given image. Frequently, you define a Docker image by starting from an
existing image. In this case, we're using the official Node.js Docker image
(https://hub.docker.com/_/node/), which, in turn, is derived from debian.

Because the base image, node, is derived from the debian image, the commands
available are what are provided on a Debian OS. Therefore, we use apt-get to install
more packages.

The RUN commands are where we run the shell commands required to build the
container. The first one installs required Debian packages, such as the build-
essential package, which brings in compilers required to install native-code
Node.js packages.

It's recommended that you always combine apt-get update, apt-get upgrade,
and apt-get install in the same command line like this because of the Docker
build cache. Docker saves each step of the build to avoid rerunning steps
unnecessarily. When rebuilding an image, Docker starts with the first changed step.
Therefore, in the set of Debian packages to install changes, we want all three of those
commands to run.

https://hub.docker.com/_/node/

Deploying Node.js Microservices with Docker Chapter 11

[481]

Combining them into a single command ensures that this will occur. For a complete
discussion, refer to the documentation at https:/ / docs. docker. com/ develop/
develop-images/ dockerfile_ best- practices/ .

The ENV commands define environment variables. In this case, we're using the same
environment variables that were defined in the package.json script for launching
the user authentication service.

Next, we have a sequence of lines to create the /userauth directory and to populate
it with the source code of the user authentication service. The first line creates
the /userauth directory. The COPY command, as its name implies, copies the files for
the authentication service into that directory. The WORKDIR command changes the
working directory to /userauth. This means that the last RUN command, npm
install, is executed in /userauth, and therefore, it installs the packages described
in /userauth/package.json in /userauth/node_modules.

There is a new SEQUELIZE_CONNECT configuration file mentioned: sequelize-
docker-mysql.yaml. This will describe the Sequelize configuration required to
connect to the database in the db-userauth container.

Create a new file named users/sequelize-docker-mysql.yaml containing the
following:

dbname: userauth
username: userauth
password: userauth
params:
 host: db-userauth
 port: 3306
 dialect: mysql

The difference is that instead of localhost as the database host, we use db-
userauth. Earlier, we explored the db-userauth container and determined that this
was the hostname of the container. By using db-userauth in this file, the
authentication service will use the database in the container.

The EXPOSE command informs Docker that the container listens on the named TCP
port. This does not expose the port beyond the container. The -p flag is what exposes
a given port outside the container.

Finally, the CMD command documents the process to launch when the container is
executed. The RUN commands are executed while building the container,
while CMD says what's executed when the container starts.

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Deploying Node.js Microservices with Docker Chapter 11

[482]

We could have installed PM2 in the container, and then used a PM2 command to
launch the service. However, Docker is able to fulfill the same function because it
automatically supports restarting a container if the service process dies.

Building and running the authentication service
Docker container
Now that we've defined the image in a Dockerfile, let's build it.

In users/package.json, add the following line to the scripts section:

"docker-build": "docker build -t svc-userauth ."

As has been our habit, this is an administrative task that we can record in
package.json, making it easier to automate this task.

We can build the authentication service as follows:

$ npm run docker-build

> user-auth-server@1.0.0 docker-build /home/david/Chapter10/users
> docker build -t svc-userauth .

Sending build context to Docker daemon 32.03MB
Step 1/12 : FROM node:14
 ---> 07e774543bdf
Step 2/12 : RUN apt-get update -y && apt-get upgrade -y && apt-get -y
install curl python build-essential git ca-certificates
 ---> Using cache
 ---> eb28eaee8517
Step 3/12 : ENV DEBUG="users:*"
 ---> Using cache
 ---> 99ae7f4bde83
Step 4/12 : ENV PORT="5858"
 ---> Using cache
 ---> e7f7567a0ce4
... more output

The docker build command builds an image from a Dockerfile. Notice that the
build executes one step at a time, and that the steps correspond exactly to the
commands in the Dockerfile.

Each step is stored in a cache so that it doesn't have to be rerun. On subsequent
builds, the only steps executed are the step that changed and all subsequent steps.

Deploying Node.js Microservices with Docker Chapter 11

[483]

In authnet/package.json, we require quite a few scripts to manage the user
authentication service:

{
 "name": "authnet",
 "version": "1.0.0",
 "description": "Scripts to define and manage AuthNet",
 "scripts": {
 "build-authnet": "docker network create --driver bridge authnet",
 "prebuild-db-userauth": "mkdir userauth-data",
 "build-db-userauth": "docker run --detach --name db-userauth --env
 MYSQL_USER=userauth --env MYSQL_PASSWORD=userauth --env
 MYSQL_DATABASE=userauth --mount type=bind,src=`pwd`/userauth-
 data,dst=/var/lib/mysql --network authnet --env
 MYSQL_ROOT_PASSWORD=w0rdw0rd --env DATABASE_HOST=
 db-userauth mysql/mysql-server:8.0 --
 bind_address=0.0.0.0 --socket=/tmp/mysql.sock",
 "stop-db-userauth": "docker stop db-userauth",
 "start-db-userauth": "docker start db-userauth",
 "build-userauth": "cd ../users && npm run docker-build",
 "postbuild-userauth": "docker run --detach --name svc-userauth
 --network authnet svc-userauth",
 "start-userauth": "docker start svc-userauth",
 "stop-userauth": "docker stop svc-userauth",
 "start-user-service": "npm run start-db-userauth && npm run start
 -userauth",
 "stop-user-service": "npm run stop-db-userauth && npm run stop
 -userauth"
 },
 "license": "ISC"
}

This is the set of commands that were found to be useful to manage building the
images, starting the containers, and stopping the containers.

Look carefully and you will see that we've added --detach to the docker
run commands. So far, we've used docker run without that option, and the
container remained in the foreground. While this was useful to see the logging
output, it's not so useful for deployment. With the --detach option, the container
becomes a background task.

Deploying Node.js Microservices with Docker Chapter 11

[484]

On Windows, for the --mount option, we need to change the src= parameter (as
discussed earlier) to use a Windows-style hard-coded path. That means it should
read:

-mount type=bind,src=C:/Users/path/to/Chapter11/authnet/userauth-
data,dst=/var/lib/mysql

This option requires absolute pathnames and specifying the path this way works on
Windows.

Another thing to notice is the absence of the -p 3306:3306 option. It was
determined that this was not necessary for two reasons. First, the option exposed the
database in db-userauth to the host, when our security model required otherwise,
and so removing the option got us the desired security. Second, svc-userauth was
still able to access the db-userauth database after this option was removed.

With these commands, we can now type the following to build and then run the
containers:

$ npm run build-authnet
$ npm run build-db-userauth
$ npm run build-userauth

These commands build the pieces required for the user authentication service. As a
side effect, the containers are automatically executed and will launch as background
tasks.

Once it is running, you can test it using the cli.mjs script as before. You can shell
into the svc-userauth container and run cli.mjs there; or, since the port is visible
to the host computer, you can run it from outside the container.

Afterward, we can manage the whole service as follows:

$ npm run stop-user-service
$ npm run start-user-service

This stops and starts both containers making up the user authentication service.

We have created the infrastructure to host the user authentication service, plus a
collection of scripts to manage the service. Our next step is to explore what we've
created and learn a few things about the infrastructure Docker creates for us.

Deploying Node.js Microservices with Docker Chapter 11

[485]

Exploring AuthNet
Remember that AuthNet is the connection medium for the authentication service. To
understand whether this network provides the security gains we're looking for, let's
explore what we just created:

$ docker network inspect authnet

This prints out a large JSON object describing the network, along with its attached
containers, which we've looked at before. If everything went well, we will see that
there are now two containers attached to authnet where there'd previously have
just been one.

Let's go into the svc-userauth container and poke around:

$ docker exec -it svc-userauth bash
root@ba75699519ef:/userauth# ls
cli.mjs package-lock.json sequelize-docker-mysql.yaml
users-sequelize.mjs node_modules package.json
user-server.mjs

The /userauth directory is inside the container and contains the files placed in the
container using the COPY command, plus the installed files in node_modules:

root@ba75699519ef:/userauth# node cli.mjs list-users
[{
 id: 'me', username: 'me', provider: 'local',
 familyName: 'Einarsdottir',
 givenName: 'Ashildr', middleName: null,
 emails: ['me@stolen.tardis'],
 photos: []
 }, {
 id: 'snuffy-smith', username: 'snuffy-smith', provider: 'local',
 familyName: 'Smith', givenName: 'John',
 middleName: 'Snuffy',
 emails: ['snuffy@example.com'],
 photos: []
 }]

We can run the cli.mjs script to test and administer the service. To get these
database entries set up, use the add command with the appropriate options:

root@4996275c4030:/userauth# ps -eafw
UID PID PPID C STIME TTY TIME CMD
root 1 0 2 00:08 ? 00:00:01 node ./user-server.mjs
root 19 0 0 00:09 pts/0 00:00:00 bash
root 27 19 0 00:09 pts/0 00:00:00 ps -eafw

Deploying Node.js Microservices with Docker Chapter 11

[486]

root@ba75699519ef:/userauth# ping db-userauth
PING db-userauth (172.20.0.3) 56(84) bytes of data.
64 bytes from db-userauth.authnet (172.20.0.3): icmp_seq=1 ttl=64
time=0.163 ms
^C
--- db-userauth ping statistics ---
1 packet transmitted, 1 received, 0% packet loss, time 1003ms
root@ba75699519ef:/userauth# ping svc-userauth
PING svc-userauth (172.20.0.2) 56(84) bytes of data.
64 bytes from ba75699519ef (172.20.0.2): icmp_seq=1 ttl=64 time=0.073
ms
^C

--- svc-userauth ping statistics ---
1 packet transmitted, 1 received, 0% packet loss, time 2051ms

The process listing is interesting to study. Process PID 1 is the node ./user-
server.mjs command in the Dockerfile. The format we used for the CMD line
ensured that the node process ended up as process 1. This is important so that
process signals are handled correctly, allowing Docker to manage the service process
correctly. The tail end of the following blog post has a good discussion of the issue:

https://www.docker. com/ blog/ keep- nodejs- rockin- in- docker/

A ping command proves that the two containers are available as hostnames
matching the container names:

$ ping 172.20.0.2
PING 172.20.0.2 (172.20.0.2): 56 data bytes
Request timeout for icmp_seq 0
^C
--- 172.20.0.2 ping statistics ---
2 packets transmitted, 0 packets received, 100.0% packet loss
$ ping 172.20.0.3
PING 172.20.0.3 (172.20.0.3): 56 data bytes
Request timeout for icmp_seq 0
^C
--- 172.20.0.3 ping statistics ---
2 packets transmitted, 0 packets received, 100.0% packet loss

From outside the containers, on the host system, we cannot ping the containers. That's
because they are attached to authnet and are not reachable.

https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/
https://www.docker.com/blog/keep-nodejs-rockin-in-docker/

Deploying Node.js Microservices with Docker Chapter 11

[487]

We have successfully Dockerized the user authentication service in two
containers—db-userauth and svc-userauth. We've poked around the insides of a
running container and found some interesting things. However, our users need the
fantastic Notes application to be running, and we can't afford to rest on our laurels.

Since this was our first time setting up a Docker service, we went through a lot of
details. We started by launching a MySQL database container, and what is required to
ensure that the data directory is persistent. We then set up a Dockerfile for the
authentication service and learned how to connect containers to a common Docker
network and how containers can communicate with each other over the network. We
also studied the security benefits of this network infrastructure, since we can easily
wall off the service and its database from intrusion.

Let's now move on and Dockerize the Notes application, making sure that it is
connected to the authentication server.

Creating FrontNet for the Notes
application
We have the back half of our system set up in Docker containers, as well as
the private bridge network to connect the backend containers. It's now time to do the
same for the front half of the system: the Notes application (svc-notes) and its
associated database (db-notes). Fortunately, the tasks required to build FrontNet are
more or less the same as what we did for AuthNet.

The first task is to set up another private bridge network, frontnet. Like authnet,
this will be the infrastructure for the front half of the Notes application stack.

Create a directory, frontnet, and in that directory, create a package.json file that
will contain the scripts to manage frontnet:

{
 "name": "frontnet",
 "version": "1.0.0",
 "description": "Scripts to define and manage FrontNet",
 "scripts": {
 "build-frontnet": "docker network create --driver bridge frontnet",
 },
 "license": "ISC"
}

Deploying Node.js Microservices with Docker Chapter 11

[488]

As with authnet, this is just the starting point as we have several more scripts to
add.

Let's go ahead and create the frontnet bridge network:

$ npm run build-frontnet
...
$ docker network ls
NETWORK ID NAME DRIVER SCOPE
3021e2069278 authnet bridge local
f3df227d4bff frontnet bridge local

We have two virtual bridge networks. Over the next few sections, we'll set up the
database and Notes application containers, connect them to frontnet, and then see
how to manage everything.

MySQL container for the Notes application
As with authnet, the task is to construct a MySQL server container using
the mysql/mysql-server image. We must configure the server to be compatible
with the SEQUELIZE_CONNECT file that we'll use in the svc-notes container. For that
purpose, we'll use a database named notes and a notes user ID.

For that purpose, add the following to the scripts section of the package.json file:

"prebuild-db-notes": "mkdir notes-data",
"build-db-notes": "docker run --detach --name db-notes --env
MYSQL_USER=notes --env MYSQL_PASSWORD=notes12345 --env
MYSQL_DATABASE=notes --mount type=bind,src=`pwd`/notes-
data,dst=/var/lib/mysql --network frontnet --env
MYSQL_ROOT_PASSWORD=w0rdw0rd mysql/mysql-server:8.0 --
bind_address=0.0.0.0 --socket=/tmp/mysql.sock",
"stop-db-notes": "docker stop db-notes",
"start-db-notes": "docker start db-notes",

This is largely the same as for db-userauth, with the word notes substituted for
userauth. Remember that on Windows the --mount option requires a Windows-
style absolute pathname.

Let's now run the script:

$ npm run build-db-notes

> frontnet@1.0.0 prebuild-db-notes /home/david/Chapter10/frontnet
> mkdir -p notes-data

Deploying Node.js Microservices with Docker Chapter 11

[489]

> frontnet@1.0.0 build-db-notes /home/david/Chapter10/frontnet
> docker run --detach --name db-notes --env MYSQL_USER=notes --env
MYSQL_PASSWORD=notes12345 --env MYSQL_DATABASE=notes --mount
type=bind,src=`pwd`/notes-data,dst=/var/lib/mysql --network frontnet -
p 3306:3306 --env MYSQL_ROOT_PASSWORD=w0rdw0rd mysql/mysql-server:8.0
--bind_address=0.0.0.0

af60afab6994095fcbc11c86159bdb0b02924d3ad8bf08506f4c16171959bc2b

This database will be available in the db-notes domain name on frontnet. Because
it's attached to frontnet, it won't be reachable by containers connected to authnet.
To verify this, run the following command:

$ docker exec -it svc-userauth bash
root@ba75699519ef:/userauth# ping db-notes
ping: db-notes: Name or service not known
root@ba75699519ef:/userauth# ping db-userauth
PING db-userauth (172.20.0.3) 56(84) bytes of data.
64 bytes from db-userauth.authnet (172.20.0.3): icmp_seq=1 ttl=64
time=10.5 ms
...
root@ba75699519ef:/userauth# ping db-notes.frontnet
ping: db-notes.frontnet: Name or service not known

Since db-notes is on a different network segment, we've achieved separation. But we
can notice something interesting. The ping command tells us that the full domain
name for db-userauth is db-userauth.authnet. Therefore, it stands to reason
that db-notes is also known as db-notes.frontnet. But either way, we cannot
reach containers on frontnet from a container on authnet, and so we have
achieved the desired separation.

We're able to move more quickly to construct FrontNet because it's so much like
AuthNet. We just have to do what we did before and tweak the names.

In this section, we created a database container. In the next section, we will create the
Dockerfile for the Notes application.

Dockerizing the Notes application
Our next step is, of course, to Dockerize the Notes application. This starts by creating
a Dockerfile, and then adding another Sequelize configuration file, before finishing
up by adding more scripts to the frontnet/package.json file.

Deploying Node.js Microservices with Docker Chapter 11

[490]

In the notes directory, create a file named Dockerfile containing the following:

FROM node:14

RUN apt-get update -y \
 && apt-get -y install curl python build-essential git ca
 -certificates

ENV DEBUG="notes:*,messages:*"
ENV SEQUELIZE_CONNECT="models/sequelize-docker-mysql.yaml"
ENV NOTES_MODEL="sequelize"
ENV USER_SERVICE_URL="http://svc-userauth:5858"
ENV PORT="3000"

RUN mkdir -p /notesapp /notesapp/minty /notesapp/partials
/notesapp/public /notesapp/routes /notesapp/theme /notesapp/theme/dist
/notesapp/views
COPY minty/ /notesapp/minty/
COPY models/*.mjs models/*.yaml /notesapp/models/
COPY partials/ /notesapp/partials/
COPY public/ /notesapp/public/
COPY routes/ /notesapp/routes/
COPY theme/dist/ /notesapp/theme/dist/
COPY views/ /notesapp/views/
COPY *.mjs package.json /notesapp/

WORKDIR /notesapp

RUN npm install --unsafe-perm

VOLUME /sessions
EXPOSE 3000
CMD ["node", "./app.mjs"]

This is similar to the Dockerfile we used for the authentication service. We're using
the environment variables from notes/package.json, plus a new
one: NOTES_SESSION_DIR.

The most obvious change is the number of COPY commands. The Notes application is
a lot more involved, given the number of sub-directories full of files that must be
installed. We start by creating the top-level directories of the Notes application
deployment tree. Then, one by one, we copy each sub-directory into its corresponding
sub-directory in the container filesystem.

Deploying Node.js Microservices with Docker Chapter 11

[491]

In a COPY command, the trailing slash on the destination directory is important. Why?
Because the Docker documentation says that the trailing slash is important, that's
why.

The big question is why use multiple COPY commands like this? This would have been
incredibly simple:

COPY . /notesapp

However, the multiple COPY commands let us control exactly what's copied. It's most
important to avoid copying the node_modules directory into the container. Not only
is the node_modules file on the host large, which would bloat the container if copied,
but it is set up for the host OS and not the container OS. The
node_modules directory must be built inside the container, with the installation
happening on the container's OS. That constraint led to the choice to explicitly copy
specific files to the destination.

We also have a new SEQUELIZE_CONNECT file. Create models/sequelize-docker-
mysql.yaml containing the following:

dbname: notes
username: notes
password: notes12345
params:
 host: db-notes
 port: 3306
 dialect: mysql

This will access a database server on the db-notes domain name using the named
database, username, and password.

Notice that the USER_SERVICE_URL variable no longer accesses the authentication
service at localhost, but at svc-userauth. The svc-userauth domain name is
currently only advertised by the DNS server on AuthNet, but the Notes service is on
FrontNet. Therefore, this will cause a failure for us when we get to running the Notes
application, and we'll have to make some connections so that the svc-
userauth container can be accessed from svc-notes.

In Chapter 8, Authenticating Users with a Microservice, we discussed the need to
protect the API keys supplied by Twitter. We could copy the .env file to
the Dockerfile, but this may not be the best choice, and so we've left it out of the
Dockerfile.

Deploying Node.js Microservices with Docker Chapter 11

[492]

Unfortunately, this does not protect the Twitter credentials to the
level required. The .env file is available as plaintext inside the
container. Docker has a feature, Docker Secrets, that can be used to
securely store data of this sort. Unfortunately, it is only available
when using Swarm mode, which we are not doing at this time; but
we will use this feature in Chapter 12, Deploying a Docker Swarm to
AWS EC2 Using Terraform.

The value of TWITTER_CALLBACK_HOST needs to reflect where Notes is deployed.
Right now, it is still on your laptop, but if it is deployed to a server, this variable will
require the IP address or domain name of the server.

In notes/package.json, add the following scripts entry:

"scripts": {
 ...
 "docker-build": "docker build -t svc-notes ."
 ...
}

As with the authentication server, this lets us build the container image for the Notes
application service.

Then, in frontnet/package.json, add these scripts:

"build-notes": "cd ../notes && npm run docker-build",
"postbuild-notes": "docker run --detach --name svc-notes --network
 frontnet -p 80:3000 svc-notes",
"start-notes": "docker start svc-notes",
"stop-notes": "docker stop svc-notes",
"start-notes-service": "npm run start-db-notes && npm run start
 -notes",
"stop-notes-service": "npm run stop-db-notes && npm run stop-notes"

Now, we can build the container image:

$ npm run build-notes

> frontnet@1.0.0 build-notes /home/david/Chapter10/frontnet
> cd ../notes && npm run docker-build

> notes@0.0.0 docker-build /home/david/Chapter10/notes
> docker build -t svc-notes .

Sending build context to Docker daemon 223.9MB
Step 1/22 : FROM node:13.8

Deploying Node.js Microservices with Docker Chapter 11

[493]

 ---> 07e774543bdf
...

> frontnet@1.0.0 postbuild-notes /home/david/Chapter10/frontnet
> docker run --detach --name svc-notes --network frontnet -p 80:3000
svc-notes

01bffcf4818aedeb082760c9d39087c08f2ba167d601413f1a745fdf305cdc3d

This creates the container image and then launches the container.

Notice that the exposed port 3000 is mapped with -p 80:3000 onto the normal
HTTP port. Since we're getting ready for deployment on a real service, we can stop
using port 3000.

At this point, we can connect our browser to http://localhost and start using the
Notes application. However, we'll quickly run into a problem:

The user experience team is going to scream about this ugly error message, so put it
on your backlog to generate a prettier error screen. For example, a flock of birds
pulling a whale out of the ocean is popular.

This error means that Notes cannot access anything at the host named svc-
userauth. That host does exist because the container is running, but it's not
on frontnet, and is not reachable from the notes container. Instead, it is
on authnet, which is currently not reachable by svc-notes:

$ docker exec -it svc-notes bash
root@9318fa2ecbb6:/notesapp# ping svc-userauth
ping: svc-userauth: Name or service not known
root@9318fa2ecbb6:/notesapp# ping svc-userauth.authnet
ping: svc-userauth.authnet: Name or service not known

root@9318fa2ecbb6:/notesapp# ping db-notes
PING db-notes (172.21.0.2) 56(84) bytes of data.
64 bytes from db-notes.frontnet (172.21.0.2): icmp_seq=1 ttl=64
time=1.33 ms

Deploying Node.js Microservices with Docker Chapter 11

[494]

We can reach db-notes from svc-notes but not svc-userauth. This is as expected
since we have attached these containers to different networks.

If you inspect FrontNet and AuthNet, you'll see that the containers attached to each
do not overlap:

$ docker network inspect frontnet
$ docker network inspect authnet

In the architecture diagram presented in Chapter 10, Deploying Node.js Applications to
Linux Servers, we showed a connection between the svc-notes and svc-
userauth containers. This connection is required so that Notes can authenticate its
users. But that connection does not yet exist.

Docker requires you to take a second step to attach the container to a second network:

$ docker network connect authnet svc-notes

With no other change, the Notes application will now allow you to log in and start
adding and editing notes. Furthermore, start a shell in svc-notes and you'll be able
to ping both svc-userauth and db-userauth.

There is a glaring architecture question staring at us. Do we connect the svc-
userauth service to frontnet, or do we connect the svc-notes service
to authnet? We just connected svc-notes to authnet, but maybe that's not the best
choice. To verify which network setup solves the problem, run the following
commands:

$ docker network disconnect authnet svc-notes
$ docker network connect frontnet svc-userauth

The first time around, we connected svc-notes to authnet, then we disconnected it
from authnet, and then connected svc-userauth to frontnet. That means we
tried both combinations and, as expected, in both cases, svc-notes and svc-
userauth were able to communicate.

This is a question for security experts since the consideration is the attack vectors
available to any intruders. Suppose Notes has a security hole allowing an invader to
gain access. How do we limit what is reachable via that hole?

Deploying Node.js Microservices with Docker Chapter 11

[495]

The primary observation is that by connecting svc-notes to authnet, svc-
notes not only has access to svc-userauth but also to db-userauth. To see this,
run these commands:

$ docker network disconnect frontnet svc-userauth
$ docker network connect authnet svc-notes
$ docker exec -it svc-notes bash
root@9318fa2ecbb6:/notesapp#
root@9318fa2ecbb6:/notesapp# ping svc-userauth
PING svc-userauth (172.20.0.2) 56(84) bytes of data.
64 bytes from svc-userauth.authnet (172.20.0.2): icmp_seq=1 ttl=64
time=0.151 ms
...
root@9318fa2ecbb6:/notesapp# ping db-userauth
PING db-userauth (172.20.0.3) 56(84) bytes of data.
64 bytes from db-userauth.authnet (172.20.0.3): icmp_seq=1 ttl=64
time=0.379 ms

This sequence reconnects svc-notes to authnet and demonstrates the ability to
access both the svc-userauth and db-userauth containers. Therefore, a successful
invader could access the db-userauth database, a result we wanted to prevent. Our
diagram in Chapter 10, Deploying Node.js Applications to Linux Servers, showed no
such connection between svc-notes and db-userauth.

Given that our goal for using Docker was to limit the attack vectors, we have a clear
distinction between the two container/network connection setups. Attaching svc-
userauth to frontnet limits the number of containers that can access db-
userauth. For an intruder to access the user information database, they must first
break into svc-notes, and then break into svc-userauth; unless, that is, our
amateur attempt at a security audit is flawed.

For this and a number of other reasons, we arrive at this final set
of scripts for frontnet/package.json:

"build-frontnet": "docker network create --driver bridge frontnet",
"connect-userauth": "docker network connect frontnet svc-userauth",
"prebuild-db-notes": "mkdir -p notes-data",
"build-db-notes": "docker run --detach --name db-notes --env
 MYSQL_USER=notes --env MYSQL_PASSWORD=notes12345 --env
 MYSQL_DATABASE=notes --mount type=bind,src=`pwd`/notes-
 data,dst=/var/lib/mysql --network frontnet --env
 MYSQL_ROOT_PASSWORD=w0rdw0rd mysql/mysql-server:8.0
 --bind_address=0.0.0.0",
"stop-db-notes": "docker stop db-notes",
"start-db-notes": "docker start db-notes",

Deploying Node.js Microservices with Docker Chapter 11

[496]

"build-notes": "cd ../notes && npm run docker-build",
"postbuild-notes": "npm run launch-notes",
"launch-notes": "docker run --detach --name svc-notes --network
 frontnet -p 80:3000 node-web-development/notes",
"start-notes": "docker start svc-notes",
"stop-notes": "docker stop svc-notes",
"start-notes-service": "npm run start-db-notes && npm run start
 -notes",
"stop-notes-service": "npm run stop-db-notes && npm run stop-notes"

Primarily, this adds a command, connect-userauth, to connect svc-
userauth to frontnet. That helps us remember our decision on how to join the
containers. We also took the opportunity to do a little reorganization.

We've learned a lot in this section about Docker—using Docker images, creating
Docker containers from images, and configuring a group of Docker containers with
some security constraints in mind. We came out of this section having implemented
our initial architecture idea. We have two private networks with the containers
connected to their appropriate network. The only exposed TCP port is the Notes
application, visible on port 80. The other containers connect with one another using
TCP/IP connections that are not available from outside the containers.

Before proceeding to the next section, you may want to shut down the services we've
launched. Simply execute the following command:

$ cd frontnet
$ npm run stop-notes-service
$ cd ../authnet
$ npm run stop-user-service

Because we've automated many things, it is this simple to administer the system.
However, it is not as automated as we want it to be. To address that, let's learn how to
make the Notes stack more easily deployable by using Docker Compose to describe
the infrastructure.

Deploying Node.js Microservices with Docker Chapter 11

[497]

Managing multiple containers with
Docker Compose
It is cool that we can create encapsulated instantiations of the software services that
we've created. In theory, we can publish these images to Docker repositories, and
then launch the containers on any server we want. For example, our task in Chapter
10, Deploying Node.js Applications to Linux Servers, would be greatly simplified with
Docker. We could simply install Docker Engine on the Linux host and then deploy
our containers on that server, and not have to deal with all those scripts and the PM2
application.

But we haven't properly automated the process. The promise was to use the
Dockerized application for deployment on cloud services. In other words, we need to
take all this learning and apply it to the task of simplifying deployment.

We've demonstrated that, with Docker, Notes can be built using four containers that
have a high degree of isolation from each other and from the outside world.

There is a glaring problem: our process in the previous section was partly manual,
partly automated. We created scripts to launch each portion of the system, which is
good practice. However, we did not automate the entire process to bring up Notes
and the authentication services, nor is this solution scalable beyond one machine.

Let's start with the last issue first—scalability. Within the Docker ecosystem,
several Docker orchestrator services are available. An orchestrator automatically
deploys and manages Docker containers over a group of machines. Some examples of
Docker orchestrators are Docker Swarm, Kubernetes, CoreOS Fleet, and Apache
Mesos. These are powerful systems that can automatically increase/decrease
resources as needed to move containers from one host to another, and more. We
mention these systems for you to further study as your needs grow. In Chapter
12, Deploying a Docker Swarm to AWS EC2 with Terraform, we will build on the work
we're about to do in order to deploy Notes in a Docker Swarm cluster that we'll build
on AWS EC2 infrastructure.

Deploying Node.js Microservices with Docker Chapter 11

[498]

Docker Compose (https://docs.docker.com/compose/overview/) will solve the
other problems we've identified. It lets us easily define and run several Docker
containers together as a complete application. It uses a YAML file, docker-
compose.yml, to describe the containers, their dependencies, the virtual networks,
and the volumes. While we'll be using it to describe deployment on a single host
machine, Docker Compose can be used for multi-machine deployments. Namely,
Docker Swarm directly uses compose files to describe the services you launch in a
swarm. In any case, learning about Docker Compose will give you a headstart on
understanding the other systems.

Before proceeding, ensure that Docker Compose is installed. If you've installed
Docker for Windows or Docker for Mac, everything that is required is installed. On
Linux, you must install it separately by following the instructions in the links
provided earlier.

Docker Compose file for the Notes stack
We just talked about Docker orchestration services, but Docker Compose is not itself
such a service. Instead, Docker Compose uses a specific YAML file structure to
describe how to deploy Docker containers. With a Docker Compose file, we can
describe one or more containers, networks, and volumes involved in launching a
Docker-based service.

Let's start by creating a directory, compose-local, as a sibling to
the users and notes directories. In that directory, create a file named docker-
compose.yml:

version: '3'
services:

 db-userauth:
 image: "mysql/mysql-server:8.0"
 container_name: db-userauth
 command: ["mysqld",
 "--character-set-server=utf8mb4",
 "--collation-server=utf8mb4_unicode_ci",
 "--bind-address=0.0.0.0",
 "--socket=/tmp/mysql.sock"]
 expose:
 - "3306"
 networks:
 - authnet
 volumes:

https://docs.docker.com/compose/overview/

Deploying Node.js Microservices with Docker Chapter 11

[499]

 - db-userauth-data:/var/lib/mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: "w0rdw0rd"
 MYSQL_USER: userauth
 MYSQL_PASSWORD: userauth
 MYSQL_DATABASE: userauth

 svc-userauth:
 build: ../users
 container_name: svc-userauth
 depends_on:
 - db-userauth
 networks:
 - authnet
 # DO NOT EXPOSE THIS PORT ON PRODUCTION
 ports:
 - "5858:5858"
 restart: always

 db-notes:
 image: "mysql/mysql-server:8.0"
 container_name: db-notes
 command: ["mysqld",
 "--character-set-server=utf8mb4",
 "--collation-server=utf8mb4_unicode_ci",
 "--bind-address=0.0.0.0",
 "--socket=/tmp/mysql.sock"]
 expose:
 - "3306"
 networks:
 - frontnet
 volumes:
 - db-notes-data:/var/lib/mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: "w0rdw0rd"
 MYSQL_USER: notes
 MYSQL_PASSWORD: notes12345
 MYSQL_DATABASE: notes

 svc-notes:
 build: ../notes
 container_name: svc-notes
 depends_on:
 - db-notes
 networks:
 - frontnet

Deploying Node.js Microservices with Docker Chapter 11

[500]

 ports:
 - "3000:3000"
 restart: always

networks:
 frontnet:
 driver: bridge
 authnet:
 driver: bridge

volumes:
 db-userauth-data:
 db-notes-data:

That's the description of the entire Notes deployment. It's at a fairly high level of
abstraction, roughly equivalent to the options in the command-line tools we've used
so far. It's fairly succinct and self-explanatory, and, as we'll see, the docker-
compose command makes these files a convenient way to manage Docker services.

The version line says that this is a version 3 Compose file. The version number is
inspected by the docker-compose command so that it can correctly interpret its
content. The full documentation is worth reading at https:/ /docs. docker. com/
compose/compose- file/ .

There are three major sections used here: services, volumes, and networks. The
services section describes the containers being used, the networks section
describes the networks, and the volumes section describes the volumes. The content
of each section matches the containers we created earlier. The configuration we've
already dealt with is all here, just rearranged.

There are the two database containers—db-userauth and db-notes—and the two
service containers—svc-userauth and svc-notes. The service containers are built
from a Dockerfile located in the directory named in the build attribute. The database
containers are instantiated from images downloaded from Docker Hub. Both
correspond directly to what we did previously, using the docker run command to
create the database containers and using docker build to generate the images for
the services.

The container_name attribute is equivalent to the --name attribute and specifies a
user-friendly name for the container. We must specify the container name in order to
specify the container hostname to effect a Docker-style service discovery.

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

Deploying Node.js Microservices with Docker Chapter 11

[501]

The networks attribute lists the networks to which this container must be connected
and is exactly equivalent to the --net argument. Even though the docker command
doesn't support multiple --net options, we can list multiple networks in the
Compose file. In this case, the networks are bridge networks. As we did earlier, the
networks themselves must be created separately and, in a Compose file, this is done
in the networks section.

The ports attribute declares the ports that are to be published and the mapping to
container ports. In the ports declaration, we have two port numbers, the first being
the published port number and the second being the port number inside the
container. This is exactly equivalent to the -p option used earlier.

The depends_on attribute lets us control the start up order. A container that depends
on another will wait to start until the depended-on container is running.

The volumes attribute describes mappings of a container directory to
a host directory. In this case, we've defined two volume names—db-userauth-

data and db-notes-data—and then used them for the volume mapping. However,
when we deploy to Docker Swarm on AWS EC2, we'll need to change how this is
implemented.

Notice that we haven't defined a host directory for the volumes. Docker will assign a
directory for us, which we can learn about by using the docker volume
inspect command.

The restart attribute controls what happens if or when the container dies. When a
container starts, it runs the program named in the CMD instruction, and when that
program exits, the container exits. But what if that program is meant to run forever;
shouldn't Docker know that it should restart the process? We could use a background
process supervisor, such as Supervisord or PM2. However, the
Docker restart option takes care of it.

The restart attribute can take one of the following four values:

no: Do not restart.
on-failure:count: Restart up to N times.
always: Always restart.
unless-stopped: Start the container unless it was explicitly stopped.

In this section, we've learned how to build a Docker Compose file by creating one that
describes the Notes application stack. With that in hand, let's see how to use this tool
to launch the containers.

Deploying Node.js Microservices with Docker Chapter 11

[502]

Building and running the Notes application
with Docker Compose
With the Docker Compose CLI tool, we can manage any sets of Docker containers
that can be described in a docker-compose.yml file. We can build the containers,
bring them up and down, view the logs, and more. On Windows, we're able to run
the commands in this section unchanged.

Our first task is to create a clean slate by running these commands:

$ docker stop db-notes svc-userauth db-auth svc-notes
db-notes
svc-userauth
db-auth
svc-notes
$ docker rm db-notes svc-userauth db-auth svc-notes
db-notes
svc-userauth
db-auth
svc-notes

We first needed to stop and delete any existing containers left over from our previous
work. We can also use the scripts in the frontnet and authnet directories to do this.
docker-compose.yml used the same container names, so we need the ability to
launch new containers with those names.

To get started, use this command:

$ docker-compose build
db-userauth uses an image, skipping
db-notes uses an image, skipping
Building svc-userauth
Step 1/12 : FROM node:13.8
 ---> 07e774543bdf$ docker-compose up
...
Successfully built f714b877dbec
Successfully tagged compose-local_svc-userauth:latest
Building svc-notes
Step 1/26 : FROM node:13.8
 ---> 07e774543bdf
...
Successfully built 36b358e3dd0e
Successfully tagged compose-local_svc-notes:latest

Deploying Node.js Microservices with Docker Chapter 11

[503]

This builds the images listed in docker-compose.yml. Note that the image names
we end up with all start with compose-local, which is the name of the directory
containing the file. Because this is the equivalent of running docker build in each of
the directories, it only builds the images.

Having built the containers, we can start them all at once using either docker-
compose up or docker-compose start:

$ docker-compose start
Starting db-userauth ... done
Starting svc-userauth ... done
Starting db-notes ... done
Starting svc-notes ... done
$ docker-compose stop
Stopping svc-notes ... done
Stopping svc-userauth ... done
Stopping db-notes ... done
Stopping db-userauth ... done

We can use docker-compose stop to shut down the containers. With docker-
compose start, the containers run in the background.

We can also run docker-compose up to get a different experience:

$ docker-compose up
Recreating db-notes ... done
Starting db-userauth ... done
Starting svc-userauth ... done
Recreating svc-notes ... done
Attaching to db-userauth, db-notes, svc-userauth, svc-notes
db-userauth | [Entrypoint] MySQL Docker Image 8.0.19-1.1.15
db-userauth | [Entrypoint] Starting MySQL 8.0.19-1.1.15
db-notes | [Entrypoint] MySQL Docker Image 8.0.19-1.1.15
db-notes | [Entrypoint] Starting MySQL 8.0.19-1.1.15

If necessary, docker-compose up will first build the containers. In addition, it keeps
the containers all in the foreground so that we can see the logging. It combines the log
output for all the containers together in one output, with the container name shown at
the beginning of each line. For a multi-container system such as Notes, this is very
helpful.

We can check the status using this command:

$ docker-compose ps
 Name Command State Ports

Deploying Node.js Microservices with Docker Chapter 11

[504]

db-notes /entrypoint.sh mysqld --ch ... Up (healthy) 3306/tcp,
33060/tcp
db-userauth /entrypoint.sh mysqld --ch ... Up (healthy) 3306/tcp,
33060/tcp
svc-notes docker-entrypoint.sh /bin/ ... Up 0.0.0.0:3000->3000/tcp
svc-userauth docker-entrypoint.sh /bin/ ... Up 0.0.0.0:5858->5858/tcp

This is related to running docker ps, but the presentation is a little different and
more compact.

In docker-compose.yml, we insert the following declaration for svc-userauth:

 # DO NOT EXPOSE THIS PORT ON PRODUCTION
 ports:
 - "5858:5858"

This means that the REST service port for svc-userauth was published. Indeed, in
the status output, we see that the port is published. That violates our security design,
but it does let us run the tests with users/cli.mjs from our laptop. That is, we can
add users to the database as we've done so many times before.

This security violation is acceptable so long as it stays on our laptop. The compose-
local directory is named specifically to be used with Docker Compose on our
laptop.

Alternatively, we can run commands inside the svc-userauth container just as
before:

$ docker exec -it svc-userauth node cli.mjs list-users
[
 ...
]
$ docker-compose exec svc-userauth node cli.mjs list-users
[
 ...
]

We started the Docker containers using docker-compose, and we can use
the docker-compose command to interact with the containers. In this case, we
demonstrated using both the docker-compose and docker commands to execute a
command inside one of the containers. While there are slight differences in the
command syntax, it's the same interaction with the same results.

Deploying Node.js Microservices with Docker Chapter 11

[505]

Another test is to go into the containers and explore:

$ docker-compose exec svc-notes bash
...
$ docker-compose exec svc-userauth bash
...

From there, we can try pinging each of the containers to see which containers can be
reached. That will serve as a simplistic security audit to ensure that what we've
created fits the security model we desired.

While doing this, we find that svc-userauth can ping every container,
including db-notes. This violates the security plan and has to be changed.

Fortunately, this is easy to fix. Simply by changing the configuration, we can add a
new network named svcnet to docker-compose.yml:

services:
 ..
 svc-userauth:
 ..
 networks:
 - authnet
 - svcnet
 ..

 svc-notes:
 ..
 networks:
 - frontnet
 - svcnet
 ..

networks:
 frontnet:
 driver: bridge
 authnet:
 driver: bridge
 svcnet:
 driver: bridge

svc-userauth is no longer connected to frontnet, which is how we could ping db-
notes from svc-userauth. Instead, svc-userauth and svc-notes are both
connected to a new network, svcnet, which is meant to connect the service
containers. Therefore, both service containers have exactly the required access to
match the goals outlined at the beginning.

Deploying Node.js Microservices with Docker Chapter 11

[506]

That's an advantage of Docker Compose. We can quickly reconfigure the system
without rewriting anything other than the docker-compose.yml configuration file.
Furthermore, the new configuration is instantly reflected in a file that can be
committed to our source repository.

When you're done testing the system, simply type CTRL + C in the terminal:

^CGracefully stopping... (press Ctrl+C again to force)
Stopping db-userauth ... done
Stopping userauth ... done
Stopping db-notes ... done
Stopping notes ... done

As shown here, this stops the whole set of containers. Occasionally, it will instead exit
the user to the shell, and the containers will still be running. In that case, the user will
have to use an alternative method to shut down the containers:

$ docker-compose down
Stopping db-userauth ... done
Stopping userauth ... done
Stopping db-notes ... done
Stopping notes ... done

The docker-compose commands—start, stop, and restart—all serve as ways to
manage the containers as background tasks. The default mode for the docker-
compose up command is, as we've seen, to start the containers in the foreground.
However, we can also run docker-compose up with the -d option, which says to
detach the containers from the terminal to run in the background.

We're getting closer to our end goal. In this section, we learned how to take the
Docker containers we've designed and create a system that can be easily brought up
and down as a unit by running the docker-compose command.

While preparing to deploy this to Docker Swarm on AWS EC2, a horizontal scaling
issue was found, which we can fix on our laptop. It is fairly easy with Docker
Compose files to test multiple svc-notes instances to see whether we can scale
Notes for higher traffic loads. Let's take a look at that before deploying to the swarm.

Deploying Node.js Microservices with Docker Chapter 11

[507]

Using Redis for scaling the Notes
application stack
In the previous section, we learned how to use Docker Compose to manage the Notes
application stack. Looking ahead, we can see the potential need to use multiple
instances of the Notes container when we deploy to Docker Swarm on AWS EC2. In
this section, we will make a small modification to the Docker Compose file for an ad
hoc test with multiple Notes containers. This test will show us a couple of problems.
Among the available solutions are two packages that fix both problems by installing a
Redis instance.

A common tactic for handling high traffic loads is to deploy multiple service
instances as needed. This is called horizontal scaling, where we deploy multiple
instances of a service to multiple servers. What we'll do in this section is learn a little
about horizontal scaling in Docker by starting two Notes instances to see how it
behaves.

As it currently exists, Notes stores some data—the session data—on the local disk
space. As orchestrators such as Docker Swarm, ECS, and Kubernetes scale containers
up and down, containers are constantly created and destroyed or moved from one
host to another. This is done in the name of handling the traffic while optimizing the
load on the available servers. In this case, whatever active data we're storing on a
local disk will be lost. Losing the session data means users will be randomly logged
out. The users will be rightfully upset and will then send us support requests asking
what's wrong and whether we have even tested this thing!

In this section, we will learn that Notes does not behave well when we have multiple
instances of svc-notes. To address this problem, we will add a Redis container to
the Docker Compose setup and configure Notes to use Redis to solve the two
problems that we have discovered. This will ensure that the session data is shared
between multiple Notes instances via a Redis server.

Let's get started by performing a little ad hoc testing to better understand the
problem.

Deploying Node.js Microservices with Docker Chapter 11

[508]

Testing session management with multiple
Notes service instances
We can easily verify whether Notes properly handles session data if there are
multiple svc-notes instances. With a small modification to compose-
local/docker-compose.yml, we can start two svc-notes instances, or more.
They'll be on separate TCP ports, but it will let us see how Notes behaves with
multiple instances of the Notes service.

Create a new service, svc-notes-2, by duplicating the svc-notes declaration. The
only thing to change is the container name, which should be svc-notes-2, and the
published port, which should be port 3020.

For example, add the following to compose-local/docker-compose.yml:

 svc-notes-2:
 build: ../notes
 container_name: svc-notes-2
 depends_on:
 - db-notes
 networks:
 - frontnet
 - svcnet
 ports:
 - "3020:3020"
 restart: always
 environment:
 PORT: "3020"

This is the service definition for the svc-notes-2 container we just described.
Because we set the PORT variable, the container will listen on port 3020, which is
what is advertised in the ports attribute.

As before, when we quickly reconfigured the network configuration, notice that a
simple edit to the Docker Compose file was all that was required to change things
around.

Then, relaunch the Notes stack, as follows:

$ docker-compose up

In this case, there was no source code change, only a configuration change. Therefore,
the containers do not need to be rebuilt, and we can simply relaunch with the new
configuration.

Deploying Node.js Microservices with Docker Chapter 11

[509]

That will give us two Notes containers on different ports. Each is configured as
normal; for example, they connect to the same user authentication service. Using two
browser windows, visit both at their respective port numbers. You'll be able to log in
with one browser window, but you'll encounter the following situation:

The browser window on port 3020 is logged out, while the window open to port
3000 is logged in. Remember that port 3020 is svc-notes-2, while port 3000
is svc-notes. However, as you use the two windows, you'll observe some flaky
behavior with regard to staying logged in.

The issue is that the session data is not shared between svc-notes and svc-
notes-2. Instead, the session data is in files stored within each container.

We've identified a problem whereby keeping the session data inside the container
makes it impossible to share session data across all instances of the Notes service. To
fix this, we need a session store that shares the session data across processes.

Storing Express/Passport session data in a
Redis server
Looking back, we saw that we might have multiple instances of svc-notes deployed
on Docker Swarm. To test this, we created a second instance, svc-notes-2, and
found that user sessions were not maintained between the two Notes instances. This
told us that we must store session data in a shared data storage system.

Deploying Node.js Microservices with Docker Chapter 11

[510]

There are several choices when it comes to storing sessions. While it is tempting to
use the express-session-sequelize package, because we're already using
Sequelize to manage a database, we have another issue to solve that requires the use
of Redis. We'll discuss this other issue later.

For a list of Express session stores, go to http:/ /expressjs. com/ en/
resources/ middleware/ session. html#compatible- session-
stores.

Redis is a widely used key-value data store that is known for being very fast. It is also
very easy to install and use. We won't have to learn anything about Redis, either.

Several steps are required in order to set up Redis:

In compose-local/docker-compose.yml, add the following definition1.
to the services section:

 redis:
 image: "redis:5.0"
 networks:
 - frontnet
 container_name: redis

This sets up a Redis server in a container named redis. This means that
other services wanting to use Redis will access it at the host named redis.

For any svc-notes services you've defined (svc-notes and svc-
notes-2), we must now tell the Notes application where to find the Redis
server. We can do this by using an environment variable.

In compose-local/docker-compose.yml, add the following2.
environment variable declaration to any such services:

 svc-notes: # Also do this for svc-notes-2
 ...
 environment:
 REDIS_ENDPOINT: "redis"

Add this to both the svc-notes and svc-notes-2 service declarations.
This passes the Redis hostname to the Notes service.

http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores
http://expressjs.com/en/resources/middleware/session.html#compatible-session-stores

Deploying Node.js Microservices with Docker Chapter 11

[511]

Next, install the package:3.

$ cd notes
$ npm install redis connect-redis --save

This installs the required packages. The redis package is a client for using
Redis from Node.js and the connect-redis package is the Express session
store for Redis.

We need to change the initialization in app.mjs to use the connect-4.
redis package in order to store session data:

import session from 'express-session';
import sessionFileStore from 'session-file-store';
import ConnectRedis from 'connect-redis';
const RedisStore = ConnectRedis(session);
import redis from 'redis';
var sessionStore;
if (typeof process.env.REDIS_ENDPOINT !== 'undefined'
 && process.env.REDIS_ENDPOINT !== '') {
 const RedisStore = ConnectRedis(session);
 const redisClient = redis.createClient({
 host: process.env.REDIS_ENDPOINT
 });
 sessionStore = new RedisStore({ client: redisClient });
 } else {
 const FileStore = sessionFileStore(session);
 sessionStore = new FileStore({ path: "sessions" });
}

export const sessionCookieName = 'notescookie.sid';
const sessionSecret = 'keyboard mouse';

This brings in the Redis-based session store provided by connect-redis.

The configuration for these packages is taken directly from the
relevant documentation.

For connect-redis, refer to https:/ / www.npmjs. com/package/
connect- redis.

For redis, refer to https:/ / github. com/ NodeRedis/ node- redis.

https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis
https://github.com/NodeRedis/node-redis

Deploying Node.js Microservices with Docker Chapter 11

[512]

This imports the two packages and then configures the connect-redis package to
use the redis package. We consulted the REDIS_ENDPOINT environment variable to
configure the redis client object. The result landed in the
same sessionStore variable we used previously. Therefore, no other change is
required in app.mjs.

If no Redis endpoint is specified, we instead revert to the file-based session store. We
might not always deploy Notes in a context where we can run Redis; for example,
while developing on our laptop. Therefore, we require the option of not using Redis,
and, at the moment, the choice looks to be between using Redis or the filesystem to
store session data.

With these changes, we can relaunch the Notes application stack. It might help to
relaunch the stack using the following command:

$ docker-compose up --build --force-recreate

Because source file changes were made, the containers need to be rebuilt. These
options ensure that this happens.

We'll now be able to connect to both the Notes service
on http://localhost:3000 (svc-notes) and the service
on http://localhost:3020 (svc-notes-2), and it will handle the login session on
both services.

Another issue should be noted, however, and this is the fact that real-time
notifications are not sent between the two servers. To see this, set up four browser
windows, two for each of the servers. Navigate all of them to the same note. Then,
add and delete some comments. Only the browser windows connected to the same
server will dynamically show changes to the comments. Browser windows connected
to the other server will not.

This is the second horizontal scaling issue. Fortunately, its solution also involves the
use of Redis.

Distributing Socket.IO messages using Redis
While testing what happens when we have multiple svc-notes containers, we found
that login/logout was not reliable. We fixed this by installing a Redis-based session
store to keep session data in a place that is accessible by multiple containers. But we
also noticed another issue: the fact that the Socket.IO-based messaging did not
reliably cause updates in all browser windows.

Deploying Node.js Microservices with Docker Chapter 11

[513]

Remember that the updates we want to happen in the browser are triggered by
updates to the SQNotes or SQMessages tables. The events emitted by
updating either table are emitted by the server making the update. An update
happening in one service container (say, svc-notes-2) will emit an event from that
container, but not from the other one (say, svc-notes). There is no mechanism for
the other containers to know that they should emit such events.

The Socket.IO documentation talks about this situation:

https:/ / socket. io/ docs/ using- multiple- nodes/

The Socket.IO team provides the socket.io-redis package as the solution to this
problem. It ensures that events emitted through Socket.IO by any server will be
passed along to other servers so that they can also emit those events.

Since we already have the Redis server installed, we simply need to install the
package and configure it as per the instructions. Again, we will not need to learn
anything about Redis:

$ npm install socket.io-redis --save

This installs the socket.io-redis package.

Then, we configure it in app.mjs, as follows:

export const io = socketio(server);
io.use(passportSocketIo.authorize({
...
}));

import redisIO from 'socket.io-redis';
if (typeof process.env.REDIS_ENDPOINT !== 'undefined'
 && process.env.REDIS_ENDPOINT !== '') {
 io.adapter(redisIO({ host: process.env.REDIS_ENDPOINT, port: 6379
}));
}

The only change is to add the lines in bold. The socket.io-redis package is what
the Socket.IO team calls an adapter. Adapters are added to Socket.IO by using
the io.adapter call.

We only connect this adapter if a Redis endpoint has been specified. As before, this is
so that Notes can be run without Redis as needed.

https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/
https://socket.io/docs/using-multiple-nodes/

Deploying Node.js Microservices with Docker Chapter 11

[514]

Nothing else is required. If you relaunch the Notes application stack, you will now
receive updates in every browser window connected to every instance of the Notes
service.

In this section, we thought ahead about deployment to a cloud-hosting service.
Knowing that we might want to implement multiple Notes containers, we tested this
scenario on our laptop and found a couple of issues. They were easily fixed by
installing a Redis server and adding a couple of packages.

We're getting ready to finish this chapter, and there's one task to take care of before
we do. The svc-notes-2 container was useful for ad hoc testing, but it is not the
correct way to deploy multiple Notes instances. Therefore, in compose-
local/docker-compose.yml, comment out the svc-notes-2 definition.

This gave us some valuable exposure to a new tool that's widely used—Redis. Our
application now also appears to be ready for deployment. We'll take care of that in
the next chapter.

Summary
In this chapter, we took a huge step toward the vision of deploying Notes on a cloud-
hosting platform. Docker containers are widely used on cloud-hosting systems for
application deployment. Even if we don't end up using the Docker Compose file
once, we can still carry out the deployment and we have worked out how to
Dockerize every aspect of the Notes stack.

In this chapter, we learned not only about creating Docker images for Node.js
applications, but also about launching a whole system of services comprising a web
application. We have learned that a web application is not just about the application
code but also the databases, the frameworks we use, and even other services, such as
Redis.

For that purpose, we learned both how to create our own Docker containers as well as
how to use third-party containers. We learned how to launch containers using
docker run and Docker Compose. We learned how to build custom Docker
containers using a Dockerfile, and how to customize third-party containers.

Deploying Node.js Microservices with Docker Chapter 11

[515]

For connecting containers, we learned about the Docker bridge network. This is
useful on a single-host Docker installation and is a private communication channel
where containers can find each other. As a private channel, the bridge network is
relatively safe from outside intrusion, giving us a way to securely tie services
together. We had the opportunity to try different network architectures inside Docker
and to explore the security implications of each. We learned that Docker offers an
excellent way to securely deploy persistent services on a host system.

Looking ahead to the task of deploying Notes on a cloud hosting service, we did
some ad hoc testing with multiple instances of the Notes service. This highlighted a
few issues that will crop up with multiple instances, and we remedied those issues by
adding Redis to the application stack.

This gave us a well-rounded view of how Node.js services are prepared for
deployment to cloud-hosting providers. Remember that our goal is to deploy the
Notes application as Docker containers on AWS EC2 as an example of cloud
deployment. In this chapter, we explored different aspects of Dockerizing a Node.js
application stack, giving us a solid grounding in deploying services with Docker.
We're now ready to take this application to a server on the public internet.

In the next chapter, we will learn about two very important technologies. The first is
Docker Swarm, which is a Docker orchestrator that comes bundled with Docker.
We'll learn how to deploy our Docker stack as services in a Swarm that we'll build on
the AWS EC2 infrastructure. The second technology we'll learn about is Terraform,
which is an open source tool for describing service configuration on cloud-hosting
systems. We'll use it to describe the AWS EC2 configuration for the Notes application
stack.

12
Deploying a Docker Swarm to

AWS EC2 with Terraform
So far in this book, we've created a Node.js-based application stack comprising two
Node.js microservices, a pair of MySQL databases, and a Redis instance. In the
previous chapter, we learned how to use Docker to easily launch those services,
intending to do so on a cloud hosting platform. Docker is widely used for deploying
services such as ours, and there are lots of options available to us for deploying
Docker on the public internet.

Because Amazon Web Services (AWS) is a mature feature-filled cloud hosting
platform, we've chosen to deploy there. There are many options available for hosting
Notes on AWS. The most direct path from our work in Chapter 11, Deploying Node.js
Microservices with Docker, is to create a Docker Swarm cluster on AWS. That enables
us to directly reuse the Docker compose file we created.

Docker Swarm is one of the available Docker orchestration systems. These systems
manage a set of Docker containers on one or more Docker host systems. In other
words, building a swarm requires provisioning one or more server systems, installing
Docker Engine on each, and enabling swarm mode. Docker Swarm is built into
Docker Engine, and it's a matter of a few commands to join those servers together in a
swarm. We can then deploy Docker-based services to the swarm, and the swarm
distributes the containers among the server systems, monitoring each container,
restarting any that crash, and so on.

Docker Swarm can be used in any situation with multiple Docker host systems. It is
not tied to AWS because we can rent suitable servers from any of hundreds of web
hosting providers around the world. It's sufficiently lightweight that you can even
experiment with Docker Swarm using virtual machine (VM) instances (Multipass,
VirtualBox, and so on) on a laptop.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[517]

In this chapter, we will use a set of AWS Elastic Compute Cloud (EC2) instances. EC2
is the AWS equivalent of a virtual private server (VPS) that we would rent from a
web hosting provider. The EC2 instances will be deployed within an AWS virtual
private cloud (VPC), along with a network infrastructure on which we'll implement
the deployment architecture we outlined earlier.

Let's talk a little about the cost since AWS can be costly. AWS offers what's called the
Free Tier, where, for certain services, the cost is zero as long as you stay below a
certain threshold. In this chapter, we'll strive to stay within the free tier, except that
we will have three EC2 instances deployed for a while, which is beyond the free tier
for EC2 usage. If you are sensitive to the cost, it is possible to minimize it by
destroying the EC2 instances when not needed. We'll discuss how to do this later.

The following topics will be covered in this chapter:

Signing up with AWS and configuring the AWS command-line interface
(CLI)
An overview of the AWS infrastructure to be deployed
Using Terraform to create an AWS infrastructure
Setting up a Docker Swarm cluster on AWS EC2
Setting up Elastic Container Registry (ECR) repositories for Notes Docker
images
Creating a Docker stack file for deployment to Docker Swarm
Provisioning EC2 instances for a full Docker Swarm
Deploying the Notes stack file to the swarm

You will be learning a lot in this chapter, starting with how to get started with the
AWS Management Console, setting up Identity and Access Management (IAM)
users on AWS, and how to set up the AWS command-line tools. Since the AWS
platform is so vast, it is important to get an overview of what it entails and the
facilities we will use in this chapter. Then, we will learn about Terraform, a leading
tool for configuring services on all kinds of cloud platforms. We will learn how to use
it to configure AWS resources such as the VPC, the associated networking
infrastructure, and how to configure EC2 instances. We'll next learn about Docker
Swarm, the orchestration system built into Docker, how to set up a swarm, and how
to deploy applications in a swarm.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[518]

For that purpose, we'll learn about Docker image registries, the AWS Elastic
Container Registry (ECR), how to push images to a Docker registry, and how to use
images from a private registry in a Docker application stack. Finally, we'll learn about
creating a Docker stack file, which lets you describe Docker services to deploy in a
swarm.

Let's get started.

Signing up with AWS and configuring the
AWS CLI
To use AWS services you must, of course, have an AWS account. The AWS account is
how we authenticate ourselves to AWS and is how AWS charges us for services.

As a first step, go to https:/ /aws. amazon. com and sign up for an
account.

The Amazon Free Tier is a way to experience AWS services at zero
cost: https:/ /aws. amazon. com/ free/ .

Documentation is available at https:/ / docs. aws.amazon. com.

AWS has two kinds of accounts that we can use, as follows:

The root account is what's created when we sign up for an AWS account.
The root account has full access to AWS services.
An IAM user account is a less privileged account you can create within
your root account. The owner of a root account creates IAM accounts,
assigning the scope of permissions to each IAM account.

It is bad form to use the root account directly since the root account has complete
access to AWS resources. If the account credentials for your root account were to be
leaked to the public, significant damage could be done to your business. If the
credentials for an IAM user account were leaked, the damage is limited to the
resources controlled by that user account as well as by the privileges assigned to that
account. Furthermore, IAM user credentials can be revoked at any time, and then new
credentials generated, preventing anyone who is holding the leaked credentials from
doing any further damage. Another security measure is to enable multi-factor
authentication (MFA) for all accounts.

https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[519]

If you have not already done so, proceed to the AWS website at one of the preceding
links and sign up for an account. Remember that the account created that way is your
AWS root account.

Our first step is to familiarize ourselves with the AWS Management Console.

Finding your way around the AWS account
Because there are so many services on the AWS platform, it can seem like a maze of
twisty little passages, all alike. However, with a little orientation, we can find our way
around.

First, look at the navigation bar at the top of the window. On the right, there are three
dropdowns. The first has your account name and has account-related choices. The
second lets you select which AWS region is your default. AWS has divided its
infrastructure into regions, which essentially means the area of the world where AWS
data centers are located. The third connects you with AWS Support.

On the left is a dropdown marked Services. This shows you the list of all AWS
services. Since the Services list is unwieldy, AWS gives you a search box. Simply type
in the name of the service, and it will show up. The AWS Management Console home
page also has this search box.

While we are finding our way around, let's record the account number for the root
account. We'll need this information later. In the Account dropdown, select My
Account. The account ID is there, along with your account name.

It is recommended to set up MFA on your AWS root account. MFA simply means to
authenticate a person in multiple ways. For example, a service might use a code
number sent via a text message as a second authentication method, alongside asking
for a password. The theory is that the service is more certain of who we are if it
verifies both that we've entered a correct password and that we're carrying the same
cell phone we had carried on other days.

To set up MFA on your root account, go to the My Security Credentials dashboard.
A link to that dashboard can be found in the AWS Management Console menu
bar. This brings you to a page controlling all forms of authentication with AWS. From
there, you follow the directions on the AWS website. There are several possible tools
for implementing MFA. The simplest tool is to use the Google Authenticator
application on your smartphone. Once you set up MFA, every login to the root
account will require a code to be entered from the authenticator app.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[520]

So far, we have dealt with the online AWS Management Console. Our real goal is to
use command-line tools, and to do that, we need the AWS CLI installed and
configured on our laptop. Let's take care of that next.

Setting up the AWS CLI using AWS
authentication credentials
The AWS CLI tool is a download available through the AWS website. Under the
covers, it uses the AWS application programming interface (API), and it also
requires that we download and install authentication tokens.

Once you have an account, we can prepare the AWS CLI tool.

The AWS CLI enables you to interact with AWS services from the
command line of your laptop. It has an extensive set of sub-
commands related to every AWS service.

Instructions to install the AWS CLI can be found here: https:/ /
docs. aws. amazon. com/ cli/latest/ userguide/ install- cliv2.
html.

Instructions to configure the AWS CLI can be found here: https:/ /
docs. aws. amazon. com/ cli/latest/ userguide/ cli- chap-
configure. html.

Once you have installed the AWS CLI tool on your laptop, we must configure what is
known as a profile.

AWS supplies an AWS API that supports a broad range of tools for manipulating the
AWS infrastructure. The AWS CLI tools use that API, as do third-party tools such as
Terraform. Using the API requires access tokens, so of course, both the AWS CLI and
Terraform require those same tokens.

To get the AWS API access tokens, go to the My Security Credentials dashboard and
click on the Access Keys tab.

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[521]

There will be a button marked Create New Access Key. Click on this and you will be
shown two security tokens, the Access Key ID and the Secret Access Key. You will
be given a chance to download a comma-separated values (CSV) file containing these
keys. The CSV file looks like this:

$ cat ~/Downloads/accessKeys.csv
Access key ID,Secret access key
AKIAZKY7BHGBVWEKCU7H,41WctREbazP9fULN1C5CrQ0L92iSO27fiVGJKU2A

You will receive a file that looks like this. These are the security tokens that identify
your account. Don't worry, as no secrets are being leaked in this case. Those particular
credentials have been revoked. The good news is that you can revoke these
credentials at any time and download new credentials.

Now that we have the credentials file, we can configure an AWS CLI profile.

The aws configure command, as the name implies, takes care of configuring your
AWS CLI environment. This asks a series of questions, the first two of which are those
keys. The interaction looks like this:

$ aws configure --profile root-user
AWS Access Key ID [****************E3GA]: ... ENTER ACCESS KEY
AWS Secret Access Key [****************J9cp]: ... ENTER SECRET KEY
Default region name [us-west-2]:
Default output format [json]:

For the first two prompts, paste in the keys you downloaded. The Region
name prompt selects the default Amazon AWS data center in which your service will
be provisioned. AWS has facilities all around the world, and each locale has a code
name such as us-west-2 (located in Oregon). The last prompt asks how you wish the
AWS CLI to present information to you.

For the region code, in the AWS console, take a look at the Region dropdown. This
shows you the available regions, describing locales, and the region code for each. For
the purpose of this project, it is good to use an AWS region located near you. For
production deployment, it is best to use the region closest to your audience. It is
possible to configure a deployment that works across multiple regions so that you can
serve clients in multiple areas, but that implementation is way beyond what we'll
cover in this book.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[522]

By using the --profile option, we ensured that this created a named profile. If we
had left off that option, we would have instead created a profile named default. For
any of the aws commands, the --profile option selects which profile to use. As the
name suggests, the default profile is the one used if we leave off the --
profile option.

A better choice is to be explicit at all times in which an AWS identity is being used.
Some guides suggest to not create a default AWS profile at all, but instead to always
use the --profile option to be certain of always using the correct AWS profile.

An easy way to verify that AWS is configured is to run the following commands:

$ aws s3 ls
Unable to locate credentials. You can configure credentials by running
"aws configure".
$ aws s3 ls --profile root-user
$ export AWS_PROFILE=root-user
$ aws s3 ls

The AWS Simple Storage Service (S3) is a cloud file-storage system, and we are
running these commands solely to verify the correct installation of the credentials.
The ls command lists any files you have stored in S3. We don't care about the files
that may or may not be in an S3 bucket, but whether this executes without error.

The first command shows us that execution with no --profile option, and no
default profile, produces an error. If there were a default AWS profile, that would
have been used. However, we did not create a default profile, so therefore no
profile was available and we got an error. The second shows the same command with
an explicitly named profile. The third shows the AWS_PROFILE environment variable
being used to name the profile to be deployed.

Using the environment variables supported by the AWS CLI tool, such
as AWS_PROFILE, lets us skip using command-line options such as --profile while
still being explicit about which profile to use.

As we said earlier, it is important that we interact with AWS via an IAM user, and
therefore we must learn how to create an IAM user account. Let's do that next.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[523]

Creating an IAM user account, groups, and
roles
We could do everything in this chapter using our root account but, as we said, that's
bad form. Instead, it is recommended to create a second user—an IAM user—and
give it only the permissions required by that user.

To get to the IAM dashboard, click on Services in the navigation bar, and enter IAM.
IAM stands for Identity and Access Management. Also, the My Security
Credentials dashboard is part of the IAM service, so we are probably already in the
IAM area.

The first task is to create a role. In AWS, roles are used to associate privileges with a
user account. You can create roles with extremely limited privileges or an extremely
broad range of privileges.

In the IAM dashboard, you'll find a navigation menu on the left. It has sections for
users, groups, roles, and other identity management topics. Click on the Roles choice.
Then, in the Roles area, click on Create Role. Perform the following steps:

Under Type of trusted identity, select Another AWS account. Enter the1.
account ID, which you will have recorded earlier while familiarizing
yourself with the AWS account. Then, click on Next.
On the next page, we select the permissions for this role. For our purpose,2.
select AdministratorAccess, a privilege that grants full access to the
AWS account. Then, click on Next.
On the next page, you can add tags to the role. We don't need to do this, so3.
click Next.
On the last page, we give a name to the role. Enter admin because this role4.
has administrator permissions. Click on Create Role.

You'll see that the role, admin, is now listed in the Role dashboard. Click
on admin and you will be taken to a page where you can customize the role further.
On this page, notice the characteristic named Role ARN. Record this Amazon
Resource Name (ARN) for future reference.

ARNs are identifiers used within AWS. You can reliably use this ARN in any area of
AWS where we can specify a role. ARNs are used with almost every AWS resource.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[524]

Next, we have to create an administrator group. In IAM, users are assigned to groups
as a way of passing roles and other attributes to a group of IAM user accounts. To do
this, perform the following steps:

In the left-hand navigation menu, click on Group, and then, in the group1.
dashboard, click on Create Group.
For the group name, enter Administrators. 2.
Skip the Attach Policy page, click Next Step, and then, on3.
the Review page, simply click Create Group.
This creates a group with no permissions and directs you back to the group4.
dashboard.
Click on the Administrators group, and you'll be taken to the overview5.
page. Record the ARN for the group.
Click on Permissions to open that tab, and then click on the Inline6.
policies section header. We will be creating an inline policy, so click on
the Click here link.
Click on Custom Policy, and you'll be taken to the policy editor.7.
For the policy name, enter AssumeAdminRole. Below that is an area where8.
we enter a block of JavaScript Object Notation (JSON) code describing the
policy. Once that's done, click the Apply Policy button.

The policy document to use is as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID:role/admin"
 }
]
}

This describes the policy created for the Administrators group. It gives that group the
rights we specified in the admin role earlier. The Resource tag is where we enter the
ARN for the admin group that was created earlier. Make sure to put the entire ARN
into this field.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[525]

Navigate back to the Groups area, and click on Create Group again. We'll create a
group, NotesDeveloper, for use by developers assigned to the Notes project. It will
give those user accounts some additional privileges. Perform the following steps:

Enter NotesDeveloper as the group name. Then, click Next.1.
For the Attach Policy page, there is a long list of policies to consider; for2.
example, AmazonRDSFullAccess, AmazonEC2FullAccess, IAMFullAcce
ss, AmazonEC2ContainerRegistryFullAccess, AmazonS3FullAccess,
 AdministratorAccess, and AmazonElasticFileSystemFullAccess.
Then, click Next, and if everything looks right on the Review page, click3.
Create Group.

These policies cover the services required to finish this chapter. AWS error messages
that stipulate that the user is not privileged enough to access that feature do a good
job of telling you the required privilege. If it is a privilege the user needs, then come
back to this group and add the privilege.

In the left-hand navigation, click on Users and then on Create User. This starts the
steps involved in creating an IAM user, described as follows:

For the username, enter notes-app, since this user will manage all1.
resources related to the Notes application. For Access type, click on
both Programmatic access and AWS management console access since we
will be using both. The first grants the ability to use the AWS CLI tools,
while the second covers the AWS console. Then, click on Next.
For permissions, select Add User to Group and then select both the2.
Administrators and NotesDeveloper groups. This adds the user to the
groups you select. Then, click on Next.
There is nothing more to do, so keep clicking Next until you get to the3.
Review page. If you're satisfied, click on Create user.

You'll be taken to a page that declares Success. On this page, AWS makes available
access tokens (a.k.a. security credentials) that can be used with this account.
Download these credentials before you do anything else. You can always revoke the
credentials and generate new access tokens at any time.

Your newly created user is now listed in the Users section. Click on that entry,
because we have a couple of data items to record. The first is obviously the ARN for
the user account. The second is a Uniform Resource Locator (URL) you can use to
sign in to AWS as this user. For that URL, click on the Security Credentials tab and
the sign-in link will be there.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[526]

It is recommended to also set up MFA for the IAM account. The My Security
Credentials choice in the AWS taskbar gets you to the screen containing the button to
set up MFA. Refer back a few pages to our discussion of setting up MFA for the root
account.

To test the new user account, sign out and then go to the sign-in URL. Enter the
username and password for the account, and then sign in.

Before finishing this section, return to the command line and run the following
command:

$ aws configure --profile notes-app
... Fill in configuration

This will create another AWS CLI profile, this time for the notes-app IAM user.

Using the AWS CLI, we can list the users in our account, as follows:

$ aws iam list-users --profile root-user
{
 "Users": [{
 "Path": "/",
 "UserName": "notes-app",
 "UserId": "AIDARNEXAMPLEYM35LE",
 "Arn": "arn:aws:iam::USER-ID:user/notes-app",
 "CreateDate": "2020-03-08T02:19:39+00:00",
 "PasswordLastUsed": "2020-04-05T15:34:28+00:00"
 }
]
}

This is another way to verify that the AWS CLI is correctly installed. This command
queries the user information from AWS, and if it executes without error then you've
configured the CLI correctly.

AWS CLI commands follow a similar structure, where there is a series of sub-
commands followed by options. In this case, the sub-commands are aws, iam, and
list-users. The AWS website has extensive online documentation for the AWS CLI
tool.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[527]

Creating an EC2 key pair
Since we'll be using EC2 instances in this exercise, we need an EC2 key pair. This is an
encrypted certificate that serves the same purpose as the normal Secure Shell (SSH)
key we use for passwordless login to a server. In fact, the key-pair file serves the same
purpose, allowing passwordless login with SSH to EC2 instances. Perform the
following steps:

Log in to the AWS Management Console and then select the region you're1.
using.
Next, navigate to the EC2 dashboard—for example, by entering EC2 in the2.
search box.
In the navigation sidebar, there is a section labeled Network & Security,3.
containing a link for Key pair.
Click on that link. In the upper-right corner is a button marked Create key4.
pair. Click on this button, and you will be taken to the following screen:

Enter the desired name for the key pair. Depending on the SSH client5.
you're using, use either a pem (used for the ssh command) or a ppk (used
for PuTTY) formatted key-pair file.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[528]

Click on Create key pair and you'll be returned to the dashboard, and the6.
key-pair file will download in your browser.
After the key-pair file is downloaded, it is required to make it read-only,7.
which you can do by using the following command:

$ chmod 400 /path/to/keypairfile.pem

Substitute here the pathname where your browser downloaded the file.

For now, just make sure this file is correctly stored somewhere. When we deploy EC2
instances, we'll talk more about how to use it.

We have familiarized ourselves with the AWS Management Console, and created for
ourselves an IAM user account. We have proved that we can log in to the console
using the sign-in URL. While doing that, we copied down the AWS access credentials
for the account.

We have completed the setup of the AWS command-line tools and user accounts. The
next step is to set up Terraform.

An overview of the AWS infrastructure to
be deployed
AWS is a complex platform with dozens of services available to us. This project will
touch on only the part required to deploy Notes as a Docker swarm on EC2 instances.
In this section, let's talk about the infrastructure and AWS services we'll put to use.

An AWS VPC is what it sounds like—namely, a service within AWS where you build
your own private cloud service infrastructure. The AWS team designed the VPC
service to look like something that you would construct in your own data center, but
implemented on the AWS infrastructure. This means that the VPC is a container to
which everything else we'll discuss is attached.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[529]

The AWS infrastructure is spread across the globe into what AWS calls regions. For
example, us-west-1 refers to Northern California, us-west-2 refers to Oregon, and
eu-central-1 refers to Frankfurt. For production deployment, it is recommended to
use a region nearer your customers, but for experimentation, it is good to use the
region closest to you. Within each region, AWS further subdivides its infrastructure
into availability zones (a.k.a. AZs). An AZ might correspond to a specific building at
an AWS data center site, but AWS often recommends that we deploy infrastructure to
multiple AZs for reliability. In case one AZ goes down, the service can continue in the
AZs that are running.

When we allocate a VPC, we specify an address range for resources deployed within
the VPC. The address range is specified with a Classless Inter-Domain Routing
(CIDR) specifier. These are written as 10.3.0.0/16 or 10.3.20.0/24, which means
any Internet Protocol version 4 (IPv4) address starting with 10.3 and 10.3.20,
respectively.

Every device we attach to a VPC will be attached to a subnet, a virtual object similar
to an Ethernet segment. Each subnet will be assigned a CIDR from the main range. A
VPC assigned the 10.3.0.0/16 CIDR might have a subnet with a CIDR
of 10.3.20.0/24. Devices attached to the subnet will have an IP address assigned
within the range indicated by the CIDR for the subnet.

EC2 is AWS's answer to a VPS that you might rent from any web hosting provider.
An EC2 instance is a virtual computer in the same sense that Multipass or VirtualBox
lets you create a virtual computer on your laptop. Each EC2 instance is assigned a
central processing unit (CPU), memory, disk capacity, and at least one network
interface. Hence, an EC2 instance is attached to a subnet and is assigned an IP address
from the subnet's assigned range.

By default, a device attached to a subnet has no internet access. The internet
gateway and network address translation (NAT) gateway resources on AWS play a
critical role in connecting resources attached to a VPC via the internet. Both are what
is known as an internet router, meaning that both handle the routing of internet
traffic from one network to another. Because a VPC contains a VPN, these gateways
handle traffic between that network and the public internet, as follows:

Internet gateway: This handles two-way routing, allowing a resource
allocated in a VPC to be reachable from the public internet. An internet
gateway allows external traffic to enter the VPC, and it also allows
resources in the VPC to access resources on the public internet.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[530]

NAT gateway: This handles one-way routing, meaning that resources on
the VPC will be able to access resources on the public internet, but does not
allow external traffic to enter the VPC. To understand the NAT gateway,
think about a common home Wi-Fi router because they also contain a NAT
gateway. Such a gateway will manage a local IP address range such
as 192.168.0.0/16, while the internet service provider (ISP) might
assign a public IP address such as 107.123.42.231 to the connection.
Local IP addresses, such as 192.168.1.45, will be assigned to devices
connecting to the NAT gateway. Those local IP addresses do not appear in
packets sent to the public internet. Instead, the NAT gateway translates the
IP addresses to the public IP address of the gateway, and then when reply
packets arrive, it translates the IP address to that of the local device. NAT
translates IP addresses from the local network to the IP address of the NAT
gateway.

In practical terms, this determines the difference between a private subnet and a
public subnet. A public subnet has a routing table that sends traffic for the public
internet to an internet gateway, whereas a private subnet sends its public internet
traffic to a NAT gateway.

Routing tables describe how to route internet traffic. Inside any internet router, such
as an internet gateway or a NAT gateway, is a function that determines how to
handle internet packets destined for a location other than the local subnet. The
routing function matches the destination address against routing table entries, and
each routing table entry says where to forward matching packets.

Attached to each device deployed in a VPC is a security group. A security group is a
firewall controlling what kind of internet traffic can enter or leave that device. For
example, an EC2 instance might have a web server supporting HTTP (port 80) and
HTTPS (port 443) traffic, and the administrator might also require SSH access (port
22) to the instance. The security group would be configured to allow traffic from any
IP address on ports 80 and 443 and to allow traffic on port 22 from IP address ranges
used by the administrator.

A network access control list (ACL) is another kind of firewall that's attached to
subnets. It, too, describes which traffic is allowed to enter or leave the subnet. The
security groups and network ACLs are part of the security protections provided by
AWS.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[531]

If a device connected to a VPC does not seem to work correctly, there might be an
error in the configuration of these parts. It's necessary to check the security group
attached to the device, and to the NAT gateway or internet gateway, and that the
device is connected to the expected subnet, the routing table for the subnet, and any
network ACLs.

Using Terraform to create an AWS
infrastructure
Terraform is an open source tool for configuring a cloud hosting infrastructure. It
uses a declarative language to describe the configuration of cloud services. Through a
long list of plugins, called providers, it has support for a variety of cloud services. In
this chapter, we'll use Terraform to describe AWS infrastructure deployments.

To install Terraform, download an installer from https:/ /www.
terraform. io/ downloads. html.

Alternatively, you will find the Terraform CLI available in many
package management systems.

Once installed, you can view the Terraform help with the following command:

$ terraform help
Usage: terraform [-version] [-help] <command> [args]

The available commands for execution are listed below.
The most common, useful commands are shown first, followed by
less common or more advanced commands. If you're just getting
started with Terraform, stick with the common commands. For the
other commands, please read the help and docs before usage.

Common commands:
 apply Builds or changes infrastructure
 console Interactive console for Terraform interpolations
 destroy Destroy Terraform-managed infrastructure
...
 init Initialize a Terraform working directory
 output Read an output from a state file
 plan Generate and show an execution plan
 providers Prints a tree of the providers used in the configuration
...

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[532]

Terraform files have a .tf extension and use a fairly simple, easy-to-understand
declarative syntax. Terraform doesn't care which filenames you use or the order in
which you create the files. It simply reads all the files with a .tf extension and looks
for resources to deploy. These files do not contain executable code, but declarations.
Terraform reads these files, constructs a graph of dependencies, and works out how
to implement the declarations on the cloud infrastructure being used.

An example declaration is as follows:

variable "base_cidr_block" { default = "10.1.0.0/16" }

resource "aws_vpc" "main" {
 cidr_block = var.base_cidr_block
}

The first word, resource or variable, is the block type, and in this case, we are
declaring a resource and a variable. Within the curly braces are the arguments to the
block, and it is helpful to think of these as attributes.

Blocks have labels—in this case, the labels are aws_vpc and main. We can refer to this
specific resource elsewhere by joining the labels together as aws_vpc.main. The
name, aws_vpc, comes from the AWS provider and refers to VPC elements. In many
cases, a block—be it a resource or another kind—will support attributes that can be
accessed. For example, the CIDR for this VPC can be accessed
as aws_vpc.main.cidr_block.

The general structure is as follows:

<BLOCK TYPE> "<BLOCK LABEL>" "<BLOCK LABEL>" {
 # Block body
 <IDENTIFIER> = <EXPRESSION> # Argument
}

The block types include resource, which declares something related to the cloud
infrastructure, variable, which declares a named value, output, which declares a
result from a module, and a few others.

The structure of the block labels varies depending on the block type. For resource
blocks, the first block label refers to the kind of resource, while the second is a name
for the specific instance of that resource.

The type of arguments also varies depending on the block type. The Terraform
documentation has an extensive reference to every variant.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[533]

A Terraform module is a directory containing Terraform scripts. When
the terraform command is run in a directory, it reads every script in that directory
to build a tree of objects.

Within modules, we are dealing with a variety of values. We've already discussed
resources, variables, and outputs. A resource is essentially a value that is an object
related to something on the cloud hosting platform being used. A variable can be
thought of as an input to a module because there are multiple ways to provide a
value for a variable. The output values are, as the name implies, the output from a
module. Outputs can be printed on the console when a module is executed, or saved
to a file and then used by other modules. The code relating to this can be seen in the
following snippet:

variable "aws_region" {
 default = "us-west-2"
 type = "string"
 description = "Where in the AWS world the service will be hosted"
}

output "vpc_arn" { value = aws_vpc.notes.arn }

This is what the variable and output declarations look like. Every value has a data
type. For variables, we can attach a description to aid in their documentation. The
declaration uses the word default rather than value because there are multiple
ways (such as Terraform command-line arguments) to specify a value for a
variable. Terraform users can override the default value in several ways, such as the -
-var or --var-file command-line options.

Another type of value is local. Locals exist only within a module because they are
neither input values (variables) nor output values, as illustrated in the following code
snippet:

locals {
 vpc_cidr = "10.1.0.0/16"
 cidr_subnet1 = cidrsubnet(local.vpc_cidr, 8, 1)
 cidr_subnet2 = cidrsubnet(local.vpc_cidr, 8, 2)
 cidr_subnet3 = cidrsubnet(local.vpc_cidr, 8, 3)
 cidr_subnet4 = cidrsubnet(local.vpc_cidr, 8, 4)
}

In this case, we've defined several locals related to the CIDR of subnets to be created
within a VPC. The cidrsubnet function is used to calculate subnet masks such
as 10.1.1.0/24.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[534]

Another important feature of Terraform is the provider plugin. Each cloud
system supported by Terraform requires a plugin module that defines the specifics of
using Terraform with that platform.

One effect of the provider plugins is that Terraform makes no attempt to be platform-
independent. Instead, all declarable resources for a given platform are unique to that
platform. You cannot directly reuse Terraform scripts for AWS on another system
such as Azure because the resource objects are all different. What you can reuse is the
knowledge of how Terraform approaches the declaration of cloud resources.

Another task is to look for a Terraform extension for your programming editor. Some
of them have support for Terraform, with syntax coloring, checking for simple errors,
and even code completion.

That's enough theory, though. To really learn this, we need to start using Terraform.
In the next section, we'll begin by implementing the VPC structure within which we'll
deploy the Notes application stack.

Configuring an AWS VPC with Terraform
An AWS VPC is what it sounds like—namely, a service within AWS to hold cloud
services that you've defined. The AWS team designed the VPC service to look
something like what you would construct in your own data center, but implemented
on the AWS infrastructure.

In this section, we will construct a VPC consisting of a public subnet and a private
subnet, an internet gateway, and security group definitions.

In the project work area, create a directory, terraform-swarm, that is a sibling to
the notes and users directories.

In that directory, create a file named main.tf containing the following:

provider "aws" {
 profile = "notes-app"
 region = var.aws_region
}

This says to use the AWS provider plugin. It also configures this script to execute
using the named AWS profile. Clearly, the AWS provider plugin requires AWS
credential tokens in order to use the AWS API. It knows how to access the credentials
file set up by aws configure.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[535]

To learn more about configuring the AWS provider plugin, refer
to https:/ /www. terraform. io/ docs/ providers/ aws/ index. html.

As shown here, the AWS plugin will look for the AWS credentials file in its default
location, and use the notes-app profile name.

In addition, we have specified which AWS region to use. The
reference, var.aws_region, is a Terraform variable. We use variables for any value
that can legitimately vary. Variables can be easily customized to any value in several
ways.

To support the variables, we create a file named variables.tf, starting with this:

variable "aws_region" { default = "us-west-2" }

The default attribute sets a default value for the variable. As we saw earlier, the
declaration can also specify the data type for a variable, and a description.

With this, we can now run our first Terraform command, as follows:

$ terraform init
Initializing the backend...
Initializing provider plugins...
- Checking for available provider plugins...
- Downloading plugin for provider "aws" (hashicorp/aws) 2.56.0...
The following providers do not have any version constraints in
configuration, so the latest version was installed.
...

* provider.aws: version = "~> 2.56"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan"
to see any changes that are required for your infrastructure. All
Terraform commands should now work.

https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[536]

This initializes the current directory as a Terraform workspace. You'll see that it
creates a directory, .terraform, and a file named terraform.tfstate containing
data collected by Terraform. The .tfstate files are what is known as state files.
These are in JSON format and store the data Terraform collects from the platform (in
this case, AWS) regarding what has been deployed. State files must not be committed
to source code repositories because it is possible for sensitive data to end up in those
files. Therefore, a .gitignore file listing the state files is recommended.

The instructions say we should run terraform plan, but before we do that, let's
declare a few more things.

To declare the VPC and its related infrastructure, let's create a file named vpc.tf.
Start with the following command:

resource "aws_vpc" "notes" {
 cidr_block = var.vpc_cidr
 enable_dns_support = var.enable_dns_support
 enable_dns_hostnames = var.enable_dns_hostnames

 tags = {
 Name = var.vpc_name
 }
}

This declares the VPC. This will be the container for the infrastructure we're creating.

The cidr_block attribute determines the IPv4 address space that will be used for
this VPC. The CIDR notation is an internet standard, and an example would
be 10.0.0.0/16. That CIDR would cover any IP address starting with
the 10.0 octets.

The enable_dns_support and enable_dns_hostnames attributes determine
whether Domain Name System (DNS) names will be generated for certain resources
attached to the VPC. DNS names can assist with one resource finding other resources
at runtime.

The tags attribute is used for attaching name/value pairs to resources. The name tag
is used by AWS to have a display name for the resource. Every AWS resource has a
computer-generated, user-unfriendly name with a long coded string and, of course,
we humans need user-friendly names for things. The name tag is useful in that
regard, and the AWS Management Console will respond by using this name in the
dashboards.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[537]

In variables.tf, add this to support these resource declarations:

variable "enable_dns_support" { default = true }
variable "enable_dns_hostnames" { default = true }

variable "project_name" { default = "notes" }
variable "vpc_name" { default = "notes-vpc" }
variable "vpc_cidr" { default = "10.0.0.0/16" }

These values will be used throughout the project. For example, var.project_name
will be widely used as the basis for creating name tags for deployed resources.

Add the following to vpc.tf:

data "aws_availability_zones" "available" {
 state = "available"
}

Where resource blocks declare something on the hosting platform (in this case,
AWS), data blocks retrieve data from the hosting platform. In this case, we are
retrieving a list of AZs for the currently selected region. We'll use this later when
declaring certain resources.

Configuring the AWS gateway and subnet resources
Remember that a public subnet is associated with an internet gateway, and a private
subnet is associated with a NAT gateway. The difference determines what type of
internet access devices attached to each subnet have.

Create a file named gw.tf containing the following:

resource "aws_internet_gateway" "igw" {
 vpc_id = aws_vpc.notes.id
 tags = {
 Name = "${var.project_name}-IGW"
 }
}

resource "aws_eip" "gw" {
 vpc = true
 depends_on = [aws_internet_gateway.igw]
 tags = {
 Name = "${var.project_name}-EIP"
 }
}

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[538]

resource "aws_nat_gateway" "gw" {
 subnet_id = aws_subnet.public1.id
 allocation_id = aws_eip.gw.id
 tags = {
 Name = "${var.project_name}-NAT"
 }
}

This declares the internet gateway and the NAT gateway. Remember that internet
gateways are used with public subnets, and NAT gateways are used with private
subnets.

An Elastic IP (EIP) resource is how a public internet IP address is assigned. Any
device that is to be visible to the public must be on a public subnet and have an EIP.
Because the NAT gateway faces the public internet, it must have an assigned public
IP address and an EIP.

For the subnets, create a file named subnets.tf containing the following:

resource "aws_subnet" "public1" {
 vpc_id = aws_vpc.notes.id
 cidr_block = var.public1_cidr
 availability_zone = data.aws_availability_zones.available.names[0]
 tags = {
 Name = "${var.project_name}-net-public1"
 }
}

resource "aws_subnet" "private1" {
 vpc_id = aws_vpc.notes.id
 cidr_block = var.private1_cidr
 availability_zone = data.aws_availability_zones.available.names[0]
 tags = {
 Name = "${var.project_name}-net-private1"
 }
}

This declares the public and private subnets. Notice that these subnets are assigned to
a specific AZ. It would be easy to expand this to support more subnets by adding
subnets named public2, public3, private2, private3, and so on. If you do so, it
would be helpful to spread these subnets across AZs. Deployment is recommended in
multiple AZs so that if one AZ goes down, the application is still running in the AZ
that's still up and running.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[539]

This notation with [0] is what it looks like—an array. The value,
data.aws_availability_zones.available.names, is an array, and adding [0]
does access the first element of that array, just as you'd expect. Arrays are just one of
the data structures offered by Terraform.

Each subnet has its own CIDR (IP address range), and to support this, we need these
CIDR assignments listed in variables.tf, as follows:

variable "vpc_cidr" { default = "10.0.0.0/16" }
variable "public1_cidr" { default = "10.0.1.0/24" }
variable "private1_cidr" { default = "10.0.3.0/24" }

These are the CIDRs corresponding to the resources declared earlier.

For these pieces to work together, we need appropriate routing tables to be
configured. Create a file named routing.tf containing the following:

resource "aws_route" "route-public" {
 route_table_id = aws_vpc.notes.main_route_table_id
 destination_cidr_block = "0.0.0.0/0"
 gateway_id = aws_internet_gateway.igw.id
}

resource "aws_route_table" "private" {
 vpc_id = aws_vpc.notes.id
 route {
 cidr_block = "0.0.0.0/0"
 nat_gateway_id = aws_nat_gateway.gw.id
 }
 tags = {
 Name = "${var.project_name}-rt-private"
 }
}

resource "aws_route_table_association" "public1" {
 subnet_id = aws_subnet.public1.id
 route_table_id = aws_vpc.notes.main_route_table_id
}

resource "aws_route_table_association" "private1" {
 subnet_id = aws_subnet.private1.id
 route_table_id = aws_route_table.private.id
}

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[540]

To configure the routing table for the public subnets, we modify the routing table
connected to the main routing table for the VPC. What we're doing here is adding a
rule to that table, saying that public internet traffic is to be sent to the internet
gateway. We also have a route table association declaring that the public subnet uses
this route table.

For aws_route_table.private, the routing table for private subnets, the
declaration says to send public internet traffic to the NAT gateway. In the route table
associations, this table is used for the private subnet.

Earlier, we said the difference between a public and private subnet is whether public
internet traffic is sent to the internet gateway or the NAT gateway. These declarations
are how that's implemented.

In this section, we've declared the VPC, subnets, gateways, and routing tables—in
other words, the infrastructure within which we'll deploy our Docker Swarm.

Before attaching the EC2 instances in which the swarm will live, let's deploy this to
AWS and explore what gets set up.

Deploying the infrastructure to AWS using
Terraform
We have now declared the bones of the AWS infrastructure we'll need. This is the
VPC, the subnets, and routing tables. Let's deploy this to AWS and use the AWS
console to explore what was created.

Earlier, we ran terraform init to initialize Terraform in our working directory.
When we did so, it suggested that we run the following command:

$ terraform plan
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not
be
persisted to local or remote state storage.

data.aws_availability_zones.available: Refreshing state...

--
--

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[541]

 + create

Terraform will perform the following actions:

 # aws_eip.gw will be created
 + resource "aws_eip" "gw" {
 + allocation_id = (known after apply)
 + association_id = (known after apply)
 + customer_owned_ip = (known after apply)
 + domain = (known after apply)
 + id = (known after apply)
 + instance = (known after apply)
 + network_interface = (known after apply)
 + private_dns = (known after apply)
 + private_ip = (known after apply)
 + public_dns = (known after apply)
 + public_ip = (known after apply)
 + public_ipv4_pool = (known after apply)
 + tags = {
 + "Name" = "notes-EIP"
 }
 + vpc = true
 }
...

This command scans the Terraform files in the current directory and first determines
that everything has the correct syntax, that all the values are known, and so forth. If
any problems are encountered, it stops right away with error messages such as the
following:

Error: Reference to undeclared resource

on outputs.tf line 8, in output "subnet_public2_id":
 8: output "subnet_public2_id" { value = aws_subnet.public2.id }

A managed resource "aws_subnet" "public2" has not been declared in the
root
module.

Terraform's error messages are usually self-explanatory. In this case, the cause was a
decision to use only one public and one private subnet. This code was left over from
there being two of each. Therefore, this error referred to stale code that was easy to
remove.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[542]

The other thing terraform plan does is construct a graph of all the declarations and
print out a listing. This gives you an idea of what Terraform intends to deploy on to
the chosen cloud platform. It is therefore your opportunity to examine the intended
infrastructure and make sure it is what you want to use.

Once you're satisfied, run the following command:

$ terraform apply
data.aws_availability_zones.available: Refreshing state...

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:
...
Plan: 10 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value: yes
...

Apply complete! Resources: 10 added, 0 changed, 0 destroyed.

Outputs:

aws_region = us-west-2
igw_id = igw-006eb101f8cb423d4
private1_cidr = 10.0.3.0/24
public1_cidr = 10.0.1.0/24
subnet_private1_id = subnet-0a9044daea298d1b2
subnet_public1_id = subnet-07e6f8ed6cc6f8397
vpc_arn = arn:aws:ec2:us-west-2:098106984154:vpc/vpc-074b2dfa7b353486f
vpc_cidr = 10.0.0.0/16
vpc_id = vpc-074b2dfa7b353486f
vpc_name = notes-vpc

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[543]

With terraform apply, the report shows the difference between the actual
deployed state and the desired state as reflected by the Terraform files. In this case,
there is no deployed state, so therefore everything that is in the files will be deployed.
In other cases, you might have deployed a system and have made a change, in which
case Terraform will work out which changes have to be deployed based on the
changes you've made. Once it calculates that, Terraform asks for permission to
proceed. Finally, if we have said yes, it will proceed and launch the desired
infrastructure.

Once finished, it tells you what happened. One result is the values of
the output commands in the scripts. These are both printed on the console and are
saved in the backend state file.

To see what was created, let's head to the AWS console and navigate to the VPC area,
as follows:

Compare the VPC ID in the screenshot with the one shown in the Terraform output,
and you'll see that they match. What's shown here is the main routing table, and the
CIDR, and other settings we made in our scripts. Every AWS account has a default
VPC that's presumably meant for experiments. It is a better form to create a VPC for
each project so that resources for each project are separate from other projects.

The sidebar contains links for further dashboards for subnets, route tables, and other
things, and an example dashboard can be seen in the following screenshot:

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[544]

For example, this is the NAT gateway dashboard showing the one created for this
project.

Another way to explore is with the AWS CLI tool. Just because we have Terraform
doesn't mean we are prevented from using the CLI. Have a look at the following code
block:

$ aws ec2 describe-vpcs --vpc-ids vpc-074b2dfa7b353486f
{
 "Vpcs": [{
 "CidrBlock": "10.0.0.0/16",
 "DhcpOptionsId": "dopt-e0c05d98",
 "State": "available",
 "VpcId": "vpc-074b2dfa7b353486f",
 "OwnerId": "098106984154",
 "InstanceTenancy": "default",
 "CidrBlockAssociationSet": [{
 "AssociationId": "vpc-cidr-assoc-0f827bcc4fbb9fd62",
 "CidrBlock": "10.0.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }],
 "IsDefault": false,
 "Tags": [{
 "Key": "Name",
 "Value": "notes-vpc"
 }]
 }]
}

This lists the parameters for the VPC that was created.

Remember to either configure the AWS_PROFILE environment variable or use --
profile on the command line.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[545]

To list data on the subnets, run the following command:

$ aws ec2 describe-subnets --filters "Name=vpc-
id,Values=vpc-074b2dfa7b353486f"
{
 "Subnets": [
 { ... },
 { ... }
]
}

To focus on the subnets for a given VPC, we use the --filters option, passing in
the filter named vpc-id and the VPC ID for which to filter.

Documentation for the AWS CLI can be found at https:/ /docs.
aws. amazon. com/ cli/ latest/ reference/ index. html.

For documentation relating to the EC2 sub-commands, refer
to https:/ /docs. aws. amazon. com/ cli/latest/ reference/ ec2/
index. html.

The AWS CLI tool has an extensive list of sub-commands and options. These
are enough to almost guarantee getting lost, so read carefully.

In this section, we learned how to use Terraform to set up the VPC and related
infrastructure resources, and we also learned how to navigate both the AWS console
and the AWS CLI to explore what had been created.

Our next step is to set up an initial Docker Swarm cluster by deploying an EC2
instance to AWS.

Setting up a Docker Swarm cluster on
AWS EC2
What we have set up is essentially a blank slate. AWS has a long list of offerings that
could be deployed to the VPC that we've created. What we're looking to do in this
section is to set up a single EC2 instance to install Docker, and set up a single-node
Docker Swarm cluster. We'll use this to familiarize ourselves with Docker Swarm. In
the remainder of the chapter, we'll build more servers to create a larger swarm cluster
for full deployment of Notes.

https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/index.html

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[546]

A Docker Swarm cluster is simply a group of servers running Docker that have been
joined together into a common pool. The code for the Docker Swarm orchestrator is
bundled with the Docker Engine server but it is disabled by default. To create a
swarm, we simply enable swarm mode by running docker swarm init and then
run a docker swarm join command on each system we want to be part of the
cluster. From there, the Docker Swarm code automatically takes care of a long list of
tasks. The features for Docker Swarm include the following:

Horizontal scaling: When deploying a Docker service to a swarm, you tell
it the desired number of instances as well as the memory and CPU
requirements. The swarm takes that and computes the best distribution of
tasks to nodes in the swarm.
Maintaining the desired state: From the services deployed to a swarm, the
swarm calculates the desired state of the system and tracks its current
actual state. Suppose one of the nodes crashes—the swarm will then
readjust the running tasks to replace the ones that vaporized because of the
crashed server.
Multi-host networking: The overlay network driver automatically
distributes network connections across the network of machines in the
swarm.
Secure by default: Swarm mode uses strong Transport Layer Security
(TLS) encryption for all communication between nodes.
Rolling updates: You can deploy an update to a service in such a manner
where the swarm intelligently brings down existing service containers,
replacing them with updated newer containers.

For an overview of Docker Swarm, refer to https:/ /docs. docker.
com/ engine/ swarm/ .

We will use this section to not only learn how to set up a Docker Swarm but to also
learn something about how Docker orchestration works.

To get started, we'll set up a single-node swarm on a single EC2 instance in order to
learn some basics, before we move on to deploying a multi-node swarm and
deploying the full Notes stack.

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[547]

Deploying a single-node Docker Swarm on a
single EC2 instance
For a quick introduction to Docker Swarm, let's start by installing Docker on a single
EC2 node. We can kick the tires by trying a few commands and exploring the
resulting system.

This will involve deploying Ubuntu 20.04 on an EC2 instance, configuring it to have
the latest Docker Engine, and initializing swarm mode.

Adding an EC2 instance and configuring Docker
To launch an EC2 instance, we must first select which operating system to install.
There are thousands of operating system configurations available. Each of these
configurations is identified by an AMI code, where AMI stands for Amazon Machine
Image.

To find your desired AMI, navigate to the EC2 dashboard on the AWS console. Then,
click on the Launch Instance button, which starts a wizard-like interface to launch an
instance. You can, if you like, go through the whole wizard since that is one way to
learn about EC2 instances. We can search the AMIs via the first page of that wizard,
where there is a search box.

For this exercise, we will use Ubuntu 20.04, so enter Ubuntu and then scroll down to
find the correct version, as illustrated in the following screenshot:

This is what the desired entry looks like. The AMI code starts with ami- and we see
one version for x86 CPUs, and another for ARM (previously Advanced RISC
Machine). ARM processors, by the way, are not just for your cell phone but are also
used in servers. There is no need to launch an EC2 instance from here since we will
instead do so with Terraform.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[548]

Another attribute to select is the instance size. AWS supports a long list of sizes that
relate to the amount of memory, CPU cores, and disk space. For a chart of the
available instance types, click on the Select button to proceed to the second page of
the wizard, which shows a table of instance types and their attributes. For this
exercise, we will use the t2.micro instance type because it is eligible for the free tier.

Create a file named ec2-public.tf containing the following:

resource "aws_instance" "public" {
 ami = var.ami_id
 instance_type = var.instance_type
 subnet_id = aws_subnet.public1.id
 key_name = var.key_pair
 vpc_security_group_ids = [aws_security_group.ec2-public-sg.id]
 associate_public_ip_address = true
 tags = {
 Name = "${var.project_name}-ec2-public"
 }
 depends_on = [aws_vpc.notes, aws_internet_gateway.igw]
 user_data = join("\n", [
 "#!/bin/sh",
 file("sh/docker_install.sh"),
 "docker swarm init",
 "sudo hostname ${var.project_name}-public"
])
}

In the Terraform AWS provider, the resource name for EC2 instances is
aws_instance. Since this instance is attached to our public subnet, we'll call it
aws_instance.public. Because it is a public EC2 instance, the
associate_public_ip_address attribute is set to true.

The attributes include the AMI ID, the instance type, the ID for the subnet, and more.
The key_name attribute refers to the name of an SSH key we'll use to log in to the EC2
instance. We'll discuss these key pairs later. The vpc_security_group_ids attribute
is a reference to a security group we'll apply to the EC2 instance. The depends_on
attribute causes Terraform to wait for the creation of the resources named in the
array. The user_data attribute is a shell script that is executed inside the instance
once it is created.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[549]

For the AMI, instance type, and key-pair data, add these entries to variables.tf, as
follows:

variable "ami_id" { default = "ami-09dd2e08d601bff67" }
variable "instance_type" { default = "t2.micro" }
variable "key_pair" { default = "notes-app-key-pair" }

The AMI ID shown here is specifically for Ubuntu 20.04 in us-west-2. There will be
other AMI IDs in other regions. The key_pair name shown here should be the key-
pair name you selected when creating your key pair earlier.

It is not necessary to add the key-pair file to this directory, nor to reference the file
you downloaded in these scripts. Instead, you simply give the name of the key pair.
In our example, we named it notes-app-key-pair, and downloaded notes-app-
key-pair.pem.

The user_data feature is very useful since it lets us customize an instance after
creation. We're using this to automate the Docker setup on the instances. This field is
to receive a string containing a shell script that will execute once the instance is
launched. Rather than insert that script inline with the Terraform code, we have
created a set of files that are shell script snippets. The Terraform file function reads
the named file, returning it as a string. The Terraform join function takes an array of
strings, concatenating them together with the delimiter character in between. Between
the two we construct a shell script. The shell script first installs Docker Engine, then
initializes Docker Swarm mode, and finally changes the hostname to help us
remember that this is the public EC2 instance.

Create a directory named sh in which we'll create shell scripts, and in that directory
create a file named docker_install.sh. To this file, add the following:

sudo apt-get update
sudo apt-get upgrade -y

sudo apt-get -y install apt-transport-https \
 ca-certificates curl gnupg-agent software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg \
 | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[550]

sudo apt-get update
sudo apt-get upgrade -y
sudo apt-get install -y docker-ce docker-ce-cli containerd.io
sudo groupadd docker
sudo usermod -aG docker ubuntu
sudo systemctl enable docker

This script is derived from the official instructions for installing Docker Engine
Community Edition (CE) on Ubuntu. The first portion is support for apt-get to
download packages from HTTPS repositories. It then configures the Docker package
repository into Ubuntu, after which it installs Docker and related tools. Finally, it
ensures that the docker group is created and ensures that the ubuntu user ID is a
member of that group. The Ubuntu AMI defaults to this user ID, ubuntu, to be the
one used by the EC2 administrator.

For this EC2 instance, we also run docker swarm init to initialize the Docker
Swarm. For other EC2 instances, we do not run this command. The method used for
initializing the user_data attribute lets us easily have a custom configuration script
for each EC2 instance. For the other instances, we'll only run docker_install.sh,
whereas for this instance, we'll also initialize the swarm.

Back in ec2-public.tf, we have two more things to do, and then we can launch the
EC2 instance. Have a look at the following code block:

resource "aws_security_group" "ec2-public-sg" {
 name = "${var.project_name}-public-security-group"
 description = "allow inbound access to the EC2 instance"
 vpc_id = aws_vpc.notes.id

 ingress {
 protocol = "TCP"
 from_port = 22
 to_port = 22
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 protocol = "TCP"
 from_port = 80
 to_port = 80
 cidr_blocks = ["0.0.0.0/0"]
 }

 egress {
 protocol = "-1"
 from_port = 0

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[551]

 to_port = 0
 cidr_blocks = ["0.0.0.0/0"]
 }
}

This is the security group declaration for the public EC2 instance. Remember that a
security group describes the rules of a firewall that is attached to many kinds of AWS
objects. This security group was already referenced in declaring
aws_instance.public.

The main feature of security groups is the ingress and egress rules. As the words
imply, ingress rules describe the network traffic allowed to enter the resource, and
egress rules describe what's allowed to be sent by the resource. If you have to look
up those words in a dictionary, you're not alone.

We have two ingress rules, and the first allows traffic on port 22, which covers SSH
traffic. The second allows traffic on port 80, covering HTTP. We'll add more Docker
rules later when they're needed.

The egress rule allows the EC2 instance to send any traffic to any machine on the
internet.

These ingress rules are obviously very strict and limit the attack surface any
miscreants can exploit.

The final task is to add these output declarations to ec2-public.tf, as follows:

output "ec2-public-arn" { value = aws_instance.public.arn }
output "ec2-public-dns" { value = aws_instance.public.public_dns }
output "ec2-public-ip" { value = aws_instance.public.public_ip }
output "ec2-private-dns" { value = aws_instance.public.private_dns }
output "ec2-private-ip" { value = aws_instance.public.private_ip }

This will let us know the public IP address and public DNS name. If we're interested,
the outputs also tell us the private IP address and DNS name.

Launching the EC2 instance on AWS
We have added to the Terraform declarations for creating an EC2 instance.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[552]

We're now ready to deploy this to AWS and see what we can do with it. We already
know what to do, so let's run the following command:

$ terraform plan
...
Plan: 2 to add, 0 to change, 0 to destroy.

If the VPC infrastructure were already running, you would get output similar to this.
The addition is two new objects, aws_instance.public and
aws_security_group.ec2-public-sg. This looks good, so we proceed to
deployment, as follows:

$ terraform apply
...
Plan: 2 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value: yes
...
Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Outputs:

aws_region = us-west-2
ec2-private-dns = ip-10-0-1-55.us-west-2.compute.internal
ec2-private-ip = 10.0.1.55
ec2-public-arn = arn:aws:ec2:us-
west-2:098106984154:instance/i-0046b28d65a4f555d
ec2-public-dns = ec2-54-213-6-249.us-west-2.compute.amazonaws.com
ec2-public-ip = 54.213.6.249
igw_id = igw-006eb101f8cb423d4
private1_cidr = 10.0.3.0/24
public1_cidr = 10.0.1.0/24
subnet_private1_id = subnet-0a9044daea298d1b2
subnet_public1_id = subnet-07e6f8ed6cc6f8397
vpc_arn = arn:aws:ec2:us-west-2:098106984154:vpc/vpc-074b2dfa7b353486f
vpc_cidr = 10.0.0.0/16
vpc_id = vpc-074b2dfa7b353486f
vpc_name = notes-vpc

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[553]

This built our EC2 instance, and we have the IP address and domain name. Because
the initialization script will have required a couple of minutes to run, it is good to
wait for a short time before proceeding to test the system.

The ec2-public-ip value is the public IP address for the EC2 instance. In the
following examples, we will put the text PUBLIC-IP-ADDRESS, and you must of
course substitute the IP address your EC2 instance is assigned.

We can log in to the EC2 instance like so:

$ ssh -i ~/Downloads/notes-app-key-pair.pem ubuntu@PUBLIC-IP-ADDRESS
The authenticity of host '54.213.6.249 (54.213.6.249)' can't be
established.
ECDSA key fingerprint is
SHA256:DOGsiDjWZ6rkj1+AiMcqqy/naAku5b4VJUgZqtlwPg8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.213.6.249' (ECDSA) to the list of known
hosts.
Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-1009-aws x86_64)
...
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

ubuntu@notes-public:~$ hostname
notes-public

On a Linux or macOS system where we're using SSH, the command is as shown here.
The -i option lets us specify the Privacy Enhanced Mail (PEM) file that was
provided by AWS for the key pair. If on Windows using PuTTY, you'd instead tell it
which PuTTY Private Key (PPK) file to use, and the connection parameters will
otherwise be similar to this.

This lands us at the command-line prompt of the EC2 instance. We see that it is
Ubuntu 20.04, and the hostname is set to notes-public, as reflected in Command
Prompt and the output of the hostname command. This means that our initialization
script ran because the hostname was the last configuration task it performed.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[554]

Handling the AWS EC2 key-pair file
Earlier, we said to safely store the key-pair file somewhere on your computer. In the
previous section, we showed how to use the PEM file with SSH to log in to the EC2
instance. Namely, we use the PEM file like so:

$ ssh -i /path/to/key-pair.pem USER-ID@HOST-IP

It can be inconvenient to remember to add the -i flag every time we use SSH. To
avoid having to use this option, run this command:

$ ssh-add /path/to/key-pair.pem

As the command name implies, this adds the authentication file to SSH. This has to be
rerun on every reboot of the computer, but it conveniently lets us access EC2
instances without remembering to specify this option.

Testing the initial Docker Swarm
We have an EC2 instance and it should already be configured with Docker, and we
can easily verify that this is the case as follows:

ubuntu@notes-public:~$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete
...

The setup script was also supposed to have initialized this EC2 instance as a Docker
Swarm node, and the following command verifies whether that happened:

ubuntu@notes-public:~$ docker info
...
Swarm: active
 NodeID: qfb1ljmw2fgp4ij18klowr8dp
 Is Manager: true
 ClusterID: 14p4sdfsdyoa8el0v9cqirm23
...

The docker info command, as the name implies, prints out a lot of information
about the current Docker instance. In this case, the output includes verification that it
is in Docker Swarm mode and that this is a Docker Swarm manager instance.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[555]

Let's try a couple of swarm commands, as follows:

ubuntu@notes-public:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER
STATUS ENGINE VERSION
qfb1ljmw2fgp4ij18klowr8dp * notes-public Ready Active Leader 19.03.9

ubuntu@notes-public:~$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS

The docker node command is for managing the nodes in a swarm. In this case, there
is only one node—this one, and it is shown as not only a manager but as the swarm
leader. It's easy to be the leader when you're the only node in the cluster, it seems.

The docker service command is for managing the services deployed in the swarm.
In this context, a service is roughly the same as an entry in the services section of a
Docker compose file. In other words, a service is not the running container but is an
object describing the configuration for launching one or more instances of a given
container.

To see what this means, let's start an nginx service, as follows:

ubuntu@notes-public:~$ docker service create --name nginx --replicas 1
-p 80:80 nginx
ephvpfgjwxgdwx7ab87e7nc9e
overall progress: 1 out of 1 tasks
1/1: running
verify: Service converged

ubuntu@notes-public:~$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ephvpfgjwxgd nginx replicated 1/1 nginx:latest *:80->80/tcp

ubuntu@notes-public:~$ docker service ps nginx
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR PORTS
ag8b45t69am1 nginx.1 nginx:latest notes-public Running Running 15
seconds ago

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[556]

We started one service using the nginx image. We said to deploy one replica and to
expose port 80. We chose the nginx image because it has a simple default HTML file
that we can easily view, as illustrated in the following screenshot:

Simply paste the IP address of the EC2 instance into the browser location bar, and
we're greeted with that default HTML.

We also see by using docker node ls and docker service ps that there is one
instance of the service. Since this is a swarm, let's increase the number of nginx
instances, as follows:

ubuntu@notes-public:~$ docker service update --replicas 3 nginx
nginx
overall progress: 3 out of 3 tasks
1/3: running
2/3: running
3/3: running
verify: Service converged

ubuntu@notes-public:~$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ephvpfgjwxgd nginx replicated 3/3 nginx:latest *:80->80/tcp

ubuntu@notes-public:~$ docker service ps nginx
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR PORTS
ag8b45t69am1 nginx.1 nginx:latest notes-public Running Running 9
minutes ago
ojvbs4n2iriy nginx.2 nginx:latest notes-public Running Running 13

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[557]

seconds ago
fqwwk8c4tqck nginx.3 nginx:latest notes-public Running Running 13
seconds ago

Once a service is deployed, we can modify the deployment using the docker
service update command. In this case, we told it to increase the number of
instances using the --replicas option, and we now have three instances of the
nginx container all running on the notes-public node.

We can also run the normal docker ps command to see the actual containers, as
illustrated in the following code block:

ubuntu@notes-public:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
6dc274c30fea nginx:latest "nginx -g 'daemon of…" About a minute ago Up
About a minute 80/tcp nginx.2.ojvbs4n2iriyjifeh0ljlyvhp
4b51455fb2bf nginx:latest "nginx -g 'daemon of…" About a minute ago Up
About a minute 80/tcp nginx.3.fqwwk8c4tqckspcrrzbs0qyii
e7ed31f9471f nginx:latest "nginx -g 'daemon of…" 10 minutes ago Up 10
minutes 80/tcp nginx.1.ag8b45t69am1gzh0b65gfnq14

This verifies that the nginx service with three replicas is actually three nginx
containers.

In this section, we were able to launch an EC2 instance and set up a single-node
Docker swarm in which we launched a service, which gave us the opportunity to
familiarize ourselves with what this can do.

While we're here, there is another thing to learn—namely, how to set up the remote
control of Docker hosts.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[558]

Setting up remote control access to a Docker
Swarm hosted on EC2
A feature that's not well documented in Docker is the ability to control Docker nodes
remotely. This will let us, from our laptop, run Docker commands on a server. By
extension, this means that we will be able to manage the Docker Swarm from our
laptop.

One method for remotely controlling a Docker instance is to expose the Docker
Transmission Control Protocol (TCP) port. Be aware that miscreants are known to
scan an internet infrastructure for Docker ports to hijack. The following technique
does not expose the Docker port but instead uses SSH.

The following setup is for Linux and macOS, relying on features of SSH. To do this on
Windows would rely on installing OpenSSH. From October 2018, OpenSSH became
available for Windows, and the following commands may work in PowerShell
(failing that, you can run these commands from a Multipass or Windows Subsystem
for Linux (WSL) 2 instance on Windows):

ubuntu@notes-public:~$ logout
Connection to PUBLIC-IP-ADDRESS closed.

Exit the shell on the EC2 instance so that you're at the command line on your laptop.

Run the following command:

$ ssh-add ~/Downloads/notes-app-key-pair.pem
Identity added: /Users/david/Downloads/notes-app-key-pair.pem
(/Users/david/Downloads/notes-app-key-pair.pem)

We discussed this command earlier, noting that it lets us log in to EC2 instances
without having to use the -i option to specify the PEM file. This is more than a
simple convenience when it comes to remotely accessing Docker hosts. The following
steps are dependent on having added the PEM file to SSH, as shown here.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[559]

To verify you've done this correctly, use this command:

$ ssh ubuntu@PUBLIC-IP-ADDRESS

Normally with an EC2 instance, we would use the -i option, as shown earlier. But
after running ssh-add, the -i option is no longer required.

That enables us to create the following environment variable:

$ export DOCKER_HOST=ssh://ubuntu@PUBLIC-IP-ADDRESS

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ephvpfgjwxgd nginx replicated 3/3 nginx:latest *:80->80/tcp

The DOCKER_HOST environment variable enables the remote control of Docker hosts.
It relies on a passwordless SSH login to the remote host. Once you have that, it's
simply a matter of setting the environment variable and you've got remote control of
the Docker host, and in this case, because the host is a swarm manager, a remote
swarm.

But this gets even better by using the Docker context feature. A context is a
configuration required to access a remote node or swarm. Have a look at the
following code snippet:

$ unset DOCKER_HOST

We begin by deleting the environment variable because we'll replace it with
something better, as follows:

$ docker context create ec2 --docker host=ssh://ubuntu@PUBLIC-IP-
ADDRESS
ec2
Successfully created context "ec2"

$ docker --context ec2 service ls
ID NAME MODE REPLICAS IMAGE PORTS
ephvpfgjwxgd nginx replicated 3/3 nginx:latest *:80->80/tcp

$ docker context use ec2
ec2
Current context is now "ec2"

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ephvpfgjwxgd nginx replicated 3/3 nginx:latest *:80->80/tcp

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[560]

We create a context using docker context create, specifying the same SSH
URL we used in the DOCKER_HOST variable. We can then use it either with the --
context option or by using docker context use to switch between contexts.

With this feature, we can easily maintain configurations for multiple remote servers
and switch between them with a simple command.

For example, the Docker instance on our laptop is the default context. Therefore, we
might find ourselves doing this:

$ docker context use default
... run docker commands against Docker on the laptop
$ docker context use ec2
... run docker commands against Docker on the AWS EC2 machines

There are times when we must be cognizant of which is the current Docker context
and when to use which context. This will be useful in the next section when we learn
how to push the images to AWS ECR.

We've learned a lot in this section, so before heading to the next task, let's clean up
our AWS infrastructure. There's no need to keep this EC2 instance running since we
used it solely for a quick familiarization tour. We can easily delete this instance while
leaving the rest of the infrastructure configured. The most effective way to so is by
renaming ec2-public.tf to ec2-public.tf-disable, and to rerun terraform
apply, as illustrated in the following code block:

$ mv ec2-public.tf ec2-public.tf-disable
$ terraform apply
...
Plan: 0 to add, 0 to change, 2 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value: yes
...

The effect of changing the name of one of the Terraform files is that Terraform will
not scan those files for objects to deploy. Therefore, when Terraform maps out the
state we want Terraform to deploy, it will notice that the deployed EC2 instance and
security group are not listed in the local files, and it will, therefore, destroy those
objects. In other words, this lets us undeploy some infrastructure with very little fuss.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[561]

This tactic can be useful for minimizing costs by turning off unneeded facilities. You
can easily redeploy the EC2 instances by renaming the file back to ec2-
public.tf and rerunning terraform apply.

In this section, we familiarized ourselves with Docker Swarm by deploying a single-
node swarm on an EC2 instance on AWS. We first added suitable declarations to our
Terraform files. We then deployed the EC2 instance on AWS. Following deployment,
we set about verifying that, indeed, Docker Swarm was already installed and
initialized on the server and that we could easily deploy Docker services on the
swarm. We then learned how to set up remote control of the swarm from our laptop.

Taken together, this proved that we can easily deploy Docker-based services to EC2
instances on AWS. In the next section, let's continue preparing for a production-ready
deployment by setting up a build process to push Docker images to image
repositories.

Setting up ECR repositories for Notes
Docker images
We have created Docker images to encapsulate the services making up the Notes
application. So far, we've used those images to instantiate Docker containers on our
laptop. To deploy containers on the AWS infrastructure will require the images to be
hosted in a Docker image repository.

This requires a build procedure by which the svc-notes and svc-userauth images
are correctly pushed to the container repository on the AWS infrastructure. We will
go over the commands required and create a few shell scripts to record those
commands.

A site such as Docker Hub is what's known as a Docker Registry. Registries are web
services that store Docker images by hosting Docker image repositories. When we
used the redis or mysql/mysql-server images earlier, we were using Docker
image repositories located on the Docker Hub Registry.

The AWS team offers a Docker image registry, ECR. An ECR instance is available for
each account in each AWS region. All we have to do is log in to the registry, create
repositories, and push images to the repositories.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[562]

It is extremely important to run commands in this section in the
default Docker context on your laptop. The reason is that Docker
builds must not happen on the Swarm host but on some other host,
such as your laptop.

Because it is important to not run Docker build commands on the Swarm
infrastructure, execute this command:

$ docker context use default

This command switches the Docker context to the local system.

To hold the scripts and other files related to managing AWS ECR repositories, create
a directory named ecr as a sibling to notes, users, and terraform-swarm.

There are several commands required for a build process to create Docker images, tag
them, and push them to a remote repository. To simplify things, let's create a few
shell scripts, as well as PowerShell scripts, to record those commands.

The first task is to connect with the AWS ECR service. To this end, create a file named
login.sh containing the following:

aws ecr get-login-password --profile $AWS_PROFILE --region $AWS_REGION
\
 | docker login --username AWS \
 --password-stdin $AWS_USER.dkr.ecr.$AWS_REGION.amazonaws.com

This command, and others, are available in the ECR dashboard. If you navigate to
that dashboard and then create a repository there, a button labeled View Push
Command is available. This and other useful commands are listed there, but we have
substituted a few variable names to make this configurable.

If you are instead using Windows PowerShell, AWS recommends the following:

(Get-ECRLoginCommand).Password | docker login --username AWS --
password-stdin ACCOUNT-ID.dkr.ecr.REGION-NAME.amazonaws.com

This relies on the AWS Tools for PowerShell package (see https:/ /aws. amazon. com/
powershell/), which appears to offer some powerful tools that are useful with AWS
services. In testing, however, this command was not found to work very well.

https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[563]

Instead, the following command was found to work much better, which you can put
in a file named login.ps1:

aws ecr get-login-password --region %AWS_REGION% | docker login --
username AWS --password-stdin
%AWS_USER%.dkr.ecr.%AWS_REGION%.amazonaws.com

This is the same command as is used for Unix-like systems, but with Windows-style
references to environment variables.

You may wish to explore the cross-var package, since it can
convert Unix-style environment variable references to Windows. For
the documentation, refer to https:/ /www. npmjs. com/ package/
cross- var.

Several environment variables are being used, but just what are those variables being
used and how do we set them?

Using environment variables for AWS CLI
commands
Look carefully and you will see that some environment variables are being used. The
AWS CLI commands know about those environment variables and will use them
instead of command-line options. The environment variables we're using are the
following:

AWS_PROFILE: The AWS profile to use with this project.
AWS_REGION: The AWS region to deploy the project to.
AWS_USER: The numeric user ID for the account being used. This ID is
available on the IAM dashboard page for the account.

The AWS CLI recognizes some of these environment variables, and
others. For further details, refer to https:/ /docs. aws. amazon. com/
cli/ latest/ userguide/ cli-configure- envvars. html.

The AWS command-line tools will use those environment variables in place of the
command-line options. Earlier, we discussed using the AWS_PROFILE variable instead
of the --profile option. The same holds true for other command-line options.

https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://www.npmjs.com/package/cross-var
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[564]

This means that we need an easy way to set those variables. These Bash commands
can be recorded in a shell script like this, which you could store as env-us-west-2:

export AWS_REGION=us-west-2
export AWS_PROFILE=notes-app
export AWS_USER=09E1X6A8MPLE

This script is, of course, following the syntax of the Bash shell. For other command
environments, you must transliterate it appropriately. To set these variables in the
Bash shell, run the following command:

$ chmod +x env-us-west-2
$. ./env-us-west-2

For other command environments, again transliterate appropriately. For example, in
Windows and in PowerShell, the variables can be set with these commands:

$env:AWS_USER = "09E1X6A8MPLE"
$env:AWS_PROFILE = "notes-app"
$env:AWS_REGION = "us-west-2"

These should be the same values, just in a syntax recognized by Windows.

We have defined the environment variables being used. Let's now get back to
defining the process to build Docker images and push them to the ECR.

Defining a process to build Docker images
and push them to the AWS ECR
We were exploring a build procedure for pushing Docker containers to ECR
repositories until we started talking about environment variables. Let's return to the
task at hand, which is to easily build Docker images, create ECR repositories, and
push the images to the ECR.

As mentioned at the beginning of this section, make sure to switch to
the default Docker context. We must do so because it is a policy with Docker Swarm to
not use the swarm hosts for building Docker images.

To build the images, let's add a file named build.sh containing the following:

(cd ../notes && npm run docker-build)
(cd ../users && npm run docker-build)

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[565]

This handles running docker build commands for both the Notes and user
authentication services. It is expected to be executed in the ecr directory and takes
care of executing commands in both the notes and users directories.

Let's now create and delete a pair of registries to hold our images. We have two
images to upload to the ECR, and therefore we create two registries.

Create a file named create.sh containing the following:

aws ecr create-repository --repository-name svc-notes --image-
scanning-configuration scanOnPush=true
aws ecr create-repository --repository-name svc-userauth --image-
scanning-configuration scanOnPush=true

Also, create a companion file named delete.sh containing the following:

aws ecr delete-repository --force --repository-name svc-notes
aws ecr delete-repository --force --repository-name svc-userauth

Between these scripts, we can create and delete the ECR repositories for our Docker
images. These scripts are directly usable on Windows; simply change the filenames to
create.ps1 and delete.ps1.

In aws ecr delete-repository, the --force option means to delete the
repositories even if they contain images.

With the scripts we've written so far, they are executed in the following order:

$ sh login.sh
Login Succeeded
$ sh create.sh
{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-
 REGION-2:09E1X6A8MPLE:repository/svc-notes",
 "registryId": "098106984154",
 "repositoryName": "svc-notes",
 "repositoryUri": "09E1X6A8MPLE.dkr.ecr.us-
 REGION-2.amazonaws.com/svc-notes",
 "createdAt": "2020-06-07T12:34:03-07:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 }
 }
}
{

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[566]

 "repository": {
 "repositoryArn": "arn:aws:ecr:us-
 REGION-2:09E1X6A8MPLE:repository/svc-userauth",
 "registryId": "098106984154",
 "repositoryName": "svc-userauth",
 "repositoryUri": "09E1X6A8MPLE.dkr.ecr.us-
 REGION-2.amazonaws.com/svc-userauth",
 "createdAt": "2020-06-07T12:34:05-07:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 }
 }
}

The aws ecr create-repository command outputs these descriptors for the
image repositories. The important piece of data to note is the repositoryUri value.
This will be used later in the Docker stack file to name the image to be retrieved.

The create.sh script only needs to be executed once.

Beyond creating the repositories, the workflow is as follows:

Build the images, for which we've already created a script named
build.sh.
Tag the images with the ECR repository Uniform Resource Identifier
(URI).
Push the images to the ECR repository.

For the latter two steps, we still have some scripts to create.

Create a file named tag.sh containing the following:

docker tag svc-notes:latest
$AWS_USER.dkr.ecr.$AWS_REGION.amazonaws.com/svc-notes:latest
docker tag svc-userauth:latest
$AWS_USER.dkr.ecr.$AWS_REGION.amazonaws.com/svc-userauth:latest

The docker tag command we have here takes svc-notes:latest, or svc-
userauth:latest, and adds what's called a target image to the local image storage
area. The target image name we've used is the same as what will be stored in the ECR
repository.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[567]

For Windows, you should create a file named tag.ps1 using the same commands,
but with Windows-style environment variable references.

Then, create a file named push.sh containing the following:

docker push $AWS_USER.dkr.ecr.$AWS_REGION.amazonaws.com/svc-
notes:latest
docker push $AWS_USER.dkr.ecr.$AWS_REGION.amazonaws.com/svc-
userauth:latest

The docker push command causes the target image to be sent to the ECR repository.
And again, for Windows, create a file named push.ps1 containing the same
commands but with Windows-style environment variable references.

In both the tag and push scripts, we are using the repository URI value, but have
plugged in the two environment variables. This will make it generalized in case we
deploy Notes to another AWS region.

We have the workflow implemented as scripts, so let's see now how it is run, as
follows:

$ sh -x build.sh
+ cd ../notes
+ npm run docker-build

> notes@0.0.0 docker-build /Users/David/Chapter12/notes
> docker build -t svc-notes .

Sending build context to Docker daemon 84.12MB
Step 1/25 : FROM node:14
 ---> a5a6a9c32877
Step 2/25 : RUN apt-get update -y && apt-get -y install curl python
build-essential git ca-certificates
 ---> Using cache
 ---> 7cf57f90c8b8
Step 3/25 : ENV DEBUG="notes:*,messages:*"
 ---> Using cache
 ---> 291652c87cce
...
Successfully built e2f6ec294016
Successfully tagged svc-notes:latest
+ cd ../users
+ npm run docker-build

> user-auth-server@1.0.0 docker-build /Users/David/Chapter12/users
> docker build -t svc-userauth .

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[568]

Sending build context to Docker daemon 11.14MB
...
Successfully built 294b9a83ada3
Successfully tagged svc-userauth:latest

This builds the Docker images. When we run docker build, it stores the built image
in an area on our laptop where Docker maintains images. We can inspect that area
using the docker images command, like this:

$ docker images svc-userauth
REPOSITORY TAG IMAGE ID CREATED SIZE
svc-userauth latest b74f92629ed1 3 hours ago 1.11GB

The docker build command automatically adds the tag, latest, if we do not
specify a tag.

Then, to push the images to the ECR repositories, we execute these commands:

$ sh tag.sh
$ sh push.sh
The push refers to repository [09E1X6A8MPLE.dkr.ecr.us-
west-2.amazonaws.com/svc-notes]
6005576570e9: Pushing 18.94kB
cac3b3d9d486: Pushing 7.014MB/96.89MB
107afd8db3a4: Pushing 14.85kB
df143eb62095: Pushing 17.41kB
6b61442be5f8: Pushing 3.717MB
0c719438462a: Waiting
8c98a57451eb: Waiting
...
latest: digest:
sha256:1ea31c507e9714704396f01f5cdad62525d9694e5b09e2e7b08c3cb2ebd6d6f
f size: 4722
The push refers to repository [09E1X6A8MPLE.dkr.ecr.us-
west-2.amazonaws.com/svc-userauth]
343a794bb161: Pushing 9.12MB/65.13MB
51f07622ae50: Pushed
b12bef22bccb: Pushed
...

Since the images are rather large, it will take a long time to upload them to the AWS
ECR. We should add a task to the backlog to explore ways to trim Docker image sizes.
In any case, expect this to take a while.

After a period of time, the images will be uploaded to the ECR repositories, and you
can inspect the results on the ECR dashboard.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[569]

Once the Docker images are pushed to the AWS ECR repository, we no longer need
to stay with the default Docker context. You will be free to run the following
command at any time:

$ docker context use ec2

Remember that swarm hosts are not to be used for building Docker images. At the
beginning of this section, we switched to the default context so that builds would
occur on our laptop.

In this section, we learned how to set up a build procedure to push our Docker
images to repositories on the AWS ECR service. This included using some interesting
tools that simplify building complex build procedures in package.json scripts.

Our next step is learning how to use Docker compose files to describe deployment on
Docker Swarm.

Creating a Docker stack file for
deployment to Docker Swarm
In the previous sections, we learned how to set up an AWS infrastructure using
Terraform. We've designed a VPC that will house the Notes application stack, we
experimented with a single-node Docker Swarm cluster built on a single EC2
instance, and we set up a procedure to push the Docker images to the ECR.

Our next task is to prepare a Docker stack file for deployment to the swarm. A stack
file is nearly identical to the Docker compose file we used in Chapter 11, Deploying
Node.js Microservices with Docker. Compose files are used with normal Docker hosts,
but stack files are used with swarms. To make it a stack file, we add some new tags
and change a few things, including the networking implementation.

Earlier, we kicked the tires of Docker Swarm with the docker service create
command to launch a service on a swarm. While that was easy, it does not constitute
code that can be committed to a source repository, nor is it an automated process.

In swarm mode, a service is a definition of the tasks to execute on swarm nodes. Each
service consists of a number of tasks, with this number depending on the replica
settings. Each task is a container that has been deployed to a node in the swarm.
There are, of course, other configuration parameters, such as network ports, volume
connections, and environment variables.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[570]

The Docker platform allows the use of the compose file for deploying services to a
swarm. When used this way, the compose file is referred to as a stack file. There is a
set of docker stack commands for handling the stack file, as follows:

On a regular Docker host, the docker-compose.yml file is called a
compose file. We use the docker-compose command on a compose file.
On a Docker swarm, the docker-compose.yml file is called a stack file.
We use the docker stack command on a stack file.

Remember that a compose file has a services tag, and each entry in that tag is a
container configuration to deploy. When used as a stack file, each services tag entry
is, of course, a service in the sense just described. This means that just as there was a
lot of similarity between the docker run command and container definitions in the
compose file, there is a degree of similarity between the docker service create
command and the service entries in the stack file.

One important consideration is a policy that builds must not happen on Swarm host
machines. Instead, these machines must be used solely for deploying and executing
containers. This means that any build tag in a service listed in a stack file is ignored.
Instead, there is a deploy tag that has parameters for the deployment in the swarm,
and the deploy tag is ignored when the file is used with Compose. Put more simply,
we can have the same file serve both as a compose file (with the docker compose
command) and as a stack file (with the docker stack command), with the following
conditions:

When used as a compose file, the build tag is used and the deploy tag is
ignored.
When used as a stack file, the build tag is ignored and the deploy tag is
used.

Another consequence of this policy is the necessity of switching the Docker context as
appropriate. We have already discussed this issue—that we use the default Docker
context to build images on our laptop and we use the EC2 context when interacting
with the swarm on the AWS EC2 instances.

To get started, create a directory named compose-stack that's a sibling to compose-
local, notes, terraform-swarm, and the other directories. Then, copy compose-
local/docker-compose.yml into compose-stack. This way, we can start from
something we know is working well.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[571]

This means that we'll create a Docker stack file from our compose file. There are
several steps involved, which we'll cover over the next several sections. This includes
adding deploy tags, configuring networking for the swarm, controlling the placement
of services in the swarm, storing secrets in the swarm, and other tasks.

Creating a Docker stack file from the Notes
Docker compose file
With that theory under our belts, let's now take a look at the existing Docker compose
file and see how to make it useful for deployment to a swarm.

Since we will require some advanced docker-compose.yml features, update the
version number to the following:

version: '3.8'

For the Compose file we started with, version '3' was adequate, but to accomplish
the tasks in this chapter the higher version number is required, to enable newer
features.

Fortunately, most of this is straightforward and will require very little code.

Deployment parameters: These are expressed in the deploy tag, which
covers things such as the number of replicas, and memory or CPU
requirements. For documentation, refer to https:/ /docs. docker.
com/ compose/ compose- file/#deploy.

For the deployment parameters, simply add a deploy tag to each service. Most of the
options for this tag have perfectly reasonable defaults. To start with, let's add this to
every service, as follows:

 deploy:
 replicas: 1

This tells Docker that we want one instance of each service. Later, we will experiment
with adding more service instances. We will add other parameters later, such as
placement constraints. Later, we will want to experiment with multiple replicas for
both svc-notes and svc-userauth. It is tempting to put CPU and memory limits
on the service, but this isn't necessary.

It is nice to learn that with swarm mode, we can simply change the replicas setting
to change the number of instances.

https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy
https://docs.docker.com/compose/compose-file/#deploy

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[572]

The next thing to take care of is the image name. While the build tag is present,
remember that it is ignored. For the Redis and database containers, we are already
using images from Docker Hub, but for svc-notes and svc-userauth, we are
building our own containers. This is why, earlier in this chapter, we set up a
procedure for pushing the images to ECR repositories. We can now reference those
images from the stack file. This means that we must make the following change:

services:
 ...
 svc-userauth:
 build: ../users
 image: 098E0X9AMPLE.dkr.ecr.us-REGION-2.amazonaws.com/svc-userauth
 ...

 svc-notes:
 build: ../notes
 image: 098E0X9AMPLE.dkr.ecr.us-REGION-2.amazonaws.com/svc-notes
 ...

If we use this with docker-compose, it will perform the build in the named
directories, and then tag the resulting image with the tag in the image field. In this
case, the deploy tag will be ignored as well. However, if we use this with docker
stack deploy, the build tag will be ignored, and the images will be downloaded
from the repositories listed in the image tag. In this case, the deploy tag will be used.

For documentation on the build tag, refer to https:/ /docs.
docker. com/ compose/ compose- file/ #build. For documentation on
the image tag, refer to https:/ /docs. docker. com/ compose/
compose- file/ #image.

When running the compose file on our laptop, we used bridge networking. This
works fine for a single host, but with swarm mode, we need another network mode
that handles multi-host deployments. The Docker documentation clearly says to use
the overlay driver in swarm mode, and the bridge driver for a single-host
deployment.

Virtual networking for containers: Since bridge networking is
designed for a single-host deployment, we must use overlay
networking in swarm mode. For documentation, refer to https:/ /
docs. docker. com/ compose/ compose- file/ #network-
configuration- reference.

https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference
https://docs.docker.com/compose/compose-file/#network-configuration-reference

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[573]

To use overlay networking, change the networks tag to the following:

networks:
 frontnet:
 # driver: bridge
 driver: overlay
 authnet:
 # driver: bridge
 driver: overlay
 svcnet:
 # driver: bridge
 driver: overlay

To support switching between using this for a swarm, or for a single-host
deployment, we can leave the bridge network setting available but commented out.
We would then change whether overlay or bridge networking is active by
changing which is commented, depending on the context.

The overlay network driver sets up a virtual network across the swarm nodes. This
network supports communication between the containers and also facilitates access to
the externally published ports.

The overlay network configures the containers in a swarm to have a domain name
automatically assigned that matches the service name. As with the bridge network
we used before, containers find each other via the domain name. For a service
deployed with multiple instances, the overlay network ensures that requests to that
container can be routed to any of its instances. If a connection is made to a container
but there is no instance of that container on the same host, the overlay network
routes the request to an instance on another host. This is a simple approach to service
discovery, by using domain names, but extending it across multiple hosts in a swarm.

That took care of the easy tasks for converting the compose file to a stack file. There
are a few other tasks that will require more attention, however.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[574]

Placing containers across the swarm
We haven't done it yet, but we will add multiple EC2 instances to the swarm. By
default, swarm mode distributes tasks (containers) evenly across the swarm nodes.
However, we have two considerations that should force some containers to be
deployed on specific Docker hosts—namely, the following:

We have two database containers and need to arrange persistent storage for1.
the data files. This means that the databases must be deployed to the same
instance every time so that it can use the same data directory.
The public EC2 instance, named notes-public, will be part of the swarm.2.
To maintain the security model, most of the services should not be
deployed on this instance but on the instances that will be attached to the
private subnet. Therefore, we should strictly control which containers
deploy to notes-public.

Swarm mode lets us declare the placement requirements for any service. There are
several ways to implement this, such as matching against the hostname, or
against labels that can be assigned to each node.

For documentation on the stack file placement tag, refer to https:/
/docs. docker. com/ compose/ compose- file/ #placement.

The documentation for the docker stack create command
includes a further explanation of deployment parameters: https:/ /
docs. docker. com/ engine/ reference/ commandline/ service_
create.

Add this deploy tag to the db-userauth service declaration:

services:
...
 db-userauth:
 ..
 deploy:
 replicas: 1
 placement:
 constraints:
 # - "node.hostname==notes-private-db1"
 - "node.labels.type==db"
...

https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/compose/compose-file/#placement
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create
https://docs.docker.com/engine/reference/commandline/service_create

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[575]

The placement tag governs where the containers are deployed. Rather than Docker
evenly distributing the containers, we can influence the placement with the fields in
this tag. In this case, we have two examples, such as deploying a container to a
specific node based on the hostname or selecting a node based on the labels attached
to the node.

To set a label on a Docker swarm node, we run the following command:

$ docker node update --label-add type=public notes-public

This command attaches a label named type, with the value public, to the node
named notes-public. We use this to set labels, and, as you can see, the label can
have any name and any value. The labels can then be used, along with other
attributes, as influence over the placement of containers on swarm nodes.

For the rest of the stack file, add the following placement constraints:

services:
...
 svc-userauth:
 ...
 deploy:
 replicas: 1
 placement:
 constraints:
 - "node.labels.type==svc"
...
 db-notes:
 ...
 deploy:
 replicas: 1
 placement:
 constraints:
 - "node.labels.type==db"
...
 svc-notes:
 ...
 deploy:
 replicas: 1
 placement:
 constraints:
 - "node.labels.type==public"
...
 redis:
 ...
 deploy:
 replicas: 1

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[576]

 placement:
 constraints:
 - "node.labels.type!=public"
...

This gives us three labels to assign to our EC2 instances: db, svc, and public.
These constraints will cause the databases to be placed on nodes where the type label
is db, the user authentication service is on the node of type svc, the Notes service is
on the public node, and the Redis service is on any node that is not the public
node.

The reasoning stems from the security model we designed. The containers deployed
on the private network should be more secure behind more layers of protection. This
placement leaves the Notes container as the only one on the public EC2 instance. The
other containers are split between the db and svc nodes. We'll see later how these
labels will be assigned to the EC2 instances we'll create.

Configuring secrets in Docker Swarm
With Notes, as is true for many kinds of applications, there are some secrets we must
protect. Primarily, this is the Twitter authentication tokens, and we've claimed it
could be a company-ending event if those tokens were to leak to the public. Maybe
that's overstating the danger, but leaked credentials could be bad. Therefore, we must
take measures to ensure that those secrets do not get committed to a source repository
as part of any source code, nor should they be recorded in any other file.

For example, the Terraform state file records all information about the infrastructure,
and the Terraform team makes no effort to detect any secrets and suppress recording
them. It's up to us to make sure the Terraform state file does not get committed to
source code control as a result.

Docker Swarm supports a very interesting method for securely storing secrets and for
making them available in a secure manner in containers.

The process starts with the following command:

$ printf 'vuTghgEXAMPLE...' | docker secret create
TWITTER_CONSUMER_KEY -
$ printf 'tOtJqaEXAMPLE...' | docker secret create
TWITTER_CONSUMER_SECRET -

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[577]

This is how we store a secret in a Docker swarm. The docker secret create
command first takes the name of the secret, and then a specifier for a file containing
the text for the secret. This means we can either store the data for the secret in a file
or—as in this case—we use - to specify that the data comes from the standard input.
In this case, we are using the printf command, which is available for macOS and
Linux, to send the value into the standard input.

Docker Swarm securely records the secrets as encrypted data. Once you've given a
secret to Docker, you cannot inspect the value of that secret.

In compose-stack/docker-compose.yml, add this declaration at the end:

secrets:
 TWITTER_CONSUMER_KEY:
 external: true
 TWITTER_CONSUMER_SECRET:
 external: true

This lets Docker know that this stack requires the value of those two secrets.

The declaration for svc-notes also needs the following command:

services:
 ...
 svc-notes:
 ...
 secrets:
 - TWITTER_CONSUMER_KEY
 - TWITTER_CONSUMER_SECRET
 ..
 environment:
 ...
 TWITTER_CONSUMER_KEY_FILE: /var/run/secrets/TWITTER_CONSUMER_KEY
 TWITTER_CONSUMER_SECRET_FILE:
 /var/run/secrets/TWITTER_CONSUMER_SECRET
 ...

This notifies the swarm that the Notes service requires the two secrets. In response,
the swarm will make the data for the secrets available in the filesystem of the
container
as /var/run/secrets/TWITTER_CONSUMER_KEY and /var/run/secrets/TWITTE
R_CONSUMER_SECRET. They are stored as in-memory files and are relatively secure.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[578]

To summarize, the steps required are as follows:

Use docker secret create to register the secret data with the swarm.
In the stack file, declare secrets in a top-level secrets tag.
In services that require the secrets, declare a secrets tag that lists the
secrets required by this service.
In the environments tag for the service, create an environment variable
pointing to the secrets file.

The Docker team has a suggested convention for configuration of environment
variables. You could supply the configuration setting directly in an environment
variable, such as TWITTER_CONSUMER_KEY. However, if the configuration setting is in
a file, then the filename should be given in a different environment variable whose
name has _FILE appended. For example, we would use TWITTER_CONSUMER_KEY or
TWITTER_CONSUMER_KEY_FILE, depending on whether the value is directly supplied
or in a file.

This then means that we must rewrite Notes to support reading these values from the
files, in addition to the existing environment variables.

To support reading from files, add this import to the top of
notes/routes/users.mjs:

import fs from 'fs-extra';

Then, we'll find the code corresponding to these environment variables further down
the file. We should rewrite that section as follows:

const twittercallback = process.env.TWITTER_CALLBACK_HOST
 ? process.env.TWITTER_CALLBACK_HOST
 : "http://localhost:3000";
export var twitterLogin = false;
let consumer_key;
let consumer_secret;

if (typeof process.env.TWITTER_CONSUMER_KEY !== 'undefined'
 && process.env.TWITTER_CONSUMER_KEY !== ''
 && typeof process.env.TWITTER_CONSUMER_SECRET !== 'undefined'
 && process.env.TWITTER_CONSUMER_SECRET !== '') {

 consumer_key = process.env.TWITTER_CONSUMER_KEY;
 consumer_secret = process.env.TWITTER_CONSUMER_SECRET;
 twitterLogin = true;

} else if (typeof process.env.TWITTER_CONSUMER_KEY_FILE !==

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[579]

'undefined'
 && process.env.TWITTER_CONSUMER_KEY_FILE !== ''
 && typeof process.env.TWITTER_CONSUMER_SECRET_FILE !== 'undefined'
 && process.env.TWITTER_CONSUMER_SECRET_FILE !== '') {

 consumer_key =
 fs.readFileSync(process.env.TWITTER_CONSUMER_KEY_FILE, 'utf8');
 consumer_secret =
 fs.readFileSync(process.env.TWITTER_CONSUMER_SECRET_FILE, 'utf8');
 twitterLogin = true;
}

if (twitterLogin) {
 passport.use(new TwitterStrategy({
 consumerKey: consumer_key,
 consumerSecret: consumer_secret,
 callbackURL: `${twittercallback}/users/auth/twitter/callback`
 },
 async function(token, tokenSecret, profile, done) {
 try {
 done(null, await usersModel.findOrCreate({
 id: profile.username, username: profile.username, password:
 "",
 provider: profile.provider, familyName: profile.displayName,
 givenName: "", middleName: "",
 photos: profile.photos, emails: profile.emails
 }));
 } catch(err) { done(err); }
 }));
}

This is similar to the code we've already used but organized a little differently. It first
tries to read the Twitter tokens from the environment. Failing that, it tries to read
them from the named files. Because this code is executing in the global context, we
must read the files using readFileSync.

If the tokens are available from either source, the twitterLogin variable is set, and
then we enable the support for TwitterStrategy. Otherwise, Twitter support is
disabled. We had already organized the views templates so that if twitterLogin is
false, the Twitter login buttons do not appear.

All of this is what we did in Chapter 8, Authenticating Users with a Microservice, but
with the addition of reading the tokens from a file.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[580]

Persisting data in a Docker swarm
The data persistence strategy we used in Chapter 11, Deploying Node.js Microservices
with Docker, required the database files to be stored in a volume. The directory for the
volume lives outside the container and survives when we destroy and recreate the
container.

That strategy relied on there being a single Docker host for running containers.
The volume data is stored in a directory in the host filesystem. But in swarm
mode, volumes do not work in a compatible fashion.

With Docker Swarm, unless we use placement criteria, containers can deploy to any
swarm node. The default behavior for a named volume in Docker is that the data is
stored on the current Docker host. If the container is redeployed, then the volume is
destroyed on the one host and a new one is created on the new host. Clearly, that
means that the data in that volume is not persistent.

For documentation about using volumes in a Docker Swarm, refer
to https:/ /docs. docker. com/ compose/ compose- file/ #volumes-
for- services- swarms- and-stack- files.

What's recommended in the documentation is to use placement criteria to force such
containers to deploy to specific hosts. For example, the criteria we discussed earlier
deploy the databases to a node with the type label equal to db.

In the next section, we will make sure that there is exactly one such node in the
swarm. To ensure that the database data directories are at a known location, let's
change the declarations for the db-userauth and db-notes containers, as follows:

services:
 ..
 db-userauth:
 ...
 volumes:
 # - db-userauth-data:/var/lib/mysql
 - type: bind
 source: /data/users
 target: /var/lib/mysql
 ...

 db-notes:
 ...
 volumes:
 # - db-notes-data:/var/lib/mysql

https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files
https://docs.docker.com/compose/compose-file/#volumes-for-services-swarms-and-stack-files

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[581]

 - type: bind
 source: /data/notes
 target: /var/lib/mysql
 ...
volumes:
db-userauth-data:
db-notes-data:
...

In docker-local/docker-compose.yml, we used the named volumes, db-
userauth-data and db-notes-data. The top-level volumes tag is required when
doing this. In docker-swarm/docker-compose.yml, we've commented all of that
out. Instead, we are using a bind mount, to mount specific host directories in the
/var/lib/mysql directory of each database.

Therefore, the database data directories will be in /data/users and /data/notes,
respectively.

This result is fairly good, in that we can destroy and recreate the database containers
at will and the data directories will persist. However, this is only as persistent as the
EC2 instance this is deployed to. The data directories will vaporize as soon as we
execute terraform destroy.

That's obviously not good enough for a production deployment, but it is good
enough for a test deployment such as this.

It is preferable to use a volume instead of the bind mount we just implemented.
Docker volumes have a number of advantages, but to make good use of a volume
requires finding the right volume driver for your needs. Two examples are as follows:

In the Docker documentation, at https:/ /docs. docker. com/ storage/1.
volumes/ , there is an example of mounting a Network File System (NFS)
volume in a Docker container. AWS offers an NFS service—the Elastic
Filesystem (EFS) service—that could be used, but this may not be the best
choice for a database container.
The REX-Ray project (https:/ /github. com/ rexray/ rexray) aims to 2.
advance the state of the art for persistent data storage in various
containerization systems, including Docker.

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray
https://github.com/rexray/rexray

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[582]

Another option is to completely skip running our own database containers and
instead use the Relational Database Service (RDS). RDS is an AWS service offering
several Structured Query Language (SQL) database solutions, including MySQL. It
offers a lot of flexibility and scalability, at a price. To use this, you would eliminate
the db-notes and db-userauth containers, provision RDS instances, and then
update the SEQUELIZE_CONNECT configuration in svc-notes and svc-userauth to
use the database host, username, and password you configured in the RDS instances.

For our current requirements, this setup, with a bind mount to a directory on the EC2
host, will suffice. These other options are here for your further exploration.

In this section, we converted our Docker compose file to be useful as a stack file.
While doing this, we discussed the need to influence which swarm host has which
containers. The most critical thing is ensuring that the database containers are
deployed to a host where we can easily persist the data—for example, by running a
database backup every so often to external storage. We also discussed
storing secrets in a secure manner so that they may be used safely by the containers.

At this point, we cannot test the stack file that we've created because we do not have a
suitable swarm to deploy to. Our next step is writing the Terraform configuration to
provision the EC2 instances. That will give us the Docker swarm that lets us test the
stack file.

Provisioning EC2 instances for a full
Docker swarm
So far in this chapter, we have used Terraform to create the required infrastructure on
AWS, and then we set up a single-node Docker swarm on an EC2 instance to learn
about Docker Swarm. After that, we pushed the Docker images to ECR, and we have
set up a Docker stack file for deployment to a swarm. We are ready to set up the EC2
instances required for deploying a full swarm.

Docker Swarm is able to handle Docker deployments to large numbers of host
systems. Of course, the Notes application only has delusions of grandeur and doesn't
need that many hosts. We'll be able to do everything with three or four EC2 instances.
We have declared one so far, and will declare two more that will live on the private
subnet. But from this humble beginning, it would be easy to expand to more hosts.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[583]

Our goal in this section is to create an infrastructure for deploying Notes on EC2
using Docker Swarm. This will include the following:

Configuring additional EC2 instances on the private subnet, installing
Docker on those instances, and joining them together in a multi-host
Docker Swarm
Creating semi-automated scripting, thereby making it easy to deploy and
configure the EC2 instances for the swarm
Using an nginx container on the public EC2 instance as a proxy in front of
the Notes container

That's quite a lot of things to take care of, so let's get started.

Configuring EC2 instances and connecting to
the swarm
We have one EC2 instance declared for the public subnet, and it is necessary to add
two more for the private subnet. The security model we discussed earlier focused on
keeping as much as possible in a private secure network infrastructure. On AWS, that
means putting as much as possible on the private subnet.

Earlier, you may have renamed ec2-public.tf to ec2-public.tf-disable. If so,
you should now change back the filename to ec2-public.tf. Remember that this
tactic is useful for minimizing AWS resource usage when it is not needed.

Create a new file in the terraform-swarm directory named ec2-private.tf, as
follows:

resource "aws_instance" "private-db1" {
 ami = var.ami_id
 // instance_type = var.instance_type
 instance_type = "t2.medium"
 subnet_id = aws_subnet.private1.id
 key_name = var.key_pair
 vpc_security_group_ids = [aws_security_group.ec2-private-sg.id]
 associate_public_ip_address = false

 root_block_device {
 volume_size = 50
 }

 tags = {

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[584]

 Name = "${var.project_name}-ec2-private-db1"
 }

 depends_on = [aws_vpc.notes, aws_internet_gateway.igw]
 user_data = join("\n", [
 "#!/bin/sh",
 file("sh/docker_install.sh"),
 "mkdir -p /data/notes /data/users",
 "sudo hostname ${var.project_name}-private-db1"
])
}

resource "aws_instance" "private-svc1" {
 ami = var.ami_id
 instance_type = var.instance_type
 subnet_id = aws_subnet.private1.id
 key_name = var.key_pair
 vpc_security_group_ids = [aws_security_group.ec2-private-sg.id]
 associate_public_ip_address = false

 tags = {
 Name = "${var.project_name}-ec2-private-svc1"
 }

 depends_on = [aws_vpc.notes, aws_internet_gateway.igw]
 user_data = join("\n", [
 "#!/bin/sh",
 file("sh/docker_install.sh"),
 "sudo hostname ${var.project_name}-private-svc1"
])
}

This declares two EC2 instances that are attached to the private subnet. There's no
difference between these instances other than the name. Because they're on the
private subnet, they are not assigned a public IP address.

Because we use the private-db1 instance for databases, we have allocated 50
gigabytes (GB) for the root device. The root_block_device block is for
customizing the root disk of an EC2 instance. Among the available settings,
volume_size sets its size, in GB.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[585]

Another difference in private-db1 is the instance_type, which we've hardcoded
to t2.medium. The issue is about deploying two database containers to this server. A
t2.micro instance has 1 GB of memory, and the two databases were observed to
overwhelm this server. If you want the adventure of debugging that situation, change
this value to be var.instance_type, which defaults to t2.micro, then read the
section at the end of the chapter about debugging what happens.

Notice that for the user_data script, we only send in the script to install Docker
Support, and not the script to initialize a swarm. The swarm was initialized in the
public EC2 instance. The other instances must instead join the swarm using the
docker swarm join command. Later, we will go over initializing the swarm, and
see how that's accomplished. For the public-db1 instance, we also create the
/data/notes and /data/users directories, which will hold the database data
directories.

Add the following code to ec2-private.tf:

resource "aws_security_group" "ec2-private-sg" {
 name = "${var.project_name}-private-sg"
 description = "allow inbound access to the EC2 instance"
 vpc_id = aws_vpc.notes.id

 ingress {
 protocol = "-1"
 from_port = 0
 to_port = 0
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker swarm (udp)"
 protocol = "UDP"
 from_port = 0
 to_port = 0
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 egress {
 protocol = "-1"
 from_port = 0
 to_port = 0
 cidr_blocks = ["0.0.0.0/0"]
 }
}

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[586]

This is the security group for these EC2 instances. It allows any traffic from inside the
VPC to enter the EC2 instances. This is the sort of security group we'd create when in
a hurry and should tighten up the ingress rules, since this is very lax.

Likewise, the ec2-public-sg security group needs to be equally lax. We'll find that
there is a long list of IP ports used by Docker Swarm and that the swarm will fail to
operate unless those ports can communicate. For our immediate purposes, the easiest
option is to allow any traffic, and we'll leave a note in the backlog to address this
issue in Chapter 14, Security in Node.js Applications.

In ec2-public.tf, edit the ec2-public-sg security group to be the following:

resource "aws_security_group" "ec2-public-sg" {
 name = "${var.project_name}-public-sg"
 description = "allow inbound access to the EC2 instance"
 vpc_id = aws_vpc.notes.id

 ingress {
 protocol = "-1"
 from_port = 0
 to_port = 0
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 description = "Docker swarm (udp)"
 protocol = "UDP"
 from_port = 0
 to_port = 0
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 egress {
 protocol = "-1"
 from_port = 0
 to_port = 0
 cidr_blocks = ["0.0.0.0/0"]
 }
}

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[587]

This is literally not a best practice since it allows any network traffic from any IP
address to reach the public EC2 instance. However, it does give us the freedom to
develop the code without worrying about protocols at this moment. We will address
this later and implement the best security practice. Have a look at the following code
snippet:

output "ec2-private-db1-arn" { value = aws_instance.private-db1.arn }
output "ec2-private-db1-dns" { value = aws_instance.private-
db1.private_dns }
output "ec2-private-db1-ip" { value = aws_instance.private-
db1.private_ip }
output "ec2-private-svc1-arn" { value = aws_instance.private-svc1.arn
}
output "ec2-private-svc1-dns" { value = aws_instance.private-
svc1.private_dns }
output "ec2-private-svc1-ip" { value = aws_instance.private-
svc1.private_ip }

This outputs the useful attributes of the EC2 instances.

In this section, we declared EC2 instances for deployment on the private subnet. Each
will have Docker initialized. However, we still need to do what we can to automate
the setup of the swarm.

Implementing semi-automatic initialization of
the Docker Swarm
Ideally, when we run terraform apply, the infrastructure is automatically set up
and ready to go. Automated setup reduces the overhead of running and maintaining
the AWS infrastructure. We'll get as close to that goal as possible.

For this purpose, let's revisit the declaration of aws_instance.public in ec2-
public.tf. Let's rewrite it as follows:

resource "aws_instance" "public" {
 ami = var.ami_id
 instance_type = var.instance_type
 subnet_id = aws_subnet.public1.id
 key_name = var.key_pair
 vpc_security_group_ids = [aws_security_group.ec2-public-sg.id]
 associate_public_ip_address = true
 tags = {
 Name = "${var.project_name}-ec2-public"
 }

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[588]

 depends_on = [
 aws_vpc.notes, aws_internet_gateway.igw,
 aws_instance.private-db1, aws_instance.private-svc1
]

 user_data = join("\n", [
 "#!/bin/sh",
 file("sh/docker_install.sh"),
 "docker swarm init",
 "sudo hostname ${var.project_name}-public",
 "docker node update --label-add type=public ${var.project_name}
 -public",
 templatefile("sh/swarm-setup.sh", {
 instances = [{
 dns = aws_instance.private-db1.private_dns,
 type = "db",
 name = "${var.project_name}-private-db1"
 }, {
 dns = aws_instance.private-svc1.private_dns,
 type = "svc",
 name = "${var.project_name}-private-svc1"
 }]
 })
])
}

This is largely the same as before, but with two changes. The first is to add references
to the private EC2 instances to the depends_on attribute. This will delay the
construction of the public EC2 instance until after the other two are running.

The other change is to extend the shell script attached to the user_data attribute. The
first addition to that script is to set the type label on the notes-public node. That
label is used with service placement.

The last change is a script with which we'll set up the swarm. Instead of setting up the
swarm in the user_data script directly, it will generate a script that we will use in
creating the swarm. In the sh directory, create a file named swarm-setup.sh
containing the following:

cat >/home/ubuntu/swarm-setup.sh <<EOF
#!/bin/sh

Capture the file name for the PEM from the command line
PEM=\$1

join="`docker swarm join-token manager | sed 1,2d | sed 2d`"

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[589]

%{ for instance in instances ~}
ssh -i \$PEM ${instance.dns} \$join
docker node update --label-add type=${instance.type} ${instance.name}
%{ endfor ~}
EOF

This generates a shell script that will be used to initialize the swarm. Because the
setup relies on executing commands on the other EC2 instances, the PEM file for the
AWS key pair must be present on the notes-public instance. However, it is not
possible to send the key-pair file to the notes-public instance when running
terraform apply. Therefore, we use the pattern of generating a shell script, which
will be run later.

The pattern being followed is shown in the following code snippet:

cat >/path/to/file <<EOF
... text to output
EOF

The part between <<EOF and EOF is supplied as the standard input to the cat
command. The result is, therefore, for /home/ubuntu/swarm-setup.sh to end up
with the text between those markers. An additional detail is that a number of variable
references are escaped, as in PEM=\$1. This is necessary so that those variables are not
evaluated while setting up this script but are present in the generated script.

This script is processed using the templatefile function so that we can use
template commands. Primarily, that is the %{for .. } loop with which we generate
the commands for configuring each EC2 instance. You'll notice that there is an array
of data for each instance, which is passed through the templatefile invocation.

Therefore, the swarm-setup.sh script will contain a copy of the following pair of
commands for each EC2 instance:

ssh -i $PEM ${instance.dns} $join
docker node update --label-add type=${instance.type} ${instance.name}

The first line uses SSH to execute the swarm join command on the EC2 instance. For
this to work, we need to supply the AWS key pair, which must be specified on the
command file so that it becomes the PEM variable. The second line adds the type label
with the named value to the named swarm node.

What is the $join variable? It has the output of running docker swarm join-
token, so let's take a look at what it is.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[590]

Docker uses a swarm join token to facilitate connecting Docker hosts as a node in a
swarm. The token contains cryptographically signed information that authenticates
the attempt to join the swarm. We get the token by running the following command:

$ docker swarm join-token manager
To add a manager to this swarm, run the following command:

 docker swarm join --token
SWMTKN-1-1l161hnrjbmzg1r8a46e34dt21sl5n4357qrib29csi0jgi823-3g80csolwa
ioya580hjanwfsf 10.0.3.14:2377

The word manager here means that we are requesting a token to join as a manager
node. To connect a node as a worker, simply replace manager with worker.

Once the EC2 instances are deployed, we could log in to notes-public, and then
run this command to get the join token and run that command on each of the EC2
instances. The swarm-setup.sh script, however, handles this for us. All we have to
do, once the EC2 hosts are deployed, is to log in to notes-public and run this script.

It runs the docker swarm join-token manager command, piping that user-
friendly text through a couple of sed commands to extract out the important part.
That leaves the join variable containing the text of the docker swarm join
command, and then it uses SSH to execute that command on each of the instances.

In this section, we examined how to automate, as far as possible, the setup of the
Docker swarm.

Let's now do it.

Preparing the Docker Swarm before deploying
the Notes stack
When you make an omelet, it's best to cut up all the veggies and sausage, prepare the
butter, and whip the milk and eggs into a mix before you heat up the pan. In other
words, we prepare the ingredients before undertaking the critical action of preparing
the dish. What we've done so far is to prepare all the elements of successfully
deploying the Notes stack to AWS using Docker Swarm. It's now time to turn on the
pan and see how well it works.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[591]

We have everything declared in the Terraform files, and we can deploy our complete
system with the following command:

$ terraform apply
...
Plan: 5 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value: yes
...

This deploys the EC2 instances on AWS. Make sure to record all the output
parameters. We're especially interested in the domain names and IP addresses for the
three EC2 instances.

As before, the notes-public instance should have a Docker swarm initialized. We
have added two more instances, notes-private-db1 and notes-private-svc1.
Both will have Docker installed, but they are not joined to the swarm. Instead, we
need to run the generated shell script for them to become nodes in the swarm, as
follows:

$ scp ~/Downloads/notes-app-key-pair.pem ubuntu@PUBLIC-IP-ADDRESS:
The authenticity of host '52.39.219.109 (52.39.219.109)' can't be
established.
ECDSA key fingerprint is
SHA256:qdK5ZPn1EtmO1RWljb0dG3Nu2mDQHtmFwcw4fq9s6vM.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.39.219.109' (ECDSA) to the list of
known hosts.
notes-app-key-pair.pem 100% 1670 29.2KB/s 00:00

$ ssh ubuntu@PUBLIC-IP-ADDRESS
Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-1009-aws x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage
...

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[592]

We have already run ssh-add on our laptop, and therefore SSH and secure copy
(SCP) commands can run without explicitly referencing the PEM file. However, the
SSH on the notes-public EC2 instance does not have the PEM file. Therefore, to
access the other EC2 instances, we need the PEM file to be available. Hence, we've
used scp to copy it to the notes-public instance.

If you want to verify the fact that the instances are running and have Docker active,
type the following command:

ubuntu@notes-public:~$ ssh -i ./notes-app-key-pair.pem \
 ubuntu@IP-FOR-EC2-INSTANCE docker run hello-world

In this case, we are testing the private EC2 instances from a shell running on the
public EC2 instance. That means we must use the private IP addresses printed when
we ran Terraform. This command verifies SSH connectivity to an EC2 instance and
verifies its ability to download and execute a Docker image.

Next, we can run swarm-setup.sh. On the command line, we must give the
filename for the PEM file as the first argument, as follows:

ubuntu@notes-public:~$ sh -x swarm-setup.sh ./notes-app-key-pair.pem
+ PEM=./notes-app-key-pair.pem
+ ssh -i ./notes-app-key-pair.pem ip-10-0-3-151.us-
west-2.compute.internal docker swarm join --token
SWMTKN-1-04shb3msc7a1ydqcqmtyhych60wwptkxwcqiexi1ou6fetx2kg-7robjlgber
03xo44jwx1yofaw 10.0.1.111:2377
...
This node joined a swarm as a manager.
+ docker node update --label-add type=db notes-private-db1
notes-private-db1
+ ssh -i ./notes-app-key-pair.pem ip-10-0-3-204.us-
west-2.compute.internal docker swarm join --token
SWMTKN-1-04shb3msc7a1ydqcqmtyhych60wwptkxwcqiexi1ou6fetx2kg-7robjlgber
03xo44jwx1yofaw 10.0.1.111:2377
...
This node joined a swarm as a manager.
+ docker node update --label-add type=svc notes-private-svc1
notes-private-svc1

We can see this using SSH to execute the docker swarm join command on each
EC2 instance, causing these two systems to join the swarm, and to set the labels on the
instances, as illustrated in the following code snippet:

ubuntu@notes-public:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY
MANAGER STATUS ENGINE VERSION

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[593]

ct7d65v8lhw6hxx0k8uk3lw8m notes-private-db1 Ready Active Reachable
19.03.11
k1x2h83b0lrxnh38p3pypt91x notes-private-svc1 Ready Active Reachable
19.03.11
nikgvfe4aum51yu5obqqnnz5s * notes-public Ready Active Leader 19.03.11

Indeed, these systems are now part of the cluster.

The swarm is ready to go, and we no longer need to be logged in to notes-public.
Exiting back to our laptop, we can create the Docker context to control the swarm
remotely, as follows:

$ docker context create ec2 --docker host=ssh://ubuntu@PUBLIC-IP-
ADDRESS
ec2
Successfully created context "ec2"
$ docker context use ec2

We've already seen how this works and that, having done this, we will be able to run
Docker commands on our laptop; for example, have a look at the following code
snippet:

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY
MANAGER STATUS ENGINE VERSION
ct7d65v8lhw6hxx0k8uk3lw8m notes-private-db1 Ready Active Reachable
19.03.11
k1x2h83b0lrxnh38p3pypt91x notes-private-svc1 Ready Active Reachable
19.03.11
nikgvfe4aum51yu5obqqnnz5s * notes-public Ready Active Leader 19.03.11

From our laptop, we can query the state of the remote swarm that's hosted on AWS.
Of course, this isn't limited to querying the state; we can run any other Docker
command.

We also need to run the following commands, now that the swarm is set up:

$ printf 'vuTghgEXAMPLE...' | docker secret create
TWITTER_CONSUMER_KEY -
$ printf 'tOtJqaEXAMPLE...' | docker secret create
TWITTER_CONSUMER_SECRET -

Remember that a newly created swarm does not have any secrets. To install the
secrets requires these commands to be rerun.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[594]

If you wish to create a shell script to automate this process, consider the following:

scp $AWS_KEY_PAIR ubuntu@${NOTES_PUBLIC_IP}:
ssh -i $AWS_KEY_PAIR ubuntu@${NOTES_PUBLIC_IP} swarm-setup.sh
`basename ${AWS_KEY_PAIR}`

docker context update --docker host=ssh://ubuntu@${NOTES_PUBLIC_IP}
ec2
docker context use ec2

printf $TWITTER_CONSUMER_KEY | docker secret create
TWITTER_CONSUMER_KEY -
printf $TWITTER_CONSUMER_SECRET | docker secret create
TWITTER_CONSUMER_SECRET -

sh ../ecr/login.sh

This script executes the same commands we just went over to prepare the swarm on
the EC2 hosts. It requires the environment variables to be set, as follows:

AWS_KEY_PAIR: The filename for the PEM file
NOTES_PUBLIC_IP: The IP address of the notes-public EC2 instance
TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET: The access tokens
for Twitter authentication

In this section, we have deployed more EC2 instances and set up the Docker swarm.
While the process was not completely automated, it's very close. All that's required,
after using Terraform to deploy the infrastructure, is to execute a couple of
commands to get logged in to notes-public where we run a script, and then go
back to our laptop to set up remote access.

We have set up the EC2 instances and verified we have a working swarm. We still
have the outstanding issue of verifying the Docker stack file created in the previous
section. To do so, our next step is to deploy the Notes app on the swarm.

Deploying the Notes stack file to the
swarm
We have prepared all the elements required to set up a Docker Swarm on the AWS
EC2 infrastructure, we have run the scripts required to set up that infrastructure, and
we have created the stack file required to deploy Notes to the swarm.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[595]

What's required next is to run docker stack deploy from our laptop, to deploy
Notes on the swarm. This will give us the chance to test the stack file created earlier.
You should still have the Docker context configured for the remote server, making it
possible to remotely deploy the stack. However, there are four things to handle first,
as follows:

Install the secrets in the newly deployed swarm.1.
Update the svc-notes environment configuration for the IP address of2.
notes-public.
Update the Twitter application for the IP address of notes-public.3.
Log in to the ECR instance.4.

Let's take care of those things and then deploy the Notes stack.

Preparing to deploy the Notes stack to the
swarm
We are ready to deploy the Notes stack to the swarm that we've launched. However,
we have realized that we have a couple of tasks to take care of.

The environment variables for svc-notes configuration require a little adjustment.
Have a look at the following code block:

services:
 ..
 svc-notes:
 ..
 environment:
 # DEBUG: notes:*,express:*
 REDIS_ENDPOINT: "redis"
 TWITTER_CALLBACK_HOST: "http://ec2-18-237-70-108.us-west-
 2.compute.amazonaws.com"
 TWITTER_CONSUMER_KEY_FILE: /var/run/secrets/TWITTER_CONSUMER_KEY
 TWITTER_CONSUMER_SECRET_FILE:
 /var/run/secrets/TWITTER_CONSUMER_SECRET
 SEQUELIZE_CONNECT: models/sequelize-docker-mysql.yaml
 SEQUELIZE_DBHOST: db-notes
 NOTES_MODEL: sequelize
...

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[596]

Our primary requirement is to adjust the TWITTER_CALLBACK_HOST variable. The
domain name for the notes-public instance changes every time we deploy the
AWS infrastructure. Therefore, TWITTER_CALLBACK_HOST must be updated to match.

Similarly, we must go to the Twitter developers' dashboard and update the URLs in
the application settings. As we already know, this is required every time we have
hosted Notes on a different IP address or domain name. To use the Twitter login, we
must change the list of URLs recognized by Twitter.

Updating TWITTER_CALLBACK_HOST and the Twitter application settings will let us
log in to Notes using a Twitter account.

While here, we should review the other variables and ensure that they're correct as
well.

The last preparatory step is to log in to the ECR repository. To do this, simply execute
the following commands:

$ cd ../ecr
$ sh ./login.sh

This has to be rerun every so often since the tokens that are downloaded time out
after a few hours.

We only need to run login.sh, and none of the other scripts in the ecr directory.

In this section, we prepared to run the deployment. We should now be ready to
deploy Notes to the swarm, so let's do it.

Deploying the Notes stack to the swarm
We just did the final preparation for deploying the Notes stack to the swarm. Take a
deep breath, yell out Smoke Test, and type the following command:

$ cd ../compose-stack
$ docker stack deploy --with-registry-auth --compose-file docker-
compose.yml notes
...
Creating network notes_svcnet
Creating network notes_frontnet
Creating network notes_authnet
Creating service notes_svc-userauth
Creating service notes_db-notes
Creating service notes_svc-notes

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[597]

Creating service notes_redis
Creating service notes_db-userauth

This deploys the services, and the swarm responds by attempting to launch each
service. The --with-registry-auth option sends the Docker Registry
authentication to the swarm so that it can download container images from the ECR
repositories. This is why we had to log in to the ECR first.

Verifying the correct launch of the Notes application
stack
It will be useful to monitor the startup process using these commands:

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
l7up46slg32g notes_db-notes replicated 1/1 mysql/mysql-server:8.0
ufw7vwqjkokv notes_db-userauth replicated 1/1 mysql/mysql-server:8.0
45p6uszd9ixt notes_redis replicated 1/1 redis:5.0
smcju24hvdkj notes_svc-notes replicated 1/1
098106984154.dkr.ecr.us-west-2.amazonaws.com/svc-notes:latest
*:80->3000/tcp
iws2ff265sqb notes_svc-userauth replicated 1/1
098106984154.dkr.ecr.us-west-2.amazonaws.com/svc-userauth:latest

$ docker service ps notes_svc-notes # And.. for other service
names
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
ERROR PORTS
nt5rmgv1cf0q notes_svc-notes.1 09E1X6A8MPLE.dkr.ecr.us-
REGION-2.amazonaws.com/svc-notes:latest notes-public Running Running
18 seconds ago

The service ls command lists the services, with a high-level overview. Remember
that the service is not the running container and, instead, the services are declared by
entries in the services tag in the stack file. In our case, we declared one replica for
each service, but we could have given a different amount. If so, the swarm will
attempt to distribute that number of containers across the nodes in the swarm.

Notice that the pattern for service names is the name of the stack that was given in the
docker stack deploy command, followed by the service name listed in the stack
file. When running that command, we named the stack notes; so, the services are
notes_db-notes, notes_svc-userauth, notes_redis, and so on.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[598]

The service ps command lists information about the tasks deployed for the service.
Remember that a task is essentially the same as a running container. We see here that
one instance of the svc-notes container has been deployed, as expected, on the
notes-public host.

Sometimes, the notes_svc-notes service doesn't launch, and instead, we'll see the
following message:

$ docker service ps notes_svc-notes
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
ERROR PORTS
nt5rmgv1cf0q notes_svc-notes.1 0E8X0A9M4PLE.dkr.ecr.us-
REGION-2.amazonaws.com/svc-notes:latest Running Pending 9 minutes ago
"no suitable node (scheduling …"

The error, no suitable node, means that the swarm was not able to find a node
that matches the placement criteria. In this case, the type=public label might not
have been properly set.

The following command is helpful:

$ docker node inspect notes-public
[
 {
 ...
 "Spec": {
 "Labels": {},
 "Role": "manager",
 "Availability": "active"
 },
 ...
 }
]

Notice that the Labels entry is empty. In such a case, you can add the label by
running this command:

$ docker node update --label-add type=public notes-public
notes-public

As soon as this is run, the swarm will place the svc-notes service on the notes-
public node.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[599]

If this happens, it may be useful to add the following command to the user_data
script for aws_instance.public (in ec2-public.tf), just ahead of setting the
type=public label:

"sleep 20",

It would appear that this provides a small window of opportunity to allow the swarm
to establish itself.

Diagnosing a failure to launch the database services
Another possible deployment problem is that the database services might fail to
launch, and the notes-public-db1 node might become Unavailable. Refer back to
the docker node ls output and you will see a column marked Status. Normally,
this column says Reachable, meaning that the swarm can reach and communicate
with the swarm agent on that node. But with the deployment as it stands, this node
might instead show an Unavailable status, and in the docker service ls output,
the database services might never show as having deployed.

With remote access from our laptop, we can run the following command:

$ docker service ps notes_db-notes

The output will tell you the current status, such as any error in deploying the service.
However, to investigate connectivity with the EC2 instances, we must log in to the
notes-public instance as follows:

$ ssh ubuntu@PUBLIC-IP-ADDRESS

That gets us access to the public EC2 instance. From there, we can try to ping the
notes-private-db1 instance, as follows:

ubuntu@notes-public:~$ ping PRIVATE-IP-ADDRESS
PING 10.0.3.141 (10.0.3.141) 56(84) bytes of data.
64 bytes from 10.0.3.141: icmp_seq=1 ttl=64 time=0.481 ms
^C

This should work, but the output from docker node ls may show the node
as Unreachable. Ask yourself: what happens if a computer runs out of memory?
Then, recognize that we've deployed two database instances to an EC2 instance that
has only 1 GB of memory—the memory capacity of t2.micro EC2 instances as of the
time of writing. Ask yourself whether it is possible that the services you've deployed
to a given server have overwhelmed that server.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[600]

To test that theory, make the following change in ec2-private.tf:

resource "aws_instance" "private-db1" {
 ...
 instance_type = "t2.medium" // var.instance_type
 ...
}

This changes the instance type from t2.micro to t2.medium, or even t2.large,
thereby giving the server more memory.

To implement this change, run terraform apply to update the configuration. If the
swarm does not automatically correct itself, then you may need to run terraform
destroy and then run through the setup again, starting with terraform apply.

Once the notes-private-db1 instance has sufficient memory, the databases should
successfully deploy.

In this section, we deployed the Notes application stack to the swarm cluster on AWS.
We also talked a little about how to verify the fact that the stack deployed correctly,
and how to handle some common problems.

Next, we have to test the deployed Notes stack to verify that it works on AWS.

Testing the deployed Notes application
Having set up everything required to deploy Notes to AWS using Docker Swarm, we
have done so. That means our next step is to put Notes through its paces. We've done
enough ad hoc testing on our laptop to have confidence it works, but the Docker
swarm deployment might show up some issues.

In fact, the deployment we just made very likely has one or two problems. We can
learn a lot about AWS and Docker Swarm by diagnosing those problems together.

The first test is obviously to open the Notes application in the browser. In the outputs
from running terraform apply was a value labeled ec2-public-dns. This is the
domain name for the notes-public EC2 instance. If we simply paste that domain
name into our browser, the Notes application should appear.

However, we cannot do anything because there are no user IDs available to log in
with.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[601]

Logging in with a regular account on Notes
Obviously, in order to test Notes, we must log in and add some notes, make some
comments, and so forth. It will be instructive to log in to the user authentication
service and use cli.mjs to add a user ID.

The user authentication service is on one of the private EC2 instances, and its port is
purposely not exposed to the internet. We could change the configuration to expose
its port and then run cli.mjs from our laptop, but that would be a security problem
and we need to learn how to access the running containers anyway.

We can find out which node the service is deployed on by using the following
command:

$ docker service ps notes_svc-userauth
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR PORTS
b8jf5q8xlbs5 notes_svc-userauth.1 0E8X0A9M4PLE.dkr.ecr.us-
REGION-2.amazonaws.com/svc-userauth:latest notes-private-svc1 Running
Running 31 minutes ago

The notes_svc-userauth task has been deployed to notes-private-svc1, as
expected.

To run cli.mjs, we must get shell access inside the container. Since it is deployed on
a private instance, this means that we must first SSH to the notes-public instance;
from there, SSH to the notes-private-svc1 instance; and from there, run the
docker exec command to launch a shell in the running container, as illustrated in
the following code block:

$ ssh ubuntu@PUBLIC-IP-ADDRESS
...
ubuntu@notes-public:~$ ssh -i notes-app-key-pair.pem ubuntu@PRIVATE-
IP-ADDRESS
...
ubuntu@notes-private-svc1:~$ docker ps | grep userauth
e7398953b808 0E8X0A9M4PLE.dkr.ecr.us-REGION-2.amazonaws.com/svc-
userauth:latest "docker-entrypoint.s…" 37 minutes ago Up 37 minutes
5858/tcp notes_svc-userauth.1.b8jf5q8xlbs5b8xk7qpkz9a3w

ubuntu@notes-private-svc1:~$ docker exec -it notes_svc-
userauth.1.b8jf5q8xlbs5b8xk7qpkz9a3w bash
root@e7398953b808:/userauth#

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[602]

We SSHd to the notes-public server and, from there, SSHd to the notes-
private-svc1 server. On that server, we ran docker ps to find out the name of the
running container. Notice that Docker generated a container name that includes a
coded string, called a nonce, that guarantees the container name is unique. With that
container name, we ran docker exec -it ... bash to get a root shell inside the
container.

Once there, we can run the following command:

root@e7398953b808:/userauth# node cli.mjs add --family-name
Einarsdottir --given-name Ashildr --email me@stolen.tardis --password
w0rd me
Created {
 id: 'me',
 username: 'me',
 provider: 'local',
 familyName: 'Einarsdottir',
 givenName: 'Ashildr',
 middleName: null,
 emails: ['me@stolen.tardis'],
 photos: []
}

This verifies that the user authentication server works and that it can communicate
with the database. To verify this even further, we can access the database instance, as
follows:

ubuntu@notes-public:~$ ssh -i notes-app-key-pair.pem ubuntu@10.0.3.141
...
ubuntu@notes-private-db1:~$ docker exec -it notes_db-
userauth.1.0b274ges82otektamyq059x7w mysql -u userauth -p --socket
/tmp/mysql.sock
Enter password:

From there, we can explore the database and see that, indeed, Ashildr's user ID exists.

With this user ID set up, we can now use our browser to visit the Notes application
and log in with that user ID.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[603]

Diagnosing an inability to log in with Twitter
credentials
The next step will be to test logging in with Twitter credentials. Remember that
earlier, we said to ensure that the TWITTER_CALLBACK_HOST variable has the domain
name of the EC2 instance, and likewise that the Twitter application configuration
does as well.

Even with those settings in place, we might run into a problem. Instead of logging in,
we might get an error page with a stack trace, starting with the message: Failed to
obtain request token.

There are a number of possible issues that can cause this error. For example, the error
can occur if the Twitter authentication tokens are not deployed. However, if you
followed the directions correctly, they will be deployed correctly.

In notes/appsupport.mjs, there is a function, basicErrorHandler, which will be
invoked by this error. In that function, add this line of code:

 debug('basicErrorHandler err= ', err);

This will print the full error, including the originating error that caused the failure.
You may see the following message printed: getaddrinfo EAI_AGAIN
api.twitter.com. That may be puzzling because that domain name is certainly
available. However, it might not be available inside the svc-notes container due to
the DNS configuration.

From the notes-public instance, we will be able to ping that domain name, as
follows:

ubuntu@notes-public:~$ ping api.twitter.com
PING tpop-api.twitter.com (104.244.42.2) 56(84) bytes of data.
64 bytes from 104.244.42.2: icmp_seq=1 ttl=38 time=22.1 ms

However, if we attempt this inside the svc-notes container, this might fail, as
illustrated in the following code snippet:

ubuntu@notes-public:~$ docker exec -it notes_svc-
notes.1.et3b1obkp9fup5tj7bdco3188 bash
root@c2d002681f61:/notesapp# ping api.twitter.com
... possible failure

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[604]

Ideally, this will work from inside the container as well. If this fails inside the
container, it means that the Notes service cannot reach Twitter to handle the OAuth
dance required to log in with Twitter credentials.

The problem is that, in this case, Docker set up an incorrect DNS configuration, and
the container was unable to make DNS queries for many domain names. In the
Docker Compose documentation, it is suggested to use the following code in
the service definition:

services:
 ...
 svc-notes:
 ...
 dns:
 - 8.8.8.8
 - 9.9.9.9
...

These two DNS servers are operated by Google, and indeed this solves the problem.
Once this change has been made, you should be able to log in to Notes using Twitter
credentials.

In this section, we tested the Notes application and discussed how to diagnose and
remedy a couple of common problems. While doing so, we learned how to navigate
our way around the EC2 instances and the Docker Swarm.

Let's now see what happens if we change the number of instances for our services.

Scaling the Notes instances
By now, we have deployed the Notes stack to the cluster on our EC2 instances. We
have tested everything and know that we have a correctly functioning system
deployed on AWS. Our next task is to increase the number of instances and see what
happens.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[605]

To increase the instances for svc-notes, edit compose-swarm/docker-
compose.yml as follows:

services:
 ...
 svc-notes:
 ...
 deploy:
 replicas: 2
...

This increases the number of replicas. Because of the existing placement constraints,
both instances will deploy to the node with a type label of public. To update the
services, it's just a matter of rerunning the following command:

$ docker stack deploy --with-registry-auth --compose-file docker-
compose.yml notes
Ignoring unsupported options: build, restart
...
Updating service notes_svc-userauth (id: wjugeeaje35v3fsgq9t0r8t98)
Updating service notes_db-notes (id: ldfmq3na5e3ofoyypub3ppth6)
Updating service notes_svc-notes (id: pl94hcjrwaa1qbr9pqahur5aj)
Updating service notes_redis (id: lrjne8uws8kqocmr0ml3kw2wu)
Updating service notes_db-userauth (id: lkbj8ax2cj2qzu7winx4kbju0)

Earlier, this command described its actions with the word Creating, and this time it
used the word Updating. This means that the services are being updated with
whatever new settings are in the stack file.

After a few minutes, you may see this:

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ldfmq3na5e3o notes_db-notes replicated 1/1 mysql/mysql-server:8.0
lkbj8ax2cj2q notes_db-userauth replicated 1/1 mysql/mysql-server:8.0
lrjne8uws8kq notes_redis replicated 1/1 redis:5.0
pl94hcjrwaa1 notes_svc-notes replicated 2/2 098106984154.dkr.ecr.us-
west-2.amazonaws.com/svc-notes:latest *:80->3000/tcp
wjugeeaje35v notes_svc-userauth replicated 1/1
098106984154.dkr.ecr.us-west-2.amazonaws.com/svc-userauth:latest

And indeed, it shows two instances of the svc-notes service. The 2/2 notation says
that two instances are currently running out of the two instances that were requested.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[606]

To view the details, run the following command:

$ docker service ps notes_svc-notes
...

As we saw earlier, this command lists to which swarm nodes the service has been
deployed. In this case, we'll see that both instances are on notes-public, due to the
placement constraints.

Another useful command is the following:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d46c6bba56d3 098106984154.dkr.ecr.us-west-2.amazonaws.com/svc-
notes:latest "docker-entrypoint.s…" 7 minutes ago Up 7 minutes
3000/tcp notes_svc-notes.2.zo2mdxk9fuy33ixe0245y7uii
a93f1d5d8453 098106984154.dkr.ecr.us-west-2.amazonaws.com/svc-
notes:latest "docker-entrypoint.s…" 15 minutes ago Up 15 minutes
3000/tcp notes_svc-notes.1.cc34q3yfeumx0b57y1mnpskar

Ultimately, each service deployed to a Docker swarm contains one or more running
containers.

You'll notice that this shows svc-notes listening on port 3000. In the environment
setup, we did not set the PORT variable, and therefore svc-notes will default to
listening to port 3000. Refer back to the output for docker service ls, and you
should see this: *:80->3000/tcp, meaning that there is mapping being handled in
Docker from port 80 to port 3000.

That is due to the following setting in docker-swarm/docker-compose.yml:

services:
 ...
 svc-notes:
 ...
 ports:
 - "80:3000"
...

This says to publish port 80 and to map it to port 3000 on the containers.

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[607]

In the Docker documentation (https:/ /docs. docker. com/ network/ overlay/
#bypass-the-routing- mesh- for- a- swarm-service), we learned that services
deployed in a swarm are reachable by the so-called routing mesh. Connecting to a
published port routes the connection to one of the containers handling that service.
As a result, Docker acts as a load balancer, distributing traffic among the service
instances you configure.

In this section, we have—finally—deployed the Notes application stack to a cloud
hosting environment we built on AWS EC2 instances. We created a Docker swarm,
configured the swarm, created a stack file with which to deploy our services, and we
deployed to that infrastructure. We then tested the deployed system and saw that it
functioned well.

With that, we can wrap up this chapter.

Summary
This chapter is the culmination of a journey of learning Node.js application
deployment. We developed an application existing solely on our laptop and added a
number of useful features. With the goal of deploying that application on a public
server to gain feedback, we worked on three types of deployment. In Chapter
10, Deploying Node.js Applications to Linux Servers, we learned how to launch persistent
background tasks on Linux using PM2. In Chapter 11, Deploying Node.js Microservices
with Docker, we learned how to dockerize the Notes application stack, and how to get
it running with Docker.

In this chapter, we built on that and learned how to deploy our Docker containers on
a Docker Swarm cluster. AWS is a powerful and comprehensive cloud hosting
platform with a long list of possible services to use. We used EC2 instances in a VPC
and the related infrastructure.

To facilitate this, we used Terraform, a popular tool for describing cloud deployments
not just on AWS but on many other cloud platforms. Both AWS and Terraform are
widely used in projects both big and small.

In the process, we learned a lot about AWS, and Terraform, and using Terraform to
deploy infrastructure on AWS; how to set up a Docker Swarm cluster; and how to
deploy a multi-container service on that infrastructure.

https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service
https://docs.docker.com/network/overlay/#bypass-the-routing-mesh-for-a-swarm-service

Deploying a Docker Swarm to AWS EC2 with Terraform Chapter 12

[608]

We began by creating an AWS account, setting up the AWS CLI tool on our laptop,
and setting up Terraform. We then used Terraform to define a VPC and the network
infrastructure within which to deploy EC2 instances. We learned how to use
Terraform to automate most of the EC2 configuration details so that we can quickly
initialize a Docker swarm.

We learned that a Docker compose file and a Docker stack file are very similar things.
The latter is used with Docker Swarm and is a powerful tool for describing the
deployment of Docker services.

In the next chapter, we will learn about both unit testing and functional testing. While
a core principle of test-driven development is to write the tests before writing the
application, we've done it the other way around and put the chapter about unit
testing at the end of the book. That's not to say unit testing is unimportant, because it
certainly is important.

13
Unit Testing and Functional

Testing
Unit testing has become a primary part of good software development practice. It is a
method by which individual units of source code are tested to ensure they function
properly. Each unit is theoretically the smallest testable part of an application.

In unit testing, each unit is tested separately, isolating the unit under test as much as
possible from other parts of the application. If a test fails, you would want it to be due
to a bug in your code rather than a bug in the package that your code happens to use.
A common technique is to use mock objects or mock data to isolate individual parts
of the application from one another.

Functional testing, on the other hand, doesn't try to test individual components.
Instead, it tests the whole system. Generally speaking, unit testing is performed by
the development team, while functional testing is performed by a Quality Assurance
(QA) or Quality Engineering (QE) team. Both testing models are needed to fully
certify an application. An analogy might be that unit testing is similar to ensuring that
each word in a sentence is correctly spelled, while functional testing ensures that the
paragraph containing that sentence has a good structure.

Writing a book requires not just ensuring the words are correctly spelled, but
ensuring that the words string together as useful grammatically correct sentences and
chapters that convey the intended meaning. Similarly, a successful software
application requires much more than ensuring each "unit" correctly behaves. Does the
system as a whole perform the intended actions?

In this chapter, we'll cover the following topics:

Assertions as the basis of software tests
The Mocha unit testing framework and the Chai assertions library
Using tests to find bugs and fix the bug

Unit Testing and Functional Testing Chapter 13

[610]

Using Docker to manage test infrastructure
Testing a REST backend service
UI functional testing in a real web browser using Puppeteer
Improving UI testability with element ID attributes

By the end of this chapter, you will know how to use Mocha, as well as how to write
test cases for both directly invoked code under test and for testing code accessed via
REST services. You will have also learned how to use Docker Compose to manage test
infrastructure, both on your laptop and on the AWS EC2 Swarm infrastructure
from Chapter 12, Deploying Docker Swarm to AWS EC2 with Terraform.

That's a lot of territory to cover, so let's get started.

Assert – the basis of testing
methodologies
Node.js has a useful built-in testing tool known as the assert module. Its
functionality is similar to assert libraries in other languages. Namely, it's a collection
of functions for testing conditions, and if the conditions indicate an error, the assert
function throws an exception. It's not a complete test framework by any stretch of the
imagination, but it can still be used for some amount of testing.

At its simplest, a test suite is a series of assert calls to validate the behavior of the
thing being tested. For example, a test suite could instantiate the user authentication
service, then make an API call and use assert methods to validate the result, then
make another API call to validate its results, and so on.

Consider the following code snippet, which you can save in a file
named deleteFile.mjs:

import fs from 'fs';

export function deleteFile(fname, callback) {
 fs.stat(fname, (err, stats) => {
 if (err)
 callback(new Error(`the file ${fname} does not exist`));
 else {
 fs.unlink(fname, err => {
 if (err) callback(new Error(`Could not
 delete ${fname}`));
 else callback();

Unit Testing and Functional Testing Chapter 13

[611]

 });
 }
 });
}

The first thing to notice is this contains several layers of asynchronous callback
functions. This presents a couple of challenges:

Capturing errors from deep inside a callback
Detecting conditions where the callbacks are never called

The following is an example of using assert for testing. Create a file named test-
deleteFile.mjs containing the following:

import assert from 'assert';
import { deleteFile } from './deleteFile.mjs';

deleteFile("no-such-file", (err) => {
 assert.ok(err);
 assert.ok(err instanceof Error);
 assert.match(err.message, /does not exist/);
});

This is what's called a negative test scenario, in that it's testing whether requesting to
delete a nonexistent file throws the correct error. The deleteFile function throws an
error containing the text that does not exist if the file to be deleted does not exist. This
test ensures the correct error is thrown and would fail if the wrong error is thrown, or
if no error is thrown.

If you are looking for a quick way to test, the assert module can be useful when
used this way. Each test case would call a function, then use one or more assert
statements to test the results. In this case, the assert statements first ensure that err
has some kind of value, then ensures that value is an Error instance, and finally
ensures that the message attribute has the expected text. If it runs and no messages
are printed, then the test passes. But what happens if the deleteFile callback is
never called? Will this test case catch that error?

$ node test-deleteFile.mjs

No news is good news, meaning it ran without messages and therefore the test
passed.

Unit Testing and Functional Testing Chapter 13

[612]

The assert module is used by many of the test frameworks as a core tool for writing
test cases. What the test frameworks do is create a familiar test suite and test case
structure to encapsulate your test code, plus create a context in which a series of test
cases are robustly executed.

For example, we asked about the error of the callback function never being called.
Test frameworks usually have a timeout so that if no result of any kind is supplied
within a set number of milliseconds, then the test case is considered an error.

There are many styles of assertion libraries available in Node.js. Later in this chapter,
we'll use the Chai assertion library (http://chaijs.com/), which gives you a choice
between three different assertion styles (should, expect, and assert).

Testing a Notes model
Let's start our unit testing journey with the data models we wrote for the Notes
application. Because this is unit testing, the models should be tested separately from
the rest of the Notes application.

In the case of most of the Notes models, isolating their dependencies implies creating
a mock database. Are you going to test the data model or the underlying database?
Mocking out a database means creating a fake database implementation, which does
not look like a productive use of our time. You can argue that testing a data model is
really about testing the interaction between your code and the database. Since
mocking out the database means not testing that interaction, we should test our code
against the database engine in order to validate that interaction.

With that line of reasoning in mind, we'll skip mocking out the database, and instead
run the tests against a database containing test data. To simplify launching the test
database, we'll use Docker to start and stop a version of the Notes application stack
that's set up for testing.

Let's start by setting up the tools.

Mocha and Chai – the chosen test tools
If you haven't already done so, duplicate the source tree so that you can use it in this
chapter. For example, if you had a directory named chap12, create one named
chap13 containing everything from chap12 to chap13.

http://chaijs.com/

Unit Testing and Functional Testing Chapter 13

[613]

In the notes directory, create a new directory named test.

Mocha (http://mochajs.org/) is one of many test frameworks available for Node.js.
As you'll see shortly, it helps us write test cases and test suites, and it provides a test
results reporting mechanism. It was chosen over the alternatives because it supports
Promises. It fits very well with the Chai assertion library mentioned earlier.

While in the notes/test directory, type the following to install Mocha and Chai:

$ npm init
... answer the questions to create package.json
$ npm install mocha@7.x chai@4.2.x cross-env@7.x npm-run-all@4.1.x --
save-dev
...

This, of course, sets up a package.json file and installs the required packages.

Beyond Mocha and Chai, we've installed two additional tools. The first, cross-env,
is one we've used before and it enables cross-platform support for setting
environment variables on the command line. The second, npm-run-all, simplifies
using package.json to drive build or test procedures.

For the documentation of cross-env, go to https:/ /www. npmjs.
com/ package/ cross- env.

For the documentation of npm-run-all, go to https:/ /www. npmjs.
com/ package/ npm- run- all.

With the tools set up, we can move on to creating tests.

Notes model test suite
Because we have several Notes models, the test suite should run against any model.
We can write tests using the NotesStore API, and an environment variable should be
used to declare the model to test. Therefore, the test script will load notes-
store.mjs and call functions on the object it supplies. Other environment variables
will be used for other configuration settings.

Because we've written the Notes application using ES6 modules, we have a small item
to consider. Older Mocha releases only supported running tests in CommonJS
modules, so this would require us to jump through a couple of hoops to test Notes
modules. But the current release of Mocha does support them, meaning we can freely
use ES6 modules.

http://mochajs.org/
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/cross-env
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/npm-run-all

Unit Testing and Functional Testing Chapter 13

[614]

We'll start by writing a single test case and go through the steps of running that test
and getting the results. After that, we'll write several more test cases, and even find a
couple of bugs. These bugs will give us a chance to debug the application and fix any
problems. We'll close out this section by discussing how to run tests that require us to
set up background services, such as a database server.

Creating the initial Notes model test case
In the test directory, create a file named test-model.mjs containing the following.
This will be the outer shell of the test suite:

import util from 'util';
import Chai from 'chai';
const assert = Chai.assert;
import { useModel as useNotesModel } from '../models/notes-store.mjs';

var store;

describe('Initialize', function() {
 this.timeout(100000);
 it('should successfully load the model', async function() {
 try {
 // Initialize just as in app.mjs
 // If these execute without exception the test succeeds
 store = await useNotesModel(process.env.NOTES_MODEL);
 } catch (e) {
 console.error(e);
 throw e;
 }
 });
});

This loads in the required modules and implements the first test case.

The Chai library supports three flavors of assertions. We're using the assert style
here, but it's easy to use a different style if you prefer.

For the other assertion styles supported by Chai, see
http://chaijs.com/guide/styles/.

Chai's assertions include a very long list of useful assertion
functions. For the documentation, see http:/ /chaijs. com/api/
assert/ .

http://chaijs.com/guide/styles/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/
http://chaijs.com/api/assert/

Unit Testing and Functional Testing Chapter 13

[615]

To load the model to be tested, we call the useModel function (renamed as
useNotesModel). You'll remember that this uses the import() function to
dynamically select the actual NotesStore implementation to use. The NOTES_MODEL
environment variable is used to select which to load.

Calling this.timeout adjusts the time allowed for completing the test. By default,
Mocha allows 2,000 milliseconds (2 seconds) for a test case to be completed. This
particular test case might take longer than that, so we've given it more time.

The test function is declared as async. Mocha can be used in a callback fashion,
where Mocha passes in a callback to the test to invoke and indicate errors. However,
it can also be used with async test functions, meaning that we can throw errors in the
normal way and Mocha will automatically capture those errors to determine if the
test fails.

Generally, Mocha looks to see if the function throws an exception or whether the test
case takes too long to execute (a timeout situation). In either case, Mocha will indicate
a test failure. That's, of course, simple to determine for non-asynchronous code. But
Node.js is all about asynchronous code, and Mocha has two models for testing
asynchronous code. In the first (not seen here), Mocha passes in a callback function,
and the test code is to call the callback function. In the second, as seen here, it looks
for a Promise being returned by the test function and determines a pass/fail regarding
whether the Promise is in the resolve or reject state.

We are keeping the NotesStore model in the global store variable so that it can be
used by all tests. The test, in this case, is whether we can load a given NotesStore
implementation. As the comment states, if this executes without throwing an
exception, the test has succeeded. The other purpose of this test is to initialize the
variable for use by other test cases.

It is useful to notice that this code carefully avoids loading app.mjs. Instead, it loads
the test driver module, models/notes-store.mjs, and whatever module is loaded
by useNotesModel. The NotesStore implementation is what's being tested, and the
spirit of unit testing says to isolate it as much as possible.

Before we proceed further, let's talk about how Mocha structures tests.

With Mocha, a test suite is contained within a describe block. The first argument is
a piece of descriptive text that you use to tailor the presentation of test results. The
second argument is a function that contains the contents of the given test suite.

The it function is a test case. The intent is for us to read this as it should successfully
load the module. Then, the code within the function is used to check that assertion.

Unit Testing and Functional Testing Chapter 13

[616]

With Mocha, it is important to not use arrow functions in
the describe and it blocks. By now, you will have grown fond of
arrow functions because of how much easier they are to write.
However, Mocha calls these functions with a this object containing
useful functions for Mocha. Because arrow functions avoid setting
up a this object, Mocha would break.

Now that we have a test case written, let's learn how to run tests.

Running the first test case
Now that we have a test case, let's run the test. In the package.json file, add the
following scripts section:

"scripts": {
 "test-all": "npm-run-all test-notes-memory test-level test-notes-
 fs test-notes-sqlite3 test-notes-sequelize-sqlite",
 "test-notes-memory": "cross-env NOTES_MODEL=memory mocha test
 -model",
 "test-level": "cross-env NOTES_MODEL=level mocha test-model",
 "test-notes-fs": "cross-env NOTES_MODEL=fs mocha test-model",
 "pretest-notes-sqlite3": "rm -f chap13.sqlite3 && sqlite3
 chap13.sqlite3 --init ../models/schema-sqlite3.sql </dev/null",
 "test-notes-sqlite3": "cross-env NOTES_MODEL=sqlite3
 SQLITE_FILE=chap13.sqlite3 mocha test-model",
 "test-notes-sequelize-sqlite": "cross-env NOTES_MODEL=sequelize
 SEQUELIZE_CONNECT=sequelize-sqlite.yaml mocha test-model"
}

What we've done here is create a test-all script that will run the test suite against
the individual NotesStore implementations. We can run this script to run every test
combination, or we can run a specific script to test just the one combination. For
example, test-notes-sequelize-sqlite will run tests
against SequelizeNotesStore using the SQLite3 database.

It uses npm-run-all to support running the tests in series. Normally, in a
package.json script, we would write this:

"test-all": "npm run test-notes-memory && npm run test-level && npm
 run test-notes-fs && ..."

Unit Testing and Functional Testing Chapter 13

[617]

This runs a series of steps one after another, relying on a feature of the Bash shell. The
npm-run-all tool serves the same purpose, namely running one package.json
script after another in the series. The first advantage is that the code is simpler and
more compact, making it easier to read, while the other advantage is that it is cross-
platform. We're using cross-env for the same purpose so that the test scripts can be
executed on Windows as easily as they can be on Linux or macOS.

For the test-notes-sequelize-sqlite test, look closely. Here, you can see that
we need a database configuration file named sequelize-sqlite.yaml. Create that
file with the following code:

dbname: notestest
username:
password:
params:
 dialect: sqlite
 storage: notestest-sequelize.sqlite3
 logging: false

This, as the test script name suggests, uses SQLite3 as the underlying database,
storing it in the named file.

We are missing two combinations, test-notes-sequelize-mysql
for SequelizeNotesStore using MySQL and test-notes-mongodb, which tests
against MongoDBNotesStore. We'll implement these combinations later.

Having automated the run of all test combinations, we can try it out:

$ npm run test-all

> notes-test@1.0.0 test-all /Users/David/Chapter13/notes/test
> npm-run-all test-notes-memory test-level test-notes-fs test-notes-
sqlite3 test-notes-sequelize-sqlite

> notes-test@1.0.0 test-notes-memory /Users/David/Chapter13/notes/test
> cross-env NOTES_MODEL=memory mocha test-model

 Initialize
 should successfully load the model

 1 passing (8ms)
...

If all has gone well, you'll get this result for every test combination currently
supported in the test-all script.

Unit Testing and Functional Testing Chapter 13

[618]

This completes the first test, which was to demonstrate how to create tests and
execute them. All that remains is to write more tests.

Adding some tests
That was easy, but if we want to find what bugs we created, we need to test some
functionality. Now, let's create a test suite for testing NotesStore, which will contain
several test suites for different aspects of NotesStore.

What does that mean? Remember that the describe function is the container for a
test suite and that the it function is the container for a test case. By simply nesting
describe functions, we can contain a test suite within a test suite. It will be clearer
what that means after we implement this:

describe('Model Test', function() {
 describe('check keylist', function() {
 before(async function() {
 await store.create('n1', 'Note 1', 'Note 1');
 await store.create('n2', 'Note 2', 'Note 2');
 await store.create('n3', 'Note 3', 'Note 3');
 });
 ...
 after(async function() {
 const keyz = await store.keylist();
 for (let key of keyz) {
 await store.destroy(key);
 }
 });
 });
 ...
});

Here, we have a describe function that defines a test suite containing another
describe function. That's the structure of a nested test suite.

We do not have test cases in the it function defined at the moment, but we do have
the before and after functions. These two functions do what they sound like;
namely, the before function runs before all the test cases, while the after function
runs after all the test cases have finished. The before function is meant to set up
conditions that will be tested, while the after function is meant for teardown.

In this case, the before function adds entries to NotesStore, while the after
function removes all entries. The idea is to have a clean slate after each nested test
suite is executed.

Unit Testing and Functional Testing Chapter 13

[619]

The before and after functions are what Mocha calls a hook. The other hooks
are beforeEach and afterEach. The difference is that the Each hooks are triggered
before or after each test case's execution.

These two hooks also serve as test cases since the create and destroy methods
could fail, in which case the hook will fail.

Between the before and after hook functions, add the following test cases:

it("should have three entries", async function() {
 const keyz = await store.keylist();
 assert.exists(keyz);
 assert.isArray(keyz);
 assert.lengthOf(keyz, 3);
});

it("should have keys n1 n2 n3", async function() {
 const keyz = await store.keylist();
 assert.exists(keyz);
 assert.isArray(keyz);
 assert.lengthOf(keyz, 3);
 for (let key of keyz) {
 assert.match(key, /n[123]/, "correct key");
 }
});

it("should have titles Node #", async function() {
 const keyz = await store.keylist();
 assert.exists(keyz);
 assert.isArray(keyz);
 assert.lengthOf(keyz, 3);
 var keyPromises = keyz.map(key => store.read(key));
 const notez = await Promise.all(keyPromises);
 for (let note of notez) {
 assert.match(note.title, /Note [123]/, "correct title");
 }
});

As suggested by the description for this test suite, the functions all test the keylist
method.

For each test case, we start by calling keylist, then using assert methods to check
different aspects of the array that is returned. The idea is to call NotesStore API
functions, then test the results to check whether they matched the expected results.

Unit Testing and Functional Testing Chapter 13

[620]

Now, we can run the tests and get the following:

$ npm run test-all
...
> notes-test@1.0.0 test-notes-fs /Users/David/Chapter13/notes/test
> NOTES_MODEL=fs mocha test-model

 Initialize
 should successfully load the model (174ms)

 Model Test
 check keylist
 should have three entries
 should have keys n1 n2 n3
 should have titles Node #

 4 passing (226ms)
...

Compare the outputs with the descriptive strings in the describe and it functions.
You'll see that the structure of this output matches the structure of the test suites and
test cases. In other words, we should structure them so that they have well-structured
test output.

As they say, testing is never completed, only exhausted. So, let's see how far we can
go before exhausting ourselves.

More tests for the Notes model
That wasn't enough to test much, so let's go ahead and add some more tests:

describe('Model Test', function() {
 ...
 describe('read note', function() {
 before(async function() {
 await store.create('n1', 'Note 1', 'Note 1');
 });

 it('should have proper note', async function() {
 const note = await store.read('n1');
 assert.exists(note);
 assert.deepEqual({
 key: note.key, title: note.title, body: note.body
 }, {
 key: 'n1',
 title: 'Note 1',

Unit Testing and Functional Testing Chapter 13

[621]

 body: 'Note 1'
 });
 });
 it('Unknown note should fail', async function() {
 try {
 const note = await store.read('badkey12');
 assert.notExists(note);
 throw new Error('should not get here');
 } catch(err) {
 // An error is expected, so it is an error if
 // the 'should not get here' error is thrown
 assert.notEqual(err.message, 'should not get here');
 }
 });

 after(async function() {
 const keyz = await store.keylist();
 for (let key of keyz) {
 await store.destroy(key);
 }
 });
 });
 ...
});

These tests check the read method. In the first test case, we check whether it
successfully reads a known Note, while in the second test case, we have a negative
test of what happens if we read a non-existent Note.

Negative tests are very important to ensure that functions fail when they're supposed
to fail and that failures are indicated correctly.

The Chai Assertions API includes some very expressive assertions. In this case, we've
used the deepEqual method, which does a deep comparison of two objects. You'll
see that for the first argument, we pass in an object and that for the second, we pass
an object that's used to check the first. To see why this is useful, let's force it to
indicate an error by inserting FAIL into one of the test strings.

After running the tests, we get the following output:

> notes-test@1.0.0 test-notes-memory /Users/David/Chapter13/notes/test
> NOTES_MODEL=memory mocha test-model

Initialize
 should successfully load the model

Model Test

Unit Testing and Functional Testing Chapter 13

[622]

 check keylist
 should have three entries
 should have keys n1 n2 n3
 should have titles Node #
 read note
 1) should have proper note
 Unknown note should fail

 5 passing (35ms)
 1 failing

1) Model Test
 read note
 should have proper note:

AssertionError: expected { Object (key, title, ...) } to deeply equal
{ Object (key, title, ...) }
 + expected - actual
{
 "body": "Note 1"
 "key": "n1"
 - "title": "Note 1"
 + "title": "Note 1 FAIL"
 }

 at Context.<anonymous>
(file:///Users/David/Chapter13/notes/test/test-model.mjs:76:16)

This is what a failed test looks like. Instead of the checkmark, there is a number, and
the number corresponds to a report below it. In the failure report, the deepEqual
function gave us clear information about how the object fields differed. In this case, it
is the test we forced to fail because we wanted to see how the deepEqual function
works.

Notice that for the negative tests – where the test passes if an error is thrown – we run
it in a try/catch block. The throw new Error line in each case should not execute
because the preceding code should throw an error. Therefore, we can check if the
message in that thrown error is the message that arrives, and fail the test if that's the
case.

Unit Testing and Functional Testing Chapter 13

[623]

Diagnosing test failures
We can add more tests because, obviously, these tests are not sufficient to be able to
ship Notes to the public. After doing so, and then running the tests against the
different test combinations, we will find this result for the SQLite3 combination:

$ npm run test-notes-sqlite3

> notes-test@1.0.0 test-notes-sqlite3
/Users/David/Chapter11/notes/test
> rm -f chap11.sqlite3 && sqlite3 chap11.sqlite3 --init
../models/schema-sqlite3.sql </dev/null && NOTES_MODEL=sqlite3
SQLITE_FILE=chap11.sqlite3 mocha test-model

Initialize
 should successfully load the model (89ms)

Model Test
 check keylist
 should have three entries
 should have keys n1 n2 n3
 should have titles Node #
 read note
 should have proper note
 1) Unknown note should fail
 change note
 after a successful model.update
 destroy note
 should remove note
 2) should fail to remove unknown note

 7 passing (183ms)
 2 failing

1) Model Test
 read note
 Unknown note should fail:
 Uncaught TypeError: Cannot read property 'notekey' of undefined
 at Statement.<anonymous>
(file:///Users/David/Chapter11/notes/models/notes-sqlite3.mjs:79:43)

2) Model Test
 destroy note
 should fail to remove unknown note:
 AssertionError: expected 'should not get here' to not equal 'should
 not get here'
 + expected - actual
 at Context.<anonymous>

Unit Testing and Functional Testing Chapter 13

[624]

(file:///Users/David/Chapter11/notes/test/test-
 model.mjs:152:20)

Our test suite found two errors, one of which is the error we mentioned in Chapter
7, Data Storage and Retrieval. Both failures came from the negative test cases. In one
case, the test calls store.read("badkey12"), while in the other, it calls
store.delete("badkey12").

It is easy enough to insert console.log calls and learn what is going on.

For the read method, SQLite3 gave us undefined for row. The test suite successfully
calls the read function multiple times with a notekey value that does exist.
Obviously, the failure is limited to the case of an invalid notekey value. In such
cases, the query gives an empty result set and SQLite3 invokes the callback
with undefined in both the error and the row values. Indeed, the equivalent SQL
SELECT statement does not throw an error; it simply returns an empty result set. An
empty result set isn't an error, so we received no error and an undefined row.

However, we defined read to throw an error if no such Note exists. This means this
function must be written to detect this condition and throw an error.

There is a difference between the read functions in models/notes-sqlite3.mjs
and models/notes-sequelize.mjs. On the day we wrote SequelizeNotesStore,
we must have thought through this function more carefully than we did on the day
we wrote SQLITE3NotesStore. In SequelizeNotesStore.read, there is an error
that's thrown when we receive an empty result set, and it has a check that we can
adapt. Let's rewrite the read function in models/notes-sqlite.mjs so that it reads
as follows:

async read(key) {
 var db = await connectDB();
 var note = await new Promise((resolve, reject) => {
 db.get("SELECT * FROM notes WHERE notekey = ?",
 [key], (err, row) => {
 if (err) return reject(err);
 if (!row) {
 reject(new Error(`No note found for ${key}`));
 } else {
 const note = new Note(row.notekey, row.title, row.body);
 resolve(note);
 }
 });
 });
 return note;
}

Unit Testing and Functional Testing Chapter 13

[625]

If this receives an empty result, an error is thrown. While the database doesn't see
empty results set as an error, Notes does. Furthermore, Notes already knows how to
deal with a thrown error in this case. Make this change and that particular test case
will pass.

There is a second similar error in the destroy logic. In SQL, it obviously is not an
SQL error if this SQL (from models/notes-sqlite3.mjs) does not delete anything:

db.run("DELETE FROM notes WHERE notekey = ?;", ...);

Unfortunately, there isn't a method in the SQL option to fail if it does not delete any
records. Therefore, we must add a check to see if a record exists, namely the
following:

async destroy(key) {
 var db = await connectDB();
 const note = await this.read(key);
 return await new Promise((resolve, reject) => {
 db.run("DELETE FROM notes WHERE notekey = ?;",
 [key], err => {
 if (err) return reject(err);
 this.emitDestroyed(key);
 resolve();
 });
 });
}

Therefore, we read the note and, as a byproduct, we verify the note exists. If the note
doesn't exist, read will throw an error, and the DELETE operation will not even run.

When we run test-notes-sequelize-sqlite, there is also a similar failure in its
destroy method. In models/notes-sequelize.mjs, make the following change:

async destroy(key) {
 await connectDB();
 const note = await SQNote.findOne({ where: { notekey: key } });
 if (!note) {
 throw new Error(`No note found for ${key}`);
 } else {
 await SQNote.destroy({ where: { notekey: key } });
 }
 this.emitDestroyed(key);
}

This is the same change; that is, to first read the Note corresponding to the given key,
and if the Note does not exist, to throw an error.

Unit Testing and Functional Testing Chapter 13

[626]

Likewise, when running test-level, we get a similar failure, and the solution is to
edit models/notes-level.mjs to make the following change:

async destroy(key) {
 const db = await connectDB();
 const note = Note.fromJSON(await db.get(key));
 await db.del(key);
 this.emitDestroyed(key);
}

As with the other NotesStore implementations, this reads the Note before trying to
destroy it. If the read operation fails, then the test case sees the expected error.

These are the bugs we referred to in Chapter 7, Data Storage and Retrieval. We simply
forgot to check for these conditions in this particular model. Thankfully, our diligent
testing caught the problem. At least, that's the story to tell the managers rather than
telling them that we forgot to check for something we already knew could happen.

Testing against databases that require server setup
– MySQL and MongoDB
That was good, but we obviously won't run Notes in production with a database such
as SQLite3 or Level. We can run Notes against the SQL databases supported by
Sequelize (such as MySQL) and against MongoDB. Clearly, we've been remiss in not
testing those two combinations.

Our test results matrix reads as follows:

notes-fs: PASS
notes-memory: PASS
notes-level: 1 failure, now fixed
notes-sqlite3: 2 failures, now fixed
notes-sequelize: With SQLite3: 1 failure, now fixed
notes-sequelize: With MySQL: untested
notes-mongodb: Untested

Unit Testing and Functional Testing Chapter 13

[627]

The two untested NotesStore implementations both require that we set up a database
server. We avoided testing these combinations, but our manager won't accept that
excuse because the CEO needs to know we've completed the test cycles. Notes must
be tested with a configuration similar to the production environments'.

In production, we'll be using a regular database server, with MySQL or MongoDB
being the primary choices. Therefore, we need a way to incur a low overhead to run
tests against those databases. Testing against the production configuration must be so
easy that we should feel no resistance in doing so, to ensure that tests are run often
enough to make the desired impact.

In this section, we made a lot of progress and have a decent start on a test suite for the
NotesStore database modules. We learned how to set up test suites and test cases in
Mocha, as well as how to get useful test reporting. We learned how to use
package.json to drive test suite execution. We also learned about negative test
scenarios and how to diagnose errors that come up.

But we need to work on this issue of testing against a database server. Fortunately,
we've already worked with a piece of technology that supports easily creating and
destroying the deployment infrastructure. Hello, Docker!

In the next section, we'll learn how to repurpose the Docker Compose deployment as
a test infrastructure.

Using Docker Swarm to manage test
infrastructure
One advantage Docker gives is the ability to install the production environment on
our laptop. In Chapter 12, Deploying Docker Swarm to AWS EC2 Using Terraform, we
converted a Docker setup that ran on our laptop so that it could be deployed on real
cloud hosting infrastructure. That relied on converting a Docker Compose file into a
Docker Stack file, along with customization for the environment we built on AWS
EC2 instances.

In this section, we'll repurpose the Stack file as test infrastructure deployed to a
Docker Swarm. One approach is to simply run the same deployment, to AWS EC2,
and substitute new values for the var.project_name and var.vpc_name variables.
In other words, the EC2 infrastructure could be deployed this way:

$ terraform apply --var project_name=notes-test --var vpc_name=notes-
test-vpc

Unit Testing and Functional Testing Chapter 13

[628]

This would deploy a second VPC with a different name that's explicitly for test
execution and that would not disturb the production deployment. It's quite common
in Terraform to customize the deployment this way for different targets.

In this section, we'll try something different. We can use Docker Swarm in other
contexts, not just the AWS EC2 infrastructure we set up. Specifically, it is easy to use
Docker Swarm with the Docker for Windows or Docker for macOS that's running on
our laptop.

What we'll do is configure Docker on our laptop so that it supports swarm mode and
create a slightly modified version of the Stack file in order to run the tests on our
laptop. This will solve the issue of running tests against a MySQL database server,
and also lets us test the long-neglected MongoDB module. This will demonstrate how
to use Docker Swarm for test infrastructure and how to perform semi-automated test
execution inside the containers using a shell script.

Let's get started.

Using Docker Swarm to deploy test
infrastructure
We had a great experience using Docker Compose and Swarm to orchestrate Notes
application deployment on both our laptop and our AWS infrastructure. The whole
system, with five independent services, is easily described in compose-
local/docker-compose.yml and compose-swarm/docker-compose.yml. What
we'll do is duplicate the Stack file, then make a couple of small changes required to
support test execution in a local swarm.

To configure the Docker installation on our laptop for swarm mode, simply type the
following:

$ docker swarm init

As before, this will print a message about the join token. If desired, if you have
multiple computers in your office, it might be interesting for you to experiment with
setting up a local Swarm. But for this exercise, that's not important. This is because we
can do everything required with a single-node Swarm.

Unit Testing and Functional Testing Chapter 13

[629]

This isn't a one-way street, meaning that when you're done with this exercise, it is
easy to turn off swarm mode. Simply shut down anything deployed to your local
Swarm and run the following command:

$ docker swarm leave --force

Normally, this is used for a host that you wish to detach from an existing swarm. If
there is only one host remaining in a swarm, the effect will be to shut down the
swarm.

Now that we know how to initialize swarm mode on our laptop, let's set about
creating a stack file suitable for use on our laptop.

Create a new directory, compose-stack-test-local, as a sibling to the notes,
users, and compose-local directories. Copy compose-stack/docker-
compose.yml to that directory. We'll be making several small changes to this file and
no changes to the existing Dockerfiles. As much as it is possible, it is important to test
the same containers that are used in the production deployment. This means it's
acceptable to inject test files into the containers, but not modify them.

Make every deploy tag look like this:

deploy:
 replicas: 1

This deletes the placement constraints we declared for use on AWS EC2 and sets it to
one replica for each service. For a single-node cluster, we don't worry about
placement, of course, and there is no need for more than one instance of any service.

For the database services, remove the volumes tag. Using this tag is required when
it's necessary to persist in the database data directory. For test infrastructure, the data
directory is unimportant and can be thrown away at will. Likewise, remove the top-
level volumes tag.

For the svc-notes and svc-userauth services, make these changes:

services:
 ...
 svc-userauth:
 image: compose-stack-test-local/svc-userauth
 ...
 ports:
 - "5858:5858"
 ...
 environment:

Unit Testing and Functional Testing Chapter 13

[630]

 SEQUELIZE_CONNECT: sequelize-docker-mysql.yaml
 SEQUELIZE_DBHOST: db-userauth
 ...
 svc-notes:
 image: compose-stack-test-local/svc-notes
 ...
 volumes:
 - type: bind
 source: ../notes/test
 target: /notesapp/test
 - type: bind
 source: ../notes/models/schema-sqlite3.sql
 target: /notesapp/models/schema-sqlite3.sql
 ports:
 - "3000:3000"
 environment:
 ...
 TWITTER_CALLBACK_HOST: "http://localhost:3000"
 SEQUELIZE_CONNECT: models/sequelize-docker-mysql.yaml
 SEQUELIZE_DBHOST: db-notes
 NOTES_MODEL: sequelize
 ...
...

This injects the files required for testing into the svc-notes container. Obviously,
this is the test directory that we created in the previous section for the Notes service.
Those tests also require the SQLite3 schema file since it is used by the corresponding
test script. In both cases, we can use bind mounts to inject the files into the running
container.

The Notes test suite follows a normal practice for Node.js projects of putting test
files in the test directory. When building the container, we obviously don't include the
test files because they're not required for deployment. But running tests requires
having that directory inside the running container. Fortunately, Docker makes this
easy. We simply mount the directory into the correct place.

The bottom line is this approach gives us the following advantages:

The test code is in notes/test, where it belongs.
The test code is not copied into the production container.
In test mode, the test directory appears where it belongs.

Unit Testing and Functional Testing Chapter 13

[631]

For Docker (using docker run) and Docker Compose, the volume is mounted from a
directory on the localhost. But for swarm mode, with a multi-node swarm, the
container could be deployed on any host matching the placement constraints we
declare. In a swarm, bind volume mounts like the ones shown here will try to mount
from a directory on the host that the container has been deployed in. But we are not
using a multi-node swarm; instead, we are using a single-node swarm. Therefore, the
container will mount the named directory from our laptop, and all will be fine. But as
soon as we decide to run testing on a multi-node swarm, we'll need to come up with a
different strategy for injecting these files into the container.

We've also changed the ports mappings. For svc-userauth, we've made its port
visible to give ourselves the option of testing the REST service from the host
computer. For the svc-notes service, this will make it appear on port 3000. In the
environment section, make sure you did not set a PORT variable. Finally, we adjust
TWITTER_CALLBACK_HOST so that it uses localhost:3000 since we're deploying on
the localhost.

For both services, we're changing the image tag from the one associated with the
AWS ECR repository to one of our own designs. We won't be publishing these images
to an image repository, so we can use any image tag we like.

For both services, we are using the Sequelize data model, using the existing MySQL-
oriented configuration file, and setting the SEQUELIZE_DBHOST variable to refer to
the container holding the database.

We've defined a Docker Stack file that should be useful for deploying the Notes
application stack in a Swarm. The difference between the deployment on AWS EC2
and here is simply the configuration. With a few simple configuration changes, we've
mounted test files into the appropriate container, reconfigured the volumes and the
environment variables, and changed the deployment descriptors so that they're
suitable for a single-node swarm running on our laptop.

Let's deploy this and see how well we did.

Unit Testing and Functional Testing Chapter 13

[632]

Executing tests under Docker Swarm
We've repurposed our Docker Stack file so that it describes deploying to a single-
node swarm, ensuring the containers are set up to be useful for testing. Our next step
is to deploy the Stack to a swarm and execute the tests inside the Notes container.

To set it up, run the following commands:

$ docker swarm init
... ignore the output showing the docker swarm join command

$ printf '...' | docker secret create TWITTER_CONSUMER_SECRET -
$ printf '...' | docker secret create TWITTER_CONSUMER_KEY -

We run swarm init to turn on swarm mode on our laptop, then add the two
TWITTER secrets to the swarm. Since it is a single-node swarm, we don't need to run a
docker swarm join command to add new nodes to the swarm.

Then, in the compose-stack-test-local directory, we can run these commands:

$ docker-compose build
...
Building svc-userauth
...
Successfully built 876860f15968
Successfully tagged compose-stack-test-local/svc-userauth:latest
Building svc-notes
...
Successfully built 1c4651c37a86
Successfully tagged compose-stack-test-local/svc-notes:latest

$ docker stack deploy --compose-file docker-compose.yml notes
Ignoring unsupported options: build, restart
...
Creating network notes_authnet
Creating network notes_svcnet
Creating network notes_frontnet
Creating service notes_db-userauth
Creating service notes_svc-userauth
Creating service notes_db-notes
Creating service notes_svc-notes
Creating service notes_redis

Because a Stack file is also a Compose file, we can run docker-compose build to
build the images. Because of the image tags, this will automatically tag the images so
that they match the image names we specified.

Unit Testing and Functional Testing Chapter 13

[633]

Then, we use docker stack deploy, as we did when deploying to AWS EC2.
Unlike the AWS deployment, we do not need to push the images to repositories,
which means we do not need to use the --with-registry-auth option. This will
behave almost identically to the swarm we deployed to EC2, so we explore the
deployed services in the same way:

$ docker service ls
... output of current services
$ docker service ps notes_svc-notes
... status information for the named service
$ docker ps
... running container list for local host

Because this is a single-host swarm, we don't need to use SSH to access the swarm
nodes, nor do we need to set up remote access using docker context. Instead, we
run the Docker commands, and they act on the Docker instance on the localhost.

The docker ps command will tell us the precise container name for each service.
With that knowledge, we can run the following to gain access:

$ docker exec -it notes_svc-notes.1.c8ojirrbrv2sfbva9l505s3nv bash
root@265672675de1:/notesapp#
root@265672675de1:/notesapp# cd test
root@265672675de1:/notesapp/test# apt-get -y install sqlite3
...
root@265672675de1:/notesapp/test# rm -rf node_modules/
root@265672675de1:/notesapp/test# npm install
...

Because, in swarm mode, the containers have unique names, we have to run docker
ps to get the container name, then paste it into this command to start a Bash shell
inside the container.

Inside the container, we see the test directory is there as expected. But we have a
couple of setup steps to perform. The first is to install the SQLite3 command-line tools
since the scripts in package.json use that command. The second is to remove any
existing node_modules directory because we don't know if it was built for this
container or for the laptop. After that, we need to run npm install to install the
dependencies.

Unit Testing and Functional Testing Chapter 13

[634]

Having done this, we can run the tests:

root@265672675de1:/notesapp/test# npm run test-all
...

The tests should execute as they did on our laptop, but they're running inside the
container instead. However, the MySQL test won't have run because the
package.json scripts are not set up to run that one automatically. Therefore, we can
add this to package.json:

"test-notes-sequelize-mysql": "cross-env NOTES_MODEL=sequelize
 SEQUELIZE_CONNECT=../models/sequelize-docker-mysql.yaml
 SEQUELIZE_DBHOST=db-notes mocha test-model"

This is the command that's required to execute the test suite against the MySQL
database.

Then, we can run the tests against MySQL, like so:

root@265672675de1:/notesapp/test# npm run test-notes-sequelize-mysql
...

The tests should execute correctly against MySQL.

To automate this, we can create a file named run.sh containing the following code:

#!/bin/sh
SVC_NOTES=$1
docker exec -it ${SVC_NOTES} apt-get -y install sqlite3
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 rm -rf node_modules
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm install
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm run test-notes-memory
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm run test-notes-fs
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm run test-level
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm run test-notes-sqlite3
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm run test-notes-sequelize-sqlite
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm run test-notes-sequelize-mysql
docker exec -it --workdir /notesapp/test -e DEBUG= ${SVC_NOTES} \
 npm run test-notes-mongodb

Unit Testing and Functional Testing Chapter 13

[635]

The script executes each script in notes/test/package.json individually. If you
prefer, you can replace these with a single line that executes npm run test-all.

This script takes a command-line argument for the container name holding the svc-
notes service. Since the tests are located in that container, that's where the tests must
be run. The script can be executed like so:

$ sh run.sh notes_svc-notes.1.c8ojirrbrv2sfbva9l505s3nv

This runs the preceding script, which will run each test combination individually and
also make sure the DEBUG variable is not set. This variable is set in the Dockerfile and
causes debugging information to be printed among the test results output. Inside the
script, the --workdir option sets the current directory of the command's execution in
the test directory to simplify running the test scripts.

Of course, this script won't execute as-is on Windows. To convert this for use on
PowerShell, save the text starting at the second line into run.ps1, and then change
SVC_NOTES references into %SVC_NOTES% references.

We have succeeded in semi-automating test execution for most of our test matrix.
However, there is a glaring hole in the test matrix, namely the lack of testing on
MongoDB. Plugging that hole will let us see how we can set up MongoDB under
Docker.

MongoDB setup under Docker and testing Notes
against MongoDB
In Chapter 7, Data Storage and Retrieval, we developed MongoDB support for Notes.
Since then, we've focused on Sequelize. To make up for that slight, let's make sure
we at least test our MongoDB support. Testing on MongoDB simply requires defining
a container for the MongoDB database and a little bit of configuration.

Visit https://hub.docker.com/_/mongo/ for the official MongoDB container. You'll
be able to retrofit this in order to deploy the Notes application running on MongoDB.

Add the following code to compose-stack-test-local/docker-compose.yml:

 # Uncomment this for testing MongoDB
 db-notes-mongo:
 image: mongo:4.2
 container_name: db-notes-mongo
 networks:
 - frontnet

https://hub.docker.com/_/mongo/

Unit Testing and Functional Testing Chapter 13

[636]

 # volumes:
 # - ./db-notes-mongo:/data/db

That's all that's required to add a MongoDB container to a Docker Compose/Stack file.
We've connected it to frontnet so that the database is accessible by svc-notes. If
we wanted the svc-notes container to use MongoDB, we'd need some environment
variables (MONGO_URL, MONGO_DBNAME, and NOTES_MODEL) to tell Notes to use
MongoDB.

But we'd also run into a problem that we created for ourselves in Chapter 9, Dynamic
Client/Server Interaction with Socket.IO. In that chapter, we created a messaging
subsystem so that our users can leave messages for each other. That messaging
system is currently implemented to store messages in the same Sequelize database
where the Notes are stored. But to run Notes with no Sequelize database would mean
a failure in the messaging system. Obviously, the messaging system can be rewritten,
for instance, to allow storage in a MongoDB database, or to support running both
MongoDB and Sequelize at the same time.

Because we were careful, we can execute code in models/notes-mongodb.mjs
without it being affected by other code. With that in mind, we'll simply execute the
Notes test suite against MongoDB and report the results.

Then, in notes/test/package.json, we can add a line to facilitate running tests on
MongoDB:

"test-notes-mongodb": "cross-env MONGO_URL=mongodb://db-notes-mongo/
 MONGO_DBNAME=chap13-test NOTES_MODEL=mongodb mocha --no-timeouts
test-
 model"

We simply added the MongoDB container to frontnet, making the database
available at the URL shown here. Hence, it's simple to now run the test suite using the
Notes MongoDB model.

The --no-timeouts option was necessary to avoid a spurious error while testing the
suite against MongoDB. This option instructs Mocha to not check whether a test case
execution takes too long.

The final requirement is to add the following line to run.sh (or run.ps1 for
Windows):

docker exec -it --workdir /notesapp/test -e DEBUG= notes-test \
 npm run test-notes-mongodb

Unit Testing and Functional Testing Chapter 13

[637]

This ensures MongoDB can be tested alongside the other test combinations. But when
we run this, an error might crop up:

(node:475) DeprecationWarning: current Server Discovery and Monitoring
 engine is deprecated, and will be removed in a future version. To use
 the new Server Discover and Monitoring engine, pass option
 { useUnifiedTopology: true } to the MongoClient constructor.

The problem is that the initializer for the MongoClient object has changed slightly.
Therefore, we must modify notes/models/notes-mongodb.mjs with this new
connectDB function:

const connectDB = async () => {
 if (!client) {
 client = await MongoClient.connect(process.env.MONGO_URL, {
 useNewUrlParser: true, useUnifiedTopology: true
 });
 }
}

This adds a pair of useful configuration options, including the option explicitly
named in the error message. Otherwise, the code is unchanged.

To make sure the container is running with the updated code, rerun the docker-
compose build and docker stack deploy steps shown earlier. Doing so rebuilds
the images, and then updates the services. Because the svc-notes container will
relaunch, you'll need to install the Ubuntu sqlite3 package again.

Once you've done that, the tests will all execute correctly, including the MongoDB
combination.

We can now report the final test results matrix to the manager:

models-fs: PASS
models-memory: PASS
models-levelup: 1 failure, now fixed, PASS
models-sqlite3: Two failures, now fixed, PASS
models-sequelize with SQLite3: 1 failure, now fixed, PASS
models-sequelize with MySQL: PASS
models-mongodb: PASS

Unit Testing and Functional Testing Chapter 13

[638]

The manager will tell you "good job" and then remember that the models are only a
portion of the Notes application. We've left two areas completely untested:

The REST API for the user authentication service
Functional testing of the user interface

In this section, we've learned how to repurpose a Docker Stack file so that we can
launch the Notes stack on our laptop. It took a few simple reconfigurations of the
Stack file and we were ready to go, and we even injected the files that are useful for
testing. With a little bit more work, we finished testing against all configuration
combinations of the Notes database modules.

Our next task is to handle testing the REST API for the user authentication service.

Testing REST backend services
It's now time to turn our attention to the user authentication service. We've
mentioned testing this service, saying that we'll get to them later. We developed a
command-line tool for both administration and ad hoc testing. While that has been
useful all along, it's time to get cracking with some real tests.

There's a question of which tool to use for testing the authentication service. Mocha
does a good job of organizing a series of test cases, and we should reuse it here. But
the thing we have to test is a REST service. The customer of this service, the Notes
application, uses it through the REST API, giving us a perfect rationalization to test
the REST interface rather than calling the functions directly. Our ad hoc scripts used
the SuperAgent library to simplify making REST API calls. There happens to be a
companion library, SuperTest, that is meant for REST API testing. It's easy to use that
library within a Mocha test suite, so let's take that route.

For the documentation on SuperTest, look here: https:/ /www.
npmjs. com/ package/ supertest.

Create a directory named compose-stack-test-local/userauth. This directory
will contain a test suite for the user authentication REST service. In that directory,
create a file named test.mjs that contains the following code:

import Chai from 'chai';
const assert = Chai.assert;
import supertest from 'supertest';

https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest
https://www.npmjs.com/package/supertest

Unit Testing and Functional Testing Chapter 13

[639]

const request = supertest(process.env.URL_USERS_TEST);
const authUser = 'them';
const authKey = 'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF';

describe('Users Test', function() {
 ...
});

This sets up Mocha and the SuperTest client. The URL_USERS_TEST environment
variable specifies the base URL of the server to run the test against. You'll almost
certainly be using http://localhost:5858, given the configuration we've used
earlier, but it can be any URL pointing to any host. SuperTest initializes itself a little
differently to SuperAgent.

The SuperTest module supplies a function, and we call that function with
the URL_USERS_TEST variable. That gives us an object, which we call request, that is
used for interacting with the service under test.

We've also set up a pair of variables to store the authentication user ID and key. These
are the same values that are in the user authentication server. We simply need to
supply them when making API calls.

Finally, there's the outer shell of the Mocha test suite. So, let's start filling in
the before and after test cases:

before(async function() {
 await request
 .post('/create-user')
 .send({
 username: "me", password: "w0rd", provider: "local",
 familyName: "Einarrsdottir", givenName: "Ashildr",
 middleName: "",
 emails: [], photos: []
 })
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authUser, authKey);
});
after(async function() {
 await request
 .delete('/destroy/me')
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authUser, authKey);
});

Unit Testing and Functional Testing Chapter 13

[640]

These are our before and after tests. We'll use them to establish a user and then
clean them up by removing the user at the end.

This gives us a taste of how the SuperTest API works. If you refer back to cli.mjs,
you'll see the similarities to SuperAgent.

The post and delete methods we can see here declare the HTTP verb to use. The
send method provides an object for the POST operation. The set method sets header
values, while the auth method sets up authentication:

describe('List user', function() {
 it("list created users", async function() {
 const res = await request.get('/list')
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authUser, authKey);
 assert.exists(res.body);
 assert.isArray(res.body);
 assert.lengthOf(res.body, 1);
 assert.deepEqual(res.body[0], {
 username: "me", id: "me", provider: "local",
 familyName: "Einarrsdottir", givenName: "Ashildr",
 middleName: "",
 emails: [], photos: []
 });
 });
});

Now, we can test some API methods, such as the /list operation.

We have already guaranteed that there is an account in the before method, so /list
should give us an array with one entry.

This follows the general pattern for using Mocha to test a REST API method. First, we
use SuperTest's request object to call the API method and await its result. Once we
have the result, we use assert methods to validate it is what's expected.

Add the following test cases:

describe('find user', function() {
 it("find created users", async function() {
 const res = await request.get('/find/me')
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authUser, authKey);
 assert.exists(res.body);

Unit Testing and Functional Testing Chapter 13

[641]

 assert.isObject(res.body);
 assert.deepEqual(res.body, {
 username: "me", id: "me", provider: "local",
 familyName: "Einarrsdottir", givenName: "Ashildr",
 middleName: "",
 emails: [], photos: []
 });
});
it('fail to find non-existent users', async function() {
 var res;
 try {
 res = await request.get('/find/nonExistentUser')
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authUser, authKey);
 } catch(e) {
 return; // Test is okay in this case
 }
 assert.exists(res.body);
 assert.isObject(res.body);
 assert.deepEqual(res.body, {});
 });
});

We are checking the /find operation in two ways:

Positive test: Looking for the account we know exists – failure is indicated
if the user account is not found
Negative test: Looking for the one we know does not exist – failure is
indicated if we receive something other than an error or an empty object

Add the following test case:

describe('delete user', function() {
 it('delete nonexistent users', async function() {
 let res;
 try {
 res = await request.delete('/destroy/nonExistentUser')
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authUser, authKey);
 } catch(e) {
 return; // Test is okay in this case
 }
 assert.exists(res);
 assert.exists(res.error);
 assert.notEqual(res.status, 200);

Unit Testing and Functional Testing Chapter 13

[642]

 });
});

Finally, we should check the /destroy operation. This operation is already checked
the after method, where we destroy a known user account. We also need to
perform the negative test and verify its behavior against an account we know does
not exist.

The desired behavior is that either an error is thrown or the result shows an HTTP
status indicating an error. In fact, the current authentication server code gives a 500
status code, along with some other information.

This gives us enough tests to move forward and automate the test run.

In compose-stack-test-local/docker-compose.yml, we need to inject
the test.js script into the svc-userauth-test container. We'll add that here:

svc-userauth-test:
 ...
 volumes:
 - type: bind
 source: ./userauth
 target: /userauth/test

This injects the userauth directory into the container as the /userauth/test
directory. As we did previously, we then must get into the container and run the test
script.

The next step is creating a package.json file to hold any dependencies and a script
to run the test:

{
 "name": "userauth-test",
 "version": "1.0.0",
 "description": "Test suite for user authentication server",
 "scripts": {
 "test": "cross-env URL_USERS_TEST=http://localhost:5858 mocha
 test.mjs"
 },
 "dependencies": {
 "chai": "^4.2.0",
 "mocha": "^7.1.1",
 "supertest": "^4.0.2",
 "cross-env": "^7.0.2"
 }
}

Unit Testing and Functional Testing Chapter 13

[643]

In the dependencies, we list Mocha, Chai, SuperTest, and cross-env. Then, in the test
script, we run Mocha along with the required environment variable. This should run
the tests.

We could use this test suite from our laptop. Because the test directory is injected into
the container the tests, we can also run them inside the container. To do so, add the
following code to run.sh:

SVC_USERAUTH=$2
...
docker exec -it -e DEBUG= --workdir /userauth/test ${SVC_USERAUTH} \
 rm -rf node_modules
docker exec -it -e DEBUG= --workdir /userauth/test ${SVC_USERAUTH} \
 npm install
docker exec -it -e DEBUG= --workdir /userauth/test ${SVC_USERAUTH} \
 npm run test

This adds a second argument – in this case, the container name for svc-userauth.
We can then run the test suite, using this script to run them inside the container. The
first two commands ensure the installed packages were installed for the operating
system in this container, while the last runs the test suite.

Now, if you run the run.sh test script, you'll see the required packages get installed.
Then, the test suite will be executed.

The result will look like this:

$ sh run.sh notes_svc-notes.1.c8ojirrbrv2sfbva9l505s3nv notes_svc-
userauth.1.puos4jqocjji47vpcp9nrakmy
...

> userauth-test@1.0.0 test /userauth/test
> cross-env URL_USERS_TEST=http://localhost:5858 mocha test.mjs

 Users Test
 List user
 list created users
 find user
 find created users
 fail to find non-existent users
 delete user
 delete nonexistent users

 4 passing (312ms)

Unit Testing and Functional Testing Chapter 13

[644]

Because URL_USERS_TEST can take any URL, we could run the test suite against any
instance of the user authentication service. For example, we could test an instance
deployed on AWS EC2 from our laptop using a suitable value for URL_USERS_TEST.

We're making good progress. We now have test suites for both the Notes and User
Authentication services. We have learned how to test a REST service using the REST
API. This is different than directly calling internal functions because it is an end-to-
end test of the complete system, in the role of a consumer of the service.

Our next task is to automate test results reporting.

Automating test results reporting
It's cool we have automated test execution, and Mocha makes the test results look
nice with all those checkmarks. But what if management wants a graph of test failure
trends over time? There could be any number of reasons to report test results as data
rather than as a user-friendly printout on the console.

For example, tests are often not run on a developer laptop or by a quality team tester,
but by automated background systems. The CI/CD model is widely used, in which
tests are run by the CI/CD system on every commit to the shared code repository.
When fully implemented, if the tests all pass on a particular commit, then the system
is automatically deployed to a server, possibly the production servers. In such a
circumstance, the user-friendly test result report is not useful, and instead, it must be
delivered as data that can be displayed on a CI/CD results dashboard website.

Mocha uses what's called a Reporter to report test results. A Mocha Reporter is a
module that prints data in whatever format it supports. More information on this can
be found on the Mocha website: https:/ /mochajs. org/ #reporters.

You will find the current list of available reporters like so:

mocha --reporters

 dot - dot matrix
 doc - html documentation
 spec - hierarchical spec list
 json - single json object
 progress - progress bar
 list - spec-style listing
 tap - test-anything-protocol
...

https://mochajs.org/#reporters
https://mochajs.org/#reporters
https://mochajs.org/#reporters
https://mochajs.org/#reporters
https://mochajs.org/#reporters
https://mochajs.org/#reporters
https://mochajs.org/#reporters
https://mochajs.org/#reporters
https://mochajs.org/#reporters

Unit Testing and Functional Testing Chapter 13

[645]

Then, you can use a specific Reporter, like so:

root@df3e8a7561a7:/userauth/test# npm run test -- --reporter tap

> userauth-test@1.0.0 test /userauth/test
> cross-env URL_USERS_TEST=http://localhost:5858 mocha test.mjs "--
reporter" "tap"

1..4
ok 1 Users Test List user list created users
ok 2 Users Test find user find created users
ok 3 Users Test find user fail to find non-existent users
ok 4 Users Test delete user delete nonexistent users
tests 4
pass 4
fail 0

In the npm run script-name command, we can inject command-line arguments, as
we've done here. The -- token tells npm to append the remainder of its command
line to the command that is executed. The effect is as if we had run this:

root@df3e8a7561a7:/userauth/test# URL_USERS_TEST=http://localhost:5858
mocha test.mjs "--reporter" "tap"

For Mocha, the --reporter option selects which Reporter to use. In this case, we
selected the TAP reporter, and the output follows that format.

Test Anything Protocol (TAP) is a widely used test results format that increases the
possibility of finding higher-level reporting tools. Obviously, the next step would be
to save the results into a file somewhere, after mounting a host directory into the
container.

In this section, we learned about the test results reporting formats supported by
Mocha. This will give you a starting point for collecting long-term results tracking
and other useful software quality metrics. Often, software teams rely on quality
metrics trends as part of deciding whether a product can be shipped to the public.

In the next section, we'll round off our tour of testing methodologies by learning
about a framework for frontend testing.

Unit Testing and Functional Testing Chapter 13

[646]

Frontend headless browser testing with
Puppeteer
A big cost area in testing is manual user interface testing. Therefore, a wide range of
tools has been developed to automate running tests at the HTTP level. Selenium is a
popular tool implemented in Java, for example. In the Node.js world, we have a few
interesting choices. The chai-http plugin to Chai would let us interact at the HTTP
level with the Notes application while staying within the now-familiar Chai
environment.

However, in this section, we'll use Puppeteer (https:/ / github. com/ GoogleChrome/
puppeteer). This tool is a high-level Node.js module used to control a headless
Chrome or Chromium browser, using the DevTools protocol. This protocol
allows tools to instrument, inspect, debug, and profile Chromium or Chrome browser
instances. The key result is that we can test the Notes application in a real browser so
that we have greater assurance it behaves correctly for users.

The Puppeteer website has extensive documentation that's worth
reading: https:/ / pptr. dev/.

Puppeteer is meant to be a general-purpose test automation tool and has a strong
feature set for that purpose. Because it's easy to make web page screenshots with
Puppeteer, it can also be used in a screenshot service.

Because Puppeteer is controlling a real web browser, your user interface tests will be
very close to live browser testing, without having to hire a human to do the work.
Because it uses a headless version of Chrome, no visible browser window will show
on your screen, and tests can be run in the background instead. It can also drive other
browsers by using the DevTools protocol.

First, let's set up a directory to work in.

https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
https://pptr.dev/
https://pptr.dev/
https://pptr.dev/
https://pptr.dev/
https://pptr.dev/
https://pptr.dev/
https://pptr.dev/
https://pptr.dev/

Unit Testing and Functional Testing Chapter 13

[647]

Setting up a Puppeteer-based testing project
directory
First, let's set up the directory that we'll install Puppeteer in, as well as the other
packages that will be required for this project:

$ mkdir test-compose/notesui
$ cd test-compose/notesui
$ npm init
... answer the questions
$ npm install \
 puppeteer@^4.x mocha@^7.x chai@^4.x supertest@^4.x bcrypt@^4.x
 \ cross-env@7.x \
 --save

This installs not just Puppeteer, but Mocha, Chai, and Supertest. We'll also be using
the package.json file to record scripts.

During installation, you'll see that Puppeteer causes Chromium to be downloaded,
like so:

Downloading Chromium r756035 - 118.4 Mb [=======] 35% 30.4s

The Puppeteer package will launch that Chromium instance as needed, managing it
as a background process and communicating with it using the DevTools protocol.

The approach we'll follow is to test against the Notes stack we've deployed in the test
Docker infrastructure. Therefore, we need to launch that infrastructure:

$ cd ..
$ docker stack deploy --compose-file docker-compose.yml notes
... as before

Depending on what you need to do, docker-compose build might also be
required. In any case, this brings up the test infrastructure and lets you see the
running system.

We can use a browser to visit http://localhost:3000 and so on. Because this
system won't contain any users, our test script will have to add a test user so that the
test can log in and add notes.

Unit Testing and Functional Testing Chapter 13

[648]

Another item of significance is that tests will be running in an anonymous Chromium
instance. Even if we use Chrome as our normal desktop browser, this Chromium
instance will have no connection to our normal desktop setup. That's a good thing
from a testability standpoint since it means your test results will not be affected by
your personal web browser configuration. On the other hand, it means Twitter login
testing is not possible, because that Chromium instance does not have a Twitter login
session.

With those things in mind, let's write an initial test suite. We'll start with a simple
initial test case to prove we can run Puppeteer inside Mocha. Then, we'll test the login
and logout functionality, the ability to add notes, and a couple of negative test
scenarios. We'll close this section with a discussion on improving testability in HTML
applications. Let's get started.

Creating an initial Puppeteer test for the Notes
application stack
Our first test goal is to set up the outline of a test suite. We will need to do the
following, in order:

Add a test user to the user authentication service.1.
Launch the browser.2.
Visit the home page.3.
Verify the home page came up.4.
Close the browser.5.
Delete the test user.6.

This will establish that we have the ability to interact with the launched
infrastructure, start the browser, and see the Notes application. We will continue with
the policy and clean up after the test to ensure a clean environment for subsequent
test runs and will add, then remove, a test user.

In the notesui directory, create a file named uitest.mjs containing the following
code:

import Chai from 'chai';
const assert = Chai.assert;
import supertest from 'supertest';
const request = supertest(process.env.URL_USERS_TEST);
const authUser = 'them';
const authKey = 'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF';

Unit Testing and Functional Testing Chapter 13

[649]

import { default as bcrypt } from 'bcrypt';
const saltRounds = 10;
import puppeteer from 'puppeteer';

async function hashpass(password) {
 let salt = await bcrypt.genSalt(saltRounds);
 let hashed = await bcrypt.hash(password, salt);
 return hashed;
}

This imports and configures the required modules. This includes setting up bcrypt
support in the same way that is used in the authentication server. We've also copied
in the authentication key for the user authentication backend service. As we did for
the REST test suite, we will use the SuperTest library to add, verify, and remove the
test user using the REST API snippets copied from the REST tests.

Add the following test block:

describe('Initialize test user', function() {
 it('should successfully add test user', async function() {
 await request.post('/create-user').send({
 username: "testme", password: await hashpass("w0rd"),
 provider: "local",
 familyName: "Einarrsdottir", givenName: "Ashildr",
 middleName: "TEST", emails: ["md@stolen.test.tardis"],
 photos: []
 })
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')
 .auth(authUser, authKey);
 });
});

This adds a user to the authentication service. Refer back and you'll see this is similar
to the test case in the REST test suite. If you want a verification phase, there is another
test case that calls the /find/testme endpoint to verify the result. Since we've
already verified the authentication system, we do not need to reverify it here. We just
need to ensure we have a known test user we can use for scenarios where the browser
must be logged in.

Keep this at the very end of uitest.mjs:

describe('Destroy test user', function() {
 it('should successfully destroy test user', async function() {
 await request.delete('/destroy/testme')
 .set('Content-Type', 'application/json')
 .set('Acccept', 'application/json')

Unit Testing and Functional Testing Chapter 13

[650]

 .auth(authUser, authKey);
 });
});

At the end of the test execution, we should run this to delete the test user. The policy
is to clean up after we execute the test. Again, this was copied from the user
authentication service test suite. Between those two, add the following:

describe('Notes', function() {
 this.timeout(100000);
 let browser;
 let page;

 before(async function() {
 browser = await puppeteer.launch({
 sloMo: 500, headless: false
 });
 page = await browser.newPage();
 });

 it('should visit home page', async function() {
 await page.goto(process.env.NOTES_HOME_URL);
 await page.waitForSelector('a.nav-item[href="/users/login"]');
 });

 // Other test scenarios go here.

 after(async function() {
 await page.close();
 await browser.close();
 });
});

Remember that within describe, the tests are the it blocks. The before block is
executed before all the it blocks, and the after block is executed afterward.

In the before function, we set up Puppeteer by launching a Puppeteer instance and
starting a new Page object. Because puppeteer.launch has the headless option set
to false, we'll see a browser window on the screen. This will be useful so we can see
what's happening. The sloMo option also helps us see what's happening by slowing
down the browser interaction. In the after function, we call the close method on
those objects in order to close out the browser. The puppeteer.launch method takes
an options object, with a long list of attributes that are worth learning about.

Unit Testing and Functional Testing Chapter 13

[651]

The browser object represents the entire browser instance that the test is being run
on. In contrast, the page object represents what is essentially the currently open tab in
the browser. Most Puppeteer functions execute asynchronously. Therefore, we can
use async functions and the await keywords.

The timeout setting is required because it sometimes takes a longish time for the
browser instance to launch. We're being generous with the timeout to minimize the
risk of spurious test failures.

For the it clause, we do a tiny amount of browser interaction. Being a wrapper
around a browser tab, the page object has methods related to managing an open tab.
For example, the goto method tells the browser tab to navigate to the given URL. In
this case, the URL is the Notes home page, which is passed in as an environment
variable.

The waitForSelector method is part of a group of methods that wait for certain
conditions. These include waitForFileChooser, waitForFunction,
waitForNavigation, waitForRequest, waitForResponse, and waitForXPath.
These, and the waitFor method, all cause Puppeteer to asynchronously wait for a
condition to happen in the browser. The purpose of these methods is to give the
browser time to respond to some input, such as clicking on a button. In this case, it
waits until the web page loading process has an element visible at the given CSS
selector. That selector refers to the Login button, which will be in the header.

In other words, this test visits the Notes home page and then waits until the Login
button appears. We could call that a simple smoke test that's quickly executed and
determines that the basic functionality is there.

Executing the initial Puppeteer test
We have the beginning of a Puppeteer-driven test suite for the Notes application. We
have already launched the test infrastructure using docker-compose. To run the test
script, add the following to the scripts section of the package.json file:

"test": "cross-env URL_USERS_TEST=http://localhost:5858
 NOTES_HOME_URL=http://localhost:3000 mocha uitest.mjs"

Unit Testing and Functional Testing Chapter 13

[652]

The test infrastructure we deployed earlier exposes the user authentication service on
port 5858 and the Notes application on port 3000. If you want to test against a
different deployment, adjust these URLs appropriately. Before running this, the
Docker test infrastructure must be launched, which should have already happened.

Let's try running this initial test suite:

$ npm run test

> notesui@1.0.0 test /Users/David/Chapter13/compose-test/notesui
> URL_USERS_TEST=http://localhost:5858
NOTES_HOME_URL=http://localhost:3000 mocha uitest.mjs

 Initialize test user
 should successfully add test user (125ms)
 Notes
 should visit home page (1328ms)
 Destroy test user
 should successfully destroy test user (53ms)

 3 passing (5s)

We have successfully created the structure that we can run these tests in. We have set
up Puppeteer and the related packages and created one useful test. The primary win
is to have a structure to build further tests on top of.

Our next step is to add more tests.

Testing login/logout functionality in Notes
In the previous section, we created the outline within which to test the Notes user
interface. We didn't do much testing regarding the application, but we proved that
we can test Notes using Puppeteer.

In this section, we'll add an actual test. Namely, we'll test the login and logout
functionality. The steps for this are as follows:

Log in using the test user identity.1.
Verify that the browser was logged in.2.
Log out.3.
Verify that the browser is logged out.4.

Unit Testing and Functional Testing Chapter 13

[653]

In uitest.js, insert the following test code:

describe('should log in and log out correctly', function() {
 this.timeout(100000);

 it('should log in correctly', async function() {
 await page.click('a.nav-item[href="/users/login"]');
 await page.waitForSelector('form[action="/users/login"]');
 await page.type('[name=username]', "testme", {delay: 100});
 await page.type('[name=password]', "w0rd", {delay: 100});
 await page.keyboard.press('Enter');
 await page.waitForNavigation({
 'waitUntil': 'domcontentloaded'
 });
 });

 it('should be logged in', async function() {
 assert.isNotNull(await page.$('a[href="/users/logout"]'));
 });

 it('should log out correctly', async function() {
 await page.click('a[href="/users/logout"]');
 });

 it('should be logged out', async function() {
 await page.waitForSelector('a.nav-item[href="/users/login"]');
 });
});

// Other test scenarios go here.

This is our test implementation for logging in and out. We have to specify the
timeout value because it is a new describe block.

The click method takes a CSS selector, meaning this first click event is sent to the
Login button. A CSS selector, as the name implies, is similar to or identical to the
selectors we'd write in a CSS file. With a CSS selector, we can target specific elements
on the page.

To determine the selector to use, look at the HTML for the templates and learn how to
describe the element you wish to target. It may be necessary to add ID attributes into
the HTML to improve testability.

Unit Testing and Functional Testing Chapter 13

[654]

The Puppeteer documentation refers to the CSS Selectors
documentation on the Mozilla Developer Network website: https:/
/developer. mozilla. org/ en-US/ docs/ Web/ CSS/ CSS_Selectors.

Clicking on the Login button will, of course, cause the Login page to appear. To
verify this, we wait until the page contains a form that posts to /users/login. That
form is in login.hbs.

The type method acts as a user typing text. In this case, the selectors target the
Username and Password fields of the login form. The delay option inserts a pause of
100 milliseconds after typing each character. It was noted in testing that sometimes,
the text arrived with missing letters, indicating that Puppeteer can type faster than
the browser can accept.

The page.keyboard object has various methods related to keyboard events. In this
case, we're asking to generate the equivalent to pressing Enter on the keyboard. Since,
at that point, the focus is in the Login form, that will cause the form to be submitted
to the Notes application. Alternatively, there is a button on that form, and the test
could instead click on the button.

The waitForNavigation method has a number of options for waiting on page
refreshes to finish. The selected option causes a wait until the DOM content of the
new page is loaded.

The $ method searches the DOM for elements matching the selector, returning an
array of matching elements. If no elements match, null is returned instead.
Therefore, this is a way to test whether the application got logged in, by looking to see
if the page has a Logout button.

To log out, we click on the Logout button. Then, to verify the application logged out,
we wait for the page to refresh and show a Login button:

$ npm run test

> notesui@1.0.0 test /Users/David/Chapter13/compose-test/notesui
> URL_USERS_TEST=http://localhost:5858
NOTES_HOME_URL=http://localhost:3000 mocha uitest.mjs

Initialize test user
 should successfully add test user (188ms)
 should successfully verify test user exists

Notes

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

Unit Testing and Functional Testing Chapter 13

[655]

 should visit home page (1713ms)
 log in and log out correctly
 should log in correctly (2154ms)
 should be logged in
 should log out correctly (287ms)
 should be logged out (55ms)

Destroy test user
 should successfully destroy test user (38ms)
 should successfully verify test user gone (39ms)

 9 passing (7s)

With that, our new tests are passing. Notice that the time required to execute some of
the tests is rather long. Even longer times were observed while debugging the test,
which is why we set long timeouts.

That's good, but of course, there is more to test, such as the ability to add a Note.

Testing the ability to add Notes
We have a test case to verify login/logout functionality. The point of this application
is adding notes, so we need to test this feature. As a side effect, we will learn how to
verify page content with Puppeteer.

To test this feature, we will need to follow these steps:

Log in and verify we are logged in.1.
Click the Add Note button to get to the form.2.
Enter the information for a Note.3.
Verify that we are showing the Note and that the content is correct.4.
Click on the Delete button and confirm deleting the Note.5.
Verify that we end up on the home page.6.
Log out.7.

You might be wondering "Isn't it duplicative to log in again?" The previous tests
focused on login/logout. Surely that could have ended with the browser in the
logged-in state? With the browser still logged in, this test would not need to log in
again. While that is true, it would leave the login/logout scenario incompletely tested.
It would be cleaner for each scenario to be standalone in terms of whether or not the
user is logged in. To avoid duplication, let's refactor the test slightly.

Unit Testing and Functional Testing Chapter 13

[656]

In the outermost describe block, add the following two functions:

describe('Notes', function() {
 this.timeout(100000);
 let browser;
 let page;

 async function doLogin() {
 await page.click('a.nav-item[href="/users/login"]');
 await page.waitForSelector('form[action="/users/login"]');
 await page.type('[name=username]', "testme", {delay: 150});
 await page.type('[name=password]', "w0rd", {delay: 150});
 await page.keyboard.press('Enter');
 await page.waitForNavigation({
 'waitUntil': 'domcontentloaded'
 });
 }

 async function checkLogin() {
 const btnLogout = await page.$('a[href="/users/logout"]');
 assert.isNotNull(btnLogout);
 }
...
});

This is the same code as the code for the body of the test cases shown previously, but
we've moved the code to their own functions. With this change, any test case that
wishes to log into the test user can use these functions.

Then, we need to change the login/logout tests to this:

describe('log in and log out correctly', function() {
 this.timeout(100000);

 it('should log in correctly', doLogin);
 it('should be logged in', checkLogin);
 ...
});

All we've done is move the code that had been here into their own functions. This
means we can reuse those functions in other tests, thus avoiding duplicative code.

Add the following code for the Note creation test suite to uitest.mjs:

describe('allow creating notes', function() {
 this.timeout(100000);

 it('should log in correctly', doLogin);

Unit Testing and Functional Testing Chapter 13

[657]

 it('should be logged in', checkLogin);

 it('should go to Add Note form', async function() {
 await page.click('a[href="/notes/add"]');
 await page.waitForSelector('form[action="/notes/save"]');
 await page.type('[name=notekey]', "testkey", {delay: 200});
 await page.type('[name=title]', "Test Note Subject", {delay:
 150});
 await page.type('[name=body]',
 "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.",
 { delay: 100 });
 await page.click('button[type="submit"]');
 });

 it('should view newly created Note', async function() {
 await page.waitForSelector('h3#notetitle');
 assert.include(
 await page.$eval('h3#notetitle', el => el.textContent),
 "Test Note Subject"
);
 assert.include(
 await page.$eval('#notebody', el => el.textContent),
 "Lorem ipsum dolor"
);
 assert.include(page.url(), '/notes/view');
 });

 it('should delete newly created Note', async function() {
 assert.isNotNull(await page.$('a#notedestroy'));
 await page.click('a#notedestroy');
 await page.waitForSelector('
 form[action="/notes/destroy/confirm"]');
 await page.click('button[type="submit"]');
 await page.waitForSelector('#notetitles');
 assert.isNotNull(await page.$('a[href="/users/logout"]'));
 assert.isNotNull(await page.$('a[href="/notes/add"]'));
 });

 it('should log out', async function() {
 await page.click('a[href="/users/logout"]');
 await page.waitForSelector('a[href="/users/login"]');
 });
});

These are our test cases for adding and deleting Notes. We start with the doLogin
and checkLogin functions to ensure the browser is logged in.

Unit Testing and Functional Testing Chapter 13

[658]

After clicking on the Add Note button and waiting for the browser to show the form
in which we enter the Note details, we need to enter text into the form fields. The
page.type method acts as a user typing on a keyboard and types the given text into
the field identified by the selector.

The interesting part comes when we verify the note being shown. After clicking the
Submit button, the browser is, of course, taken to the page to view the newly created
Note. To do this, we use page.$eval to retrieve text from certain elements on the
screen.

The page.$eval method scans the page for matching elements, and for each, it calls
the supplied callback function. The callback function is given the element, and in our
case, we call the textContent method to retrieve the textual form of the element.
Then, we're able to use the assert.include function to test that the element
contains the required text.

The page.url() method, as its name suggests, returns the URL currently being
viewed. We can test whether that URL contains /notes/view to be certain the
browser is viewing a note.

To delete the note, we start by verifying that the Delete button is on the screen. Of
course, this button is there if the user is logged in. Once the button is verified, we
click on it and wait for the FORM that confirms that we want to delete the Note. Once it
shows up, we can click on the button, after which we are supposed to land on the
home page.

Notice that to find the Delete button, we need to refer to a#notedestroy. As it
stands, the template in question does not have that ID anywhere. Because the HTML
for the Delete button was not set up so that we could easily create a CSS selector, we
must edit views/noteedit.hbs to change the Delete button to this:

<a class="btn btn-outline-dark" id="notedestroy"
 href="/notes/destroy?key={{notekey}}"
 role="button">Delete

All we did was add the ID attribute. This is an example of improving testability,
which we'll discuss later.

A technique we're using is to call page.$ to query whether the given element is on
the page. This method inspects the page, returning an array containing any matching
elements. We are simply testing if the return value is non-null because page.$
returns null if there are no matching elements. This makes for an easy way to test if
an element is present.

Unit Testing and Functional Testing Chapter 13

[659]

We end this by logging out by clicking on the Logout button.

Having created these test cases, we can run the test suite again:

$ npm run test

> notesui@1.0.0 test /Users/David/Chapter13/compose-test/notesui
> URL_USERS_TEST=http://localhost:5858
NOTES_HOME_URL=http://localhost:3000 mocha uitest.mjs

Initialize test user
 should successfully add test user (228ms)
 should successfully verify test user exists (46ms)

Notes
 should visit home page (2214ms)
 log in and log out correctly
 should log in correctly (2567ms)
 should be logged in
 should log out correctly (298ms)
 should be logged out
 allow creating notes
 should log in correctly (2288ms)
 should be logged in
 should go to Add Note form (18221ms)
 should view newly created Note (39ms)
 should delete newly created Note (1225ms)

12 passing (1m)

We have more passing tests and have made good progress. Notice how one of the test
cases took 18 seconds to finish. That's partly because we slowed text entry down to
make sure it is correctly received in the browser, and there is a fair amount of text to
enter. There was a reason we increased the timeout.

In earlier tests, we had success with negative tests, so let's see if we can find any bugs
that way.

Implementing negative tests with Puppeteer
Remember that a negative test is used to purposely invoke scenarios that will fail. The
idea is to ensure the application fails correctly, in the expected manner.

Unit Testing and Functional Testing Chapter 13

[660]

We have two scenarios for an easy negative test:

Attempt to log in using a bad user ID and password
Access a bad URL

Both of these are easy to implement, so let's see how it works.

Testing login with a bad user ID
A simple way to ensure we have a bad username and password is to generate
random text strings for both. An easy way to do that is with the uuid package. This
package is about generating Universal Unique IDs (that is, UUIDs), and one of the
modes of using the package simply generates a unique random string. That's all we
need for this test; it is a guarantee that the string will be unique.

To make this crystal clear, by using a unique random string, we ensure that we don't
accidentally use a username that might be in the database. Therefore, we will be
certain of supplying an unknown username when trying to log in.

In uitest.mjs, add the following to the imports:

import { v4 as uuidv4 } from 'uuid';

There are several methods supported by the uuid package, and the v4 method is
what generates random strings.

Then, add the following scenario:

describe('reject unknown user', function() {
 this.timeout(100000);

 it('should fail to log in unknown user correctly', async function()
{
 assert.isNotNull(await page.$('a[href="/users/login"]'));
 await page.click('a.nav-item[href="/users/login"]');
 await page.waitForSelector('form[action="/users/login"]');
 await page.type('[name=username]', uuidv4(), {delay: 150});
 await page.type('[name=password]',
 await hashpass(uuidv4()), {delay: 150});
 await page.keyboard.press('Enter');
 await page.waitForSelector('form[action="/users/login"]');
 assert.isNotNull(await page.$('a[href="/users/login"]'));
 assert.isNotNull(await page.$('form[action="/users/login"]'));
 });
});

Unit Testing and Functional Testing Chapter 13

[661]

This starts with the login scenario. Instead of a fixed username and password, we
instead use the results of calling uuidv4(), or the random UUID string.

This does the login action, and then we wait for the resulting page. In trying this
manually, we learn that it simply returns us to the login screen and that there is no
additional message. Therefore, the test looks for the login form and ensures there is a
Login button. Between the two, we are certain the user is not logged in.

We did not find a code error with this test, but there is a user experience error:
namely, the fact that, for a failed login attempt, we simply show the login form and
do not provide a message (that is, unknown username or password), which leads to a
bad user experience. The user is left feeling confused over what just happened. So,
let's put that on our backlog to fix.

Testing a response to a bad URL
Our next negative test is to try a bad URL in Notes. We coded Notes to return a 404
status code, which means the page or resource was not found. The test is to ask the
browser to visit the bad URL, then verify that the result uses the correct error
message.

Add the following test case:

describe('reject unknown URL', function() {
 this.timeout(100000);

 it('should fail on unknown URL correctly', async function() {
 let u = new URL(process.env.NOTES_HOME_URL);
 u.pathname = '/bad-unknown-url';
 let response = await page.goto(u.toString());
 await page.waitForSelector('header.page-header');
 assert.equal(response.status(), 404);
 assert.include(
 await page.$eval('h1', el => el.textContent),
 "Not Found"
);
 assert.include(
 await page.$eval('h2', el => el.textContent),
 "404"
);
 });
});

Unit Testing and Functional Testing Chapter 13

[662]

This computes the bad URL by taking the URL for the home page (NOTES_HOME_URL)
and setting the pathname portion of the URL to /bad-unknown-url. Since there is no
route in Notes for this path, we're certain to get an error. If we wanted more certainty,
it seems we could use the uuidv4() function to make the URL random.

Calling page.goto() simply gets the browser to go to the requested URL. For the
subsequent page, we wait until a page with a header element shows up. Because this
page doesn't have much on it, the header element is the best choice for determining
when we have the subsequent page.

To check the 404 status code, we call response.status(), which is the status code
that's received in the HTTP response. Then, we call page.$eval to get a couple of
items from the page and make sure they contain the text that's expected.

In this case, we did not find any code problems, but we did find another user
experience problem. The error page is downright ugly and user-unfriendly. We know
the user experience team will scream about this, so add it to your backlog to do
something to improve this page.

In this section, we wrapped up test development by creating a couple of negative
tests. While this didn't result in finding code bugs, we found a pair of user experience
problems. We know this will result in an unpleasant discussion with the user
experience team, so we've proactively added a task to the backlog to fix those pages.
But we also learned about being on the lookout for any kind of problem that crops up
along the way. It's well-known that the lowest cost of fixing a problem is the issues
found by the development or testing team. The cost of fixing problems goes up
tremendously when it is the user community reporting the problems.

Before we wrap up this chapter, we need to talk a little more in-depth about
testability.

Improving testability in the Notes UI
While the Notes application displays well in the browser, how do we write test
software to distinguish one page from another? As we saw in this section, the UI test
often performed an action that caused a page refresh and had to wait for the next
page to appear. This means our test must be able to inspect the page and work out
whether the browser is displaying the correct page. An incorrect page is itself a bug in
the application. Once the test determines it is the correct page, it can then validate the
data on the page.

Unit Testing and Functional Testing Chapter 13

[663]

The bottom line is a requirement stating that each HTML element must be easily
addressable using a CSS selector.

While in most cases it is easy to code a CSS selector for every element, in a few cases,
this is difficult. The Software Quality Engineering (SQE) manager has requested our
assistance. At stake is the testing budget, which will be stretched further the more the
SQE team can automate their tests.

All that's necessary is to add a few id or class attributes to HTML elements to
improve testability. With a few identifiers and a commitment to maintaining those
identifiers, the SQE team can write repeatable test scripts to validate the application.

We have already seen one example of this: the Delete button in
views/noteview.hbs. It proved impossible to write a CSS selector for that button,
so we added an ID attribute that let us write the test.

In general, testability is about adding things to an API or user interface for the benefit
of software quality testers. For an HTML user interface, that means making sure test
scripts can locate any element in the HTML DOM. And as we've seen, the id and
class attributes go a long way to satisfying that need.

In this section, we learned about user interface testing as a form of functional testing.
We used Puppeteer, a framework for driving a headless Chromium browser instance,
as the vehicle for testing the Notes user interface. We learned how to automate user
interface actions and how to verify that the web pages that showed up matched with
their correct behavior. That included test scenarios covering login, logout, adding
notes, and logging in with a bad user ID. While this didn't discover any outright
failures, watching the user interaction told us of some usability problems with Notes.

With that, we are ready to close out this chapter.

Summary
We covered a lot of territory in this chapter and looked at three distinct areas of
testing: unit testing, REST API testing, and UI functional tests. Ensuring that an
application is well tested is an important step on the road to software success. A team
that does not follow good testing practices is often bogged down with fixing
regression after regression.

Unit Testing and Functional Testing Chapter 13

[664]

First, we talked about the potential simplicity of simply using the assert module for
testing. While the test frameworks, such as Mocha, provide great features, we can go
a long way with a simple script.

There is a place for test frameworks, such as Mocha, if only to regularize our test
cases and to produce test results reports. We used Mocha and Chai for this, and these
tools were quite successful. We even found a couple of bugs with a small test suite.

When starting down the unit testing road, one design consideration is mocking out
dependencies. But it's not always a good use of our time to replace every dependency
with a mock version. As a result, we ran our tests against a live database, but with test
data.

To ease the administrative burden of running tests, we used Docker to automate
setting up and tearing down the test infrastructure. Just as Docker was useful in
automating the deployment of the Notes application, it's also useful in automating
test infrastructure deployment.

Finally, we were able to test the Notes web user interface in a real web browser. We
can't trust that unit testing will find every bug; some bugs will only show up in the
web browser.

In this book, we've covered the full life cycle of Node.js development, from concept,
through various stages of development, to deployment and testing. This will give you
a strong foundation from which to start developing Node.js applications.

In the next chapter, we'll explore another critical area – security. We'll start by using
HTTPS to encrypt and authenticate user access to Notes. We'll use several Node.js
packages to limit the chances of security intrusions.

14
Security in Node.js

Applications
We're coming to the end of this journey of learning Node.js. But there is one
important topic left to discuss: security. The security of your applications is very
important. Do you want to get into the news because your application is the greatest
thing since Twitter, or do you want to be known for a massive cybersecurity incident
launched through your website?

Cybersecurity officials around the world have for years clamored for greater security
on the internet. Security holes in things as innocent as internet-connected security
cameras have been weaponized by miscreants into vast botnets and are used to
bludgeon websites or commit other mayhem. In other cases, rampant identity theft
from security intrusions are a financial threat to us all. Almost every day, the news
includes more revelations of cybersecurity problems.

We've mentioned this issue several times in this book. Starting in Chapter
10, Deploying Node.js Applications on Linux, we discussed the need to segment the
deployment of Notes to present internal barriers against invasion, and specifically to
keep the user database isolated in a protected container. The more layers of security
you put around critical systems, the less likely it is that attackers can get in. While
Notes is a toy application, we can use it to learn about implementing web application
security.

Security shouldn't be an afterthought, just as testing should not be an afterthought.
Both are incredibly important, if only to keep your company from getting in the news
for the wrong reasons.

Security in Node.js Applications Chapter 14

[666]

In this chapter, we will cover the following topics:

Implementing HTTPS/SSL on AWS ECS for an Express application
Using the Helmet library to implement headers for Content Security Policy,
DNS Prefetch Control, Frame Options, Strict Transport Security, and
mitigating XSS attacks
Preventing cross-site request forgery attacks against forms
SQL injection attacks
Pre-deployment scanning for packages with known vulnerabilities
Reviewing security facilities available on AWS

For general advice, the Express team has an excellent security
resource page at https:/ /expressjs. com/ en/advanced/ best-
practice- security. html.

If you haven't yet done so, duplicate the Chapter 13, Unit Testing and Functional
Testing, source tree, which you may have called chap13, to make a Security source
tree, which you can call chap14.

By the end of this chapter, you will have experienced the details of provisioning SSL
certificates, using them to implement an HTTPS reverse-proxy. Following that, you
will read about several tools to improve the security of Node.js web applications. This
should give you a foundation in web application security.

Let's start with implementing HTTPS support for the deployed Notes application.

Implementing HTTPS in Docker for
deployed Node.js applications
The current best practice is that every website must be accessed with HTTPS. Gone
are the days when it was okay to transmit unencrypted information over the internet.
That old model is susceptible to problems such as man-in-the-middle attacks, and
other threats.

https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html

Security in Node.js Applications Chapter 14

[667]

Using SSL and HTTPS means that connections over the internet are authenticated and
encrypted. The encryption is good enough to keep out all but the most advanced of
snoops, and the authentication means we are assured the website is what it says it is.
HTTPS uses the HTTP protocol but is encrypted using SSL, or Secure Sockets Layers.
Implementing HTTPS requires getting an SSL certificate and implementing HTTPS
support in the web server or web application.

Given a suitable SSL certificate, Node.js applications can easily implement HTTPS
because a small amount of code gives us an HTTPS server. But there's another route
that offers an additional benefit. NGINX is a well-regarded web server, and proxy
server, that is extremely mature and feature-filled. We can use it to implement the
HTTPS connection, and at the same time gain another layer of shielding between
potential miscreants and the Notes application.

We have already deployed Notes using Docker swarm on an AWS EC2 cluster. Using
NGINX is a simple matter of adding another container to the swarm, configured with
the tools required to provision SSL certificates. For that purpose, we will use a Docker
container that combines NGINX with a Let's Encrypt client program, and scripting to
automate certificate renewal. Let's Encrypt is a non-profit operating an excellent
service for free SSL certificates. Using their command-line tools, we can provision and
otherwise manage SSL certificates as needed.

In this section, we will do the following:

Configure a domain name to point to our swarm1.
Incorporate a Docker container containing NGINX, Cron, and Certbot (one2.
of the Let's Encrypt client tools)
Implement automated processes in that container for managing certificate3.
renewal
Configure NGINX to listen on port 443 (HTTPS) alongside port 80 (HTTP)4.
Configure the Twitter application to support the website on HTTPS5.

This may seem like a lot of work, but every task is simple. Let's get started.

Security in Node.js Applications Chapter 14

[668]

Assigning a domain name for an application
deployed on AWS EC2
The Notes application is deployed using a Docker swarm built on AWS EC2
instances. One of those instances has a public IP address and a domain name assigned
by AWS. It is best to assign a domain name to the EC2 instance because the name
assigned by AWS is not only user-unfriendly, but will change the next time you
redeploy the cluster. Giving the EC2 instance a domain name requires having a
registered domain name, adding an A record listing its IP address, and updating the
A record every time the EC2 IP address changes.

What does it mean to add an A record? The domain name system (DNS) is what lets
us use a name such as geekwisdom.net for a website rather than the IP
address, 216.239.38.21. In the DNS protocol, there are several types of records that
can be associated with domain name entries in the system. For this project, we need to
only concern ourselves with one of those record types, the A record, for recording IP
addresses for domain names. A web browser that's been told to visit any
domain looks up the A record for that domain and uses that IP address to send
HTTP(S) requests for website content.

The specific method to add an A record to the DNS entries of a domain varies
considerably from one domain registrar to another. For example, one registrar (Pair
Domains) has this screen:

In the dashboard for a specific domain, there might be a section for adding new DNS
records. In this registrar, a dropdown lets you choose among the record types. Select
the A record type, then for your domain name enter the IP address in the right-hand
box, and in the left-hand box enter the subdomain name. In this case, we are creating
a subdomain, notes.geekwisdom.net, so we can deploy a test site without
disturbing the main site hosted on that domain. This also lets us avoid the expense of
registering a new domain for this project.

Security in Node.js Applications Chapter 14

[669]

As soon as you click the ADD RECORD button, the A record will be published. Since
it usually takes some time for DNS records to propagate, you might not be able to
visit the domain name right away. If this takes more than a couple of hours, you
might have done something wrong.

Once the A record is successfully deployed, your users will be able to visit the Notes
application at a nice domain like notes.geekwisdom.net.

Note that the IP address will change every time the EC2 instances are redeployed. If
you redeploy the EC2 instances, you will need to update the A record for the new
address.

In this section, we have learned about assigning a domain name to the EC2 instance.
This will make it easier for our users to access Notes, while also letting us provision
an HTTPS/SSL certificate.

Adding the domain name means updating the Twitter application configuration so
that Twitter knows about the domain name.

Updating the Twitter application
Twitter needs to know which URLs are valid for our application. So far, we've told
Twitter about test URLs on our laptop. We have Notes on a live domain, we need to
tell Twitter about this.

We've already done this several times, so you already know what to do. Head
to developers.twitter.com, logging in with your Twitter account, and go to the
Apps dashboard. Edit the application related to your Notes instance, and add your
domain name to the list of URLs.

We will be implementing both HTTP and HTTPS for the Notes application, and
therefore Notes will have both http:// and https:// URLs. This means you must
not only add the HTTP URLs to the Twitter configuration site, but also the HTTPS
URLs.

In the compose-stack/docker-compose.yml file, the TWITTER_CALLBACK_HOST
environment variable in the svc-notes configuration must also be updated with the
domain.

Security in Node.js Applications Chapter 14

[670]

We now have both a domain name associated with the EC2 cluster, and we've
informed Twitter of the domain name. We should be able to redeploy Notes to the
swarm and be able to use it with the domain name. That includes being able to log in
using Twitter, creating and deleting notes, and so forth. At this point, you cannot put
an HTTPS URL into TWITTER_CALLBACK_HOST because we've not implemented
HTTPS support.

These steps prepared the way for implementing HTTPS on Notes using Let's Encrypt.
But first, let's examine how Let's Encrypt works so we can better implement it for
Notes.

Planning how to use Let's Encrypt
Like every HTTPS/SSL certificate provider, Let's Encrypt is required to be certain that
you own the domain for which you're requesting the certificate. Successfully using
Let's Encrypt requires successful validation before any SSL certificates are issued.
Once a domain is registered with Let's Encrypt, the registration must be renewed at
least every 90 days, because that's the expiry time for their SSL certificates. Domain
registration, and certificate renewal, are therefore the two primary tasks we must
accomplish.

In this section, we'll discuss how the registration and renewal features work. The goal
is gaining an overview of how we'll manage an HTTPS service for any domain we
plan to use.

Let's Encrypt supports an API and there are several client applications for this
API. Certbot is the recommended user interface for Let's Encrypt requests. It is easily
installed on a variety of operating systems. For example, it is available through the
Debian/Ubuntu package management system.

For Let's Encrypt documentation, see https:/ / letsencrypt. org/
docs/ .

For Certbot documentation, see https:/ / certbot. eff. org/ docs/
intro. html.

Validated domain ownership is a core feature of HTTPS, making it a core requirement
for any SSL certificate supplier to be certain it is handing out SSL certificates
correctly. Let's Encrypt has several validation strategies, and in this project, we'll
focus on one, the HTTP-01 challenge.

https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://letsencrypt.org/docs/
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html
https://certbot.eff.org/docs/intro.html

Security in Node.js Applications Chapter 14

[671]

The HTTP-01 challenge involves the Let's Encrypt service making a request to a URL
such as http://<YOUR_DOMAIN>/.well-known/acme-challenge/<TOKEN>.
The <TOKEN> is a coded string supplied by Let's Encrypt, which the Certbot tool will
write as a file in a directory. Our task is then to somehow allow the Let's Encrypt
servers to retrieve that file using this URL.

Once Certbot successfully registers the domain with Let's Encrypt, it receives a pair of
PEM files comprising the SSL certificate. Certbot tracks various administrative details,
and the SSL certificates, in a directory, by default /etc/letsencrypt. The SSL
certificate in turn must be used to implement the HTTPS server for Notes.

Let's Encrypt SSL certificates expire in 90 days, and we must create an automated
administrative task to renew the certificates. Certbot is also used for certificate
renewal, by running certbot renew. This command looks at the domains registered
on this server, and for any that require renewal it reruns the validation process.
Therefore the directory required for the HTTP-01 challenge must remain enabled.

With SSL certificates in hand, we must configure some an HTTP server instance to
use those certificates to implement HTTPS. It's very possible to configure the svc-
notes service to handle HTTPS on its own. In the Node.js runtime is an HTTPS
server object that could handle this requirement. It would be a small rewrite in
notes/app.mjs to accommodate SSL certificates to implement HTTPS, as well as the
HTTP-01 challenge.

But there is another possible approach. Web servers such as NGINX are very mature,
robust, well tested, and, most importantly, support HTTPS. We can use NGINX to
handle the HTTPS connection, and use what's called a reverse proxy to pass along the
traffic to svc-notes as HTTP. That is, NGINX would be configured to accept in-
bound HTTPS traffic, converting it to HTTP traffic to send to svc-notes.

Beyond the security goal of implementing HTTPS, this has an additional advantage of
using a well-regarded web server (NGINX) to act as a shield against certain kinds of
attacks.

Having looked over the Let's Encrypt documentation, we have a handle on how to
proceed. There is a Docker container available that handles everything we need to do
with NGINX and Let's Encrypt. In the next section, we'll learn how to integrate that
container with the Notes stack, and implement HTTPS.

Security in Node.js Applications Chapter 14

[672]

Using NGINX and Let's Encrypt in Docker to
implement HTTPS for Notes
We just discussed how to implement HTTPS for Notes using Let's Encrypt. The
approach we'll take is to use a pre-baked Docker container, Cronginx (https:/ /hub.
docker.com/r/robogeek/ cronginx), which includes NGINX, Certbot (a Let's Encrypt
client), and a Cron server with a Cron job for managing SSL certificate renewal. This
will simply require adding another container to the Notes stack, a little bit of
configuration, and running a command to register our domain with Let's Encrypt.

Before starting this section, make sure you have set aside a domain name that we will
use in this project.

In the Cronginx container, Cron is used for managing a background task to renew
SSL certificates. Yes, Cron, the server Linux/Unix administrators have used for
decades for managing background tasks.

The NGINX configuration will both handle the HTTP-01 challenge and use a reverse
proxy for the HTTPS connection. A proxy server acts as an intermediary; it receives
requests from clients and uses other services to satisfy those requests. A reverse proxy
is a kind of proxy server that retrieves resources from one or more other servers,
while making it look like the resource came from the proxy server. In this case, we
will configure NGINX to access the Notes service at http://svc-notes:3000,
while making the appearance that the Notes service is hosted by the NGINX proxy.

If you don't know how to configure NGINX, don't worry because we'll show exactly
what to do, and it's relatively simple.

Adding the Cronginx container to support HTTPS on
Notes
We've determined that adding HTTPS support requires the addition of another
container to the Notes stack. This container will handle the HTTPS connection and
incorporate tools for managing SSL certificates provisioned from Let's Encrypt.

In the compose-stack directory, edit docker-compose.yml like so:

services:
 ...
 svc-notes:
 ...
 # ports:

https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx
https://hub.docker.com/r/robogeek/cronginx

Security in Node.js Applications Chapter 14

[673]

 # - "80:3000"
 ...
 environment:
 TWITTER_CALLBACK_HOST: "http://YOUR-DOMAIN"
 ...
 cronginx:
 image: robogeek/cronginx
 container_name: cronginx
 deploy:
 replicas: 1
 placement:
 constraints:
 - "node.labels.type==public"
 networks:
 - frontnet
 ports:
 - 80:80
 - 443:443
 dns:
 - 8.8.8.8
 - 9.9.9.9
 restart: always
 volumes:
 - type: bind
 source: /home/ubuntu/etc-letsencrypt
 target: /etc/letsencrypt
 - type: bind
 source: /home/ubuntu/webroots
 target: /webroots
 - type: bind
 source: /home/ubuntu/nginx-conf-d
 target: /etc/nginx/conf.d

Because the svc-notes container will not be handling inbound traffic, we start by
disabling its ports tag. This has the effect of ensuring it does not export any ports to
the public. Instead, notice that in the cronginx container we export both port 80
(HTTP) and port 443 (HTTPS). That container will take over interfacing with the
public internet.

Another change on svc-notes is to set the TWITTER_CALLBACK_HOST environment
variable. Set this to the domain name you've chosen. Remember that correctly setting
this variable is required for successful login using Twitter. Until we finish
implementing HTTPS, this should have an HTTP URL.

Security in Node.js Applications Chapter 14

[674]

The deploy tag for Cronginx is the same as for svc-notes. In theory, because svc-
notes is no longer interacting with the public it could be redeployed to an EC2
instance on the private network. Because both are attached to frontnet, either will
be able to access the other with a simple domain name reference, which we'll see in
the configuration file.

This container uses the same DNS configuration, because Certbot needs to be able to
reach the Let's Encrypt servers to do its work.

The final item of interest is the volume mounts. In the previous section, we discussed
certain directories that must be mounted into this container. As with the database
containers, the purpose is to persist the data in those directories while letting us
destroy and recreate the Cronginx container as needed. Each directory is mounted
from /home/ubuntu because that's the directory that is available on the EC2
instances. The three directories are as follows:

/etc/letsencrypt: As discussed earlier, Certbot uses this directory to
track administrative information about domains being managed on the
server. It also stores the SSL certificates in this directory.
/webroots: This directory will be used in satisfying the HTTP-01 request
to
the http://<YOUR_DOMAIN>/.well-known/acme-challenge/<TOKEN>
URL.
/etc/nginx/conf.d: This directory holds the NGINX configuration files
for each domain we'll handle using this Cronginx instance.

For NGINX configuration, there is a default config file at /etc/nginx/nginx.conf.
That file automatically includes any configuration file in /etc/nginx/conf.d,
within an http context. What that means is each such file should have one or more
server declarations. It won't be necessary to go deeper into learning about NGINX
since the config files we will use are very straightforward.

We will be examining NGINX configuration files. If you need to
learn more about these files, the primary documentation is
at https:/ / nginx. org/ en/docs/ .

Further documentation for the commercial NGINX Plus product is
at https:/ / www. nginx. com/ resources/ admin- guide/ .

The NXING website has a Getting Started section with many useful
recipes at https:/ / www. nginx. com/ resources/ wiki/ start/ .

https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/
https://www.nginx.com/resources/wiki/start/

Security in Node.js Applications Chapter 14

[675]

It will be a useful convention to follow to have one file in the /etc/nginx/conf.d
directory for each domain you are hosting. That means, in this project, you will have
one domain, and therefore you'll store one file in the directory named YOUR-
DOMAIN.conf. For the example domain we configured earlier, that file would be
notes.geekwisdom.net.conf.

Creating an NGINX configuration to support
registering domains with Let's Encrypt
At this point, you have selected a domain you will use for Notes. To register a domain
with Let's Encrypt, we need a web server configured to satisfy requests
to the http://<YOUR_DOMAIN>/.well-known/acme-challenge/<TOKEN> URL,
and where the corresponding directory is writable by Certbot. All the necessary
elements are contained in the Cronginx container.

What we need to do is create an NGINX configuration file suitable for handling
registration, then run the shell script supplied inside Cronginx. After registration is
handled, there will be another NGINX configuration file that's suitable for HTTPS.
We'll go over that in a later section.

Create a file for your domain named initial-YOUR-DOMAIN.conf, named this way
because it's the initial configuration file for the domain. It will contain this:

HTTP — redirect all traffic to HTTPS
server {
 listen 80;
 # listen [::]:80 default_server ipv6only=on;

 # Here put the domain name the server is to be known as.
 server_name YOUR-DOMAIN www.YOUR-DOMAIN;
 access_log /var/log/YOUR-DOMAIN.access.log main;
 error_log /var/log/YOUR-DOMAIN.error.log debug;

 # This is for handling the ACME challenge. Substitute the
 # domain name here.
 location /.well-known/ {
 root /webroots/YOUR-DOMAIN/;
 }

 # Use this to proxy for another service
 location / {
 proxy_pass http://svc-notes:3000/;
 }
}

Security in Node.js Applications Chapter 14

[676]

As we said, the NGINX configuration files are relatively simple. This declares a
server, in this case listening to port 80 (HTTP). It is easy to turn on IPv6 support if
you wish.

The server_name field tells NGINX which domain name to handle. The
access_log and error_log fields, as the name implies, specify where to send
logging output.

The location blocks describe how to handle sections of the URL space for the
domain. In the first, it says that HTTP-01 challenges on the /.well-known URL are
handled by reading files from /webroots/YOUR-DOMAIN. We've already seen that
directory referenced in the docker-compose.yml file.

The second location block describes the reverse proxy configuration. In this case,
we configure it to run an HTTP proxy to the svc-notes container at port 3000. That
corresponds to the configuration in the docker-compose.yml file.

That's the configuration file, but we need to do a little work before we can deploy it to
the swarm.

Adding the required directories on the EC2 host
We've identified three directories to use with Cronginx. Remember that each of the
EC2 hosts is configured by a shell script we supply in the user_data field in the
Terraform files. That script installs Docker and performs another setup. Therefore, we
should use that script to create the three directories.

In terraform-swarm, edit ec2-public.tf and make this change:

resource "aws_instance" "public" {
...
 user_data = join("\n", [
 ...
 // Make directories required for cronginx container
 "mkdir /home/ubuntu/etc-letsencrypt",
 "mkdir /home/ubuntu/webroots",
 "mkdir /home/ubuntu/nginx-conf-d"
]);
}

There is an existing shell script that performs the Docker setup. These three lines are
appended to that script and create the directories.

Security in Node.js Applications Chapter 14

[677]

With this in place, we can redeploy the EC2 cluster, and the directories will be there
ready to be used.

Deploying the EC2 cluster and Docker swarm
Assuming that the EC2 cluster is currently not deployed, we can set it up as we did in
Chapter 12, Deploying a Docker Swarm to AWS EC2 with Terraform. In terraform-
swarm, run this command:

$ terraform apply

By now you will have done this several times and know what to do. Wait for it to
finish deploying, record the IP addresses and other data, then initialize the swarm
cluster and set up remote control access so you can run Docker commands on your
laptop.

A very important task is to take the IP address and go to your DNS registrar and
update the A record for the domain with the new IP address.

We need to copy the NGINX configuration file into /home/ubuntu/nginx-conf-d,
so let's do so as follows:

$ ssh ubuntu@PUBLIC-IP-ADDRESS sudo chown ubuntu nginx-conf-d
$ scp initial-YOUR-DOMAIN.conf \
 ubuntu@PUBLIC-IP-ADDRESS:/home/ubuntu/nginx-conf-d/
 YOUR-DOMAIN.conf

The chown command is required because when Terraform created that directory it
became owned by the root user. It needs to be owned by the ubuntu user for
the scp command to work.

At this point make sure that, in compose-swarm/docker-compose.yml,
the TWITTER_CALLBACK_HOST environment variable for svc-notes is set to the
HTTP URL (http://YOUR-DOMAIN) rather than the HTTPS URL. Obviously you
have not yet provisioned HTTPS and can only use the HTTP domain.

With those things set up, we can run this:

$ printf '...' | docker secret create TWITTER_CONSUMER_SECRET -
xgfpl4f7grcx33e7hn3pjmep9
$ printf '...' | docker secret create TWITTER_CONSUMER_KEY -
1xen2h4cjige0uonxnyyg8icq

$ docker stack deploy --with-registry-auth \

Security in Node.js Applications Chapter 14

[678]

 --compose-file docker-compose.yml notes
...
Creating network notes_frontnet
Creating network notes_authnet
Creating network notes_svcnet
Creating service notes_db-notes
Creating service notes_svc-notes
Creating service notes_redis
Creating service notes_cronginx
Creating service notes_db-userauth
Creating service notes_svc-userauth

This adds the required secrets to the swarm, and then deploys the Notes stack. After a
few moments, the services should all show as having launched. Notice that Cronginx
is one of the services.

Once it's fully launched, you should be able to use Notes as always, but using the
domain you configured. You should even be able to log in using Twitter.

Registering a domain with Let's Encrypt
We have just deployed the Notes stack on the AWS EC2 infrastructure. A part of this
new deployment is the Cronginx container with which we'll handle HTTPS
configuration.

We have Notes deployed on the swarm, with the cronginx container acting as an
HTTP proxy. Inside that container came pre-installed the Certbot tool and a script
(register.sh) to assist with registering domains. We must run register.sh inside
the cronginx container, and once the domain is registered we will need to upload a
new NGINX configuration file.

Starting a shell inside the cronginx container can be this easy:

$ docker ps
.... look for container name for cronginx
$ docker exec -it notes_cronginx.1.CODE-STRING bash
root@d4a81204cca4:/scripts# ls
register.sh renew.sh

You see there is a file named register.sh containing the following:

#!/bin/sh
mkdir -p /webroots/$1/.well-known/acme-challenge
certbot certonly --webroot -w /webroots/$1 -d $1

Security in Node.js Applications Chapter 14

[679]

This script is designed to both create the required directory in /webroots, and to use
Certbot to register the domain and provision the SSL certificates. Refer to the
configuration file and you'll see how the /webroots directory is used.

The certbot certonly command only retrieves SSL certificates and does not install
them anywhere. What that means is it does not directly integrate with any server, but
simply stashes the certificates in a directory. That directory is within the
/etc/letsencrypt hierarchy.

The --webroot option means that we're running in cooperation with an existing web
server. It must be configured to serve the /.well-known/acme-challenge files
from the directory specified with the -w option, which is the /webroots/YOUR-
DOMAIN directory we just discussed. The -d option is the domain name to be
registered.

In short, register.sh fits with the configuration file we created.

The script is executed like so:

root@d4a81204cca4:/scripts# sh -x register.sh notes.geekwisdom.net
+ mkdir -p /webroots/notes.geekwisdom.net/.well-known/acme-challenge
+ certbot certonly --webroot -w /webroots/notes.geekwisdom.net -d
notes.geekwisdom.net
Saving debug log to /var/log/letsencrypt/letsencrypt.log
Plugins selected: Authenticator webroot, Installer None
Enter email address (used for urgent renewal and security notices)
(Enter 'c' to
cancel): ...

We run the shell script using sh -x register.sh and supply our chosen domain
name as the first argument. Notice that it creates the /webroots directory, which is
required for the Let's Encrypt validation. It then runs certbot certonly, and the
tool starts asking questions required for registering with the service.

The registration process ends with this message:

Obtaining a new certificate
Performing the following challenges:
http-01 challenge for notes.geekwisdom.net
Using the webroot path /webroots/notes.geekwisdom.net for all
unmatched domains.
Waiting for verification...
Cleaning up challenges

IMPORTANT NOTES:

Security in Node.js Applications Chapter 14

[680]

 - Congratulations! Your certificate and chain have been saved at:
 /etc/letsencrypt/live/notes.geekwisdom.net/fullchain.pem
 Your key file has been saved at:
 /etc/letsencrypt/live/notes.geekwisdom.net/privkey.pem
 Your cert will expire on 2020-09-23. To obtain a new or tweaked
 version of this certificate in the future, simply run certbot
 again. To non-interactively renew *all* of your certificates, run
 "certbot renew"
 - Your account credentials have been saved in your Certbot
 configuration directory at /etc/letsencrypt. You should make a
 secure backup of this folder now. This configuration directory will
 also contain certificates and private keys obtained by Certbot so
 making regular backups of this folder is ideal.

The key data is the pathnames for the two PEM files that make up the SSL certificate.
It also tells you to run certbot renew every so often to renew the certificates. We
already took care of that by installing the Cron job.

As they say, it is important to persist this directory elsewhere. We took the first step
by storing it outside the container, letting us destroy and recreate the container at
will. But what about when it's time to destroy and recreate the EC2 instances? Place a
task on your backlog to set up a backup procedure, and then during EC2 cluster
initialization install this directory from the backup.

Now that our domain is registered with Let's Encrypt, let's change the NGINX
configuration to support HTTPS.

Implementing an NGINX HTTPS configuration
using Let's Encrypt certificates
Alright, we're getting so close we can taste the encryption. We have deployed NGINX
plus Let's Encrypt tools into the Notes application stack. We've verified that the
HTTP-only NGINX configuration works correctly. And we've used Certbot to
provision SSL certificates for HTTPS from Let's Encrypt. That makes it time to rewrite
the NGINX configuration to support HTTPS and to deploy that config to the Notes
stack.

Security in Node.js Applications Chapter 14

[681]

In compose-stack/cronginx create a new file, YOUR-DOMAIN.conf, for example
notes.geekwisdom.net.conf. The previous file had a prefix, initial, because it
served us for the initial phase of implementing HTTPS. Now that the domain is
registered with Let's Encrypt, we need a different configuration file:

HTTP — redirect all traffic to HTTPS
server {
 listen 80;
 # listen [::]:80 default_server ipv6only=on;

 # Here put the domain name the server is to be known as.
 server_name YOUR-DOMAIN www.YOUR-DOMAIN;
 access_log /var/log/YOUR-DOMAIN.access.log main;
 error_log /var/log/YOUR-DOMAIN.error.log debug;

 # This is for handling the ACME challenge. Substitute the
 # domain name here.
 location /.well-known/ {
 root /webroots/YOUR-DOMAIN/;
 }

 # Use this to force a redirect to the SSL/HTTPS site
 return 301 https://$host$request_uri;
}

This reconfigures the HTTP server to do permanent redirects to the HTTPS site. When
an HTTP request results in a 301 status code, that is a permanent redirect. Any
redirect tells web browsers to visit a URL provided in the redirect. There are two
kinds of redirects, temporary and permanent, and the 301 code makes this a
permanent redirect. For permanent redirects, the browser is supposed to remember
the redirect and apply it in the future. In this case, the redirect URL is computed to be
the request URL, rewritten to use the HTTPS protocol.

Therefore our users will silently be sent to the HTTPS version of Notes, with no
further effort on our part.

To implement the HTTPS server, add this to the config file:

HTTPS service
server { # simple reverse-proxy
 # Enable HTTP/2
 listen 443 ssl http2;
 # listen [::]:443 ssl http2;

 # Substitute here the domain name for the site
 server_name YOUR-DOMAIN www.YOUR-DOMAIN;

Security in Node.js Applications Chapter 14

[682]

 access_log /var/log/YOUR-DOMAIN.access.log main;
 error_log /var/log/YOUR-DOMAIN.error.log debug;

 # Use the Let’s Encrypt certificates
 # Substitute in the domain name
 ssl_certificate /etc/letsencrypt/live/YOUR-DOMAIN/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/YOUR-DOMAIN/privkey.pem;

 # Replication of the ACME challenge handler. Substitute
 # the domain name.
 location /.well-known/ {
 root /webroots/YOUR-DOMAIN/;
 }

 # See:
 # https://stackoverflow.com/questions/29043879/socket-io-with-nginx
 location ^~ /socket.io/ {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_set_header X-NginX-Proxy false;

 proxy_pass http://svc-notes:3000;
 proxy_redirect off;

 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }

 # Use this for proxying to a backend service
 # The HTTPS session is terminated at this Proxy.
 # The back end service will see a simple HTTP service.
 location / {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-NginX-Proxy true;
 proxy_pass http://svc-notes:3000/;
 proxy_ssl_session_reuse off;
 proxy_set_header Host $http_host;
 proxy_cache_bypass $http_upgrade;
 proxy_redirect off;
 }
}

Security in Node.js Applications Chapter 14

[683]

This is an HTTPS server implementation in NGINX. There are many similarities to
the HTTP server declaration, but with a couple of HTTPS – specific items. It listens on
port 443, the standard port for HTTPS, and tells NGINX to use SSL. It has the same
configuration for the server name and logging.

The next segment tells NGINX the location of the SSL certificates. Simply replace this
with the pathname that Certbot gave you.

The next segment handles the /.well-known URL for future validation requests with
Let's Encrypt. Both the HTTP and HTTPS server definitions have been configured to
handle this URL from the same directory. We don't know whether Let's Encrypt will
request validation through the HTTP or HTTPS URL, so we might as well support
this on both servers.

The next segment is a proxy server to handle the /socket.io URL. This requires
specific settings because Socket.IO must negotiate an upgrade from HTTP/1.1 to
WebSocket. Otherwise, an error is printed in the JavaScript console, and the Socket.IO
features will not work. For more information, see the URL shown in the code.

The last segment is a reverse proxy set up to proxy HTTPS traffic to an HTTP backend
server. In this case, the backend server is the Notes application running on port 3000.

Having created a new configuration file, we can upload it to the notes-public EC2
instance like so:

$ scp YOUR-DOMAIN.conf \
 ubuntu@52.32.117.130:/home/ubuntu/nginx-conf-d/YOUR-DOMAIN.conf

The next question is how do we restart the NGINX server so it reads the new
configuration file? One way is to send a SIGHUP signal to the NGINX process,
causing it to reload the configuration:

$ docker exec -it notes_cronginx.1.8c2in59gz7b4g2asxfxgd1y3q bash
root@31a813dad28c:/scripts# kill -HUP `cat /var/run/nginx.pid`

The nginx.pid file contains the process ID of the NGINX process. Many background
services on Unix/Linux systems store the process ID in such a file. This command
sends the SIGHUP signal to that process, and NGINX is written to reread its
configuration upon receiving that signal. SIGHUP is one of the standard
Unix/Linux signals, and is commonly used to cause background processes to reload
their configuration like this. For more information, see the signal(2) man page.

Security in Node.js Applications Chapter 14

[684]

However, using Docker commands we can do this:

$ docker service update --force notes_cronginx
notes_cronginx
overall progress: 1 out of 1 tasks
1/1: running
verify: Service converged

That will kill the existing container and start a new one.

Instead of that rosy success message, you might get this instead:

service update paused: update paused due to failure or early
termination of task flueg3xg8aclciq05r1o2bk1w

This says that Docker swarm saw that the container exited, and it was therefore
unable to restart the service.

It is easy to make mistakes in NGINX configuration files. First take a careful look at
the configuration to see what might be amiss. The next stage of diagnosis is to look at
the NGINX logs. We can do that with the docker logs command, but we need to
know the container name. Because the container has exited, we must run this:

$ docker ps -a

The -a option causes docker ps to return information about every container, even
the ones that are not currently running. With the container name in hand, we can run
this:

$ docker logs notes_cronginx.1.bytadzur7fyj0c3xtwokpcrv0
2020/06/25 18:36:18 [emerg] 8#8: unknown directive "Use" in
/etc/nginx/conf.d/YOUR-DOMAIN.conf:26

And indeed, the issue is a syntax error, and it even helpfully tells you the line
number.

Once you have successfully restarted the cronginx service, visit the Notes service
you've deployed and verify that it is in HTTPS mode.

In this section, we successfully deployed HTTPS support for the Notes application
stack on our AWS EC2 based Docker swarm. We used the files Docker container
created in the previous section and deployed the updated Notes Stack to the swarm.
We then ran Certbot to register our domain with Let's Encrypt. And we rewrote the
NGINX configuration to support HTTPS.

Our next task is to verify the HTTPS configuration is working correctly.

Security in Node.js Applications Chapter 14

[685]

Testing HTTPS support for the Notes
application
We have done ad hoc testing, and more formal testing, of Notes all through this book.
Therefore you know what to do to ensure Notes is working in this new environment.
But there are a couple of HTTPS-specific things to check.

In your browser, head to the domain name where you've hosted the application. If all
went well, you will be greeted by the application, and it will have redirected to the
HTTPS port automatically.

So that we humans know that a website is on HTTPS, most browsers show a lock icon
in the location bar.

You should be able to click on that lock icon, and the browser will show a dialog
giving information about the certificate. The certificate will verify that this is indeed
the correct domain, and will also show the certificate was issued by Let's Encrypt via
the Let's Encrypt Authority X3.

You should be able to browse around the entire application and still see the lock icon.

You should be on the lookout for mixed content warnings. These will appear in the
JavaScript console and occur when some content on an HTTPS-loaded page is loaded
using an HTTP URL. The mixed content scenario is less secure, and therefore
browsers issue warnings to the user. Messages might appear in the JavaScript console
inside the browser. If you have followed the instructions in this book correctly you
will not see this message.

Finally, head to the Qualys SSL Labs test page for SSL implementations. This service
will examine your website, especially the SSL certificates, and give you a score. To
examine your score, see https:/ /www. ssllabs. com/ ssltest/ .

Having completed this task, you may want to bring down the AWS EC2 cluster.
Before doing so, it's good form to de-register the domain from Let's Encrypt. That's
also a simple matter of running Certbot with the right command:

$ docker ps
...
$ docker exec -it notes_cronginx.1.lgz1bi8cvr2c0gapuvibegkrn bash
root@f896d97f30d5:/scripts#
root@f896d97f30d5:/scripts# certbot delete --domain YOUR-DOMAIN
...

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

Security in Node.js Applications Chapter 14

[686]

As before, we run docker ps to find out the exact container name. With that name,
we start a command shell inside the container. The actual act is simple, we just run
certbot delete and specify the domain name.

Certbot doesn't just go ahead and delete the registration. Instead, it asks you to verify
that's what you want to do, then it deletes the registration.

In this section, we have finished implementing HTTPS support for Notes by learning
how to test that it is implemented correctly.

We've accomplished a redesign of the Notes application stack using a custom
NGINX-based container to implement HTTPS support. This approach can be used for
any service deployment, where an NGINX instance is used as the frontend to any
kind of backend service.

But we have other security fish to fry. Using HTTPS solves only part of the security
problem. In the next section, we'll look at Helmet, a tool for Express applications to
set many security options in the HTTP headers.

Using Helmet for across-the-board
security in Express applications
While it was useful to implement HTTPS, that's not the end of implementing security
measures. It's hardly the beginning of security, for that matter. The browser makers
working with the standards organizations have defined several mechanisms for
telling the browser what security measures to take. In this section, we will go over
some of those mechanisms, and how to implement them using Helmet.

Helmet (https:/ / www. npmjs. com/ package/ helmet) is, as the development team says,
not a security silver bullet (do Helmet's authors think we're trying to protect against
vampires?). Instead, it is a toolkit for setting various security headers and taking other
protective measures in Node.js applications. It integrates with several packages that
can be either used independently or through Helmet.

Using Helmet is largely a matter of importing the library into node_modules, making
a few configuration settings, and integrating it with Express.

https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet

Security in Node.js Applications Chapter 14

[687]

In the notes directory, install the package like so:

$ npm install helmet --save

Then add this to notes/app.mjs:

import helmet from 'helmet';
...
const app = express();
export default app;

app.use(helmet());

That's enough for most applications. Using Helmet out of the box provides a
reasonable set of default security options. We could be done with this section right
now, except that it's useful to examine closely what Helmet does, and its options.

Helmet is actually a cluster of 12 modules for applying several security techniques.
Each can be individually enabled or disabled, and many have configuration settings
to make. One option is instead of using that last line, to initialize and configure the
sub-modules individually. That's what we'll do in the following sections.

Using Helmet to set the Content-Security-
Policy header
The Content-Security-Policy (CSP) header can help to protect against injected
malicious JavaScript and other file types.

We would be remiss to not point out a glaring problem with services such as the
Notes application. Our users could enter any code they like, and an improperly
behaving application will simply display that code. Such applications can be a vector
for JavaScript injection attacks among other things.

To try this out, edit a note and enter something like this:

<script src="https://pirates.den/malicious.js"></script>

Click the Save button, and you'll see this code displayed as text. A dangerous version
of Notes would instead insert the <script> tag in the notes view page so that the
malicious JavaScript would be loaded and cause a problem for our visitors.
Instead, the <script> tag is encoded as safe HTML so it simply shows up as text on
the screen. We didn't do anything special for that behavior, Handlebars did that for
us.

Security in Node.js Applications Chapter 14

[688]

Actually, it's a little more interesting. If we look at the Handlebars
documentation, http:/ / handlebarsjs. com/expressions. html, we learn about this
distinction:

{{encodedAsHtml}}

{{{notEncodedAsHtml}}}

In Handlebars, a value appearing in a template using two curly braces
({{encoded}}) is encoded using HTML coding. For the previous example, the angle
bracket is encoded as < and so on for display, rendering that JavaScript code as
neutral text rather than as HTML elements. If instead, you use three curly braces
({{{notEncoded}}}), the value is not encoded and is instead presented as is. The
malicious JavaScript would be executed in your visitor's browser, causing problems
for your users.

We can see this problem by changing views/noteview.hbs to use raw HTML
output:

{{#if note}}<div id="notebody">{{{ note.body }}}</div>{{/if}}

We do not recommend doing this except as an experiment to see what happens. The
effect is, as we just said, to allow our users to enter HTML code and have it displayed
as is. If Notes were to behave this way, any note could potentially hold malicious
JavaScript snippets or other malware.

Let's return to Helmet's support for the Content-Security-Policy header. With this
header, we instruct the web browser the scope from which it can download certain
types of content. Specifically, it lets us declare which domains the browser can
download JavaScript, CSS, or Font files from, and which domains the browser is
allowed to connect to for services.

This header, therefore, solves the named issue, namely our users entering malicious
JavaScript code. But it also handles a similar risk of a malicious actor breaking in and
modifying the templates to include malicious JavaScript code. In both cases, telling
the browser a specific list of allowed domains means references to JavaScript from
malicious sites will be blocked. That malicious JavaScript that's loaded from
pirates.den won't run.

To see the documentation for this Helmet module, see https:/ /helmetjs. github. io/
docs/csp/.

http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
http://handlebarsjs.com/expressions.html
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/
https://helmetjs.github.io/docs/csp/

Security in Node.js Applications Chapter 14

[689]

There is a long list of options. For instance, you can cause the browser to report any
violations back to your server, in which case you'll need to implement a route handler
for /report-violation. This snippet is sufficient for Notes:

app.use(helmet.contentSecurityPolicy({
 directives: {
 defaultSrc: ["'self'"],
 scriptSrc: ["'self'", "'unsafe-inline'"],
 styleSrc: ["'self'", 'fonts.googleapis.com'],
 fontSrc: ["'self'", 'fonts.gstatic.com'],
 connectSrc: ["'self'", 'wss://notes.geekwisdom.net']
 }
}));

For better or for worse, the Notes application implements one security best
practice—all CSS and JavaScript files are loaded from the same server as the
application. Therefore, for the most part, we can use the 'self' policy. There are
several exceptions:

scriptSrc: Defines where we are allowed to load JavaScript. We do use
inline JavaScript in noteview.hbs and index.hbs, which must be
allowed.
styleSrc, fontSrc: We're loading CSS files from both the local server and
from Google Fonts.
connectSrc: The WebSockets channel used by Socket.IO is declared here.

To develop this, we can open the JavaScript console or Chrome DevTools while
browsing the website. Errors will show up listing any domains of failed download
attempts. Simply add such domains to the configuration object.

Making the ContentSecurityPolicy configurable
Obviously, the ContentSecurityPolicy settings shown here should be configurable. If
nothing else the setting for connectSrc must be, because it can cause a problem that
prevents Socket.IO from working. As shown here, the connectSrc setting includes
the URL wss://notes.geekwisdom.net. The wss protocol here refers to
WebSockets and is designed to allow Socket.IO to work while Notes is hosted on
notes.geekwisdom.net. But what about when we want to host it on a different
domain?

Security in Node.js Applications Chapter 14

[690]

To experiment with this problem, change the hard coded string to a different domain
name then redeploy it to your server. In the JavaScript console in your browser you
will get an error like this:

Refused to connect to
wss://notes.geekwisdom.net/socket.io/?EIO=3&transport=websocket&sid=x-
WiqH-g6uKIqoNqAAPA because it does not appear in the connect-src
directive of the Content Security Policy.

What's happened is that the statically defined constant was no longer compatible with
the domain where Notes was deployed. You had reconfigured this setting to limit
connections to a different domain, such as notes.newdomain.xyz, but the service
was still hosted on the existing domain, such as notes.geekwisdom.net. The
browser no longer believed it was safe to connect to
notes.geekwisdom.net because your configuration said to trust only
notes.newdomain.xyz.

The best solution is to make this a configurable setting by declaring another
environment variable that can be set to customize behavior.

In app.mjs, change the contentSecurityPolicy section to this:

const csp_connect_src = ["'self'"];
if (typeof process.env.CSP_CONNECT_SRC_URL === 'string'
 && process.env.CSP_CONNECT_SRC_URL !== '') {
 csp_connect_src.push(process.env.CSP_CONNECT_SRC_URL);
}
app.use(helmet.contentSecurityPolicy({
 directives: {
 defaultSrc: ["'self'"],
 scriptSrc: ["'self'", "'unsafe-inline'"],
 styleSrc: ["'self'", 'fonts.googleapis.com'],
 fontSrc: ["'self'", 'fonts.gstatic.com'],
 connectSrc: csp_connect_src
 }
}));

This lets us define an environment variable, CSP_CONNECT_SRC_URL, which will
supply a URL to be added into the array passed to the connectSrc parameter.
Otherwise, the connectSrc setting will be limited to "'self'".

Then in compose-swarm/docker-compose.yml, we can declare that variable like
so:

services:
 ...

Security in Node.js Applications Chapter 14

[691]

 svc-notes:
 ...
 environment:
 ...
 CSP_CONNECT_SRC_URL: "wss://notes.geekwisdom.net"
 ...

We can now set that in the configuration, changing it as needed.

After rerunning the docker stack deploy command, the error message will go
away and Socket.IO features will start to work.

In this section, we learned about the potential for a site to send malicious scripts to
browsers. Sites that accept user-supplied content, such as Notes, can be a vector for
malware. By using this header, we are able to notify the web browser which domains
to trust when visiting this website, which will then block any malicious content added
by malicious third parties.

Next, let's learn about preventing excess DNS queries.

Using Helmet to set the X-DNS-Prefetch-
Control header
DNS Prefetch is a nicety implemented by some browsers where the browser will
preemptively make DNS requests for domains referred to by a given page. If a page
has links to other websites, it will make DNS requests for those domains so that the
local DNS cache is pre-filled. This is nice for users because it improves browser
performance, but it is also a privacy intrusion and can make it look like the person
visited websites they did not visit. For documentation, see https:/ / helmetjs.
github.io/docs/ dns- prefetch- control.

Set the DNS prefetch control with the following:

app.use(helmet.dnsPrefetchControl({ allow: false })); // or true

In this case, we learned about preventing the browser from making premature DNS
queries. The risk is that excess DNS queries give a false impression of which websites
someone has visited.

Let's next look at how to control which browser features can be enabled.

https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control

Security in Node.js Applications Chapter 14

[692]

Using Helmet to control enabled browser
features using the Feature-Policy header
Web browsers nowadays have a long list of features that can be enabled, such as
vibrating a phone, or turning on the camera or microphone, or reading the
accelerometer. These features are interesting and very useful in some cases, but can
be used maliciously. The Feature-Policy header lets us notify the web browser about
which features to allow to be enabled, or to deny enabling.

For Notes we don't need any of those features, though some look intriguing as future
possibilities. For instance, we could pivot to taking on Instagram if we allowed people
to upload photos, maybe? In any case, this configuration is very strict:

app.use(helmet.featurePolicy({
 features: {
 accelerometer: ["'none'"],
 ambientLightSensor: ["'none'"],
 autoplay: ["'none'"],
 camera: ["'none'"],
 encryptedMedia: ["'self'"],
 fullscreen: ["'self'"],
 geolocation: ["'none'"],
 gyroscope: ["'none'"],
 vibrate: ["'none'"],
 payment: ["'none'"],
 syncXhr: ["'none'"]
 }
}));

To enable a feature, either set it to 'self' to allow the website to turn on the feature,
or a domain name of a third-party website to allow to enable that feature. For
example, enabling the payment feature might require adding 'paypal.com' or some
other payment processor.

In this section, we have learned about allowing the enabling or disabling of browser
features.

In the next section, let's learn about preventing clickjacking.

Security in Node.js Applications Chapter 14

[693]

Using Helmet to set the X-Frame-Options
header
Clickjacking has nothing to do with carjacking but instead is an ingenious technique
for getting folks to click on something malicious. The attack uses an invisible
<iframe>, containing malicious code, positioned on top of a thing that looks enticing
to click on. The user would then be enticed into clicking on the malicious thing.

The frameguard module for Helmet will set a header instructing the browser on how
to treat an <iframe>. For documentation, see https:/ / helmetjs. github. io/docs/
frameguard/.

app.use(helmet.frameguard({ action: 'deny' }));

This setting controls which domains are allowed to put this page into an <iframe>.
Using deny, as shown here, prevents all sites from embedding this content using
an <iframe>. Using sameorigin allows the site to embed its own content. We can
also list a single domain name to be allowed to embed this content.

In this section, you have learned about preventing our content from being embedded
into another website using <iframe>.

Now let's learn about hiding the fact that Notes is powered by Express.

Using Helmet to remove the X-Powered-By
header
The X-Powered-By header can give malicious actors a clue about the software stack
in use, informing them of attack algorithms that are likely to succeed. The Hide
Powered-By submodule for Helmet simply removes that header.

https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/

Security in Node.js Applications Chapter 14

[694]

Express can disable this feature on its own:

app.disable('x-powered-by')

Or you can use Helmet to do so:

app.use(helmet.hidePoweredBy())

Another option is to masquerade as some other stack like so:

app.use(helmet.hidePoweredBy({ setTo: 'Drupal 5.7.0' }))

There's nothing like throwing the miscreants off the scent.

We've learned how to let your Express application go incognito to avoid giving
miscreants clues about how to break in. Let's next learn about declaring a preference
for HTTPS.

Improving HTTPS with Strict Transport
Security
Having implemented HTTPS support, we aren't completely done. As we said earlier,
it is best for our users to use the HTTPS version of Notes. In our AWS EC2
deployment, we forced the user to use HTTPS with a redirect. But in some cases we
cannot do that, and instead must try to encourage the users to visit the HTTPS site
over the HTTP site.

The Strict Transport Security header notifies the browser that it should use the HTTPS
version of the site. Since that's simply a notification, it's also necessary to implement a
redirect from the HTTP to HTTPS version of Notes.

We set Strict-Transport-Security like so:

const sixtyDaysInSeconds = 5184000 // 60 * 24 * 60 * 60
app.use(helmet.hsts({
 maxAge: sixtyDaysInSeconds
}));

This tells the browser to stick with the HTTPS version of the site for the next 60 days,
and never visit the HTTP version.

Security in Node.js Applications Chapter 14

[695]

And, as long as we're on this issue, let's learn about express-force-ssl, which is
another way to implement a redirect so the users use HTTPS. After adding a
dependency to that package in package.json, add this in app.mjs:

import forceSSL from 'express-force-ssl';
...
app.use(forceSSL);
app.use(bodyParser.json());

With this package installed, the users don't have to be encouraged to use HTTPS
because we're silently forcing them to do so.

With our deployment on AWS EC2, using this module will cause problems. Because
HTTPS is handled in the load balancer, the Notes app does not know the visitor is
using HTTPS. Instead, Notes sees an HTTP connection, and if forceSSL were in use
it would then force a redirect to the HTTPS site. But because Notes does not see the
HTTPS session at all, it only sees HTTP requests to which forceSSL will always
respond with a redirect.

These settings are not useful in all circumstances. Your context may require these
settings, but for a context like our deployment on AWS EC2 it is simply not needed.
For the sites where this is useful, we have learned about notifying the web browser to
use the HTTPS version of our website, and how to force a redirect to the HTTPS site.

Let's next learn about cross-site-scripting (XSS) attacks.

Mitigating XSS attacks with Helmet
XSS attacks attempt to inject JavaScript code into website output. With malicious code
injected into another website, the attacker can access information they otherwise
could not retrieve, or cause other sorts of mischief. The X-XSS-Protection header
prevents certain XSS attacks, but not all of them, because there are so many types of
XSS attacks:

app.use(helmet.xssFilter());

This causes an X-XSS-Protection header to be sent specifying 1; mode=block. This
mode tells the browser to look for JavaScript in the request URL that also matches
JavaScript on the page, and it then blocks that code. This is only one type of XSS
attack, and therefore this is of limited usefulness. But it is still useful to have this
enabled.

Security in Node.js Applications Chapter 14

[696]

In this section, we've learned about using Helmet to enable a wide variety of security
protections in web browsers. With these settings, our application can work with the
browser to avoid a wide variety of attacks, and therefore make our site significantly
safer.

But with this, we have exhausted what Helmet provides. In the next section, we'll
learn about another package that prevents cross-site request forgery attacks.

Addressing Cross-Site Request Forgery
(CSRF) attacks
CSRF attacks are similar to XSS attacks in that both occur across multiple sites. In a
CSRF attack, malicious software forges a bogus request on another site. To prevent
such an attack, CSRF tokens are generated for each page view. The tokens are to be
included as hidden values in HTML FORMs and then checked when the FORM is
submitted. A mismatch on the tokens causes the request to be denied.

The csurf package is designed to be used with Express https:/ / www.npmjs. com/
package/csurf . In the notes directory, run this:

$ npm install csurf --save

This installs the csurf package, recording the dependency in package.json.

Then install the middleware like so:

import csrf from 'csurf';
...
app.use(cookieParser());
app.use(csrf({ cookie: true }));

The csurf middleware must be installed following the cookieParser middleware.

Next, for every page that includes a FORM, we must generate and send a token with
the page. That requires two things, in the res.render call we generate the token,
sending the token with other data for the page, and then in the view template we
include the token as a hidden INPUT on any form in the page. We're going to be
touching on several files here, so let's get started.

https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf
https://www.npmjs.com/package/csurf

Security in Node.js Applications Chapter 14

[697]

In routes/notes.mjs, add the following as a parameter to the res.render call for
the /add, /edit, /view, and /destroy routes:

csrfToken: req.csrfToken()

This generates the CSRF token, ensuring it is sent along with other data to the
template. Likewise, do the same for the /login route in routes/users.mjs. Our
next task is to ensure the corresponding templates render the token as a hidden
INPUT.

In views/noteedit.hbs and views/notedestroy.hbs, add the following:

{{#if user}}
 <input type="hidden" name="_csrf" value="{{csrfToken}}">
 ...
{{/if}}

This is a hidden INPUT, and whenever the FORM containing this is submitted this
value will be carried along with the FORM parameters.

The result is that code on the server generates a token that is added to each FORM. By
adding the token to FORMs, we ensure it is sent back to the server on FORM
submission. Other software on the server can then match the received token to the
tokens that have been sent. Any mismatched token will cause the request to be
rejected.

In views/login.hbs, make the same addition but adding it inside the FORM like so:

<form method='POST' action='/users/login'>
 <input type="hidden" name="_csrf" value="{{csrfToken}}">
 ...
</form>

In views/noteview.hbs, there's a form for submitting comments. Make this change:

<form id="submit-comment" class="well" data-async data-
 target="#rating-modal"
 action="/notes/make-comment" method="POST">
 <input type="hidden" name="_csrf" value="{{csrfToken}}">
 ...
</form>

In every case, we are adding a hidden INPUT field. These fields are not visible to the
user and are therefore useful for carrying a wide variety of data that will be useful to
receive on the server. We've already used hidden INPUT fields in Notes, such as in
noteedit.hbs for the docreate flag.

Security in Node.js Applications Chapter 14

[698]

This <input> tag renders the CSRF token into the FORM. When the FORM is
submitted, the csurf middleware checks it for the correctness and rejects any that do
not match.

In this section, we have learned how to stop an important type of attack, CSRF.

Denying SQL injection attacks
SQL injection is another large class of security exploits, where the attacker puts SQL
commands into input data. See https:/ /www. xkcd. com/ 327/ for an example.

The best practice for avoiding this problem is to use parameterized database queries,
allowing the database driver to prevent SQL injections simply by correctly encoding
all SQL parameters. For example, we do this in the SQLite3 model:

db.get("SELECT * FROM notes WHERE notekey = ?", [key] ...);

This uses a parameterized string, and the value for key is encoded and inserted in the
place of the question mark. Most database drivers have a similar feature, and they
already know how to encode values into query strings. Even if a miscreant got some
SQL into the value of key, because the driver correctly encodes the contents of key
the worst that will result is an SQL error message. That automatically renders inert
any attempted SQL injection attack.

Contrast this with an alternative we could have written:

db.get(`SELECT * FROM notes WHERE notekey = ${key}`, ...);

The template strings feature of ES6 is very tempting to use everywhere. But it is not
appropriate in all circumstances. In this case, the database query parameter would
not be screened nor encoded, and if a miscreant can get a custom string to that query
it could cause havoc in the database.

In this section, we learned about SQL injection attacks. We learned that the best
defense against this sort of attack is the coding practice all coders should follow
anyway, namely to use parameterized query methods offered by the database driver.

In the next section, we will learn about an effort in the Node.js community to screen
packages for vulnerabilities.

https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/
https://www.xkcd.com/327/

Security in Node.js Applications Chapter 14

[699]

Scanning for known vulnerabilities in
Node.js packages
Built-in to the npm command-line tool is a command, npm audit, for reporting
known vulnerabilities in the dependencies of your application. To support this
command is a team of people, and software, who scan packages added to the npm
registry. Every third-party package used by your application is a potential security
hole.

It's not just that a query against the application might trigger buggy code, whether in
your code or third-party packages. In some cases, packages that explicitly cause harm
have been added to the npm registry.

Therefore the security audits of packages in the npm registry are extremely helpful to
every Node.js developer.

The audit command consults the vulnerability data collected by the auditing team
and tells you about vulnerabilities in packages your application uses.

When running npm install, the output might include a message like this:

found 8 vulnerabilities (7 low, 1 moderate)
 run `npm audit fix` to fix them, or `npm audit` for details

This tells us there are eight known vulnerabilities among the packages currently
installed. Each vulnerability is assigned a criticality on this scale (https:/ /docs.
npmjs.com/about- audit- reports):

Critical: Address immediately
High: Address as quickly as possible
Moderate: Address as time allows
Low: Address at your discretion

In this case, running npm audit tells us that every one of the low-priority issues is in
the minimist package. For example, the report includes this:

Run npm install hbs@4.1.1 to resolve 1 vulnerability
┌───────────────┬─────────────────────────
─────────────────────────────┐
│ Low │ Prototype Pollution
│
├───────────────┼─────────────────────────
─────────────────────────────┤

https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports
https://docs.npmjs.com/about-audit-reports

Security in Node.js Applications Chapter 14

[700]

│ Package │ minimist
│
├───────────────┼─────────────────────────
─────────────────────────────┤
│ Dependency of │ hbs
│
├───────────────┼─────────────────────────
─────────────────────────────|
│ Path │ hbs > handlebars > optimist > minimist
│
├───────────────┼─────────────────────────
─────────────────────────────┤
│ More info │ https://npmjs.com/advisories/1179
│
└───────────────┴─────────────────────────
─────────────────────────────┘

In this case, minimist is reported because hbs uses handlebars, which uses
optimist, which uses minimist. There are six more instances where minimist is
used by some package that's used by another package that our application is using.

In this case, we're given a recommendation, to upgrade to hbs@4.1.1, because that
release results in depending on the correct version of minimist.

In another case, the chain of dependencies is this:

sqlite3 > node-pre-gyp > rc > minimist

In this case, no recommended fix is available because none of these packages have
released a new version that depends on the correct version of minimist. The
recommended solution for this case is to file issues with each corresponding package
team requesting they update their dependencies to the later release of the offending
package.

In the last case, it is our application that directly depends on the vulnerable package:

Run npm update jquery --depth 1 to resolve 1 vulnerability
┌───────────────┬─────────────────────────
────────────────────────────┐
│ Moderate │ Cross-Site Scripting
│
├───────────────┼─────────────────────────
────────────────────────────┤
│ Package │ jquery
│
├───────────────┼─────────────────────────
────────────────────────────┤

Security in Node.js Applications Chapter 14

[701]

│ Dependency of │ jquery
│
├───────────────┼─────────────────────────
────────────────────────────┤
│ Path │ jquery
│
├───────────────┼─────────────────────────
────────────────────────────┤
│ More info │ https://npmjs.com/advisories/1518
│
└───────────────┴─────────────────────────
────────────────────────────┘

Therefore it is our responsibility to fix this problem because it is in our code. The
good news is that this particular package is not executed on the server side since
jQuery is a client-side library that just so happens to be distributed through the npm
repository.

The first step is to read the advisory to learn what the issue is. That way, we can
evaluate for ourselves how serious this is, and what we must do to correctly fix the
problem.

What's not recommended is to blindly update to a later package release just because
you're told to do so. What if the later release is incompatible with your application?
The best practice is to test that the update does not break your code. You may need to
develop tests that illustrate the vulnerability. That way, you can verify that updating
the package dependency fixes the problem.

In this case, the advisory says that jQuery releases before 3.5.0 have an XSS
vulnerability. We are using jQuery in Notes because it is required by Bootstrap, and
on the day we read the Bootstrap documentation we were told to use a much earlier
jQuery release. Today, the Bootstrap documentation says to use jQuery 3.5.1. That
tells us the Bootstrap team has already tested against jQuery 3.5.1, and we are
therefore safe to go ahead with updating the dependency.

In this section, we have learned about the security vulnerability report we can get
from the npm command-line tool. Unfortunately for Yarn users, it appears that Yarn
doesn't support this command. In any case, this is a valuable resource for being
warned about known security issues.

In the next section, we'll learn about the best practices for cookie management in
Express applications.

Security in Node.js Applications Chapter 14

[702]

Using good cookie practices
Some nutritionists say eating too many sweets, such as cookies, is bad for your health.
Web cookies, however, are widely used for many purposes including recording
whether a browser is logged in or not. One common use is for cookies to store session
data to aid in knowing whether someone is logged in or not.

In the Notes application, we're already following the good practices described in the
Express security guidelines:

We're using an Express session cookie name different from the default
shown in the documentation.
The Express session cookie secret is not the default shown in the
documentation.
We use the express-session middleware, which only stores a session ID
in the cookie, rather than the whole session data object.

Taken together, an attacker can't exploit any known vulnerability that relies on the
default values for these items. While it is convenient that many software products
have default values, such as passwords, those defaults could be security
vulnerabilities. For example, the default Raspberry Pi login/password is pi and
raspberry. While that's cute, any Raspbian-based IoT device that's left with the default
login/password is susceptible to attack.

But there is more customization we can do to the cookie used with express-
session. That package has a few options available for improving security.
See https://www. npmjs. com/ package/ express- session, and then consider this
change to the configuration:

app.use(session({
 store: sessionStore,
 secret: sessionSecret,
 resave: true,
 saveUninitialized: true,
 name: sessionCookieName,
 secure: true,
 maxAge: 2 * 60 * 60 * 1000 // 2 hours
}));

These are additional attributes that look useful. The secure attribute requires that
cookies be sent ONLY over HTTPS connections. This ensures the cookie data is
encrypted by HTTPS encryption. The maxAge attribute sets an amount of time that
cookies are valid, expressed in milliseconds.

https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session

Security in Node.js Applications Chapter 14

[703]

Cookies are an extremely useful tool in web browsers, even if there is a lot of over-
hyped worry about what websites do with cookies. At the same time, it is possible to
misuse cookies and create security problems. In this section, we learned how to
mitigate risks with the session cookie.

In the next section, we'll review the best practices for AWS ECS deployment.

Hardening the AWS EC2 deployment
There is an issue left over from Chapter 12, Deploying a Docker Swarm to AWS EC2
with Terraform, which is the security group configuration for the EC2 instances. We
configured the EC2 instances with permissive security groups, and it is better for
them to be strictly defined. We rightly described that, at the time, as not the best
practice, and promised to fix the issue later. This is where we do so.

In AWS, remember that a security group describes a firewall that allows or disallows
traffic based on the IP port and IP address. This tool exists so we can decrease the
potential attack surface miscreants have to gain illicit access to our systems.

For the ec2-public-sg security group, edit ec2-public.tf and change it to this:

resource "aws_security_group" "ec2-public-sg" {
 name = "${var.project_name}-public-sg"
 description = "allow inbound access to the EC2 instance"
 vpc_id = aws_vpc.notes.id

 ingress {
 description = "SSH"
 protocol = "TCP"
 from_port = 22
 to_port = 22
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 description = "HTTP"
 protocol = "TCP"
 from_port = 80
 to_port = 80
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 description = "HTTPS"

Security in Node.js Applications Chapter 14

[704]

 protocol = "TCP"
 from_port = 443
 to_port = 443
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 description = "Redis"
 protocol = "TCP"
 from_port = 6379
 to_port = 6379
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker swarm management"
 from_port = 2377
 to_port = 2377
 protocol = "tcp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker container network discovery"
 from_port = 7946
 to_port = 7946
 protocol = "tcp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker container network discovery"
 from_port = 7946
 to_port = 7946
 protocol = "udp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker overlay network"
 from_port = 4789
 to_port = 4789
 protocol = "udp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 egress {
 description = "Docker swarm (udp)"

Security in Node.js Applications Chapter 14

[705]

 from_port = 0
 to_port = 0
 protocol = "udp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 egress {
 protocol = "-1"
 from_port = 0
 to_port = 0
 cidr_blocks = ["0.0.0.0/0"]
 }
}

This declares many specific network ports used for specific protocols. Each rule
names the protocol in the description attribute. The protocol attribute says
whether it is a UDP or TCP protocol. Remember that TCP is a stream-oriented
protocol that ensures packets are delivered, and UDP, by contrast, is a packet-
oriented protocol that does not ensure delivery. Each has characteristics making them
suitable for different purposes.

Something missing is an ingress rule for port 3306, the MySQL port. That's because
the notes-public server will not host a MySQL server based on the placement
constraints.

Another thing to note is which rules allow traffic from public IP addresses, and which
limit traffic to IP addresses inside the VPC. Many of these ports are used in support of
the Docker swarm, and therefore do not need to communicate anywhere but other
hosts on the VPC.

An issue to ponder is whether the SSH port should be left open to the entire internet.
If you, or your team, only SSH into the VPC from a specific network, such as an office
network, then this setting could list that network. And because the cidr_blocks
attribute takes an array, it's possible to configure a list of networks, such as a
company with several offices each with their own office network.

In ec2-private.tf, we must make a similar change to ec2-private-sg:

resource "aws_security_group" "ec2-private-sg" {
 name = "${var.project_name}-private-sg"
 description = "allow inbound access to the EC2 instance"
 vpc_id = aws_vpc.notes.id

 ingress {
 description = "SSH"
 protocol = "TCP"

Security in Node.js Applications Chapter 14

[706]

 from_port = 22
 to_port = 22
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "HTTP"
 protocol = "TCP"
 from_port = 80
 to_port = 80
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "MySQL"
 protocol = "TCP"
 from_port = 3306
 to_port = 3306
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Redis"
 protocol = "TCP"
 from_port = 6379
 to_port = 6379
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker swarm management"
 from_port = 2377
 to_port = 2377
 protocol = "tcp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker container network discovery"
 from_port = 7946
 to_port = 7946
 protocol = "tcp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker container network discovery"
 from_port = 7946

Security in Node.js Applications Chapter 14

[707]

 to_port = 7946
 protocol = "udp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 ingress {
 description = "Docker overlay network"
 from_port = 4789
 to_port = 4789
 protocol = "udp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 egress {
 description = "Docker swarm (udp)"
 from_port = 0
 to_port = 0
 protocol = "udp"
 cidr_blocks = [aws_vpc.notes.cidr_block]
 }

 egress {
 protocol = "-1"
 from_port = 0
 to_port = 0
 cidr_blocks = ["0.0.0.0/0"]
 }
}

This is largely the same but for some specific differences. First, because the private
EC2 instances can have MySQL databases, we have declared a rule for port 3306.
Second, all but one of the rules restrict traffic to IP addresses inside the VPC.

Between these two security group definitions, we have strictly limited the attack
surface of the EC2 instances. This will throw certain barriers in the path of any
miscreants attempting to intrude on the Notes service.

While we've implemented several security best practices for the Notes service, there is
always more that can be done. In the next section, we'll discuss where to learn more.

Security in Node.js Applications Chapter 14

[708]

AWS EC2 security best practices
At the outset of designing the Notes application stack deployment, we described a
security model that should result in a highly secure deployment. Are we the kind of
security experts that can design a secure deployment infrastructure on the back of a
napkin? Probably not. But the team at AWS does employ engineers with security
expertise. When we turned to AWS EC2 for deployment, we learned it offered a wide
range of security tools we hadn't considered in the original plan, and we ended up
with a different deployment model.

In this section, let's review what we did and also review some additional tools
available on AWS.

The AWS Virtual Private Cloud (VPC) contains many ways to implement security
features, and we used a few of them:

Security Groups act as a firewall with strict controls over the traffic that can
enter or leave the things protected by a Security Group. Security Groups
are attached to every infrastructure element we used, and in most cases, we
configured them to allow only the absolutely necessary traffic.
We ensured the database instances were created within the VPC, rather
than hosted on the public internet. This hides the databases from public
access.

While we did not implement the originally envisioned segmentation, there are
enough barriers surrounding Notes that it should be relatively safe.

In reviewing the AWS VPC security documentation, there are a few other facilities
that are worth exploring.

Security in AWS Virtual Private Cloud: https:/ /docs. aws. amazon.
com/ vpc/ latest/ userguide/ security. html.

In this section, you've had a chance to review the security of the application that was
deployed to AWS ECS. While we did a fairly good job, there is more that can be done
to exploit tools offered by AWS to beef up the internal security of the application.

With that, it's time to close out this chapter.

https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html
https://docs.aws.amazon.com/vpc/latest/userguide/security.html

Security in Node.js Applications Chapter 14

[709]

Summary
In this chapter, we've covered an extremely important topic, application security.
Thanks to the hard work of the Node.js and Express communities, we've been able to
tighten the security simply by adding a few bits of code here and there to configure
security modules.

We first enabled HTTPS because it is now a best practice, and has positive security
gains for our users. With HTTPS, the browser session is authenticated to positively
identify the website. It also protects against man-in-the-middle security attacks, and
encrypts communications for transmission across the internet, preventing most
snooping.

The helmet package provides a suite of tools to set security headers that instruct web
browsers on how to treat our content. These settings prevent or mitigate whole
classes of security bugs. With the csurf package, we're able to prevent cross-site
request forgery (CSRF) attacks.

These few steps are a good start for securing the Notes application. But you should
not stop here because there is a never-ending set of security issues to fix. None of us
can neglect the security of the applications we deploy.

Over the course of this book, the journey has been about learning the major life cycle
steps required to develop and deploy a Node.js web application. This started from the
basics of using Node.js, proceeded to an application concept to develop, and from
there we covered every stage of developing, testing, and deploying that application.

Throughout the book, we've learned how advanced JavaScript features such as async
functions and ES6 modules are used in Node.js applications. To store our data, we
learned how to use several database engines, and a methodology to make it easy to
switch between engines.

Mobile-first development is extremely important in today's environment, and to
fulfill that goal, we learned how to use the Bootstrap framework.

Real-time communication is expected on a wide variety of websites because advanced
JavaScript capabilities mean we can now offer more interactive services in our web
applications. To fulfill that goal, we learned how to use the Socket.IO real-time
communications framework.

Security in Node.js Applications Chapter 14

[710]

Deploying application services to cloud hosting is widely used, both for simplifying
the system setup and to scale services to meet the demands of our user base. To fulfill
that goal, we learned to use Docker, and then we learned how to deploy Docker
services to AWS ECS using Terraform. We not only used Docker for production
deployment but for deploying a test infrastructure, within which we can run unit
tests and functional tests.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Full-Stack React Projects - Second Edition
Shama Hoque

ISBN: 978-1-83921-541-4

Extend a basic MERN-based application to build a variety of applications
Add real-time communication capabilities with Socket.IO
Implement data visualization features for React applications using Victory
Develop media streaming applications using MongoDB GridFS
Improve SEO for your MERN apps by implementing server-side rendering
with data
Implement user authentication and authorization using JSON web tokens
Set up and use React 360 to develop user interfaces with VR capabilities
Make your MERN stack applications reliable and scalable with industry
best practices

https://www.packtpub.com/web-development/full-stack-react-projects-second-edition

Other Books You May Enjoy

[712]

Webpack 5 Up and Running
Tom Owens

ISBN: 978-1-78995-440-1

Get to grips with Webpack bundle configuration and set options
Optimize your JavaScript projects by using code-splitting techniques
Efficiently handle dependencies in complex web apps
Break down complex problems into simple ones using advanced
debugging procedures
Master version migration and deployment hurdles
Effectively deploy the Webpack application using Babel

https://www.packtpub.com/web-development/learn-webpack

Other Books You May Enjoy

[713]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

*
*BSD
 Node.js, installing from package management

systems 37

A
absolute module identifiers 101
access control list (ACL) 530
administrator-privileged PowerShell
 opening, on Windows 39
Advanced RISC Machine (ARM) 547
algorithmic refactoring 170, 172, 173
Amazon Machine Image (AMI) 547
Amazon Web Services (AWS)
 EC2 instance, launching on 552, 553
 gateway, configuring 537, 539, 540
 infrastructure, deploying with Terraform to

540, 542, 543, 545
 signing up with 518, 519
 subnet resources, configuring 537, 539, 540
 URL 518
assert module 610, 611
async arrow functions
 writing 56, 57
async functions
 error-first-callback, converting to 58
 exploring, in Express router functions 188,

189, 190, 191
 integrating, with Express router functions

193, 194, 195
 reference link 189
Atom
 URL 51
authentication best practices
 reference link 363
authentication tokens

 storing 363, 365
AuthNet
 exploring 485, 486, 487
automating test results
 reporting 644, 645
availability zones (AZs) 529
AWS account
 services, searching 519
 way, searching around 520
AWS authentication credentials
 used, for setting up AWS CLI 520, 521, 522
AWS CLI commands
 environment variables 563, 564
AWS CLI
 configuring 518, 519
 setting up, with AWS authentication

credentials 520, 521, 522
AWS EC2 deployment
 best practices 703, 705, 707
AWS EC2 key-pair file
 handling 554
AWS EC2 security
 best practices 708
AWS EC2
 Docker Swarm cluster, setting up on 545,

546

 domain name, assigning for application
deployed 668

AWS ECR
 Docker images, pushing to 564, 566, 568,

569

AWS infrastructure
 creating, with Terraform 531, 532, 533, 534
 overview 528, 529, 530, 531
 overview, to be deployed 529
AWS Virtual Private Cloud, security
 reference link 708

[715]

AWS Virtual Private Cluster
 configuring, with Terraform 534, 535, 536,

537

B
Babel
 JavaScript experimental features, using with

66, 68, 69, 70
 URL 66
backend service
 creating 170
base URL 140
Base
 URL 237
bcrypt documentation
 reference link 374
BIOS configuration
 reference link 461
Bluebird
 reference link 189
body-parser module
 reference link 156
Bootstrap jumbotron component 357
Bootstrap
 reference link 253
Bootswatch
 URL 258
breakpoint 231
bugs
 fixing, by package dependencies updation

119

business logic 196

C
capture-console package
 reference link 270
central processing unit (CPU) 529
Certbot
 reference link 670
Chai tool 612
class inheritance 133, 134
Classless Inter-Domain Routing (CIDR) 529
CLI documentation
 reference link 109
Clickjacking 693

comma-separated values (CSV) 521
command-line interface (CLI) 323
command-line programs, installation
 local, installing 122
command-line programs
 installing, globally 122
command-line tool
 creating, to administer user authentication

server 323, 325, 326
 creating, to test user authentication server

323, 325, 326
Commander
 reference link 323
CommonJS module system
 URL 76
CommonJS modules
 ES6 modules, using with import() function 85,

86

 implementation details, hiding in 87, 88
 using, with ES6 modules 83, 84
Community Edition (CE) 550
compiler 66
computationally intensive code 168, 169, 170
connect-redis
 reference link 512
Content-Security-Policy (CSP) header
 about 687
 setting up, with Helmet 687, 688, 689
ContentSecurityPolicy
 configuring 689, 690
cookie management
 best practices 702
cookie-parser module
 reference link 156
core modules 101
create, read, update, and delete (CRUD) 335,

410

Create, Read, Update, and Delete/Destroy
(CRUD) model 196

Cronginx container
 adding, to HTTPS on Notes 672, 674
Cronginx
 reference link 672
cross-env package
 reference link 152

[716]

cross-env tool
 reference link 613
Cross-Site Request Forgery (CSRF) attacks
 addressing 696, 697
cross-site-scripting (XSS) attacks
 about 695
 mitigating, with Helmet 695
cross-var package
 URL 563
CSS Grids
 about 238
 URL 238
CSS Selectors
 reference link 653
CSS-Tricks
 URL 231
csurf package
 reference link 696
Cursor class
 reference link 308
customized Bootstrap
 building 253, 254, 255, 257, 258
 third-party custom Bootstrap themes, using

258, 259, 260

D
data model
 for storing messages 405, 407, 408, 409,

410

data serialization language 293
data storage model, Notes application
 data hiding, in ES-2015 class definitions 205,

206, 207
 implementing 203, 205
data storage
 asynchronous code 262
database connections
 closing, on process exits 283, 284
debug package
 reference link 267
debug tracing
 enabling, in Socket.IO code 399
deep import module identifier
 overriding 103
deep import module specifiers

 using 102
deep import path 102
deployed Node.js application
 HTTPS, implementing in Docker 666
deployed Notes application
 testing 600
directories
 adding, on EC2 host 676
DNS Prefetch
 about 691
 reference link 691
Docker bridge network 470
Docker Compose
 about 459
 reference link 498, 500
 used, for building Notes application 502, 503,

504, 506
 used, for deploying Notes stack 498, 500,

501

 used, for executing Notes application 502,
503, 505, 506

 used, for managing multiple containers 497,
498

Docker engine 459
Docker Hub
 reference link 464
Docker image
 process, defining to build 564, 566, 568, 569
 pushing, to AWS ECR 564, 566, 568, 569
Docker orchestrator 497
Docker stack file
 creating, for deployment to Docker Swarm

569, 570
 creating, from Notes Docker compose file

571, 572, 573
Docker Swarm cluster
 features 546
 setting up, on AWS EC2 545, 546
 URL 546
Docker Swarm hosted
 remote control access, setting up on EC2

instance 558, 559, 560, 561
Docker Swarm
 container placement across 574, 575, 576
 data persistence 580, 581, 582

[717]

Docker swarm
 deploying 677, 678
Docker Swarm
 Docker stack file, creating for deployment to

569, 570
 EC2 instances, configuring and connecting to

583, 584, 586, 587
 EC2 instances, provisioning 582
 MongoDB, setting up 635, 636, 637, 638
 Notes stack file, deploying to 594
 Notes stack, deploying to 590, 592, 594,

596

 Notes stack, preparing to deploy to 595, 596
 secrets, configuring 576, 577, 578, 579
 semi-automatic initialization, implementing

587, 588, 589, 590
 testing 554, 555, 556, 557
 tests, executing 632, 633, 634, 635
 using, to deploy test infrastructure 628, 629,

630, 631
 using, to manage test infrastructure 627
Docker
 authentication service, setting up 464, 465
 configuring 547, 548, 550
 HTTPS, implementing for deployed Node.js

application 667
 installation links 460
 installation, requisites 460
 installing, on laptop 460, 461
 installing, on Windows/macOS 461
 Let's Encrypt, using to implement HTTPS for

Notes 672
 NGINX, using to implement HTTPS for Notes

672

 using 462, 463, 464
Dockerfiles
 reference link 479
domain name system (DNS) 11, 668
Domain Name System (DNS) 536
domain name
 assigning, for application deployed on AWS

EC2 668, 669
domain
 registering, to create NGINX configuration

with Let's Encrypt 675, 676

 registering, with Let's Encrypt 678, 679, 680
dotenv package
 about 363
 reference link 363

E
EC2 cluster
 deploying 677, 678
EC2 host
 directories, adding on 676
EC2 instance
 adding 547, 548, 550
 configuring, and connecting to Docker Swarm

583, 584, 586, 587
 launching, on AWS 551, 553
 provisioning, for full Docker Swarm 582
 remote control access, setting up to Docker

Swarm hosted 558, 559, 560, 561
EC2 key-pair
 creating 527, 528
ECMAScript 2015 (ES-2015) 342
ECMAScript
 used, for advancing Node.js 62, 64, 65, 66
ECR repositories
 setting up, for Notes Docker images 561,

563

Elastic IP (EIP) 538
encrypted password
 implementing, in Notes application 379, 380
environment variables, setting in Windows

cmd.exe command line
 setting, in Windows cmd.exe command line

151

environment variables
 setting, in Windows cmd.exe command line

152

error handling 161, 162
error-first-callback
 converting, to async functions 58
 converting, to Promise paradigm 58
ES2015 (ES6) Modules, using with Babel 6
 reference link 90
ES2015 multiline strings 142, 143
ES2015 template strings 142, 143
ES2015/2016/2017/2018 JavaScript code

[718]

 deploying 30
ES6 import statement 94
ES6 modules
 dynamic importing 275, 276, 277, 278
 implementation details, hiding in 87, 88
 missing __dirname variable, computing 82,

83

 objects, injecting 81, 82
 reference link 92
 supporting, on Node.js versions 90, 91
 using, from CommonJS modules with import()

86

 using, from CommonJS modules with import()
function 85

 using, with CommonJS modules 83, 84
ES6/ES-2015 module format
 examining 77, 80, 81
esm module
 reference link 91
esm package
 reference link 91
EventEmitter
 class 135, 136
 theory 137, 138
 used, for receiving events 132
 used, for sending events 132
events
 receiving, with EventEmitter 132, 133
 sending, with EventEmitter 132, 133
Express application
 creating, to compute Fibonacci numbers 162,

163, 164, 165, 166, 167, 170
 designing, in MVC paradigm 196
 Helmet, using for across-the-board security

686

 REST backend service, calling from 176, 177
 theming 222, 223, 224
 used, for implementing REST server 177,

179

Express router functions
 async functions 188, 189, 190, 191
 async functions, integrating with 193, 194,

195

 error handling 191, 192
 Promises 188, 189, 190, 191, 192, 193
Express session stores

 reference link 510
express-session cookie
 reference link 702
Express
 default application 153, 154, 155
 environment variables, setting in Windows

cmd.exe command line 151, 152
 error handling 161, 162
 middleware functions 156, 158
 reference link 147, 153
 request handlers, contrasting from middleware

functions 159, 160
 Socket.IO, initializing 386, 387, 388
 using 147, 149, 151
ExpressJS Wiki
 reference link 146
Extended Page Tables (EPT) 461

F
Feather Icons
 URL 242
Feature-Policy header
 used, for controlling enabled browser features

with Helmet 692
Fibonacci application
 about 153
 refactoring, to call REST service 181, 182,

184

Fibonacci numbers
 computationally intensive code 168, 169
 computing, to create Express application

162, 163, 164, 165, 166, 167, 170
 Node.js event loop 168, 169
file module 92, 93, 94
filesystem
 ES6 modules, dynamically importing 275,

276, 277, 278
 Notes application, executing 278
 Notes, storing 271, 274, 275
Flexbox
 about 238
 URL 238
Foundation
 URL 237
frameguard module

[719]

 reference link 693
frontend headless browser
 testing, with Puppeteer 646
FrontNet
 creating, for Notes application 487, 488
fs-extra
 reference link 273

G
General Purpose I/O (GPIO) 13
generator functions
 reference link 194
Git, for Windows
 reference link 49
glue service 11
grave accent 142

H
Handlebars
 reference link 688
Helmet
 Content-Security-Policy (CSP) header, setting

up 687, 688, 689
 reference 688
 reference link 686
 used, for mitigating XSS attacks 695
 used, for setting up X-DNS-Prefetch-Control

header 691
 using, for across-the-board security in

Express application 686
 using, to control enabled browser features

with Feature-Policy header 692
 using, to remove X-Powered-By header 693
 using, to setting up X-Frame-Options header

693

helpful documentation
 accessing 109
hexy program 60
Homebrew
 Node.js, installing on macOS with Homebrew

36, 37
 URL 36
HTTP Client requests
 creating 174, 176
HTTP server application

 about 138, 140, 141, 142
 ES2015 multiline strings 142, 143
 ES2015 template strings 142, 143
HTTP Sniffer
 used, for listening to HTTP conversation 144
HTTPS
 Cronginx container, adding on Notes 672,

674

 implementing, for Notes with Let's Encrypt in
Docker 672

 implementing, for Notes with NGINX in
Docker 672

 implementing, in Docker for deployed Node.js
application 666

 improving, with Strict Transport Security 694
 testing, for Notes application 685, 686

I
IAM user
 account, creating 523, 524, 525, 526
 group, creating 523
 groups, creating 524, 525, 526
 roles, creating 523, 524, 525, 526
import features
 used, for finding Node.js module 92
 used, for loading Node.js module 92
import statement
 used, for loading Node.js module 105, 106,

107

import() function
 used, for loading Node.js module 105, 106,

107

installed module
 comparing, with installed package 96
installed package
 comparing, with installed module 96
 finding, in file system 97, 98
 multiple versions, handling 99
 searching 100, 101
inter-user chat, for Notes application
 data model, for storing messages 405, 407,

408, 409, 410
 implementing 404
 messages, adding to Notes router 410
 note view template, modifying for messages

[720]

413

internet gateway 529
Internet Protocol version 4 (IPv4) 529
internet relay chat (IRC) 11
internet service provider (ISP) 530
iteration protocol
 reference link 194

J
JavaScript classes 133, 134
JavaScript experimental features
 using, with Babel 66, 68, 69
JavaScript Object Notation (JSON) 343, 524
JavaScript
 about 15
 advances, embracing 28, 29, 30
jQuery
 reference link 233
JSON module
 using 88, 89

K
Kota
 reference link 146

L
Let's Encrypt Authority X3 685
Let's Encrypt
 certificates, used for implementing NGINX

HTTPS configuration 680, 681, 683, 684
 reference link 670
 usage, planning 670, 671
 used, for creating NGINX configuration to

register domains 675, 676
 used, for registering domain 678, 679, 680
 using, in Docker to implement HTTPS for

Notes 672
LevelDB datastore
 used, for storing Notes 279, 280, 282, 283
Linux deployment, for Node.js services
 about 427, 428, 429
 deployed user authentication service, testing

438

 failure to launch Multipass instances on
Windows, handling 431, 432

 Multipass, installing 429, 431
 script execution in PowerShell, on Windows

440

 server, provisioning for Notes service 441,
442, 443

 server, provisioning for user authentication
service 433, 434, 435, 437

Linux
 Node.js, installing from package management

systems 37
log rotation 263
logging
 about 262
 request, with morgan package 264, 266
login functionality
 ability, testing to add Notes 655, 656, 657,

659

 testing, in Notes 652, 653, 654, 655
login support, for Notes application
 executing, with user authentication 358, 359,

360

 implementing 339
 login and logout routing functions,

implementing 346
 login and logout routing functions,

incorporating 344, 347, 348
 login/logout, modifying in app.js 349, 350
 login/logout, modifying in routes/index.mjs

351

 login/logout, modifying in routes/notes.mjs
352, 353

 template changes, viewing for login/logout
354, 355, 356, 357

 user authentication REST API, accessing
340, 341, 342, 343

logout functionality
 ability, testing to add Notes 655, 656, 657,

659

 testing, in Notes 652, 653, 654, 655
long term support (LTS) 50
Loopback
 reference link 184
LSB-style init script
 reference link 428

[721]

M
macOS
 developer tools, installing 42
 Node.js, installing with Homebrew 36, 37
 used, for installing Node.js with MacPorts 35
MacPorts
 Node.js, installing on macOS with 35
 URL 35
maxiservices
 developing, with Node.js 31
memory management unit (MMU) 461
messages
 debugging 267, 268, 269
microservices
 advantages 32
 developing, with Node.js 31
Microsoft Visual Studio Code
 URL 51
middleware functions
 request handlers, contrasting 159, 160
middleware
 reference link 157
mime module
 reference link 102
mobile-first design, for Notes application
 about 238, 239
 add/edit note form, cleaning up 249, 251
 Bootstrap grid foundation, laying 239, 240,

241

 delete-note window, cleaning up 251, 252
 icon libraries, using 242, 243
 note viewing experience, cleaning up 248,

249

 Notes list, enhancing on front page 245, 246
 responsive page header navigation bar 243,

245

 responsive page structure 241, 242
 visual appeal, enhancing 242, 243
mobile-first paradigm 230
Mocha tool
 about 612
 URL 613
Model, View, and Controller (MVC)
 Express application, designing 196, 197
Model-View-Controller (MVC) 165

module identifiers
 absolute module identifiers 101
 core modules 101
 relative elative module identifiers 101
 reviewing 101, 102
 top-level module identifiers 101
MongoDB (or MySQL), Express, Angular, and

Node.js (MEAN) 303
MongoDB database
 used, for executing Notes application 309,

310

MongoDB model
 for Notes application 304, 307, 308
MongoDB Node.js driver
 reference link 305
MongoDB
 Notes, storing 303
 Notes, testing 635
 reference link 635
 setting up, in Docker Swarm 635, 636, 637,

638

 URL 303
Mongoose
 URL 303
morgan package
 used, for logging request 264, 266
Morgan request logger
 reference link 156
multi-factor authentication (MFA) 518
Multipass
 installing 429, 430, 431
 PM2 setup, scripting 450, 451, 453, 454
multiple Notes service instances
 used, for testing session management 508,

509

Multipurpose Internet Mail Extensions (MIME)
161

MySQL container
 creating, for authentication service 472, 473,

474, 475
 creating, for Notes application 488, 489
 launching, in Docker 465, 466, 467, 468
 securing 476, 477, 478, 479

[722]

N
named pipe 202
NAT gateway 530
native code modules
 installing, requisites 48, 49
negative test 641
 implementing, with Puppeteer 659
 login, with bad user ID 660, 661
 response, testing to bad URL 661, 662
Netwide Assembler (NASM)
 about 45
 URL 45
network address translation (NAT) 529
NGINX configuration
 creating, to register domains with Let's

Encrypt 675, 676
 reference link 674
NGINX HTTPS configuration
 implementing, with Let's Encrypt certificates

680, 681, 683, 684
NGINX Plus product
 reference link 674
NGINX
 using, in Docker to implement HTTPS for

Notes 672
Node green website
 URL 63
node-webkit (NW.js) 13
Node.js commands
 running 52
 testing 52
Node.js core modules
 about 94, 95
 reference link 94
Node.js distribution
 installing, from nodejs.org 39, 40
Node.js Docker image
 reference link 480
Node.js documentation
 reference link 92
Node.js event loop 168, 169, 170
Node.js instances
 installing, with nvm 45, 47
Node.js module

 CommonJS modules, using with ES6
modules 83, 84

 deep import module specifiers, using 102
 defining 73
 directory structure, using 95
 ES6 modules, supporting on Node.js versions

90, 91
 ES6 modules, using with CommonJS

modules 83, 84
 ES6/ES-2015 module format, examining 77,

80, 81
 file module 92, 93, 94
 finding, with require and import features 92
 format, examining 73, 74, 75, 76, 77
 implementation details, hiding with

encapsulation in CommonJS and ES6
modules 87, 88

 installed package, comparing with installed
module 96

 installed package, finding in file system 97,
98

 installed package, searching 100, 101
 JSON module, using 88, 89
 loading, with import statement 105, 106, 107
 loading, with import() function 105, 106, 107
 loading, with require and import features 92
 loading, with require function 105, 106, 107
 module identifiers, reviewing 101, 102
 multiple versions, handling of installed

package 99
 pathnames, reviewing 101, 102
 project directory structure, example 103, 105
 reference link 285
Node.js MongoDB driver
 reference link 304
Node.js package management system 108
Node.js package manager
 using 60, 61
Node.js package
 initializing, with npm init 109, 110
 known vulnerabilities, scanning 699, 701
Node.js packaged binaries
 executing, with npx 62
Node.js processes
 managing, by setting up PM2 448

[723]

Node.js project
 initializing, with npm init 109, 110
Node.js services
 Linux deployment 427, 428, 429
 Multipass, installing 430
 script execution in PowerShell, on Windows

441

 server, provisioning for user authentication
service 436

Node.js version compatibility
 declaring 127
Node.js versions
 ES6 modules, supporting 90, 91
 policy 50, 51
 selection, for using 50, 51
Node.js's command-line tools
 using 52
Node.js, installing from source on POSIX-like

systems
 developer tools, installing on macOS 42
 prerequisites, installing 41
Node.js
 about 17
 advancing, with ECMAScript 62, 64, 65, 66
 asynchronous requests 20, 21
 asynchronous-programming model 16
 build tools 12
 capabilities 11, 12
 complexity, handling 19, 20
 debuggers, selecting 51, 52
 desktop applications 13
 editors, selecting 51, 52
 environmental impact 27
 event-driven architecture 17, 18, 19
 event-driven model 16
 installing, from source for all POSIX-like

systems 43, 44
 installing, from source on POSIX-like systems

40, 41
 installing, from source on Windows 45
 installing, in WSL 38
 installing, on *BSD from package

management systems 37
 installing, on Linux from package

management systems 37

 installing, on macOS with Homebrew 36, 37
 installing, on macOS with MacPorts 35
 installing, on Windows from package

management systems 37
 installing, with package managers 35
 Internet of things (IoT) 13
 maxiservices, developing 31
 microservice architecture 16
 microservices, developing 31
 mobile applications 13
 need for 12, 13, 14
 overhead costs 27
 overview 10, 11
 performance 22, 23, 24
 popularity 14, 15
 scalability disaster 24, 26, 27
 server utilization 27
 system requisites 34, 35
 URL 59
 utilization 22, 23, 24
 web UI testing 12
nodejs.org
 Node.js distribution, installing from 39, 40
 URL 39
note view template, for messages
 composing 413, 415, 416
 deleting 420
 displaying 417, 420
 executing 421, 422
 modifying 413
 passing 421, 422
Notes application 215
Notes application stack
 correct launch, verifying 597, 599
 database services, launch failure diagnosing

599, 600
 inability to log in, diagnosing with Twitter

credentials 603, 604
 instances, scaling 604, 605, 607
 logging in, with regular account 601, 602
 Puppeteer test, creating 649
 scaling, Redis used 507
 used, for creating Puppeteer test 648, 650,

651

Notes application

[724]

 app.mjs 199, 200, 202
 architecture 426
 building, with Docker Compose 502, 503,

504, 506
 commenting 405
 creating 197
 data storage model, implementing 203, 205
 deployment considerations 427
 dockerizing 489, 490, 491, 492, 493, 494,

496

 encrypted password, implementing 379, 380
 executing 381
 executing, with Docker Compose 502, 503,

505

 executing, with filesystem 278, 279
 executing, with MongoDB database 309, 310
 executing, with Sequelize 301, 302
 executing, with SQLite3 292
 FrontNet, creating 487, 488
 generated router module, rewriting as ES6

module 198, 199
 home page, creating 209, 210, 211
 in-memory datastore, implementing 208
 inter-user chat, implementing 405
 issues 228, 229
 login support, implementing 339
 MongoDB model, using 304, 307, 308
 multiple instances, executing 224, 225, 226
 MySQL container, creating 488, 489
 new note, adding 213, 214, 216, 217
 note, editing 219, 220
 notes, deleting 220, 221, 222
 notes, viewing 217, 218, 219
 Sequelize model, creating 297, 298, 301
 Twitter Bootstrap, adding 234
 Twitter Bootstrap, adding to 236
 Twitter Bootstrap, using 232
 Twitter login support, implementing 360
 used, for testing HTTPS 685, 686
Notes Docker compose file
 Docker stack file, creating from 571, 572,

573

Notes Docker images
 ECR repositories, setting up 561, 563
Notes model
 Chai tool 613

 Mocha tool 612
 test case 615
 test case, creating 614, 615
 test case, executing 616, 617
 test failures, diagnosing 623, 624, 625
 test suite 613
 testing 612
 testing, against MongoDB 626, 627
 testing, against MySQL 626, 627
 tests, adding 618, 619, 620, 621, 622
Notes router
 messages, adding to 410
Notes service
 server, provisioning 441, 442, 443
Notes stack file
 deploying, to Docker Swarm 594
Notes stack
 deploying, to Docker Swarm 590, 592, 594,

595, 596
 deploying, with Docker Compose file 498,

500, 501
Notes
 about 452
 adding, to test login functionality ability 655,

656, 658, 659
 adding, to test logout functionality ability 655,

656, 658, 659
 Cronginx container, adding to HTTPS 672,

674

 Let's Encrypt, using in Docker to implement
HTTPS 672

 login functionality, testing 652, 653, 654,
655

 logout functionality, testing 652, 653, 654,
655

 NGINX, using in Docker to implement HTTPS
672

notes
 storing, in MongoDB 303
 storing, in SQL with SQLite3 285
 storing, with LevelDB datastore 279, 280,

282, 283
Notes
 testing, against MongoDB 635
NotesStore classes
 refactoring, to emit events 389, 391, 392

[725]

npm package
 format 108, 109
 global module installation, avoiding 117
 installing 113
 installing, by version number 114, 115
 installing, from npm repository 115
 installing, globally 116
 publishing 128
 searching 111
 searching, with package.json fields 112, 113
npm-path module
 URL 124
npm-run-all tool
 reference link 613
npm
 command-line programs, installation 121
 dependencies, maintaining 117, 118
 Node.js version compatibility, declaring 127
 outdated packages, updating 125
 package dependency version numbers,

specifying 120, 121
 tasks, automating with scripts in package.json

126, 127
 using 60, 61, 108
npx
 reference link 62
 used, for executing Node.js packaged

binaries 62
nvm
 installing, on Windows 47, 48
 used, for installing Node.js instances 45, 47
NXING
 reference link 675

O
Object-Relational Mapping (ORM)
 about 293, 314
 notes, storing with Sequelize 293
operating system (OS) 427

P
package dependencies
 maintaining, with npm 117, 118
 updating, via fixing bugs 119, 120
package.json dependencies

 automatically, updating 119
PaperCSS
 URL 237
password encryption
 adding, to user information service 375, 376,

377, 378
PATH variable
 configuring, on Windows 123
 configuring, to handle locally installed

commands 122, 123
 modifications, avoiding 124, 125
pathnames
 reviewing 101, 102
PayPal's blog post
 reference link 14
persistent background processes
 PM2 setup, integrating as 454, 456
Picnic CSS
 URL 237
PM2 setup
 for managing Node.js processes 448
 integrating, as persistent background

processes 454, 456
 scripting, on Multipass 450, 451, 453, 454
PM2
 reference link 448
 using 448, 450
Popper.js package
 reference link 233
Popper.js
 reference link 233
positive test 641
POSIX-like systems
 Node.js, installing from source 40, 41
 Node.js, installing from source for all 43, 44
PowerShell package
 reference link 562
predefined script names
 reference link 126
Privacy Enhanced Mail (PEM) 553
process.argv array
 reference link 324
process.stderr streams
 capturing 269
process.stdout streams

[726]

 capturing 269
project directory structure
 example 103, 105
Promise chain 191
Promise objects
 fulfilled state 190
 pending state 190
 rejected state 190
Promise paradigm
 error-first-callback, converting to 58
Promises
 exploring, in Express router functions 188,

189, 190, 191
publishing packages
 reference link 128
Puppeteer-based testing
 project directory, setting up 647, 648
Puppeteer
 reference link 646
 test, creating for Notes application stack 648,

649, 650, 651
 test, executing 651, 652
 used, for implementing negative test 659
 used, for testing frontend headless browser

646

Pure.css
 URL 237
PuTTY Private Key (PPK) 553
pyramid of doom problem 189
Python, for Windows
 reference link 49

R
read-eval-print loop (REPL) 11
real-time updates, on Notes home page
 about 389
 debug tracing, enabling in Socket.IO code

399

 executing 398, 399
 execution, while viewing note 404
 home page, modifying 394, 395, 396
 layout template, modifying 394, 395, 396
 managing 392, 393, 394
 note view template, modifying 402
 notes, viewing 400

 NotesStore classes, refactoring to emit
events 389, 391

 Socket.IO client, adding 396, 397
Redis server
 Express/Passport session data, storing 509,

511, 512
Redis
 Socket.IO messages, distributing 512, 514
 used, for scaling Notes application stack 507
relative module identifiers 101
remote control access
 setting up, to Docker Swarm hosted on EC2

instance 558, 559, 560, 561
Reporter
 about 644
 reference link 644
Representational State Transfer (REST)
 modules and frameworks 184
request handlers
 contrasting, from middleware functions 159,

160

request routing 140
require features
 used, for finding Node.js module 92
 used, for loading Node.js module 92
require function
 used, for loading Node.js module 105, 106,

107

responsive 230
responsive web design techniques 230
REST backend service
 calling, from Express application 176, 177
 testing 638, 639, 640, 642, 643, 644
REST server
 creating, for user information 319, 322
 implementing, with Express application 177,

178

REST service
 Fibonacci application, refactoring 181, 182,

183, 184
Restify
 reference link 184, 314
REX-Ray project
 URL 581
route parameter 159

[727]

S
script, with Node.js
 executing 54, 55
 inline async arrow functions, writing 56, 57
secrets and passwords
 securing 374, 375
Secure Shell (SSH) 527
Secure Sockets Layers (SSL) 667
semantic versioning (SemVer) 321
Sequelize
 configuring 294, 296, 297
 database, connecting 294, 296, 297
 model, creating for Notes application 297,

298, 300
 reference link 293
 used, for executing Notes application 301,

302

server, with Node.js
 launching 59
server-side JavaScript 13, 14
session store 373
Session Store implementation
 reference link 345
Shoelace
 URL 237
single EC2 instance
 single-node Docker Swarm, deploying on

547

single-node Docker Swarm
 deploying, on single EC2 instance 547
Socket.IO code
 debug tracing, enabling 399
Socket.IO documentation
 reference link 513
Socket.IO messages
 distributing, with Redis 512, 514
Socket.IO
 about 384, 385
 initializing, with Express 386, 387, 388
 URL 385
SQL injection attacks
 denying 698
SQL
 notes, storing with SQLite3 285
SQLite3

 database schema 285, 286, 287
 model code 287, 289, 290, 291
 reference link 285
 used, for executing Notes application 291,

292

 used, for storing notes in SQL 285
SSL certificates
 reference link 685
static file web server
 reference link 156
Strategy modules 339
Strict Transport Security
 used, for improving HTTPS 694
system facility 270

T
TC-39 committee
 URL 63
Technical Steering Committee (TSC) 73
Terraform
 used, for configuring AWS Virtual Private

Cluster 534, 535, 536, 537
 used, for creating AWS infrastructure 531,

532, 533, 534
 used, for deploying infrastructure to AWS

540, 542, 543, 545
Test Anything Protocol (TAP) 645
test infrastructure
 deploying, with Docker Swarm 628, 629,

630, 631
 managing, with Docker Swarm 627
testability
 improving, in Notes UI 662
testing methodologies
 assert module 610, 611
top-level module identifiers 101
Transmission Control Protocol (TCP) 558
transpiler 66
Transport Layer Security (TLS) 546
Twenty Twelve
 reference link 230
Twitter application, registering
 reference link 361
Twitter application
 updating 669

[728]

Twitter authentication
 adjusting, to work on server 446, 447
Twitter Bootstrap
 adding, to Notes application 234, 236
 alternative layout frameworks 237
 reference link 233
 setting up 232, 234
 using, on Notes application 232
Twitter brand assets
 reference link 370
Twitter credentials
 used, for diagnosing inability to log in 603,

604

Twitter login support, for Notes application
 application, registering 361, 362
 implementing 360
 TwitterStrategy, implementing 365, 367, 368,

370, 372, 373, 374
Twitter sign-up process
 information, implementing 362
TwitterStrategy
 implementing 365, 367, 370, 371, 373, 374
type guard 272
TypeScript 31

U
uncaught errors
 capturing 262
uncaught exceptions
 capturing 270, 271
unhandled rejected Promises
 capturing 270, 271
Uniform Resource Locator (URL) 321, 525
universally unique identifier (UUID) 374
user authentication service, setting up in Docker
 about 464, 465
 architecture, defining 469, 471
 Authnet, exploring 485, 486, 487
 Docker containers 468, 469
 dockerizing 479
 MySQL container, creating 472, 473, 474,

475

 MySQL container, launching 465, 466, 467,
468

user authentication service

 Docker container, building 482, 483, 484
 Docker container, executing 482, 483, 484
 Dockerfile, creating 480, 481
 dockerizing 479
 server, provisioning 433, 434, 435, 436, 437
user information database
 user, creating 327, 329, 331
user information microservice
 creating 313, 315
user information model
 developing 315, 318
user information service
 password encryption, adding 375, 376, 377,

378

 user data, reading 331, 334
 user information, updating 334
 user record, deleting 336
 user's password, checking 337, 339
user profile
 reference link 317

V
V8 16
Virtual Private Cloud (VPC) 708
Visual Studio build tools
 reference link 49

W
web application frameworks 146, 147
Web Hypertext Application Technology Working

Group (WHATWG) 341
Windows cmd.exe command line
 environment variables, setting 151, 152
Windows Subsystem for Linux (WSL)
 about 38, 558
 Node.js, installing 38
 reference link 38
Windows
 administrator-privileged PowerShell, opening

on 39
 Node.js, installing from package management

systems 37
 Node.js, installing from source 45
 nvm, installing on 47, 48
 PATH variable, configuring on 123

 script execution in PowerShell 440, 441
World Wide Web (WWW) 176

X
X-DNS-Prefetch-Control header
 setting up, with Helmet 691
X-Frame-Options header
 setting up, with Helmet 693
X-Powered-By header

 removing, with Helmet 693

Y
YAML Ain't Markup Language (YAML)
 about 317
 reference link 293
Yarn package management system 128, 129
Yarn
 URL 61, 129

	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to Node.js
	Chapter 1: About Node.js
	Overview of Node.js
	The capabilities of Node.js
	What are folks doing with Node.js?
	Server-side JavaScript

	Why should you use Node.js?
	Popularity
	JavaScript everywhere
	Leveraging Google's investment in V8
	Leaner, asynchronous, event-driven model
	Microservice architecture
	Node.js is stronger after a major schism and hostile fork

	The Node.js event-driven architecture
	The Node.js answer to complexity
	Asynchronous requests in Node.js
	Performance and utilization
	Is Node.js a cancerous scalability disaster?

	Server utilization, overhead costs, and environmental impact

	Embracing advances in the JavaScript language
	Deploying ES2015/2016/2017/2018 JavaScript code
	TypeScript and Node.js

	Developing microservices or maxiservices with Node.js
	Summary

	Chapter 2: Setting Up Node.js
	System requirements
	Installing Node.js using package managers
	Installing Node.js on macOS with MacPorts
	Installing Node.js on macOS with Homebrew
	Installing Node.js on Linux, *BSD, or Windows from package management systems
	Installing Node.js in WSL
	Opening an administrator-privileged PowerShell on Windows

	Installing the Node.js distribution from nodejs.org

	Installing from the source on POSIX-like systems
	Installing prerequisites
	Installing developer tools on macOS
	Installing from the source for all POSIX-like systems
	Installing from the source on Windows

	Installing multiple Node.js instances with nvm
	Installing nvm on Windows

	Requirements for installing native code modules
	Choosing Node.js versions to use and the version policy
	Choosing editors and debuggers for Node.js
	Running and testing commands
	Using Node.js's command-line tools
	Running a simple script with Node.js
	Writing inline async arrow functions

	Converting to async functions and the Promise paradigm
	Launching a server with Node.js
	Using npm, the Node.js package manager
	Using npx to execute Node.js packaged binaries

	Advancing Node.js with ECMAScript 2015, 2016, 2017, and beyond
	Using Babel to use experimental JavaScript features

	Summary

	Chapter 3: Exploring Node.js Modules
	Defining a Node.js module
	Examining the traditional Node.js module format
	Examining the ES6/ES2015 module format
	Injected objects in ES6 modules
	Computing the missing __dirname variable in ES6 modules

	Using CommonJS and ES6 modules together
	Using ES6 modules from CommonJS using import()

	Hiding implementation details with encapsulation in CommonJS and ES6 modules
	Using JSON modules
	Supporting ES6 modules on older Node.js versions

	Finding and loading modules using require and import
	Understanding File modules
	The ES6 import statement takes a URL

	Understanding the Node.js core modules
	Using a directory as a module
	Comparing installed packages and modules
	Finding the installed package in the file system
	Handling multiple versions of the same installed package

	Searching for globally installed packages
	Reviewing module identifiers and pathnames
	Using deep import module specifiers
	Overriding a deep import module identifier

	Studying an example project directory structure
	Loading modules using require, import, and import()

	Using npm – the Node.js package management system
	The npm package format
	Accessing npm helpful documentation
	Initializing a Node.js package or project with npm init
	Finding npm packages
	The package.json fields that help finding packages

	Installing an npm package
	Installing a package by version number
	Installing packages from outside the npm repository
	Global package installs
	Avoiding global module installation

	Maintaining package dependencies with npm
	Automatically updating package.json dependencies
	Fixing bugs by updating package dependencies

	Explicitly specifying package dependency version numbers
	Packages that install commands
	Configuring the PATH variable to handle locally installed commands
	Configuring the PATH variable on Windows
	Avoiding modifications to the PATH variable

	Updating packages you've installed when they're outdated
	Automating tasks with scripts in package.json
	Declaring Node.js version compatibility
	Publishing an npm package

	The Yarn package management system
	Summary

	Chapter 4: HTTP Servers and Clients
	Sending and receiving events with EventEmitter
	JavaScript classes and class inheritance
	The EventEmitter class
	The EventEmitter theory

	Understanding HTTP server applications
	ES2015 multiline and template strings

	HTTP Sniffer – listening to the HTTP conversation
	Web application frameworks
	Getting started with Express
	Setting environment variables in the Windows cmd.exe command line
	Walking through the default Express application
	Understanding Express middleware
	Contrasting middleware and request handlers
	Error handling

	Creating an Express application to compute Fibonacci numbers
	Computationally intensive code and the Node.js event loop
	Algorithmic refactoring

	Making HTTPClient requests
	Calling a REST backend service from an Express application
	Implementing a simple REST server with Express
	Refactoring the Fibonacci application to call the REST service
	Some RESTful modules and frameworks

	Summary

	Section 2: Developing the Express Application
	Chapter 5: Your First Express Application
	Exploring Promises and async functions in Express router functions
	Promises and error handling in Express router functions
	Integrating async functions with Express router functions

	Architecting an Express application in the MVC paradigm
	Creating the Notes application
	Rewriting the generated router module as an ES6 module
	Creating the Notes application wiring – app.mjs
	Implementing the Notes data storage model
	Data hiding in ES-2015 class definitions

	Implementing an in-memory Notes datastore
	The Notes home page
	Adding a new note – create
	Viewing notes – read
	Editing an existing note – update
	Deleting notes – destroy

	Theming your Express application
	Scaling up – running multiple Notes instances
	Summary

	Chapter 6: Implementing the Mobile-First Paradigm
	Understanding the problem – the Notes app isn't mobile-friendly
	Learning the mobile-first paradigm theory
	Using Twitter Bootstrap on the Notes application
	Setting up Bootstrap
	Adding Bootstrap to the Notes application
	Alternative layout frameworks

	Flexbox and CSS Grids
	Mobile-first design for the Notes application
	Laying the Bootstrap grid foundation
	Responsive page structure for the Notes application
	Using icon libraries and improving visual appeal
	Responsive page header navigation bar
	Improving the Notes list on the front page
	Cleaning up the note viewing experience
	Cleaning up the add/edit note form
	Cleaning up the delete-note window

	Customizing a Bootstrap build
	Using third-party custom Bootstrap themes

	Summary

	Chapter 7: Data Storage and Retrieval
	Remembering that data storage requires asynchronous code
	Logging and capturing uncaught errors
	Request logging with morgan
	Debugging messages
	Capturing stdout and stderr
	Capturing uncaught exceptions and unhandled rejected Promises

	Storing notes in a filesystem
	Dynamically importing ES6 modules
	Running the Notes application with filesystem storage

	Storing notes with the LevelDB datastore
	Closing database connections when closing the process

	Storing notes in SQL with SQLite3
	The SQLite3 database schema
	The SQLite3 model code
	Running Notes with SQLite3

	Storing notes the ORM way with Sequelize
	Configuring Sequelize and connecting to a database
	Creating a Sequelize model for the Notes application
	Running the Notes application with Sequelize

	Storing notes in MongoDB
	A MongoDB model for the Notes application
	Running the Notes application with MongoDB

	Summary

	Chapter 8: Authenticating Users with a Microservice
	Creating a user information microservice
	Developing the user information model
	Creating a REST server for user information
	Creating a command-line tool to test and administer the user authentication server
	Creating a user in the user information database
	Reading user data from the user information service
	Updating user information in the user information service
	Deleting a user record from the user information service
	Checking the user's password in the user information service

	Providing login support for the Notes application
	Accessing the user authentication REST API
	Incorporating login and logout routing functions in the Notes application
	Login/logout changes to app.mjs
	Login/logout changes in routes/index.mjs
	Login/logout changes required in routes/notes.mjs
	Viewing template changes supporting login/logout

	Running the Notes application with user authentication

	Providing Twitter login support for the Notes application
	Registering an application with Twitter
	Storing authentication tokens

	Implementing TwitterStrategy

	Keeping secrets and passwords secure
	Adding password encryption to the user information service
	Implementing encrypted password support in the Notes application

	Running the Notes application stack
	Summary

	Chapter 9: Dynamic Client/Server Interaction with Socket.IO
	Introducing Socket.IO
	Initializing Socket.IO with Express
	Real-time updates on the Notes homepage
	Refactoring the NotesStore classes to emit events
	Real-time changes in the Notes home page
	Changing the home page and layout templates
	Adding a Socket.IO client to the Notes home page
	Running Notes with real-time home page updates

	A word on enabling debug tracing in Socket.IO code
	Real-time action while viewing notes
	Changing the note view template for real-time action
	Running Notes with pseudo-real-time updates while viewing a note

	Inter-user chat and commenting for Notes
	Data model for storing messages
	Adding support for messages to the Notes router
	Changing the note view template for messages
	Composing messages on the Note view page
	Showing any existing messages on the Note view page
	Deleting messages on the Notes view page
	Running Notes and passing messages

	Summary

	Section 3: Deployment
	Chapter 10: Deploying Node.js Applications to Linux Servers
	Notes application architecture and deployment considerations
	Traditional Linux deployment for Node.js services
	Installing Multipass
	Handling a failure to launch Multipass instances on Windows

	Provisioning a server for the user authentication service
	Testing the deployed user authentication service

	Script execution in PowerShell on Windows
	Provisioning a server for the Notes service

	Adjusting Twitter authentication to work on the server
	Setting up PM2 to manage Node.js processes
	Familiarizing ourselves with PM2
	Scripting the PM2 setup on Multipass
	Integrating the PM2 setup as persistent background processes

	Summary

	Chapter 11: Deploying Node.js Microservices with Docker
	Setting up Docker on your laptop or computer
	Installing and starting Docker with Docker for Windows or macOS
	Familiarizing ourselves with Docker

	Setting up the user authentication service in Docker
	Launching a MySQL container in Docker
	The ephemeral nature of Docker containers
	Defining the Docker architecture for the authentication service
	Creating the MySQL container for the authentication service
	Security in the database container

	Dockerizing the authentication service
	Creating the authentication service Dockerfile
	Building and running the authentication service Docker container

	Exploring AuthNet

	Creating FrontNet for the Notes application
	MySQL container for the Notes application
	Dockerizing the Notes application

	Managing multiple containers with Docker Compose
	Docker Compose file for the Notes stack
	Building and running the Notes application with Docker Compose

	Using Redis for scaling the Notes application stack
	Testing session management with multiple Notes service instances
	Storing Express/Passport session data in a Redis server
	Distributing Socket.IO messages using Redis

	Summary

	Chapter 12: Deploying a Docker Swarm to AWS EC2 with Terraform
	Signing up with AWS and configuring the AWS CLI
	Finding your way around the AWS account
	Setting up the AWS CLI using AWS authentication credentials
	Creating an IAM user account, groups, and roles
	Creating an EC2 key pair

	An overview of the AWS infrastructure to be deployed
	Using Terraform to create an AWS infrastructure
	Configuring an AWS VPC with Terraform
	Configuring the AWS gateway and subnet resources

	Deploying the infrastructure to AWS using Terraform

	Setting up a Docker Swarm cluster on AWS EC2
	Deploying a single-node Docker Swarm on a single EC2 instance
	Adding an EC2 instance and configuring Docker
	Launching the EC2 instance on AWS
	Handling the AWS EC2 key-pair file
	Testing the initial Docker Swarm

	Setting up remote control access to a Docker Swarm hosted on EC2

	Setting up ECR repositories for Notes Docker images
	Using environment variables for AWS CLI commands
	Defining a process to build Docker images and push them to the AWS ECR

	Creating a Docker stack file for deployment to Docker Swarm
	Creating a Docker stack file from the Notes Docker compose file
	Placing containers across the swarm
	Configuring secrets in Docker Swarm
	Persisting data in a Docker swarm

	Provisioning EC2 instances for a full Docker swarm
	Configuring EC2 instances and connecting to the swarm
	Implementing semi-automatic initialization of the Docker Swarm
	Preparing the Docker Swarm before deploying the Notes stack

	Deploying the Notes stack file to the swarm
	Preparing to deploy the Notes stack to the swarm
	Deploying the Notes stack to the swarm
	Verifying the correct launch of the Notes application stack
	Diagnosing a failure to launch the database services

	Testing the deployed Notes application
	Logging in with a regular account on Notes
	Diagnosing an inability to log in with Twitter credentials

	Scaling the Notes instances

	Summary

	Chapter 13: Unit Testing and Functional Testing
	Assert – the basis of testing methodologies
	Testing a Notes model
	Mocha and Chai – the chosen test tools
	Notes model test suite
	Creating the initial Notes model test case
	Running the first test case
	Adding some tests
	More tests for the Notes model
	Diagnosing test failures
	Testing against databases that require server setup – MySQL and MongoDB

	Using Docker Swarm to manage test infrastructure
	Using Docker Swarm to deploy test infrastructure
	Executing tests under Docker Swarm
	MongoDB setup under Docker and testing Notes against MongoDB

	Testing REST backend services
	Automating test results reporting
	Frontend headless browser testing with Puppeteer
	Setting up a Puppeteer-based testing project directory
	Creating an initial Puppeteer test for the Notes application stack
	Executing the initial Puppeteer test

	Testing login/logout functionality in Notes
	Testing the ability to add Notes
	Implementing negative tests with Puppeteer
	Testing login with a bad user ID
	Testing a response to a bad URL

	Improving testability in the Notes UI

	Summary

	Chapter 14: Security in Node.js Applications
	Implementing HTTPS in Docker for deployed Node.js applications
	Assigning a domain name for an application deployed on AWS EC2
	Updating the Twitter application
	Planning how to use Let's Encrypt
	Using NGINX and Let's Encrypt in Docker to implement HTTPS for Notes
	Adding the Cronginx container to support HTTPS on Notes
	Creating an NGINX configuration to support registering domains with Let's Encrypt
	Adding the required directories on the EC2 host
	Deploying the EC2 cluster and Docker swarm
	Registering a domain with Let's Encrypt

	Implementing an NGINX HTTPS configuration using Let's Encrypt certificates
	Testing HTTPS support for the Notes application

	Using Helmet for across-the-board security in Express applications
	Using Helmet to set the Content-Security-Policy header
	Making the ContentSecurityPolicy configurable

	Using Helmet to set the X-DNS-Prefetch-Control header
	Using Helmet to control enabled browser features using the Feature-Policy header
	Using Helmet to set the X-Frame-Options header
	Using Helmet to remove the X-Powered-By header
	Improving HTTPS with Strict Transport Security
	Mitigating XSS attacks with Helmet

	Addressing Cross-Site Request Forgery (CSRF) attacks
	Denying SQL injection attacks
	Scanning for known vulnerabilities in Node.js packages
	Using good cookie practices
	Hardening the AWS EC2 deployment
	AWS EC2 security best practices
	Summary

	Other Books You May Enjoy
	Index

