

Learn	NodeJS	in	1	Day

By	Krishna	Rungta

Copyright	2016	-	All	Rights	Reserved	–	Krishna	Rungta

ALL	RIGHTS	RESERVED.	No	part	of	this	publication	may	be	reproduced	or	transmitted	in
any	form	whatsoever,	electronic,	or	mechanical,	including	photocopying,	recording,	or	by	any
informational	storage	or	retrieval	system	without	express	written,	dated	and	signed
permission	from	the	author.

Table	Of	Content

Chapter	1:	Introduction

1.	 What	is	node.js
2.	 Why	use	Node.js
3.	 Features	of	Node.js
4.	 When	to	use	and	not	use	Node.js

Chapter	2:	Download	&	Install	Node.js

1.	 How	to	install	node.js
2.	 Installing	node	through	a	package	manager
3.	 Running	your	first	Hello	world	application	in	Node.js

Chapter	3:	Modules

1.	 What	are	modules	in	Node.js
2.	 Using	modules	in	Node.js
3.	 Creating	NPM	modules
4.	 Extending	modules
5.	 Publishing	NPM	Modules
6.	 Managing	third	party	packages	with	npm
7.	 What	is	the	package.json	file

Chapter	4:	Create	Server	and	Get	Data

Chapter	5:	Node.js	with	Express

1.	 What	is	Express.js
2.	 Installing	and	using	Express
3.	 What	are	Routes
4.	 Sample	Web	server	using	express.js

Chapter	6:	Node.js	with	MongoDB

1.	 Node.js	and	NoSQL	Databases
2.	 Using	MongoDB	and	Node.js
3.	 How	to	build	a	node	express	app	with	MongoDB	to	store	and	serve	content

Chapter	7:	Promise,	Generator,	Event	and	Filestream

1.	 What	are	promises

2.	 Callbacks	to	promises
3.	 Generating	promises	with	the	BlueBird	library
4.	 Creating	a	custom	promise
5.	 Callbacks	vs	generators
6.	 Filestream	in	Node.js
7.	 Emitting	Events

Chapter	8:	Testing	with	Jasmine

1.	 Overview	of	Jasmine	for	testing	Node.js	applications
2.	 How	to	use	Jasmine	to	test	Node.js	applications

Chapter	1:	Introduction

The	modern	web	application	has	really	come	a	long	way	over	the	years	with	the	introduction	of
many	popular	frameworks	such	as	bootstrap,	Angular	JS,	etc.	All	of	these	frameworks	are
based	on	the	popular	JavaScript	framework.

But	when	it	came	to	developing	server	based	applications	there	was	just	kind	of	a	void,	and
this	is	where	Node.js	came	into	the	picture.

Node.js	is	also	based	on	the	JavaScript	framework,	but	it	is	used	for	developing	server-based
applications.	While	going	through	the	entire	tutorial,	we	will	look	into	Node.js	in	detail	and
how	we	can	use	it	to	develop	server	based	applications.

What	is	node.js
Node.js	is	an	open-source,	cross-platform	runtime	environment	used	for	development	of
server-side	web	applications.	Node.js	applications	are	written	in	JavaScript	and	can	be	run	on
a	wide	variety	of	operating	systems.

Node.js	is	based	on	an	event-driven	architecture	and	a	non-blocking	Input/Output	API	that	is
designed	to	optimize	an	application's	throughput	and	scalability	for	real-time	web
applications.

Over	a	long	period	of	time,	the	framework	available	for	web	development	were	all	based	on	a
stateless	model.	A	stateless	model	is	where	the	data	generated	in	one	session	(such	as
information	about	user	settings	and	events	that	occurred)	is	not	maintained	for	usage	in	the
next	session	with	that	user.

A	lot	of	work	had	to	be	done	to	maintain	the	session	information	between	requests	for	a	user.
But	with	Node.js	there	is	finally	a	way	for	web	applications	to	have	a	real-time,	two-way
connections,	where	both	the	client	and	server	can	initiate	communication,	allowing	them	to
exchange	data	freely.

Why	use	Node.js
We	will	have	a	look	into	the	real	worth	of	Node.js	in	the	coming	chapters,	but	what	is	it	that
makes	this	framework	so	famous.	Over	the	years,	most	of	the	applications	were	based	on	a
stateless	request-response	framework.	In	these	sort	of	applications,	it	is	up	to	the	developer	to
ensure	the	right	code	was	put	in	place	to	ensure	the	state	of	web	session	was	maintained	while
the	user	was	working	with	the	system.

But	with	Node.js	web	applications,	you	can	now	work	in	real-time	and	have	a	2-way
communication.	The	state	is	maintained,	and	the	either	the	client	or	server	can	start	the
communication.

Features	of	Node.js
Let's	look	at	some	of	the	key	features	of	Node.js

1.	 Asynchronous	event	driven	IO	helps	concurrent	request	handling	–	This	is	probably	the
biggest	selling	points	of	Node.js.	This	feature	basically	means	that	if	a	request	is	received
by	Node	for	some	Input/Output	operation,	it	will	execute	the	operation	in	the	background
and	continue	with	processing	other	requests.

This	is	quite	different	from	other	programming	languages.	A	simple	example	of	this	is	given	in
the	code	below

var	fs	=	require('fs');

								fs.readFile("Sample.txt",function(error,data)

						{

																								console.log("Reading	Data	completed");

});

The	above	code	snippet	looks	at	reading	a	file	called	Sample.txt.	In	other	programming
languages,	the	next	line	of	processing	would	only	happen	once	the	entire	file	is	read.
But	in	the	case	of	Node.js	the	important	fraction	of	code	to	notice	is	the	declaration	of	the
function	('function(error,data)').	This	is	known	as	a	callback	function.
So	what	happens	here	is	that	the	file	reading	operation	will	start	in	the	background.	And
other	processing	can	happen	simultaneously	while	the	file	is	being	read.	Once	the	file	read
operation	is	completed,	this	anonymous	function	will	be	called	and	the	text	"Reading	Data
completed"	will	be	written	to	the	console	log.

2.	 Node	uses	the	V8	JavaScript	Runtime	engine,	the	one	which	is	used	by	Google	Chrome.
Node	has	a	wrapper	over	the	JavaScript	engine	which	makes	the	runtime	engine	much
faster	and	hence	processing	of	requests	within	Node	also	become	faster.

3.	 Handling	of	concurrent	requests	–	Another	key	functionality	of	Node	is	the	ability	to
handle	concurrent	connections	with	a	very	minimal	overhead	on	a	single	process.

4.	 The	Node.js	library	used	JavaScript	–	This	is	another	important	aspect	of	development	in
Node.js.	A	major	part	of	the	development	community	are	already	well	versed	in	javascript,
and	hence,	development	in	Node.js	becomes	easier	for	a	developer	who	knows	javascript.

5.	 There	are	an	Active	and	vibrant	community	for	the	Node.js	framework.	Because	of	the
active	community,	there	are	always	keys	updates	made	available	to	the	framework.	This
helps	to	keep	the	framework	always	up-to-date	with	the	latest	trends	in	web	development.

Who	uses	Node.js

Node.js	is	used	by	a	variety	of	large	companies.	Below	is	a	list	of	a	few	of	them.

Paypal	–	A	lot	of	sites	within	Paypal	have	also	started	the	transition	onto	Node.js.
LinkedIn	-	LinkedIn	is	using	Node.js	to	power	their	Mobile	Servers,	which	powers	the
iPhone,	Android,	and	Mobile	Web	products.
Mozilla	has	implemented	Node.js	to	support	browser	APIs	which	has	half	a	billion	installs.
Ebay	hosts	their	HTTP	API	service	in	Node.js

When	to	use	and	not	use	Node.js
Node.js	is	best	for	usage	in	streaming	or	event-based	real-time	applications	like

1.	 Chat	applications
2.	 Game	servers	–	Fast	and	high-performance	servers	that	need	to	processes	thousands	of

requests	at	a	time,	then	this	is	an	ideal	framework.
3.	 Good	for	collaborative	environment	–	This	is	good	for	environments	which	manage

document.	In	document	management	environment	you	will	have	multiple	people	who
post	their	documents	and	do	constant	changes	by	checking	out	and	checking	in
documents.	So	Node.js	is	good	for	these	environments	because	the	event	loop	in	Node.js
can	be	triggered	whenever	documents	are	changed	in	a	document	managed	environment.

4.	 Advertisement	servers	–	Again	here	you	could	have	thousands	of	request	to	pull
advertisements	from	the	central	server	and	Node.js	can	be	an	ideal	framework	to	handle
this.

5.	 Streaming	servers	–	Another	ideal	scenario	to	use	Node	is	for	multimedia	streaming
servers	wherein	clients	have	request's	to	pull	different	multimedia	contents	from	this
server.

Node.js	is	good	when	you	need	high	levels	of	concurrency	but	less	amount	of	dedicated	CPU
time.

Best	of	all,	since	Node.js	is	built	on	javascript,	it's	best	suited	when	you	build	client-side
applications	which	are	based	on	the	same	javascript	framework.

When	to	not	use	Node.js

Node.js	can	be	used	for	a	lot	of	applications	with	various	purpose,	the	only	scenario	where	it
should	not	be	used	is	if	there	are	long	processing	times	which	is	required	by	the	application.

Node	is	structured	to	be	single	threaded.	If	any	application	is	required	to	carry	out	some	long
running	calculations	in	the	background.	So	if	the	server	is	doing	some	calculation,	it	won't	be
able	to	process	any	other	requests.	As	discussed	above,	Node.js	is	best	when	processing	needs
less	dedicated	CPU	time.

Chapter	2:	Download	&	Install	Node.js

To	start	building	your	Node.js	applications,	the	first	step	is	the	installation	of	the	node.js
framework.	The	Node.js	framework	is	available	for	a	variety	of	operating	systems	right	from
Windows	to	Ubuntu	and	OS	X.	Once	the	Node.js	framework	is	installed	you	can	start	building
your	first	Node.js	applications.

Node.js	also	has	the	ability	to	embedded	external	functionality	or	extended	functionality	by
making	use	of	custom	modules.	These	modules	have	to	be	installed	separately.	An	example	of
a	module	is	the	MongoDB	module	which	allows	you	to	work	with	MongoDB	databases	from
your	Node.js	application.

How	to	install	node.js
The	first	steps	in	using	Node.js	is	the	installation	of	the	Node.js	libraries	on	the	client	system.
To	perform	the	installation	of	Node.js,	perform	the	below	steps;

Step	1)	Go	to	the	site	https://nodejs.org/en/download/	and	download	the	necessary
binary	files.	In	our	example,	we	are	going	to	the	download	the	32-bit	setup	files	for	Node.js.

Step	2)	Double	click	on	the	downloaded	.msi	file	to	start	the	installation.	Click	the	Run	button
in	the	first	screen	to	begin	the	installation.

Step	3)	In	the	next	screen,	click	the	"Next"	button	to	continue	with	the	installation

Step	4)	In	the	next	screen	Accept	the	license	agreement	and	click	on	the	Next	button.

Step	5)	In	the	next	screen,	choose	the	location	where	Node.js	needs	to	be	installed	and	then
click	on	the	Next	button.

1.	 First	enter	the	file	location	for	the	installation	of	Node.js.	This	is	where	the	files	for
Node.js	will	be	stored	after	the	installation.

2.	 Click	on	the	Next	button	to	proceed	ahead	with	the	installation.

Step	6)	Accept	the	default	components	and	click	on	the	next	button.

Step	7)	In	the	next	screen,	click	the	Install	button	to	start	the	installation.

Step	8)	Click	the	Finish	button	to	complete	the	installation.

Installing	node	through	a	package	manager
The	other	way	to	install	Node.js	on	any	client	machine	is	to	use	a	"package	manager".

On	windows,	the	node	package	manager	is	known	as	Chocolatey.	It	was	designed	to	be	a
decentralized	framework	for	quickly	installing	applications	and	tools	that	you	need.

To	install	Node.js	via	Chocolatey,	the	following	steps	need	to	be	performed.

Step	1)	Installing	Chocolatey	–	The	Chocolatey	website	(https://chocolatey.org/)	has	very
clear	instructions	on	how	this	framework	needs	to	be	installed.

The	first	steps	is	to	run	the	below	command	in	the	command	prompt	windows.	This
command	is	taken	from	the	Chocolatey	web	site	and	is	the	standard	command	for
installing	Node.js	via	Chocolatey.
The	below	command	is	a	PowerShell	command	which	calls	the	remote	PowerShell	script
on	the	Chocolatey	website.	This	command	needs	to	be	run	in	a	PowerShell	command
window.
This	PowerShell	script	does	all	the	necessary	work	of	downloading	the	required
components	and	installing	them	accordingly.

@powershell	-NoProfile	-ExecutionPolicy	Bypass	-Command	"iex	((new-object
wet.webclient).DownloadString('https://chocolatey.org/install.ps1'))"	&&	SET
PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin

Step	2)	The	next	step	is	to	install	Node.js	to	your	local	machine	using	the	Chocolatey,	package
manager.	This	can	be	done	by	running	the	below	command	in	the	command	prompt.

cinst	nodejs	install

If	the	installation	is	successful,	you	will	get	the	message	of	the	successful	installation	of
Node.js.

Note:	If	you	get	an	error	like
“C:\ProgramData\chocolatey\lib\libreoffice\tools\chocolateyInstall.ps1”	Then	manually
cleate	the	folder	in	the	path

Running	your	first	Hello	world	application	in
Node.js
Once	you	have	downloaded	and	installed	Node.js	on	your	computer,	lets	try	to	display	"Hello
World"	in	a	web	browser.

Create	file	Node.js	with	file	name	firstprogram.js	

var	http	=	require('http');

http.createServer(function	(req,	res)	{

				res.writeHead(200,	{'Content-Type':	'text/html'});

				res.end('Hello	World!');

}).listen(8080);

Code	Explanation:

1.	The	basic	functionality	of	the	"require"	function	is	that	it	reads	a	JavaScript	file,	executes	the
file,	and	then	proceeds	to	return	an	object.	Using	this	object,	one	can	then	use	the	various
functionalities	available	in	the	module	called	by	the	require	function.	So	in	our	case,	since	we
want	to	use	the	functionality	of	http	and	we	are	using	the	require(http)	command.

2.	In	this	2nd	line	of	code,	we	are	creating	a	server	application	which	is	based	on	a	simple
function.	This	function	is	called,	whenever	a	request	is	made	to	our	server	application.

3.	When	a	request	is	received,	we	are	asking	our	function	to	return	a	"Hello	World"	response	to
the	client.	The	writeHead	function	is	used	to	send	header	data		to	the	client	and	while	the		end
function	will	close	the	connection	to	the	client.

4.	We	are	then	using	the	.listen	function	to	make	our	server	application	listen	to	client	requests
on	port	no	8080.	You	can	specify	any	available	port	over	here.

Executing	the	code
Step	1)	Save	the	file	on	your	computer:	C:\Users\Your	Name\	firstprogram.js

Step	2)	In	the	command	prompt,	navigate	to	the	folder	where	the	fike	is	stored.		Enter	the
command	

Node	firstprogram.js

Step	3)	Now,	your	computer	works	as	a	server!	If	anyone	tries	to	access	your	computer	on
port	8080,	they	will	get	a	"Hello	World!"	message	in	return!

Step	4)	Start	your	internet	browser,	and	type	in	the	address:	http://localhost:8080

OutPut

Summary

We	have	seen	the	installation	of	Node.js	via	the	msi	installation	module	which	is	available
on	the	Node.js	website.	This	installation	installs	the	necessary	modules	which	are	required
to	run	a	Node.js	application	on	the	client.
Node.js	can	also	be	installed	via	a	package	manager.	The	package	manager	for	windows	is
known	as	Chocolatey.	By	running	some	simple	commands	in	the	command	prompt,	the
Chocolatey	package	manager	automatically	downloads	the	necessary	files	and	then
installs	them	on	the	client	machine.
A	simple	Node.js	application	consists	of	creating	a	server	which	listens	on	a	particular
port.	When	a	request	comes	to	the	server,	the	client	automatically	sends	a	'Hello	World'
response	to	the	client.

Chapter	3:	Modules

A	module	in	Node.js	is	a	logical	encapsulation	of	code	in	a	single	unit.	It's	always	a	good
programming	practice	to	always	segregate	code	in	such	a	way	that	makes	it	more	manageable
and	maintainable	for	future	purposes.	That's	where	modules	in	Node.js	comes	in	action.

Since	each	module	is	an	independent	entity	with	its	own	encapsulated	functionality,	it	can	be
managed	as	a	separate	unit	of	work.

During	this	tutorial,	we	will	see	how	we	can	make	use	of	modules	in	Node.js.

What	are	modules	in	Node.js?
As	stated	earlier,	modules	in	Node	js	are	a	way	of	encapsulating	code	in	a	separate	logical	unit.
There	are	many	readymade	modules	available	in	the	market	which	can	be	used	within	Node	js.

Below	are	some	of	the	popular	modules	which	are	used	in	a	Node	js	application

1.	 Express	framework	–	Express	is	a	minimal	and	flexible	Node	js	web	application
framework	that	provides	a	robust	set	of	features	for	the	web	and	mobile	applications.

2.	 Socket.io	-	Socket.IO	enables	real-time	bidirectional	event-based	communication.	This
module	is	good	for	creation	of	chatting	based	applications.

3.	 Jade	-	Jade	is	a	high-performance	template	engine	and	implemented	with	JavaScript	for
node	and	browsers.

4.	MongoDB	-	The	MongoDB	Node.js	driver	is	the	officially	supported	node.js	driver	for
MongoDB.

5.	 Restify	-	restify	is	a	lightweight	framework,	similar	to	express	for	building	REST	APIs
6.	 Bluebird	-	Bluebird	is	a	fully	featured	promise	library	with	focus	on	innovative	features

and	performance

Using	modules	in	Node.js
In	order	to	use	modules	in	a	Node.js	application,	they	first	need	to	be	installed	using	the	Node
package	manager.

The	below	command	line	shows	how	a	module	"express"	can	be	installed.

npm	install	express

The	above	command	will	download	the	necessary	files	which	contain	the	"express
modules"	and	take	care	of	the	installation	as	well
Once	the	module	has	been	installed,	in	order	to	use	a	module	in	a	Node.js	application	you
need	to	use	the	'require'	keyword.	This	keyword	is	a	way	that	Node.js	uses	to	incorporate
the	functionality	of	a	module	in	an	application.

Let's	look	at	an	example	how	we	can	use	the	"require"	keyword.	The	below	"Guru99"	code
example	shows	how	to	use	the	require	function

var	express=require('express');

var	app=express();

app.set('view	emngine','jade');

app.get('/',function(req,res)

{

});

var	server=app.listen(3000,function()

{

});

1.	 In	the	first	statement	itself,	we	are	using	the	"require"	keyword	to	include	the	express
module.	The	"express"	module	is	an	optimized	JavaScript	library	for	Node.js

development.	This	is	one	of	the	most	commonly	used	Node.js	modules.
2.	 After	the	module	is	included,	in	order	to	use	the	functionality	within	the	module,	an	object

needs	to	be	created.	Here	an	object	of	the	express	module	is	created.
3.	 Once	the	module	is	included	using	the	"require"	command	and	an	"object"	is	created,	the

required	methods	of	the	express	module	can	be	invoked.	Here	we	are	using	the	set
command	to	set	the	view	engine,	which	is	used	to	set	the	templating	engine	used	in
Node.js.	Note:-(Just	for	the	reader's	understanding,	a	templating	engine	is	an	approach
for	injecting	values	in	an	application	by	picking	up	data	from	data	files.	This	concept	is
pretty	famous	in	Angular	JS	wherein	the	curly	braces	{{	key	}}	is	used	to	substitutes	values
in	the	web	page.	The	word	'key'	in	the	curly	braces	basically	denotes	the	variable	which
will	be	substituted	by	a	value	when	the	page	is	displayed.)

4.	 Here	we	are	using	the	listen	method	to	make	the	application	listen	on	a	particular	port
number.

Creating	NPM	modules
Node.js	has	the	ability	to	create	custom	modules	and	allows	you	to	include	those	custom
modules	in	your	Node.js	application.

Let's	look	at	a	simple	example	of	how	we	can	create	our	own	module	and	include	that	module
in	our	main	application	file.	Our	module	will	just	do	a	simple	task	of	adding	2	numbers.

Let's	follow	the	below	steps	to	see	how	we	can	create	modules	and	include	them	in	our
application.

Step	1)	Create	a	file	called	"Addition.js"	and	include	the	below	code.	This	file	will	contain	the
logic	for	your	module.

Below	is	the	code	which	would	go	into	this	file;

var	exports=module.exports={};

exports.AddNumber=function(a,b)

{

return	a+b;

};

1.	 The	"exports"	keyword	is	used	to	ensure	that	the	functionality	defined	in	this	file	can
actually	be	accessed	by	other	files.

2.	 We	are	then	defining	a	function	called	'AddNumber'.	This	function	is	defined	to	take	2
parameters,	a	and	b.	The	function	is	added	to	the	module	"exports"	to	make	the	function
as	a	public	function	that	can	be	accessed	by	other	application	modules.

3.	 We	are	finally	making	our	function	return	the	added	value	of	the	parameters.

Now	that	we	have	created	our	custom	module	which	has	the	functionality	of	adding	2
numbers.	It's	now	time	to	create	an	application,	which	will	call	this	module.

In	the	next	step,	we	will	actually	see	how	to	create	the	application	which	will	call	our	custom
module.

Step	2)	Create	a	file	called	"app.js,"	which	is	your	main	application	file	and	add	the	below
code

var	Addition=require('./Addition.js');

console.log(Addition.AddNumber(1,2));

1.	 We	are	using	the	"require"	keyword	to	include	the	functionality	in	the	Addition.js	file.
2.	 Since	the	functions	in	the	Addition.js	file	are	now	accessible,	we	can	now	make	a	call	to

the	AddNumber	function.	In	the	function,	we	are	passing	2	numbers	as	parameters.	We
are	then	displaying	the	value	in	the	console.

Output:

When	you	run	the	app.js	file,	you	will	get	an	output	of	value	3	in	the	console	log.
The	result	is	because	the	AddNumber	function	in	the	Addition.js	file	was	called
successfully	and	the	returned	value	of	3	was	displayed	in	the	console.

Note:	-	We	are	not	using	the	"Node	package	manager"	as	of	yet	to	install	our	Addition.js
module.	This	is	because	the	module	is	already	part	of	our	project	on	the	local	machine.	The
Node	package	manager	comes	in	the	picture	when	you	publish	a	module	on	the	internet	which
we	see	in	the	subsequent	topic.

Extending	modules
When	creating	modules,	it	is	also	possible	to	extend	or	inherit	one	module	from	another.

In	modern	day	programming,	it's	quite	common	to	build	a	library	of	common	modules	and
then	extend	the	functionality	of	these	common	modules	if	required.

Let's	look	at	an	example	of	how	we	can	extend	modules	in	Node.js.

Step	1)	Create	the	base	module.

In	our	example,	create	a	file	called	"Tutorial.js"	and	place	the	below	code.

In	this	code,	we	are	just	creating	a	function	which	returns	a	string	to	the	console.	The	string
returned	is	"Guru99	Tutorial".

var	exports=module.exports={};

exports.tutorial=function()

{

console.log("Guru99	Tutotial")

}

1.	 The	exports	module	is	used	so	that	whatever	function	is	defined	in	this	file	can	be
available	in	other	modules	in	Node.js

2.	 We	are	creating	a	function	called	tutorial	which	can	be	used	in	other	Node.js	modules.
3.	 We	are	displaying	a	string	"Guru99	Tutorial"	in	the	console	when	this	function	is	called.

Now	that	we	have	created	our	base	module	called	Tutorial.js.	It's	now	time	to	create	another
module	which	will	extend	this	base	module.

We	will	explore	how	to	do	this	in	the	next	step.

Step	2)	Next	we	will	create	our	extended	module.	Create	a	new	file	called	"NodeTutorial.js"
and	place	the	below	code	in	the	file.

var	Tutor=require('./Tutorial.js');

exports.NodeTutorial=function()

{

console.log("Node	Tutorial")

function	pTutor()

{

var	PTutor=Tutor

PTutor.tutorial;

}

}

Note,	the	following	key	points	about	the	above	code

1.	 We	are	using	the	"require"	function	in	the	new	module	file	itself.	Since	we	are	going	to
extend	the	existing	module	file	"Tutorial.js",	we	need	to	first	include	it	before	extending	it.

2.	 We	then	create	a	function	called	"Nodetutorial."	This	function	will	do	2	things,

It	will	send	a	string	"Node	Tutorial"	to	the	console.
It	will	send	the	string	"Guru99	Tutorial"	from	the	base	module	"Tutorial.js"	to	our
extended	module	"NodeTutorial.js".

1.	 Here	we	are	carrying	out	the	first	step	to	send	a	string	to	"Node	Tutorial"	to	the	console.
2.	 The	next	step	is	to	call	the	function	from	our	Tutorial	module,	which	will	output	the	string

"Guru99	Tutorial"	to	the	console.log.

Step	3)	Create	your	main	app.js	file	which	is	your	main	application	file	and	include	the	below
code.

var	localTutor=require('./NodeTutorial.js');

localTutor.NodeTutorial();

localTutor.NodeTutorial.pTutor();

The	above	code	does	the	following	things;

1.	 Our	main	application	file	now	calls	the	"NodeTutorial"	module.
2.	 We	are	calling	the	"NodeTutorial"	function.	By	calling	this	function,	the	text	"Node

Tutorial"	will	be	displayed	in	the	console	log.
3.	 Since	we	have	extended	our	Tutorial.js	module	and	exposed	a	function	called	pTutor.	It

also	calls	the	tutorial	module	in	the	Tutorial.js	module,	and	the	text	"Guru99	Tutorial"	will
be	displayed	to	the	console	as	well.

Output:

Since	we	have	executed	the	above	app.js	code	using	Node,	we	will	get	the	following	output	in
the	console.log	file

Node	Tutorial
Guru99	Tutorial

Publishing	NPM(Node	Package	Manager)
Modules
One	can	publish	their	own	module	to	their	own	Github	repository.

By	publishing	your	module	to	a	central	location,	you	are	then	not	burdened	with	having	to
install	yourself	on	every	machine	that	requires	it.

Instead,	you	can	use	the	install	command	of	npm	and	install	your	published	npm	module.

The	following	steps	need	to	be	followed	to	publish	your	npm	module

Step	1)	Create	your	repository	on	GitHub	(an	online	code	repository	management	tool).	It	can
be	used	for	hosting	your	code	repositories.

Step	2)	You	need	to	tell	your	local	npm	installation	on	who	you	are.	Which	means	that	we
need	to	tell	npm	who	is	the	author	of	this	module,	what	is	the	email	id	and	any	company	URL,
which	is	available	which	needs	to	be	associated	with	this	id.	All	of	these	details	will	be	added	to
your	npm	module	when	it	is	published.

The	below	commands	sets	the	name,	email	and	URL	of	the	author	of	the	npm	module.

npm	set	init.author.name	"Guru99."

npm	set	init.author.email	"guru99@gmail.com"

npm	set	init.author.url	http://Guru99.com

Step	3)	The	next	step	is	to	login	into	npm	using	the	credentials	provided	in	the	last	step.	To
login,	you	need	to	use	the	below	command

npm	login	

Step	4)	Initialize	your	package	–	The	next	step	is	to	initialize	the	package	to	create	the
package.json	file.	This	can	be	done	by	issuing	the	below	command

npm	init

When	you	issue	the	above	command,	you	will	be	prompted	for	some	questions.	The	most
important	one	is	the	version	number	for	your	module.

Step	5)	Publish	to	GitHub	–	The	next	step	is	to	publish	your	source	files	to	GitHub.	This	can
be	done	by	running	the	below	commands.

git	add.

git	commit	-m	"Initial	release"

git	tag	v0.0.1	

git	push	origin	master	--tags

Step	6)	Publish	your	module	–	The	final	bit	is	to	publish	your	module	into	the	npm	registry.
This	is	done	via	the	below	command.

npm	publish

Managing	third	party	packages	with	npm
As	we	have	seen,	the	"Node	package	manager"	has	the	ability	to	manage	modules,	which	are
required	by	Node.js	applications.

Let's	look	at	some	of	the	functions	available	in	the	node	package	manager	for	managing
modules

1.	 Installing	packages	in	global	mode	–	Modules	can	be	installed	at	the	global	level,	which
just	basically	means	that	these	modules	would	be	available	for	all	Node.js	projects	on	a
local	machine.
The	example	below	shows	how	to	install	the	"express	module"	with	the	global	option.

npm	install	express	–global

The	global	option	in	the	above	statement	is	what	allows	the	modules	to	be	installed	at	a
global	level.

2.	 Listing	all	of	the	global	packages	installed	on	a	local	machine.	This	can	be	done	by
executing	the	below	command	in	the	command	prompt
npm	list	--global

Below	is	the	output	which	will	be	shown,	if	you	have	previously	installed	the	"express
module"	on	your	system.

Here	you	can	see	the	different	modules	installed	on	the	local	machine.

3.	 Installing	a	specific	version	of	a	package	–	Sometimes	there	may	be	a	requirement	to
install	just	the	specific	version	of	a	package.	Once	you	know	what	is	the	package	and	the
relevant	version	that	needs	to	be	installed,	you	can	use	the	npm	install	command	to	install
that	specific	version.
The	example	below	shows	how	to	install	the	module	called	underscore	with	a	specific
version	of	1.7.0

npm	install	underscore@1.7.0

4.	 Updating	a	package	version	–	Sometimes	you	may	have	an	older	version	of	a	package	in	a
system,	and	you	may	want	to	update	to	the	latest	one	available	in	the	market.	To	do	this
one	can	use	the	npm	update	command.
The	example	below	shows	how	to	update	the	underscore	package	to	the	latest	version

npm	update	underscore

5.	 Searching	for	a	particular	package	–	To	search	whether	a	particular	version	is	available	on
the	local	system	or	not,	you	can	use	the	search	command	of	npm.	The	example	below	will
check	if	the	express	module	is	installed	on	the	local	machine	or	not.
npm	search	express

6.	 Un-installing	a	package	–	The	same	in	which	you	can	install	a	package,	you	can	also	un-
install	a	package.	The	uninstallation	of	a	package	is	done	with	the	uninstallation
command	of	npm.
The	example	below	shows	how	to	uninstall	the	express	module

npm	uninstall	express

What	is	the	package.json	file
The	"package.json"	file	is	used	to	hold	the	metadata	about	a	particular	project.	This
information	provides	the	Node	package	manager	the	necessary	information	to	understand	how
the	project	should	be	handled	along	with	its	dependencies.

The	package.json	files	contains	information	such	as	the	project	description,	the	version	of	the
project	in	a	particular	distribution,	license	information,	and	configuration	data.

The	package.json	file	is	normally	located	at	the	root	directory	of	a	Node.js	project.

Let's	take	an	example	of	how	the	structure	of	a	module	looks	when	it	is	installed	via	npm.

The	below	snapshot	shows	the	file	contents	of	the	express	module	when	it	is	included	in	your
Node.js	project.	From	the	snapshot,	you	can	see	the	package.json	file	in	the	express	folder.

If	you	open	the	package.json	file	you	will	see	a	lot	of	information	in	the	file.

Below	is	a	snapshot	of	a	portion	of	the	file.	The	express@~4.13.1	mentions	the	version
number	of	the	express	module	being	used.

Summary

A	module	in	Node.js	is	a	logical	encapsulation	of	code	in	a	single	unit.	Separation	into
modules	makes	code	more	manageable	and	maintainable	for	future	purposes
There	are	many	modules	available	in	the	market	which	can	be	used	within	Node.js	such	as
express,	underscore,	mongoDB,	etc.
The	node	package	manager	(npm)	is	used	to	download	and	install	modules	which	can
then	be	used	in	a	Node.js	application.
One	can	create	custom	NPM	modules,	extend	these	modules	and	also	publish	these
modules.
The	Node	package	manager	has	a	complete	set	of	commands	to	manage	the	npm	modules
on	the	local	system	such	as	the	installation,	un-installation,	searching,	etc.
The	package.json	file	is	used	to	hold	the	entire	metadata	information	for	an	npm	module.

Chapter	4:	Create	Server	and	Get	Data

The	Node.js	framework	is	mostly	used	to	create	server	based	applications.	The	framework	can
easily	be	used	to	create	web	servers	which	can	serve	content	to	users.

There	are	a	variety	of	modules	such	as	the	"http"	and	"request"	module,	which	helps	in
processing	server	related	requests	in	the	web	server	space.	We	will	have	a	look	at	how	we	can
create	a	basic	web	server	application	using	Node	js.

Node	as	web	server	using	HTTP
Let's	look	at	an	example	of	how	to	create	and	run	our	first	Node	js	application.

Our	application	is	going	to	create	a	simple	server	module	which	will	listen	on	port	no	7000.	If
a	request	is	made	through	the	browser	on	this	port	no,	then	server	application	will	send	a
'Hello'	World'	response	to	the	client.

var	http=require('http')

var	server=http.createServer((function(request,response)

{

								response.writeHead(200,

								{"Content-Type"	:	"text/plain"));

								response.end("Hello	World\n");

}));

server.listen(7000);

Code	Explanation:

1.	 The	basic	functionality	of	the	require	function	is	that	it	reads	a	javascript	file,	executes	the
file,	and	then	proceeds	to	return	the	exports	object.	So	in	our	case,	since	we	want	to	use
the	functionality	of	the	http	module,	we	use	the	require	function	to	get	the	required
functions	from	the	http	module	so	that	it	can	be	used	in	our	application.

2.	 In	this	line	of	code,	we	are	creating	a	server	application	which	is	based	on	a	simple
function.	This	function	is	called	whenever	a	request	is	made	to	our	server	application.

3.	 When	a	request	is	received,	we	are	saying	to	send	a	response	with	a	header	type	of	'200.'
This	number	is	the	normal	response	which	is	sent	in	an	http	header	when	a	successful
response	is	sent	to	the	client.

4.	 In	the	response	itself,	we	are	sending	the	string	'Hello	World.'
5.	 We	are	then	using	the	server.listen	function	to	make	our	server	application	listen	to	client

requests	on	port	no	7000.	You	can	specify	any	available	port	over	here.

If	the	command	is	executed	successfully,	the	following	Output	will	be	shown	when	you	run
your	code	in	the	browser.

Output:

From	the	output,

You	can	clearly	see	that	if	we	browse	to	the	URL	of	localhost	on	port	7000,	you	will	see	the
string	'Hello	World'	displayed	in	the	page.
Because	in	our	code	we	have	mentioned	specifically	for	the	server	to	listen	on	port	no
7000,	we	are	able	to	view	the	output	when	browsing	to	this	url.

Here	is	the	code	for	your	reference

var	http=require('http')

var	server=http.createServer((function(request,response)

{

response.writeHead(200,

{"Content-Type"	:	"text/plain"));

response.end("Hello	World\n");

}));

server.listen(7000);

Handling	GET	Requests	in	Node.js
Making	a	GET	Request	to	get	the	data	from	another	site	is	relatively	very	simple	in	Node.js.	To
make	a	Get	request	in	the	node,	we	need	to	first	have	the	request	module	installed.	This	can	be
done	by	executing	the	following	line	in	the	command	line

npm	install	request

The	above	command	requests	the	Node	package	manager	to	download	the	required	request
modules	and	install	them	accordingly.

When	your	npm	module	has	been	installed	successfully,	the	command	line	will	show	the
installed	module	name	and	version:	<name>@<version>.

In	the	above	snapshot,	you	can	see	that	the	'request'	module	along	with	the	version	number
2.67.0	was	downloaded	and	installed.

Now	let's	see	the	code	which	can	make	use	of	this	'request'	command.

var	request	=	require("request");

								request("http://www.google.com",function(error,response,body)

								{

																console.log(body);

								});

Code	Explanation:

1.	 We	are	using	the	'require'	module	which	was	installed	in	the	last	step.	This	module	has	the
necessary	functions	which	can	be	used	to	make	GET	requests	to	websites.

2.	 We	are	making	a	GET	Request	to	www.google.com	and	subsequently	calling	a	function
when	a	response	is	received.	When	a	response	is	received	the	parameters(error,	response,
and	body)	will	have	the	following	values
a.	 Error	–	In	case	there	is	any	error	received	when	using	the	GET	request,	this	will	be

recorded	here.
b.	 Response-	The	response	will	have	the	http	headers	which	are	sent	back	in	the

response.
c.	 Body-	The	body	will	contain	the	entire	content	of	the	response	sent	by	Google.

3.	 In	this,	we	are	just	writing	the	content	received	in	the	body	parameter	to	the	console.log
file.	So	basically,	whatever	we	get	by	going	to	www.google.com	will	be	written	to	the
console.log.

Here	is	the	code	for	your	reference

var	request	=	require("request");

request("http://www.google.com",function(error,response,body)

{

console.log(body);

});

Summary

The	Node.js	framework	can	be	used	to	develop	web	servers	using	the	'http'	module.	The
application	can	be	made	to	listen	on	a	particular	port	and	send	a	response	to	the	client
whenever	a	request	is	made	to	the	application.
The	'request'	module	can	be	used	to	get	information	from	web	sites.	The	information
would	contain	the	entire	content	of	the	web	page	requested	from	the	relevant	web	site.

Chapter	5:	Node.js	with	Express

In	this	tutorial,	we	will	also	have	a	look	at	the	express	framework.	This	framework	is	built	in
such	a	way	that	it	acts	as	a	minimal	and	flexible	Node.js	web	application	framework,	providing
a	robust	set	of	features	for	building	single	and	multipage,	and	hybrid	web	application.

What	is	Express.js
Express.js	is	a	Node	js	web	application	server	framework,	which	is	specifically	designed	for
building	single-page,	multi-page,	and	hybrid	web	applications.

It	has	become	the	standard	server	framework	for	node.js.	Express	is	the	backend	part	of
something	known	as	the	MEAN	stack.

The	MEAN	is	a	free	and	open-source	JavaScript	software	stack	for	building	dynamic	web	sites
and	web	applications	which	has	the	following	components;

1)	MongoDB	-	The	standard	NoSQL	database

2)	Express.js	-	The	default	web	applications	framework

3)	Angular.js	-	The	JavaScript	MVC	framework	used	for	web	applications

4)	Node.js	-	Framework	used	for	scalable	server-side	and	networking	applications.

The	Express.js	framework	makes	it	very	easy	to	develop	an	application	which	can	be	used	to
handle	multiple	types	of	requests	like	the	GET,	PUT,	and	POST	and	DELETE	requests.

Installing	and	using	Express
Express	gets	installed	via	the	Node	Package	manager.	This	can	be	done	by	executing	the
following	line	in	the	command	line

npm	install	express

The	above	command	requests	the	Node	package	manager	to	download	the	required	express
modules	and	install	them	accordingly.

Let's	use	our	newly	installed	Express	framework	and	create	a	simple	"Hello	World"
application.

Our	application	is	going	to	create	a	simple	server	module	which	will	listen	on	port	no	3000.	In
our	example,	if	a	request	is	made	through	the	browser	on	this	port	no,	then	server	application
will	send	a	'Hello'	World'	response	to	the	client.

var	express=require('express');

var	app=express();

app.get('/',function(req,res)

{

								res.send('Hello	World!');

});

var	server=app.listen(3000,function()	{});

Code	Explanation:

1.	 In	our	first	line	of	code,	we	are	using	the	require	function	to	include	the	"express	module."
2.	 Before	we	can	start	using	the	express	module,	we	need	to	make	an	object	of	the	express

module.
3.	 Here	we	are	creating	a	callback	function.	This	function	will	be	called	whenever	anybody

browses	to	the	root	of	our	web	application	which	is	http://localhost:3000	.	The
callback	function	will	be	used	to	send	the	string	'Hello	World'	to	the	web	page.

4.	 In	the	callback	function,	we	are	sending	the	string	"Hello	World"	back	to	the	client.	The
'res'	parameter	is	used	to	send	content	back	to	the	web	page.	This	'res'	parameter	is
something	that	is	provided	by	the	'request'	module	to	enable	one	to	send	content	back	to
the	web	page.

5.	 We	are	then	using	the	listen	to	function	to	make	our	server	application	listen	to	client
requests	on	port	no	3000.	You	can	specify	any	available	port	over	here.3

If	the	command	is	executed	successfully,	the	following	Output	will	be	shown	when	you	run
your	code	in	the	browser.

Output:

From	the	output,

You	can	clearly	see	that	we	if	browse	to	the	URL	of	localhost	on	port	3000,	you	will	see	the
string	'Hello	World'	displayed	in	the	page.
Because	in	our	code	we	have	mentioned	specifically	for	the	server	to	listen	on	port	no
3000,	we	are	able	to	view	the	output	when	browsing	to	this	URL.

What	are	Routes
Routing	refers	for	determining	the	way	in	which	an	application	responds	to	a	client	request	to
a	particular	endpoint.

For	example,	a	client	can	make	a	GET,	POST,	PUT	or	DELETE	http	request	for	various	URL's
such	as	the	one's	shown	below;

http://localhost:3000/Books

http://localhost:3000/Students

In	the	above	example,

If	a	GET	request	is	made	for	the	first	URL,	then	the	response	should	ideally	be	a	list	of
books.
If	the	GET	request	is	made	for	the	second	URL,	then	the	response	should	ideally	be	a	list
of	Students.
So	based	on	the	URL	which	is	accessed,	a	different	functionality	on	the	web	server	will	be
invoked	and	accordingly	the	response	will	be	sent	to	the	client.	This	is	the	concept	of
routing.

Each	route	can	have	one	or	more	handler	functions,	which	are	executed	when	the	route	is
matched.

The	general	syntax	for	a	route	is	shown	below

app.METHOD(PATH,	HANDLER)

Wherein,

1)	app	is	an	instance	of	the	express	module

2)	METHOD	is	an	HTTP	request	method	(GET,	POST,	PUT	or	DELETE)

3)	PATH	is	a	path	on	the	server.

4)	HANDLER	is	the	function	executed	when	the	route	is	matched.

Let's	look	at	an	example	of	how	we	can	implement	routes	in	express.	Our	example	will	create	3
routes	as

1.	 A	/Node	route	which	will	display	the	string	"Tutorial	on	Node"	if	this	route	is	accessed
2.	 A	/Angular	route	which	will	display	the	string	"Tutorial	on	Angular"	if	this	route	is

accessed
3.	 A	default	route	/	which	will	display	the	string	"Welcome	to	Guru99	Tutorials."

Our	basic	code	will	remain	the	same	as	previous	examples.	The	below	snippet	is	an	add-on	to
show	case	how	routing	is	implemented.

app.route('/Node).get(function(req.res)

{

res.send("Tutorial	on	Node");

});

app.route('/Angular).get(function(req.res)

{

res.send("Tutorial	on	Angular");

});

app.get('/',function(req,res)

{

res.send('Welcome	to	Guru99	Tutorials');

});

Code	Explanation:

1.	 Here	we	are	defining	a	route	if	the	URL	http://localhost:3000/Node	is	selected	in	the
browser.	To	the	route,	we	are	attaching	a	callback	function	which	will	be	called	when	we
browse	to	the	Node	URL.

The	function	has	2	parameters.

The	main	parameter	we	will	be	using	is	the	'res'	parameter	which	can	be	used	to	send
information	back	to	the	client.
The	'req'	parameter	has	information	about	the	request	being	made.	Sometimes	additional
parameters	could	be	sent	as	part	of	the	request	being	made,	and	hence	the	'req'	parameter
can	be	used	to	find	the	additional	parameters	being	sent.

2.	 We	are	using	the	send	function	to	send	the	string	"Tutorial	on	Node"	back	to	the	client	if
the	Node	route	is	chosen.

3.	 Here	we	are	defining	a	route	if	the	URL	http://localhost:3000/Angular	is	selected	in
the	browser.	To	the	route,	we	are	attaching	a	callback	function	which	will	be	called	when
we	browse	to	the	Angular	URL.

4.	 We	are	using	the	send	function	to	send	the	string	"Tutorial	on	Angular"	back	to	the	client
if	the	Angular	route	is	chosen.

5.	 This	is	the	default	route	which	is	chosen	when	one	browses	to	the	route	of	the	application
–http://localhost:3000.	When	the	default	route	is	chosen,	the	message	"Welcome	to
Guru99	Tutorials"	will	be	sent	to	the	client.

If	the	command	is	executed	successfully,	the	following	Output	will	be	shown	when	you	run
your	code	in	the	browser.

Output:

From	the	output,

You	can	clearly	see	that	we	if	browse	to	the	URL	of	localhost	on	port	3000,	you	will	see	the
string	'Welcome	to	Guru99	Tutorials'	displayed	on	the	page.
Because	in	our	code,	we	have	mentioned	that	our	default	URL	would	display	this	message.

From	the	output,

You	can	see	that	if	the	URL	has	been	changed	to	/Node,	the	respective	Node	route	would
be	chosen	and	the	string	"Tutorial	On	Node'	is	displayed.

From	the	output,

You	can	see	that	if	the	URL	has	been	changed	to	/Angular,	the	respective	Node	route
would	be	chosen	and	the	string	"Tutorial	On	Angular"	is	displayed.

Sample	Web	server	using	express.js
From	our	above	example,	we	have	seen	how	we	can	decide	on	what	output	to	show	based	on
routing.	This	sort	of	routing	is	what	is	used	in	most	modern	day	web	applications.	The	other
part	of	a	web	server	is	about	using	templates	in	Node	js.

When	creating	quick	on-the-fly	Node	applications,	an	easy	and	fast	way	is	to	use	templates	for
the	application.	There	are	many	frameworks	available	in	the	market	for	making	templates.	In
our	case,	we	will	take	the	example	of	the	jade	framework	for	templating.

Jade	gets	installed	via	the	Node	Package	manager.	This	can	be	done	by	executing	the	following
line	in	the	command	line

npm	install	jade

The	above	command	requests	the	Node	package	manager	to	download	the	required	jade
modules	and	install	them	accordingly.

Let's	use	our	newly	installed	jade	framework	and	create	some	basic	templates.

Step	1)	The	first	step	is	to	create	a	jade	template.	Create	a	file	called	index.jade	and	insert	the
below	code

1.	 Here	we	are	specifying	that	the	title	of	the	page	will	be	changed	to	whatever	value	is
passed	when	this	template	gets	invoked.

2.	 We	are	also	specifying	that	the	text	in	the	header	tag	will	get	replaced	to	whatever	gets
passed	in	the	jade	template.

var	express=require('express');

var	app=express();

app.set('view	engine','jade');

app.get('/',function(req,res)

{

								res.render('index',

																{title:'Guru99',message:'Welcome'})

});

var	server=app.listen(3000,function()	{});

Code	Explanation:

1.	 The	first	thing	to	specify	in	the	application	is	"view	engine"	that	will	be	used	to	render	the
templates.	Since	we	are	going	to	use	jade	to	render	our	templates,	we	specify	this
accordingly.

2.	 The	render	function	is	used	to	render	a	web	page.	In	our	example,	we	are	rendering	the
template	(index.jade)	which	was	created	earlier.

3.	 We	are	passing	the	values	of	"Guru99"	and	"Welcome"	to	the	parameters	"title"	and
"message"	respectively.	These	values	will	be	replaced	by	the	'title',	and	'message'
parameters	declared	in	the	index.jade	template.

If	the	command	is	executed	successfully,	the	following	Output	will	be	shown	when	you	run
your	code	in	the	browser.

Output:

From	the	output,

We	can	see	that	the	title	of	the	page	gets	set	to	"Guru99"	and	the	header	of	the	page	gets
set	to	"Welcome."
This	is	because	of	the	jade	template	which	gets	invoked	in	our	node	js	application.

Summary

The	express	framework	is	the	most	common	framework	used	for	developing	Node	js
applications.	The	express	framework	is	built	on	top	of	the	node.js	framework	and	helps	in
fast-tracking	development	of	server	based	applications.
Routes	are	used	to	divert	users	to	different	parts	of	the	web	applications	based	on	the
request	made.	The	response	for	each	route	can	be	varied	depending	on	what	needs	to	be
shown	to	the	user.
Templates	can	be	used	to	inject	content	in	an	efficient	manner.	Jade	is	one	of	the	most
popular	templating	engines	used	in	Node.js	applications.

Chapter	6:	Node.js	with	MongoDB

Mostly	all	modern	day	web	applications	have	some	sort	of	data	storage	system	at	the	backend
to	store	data.	For	example,	if	you	take	the	case	of	a	web	shopping	application,	data	such	as	the
price	of	an	item	or	the	number	of	items	of	a	particular	type	would	be	stored	in	the	database.

The	Node	js	framework	has	the	ability	to	work	with	databases	which	are	commonly	required
by	most	modern	day	web	applications.	Node	js	can	work	with	both	relational	(such	as	Oracle
and	MS	SQL	Server)	and	non-relational	databases	(such	as	MongoDB	and	MySQL).	During
this	tutorial,	we	will	see	how	we	can	use	databases	from	within	Node	js	applications.

Node.js	and	NoSQL	Databases
Over	the	years,	NoSQL	database	such	as	MongoDB	and	MySQL	have	become	quite	popular	as
databases	for	storing	data.	The	ability	of	these	databases	to	store	any	sort	of	content	and
particularly	in	any	sort	of	format	is	what	makes	these	databases	so	famous.

Node.js	has	the	ability	to	work	with	both	MySQL	and	MongoDB	as	databases.	In	order	to	use
either	of	these	databases,	you	need	to	download	and	use	the	required	modules	using	the	Node
package	manager.

For	MySQL,	the	required	module	is	called	"mysql"	and	for	using	MongoDB	the	required
module	to	be	installed	is	"Mongoose."

With	these	modules,	you	can	perform	the	following	operations	in	Node.js

1.	 Manage	the	connection	pooling	–	Here	is	where	you	can	specify	the	number	of	MySQL
database	connections	that	should	be	maintained	and	saved	by	Node.js.

2.	 Create	and	close	a	connection	to	a	database.	In	either	case,	you	can	provide	a	callback
function	which	can	be	called	whenever	the	"create"	and	"close"	connection	methods	are
executed.

3.	 Queries	can	be	executed	to	get	data	from	respective	databases	to	retrieve	data.
4.	 Data	manipulation	such	as	inserting	data,	deleting	and	updating	data	can	also	be	achieved

with	these	modules.

For	the	remaining	topics,	we	will	look	at	how	we	can	work	with	MongoDB	databases	within
Node.js.

Using	MongoDB	and	Node.js
As	discussed	in	the	earlier	topic,	MongoDB	is	one	of	the	most	popular	databases	used	along
with	Node.js.

During	this	chapter,	we	will	see

How	we	can	establish	connections	with	a	MongoDB	database

How	we	can	perform	the	normal	operations	of	reading	data	from	a	database	as	well	as
inserting,	deleting	and	updating	records	in	a	mongoDB	database.

For	the	purpose	of	this	chapter,	let's	assume	that	we	have	the	below	mongoDB	data	in	place.

Database	name:	EmployeeDB

Collection	name:	Employee

Documents

{

								{Employeeid	:	1,	Employee	Name	:	Guru99},

								{Employeeid	:	2,	Employee	Name	:	Joe},

								{Employeeid	:	3,	Employee	Name	:	Martin},

}

1.	 Installing	the	NPM	Modules	To	access	Mongo	from	within	a	Node	application,	a
driver	is	required.	There	are	number	of	Mongo	drivers	available,	but	MongoDB	is	among
the	most	popular.	To	install	the	MongoDB	module,	run	the	below	command
npm	install	mongodb

2.	 Creating	and	closing	a	connection	to	a	MongoDB	database.	The	below	code
snippet	shows	how	to	create	and	close	a	connection	to	a	MongoDB	database.

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

MongoClient.connect(url,	function(err,	db)	{

						cursor.log("connected");	

								db.close();

				});

	

Code	Explanation:

1.	 The	first	step	is	to	include	the	mongoose	module	which	is	done	through	the	require
function.	Once	this	module	is	in	place,	we	can	use	the	necessary	functions	available	in	this
module	to	create	connections	to	the	database.

2.	 Next	we	specify	our	connect	string	to	the	database.	In	the	connect	string	there	are	3	key
values	which	are	passed.

The	first	is	'mongodb'	which	specifies	that	we	are	connecting	to	a	mongoDB	database.
The	next	is	'localhost'	which	means	we	are	connecting	to	a	database	on	the	local	machine.
The	next	is	'EmployeeDB'	which	is	the	name	of	the	database	defined	in	our	MongoDB
database.

3.	 The	next	step	is	to	actually	connect	to	our	database.	The	connect	function	takes	in	our
URL	and	has	the	facility	to	specify	a	callback	function.	It	will	be	called	when	the
connection	is	opened	to	the	database.	This	gives	us	the	opportunity	to	know	if	the
database	connection	was	successful	or	not.

4.	 In	the	function,	we	are	writing	the	string	"Connection	established"	to	the	console	to
indicate	that	a	successful	connection	was	created.

5.	 Finally,	we	are	closing	the	connection	using	the	db.close	statement.

If	the	above	code	is	executed	properly,	the	string	"Connected"	will	be	written	to	the	console	as
shown	below.

3.	 Querying	for	data	in	a	MongoDB	database	–	Using	the	MongoDB	driver	we	can	also
fetch	data	from	the	MongoDB	database.

The	below	section	will	show	how	we	can	use	the	driver	to	fetch	all	of	the	documents	from	our
Employee	collection	(This	is	the	collection	in	our	MongoDB	database	which	contains	all	the
employee	related	documents.	Each	document	has	an	object	id,	Employee	name	and	employee
id	to	define	the	values	of	the	document)	in	our	EmployeeDB	database.

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

MongoClient.connect(url,	function(err,	db)	{

				var	cursor	=	db.collection('Employee').find();

				cursor.each(function(err,	doc)	{

								console.log(doc);

				});

});	

Code	Explanation:

1.	 In	the	first	step,	we	are	creating	a	cursor	(A	cursor	is	a	pointer	which	is	used	to	point	to
the	various	records	fetched	from	a	database.	The	cursor	is	then	used	to	iterate	through	the
different	records	in	the	database.	Here	we	are	defining	a	variable	name	called	cursor
which	will	be	used	to	store	the	pointer	to	the	records	fetched	from	the	database.)	which
points	to	the	records	which	are	fetched	from	the	MongoDb	collection.	We	also	have	the
facility	of	specifying	the	collection	'Employee'	from	which	to	fetch	the	records.	The	find()
function	is	used	to	specify	that	we	want	to	retrieve	all	of	the	documents	from	the
MongoDB	collection.

2.	 We	are	now	iterating	through	our	cursor	and	for	each	document	in	the	cursor	we	are	going
to	execute	a	function.

3.	 Our	function	is	simply	going	to	print	the	contents	of	each	document	to	the	console.

Note:	-	It	is	also	possible	to	fetch	a	particular	record	from	a	database.	This	can	be	done	by
specifying	the	search	condition	in	the	find()	function.	For	example,	suppose	if	you	just	wanted
to	fetch	the	record	which	has	the	employee	name	as	Guru99	then	this	statement	can	be	written
as	follows	"var	cursor=db.collection('Employee').find()."

If	the	above	code	is	executed	successfully,	the	following	output	will	be	displayed	in	your
console.

Output:

From	the	output,

You	will	be	able	to	clearly	see	that	all	the	documents	from	the	collection	are	retrieved.	This
is	possible	by	using	the	find()	method	of	the	mongoDB	connection	(db)	and	iterating
through	all	of	the	documents	using	the	cursor.

4.	 Inserting	documents	in	a	collection	–	Documents	can	be	inserted	into	a	collection
using	the	insertOne	method	provided	by	the	MongoDB	library.	The	below	code	snippet
shows	how	we	can	insert	a	document	into	a	mongoDB	collection.

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

MongoClient.connect(url,	function(err,	db)	{

				db.collection('Employee').insertOne({

								Employeeid:	4,

								EmployeeName:	"NewEmployee"

				});

});	

Code	Explanation:

1.	 Here	we	are	using	the	insertOne	method	from	the	MongoDB	library	to	insert	a	document
into	the	Employee	collection.

2.	 We	are	specifying	the	document	details	of	what	needs	to	be	inserted	into	the	Employee
collection.

If	you	now	check	the	contents	of	your	MongoDB	database,	you	will	find	the	record	with
Employeeid	of	4	and	EmployeeName	of	"NewEmployee"	inserted	into	the	Employee	collection.

Note:	The	console	will	not	show	any	output	because	the	record	is	being	inserted	in	the
database	and	no	output	can	be	shown	here.

To	check	that	the	data	has	been	properly	inserted	in	the	database,	you	need	to	execute	the
following	commands	in	MongoDB

1.	 Use	EmployeeDB
2.	 db.Employee.find({Employeeid	:4	})

The	first	statement	ensures	that	you	are	connected	to	the	EmployeeDb	database.	The	second
statement	searches	for	the	record	which	has	the	employee	id	of	4.

5.	 Updating	documents	in	a	collection	-	Documents	can	be	updated	in	a	collection
using	the	updateOne	method	provided	by	the	MongoDB	library.	The	below	code	snippet
shows	how	to	update	a	document	in	a	mongoDB	collection.

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

MongoClient.connect(url,	function(err,	db)	{

				db.collection('Employee').updateOne({

								"EmployeeName":	"NewEmployee"

				},	{

								$set:	{

												"EmployeeName":	"Mohan"

								}

				});

});	

Code	Explanation:

1.	 Here	we	are	using	the	"updateOne"	method	from	the	MongoDB	library,	which	is	used	to
update	a	document	in	a	mongoDB	collection.

2.	 We	are	specifying	the	search	criteria	of	which	document	needs	to	be	updated.	In	our	case,
we	want	to	find	the	document	which	has	the	EmployeeName	of	"NewEmployee."

3.	 We	then	want	to	set	the	value	of	the	EmployeeName	of	the	document	from
"NewEmployee"	to	"Mohan".

If	you	now	check	the	contents	of	your	MongoDB	database,	you	will	find	the	record	with
Employeeid	of	4	and	EmployeeName	of	"Mohan"	updated	in	the	Employee	collection.

To	check	that	the	data	has	been	properly	updated	in	the	database,	you	need	to	execute	the
following	commands	in	MongoDB

1.	 Use	EmployeeDB
2.	 db.Employee.find({Employeeid	:4	})

The	first	statement	ensures	that	you	are	connected	to	the	EmployeeDb	database.	The	second
statement	searches	for	the	record	which	has	the	employee	id	of	4.

6.	 Deleting	documents	in	a	collection	-	Documents	can	be	deleted	in	a	collection	using
the	"deleteOne"	method	provided	by	the	MongoDB	library.	The	below	code	snippet	shows
how	to	delete	a	document	in	a	mongoDB	collection.

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

MongoClient.connect(url,	function(err,	db)	{

				db.collection('Employee').deleteOne(

								{

												"EmployeeName":	"Mohan"

								}

);

});

Code	Explanation:

1.	 Here	we	are	using	the	"deleteOne"	method	from	the	MongoDB	library,	which	is	used	to
delete	a	document	in	a	mongoDB	collection.

2.	 We	are	specifying	the	search	criteria	of	which	document	needs	to	be	deleted.	In	our	case,
we	want	to	find	the	document	which	has	the	EmployeeName	of	"Mohan"	and	delete	this
document.

If	you	now	check	the	contents	of	your	MongoDB	database,	you	will	find	the	record	with
Employeeid	of	4	and	EmployeeName	of	"Mohan"	deleted	from	the	Employee	collection.

To	check	that	the	data	has	been	properly	updated	in	the	database,	you	need	to	execute	the
following	commands	in	MongoDB

1.	 Use	EmployeeDB
2.	 db.Employee.find()

The	first	statement	ensures	that	you	are	connected	to	the	EmployeeDb	database.	The	second
statement	searches	and	display	all	of	the	records	in	the	employee	collection.	Here	you	can	see
if	the	record	has	been	deleted	or	not.

How	to	build	a	node	express	app	with	MongoDB
to	store	and	serve	content
Building	an	application	with	a	combination	of	both	using	express	and	MongoDB	is	quite
common	nowadays.

When	working	with	JavaScript	web	based	applications,	one	will	normally	here	of	the	term
MEAN	stack.

The	term	MEAN	stack	refers	to	a	collection	of	JavaScript	based	technologies	used	to
develop	web	applications.
MEAN	is	an	acronym	for	MongoDB,	ExpressJS,	AngularJS	and	Node.js.

Hence,	it's	always	good	to	understand	how	Node.js	and	MongoDB	work	together	to	deliver
applications	which	interact	with	backend	databases.

Let's	look	at	a	simple	example	of	how	we	can	use	"express"	and	"MongoDB"	together.	Our
example	will	make	use	of	the	same	Employee	collection	in	the	MongoDB	EmployeeDB
database.

We	will	now	incorporate	Express	to	display	the	data	on	our	web	page	when	it	is	requested	by
the	user.	When	our	application	runs	on	Node.js,	one	might	need	to	browse	to	the	URL
http://localhost:3000/Employeeid.

When	the	page	is	launched,	all	the	employee	id	in	the	Employee	collection	will	be	displayed.	So
let's	see	the	code	snippet	in	sections	which	will	allow	us	to	achieve	this.

Step	1)	Define	all	the	libraries	which	need	to	be	used	in	our	application,	which	in	our	case	is
both	the	MongoDB	and	express	library.

Code	Explanation:

1.	 We	are	defining	our	'express'	library,	which	will	be	used	in	our	application.
2.	 We	are	defining	our	'express'	library,	which	will	be	used	in	our	application	for	connecting

to	our	MongoDB	database.
3.	 Here	we	are	defining	the	URL	of	our	database	to	connect	to.
4.	 Finally,	we	are	defining	a	string	which	will	be	used	to	store	our	collection	of	employee	id

which	need	to	be	displayed	in	the	browser	later	on.

Step	2)	In	this	step,	we	are	now	going	to	get	all	of	the	records	in	our	'Employee'	collection	and
work	with	them	accordingly.

Code	Explanation:

1.	 We	are	creating	a	route	to	our	application	called	'Employeeid.'	So	whenever	anybody
browses	tohttp://localhost:3000/Employeeid	of	our	application,	the	code	snippet
defined	for	this	route	will	be	executed.

2.	 Here	we	are	getting	all	of	the	records	in	our	'Employee'	collection	through	the
db.collection('Employee').find()	command.	We	are	then	assigning	this	collection	to	a
variable	called	cursor.	Using	this	cursor	variable,	we	will	be	able	to	browse	through	all	of
the	records	of	the	collection.

3.	 We	are	now	using	the	cursor.each()	function	to	navigate	through	all	of	the	records	of	our
collection.	For	each	record,	we	are	going	to	define	a	code	snippet	on	what	to	do	when	each
record	is	accessed.

4.	 Finally,	we	see	that	if	the	record	returned	is	not	null,	then	we	are	taking	the	employee	via
the	command	"item.Employeeid".	The	rest	of	the	code	is	just	to	construct	a	proper	HTML
code	which	will	allow	our	results	to	be	displayed	properly	in	the	browser.

Step	3)	In	this	step,	we	are	going	to	send	our	output	to	the	web	page	and	make	our
application	listen	on	a	particular	port.

Code	Explanation:

1.	 Here	we	are	sending	the	entire	content	which	was	constructed	in	the	earlier	step	to	our
web	page.	The	'res'	parameter	allows	us	to	send	content	to	our	web	page	as	a	response.

2.	 We	are	making	our	entire	Node.js	application	listen	on	port	3000.

Output:

From	the	output,

It	clearly	shows	that	all	of	the	employeeid's	in	the	Employee	collection	were	retrieved.
This	is	because	we	use	the	MongoDB	driver	to	connect	to	the	database	and	retrieve	all	the
Employee	records	and	subsequently	used	"express"	to	display	the	records.

Here	is	the	code	for	your	reference

var	express	=	require('express');

var	app	=	express();

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

var	str	=	"";

app.route('/Employeeid').get(function(req,	res)

				{

								MongoClient.connect(url,	function(err,	db)	{

												var	cursor	=	db.collection('Employee').find();

												//noinspection	JSDeprecatedSymbols

												cursor.each(function(err,	item)	{

																if	(item	!=	null)	{

																				str	=	str	+	"				Employee	id		"	+	item.Employeeid	+	"";

																}

												});

												res.send(str);

												db.close();

								});

				});

var	server	=	app.listen(3000,	function()	{});	

Note:cursor.each	maybe	deprecated	based	on	version	of	your	MongoDB	driver.	You	can
append	//noinspection	JSDeprecatedSymbols	before	cursor.each	to	circumvent	the	issue.
Alternatively,	you	can	use	forEach.	Below	is	the	sample	code	using	forEach

var	express	=	require('express');

var	app	=	express();

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

var	str	=	"";

app.route('/Employeeid').get(function(req,	res)	{

			MongoClient.connect(url,	function(err,	db)	{

							var	collection	=	db.collection('Employee');

							var	cursor	=	collection.find({});

							str	=	"";

							cursor.forEach(function(item)	{

											if	(item	!=	null)	{

																			str	=	str	+	"				Employee	id		"	+	item.Employeeid	+	"";

											}

							},	function(err)	{

											res.send(str);

											db.close();

										}

);

			});

});

var	server	=	app.listen(8080,	function()	{});

Summary

Node.js	is	used	in	conjunction	with	NoSQL	databases	to	build	a	lot	of	modern	days	web
applications.	Some	of	the	common	databases	used	are	MySQL	and	MongoDB.
One	of	the	common	modules	used	for	working	with	MongoDB	databases	is	a	module
called	'MongoDB.'	This	module	is	installed	via	the	Node	package	manager.
With	the	MongoDB	module,	it's	possible	to	query	for	records	in	a	collection	and	perform
the	normal	update,	delete	and	insert	operations.
Finally,	one	of	the	modern	practices	is	to	use	the	express	framework	along	with	MongoDB
to	deliver	modern	day	applications.	The	Express	framework	can	make	use	of	the	data
returned	by	the	MongoDB	driver	and	display	the	data	to	the	user	in	the	web	page
accordingly.

Chapter	7:	Promise,	Generator,	Event	and
Filestream

In	previous	tutorials,	you	would	have	seen	callback	functions	which	are	used	for	Asynchronous
events.	But	sometimes	callback	functions	can	become	a	nightmare	when	they	start	becoming
nested,	and	the	program	starts	to	become	long	and	complex.

In	such	cases,	Node.js	provides	additional	features	to	rectify	problems	which	are	encountered
when	using	callbacks.	These	are	classified	into	Promises,	generates	and	events.	During	the
course	of	this	tutorial,	we	will	learn	and	see	these	concepts	in	further	detail.

What	are	promises
Before	we	start	with	promises,	let's	first	revisit	what	are	"callback"	functions	in	Node.js.	We
have	seen	these	callback	functions	a	lot	in	the	previous	chapters,	so	let's	quickly	go	through
one	of	them.

The	example	below	shows	a	code	snippet,	which	is	used	to	connect	to	a	MongoDB	database
and	perform	an	update	operation	on	one	of	the	records	in	the	database.

1.	 In	the	above	code,	the	part	of	the	function(err,db)	is	known	as	the	declaration	of	an
anonymous	or	callback	function.	When	the	MongoClient	creates	a	connection	to	the
MongoDB	database,	it	will	return	to	the	callback	function	once	the	connection	operation	is
completed.	So	in	a	sense,	the	connection	operations	happens	in	the	background,	and	when
it	is	done,	it	calls	our	callback	function.	Remember	that	this	is	one	of	the	key	points	of
Node.js	to	allow	many	operations	to	happen	concurrently	and	thus	not	block	any	user
from	performing	an	operation.

2.	 The	second	code	block	is	what	gets	executed	when	the	callback	function	is	actually	called.
The	callback	function	just	updates	one	record	in	our	MongoDB	database.

So	what	is	a	promise	then?	Well,	a	promise	is	just	an	enhancement	to	callback	functions	in
Node.js.	During	the	development	lifecycle,	there	may	be	an	instance	where	you	would	need	to

nest	multiple	callback	functions	together.	This	can	get	kind	of	messy	and	difficult	to	maintain
at	a	certain	point	in	time.	In	short,	a	promise	is	an	enhancement	to	callbacks	that	looks
towards	alleviating	these	problems.

The	basic	syntax	of	a	promise	is	shown	below;

var	promise	=	doSomethingAync()

promise.then(onFulfilled,	onRejected)

"doSomethingAync"	is	any	callback	or	asynchronous	function	which	does	some	sort	of
processing.
This	time,	when	defining	the	callback,	there	is	a	value	which	is	returned	called	a
"promise."
When	a	promise	is	returned,	it	can	have	2	outputs.	This	is	defined	by	the	'then	clause'.
Either	the	operation	can	be	a	success	which	is	denoted	by	the	'onFulfilled'	parameter.	Or	it
can	have	an	error	which	is	denoted	by	the	'onRejected'	parameter.

Note:	So	the	key	aspect	of	a	promise	is	the	return	value.	There	is	no	concept	of	a	return	value
when	working	with	normal	callbacks	in	Node.js.	Because	of	the	return	value,	we	have	more
control	of	how	the	callback	function	can	be	defined.

In	the	next	topic,	we	will	see	an	example	of	promises	and	how	they	benefit	from	callbacks.

Callbacks	to	promises
Now	let's	look	at	an	example	of	how	we	can	use	"promises"	from	within	a	Node.js	application.
In	order	to	use	promises	in	a	Node.js	application,	the	'promise'	module	must	first	be
downloaded	and	installed.

We	will	then	modify	our	code	as	shown	below,	which	updates	an	Employeename	in	the
'Employee'	collection	by	using	promises.

Step	1)	Installing	the	NPM	Modules

To	use	Promises	from	within	a	Node	JS	application,	the	promise	module	is	required.	To	install
the	promise	module,	run	the	below	command

npm	install	promise

Step	2)	Modify	the	code	to	include	promises

var	Promise	=	require('promise');

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

MongoClient.connect(url)

				.then(function(err,	db)	{

								db.collection('Employee').updateOne({

												"EmployeeName":	"Martin"

								},	{

												$set:	{

																"EmployeeName":	"Mohan"

												}

								});

				});	

Code	Explanation:-

1.	 The	first	part	is	to	include	the	'promise'	module	which	will	allow	us	to	use	the	promise
functionality	in	our	code.

2.	 We	can	now	append	the	'then'	function	to	our	MongoClient.connect	function.	So	what	this
does	is	that	when	the	connection	is	established	to	the	database,	we	need	to	execute	the
code	snippet	defined	thereafter.

3.	 Finally,	we	define	our	code	snippet	which	does	the	work	of	updating	EmployeeName	of
the	employee	with	the	name	of	"Martin"	to	"Mohan".

Note:-

If	you	now	check	the	contents	of	your	MongoDB	database,	you	will	find	that	if	a	record	with
EmployeeName	of	"Martin"	exists,	it	will	be	updated	to	"Mohan."

To	check	that	the	data	has	been	properly	inserted	in	the	database,	you	need	to	execute	the
following	commands	in	MongoDB

1.	 Use	EmployeeDB
2.	 db.Employee.find({EmployeeName	:Mohan	})

The	first	statement	ensures	that	you	are	connected	to	the	EmployeeDb	database.	The	second
statement	searches	for	the	record	which	has	the	employee	name	of	"Mohan".

Dealing	with	nested	promises
When	defining	promises,	it	needs	to	be	noted	that	the	"then"	method	itself	returns	a	promise.
So	in	a	sense,	promises	can	be	nested	or	chained	to	each	other.

In	the	example	below,	we	use	chaining	to	define	2	callback	functions,	both	of	which	insert	a
record	into	the	MongoDB	database.

(Note:	Chaining	is	a	concept	used	to	link	execution	of	methods	to	one	another.	Suppose	if
your	application	had	2	methods	called	'methodA'	and	'methodB.'	And	the	logic	was	such	that
'methodB'	should	be	called	after	'methodA,'	then	you	would	chain	the	execution	in	such	a	way
that	'methodB'	gets	called	directly	after	'methodA.')

The	key	thing	to	note	in	this	example	is	that	the	code	becomes	cleaner,	readable	and
maintainable	by	using	nested	promises.

var	Promise	=	require('promise');

var	MongoClient	=	require('mongodb').MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

MongoClient.connect(url)

.then(function(db)	{

				db.collection('Employee').insertOne({

								Employeeid:	4,

								EmployeeName:	"NewEmployee"

				})

				.then(function(db1)	{

								db1.collection('Employee').insertOne({

												Employeeid:	5,

												EmployeeName:	"NewEmployee1"

								})

				})

});

Code	Explanation:-

1.	 We	are	now	defining	2	"then"	clauses	which	get	executed	one	after	the	other.	In	the	first
then	clause,	we	are	passing	the	'db'	parameter	which	contains	our	database	connection.
We	are	then	using	the	collection	property	of	the	'db'	connection	to	insert	records	into	the
'Employee'	collection.	The	'insertOne'	method	is	used	to	insert	the	actual	document	into
the	Employee	collection.

2.	 We	are	then	using	the	2nd	then	clause	also	to	insert	another	record	into	the	database.

If	you	now	check	the	contents	of	your	MongoDB	database,	you	will	find	the	2	record's	inserted
into	the	MongoDB	database.

Generating	promises	with	the	BlueBird	library
Bluebird	is	a	fully-featured	Promise	library	for	JavaScript.	The	strongest	feature	of	Bluebird	is
that	it	allows	you	to	"promisify"	other	Node	modules	in	order	to	use	them	asynchronously.
Promisify	is	a	concept	applied	to	callback	functions.	This	concept	is	used	to	ensure	that	every
callback	function	which	is	called	returns	some	sort	of	value.

So	if	a	Node	JS	module	contains	a	callback	function	which	does	not	return	a	value,	if	we
Promisify	the	node	module,	all	the	function's	in	that	specific	node	module	would	automatically
be	modified	to	ensure	that	it	returns	a	value.

So	you	can	use	BlueBird	to	make	the	MongoDB	module	run	asynchronously.	This	just	adds
another	level	of	ease	when	writing	Node.js	applications.

We	will	look	at	an	example	of	how	to	use	the	bluebird	module.

Our	example	will	first	establish	a	connection	to	the	"Employee	collection"	in	the
"EmployeeDB"	database.	If	"then"	connection	is	established,	then	it	will	get	all	of	the	records
in	the	collection	and	display	them	in	the	console	accordingly.

Step	1)	Installing	the	NPM	Modules

To	use	Bluebird	from	within	a	Node	application,	the	Bluebird	module	is	required.	To	install
the	Bluebird	module,	run	the	below	command

npm	install	bluebird

Step	2)	The	next	step	is	to	include	the	bluebird	module	in	your	code	and	promisify	the	entire
MongoDB	module.	By	promisify,	we	mean	that	bluebird	will	ensure	that	each	and	every
method	defined	in	the	MongoDB	library	returns	a	promise.

Code	Explanation:-

1.	 The	require	command	is	used	to	include	the	Bluebird	library.
2.	 Use	Bluebird's	.promisifyAll()	method	to	create	an	async	version	of	every	method	the

MongoDB	module	provides.	This	ensures	that	each	method	of	the	MongoDB	module	will
run	in	the	background	and	ensure	that	a	promise	is	returned	for	each	method	call	in	the
MongoDB	library.

Step	3)	The	final	step	is	to	connect	to	our	database,	retrieve	all	the	records	in	our	collection
and	display	them	in	our	console	log.

Code	Explanation:-

1.	 You	will	notice	that	we	are	using	the	"connectAsync"	method	instead	of	the	normal
connection	method	for	connecting	to	the	database.	Bluebird	actually	adds	the	Async
keyword	to	each	method	in	the	MongoDB	library	to	distinguish	those	calls	which	return
promises	and	those	which	don't.	So	there	is	no	guarantee	that	methods	without	the	Async
word	will	return	a	value.

2.	 Similar	to	the	connectAsync	method,	we	are	now	using	the	findAsync	method	to	return	all
of	the	records	in	the	mongoDB	'Employee'	collection.

3.	 Finally,	if	the	findAsync	returns	a	successful	promise	we	then	define	a	block	of	code	to
iterate	through	each	record	in	the	collection	and	display	them	in	the	console	log.

If	the	above	steps	are	carried	out	properly,	all	of	the	documents	in	the	Employee	collection	will
be	displayed	in	the	console	as	shown	in	the	output	below.

Here	is	the	code	for	your	reference

var	Promise	=	require('bluebird');

var	mongoClient	=	Promise.promisifyAll(require('mongodb')).MongoClient;

var	url	=	'mongodb://localhost/EmployeeDB';

mongoClient.connectAsync('mongodb://localhost/EmployeeDB')

.then(function(db)	{

								return	db.collection('Employee').findAsync({})

				})

				.then(function(cursor)	{

								cursor.each(function(err,	doc)	{

												console.log(doc);

								})

				});	

Creating	a	custom	promise
A	custom	promise	can	be	created	by	using	a	node	module	called	'q.'	The	'q'	library	needs	to	be
downloaded	and	installed	using	the	node	package	manager.	After	using	the	'q'	library,	the
method	"denodeify"	can	be	called	which	will	cause	any	function	to	become	a	function	which
returns	a	promise.

In	the	example	below,	we	will	create	a	simple	function	called	"Add"	which	will	add	2	numbers.
We	will	convert	this	function	into	a	function	to	return	a	promise.

Once	that	is	done,	we	will	use	the	promise	returned	by	the	Add	function	to	display	a	message
in	the	console.log.

Let's	follow	the	below	steps	to	creating	our	custom	function	to	return	a	promise.

Step	1)	Installing	the	NPM	Modules

To	use	'q'	from	within	a	Node	JS	application,	the	'q'	module	is	required.	To	install	the	'q'
module,	run	the	below	command

npm	install	q

Step	2)	Define	the	following	code	which	will	be	used	to	create	the	custom	promise.

var	Q=	require('q');

function	Add()	{

								var	a,	b,	c;

								a=5;b=6;

								c=a+b;

}

								var	Display_promise=	Q.denodeify(Add);

var	promise=Add;

promise.then

{console.log("Addition	function	complete");}

Code	Explanation:-

1.	 The	first	bit	is	to	include	the	'q'	library	by	using	the	require	keyword.	By	using	this	library,
we	will	be	able	to	define	any	function	to	return	a	callback.

2.	 We	are	creating	a	function	called	Add	which	will	add	2	numbers	defined	in	variables	a	and
b.	The	sum	of	these	values	will	be	stored	in	variable	c.

3.	 We	are	then	using	the	q	library	to	denodeify	(the	method	used	to	convert	any	function
into	a	function	that	would	return	a	promise)	our	Add	function	or	in	otherwise	convert	our
Add	function	to	a	function	which	returns	a	promise.

4.	 We	now	call	our	"Add"	function	and	are	able	to	get	a	return	promise	value	because	of	the
prior	step	we	performed	of	denodeify	the	Add	function.

5.	 The	'then'	keyword	is	used	specify	that	if	the	function	is	executed	successfully	then	display
the	string	"Addition	function	completed"	in	the	console.log.

When	the	above	code	is	run,	the	output	"Addition	function	completed"	will	be	displayed	in	the
console.log	as	shown	below.

What	are	generators
Generators	have	become	quite	famous	in	Node.js	in	recent	times	and	that	probably	because	of
what	they	are	capable	of	doing.

Generators	are	function	executions	that	can	be	suspended	and	resumed	at	a	later	point.
Generators	are	useful	when	carrying	out	concepts	such	as	'lazy	execution'.	This	basically
means	that	by	suspending	execution	and	resuming	at	will,	we	are	able	to	pull	values	only
when	we	need	to.

Generators	have	the	below	2	key	methods

1.	 Yield	method	–	The	yield	method	is	called	in	a	function	to	halt	the	execution	of	the
function	at	the	specific	line	where	the	yield	method	is	called.

2.	 Next	method	–	This	method	is	called	from	the	main	application	to	resume	the	execution
of	a	function	which	has	a	yield	method.	The	execution	of	the	function	will	continue	till	the
next	yield	method	or	till	the	end	of	the	method.

Let's	look	at	an	example	of	how	generators	can	be	used.

In	our	example,	we	are	going	to	have	a	simple	Add	function	which	will	add	2	numbers,	but	we
will	keep	on	halting	the	method	execution	at	different	points	to	showcase	how	generators	can
be	used.

function*	Add(x)	{

			yield	x	+	1;

			var	y	=	yield(null);

			y	=	6

			return	x	+	y;

}

var	gen	=	Add(5);

gen.next();

gen.next();	

Code	Explanation:-

1.	 The	first	step	is	to	define	our	generator	"function".	Note	that	this	is	done	by	adding	a	"*"
to	the	function	keyword.	We	are	then	defining	a	function	called	Add	which	takes	a

parameter	of	x.
2.	 The	yield	keyword	is	a	specific	to	generators.	This	makes	it	a	powerful	construct	for

pausing	a	function	in	the	middle	of	anything.	So	here,	the	function	execution	will	be
halted	till	we	invoke	the	next()	function,	which	will	be	done	in	Step4.	At	this	point,	the
value	of	x	will	become	6	and	the	execution	of	the	function	will	be	stopped.

3.	 This	is	where	we	first	call	the	generator	function	and	send	the	value	of	5	to	our	Add
function.	This	value	will	be	substituted	in	the	x	parameter	of	our	Add	function.

4.	 Once	we	call	the	next()	function,	the	Add()	function	will	resume	the	execution.	When	the
next	statement	var	y=	yield(null)	will	be	executed,	the	Add()	function	will	again	stop
executing.

5.	 Now	after	calling	the	next()	function	again,	the	next	statements	will	run,	and	the
combined	value	of	x=6	and	y=6	will	be	added	and	returned.

Callbacks	vs.	generators
Generators	are	used	to	solve	the	problem	of	what	is	known	as	callback	hell.	Sometimes
callback	functions	become	so	nested	during	the	development	of	a	Node.js	application	that	it
just	becomes	too	complicated	to	use	callback	functions.

This	is	where	generators	are	useful.	One	of	the	most	common	examples	of	this	is	when	creating
timer	functions.

Let's	see	the	below	example	of	how	generators	can	prove	to	be	useful	over	callbacks.

Our	example	will	just	create	a	simple	time	delay	function.	We	would	then	want	to	call	this
function	incorporating	a	delay	of	1000,	2000	and	3000	ms.

Step	1)	Define	our	callback	function	with	the	necessary	time	delay	code.

Code	Explanation:-

1.	 Here	we	are	creating	a	function	called	Timedelay	with	a	parameter	called	ptime.	This	will
take	in	the	necessary	time	delay	we	want	to	introduce	in	our	application.

2.	 The	next	step	is	to	just	create	a	message,	which	will	be	displayed	to	the	user	saying	that
the	application	is	going	to	be	pause	for	these	many	numbers	of	milliseconds.

Step	2)	Now	let's	look	at	the	code	if	we	were	incorporating	callbacks.	Suppose	we	wanted	to
incorporate	callbacks	based	on	the	value	of	1000,	2000	and	3000	milliseconds,	the	below	code
shows	how	we	would	need	to	implement	these	using	callbacks.

Code	Explanation:-

1.	 We	are	calling	the	Timedelay	as	a	callback	with	1000	as	the	value.
2.	 Next	we	want	to	call	the	Timedelay	function	again	with	2000	as	the	value.
3.	 Finally,	we	want	to	call	the	Timedelay	function	again	with	3000	as	the	value.

From	the	above	code,	you	can	see	that	it	becomes	messier	as	we	want	to	start	calling	the
function	multiple	times.

Step	3)	Now	let's	see	how	to	implement	the	same	code	using	generators.	From	the	below	code
you	can	now	see	how	simple	it	has	become	to	implement	the	Timedelay	function	using
generators.

Code	Explanation:-

1.	 We	are	first	defining	a	generator	function	which	will	be	used	to	call	our	Timedelay
function.

2.	 We	are	calling	the	Yield	function	along	with	the	Timedelay	function	with	1000	as	the
parameter	value.

3.	 We	are	then	calling	the	Yield	function	along	with	the	Timedelay	function	with	2000	as	the
parameter	value.

4.	 Finally,	we	are	calling	the	Yield	function	along	with	the	Timedelay	function	with	3000	as
the	parameter	value.

Filestream	in	Node.js
Node	makes	extensive	use	of	streams	as	a	data	transfer	mechanism.

For	example,	when	you	output	anything	to	the	console	using	the	console.log	function,	you	are
actually	using	a	stream	to	send	the	data	to	the	console.

Node.js	also	has	the	ability	to	stream	data	from	files	so	that	they	can	be	read	and	written
appropriately.	We	will	now	look	at	an	example	of	how	we	can	use	streams	to	read	and	write
from	files.	We	need	to	follow	the	below-mentioned	steps	for	this	example

Step	1)	Create	a	file	called	data.txt	which	has	the	below	data.	Let	assume	this	file	is	stored	on
the	D	drive	of	our	local	machine.

Tutorial	on	Node.js

Introduction

Events

Generators

Data	Connectivity

Using	Jasmine

Step	2)	Write	the	relevant	code	which	will	make	use	of	streams	to	read	data	from	the	file.

var	fs	=	require("fs");

var	stream;

stream	=	fs.createReadStream("D://data.txt");

stream.on("data",	function(data)	{

				var	chunk	=	data.toString();

				console.log(chunk);

});	

Code	Explanation:-

1.	 We	first	need	to	include	the	'fs'	modules	which	contain	all	the	functionality	required	to
create	streams.

2.	 Next	we	create	a	readable	stream	by	using	the	method	–	createReadStream.	As	an	input,
we	give	the	location	of	our	data.txt	file.

3.	 The	steam.on	function	is	an	event	handler	and	in	it,	we	are	specifying	the	first	parameter
as	'data.'	This	means	that	whenever	data	comes	in	the	stream	from	the	file,	then	execute	a
callback	function.	In	our	case,	we	are	defining	a	callback	function	which	will	carry	out	2
basic	steps.	The	first	is	to	convert	the	data	read	from	the	file	as	a	string.	The	second	would
be	to	send	the	converted	string	as	an	output	to	the	console.

4.	 We	are	taking	each	chunk	of	data	which	is	read	from	the	data	stream	and	converting	it	to	a
string.

5.	 Finally,	we	are	sending	the	output	of	each	string	converted	chunk	to	the	console.

Output:

If	the	code	is	executed	properly,	you	will	see	the	above	output	in	the	console.	This	output
will	be	the	same	as	that	in	the	data.txt	file.

Writing	to	a	file

In	the	same	way,	that	we	create	a	read	stream,	we	can	also	create	a	write	stream	to	write	data
to	a	file.	Let's	first	create	an	empty	file	with	no	contents	called	data.txt.	Let's	assume	this	file	is
placed	in	the	D	drive	of	our	computer.

The	below	code	shows	how	we	can	write	data	to	the	file.

var	fs	=	require("fs");

var	stream;

stream	=	fs.createWriteStream("D://data.txt");

stream.write("Tutorial	on	Node.js")

stream.write("Introduction")

stream.write("Events")

stream.write("Generators")

stream.write("Data	Connectivity")

stream.write("Using	Jasmine")	

Code	Explanation:-

1.	 We	are	creating	a	writable	stream	by	using	the	method	–	createWriteStream.	As	an	input,
we	give	the	location	of	our	data.txt	file.

2.	 Next	we	used	the	stream.write	a	method	to	write	the	different	lines	of	text	to	our	text	file.
The	stream	will	take	care	of	writing	this	data	to	the	data.txt	file.

If	you	open	the	data.txt	file,	you	will	now	see	the	following	data	in	the	file

Tutorial	on	Node.js

Introduction

Events

Generators

Data	Connectivity

Using	Jasmine

Pipes	in	Node.js
Within	Node	applications,	streams	can	be	piped	together	using	the	pipe()	method,	which	takes
two	arguments:

A	Required	writable	stream	that	acts	as	the	destination	for	the	data	and
An	optional	object	used	to	pass	in	options.

A	typical	example	of	using	pipes,	if	you	want	to	transfer	data	from	one	file	to	the	other.

So	let's	see	an	example	of	how	we	can	transfer	data	from	one	file	to	the	other	using	pipes.

Step	1)	Create	a	file	called	datainput.txt	which	has	the	below	data.	Let	assume	this	file	is
stored	on	the	D	drive	of	our	local	machine.

Tutorial	on	Node.js

Introduction

Events

Generators

Data	Connectivity

Using	Jasmine

Step	2)	Create	a	blank	empty	file	called	dataOutput.txt	and	placed	it	on	the	D	drive	of	your
local	machine.

Step	3)	Write	the	below	code	to	carry	out	the	transfer	of	data	from	the	datainput.txt	file	to	the
dataOutput.txt	file.

Code	Explanation:-

1.	 We	are	first	creating	a	"readstream"	to	our	datainput.txt	file	which	contains	all	our	data
which	needs	to	be	transferred	to	the	new	file.

2.	 We	then	need	to	create	a	"writestream"	to	our	dataOutput.txt	file,	which	is	our	empty	file
and	is	the	destination	for	the	transfer	of	data	from	the	datainput.txt	file.

3.	 We	then	use	the	pipe	command	to	transfer	the	data	from	the	readstream	to	the	write
stream.	The	pipe	command	will	take	all	the	data	which	comes	into	the	readstream,	and
push	it	to	the	writestream.

If	you	now	open	the	dataOutput.txt	file,	you	will	see	all	the	data	which	was	present	in	the
datainput.txt	file.

Events	in	Node.js
Events	are	one	of	the	key	concepts	in	Node.js	and	sometimes	Node.js	is	referred	to	as	an
Event-driven	framework.

Basically,	an	event	is	something	that	happens.	For	example,	if	a	connection	is	established	to	a
database,	then	the	database	connection	event	is	triggered.	Event	driven	programming	is	to
create	functions	that	will	be	triggered	when	specific	events	are	triggered.

Let's	look	at	a	basic	example	of	defining	an	event	in	Node.js.

We	are	going	to	create	an	event	called	'data_received'.	When	this	event	is	triggered,	the	text
"data	received"	will	be	sent	to	the	console.

var	events	=	require('events');

var	eventEmitter	=	new	events.EventEmitter();

eventEmitter.on('data_received',	function()	{

				console.log('data	received	succesfully.');

});

eventEmitter.emit('data_received');	

Code	Explanation:-

1.	 Use	the	require	function	to	include	the	'events'	module.	With	this	module,	you	will	be	able
to	create	events	in	Node.js.

2.	 Create	a	new	events	emitter.	This	is	used	to	bind	the	event,	which	in	our	case	is
"data_received"	to	a	callback	function	which	is	defined	in	step3.

3.	 We	define	an	event-driven	function	which	says	that	if	in	case	the	"data_received"	event	is
triggered	then	we	should	output	the	text	"data_received"	to	the	console.

4.	 Finally,	we	do	have	a	manual	trigger	of	our	event	using	the	eventEmiter.emit	function.
This	will	trigger	the	data_received	event.

When	the	program	is	run,	the	text	"data	received"	will	be	sent	to	the	console	as	shown	below.

Emitting	Events
When	defining	events,	there	are	different	methods	for	events	which	can	be	invoked.	This	topic
focuses	on	looking	at	each	one	of	them	in	detail.

1.	 One	time	event	handlers

Sometimes	you	may	be	interested	in	reacting	to	an	event	only	the	first	time	it	occurs.	In	these
situations,	you	can	use	the	once()	method.

Let's	see	how	we	can	make	use	of	the	once	method	for	event	handlers.

Code	Explanation:-

1.	 Here	we	are	using	the	'once'	method	to	say	that	for	the	event	'data_received,'	the	callback
function	should	only	be	executed	once.

2.	 Here	we	are	manually	triggering	the	'data_received'	event.
3.	 When	the	'data_received'	event	is	triggered	again,	this	time,	nothing	will	happen.	This	is

because	of	the	first	step	where	we	said	that	the	event	could	only	be	triggered	once.

If	the	code	is	executed	properly,	the	output	in	the	log	will	be	'data_received	successfully'.	This
message	will	only	appear	once	in	the	console.

2.	 Inspecting	Event	Listeners

At	any	point	in	its	lifetime,	an	event	emitter	can	have	zero	or	more	listeners	attached	to	it.	The
listeners	for	each	event	type	can	be	inspected	in	several	ways.

If	you	are	interested	in	only	determining	the	number	of	attached	listeners,	then	look	no	further
than	the	EventEmitter.listenerCount()	method.

(Note:	Listeners	are	important	because	the	main	program	should	know	if	listeners	are	being
added	on	the	fly	to	an	event,	else	the	program	will	malfunction	because	additional	listeners
will	get	called.)

Code	Explanation:-

1.	 We	are	defining	an	eventEmitter	type	which	is	required	for	using	the	event-related
methods.

2.	 We	are	then	defining	an	object	called	emitter	which	will	be	used	to	define	our	event
handlers.

3.	 We	are	creating	2	events	handlers	which	basically	do	nothing.	This	is	kept	simple	for	our
example	just	to	show	how	the	listenerCount	method	works.

4.	 Now	when	you	invoke	the	listenerCount	method	on	our	data_received	event,	it	will	send
the	number	of	event	listeners	attached	to	this	event	in	the	console	log.

If	the	code	is	executed	properly,	the	value	of	2	will	be	shown	in	the	console	log.

3.	 The	newListener	Event

Each	time	a	new	event	handler	is	registered,	the	event	emitter	emits	a	newListener	event.	This
event	is	used	to	detect	new	event	handlers.	You	typically	use	newListener	event	when	you	need
to	allocate	resources	or	perform	some	action	for	each	new	event	handler.

var	events	=	require('events');

var	eventEmitter	=	events.EventEmitter;

var	emitter	=	new	eventEmitter();

emitter.on("newListener",	function(eventName,	listener)	{

				console.log("Added	listener	for	"	+	eventName	+	"	events");

});

emitter.on('data_received',	function()	{});

emitter.on('data_received',	function()	{});	

Code	Explanation:-

1.	 We	are	creating	a	new	event	handler	for	the	'newListener'	event.	So	whenever	a	new	event
handler	is	registered,	the	text	"Added	listener	for"	+	the	event	name	will	be	displayed	in
the	console.

2.	 Here	we	are	writing	to	the	console	the	text	"Added	listener	for"	+	the	event	name	for	each
event	registered.

3.	 We	are	defining	2	event	handlers	for	our	event	'data_received'.

If	the	above	code	is	executed	properly,	the	below	text	will	be	shown	in	the	console.	It	just
shows	that	the	'newListener'	event	handler	was	triggered	twice.

Added	listener	for	data_received	events

Added	listener	for	data_received	events

Summary

Using	callback	functions	in	Node.js	does	have	its	disadvantages.	Sometimes	during	the
process	of	development,	the	nested	use	of	callback	functions	can	make	the	code	messier
and	difficult	to	maintain.
Most	of	the	issues	with	nested	callback	functions	can	be	mitigated	with	the	use	of
promises	and	generators	in	node.js
A	Promise	is	a	value	returned	by	an	asynchronous	function	to	indicate	the	completion	of
the	processing	carried	out	by	the	asynchronous	function.
Promises	can	be	nested	within	each	other	to	make	code	look	better	and	easier	to	maintain
when	many	asynchronous	function	need	to	be	called	at	the	same	time.
Generators	can	also	be	used	to	alleviate	the	problems	with	nested	callbacks	and	assist	in
removing	what	is	known	as	the	callback	hell.	Generators	are	used	to	halt	the	processing	of
a	function.	This	is	accomplished	by	usage	of	the	'yield'	method	in	the	asynchronous
function.
Streams	are	used	in	Node.js	to	read	and	write	data	from	Input-Output	devices.	Node.js
makes	use	of	the	'fs'	library	to	create	readable	and	writable	streams	to	files.	These	streams
can	be	used	to	read	and	write	data	from	files.

Pipes	can	be	used	to	connect	multiple	streams	together.	One	of	the	most	common	example
is	to	pipe	the	read	and	write	stream	together	for	the	transfer	of	data	from	one	file	to	the
other.
Node.js	is	often	also	tagged	as	an	event	driven	framework,	and	it's	very	easy	to	define
events	in	Node.js.	Functions	can	be	defined	which	respond	to	these	events.
Events	also	expose	methods	for	responding	to	key	events.	For	example,	we	have	seen	the
once()	event	handler	which	can	be	used	to	make	sure	that	a	callback	function	is	only
executed	once	when	an	event	is	triggered.

Chapter	8:	Testing	with	Jasmine

Testing	is	a	key	element	to	any	application.	For	Node.js,	the	framework	available	for	testing	is
called	Jasmine.	In	early	2000,	there	was	a	framework	for	testing	javascript	applications	called
JsUnit.	Later	this	framework	got	upgraded	and	is	now	known	as	jasmine.

Jasmine	helps	in	automated	unit	testing,	something	which	has	become	quite	a	key	practice
when	developing	and	deploying	modern	day	web	applications.

In	this	tutorial,	you	will	learn	how	to	get	your	environment	setup	with	jasmine	and	how	you
can	start	testing	your	first	Node.js	application	with	jasmine.

Overview	of	Jasmine	for	testing	Node.js
applications
Jasmine	is	a	Behavior	Driven	Development(BDD)	testing	framework	for	JavaScript.	It
does	not	rely	on	browsers,	DOM,	or	any	JavaScript	framework.	Thus,	it's	suited	for	websites,
Node.js	projects,	or	anywhere	that	JavaScript	can	run.	To	start	using	Jasmine,	you	need	to	first
download	and	install	the	necessary	Jasmine	modules.

Next	you	would	need	to	initialize	your	environment	and	inspect	the	jasmine	configuration	file.
The	below	steps	shows	how	to	setup	Jasmine	in	your	environment

Step	1)	Installing	the	NPM	Modules

To	use	the	jasmine	framework	from	within	a	Node	application,	the	jasmine	module	needs	to	be
installed	first.	To	install	the	jasmine-node	module,	run	the	below	command.

npm	install	jasmine-node

Step	2)	Initializing	the	project	–	By	doing	this,	jasmine	creates	a	spec	directory	and
configuration	json	for	you.	The	spec	directory	is	used	to	store	all	your	test	files.	By	doing	this,
jasmine	will	know	where	all	your	tests	are,	and	then	can	execute	them	accordingly.	The	JSON
file	is	used	to	store	specific	configuration	information	about	jasmine.

To	initialize	the	jasmine	environment,	run	the	below	command

jasmine	init

Step	3)	Inspect	your	configuration	file.	The	configuration	file	will	be	stored	in	the
spec/support	folder	as	jasmine.json.	This	file	enumerates	the	source	files	and	spec	files	you
would	like	the	Jasmine	runner	to	include.

The	below	screenshot	shows	a	typical	example	of	the	package.json	file	for	jasmine.

1.	 Note	that	the	spec	directory	is	specified	here.	As	noted	earlier,	when	jasmine	runs	it
searches	for	all	tests	in	this	directory.

2.	 The	next	thing	to	note	is	the	spec_files	parameter	–	This	denotes	that	whatever	test	files
are	created	they	should	be	appended	with	the	'spec'	keyword.

How	to	use	Jasmine	to	test	Node.js	applications
In	order	to	use	Jasmine	to	test	Node.js	applications,	a	series	of	steps	needs	to	be	followed.

In	our	example	below,	we	are	going	to	define	a	module	which	add	2	numbers	which	need	to	be
tested.	We	will	then	define	a	separate	code	file	with	the	test	code	and	then	use	jasmine	to	test
the	Add	function	accordingly.

Step	1)	Define	the	code	which	needs	to	be	tested.	We	are	going	to	define	a	function	which	will
add	2	numbers	and	return	the	result.	This	code	is	going	to	be	written	in	a	file	called	"Add.js."

var	exports=module.exports={};

exports.AddNumber=function(a,b)

{

return	a+b;

};

Code	Explanation:

1.	 The	"exports"	keyword	is	used	to	ensure	that	the	functionality	defined	in	this	file	can
actually	be	accessed	by	other	files.

2.	 We	are	then	defining	a	function	called	'AddNumber.'	This	function	is	defined	to	take	2
parameters,	a	and	b.	The	function	is	added	to	the	module	"exports"	to	make	the	function
as	a	public	function	that	can	be	accessed	by	other	application	modules.

3.	 We	are	finally	making	our	function	return	the	added	value	of	the	parameters.

Step	2)	Next	we	need	to	define	our	jasmine	test	code	which	will	be	used	to	test	our	"Add"
function	In	the	Add.js	file.	The	below	code	needs	to	put	in	a	file	called	add-spec.js.

Note:	-	The	word	'spec'	needs	to	be	added	to	the	test	file	so	that	it	can	be	detected	by	jasmine.

var	app=require("../Add.js");

describe("Addition",function(){

it("The	function	should	add	2	numbers",function()	{

var	value=app.AddNumber(5,6);

expect(value).toBe(11);

});

});

Code	Explanation:

1.	 We	need	to	first	include	our	Add.js	file	so	that	we	can	test	the	'AddNumber'	function	in
this	file.

2.	 We	are	now	creating	our	test	module.	The	first	part	of	the	test	module	is	to	describe	a
method	which	basically	gives	a	name	for	our	test.	In	this	case,	the	name	of	our	test	is
"Addition".

3.	 The	next	bit	is	to	give	a	description	for	our	test	using	the	'it'	method.
4.	 We	now	invoke	our	Addnumber	method	and	send	in	2	parameters	5	and	6.	This	will	be

passed	to	our	Addnumber	method	in	the	App.js	file.	The	return	value	is	then	stored	in	a
variable	called	value.

5.	 The	final	step	is	to	do	the	comparison	or	our	actual	test.	Since	we	expect	the	value
returned	by	the	Addnumber	function	to	be	11,	we	define	this	using	the	method
expect(value).toBe(the	expected	value).

Output

1.	 In	order	to	run	the	test,	one	needs	to	run	the	command	jasmine.
2.	 The	below	screenshot	shows	that	after	the	jasmine	command	is	run	,	it	will	detect	that

there	is	a	test	called	add-spec.js	and	execute	that	test	accordingly.	If	there	are	any	errors
in	the	test,	it	will	be	shown	accordingly.

Summary

In	order	to	test	a	Node.js	application,	the	jasmine	framework	needs	to	be	installed	first.
This	is	done	by	using	the	Node	package	manager.
The	test	code	needs	to	be	written	in	a	separate	file,	and	the	word	'spec'	should	be
appended	to	the	file	name.	Only	if	this	is	done	will	jasmine	be	able	to	detect	that	a	file
needs	to	be	run.
To	run	the	test,	you	need	to	execute	the	jasmine	command.	This	will	find	all	files	which
have	the	'spec'	word	attached	to	it	and	run	the	file	accordingly.

One	Last	Thing….

DID	YOU	ENJOY	THE	BOOK?
IF	SO,	THEN	LET	ME	KNOW	LEAVING	A	REVIEW	ON	AMAZON!	Reviews	are	lifeblood
of	independent	authors.	I	would	appreciate	even	a	few	words	and	rating	if	that’s	all	you
have	time	for

IF	YOU	DID	NOT	LIKE	THIS	BOOK,	THEN	PLEASE	TELL	ME!	EMAIL	me	and	Let	me
know	what	you	didn’t	like!	Perphase	I	can	change	it.	In	today’s	world	a	book	doesn’t	have
to	be	stagnant,	it	can	improve	with	time	and	feedback	from	readers	like	you.	You	can
impact	this	book,	and	I	welcome	your	feedback.	Help	make	this	book	better	for	everyone!

http://amzn.to/2vCEY1k
mailto:support@guru99.com

More	Books	-	

Learn	AngularJS	in	1	Day:	Complete	Angular	JS	Guide	with	Examples

BUY	NOW

Learn	MongoDB	in	1	Day:	Definitive	Guide	to	Master	Mongo	DB

http://amzn.to/2w8cmhE

BUY	NOW

Learn	Java	in	1	Day:	Complete	Beginners	Guide

BUY	NOW

http://amzn.to/2idape4
http://amzn.to/2idape4
http://amzn.to/2han5hw

Learn	SQL	in	1	Day:	Definitive	Guide	to	Learn	SQL	for	Beginners

		
BUY	NOW

Learn	PL/SQL	in	1	Day:	Definitive	Guide	to	Learn	PL/SQL	for	Beginners

BUY	NOW

Learn	Python	in	1	Day:	Complete	Python	Guide	with	Examples

http://amzn.to/2qaUsUv
http://amzn.to/2gfC5xn

BUY	NOW

Learn	PHP	in	1	Day:	Definitive	Guide	to	Learn	&	Master	PHP	programming

BUY	NOW

Learn	JSP	in	1	Day:	Definitive	Guide	to	Learn	JSP	for	Beginners

http://amzn.to/2gfs1EP
http://amzn.to/2gZThpR

BUY	NOW

Learn	ASP.Net	in	1	Day:	Definitive	Guide	to	Learn	ASP.Net	for	Beginners

BUY	NOW

Learn	SQLite	in	1	Day:	Definitive	Guide	to	Learn	SQLite	for	Beginners

http://amzn.to/2h9wAjI
http://amzn.to/2gfxKKW

BUY	NOW

Learn	Linux	in	1	Day:	Complete	Linux	Guide	with	Examples

BUY	NOW

http://amzn.to/2vafcCj
http://amzn.to/2gZGjbE

	Learn NodeJS in 1 Day
	By Krishna Rungta

	Table Of Content
	Chapter 1: Introduction
	Chapter 2: Download & Install Node.js
	Chapter 3: Modules
	Chapter 4: Create Server and Get Data
	Chapter 5: Node.js with Express
	Chapter 6: Node.js with MongoDB
	Chapter 7: Promise, Generator, Event and Filestream
	Chapter 8: Testing with Jasmine

	What is node.js
	Why use Node.js
	Features of Node.js
	Who uses Node.js

	When to use and not use Node.js
	How to install node.js
	Installing node through a package manager
	Running your first Hello world application in Node.js
	What are modules in Node.js?
	Using modules in Node.js
	Creating NPM modules
	Extending modules
	Managing third party packages with npm
	What is the package.json file
	Node as web server using HTTP
	Handling GET Requests in Node.js
	What is Express.js
	Installing and using Express
	What are Routes
	Sample Web server using express.js
	Node.js and NoSQL Databases
	Using MongoDB and Node.js
	How to build a node express app with MongoDB to store and serve content
	What are promises
	Callbacks to promises
	Dealing with nested promises
	Generating promises with the BlueBird library
	Creating a custom promise
	What are generators
	Callbacks vs. generators
	Filestream in Node.js
	Pipes in Node.js
	Events in Node.js
	Emitting Events
	Overview of Jasmine for testing Node.js applications
	How to use Jasmine to test Node.js applications
	One Last Thing….
	DID YOU ENJOY THE BOOK?

