

INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES

COURSES AND LECTURES - No.284

ALGORITHM

FOR

DESIGN

COMPUTER SYSTEM DESIGN

EDITED BY

G. AUSIELLO

UNIVERSIT A' DI ROMA

M. LUCERTINI

UNIVERSIT A' Dl ROMA

P. SERAFINI

UNIVERSIT A' DI UDINE

SPRINGER-VERLAG WIEN GMBH

This volume contains 52 illustrations

This work is subject to copyright.

All rights are reserved,

whether the whole or part of the material is concerned

specifically those of translation, reprinting, re·use of illustrations,

broadcasting, reproduction by photocopying machine

or similar means, and storage in data banks.

© 1984 by Springer-Verlag Wien

Originally published by Springer Verlag Wien-New York in 1984

ISBN 978-3-211-81816-9 ISBN 978-3-7091-4338-4 (eBook)

DOI 10.1007/978-3-7091-4338-4

PREFACE

For a long time the design of data processing systems has been mainly based on
experience and practical considerations more than on formal quantitative approaches. This
was true both in the design of computer architecture and in the design of software systems
such as operating systems and database systems. Two relevant exceptions were the early
studies in switching theory, concerned with such problems as minimization and reliability,
on the one hand, and on the other hand, the general mathematical approach to computer
system modeling and performance evaluation. More recently, the evaluation of distributed
computing related to technological advances in microelectronics, has increased the need for
quantitative studies for optimizing the design of computer systems.

As the complexity of computer systems grows, the need for formalization and
theoretical analysis is becoming more and more important. The development of formal
semantics has provided tools for dealing with correctness and other desirable properties of
distributed computing, the development of formal models in different areas (such as
distributed system layout, data base design, computer network topology, scheduling and
routing) has provided tools for dealing with efficiency and performance optimization;
advances in theory of algorithms design and technological increases in computing power
have led to the feasibility of the exact or well approximated solution of large scale
optimization problems; finally advances in the theory of computing and analysis of
algorithms and data structures have led to a new approach to the design of algorithms for
tbe efficient solution of bard problems related to distributed processing systems. Such
problems as optimal memory management, optimal design of computer networks and
multiprocessor systems, optimal layout of VLSI systems, efficient exploitation of parallel
computing systems, optimal management of database schemes, concurrency control, bave
been thoroughly investigated recently with relevant practical results.

Starting from previous experience in the area of anaZysis and design of algorithms and
their application in combinatorial optimization (a School held in September 1979(1) and a
Workshop held in September 1982 (2) both organized by tbe Department of Computer and
System Science of the University of Rome and CISM in Udine) it appeared to be of great
relevance in computer science to devote a Scbool to tbe interactions between form,ll
approacbes to computer system design and tbe tbeory ofalgoritbms.

Tberefore in July 1983, a School on "Algoritbm design for computer system design"
was then held in Udine under tbe sponsorsbip of tbe International Centre for Mecbanical
Sciences and the Department of Computer and System Science of tbe University of Rome,
and witb tbe financial support of UNHSCO and tbe Italian Researcb Council, CNR, tbrough
its Committee for Matbematics.

The aim of the School was to provide young postgraduates and junior professionals in
Computer Science with an uptodate algorithmic approach to the design and optimization of
computer systems. Some of the leading'scientists in the field were invited to deliver lectures
on the state of the art in the following areas: storage allocation and packing problems (E.G.
Coffman), design and implementation of VLSI systems (F. Preparata, c.K. Wong),
multiprocessor system design (G. Cioffi), network design (F. Maffioli), concurrency control
(D.P. Bovet). Other topics related to basic algorithmic and combinatorial problems in
computer system modeling and design were presented by the organizers (c. Papadimitriou,
G. Ausiello, M. Lucertini).

This volume presents a collection of unpublished papers referring to some of the issues
discussed during the School.

The first part of the volume, devoted to combinatorial problems in computer system
design, includes an introduction to the complexity of the exact and approximate solution of
combinatorial problems (G. Ausiello), a survey on graph optimization and integer
programming models of task assignment problems in distributed systems (M. Lucertini), an
extended state of the art paper on approximation algorithms for bin packing (E.G. Coffman,
M. R. Garey, D.S. Johnson), a paper on topological network design under multiple non
simultaneous demands (M. Lucertini, G. Paletta) and a paper on minimal representation of
directed hypergraphs and their applications to data base design (G. Ausiello, A.D'Atri, D.
Sacca).

The second part presents papers devoted to specific issues in the optimal design of
parallel computer systems and includes an introduction on parallel computer models (G.
Ausiello, P. Bertolazzi), a state of the art paper on structural organization of MIMD
machines (G. Cioffi), a paper on a new proposal for a VLSI sorter (C.K. Wong) and a
selected and annotated bibliography on the theory of VLSI layout (F. Preparata).

G. Ausiello, M. Lucertini, P. Serafini

(I) G. Ausicllo, M. Lucertini Eds. "Analysis and design of algorithms in eomhinatorial optimization·', CISM Courses and
Lectures N. 266, Springer-"erlag, New York, 1911t.

(2) G. Ausicllo, M. Lucertini Ells. "Analysis and design of algorithms for comhinatorial prohlems", to appear in Annals of
Discrete Mathematics, North Holland, 19114.

CONTENTS

Preface

PART I - COMBINATORIAL PROBLEMS IN COMPUTER SYSTEM DESIGN

Complexity of Exact and Approximate Solution of Problems - An Introduction
by G. Ausiello 1

Models of the Task Assignment Problem in Distributed Systems
by M. Lucertini 31

Approximation Algorithms for Bin-Packing - An Updated Suroey
by E.G. Coffman, Jr., M.R. Garey, D.S. Johnson 49

Network Design with Non Simultaneous Flows
by M. Lucertini, G. Paletta .107

Minimal Representations of Directed Hypergraphs and their Application to Database Design
by G. Ausiello, A. D'Atri, D. Sacca 125

PART II - OPTIMAL DESIGN OF PARALLEL COMPUTING SYSTEMS

Parallel Computer Models - An Introduction
by G. Ausiello, P. Bertolazzi 161

Functional Organization of MIMD Machines
by G. Cioffi183

A VLSI Sorter
by C.K. Wong

Towards a Theory of VLSl Layout - A Selected Annotated Bibliography

........ 211

by F.P. Preparata .229

PART I

COMBINATORIAL PROBLEMS IN

COMPUTER SYSTEM DESIGN

COMPLEXITY OF
EXACT AND APPROXIMATE SOLUTION OF

PROBLEMS. AN INTRODUCTION(*)

Giorgio Ausiello
Dipartimento di Informatica e Sistemistica

Universiti di Roma "La Sapienza"

ADstract. UP-complete optimization problems are frequently

encountered in the optimal design of computer systems,o~erat

ing systems, databases etc. In this paper a discussion of

the basic techniques which lead to the characterization of

the complexity of optimization problems is presented. The

class of optimization problems which are associated to NP

complete decision problems is then ~resented and various algo

rith~ic techniques for the approximate solution of such pro

olems are introduced. Finally necessary and sufficient con

ditions for the approximability of optimization problems are

given.

(*) This research has been partially supported by MPI Nat.

Proj. on "Theory of algorithms".

2 G. Ausiello

1. Il~TRODUCTION: THE PARADYGr.1 OF COMPLEXITY ANALYSIS

In the design and optimization of computer systems,

operating systems, database systems, optimization problems

which require exponential time to be solved often occur.

This happens in a wide variety of cases: multiprocessor

scheduling, task assignment in distributed computing, file

assignment in distributed databases, VLSI layout problems,

computer network design problems, storage allocation, con

currency control problems etc. Many of these problems will

be discussed in other contributions in this volume. For

these problems no polynomial time algorithm is known until

now and, probably, no such algorithm exists. For this reason

these problems are considered to be computationally "intrac

table" and algorithms for determining their approximate solu

tion have to be designed.

The assumption that a polynomially solvable problem is

considered "tractable" (even if it may require time n 100)

and that a problem which cannot be solved in polynomial time

is considered "intractable" (even if it does require a slowly

growing exponential time such as 2n / 100 or even non exponen

tial time such as n log n) is a natural, though rough, approx

imation to the characterization of the computational complex

ity of a problem. In fact, on one side, if we have no a

priori information on the size of the instance of the pro

blem that we have to solve we have no other choice than re

ferring to the asymptotic behaviour if our algorithms: on

the other side, the difference between a polynomial running

time and an exponential running time is so dramatic that only

problems of polynomial complexity would benefit of improve

ments in computer technology. For example, a very strong im

provement in computer efficiency, say 1000 times, would in-

Complexity of Exact and Approximate Solution of Problems

crease ten times the size of the largest instance that we

can solve in one hour of computer time if the running time

is n 3 , while such size would be increased only by ten if the

running time is 2n.

Taking into account the single distribution between

tractable and intractable problems, when given a practical

problem P to be solved we usually take the following para

dygmatic behaviour:

i) Determine complexity of P by establishing

upper bound, that is amount of computer time

sufficient to solve the problem by means

of some algorithm as a function of the in

put size,

lower bound, that is amount of computer time

needed to solve the Droblem by whatever

alqorithm, due to the intrinsic difficulty

of the nroblem.

ii) If P is tractable try to find the best possible algo

rithm from the point of view of the

- worst case behaviour or of the

- average case behaviour

according to the needs of the application.

iii) If P has not been recognized to be tractable (no poly

nomial algorithm has been found) then check whether P

is NP-complete, that is whether it belongs to the class

which is considered to be the threshold between tracta

bility and intractability. To this end, check whether

3

4 G. Ausiello

- P is solvable in polynomial time by means of a

nondeterministic algorithm (P E NP)

there exists a problem P I which is already known

to be NP-complete and such that pI may be

reduced to P.

iv) If P has been recognized to be intractable (e.g. it has

an exponential lower bound, or it is NP-complete and,

hence, probably intractable) then

- try to find an (-approximate algorithm, that

is an algorithm which provides a solution

with a relative error smaller than (with

respect to the optimal solution

- determine the complexity of the approximate pro

blem

v) If the approximate problem is also intractable (e.g.

even to determine an (-approximate solution is an NP

complete problem)

- try to find a heuristic algorithm which efficien

tly provides the exact or a good approximate

solution sufficiently often

- deter-mine efficiency and quality of heuristics
in the worst case or in the average.

The various steps of this procedure leading to the cha

racterization of the complexity of the exact and of the ap

proximate solution of an optimization problem require a more

precise comprehension of various concepts which are at the

base of computational complexity. The next paraqraDh will be

devoted to a brief introduction of such concepts. § 3 contains

the illustration of the most significant complexity classes:

P, NP, PSPACE. In § 4 the notion of NP-hard problem will be

introduced and the polynomial degrees of complexity (part

icularly the NP-complete degree) will be discussed. In ~; 5

Complcxity of Exact and Approximate Solution of Problcms 5

the concept of -approximation will be defined and the basic

approximation techniques will be presented. Finally § 6 is

devoted to the discussion of the approximability and non ap

proximability of NP-complete optimization problems and to

various necessary and/or sufficient conditions for approxima

bility.

2. BASIC CONCEPTS IN COHPUTATIONAL COMPLEXITY

In order to approach the study and analysis of complex

ity properties of optimization problems various concepts

have to be made more precise because the results which are

obtained may be havily influenced by the choice of several

factors:

i) Machine models and complexity measures

The first element which has to be defined in order to

perform a complexity analysis is the machine model that we

assume for executing our algorithms and the kind of resource

whose computation is assumed as cost of computation. Some of

the most used models, together with their respective measures,

are:

- Turing machines with one tape or many tapes, determi

nistic or nondeterministic (that is capable of execut

ing one or several transitions at the same time: in

the first case a computation is essentially a chain of

configurations, in the second case a tree). The measu

res which are naturally associated to Turing machines

are time (number of steps) and memory (largest amount

of work tape required during a halting computation) .

- Register machines (or RAMs, random access machines)

similar to real computers, provided with a finite

number of registers capable of containing arbitrarily

6 G. Ausiello

large integers, programmable by means of a naif

machine language. In this case the resources which

are usually taken into consideration are the number

of elementary operations (uniform cost model, UC-RAM)

or, more realistically, the sum of the costs of ele

mentary operations (logarithmic in the size of oper

ands: logarithmic cost model, LC-RAM).

- Interpreters of high level naguages; in this case we

assume of expressing our algorithms by means of a

high level language and in order to evaluate the

complexity we limit ourselves to counting how many

times the dominant operations are executed as a func

tion of the input size (e.g. how many comparisons to

sort n integers).

Ad hoc models suitable for expressing algorithms re

lated to particular computational structures: boolean

circuits, directed acyclic graphs, straightline pro

grams etc.

Actually among some machine models there are relationship

which allow to derive the cost of solution of a problem in

a model when the cost in another model is known. For example

the following measures are mutually polynomially related:

- time for one-tape Turing machines

- time for multi-tape Turing machines

- time for LC-RAM

Also

- space for deterministic Turing machines

- space for nondeterministic Turing machines

are polynomially related.

On the other side it is not known whether a nondeter

ministic Turing machine may be simulated by a deterministic

on in polynomial time (as we will see this is one

of the major open problems in computer science)

Complexity of Exact and Approximate Solution of Problems

neither is known whether polynomial space bounded Turing

machines are indeed more powerful than polynomial time

bounded deterministic or nondeterministic Turing machines.

Clearly for the sake of establishing tractability or in

tractability of problems any of the polynomial time equi

valent models is adequate.

ii) Input size

One of the elements which may influence the evaluation

of the complexity of a problem is the way in which we de

termine the size of the input. In principle we should take

into consideration the overall length of the input string.

In many applications it happens that we may, equivalently,

consider some parameter of the input size (number of rows in

a matrix, number of nodes in a graph etc.) . For examn.le when

the imput is a vector of integers a 1 , ... ,an the overall

length is n-a but when we assume that a is always max max
smaller than the largest integer which may be contained in

7

a computer word the complexity may simply be expressed as a

function of n. In problems with a numerical input the fact

that we consider as input size the length of the input and

not its value entails a dramatic difference in the evaluation

of the complexity because the value of an integer is expo

nentially larger than its length. As we will see in the fol

lowing, problems whose complexity is polynomial in the value

of the input (and hence exponential in the length) are called

pseudopolynomial.

iii) Type of analysis

The analysis of the behaviour of algorithms is usually

performed by considering how much resource the algorithm re

quires for a given input of size n, as a function of n and by

determining the asymptotic growth of such function.

Clearly among inputs of size n we may have the possibi

lity of meeting simpler instances of the problem or more com-

8 G. Ausiello

plex ones (e.g. in a sorting problem a vector of n integers

may be already ordered or havily unordered). This variety

of possibilities gives rise to various kinds of analysis.

Let TI be a program in a given machine model and let

L (x) be the number of steps required by TI on input x.
TI

- Worst case analysis: in this case the behaviour of the

algorithm is anaLysed with respect to the hardest instance

for any given n:

(where Ixl denotes the length of instance x).

- Average case analysis: when we assume that all instances

of size n are equally likely we may consider the average

behaviour of the algorithm and forget about a few part

icularly hard but rare instances:

L L (x) . TI
Ixl=n

Probabilistic analysis: in those (frequent) cases in which

an average case analysis cannot be precisely determined we

may limit ourselves to defining random instances x1 ,x2 , ..

.. ,x , ... of the problem of size 1,2, ... ,n, ... and deter-n
mining the expected behaviour of the algorithm on such in-

stances:

Once the basic factors of the analysis have been deter

mined we may approach the problem of characterizing the com

plexity of the given problem. As we observed before such task

is usually based on a worst case analysis and is accomplished

Complexity of Exact and Approximate Solution of Problems

by providing two bounds to the complexity:

i) Upper bound: amount of resource g' such that at least

one program TI may solve the given problem P asymptotic

ally within such resource bound, that is

In this case we say that the complexity of P is O(g')

ii) Lower bound: amount of resource gil such that given any

algorithm TI for P it requires more resource than gil

asymptotically,that is

In this case we say that the complexity of P is Q(g").

9

Clearly, the closer g' and gil are, the better the complexity

of P is precisely determined. A classical example in which

the lower bound and upper bound are so close that we can

speak in terms of optimal algorithms is sorting. In this

case,both the lower bound and the upper bound (measured in

terms of comparisons) are essentially n log n and this means

that any algorithm with such worst case performance (e.g.

merge sort, heapsort) is asymptotically optimal.

Unfortunately such desirable situations are somewhat rare.

Especially in the case of optimization problems very fre

quently we have that the strongest lower bound we have is

quadratic while no algorithm which performs better than ex

ponentially is known. In thesecases, hence,the most powerful

technique we have is based on the concepts of complexity

classes for expressing upper bounds and of reductions for

expressing lower bounds. These concepts will be briefly

discussed in the next two paragraphs.

10 G. Ausiello

3. COMPLEXITY CLASSES. THE CLASS NP

Given a machine model M, a resource T (e.g. time or

space for machine model M) a bound t on the resource T, let

t be the cost of executing program TI in the worst case; a
TI

aompZexity aZass is the set of functions

C~,T= {flthere exists an, integer no and a prorrram TI for

f such that t (n) < t(n) for all inputs of size
n > no} TI-

~~en given a problem P we determine an algorithm in M

for solving P which runs ,,'lith a cost bounded by t (n) on

inputs of size n (for sufficiently large n), we may say that

P belongs to the complexity class Ct .. For example, on the

base of the upper bound mentioned in the preceding paragraph

we know that sorting belongs to the class C 2 or, better, to
n .

the class Cc n log n for a sui table constant c.

Particular relevance among complexity classes have those
classes which may be defined as the union of infinitely many

classes. The fact that, under suitable conditions, the in

finite union of classes may still be a complexity class is

one of the fundamental results of computational complexity

theory. Here we simply introduce and discuss some of the most

important union classes based on time and space for Turing

machines.

i) P = U cT~,Tlr~ is the class of those problems which
k>O n

may be solved in polynomial time by means of determini

stic Turing machines. According to the preceding ob

servations on the relationships between machine models

it is clear that a problem is in P if and only if it

may be solved in polynomial time also by means of re

gister machines (with logarithmic cost functions) and

Complexity of Exact and Approximate Solution of Problems 11

ii)

by means of any other "reasonable" machine model, in

cluding real computers.

NDTM TIME .
U C k' 1S the class of those problems

k>O n
NP =

which may be solved in polynomial time by means of non-

deterministics TUring machines. Given a decision pro

blem, that is the problem of deciding whether a given

string x (representation of an instance of the problem)

belongs to a given set A (the set of instances sharing

a given property) we say that a nondeterministic machine

M solves it (M accepts A) in polynomial time if there

exists a polynomial p such that for every x E A M ac

cepts x and stops in time p(lxl). Clearly the class P

is contained in the class NP and besides a large class

of combinatorial problems which are not known to be in

P have a particular structure which allows to solve them

in nondeterministic polynomial time. General problems

in operations research and most of the combinatorial

problems that we mentioned at the beginning have .this

property: graph partitioning problems, layout problems,

bin packing,scheduling problems etc. For all this pro

blems the search space of solutions is a tree of poly

nomial depth and the solution may clearly be found in

polynomial time by a nondeterministic branching pro

cedure. A typical example of problem which is in NP and

is not known to be in P is the problem of deciding the

satisfiability of boolean expressions in conjunctive

normal form. In fact, given the expression (pV q V r)

1\ (q V r)/\ (p V r) the search space may be generated as

shown in Fig. 1.

A nondeterministic algorithm generates all possible

truth assignments in only three steps and subsequently,

for every truth assignment it checks whether it sati-

12

T F T F T

Fig. 1.

G. Ausiello

F T F

sfies the given expression. If we know a method for

simulating a nondeterministic machine by means of a de
terministic one in polynomial time, then the classes

P and NP would coincide. Actually the most widespread

conjecture is that such a method cannot exist and that

the classes P and NP are indeed different.

iii) PSPACE =
TM SPACE . U C k' ~s the class of those problems

k>O n

which may be solved within polynomial space by means of
deterministic Turing machines. Since a nondeterministic
TUring machine can be simulated by a deterministic one
within polynomial space we have that the class PSPACE is
also equal to U CN~TM,SPACE. Clearly PSPACE 2 NP but

k>O n

whether such containment is strict or not is again still

an open problem. Typical examples of problems which are

in PSPACE but are not known to be in NP (nor, clearly,

in P) are the problem of deciding whether a given qua

ntified boolean expression is true, the problem of de

ciding whether two given regular expressions are equi

valent or not, the problem of deciding whether there
exists a forced win for the first player in various

games (such as hex, go, checkers, chess etc.) generalized
on a n x n board.

Complexity of Exact and Approximate Solution of Problems 13

4. COMPLEXITY DEGREES. THE NP-CO~WLETE DEGREE

Unfortunately, given a problem P it is not always pos

sible to determine a neat characterization to its complexity

by means of upper and lower bounds. In many problems of prac

tical relevance, such as the problems that we mentioned in

the introduction, the best known upper bound and the best

known lower bound are O(2n) and ~(n2) respectively. In such

cases the characterization of the complexity may only be

achieved in relative terms rather then in absolute terms.

By transforming an instance of one problem A into an in in

stance of another problem B, in fact we may show that the

solution of A is at least as hard as the solution of Band

in some cases we may show that two problems are equivalently

hard.

Let us first consider how these concepts may be formally

stated for decision problems. Subsequently we will extend

them to optimization problems.

Let two sets A and B be given. We say that

A is peducible to B (A 2 B) if there exists a many-one, func

tion f such that x E A if and only if f(x) E B. The fact that
the problem of deciding whether a string x belongs to a set

A may be transformed to the problem of deciding whether the
string f(x) belongs to a set B means that, intuitively spea

king,

complexity(A) 2 complexity(f) + complexity(B)

If the transformation f is sufficiently simple (that is com

plexity(f) < complexity(B» we may say that

complexity (A) 2 complexity(B)

More formally, suppose that f is polynomially computable by

means of a deterministic Turing machine, then. we may say that

A is polynomially reducible to B (A 2 p B). Let us see the

14 G. Ausiello

following example.

Let EXACT-COVER be the set {F I F is a family of sets

8 1 , ••• ,8 f 8 = {eo/ •.• ,e } and there exists ~ subfamily of
n -- m ~

pairwise disjoint sets 8., ... ,8~. such that - S. = S}.
11 J h=1 1h

Let SUBSET-SUM be the set {(a1 ' ... , an,b) I there exists a

0-1 vector x such that La.x. = b}.
1 1

We may show that EXACT-COVER.::. p SUBSET-Sll1 by means of the

following polynomial reduction: for every i, 1 < i < n

k 1 and a. = d where d = n + , 1
k E {jte. ES.}

J 1

m
d k b I

k=O

Clearly to every solution of the EXACT-COVER problem there

corresponds a solution of the SUBSET-Sll1 problem and vice

versa, that is if the instance of the SUBSET-SUM problem

which is generated by the reduction does not allow a solution,

then no exact cover can be found in the family F. For example:

F = {S1,S2,S3'S4} d = S

S1= {eo ,e1 } a 1= 1+2

S = 2 {e1 ,e2 ,e 3 ,e4 } a 2= d+d 2+d 3+d 4

S3= {e 2 ,e 3 } a 3= d 2+d 3

S4= {e 4 } a 4= d 4

S = {eo,e1,e2,e3,e4} b = 1+d+d2+d 3+d 4

To the solution F' = {S1,S3,S4} there corresponds the solution

of the SUBSET-SUM problem a 1+a 3+a 4 = b. As a result of the

existence of a polynomial transformation from EXACT-COVER to

SUBSET-Sll1 we may say that the SUBSET-Sll1 problem is at least

Complexity of Exact and Approximate Solution of Problems 15

as hard as the EXACT-COVER nroblem. Besides,since both pro

blems are in NP but for some of them a polynomial algorithm is

known, we may say that if,eventually the EXACT-COVER problem

is shown not to be in NP then also the SUBSET-SUM problem

would be proven not to be in NP while if the SOBSET-Sm1 pro

blem would be shown to be polynomially solvable so would the

EXACT-COVER problem.

By means of a polynomial reduction we may hence establish

a relative complexity low'er bound between two problems.

Actually we may use the concept of reduction to determine an

even stronger relative lower bound: by showing that any pro

blem of a class C may be reduced to a given problem B we may

show that B is at least as hard as the hardest problem in C.
In particular if we consider the complexity class NP we may

give the following definition. A set B is said to be NP-hard
if given any set A in NP we have A < B. -p

An example of NP-hard problem is the problem

SATISFIABILITY = {w I w is a proposiftionalformulain conjunc

tive normal form and there exists a truth assignment to pro

positional variables which satisfies w}.

Such problem has been shown to be NP-hard by means of

the following argument. Let any set A E NP be given. Let MA

be the nondeterministic Turing machine which accepts A in

time PA(lxl> for a suitable polynomial PA' It is possible to

construct a Boolean expression w[MA,x,PA1, depending on MA,

PA and the input x, whose length is still polynomial in Ixl

and which represents an accepting computation of MA on x.

Clearly w can be satisfied if and only if such computation

exists, that is if x E A.

This result, one of the fundamental results of complexity

theory, snows that SATISFIABILITY is at least as hard as any

other problem in NP. Actually, since we already saw that

SATISFIABILITY is in NP we may say that it is among the hard

est problems in NP. When a problem A is in NP and, at the

16 G. Ausiello

same time, it is shown to" be UP-hard we say that it is NP

complete. Hence SATISFIABILITY is an UP-complete problem.

When we say that a problem is l'lP-complete we actually provide

a characterization of its complexit'y in relative terms; the

membership in NP corresponds in fact to an upper bound while

the NP-hardness corresponds to a lower bound.

The polynomial reducibility among decision problems is

a transitive relation. Two consequences of this property are

particularly relevant. First of all in order to show that a

problem A is NP-hard we may simply show that any other NP

hard problem (SATISFIABILITY, for example) may be reduced to

A. Secondly,if A and B are both NP-complete problems, since

in this case we have A < Band B < A we may say that A:: B, -p -p p
that is A and B are equivalent in terms of complexity (modulo

a polynomial). The equivalence classes of polynomial reduci

bility are called polynomial complexity degrees. Beside the

NP-complete degree, other examples of polynpmial degrees are

the degree of GRAPH-IS0l10RPHISM" (that is the class of all

those problems whose complexity is equivalent to the complex
ity of deciding whether two graphs are isomorphic or not)

and, trivially, the class P.

NP-complete problems represent a very interesting class

of probems. Host problems considered in the introduction

turn out to be in this class. This means that either all of

them may be solved in polynomial time or, more likely, none

of them is. Unless P = NP the only hope we have is to solve

these problems by means of suitable approximate algorithms.
To this issue is devoted the next paragraph.

5. APPROXIMATION ALGORITHMS FOR NP-COMPLETE OPTIMIZATION
PROBLEl1S

Let us now go back to considering optimization problems.

Complexity of Exact and Approximate Solution of Problems 17

As we will see the concepts of NP-hardness and NP-completeness

may be extended from decision problems to optimization pro

blems.

The fact that many interesting optimization problems

are NP-hard and, hence, (probably) computationally intractable

has determined the need for various techniques by means of

which at least an approximate solution of the given problem

may be achieved. When we consider approximation techniques

we realize that NP-complete optimization problems fall into

different subclasses according to the fact that they may be

solved by approximation methods or not.

First of all let us introduce a formalization of the

concept of optimization problem. An NP-optimization problem

is characterized by a polynomially decidable set INPUT of

instances, a polynomially decidable set OUTPUT of possible

outcomes, a mapping SOL:INPUT ~ P(OUTPUT) which, given any

instance x of the peoblem, nondeterministically provides the

feasible solutions of x in polynomial time, and a mapping

m:OUTPUT ~ N which again in polynomial time provides the
* measure of a feasible solution. We will denote by m (x) the

best (maximal or minimal) solution for input x.
To every NP-optimization problem A a decision problem

may be associated by considering the set

* AC = {(x,k) Ix E INPUT and k .s. m(x)}

Clearly if A is an UP-optimization problem then AC is a de

cision problem in NP. If AC is NP-complete then we say that

A is an NP-complete optimization problem (NPCO).

For example, the problem HAX-CLIQUE is an NPCO. It is

characterized by the following items:

INPUT = set of (representations of) all finite graphs

OUTPUT= set of (representations of) all finite complete

18 G. Ausiello

gr.aphs

SOL{x) =set of (representations of) all complete subgraphs

of x

m (y) = number of nodes of y

The associated decision problem is the problem of reco

gnizing the set CLIQUE = {(x,k) Ix is (the representation of)

a graph which contains a complete

subgraph of k nodes}.

Given an NPCO problem we may say that an algorithm A is

an E-approximate algorithm for A if, given any instance

x E INPUT, we Have

* m (x) -m{A{x))

* m (x)
< E

that is the algorithm provides a solution with a relative

error smaller than E. Such an approximate algorithm is said

to provide a performance guarantee. This situation is differ

ent from the case in which an algorithm in some cases provides

a solution which is ontimal, a very close to the optimal,

while in other cases the solution may be arbitrarily far from

the optimal one.

A problem A is said to be polynomially approximable if

given any E > 0 there exists an E-approximate ~lgorithm for

A which runs in polynomial time. A is said to be fully poly

nomially approximable if A is approximable and there exists

a polynomial q such that given any E the running time of the

E-approximate algorithm is bounded by q{lxl ,1/E).

Clearly the fact that a problem A is polynomially ap

proximable is not enough for approaching its solution because

for exarnpleit may happen that when we go from the approxima

tion 1/k to the approximation 1/{k+1) the running time of the

approximate algorithm increases from O{lxl k) to O{lxl k +1) and

Complexity of Exact and Approximate Solution of Problems 19

soon the approximate solution becomes unfeasibly expensive.

When a problem is fully approximable, instead, we may con

sider it to be essentially (even if not properly) an easy

problem because the running time of the approximate algorithm

does not encrease too much with the required precision.

Let us now examine how approximate algorithms may be

constructed.

A constructive method that for any given € provides the

corresponding polynomial €-approximate algorithm A€ is said

to be a polynomial approximation scheme (PAS). If for every

€ the running time is bounded by q(lxl ,1/€) for some poly

nomial q we say that the scheme is a fully polynomial ap

proximation scheme.
In order to discuss various approximation schemes let

us consider the typical KNAPSACK p~oblem(*). Such problem

may be characterized in the following way:

INPUT = n items (a1 ,c1), ••. ,(an,cn) and bound b

OUTPUT = 0-1 vectors (Y1'··· 'Yn)

SOL(x) =0-1 vectors (Y1' ... 'Yn) such that

m(x) = 'y.c. L ~ ~

'y.a. < b l. ~ ~ _

It consists in choosing a set of items such that the

profit 'y.c. is maximized while the constraint b on the oc
L ~ ~

cupancy is satisfied.
The fundamental technique for constructing fully poly

nomial approximation schemes are all based on the classic

(*) The variation of knapsack problem in which a i = c i for

all i is called SUBSET-SUM problem.

20 G. Ausiello

dynamic programming scheme. This scheme, in the case of the

knapsack problem,can be summarized as follows;

L:=la'i

for all items i in x do

end.

for all sets S. in L do
J

end

if s. U {i} satisfies the constraint b
J

then
begin insert Sj U {i} in Li

eliminate dominated elements

end

take the best solution in L.

It is easy to see that the number of steps of the al

gorithm is proportional to the number of items in x times

the lenght of the list L.

Clearly variations of this scheme are obtained by con

sidering different conditions of dominance between elements.

In the case of knapsack we can define the following

dominance rule:

Given two sets S1 and S2 in L we say that S1 is dominated

if L c. < L c. and
iES 1 1. iES 2 1.

L a. > L a ..
·S 1. ·S 1. 1.E 1 1.E 2

Clearly the elimination of 8 1 does not introduce any

error.

Therefore we can obtain the following exact algorithm

for the knapsack problem:

Complexity of Exact and Approximate Solution of Problems

Algorithm A1

L:=$li

for i 1 to n do

end

for all sets Sj in L do

if 1. a.+a i 2. b
jES j]

then
begin L:=L U (So U {i})

]

eliminate all S' E L

such that:3 S" E L

I C. < 1. C.
jES'] - jES"]

and

I a. > 1. a.
jES'] jES"]

end

end

take the best solution in L.

21

To evaluate the complexity of the above algorithm it is

sufficient to see that, at each step, the number of solutions
n n

contained in the list L is less than min{b, 1. a., Y. c.). So
j=1] j=1]

with a suitable implementation of the elimination step it is

not hard to see that the complexity of algorithm A1 is
n n

O{nomin{b, y. a.,
j=1]

1. c.)), which means a complexity expo
j=1]

nential in the size of the input, as we use a binary encoding

for the numbers of the input.

In order to achieve a fully polynomial approximation

scheme the first technique

approximate solution to the

scaling all coefficients a i

which was used for finding

knapsack problem was based

by a factor K = EoaMAX!n.

an

on

22 G. Ausiello

This technique is shown by the following algorithm

AZgorithm A2

for i = 1 to n do
c! = k·c.

J l.

end;
Apply algorithm A1 taking as input

(c~ ... ,c~; a 1 ••• ,an ; b)
take the best solution and multiply

it for k.

If m(A2 (x)) is the value of the approximate solution

we have that

On the other side we can assume that

* m (x) > CMAX .

It follows that

* m (x)-m(A2 (x))

* m (x)

With respect to the running time we have that the complexity

of the algorithm is O(n· (Lci)). Due to the scaling we have

that

n·c 2
\' '< MAX=n
L c i _ k E

3
So the overall complexity is O(ns).

Such approximation scheme although very useful for many

problems, suffers some drawbacks.

In fact in order to find the fully polynomial approxima-

Complexity of Exact and Approximate Solution of Problems

* tion scheme we need to know good bounds to m and this is a

severe limitation to the generality of the method as it can

be easily seen if we simply switch from max knapsack to min

knapsack problems.

23

Another limitation of this scheme is that it cannot be

applied for solving other NP-complete optimization problems

which instead can be shown to be fully approximable by other

methods such as the product knapsack problem.

Due to these facts the search for general full approxima

tion schemes has been pursued with the aim of finding results

which,despite of a slight loss in efficiency,could be applied

to a broader class of problems and that could provide some

insight in the properties of fully approximable problems and

in their characterization.

The first attempt to provide such a general scheme was

the condensation algorithm. With respect to the dynamic pro

gramming scheme (A 1) the elimination step is performed by

eliminating more partial solutions and therefore introducing

an error.

More precisely we say that 8 2 dominates 8 1

if (1- 0) L c. < I c. and
i ES1

l - iES 2
l

L a. > L a.
i E8 1

l - iE8 2
l

where 0 = min{E 2 , ~}, the condensing parameter, is the re-
n

lative error introduced in the dominance test. As there is a

propagation of the error then the total relative error is at

least 0 2 2 E. Moreover the running time is 0 (max{ 1 x 41 , 1 x 2 1 IE 2 }).

A different approach which leads to a more efficient

algorithm is based on the technique of variable partitioning

(as opposed to the constant partitioning technique). This

24 G. Ausiello

method is based on the partitioning of the range of the mea

sure into intervals of exponentially increasing size and on

an elimination rule which preserves only one solution for

every interval.

To allow a better understanding of the advantages of

this approach the method and the results will be given for

the knapsack and the product knapsack. It can be immediately

extended to other fully ,\pproximable problems.

More in detail the method is as follows.

Let R be the range of the possible values of the mea

sure. In a general NP-complete max-subset problem, and the
refore in our cases R is smaller than 2P (l x l) for some poly

nomial P and as we will see the whole development of the al

gori thm allows us to refer only to this general bound without

* requiring any more precise extimate of a bound for m . The

range R is then partitioned int~ K intervals [0,m1) ,[m1 ,m2),

.•• [mx-1'~) where mi = (1+E/n)1. Let us denote Ti the i-th
interval.

The elimination rule for the 0/1 knapsack is the fol
lowing:

Given two sets 51 and 52' 51 is dominated by 52 if

if I c. E T., L c. E TJ. , j > i and
iE51 1 1 iE5 2 1

Clearly changing the sums in products we have the eli

mination rule for the product knapsack.

In every interval there will be at most one feasible

solution and hence, at each iteration, we will have, at most
R elements in the list.

The error that may result by using this algorithm may

Complexity of Exact and Approximate Solution of Problems 25

be bounded as follows. At stage i at most the error ~.=m.-m. 1
~ ~ ~-

may arise; in the worst case this error may happen at every

stage. Since there are n stages

* that 1m (x)-m(AE(x)) I < n ~.
- ~MAX

and since ~i < ~i+1 we have
where i MAX is such that

* m. < m (x) < m. • From the
~MAX-1 - l.MAX

above inequalities we de-

duce that the overall error is

* m (x)-m(A (x))
E

* m (x)
= E

As far as the complexity is concerned, the number of

steps of the given algorithm is as usual a function of nand

the lenght of the list L. In this case the number of solu

tions which may be preserved in L is equal to the number of

intervals K which should satisfy the following inequalities

K log (1 +.£) < n p (I x I)

K <
p (I x I)

E log(1 +-)
n

Hence with a suitable implementation the complexity of the

method is

O(n 0
E log (1 + -) n

Therefore in the case of knapsack we have that the range R

is bounded by noaMAX and therefore in this case we have a

complexity

26

log n + log aMAX
O(n • log(1 + E/n)

while in the case of product knapsack

2 log aMAX
o (n '":;"'1 o-g--;-:(1~+:-'-E=/7'-n') •

6. APPROXIMABLE AND NON APPROXIMABLE PROBLEMS

G. Ausiello

As we have already observed, not all NPCO problems are

approximable or fully approximable. For many problems it is

possible to show that even the problem of determining an ap

proximate solution is intractable.

A classical example of a problem which is not E-approx

imable for any E is the traveling salesman problem (TSP)which

consists in determining the shortest cycle which crosses

every vertex of a weighted graph exactly once. In order to
show that, given any 8, the problem of determining whether

there exists an approximate solution with relative error

smaller than E is NP-complete we may use the following re
duction from HAMILTONIAN-CIRCUIT.

Let a graph G = (N,A) be given. Let us define a complete

graph G' with weights on the edges r ij

= { 11 Pij

+ En if (i,j) ~ A

if (i,j) E A

where n = I N I •
Clearly an Hamiltonian path in G exists if and only if

in G' there exists a traveling salesman four of length n; in

fact any other tour would entail a relative error e not smaller

Complexity of Exact and Approximate Solution of Problems

than E

e >
n+En-n

n
= E

27

Another problems which is known not to be E-approximable at

least for some values of E is the GRAPH-COLOURING problem; in

this case it is known that to find a solution which uses less

colours then the double of the chromatic number of the graph

is still an NP-complete problem.

Various attempts have been made to characterize the

classes of NPCO problems which are not approximable, approx

imable or fully approximable.

The first characterization is based on the complexity of

subproblems of the given problem.

Let an NPCO problem A be given. Let MAX(x) indicate the

largest integer which appears in the input to the problem.

For example if the input x is a weighted graph MAX(x) indic

ates the weight of the heaviest edge. Now let us consider the

subproblem Ap of A obtained by taking into account only those

instances in INPUT such that HAX(x) < p(lxl) for some polyno

mial p. We say that A is pseudopolynomial if A is a polyno-
p -

mially solvable problem; A is strongly NP-complete of A is
p

still an NP complete problem. SUBSET-SUM is a clear example

of pseudopolynomial problem. In fact since we may solve the

SUBSET-SUM problem in time O(nob) it t~rns out that the pro

blem is not polynomial in the size of the input, but is poly

nomial in the value appearing in the input. Hence if we bound

MAX by a polynomial function we have a polynomially solvable

problem. An the other side the problem MAX-CUT is a strongly

NP-complete problem. In fact even if we restrict all weights

to be equal to one we still remain with an NP-complete opti

mization problem. Similarly strongly NP-complete problems are

GRAPH-COLOURING, TSP, MAX-CLIQUE etc. Clearly if a problem

is strongly NP-complete it cannot. ".be pseudopolynomial and

28 G. Ausiello

viceversa.

A fundamental result relates pseudopolynomiability and

full approximability of problems: if for all input x we have

* m (x) ~ q(lxl ,MAX (x) for a given polynomial q, then a problem

is fully approximable if and only if it is pseudopolynomial.

As a consequence, under the same hypothesis, if a problem is

strongly NP-complete it cannot be fully polynomial.

Actually such characterization is not enough. In fact

when the condition is not satisfied (as it happens for the

PRODUCT-KNAPSACK problem) then the concept of pseudopolyno

miability is not necessary to determine the full approximabi

lity of a problem.

More recently new conditions have been proposed which

completely characterize both approximable problems and fully

approximable problems.

In particular on the base of preceding results (appearing

in the references) the following more recent result may be

shown.

Let us consider the class of optimization problems which
may be stated as subset problems, that is those problems in

which we look for the subsets of a given set of items which
satisfy a given property and which maximize (or minimize) a
given objective function m. Most problems that we have dis

cussed insofar are indeed subset problems. Given a subset

problem P we say that P satisfies an h-dominanae test if,given

any two feasible solutions S1 and S2' the fact that

m(S1) - m(S2)
min(mCS 1) ,m(S2»

* *

< h

implies that if S1 and S2 are the best solutions which may be
achieved from S1 and S2 respectively

* * m(S1) > h o m(S2)

Complexity of Exact and Approximate Solution of Problems 29

A necessary and sufficient condition for the full approxima

bility of a subset problem P is that for a suitable constant

h P satisfies a polynomial h-dominance test.

7. REMARKS AND REFERENCES

The basic concepts of complexity analysis, such as machine

models, types of analysis, upper bounds and lower bounds

are extensively discussed in

- Aho,A.V., J.E.Hopcroft, J.D.Ullman: The design and analysis

of computer algorithms~ Addison Hesley, 1974.

In the same volume an introduction to the most fundamental

algorithms for searching and sorting, graph problems and

algebraic problems is also given. The definition and the

first examples and properties of NP-complete problems are

presented in two fundamental papers:

Cook,S.A.: The complexity of theorem proving procedures,

Proc. 3rd Ann. ACM Symp. on Theory of Coputing~ 1971.

- Karp,R.M.: Reducibility among combinatorial problems, 'in

R.E.Muller and J.W.Thatcher (eds.), CompZexity of Computer

computations~ Plenum Press, 1972.

A complete and detailed discussion of various issues con

cerned with NP-completeness, such as the complexity classes
NP, co-NP, PSPACE, and a long list of the most relevant

NP-complete problems known in various field of mathematics

and computer science are contained in

- M.R.Garey and D.S.Johnson: Computers and intractability.

A guide to NP-completeness~ Freeman, 1979.

The basic concepts of approximate solution of optimization

problems are also presented in the same volume and in

30 G. Ausiello

- Horowitz,E., S.Sahni: Fundamentals of computer algorithms 3
computer Science Press, 1978.

A discussion of a large number of optimization problems

which may be encountered in the optimal design of computer

systems and a presentation of the basic algorithms for their

exact or approximate solutions are given in

- Papadimitrou,C.H. and K.Steiglitz: Combinatorial optimiza

tion: Algorithms and complexitY3 Prentice Hall, 1982.

The following papers provide a more precise approach to

the characterization of classes of NP-complete optimization

problems:

- Paz ,A. and S.Moran: NP-optimization problems and their ap

proximation, Proc 4th Int. Symposium on Automatic 3 Languages

and Programming 3 LNCS, Springer Verlag, 1977.

- Ausiello,G. A.Marchetti Spaccamela, M.Pro~asi: Toward a

unified approach for the classification of NP-complete

optimization problems, Theoretical Computer Science 3 12,
1980.

- Ausiello,G., A.Marchetti Spaccamela and M.Protasi: Full ap

proximability of a class of problems over power sets, 6th

Colloquium on Trees in AZgebra and Programming 3 LNCS,

Springer Verlag, 1981.

- Korte,B. and R.Schrader: On the existence of fast approxi

mation schemes, Report No. 80163 Institut fur Okonom. und

Op. Re s ., REh'U , 1 9 80 •

ABSTRACT

MODELS OF THE TASK ASSIGNMENT PROBLEM IN DISTRIBUTED
SYSTEMS

Mario Lucertini
Dipartirnento di Informatica e Sistemistica

dell'Universiti di Roma e Istituto di Analisi dei
Sistemi ed Informatica del

C.N.R., Viale Manzoni 30, 00185, Roma

The paper presents a model for optimum partitioning of tasks over a

multiple-processor system. The minimization of the interprocessor. com

munications overhead and/or the message average delay are considered as

a design criterion. The algorithmic approaches to the problem are briefly

described and improuvements to the case of multiple copies of tasks are

considered. A large set of references covering the area are included.

32 M. Lucertini

1. INTRODUCTION

Many papers in the last years on issues on distributed systems have

shown the necessity of models, both in the design of the system and 1n

the resources management to avoid underutilization, overhead and con

gestion.

In the references, a wide range of models concerning optimal parti

tion of objects in distributed systems is listed, see in particular [8,

9,13,14,15,16,20,25,29,46,50,61,65,68]. The area of computer modelling

is especially developed for computer networks. Synthesis models: optimi

zation of cost, capacity and lateness of the communication network; syn

thesis of fault tolerante networks; concurrency control; optimal mana

gement policies; analysis (prediction) models: performance evaluation,

average transaction response time during peak traffic periods, utiliza

tion of var10US resources and system availability, deadlock detection

and avoidance.

One critical design problem of computer systems is that of assigning

computational objects (files, programs of different klnd) to possibly

different nodes in a computer network for query/update/execution purposes.

Many measures of the optimality of the distribution can be consider

ed either as components of the objective function or as constraints of

an optimization problem.

One measure of optimality 1S minimal cost. The cost consist mainly

of storage costs, query/update/execution local costs, communication costs

and network cost. Unfortunatly, although the model can be as accurate

and comprehensive as desired, solution techniques are very complex and

wotk effectively only for toy examples.

Another measure of optimality is performance. Common performance ob

jectives are minimum response time and maximum system throughput, but

many others objectives can be considered as fault tolerance V1a alterna

tive routing capabilities and minimum communication flow on the inter

connection links or busses. In this framework distributed systems are

commonly represented as queueing networks. Its performance is optimized

with respect to some parameters (or decision variables) such as: network

Models of the Task Assignment Problem in Distributed Systems 33

topology, routing and scheduling strategies, device speeds, computational

graph embedding strategies, device visit ratios. In this paper only the

placement of computational objects among interconnected processors is

considered.

The paper presents a basic model for exact or approximate optimum

partitioning and allocation of tasks over multiple-processor nodes. Mini

mization of the interprocessor communications overhead and/or the cor

responding message average delays has been chosen as a design criterium.

Improuvements of the basic model for some classes of applications are

considered.

For sake of simplicity a completely homogeneous computer system is

considered with all processors of equal capabilities and all processors

interconnected by a fully connected netwotk. However the model can be

easily generalized to networks with given message paths among all node

pairs. The important case of random routing capability is not considered

in this paper. Furthermore all transportation cost may be considered

equal within the network. The performance in term of delay (see objective

function OF 2.1) or in term of speed (number of bytes per unit time" see

OF 2.2) for interprocessor communications ~s considered constant. In the

first case the communication channels are supposed to have a speed grow

ing with the traffic incident on the channel such that the message delay

remain constant. In case of networks requiring multiple interprocessor

transmissions for each message, the total delay will be obtained as the

sum of the delays on the utilized channels, plus the delays on the in

termediate nodes of the path.

In section 2 the basic model is presented; in section 3 some algo

rithms for the different Objective functions presented in section 2 are

briefly described; in section 4 some modifications of the basic model for

given classes of applications are investigated.

34 M. Lucertini

2. THE BASIC MODEL

2.1. Let be given:

- a fully connected network of C similar computer with speed S (number

of instruction per unit time);

- n computational objects (files, tasks, jobs, ..•) to be processed by

the computer network, N. represents the (average) amount of instruc
~

tions to be executed to process the computational object i (NilS is

the time needed to process i);

- a computational graph'G(N,A) (INI = n, IAI = m) where N represents the

set of computational objects and A the set of communication require

ments among the nodes, the arc weights A .. represent the (average)
~J

of

of

number of node j execution requests sent from node i, the node weights

A .. represent the (average) number of node i execution requests sent
~~

from outside the network, M .. represents the number of bytes exhanged
~J

between i and j for each execution request from i to j.

The delay time analysis is performed under the standard hypotheses

Poisson arrivals of all execution request, exponential distribution

service times and independence assumptions [23] .

Introducing the binary decision variables xik and the (average)

total execution time for each node Ei' defined as:

E.
~

if node i is processed by computer k

else

n
= (L A,.)N·/s = A.N·/s

. 1 J~ ~ ~ ~
J=

we can easily write the following constraints of the basic optimization

problem.

Models of the Task Assignment Problem in Distributed Systems 35

2.2. Basic model constraints

C

L xik = 1 vi (1)
k=l

E(xk)
n
L E.x. k < 1 \Ik (2)

i=l
l l -

xik 0, 1 V(i,k) (3)

The first set of constraints indicates that each node must be as

signed to a computer, the equality imply that no multiple copies of nodes

are allowed, in some applications this assumption is too restrictive and

(1) will be relaxed to inequality constraints indicating that each node

must be assigned to at least one computer (see section 4).
The second set of constraints indicates that the total computational

load assigned to each computer (with the given speed S) must be less or

equal to the computer capacity. In fact this set of constraints is mean

ingfull only if we optimize with respect to the interprocessor overhead

with deterministic arrivals. If we take into account delay and we have

Poisson arrivals the objective function lS build such that if the total

load allocated to a computer tend to 1 the delays tend to + 00 (a maximum

load factor of about .8 is in practice acceptable). The two possibilities

are investigated in the following sections.

2.3. Basic model objective function

OF1) Minimization of interprocessor communications overhead

c
min(L

k=l

c
L

h=l
h;i:k

or equivalently:

c
cost + max(L

k=l

n

L
i=l

n

L
i=l

n

L
j=l
j;i:i

n

L

x .kx .hA .. M ..)
l J lJ lJ

j=l
x.kx.kA .. M ..)

l J lJ lJ

j;i:i

36 M. Lucertini

OF2) Minimization of system delays

There exists two kind of delays in the system; the first one is the

execution delay in the computers both for execution requests from outside

the network and for execution requests from other nodes on the same com

puter or on other computers, the second one is the transmission delay

for execution requests coming from nodes in other computers. The first

one depends on the computer speed and the computer load, the second on

the transmission channel speed and the channel load. A realistic hypo

thesis is that the channel speed depends on the load in such a way to

mantain constant the transmission delay; in other words the links among

computers are built after the allocation of nodes on the computers in

order to meet such requirement. Under this assumption the transmission

delay is equal to a constant for each couple of nodes allocated on dif

ferent computers and the transmission time depends only on the lenght of

the data stream to be sent (M ..). The first expression (OF2.1) of the
l.J

objective function holds under this assumption. Otherwise, if the speed

of the intercomputer channels is a given value T (number of bytes per

unit time), the objective function is shown in the second expression

(OF2 .2).

The computer k average execution delay Wk can be obtained utilizing

the standard queueing systems formulae:

1

n n
~k = S L xl.·k / L N.x'k

i=l i=l l. l.

n

fk = L
j=l

n n
L A, ,x'k = L A,x'k

i=l l.J J j=l J J

n
It l.S easy to verif'y that ~k > fk if and only if L E,x'k < 1.

i=l l. l.
The total computer delay DC is given by:

C
DC = L fkWk

k=l

Models of the Task Assignment Problem in Distributed Systems

as:

The total transmission delay DT is given by:

c c
L L

k=l h=l

n

L
i=l

n
L (d+M ..)A. ,x,hx'k . 1 lJ lJ 1 J

J=
j#

The first expression of the objective function can now be written

(OF2.l)

37

Let us now analyze the second case, i.e. given channels speed. The

flow fhk from computer h to computer k (number of requests per unit time)

is given by:

n
= L
i=l

The capacity of channel (h,k), i.e. the maximum number of requests

that can be sent from h to k, ~hk is given by:

n
= T(L

i=l

where 0 l(A ..) is the unitary step function:
- lJ

, 1 (A ..)1 1

if A .. > 0 lJ

- lJ
0 if A .. = 0

lJ

n
L A .. x·hx· k)

. 1 lJ 1 J J=

The transmission delay on channel (h,k) is now given by:

Whk =
1

The total transmission delay DR can be written as:

C

DR = L
k=l

38 M. Lucertini

and the objective function becomes:

(OF2.2)

Remark that if the intercomputer flows are small with respect to

the channel capacity, DT can be considered a good approximation of DR.

3. ALGORITHMS FOR THE TASK ASSIGNMENT PROBLEM

3.1. The combinatorial optimization problem obtained from constraints

(1),(2) and (3) and objective function OFl is a quadratic integer pro

gramming problem. It can be solved as a quadratic problem [32,37] or it

can be transformed in a linear problem introducing the new binary va

riables Yijk (Yijk = xik 0 Xjk) and the additional constraints:

2 o Y·"k < x· k + x"k
~J - ~ J

(4)

y. ·k > x"k + x"k - 1
~J - ~ J

In practice, as the problem is a maximization problem and A .. M .. ~ 0,
~J ~J

the (5) can be dropped without affecting the optimal solution.

In the general case the problem is NP-complete and very hard to

solve [8,26,42,47,51,62] ;it can be efficiently solved only for particular

graph topologies [2,3,19,39,42,48,50,52,60,64,66,67,73] or via heuristic

algorithms [4,44,49,56,57,58].

An heuristic approach of particular interest consists in organizing

the solution algorithm in as many main steps as the number of available

computers (C) and, at each step, to identity, among the nodes of the

computational graph, those to be assigned to a given computer such that

the communications with the rest of the graph will be minimized; the

nodes assigned at each step will be eliminated from the graph and are

not considered in the sequel of the algorithm. The subproblem to be solved

at each .step is again NP-complete but efficient solution procedures can

Models of the Task Assignment Problem in Distributed Systems 39

be utilized [30,40,41].

A different heuristic approach consists in introducing additional

constraints in order to reduce the number of subsets of nodes to be con

sidered as feasible clusters to assign to a computer. Examples of addi

tional constraints leading to pOlynomial bounded algorithms can be found

in [3,4,5,50,55,59,63].

3.2. The combinatorial optimization problems obtained from constraints

(1),(2) and (3) and objective functions OF2 are are nonlinear integer

programming problems and cannot be easily transformed in linear problems.

Remark that for a given computer k as the left hand side of constraint

(2) increase, the objective function also increase and tend to + 00 for

E(xk) ~l-. Therefore all constraints (2) are satisfied with strict

inequalities. But we cannot simply eliminate such constraints; in fact

it is easy to verify that for E(~) ~ 1+ the objective ~ction tend to

- 00 and the optimal solution is unbounded. On the other hand if
n

S ~ I
i=l

A.N. or we utilize suitable local search techniques to solve the
~ ~

problem, the set of constraint (2) can be dropped.

A local search technique leading in most practical cases to good

solutions (without any "a priori" guarantee) work as follows.

Let be given a feasible solution of the problem and the correspond

ing objective function. At each step of the algorithm take k nodes in all

the possible ways and try to reallocate the k nodes in all the possible

way. For each possibility calculate the corresponding value of the ob

jective function. If a better solution is found take it as the new solu

tion and go to the next step. Stop if no .reallocation of k nodes leads to

a better solution.

In practice it is not necessary to verify all the (~) subsets of

size k of the set of nodes and all the (Ck-l) reallocations of k given

nodes. Several rules can be pointed out to reduce the number of possibi

lities to be verified and (if necessary) to avoid illegal distribution

of nodes.

For k = 1 the algorithm is very efficient but the quality of the

40 M. Lucertini

results is in general poor, k = 3 seems to be in most cases a good compro

mize between efficiency and quality of the solution.

3.3. Among the particular graph topologies leading to interesting algo

rithmic approaches, there are the tree structures. In fact many problems

in computer system design can be formalized like tree partitioning pro

blems.

Tree partitioning (TP)

Given a weighted tree T (weights on the edges and/or on the vertices)

and a scalar B, find a partition of the vertices in clusters such that

the weight of each cluster (sum of the weights of its vertices) is not

greater than B and the connection weight (sum of the weights of all edges

with endpoints in different clusters) is minimized.

TP is simply the basic model with objective function OFI and an un

derlying tree structure. TP (in decision form) is NP-complete (for B ~ 3)

even if T is a star or a binary tree but can be solved in pseudo-polyno

mial time; TP is polynomial if all edge weights are equal, or if all

vertex weights are equal, or if T is a chain (0(n2)); for general graphs

and B ~ 3 the problem remains NP-complete even i~ all vertex and edge

weights are I [42,3,60,50,34,35]. If we modifY the objective function by

minimizing the number of clusters (instead of the connection weight) the

problem became polynomial and can be solved in linear time [52]; for

general graphs (even if unweighted) the problem is NP-complete.

Equipartition of trees (ET)

Given a weighted tree T and an integer m, find a partition in m non

empty clusters such that each cluster is a tree (such a partition can be

obtained by deleting m-l edges of T) and a norm of the m-vector v of the

differences between the clusters weight and the clusters average weight

(sum of all vertex weights divited by m) is minimized.

If T is a star, ET can be solved in polynomial time by sorting

(O(n log n)) (for any norm). In the general case ET with L norm can be
'"

solved in polynomial time. More precisely the problem of finding a

Models of the Task Assignment Problem in Distributed Systems 41

mrpartition of T minimizing the maximum cluster weight can be solved by

a shifting algorithm in time O(m3rd(T)+mon) where rd(T) 1S the number

of edges in the radius of T [2]. The easiest probl~m of finding a

mrpartition of T maximizing the minimum cluster weight can be solved 1n

time O(m2 rd(T)+mon) [66]. Remark that the same two problems for general

graphs are NP-complete.

4. MULTIPLE COPIES OF NODES

If multiple copies of nodes are allowed we must introduce new sets

of variables and we must modifY consequently the formulation of the basic

model. In the following we analyze only the model with objective function

OF2.2, but all the results can be easily extended to the other simpler

formulations.

In this case we must also introduce new considerations about the

behaviour of the system. In fact, if two or more copies of a node exists,

every time we modifY the parameters or the data contained in a copy of

the node we must modify in the same way also all the other copies, in

troducing an additional request of intercomputer flows. In order to

simplifY the exposition 1n the sequel we ignore such flows, supposing

that no node modifications occur.

Under these assumptions the multiple coples problem can be formula

ted by intrOducing the variables:

h Y ij = (average number of node j execution requests sent from node

i to the copy h of node j).

Obviously the following constraints hold:

I y~. = A ..
h EH. lJ lJ

J

h y .. > 0
1J

V(i,j) (6)

V(h,i;j)

42 M. Lucertini

where R. represents the set of node j possible copies. In order to form
J

ulate correctly the model, the binary variables xik transform in:

h = { 1 if the copy h of node i lS located In the computer k

xik
o else

with the additional constraints:

L x\ < 1
hER. l

l

C h
L x'k < 1

k=l l -

C
L L x~ > 1

k=l hER. lk
l

V(i,k)

V(i,h) (8)

Vi

the (8) and (9) replace the set of constraints (1). The (2), if needed,

will transform In:

n n h h
L L ((I y ..)N,!S)x· k < 1

i=l hER. j=l Jl l l-
l

(10)

It is easy to see that such constraints lncrease of,an order of magnitude

the solution algorithm. It would be therefore usefull to be able to drop

constraints (10) on the gound of what has been said in the previous sec

tion.

In the same way we can modifY the quantities defining the objective

function by simply sUbstituting y~. to A .. and considering a new problem
lJ lJ n

with L
i=l

R. nodes to be located instead of n.
l

The overall model is quite complex and only poor heuristic solution

algorithms exist.

Models of the Task Assignment Problem in Distributed Systems

REFERENCES

[1] BARNES: An algorithm for partitioning the nodes of a graph. IBM

Waston Res. Center, Rc8690, 1981.

43

[2] BECKER, PERL, SCHACH: A shifting algorithm for min-max tree parti

tioning. J. ACM, 1982.

[3] BERTOLAZZI, LUCERTINI, MARCHETTI: Analysis of a class of graph

partitioning problems. RAIRO Theoretical Compo Science, 1982.

[4] BERTOLAZZI, LUCERTINI: Tasks assignment in a multicomputer system:

a mathematical model. IFAC, Kyoto, 1981.

[5] BERTZTISS: A note on segmentation of computer programs. Inf. and

Contr., 1968.

[6] CARLSON, NEMHAUSER: Scheduling to mlnlmlze interaction costs. Op.

Res., 1966.

[7] CHANDLER, DE LUTIS: A methodology of multi-criteria information

system design. Int. Compo Conf., 1977.

[8] CHANDRA, WONG: Worst-case analysis of a placement algorithm related

to storage allocation. SIAM Comp., 1975.

[9] d · . rd I C CHANDY: Models of lstrlbuted systems. Proc. 3 nt. onf. on

VLDB, Kyoto, 1977.

[10] CHANDY, SAUER: The impact of distribution and disciplines on

multiple processor system. Comm. ACM, 1979.

[11] CHANDY, YEH: On the design of elementary distributed systems. Compo

Networks, 1979.

[12] CHARNEY, PLATO: Efficient partitioning of components. ACM/IEEE Des.

Ant. Workshop, Washington P.C., 1968.

[13] CHEN, AKOKA: Optimal design of distributed information systems.

IEEE-TC, C-29, 1980.

[14] CHRISTOFIDES, BROOKER: The optimal partitioning of Graphs. SIAM

J. Appl. Math., 1976.

44 M. Lucertini

[15] CHU: Optimal file allocation in a computer network. In: Computer

communication systems (ABRAMSON, KUO Eds.), Prentice Hall, 1973.

[16] CHU, HOLLOWAY, LAN, EFE: Task allocation in distributed data pro

cessing Computer, 1980.

[17] CIOFFI, COSTANTINI, DE JULIO: A new approach to the decomposition

of sequential systems. Digital Processes, 1977.

[18] CIOFFI, DE JULIO, LUCERTINI: Optimal decomposition of sequential

machines via integer non-linear programming: a computational algo

rithm. Digital Processes, 1979.

[19] COMEAU: A study of user program optimization ~n a paging system.

ACM Symp. on Operating System Principles, Gatlinbury, 1967.

[20] CORNUEJOLS, FISHER, NEMHAUSER: Location of Bank Accounts to opti

m~ze float: an analytic study of exact and approximate algorthms.

Man. Sci., 1977.

[21] DE JULIO, LUCERTINI, SACCA': Un algoritmo efficiente per la decompo

sizione ottima di macchine sequenziali. Conf. AIRO, 1978.

[22] DENNING: Vurtua1 memory. Compo Survey, 1970.

[23] DENNING, BUZEN: The operational analysis of queueing network models.

Compo Surveys, 1978.

[24] DONATH, HOFFMAN: Lower bounds for the partitioning of Graphs.

IBM J. of Res. and Der., 1973.

[25] DOWDY, FOSTER: Comparative models of the file assignment problem.

ACM Compo Surveys, 1982.

[26] DUTTA, KOEHLER, WHINSTON: On optimal allocation in a distributed

processing environment. Man. Sci., 1982.

[27] ECKHOUSE, STANKOVIC, VAN DAM: Issues in distributed processing.

IEEE Tr. Comp., 1978.

[28] ENSLOW: Research issues ~n fully distributed systems. AICA, Bari,

1979.

Models of the Task Assignment Problem in Distributed Systems

[29] FOSTER, DOWDY, AMES: File assignment in a computer network. Compo

Networks, 1981.

[30] GOMORY, HU: Multi-terminal network flows. SIAM, 1961.

[31] GORINSMTEYN: The partitioning of graphs. Eng. Cybern., 1969.

[32] GRAVES, WHINSTON: An algorithm for the quadratic assignment pro-

blem. Man. Sci., 1970.

[33] GROSS, SOLAND: A branch and bound algorithm for allocation pro

blems in which constraint coefficients depend upon decision

variables. Nav. Res. Log., 1969.

45

[34] HADLOCK: Minimum spanning forest of bounded trees. 5th South Conf.

on Comb., Graph Theory and Compo Winnipeg, 1974.

[35] HADLOCK: Finding a maximum cut of a planar graph in polynomial

time. SIAM J. Comp., 1975.

[36] HAESSIG, JENNY: An algorithm for allocating computational objects

in distributed computing systems. IBM Zurich Res. Lab. RZ 1016,

1980.

[37] HILLIER, CONNORS: Quadratic assignment problem algorithm, and

Location of Indivisible facilities. Man. Sci., 1966.

[38] HOFRI, JENNY: On the allocation o~ processes in distributed com

puting systems. IBM Zurich Res. Lab. RZ 905, 1978.

[391 HOSKEN: Optimum partitioning of the addressing structures. SIAM J.

Comp., 1975.

[40] HU: Integer programming and network flows. Addison-Wesley, 1970.

[41] HU, RUSKEY: Circular cuts in a network. Math. of Op. Res., 1980.

[42] HYAFIL, RIVEST: Graph partitioning and constructing optimal deci-

sion trees are polynomial complete problems. IRIA Rep. 33, 1973.

[43] IBARRA, KIM: Fast approximation algorithms for the Knapsach and

sum of subset problems. J. ACM, 1975

46 M. Lucertini

[44] IBARRA, KIM: Approximation algorithms for certain scheduling pro

blems. Math. Op. Res., 1978.

[451 JENNY, KUMMERLE: Distributed processing within an integrated

circuit/packet-switching node. IEEE Tr. Commun., 1976.

[46] JENSEN: Optimal network partitioning. Op. R lB., 1970.

[47] JOHNSON: Approximation algorithms for combinatorial problems.

J. Compo and Syst. Sci., 1974.

[48] KERNIGHAN: Some graph partitioning_problems related to program

segmentation. Ph. D. Th., Princeton, 1969.

[49] KERNIGHAN, LIN: An Efficient Heuristic Procedure for Partitioning

Graphs. Bell System Tech. J., 1970.

[50] KERNIGHAN: Optimal sequential partitions of graphs. J. ACM, 1971.

[51] KOONTZ, NORENDRA, FUKUNAGA: A branch and bound clustering algorithm.

IEEE Tr. Comp., 1975.

[52] KUNDU, MISRA: A linear ,tree partitioning algorithm. SIAM J. Comp.,

1977.

[53] LAWLER: Electrical assemblies with a minimum number of intercon

nections. IKE Tr. Elec. Comp., 1962.

[54] LAWLER, LEVITT, TURNER: Module clustering to minimize delay in

digital networks. IEEE Tr. Comp., 1969.

[55] LAWLER: Cutsets and partitions of Hypergraphs Networks, 1973.

[56] LAWLER: Fast approximation algorithms for Knapsack problems. Math.

Op. Res., 1979.

[57] LIPTON, TARJAN: A separator theorem for planar graphs. Conf. on

Theor. Compo Sci., Waterloo, 1977.

[58] LIPTON, TARJAN: Applications of a planar separator theorem. 18th

FOCS. Long Beach, 1977.

Models of the Task Assignment Problem in Distributed Systems 47

[59] LUCCIO, SAMI: On the decomposition of networks in minimally inter

connected subnetworks. IEEE Tr. Circ. theory, 1969.

[60] LUKES: Efficient algorithm for the partitioning of trees. IBM J.

Res. Der., 1974.

[61] MAHLOUD, RIORDAN: Optimal allocation of resources In Distributed

Information Networks. ACM Tr. Databases Syst., 1976.

[62] MARSTEN: An algorithm for large set partitioning problems. Man.

Sci., 1974.

[63] MENDELSON, PLISKIN, YECHIALI: Optimal storage allocation for serial

files. Corom. ACM, 1979.

[64] MISRA, TARJAN: Optimal chain partitions of trees. Inf. Proc.

Letters, 1975.

[65] MOKGAN, LEVIN: Optimal program and data locations In computer

networks. Corom. ACM, 1977.

[66] PERL, SCHACH: Max-min tree partitioning. J. ACM, 1981.

[67] PERL, SMILOACH: Efficient optimization of monotonic function on

trees. CAAP 81, Lect. Notes in Congo Sci., 1981.

[68] RAO, STONE, HU: Assignment of tasks in a distributed processor

system with limited memory. IEEE Tr. Camp., 1919.

[69] RUSSO, ODEN, WOLFF: A Heuristic procedure for the partitioning

and mapping of computer logic blocks to modules. IEEE Tr. Comp.,

1971.

[10] SACCA', WIEDERHOLD: Database Partitioning In a cluster of pro

cessors. VLDB Conf., 1983.

[71] SARNI: Approximative algorithms for the 0/1 Knapsack problem.

J. ACM, 1975.

[72] SARNI: General techniques for combinatorial approximation. Op.

Res., 1977.

48 M. Lucertini

[73] SCHRADER: Approximations to clustering and subgraph problems on

trees. Okonometric and Op. Res. Inst. Rep. 81202-0R, Bonn, 1981.

[74] SIMEONE: An asymptotically exact polynomial algorithm for equi

partition problems. lAC n. 153, Roma, 1978.

[75] STONE: Multiprocessor scheduling with the aid of network flow

algorithms. IEEE Tr. Soft. Eng., 1977.

[76] TARJAN: A hierarchical clustering algorithm using strong components.

Int. Proc. Letters, 1982.

[77] TARJAN: An improved algorithm for hierarchical clustering using

strong components. Int. Proc. Letters, 1983.

[78] WONG, COPPERSMITH: A combinatorial problem related to multimoduie

memory organization. J. ACM, 1974.

APPROXIMATION ALGORITHMS FOR BIN-PACKING - AN UPDATED SURVEY

1. Introduction

E.G. Coffman, Jr.
M.R. Garey

D.S. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

This paper updates a survey [53J written about 3 years ago. All of the results mentioned there

are covered here as well. However, as a major justification for this second edition we shall be

presenting many new results, some of which represent important advances. As a measure of the

impressive amount of research in just 3 years, the present reference list more than doubles the list in

[53].

Characteristic of bin-packing applications is the necessity to pack or fit a collection of objects

into well-defined regions so that they do not overlap. From an engineering point of view the

problem is normally one of making efficient use of time and/or space. A basic mathematical model

is defined in the classical one-dimensional bin packing problem: We are given a positive integer bin

capacity C and a set or list of items L - (P\,P2, ... ,Pn), each item Pi having an integer size s (Pi)

satisfying 0 <; S (Pi) <; C. What is the smallest integer m such that there is a partition

L - B \ U B 2 U ... U Bm satisfying ~PleBJ S (P) <; C, 1 <; j <; m? We usually think of each

set Bi as being the contents of a bin of capacity C, and view ourselves as attempting to minimize

50 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

the number of bins needed for a packing of L.

By this choice of terms the obvious interpretation of bin-packing corresponds to problems of

storage. However, the variety of other interpretations that can be placed on the parameters and

terminology accounts for the fundamental importance of the problem. Packing trucks with a given

weight limit and assigning commercials to station breaks on television [11] illustrate this variety in

the real world. A commonly cited, general example is the following cutting-stock problem.

Material such as cable, lumber, pipes, tapes, etc. is supplied in a standard length, C. Demands for

pieces of the material are for arbitrary lengths not exceeding C. The problem is to use the

minimum number of standard lengths in accommodating a given list of required pieces.

Problems in which time is the dimension (resource) being partitioned are represented by the

following scheduling problem: We are given a collection of identical processors on which a set of

independent tasks with known execution times are to be executed. The problem is to determine the

least number of processors that must be used in order that all tasks be completed by some given

deadline. Here, the processors are bins, the deadline is the common bin capacity and the elements

of L are the task execution times.

This problem establishes the connection between bin-packing and combinatorial scheduling

theory. Note in particular the close relationship between this problem and the multiprocessor

scheduling problem, i.e. the problem of minimizing makes pan on parallel processors. (The

makespan or length of a schedule is simply the latest task finishing time.) In bin-packing terms it

corresponds to the bin design problem: Given L and a fixed set of m bins, what is the least capacity

C such that L can be packed in m bins of this capacity? Historically, research on this problem

was carried out exclusively under the heading of scheduling theory. These results are included here

because both the classical and capacity minimization problems have significance in scheduling and

storage applications, and because they are based on the same mathematical structure, i.e. they differ'

Approximation Algorithms for Bin-Packing - An Updated Survey 51

only in the descriptor held fixed and the one chosen as the objective function.

It is consistent with the effort invested in these problems that efficiently computing optimal

solutions has proved to be quite difficult. In fact, the bin-packing problem, or more precisely the

decision problem "Given C, L, and an integer bound K, can L be packed into K or fewer bins of

capacity C?" is NP-complete. A similar statement holds for the decision problem corresponding to

multiprocessor scheduling. By the theory elaborated in [52,71,781, this means that it is unlikely that

efficient, (Le., polynomial time) optimization algorithms can be found for these problems. Thus

researchers have turned to the study of approximation algorithms, that is, algorithms which,

although not guaranteed to find an optimal solution for every instance, attempt to find near-optimal

solutions. The analysis of approximation algorithms is the dominant topic in the remainder of this

paper. It is primarily this theme that has determined the literature we have chosen to survey. This

theme will be further narrowed to those relatively simple but effective algorithms which have been

successfully analyzed for measures of worst-case or average-case performance.

Along with closely related partitioning problems, bin-packing and multiprocessor scheduling have

played an important role in applications of complexity theory [521. They also hold a special place in

the history of approximation algorithms. It was in these contexts that the first work was done in

proving that fast approximation algorithms could actually guarantee near-optimal solutions. The

early work of Graham [60,621 on multiprocessor scheduling inaugurated this approach, and the

early work in bin packing (most notably [72)) served to popularize and extend the methodology.

The scope of applications has been widened considerably by the study of a number of variants of

the basic problem. Approximation algorithms have been designed and analyzed for the following

four basic modifications: (1) Packings in which bounds are placed in advance on the number of

items that can be packed in a bin, (2) Packings in which a partial order is associated with the set of

items to be packed and constrains the ways in which items may be packed. (3) Packings in which

52 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

restrictions are placed on the items that may be packed in the same bin, and (4) Packings in which

items may enter and leave the packing dynamically. These variants will be covered in Section 3

following the survey of results in Section 2 for the classical problem.

Multiprocessor scheduling results will be described in Section 4. In addition to this problem,

there have been several others based on optimizing objective functions other than the number of

bins. In Section 5 we shall consider such objective functions as the number of items packed and the

sum of the squares of the bin levels, where bin level refers to the total size of the items in a bin.

With the techniques that had developed for the one-dimensional problems it was natural that

efforts eventually turn to higher dimensions. In Section 6 we discuss the results on vector packing

where items sizes and bin capacity are assumed to be d -dimensional vectors. Such problems model

scheduling applications in which jobs must use several different resources during their execution.

In Section 7 we survey the large and growing literature on two dimensional packing. Once again

the obvious industrial applications in stock cutting have been an important stimulus to this research.

Further motivation has been provided by advances in VLSI technology in which layouts on chips

pose a number of important combinatorial packing problems. The focus of this survey on the

analysis of approximation algorithms essentially limits us to the research on packing rectangular

figures into two dimensional "bins" or strips.

We shall be covering numerous improvements to the early results in bin-packing that were not

mentioned in [53]. This includes the discovery of polynomial approximation schemes for one

dimensional bin packing, and the many new results on the probabilistic analysis of packing

algorithms. In the final section we shall mention a few of the many open problems still outstanding.

1. The Classical Bin-Packing Problem

We begin by describing three basic algorithms for the problem as defined in the preceding

Approximation Algorithms for Bin-Packing - An Updated Survey 53

section. The first, and simplest, is NEXT-FIT: We process the items in L in turn, starting withp\,

which is placed in bin B\. Suppose that Pi is now to be packed, and let Bj be the highest indexed

non-empty bin. If Pi will fit in Bj (the level of Bj does not exceed C-s (Pi», then put Pi in bin

Bj . Otherwise, start a new bin (bin Bj+I) by putting Pi into it.

This is clearly a fast algorithm (linear time). Moreover, it is not difficult to show that, if

NF(L) is the number of bins used in the NEXT FIT packing of list Land OPT(L) is the number

of bins required in an optimal packing, then for all lists L, NF(L) ~ 2·OPT(L). This is the best

bound of this sort we can prove for NEXT FIT, since the examples shown in Figure 1 indicate that

there are lists L with NF(L) ~ 2·OPT(L)-1.

1
2"

1
2"

N bins

OPT(L)=N+l

1
2N ~ 0 1

2:1

1
2"

2N bins

tlF(L)=2N

Figure 1. Examples of lists L with NF(L) = 2'OPT(L) - 1.

To improve on this bound we need a new algorithm. One defect of NEXT FIT seems to be that

it only tries to put Pi in one bin before it resorts to starting a new bin. This suggests that the

following FIRST FIT algorithm might be an improvement: When packing Pi' put it in the lowest

indexed bin into which it will fit (starting a new bin only if Pi will not fit into any non-empty bin).

It can be shown (though the proof [49,72J is more difficult) that for all lists L,

54 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

FF(L) :E;; (t 7/1 O)'OPT (L) +1 [72] and, again, this is the best ratio possible, since there are lists

L with arbitrarily large values of OPT(L) such that FF(L) ~ (I 7/10)'OPT(L)-8 [72]. These

lists are too complicated to illustrate here, but Figure 2 shows examples that approach a ratio of

5/3 - 1.6666

1
6-2E

!+E
3

I I

*-2£

1
6-2~

1
6-2E

% ~ 1/ 1 +E
3"

!+E
2

1
6"-2 E

1
6-2~

i-2C

!+E !+£
3 2

6N bins N bins 3N bins 6N bins

OPT(L)=6N FF(L)=lON

Figure 2. Examples of lists L with FF(L) = j·OPT(L).

From these examples a further improvement suggests itself. FIRST FIT seems to perform

poorly when the large items occur at the end of the list. The algorithm FIRST FIT

DECREASING seeks to avoid this effect by first ordering the items so that

s (Pt) ~ s (P2) ~ '" ~ S (PrJ), and then applying FIRST FIT to the reordered list. For this

algorithm it can be shown (with considerable difficulty [4,69,72]) that for all lists L,

11
FFD(L) :E;; 9'OPT(L)+4 and, once more, this is the best ratio possible, as illustrated in

Figure 3.

Approximation Algorithms for Bin-Packing - An Updated Survey 55

1
4" -2E

1
4"-2E /11/ IIIII 1

4" -2E

1
4"+E

1
4" -2E 1

4"+E 1
4"-2E

1
2+E

1
4"+2E 1

4"+E
1
4" -2E

1
4"+2E

1
4"+E 1 4" -2c

6N bins 3N bins 6N bins 2N bins 3N bins

OPT(L)=9N FFD (L)=llN

Figure 3. Examples of lists L with FFD(L)=~PT(L).

Let us formalize the type of worst case analysis we have been discussing. If A is an algorithm

and A (L) is the number of bins used by that algorithm for list L, define

RA (L) == A (L)/OPT(L). The absolute performance ratio RA for algorithm A is given by

The asymptotic performance ratio R; for A is given by

R; == inf{r ~ 1: for some N > 0, RA(L) ~ r for all L with OPT(L) ~ N} .

The above results can now be summarized by saying that RNF - 2, R;;' - 17/10, and

R;FD ... 11/9. Notice that RA need not equal R;. Although R;FD .. 11/9, it is easy to give

lists L for which OPT(L) - 2 and FFD(L) - 3, so that RFFD ~ 3/2. The asymptotic ratios

seem to be a more reasonable measure of performance for the basic bin packing problem, but

absolute ratios do come up in some of the work on related problems that we shall be discussing later.

Table I highlights the early results that were obtained for several other algorithms, along with

56 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

those just described. The quantity R;(t}, 0 < t ~ 1 is the asymptotic worst case ratio for

algorithm A on lists all of whose items have size bounded by t·e. This measure is of interest in

applications where the largest item expected is significantly smaller than the bin capacity.

Algorithm Timing R; R;(1/2) R;(1/3) R;(1/4)
WORST FIT 8{n log n} 2.0 2.0 1.5 1.333 ...
NEXT FIT 8(n) 2.0 2.0 1.5 1.333 ...
FIRST FIT 8(n log n) 1.7 1.5 1.333 ... 1.25
BEST FIT 8(n log n) 1.7 1.5 1.333 ... 1.25
ALMOST WORST FIT 8(n log n) 1.7 1.5 1.333 ... 1.25
NF DECREASING 8(n log n) 1.691... 1.424 ... 1.302 ... 1.234 .. :

REVISED FF 8(n log n) 1.666 ... NA NA NA
GROUP FIT GROUPED 8(n) 1.5 1.333 ... 1.25 1.20
FFGROUPED 8(n log n) 1.333 ... 1.333 ... 1.25 1.20
ITERATED LFD 8(n log"n) 1.333 ... NA NA NA
FF DECREASING 8(n log n) 1.222 ... 1.183 ... 1.183 ... 1.15
BF DECREASING 8(n log n) 1.222 ... 1.183 ... 1.183. .. 1.15
MODIFIED FFD 8(n log n) 1.183 ... 1.183. .. 1.183 ... 1.15

Table I. Asymptotic worst case bounds for bin packing algorithms.

The algorithms REVISED FIRST FIT and MODIFIED FIRST FIT DECREASING are recent

developments which we shall be discussing in detail shortly. Most of the other results in the table

were already known by 1973 [69,70). The algorithm BEST FIT (BF) is like FIRST FIT, except

that Pi is placed in the bin into which it will fit with the smallest gap left over (with ties broken in

favor of the lowest indexed bin) [72]. WORST FIT (WF) [69,70] places Pi in the non-empty bin

with-the biggest gap <ties broken in the same way), starting a new bin if this biggest gap is not big

enough. ALMOST WORST FIT (AWF) [69,70] tries the second largest gap first, and then

proceeds as does WORST FIT - surprisingly, this makes a difference. The analysis of NEXT FIT

DECREASING was done by Baker and Coffman [7]. GROUP FIT GROUPED (GFG) [69,70]

uses "implicit rounding" to discretize the ranges of item sizes and bin levels, thus avoiding the

sorting implicit in the FFD algorithm which it mimics. It also attains a linear running time, while

Approximation Algorithms for Bin-Packing - An Updated Survey 57

paying only a partial penalty in worst case behavior. FIRST FIT GROUPED (FFG) [69,70] is a

hybrid algorithm, included mainly because it yields a different value of R;. The algorithm

ITERATED LOWEST FIT DECREASING, which attains the same value, but more slowly, is due

to Krause, Shen, and Schwetman [85], and will be discussed in more detail in the next section.

A variety of other results were also obtained during the early 1970's. The precise

values of R;(t) as a function of t were obtained for many of the algorithms [69,70,72]. Except

for the algorithms WORST FIT and NEXT RT, which yield the continuous function

R;(t) - 1+t(1-t), these tend to be step functions determined by llltJ. In [69] the asymptotic

worst case behavior of FIRST FIT was completely determined for the case when all item sizes lie in

a specified interval, as a function of the interval. The algorithms NEXT-k FIT, k ~ I, which

resemble NEXT FIT except that Pi is placed in a new bin only if it will not fit in all,y of the last k

non-empty bins (NEXT-! FIT is the same as NEXT FIn, were studied in [69,701. These papers

also analyzed what might be considered "non-deterministic" bin packing algorithms: ANY FIT

(AF), which can place Pi anywhere, except that it can never put it in a new bin unless it won't fit in

any of the already non-empty bins, and ALMOST ANY FIT (AAF), which in addition can never

put Pi in a bin whose gap is larger than that of all other bins unless that is the only place it fits.

The results for ALMOST ANY FIT are the same as those for FIRST, BEST, and ALMOST

WORST FIT (all of which obey the AAF assumptions), while the results for ANY FIT are the

same as those for WORST FIT, which essentially makes the worst choices allowed under the AF

assumptions. ANY FIT DECREASING and all DECREASING algorithms obeying the ANY FIT

ground rules seem to obey the same bounds as FFD, although the best that has been proved for any

such algorithms (other than FFD and BFD) is that RAoo ~ 5/4 - 1.25 [69,70].

Another special class of algorithms that has received attention consists of the "on-line"

algorithms. An on-line algorithm is one which, like NEXT FIT or FIRST FIT, assigns items to

58 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

bins in exactly the order they are given in the original list, without using any knowledge about

subsequent items in the list. FIRST FIT DECREASING, for example, is not an on-line algorithm,

since it first re-orders the list. On-line algorithms may be the only ones that can be used in certain

situations, where the items to be packed are arriving in a sequence according to some physical

process and must be assigned to a bin as soon as they arrive. Thus, although it is known that "off

line" algorithms such as FFD can do much better than FIRST FIT, it is of interest to determine the

best worst-case performance that anyon-line algorithm can have. On the basis of a clever analysis

of the worst case examples for FIRST FIT, Yao [109] was able to devise a new algorithm,

REVISED FIRST FIT (RFF) , with RRFF = 5/3 - 1.6666, which is to be compared with

R;;" - 1.7. Even more significantly, he was able to show that for anyon-line algorithm A, we

must have R; ~ 1.5. In subsequent work Brown [12] and Liang [911 independently extended

Yao's lower bound results, improving the lower bound to 1.536. In addition Brown designed a

further revision of FIRST FIT, whose asymptotic worst case ratio is better than 1.64 [14].

Galambos and Turan [46] quite recently considered the lower bound question for on-line

algorithms when the list is assumed to be in non-increasing order. They showed that any such

algorithm must have a worst-case bound that is at least 10/9.

In [109] a slight improvement to FFD was also found. However, more significant improvements

with an 0 (n log n) running time not much worse than that of FFD were discovered by Friesen

and Langston [45] and by Garey and Johnson [54]. The first of these employs a hybrid algorithm:

Both FFD and an algorithm called BEST TWO FIT are run on the input; the output is taken as the

better of the two packings produced. Friesen and Langston showed that, for any list, the average of

the number of bins required by the two component algorithms can not exceed 6/5 - 1.2, thus

guaranteeing a weak upper bound on the minimum.

Garey and Johnson devised the MODIFIED FIRST FIT DECREASING algorithm for which

the tight asymptotic bound, RMFFD - 71/60 -·1.18333 ... , was proved. The algorithm is based on

Approximation Algorithms for Bin-Packing - An Updated Survey 59

a careful analysis of the 11/9 examples for FFD and what causes FFD to mispack them. It

C
proceeds as follows: Partition the input list L into three sublists LA - {Pi: s(P) E ('3' Cn,

HC C HC.
LD =- {Pi: s(P) E (n' '3n and Lx"" {Pi: s(p) E (0, nn. The first step IS to pack the

sublist LA using FFD. In the resulting packing, call a bin containing only a single item from LA

an "A-bin." Then pack as much of LD into A-bins as possible using the following loop:

1. Let bin Bj be the A -bin with the currently largest gap. If the two smallest unpacked items in

LD will not fit together in Bj , exit from the loop.

2. Let Pi be the smallest unpacked item in LD, and place Pi in Bj .

3. Let Pk be the largest unpacked item in LD that will now fit in B j , and place Pk in Bj . Go to

1.

The assignment of items to bins is then completed by combining the unpacked portion of LD with

Lx and adding all these remaining items to the packing using FFD.

It should be noted that the proofs of the results for the more effective algorithms 'are

characteristically long and intricate "weighting function" arguments. This proof technique

originated with the analysis of FIRST-FIT [72], and plays a central role in the theory. A tutorial

discussion of the use of weighting functions can be found in [22].

A number of the detailed proofs have been so long as to preclude their full publication in

technical journals (e.g. there are results in [33,72,86] whose proofs span 100 pages). Baker [4] has

illustrated, however, that significantly shorter proofs may be possible; Baker gives a proof of the

basic 11/9 theorem which is about 1/3 the length of the original.

Other Item Constraints - As we have seen, when all piece sizes are known to be sufficiently small

compared to C, the performance of approximation rules can improve substantially. Similar

60 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

improvements can be expected from other restrictions that occur frequently in practice. For

example, suppose all item sizes are of the form C (!)i, j ~ 0, for some fixed positive integer k.

Then it is not difficult to show that FFD(L) - OPT(L). As shown in [28] similar results hold for

many of the approximation algorithms designed for the problems surveyed in the remaining sections

of this paper. Note that power-of-two item sizes occur in important computer applications; by the

nature of binary computers, if the sizes of records (files, pages, etc.) are constrained to be powers of

two, algorithms for maintaining and allocating storage have much more efficient implementations.

As another illustration suppose the number of different item sizes is fixed, and therefore the

number of bin types (i.e. the number of possible item-size configurations that fit into a bin) is finite.

In this case, the work of Gilmore and Gomory [55,56] in . the early 60's can be applied. (The

importance of this work will emerge again shortly in our discussion of approximation schemes.)

They were able to show that the linear programming relaxation of the problem, although still quite

large (it has a variable for each bin type), can be solved using special techniques. An actual

packing is then constructed by "rounding up" the solution values. In terms of worst case analysis,

this algorithm will have R; - 1 for any fixed number of item sizes, since it can yield at most one

excess bin for each possible bin type (a much larger, but still fixed number, independent of the

number of items). We note in passing that when the number of item sizes is fixed, we actually can

find optimal solutions in polynomial time, although the degree of the polynomial can be

astronomical. Gilmore and Gomory's contribution is in obtaining almost optimal solutions with

much less work.

Approximation Schemes - The prospects for improved approximation algorithms came to be much

better understood as the result of two major results of the past three years. The first was the

discovery by Fernandez de la Vega and Lueker [40] that for every E > 0 there is a linear-time

algorithm, A [E], with R,.;'id <; 1 +E. Algorithms of this type had long been known for problems

Approximation Algorithms for Bin-Packing - An Updated Survey 61

such as the knapsack problem, where performance is measured by absolute, rather than asymptotic

worst-case ratios. A set of such algorithms {A [E]: E > O} has been termed an approximation

scheme. It was shown in [40] that techniques from the knapsack approximation scheme could in

fact be used in designing bin-packing algorithms satisfying

and having a running time linear in the length of L for fixed E. The central idea in the proof is the

reduction of the original bin-packing problem to one in which the number of possible item

configurations in a bin is bounded. As in the Gilmore and Gomory [55] approach mentioned earlier

the algorithm is formulated as a solution to a linear program.

Subsequently, Karmarkar and Karp [74) eliminated a shortcoming of the above result, viz. the

fact that the running time of A[d is exponential in (lfE)2. Using the Fernandez de la Vega and

Lueker results and an impressive array of techniques from mathematical programming and

complexity theory they devised a "fully polynomial" approximation scheme, i.e. one for which the

running time is a polynomial in both liE and the length of L, and the additive constant is ~lso a

polynomial in lIE.

An interesting corollary to these results is that there exist polynomial time approximation

algorithms with R; - 1. One need only choose E as an appropriate function of the given instance.

Unfortunately, the actual guarantee provided by these algorithms is not OPT(L)+K for some

constant, K, but OPT(L)+!(OPT(L)), where! is a slowly growing function. The best such

function comes from Karmarkar and Karp's analysis, and is o (Iog2(OPT(L))).

At present the above results are mainly theoretical in their significance, because the coefficients

hidden in the term "polynomial time" are too large for practical purposes. However, in principle at

least, the search for better approximation algorithms can now take a different tack: Instead of trying

to improve old bounds without great sacrifices in running time, we can try to improve on old running

62 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

times without great sacrifices in the bound.

Average Case Analysis - As might be expected from the greater difficulty in calculating

probabilistic measures, the known results for the average case are less sharp and less general than

those for the worst-case. However, as we shall see, the field is very active and a number of

significant advances can be cited.

Before getting into the analytical approach let us consider what has been learned from Monte

Carlo simulations. The most extensive experiments appear to be those in [69], and subsequently

those in [961. Our illustrations will be drawn from [691. Since the results in [96] measure

percentage of waste per bin rather than number of excess bins, they are not readily comparable with

our worst case results. A summary of some of the results is shown in Table 2.

Algorithm· UNIFORM UNIFORM UNIFORM
<0,1.0) <0,0.5) <0,0.25)

NEXT FIT 31.1 [100.1 18.8 [100.1 7.4 [50.0]
NEXT-2 FIT 21.9 [85.0] 8.5 [50.0] 2.2 [25.0]
ALMOST WORST FIT 10.4 [70.0] 4.S [50.0] 1.4 [25.0]
FIRST FIT 7.0 [70.0] 2.2 [50.0] 0.6 [25.0]
BEST FIT 5.6 [70.0] 2.2 [50.0] 0.5 [25.0]
GROUP FIT GROUPED 2.1 [50.0] 0.4 [33.3] 0.3 [20.0]
A WF DECREASING 2.0 [22.2] 0.2 [18.3] 0.2 [15.0]
FF DECREASING 1.9 [22.2] 0.1 [lS.3] 0.2 [15.0]
BF DECREASING 1.9 [22.2] 0.1 [18.3] 0.2 [15.0]

Table 2. Percentages of excess bins required on the average in bin-packings of 25 200-item lists
with item sizes uniformly distributed within the stated ranges. [Percentage of excess in
worst examples known are given in brackets.1

We should note that the ratios given are not strictly speaking averages of RA (L), since the

value of OPT(L) could not be determined (its computation being an NP-complete problem).

Instead these values are for the ratio of A (L) to the sum of the item sizes. As we shall see later,

however, there is strong evidence to support the claim that this approximation loses very little when

L is large.

Approximation Algorithms for Bin-Packing - An Updated Survey 63

The interesting fact from these simulations is that the average behavior, although much better

than the worst case behavior, still ranks the algorithms in the same relative order. Results for an

approximation to a normal distribution, and for a distribution obtained by partitioning a set of items

of size C into a random number of items, are slightly worse, but reflect the same trends [371. It

should not be expected, however, that average case ranking will always reflect worst case ranking.

In particular, certain of the new algorithms specifically designed for improved worst case behavior

(although possibly not MFFD or the hybrid algorithm in [45]) may be comparatively bad on the

average.

Because of the restriction to 200-item list the results in Table 2 are not indicative of asymptotic

behavior. Extensive simulation studies of asymptotic performance are currently in progress by

Jon Bentley and Catherine McGeoch at Bell Laboratories. An interesting sample of their early

results is that the expected performance of FF is n/2 + H (no.S) for C normalized to I and for n

items with sizes uniformly distributed over [0,11.

The first mathematical results appeared in an approximate analysis by Shapiro [1021. The

approximation was based on the exponential distribution and estimated the expected value, given

NF(L), of OPT(L). He concluded that as NF(L) approaches infinity, RNF(L) approaches I

plus the average item size, when that average is C/5 or less.

The first exact results were obtained by Coffman, So, Hofri and Yao [32] from an analysis of a

Markov process defined on the bin levels. For item sizes uniformly distributed between 0 and C, it

was shown that E(NF(L» is bounded by (4/3)E(OPT(L»+4. It was also shown that

convergence to the stationary NEXT FIT bin-level distribution was exponentially fast. Hofri [68]

and Ong, Magazine and Wee [97] have recently strengthened these results by working out the

second moment of NF(L), and Hofri has derived an approximate probability generating function

valid for general item size distributions.

64 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

Karmarkar [73] subsequently extended the NF results to cover uniform distributions over any

interval (O,tC). Closed forms were obtained for ~ :E;; t :E;; I, and gave results within about .5% of

the empirical results in [961. It is perhaps natural to expect that the stationary, expected bin-level

would increase monotonically with decreases in the maximum piece size, t. However, as observed in

the data of [96] and confirmed analytically in [73], this is not the case for NEXT FIT. In fact,

packing efficiency was found to be least at t - 0.841, which agrees with empirically observed

behavior.

Results on algorithms other than NEXT FIT have also been obtained for uniformly distributed

item sizes. In [42], Frederickson gives a rigorous proof of the rather intuitive fact that, for this

particular distribution, the ratio E(FFD(L»/E(OPT(L» approaches 1 as n - 00, where n is

the number of items. (Note that this ratio is not the same as E(FFD(L)/OPT(L»,)

Frederickson achieves this result by analyzing a different algorithm which produces packings with a

much simpler structure. Basically, working inward from both ends of an ordered list of the pieces.

the algorithm attempts to pair large pieces with small ones. The analysis shows that the algorithm

requires n/2 + O(n2/3) bins. on the average. to pack a list of n pieces with C - 1.

Early results on the asymptotic properties of optimal packings were obtained by Loulou [93].

He proved that if the n item sizes are independent and identical random variables with the density

function f. then the limit in probability. R. of the ratio of E(OPT(L» to the expected total of

the item sizes divided by C is I as n - 00. if f is symmetric or if f is positive and decreasing over

[0, C). Karmarkar [65] recently showed that this asymptotic result also holds if f is decreasing

over [O,tC], 0 < t < 1. and 0 elsewhere.

Results of this type have important consequences for the analysis of approximation algorithms.

They suggest that for reasonably large lists, the approximation of OPT(L) by the sum of the item

sizes divided by C is indeed a very good one for large classes of item size distributions.

Approximation Algorithms for Bin-Packing - An Updated Survey 65

Lueker [95] studied the same question specialized as follows: If f is uniform over [a, b],

b > a, for what values of a and b does R - I? For a - 0 or a+b ... 1 it was known that

R - 1, and for points in the region b > I-a it was known that R > 1. Lueker identified a

substantial subset of the region 0 < a < b < I-a where R > I, and cited simulation results

which suggest that R - 1 elsewhere in this region.

KnOdel [82] and Lueker [94] have extended Frederickson's results for the uniform distribution to

other approximation algorithms. With a slight modification of Frederickson's algorithm (C- 1)

Lueker showed that the expected number of bins used can be tightened to nl2 + O(n l /2), a result

that also applies to Knodel's algorithm. Within a multiplicative constant this is the best possible

performance, since Lueker also showed that an optimal algorithm must use nl2 + 0(n 1/2) bins on

the average. In [76] Karmarkar, Karp, Lueker and Murgolo generalized these results to any

probability density symmetric about C/2 or positive and decreasing over [O,C]' thus strengthening

Loulou's earlier result.

Hoffmann [66] and more recently Lee and Lee [90] have considered more deeply the expected

performance of on-line algorithms. They have designed algorithms based on "reservation"

techniques whereby bins are dedicated to particular configurations of items. In [66] these

configurations are based on those of Frederickson's pairing algorithm. Hoffmann has shown that his

on-line algorithm retains asymptotic optimality (in the earlier expected value sense), but at the

expense of a poor worst-case performance.

Lee and Lee develop an algorithm with a good worst-case performance and with a good, though

not asymptotically optimal, expected performance that is relatively easy to analyze. Their on-line

HARMONIC algorithm, H, packs items so that the sizes of all items in any given bin are in the

C C C C
same interval of the set {(2"'C], (3'2"], ... ,(0, Mn, where M ~ 2 is a parameter of the

algorithm. They show that R;;(M) ~ 1.692 for all M ~ 12, and that

66 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

lim R;;(M) =- 1.691... , thus improving on both NEXT FIT and FIRST FIT. The latter
M-co

bound,

1 1 1 1
1.691... - 1 + '2 + 2x3 + 6x7 + 42x43 + ... ,

is the same as the one given for NF DECREASING in Table I. (A worst-case analysis of NF

DECREASING [7] also entails the analysis of HARMONIC packings.)

The average-case performance of HARMONIC is analyzed for several item size distributions.

For the uniform distribution over [O,C] they show that E (H(L»/E (OPT(L» is asymptotically

no greater than 1.29 for all M > 12, which is to be compared with the corresponding 4/3 result

for NEXT FIT.

3. Bin-Packing Variants

In this section we survey results for variants on the classical one-dimensional bin packing

problem in which the goal is still to minimize the number of bins usC'.d.

Constraints on the Number per Bin - This modification was considered by Krause, Shen, and

Schwetman [85] as a model for multiprocessor scheduling under a single resource constraint when

the number k of processors is fixed. In this case the items represent tasks to be executed, with the

size of an item being the amount of the resource it requires (out of a total quantity of C). If we

assume that all tasks have the same unit-length execution time, then a schedule corresponds to an

assignment of tasks to integral starting times, such that at no time are there more than k tasks

being executed or is there more than C of the resource being used. The objective is to minimize the

latest starting time. This corresponds to bin packing where the bins represent starting times and can

contain at most k items.

Krause et al. analyze three algorithms for this problem. The first two are just FIRST FIT and

Approximation Algorithms for Bin-Packing - An Updated Survey 67

FIRST FIT DECREASING, suitably modified to account for the bound on the number of items per

bin. The results are simply stated:

Note that as k - 00, these bounds remain substantially worse than the corresponding bounds when

the number of items per bin is not restricted (27/10 versus 17110 and 2 versus 1119). Thus the

very existence of a limit, and not just its size, can have a substantial effect on the worst case

behavior of the algorithms.

The third algorithm studied was alluded to in the previous section. ITERATED LOWEST FIT

DECREASING uses a technique we shall be meeting again in the next section, so we shall describe

it in detail. We first put the items in non-decreasing order by size, as we do for FFD. We then

pick some obvious lower bound q on OPT(L) and imagine we have q empty bins, B1,Bb ... ,Bq .

Place PI in B I and proceed through the list of items, packing Pi in a bin whose current contents has

minimum total size (breaking ties by bin index, when necessary). If we ever reach a point where Pi

does not fit in any of the q bins (either because the capacity C or the limit m is exceeded), we halt

the iteration, increase q by I, and start over. Eventually we will succeed in generating a packing

for some value of q, and this will be the output.

The running time of ILFD is O(n 2log n), but this can be improved to O(n log2n) by using

binary search on q. The performance bound proved for ILFD is RtLFD ~ 2, which makes ILFD

competitive with FFD. It is conjectured that the actual value of RliFD is closer to the 4/3 value

we cited in the last section for the case when there is no limit on the number of items per bin.

Partial Orders on L - Partial orders, ~, on the set L of items arise in two potential applications of

bin-packing. One is again related to multiprocessor scheduling, and was studied by Garey, Graham,

Johnson and Yao in [SO). Suppose we have a set of unit-length tasks Pl, ... ,Pn with resource

68 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

requirements subject to an over-all bound of C, as above, but with no limit on the number of

processors. In this case a partial order !S is interpreted as follows: Pi !S Pj means that Pi must be

executed before Pj' i.e., must be assigned to a bin with lower index than that to which Pj is

assigned.

The other application in which partial orders arise is in "assembly line balancing," and is studied

by Wee and Magazine [107]. Here the items represent tasks to be performed on a single product as

it moves along an assembly line. Each is performed at one of a sequence of workstations B 1 ,B 2'

etc., and the item sizes correspond to the times required to execute the tasks. The assembly line

advances in discrete steps, stopping for a period of time C at each workstation. Thus a set of tasks

can be assigned to a work station (bin) if their total time (size) does not exceed C. The goal is to

minimize the number of workstations required. In this case a partial order !S has the following

interpretation: Pi !S Pj means that in any assignment of tasks to workstations (bins), Pi must be

performed before Pj (but they could be performed at the same workstation, merely by doing Pi

before Pj within the total time C allowed, so this time Pi can go either in an earlier bin or the same

bin as Pj).

Note that these two applications yield different interpretations of the partial order constraint

within the bin packing context. See Figure 4. Although this difference might appear to be slight,

its consequences, as shown in the figure, are nontrivial. The algorithm referred to there,

ORDERED FIRST FIT DECREASING, is the best algorithm known for either version of the

problem, but yields quite different guarantees. It is quite simple to describe. First, we order the

items by non-increasing size, as with FFD. We then pack bins, rather than items, in sequence. Bin

Bi is packed as follows: Place the largest unpacked item into Bi that the partial order will allow.

Repeat until no more items can legally be packed into Bi •

Note that this algorithm can be applied to either version of the problem, so long as the partial

Approximation Algorithms for Bin-Packing - An Updated Survey

'---_ -_--J,I
V-

Pj can go in
any of these
bins

I

~ ________ y, ________ ~J

Pj can go in any of these
bins

Figure 4. Two interpretations of Pi ~ Pj and their consequences.

69

order is interpreted appropriately. Note also that, in the absence of a partial order, this algorithm

generates the same packing as FIRST FIT DECREASING and hence has an asymptotic worst-case

ratio of 11/9.

Clustered Items - Here, the basic idea is that only "closely related" items may go in a bin together.

The one example we cite is from a paper by Chandra, Hirschberg, and Wong [181, although other

potential applications of this type might come to mind. Here the items are thought of as having

geographical locations. Putting them in the same bin corresponds to assigning them to a common

facility (computing service, telephone switching center, etc.>, where each such facility is assumed to

have a standard capacity C. We desire that the items which are served by a common facility be in

70 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

close proximity to each other, and this restricts the types of packings that we allow. The main

results in [I8] concern the case when the contents of a bin must all reside within the same unit

square, although other figures, such as unit circles, are also considered. For the unit square case, a

geometric algorithm is proposed and shown to have R; lying between 3.75 and 3.8.

Dynamic Bin-Packing - This variant was proposed originally as a model of certain problems in

computer storage allocation; however, storage applications in a general industrial setting are easily

envisioned. In the computer application the bins correspond to storage units such as disk cylinders,

and the items correspond to records which must be stored for certain specified periods of time.

Associated with an item is thus not only a size s (P), but also a beginning time b (P) and an

ending time e (Pi). A packing is an assignment of items to bins such that at any time t and for any

bin B, the items assigned to that bin which have begun by time t and not yet ended by that time

have total size no greater than the capacity C.

The research reported by ourselves in [27] concentrates on "on-line" algorithms, where in this

case an on-line algorithm packs items in the order in which they begin, and may not use information

about items which are to begin later, or the ending times for items which are currently in the

packing (this lack of information mirrors the predicament often faced by actual computer storage

allocators). It is assumed that once an item is assigned to a bin it cannot be moved to another bin.

The algorithm FIRST FIT can be readily adapted to this situation, but the dynamic nature of

the environment significantly impairs its performance. For the case when no item size exceeds C /2,

we have R FF O/2) - 1.5 in the classical case, but in the dynamic case it is shown in [27] that any

on-line algorithm must obey RAooO/2) ~ 5/3 - 1.666.... For FIRST FIT it was proved that

R FF O/2) lies. somewhere between 1.75 and 1.78. The case when items larger than C/2 are

allowed is even more difficult to analyze (as seems usually to be the case with bin packing), but is

clearly much worse. Here it is known that RFF lies somewhere between 2.75 and 2.89, and any on-

Approximation Algorithms for Bin-Packing - An Updated Survey 71

line algorithm must obey R; ~ 2.5.

Studies of dynamic packings are at the interface between bin-packing and dynamic storage

allocation. The latter class of problems is distinguished by the assumption that items, once packed,

can not be moved at all prior to their departure. (In dynamic bin packing the allowed movement of

items within bins was implicit; only the movement of an item from one bin to another was

disallowed.) Under this added assumption the fragmentation (alternating holes and occupied

regions) that develops as items come and go can create far more wasted space; the space wasted by

the partitioning of storage into "bins" is usually minor by comparison. The standard model considers

only a single bin whose capacity is to be determined under a given algorithm and the assumptions:

the total size of items present at any time never exceeds m and the maximum item size is j. (Note

that m is our usual lower bound on the capacity required by an optimal algorithm.)

FIRST FIT and BEST FIT are the principal approximation algorithms that have been studied.

With FIRST FIT an arriving item is stored at the beginning of the first sufficiently large hole

encountered in a scan of the bin. BEST FIT is defined similarly, where the hole is a smallest one

exceeding the item size. Let C A (j ,m) denote the capacity needed in the worst-case under

algorithm A, and in the spirit of our other asymptotic bounds let C;(j) - lim CA (j,m)/m.
m-oo

Robson [99] has shown that ~ log2.i ~ C;;'(j) ~ log2.i and C;;'(j) - S(j). The bound for

FIRST FIT is a best possible one in the sense that an optimal algorithm must have a SOog j)

worst case if, like FF and BF, it must allocate storage to each item at its time of arrival, and if no

information is available on items that have not yet arrived. This last result of Robson [98] is in fact

the classical one of dynamic storage allocation, and generalizes earlier results of Graham [611.

There are many other interesting results for this problem, particularly those specializing item

sizes to powers of two. Knuth [83] covers the elements of the subject and a recent survey appears in

[23].

72 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

4. Multiprocessor Scheduling

We continue here with the bin-design problem defined in the Introduction: With the number of

bins fixed, find the smallest, common bin capacity C sufficient to pack L.

The initial work on approximation algorithms for this problem appears in [60,62]. We can

define worst case ratios as we did before, noting that in this case the asymptotic and absolute worst

case ratios will coincide for reasonable algorithms - any worst case example can be converted to

one with an arbitrarily large value for C merely by scaling up all the sizes by an appropriate

multiplicative factor. (In those applications in which there is a fixed upper bound on the possible

item sizes, asymptotic worst case bounds would make sense, but due to the nature of the problem we

would tend to get R; - 1 for most algorithms, e.g., see [SO)). Thus we shall express results for

this problem in terms of the absolute ratio RA • Graham examined two basic algorithms. LOWEST

FIT assigns the items to bins in order, placing Pi in a bin with current contents of minimum total

size (ties broken by bin index when necessary). LOWEST FIT DECREASING first sorts the items

so that they are in non-increasing order by size and then applies LOWEST FIT. Fixing m, the

number of bins, Graham was able to prove that RLF - 2-{1/m) [60] and that

RLFD ... (4/3)-O/3m) [621. In analogy with the results for R;(t> in the classical problem,

Coffman and Sethi [35] showed that the LFD bound improves to RLFD(k) =E;; k+l - _1_ when
k km

it is known that there are at least k ~ 3 items per bin. In [SS] Langston demonstrated how the

bad examples of LFD could be effectively avoided. The resulting algorithm, LFD*, uses an

iterative technique and has a worst-case bound, R LFD* =E;; ! + 112 (2-k), where k is the number

of iterations chosen.

Sahni [100] developed an approximation scheme for this problem several years ago. In

particular, he showed that for any fixed value of m and any E > 0 there exists a polynomial time

Approximation Algorithms for Bin-Packing - An Updated Survey 73

algorithm with RA - 1 +E. As in the corresponding studies for the bin-packing problem discussed

earlier, the result is primarily of theoretical interest; such algorithms are exponential in m (and

polynomial in 1/E) and therefore unattractive for m > 3 or very small E.

A more practical algorithm which is polynomial in m and still improves upon LFD was

presented by ourselves in [261. The algorithm works on an iterative principle much like that of

ILFD. Called MULTI FIT DECREASING, the algorithm works by guessing a capacity C and

then applying FFD to the list. The next guess is either larger or smaller, depending on whether

FFD used more than m bins of that capacity to pack the list or not. By using an appropriate

binary search strategy and limiting the number of iterations performed to some small number k, we

obtain an algorithm, denoted MF(k), for which we proved the bound RMFlkl :E;; 1.220+(l/2)k.

Friesen [44] subsequently established the improved upper bound, 6/5 + (l/2)k, which again is

independent of m. MF(k) improves upon LFD for all m > 2 when k ;> 5, at the cost of only a

small increase in running time. The worst behavior known for this algorithm is shown in examples

constructed by Friesen [44], which imply that RMFlkl ;> 13/11 ... 1.18181... for m ;> 13.

(Better upper bounds are known for the cases when m :E;; 7 [26]).

We remark in passing that the results for MULTI FIT DECREASING are proved by

considering the following bin packing variant: Suppose we are given two sets of bins, one with bins

all of capacity a, the other with bins all of capacity fJ. What is the asymptotic worst case ratio of

the number of fJ-capacity bins used by FF (or FFD) to the minimum number of a-capacity bins

needed? This question, first raised in [49], is investigated in detail in Friesen's thesis [44] as well as

in [26], and is used in [49] for proposing a conjectural explanation of the mysterious fraction 17/10

in the original theorem about RFF (a conjecture that, unfortunately, is only partially true [103]).

An algorithm structurally different from any considered so far was introduced by Finn and

Horowitz [411 and later improved by Langston [89]. It is based on finding approximate solutions to

74 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

the following closely related partitioning problem: Partition L into m blocks (bins) B \ , ... ,Bm so as

to minimize the difference in the maximum and minimum bin levels, viz.

D(B\, ... ,Bm) -= max{t(Bi)} - min{t(Bi)} ,
i i

where t(Bi) = ~pEBIS (P). As is to be expected, good approximate solutions for this problem are

good approximate solutions for the problem of minimizing bin capacity. (The two problems are

equivalent, of course, for m "" 2.) The basic idea of the algorithm is iteratively to exchange items in

the two bins having the maximum and minimum levels until D can no longer be reduced in. this

way.

As shown in [41] linear time algorithms can produce packings comparing favorably with those of

MULTI FIT DECREASING, especially for large lists. Quite recently, however, Karmarkar and

Karp [75] obtained even stronger results. Again concentrating on better performance for a large

number, n, of items, they devised algorithms based on an operation called set differencing. These

algorithms are best illustrated for the case m - 2.

The differencing operation consists of selecting a pair of item sizes s (p) and s (P') from Land

then restricting the solution to partitions in which p and p' appear in different bins. The new,

smaller problem is then equivalent to partitioning

L' - L-{s(p), s(P')} U {Is (P)-s(p')i} .

Consider for example, the algorithm: While IL I > I. iteratively select the largest two elements s

and s' of L and perform the operation L +- L-{s,s'} U {Is-s'i}. The last number, when

I L I ,., 1, determines D (B \,B 2); the corresponding partition is trivial to construct by backtracking

through the sequence of differencing operations. Figure 5 shows an example in the form of a tree.

Other set-differencing algorithms can be obtained simply by altering the order in which elements are

selected for differencing.

Approximation Algorithms for Bin-Packing - An Updated Survey 75

14 17 23 24 40 56 75

16 19

4

1

10

~ ~
56 75

24

23 40

The packing produced by backtracking:

17 14

Figure 5. An Illustration of Set-Differencing.

The methods for m - 2 are extended in a natural way to classes of algorithms for arbitrary

m > 2. For a particular linear-time algorithm Karmarkar and Karp show that, except in

pathological cases, partitions are produced with D - 0 (n-1og n). This result is to be contrasted

with the corresponding O(n-1) result that applies to LFD and MULTI FIT. To show that the

pathological cases are extremely rare they use a simple probability model to verify that as n - 00

the algorithm performs as claimed with probability I. We shall return briefly to this analysis later

on.

76 E.G. Coffman, Jr., M.R. Garey. D.S. Johnson

Average-Case Analysis - The first such analysis of a specific approximation algorithm was by

Coffman, Frederickson and Lueker [24]. They analyzed the LFD rule for m - 2 and showed that

for item sizes uniformly distributed over [0,1]

Note that n/4 is a lower bound on E[OPT(L) 1. Shortly thereafter they proved that

..!!.... + O(!!!.) was the corresponding upper bound for the general case, m ;;?; 2 [25].
2m n

More recently Bruno and Downey [J6J analyzed the LF rule assuming independent, uniformly

d o °b ed 0 0 Th 0 • I' . f h '1 b bOI' p{ LF(L) > } Istrl ut Item sizes. elr mam resu t IS an estimate 0 t e tal pro a Iity OPT(L) x

by which they were able to demonstrate numerically a fast convergence in probability of LF(L) to

OPT(L) as n - 00. Using different techniques, Coffman and Gilbert [30J subsequently improved

the bound on the tail probability and extended the analysis to exponentially distributed item sizes.

Exponential convergence was demonstrated analytically for the latter distribution and an even faster

convergence was found for the uniform case. Bounds on the expected values of the performance

ratios were also derived for both cases. They are

uniform: [LF(L)]
E OPT(L)

:E:; 1 + 2(m-J) .
n-2 ' n > 2

exponential: E [LF(L) 1 :E:;l+
(m-J)Hm _ 1

, n > m,
OPT(L) n-m

where Hi is the ith harmonic number.

Asymptotic results of a more general nature were proved by Dempster et al. [36]. They showed

that for any approximation algorithm, A, in a broad class (including all those considered in this

survey), the ratio of A (L) to OPT(L) convergences in probability to 1 as n - 00, if the item

sizes are independent and identically distributed random variables with finite variance. Loulou [92J

Approximation Algorithms for Bin-Packing - An Updated Survey 77

subsequently proved a stronger result for the LF and LFD rules, viz. the absolute errors

LF(L)-OPT(L) and LFD(L)-OPT(L) converge in probability to finite random variables.

Quite recently Frenk and Rinnooy Kan [43] dealt successfully with a conjecture of Loulou; they

proved that LFD(L)-OPT(L) converges in probability to 0 as n - 00 if the item size

distribution has a finite mean and a density f satisfying f (0) > O. They also show that if the

distribution is uniform or exponential, the rate of convergence is 0 [IO~ n].

What appear to be the strongest results of this type currently known were obtained recently by

Karmarkar and Karp [75] for one of the set-differencing algorithms discussed earlier in this section,

where the objective function is again the difference D between the largest and smallest bin levels.

For the particular algorithm used in [75] let D* (L) denote the output for a given m, and define

D:,n'" sup D* (L) .
IL: ILT"n}

They showed that there is a positive constant a such that

D" ... e-a(lnn)'/m m,n

with probability 1 as n - 00 for any item size distribution satisfying a mild smoothness condition.

A similar result is conjectured for the simple largest-pair-first algorithm illustrated in Fig. 5.

However, a rather more elaborate, but still linear-time algorithm had to be adopted in order to avoid

the usual difficulties in dealing with order statistics, as well as certain other problems.

To help motivate the above result let us assume m" 2, where the simpler form

D;,n ~ 0 (n-a log n) applies. Consider the following set-differencing algorithm which assumes that

n - 2k, k ~ 1. Pair the largest two numbers in L, the next largest two, and so on. Differencing

each pair we establish a reduced problem containing nl2 - 2k- 1 differences. The desired partition

is obtained from this process repeated k times. Under general assumptions it is reasonable to

78 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

expect that at the end of each of the k stages the order of magnitude of the numbers is reduced

approximately by a factor of n. Accordingly, we expect a final partition such that

A result in a similar vein was recently proved by Karmarkar, Karp, Lueker and Odlyzko [77] for

a problem posed by Michael Steele [105]. The problem was to find the rate of convergence of

E[D(L)] as n - 00 assuming an optimal algorithm, m '"" 2 and item sizes uniformly distributed

over [0,11. Using a technique called the second-moment method, they showed that

S. Other Performance Criteria

Sums of Squares of Bin Levels - In parallel efforts Cody and Coffman [21] and Chandra and

Wong [17] studied bin packing problems arising in the allocation of records on computer auxiliary

storage devices. The basic probability models are patterned after those analyzed by Knuth [83] in

connection with similar storage assignment problems. In bin packing terms the "sizes" of items are

the access frequencies of the corresponding records.

The problem in [21] models paging drums where a given set of pages is to be partitioned among

the m sectors (bins) of the drum so as to minimize average access time. This quantity is calculated

to be m-2 + !!!. ~ t 2(B), where t(B) is the ith bin level, i.e. the sum of the access
2 2 i-I

frequencies of the pages in the ith sector. The minimization of this sum can be accomplished

roughly by making the bin-levels all as close to each other as possible. In [211 the LFD rule is

applied to this problem and the following result proved: RLFD ~ 1 + (I).
16 m-I

The problem in [17] models arm contention in disk-pack computer storage. In this case, the

object is to minimize the contention that occurs whenever two items from the same bin are

Approximation Algorithms for Bin-Packing - An Updated Survey 79

m
requested at the same time. Contention is measured here by the simpler quantity, ~ e2(B;). The

;-1

algorithm LFD is analyzed in this context too, and it is shown that for this problem

37 25 36 ~ RLFD ~ 24 In (38), Easton and Wong consider the variant in which no bin can contain

more than k items. They analyze an appropriately modified version of LFD and showed that

RLFD ~ 4/3.

Wong and Yao (108) consider yet another variant based on minimizing access time (110).

Suppose we wish to maximize, rather than minimize, the sum of squares in the above case where k

items per bin are allowed. This might be considered as a bin packing problem where all items have

both a size s (p) = 1 and an arbitrary weight w (P), the bin capacity is k, and the goal is to pack

the items into m bins so as to maximize the sum of the squares of the total weight in each bin. As

observed in (110), this is of course an easy matter: merely put the k largest items in the first bin,

the next k largest in the second bin, etc. Wong and Yao consider the generalization where the sizes

as well as the weights are arbitrary.

In order that results for this maximization problem can be compared directly to those for the

minimization problems we have been studying so far, we shall define RA (L) to be OPT(L)/A (L)

for any approximation algorithm A (this is the inverse of our definition for minimization problems).

R A and R;; are then defined as before and lie in the range [1,00). Wong and Yao propose a

heuristic based on ordering the items by non-decreasing density (weight divided by size) and then

applying NEXT FIT. They show that this heuristic satisfies RA ~ 2.

Maximizing the Number of Items Packed - We consider again a maximization problem that fixes

the number of bins and the bin capacity. This time the goal is to pack as many of the items in L as

possible into the bins. Coffman, Leung, and Ting (34) consider the algorithm FIRST FIT

INCREASING, which first sorts the items into non-decreasing order by size, and then applies FF

80 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

until an item is reached which will not fit in any of the bins (which implies that none of the

remaining items will fit either). They show that RFFl = 4/3. In [33], Coffman and Leung

consider an algorithm that, like ILFD and MFD, involves iteration. Their algorithm, denoted

FFD*, works as follows: First sort the items in non-increasing order by size, and then apply FF. If

some item fails to fit, stop, delete the first (largest) item in the list, and reapply FF to the shorter

list. Repeat this until a list is obtained that FF does pack into the m bins. Coffman and Leung

show that FFD* will always pack at least as many items as FFI, and indeed obeys the better

bounds 8/7 ~ RFFO* ~ 7/6, making the added complexity of FFD* over FFI worth the effort~

Langston [87] has recently analyzed these heuristics for the more general model in which bin sizes

may vary. By arranging bin sizes in non-decreasing order, he proves that RFFl - 2 and

11/8 ~ RFFO* ~ 3/2.

Maximizing the Number of Bins above a Given Level - Suppose a threshold T > 0 is given.

Assmann, Johnson, Kleitman and Leung [3] studied the problem of finding a packing of L into a

maximum number of bins such that each bin has a level not less than T. Similar to the sum of

squares problem, for a good packing, the goal is roughly to pack every bin to a level as close as

possible to, but not less than T.

Two approximation algorithms were examined for this problem. The first that we shall describe

begins by producing a standard FFD packing of L for some given capacity C > T. The second

stage iteratively takes items from the last non-empty bin and places them in the currently lowest

indexed bin having a level less than T; at the end of this stage some, possibly empty subset of

highest indexed bins in the FFD packing will have been emptied in order to bring the levels of

lower indexed bins up to at least T. The performance guarantee for this rule, called FFD[C), is

an interesting function of the value of C chosen for the initial FFD stage. Using our inverted ratio

OPT (L)/A (L) as before, it is shown in [3] that RFFO(C) ~ 3/2 for all C ~ T and

Approximation Algorithms for Bin-Packing - An Updated Survey 81

lim RFFD[C] = 2 and lim RFFD[C] = 2, whereas RFFD[C] = 3/2 if .! T ~ C < 23 T. In
C-T C-2T 3

other words, for best worst-case performance we should choose C in [.! T, 1. T).
3 2

The second algorithm investigated was simply ITERATED LOWEST FIT DECREASING

adapted to this problem. A value is guessed for the number, m, of bins in which to apply LFD. If

each bin in the LFD packing has a level at least T, the algorithm halts. Otherwise, a smaller value

of m is taken and the procedure repeated. It is easily verified that an efficient binary search can be

organized around the fact that an appropriate m must exist in the range

[In 1 n 1
2T .~ s(P), T .~ s(P) .

I-I I-I

The corresponding algorithm has the asymptotic bound

R/'iFD = 4/3, thus improving on the bound for FFD[Cl

An experimental analysis of average case behavior for these algorithms, plus a probabilistic

analysis of NF analogous to that in [72] can be found in [21.

Maximizing the minimum bin level - This dual to the capacity minimization problem was studied

by Deuermeyer, Friesen and Langston [37]. Clearly, it is also closely related to the problem of

minimizing the difference between maximum and minimum bin levels, which was discussed in the

previous section. In [37) it is shown that the LFD rule has a 4/3 bound (using the inverted ratio)

for the max-min problem, just as it has for the min-max problem. As might be expected, set-

differencing algorithms are also effective for this problem, but algorithms such as MUL TIFIT can

perform very poorly.

6. Vector Packing

In this section we consider one way of generalizing the classical one-dimensional bin packing

problem to higher dimensions. Instead of each s (p) being a single number, we consider the case

when it is a d-dimensional vector s(P) - <SI(P),S2(P), ... ,sd(P». The bin capacity is also a

82 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

d-dimensional vector <C,C, ... ,C>, and the goal is to pack the items in a minimum number of

bins, given that the contents of any given bin must have vector sum less than or equal to its

capacity. This problem models multiprocessor scheduling of unit-length tasks in the case when there

are d resources, rather than just one as we assumed before. For simplicity we have normalized the

amounts of resources available so that all d bounds are the same.

Note that the two-dimensional version of this problem is not the same as the problem of packing

rectangles (to be discussed in the next section). A vector < s 1 (p) ,s 2 (p) > could be thought of as

representing a rectangle with length SI (p) and width S2(P), and a bin of capacity <C,C> as a

square into which the rectangles are to be packed. However, the only types of packings allowed

here would correspond to ones in which the rectangles were placed corner to corner, diagonally

across the bin.

In [84], Kou and Markowsky show that any "reasonable" algorithm, i.e., one which does not

yield packings in which the contents of two non-empty bins can be combined into a single bin, obeys

the bound R A <; d + 1, where d is the number of dimensions (an alternative proof can be found in

[48], although there the theorem is not stated in its full generality). We note in passing that, in

spite of the obvious desirability of the above "reasonable" property, not all the algorithms we have

mentioned so far are reasonable - an obvious offender is NEXT FIT. However, FIRST FIT,

FIRST FIT DECREASING, and many others are reasonable and hence do obey the above

mentioned, not very impressive (when d is large), bound. They are, in fact, better than reasonable,

but not by as much as one would like. In [50], Garey, Graham, Johnson, and Yao analyze the d

dimensional problem and appropriate adaptations of FF and FFD to this multi-dimensional case

(in FFD the items are sorted in non-decreasing order by the maximum components of their size

vectors). They show that RFF - d +7/10, which reduces to the familiar 17/10 result in the one

dimensional case, and that d <; RFFD <; d+l/3. To date, no one has found any polynomial time

approximation algorithm for the general d-dimensional problem with R; < d. Yao has shown

Approximation Algorithms for Bin-Packing - An Updated Survey 83

[108] that any algorithm that is Jaster than FF or FFD, i.e., that has a running time that is

o (n log n) in the decision tree model of computation, must have RA"" ~ d. Within this

constraint, Fernandez de la Vega and Leuker [40] show, by extending their results in one dimension,

that a polynomial time approximation scheme exists for the vector problem as well; i.e. there is a

linear-time algorithm for finding solutions within E of d times the optimal. (The earlier caveats

concerning running time apply here as well, however.} In spite of these results, we should note that

the extensive simulation results of Maruyama, Chang, and Tang [96] for FF, FFD, and a variety

of other algorithms indicate that average case behavior may not be nearly so bad here as the worst

case bounds.

In the variant on this problem in which a partial order is present, however, things definitely get

worse. Suppose that the set of items has a partial order ~ associated with it that constrains the

allowable packings as in Section 3 (the multiprocessor scheduling rather than the assembly line

balancing case). In this case the natural generalization of the ORDERED FIRST FIT

DECREASING algorithm of Section 3 can be shown [50] to obey

O.69I)d+l ~ ROFFD ~ O.7)d+l, a definite worsening of our bounds when no partial order

was present (the result mentioned in Section 3 for the one-dimensional version of this problem is a

special case of this result). Similar results are obtained for the algorithm ORDERED FIRST FIT

BY LEVEL, which works the same way as OFFD, except that instead of ordering items by non

increasing maximum size component, they are ordered by non-increasing "level" in the partial order

[24]: RO'F'FL - (1.7)d+1. That some type of pre-ordering is necessary for even this standard of

performance follows from the fact that the algorithm without any pre-ordering, ORDERED FIRST

FIT, has ROFF - 00 [50].

7. Rectangle Packing

In this section we consider an active area of bin packing research: the problem of packing

84 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

rectangles into two-dimensional bins. The first version of this problem to be studied from a

performance guarantee point of view is due to Baker, CotTman, and Rivest [8], and models a variety

of problems, from computer scheduling to stock cutting. In this version, the items Pi are rectangles,

with height hi and width Wi' The goal is to pack them in a vertical strip of width C, so as to

minimize the total height of the strip needed. The rectangles must be packed orthogonally, that is,

no rotations are allowed: all rectangles must have their width parallel to the bottom of the strip.

The orthogonality restriction is justified on the basis of the proposed application to scheduling.

Here the items once again correspond to tasks. The height of an item is the amount of processing

time it requires, and its width is the amount of contiguous memory it needs. The strip width C is

then the total memory available; the strip length is the amount of time needed to schedule all the

items. In this application it makes no sense to rotate a rectangle, even by ninety degrees, since

execution time is not in general directly translatable into a memory requirement.

Applications to stock-cutting occur in a variety of industrial settings where the "raw" material

involved comes in rolls, for instance rolls of paper, rolls of cloth, rolls of sheet metal, etc. From

these rolls we may wish to cut patterns (for labels, clothes, boxes, etc.) or merely just shorter,

narrower rolls. In the simplest case, we can view the objects we wish to cut from the rolls as being,

or approximating, rectangles. We minimize our wastage if we minimize the amount of roll (the

strip length) used. Once again some form of orthogonality may be justified, since in many

applications, the cutting is done by blades that must be either parallel or perpendicular to the strip,

and the material may have a bias that dictates the orientation of the rectangles. However, ninety

degree rotations may in some cases be allowable, and we will later say a bit about how the results

we discuss can be extended to take this into account.

Because of the economic importance of efficient stock-cutting, a broad range of classical heuristic

and enumerative methods have been applied in the last 20 years. For example, solution techniques

Approximation Algorithms for Bin-Packing - An Updated Survey 85

have been designed around linear programming, dynamic programming, branch and bound, network

flow and heuristic search methods. (See [1,10,19,571 for such studies and references to a number of

others'> The performance of these solution techniques is normally evaluated experimentally, rather

than analytically, so they fall outside the scope of this survey.

In [81, Baker, Coffman, and Rivest consider a variety of strip packing algorithms based on a

"bottom up - left justified" (BOTTOM-LEFf for short) packing rule. In a BOTTOM-LEFf

packing, items are packed in turn, each item being placed as near to the bottom of the strip as it

will fit and then as far to the left as it can be placed at that bottom-most level. Note that there is a

difference in kind between two-dimensional packing rules, suc~ as the BOTTOM-LEFf rule, and

one-dimensional rules such as FIRST FIT and NEXT FIT. In the one-dimensional case there

always exists an ordering of the items such that FIRST FIT (NEXT FIT) constructs an optimal

packing. However, as shown in [81 this is not the case for BOTTOM-LEFf. In fact, Brown [131

has constructed instances in which the best BOTTOM-LEFf packing possible still yields a strip

whose height is 5/4 times optimal.

However, although no preordering of the items may be able to yield an optimal packing, some

may still be better than others. Various BOTTOM-LEFf algorithms can be considered, depending

on how (if at alO the set of rectangles is initially preordered. It turns out that only one of the

standard orderings seems to make a difference as far as worst case behavior is concerned. If we let

BL stand for the simple BOTTOM-LEFf algorithm, and BLIW, BLIH, BLDW, and BLDH

stand for the algorithm with preordering by increasing (i.e., non-decreasing) width, increasing

height, decreasing width, and decreasing height, then we have

RBL - R BLIW - RBLIH - RBLDH - 00; R BLDW - 3

For the special case of squares (hi - Wi for all p), the BLDH algorithm becomes equivalent to

BLDW, and the result improves to R BLDW - 2 [81.

86 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

For the case of arbitrary rectangles, subsequent work has yielded some improvements. The

FIRST FIT DECREASING HEIGHT "level" algorithm of Coffman, Garey, Johnson, and Tarjan

[29] (to be described later) can be shown to have RFFDH = 2.7, and an algorithm of Sleator [104]

further reduced the bound to RA .. 2.5.

These results all concern absolute worst case performance ratios. Indeed, for this problem it

would again seem as if absolute and asymptotic performance ratios should be equivalent, since

heights can be scaled to arbitrarily large values. However, such scaling may not be sensible in many

practical applications, where some strict upper bound on height may be imposed. In this case,

asymptotic analysis may be a more meaningful measure, giving us guarantees that hold as the

optimal strip length becomes very large with respect to this maximum possible item height. As

might be expected, these asymptotic guarantees can be better than the absolute ones (although they

do not equal I, as they would if all rectangle widths were equal, thus reducing us to the capacity

minimization problem of Section 4). For instance, RBiDW .. 2, an improvement of lover the

absolute guarantee for BLDW, but a long way from optimal.

The search for strip packing algorithms with better asymptotic worst case ratios was taken up in

[29] by Tarjan and ourselves. The new algorithms were based on a different type of packing rule,

suggested by Golan [58], and were called "level" algorithms. These algorithms involve an attempt to

apply our old knowledge about one dimensional bin packing. Note that if all rectangles have the

same height, the two-dimensional problem essentially reduces to the one-dimensional case: in an

optimal packing the items may be placed in rows or "levels." Each level in the packing then

corresponds to a bin and the height of the packing corresponds to the number of bins used. The

basic idea of a level algorithm is the following: First, the items are preordered by non-increasing

height. The packing is then constructed as a sequence of levels, each rectangle being placed so that

its bottom rests on one of these levels. The first level is simply the bottom of the bin. Each

subsequent level is defined by a horizontal line drawn through the top of the tallest rectangle on the

Approximation Algorithms for Bin-Packing - An Updated Survey 87

previous level. This is best illustrated by considering the two basic level algorithms proposed in [291.

In the algorithm NEXT FIT DECREASING HEIGHT rectangles are packed left-justified on a

level until the next rectangle will not fit, in which case it is used to start a new level above the

previous one, on which the packing proceeds. Note the analogy with the one-dimensional NEXT

FIT algorithm. In the FIRST FIT DECREASING HEIGHT algorithm (another analog), each

rectangle is placed left-justified on the first (j.e., lowest) level in which it will fit. If none of the

current levels has room, a new one is started as with the NFDH algorithm. See Figure 6 for an

example of an FFDH packing.

II II 11/////// I(II(IIh
11111111111 II ",/,: ~

~
III/ii/i/if/;

/
/
/
/
/

Figure 6. An example of FFDH packing.

88 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

At first glance, one would expect NFDH and FFDH to be worse than their one-dimensional

counterparts, given all the space that may be wasted in a level above items which are shorter than

the first one. However, it turns out that this wasted space is strictly bounded, and by a collapsing

sum argument it can be concluded that, exactly as in the one-dimensional case, R;FDH "" 2 and

RFFDH - 1.7. The results for bounded item widths also resemble their one-dimensional

counterparts.

For the special case of squares the asymptotic worst case ratio is reduced to 1.5. The

INCREASING rules BLIH (or BLIW) and NFIH have also been analyzed for this special case. In

[6] Baker, Calderbank, Coffman and Lagarias show that RBLlH .. R;F1H - 1.691, by extending

the results in [71. These rules will be discussed later in connection with another application.

We should note that level-by-level packings have a special significance stemming from their

relation to guillotine cuts [57]. Guillotine cuts are edge-to-edge cuts of a rectangle or strip parallel

to its length or width. The 3-stage guillotine cuts corresponding to level-by-level packings such as

Figure 6 involve first a set of horizontal guillotine cuts, then a set of vertical cuts and finally another

set of horizontal "trim" cuts. The special constraints of guillotine cuts apply in several applications,

the chief one usually mentioned being the cutting of rectangular plates of glass.

Returning to the general problem, let us consider where further improvements might be found.

Further orderings by size to approach the FFD performance in one-dimension do not appear

feasible; FFD requires that the items be preordered by non-increasing size, which here corresponds

to non-increasing width, and since FFDH already requires items to be preordered by height, any

additional preordering becomes impossible. Fortunately, there are ways of approximating FFD in

the two-dimensional case. In the SPLIT FIT algorithm of [29], the set of rectangles is partitioned

into two parts, those with width exceeding C /2 and those without, and each subset is ordered by

non-increasing height. Packings for the two sets are then combined in an involved manner, and the

Approximation Algorithms for Bin-Packing - An Updated Survey 89

result is an algorithm with R;;' - 1.5. This idea of splitting the set of rectangles into subsets

according to width can be carried even further. In [59] Golan described an algorithm for which

R; ~ 4/3, and in [5] Baker, Brown, and Katseff devised a much more complicated algorithm for

which R; ~ 5/4, a bound which is close to the 11/9 guarantee provided by FFD in the one

dimensional case.

So far, all the rectangle packing algorithms we have discussed for which RAoo ~ 00 have

involved some preordering of the rectangles, and hence are not "on-line" algorithms. However, such

algorithms might well be required in scheduling applications, and so the question of finding an on

line algorithm with reasonable worst case behavior becomes relevant. Baker and Schwartz, in [9],

show that such algorithms exist by devising what they call "shelr' algorithms. These are variants on

the level algorithms above in which levels, rather than being determined by their tallest item, come

in fixed sizes. If we assume that I is an a priori upper bound on rectangle height, the standard

levels will come in heights r-k, k ~ 0, for some prespecified value of r, 0 < r < 1. Whenever a

rectangle Pi is to be packed in the NEXT FIT SHELF(r) algorithm, one first determines that value

of k such that rk+1 < hi ~ rk. If there is a level of height rk already in the packing, and Pi' will

fit in the currently active one, it is placed there. Otherwise it is placed in a new such level, which

becomes the currently active one for that height. The algorithm FIRST FIT SHELF(r) is· defined

analogously.

Although these shelf algorithms clearly have considerable space-wasting potential, it turns out

that the wastage can once again be bounded, and in fact RNFS(r) - 2/r and RFFS(r) - 1.7/r.

Note that these approach the values for NFDH and FFDH as r approaches 1. However, as r

approaches 1 the amount of wastage to be expected in small examples increases as C/O -d, and so

a trade-off is involved. The best absolute worst case ratio is obtained by FFS (r) when r - .622,

in which case we have RFFS (,) - 6.9863.

90 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

The limitations inherent in the on-line approach are investigated by Brown, Baker and Katseff in

[151. They show that anyon-line algorithm must obey RA ~ 2. (The paper also contains bounds

for on-line algorithms in the special case where they happen to be given sets of rectangles in some

sorted order, but must still pack each item in turn, without being able to look ahead or to move an

item once it is placed).

As a final contribution to strip packing we mention the results of Coffman and Gilbert [31] on

dynamic packings in two dimensions. This is the natural extension of dynamic storage allocation in

one dimension as defined in Section 3. In 13 11 the problem is specialized to squares and bottom up

packings in a strip of width w. Extending the definitions in the one dimensional problem, let the

squares in list L have a maximum size of j x j and assume that the total area of packed squares

never exceeds mw. Let BL (L) be the maximum height achieved by squares in L under the

BOTTOM LEFT algorithm. For the asymptotic bound

it is proved in [31] that

C oo (.) I' BL (L)
BL] = 1m sup ,

m-oo L m
w-oo

Hj
CM (j) ~ ---"-- ~ 5.177 log.i ,

I
log 2-'2

where Hj is the jth harmonic number. Moreover, lists are given which show that

CB""r (j) = eOog j). A number of results for finite m and ware given in [311 along with

extensions to more than two dimensions.

There have been two papers to date that cover average case analysis for strip packing. In [42],

Frederickson proposes an off-line algorithm combining FFD with specially tuned shelf sizes and

specifically designed for the case when item sizes and widths are independently and uniformly

distributed between 0 and C. Although the expected wastage may be large in absolute terms

Approximation Algorithms for Bin-Packing - An Updated Survey 91

(proportional to n3/4), the ratio of expected strip length to a lower bound on the optimal length

(obtained by dividing the expected total area of rectangles by the strip width C) approaches 1 as n

goes to infinity.

In [67], Hofri concentrates more on the on-line case, extending his earlier work with Coffman,

So and Yao [32] on the expected behavior of one dimensional NEXT FIT to the strip packing

problem. He considers two new on-line algorithms. The first is a level algorithm in which there is

no initial reordering of the list of items, and hence the height of a level is not determined by its first

rectangle but by the tallest, whichever one that might be. Otherwise the packing rule is basically a

NEXT FIT one: an item is packed in the current level unless it cannot fit along the bottom, in

which case it starts a new level, whose bottom is coincident with the top of the tallest item in the

earlier level. Hofri calls this algorithm NEXT FIT, as opposed to NEXT FIT DECREASING

HEIGHT where the items are preordered. Hofri's other new on-line algorithm is appropriate in the

case where ninety degree rotations are allowed, and is called ROT AT ABLE NEXT FIT. This

algorithm is the same as NEXT FIT except that each item is rotated before it is packed so that its

height does not exceed its width.

Both of these two new on-line algorithms have R; = co and so are not very attractive from a

worst case point of view. However, Hofri shows that when heights and widths are independent and

uniformly distributed between 0 and C, they are not that much worse than NEXT FIT

DECREASING HEIGHT, which has RNFDH = 2 and is not an on-line algorithm. As n -+ co,

Hofri's results indicate that NEXT FIT DECREASING HEIGHT averages roughly 4/3 times the

above-mentioned lower bound on optimal strip length. ROTATABLE NEXT FIT is only slightly

worse, and NEXT FIT's ratio is only about 3/2.

Having introduced the case where ninety degree rotations are allowed, we should mention that

some of the worst case results mentioned above also apply to this case, in that the values of RA and

92 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

R; are unchanged if such rotations are allowed in the construction of optimal packings. This holds

true in particular for NFDH and BLDW, since the proofs of the bounds for these algorithms are

based on pure area arguments. So far no algorithm has been found that attains improved

guarantees by actually using such rotations itself, and the results mentioned above for the

performance of strip packing algorithms when all items are squares (and hence ninety degree

rotation cannot help) indicate that we can expect only limited improvements.

A rectangle packing problem closely related to strip packing is that of packing a given set of

rectangles into an enclosing rectangle of minimum area. Strip packing is the special case where the

width is fixed. In this general problem both length and width are allowed to vary. To date there

has not been much work on this problem from a performance guarantee point of view. Two papers

of interest have addressed the case when all the items to be packed are squares. In [811, Kleitman

and Krieger show that a collection of squares whose total area is unity can always be packed into a

rectangle with area 4/../6, and this is the minimum area for which such a packing is guaranteed.

Furthermore, a 2/.J3 by ..fi rectangle is the unique rectangle that will always suffice. In [391,

Erdos and Graham consider the minimum sized square required to contain a collection of unit

squares, and show that this size can be non trivially decreased if rotations other than ninety degrees

are allowed.

Approximation algorithms for a problem complementary to these have been studied by Baker,

Calderbank, Coffman and Lagarias [61. Their problem was to pack the maximum number of

squares from a given list into a rectangle of fixed dimensions. They analyzed both a BOTTOM UP

INCREASING and a level-by-level NEXT FIT INCREASING algorithm and proved that

RBUI - RNFI = 4/3, where again these are based on the inverted ratios OPT(L)/A (0.

It must be pointed out that there is a sizable literature on square packing which we shall not

survey here, primarily because it does not concern results closely related to approximation

Approximation Algorithms for Bin-Packing - An Updated Survey 93

algorithms. The following list illustrates informally the variety of questions that have been asked:

What is the smallest square sufficient to enclose n unit squares, rotations allowed? Can a rectangle

with integer sides be tiled by a sequence of consecutive squares with sides 1,2,3, ... ? What is the

smallest number of squares with integer sides into which a given square with integer sides can be

partitioned? Extensive discussions of these and other intriguing but difficult questions can be found

in [47, I 0 I], along with discussions of similar problems in packing circles and spheres.

The final rectangle packing problem we shall consider is a straightforward generalization of the

one-dimensional case. Here the problem is once again simply to minimize the number of bins used,

the bins now being large rectangles of some fixed dimensions into which the given set of rectangles

must be packed. We first note that if the number of possible rectangle sizes is sufficiently small, a

Gilmore-Gomory style linear programming approach can be applied [57] with useful results. For

the general problem, the only algorithm which to date has been analyzed from the worst case point

of view is a composite algorithm proposed by Chung, Garey and Johnson [201. We shaH denote this

algorithm by "FFDH*FFD," as it is based on the algorithm FFDH for strip packing and FFD for

one-dimensional bin packing. The idea of the algorithm is as follows: Suppose the standard bin has

width Wand height H. First use the FFDH algorithm to pack the set of rectangles into a strip of

width W. Next, decompose this packing into blocks corresponding to the levels created by FFDH.

Each block can be viewed as a rectangle of width Wand height the height of the level. Thus,

packing these blocks into rectangular bins of width W becomes a simple one-dimensional bin

packing problem, where the size of an item (block) is its height. Apply FFD to this one

dimensional problem.

The analysis of this algorithm in [20] shows that 2.022 ~ RFFDHOFFD ~ 2.125 Note that

this leaves open the interesting possibility that RFFDHoFFD = (RFFDH) (RFFD) -

(}7/lOHll/9) .. 2.0777 ... , although the proof of such a result might well represent quite a

challenge.

94 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

Quite recently Karp, Luby and Spaccamela [79] have considered a probability model of this

problem under the assumption that the enclosing rectangles are unit squares. The dimensions of

each of the n rectangles to be packed are independent random variables uniformly distributed over

[O,ll They devise an approximation algorithm requiring n/4 + O(n 1/21og n) bins on the average,

thus generalizing the one-dimensional results in [76] and Frederickson's [42] strip packing results.

Since the expected total area of the n rectangles is n/4, the ratio of the expected number of bins

required by their algorithm to the expected number in a perfect packing approaches I as n - 00

Similar results are derived for extensions to more than two dimensions.

8. Directions for Future Research

In this section we briefly mention some of the open problems that we feel are significant from

either a mathematical or practical point of view. First there is the basic problem of finding simpler

and more general proof techniques. Although we have concentrated here on results rather than

proof techniques, most of the results we have cited have only been proved by very problem-specific

techniques that have rarely been exploited in analyzing related problems. It is true that researchers

have been able to use intuition gained in studying the classical one-dimensional case in deriving

results for the more complicated variants and generalizations, but unfortunately this is not often

very apparent in the resulting proofs. The closest to a general method for proving results of this sort

is the "weighting function" approach, as noted in Section 2, but so far the details of how this

approach is used vary considerably from one problem to the next.

On a less fundamental level, there is of course the problem of finding better algorithms for the

various problems, especially in the area of rectangle packing, and of tightening up the bounds on the

algorithms already proposed but incompletely analyzed. There is also always room for new bin

packing variants, the key being to find a variant that models practical problems and is susceptible to

meaningful analysis. For instance, questions are often asked about the case when there are different

Approximation Algorithms for Bin-Packing - An Updated Survey 95

types of bins (i.e., different sizes, different costs, etc.). The only work that can be cited here appears

to be that of Langston [87] mentioned in Section 5.

Another technical problem is the very fundamental one of lower bounds. We have mentioned a

number of lower bound results for on-line algorithms and we have cited the important recent

developments in fully polynomial approximation schemes by Fernandez de la Vega and Lueker [40]

and Karmarkar and Karp [74]. But the question of such schemes for two dimensional packings

remains open, as does the question: Is there a polynomial time algorithm for the one dimensional

problem that always comes within some additive constant of the optimum?

Our final remarks concern probabilistic analysis. We have noted the impressive increase in this

research in the past few years. The most far-reaching contributions appear to have been those

establishing rates of convergence to optimality of certain approximation algorithms, in the sense of

expected performance. These results have usually been in the form of bounds that leave

considerable room for future improvements. There is the added challenge, of course, to provide

measures of second moments, and indeed, distributions of objective functions.

A characteristic weakness of many of the results to date has been that the algorithms analyzed

have been chosen for their mathematical tractability rather than their attractiveness from a practical

point of view. A prominent open problem is still a satisfactory average-case analysis of FIRST FIT,

not to mention FIRST FIT DECREASING. A new such problem is to extend the O(n-1ogn)

performance estimate to the more natural largest-pair-first set-differencing algorithm [75]

introduced in Section 4. In view of the methods currently available, expecting exact results may be

unreasonable. However, good bounds and results for interesting special cases would appear to be

well worth the effort.

96 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

9. References

[I) Albano, A. and Sapuppo, G., "Optimal allocation of two-dimensional irregular shapes using

heuristic search methods," IEEE Trans. Syste., Man, Cybern., SMC-1O (\980),242-248.

[2) Assmann, S. B., Doctoral Dissertation, Department of Mathematics, M.I.T., Cambridge,

Mass. (\983).

[3) Assmann, S. B., Johnson, D. J., Kleitman, D. J. and Leung, J. Y-T., "On a dual version of

the one-dimensional bin packing problem," J. of Algorithms (to appear).

[4) Baker, B. S., "A new proof for the first-fit decreasing bin-packing algorithm," Technical

Memorandum (1983), Bell Laboratories, Murray Hill, N.J. 07974.

[5) Baker, B. S., Brown, D. J., and Katseff, H." P., "A 5/4 algorithm for two-dimensional

packing," J. of Algorithms, 2 (198 I), 348-368.

[6) Baker, B. S., Calderbank, A. R., Coffman, E. G., Jr., and Lagarias, J. c., "Approximation

algorithms for maximizing the number of squares packing into a rectangle," SIAM J. of Alg.

Disc. Meth. (to appear).

[7) Baker, B. S. and Coffman, E. G., Jr., "A tight asymptotic bound for next-fit-decreasing bin

packing," SIAM J. Alg. Disc. Meth. 2 (1981),147-152.

[8) Baker, B. S., Coffman, E. G., Jr., and Rivest, R. L., "Orthogonal packings in two

dimensions," SIAM J. Comput. 9 (1980),846-855.

[9) Baker, B. S. and Schwarz, J. S., "Shelf algorithms for two-dimensional packing problems,"

SIAM J. Comput. (to appear).

[10) Biro, M. and Boros, E., "A network flow approach to non-guillotine cutting problems,"

Working Paper MO/30 (1982), Computer and Automation Institute, Hungarian Academy of

Sciences, Budapest.

Approximation Algorithms for Bin-Packing - An Updated Survey 97

[II] Brown, A. R., Optimum Packing and Depletion, American Elsevier, New York (I97\).

[12] Brown, D. J., "A lower bound for on-line one-dimensional bin packing algorithms," Technical

Report R-864 (\979), Coordinated Science Laboratory, University of Illinois, Urbana, IL.

[13] Brown, D. J., "An improved BL lower bound,"Inj. Proc. Letters II (\980) 37-39.

[14] Brown, D. J., private communication (\980).

[15] Brown, D. J. and Baker, B. S. and Katseff, H. P., "Lower bounds for the on-line two

dimensional packing algorithms," Acta Informatica, 18 (1982),207-225.

[16] Bruno, J. L. and Downey, P. J., "Probbilistic bounds on the performance of list scheduling,"

Tech. Rep. TR 82-19, Computer Science Dept., University of Arizona, Tucson, Ariz.

[17] Chandra, A. K. and Wong, C. K., "Worst-case analysis of a placement algorithm related to

storage allocation," SIAM J. Comput. 4 (\975), 249-263.

[18] Chandra, A. K., Hirschberg, D. S., and Wong, C. K., "Bin packing with geometric

constraints in computer network design," Computer Science Research Report RC 6895

(1977), IBM Research Center, Yorktown Heights, New York.

[19] Christofides, N. and Whitlock, c., "An algorithm for two-dimensional cutting problems,"

Oper. Res. 25 (\ 977), 30-44.

[20] Chung, F. R. K., Garey, M. R. and Johnson, D. J., "On packing two-dimensional bins,"

SIAM J. Alg. Disc. Meth. 3 (\982),66-76.

[211 Cody, R. A. and Coffman, E. G., Jr., "Record allocation for minimizing expected retrieval

costs on drum-like storage devices," Journal a/the ACM 23 (1976), 103-115.

[22] Coffman, E. G., Jr., "An introduction to proof techniques for packing and sequencing

algorithms," in Deterministic and Stochastic Scheduling, M.A.H. Dempster, et at. (eds.) ,

98 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

(982),245-270, Reidel Publishing Co., Amsterdam.

[23] Coffman, E. G., Jr., "An introduction to combinatorial models of dynamic storage allocation,"

SIAM Review (to appear).

[24] Coffman, E. G., Jr., Frederickson, G. and Lueker, G. S., "A note on expected makespans for

largest-first sequences of independent tasks on two processors," Math of OR (to appear).

[25] Coffman, E. G., Jr., Frederickson, G. N. and Lueker, G. S., manuscript in preparation.

[26] Coffman, E. G., Jr., Garey, M. R., and Johnson, D. S., "An application of bin-packing to

multiprocessor scheduling," SIAM J. Comput. 7 (978), 1-17.

[27] Coffman, E. G., Jr., Garey, M. R., and Johnson, D. S., "Dynamic bin packing," SIAM J.

Comput. 12 (983),227-258.

[28] Coffman, E. G., Jr., Garey, M. R. and Johnson, D. S., "Performance of packing algorithms

for divisible sequences of item sizes," paper in preparation.

[29] Coffman, E. G., Jr., Garey, M. R., Johnson, D. S., and Tarjan, R. E., "Performance bounds

for level-oriented two-dimensional packing algorithms," SIAM J. Comput. 9 (980), 808-

826.

[30] Coffman, E. G., Jr. and Gilbert, E. N., "On the expected relative performance of list

scheduling," Technical Memorandum, Bell Laboratories, Murray Hill, N.J. 07974 (983).

[311 Coffman, E. G., Jr. and Gilbert, E. N., "Dynamic first-fit packings in two or more

dimensions," Technical Memorandum, Bell Laboratories, Murray Hill, N.J. 07974 (983).

[32] Coffman, E. G., Jr., Hofri, M., So, K., and Yao, A. c., "A stochastic model of bin packing,"

In/. and Control 44 (980), 105-115.

[33] Coffman, E. G., Jr., and Leung, J. Y., 'Combinatorial analysis of an efficient algorithm for

Approximation Algorithms for Bin-Packing - An Updated Survey 99

processor and storage allocation," SIAM J. Comput. 8 (1979),202-217.

[34] Coffman, E. G., Jr., Leung, J. Y., and Ting, D. W., "Bin packing: maximizing the number of

pieces packed," Acta Informatica 9 (1978), 263-271.

[35] Coffman, E. G., Jr. and Sethi, R., "A generalized bound on LPT sequencing," RAIRO

Informatique 10 (1976), 17-25.

[36) Dempster, M. A. H., Fisher, M. L., Jansen, L., Lageweg, B. J., Lenstra, J. K. and Rinnooy

Kan, A. H. G., "Analysis of heuristics for stochastic programming: Results for Hierarchical

scheduling problems," Operations Res., 29 (198\),707-716.

[37) Deuermeyer, B. L., Friesen, D. K. and Langston, M. A., "Maximizing the minimum

processor finish time in a multiprocessor system," SIAM J. Alg. Disc. Meth. 3 (1982), 190-

196.

[38) Easton, M. C. and Wong, C. K., ''The effect of a capacity constraint on the minimal cost ora

partition," J. Assoc. Comput. Mach. 22 (1975),441-449.

[39) Erdos, P. and Graham, R. L., "On packing squares with equal squares," J. Combinatorial

Theory Ser. A 19 (1975), 119·123.

[40) Fernandez de la Vega, W. and Lueker, G. S., "Bin packing can be solved within I +E in

linear time," Combinatorica I (198\), 349·355.

[41) Finn, G. and Horowitz, E., "A linear time approximation algorithm for multiprocessor

scheduling," BIT 19 (1979),312·320.

[42] Frederickson, G. N., "Probabilistic analysis for simple one· and two·dimensional bin packing

algorithms," In! Proc. Letters 11 (1980), 156·161.

[43] Frenk, H. and Rinnooy Kan, A. H. G., "The asymptotic optimality of the LPT heuristic,"

Erasmus University, Rotterdam, The Netherlands, (to be published).

100 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

[44] Friesen, D. K., 'Sensitivity analysis for heuristic algorithms," Technical Report UIUCDCS

R-78-939 (1978), Dept. Compo ScL, Univ. of Illinois, Urbana, IL. SIAM J. Comput., (to

appear).

[45] Friesen, D. K. and Langston, M. A., "Analysis of a compound bin-packing algorithm," (to

appear).

[46] Galambos, G. and Turan, G., Laboratory of Cybernetics, Josef Attila University, Szeged,

Hungary (private communication).

[47] Gardner, M., "Some packing problems that cannot be solved by sitting on the suitcase," in

Mathematical Games column, Scientific American, Oct. 1979, 18-26.

[48] Garey, M. R. and Graham, R. L., "Bounds on multiprocessor scheduling with resource

constraints," SIAM J. Comput. 4 (1974), 187-200.

[49] Garey, M. R., Graham, R. L., and Johnson, D. S., "On a number-theoretic bin packing

conjecture," Proc. 5th Hungarian Combinatorics Colloquium, North-Holland, Amsterdam

(1978), 377-392.

[50] Garey, M. R., Graham, R. L., Johnson, D. S. and Yao, A. C., "Resource constrained

scheduling as generalized bin packing," J. Combinatorial Theory Ser. A 21 (1976),257-298.

[51] Garey, M. R. and Johnson, D. S., "Approximation algorithms for combinatorial problems: an

annotated bibliography," in J. F. Traub (ed.), Algorithms and Complexity: New Directions

and Recent Results, Academic Press, New York (1976),41-52.

[52] Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman and Co., San Francisco (1979).

[53] Garey, M. R. and Johnson, D. S., "Approximation algorithms for bin-packing problems - A

survey," in Analysis and Design of Algorithms in Combinatorial Optimization, G. Ausiello

Approximation Algorithms for Bin-Packing - An Updated Survey

and M. Lucertini (eds.), Springer-Verlag, New York, 1981, 147-172.

[54] Garey, M. R. and Johnson, D. S., paper in preparation.

101

[55] Gilmore, P. C. and Gomory, R. E., "A linear programming approach to the cutting stock

problem," Operations Res. 9 (1961),849-859.

[56] Gilmore, P. C. and Gomory, R. E., "A linear programming approach to the cutting stock

program - Part II," Operations Res. II (1963),863-888.

[57] Gilmore, P. C. and Gomory, R. E., "Multistage cutting stock problems of two and more

dimensions," Operations Res. 13 (1965), 94-120.

[58] Golan, l., "Two orthogonal oriented algorithms for packing in two dimension," Report

1979/3111MHM, Computer Center M.O.D., P. O. Box 2250, Haifa, Israel (1979).

[59] Golan, l., "Performance bounds for orthogonal, oriented two-dimensional packing algorithms,"

SIAM J. Comput. 10 (1981), 571-582.

[60] Graham, R. L., "Bounds for certain multiprocessing anomalies," Bell System Tech. J. 45

(1966), 1563-1581.

[61] Graham, R. L., "Bounds for Dynamic Storage Allocation Strategies," Technical

Memorandum, Bell Laboratories, Murray Hill, N.J. (t968).

[62] Graham, R. L., "Bounds on multiprocessing timing anomalies," SIAM J. Appl. Math. 17

(t969),263-269.

[63] Graham, R. L., "Bounds on multiprocessing anomalies and related packing algorithms," Proc.

1972 Spring Joint Computer Conference. AFIPS Press, Montvale, N.J. (1972), 205-217.

[64] Graham, R. L., "Bounds on performnce of scheduling algorithms," in E. G. Coffman, Jr.

(ed.), Computer and Job-Shop Scheduling Theory, John Wiley & Sons, New York (t 976),

165-227.

102 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

[65] Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G., "Optimization and

approximation in deterministic sequencing and scheduling: a survey," Annals Disc. Math. 5

(1979),287-326.

[66] Hoffman, U., "A class of simple online bin packing algorithms," Computing. 29 (1982),227-

239.

[67] Hofri, M., "Two dimensional packing: expected performance of simple level algorithms," In!

and Control 45 (I 980), 1-17.

[68] Hofri, M., "Bin-packing: An analysis of the Next-Fit algorithm," Tech. Rep. No. 242. Dept.

of Computer Science, The Technion, Haifa, Israel (1982).

[69] Johnson, D. S., "Near-optimal bin packing algorithms," Technical Report MAC TR-I09

(1973), Project MAC, Masschusetts Institute of Technology, Cambridge, Mass.

[70] Johnson, D. S., "Fast algorithms for bin packing," J. Comput. Syst. Sci. 8 (1974),272-314.

[71] Johnson, D. S., "The NP-completeness column: An ongoing guide, J. of Algorithms 2

(198)),393-405 (and succeeding issues).

[72] Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and Graham, R. L., "Worst-case

performance bounds for simple one-dimensional packing algorithms," SIAM J. Comput. 3

(1974),299-325.

[73] Karmarkar, N., "Probabilistic analysis of some bin-packing problems," Proc. 23rd Ann.

Symp. on Foundations of Computer Science, IEEE Computer Soc., Nov. 1982 (full paper to

appear elsewhere).

[74] Karmarkar, N. and Karp, R. M., "An efficient approximation scheme for the one-dimensional

bin packing problem," Proc. 23rd Ann. Symp. on Foundations of Computer Science. IEEE

Computer Soc., Nov. 1982 (full paper to appear elsewhere).

Approximation Algorithms for Bin-Packing - An Updated Survey 103

[75] Karmarkar, N. and Karp, R. M., "The differencing method of set partitioning: Computer

Science Div., University of California, Berkeley, Calif., to be published.

[76] Karmarkar, N., Karp, R. M., Lueker, G. S. and Murgolo, F., Computer Science Div.,

University of California, Berkeley, Calif., paper in preparation.

[77] Karmarkar, N., Karp, R. M., Lueker, G. S., and Odlyzko, A., Bell Laboratories, Murray

Hill, N.J., paper in preparation.

[78] Karp, R. M., "Reducibility among combinatorial problems: in R. E. Miller and J. W.

Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York (1972),

85-103.

[79] Karp, R. M., Luby, M. G. and Spaccamela, A. M., "Probabilistic analysis of

multidimensional bin packing problems: Computer Science Div., University of California,

Berkeley, Calif., paper in preparation.

[80] Kaufman, M. T., "An almost-optimal algorithm for the assembly line scheduling problem:

IEEE Trans. Computers C-13 (1974),1169-1174.

[81] Kleitman, D. J. and Krieger, M. K., "An optimal bound for two dimensional bin packing:

Proc. 16th Ann. Symp. on Foundations of Computer Science, IEEE Computer Society, Long

Beach, CA (1975), 163-168.

[82] KnOdel, W., "A bin-packing algorithm with complexity O(n log n) and performance 1 in

the stochastic limit: Proc., 10th Symp. on Math. Foundations in Compo Sci. (1981). (to

appear in Lecture Notes in Computer Science, Springer-Verlag).

[83] Knuth, D. E., Fundamental Algorithms, Vol. 1, Second edition, Addison-Wesley (1973).

[84] Kou, L. T. and Markowsky, G., "Multidimensional bin packing algorithms: IBM J. Res. II

Dev. 21 (t 977), 443-448.

104 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

[85] Krause, K. L., Shen, Y. Y., and Schwetman, H. D., "Analysis of several task-scheduling

algorithms for a model of multiprogramming computer systems," J. Assoc. Comput. Mach.

22 (1975), 522-550.

[86] Langston, M. A., Processor Scheduling with Improved Heuristic Algorithms, Doctoral

dissertation, Texas A&M University, College Station, Texas (1981).

[87] Langston, M. A., "Performance of bin-packing heuristics for maximizing the number of

pieces packed into bins of different sizes," Tech. Rep. No. CS-82-090, Computer Science

Dept., Washington State University, Pullman, Wash. (1982).

[88] Langston, M. A., "Improved LPT scheduling for identical processor systems," RAIRO

Technique et Science Informatiques, 1 (1982),69-75.

[89] Langston, M. A., Improved Oil interchange scheduling," BIT 22 (1982),282-290.

[90] Lee, C. C. and Lee, D. T., "A simple on-line packing algorithm," Dept. of Electrical

Engineering and Computer Science (1983), Northwestern Univ., Evanston, Ill. 60201 (to

appear).

[91] . Liang, F. M., "A lower bound for on-line bin packing," Information Processing Lett. 10

(1980),76-79.

[92] Loulou, R., "Tight bounds and probabilistic analysis of two heuristics for parallel processor

scheduling," Tech. Rep., Faculty of Management, McGill University, Montreal (1982).

[93] Loulou, R., "Probabilistic behavior of optimal bin packing solutions," Tech. Rep., Faculty of

Management, McGill University, Montreal (1982).

[94] Lueker, G. S., "An average-case analysis of bin packing with uniformly distributed item

sizes," Tech. Rep. No. 181 (1982), Dept. of Information and Computer Science, University of

California, Irvine, CA 92717.

Approximation Algorithms for Bin-Packing - An Updated Survey 105

[95] Lueker, G. S., "Bin packing with items uniformly distributed over intervals [a, b 1," Dept. of

Information and Computer Science (1983), University of California, Irvine, CA 92717 (to be

published) .

[96] Maruyama, K., Chang, S. K., and Tang, D. T., "A general packing algorithm for

multidimensional resource requirements," Internat. J. Comput. Infor. Sci. 6 (1977), 131-149.

[97] Ong, H. L., Magazine, M. J., and Wee, T. S., "Probabilistic analysis of bin-packing

heuristics," Operations Res. (to appear).

[98] Robson, J. M., "Bounds for some functions concerning dynamic storage allocation," Journal

of the ACM 21 (1974),491-499.

[99] Robson, J. M., "Worst-case fragmentation of' first-fit and best-fit storage allocation

strategies," Computer J., 20 (1977), 242-244.

[100] Sahni, S., "Algorithms for scheduling independent tasks," Journal of the ACM 23 (1976),

116-127.

[101] Schrijver, A. (ed.) , Packing and Covering in Combinatorics, published by Mathematical

Centre, Tweede Boerhaavestraat 49, Amsterdam (I 979).

[102] Shapiro, S. D., "Performance of heuristic bin packing algorithms with segments of random

length," Information and Control 35 (1977), 146-148.

[103] Shearer, J. B., "A counterexample to a bin packing conjecture, SIAM J. Alg. Disc. Meth. 2

(198 J), 309-310.

[104] Sleator, D. K. D. B., "A 2.5 times optimal algorithm for bin packing in two dimensions,"

Information Processing Lett. 10 (1980), 37-40.

[lOS] Steele, M., Stanford University (private communication).

106 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson

[I 06] Taylor, D. B., "Container stacking: an application of mathematical programming," Draft

(1979).

[107] Wee, T. S. and Magazine, M. J., "Assembly line balancing as generalized bin-packing,"

Operation Res. Letters, 1 (1982),56-58.

[108] Wong, C. K. and Yao, A. C., "A combinatorial optimization problem related to data set

allocation," Rev. Francaise Automat. Informat. Recherche Operationel/e Ser. Bleue 10.5

(suppl.) (1976), 83-95.

[109] Yao, A. C., "New algorithms for bin packing," J. Assoc. Comput. Mach. 17 (1980), 207-

227.

[llO] Vue, P. C. and Wong, C. K., "On the optimality of the probability ranking scheme in storage

applications," J. Assoc. Comput. Mach. 10 (1973),624-633.

ABSTRACT

NE1WORK DESIGN WITH NON

S~ULTANEOUSFLOWS

Mario Lucertini
Istituto di AnaIisi dei Sistemi eel Informatica

delCNRand
Dipartimento eli Informatica e Sistemistica,

Universiti di Rom&, Viale Manzoni 30, 00185 Roma - Italy

Giuseppe Paletta

Consorzio per Ia Ricerca e Ie Applicazioni eli Informatica
Via Bernini 5, 87036 Rende (CS) - Italy

The problem of finding the minimum total cost edge ca

pacities, such that all demand vectors in a given set are non

simultaneously satisfied, is analyzed both for directed and

non directed networks. In both cases the optimal solution is

shown to be the sum of basic networks with suitable uniform

edge capacities that can be obtained with standard shortest

path algorithms.

Work performed by CRAI under contract n. 82.00024.73 "Proget

to Finalizzato Trasporti".

108 M. Lucertini, G. Paletta

1. INTRODUCTION

The network synthesis problem with non simultaneous flow

requirements has only recently become a research subject in

mathematical programming (MI). Nevertheless this subject has

been widely recognized as a main topic in distributed capaci

ty expansion problems (FR).

Many classical results of network flow theory (HU) can

be directly utilized in the non simultaneous flow environmen~

but new problems arise and new approaches must be pOinted ou~

In this paper the single commodity network design prob

lem with non simultaneous flow requirements is analyzed. More

precisely, the problem formally stated in section 2 and

solved in the following is the problem of finding the minimum

total cost edge capacities, such that all demand vectors in a

given set are not simultaneously satisfied. Such problem is

solved both for directed and non directed networks.

The basis ideas behind the model utilized have been

first introducted in (LU) and (LP1).

2. MODEL FORMULATION

Let G(N,A,c) be a network where N is the set of nodes

(a source s, two or more sinks 1,2, ... p, n-1-p intermediate

nodes, let I be the corresponding set), A is a set of edges

IAI = m and c is a capacity m-vector with non negative

entries. Let g(i,j), (i,j) E A, be the edge capacity expan

sion unitary costs and R the set of demand p-vectors d(d(i)

is the amount of flow required in node i = 1,2, •.• ,p) •

In order to have simpler formulations of the results and

simpler notations, we analyze, in sections 3, 4 and 5, a two

sinks network, a finite set R(I RI = r) and a unique source.

Almost all the results can be easily extended to a network

with more sources or sinks (provided that the problem will be

Network Design with Non Simultaneous Flows 109

single commodity) and a set R with infinite elements like,

for example, a (bounded) polyhedron.The graph can be either

directed or undirected (in this case f(i,j) +f(j,i) ~ c(i,j)

and f(i,j) ~ 0 V (i,j) where f(i,j) is the flow on

(i,j) E A from i to j and c(i,j) is the capacity of (i,j),

obviously in practice we can suppose that f (i, j) • (f (j ,i) = 0) .

If in a statement it is not specified whether or not the

graph is directed, it meas that the statement holds both for

directed and undirected graphs (graphs with both directed and

undirected edges are not considered).

Capacity expansion problem (CE)

Find the minimum total cost edge capacities such that

all demand vectors in R are non simultaneously satisfied (i.e.

G(cl,A,c), with an infinite capacity source, which can satisfy

either d 1 or d 2 or d 3 •. ,.or dr, with d i E Rand

L c (i , j) • g (i , j) is mi n i mum) .
(i,j)EA

The problem of finding the set of flow vectors feasible

for G(N,A,c) is analyzed in section 3 and it is shown that

for each network there exists a "flow equivalent" network

equal to the "sum of basic networks" with uniform edge capaci

ties (the terms "flow equivalent" and "sum of basic networks"

will be defined in section 3).

In section 4 and 5 the solution of CE is given for direc

ted and non directed networks respectively. In both cases the

optimal solution is shown to be the sum of three basic net

works with sui table uniform edge capacities. In the first case

the three basic networks are two paths from s to 1 and 2

respectively and a tree with endpoints in s, 1 and 2. In the

second case the three basic networks are all paths (from s to

1, from s to 2 and from 1 to 2). In section 6 the extension

to multiterminal networks is presented.

110 M. Lucertini, G. Paletta

3. NETWORK ANALYSIS

Let be given G(N,A,c). Let CT12, CT1 and CT2 be the cap~

ci ties of the minimal cuts (X,X) such that (s E X and 1,2 EX),

(s E X, 1 E X) and (s E X, 2 E X) respectively (remark that

CT1 ~ C'f12, CT2 ~ CT12 and CT1 +CT2 ~ CT12). Let q be a

2-vector where q(1) and q(2) denote the flow entering sink 1

and sink 2 respectively and Q the set of sink flow vectors q

such that both the capacity constraints and the flow conserv~

tion constraints are satisfied (what goes out of node i must

be equal to what comes in for all intermediate nodes i E I);

we call q feasible if q E Q.

THEOREM 1 (HU) - Given G(N,A,c), q is feasible if and

only if:

q(1) ~ CT1, q(2) ~ CT2, q(1) +q(2) ~ CT12

Obviously the max flow from s to 1 is CT1, from s to 2 is CT2

and from s to both 1 and 2 is CT12; in general the flow from

s to 1 depends on the flow from s to 2 and viceversa.
Let G1, G2, G3 be three networks with the same nodes and

edges but with different capacity vectors c(G1), c(G2), c(G3).

DEFINITION 1 (Sum of networks) - G3 is said to be the
sum of G1 and G2 if c(G3) = c(G1) +c(G2).

DEFINITION 2 (FLow equivaLent networks) - G1 and G2 are

said to be flow equivalent if Q(G1) = Q(G2) (where Q(G) indi
cates the feasibLe set of sink fLows of G).

LEMMA 1 - G1 and G2 are flow equivaLent if and only if
they have the same capacities Of minimum cuts CT1, CT2 and
CT12.

DEFINITION 3 (Basic networks) - Given G(N,A,c), a basic
network is any network GB(N,A,cB) such that aLl entries Of
capacity vector cB are either 0 or c' E~+ and aZZ the edges

Network Design with Non Simultaneous Flows 111

with nonzero uniform capacity form one of the foLLowing sub
networks:

1)

2)

3)

path from s to 1

path from s to 2

(oriented network) tree with root in sand Leaves

in 1 and 2 and a unique branching node;
- (non-oriented network) cycLe connecting s, 1 and 2

(aLso sum of paths from s to 1, from s to 2 and
from 1 to 2 with the. same uniform capacity).

Let GB1, GB2 and GB3 be the set of basic networks satis

fying condition 1, 2 and 3 (definition 3) respectively.

THEOREM 2 - For each network G(N,A,c), there exists a

flow equivalent network GE(N,A,cE) with cE < C, sum of basic

networks. 0

In the following of this section this result will be

proved and some useful notations for the synthesis will be

introduced.

Remark that the proof of theorem 2 without the con

straints cE ~ c is trivial. In fact, given G(N,A,c) and the

minimal cuts CT1, CT2 and CT12, we can easily build an equiv~

lent network, sum of three networks G1, G2 and G3, each of
them sum of basic networks in the set GB1, GB2 and GB3 re

spectively, with minimal cuts given by:

C 1 T 1 = C 1 T 1 2 = CT 1 2 - CT 2, C 1 T 2 = 0

C2T1 = 0, C2T2 = C2Tt2·-= CT12 - CT1

C3T1 = C3T2 = C3T12 = CT1 + CT2 - CT12

(1)

where CiT1, CiT2 and CiT12 are the minimal cuts of the net

work Gi, i = 1 , 2 , 3 .

DEFINITION 4 (MaximaL fLow) - Given G(N,A,c), a sink

fLow vector q is said to be maximaL if it is not possibLe to

112 M. Lucertini, G. Paletta

augment q(1) without reducing q(2) and viceversa.

LEMMA 2 - Given G(~,A,c), a maximal sink flow vector q

satisfies the following constraints:

CT 1 2 - CT2 < q (1) < CT 1

CT12 - CT1 < q (2) < CT2

q (1) + q (2) = CT 1 2

Rem~rk that G1 and G2 satisfy the minimum maximal flow

on sink 1 and sink 2 respectively; G3 satisfies the flow

(CT1 +CT2-CT12) that can be sent from s to 1 or to 2, but

not simultaneously.

The way of proving the existence of a flow equivalent

network with cE ~ c is conceptually simple but quite long. In

the following we give an outline of the proof.

It is simple to find G1 and G2, sum of basic networks

belonging to GB1 and GB2 respectively, such that the sum

satisfies the minimum maximal flow from s to 1 and from s to

2 simultaneously, and c(G1 +G2) ~ c; G1 and G2 can be obtained

by solving a min-cost-max-flow problem, with demand on the

sinks given by (CT12-CT2) and (CT12-CT1) and capacity con

straints c. In fact the two flows are independent.

(G1 +G2) has minimal cuts CST1, CST2 and CST12 given by:

CST1 = CT12 -CT2, CST2 = CT12 -CT1,

CST12 = 2·CT12 - CT1 - CT2;

since G has cuts CT1, CT2 and CT12, we obtain:

CT1 - CST1 CT2 - CST2 = CT12 - CST12 CT 1 + CT2 - CT 1 2

hence there exists a network G3 with all minimal cuts equal

Network Design with Non Simultaneous Flows 113

to (CT1 + CT2 - CT12), obtained as:

c(G3) = c(G) - c(G1 +G2).

It is possible to verify that G3 is flow equivalent to a

network G3, sum of basic networks belonging to GB3.

4. DIRECTED NETWORK SYNTHESIS

In order to solve CE it is not necessary to take into

account the whole region R, but only few parameters charac~

terizing the region. More precisely, let d be a demand vector

such that the sum of the entries wil be maximum (i.e.

dM12 L (d(i) = max L d(i» and dMi be the maximum value of
i dER i

demand vectors entry i (i.e. dMi = max d(i».
dER

LEMMA 3 - The demand vectors d E R are non simuttaneousty

satisfied if and onty if:

CT1 > dM1, CT2 > dM2, CT12 > dM12.

PROOF - If the minimal cuts satisfy the inequalities

then all d E R for theorem 1 can be satisfied. On the other

hand if all d E R can be satisfied, the minimal cuts are at

least dM1, dM2 and dM12.

Capacity expansion for directed network (CED)

Find the minimum totat cost edge capacities such that

the minimat cuts C1T1, C2T2 and C2T12 (characterizing the

equivatent networks G1, G2 and G3) witt be non negative and

satisfy the constraints:

114 M. Lucertini, G. Paletta

CT1 = C1T1 + C3T12 > dM1

CT2 C2T2 + C3T12 > dM2 (2)

CT12 = C1T1 + C2T2 + C3T12 > dM12

In fact, in the following, we will prove that the first

two inequalities are satisfied (in an optimal solution) as

equalities and CT12 can be either equal to dM12 or equal to

dM1 + dM2.

Let P1 (P2) be the shortest path from s to 1 (2) with

weights g(i,j) and h1 (h2) be the corresponding lenght; let

Q12 be the tree with root in s and leaves in 1 and 2 (and a

unique branching node), with minimum total weight h12 (i.e.

h12 = min(h(s,k)+h(k,1)+h(k,2) where h(i,j) indicates the
kE(N-s) .

lenght of the shortest path from i to j). h1 (h2) units of

money invested on P1 (P2) are the cheapest way to send a

unit of flow from s to 1 (2); h12 units of money invested on

Q12 is the cheapest way to send a unitary flow from s to 1 or
to 2 but not simultaneously. When we refer to investment on
paths or on trees we intend uniform investment, i.e. such
that the capacity of all edges of the path or the tree be the

same. Let GP1 (c '), GP2(c ') and GQ12(c ') be the networks ob

tained by assigning the capacity c ' to all edges of the path

P1, P2 and the tree 012 respectively (and the capacity zero

to all other edges). Remark that GP1 (c ') E GB1, GP2 (c') E GB2

and GQ12(c') E GB3 for all c' ER+; furthermore GP1 (C1T1)

(GP2(C2T2» is the cheapest way to obtain a minimal cut

C1T1 (C2T2), and GQ12(C3T12) is the cheapest way to obtain

minimal cuts equal to C3T12 between sand 1, sand 2,1 and 2.

We have in fact outlined the proof of the following result.

THEOREM 3. There exist three non negative numbers c',

c" and c"' such that one optimal solution of CED can be ob-

Network Design with Non Simultaneous Flows 115

tained as the sum of basic networks GP(c'),GP(c") and GQ12(c"')

(i.e. the optimal solution can be obtained by investing only

on the paths P1, P2 and on the tree Q12). 0

The problem now reduces itself to finding C1T1, C2T2

and C3T12 such that the demand constraints will be satisfied

and the total cost will be minimized.

From such values the edge capacities can be easily

calculated. Remark that h12 < h1 + h2.

THEOREM 4. A capacity vector, optimal for CEO, satisfies

the following relations. If h12 < h1 + h2 then:

C1T1 = dM12-dM2, C2T2 = d..1'v112-dM1, C3T12 = dM1 +dM2-dM12.

If h12 = h1+h2 then an optimal solution is given by:

C1T1 = dM1, C2T2 = dM2, C3T12 = O.

PROOF. CEO can be written as a linear programming pro

blem with 3 variables and 3 inequality constraints:

min(h1·C1T1+h2·C2T2+h12·C3T12)

subject to the constraints (2). Solving this problem, we ob

tain the results of theorem 4. 0

Remark that if h12 = h1+h2 but Q12 is not given as the

sum of P1 and P2 (with suitable capacities), then all capa

city vectors are optimal if:

o 2. C3T12 < dM1 +dM2-dM12, C1 T1 = dM1-C3T12, C2T2 = dM2-C3T12

The optimal network capacities are given by:

c (G) = c (GP1 (C 1T1)) +c (GP2 (C2T2)) +c (GQ12 (C3T12)) . (3)

116 M. Lucertini, G. Paletta

5. NON DIRECTED NETNORK SYNTHESIS

For nondirected networks similar results to the ones

presented in section 4 hold. In particular lemma 3 holds and

the expansion capacity problem can be written as:

Capacity expansion for non directed networks (CEN)

Find the minimum cost edge capacities such that the mi

nimaZ cuts C1T1, C2T2 and C3T12 be non negative and satisfy
the constraints:

C1T1 + 2'C3T12 > dM1

C2T2 + 2'C3T12 > dM2 (4)

C1T1 + C2T2 + 2'C3T12 > dH12

Also in this case, in an optimal solution, the first two

inequalities are satisfied as equalities and CT12=C1T1+C2T2+

2'C3T12 can be either equal to dM12 or equal to dM1+dM2.

Let P1,P2,h1 and h2 be defined as in section4, Q12 be

the minimum cost cycle connecting s, 1 and 2 and h12 be the

corresponding lenght. Q12 in this case is obtained as the

link of three shortest paths: P1,P2 and the shortest path

P12 from 1 to 2 (or equivalently from 2 to 1), hence h12 =

= h1+h2+h(12) where h(12) indicates the lenght of P12. Let

GP1 (c'), GP2(c') and GQ12(c') be the networks obtained by

assigning the capacity c' to all edges of P1, P2 and Q12

respectively (and the capacity zero to all other edges).With

these definitions theorem 3 holds also for non directed net

works. Theorem 4 becames (remark that h12~2(h1+h2»:

THEOREM 5. A capacity vector optimal for CEN satisfies

the following relations: if h 12 < 2 (h 1 +h2) then:

C1T1 = (-dM2+dM12), C2T2 = (-dM1+dM12)

Network Design with Non Simultaneous Flows 117

C3T12 = (dM1+dM2-dM12)/2.

If h12 = (h1+h2) then an optimal solution is given by:

C1T1 = dM1, C2T2 = dM2, C3T12 = 0
o

Remark that, if h12 = 2(h1+h2) but Q12 is not given as the

sum of P1 and P2 (with suitable capacities), then all capa

city vectors are optimal if:

o 2.C3T12 2. (dM1+dM2-dM12)/2,C1T1 =dM1-C3T12,

C2T2 = dM2 - C3T12

The proof follows the same lines of the proof of Theorem

4; the resulting capacities c(G) are given by (3).

It is interesting to note that the difference core bet

ween the directed and the non directed network can be sum

marized in the following result. Let be given two non orient

ed networks G' and G", where G' is a minimum cost tree with

endpoints s, 1 and 2, a unique branching node i E I and uni-

form edge capacities c'; G" is the cycle obtained as the link

of P1, P2 and P12 with uniform edge capacities c' ; let

h(G'(c'» and h(G"(c'» be the total costs of G' (c') and

G"(c') respectively.

COROLLARY. G'(c') and G"(c'/2) are flow equivalent net

works and

h(G'(c')) > h(G"(c'/2)).
o

6. EXTENSION TO MULTITERMINAL NETWORKS

All the results presented in the previous sections hold

for multi terminal networks. In fact the single commodity case

analyzed in this paper can allwavsbe formulated as a unique

118 M. Lucertini, G. Paletta

source problem by introducing a supersource connected to all

sources by infinite capacity edges. The problem is to deal

with the case of three or more sinks.
Both the cases of directed and non directed networks

can be analyzed in the same way, in the following we develop

the approach for the non directed networks.

Let S be the set of sinks and let us denote by peT) the

set of all the nonempty subsets of the set T(lp(T) I = 2I T I-1)

and poeT) = P(T)-T. Let c(T) (with T E peS»~ be the (uni~orm)

capacity of the (basic) minimum cost network aonnecting the

source s and all the sinks belonging to the set Ti in prac

tice c(i) i E S will be the capacity of the shortest path

from s to the sink i, c(T) with T E peS) and ITI ~ 2 will be

the capacity of the minimum lenght.cycle connecting s and all

i E Ti let h(T) be the corresponding lenght of the cycle or

the lenght of the shortest path from s to i in case T = {i}.

It is easy to verify that also in the multiterminal case

there always exists an optimal solution, sum of optimal basic

networks. Unfortunately the number of optimal basic networks
grows exponentially with the number of sinks.

Let oCT) be a scalar obtained as the maximum value of
the sum of the demand vectors entries corresponding to the
set T (i.e. oCT) = max E d(i» and ~(T) be the set of all

d ER iET
subsets U of S such that U n T ~ ~ and lui > 2.

The problem can be formulated as a linear program as
follows:

min z = L h(T)c(T)
TEP (S)

L c(i) +
iET

1: 2·c(U) >
UE~(T)

oCT) VT E peS) (5)

Network Design with Non Simultaneous Flows

LEMMA. The soZution of the (2 Isl _1) Zinear equations

L c(i) +
iET

L 2·c(U)
UEI/>(T)

c (i) = 0 (S) - 0 (S- i)

o (T) (VT E P (S))

C(T) = i(o(S)-O(S-T) - L c(U»
UEPo(T)

is:

Vi E S

VT E P(S)

o

119

Lemma 4 allows the computation of all c(T) for increasing

sizes of T provided that all inequalities in (5) will be sa

tisfied as equalities.

Remark that, although the solution given by Lemma 4 can

contain negative values of c(T), the resulting arc capacities

(sum of the capacities of all basic networks utilizing the

given arc) are allways nonnegative.

The problem now reduces to find under which hypotheses

Lemma 4 provides the optimal solution of problem (5) and how

to get the optimal solution if the hypotheses are not veri

fied.

Let TI(T) be a partition in nonempty subsets of T and

IT(T) the set of all possible partitions of T.

THEOREM 6. If all minimum lenght cycles are uniques then

all inequalities in (5) are satisfied in the optimal solution

as equalities if and only if

c(T) < L c(R) VTI(T) E IT(T)
RETI(T)

VT C S
o

Theorem 6 means that the solution given by Lemma 4 solves

problem 5, if all the shortest lenght cycles cannot be ob

tained as sum of shortest lenght cycles over a smaller set

of sinks.

120 M. Lucertini, G. Paletta

The proof can be easily obtained by considering that if

the statements of theorem 6 are not true, then there exists

at least a cycle passing through the source two or more times;

hence the total capacity leaving the source is greater than

the minimum requirement (in fact we have in this case a po

sitive flow entering in the source).

If some minimum lenght cycles are not unique we have an

infinite optimal solution, see the remarks after theorem 4

and 5 for the two-dimensional case.

If the statements of theorem 6 are not true, then let ~

be the set of all cycles sum of cycles over a smaller set of

sinks.

In this case the optimal solution of problem (5) can be

simply obtained by deleting the constraints corresponding to

the cycles in ~ and the columns corresponding to the capa

cities of the cycles in ~. We obtain a reduced size problem

of the same kind of the original one. As far as the complex

ity is concerned, the exponentiality of the algorithm with

respect to the number of sinks depends on two different rea

sons: the exponential grow of the number of cycles and the

computation of the minimum lenght cycles equivalent to a

Travelling Salesman Problem with triangle inequality (~TSP

[PS,RSL]) .

7. INTEGRALITY CONSTRAINTS

In many applications the investments on the network

edges cannot be chosen arbitrarily, but must belong to preas

signed discrete set of values. The corresponding formulation

is an integer programming problem.

It is interesting to observe that the optimal solutions

of section 4 are integer, provided that the demand vectors

are integers. The optimal solutions of section 5 (non direct-

Network Design with Non Simultaneous Flows 121

ed networks) can be in some cases non integers. In fact, if

h12 < 2 (h1+h2), the solution is integer only if (dM1+dM2-dM12)

is even.

If (dM1+dM2-dM12) is odd, the solution given in section

5 is not integer; but an integer solution can be easily found.

Remark that the capacities assigned directly to P1 and P2 are

integers and only the capacities assigned to Q12 are non in

tegers(but multiple of 1/2); the total capacities assigned

directly or through Q12 to P1 and P2 are non integers.

The optimal integer solution is the best one among the

following three possibilities:

a) increase the capacities of P1 and P2 to the upper integer

and decrease the capacities of P12 to the lower integer;

b) increase the capacities of P1 and P12 to the upper integer

and decrease the capacities of P2 to the lower integer;

c) increase the capacities of P2 and P12 to the upper integer

and decrease the capacities of P1 to the lower integer.

In the multiterminal network of section 6, the situation

changes: the solution can be non integer (but multt~le of

1/2) but in general it cannot be found by choosing the best

one among all possible alternatives obtained by rounding the

non integer path capacities to the nearest integers.

In fact in this case new paths can become active in the

optimal solution (see figu~e).

sink 1

2

source sink 2

2

sink 3 Optimal solution

122 M. Lucertini, G. Paletta

1

d1 = 0

0

0

d 2 = 1

0 Optimal integer solution

0

d 3 = 0

1

REFERENCES

(FR) J. FREIDENFELDS: Capacity Expansion, North Holland,

1981.

(HU) T.C. HU: Combinatorial algorithms, Addison Wesley,

1982.

(LU) M. LUCERTINI: Bounded rationality in long term plan
ning: a linear programming approach, Metroeeonomi

ea, 1982.

(LP1) M. LUCERTINI, G. PALETTA: A class of network design

problems with mUltiple demand: model formulation
and an algorithmic appro~ch, Netflow, Pisa, 1983.

LP2) M. LUCERTINI, G. PALETTA: Progetto di reti in condi

zione di domande non simultanee: il caso a singolo
bene con due nodi domanda, Tee. Rep. CRAI, 1983.

(MI) M. MINOUX: Optimum synthesis of a network with non
simultaneous multicommodity flow requirements,
Ann. Dis. Math., Vol. 11, 1981.

Network Design with Non Simultaneous Flows

(PS) C. PAPADIMITRIOU, L. STEIGLITZ: Some complexity re

sults for the TSP~ 8th ACM-STOC, 1976.

123

(RSL) D. ROSENKRANTZ, R. STEARNS, P. LEWIS: An analysis of

general heuristics for the TSP~ SIAM J. Comp.,

1977 .

ABSTRACT

MINIMAL REPRESENTATIONS OF DIRECTED
HYPERGRAPHS AND THEIR APPLICATION TO

DATABASE DESIGN-

G. Ausiello, A. D'Atri
Universid "La Sapienza" Roma, Italy

and

D. Sacci
CRAI, Via Bernini 5,87030 Rende, Italy

In this paper the problem of minimal representations for sets of

functional dependencies for relational databases is analyzed in terms of

directed hypergraphs. Various concepts of minimal representations of

directed hypergraphs are introduced as extensions to the concepts of

transitive reduction and minimum equivalent graph of directed graphs.In

particular we consider coverings which are the minimal representations

with respect to all parameters which may be adopted to characterize a

given hypergraph (number of hyperarcs, number of adjacency lists required

for the representation, length of the overall description, etc.). The

relationships among the various minimal coverings are discussed and the

computational properties are analyzed. In order to derive such results a

graphic representation of hypergraphs is introduced. Applications of

these results to functional dependency manipulation are finally presented.

* This research has been partially supported by MPI Nat. Proj. on

"Theory of algorithms".

126 G. Ausiello, A. D' Atri, D. Sacca

1. INTRODUCTION

Hypergraphs are a generalization of the concept of graph [4] which

have been extensively used for representing structures and concepts in

several areas of computer science (see, for example [3,5,6,8,12,16]).

In this paper we consider a particular class of directed hypergraphs,

the R-triangular hypergraphs which are a simple generalization of direct

ed graphs.

In several applications of R-triangular hypergraphs, analogously to

what happens in the case of graphs, the following concepts assume an

important role: the concept of path (i.e. edge connection leading from a

set of nodes to a single node), the concepts of closure (i.e. representa

tion of all paths over a hypergraph), the concept of "minimal" covering

(i.e. representation of the closure which is minimal under some respect).

In this paper R-triangular hypergraphs are applied for representing

a set of functional dependencies among attributes in a relational data

base schema. In database design [10],[15] a major role is played by func

tional dependency manipulation. In particular in [10] the problem of de

termining minimal representations (coverings) of sets of functional de

pendencies is considered. Here the same problem is stated in much more

general terms as the problem of determining minimal representations (co

verings) of directed hypergraphs. Various concepts of minimal coverings

of directed hypergraphs are introduced and their complexity is discussed.

In the case of R-triangular hypergraphs we may wish to determine the mi

nimal coverings with respect to all parameters which may be adopted to

characterize a hypergraph (number of hyperarcs, number of adjacency lists

required for the representation, length of the overall description,etc.).

In particular, we consider two problems which are the generalization

to hypergraphs of the transitive reduction [1] and of the minimum equiva

lent digraph problem [7] for directed graphs and we show that in the case

of hypergraphs both problems are NP-complete while in the case of graphs

the transitive reduction is polynomial. Moreover we consider other mini

mal coverings and we prove their intractability. A problem which is in

stead shown to be polynomial is the problem of determining a "source mi-

Minimal Representations of Directed Hypergraphs 127

ni mum " covering, which is shown to be a covering with the minimum number

of lists in its representation by means of adjacency lists (and which is

equivalent to a problem already considered in the theory of functional

dependency in relational data bases [10]). The relationships among the

various concepts of minimality are also studied and in particular it is

proved that there are coverings which are simultaneously minimal with

respect to all criteria.

A formulation based on directed labelled graphs (FD-graphs), pre

viously introduced in [2] is used as a representation of hypergraphs in

order to prove the stated results.

In the next paragraph, after providing the basic definitions of

R-triangular hypergraphs and their minimal coverings, the main results

of the paper concerning the complexity of determining the minimal co

verings and their relationships are stated. In Paragraph 3 the formalism

of FD-graphs is introduced and the results stated in the preceding para

graph are proved.

Finally, in Paragraph 4 we give examples of applications of hyper

graphs and their coverings to functional dependency manipulation [2,10]

and to and-or graphs representation [13] •

2. HYPERGRAPHS AND THEIR MINIMAL REPRESENTATIONS

Various definitions of hypergraphs have been introduced in the li

terature (see for example [4,5]). A sufficiently general definition that

suits our purpose is the following:

DEFINITION 1. A generalized hypergraph is a pair < N,H > where N is

the set of nodes and H is the set of hyperarcs, where a hyperarc is a

structure which is either a node or a (either ordered or not) set of

structures.

Notice that hypergraphs (in the sense of [4]) and directed graphs

128 G. Ausiello, A. D' Atri, D. Sacca

represent special classes of generalized hypergraphs.

In this paper we will deal with a particular class of generalized

hypergraphs where a hyper arc is an ordered pair composed by a set of

nodes and a single node.

DEFINITION 2. A generalized hypergraph X = < N,H) is an R-triangular

directed hypergraph if every hyperarc h E H is an ordered structure (X,i)

where X ~ Nand i E N. Given an R-triangular hypergraph we call source

set a set of nodes that appears as the left side of at least onehyperarc.

From now on we will refer to R-triangular directed hypergraphs

simply as hypergraphs.

Example 1. The hyper graph J(= < {A,B,C,D,E,F},{({A,B},C),({B},D),({c,D},E),

({C,D},F)})

is shown in Fig. 1, where hyperarcs are represented by arrows.

yB\ CnD
E F

Fig. 1. R-triangular hypergraph.

The basic parameters which will be taken into account in order to

evaluate the algorithms presented in this paper will be the following:

the number of nodes of the hypergraph (n) the number of hyper arcs (m),

the number of source sets (n'), the source area (the sum of cardinalities

of the source sets,(s) and the overall lenght of description of the hyper

graph IXI.
In the previous example we have:

n = 6, m = 4, n' = 3, s 5

As far as the lenght of the description is concerned, if we assume a

representation based on adjacency lists (where for every source set the

Minimal Representations of Directed Hypergraphs 129

list of adjacent nodes is given) we have IJfl ~ s+m. According to the

same representation, the number of source sets, n', corresponds to the

number of adjacency lists.

In order to simplify the notation, here and in the following, nodes

will be denoted by the first latin upper case letters A,B, ... and sets

of nodes will be expressed by concatenating the names of nodes (e.g. AB

instead of {A,B} and, in particular, A instead of {A} when no ambiguity

may arise). Besides, the last latin upper case letters X,Y, ... ,Z will be

used to denote sets of nodes. In this case concatenation will stand for

union (XY stands for X U Y) and the cardinality of X will be denoted by

Ixl·
Since the aim of this paper is to investigate both the concept of

closure and of covering of hypergraphs, the main definition which will

be used throughout the paper concerns paths in a hypergraph.

Several different definitions of path in hypergraphs exist; in our

case we introduce the concept of hyperpath which is derived by extending

the reflexivity and transitivity rules used for the definition of path

in a graph.

DEFINITION 3. Let Jf = < N, H) be a hypergraph and let X f N, i EN.

There exists a hyperpath < X,i) in Jf from X to i, if:

- (X,i) E H, or

- i E X (extended reflexivity), or

- there exists a set of nodes Y = {n 1, ... ,nm} such that there exist hyper-

paths < X,n.), for j = 1, ... ,m in Je and (Y,i) is a hyperarc in H (ex
J

tended transitivity) .

Note that when X and Yare singletons, the extended reflexivity and

transitivity rules coincide with the usual definitions of reflexivity

and transitivity as they are defined in graphs. Given the hypergraph X
of Fig. 1 some of the hyperpaths which exist in X are: < AB,e) , < AB,A) ,

<AB,E).

By means of the previous definition, we may introduce the concept of

closure of a hypergraph.

130 G. Ausiello, A. D' Atri, D. Sacca

DEFINITION 4. Given a hyper graph JC = (N, H) the closure of JC, de

noted JC+ , is the hypergraph (N,H+) such that (X,i) is in H+ iff there

exis ts a hyperpath (X, i) in JC.

Similarly to what happens in the case of graphs, a problem which

arises for the manipulation of hypergraphs is to find a minimal repre

sentation of a hypergraph by means of an other hypergraph which has the

same closure but fewer hyperarcs or some other kind of minimality pro

perty. Notice that the problem of finding a minimal representation in

the case of hypergraphs is generally more complex than in the case of.

graphs because, while in the case of graphs the number of arcs in the

closure is at most quadratic in the number of nodes, in the case of

hypergraphs the number of hyperarcs in the closure is always exponential

in the size of N.

DEFINITION 5. Let J{ = (N,H) be a hypergraph, a covering of J{ is
- + - + a hypergraph j(= (N,H) such that JC = JC .

Several concepts of minimal coverings of a hypergraph may be in

troduced.

DEFINITION 6. Gi ven a hypergraph JC = (N, H) , a hyperarc (X, i) E H

is redundant if there exists a hyperpath (X,i) in JC' = (N,H-{(X,i)}) .

DEFINITION 7. Given a hypergraph JC= (N,H) and a hyperarc (X,i)EH,

a node j E X is redundant in (X,i) if there exists a hyperpath (X-{j},i)

in JC.

While, from the definition, the redundancy of a node seems to be

relative to a hyperarc, the next result shows under which conditions it

is indeed a property of a node itself.

PROPOSITION 1. Let JC = (N,H) be a hypergraph and let the node j be

redundant in the hyperarc (X,i). If the hyperarc (X,i) is not redundant

then the node j is redundant in all hyperarcs (Y,kl such that Y 2 x.

PROOF. Given all hyperpaths (X-{j},i) whose existence may be used

to show that j is a redundant node, either there exists at least one

hyperpath whose existence is based using the nyperarc (X,i) or not. In

Minimal Representations of Directed Hypergraphs 131

the second case the hyperarc (X,i) would be redundant. In the first case,

by Definition 3, there must exist the hyperpaths (x-b},r) for all

rEx. Then, given any hyperarc (Y,k) where Y 2 x, we can prove that j

is redundant with respect to this hyperarc by showing that there exists

a hyperpath (Y-{j},k). In fact the hyperpaths (Y-{j},h) for every

h E x-b} exist by reflexivity, the hyperpath (X-{j},j) exists by hypo

thesis and hence (Y-{j},j) and (Y-{j},k) exist by transitivity. This

concludes the proof. Q.E.D.

DEFINITION 8. A hypergraph X = (N,H) is nonredundant if it contains

neither redundant hyperarcs nor redundant nodes in the hyperarcs.

Given a hypergraph X a nonredundant subhypergraph of X which has

the same closure of X may be obtained by iteratively deleting the re

dundant arcs and, successively, the redundant nodes until no more re

dundant arcs and redundant nodes appear. An algorithm for determining a

nonredundant subhypergraph of a given hypergraph and its analysis will

be given in the next paragraph after introducing a graph formalism for

hypergraph representation. The following theorem will then be proved:

THEOREM 1. Given a hypergraph X = (N,H) the problem of determining

a nonredundant subhypergraph of X which has the same closure as X may be'

solved in time quadratic in IXI .
E~mpLe 2. Given the hypergraph 3C of Fig. 2a, a non redundant covering

I

of X, 'JC may be obtained by eliminating the redundant hyperarc (A,D) and

the redundant node E in the hyperarc (AE,B) (see Fig. 2b).

r\~E ·E (A\.
B'0) \y)

D D

a) b)

Fig. 2. A nonredundant subhypergraph of a given hypergraph.

132 G. Ausiello, A. D' Atri, D. Sacca

Notice that, by changing the order in which redundant arcs and nodes are

eliminated, different nonredundant subhypergraphs may be obtained and,

in particular, a non redundant subhypergraph with the smaller number of

hyperarcs may be derived.

" Example 3. In Fig. 3 a nonredundant subhypergraph X of the hypergraph

given in Fig. 2a is given, which has fewer hyperarcs than the subhyper

graph of Fig. 2b.

~ E

Fig. 3. A nonredundant subhypergraph with the minimum number of

hyperarcs.

Finally we observe that a nonredundant covering with the minimum number

of hyperarcs might not be a subhypergraph of the given hypergraph and

hence it has to be obtained in a different way.

Examp le 4. Let us consider the hypergraph JC I of Fig. 2b which is non-
" redundant. The hypergraph X of Fig. 3 is a covering of X which is

not a subhypergraph of X and has the minimum number of hyperarcs.

As we have already observed the problem of determining minimal co

verings of hypergraphs is more complex than in the case of graphs es

sentially because the closure of a hypergraph has an exponential number

of hyperarcs and because, in the case of hypergraphs, we can define mi

nimality with respect to different parameters.

The rest of this paragraph is devoted to introducing several dif-

ferent concepts of minimality of coverings and to state their properties.

The first definition is a natural extension of the corresponding

definition for graphs.

Minimal Representations of Directed Hypergraphs 133

DEFINITION 9. A minimum equivalent subhypergraph of a hypergraph X
is a nonredundant subhypergraph of JC which has the same closure as JC and

the minimum number of hyperarcs.

For example the hypergraph JC of Fig. 3 is a minimum equivalent

subhypergraph of the hypergraph JC of· Fig. 2a. The problem of determining

a minimum equivalent subhypergraph of a given hypergraph is NP-complete(*)

because this problem (which is clearly in NP) coincides with the problem

of the minimum equivalent graph (known to be NP-complete [7]) when for

every hyperarc (X,i) we have Ixi = 1.

In the above definition it is required that the minimal covering

which is considered is a subhypergraph of the given hypergraph. In the

case of graphs if we drop this condition we obtain a simpler problem

(transitive reduction [1]). Analogously, in the case of hypergraphs we

may consider minimal coverings which are not required to be subhyper

graphs. The first kind of covering, which may be considered the more

natural extension to hypergraphs of the transitive reduction is provided

in the following definition:

DEFINITION 10. A non redundant covering of a hypergraph JC is said

to be a hyperarc minimum covering (HM-covering) if the number of its

hyperarcs is minimum (see again Example 4).

From the computational point of view it is interesting to observe

that the complexity of this problem increases dramatically when we go

from graphs to hypergraphs. In fact, given a graph G = (N,A) , the pro

blem of finding the transitive reduction may be solved in polynomial time

O(INI -IAI). Instead, in the case of hypergraphs we will prove the fol

lowing theorem.

THEOREM 2. Given a hypergraph JC, the problem of determining a

HM-covering is NP-complete.

(*) Throughout all the paper we will refer to NP-optimization problem

and NP-complete optimization problem as defined in [141 •

134 G. Ausiello, A. D' Atri, D. Sacca

This result which shows that, in the case of hypergraphs, finding

the transitive reduction is not simpler than to find the minimum equi

valent subhypergraph, suggests taking into consideration other concepts

of minimality. In particular, since in the case of hypergraphs coverings

may have a different number of source sets with respect to the original

hyper graph , the following definition of minimality may be introduced.

DEFINITION 11. A non redundant covering of a hypergraph X is said

to be a source-minimum covering (SM-covering) if the number of its

distinct source sets is minimum.

Due to the reflexivity rule, the number of source sets in the clo

sure of a hypergraph increases exponentially in the number of nodes. It

is hence very important to find coverings where such a number is strongly

reduced.

Example 5.

~ ...- -
C A C

~E E

B
'-----

D D

Fig. 4. An SM-covering of a given hypergraph.

In the hypergraph of Fig. 4a the source sets are AB,CD,C,D while in its

non redundant covering if Fig. 4b the source sets are AB,C,D and it may

be easily seen that there is no covering with fewer source sets.

In the next paragraph the following result will be proved concerning

the problem of determining an SM-covering of a given hypergraph:

THEOREM 3. Given a hyper graph ;Ie = (N, H), the prob lem of determining

an SM-covering of X is polynomially solvable and requires time quadratic

in IXI .
Note that the definition of SM-covering is not meaningful in the

Minimal Representations of Directed Hypergraphs 135

case of graphs, since the fact that the outdegree of a node is zero or

not is invariant in all coverings.

By composing the previous definitions and by taking into considera

tion the source area of a hyper graph as a new parameter to be minimized,

the following three concepts of minimality may also be introduced:

DEFINITION 12. A nonredundant covering of a hypergraph is said to

be

- a source-hyperarc-minimum covering (SHM-covering) if it is a HM-covering

with the minimum number of source sets;

an optimum source-minimum covering (OSM-covering) if it is an SM-co

vering with the minimum source area;

an optimum covering (o-covering) if it is an SHM-covering with the

minimum source area.

Example 6. In Figure 5 we have: a) a nonredundant hypergraph j{, b) an

SM-covering of X obtained by replacing the hyperarc (CD,E) by the hyper

arc (AB,E), (note that such a covering is not hyperarc minimum), c) a

HM-covering of X obtained from it by replacing the hyperarcs (F,E) ,(E,G),

(E,H) by the hyperarcs (F,G), (F,H), (note that such a covering is not

source minimum), d) an SHM-covering of JC obtained by combining the above

replacements (note that such a covering is not an OSM-covering), e) an

OSM-covering of X obtained from the 8M-covering in b) by replacing the

hyperarc (HGK,L) by (FK,L), (note that such a covering is neither SHM

nor HM), f) an a-covering of X obtained from the SHM-covering in d) by

replacing the hyperarc (HGK,L) by (FK,L). Notice that all such coverings

are not subhypergraphs of X.

Given a hypergraph X, finding an SHM-covering and an a-covering of

JC are again NP-complete problems. This derives from the fact that in both

cases such coverings are also required to be hyperarc minimum coverings

by definition and we know that finding a HM-covering is NP-complete.

Finding an OSM-covering is also an NP-complete problem as will be shown

in the next paragraph:

THEOREM 4. Given a hyper graph JC, the problem of determining an

136

...-----.
A C

B~D
H GTK

L

a) a nonredundant hypergraph ~

L

c) a HM-covering of ~

L

e) an OSM-covering of 3C

K

G. Ausiello, A. D' Atri, D. Sacca

;J

L

b) a SM-covering of ~

C

E

H
D GfK

L

d) a SHM-covering of ~

L

f) an O-covering of ~

Fig. 5. Minimal coverings of a hypergraph.

Minimal Representations of Directed Hypergraphs 137

OSM~covering is NP-complete.

On the other hand it is interesting to observe the adequacy of the

given concepts of minimality by stating the following theorems which

establish the relationships between the various minimality criteria and

which will also be proved in the next paragraph.

THEOREM 5. An SHM-covering of a hyper graph X is also an SM-covering

of X.

THEOREM 6. An O-covering of a hypergraph X is also an OSM-covering

of X.

THEOREM 7. A non redundant covering of a hypergraph X is an OSM-co

vering if and only if it has the minimum source area among all coverings

of X.

The relationships among different types of minimal coverings which

are stated in the previous theorems are summarized in the following

Figure 6 (where A ~ B means that A-minimality implies B-minimality).

~ non
redundant

HM ~

(:::::::::: S M
~
(

SHM~
~O
~

OSM 12:.

Fig. 6. Relationships among minimal coverings.

Such results imply that the conditions given in Definition 12 (such

as the fact that "an SHM-covering is a HM-covering" etc.) are not re

strictive and that there exist coverings which are simultaneously minimal

with respect to all criteria: number of hyperarcs, number of source sets,

source area. In particular it must be noted that the O-covering corres

ponds to a "minimum lenght" representation of a hypergraph among all pos

sible coverings, if we assume as lenght of a representation the sum of

the number of hyperarcs and the source area (as it was suggested at the

beginning of this paragraph).

138 G. Ausiello, A. D' Atri, D. Sacca

3. GRAPH ALGORITHMS FOR THE MINIMAL REPRESENTATION OF HYPERGRAPHS

Let us now provide the proofs of the results stated in the preceding

paragraph. Some of these proofs are based on a graph representation of

hypergraphs which has been previously introduced in [2] for the manipula

tion of functional dependency in relational data bases.

DEFINITION 13 • Given a hypergraph Je = (N, H) the FD-graph of Je is

the labelled graph GH = (NH,Af,Ad) where:

- N = NUN is a set of nodes, where N will be called the set of simple H c
nodesandN {xl:3iENsuChthat (X,i) EHand Ixi of 1}willbe

c
called the set of compound nodes;

- Af = {(X,i) I for every (X,i) E H} f NH x N is a set of arcs (labelled

f) that will be called the set of full arcs;

- Ad = {(X,j) I for every X E NC and j EX} f Nc x N is a set of arcs

(labelled d) that will be called the set of dotted arcs.

Example 7. Let us consider the hypergraph of Fig. 2a. Its FD-graph re

presentation is given in Fig. 7. In this case the set of simple nodes is

N = {A,B,C,D,E,} and the set of compound nodes is N = {AE,BC}
c

AE

.~

.. E

Be

J
D

Fig. 7. The FD-graph of the hypergraph in Fig. 2a.

Given a hypergraph Jewith n nodes, m hyperarcs, n' source sets, nil

source singletons (source sets with cardinality 1) and source area s, it

will be represented by a FD-graph with n simple nodes, n 1 = n'-n" compound

Minimal Representations of Directed Hypergraphs 139

nodes, m full arcs and m1 = s-n" dotted arcs. If we consider the lenght

of the description of the FO-graph we may easily assume that it coincides

with the lenght IJel ~ s+m of the description of the given hypergraph.

The use of FO-graphs and of their closure in some cases allows to

determine minimal coverings of hypergraphs without falling into the ex

ponential explosion of the hyper graph closure because the FO-graph clo

sure grows only at most quadratically. More precisely in order to find

a covering of a hypergraph JCwith suitable minimality properties we first

give the FO-graph representation GH of the given hypergraph, then we de-
, "11'+ termine the closure of GH (lnstead of ~) in order to provide the minimal

covering JC I.

The sequence of transformations that we may go through in such cases is

given in Fig. 8 (continuous line).

closure

JC ------JC+

closure

ul
j(+

t
I

i
-------------------------+. +

GH GH

minimal
covering

--- --- --- --- --- -JCI

reduction

r;
(l)

'0
r;
(l)
til
CD
::l
rt
PI
rt
1-"

,g
-------------------------+G I

H

Fig. 8. The sequence of transformations to determine minimal coverings.

First of all let us define the concept of FO-path that will be used in

order to define the closure of an Fo-graph.

DEFINITION 14. Given an Fo-graph GH = (NH,Af,Ad) and a pair of

nodes i,j E NH ' an Fo-path (i,j) from i to j is a minimal subgraph

GH = (NH,Af,Ad of GH such that i,j E NH and either Af U Ad = {i,j)} or

one of the following possib~lities holds:

- j is a simple node and there exists a node k such that (k,j) E Af U Ad

140 G. Ausiello, A. D' Atri, D. Sacca

-and there is an FD-path < i,k) in GH (transitivity) ;

- j is a compound node with component nodes m1, .•. ,mr and (j,m1), •.. ,

(j,mr) E Ad and there are FD-paths < i,m1), ... ,< i,mr) in GH (union).

Furthermore an FD-path < i, j

dotted, otherwise it is full.

is dotted if all its arcs leaving i are

Example 8. In Fig. 9a a full FD-path and in Fig. 9b a dotted FD-path from

the hypergraph of Fig. 7 are shown:

B '

. . . .
AE

,:'

~.,

A

\.c
Be

i
D

a)

. . . .
:4

b)

Fig. 9. Examples of FD-paths.

AE . .

DEFINITION 15. Given an FD-graph GH = < NH,Af'Ad) we define closure

of GH the labelled graph G; = < NH,A;,A~) where an 'arc (i,j) is

a) in A ~ iff there exis ts a dotted FD-pa th < i , j >

b) in A; iff (i, j) 9!' A~ and there exists a full FD-path (i, j > •

In [2] an algorithm is shown which, given an FD-graph GH and a node i,

Minimal Representations of Directed Hypergraphs 141

provides the sets of nodes which may be reached from the node i by means

of a full or dotted FD-path (in time O(mH), where ~ m+m1 is the number

of arcs of GH and m(m2) is the number of full (dotted) arcs.

Such algorithm is an extension to FD-graphs of the usual transitive

closure algorithm for graphs. The only substantial modification concerns

the application of the union rule (see Definition 14) that is implemented

by associating a counter with every compound node j. This counter keeps

track of the number of component nodes of j which are currently reached

from the source node i. By applying this algorithm to all the nodes, we

may determine the closure of GH in time O(nH·~) where nH is the total

number of nodes of GH with at least one outgoing arc. In terms of the

parameters of the hypergraph we have that the closure algorithm runs in

time 0 (n I ·1 Jel) since m = m+m1 < m+s ~ I Jel and n = n I •
H - - H

The closure of an FD-graph is a succint representation of the closure

of the corresponding hypergraph in the sense expressed in the following

theorem:

THEOREM 8. Let Je = (N, H) be a hypergraph and GH = (NH ,Af ,Ad the

corresponding FD-graph. Given a pair of nodes i,j E NH where j is a simple
+ node, the arc (i,j) is in GH if and only if there exists a corresponding

+
hyperarc in Je .

+
PROOF. Only if part: since every arc'in GH incident into a simple

node is either in GH or is derived by applying the transitivity and the

union rules, it is easy to observe that the corresponding hyperarc is

either in J(or is derived in Jf+ by applying the extended transitivity

and the reflexivity rules.
+ If part: if a hyperarc (i,j) is in U ,where j is a single node,

the hyperpath (i, j) is in Je. By induction on the structure of a hyper

path the following cases may arise (the first two cases are the basis of

the induction):

- either (it j) is a hyperarc of j{ , then (i ,j) is an FD-pa th in GH;

- or (i, j). is a hyperarc of J{+ obtained by reflexivity, then the dotted

arc(i,j) appears in GH;

142 G. Ausiello, A. D' Atri, D. Sacca

- or there exists a set of simple nodes Y = {n l , ... ,nm} such that (i,nk

for k = l, ... ,m are hyperpaths and (Y,j) is a hyperarc. In this case,

by inductive hypothesis there exist FD-paths (i,~) in GH for

k = l, ... ,m; then by union rule (or by transitivity rule if m = 1) there

exists the FD-path (i, j) •
Q.E.D.

Notice that the subhypergraph of JC+ whose hyperarcs exist if and
+ only if the corresponding arc exists in GH is the hypergraph that we

-+
have denoted J(in figure 8 and is itself a covering of JC.

The next step toward the determination of minimal coverings of a

hypergraph will make use of the FD-graph representation of a hypergaph.

Starting from the closure of the FD-graph we will apply transformation

rules that bring the FD-graph into reduced forms and we will show that

such reduced forms correspond .·to the FD-graphs of a nonredundant covering

and of an SM-covering of the original hypergraph (see again Fig. 8).

Let us first introduce the following definition.

DEFINITION 16. Given an FD-graph we say that i) a compound node k

is redundant if for every full arc (k,j) there exists a dotted FD-path

(k,j); ii) a dotted (fuZZ) arc (k,j) is redundant if there exists a

dotted (full or dotted) FD-path (k, j) which does not contain the arc

(k, j) •

By means of the following proposition, which is a straightforward

consequence of Theorem 8, we give the first rules for reducing an FD-graph

(see Fig. 8). Such rules allow us to find a nonredundant subhypergraph of

a given hypergraph.

PROPOSITION 2. Given an FD-graph GH ' every FD-graph obtained from

GH by eliminating any redundant node together with all its outgoing arcs

or any redundant arc, is the representation of a covering of the hyper

graph represented by GH•

From now on, by "elimination of a redundant node in an FD-graph" we

will mean also the elimination of all arcs leaving the redundant node

(notice that, by definition of FD-graph, compound nodes do not have in-

Minimal Representations of Directed Hypergraphs 143

coming arcs) •

Now we prove that, as we stated in the preceding paragraph, a non

redundant subhypergraph of a given hypergraph may be found in time

o (IJCI2) :

PROOF OF THEOREM 1. Given a hypergraph dC we

1. determine the FO-graph GH corresponding to JC ;

2. eliminate redundant nodes from ~ by determining the closure of GH;

3. eliminate redundant full arcs from GH;

4. eliminate redundant dotted arcs from GH;

5. derive the hypergraph JC corresponding to the reduced FO-graph.

In order to show the correctness of such algorithm we first observe ,
that JC is a covering of JC (by Proposition 2); then we show that JC has

no redundancies. In fact, if there was a redundant hyperarc (X,i) in the

hypergraph JC , there would be either a redundant full arc (X,i) in the

FD-graph or at least a redundant compound node, namely the node X itself

(contradiction). On the other side, if there was a redundant node j E X

in the hypergraph, with respect to some nonredundant hyperarc (X,i) then

there would be a redundant dotted arc (X,j) in the FD-graph. This means

that the elimination of redundancies in the FO-graph implies the elimina

tion of redundancies in JC. Concerning the efficiency of the given pro

cedure, since both steps 1 and 5 require linear time in the size of the

input, the cost is essentially due to steps 2,3 and 4. Step 2 requires

time O(n'oIJCI), where n' is the number of source sets and IJCI is the

length of the description of JC, because the elimination of redundant nodes

in the FD-graph is immediately deduced from the closure (in fact a com

pound node is redundant if and only if all its outgoing arcs in theclos

ure are dotted). The elimination of redundant full arcs requires that for

every full arc (h,i) we determine in time O(IJCI) all full FO-paths start

ing from the node h and which do not include the arc (h,i). The overall

cost of step 3 is hence O(moIJCI).

Finally,in order to eliminate redundant dotted arcs we may proceed

in the following way: given any dotted arc (h,i) we may compute the set

144 G. Ausiello, A. D' Atri, D. Sacca

of nodes j such that a dotted H-path (h,j) exists which does not include

the dotted arc (h,i). If i belongs to such a set this means that the arc

(h,i) is redundant. Since the time required to answer this question is

o (IXI) and since the number of dotted arcs is m1 = s-n" < s, the overall

cost of step 4 is O(s·IXI). Taking into account that n' < s and that

IXI = s+m we obtain that the cost of determining a nonredundant sub

hypergraph is 0 (IXI2) .
Q.E.D.

A second rule for the reduction of FD-graphs will now be introduced.

Let us first consider the following definition.

DEFINITION 17. Given an FD-graph GH = (NH ,Af'Ad) :

- a pair of nodes i,j E NH are said to be equivalent if both the (full

or dotted) arcs (i,j) and (j,i) belong to the closure of GH;

a compound node i is said to be superfluous if there exists a dotted

FD-path (i,j) where j is equivalent to i.
. L .. (*) d d - GH 1S R-~n~mum if it has neither re undant no es and arcs no~

superfluous nodes.

Example 9. In the FD-graph of Figure lOa) (corresponding to the hyper

graph of Figure 4a), the nodes AB and CD are equivalent and the node CD

is superfluous. The FD-graph in Fig. lOb) is LR-minimum.

• E

Fig. 10. FD-graph containing a superfluous node and LR-minimum FD-graph.

(*) The name is due to the properties of a corresponding definition given

in [10] for functional dependencies.

Minimal Representations of Directed Hypergraphs 145

The rule of elimination of a superfluous node i from an FO-graph con

sists in eliminating i together with all its outgoing dotted arcs and

moving, at the same time, all its outgoing full arcs to an equivalent

node j which is connected to i by a dotted FO-path.

PROPOSITION 3. Let GH = (NH,Af,Ad) be the FO-graph representation

of a hypergraph '3C. Let i be a superfluous node in GH and let j be a node

equivalent to i such that there exists a dotted FO-path (i,j). Let

GH, = (N~,Af,Ad) be an FO-graph where:

- A'
f

- A'
d

- N'
H

Then GH, is the FO-graph representation of a covering of the hypergraph

Jf.

PROOF. Starting from GH ' we construct the FO-graph GH" by adding

the redundant arc (j,h) for every (i,h) in Af . Since GH can be obtained

from GH" by eliminating the redundant full arcs introduced above by Pro

position 2 '3C" is a covering of '3C. Since the node i is redundant in

GH" , because for every full arc (i,h) there is a dotted FO-path (i,h)

passing through j, GH, can be obtained from GH" by eliminating the node

i and all its outgoing arcs. By proposition 2, JC' is a covering of JC" and

therefore of '3C as well.
Q.E.O.

From now on, by "elimination of a superfluous node" we will mean the

procedure indicated in Proposition 3 (for instance, the Fo-graph in Fig.

lOb is obtained from the Fo-graph in Fig. lOa by eliminating the super

fluous node CD).

Before proceeding in proving the results stated in paragraph 2, we

need the following two lemmata. Lemma 1 outlines a structural property

of LR-minimum FO-graphs which allows to establish (by Lemma 2) a strong

correspondence between LR-minimum FD-graphs and source minimum hypergraphs

which will be needed for most of the subsequent results. Furthermore Lemma

146 G. Ausiello, A. D' Atri, D. Sacca

1 will also be used to prove Theorem 6. Notice that all structural pro

perties of LR-minimum FD-graphs stated in [2] can be easily derived from

Lemma 1 but the viceversa does not hold.

LEMMA 1. Let GH, = (NH, ,Ai ,Ad)' GH" = (NH" ,Ai ,Ad) be the FD-graph

representations of two coverings of a hypergraph ;Ie. If both GH, and GH"

are LR-minimum then there exists a bijection </>: NH" -+ NH, such that,for

every node i E NH"/NH,

a) q, (i) E NH , /NH"

b) q, (i) is equivalent to i in GH", = (NH, UNH" ,Ai,Ad U Ad >

c) there exists a dotted FD-path (q, (i) , i) in GH",

PROOF. In order to prove the lemma we need first to prove the fol

lowing claim.

CLAIM 1. Let ;JC 1 and;JC 2 be two coverings of ;JC,

+ + + +
corresponding FD-graphs, GH = (NH ,A 1f'A 1d) and GH

1 1 2
be their closures and let i,j be in NH n N . If

1 H2

+
(i,j) is in Alf and

(i,j) is in A;d' then every dotted FD-path (i,j) contains a

node k equivalent to i.

U

such that k,~ are in

N is also in GH and vice versa because GH contains more compound
Hl 1 3

nodes besides all compound nodes in NH but not more full arcs. Hence
1

(i,j) is also in A;f. Let us now consider any dotted FD-path (i,j > in

GH2 and let k 1 , .•. ,ks be the intermediate nodes on (i,j). We have to

prove that at least one of these intermediate nodes is equivalent to i.

By Theorem 8, if (ke,kr) is in A2f U A2d ' there exists an FD-path

(k ,k) in ~ because H3 is a covering of H1. Moreover, since no dotted
e r 3

FD-path (i, j) is in GH ' some FD-path (k ,k) contains a full arc
3 e r

Minimal Representations of Directed Hypergraphs 147

leaving i. By Definition 14, in GH there exist FD-paths (i,k) (because
3 e

the FD-pa th (i, j) contains k)
e

and (k ,i) (by Theorem 8 because the
e

FD-path (k ,k
e r

valent.

in GH contains the node i). Hence i and ke are equi-
3

END OF PROOF OF CLAIM 1.

Let us now consider the two LR-minimum FD-graphs GH, and GH" as

defined in the statement of the Lemma. We construct the bijection ¢ in

the following way: when i E NH" n NH' then ¢(i) = i. Otherwise, if

NH" = NH" \ NH I is not empty and i E NH" , then ¢ (i) j where j E NH I

NH 1\ NH" and is derived in the following way.

Let us construct the FD-graph GH ' by adding i and its outgoing
+ (-+-+) dotted arcs to GH I. Let GH I = _Nil I ,Ai: ,Ad be the closure of GH I. By

Proposi tion 2, the hypergraph JCI is a covering of JC and then of JC"

Since i is non redundant in GH" by hypothesis, there exists at least one
+

simple node r such that (i,r) is in Ai and then in Ai . Instead, by con-
- +

struction, the arc (i,r) is in Ad Hence, by Claim 1, every dotted

FD-path (i,r) in GH I contains at least a node k equivalent to i. Let

j be a node in NH' equivalent to i and such that there is a dotted

FD-path (i,j) in ~I that does not contain any other node equivalent to

i. We may show that j is indeed in NH' by contradiction. In fact if j was

n ,,+ in NH' NH" by Claim 1 the arc (i,j) would be in Ad and i would be

superfluous in GH" (contradiction with the hypothesis that GH" is

LR-minimum). We prove that ¢ is bijective by showing that ¢ is injective

and that INH"I = INHI I. Let i be a node in NH" different from i. Let us

suppose, by contradiction, that ¢(l) ¢(i) = j. Let GH" be the FD-graph

obtained from GH" by adding the node j and all its outgoing dotted arcs

d 1 + - (-,,+ -,,+) b th 1 f an et~" - NH",Af ,Ad e e c osure 0 GH" • Since j is equiva
- +

lent to i and i in ~" , (j,i) and (j,1) are

the dotted FD-paths (i, j) and (L j) in GH I

in A" • Furthermore, since
d

do not contain other nodes

equivalent to i or i and since H' is a covering of H", by Claim 1 there

exist also dotted FD-paths (i, j) and (i, j) in~". Now, without loss of

148 G. Ausiello, A. D' Atri, D. Sacca

generali ty, we suppose that the dotted FD-path (j ,i) in Gii" does not

contain the node i (otherwise we could refer to (j, i)). Since in Gii"

there exist the dotted FD-pa ths (i, j and (j ,i) and since (j ,i) does

not contain the node i, there exists also a dotted FD-path (i, i) in Gii'"

This FD-path is also in GH" because Gii" differs from GH" only in the

compound node j that has no outgoing full arcs. Hence i is superfluous

in GH" and we get a contradiction with the hypothesis that GH" is

LR-minimum. Therefore the mapping cP is injective and, hence, INH" 1 <

~ 1 NH, I· If we exchange GH, with GH" and viceversa in our argument, we

obtain also 1 NH, 1 ~ 1 NH" I· Hence forth 1 NH, 1 = 1 NH" 1 and cP is a bij ection.

This concludes the proof of Part a) of the lemma. In order to prove Part

b) we observe that since i and j = CP(i) are equivalent in ~, and since

Ii' is a covering of H'li by Proposition 2, i and j are equivalent in GHIII

by Theorem 8. Finally we have to prove Part c), i.e. that there is a

dotted FD-path (j ,i) in GH'II First of all we notice that in GE" there

is a dotted FD-path (j , i) . We show that this FD-path does not contain

any node equivalent to j by contradiction. Let us suppose that there ex

is ts a node i equivalent to j in (j, i) . Without loss of generality we

can suppose also that the dotted FD-path (j,i) does not contain any node

equivalent to j. Since there is also a dotted FD-path (i,j in GE" (as

we have already proved) there exists a dotted FD-path (i,i in Gii:"

This FD-path is also in GH" and i is superfluous (contradiction with the

hypothesis that GH" is LR-minimum). Therefore the dotted FD-path (j ,i)

·in GE" does not contain any node equivalent to j. Hence, since E" is a

covering of H'li , by Claim 1 there is a dotted FD-path (j, i) in GHIII and

this concludes the proof.
Q.E.D.

The next lemma establishes the correspondence between LR-minimum

FD-graphs and source-minimum hypergraphs. This result is useful both for

applying to source minimum hypergraphs the computational results proved

in [2] for LR-minimum FD-graphs and for deriving other results stated in

section 2, concerning the other concepts of minimal coverings.

LEMMA 2. A hypergraph X is source minimum iff its FD-graph repre-

Minimal Representations of Directed Hypergraphs 149

sentation is LR-minimum.

PROOF. Only if part. Let GH be the FD-graph representation of X. GH

does not contain redundant or superfluous nodes, because otherwise we

could reduce the number of source sets in Xby eliminating either the

redundant or the superfluous nodes (by Proposit~ons 2 and 3). GH does

not have redundant arcs because otherwise X would be redundant (by

Theorem 8). Hence GH is LR-minimum.

If part. Let GH (NH,Af,Ad > be the LR-minimum FD-graph representa

tion of the hypergraph X. Let J(' be an SM-covering of ;I(and let GH, =

= < NH"Af,Ad > be its FO-graph representation. By the only if part of

this lemma GH, is LR-minimum. Hence, by lemma 1, G and G , have the same
H H,

number of nodes with outdegree > O. This means that X and X have the

same number of source sets, i.e. X is source minimal.
Q.E.D.

We are now able to prove that the problem of determining a source

minimum covering of a given hypergraph X can be solved in time quadratic

in the size of the description of X.

PROOF OF THEOREM 3. An SM-covering of a given hyper graph X may be

obtained by the following steps:

1. determine the FO-graph representation of X;

2. eliminate redundant nodes;

3. eliminate superfluous nodes;

4. eliminate redundant arcs;

5. derive the hypergraph X' corresponding to the reduced FD-graph.
,

By Proposition 2 and 3, X is a covering of X. By Lemma 2, X is

source minimum. As far as the complexity is concerned it has been shown

in the proof of Theorem 1 that steps 1,2,4 and 5 require time quadratic

in IXI. Superfluous nodes can be easily recognized from the closure.

Hence the whole complexity of the algorithm remains quadratic in IXI

Actually in [2] a more efficient implementation of this algorithm was

given, that requires time O{t-IXI) where t (n' ~ t ~ IXI) is a parameter

150 G. Ausiello, A. D' Atri, D. Sacca

depending on the structure of the hypergraph which takes value n' (number

of nodes) when the hypergraph is indeed a graph.
Q.E.D.

After having considered the complexity properties of nonredundant

and source minimum coverings let us now turn to the harder problems.

First of all we provide the NP-completeness proofs for the hyperarc

minimum and source optimum coverings.

PROOF OF THEOREM 2. In order to prove that the problem of determin

ing an HM-covering is NP-complete we may give a polynomial reduction from

the set-covering problem to the problem of minimizing the number of hyper

arcs of a nonredundant covering of a hypergraph, analogously to what is

done in [9]. Let an instance of the set covering problem be given: let

S = {sl, ... ,sn} be a set of elements and Sl"",Sm be a family of subsets
m

of S such that i~1 Si = S. The set-covering problem is the problem of

finding a subfamily minimizing the number of sets S. , ... ,S. such that
k 11 1k
U s. S. Given the above instance we may construct a hypergraph whose

j=1 1j - - - - -
nodes are s1, ••. ,sn' S1""'Sm ' T and for every Sj E Si there is a cor-

responding hyperarc (Si'~j); besides there are the hyperarcs ({~l""'~n}'

S.) and the hyperarcs (T,S.) for all i = l, ... ,m (see Fig. 11).
1 1

Fig. 11. Hypergraph associated with an instance of the set-covering pro
blem.

-
Note that if from the hypergraph the node T and the hyperarcs lea-

ving it are taken out, the remaining hypergraph is nonredundant and no

Minimal Representations of Directed Hypergraphs 151

covering with a smaller number of arcs may exist. Hence the only redundant
- (*)

arcs may be those leaving T . In fact if the sets S, , ... ,S, provide
II lk

a covering of S, all arcs leaving T and different from (T,S,) ... , (T,S,)
II lk

are redundant and may be eliminated without changing the closure. Since

the reduction from the instance of set covering to the instance of HM

covering of the hypergraph is polynomial we have shown that if we know

how to minimize the number of hyperarcs in the hypergraph we would solve

the se't covering problem. Hence the hyperarcs minimization problem is

NP-hard. The easy observation that such problem is solvable in polynomial

nondeterministic time completes the proof.
Q.E.D.

PROOF OF THEOREM 4. In order to prove that the problem of determin

ing an OSM-covering is NP-complete we may use a slight modification of

the proof of Theorem 2. Let us again consider the hypergraph in Figure 11.

First we add a new node T1 and then we replace the hyperarcs

(T,Sl) , ... , (T,Sm) with the hyperarc (Sl' ... 'SmTl,T). This latter hyper

arc may contain redundant nodes. If we eliminate such nodes by Lemma 2

we obtain a SM-covering of X since its FD-graph representation GH is

LR-minimum. In fact in GH neither nodes nor arcs are redundant and no

node is superfluous because there are no equivalent node. Notice that if

we did not add the node T1 in GH ,the node Sl ... Sm would have been super

fluous with respect to the node sl ... sn. The OSM-covering of this hyper

graph is an SM-covering from which we have eliminated the maximal number

of redundant nodes in the previous hyperarc. Hence by determining the

OSM-covering we would also solve the set covering problem.
Q.E.D.

Finally we prove the results concerning implications among minimality

concepts (see Fig. 6).

(*) Note that in this case the HM-covering problem coincides with the mi
nimum equivalent subhypergraph problem and the relaxation of the sub
hypergraph constraint does not make the problem simpler. Actually the
same theorem can also be used to prove the NP-completeness of the mi
numum equivalent subhypergraph problem.

152 G. Ausiello, A. D' Atri, D. Sacca

Let us first of all prove that since source minimality is implied

by source-hyperarc minimality an SHM-covering may be found among SM-co

verings.
,

PROOF OF THEOREM 5. Let a hypergraph J(be given. Let X be an SHM-

covering of J~ in order to prove that it is also an SM-covering let us

proceed by contradiction. Let us suppose that J(is not an SM-covering

of X and let GH ' be the FO-graph associated to X. By Lemma 2, GH ' is

not LR-minimum. Since H' is nonredundant, GH ' has neither redundant

nodes nor redundant arcs. Hence GH ' has at least one superfluous node.

By eliminating such a node we would determine an FO-graph GH" which re-
" presents a hypergraph X which is a H-minimum covering of X but with a

smaller number of source sets (contradiction).
Q.E.O.

The second result concerns the fact that an optimal covering may be

found among optimal source minimum coverings.

PROOF OF THEOREM 6. Let a hypergraph J(be given. Let X and X" be

respectively an o-covering and an OSM-covering of X. By definition of

O-covering, in order to prove the theorem, it is sufficient to find an
~m ~" SHM-covering d~ which has the same source area as oe • To this goal we

consider the FO-graphs GH, = (NH, ,Aj, ,Ad> and GH" = (NH", Ai ,Ad > as-

sociated to X' and JC" . We construct the FO-graph GHIII (NH, U NH" ,

Aj"Ad U Ad>. By Proposition 2, Xm is covering of X. By Lemma 1 every

compound node in NH,\NH" is superfluous in GHIII . By eliminating such

nodes we obtain an FD-graph with the same number of full arcs as GH, and

the same set of nodes as GH" . Therefore the hypergraph represented by

this FO-graph is an SHM-covering of JC which has the same source area as
J("

Q.E.O.

Finally we prove that a nonredundant covering with the minimum source

area is necessarily a source-minimum covering.

PROOF OF THEOREM 7. Let X be a hypergraph and let 'JC be a covering
,

of 'JC wi th the smallest source area. We may show that J(is also source-

minimum. Without loss of generality we assume that X is nonredundant

Minimal Representations of Directed Hypergraphs 153

,
(in fact, if JC was redundant, by eliminating redundancies we could ob-,
tain a nonredundant covering of J(with the same source area as J(). Let , ,
GH, be the FD-graph representation of JC Since J(is nonredundant, GH,

has neither redundant nodes nor redundant arcs. Moreover GH, has no

superfluous nodes because otherwise, by eliminating such nodes, we would

find the FD-graph representation of a covering of J(with a smaller

source area. Hence GH, is LR-minimum and by Lemma 2, J(is source-minimum.
Q.E.D.

4. APPLICATIONS OF MINIMAL REPRESENTATIONS OF HYPERGRAPHS

FD-graphs were first introduced in [2] in connection with the re

presentation and manipulation of sets of functional dependencies in rela

tional data bases [15] •

In this case, as it was shown in the mentioned reference, the pro

blem is to determine a minimal covering of a set of functional dependen

cies X. ~ Y. , 1 < i < k, defined over a set of attribute names U, where
1 1 --

Xi and Yi are subsets of u.
For example if A,B,C,D,E are attribute names, the following set of

functional dependencies:

AB ~ CD, B ~ E, E ~ C

represents the implication between attribute values, that is the pair of

values over A and B univokely determine the values over C and 0, etc.

Given a set F of functional dependencies, a set of inference rules

allows to determine the set F+ of all dependencies which may be derived

as consequences of F. A central problem in relational theory is hence to

determine a covering F' of F such that F'+ = F+ and F' is "minimal" with

respect to some criteria [10]. By associating nodes to attributes and

hyperarcs (A 1 ••• An ,B 1) , •.. , (A 1 ••• An ,Bm) to every functional dependency

A1 ••• An ~ B1 ••. Bm ' we may represent a set of functional dependencies by

154 G. Ausiello, A. D' Atri, D. Sacca

an R-triangular hypergraph. In [21 it has been shown that the problem of

determining minimal coverings such as the ones considered in [101 may be

efficiently solved by using FD-graphs and their manipulation algorithms.

In particular such minimal coverings correspond to our source-minimum

hypergraphs.

Other kinds of dependencies in relational data base theory such as

the existenae aonstraints introduced in [111 may also be treated by using

hypergraph algorithms since inference rules for this kind of constraints

have the same structure as inference rules for functional dependencies.

FD-graphs may also be applied for the efficient manipulation of

AND-OR graphs [131. In fact it is easy to see that these structures,

which are used for the representation of reduction of problems in problem

solving, may still be represented by hypergraphs (actually L-triangular

hypergraphs since every hyperarc is usually directed from one node, pro

blem to be solved, to a set of nodes, subproblems whose solution is re

quired in order to solve the given problem) .

Also in this case the problem of determining minimal descriptions

of AND-OR graphs may arise.

In order to represent and manipulate an AND-OR graph by means of a

FD-graph we may consider the reversed (R-triangular) hypergraph which is

obtained by reversing all hyperarcs.

In Figure 12 we show an AND-OR graph and its representation by means

of an FD-graph

A ... _____ Be
a) b)

Fig. 12. AND-OR graph and its FD-graph representation.

Minimal Representations of Directed Hypergraphs 155

In this case an FD-path from the empty compound node to a target simple

node T represents a chain of problems that have to be solved in order to

solve T. FD-graph algorithms may be adapted in order to be used to de

termine minimal representation of AND-OR graphs. In this case an inte

resting development may be to extend the FD-graph formalism by introduc

ing weighted arcs in order to study heuristic strategies.

5. CONCLUSION

In this paper the problem of determining minimal coverings of hyper

graphs has been studied. A graphic representation of hypergraphs has been

proposed and properties of minimal coverings have been investigated.

The computational results proved in this paper are summarized in the

following table where they are compared with related results which hold

for graphs:

TYPE OF COVERING COMPLEXITY COMPLEXITY
FOR GRAPHS FOR HYPERGRAPHS

NONREDUNDANT SUBHYPERGRAPH o (m2) o ([JC[2)

MINIMUM EQUIVALENT NP-COMPLETE NP-COMPLETE
SUBHYPERGRAPH (MINIMUM

EQUIVALENT
DIGRAPH)

SM-COVERING - o ([X[2)

OSM-COVERING - NP-COMPLETE

HM-COVERING I NP-COMPLETE

SHM-COVERING j o (nom) NP-COMPLETE

O-COVERING (TRANSITIVE NP-COMPLETE
REDUCTION

where nand m are the number of nodes and arcs in the graph and IXI is
the length of the representation of the hypergraph.

156 G. Ausiello, A. D' Atri, D. Sacca

Besides showing how the complexity of covering problems increases

when we go from graphs to hypergraphs the results provided in the paper

are also devoted to determining efficient algorithms for polynomially

solvable covering problems. Concerning this point by generalizing re

sults in [2], it may be proven that in the case of SM-coverings, when

hypergraphs degenerate into graphs (all source sets are singletons)., the

complexity of the given FD-graph algorithms coincide with the best ef

ficiency which is known for graph algorithms.

Applications to functional dependencies in relational theory and to

and-or graphs manipulation were finally sketched.

REFERENCES

[1] Aho,A.V., Garey,M.R. and Ullman,J.D., The t~ansitive ~eduction of

a di~ected graph. SIAM J. on Computing, 1 (1972), pp. 131-137.

[2] Ausiello,G., D'Atri,A. and Sacca,D., G~aph algo~ithms fo~functional

dependency manipulation. JACM 30, 4 (Oct. 1983), pp. 752-766.

[3] Batini,C. and D'Atri,A., Rewnting systems as a tool fo~ ~elational
data base design. LNCS 73, Springer-Verlag (1979), pp. 139-154.

[4] Berge,C., Graphs and hypergraphs. North Holland, Amsterdam (1973).

[5] Boley,H, Directed recursive labelnode hypergraphs: a new representa
tion language. Artificial Intelligence 9 (1977), pp. 49-85.

[6] Fagin,R, Mendelzon,A.O. and Ullman,J.D., A simplified universal

relation assumption and its properties. ACM TODS, 7,3 (1982),

pp. 343-360.

[7] Garey,M.R. and Johnson,D.S., Computers and intractability: a guide

to the theory of NP-completeness. Freeman, San Francisco (1979).

Minimal Representations of Directed Hypergraphs 157

[8] Gnesi,S., Montanari,U. and Martelli,A., Dynamic programming as graph

searching: an algebraic approach. JACM 28,4 (1981), pp. 737-

751.

[9] Lipski,W., Two NP-complete problems related to information retrieval.

Fundamentals of Computation Theory. LNCS 56, Springer-Verlag,

(1977), pp. 452-458.

[10] Maier,D., Minimum covers in the relational data base model. JACM

27,4 (1980), pp. 664-674.

[11] Maier,D., Descarding the universal instance assumption: preliminary

results. Proc. XPl Conf., stony brook, NY (1980).

[12] Maier,D. and Ullman,J.D., Connections in acyclic hypergraphs. 1st

Symposium on Principles of Data Base Systems, Los Angeles

(1982) .

[13] Nilsson,N.J., Problem solving methods in artificial intelligence.

McGraw Hill, New York (1971).

[14] Paz,A. and Moran,S., NP-optimization problems and their approxima

tion. In Proc. 4th Int. Symp. on Automata, Languages and

Programming, LNCS, Springer-Verlag, 1977.

[15] Ullman,J.D., Principles of Data Base Systems. Computer Science

Press, Potomac, Md. (1980).

[16] Yannakakis,M., A Theory of Safe Locking Policies in Database Systems.

JACM 29,3 (1982), pp. 718-740.

PART II

OPTIMAL DESIGN OF

PARALLEL COMPUTING SYSTEMS

PARALLEL COMPUTER MODELS: AN INTRODUCTION

SUMMARY

1. Introduction

G. Ausiello
Dipartimento di Informatica e Sistemistica

University of Roma

P. Bertolazzi
Istituto di Analisi dei Sistemi ed Informatica

CNR, Roma

2. Abstract models of parallel computer systems

3. Various forms of parallelism in computer systems

4. Classes of parallel machines and algorithms

5. Advantages and inherent limitations of parallel processing

6. References

ABSTRACT

Various forms of parallel processing have been realized in computer

systems in the last two decades, ranging from parallelization of data

processing with respect to input and output operations, to the use of

higlyparallel arithmetic units, to the construction of networks of

tightly interconnected processors. In this introductory paper we examine

various examples of abstract and real parallel machines with the aim of

providing the basic concepts and discuss their fundamental characteristics.

Besides we briefly discuss under what circumstances and up to what extent

parallel devices may provide a more efficient solution to computational

problems.

162 G. Ausiello, P. Bertolazzi

1. INTRODUcrION

The interest for parallel computation arises from various points

of view. First of all the organization of a computer system based on

more than one processor may be used to increase the throughput and the

reliability of the system; besides, in many cases, the possibility of

performing several arithmetical operations simultaneously may increase

the efficiency of a computation. These needs were present since the

beginning of the introduction of electronic computers and several multi

processor computer systems were realized in the last two decades. The

great technological advances in microelectronics have made parallel pro

cessing much more widespread and have made it possible to build systems

with hundreds or thousands of computing units based on various organiza

tion principles. A speed up of 10 to 104 times in computation time

became then possible. Processing tasks whose solution would have been

extremely costly or even unfeasible on serial computers could instead

be attacked with a parallel machine. A typical example in image pro

cessing is the processing of satellite pictures: a LANDSAT picture is
6 made up of SolO pixels; when we process the image for various applica-

tions under real time constraint we may have to perform up to 10.000

operations per pixel per second which would require a machine with

computing power of 10 gips (10 3 times larger than the most efficient

serial computer would allow). Such kind of problems may hence only be

approached if we have a parallel machine (a 100 x 100 array of proces

sors, for example).

On the other side, available multiprocessor systems would not be

useful if we would not know how to solve problems by means of parallel

algorithms. Hence the first motivation for the study of parallel algo

rithms is to exploit the power of parallel computation offered by the

technology.

Besides this practical reason the study of parallel algorithms is

also interesting in order to have a better understanding of the computa-

Parallel Computer Models: An Introduction 163

tional nature of a problem.

In fact, if for some problems we know such properties as the struc

ture of the flow of data, the possible parallelization of computation

steps, the trade-offs between different particular complexity measures

or the lower bounds expressed in terms of a global complexity measure

which takes into account the cost of execution, the cost of communica

tion and the number of processors, we have a much deeper knowledge of

the intrinsic computational properties of that problem.

Finally, as it has been pointed out in [Megiddo 83] the study of

the parallel computer solution of one problem may turn out to be useful

to provide an efficient serial solution for another related problem.

In this introductory paper we will give a presentation of various

abstract parallel machine models and of the basic results that may be

established for these models (§2). Then we will discuss the various

forms in which parallel processing has been introduced in computer

systems (§3) and provide an overview of the main classes of (real or

realistic) parallel machines with a brief discussion .of their fundamental

characteristics (§4).

Finally (§5) we consider what are the advantages in terms of ef

ficiency which may be obtained by using parallel processing systems and,

on the other side, what are the limitations that make parallel proces

sing convenient only for particular classes of problems.

2. ABSTRACT MODELS OF PARALLEL COMPUTER SYSTEMS

The ability of performing synchronous or asynchronous parallel

steps of computation was introduced in formal systems and abstract

machines since the early stages of the development of theoretical com

puter science, not necessarily with the aim of modeling computer systems

but often in connection with the mathematical description of physical,

biological, physiologycal social phenomena where concurrent evolution

164 G. Ausiello, P. Bertolazzi

of events and actions performed by several actors is not the exception

but the normal behavioural characteristic. This is the case with the

first introduction and studies on cellular automata which started in

the early fifties [Von Neumann 51] in connection with research on neural

networks and the brain and in connection with the mathematical theory

of self-reproduction [Moore 62]. Research on cellular automata (tes

sellation automata, iterative arrays [Cole 64]) was continued by Myhill,

Amoroso, Yamada, Maruoka, etc. Only more recently, cellular automata

and other kinds of polyautomata were considered as models of parallel

computing machines and even as possible architectures of real parallel

computers with applications in image processing and recognition (see

[Duff, Levialdi 81]). Also in the case of developmental systems (or

L-systems, introduced by Lindenmayer in 1968) the original aim was to

study biological behaviour such as the growth of branches and leaves

in plants according to specific patterns or the regeneration of parts

of the body in worms etc. Then the underlying mathematical structure

was deeply studied by several authors and provided an interesting model

for parallel synchronous rewriting systems (see [Rozenberg, Salomaa 80]).

Petri nets(introduced in Petri's thesis [petri 62]) provide a third

example of model of parallelism which, though now widely applied in the

representation of parallel computations [Peterson 77], was not originally

intended to describe parallelism in computing, but, much more generally,

was motivated by the ambition of modeling the flow of information in

systems (e.g. physical and human organizations) in which events may

occur concurrently and asynchronously, with limitations due to some con

straints (such as precedence, mutual exclusion etc.) .

More closely related to the modelisation of parallel computers, has

been the introduction of parallelism in classical abstract machine models

such as Turing machines (see for example [Kozen 76; Chandra, Stockmeyer

76] or random access machines (see for example [Pratt, Stockmeyer 76;

Savitch, Stimson 76]). In these cases the main objective was to study

Parallel Computer Models: An Introduction 165

the computational power of such systems by comparing their resource

bounded complexity classes. An example of a result that can be proved

for some parallel abstract machines and that in general remains a con

jecture, though supported by strong evidence, is that if we allow an

unbounded amount of parallelism the class of functions computable in

polynomial time by a parallel machine corresponds to the class of func

tions computable by a serial machine which makes use of a polynomial

amount of storage. In particular this result holds for the model of

SIMD machine (see next paragraph) with a shared global memory, called

SIMDAG in [Goldschlager 78], where all parallel processing units (PPU)

are RAMs with the usual RAM instruction set augmented by parallel in

structions which are broadcast by the CPU and executed simultaneously

by the PPUs. The guest for a general universal model of parallel ab

stract machine, capable of simulating all known abstract and real pa

rallel computers, thereby providing a sort of parallel version of

Church's Thesis(*), and the need of establishing meaningful comparisons

of computational power among them, has brought to the characterization

of various general classes of parallel machines.

The more general class, called paracomputers in [Schwartz 80] or

idealistic parallel machines correspond to the following model: N

identical processors share a common memory which they can read and write

simultaneously in a single cycle (Fig. 1). This model is clearly unreali

stic due to physical fan in limitations. It can only provide a first

approximate idea of the possible parallel solution of a problem and it

(*) Church's Thesis may not be trivially extended to parallel machine

models because in presence of nondeterminacy parallel computations

may allow more than one output. In fact the sets of relations com

puted by parallel programs with non determinacy may not be even

semidecidable [Chandra 79].

166 G. Ausiello, P. Bertolazzi

MEMORY

1 1
1 l
PI .. PH

Fig. 1. The paracomputer

can be used to derive trivial upper and lower bounds for parallel time

complexity: in fact we know that if an algorithm requires time O(t(n»

on a serial computer in the best case it can be executed in time

O(t(n)/N) on a paracomputer and, on the other side, if a problem re

quires time ~(t(n» on a serial computer its lower bound on a parallel

machine will be at least ~(t(n)/N).

The second class is the class of realistic parallel computers,

[Galil, Paul 81; Valiant, Brebner 81] called ultracomputers in [Schwartz

80], which are based on the following model: N identical processors are

located in the nodes of a potentially infinite recursive graph structure;

all processors are connected, along the edges of the graph, to a small

number of neighbours (for example a constant n~er d or a slowly gro

wing number log2N). This limitation of fan -in makes the model more

Fig. 2. The tree machine

realistic but clearly, at least in general, less efficient than a pa-

Parallel Computer Models: An Introduction 167

racomputer. In the case that the processors are restricted to be finite

state automata we obtain a smaller class of machines (which is still

fairly general and includes for example iterative arrays and tree struc

tures (Fig. 2), called conglomerates and claimed in [Goldschlager 78) to

include all synchronous parallel machines which could be feasibly built.

In more general cases the processors may be assumed to be RAMs with

a constant number of registers (possibly of bounded capacity). The main

results which have been proved both for conglomerates and for the more

general machine models was the existence of universal interconnection

patterns. For example, in the case when the processors are RAMs it can

be shown that there exists a universal parallel machine U such that given

a parallel machine C with p processors which operates on input x of

length n in time t, U simulates C on input x in time ott log2p) by using

not more than O(p) processors

Further research in this direction has been developped with the

aim of finding efficient simulations of abstract models on more rea

listic parallel architectures. (See [Vishkin 83] for a survey). The simu

lation is realized by implementing parallel algorithms designed for the

abstract model on the realistic machine. It is shown that in general

small increase of the parallel complexity is obtained [Vishkin 82],

[Eckstein 79],[schwartz 80).

A central role in abstract parallel machine models such as in real

parallel computers is played by interconnection schemes and communica

tion problems. In order to perform an efficient computation it may be

required that the largest distance between two processors in a network

be limited to a slowly growing function of the total number of processors,

say log2N.

While simple planar structures of N processors such as rectangular

and hexagonal arrays determine a ~ growth of interprocessor communica

tion time, the logarithmic distance is realized in structures such as

the k dimensional cub~ the shuffle - exchange network (Fig. 3), the mesh

of trees [Leighton 81].

168 G. Ausiello, P. Bertolazzi

3-cube Shuffle-exchange network

Fig. 3.

Unfortunately the practical application of these interconnection schemes

is limited by three factors:

- the difficulty of performing interprocessor communication in logarithmic

time due to constraints on the capacity of communication lines;

- the fan-in physical limitations which require that the number of

neighbour processors be either constant or at most logarithmic;

- the wiring constraints, which do not allow, especially for VLSI imple

mentations, more than two or three levels of wiring and which pose

restrictions on the density and length of connection wires in a layout.

Concerning the first problem, a remarkable result in [Valiant,

Brebner 81] shows that a randomized routing algorithm may guarantee a

logarithmic time communication among processors in various structures

such as the k-cube, the shuffle exchange network etc.

The second problem may be overcome by adopting the cube connected

cycles (CCC) interconnection scheme [Preparata, Vuillemin 81] where

every processor is constantly connected only to three neighbours, still

preserving the general properties of the k-cube architecture (Fig. 4).

Parallel Computer Models: An Introduction

I

I
I
I

~---------

3-CCc

Fig. 4.

169

The CCC has been shown to be optimal for several problems with re

spect to the area x time2 complexity measure for VLSI implementations.

Nevertheless also in this case such as in most non-planar networks a

severe limitation to the physical realization comes from the technolo

gical problems connected with the layout.

3. VARIOUS FORMS OF PARALLELISM IN COMPUTER SYSTEMS

Let us now consider how parallelism has been introduced in real

computer systems and how it gave rise to various kinds of parallel

computers and multiprocessors. The history of the evolution of parallel

computer systems has been extensively discussed in several survey papers,

together with various approaches to the characterization of such systems

and to the classification of the corresponding algorithms [Flynn 66;

Baer 73; Kuck 77; Ramamoorthy, Li 77; Enslow 77; Reddy, Hon 79; Kung 80] •

Here and in the following paragraph we limit ourselves to providing some

examples of various kinds of parallel machines and a discussion of the

characteristics of the most important classes of parallel systems which

have been introduced in the literature. References concerning the part

icular machines which we are taking into consideration may be found in

170 G. Ausiello, P. Bertolazzi

the above cited surveys.

The idea of a computing machine capable of performing more than one

operation at a time seems to be at least 140 years old. In [Kuck 77] a

reference to a publication of Menabrea's description of Babbage's lec

tures in Turin (october 1842) remarks this fact. Of course more then

100 years had to pass before electronic computers could be built ca

pable of performing different operations simultaneously. From this point

on many designs of "parallel machines" appeared, and, successively, pro

totypes and commercial machines were built on. In the early 50s the

first prototypes appeared, such as the multiprocessor Model V of the

Bell Telephone Laboratories, with two processors, and the multiopera

tion processor of Leondes and Rubinoff oriented toward a drum memory.

successively, in the 60s, many multioperation machines appeared. First

of all, in that period, most of the computers had undergone a transforma

tion, oriented toward increasing the throughput, and more than one pro

cessor with different functional utilizations (I/O and processing) had

been introduced in a computer, connected via multiple bus systems.

Gradually parallelism between decoding and execution of operations and

between execution of different arithmetic operations was introduced

(IBM 360/91, CDC 6600, CDC 7600) by allowing several functional units

to perform specific arithmetic functions in parallel. In some cases

even several general purpose processing units were coupled in order to

provide a higher efficiency (IBM 360/67, UNIVAC 1110 etc.).

More massive use of several processing units was introduced in the

late 60's and in the 70's in the realization of the first, so called,

array processors (such as ILLIAC III and ILLIAC IV, the last one with 64

processing elements each with a small private memory) or various other

kinds of systems oriented toward the fast parallel processing of vectors

(such as the SDC PEPE, 1971, the TEXAS ASC, 1972, the'CDC STAR-100, 1973,

the CRAY-1, 1976, down to the more recent vector processors IBM 3838 and

Hitachi lAP). Other examples of parallel computers appeared in connection

with the fast processing of picture cells in images (such as CLIP, a

Parallel Computer Models: An Introduction 171

96 x 96 array of processors, or MPP, the Massively Parallel Processor).

Beside these examples of systems with a tight coupling among pro

cessors several other kinds of multiprocessor architectures have been

developped during the 70 such as multimini/multimicroprocessors (closely

* coupled systems, such as DAP,C.mmp and Cm with a number of processor

ranging from 16 to 256 in various stages of development) or local net

works (losely coupled systems).

If one goes deeply in the hardware and software organization of

these machines, one can easily see that the term "parallel processing"

has been used in many different ways. In fact twenty five years ago it

referred to arithmetic operations on whole words rather than on one bit

at a time.

Also the parallel execution Of instructions of programs and I/O

operations in multiprogramming has been seen as parallel processing.

The first true parallel machines can be thought of to be the

machines of the 60's. They are often called array processors; the name

is due to the fact that these machines can operate with high performance

on arrays of data. These machines have a new form of parallelism: they

operate simultaneously on different elements of the same vector. Two

basic principles of organization of parallel operation are present in

the computer systems described until now: the pipelined organization and

the single instruction multiple data (SIMD [Flynn 66]) organization. In

the pipelined machines such as CDC STAR-100 mentioned above a computa

tional process is segmented into several different subprocesses, which

are executed by dedicated autonomous units. Successive processes can be

overlapped, analogously to an industrial assembly line [Ramamoorthy 77].

In the SIMD machines, such as ILLIAC, all the units execute the same

computational process on different data under the control of a central

processing unit.

Successively, other kinds of parallelism were developed: on one

hand the parallel asynchronous execution of different tasks of the same

172 G. Ausiello, P. Bertolazzi

job on the processors of a multiprocessor system; each task requires a

great amount of computation and the communication can be performed via

global variables in a shared memory or via messages sent through high

speed lines.

These multiprocessor systems are often called MIMD (Multiple In

* struction Multiple Data stream): em and DAP are examples of this kind

of machines. On the other hand the distribution of small amount of

computation among simple processing units, connected together with

simple geometrical architectures has been made possible by the evolution

of VLSI. Many processing units emebedded in a chip alternatively per

form simple computations and send data, synchronized by a clock; the

input data are entered by a driver and "pipelined" in the circuit, while

the "instructions" are realized by the components of the circuit itself.

The name "systolic" is used to refer to this way of parallel processing.

4. CLASSES OF PARALLEL MACHINES AND ALGORITHMS

Among all possible parameters which may be used to characterize

parallel computer systems and which give rise to such a wide.variety

of architectures, as we have seen in the preceding paragraphs, the fol

lowing appear to be the most relevant:

a) QuaZity of processors: as we have seen, the processors which operate

in parallel may be

- homogeneous

- non homogeneous

and, in the first case, they may be

- functionally specialized units (e.g. floating point adders and

multipliers)

- general purpose processors.

b) ControZ of concurrent operations: three main kinds of concurrency

Parallel Computer Models: An Introduction

control schemes appear in the systems which are under discussion

[Kung 77]

- centralized control: all processing units are synchronized under

the supervision of a central unit,

- distributed control: in this case all units may operate either

synchronously (via a clock) or asynchronously (via messages) ,

173

- control via shared data: under this kind of asynchronous control,

processes activate each other by means of global variables.

c) Geometry(*) of the interconnection scheme: whatever is the character

ization of a parallel machine according to the first parameters, a

large choice of regular communication geometries may be used: one

dimensional array, binary tree, planar grid, cube, shuffle etc. In

some cases, mainly in connectien with asynchronous control schemes,

irregular geometries may also be adopted.

Actually it has been observed by several authors that the basic

operation principles of most real parallel computer systems fall into

just a few classes with respect to those which may arise by combining

the said parameters in all possible ways.

On one side we have machines with a synchronous mode of operation;

among them we may distinguish the following classes:

i) SIMD (Single Instruction Multiple Data stream). In this case

homogeneous processors, organized in a regular network, all per

form the same operation, broadcast by the central processing unit,

at the same time (see for example ILLIAC IV).

ii) Pipe~ine. As we have already observed, in this mode of operation

data flow in the network of processors (which perform on them

specialized functions) such as products in an assembly line. In

(*) Since the interconnection scheme has to be embedded in a "metric"

space the mere topology does not provide a sufficient characteriza

tion.

174 G. Ausiello, P. Bertolazzi

some examples of pipeline machines such as CRAY-l or STAR-lOa we

have multiple stages floating point adders and multipliers. In

other cases (vector processors) we may have elements of two

vectors flowing through multipliers and adders in order to perform

sequences of scalar products.

iii) SystoZia. This type of synchronous, distributed control organiza

tion derives its name from the "systoles", the rythmic contrac

tions of the heart which make the blood flow in the arteries. In

this case each processor organized in a multidimensional network

takes data from nearby processors, performs a short computation

and sends data again to nearby processors. Typically systolic

systems may be realized using VLSI technology. In some applications

systolic and pipeline modes of operation may be combined in order

to increase the efficiency over sequences of computations.

On the other side we have asynchronous multiprocessors; in this

case there is mainly one mode of operation:

MIMD (Multiple Instruction Multiple Data stream): various pro

cessors (usually general purpose processors connected by crossbar

switches or high speed buses) with independent instruction counters

perform different operations on different data. Communication and

cooperation between processors is realized via shared variables

* or via messages (see for example Cm cr Pluribus).

From the point of view of the algorithms which are more suitable

to be executed by parallel machines the given classification allows us

to determine a first rough distinction: on one side we have algorithms

in which the amount of computation which may be performed by every pro

cessor autonomously, without the need for an interprocessor communica

tion step, is large (in this case we speak of Zarge moduZe granuZarity
[Kung 80] while on the other side we have frequent communication steps

and very short processing steps (smaZZ moauZe granuZarity). The first

Parallel Computer Models: An Introduction 175

kind of algorithms will be better suited for an MIMD machine with

asynchronous concurrency control. In this case the user language needed

for programming the algorithm will have to be rich enough to provide

visible interprocesses communication constructs for the specification

of a logical level and the system language will have to support high

level communication and synchronization primitives.

Typical examples of this kind of algorithms are concurrent data

base management and relaxed global and local optimization.

Algorithms with small granularity are instead suitable for synchro

nous machines. The overhead due to synchronization and frequent com

munication would be unbearable on an MIMD machine. In this case a hard-

ware direct data communication path has to be provided and the program

ming language constructs, which are needed, may be much more simple at

user level and much more related to the physical architecture of the

processors than to the logical organization of processes. Examples of

this kind of algorithms will be referred in the next paragraph.

5. ADVANTAGES AND INHERENT LIMITATIONS OF PARALLEL PROCESSING

Parallel algorithms were studied since 1960 (see a survey in

[Miranker 1971]), although the first parallel machines were built only

some years later.

The advent of multiprocessors before and the recent advances in

VLSI technology provided impetus to the investigation of parallel al

gorithms for different kinds of problems. In the field of numerical

linear algebra (see [Heller 79] for a survey), parallel algorithms were

studied for the solution of general and special linear systems of

equations, computation of eigenvalues, evaluation of arithmetic ex

pressions, operations on matrices (product, inversion), FFT etc. In

nonnumerical calculus, parallel sort, merge and search have received

great attention. Parallel algorithms for operations on particular data

176 G. Ausiello, P. Bertolazzi

structures (priority queues, graphs) and on data bases, have been sug

gested [Kung, Lehman 80, Munro 79]; finally parallel algorithms for

combinatorial optimization problems have been proposed (graph problems

as max flow and connected components, , matching, scheduling,etc.).

In [Heller 78] ,[Kung 80],[S~hwartz 80] [Vishkin 83] ,[Kindervater

83] very wide bibliographies on parallel algorithms are contained, in

[Kook 83] a classification of problems in terms of parallel complexity

is given.

The advantages of parallel processing are evident in many cases.

Serial algorithms, for which linear time is required, can be performed

in logarithmic time on parallel machines with a linear number of pro

cessors: examples are the evaluation of general expressions, the inner

product, the addition of N values ['Heller' 78] ,[Schwartz 80].

The sort of N elements can be performed in O(log2N) on N processors

connected with the shuffle network [Schwartz 80] using bitonic sort

(which would require O(N log2N) on a serial machine) while the same

algorithm requires 0 (~'N"") on a two dimensional IN x IN array [Thompson

77]. The classical matrix product algorithm requires O(log N) on the

cube connected computer with N3 processors, and O(N) on an array of

O(N2) hex-connected processors [Dekel 80] ,[Kung 80].

Another field of application is global optimization: both proba

bilistic and deterministic (gradient technique, search technique) serial

methods require very high computational efforts in evaluating the func

tion; this characteristic makes the use of parallel processing methods

attractive, as much of the computation may be carried out as a group of

parallel tasks [MC Keown 80] ,[Dixon 81]. Looking at the examples, howe

ver, one can observe that the bounds defined in §2 in the case of the

ideal model of paracomputer are very rarely achieved; moreover, in

general, the performance depends on the computational model chosen. This

is due firstly to the intrinsic characteristic of the problem:

- problems, which require exponential time on a serial machine, can not

Parallel Computer Models: An Introduction

be solved in polynomial time unless using an exponential number of

processors (see [Chi-Chin Yao 81] for the knapsack problem);

- problems with N inputs and one output can not be solved, in a pa

rallel system with N processors, in less than log N steps, if only

unary and binary operations are admitted [Heller 78] (see the ad

dition of N numbers), even if the paracomputer model is adopted.

177

The other fundamental reason of this limit is the fact that, while

in the serial algorithm only computation steps must be evaluated, in

parallel algorithms one must keep into account the overhead due to

communication steps [Lint 81]. A quantitative limit is given in

[Gentleman 78] on the performance of the matrix product in a N x N

array processor. This limit can be generalized to the ultracomputer

model: it is impossible to solve a problem on an ultracomputer in less

than O(D) steps (D is the maximum distance between two processors) if

the input data are required to be moved to any processor of the system.

The odd even transposition sort of N elements requires O(N) in a linear

array with N processors [Kung 80]; the bitonic sort of N2 elements re

quires O(N) in a N x N array processor, as O(N) communication steps are

required to move data to the farthest position [Thompson 77]; the same

is for the product of N x N matrices [Kung 80].

In systems communicating via a shared memory, memory contention

causes the reduction of the performance: in this case more advantages

can be obtained for problems in which computation time is much greater

than communication time (see dynamic programming [Al Dabass 80] and

numerical optimization [Dixon 81; Mc Keown 80]).

In VLSI fan in and layout of wires limit the connection geometries,

and the communication between distant processors strongly influence the

performance. Of course there are problems for which such limit can be

overcome: for some problems in image processing, and for particular

classes of dynamiC programming problems it is possible to detect "lo

cality" in the operations, which make the number of communication steps

178 G. Ausiello, P. Bertolazzi

independent from the architecture and the input size.

Finally one can see that the efficiency achievable with parallel

processing for a particular problem is strongly influenced by the pa

rallel machine chosen (MIMD, SIMD, systolic) and in the VLSI technology,

by the communication geometry: in fact the data of a problem must be

moved according to a specific communication pattern (this is why, for

example, sort on a bidimensional array is less efficient than in a

shuffle exchange network). For this reason it would be greatly helpful

to have computational models capable of evidentiating the intrinsic

parallelism of a problem and its data communication pattern. In this

way it would be possible to obtain indications on the convenience of

studying a parallel algorithm for the given problem and help in the

design of the best architecture for its execution. This research aim

has been partially tackled in VLSI studies where the area x time2 bound

may be considered a way of measuring how good is the matching between

algorithm and circuit [Thompson 79]. The computational model proposed

by Thompson is discussed in [Chazelle 81] and [Bilardi 81 who propose

to restrict the hypothesis on independence of communication time on the

wire length obtaining new values for the lower bounds AT2. Most of the

theoretical research on parallel computation is likely to be directed

toward this goal in the future years.

6. REFERENCES

[Baer 73] J.L. Baer: A survey od some theoretical aspects of multipro

cessing. ACM computing surveys, vol. 5, n.4, March 1973.

[Bilardi 81] G. Bilardi, M. Pracchi, F.P. Preparata: A critique and

appraisal of VLSI models of computation. Manuscript, 1981.

[Chandra 79] A.K. Chandra: Computable nondeterministic functions, Proc.

of 4th IBM Symposium on Math. Found. of Compo Sc., Tokyo,

1979.

Parallel Computer Models: An Introduction

[Chandra, Stockmeyer 76] A.K. Chandra, L.J. Stockmeyer: Alternation,

Proc. 17th FOCS, 1976.

[Chazelle 81] B. Chazelle, L. Monier: A model of computation for VLSI

with related complexity results. Carnegie Mell

University, Tech. Rep. n. CMU-CS-81-107, Feb. 1981.

179

[Chi-Chin Yao 81] A. Chi-Chin Yao: On the parallel computation for the

knapsack problem, 13th Symposium of Theory of Comp.,

Milwaukee 1981.

[Cole 64] S.N. Cole: Real time computation by iterative arrays of

finite state machines, Doctoral Thesis Harvard University,

Cambridge, Mass., 1964.

[Cook 83] S.A. Cook: The classification of problems which have fast

parallel algorithms. Found. of Compo Theory Borgholm,

Sweden Aug. 1983, Springer Verlag Ed.

[Dekel 80] E. Dekel, D. Nassimi, S. Sahni: Parallel matrix and graph

algorithms. From 18th Allerton Conference on Communica

tion Control and Compo Oct. 79.

[Dixon 81] L.C.W. Dixon: The place of parallel computation in numerical

optimization, CREST-CNR Summer School on design of

numerical algorithms for parallel processing, Bergamo

June 1981.

[Duff, Levialdi 81] M.J.B. Duff, S. Levialdi edits: Languages and

architectures for image processing, Academic Press, 1981.

[Eckstein 79] D.M. Eckstein: Simultaneous memory access, TR-79-6,

Computer Sc. Dep., Iowa State University, Arnes, Iowa

1979.

[Enslow 77] P.H. Enslow: Multiprocessor organization: a survey, ACM

Compo Surveys, vol. 9, n. 1, March 1977.

180 G. Ausiello, P. Bertolazzi

[Flynn 66] M.J. Flynn: Very high speed computing systems, Proc. IEEE,

54, Dec. 1966.

[Galil, Paul 81] Z. Galil, W.J. Paul: An efficient general purpose

parallel computer, 13th STOC, 1981.

[Gentleman 76] W.M. Gentleman: Some complexity results for matrix

computations on parallel processors, Journal of ACM,

vol. 23, n. 1, Jan 1976.

[Goldschlager 78] L.M. Goldschlager: A unified approach to models of

synchronous parallel machines, Proc. 10th STOC, 1978.

[Goldschlager 82] L.M. Goldschlager: A universal interconnection pattern

for parallel computers. J. of ACM, vol. 29, n. 4, Oct.

1982.

[Heller 78] D. Heller: A survey of parallel algorithms in numerical

linear algebra, Siam Review, vol. 20, n. 4, Oct. 1978.

[Kindervater 83] G.A.P. Kindervater, J.K. Lenstra: Parallel algorithms

in combinatorial optimization: an annotated bibliography.

Mathematisch Centrum Techn. Rep. n. BW 189/83, Aug. 1983.

[Kozen 76] D. Kozen: On parallelism in Turing machines, Proc. 17th

FOCS, 1976.

[Kuck 77] D.J. Kuck: A survey of parallel machine organization and

programming, ACM Compo Surveys, vol. 9, n. 1, March 1977.

[Kung 80] H.T. Kung: The structure of parallel algorithms in Advances

in Computers, vol. 19, ed. by Marshall C. Yovits,

Academic Press, 1980.

[Kung, Lehman 80] H.T. Kung, P. Lehman: Systolic (VLSI) array for re

lational data base operations, 1980 ACM SIGMOD Interna

tional Conference on Management of Data, Los Angeles,

May 1980.

Parallel Computer Models: An Introduction 181

[Lint 81] B. Lint, T. Agerwala: Communication issues in the design and

analysis of parallel algorithms, IEEE Trans. on Softw.

Eng., vol. 7, n. 2, March 1981.

[MC Keown 80] J.J. Mc Keown: Aspects of parallel computation in numeric

al optimization, on Numerical Techniques for Stochastic

systems. F. Archetti, M. Cugiani eds., North Holland

Pub. 1980.

[Megiddo 83] N. Megiddo: Applying parallel computation algorithms in

the design of serial algorithms, Journal of ACM, 30,4,

1983.

[Miranker 71] W.L. Miranker: A survey of parallelism in numerical ana

lysis, SIAM Review, 13, 1971.

[Moore 62] E.F. Moore: Machine models of self-reproduction, Proc. Symp.

Appl. Math., 14, 1962.

[Munro 79] J.I. Munro, E.L. Robertson: Parallel algorithms and serial

data structures, 17th Annual Allerton Conference on

Communication, Control and Computing, Oct. 1979.

[peterson 77] J.L. Peterson: ·Petri nets, ACM Compo Surv. 9,3, 1977.

[Petri 62] C.A. Petri: Kommunication mit Automaten, Schrift des RW

Inst. f. Instr. Math. an der U. Bonn Heft 2, Bonn, 1962.

[pratt, Stockmeyer 76] V.R. Pratt, L.J. Stockmeyer: A characterization

of the power of vector machines, JCSS, 1976.

[Preparata, Vuillemin 81] F.P. Preparata, J. Vuillemin: The cube-con

nected cycles: A versatile network for parallel computa

tion, Communications of ACM, 24, 5, 1981.

[Ramamoorthy, Li 77] C.V. Ramamoorthy, H.F. Li: Pipeline architecture,

ACM Compo Surveys, vol. 9, n. 1, March 1977.

182 G. Ausiello, P. Bertolazzi

[Reddy, Hon 79] D.R. Reddy, R.W. Hon: Computer architecture for vision,

Computer vision and sensor based robots, ed. G.G. Dodd,

L. Rossol, Plenum Press, New York, 1979.

[Rozenberg, Salomaa 80] G. Rozenberg, A. Salomaa: The mathematical

theory of L-systems, Academic Press, 1980.

[Savitch, Stimson 76] W.J. Savitch, M.J. Stimson: Time bounded random

access machines with parallel processing, TR IW 67/76,

Math. Centrum, Amsterdam, 1976.

[Schwartz 80] J.T. Schwartz: Ultracomputers, ACM TOPLAS, 2,4, 1980.

[Thompson 79] C.D. Thompson: Area time complexity for VLSI, Proc. of

the 11th Annual ACM Symp. on the Theory of Compo May

1979.

[Thompson 77] C.D. Thompson, H.T. Kung: Sorting on a mesh connected

parallel computer, Comm. of ACM, vol. 20, n. 4, Apr.

1977.

[valiant, Brebner 81] L.G. Valiant, G.J. Brebner: Universal schemes

for parallel communication, 13th STOC, 1981.

[Vishkin 82] U. Vishkin: Parallel-Design space, Distributed-Implementa

tion space (POOl) general purpose computer. RC 9541,

IBM T.J. Watson Research Center, Yorktown Heights, 1982.

[Vishkin 83] U. Vishkin: Synchronous Parallel Computation. A survey,

1982 Manuscript.

[Von Neumann 51] J. Von Neumann: The general and logical theory of

automata, in Cerebral Mechanisms in Behaviour, Hixon

Symposium, 1948 (Wiley, N.Y. 1951).

FUNCTIONAL ORGANIZATION OF MIMD MACHINES

G. Cioffi
Dipartimento eli Informatica e Sistemistica

Universiti eli Roma, La Sapienza

184 G. Cioffi

1. INTRODUCTION

In the computer science community there is not a complete agreement
on what a multiprocessor system is.

There is a res,tricted definition that sounds:

a multiprocessor architecture is one that consists of at least two pro
cessors satisfying the following conditions:

i)
ii)
iii)

the processors share a global memory
they are not highly specialised
each processor is capable of doing significant computation.

Another definition, which enlarges the class of multiprocessor ar
chitectures,is based on the concept of instruction stream and data
stream. A computer executes a sequence of instructions on a sequence-of
data: mUltiplicities in these streams lead to four classes of computer
architectures:

SISO Single Instruction Single Data
SIMD Single Instruction Multiple Data
MISD MUltiple Instruction Single Data
MIMD MUltiple Instruction Multiple Data

A multiprocessor architecture falls in the class of MIMD machines and
can be defined as follows:

a multiprocessor architecture is one that consists of at least two com
puters/processors which cooperate to execute mUltiprocessing.

In the sequel we will adopt this second definition which is more gen
eral and comprehend the class of multiprocessors with shared global
memory and the class of multiple processors/computers which cooperate
exchanging messages each o~her via parallel or serial communication
links.

At this point a question naturally arises: why mUltiprocessing? There
are many motivations that can be used for answering to this question:

i) the revolution of microelectronics and VLSI offers more and more
powerfull microcomputers/microprocessors on chip at extremely low
price which can be used as building blocks of multiorocessors with
better performance/cost index

ii) mUltiprocessing reduces the computation time exploiting the intrinsic
parallelism of the application

iii) modular architecture~ tipical of multiprocessor systems, lead to
graceful growth and degradation

iv) VLSI modules offer greater reliability, omogeneous modular architec
tures, greater availability.

2. TIGHTLY COUPLED SYSTEMS

A tightly coupled MIMD machine corres~onds to the first given defini
tion of mUltiprocessor system and its HW/SW organization can varIes ac-

Functional Organization of Multipro~essor Systems

cording to the following charecteristics:

- symmetric structure
- semi symmetric structure

185

A symmetric structure in its most general form is depicted in fig.l.

s
W
I
T
C
H

Fig.l. Symmetric multiprocessor.

t-----t ME M

1/0

The structure in fig.l is HW/SW symmetric if the following conditions
are satisfied:

1) All processor modules are identical
2) Each processor has access to the whole memory
3) Each processor has access to all peripherals
4) Each processor is anonymous and is considered as a resource by a

single central operating system.

The advantages of this architecture relies in the fact that the an
plication processes ignore the architecture and the number of the pro
cessors. The operating system provides on a dynamic basis to assign a
free processor (resource) to a ready to run process. The system can
grow and degrade with complete transparency for the application soft
ware.

The concurrent processes can communicate each other on the basis of
global variables located in the common memory, or by means of message
passing technique via logical channels created by the kernel in the com
mon memory.

Although this model of architecture seems a valid approach to achiev~
ing almost unlimited improvements in performance adding more processors,
the reality is quite different.

If the block SWITCH of fig.l is a system bus which all units (Proces
sor, memory, I/O modules) are attached to, it becomes a tremendous bot
tleneckwith very rapid saturation. Suppose, for example, that T is the

186 G. Cioffi

average time to execute an instruction (in usec), and XT (x<l) the
fraction of time that a processor uses the system bus to access the
memory: the number of instruction per second (MIPS) is liT for one pro
cessor and l/x'T(l) for the system if N~l/x. Considering that x lies
in the range 0.3tO.5, no more than two or three processors can work si
multaneously. To overcome this saturation effect it is necessary to
design the switch, the memory and the peripherals in a more complex way
as reported in fig.2(2).

NxK N x N

switches switches

Fig.2. Cross h.ar-interconnection for multiprocessors.

In this architecture the conflict in accessing memory and I/O peri
pherals is drastically reduced but the interconnection structure is very
expeBsive and unreliable.

Moreover the partitioning of data structures and OD code in the me
mory modules is a complex task and can influence greatly the performance

(1) This value supposes that the arbitration time to access the bus is
negligible or is incorporated in XT and moreover that the pro
cessors will synchronize themselves in utilizing the l/x time
slots offered 8n the system bus.

(2) The architecture of fig.2 has been adopted, with some modifications,
in the multiprocessor system C.mmD, develoned at Carnegie Mellon Uni
versity during the '70's.

Functional Organization of Multiprocessor Systems 187

of the system.
Another complex problem to solve is the routing among I/O devices and

processors: the communication processor-memory is always performed via a
master-slave procedure, with the processor as master, whereas the pro
cessor-device communication can be activated by the devices too by means
of interrupts. Considering that the processors are anonymous the routinr.
of the interrupts to the processors is a complex task.

A semisymmetric structure for memory-counled multiprocessor systems
is a compromise to reduce the saturation effects on the system bus. The
system memory is partitioned into private blocks and a common blOCK as
outlined in fig.3.

P.
1

PM

IfOi

SW.
1

.-
o
(')

..... --..j ~

processor i

private memory

devices attached

III
c:
CIl

at

processor switching

SYSTEM BUS

P.
1

Fig.3. Global memory multiprocessor.

.-
o
(')

..... ---.j ~
III
c:
CIl

188 G. Cioffi

To avoid saturation effects on the system bus, most code must be
located in private memories. The common memory is dedicated to store
kernel code and communication channels or global variables.

In this way the bottleneck of the system busis reduced but the pro
cesses must be allocated statically, at compilation time, into the pro
cessors.

The structure of fig.3 has the advantage of hardware simplicity but
the rigid allocation. of processes and I/O devices to the processors
leads to a loss of flexibility and fault tolerance. The last point ~
particularly important considering that one of the reasons claimed out
for introducing multiprocessor architectures, is their aptitude to tol
erate processor faults.

A more sophisticated and flexible architecture can be organized using
semi-private memories as outlined in fig.4.

SYSTEM BUS

'/0 1

Fig.4. Shared memory multiprocessor.

In this architecture the common memory is partitioned into N blocks,
one per processor, and each block, called SM, is a dual port memory.

This architecture sup~orts a large variety of system configurations,
including memory common to all processors, memory common to some pro
cessors and private memories for each processor. The system bus bot
tleneck is further reduced considering that every processor accesses
directly the common memory block located into its node.

Functional Organization of Multiprocessor Systems 189

3.LOOSELY COUPLED SYSTE¥.S

Although the concept of tightly coupled systems seems a valid approach
to achieving improvements in performance adding more processors, there
are several limitations on the diffusion of such architectures. The main
limitations are:

1) The direct sharing of memory and I/O results in access conflicts
and saturation effects

2) Any inefficiency in the operating system is greatly amplified in
a tightly coupled system

3) Concurrent programming languages that support effectively memory
coupled architectures have not been adequately developed

4) A local fault can influence the entire system due to error propa
gation

5) The hardware complexity of a tightly-coupled system is high and
its modularity (growth aptitude) is limited

6) Due to the hardware complexity and the operating system cruciality,
the reliability of these systems is not very high.

For all these motivations the attention of many researches has been
focused on loosely coupled systems as an alternative more effective ap
proach to mUltiprocessing.

Loosely coupled systems are mUltiple computer systems in which the
individual processors communicate one-another at the input-output level.
There is no direct sharing of primary memory, therefore the operating
system must be distributed with decentralized control, and the cooper
ation among processes must be performed via explicit messages from the
source process to the destination one. This fact implies, of course,
that both sender and receiving processors cooperate in the message ex
change,whereas in memory coupled systems the receiving processor does
not partecipate in that activity.

Loosely coupled systems are often divided in two categories according
to the kind of node interconnection.

1) Multiple-computer systems if the interconnection network has high
bandwidth and the nodes of the system are physically close each
other, may be in the same cabinet

2) Local area network systems if the interconnection network is a
data link with moderate bandwidth and the nodes of the system are
physically remote each ofter.

This difference in the interconnection network determines a substan~
tial difference in the operational of the two classes of loosely system&

Local networks generally have the main function of sharing expensive
resources among nodes (mass storage, line printers, etc.) but do not
cooperate extensively each other; therefore local networks are not con
sidered actually ~'IMD machines and will not be considered in the sequel.

MUltiple computer systems have been investigate extensively from many
points of view including languages, operating syste~s and fault toler-

190 G. cioffi

ance. In this paper we will focuse the attention on the network inter
connection structures and the type of message passing techniques employ
able in loosely coupled multiprocessor systems.

As concluding remarks we can state:

i) memory coupled systems are particularly effective in process co
operation when a centralized operating system is adopted and shared
data structures are used. The interconnection network must be ex
pensive otherwise becomes a bottleneck for the performance

ii) I/O coupled systems offer a greater degree of modularity and fault
tolerance; the need of a decentralized or distributed operating sys
tem leeds to simpler and more clear process cooperation. The in
terconnection network is used only for message passing.

4. LOOSELY COUPLED SYSTEMS INTERCONNECTION STRUCTURES

There are many connection structures for linking the nodes (process
ors) of a multicomputer network and more will be proposed in the future.
As was stated in the previous ch~pter, one of the advantages of loosely
coupled systems is their aptitude to grow, that is to increase the num
ber of nodes of the system. Therefore a useful index for comparing the
interconnection structures proposed is one that incorporates several key
factors:

i) total interconnection cost

ii) message traffic density

iii) message routing delay

CT

T

D

supported by links or nodes

We will discuss some of the most interesting interconnection struc
tures and introduce a global index as an attempt of evaluating them.

4.1. Simple interconnection structures

When the number of nodes of the architecture is not high simple to
pologies can be adopted to build a loosely-coupled HUm machine. The
most popular ones are:

i) Global bus system

ii) Star

iii) Ring

iv) Fully connected mUlticomputer

v) Tree network

Functional Organization of Multiprocessor Systems 191

Global bus system

bus 1

system bus k

C 2 ------

Fig.5. Global bus system.

The general archi tee ture is sho~Tn in fig. 5. There are N computers
connec ted one another via K shared busses (K =1. 2 ... N) .

The number of busses can be increased for reducing traffic density
on each bus and for increasina availabilitv as well. The number of nodes
cannot increase more than s~~e tens because electrical reasons limit the
vumber of interfaces on the same bus.

Star

Star network is quite common for the simplicity of control (fig.6)
and many realizations of this architecture have been appeared.

Fig.6. Star network.

192 G. cioffi

The central hub is a complex s,yitcher supported by a dedicated com
puter which is responsible of message routing. This architecture is
the less modular and reliable, the hub represents a bottleneck since
one message at a time can be routed by the hub itself which is not a
crossbar switch. For all these reasons star networks cannot grow to high
N values, although line and interface costs are low considered that
they increase linearly with N.

A ring interconnection structure can be considered a series of N
shift registers with the output of the i-th register connected to the
input of the (i+l)-th register in a loop fashion as shown in fig.7.

I
/

I
I
I
I
I
\
\

\

\

Fig.7. Ring network.

I

\

/
I

\
\.

-"
/

,
'-

" ,,-

......

...--- -------

......
" '-

/

In the ring structure, independently from traffic congestion, there
is a delay of h units in message passing from Pi to Pi+h and N-h
units in the inverse communication due to the one way direction of mes
sage flow. Note that the ring has poor fault tolerant properties since
a failure in one ring interface has catastrofic effects.

Fully connected multicomputers

These networks are characterized by a dedicated link between each
pair of nodes, as shown in fig.8.

Functional Organization of Multiprocessor Systems 193

Fig.B. Fully connected net.

The traffic density on a dedicated link decreases linearly with N,
whereas the interconnection cost is very high since the links grow with
1/2 N(N-l) and the interface cost with N-l • The fault tolerance char
acteristics ~ highest because there is neither a centralized unit nor
a shared bus; as a negative figure of merit it should be pointed out that
increasing N the dedicated links are poorly utilized.

Trees

Tree interconnection structures soffer some limitationBof ring net
works (delay in message passing) and some limitations of star architec
tures (bottlenecks at or near the root).

A tree structure with B branches per node and p node levels from
the root to the~aves is shown in fig~9.

The total number of nodes is N=(BP-l)/(B-l).
This architecture is in general considered constituted by computing

nodes (leaves) and switching nodes (all other nodes of the tree). The
message delay is variable from 2 (message between to brother leaves) and
2 (p-l).

From the point of view of fault-tolerance, the tree structure has
not a good figure of merit considering that a fail in a switching node
disconnects the whole subtree that has the failed node as root from the
rest of the structure and that subtree is divided in two subtrees not
communicating each other. The message traffic distribution in the tree
is not uniform and the root as well as the nodes near the root can be
come a bottleneck for the performances of the whole system.

The analysis of tree architecturesfrorn the point of view of cost
complexity and traffic density is not simple considered that the struc-

194 G. Cioffi

level 1

level 2

level 3

, \ I \
\ I \ ,
\ I \

~'®
\ I

~
\

, ,
level p

Fig.9. Tree connected system.

ture is not uniform, therefore the cost index derived in the next chapter
will not be applied eo it.

4.2. Complex interconnection structures

The simple architectures discussed in the previous paragraph, except
perhaps the tree, can be used for small values of N.

For very large networks more complex interconnection topologies must
be u.sed. These topologies have been investigated mainly from a theo
retical point of view, but they will become realizable in the near future
when a complete node (CPU, memory and I/O interface) will be putted on
a sinele chip. The common characteristics of these complex structures
is that they are enbedded into a D-dimensional hypercube with the N
noded lieing on the WD lattice points (W-wide, I)-dimensional hyper
cube.

Functional Organization of Multiprocessor Systems

Nearest Neighbor Hesh (Nl'{M)

This is a well known structure used in some realization of parallel
machines and to implement parallel aleorithms.

195

In this structure there are M nodes per dimension connected as in
fig.lO for D=2 ,therefore N=MD . Each node needs 2 switches per
dimension hence the number of switches per node is 2D. In each dimension
the distance between two nodes is variable between 1 and ~1/2 and the
average distance is approximately ~1/4: the average delay for message
passing in the HD hypercube is hence D.M/4.

I
I
I
I
I

1

2

c2 I &-n ___ ~ M

LJ LJ
Fig.lO. ~earest neighbor mesh interconnection.

Spanning Bus Hypercube (SBH)

This structure is similar to the nearest neighbor mesh, with the
difference that in each dimension the t1 nodes are connected to a bus
of width W=~1. Therefore N=\.;D, the number of switches per node is D ,
the average delay in message passing is ~D-I . In fig.ll a spanning
bus hypercube with D=2 and Vl=4 is shown.

196 G. cioffi

Fig.ll. Spanning bus hypercube.

Cube Connected Cycle (CCC)

This is one of the newest architectures proposed and ~ particular
attractive for parallel algorithm computation and for VLSI implementation.
The cee can be considered a D-dimensional cube of width D where
each of the ZD vertices is substituted by a nearest neighbor mesh of
dimension I and multiplicity D as shown in fig.12 for D=3 .

Fig.IZ. Cube connected cycle.

Therefore N=D'2D , each node is connected to three links, and the
average delay in message passing is approximately 7D/4.

Functional Organization of Multiprocessor Systems 197

D-Dimensiona1 Array (DDA)

This is a new architecture proposed by myself, and is particular
attractive to realize large distributed computers with relatively small
cost. The DDA can be considered a SBH toThere each node is substituted
by a Blobal bus of width D . Therefore the total nu~her of nodes is
N=D'~'l , the number of switches per node is 2, and the averaee delay in
message passing IS approximately 2(D-I).

The topology of a DDA with D=2 ~.,T=3 IS shown in fig.l3.

Fig.13. DDA Architecture.

5. A HODEL FOR THE EVALUATION OF INTERCON~ECTION SnUCTURES

5.1. Key factors

Let be given N processors (nodes) to be connected one another by
means of L links or busses. K(i) is the number of poles of the switch
attached to processor Pi for connecting Pi to ~(i) links or busses;
in the most general case K(i) is function of i, whereas in uniform
and symmetric structures (USS) ~ is constant.

For bus connected structures let W(j) be the width of bus j ,
defined as the number of nodes connected to the bus. The link connected
structures can be considered a particular case of bus connected struc
tures (W=2) for most of the considerations developed in the sequel.

Unless exp1icity specified, the results presented hold for both type

198 G. cioffi

of structures.
It is easy to verify that the following general relation hold:

L
l: W(j)

j=l

N
l: T{(i)

i=l
(1)

In particular if K(i)=K and W(j)=W, as it is true for USS , the
(1) becomes:

LW NK (1')

Let R(s,i) be the number of nodes rechable in s steps with a
shortest path from node i: the average number of steps SCi) in mes
sage routing, defined as the average number of busses utilized by a
message from the source i to the destination, is given by:

S (i)

sM(i)
l: s·R(s,i)

s=l

N-l
(2)

where sM(i) is the maximum depth of the tree resulting by means of a
breath-first-search algorithm applied to the interconnection graph rooted
in node i.

The structure average delay S is therefore:

S

N
l: s (i)

i=l

N

For USS R(s,i) is independent from i , hence:

S

sM
l: sR(s)

s=l

]\]-1

(3)

(3')

S ~s a crucial parameter for the performance of the overall struc
ture. In fact S influences the average number of messages per unite
time (average traffic density) on busses and nodes as well as the cor
responding average delay in message passing.

The considerations in the sequel are developed under the following
assumptions:

Functional Organization of Multiprocessor Systems 199

the traffic is uniformely distributed. i.e. for every node pair the
communication probability is the same

the traffic generated by every node is the same and is considered u
nitary.

Let TB(i.h) be the traffic density for message passing on bus
h(h=l •...• K(i» connected to node i(l) ; the average traffic density
(overhead traffic) on node i is:

L
hfB(i)

(4)

where B(i)
For USS

is the set of busses connected to node
TB(i.h)=TB=NS/L • hence:

i(I B(i) I =K(i» •

HS
K

S - 1

(5)

It is worthwhile noticing that TB and TN depends through S on
the network topology and size. Moreover the ratio between TB and TN+l
(global traffic on each node) is:

(6)

i.e. for structures with N>L (typically bus connected structures) the
bottlenecks are the busses.

The average delay time ~B at a node for accessing a bus. under
standard conditions (Poisson arrivals at each node. indipendence as
sumptions) is:

(1)

1
~B = TM-TB

where TM = bus capacity expressed
as number of messages per unit time.

For sake of simplicity we have used the notation TB(i.h)
dentify explicitely the bus; this does not mean that TB
only on i and h.

to i
depends

200 G. Cioffi

The average end-to-end delay ~ is then:

~ = SL\
B

(7)

In the analysis of asymptotic behavior of interconnection structures.
Le. increasing number of nodes. for almost all the structures of prac
tical interest. TB is a monothonic increasing function of N. There
fore it is meaningless to consider TM constant; a resonable assumption
consists on supposing constant the average delay time on a bus: ~B=al(2)
With this assumption the end-to-end delay becomes:

and the bus capacity:

5.2. The cost index

~ = a S
I

A cost index suitable for comparing different architectures will
be defined as the product of two terms:

I = hardware cost per node x message average time delay.

(8)

(9)

The smaller is the index I. the better is the tradeoff between struc
tural"complexity of the network and its performance.

The average time delay is given by the (8). The hardware cost per
node. in the general case. can be considered the sum of four cost terms:

i) node-bus interface channels: C

ii) busses: CB

iii) nodes: CN

iv) bus arbiters: CA

c

(2) In the sequel all constants will be indicated by a.(i=I.2 •...).
1

Functional Organization of Multiprocessor Systems 201

CC IS assumed to be proportional to the number of channel interfaces
time the width of the busses:

C
c

l: W(j)
je SCi)

(10)

In fact, for each interface channel the transmission speed must be
proportional to the number of nodes connected to the same bus.

The cost of a bus j is assumed to be proportional to its capacity
TM(j) hence:

L
a3 l: TB(j) + a 4L

j=l

with similar considerations we obtain:

N
CN as l: (TN(i) + 1)

i=l

L
CA a6 l: Iv (j)

j=l

For USS the (10), (ll), (12) and (13) simplify in:

C
c

cx 2NTZW

CX 3TBL + a 4L

cxSNS

Finally the index I results:

I

and for USS:

I

/J. (C +C +C +C)
NcB N A

(ll)

(12)

(13)

(10')

(ll')

(12')

(13')

(14)

(14')

202 G. Cioffi

Asymptotically we obtain:

I = 0 (8 (Kvl+8)) (15)

5.3. Lower bounds for the cost index of U55

In the previous paragraph we have obtained a cost index depending
only ·on K,W,5. In order to evaluate different architectures it can be
useful to compare the cost index behavior against a theoretical lower
bound. It is common, in order to simplify the formulae, to consider the
asymptotical behavior of the cost index as function of N. Therefore
we must express W,K and 5 as function of N, and this will be done
for the specific architectures analysed in the next section. As fa,r as
the lower bound is concerned, we can derive a lower bound for I starting
from a lower bound for 5, as function of N, Wand K.

As stated by (15), the cost index depends on 5 and K·W. Now, if
K=l the only interconnecting structure is the single bus, and since for
this structure W=N and 5=1, the cost index becomes I=O(N). If K=2
and W=2 , the only interconnecting structure ~ the linear array, for
which 5=N/4 and I=O(N 2). On the other hand, if 8=1 the interconnect
ing structure must have either T.ol=N and K~l or T,v=2 and K=N-l; in
both cases I=O(N).

Therefore in order to obtain a cost index better than O(N) it is
necessary that 5>1, K~2, W::2, and K·H>6.

. _ (log N) Theorem 1. 5 - Q 1 W 1 K og + og

Proof. consider the maximUm number of nodes reachable in p steps
for given values of K and T.ol; R(p) is bounded by:

[JP-l
R(p) ~ K(W-l) (K-l) (W-l) (16)

Let Pmax be the maximum number of steps needed to reach all the
nodes if the strict inequality in the (16) holds for at least a p,
and p the same if_the (16) holds with the equality for all p except
possibly p: Pmax~P •

Pmax
5ince 5 L P R(p)/(N-l) , substituting the right-hand side of the

p=l

(16) to R(p) this implies an increase of the number of nodes multi-
plied for smaller p, hence

5 > K(W-l)
N-l

P
L

p=l

p-l py where y=(K-l) (W-l)

Functional Organization of Multiprocessor Systems

Ii
Since ~J-l < L !«W-lhP- l

p=l

P p-l
b py

p=l
S > -"--_----

P p-l
L y

p=l p=o

we can state:

- yP 1 -
p (p - p(y-l)) ~ cp

y -1

203

where 1/2.::;c.:d and c-+ 1 for increasing values of p and/or y._
On the other hand, with the hypothesis on K and W (K\V~6), N.::;4yP,

hence:

10gN -:- 210g 2
p ~ logy and

10gN
S ~ logy

Substituting in the (15) the expression 10gN/logy instead of S,
we obtain a lower bound for I as function of Nand y :

I (15')

For 2~y~ N the two components of the right-hand side of the (15')
vary as shown in fig.14.

Remark that y = constant implies:

2
I = f.1 (log N)

For y = feN) we can derive a different lower bound.
In fact for y < Y the first component of the (15') dominates the

second one, whereas for y > Y the second one is dominant. Fory = y the
two components are equal, therefore y minimize the order of the lower
bound of 1. On the other hand y depends on N as y'Y = N, and since

4 10gN < 10gN
O. 7 log 10gN y <1.37 log 10gN ' Y

Therefore we have proved the following:

Theorem 2: I = f.1 « log N .) 2)
log log N

10gN
e (log 10gN)

o
o
o

204

o
o
~

G. Cioffi

o ~
~

Functional Organization of Multiprocessor Systems 205

6. eO}1PARISON OF THE AP.eHITECTURES

With the cost index derived in the previous section, it is possible
to compare the asymptothic behavior of the architectures introduced in
section 4 with the exception of star and tree since these architectures
are not USS.

The parameters of the architectures presented are:

1) Global bus K L' , W N' , S 1

2) Ring K 2 . , H 2' , S N/2

3) Fully connected: K N-l;W= 2; S 1

4) NNH K = 2D; W = 2' N MD. S DM/4 , ,
5) SBH K D' N =WD; S " D-l ,
6) eee K 3; H 2 . , N D·2D. , S '" 7 D/ 4

7) DDA K 2' , N D'WD; S"2(D-l)

The cost index has been applied to the architectures 1~7 with the
assumption M=W=D, to simplify the formulae.

The behavior of the cost indexes are:

II = O(LxN);
2

12 = O(N);

0« logN)4). IS
log log N '

13 = O(N)

0« logN _)3)
log logN

16 = 0(log2N); 17 = 0« logN _)2)
log log N

From the above cost indexes we can confirm that the USS architectures
lieing on the lattice points within a hypercube have a better be
havior than the simpler ones.

The DDA reaches the theoretical USS lower bound for bus inter-
connected structures, and the eee reaches the lower bound for link in
terconnected structures.

Note that the DDA as all busses interconnected structures has a limi
tation Qn the width of the spanning and local busses and therefore on
D. However small values of D produce vast number of nodes. For example
D=S implies N=lS'62S, D=lO implies N=lOll

Moreover Ws ' the width of the spanning busses, can be different
from D . This fact in practice is very useful to vary in a finer way
the number of nodes.

206 G. cioffi

7. MESSAGE PASSING ORGANIZATION

Loosely coupled multiprocessor systems found the cooperation between
processes allocated into distinct nodes on the explicit transmission of
a message from the source process to the destination one (3).

This approach to the cooperation permits to achieve a more reliable
system since there are two processes, source and destination, that co
operate in an explicit way in the information exchange. This fact allows
a more general and rigorous control on the information passing since the
logical channel assigned to the two part~er processes can be organized
with special features (type of data, type of synchronization and so on)
that increase the robusteness and the fault-tolerance aptitude of the
whole system.

To be more specific the communication mechanisms can be classified
according to some features:

a) synchronous communication: in this form of communication a "rendez
vous" is established between the source and the destination pro
cesses, i.e. the message exchange occurs if and only if both part
ners are ready to perform it;

b) asynchronous communication: in this form of communication the source
process puts the message into a message buffer of the destination
process without waiting for any action from the latter.

In the synchronous communication the "rendez-vous" can be limited to
the message transfer phase (eSP-like languages) or extended when the
source process performs, by means of the message, a remote procedure-call
and then waits for the results (ADA and DP-like languages).

The asynchronous form of communication is more efficient, considered
that the source process must not synchronize itself with the destination
one, whereas the synchronous form is more safe, considered that some
rec.overy action can be immediately underta ke in case of logical fail
ures.

There are other features that can be introduced for characterizing
the kind of communication as the characteristic of the logical channel
between the partner processes and the type of data exchanged via the
channel. From the point of view of system performance loosely coupled
systems lack in efficiency of cooperation since both sender processor
and receiver processor participate to the message passing action, the
former with an output routine, the latter with an input one.

In this aspect we can consider tightly coupled systems as ones in
which the cooperation is performed via processor-memory transfers,
whereas loosely coupled systems as ones in which the cooperation 1S

performed via processor-processor transfers.
A better solution to this problem consists in providing each pro

cessor with DMA channels or specialized I/O processors which are
dedicated to the message passing activity. This approach permits a
much faster transmission, that can be considered a memory-memory trans
fer. Moreover this activity, as it is transparent to the processors can
be concurrent with the process running.

Functional Organization of Multiprocessor Systems 207

A possible organization of memory-memory transmission ~s shown in
fig.lS, for a bus connected architecture.

G-8US

Fig.lS. Distributed system organization.

G :Global

L : Local

Note that during the transmission the partner processors are slowed
down due to the bus stealing operated by the m1A channels. Better
performances can be achieved if the memory area dedicated to I/O
message buffers is a dual port memory block as shown in fig.16. In this
case the D~~ channel becomes a specialized I/O processor. The slowing
down of partner processors is dratically reduced since the normal ac
tivity of them is carried out on the private memory.

to the G-8US

Fig.16. Improved organization of distributed systems.

208 G. Cioffi

References

111 D.P. Agrawal et alii: "A survey of Communication Processor Systems".
Proceedings of COMPSAC/78.

121 G.A. Anderson, E.n. Jensen: "Computer Interconnection Structures:
taxonomy, characteristics and examples':ACM Computing Surveys,Vol.~
No.4, December 1975.

131 D.P. Bhandarkar: "Some performance issues in multiprocessor system
design". IEEE Trans. on Computers, Vol.C-26, No.5, May 1977.

141 A.M. Despain, D.A. Patterson: "X-tree: a tree structured multi
processor computer architecture". Proceedings of the 5th Annual
Symposium on Computer Architecture, April 1978.

151 N. Jovic, G.W. Conturier: "Interprocessor Communication in systems
with distributed control". IEEE Proc., September 1977, Vo1.65, No.9.

161 G.J. Lipovsky, K.L. Doty: "Developments and Directions in Computer
Architecture". Computer, August 1978.

171 C.A. Head, M. Rem: "Cost and performance of VLSI computing struc
tures". IEEE Proc., Vo1.SC/4, No.4, April 1979.

181 L.D. Wittie: "A distributed operating system for a reconfigurable
network computer". Proceedings of the 1st International Conference
on Distributed Computing Systems, Huntsville, Alabama, October
1979.

191 G. Cioffi, P. Corsini, G. Frosini, L. Lopriore: "HuTEAM: Architec
tural Insights of a Distributed Multimicroprocessor System". Proc.
of 11th Fault-Tolerant Computing Symposium, June 1981.

1101 F. Baiardi, A. Fantechi, A. Tomasi, r':. Vanneschi: "Mechanisms for
a Robust Distributed Environment in the HuTEAM Kernel". Proc. of
11th Fault-Tolerant Computing Symposium, June 1981.

'1111 P. Ciompi, F. Grandoni, L. Simoncini: "Distributed Diagnosis in
Multimicroprocessor Systems: The MuTEAM Approach". Proc. of 11th
Fault-Tolerant Computing Symposium, June 1981.

1121 P. Denning: "Fault Tolerant Operating Systems". ACM Computing Sur
veys, 8, 4, December 1976.

1131 E.D. Jensen: "Hardware-Software Relationships in Distributed Sys
tems". Advanced Course on Distributed Systems - Architecture and
Implementation, Springer-Verlag, 1980.

1141 E.D. Jensen: "Distributed Control". Ref.1.

1151 R.J. Swan, S.H. Fuller, D.P. Siewiorek: "CmIE - A Modular Hultimi
croprocessor". Proc. AFIPS 1977, NCC, 46.

1161 C.A. Monson, P.R. Monson, C.P. Marshall: "A Cooperative Highly
Available Hultiprocessor Architecture". Proc. COMPCON 79 Fall,
September 1979.

Functional Organization of Multiproc(:!isor Systems

h71 R.E. Bryant, J.B. Dennis: "Concurrent Progrannning". MIT Report,
MIT Cambridge Mass., 1979.

209

1181 D.L. Russel: "State Restoration in Systems of Connnunicating Pro
cesses". IEEE Trans. Software Eng., Vol. SE-6, 2, March 1980.

1191 D.L. Parnas: "On the Criteria- to be Used in Decomposing Systems
into Modules". Connn. of the ACt-I, 15, 12, December 1972.

1201 C.A.R. Hoare: "Connnunicating Sequential Processes". Connn. of the
ACM, 21, 8, August 1978.

1211 C.A.R. Hoare: "A Model for Connnunicating Sequential Processes".
Oxford University Report, July 1979.

1. Introduction

A VLSI SORTER

C.K. Wong

IBM Thomas J. Watson Research Cen~,
P.O. Box 218, Yorktown Heights, NY 10598

Sorting is one of the most important operations in data processing. It is estimated that in

data processing centers, over 25 percent of CPU time is devoted to sorting [6]. Many

sequential and parallel sorting algorithms have been proposed and studied [1-3, 5, 6, 8, 10,

13-18]. Implementation of various sorting algorithms in different hardware structures has also

been investigated [2-4, 7, 8, 11, 12, 16, 18].

In this paper, we describe a sorter where the sorting time is completely overlapped with

the input/output time. It has complete parallel operations and process data in a pipelioed

fashion. It can sort in both ascending and descending order and can overlap the sorting time

of two consecutive input sequences. Because of the regularity of its structure, it is most

suitable for VLSI implementation. A detailed implementation is presented to illustrate the

basic principle. Further optimization in various aspects of the design is clearly possible.

2. Principle

The sorter consists basically of a linear array of n/2 cells. (we assume n is even), each of

which can store two items of the sequence to be sorted (Figure 1). The initial sequence is

input to the sorter one item at each step. After the input of the last item, the data flow

direction is reversed and the sorted sequence is then output, also serially. Each step is

executed synchronously and simultaneously by all the cells and has two phases:

1) Compare: the two items in each and every cell are

compared to each other,

212 C.K. Wong

2) Transfer: subject to the result of the comparison,

desired sorting order (ascending or descending)

and the sorting state (input or output), either

one of the two items is transferred to the neighbor

cell and receives one from the other neighbor cell.

The sorter not only processes the items of a given sequence in a pipelined fashion, but also

sorts different sequences in a pipelined way, i.e., while one sorted sequence is being output, a

new sequence could be input at the same time from the other end of the sorter. This way, the

I/O time of the sequence is completely absorbed by the sorting time needed by another .

. Figure 2 is an example of the sorting of a sequence in ascending order. "00" represents

the largest item possible. At the input stage the larger of the two items in each cell is

transferred down; while at the output stage the smaller of the two is transferred up. Note that

at the end of the input stage (step 6), the smallest item must be in the top cell, the second

smallest must be in either the top or the second cell. In general, the i-th smallest item must be

in one of the top i cells. This is why the output sequence is sorted.

The same principle applies to descending sort; we have only to replace "00" by "-00", the

smallest item and interchange larger and smaller. (It will be shown later that it is not neces

sary to flood the sorter initially with either "00" or "-00". (See Figure 14.»

Let A,B be the two items stored in a cell. Let M=Max(A,B), m=min(A,B)' If we

consi(ier the sorting of an isolated sequence, and the sequence is input and output through the

top (top sequence), the specific action in the transfer phase can be summarized as follows,

~ Stage

s~~~
Ascending

Descending

Input (Down)

M moves down to

next cell (M"')

m moves down to

next cell (m"')

Table 1

Output (Up)

m moves up to next

cell (m+)

M moves up to next

cell (M+)

A VLSI Sorter 213

If the sequence is input and output through the bottom port of the sorter (bottom

sequence), the table would be:

~ Stage'

SortOrder~

Ascending

Descending

Input (Up)

Mt

mt

Output (Down)

m~

M~

Table 2

A fact to be noted is that the roles ofM and m are interchanged when we consider a descend

ing as opposed to ascending sort.

When we overlap the output of a sequence with the input of another, it is clear from

Tables 1 and 2 that the transfer actions are different for the two sequences. For example, for

an ascending sort, in the upward movement, we have mt for the output (top) sequence and

M t for the input (bottom) sequence.

For this distinction, we attach a flag to each item when it is input: "0" (" 1 ") to items in

top (bottom) sequence. This flag will be considered part of the item, in the comparison as

well as in the transfer. And we obtain the table on transfer actions as follows:

.___________ Tag bits

Data Movement -"--- --,_ .. __ 0 0 I 0
I

Downward M ~ (m ~)

Upward mt (Mt) :: :::: I :;~:::-
Table 3

The parenthesized entries correspond to descending sort. l'he third column represents the

frontier cell between the two sequences. If we include the tag bit as the most significant bit of

the items for the purpose of comparison, the item from a bottom sequence with tag bit = 1

will be always M and the two seqllences will always be kept separate. An example of the

sorting with the added tag bits is shown in Figure 3.

214 C.K. Wong

3. Logic Design

Throughout this paper, the cell array of the sorter will be represented vertically. Each

cell, containing two w-bit items, is a horizontal linear array (row) of w dibit-cells. The overall

topological layout is shown in Figure 4. In actual physical layout, a carpenter folding [9] of

the cell array might be needed to obtain a more square-shaped chip.

Dibit-cell. Each such cell is a compare/steer unit for two bits, one from each of the two

items A and B, representing the same bit position. Figure 5 is the block diagram of a dibit

cell. In downward (upward) movements, after comparison, one of the two bits will be shifted

out on line a (b) to the next (previous) cell, while a bit from the previous (next) cell is being

shifted in on line I (0). In that Figure, the terms "input" and "output" refer to a top

sequence, and the controls are indicated for an ascending sort.

A circuit schematic of a dibit-cell is shown in Figure 6. The precharged carry-propagate

type comparator is shown together with the two bit-cells. It should be noted that every

bit-cell of item A (B) in a cell row is controlled by the same 4 signals Ct , C2, C3 and C4 , " , '
(C),C2,C3 and C4), so that all the bits of an item are recycled or shifted at the same time.

The comparators of the dibit-cells in a cell row are chained as in Figure 7. C is the

comparison result of items A and B, i.e., C=l if item A~ item B, C=O otherwise. The

comparison carry chain. is precharged during clock phase 1/» (gates Wand Y in Figure 6).

Control. To illustrate, let us consider an ascending sort with a top sequence. Each cell is

a 2-inverter loop controlled by 4 gates using a 2-nonoverlapping-phase clock. The required

gatings for different situations with A~B (Le. comparison result C=l) are shown in Figure 8.

In the case of A<B, just interchange the gatings for A and B. The boolean expressions

obtained are listed as follows,

, -
Ct = 1/>21'a: + I/>t Ia

A VLSI Sorter 215

1= 1 (0) indicates the downward (upward) movement. a is the boolean variable which takes

opposite values (0 and 1) in opposite situations:

- ascending (Opt=O) versus descending sort (Opt= 1),

- top (SR=O) versus bottom sequence (SR=1),

- and A~B (comparison carry C=1) versus A<B (C=O).

It follows that a is the exclusive-OR of C, SR and Opt, i.e.

~SR
Opt~ 0 1

o C C

C C

See Figure 9 for the circuit schematic of the cell control.

To have homogeneous and regular cells, we have avoided the explicit use of the tag bit

combination to distinguish top and bottom sequences (Table 3), instead we have a bidirection

al double shift-register chain, whose contents move up and down in synchrony with those of

the cells and whose output at each level is taken to be SR, as shown in Figure 10, so that an

item of a top (bottom) sequence is always chaperoned by SR=O (1). A slight complication

occurs at the frontier. The desired transfer action table is then

Ascending Descending

II
Tag-bits :1

!I
~

Down

Up

11 01 00 11 01

----tt---:-:-- :~-+ :~~~=-i:--~~~~~::
00

-----1+-------------'-----.--------.

SR o o o
"

Table 4

216 C.K. Wong

The reader could easily check out from Figure 10 that the two extra unidirectional shift

registers at the two ends are needed to fulfill the requirement of the third colu~n in both

ascending and descending sort.

4. Timing

We use a 3-nonoverlapping-phase clock as shown in Figure 11. During phase <1>1' the

transfer bit is read out from cell(i) while the other bit is recycled and the comparison carry

chain precharged (Figure 12). During <1>2' the transfer bit is written into the next cell (i+ 1 or

i-I) while the other bit is making a full recycle and the comparison taking place. At <1>3' the

comparison result signal is fed into the control circuit of each cell.

In addition, phase <1>3 is needed (see Figure 13)

(1) for the transition from up to down and down to up stages,

(2) for the initialization,

(3) and to avoid racing condition in the loop of comparator, control, and bit cell.

5. Initialization

Before the beginning of a sort, instead of initializing all the cells with "00" or "-00", it is

necessary only to fill in the two border cells with tags distinct from the tags of the sequence

coming in, together with appropriate setting of the comparison shift registers as in Figure 14.

Recall that top (bottom) sequences have tag bit "0" ("1"). So here "00" ("-00") represents

any number with tag bit" 1" ("0"). It could be easily checked from Table 4 and e.g. Figure

14e that these initializations are indeed adequate.

All the initial values are injected into the sorter during clock phase <1>3.

6. Concluding Remarks

1) The circuits are drawn up as if the wires connecting dibit-cells of rows i and i+ 1 have

enough capacitance to store the transfer bit. If they do not, it would be a simple matter to

add to them connection inverters. Without the inverters, comparisons on ad1acent row cells

must be implemented differently. Indeed, as can be seen in Figure 6, a bit leaving a cell is in

complemented form than when it was input. Therefore, to produce the same comparison carry

output we need to invert the roles of A and A, and also Band B as in Figure 15. A redrawn

global block diagram is shown in Figure 16 where the alternation between adjacent rows is

A VLSI Sorter 217

clearly indicated. Note also that an even number of rows is recommended so that data are

input and output in "true" form. (Otherwise either the top or bottom would be in "false", i.e.

negated form.)

2) For our implementation (Figure 6) we have a device count of 26 for a dibit-cell, i.e. 13

per bit versus 6 in today's 16K static RAM. So a sorter chip would have very likely a capacity

up to 8K bit or 256 32-bit cells. The sorter can be trivially extended to handle key/pointer

pair by simply omitting the compare logic on the portion of the storage cell associated with the

pointer. (Then it will require only 8 devices per pointer bit.)

. 3) We can use the sorter to merge two sorted strings by repeatedly passing them through

the sorter in an appropriate way. For example, the generalized odd-even merge algorithm

described in ([6], p.241, Excerise 38) can be employed for this purpose.

References

[1] K.E. Batcher, "Sorting Networks and their Applications," AFIPS Conference Proc.,

Vo1.32, 1968, Spring Joint Computer Conference, pp.307-314, Apr. 1968.

[2] T.C. Chen, V.Y. Lum, and C. Tung, "The Rebound Sorter: An Efficient Sort Engine

for Large Files," Proc. 4th VLDB, pp.312-318, Sept. 1978.

[3] K. Chung, F. Luccio, and C.K. Wong, "On the Complexity of Sorting in Magnetic

Bubble Memory Systems," IEEE Trans. Comput., VoI.C-29, No.7, pp.553-563, July

1980.

[4] M.J. Foster and H.T. Kung, "The Design of Special-Purpose VLSI Chips," IEEE

Computer, Vol.13, No.1, pp.26-40, Jan. 1980.

[5] D.S. Hirschberg, "Fast Parallel Sorting Algorithms," Communications of the ACM,

Vol. 21, No.8, pp.657-661, Aug. 1978.

[6] D.E. Knuth, "The Art of Computer Programming," Vol.3, 'Sorting and Searchina',

Reading, Massachusetts, Addison-Wesley, 1973.

[7] H.T. Kung, "The Structure of Parallel Algorithms," Advances in Computers, Vo1.19,

Academic Press, pp.65-112, 1980.

218 C.K. Wong

[8] D.T. Lee, H. Chang, and C.K. Wong, "An On-Chip Compare/Steer Bubble Sorter,"

IEEE Trans. Comput., Vol.C-30, No.6, pp.396-405, June 1981.

[9] C.E. Leiserson, "Area-effficicent graph layouts (for VLSI)," Proc. 21st Annual Sym.

on Foundations of Computer Science, IEEE, Oct. 13-15, 1980.

[10] H. Lorin, "Sorting and Sort System," Reading, Massachusetts, Addison-Wesley, 1975.

[11] C. Mead and L. Conway, "Introduction to VLSI Systems," Reading, Massachusetts,

Addison-Wesley, 1980.

[12] A. Mukhopadhyay, "Hardware Algorithms for Nonnumeric' Computation," IEEE

Trans. Comput., Vol.C-28, No.6, pp.384-394, June 1979.

[13] D.E. Muller and F.P. Preparata, "Bounds to Complexities of Networks for Sorting and

for SWitching," JACM, Vol.22, No.2, pp.195-201, Apr. 1975.

[14] D. Nassimi and S. Sahni, "Bitonic Sort on a Mesh-Connected Parallel Computer,"

IEEE Trans. Comput., Vol.C-28, No.1, pp.2-7, January 1979.

[15] F.P. Preparata, "New Parallel-Sorting Schemes," IEEE Trans. Comput. Vol.C-27,

No.7, pp.669-673, July 1978.

[16] Y. Tanaka, Y. Nozaka, and A. Masuyama, "Pipelined Searching and Sorting Modules

.as Components of a Data Flow Database Computer," Proc. IFIP '80, pp.427-432,

October 1980.

[17] C.D. Thompson and H.T. Kung, "Sorting on a Mesh-Connected Parallel Computer,"

Communications of the ACM, Vo1.20, No.4, April 1977.

[18] H. Yasuura, N. Takagi, and S. Najima, "The Parallel Enumeration Sorting Scheme for

VLSI," IEEE Trans. Comput. (to appear).

A VLSI Sorter

• • •

I
I

CELL I

CELL 2

CELL nl2

L_____ .J

® - COMPARATOR

1,-
1,1
I,'
I,'
I,'
I,' ,u,

0,1 O.,
0,'
0,_

I,'
I,'

,u,

Fig. 1.

0.1 ,

1,1
I,'
I,'
I,'
I,' ,u,

0.1
0,'
0.' 0,_
0 ••

','

'u,

Fig. 3.

0,1
0,'

1,3
I,'
'.' I,'

,U,

&:~ g:~
0,4 o.s
0,' 0,4
0,20,5
0,3 D.'

I,'
I,'
','
,U,

0,'
0,1
D.-
0.'
0.'

1,1

101 (01

0,'

219

.PUT STAGE:

I • •• , 2 2 5
S •• z

~~~~~~ 
~tlli]~tlli]~[ili] , , , .. . .. 
CXMIAIt[ T'lU.NSFEfI 
\ " __ ~ __ ~. '~ _____ -J 

STEP' STEP 2 STEP S 

LAflGER InNS ARE CIRCLED AND TfiANSf'£RRED 

5 5 

~'. ~2. ~.® ~'. ~'2 
4.4543 ., I' . ., .. . ... ... 

• • 
I , • 3 -. • .. . · C T 

'-----.,-----' 

STEP .. 

I 

" 

~I, 2 5 .. 5 
.. 15 ., . . 

C T 

C T 
~------~.'-----.,-----' 

STEP !i SUP, 

OUTNt'STIIGE 

$'5 

-. • • . 
C 

I 
2 
3 

'

I, ,\ ~I. ... .., ., .. .. .. . . . 
T C T 

~ ____ -J' '~ ___ ,-_~' ' __ ~ __ ~ 

STEP 7 STEP' ST[P' 

.... LLER ITEMS AIlE CIRCLED AND TIWISnRRED 

I 

• • 

~" ,-, 
ID 6 •• .. . . , 

I • 3 

-
I • 3 

-, 
~t, ~I. .,., . ., . ., .. 

, t 

eTC T 

I • • -5 

~'. ~' .. 
•• ID., .. .,., , . 

'-----.,-----' '-----.,-----' ''-_~_-J 
STEP 10 STEP II 

Fig. 2. 

0,1 0,& 
0,4 0,1 0,' 
0.' 0,4 0,1 0,' 

I t 

If 1M I-D,lM D,lM 0,3 _ 

I I,_M 0,1 I III 0,' Po .. 

I I I I I 
I,' 1,3 1,- I.' I,' 
1,1 I.' I,' 1,- I,' 

1,1 I.' I,' 1,-
1,1 I,' I,' 

1,1 I.' 
1,1 

'0' '0' 10' 10' 'U, 
U • III' 
D· ..... 



220 

CELL Z { 

CELL ./2 { 

lIb 

ILOIAL 
COHTIIOL 

LINES 

TOP 1/0 LEADS 

. . . 

v 
BOTTOM liD LEADS 

==> CLOCK AND ILOIAL CONTROL ===- LOCAL (CELL) CONTROL 
C:OMI'IIRISON CARRY 
DATA 

Fig. 4. 

OUTPUT STAGE: A>B 
INPUT STAGE: A < B 0/0 

___ DIRECTION OF DATA FLOW DURING INPUT 
-+ DIRECTION OF DATA FLOW DURING OUTPUT 

Fig. S. 

C.K. Wong 



A VLSI Sorter 

c 

BIT A ---------l 
CI--+--+1-' I 

Cz 1 Icz-j I 
I I 

:---1 L ______ ~T~ ~~~ 
r----- ----- ------------l 
I A A I 
I I 
I I 
I I 

Cout I Cin 

I 
I 
I 

cj-----;..---+--. 

Cz--
Ca--
C'-

"' 

"0 iii 

10 iO 
'---' _ ,ITS 

Fig. 6. 

AI Ai AZ At A. r. 

... ~, 
IIi; 'llz .... 

11151- -- -------------- -LSI 

Fig. 7. 

221 



222 C.K. Wong 

Cz (Cz) 

QQWft IlI..A. 
c. ",. C c" I ,."' '1"' C1 " fa e (AotB) 

L I IL TI Cs " I 
C4 " ,. C I -, 

READ OUT WRITE IN 
IlI..I 

cj " .. c C "I ,."' 4>2"' 
CZ"'IC (AotB) L~ L1Ql Cs" I 
C4 ",. c -, -, 

RECYCLE RECYCLE 

!!f.:. BIT A 

C. " ,. c C "I 4>1" I 4>. "I 
Cz" I (AotB) LTQl LTQl Cs " 4>1 C 
C4" 4>2 C .., 1 

RECYCLE RECYCLE 
~ 

C'. ",. C C"I 4>." I ,."1 
ci" I (AotB) I 

lc=l-, L I I Ci " 'I C 
C4 " 4>. C --II 

READ OUT WRITE IN 

Fig. 8. 



A VLSI Sorter 223 

~r-r-+-+-+-4--------------c 

Fig. 9. 



224 C.K. Wong 

o 

I CEll 

Fig. 10. 

Fig. 11. 



A VLSI Sorter 

COMPARE TRANSFER 

'~--""''''''--"''''vr---'''''''''---""', 

Pre. I Cout I Control~ 
Clr. Clr. 

Prl. Cout I~ Control 
Ctr.CIr. 

Pre. • Prlchor9ina the comporilOll corry linl. 

Cout • Computl Cout in thl comporotors for bit poira. obtoinin9 C. 

Control' C is fld Into the control circuit of CIt Cz • C3 • C4 • and 
C',. C2. C3. c:.. 

R. • Read the trans fir bit out to thl next cIIi (down or up). 

W. • Writl in the tronsflr bit from thl other nlxt cIIi 
(up or down). 

Cir. • Thl stay bit is recyclld in the cIIi. 

Fig. 12. 

SORTING BEGINS UP DOWN ., 
·2 
·3 

(RESET) R 
INITIALIZATION 

I 

Fig. 13. 

225 



226 

C., ItITIALIZATKHI I fOR 
AICUI*II KIftT f,-QJ 

I 
Ie) INrTlALIZATIOII I: ,Oft 

DEICI ..... IOIIT (I-O_) 

I 

1111 'N'TIILIZA'IOlI I: lOR 
AlCPIDIIIG SOfIT 1,-0..) 

I"~ INITiAliZATION I P'OR 
DEJCl'NDING IOIIT (P-o., 

,., IDRTIJII nQII ClClWllURaTlOll 
,., AT t. I •. II CLOCK 
eycu; Al"TlMWtDSI 

o • ZDtD, Ill· DOlI'T CAIllIE, • -I, A. ITIM , .... IlOUIIIICE 

Fig. 14. 

C.K. Wong 



A VLSI Sorter 227 

Cz--

C4-- ----=r 

A 

Cout 

l~ C,---
Cz---

Fig. 15. 



228 

.... , ..... 1 

Ill!!! 

_TIIOL __ II"' 

CONT .... 

RCM all 

III" I 
......... '1 

C.K. Wong 

, , I 
I ' I 
I.--TM .TI--4-IITlI-.-,! 

: I : , , , 

, , , . , 
I---TI .---1 
I I 
I I 

Fig. 16. 



TOWARDS A THEORY OF VLSI LAYOUT 

A Selected Annotated Bibliography 

F.P. Preparata 
University of Illinois at Urbana-Champaign 

As the complexity of digital systems grew, the need arose for ef

ficient packaging of the system components. Starting in the mid 50's, 

individual devices were placed on printed-circuit boards. As the size 

and the complexity of the modules grew - from individual devices to in

tegrated circuits - the princed-circuit board has preserved to this day 

its function as a fundamental packaging level in the assembly of digital 

systems. However, a new layout horizon emerged, represented by the in

ternal structure of the module.s themselves (chip complexity). Today, the 

latter is the predominant problem in system layout: however, in spite of 

largely different feature sizes, the two environments - VLSI chip and 

printed-circuit board - are both governed by analogous sets of rules for 

the layout of wires on a regular grid. The highly structured layout medium 

and the necessity to cope with problems of increasing size motivated the 

development of automatic techniques and stimulated the attending research. 

In general, the layout problem consists of two major subproblems: 

the placement of modules and the routing of wires to interconnect these 

modules. The identification of modules represents a hierarchical approach 

to layout: once the internal layout of the modules has been defined, the 

modules become unalterable geometric shapes, and only their external in

terconnection remains to be desired. Considerable flexibility exists as 

to the choice of modules: a particularly successful approach consists of 

adopting modules of identical shape and size and to place them on a re

gular grid (gate-array approach). 



230 F.P. Preparata 

Although many approaches view placement and routing as two conse

cutive activities (see, e.g. reference [22] below), some gate-array

oriented methods attempt the simultaneous solution of the two problems. 

The most recent work along these lines is based on the theory of graph 

separators. If the graphs considered are planar, a fundamental reference 

is: 

[1] R.J. Lipton and R.E. Tarjan, "A separator theorem for planar graphs", 

SIAMJ. onAppl. Math., vol. 36, n. 2, pp. 177-189; April 1979. 

This paper shows that an n-vertex planar graph can be separated into two 

subgraphs of comparable sizes by removing at most 0(1n ) vertices, the 

separator. Since it has been noted that digital circuits have properties 

somehow similar to those of planar graphs, the above paper has motivated 

a substantial amount of layout research. The separator theory was applied 

to the layout of graphs in: 

[2] C.E. Leiserson, "Area-efficient graph layouts (for VLSI)", Proc.21st 

IEEE Symp. on Fondations of Computer Science, Syracuse, NY, October 

1980; pp. 270-281. 

and 

[3] L.G. Valiant, "Universality considerations in VLSI circuits", IEEE 

Trans. on Computers, vol. C-30, n. 2, pp. 135-140; February 1981. 

These (independently discovered) equivalent methods are based on the 

divide-and-conquer principle. The separator theory is used to subdivide 

the graph into two portions, these portions are recursively processed; 

and the final layout is obtained by routing, with insignificant pertur

bation, the wires perturbation, the wires pertaining to the separator. 

The important notions of "crossing number" and "wire area" of a 

given graph, which are relevant to the layout area of the graph, were 

introduced in 

[4] F.T. Leighton, "New lower bound techniques for VLSI", Proc. 22nd 

IEEE Symp. on Foundations of Computer Science, Nashville, Tenn., 

October 1981; pp. 1-12. 



Towards a Theory of VLSI Layout 231 

In this paper, Leighton also exhibited an n-vertex nonplanar graph--

the mesh of trees or orthogonal trees -- having a 8 (In )-separator but 

requiring r2(n log2 n) layout area. This result can then be used to exhibit 

an n-vertex planar graph -- the tree of meshes -- also with a 8 (In )-
para tor requiring r2 (n log n) layout area. This shows a gap between lower 

and upper bounds for planar graphs, which is still open today. Further 

methods, which are applicable to arbitrary circuit graphs and are based 

on the notion of "bifurcator", can be found in 

[5] F.T. Leighton, "A layout strategy which is provably good", Proc.14th 

ACM Symp. on Theory of Co~uting, San Francisco, CA, May 1982; pp. 

85-98. 

An interesting variation on the theory of separators (multicolor 

separators), presented in 

[6] J.R. Gilbert, "Graph separator theorems and sparse Gaussian Elimina

tion", Rep. N. STAN-CS-80-833, dept. of Compo Sci., Stanford Uni

versity; December 1980. 

has been successfully extended, and used in 

[7] S.N. Bhatt and F.T. Leighton, "A framework for solving VLSI graph 

layout problems", Journal of Computer and System Sciences, to appear. 

to prove the feasibility of "synchronous layouts". A synchronous layout 

of a directed computation graph is realized when a node is laid out in an 

area proportional to the total length of the wires corresponding to its 

outgoing arcs. Bhatt and Leighton showed that an arbitrary n-node graph 

laid out in area A, can be reprocessed to obtain a synchronous layout of 
2 

area at most 0 (A log (A/N)). 

A large amount of research has been done on the routing problem, 

defined by a fixed set of terminals on the uniform grid, the specifica

tion of their interconnection, and a region of the grid to be used to 

realize the layout. A very early paper, which has been the basis of many 

applications (especially for gate-array networks) is 



232 F.P. Preparata 

[8] c. Y. Lee, "An algorithm for path connections and its applications", 

IRE Trans. on Computers, vol. EC-10, pp. 346-365; September 1961. 

This paper assumeS that module placement has been determined and succes

sively routes the wires, each on the shortest feasible path on the grid. 

The extreme simplicity of the technique - based on the propagation of a 

"distance wave" - has been the reason for its success. 

Another techniques presented in 

[9] D.W. Hightower, "A solution to line routing problems on the conti

nuous plane", Proc. 6th Design Automation Workshop, pp. 1-24, June 

1969. 

also aims at realizing wires as shortest paths (in the presence of bar

riers) in the L1-metric, but employs a different approach. Starting from 

the L1-shortest path, it verifies whether it crosses any barrier, and,if 

so, it introduces approximate detours. A final compaction step removes 

obvious redundancies. 

Worth mentioning are the so-called "iterative" techniques, where 

wires are laid out one after the other, until a wire is first found that 

cannot be succesfully laid out: at this point, a small set of wires is 

rerouted to allow the layout of the wire causing the impasse, and so on. 

Typical of this approach are 

[10] G~V. Dunn, "The design of printed circuit layouts by computer", Proc. 

3rd Australian Computer Conf. pp. 419-423, (1967). 

[11] S.E. Lass, "Automated printed circuit routing. with a stepping apert

ure", Comm. of the ACM, 12 n. 5, pp. 262-265, (1969). 

The notion of "channel" was introduced in the paper 

[12] A. Hashimoto and J. Stevens, "Wire routing by optimizing channel 

assignment within large apertures", Proc. 8th Design Automation Work

shop, pp. 155-169, JOle 1971. 

which has become one of the classic references in layout theory. In the 

channel routing problem, all terminals are on two parallel boards, whose 

spacing (width) is determined by the number of tracks used by the layout. 



Towards a Theory of VLSI Layout 233 

A set of terminals to be connected together is called a net. Hashimoto 

and Stevens intriduced the notion of "density", which constitutes a lower 

bound to channel width under the usual assumption that the two distinct 

wires are edge-disjoint paths in the grid (no overlap). 

Several papers have since addressed the channel routing problem 

(CRP). The following are two significant references: 

[13] B.W. Kernighan, D.G. Schweikert, G. Persky, "An optimum channel 

routing algorithm for polycell layouts of integrated circuits", 

Proc. 10th Design Automation Workshop, pp. 50-59, June 1973. 

[14] A. Deutsch, "A dogleg channel router", Proc. 13th Design Autmation 

Conference, pp. 425-433, 1976. 

The first paper breaks away from usual approach of applying a promising 

heuristic, and obtains an optimal solution (i.e., with the least number 

of tracks) by a branch and bound technique: of course running time is 

greatly affected by the problem size. The second paper presents an in

teresting method to reduce the number of tracks used. All the CRP techni

ques cited so far refer to the so-called Manhattan-mode (or two-layer) 

routing, where horizontal and vertical wires are on distinct conducting 

layers, with appropriate cuts (vias) established to provide the necessary 

contacts. 

A significant step forward is represented by the paper 

[15] R.L. Rivest, A. Baratz, and G. Miller, "Provably good channel routing 

algorithms", Proc. 1981 Carnegie-Mellon Conf. on VLSI, pp. 153-159, 

October 1981. 

The adopted layout mode is the knock-knee (earlier used by Thompson), 

where two distinct wires are allowed to share a bend-point. They prove 

that a two-terminal net CRP of density d can be laid out in d tracks in 

the knock-knee mode; however, since only two condicting layers are post

ulated, additional d-1 tracks are introduced to provide the necessary 

vias. The width 2d-1 was later found to be optimal for two-layer routing, 

as shown in: 

[16] F.T. Leighton, "New lower bounds for channel routing", draft 1981. 



234 F.P. Preparata 

Since the use of two layers appears to be the determining factor of 

the 2d-1 width performance (rather than d), the paper 

[ 171 F. P. Prepara ta and W. Lipsk i, Jr ., "Three layers are enough", Proc. 

23rd IEEE Symp. on Foundations of Computer Science, Chicago, IL, 

pp. 350-357, November 1982 (see also: Preparata-Lipski, "Optimal 

three-layer channel routines", IEEE Trans. on Computers, May 1984 

(to appear)), 

showed indeed that for a two-terminal net CRP it is possible to produce 

a minimal width layout, which is wireable in no more than three layers. 

This paper is also the basis of the wireability theory to be briefly 

mentioned below. 

The routing of multiterminal nets, earlier approached on the basis 

of reasonable heuristics and the subject of intensive experimentation 

[13,141, has only recently received theoretical attention. Although 

density trivially represents a lower bound to channel width for this 

general CRP, the establishment of the optimum width in an NP-hard problem, 

at least in the Manhattan mode, as shown in: 

[18) T.G. Szymanski, "Dogleg channel routing is NP-complete", to appear 

(1982) • 

However, in an unpublished memorandum 

[19] D.J. Brown, F.P. Preparata, "Three-layer routing of multiterminal 

nets", unpublished manuscript, October 1982, 

an upper bound of 2d to the achievable channel width was established. 

This upper bound was later improved to (2d-1) in the paper 

[20] M. Sarrafzadeh and F.P. Preparata, "Compact channel routing of multi

terminal nets", Tech. Rep. ACT. 44, Coordinated Science Lab., Uni

versity of Illinois, October 1983. 

The algorithm reported in this paper produces the layout column by column 

in a left-to-right sweep of the channel, and falls in the general class 

of "greedy" channel routers. An experimentally efficient, but not yet 



Towards a Theory of VLSI Layout 235 

analyzed, greedy router for the Manhattan mode was described in the paper. 

[211 R.L. Rivest, C.M. Fiduccia, "A greedy channel router", Proc. 19 

Design Automation Conference, pp. 418-424, June 1982. 

This paper is part of the 'PL' system, presently being developed at M.I.T. 

An account of this layout system, encompassing placement and routing,can 

be found in 

[221 R.L. Rivest, "The 'PI' (Placement and Interconnect) System", Proc. 

19th Design Automation Conference, pp. 475-481, June 1982. 

The problem of the number of layers used to realize a given layout 

is currently the subject of active research. The general theoretical 

framework presented in [171 has been used in 

[221 W. Lipski, Jr., "The structure of three-layer wireable layouts", to 

appear in Advances in Computing Research, Volume 2, VLSI Theory, 

(1984) , 

to prove that the problem of deciding whether an arbitrary planar layout 

of multiterminal nets is wireable in three layers is NP-complete. How

ever, this result has been supplemented by the surprising and elegant 

finding that for the same problem no more than four layers are ever ne

cessary, as reported in 

[23) M. Brady and D.J. Brown, "VLSI routing: four layers suffice", in 

Advances in Computing Research Volume 2: VLSI Theory, (1984). 

Finally we mention some recent results on routing problems of a 

more general flavor than CRPs. The first problem, discussed in 

[241 A.S. LaPaugh, "A polynomial time algorithm for optimal routing 

around a rectangle", Proc. 21st Syrup. on Foundations of Computer Science 

(Syracuse), pp. 282-293, October 1980. 

[251 T.F. Gonzales and S.L. Lee, "An optimal algorithm for optimal routing 

around a rectangle", Proc. 20th Allerton Conference on Communication 

Control, and Computing, pp. 636-645, October 1982, 

concerns the construction of the layout when the terminals are placed on 



236 F.P. Preparata 

the four sides of a rectangle and the wires must remain external to this 

rectangle ("Routing outside a rectangle"). The second - strictly related -

problem, for the same data, prescribes instead that the layout be con

structed inside the rectangle ("Routing inside a rectangle"). The general 

themry of the latter problem for two-terminal nets was first presented in 

[261 A. Frank, "Disjoint paths in a rectilinear grid", Combinatorica, 2, 

4, pp. 361-371, (1982), 

and an efficient algorithm was later developed in 

[271 K. Mehlhorn and F.P. Preparata, "Routing through a rectangle", Tech. 

Rep. ACT-42, Coordinated Science Lab., Univ. of Illinois, Urbana: 

October 1983; submitted for publication. 

These generalized routing problems for multi terminal nets have so far 

received scant attention. 

In conclusion, it emerges from this selected bibliography that, in 

spite of extensive studies and of significant heuristic accomplishmed 

the combinatorial understanding of the planar layout problem is still a 

preliminary stage. Although most problems are, or are likely to be in

tractable, there is a strong need for the development of fully analyzed 

approximation methods. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200058000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200061006e0064002000500069007400530074006f00700020005300650072007600650072002000200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




