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PREFACE 

For a long time the design of data processing systems has been mainly based on 
experience and practical considerations more than on formal quantitative approaches. This 
was true both in the design of computer architecture and in the design of software systems 
such as operating systems and database systems. Two relevant exceptions were the early 
studies in switching theory, concerned with such problems as minimization and reliability, 
on the one hand, and on the other hand, the general mathematical approach to computer 
system modeling and performance evaluation. More recently, the evaluation of distributed 
computing related to technological advances in microelectronics, has increased the need for 
quantitative studies for optimizing the design of computer systems. 

As the complexity of computer systems grows, the need for formalization and 
theoretical analysis is becoming more and more important. The development of formal 
semantics has provided tools for dealing with correctness and other desirable properties of 
distributed computing, the development of formal models in different areas (such as 
distributed system layout, data base design, computer network topology, scheduling and 
routing) has provided tools for dealing with efficiency and performance optimization; 
advances in theory of algorithms design and technological increases in computing power 
have led to the feasibility of the exact or well approximated solution of large scale 
optimization problems; finally advances in the theory of computing and analysis of 
algorithms and data structures have led to a new approach to the design of algorithms for 
tbe efficient solution of bard problems related to distributed processing systems. Such 
problems as optimal memory management, optimal design of computer networks and 
multiprocessor systems, optimal layout of VLSI systems, efficient exploitation of parallel 
computing systems, optimal management of database schemes, concurrency control, bave 
been thoroughly investigated recently with relevant practical results. 

Starting from previous experience in the area of anaZysis and design of algorithms and 
their application in combinatorial optimization (a School held in September 1979(1) and a 
Workshop held in September 1982 (2) both organized by tbe Department of Computer and 
System Science of the University of Rome and CISM in Udine) it appeared to be of great 
relevance in computer science to devote a Scbool to tbe interactions between form,ll 
approacbes to computer system design and tbe tbeory ofalgoritbms. 

Tberefore in July 1983, a School on "Algoritbm design for computer system design" 
was then held in Udine under tbe sponsorsbip of tbe International Centre for Mecbanical 
Sciences and the Department of Computer and System Science of tbe University of Rome, 
and witb tbe financial support of UNHSCO and tbe Italian Researcb Council, CNR, tbrough 
its Committee for Matbematics. 



The aim of the School was to provide young postgraduates and junior professionals in 
Computer Science with an uptodate algorithmic approach to the design and optimization of 
computer systems. Some of the leading'scientists in the field were invited to deliver lectures 
on the state of the art in the following areas: storage allocation and packing problems (E.G. 
Coffman), design and implementation of VLSI systems (F. Preparata, c.K. Wong), 
multiprocessor system design (G. Cioffi), network design (F. Maffioli), concurrency control 
(D.P. Bovet). Other topics related to basic algorithmic and combinatorial problems in 
computer system modeling and design were presented by the organizers (c. Papadimitriou, 
G. Ausiello, M. Lucertini). 

This volume presents a collection of unpublished papers referring to some of the issues 
discussed during the School. 

The first part of the volume, devoted to combinatorial problems in computer system 
design, includes an introduction to the complexity of the exact and approximate solution of 
combinatorial problems (G. Ausiello), a survey on graph optimization and integer 
programming models of task assignment problems in distributed systems (M. Lucertini), an 
extended state of the art paper on approximation algorithms for bin packing (E.G. Coffman, 
M. R. Garey, D.S. Johnson), a paper on topological network design under multiple non 
simultaneous demands (M. Lucertini, G. Paletta) and a paper on minimal representation of 
directed hypergraphs and their applications to data base design (G. Ausiello, A.D'Atri, D. 
Sacca). 

The second part presents papers devoted to specific issues in the optimal design of 
parallel computer systems and includes an introduction on parallel computer models (G. 
Ausiello, P. Bertolazzi), a state of the art paper on structural organization of MIMD 
machines (G. Cioffi), a paper on a new proposal for a VLSI sorter (C.K. Wong) and a 
selected and annotated bibliography on the theory of VLSI layout (F. Preparata). 

G. Ausiello, M. Lucertini, P. Serafini 

(I) G. Ausicllo, M. Lucertini Eds. "Analysis and design of algorithms in eomhinatorial optimization·', CISM Courses and 
Lectures N. 266, Springer-"erlag, New York, 1911t. 

(2) G. Ausicllo, M. Lucertini Ells. "Analysis and design of algorithms for comhinatorial prohlems", to appear in Annals of 
Discrete Mathematics, North Holland, 19114. 
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PART I 

COMBINATORIAL PROBLEMS IN 

COMPUTER SYSTEM DESIGN 



COMPLEXITY OF 
EXACT AND APPROXIMATE SOLUTION OF 

PROBLEMS. AN INTRODUCTION(*) 

Giorgio Ausiello 
Dipartimento di Informatica e Sistemistica 

Universiti di Roma "La Sapienza" 

ADstract. UP-complete optimization problems are frequently 

encountered in the optimal design of computer systems,o~erat

ing systems, databases etc. In this paper a discussion of 

the basic techniques which lead to the characterization of 

the complexity of optimization problems is presented. The 

class of optimization problems which are associated to NP

complete decision problems is then ~resented and various algo

rith~ic techniques for the approximate solution of such pro

olems are introduced. Finally necessary and sufficient con

ditions for the approximability of optimization problems are 

given. 

(*) This research has been partially supported by MPI Nat. 

Proj. on "Theory of algorithms". 



2 G. Ausiello 

1. Il~TRODUCTION: THE PARADYGr.1 OF COMPLEXITY ANALYSIS 

In the design and optimization of computer systems, 

operating systems, database systems, optimization problems 

which require exponential time to be solved often occur. 

This happens in a wide variety of cases: multiprocessor 

scheduling, task assignment in distributed computing, file 

assignment in distributed databases, VLSI layout problems, 

computer network design problems, storage allocation, con

currency control problems etc. Many of these problems will 

be discussed in other contributions in this volume. For 

these problems no polynomial time algorithm is known until 

now and, probably, no such algorithm exists. For this reason 

these problems are considered to be computationally "intrac

table" and algorithms for determining their approximate solu

tion have to be designed. 

The assumption that a polynomially solvable problem is 

considered "tractable" (even if it may require time n 100 ) 

and that a problem which cannot be solved in polynomial time 

is considered "intractable" (even if it does require a slowly 

growing exponential time such as 2n / 100 or even non exponen

tial time such as n log n) is a natural, though rough, approx

imation to the characterization of the computational complex

ity of a problem. In fact, on one side, if we have no a 

priori information on the size of the instance of the pro

blem that we have to solve we have no other choice than re

ferring to the asymptotic behaviour if our algorithms: on 

the other side, the difference between a polynomial running 

time and an exponential running time is so dramatic that only 

problems of polynomial complexity would benefit of improve

ments in computer technology. For example, a very strong im

provement in computer efficiency, say 1000 times, would in-
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crease ten times the size of the largest instance that we 

can solve in one hour of computer time if the running time 

is n 3 , while such size would be increased only by ten if the 

running time is 2n. 

Taking into account the single distribution between 

tractable and intractable problems, when given a practical 

problem P to be solved we usually take the following para

dygmatic behaviour: 

i) Determine complexity of P by establishing 

upper bound, that is amount of computer time 

sufficient to solve the problem by means 

of some algorithm as a function of the in

put size, 

lower bound, that is amount of computer time 

needed to solve the Droblem by whatever 

alqorithm, due to the intrinsic difficulty 

of the nroblem. 

ii) If P is tractable try to find the best possible algo

rithm from the point of view of the 

- worst case behaviour or of the 

- average case behaviour 

according to the needs of the application. 

iii) If P has not been recognized to be tractable (no poly

nomial algorithm has been found) then check whether P 

is NP-complete, that is whether it belongs to the class 

which is considered to be the threshold between tracta

bility and intractability. To this end, check whether 

3 
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- P is solvable in polynomial time by means of a 

nondeterministic algorithm (P E NP) 

there exists a problem P I which is already known 

to be NP-complete and such that pI may be 

reduced to P. 

iv) If P has been recognized to be intractable (e.g. it has 

an exponential lower bound, or it is NP-complete and, 

hence, probably intractable) then 

- try to find an (-approximate algorithm, that 

is an algorithm which provides a solution 

with a relative error smaller than ( with 

respect to the optimal solution 

- determine the complexity of the approximate pro

blem 

v) If the approximate problem is also intractable (e.g. 

even to determine an (-approximate solution is an NP

complete problem) 

- try to find a heuristic algorithm which efficien

tly provides the exact or a good approximate 

solution sufficiently often 

- deter-mine efficiency and quality of heuristics 
in the worst case or in the average. 

The various steps of this procedure leading to the cha

racterization of the complexity of the exact and of the ap

proximate solution of an optimization problem require a more 

precise comprehension of various concepts which are at the 

base of computational complexity. The next paraqraDh will be 

devoted to a brief introduction of such concepts. § 3 contains 

the illustration of the most significant complexity classes: 

P, NP, PSPACE. In § 4 the notion of NP-hard problem will be 

introduced and the polynomial degrees of complexity (part

icularly the NP-complete degree) will be discussed. In ~; 5 
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the concept of -approximation will be defined and the basic 

approximation techniques will be presented. Finally § 6 is 

devoted to the discussion of the approximability and non ap

proximability of NP-complete optimization problems and to 

various necessary and/or sufficient conditions for approxima

bility. 

2. BASIC CONCEPTS IN COHPUTATIONAL COMPLEXITY 

In order to approach the study and analysis of complex

ity properties of optimization problems various concepts 

have to be made more precise because the results which are 

obtained may be havily influenced by the choice of several 

factors: 

i) Machine models and complexity measures 

The first element which has to be defined in order to 

perform a complexity analysis is the machine model that we 

assume for executing our algorithms and the kind of resource 

whose computation is assumed as cost of computation. Some of 

the most used models, together with their respective measures, 

are: 

- Turing machines with one tape or many tapes, determi

nistic or nondeterministic (that is capable of execut

ing one or several transitions at the same time: in 

the first case a computation is essentially a chain of 

configurations, in the second case a tree). The measu

res which are naturally associated to Turing machines 

are time (number of steps) and memory (largest amount 

of work tape required during a halting computation) . 

- Register machines (or RAMs, random access machines) 

similar to real computers, provided with a finite 

number of registers capable of containing arbitrarily 
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large integers, programmable by means of a naif 

machine language. In this case the resources which 

are usually taken into consideration are the number 

of elementary operations (uniform cost model, UC-RAM) 

or, more realistically, the sum of the costs of ele

mentary operations (logarithmic in the size of oper

ands: logarithmic cost model, LC-RAM). 

- Interpreters of high level naguages; in this case we 

assume of expressing our algorithms by means of a 

high level language and in order to evaluate the 

complexity we limit ourselves to counting how many 

times the dominant operations are executed as a func

tion of the input size (e.g. how many comparisons to 

sort n integers). 

Ad hoc models suitable for expressing algorithms re

lated to particular computational structures: boolean 

circuits, directed acyclic graphs, straightline pro

grams etc. 

Actually among some machine models there are relationship 

which allow to derive the cost of solution of a problem in 

a model when the cost in another model is known. For example 

the following measures are mutually polynomially related: 

- time for one-tape Turing machines 

- time for multi-tape Turing machines 

- time for LC-RAM 

Also 

- space for deterministic Turing machines 

- space for nondeterministic Turing machines 

are polynomially related. 

On the other side it is not known whether a nondeter

ministic Turing machine may be simulated by a deterministic 

on in polynomial time (as we will see this is one 

of the major open problems in computer science) 
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neither is known whether polynomial space bounded Turing 

machines are indeed more powerful than polynomial time 

bounded deterministic or nondeterministic Turing machines. 

Clearly for the sake of establishing tractability or in

tractability of problems any of the polynomial time equi

valent models is adequate. 

ii) Input size 

One of the elements which may influence the evaluation 

of the complexity of a problem is the way in which we de

termine the size of the input. In principle we should take 

into consideration the overall length of the input string. 

In many applications it happens that we may, equivalently, 

consider some parameter of the input size (number of rows in 

a matrix, number of nodes in a graph etc.) . For examn.le when 

the imput is a vector of integers a 1 , ... ,an the overall 

length is n-a but when we assume that a is always max max 
smaller than the largest integer which may be contained in 

7 

a computer word the complexity may simply be expressed as a 

function of n. In problems with a numerical input the fact 

that we consider as input size the length of the input and 

not its value entails a dramatic difference in the evaluation 

of the complexity because the value of an integer is expo

nentially larger than its length. As we will see in the fol

lowing, problems whose complexity is polynomial in the value 

of the input (and hence exponential in the length) are called 

pseudopolynomial. 

iii) Type of analysis 

The analysis of the behaviour of algorithms is usually 

performed by considering how much resource the algorithm re

quires for a given input of size n, as a function of n and by 

determining the asymptotic growth of such function. 

Clearly among inputs of size n we may have the possibi

lity of meeting simpler instances of the problem or more com-
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plex ones (e.g. in a sorting problem a vector of n integers 

may be already ordered or havily unordered ). This variety 

of possibilities gives rise to various kinds of analysis. 

Let TI be a program in a given machine model and let 

L (x) be the number of steps required by TI on input x. 
TI 

- Worst case analysis: in this case the behaviour of the 

algorithm is anaLysed with respect to the hardest instance 

for any given n: 

(where Ixl denotes the length of instance x). 

- Average case analysis: when we assume that all instances 

of size n are equally likely we may consider the average 

behaviour of the algorithm and forget about a few part

icularly hard but rare instances: 

L L (x) . TI 
Ixl=n 

Probabilistic analysis: in those (frequent) cases in which 

an average case analysis cannot be precisely determined we 

may limit ourselves to defining random instances x1 ,x2 , .. 

.. ,x , ... of the problem of size 1,2, ... ,n, ... and deter-n 
mining the expected behaviour of the algorithm on such in-

stances: 

Once the basic factors of the analysis have been deter

mined we may approach the problem of characterizing the com

plexity of the given problem. As we observed before such task 

is usually based on a worst case analysis and is accomplished 
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by providing two bounds to the complexity: 

i) Upper bound: amount of resource g' such that at least 

one program TI may solve the given problem P asymptotic

ally within such resource bound, that is 

In this case we say that the complexity of P is O(g') 

ii) Lower bound: amount of resource gil such that given any 

algorithm TI for P it requires more resource than gil 

asymptotically,that is 

In this case we say that the complexity of P is Q(g"). 

9 

Clearly, the closer g' and gil are, the better the complexity 

of P is precisely determined. A classical example in which 

the lower bound and upper bound are so close that we can 

speak in terms of optimal algorithms is sorting. In this 

case,both the lower bound and the upper bound (measured in 

terms of comparisons) are essentially n log n and this means 

that any algorithm with such worst case performance (e.g. 

merge sort, heapsort) is asymptotically optimal. 

Unfortunately such desirable situations are somewhat rare. 

Especially in the case of optimization problems very fre

quently we have that the strongest lower bound we have is 

quadratic while no algorithm which performs better than ex

ponentially is known. In thesecases, hence,the most powerful 

technique we have is based on the concepts of complexity 

classes for expressing upper bounds and of reductions for 

expressing lower bounds. These concepts will be briefly 

discussed in the next two paragraphs. 
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3. COMPLEXITY CLASSES. THE CLASS NP 

Given a machine model M, a resource T (e.g. time or 

space for machine model M) a bound t on the resource T, let 

t be the cost of executing program TI in the worst case; a 
TI 

aompZexity aZass is the set of functions 

C~,T= {flthere exists an, integer no and a prorrram TI for 

f such that t (n) < t(n) for all inputs of size 
n > no} TI-

~~en given a problem P we determine an algorithm in M 

for solving P which runs ,,'lith a cost bounded by t (n) on 

inputs of size n (for sufficiently large n), we may say that 

P belongs to the complexity class Ct .. For example, on the 

base of the upper bound mentioned in the preceding paragraph 

we know that sorting belongs to the class C 2 or, better, to 
n . 

the class Cc n log n for a sui table constant c. 

Particular relevance among complexity classes have those 
classes which may be defined as the union of infinitely many 

classes. The fact that, under suitable conditions, the in

finite union of classes may still be a complexity class is 

one of the fundamental results of computational complexity 

theory. Here we simply introduce and discuss some of the most 

important union classes based on time and space for Turing 

machines. 

i) P = U cT~,Tlr~ is the class of those problems which 
k>O n 

may be solved in polynomial time by means of determini

stic Turing machines. According to the preceding ob

servations on the relationships between machine models 

it is clear that a problem is in P if and only if it 

may be solved in polynomial time also by means of re

gister machines (with logarithmic cost functions) and 
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ii) 

by means of any other "reasonable" machine model, in

cluding real computers. 

NDTM TIME . 
U C k' 1S the class of those problems 

k>O n 
NP = 

which may be solved in polynomial time by means of non-

deterministics TUring machines. Given a decision pro

blem, that is the problem of deciding whether a given 

string x (representation of an instance of the problem) 

belongs to a given set A (the set of instances sharing 

a given property) we say that a nondeterministic machine 

M solves it (M accepts A) in polynomial time if there 

exists a polynomial p such that for every x E A M ac

cepts x and stops in time p(lxl). Clearly the class P 

is contained in the class NP and besides a large class 

of combinatorial problems which are not known to be in 

P have a particular structure which allows to solve them 

in nondeterministic polynomial time. General problems 

in operations research and most of the combinatorial 

problems that we mentioned at the beginning have .this 

property: graph partitioning problems, layout problems, 

bin packing,scheduling problems etc. For all this pro

blems the search space of solutions is a tree of poly

nomial depth and the solution may clearly be found in 

polynomial time by a nondeterministic branching pro

cedure. A typical example of problem which is in NP and 

is not known to be in P is the problem of deciding the 

satisfiability of boolean expressions in conjunctive 

normal form. In fact, given the expression (pV q V r) 

1\ (q V r)/\ (p V r) the search space may be generated as 

shown in Fig. 1. 

A nondeterministic algorithm generates all possible 

truth assignments in only three steps and subsequently, 

for every truth assignment it checks whether it sati-
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Fig. 1. 

G. Ausiello 

F T F 

sfies the given expression. If we know a method for 

simulating a nondeterministic machine by means of a de
terministic one in polynomial time, then the classes 

P and NP would coincide. Actually the most widespread 

conjecture is that such a method cannot exist and that 

the classes P and NP are indeed different. 

iii) PSPACE = 
TM SPACE . U C k' ~s the class of those problems 

k>O n 

which may be solved within polynomial space by means of 
deterministic Turing machines. Since a nondeterministic 
TUring machine can be simulated by a deterministic one 
within polynomial space we have that the class PSPACE is 
also equal to U CN~TM,SPACE. Clearly PSPACE 2 NP but 

k>O n 

whether such containment is strict or not is again still 

an open problem. Typical examples of problems which are 

in PSPACE but are not known to be in NP (nor, clearly, 

in P) are the problem of deciding whether a given qua

ntified boolean expression is true, the problem of de

ciding whether two given regular expressions are equi

valent or not, the problem of deciding whether there 
exists a forced win for the first player in various 

games (such as hex, go, checkers, chess etc.) generalized 
on a n x n board. 
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4. COMPLEXITY DEGREES. THE NP-CO~WLETE DEGREE 

Unfortunately, given a problem P it is not always pos

sible to determine a neat characterization to its complexity 

by means of upper and lower bounds. In many problems of prac

tical relevance, such as the problems that we mentioned in 

the introduction, the best known upper bound and the best 

known lower bound are O(2n ) and ~(n2) respectively. In such 

cases the characterization of the complexity may only be 

achieved in relative terms rather then in absolute terms. 

By transforming an instance of one problem A into an in in

stance of another problem B, in fact we may show that the 

solution of A is at least as hard as the solution of Band 

in some cases we may show that two problems are equivalently 

hard. 

Let us first consider how these concepts may be formally 

stated for decision problems. Subsequently we will extend 

them to optimization problems. 

Let two sets A and B be given. We say that 

A is peducible to B (A 2 B) if there exists a many-one, func

tion f such that x E A if and only if f(x) E B. The fact that 
the problem of deciding whether a string x belongs to a set 

A may be transformed to the problem of deciding whether the 
string f(x) belongs to a set B means that, intuitively spea

king, 

complexity(A) 2 complexity(f) + complexity(B) 

If the transformation f is sufficiently simple (that is com

plexity(f) < complexity(B» we may say that 

complexity (A) 2 complexity(B) 

More formally, suppose that f is polynomially computable by 

means of a deterministic Turing machine, then. we may say that 

A is polynomially reducible to B (A 2 p B). Let us see the 
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following example. 

Let EXACT-COVER be the set {F I F is a family of sets 

8 1 , ••• ,8 f 8 = {eo/ •.• ,e } and there exists ~ subfamily of 
n -- m ~ 

pairwise disjoint sets 8., ... ,8~. such that - S. = S}. 
11 J h=1 1h 

Let SUBSET-SUM be the set {( a1 ' ... , an,b ) I there exists a 

0-1 vector x such that La.x. = b}. 
1 1 

We may show that EXACT-COVER.::. p SUBSET-Sll1 by means of the 

following polynomial reduction: for every i, 1 < i < n 

k 1 and a. = d where d = n + , 1 
k E {jte. ES.} 

J 1 

m 
d k b I 

k=O 

Clearly to every solution of the EXACT-COVER problem there 

corresponds a solution of the SUBSET-Sll1 problem and vice

versa, that is if the instance of the SUBSET-SUM problem 

which is generated by the reduction does not allow a solution, 

then no exact cover can be found in the family F. For example: 

F = {S1,S2,S3'S4} d = S 

S1= {eo ,e1 } a 1= 1+2 

S = 2 {e1 ,e2 ,e 3 ,e4 } a 2= d+d 2+d 3+d 4 

S3= {e 2 ,e 3 } a 3= d 2+d 3 

S4= {e 4 } a 4= d 4 

S = {eo,e1,e2,e3,e4} b = 1+d+d2+d 3+d 4 

To the solution F' = {S1,S3,S4} there corresponds the solution 

of the SUBSET-SUM problem a 1+a 3+a 4 = b. As a result of the 

existence of a polynomial transformation from EXACT-COVER to 

SUBSET-Sll1 we may say that the SUBSET-Sll1 problem is at least 
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as hard as the EXACT-COVER nroblem. Besides,since both pro

blems are in NP but for some of them a polynomial algorithm is 

known, we may say that if,eventually the EXACT-COVER problem 

is shown not to be in NP then also the SUBSET-SUM problem 

would be proven not to be in NP while if the SOBSET-Sm1 pro

blem would be shown to be polynomially solvable so would the 

EXACT-COVER problem. 

By means of a polynomial reduction we may hence establish 

a relative complexity low'er bound between two problems. 

Actually we may use the concept of reduction to determine an 

even stronger relative lower bound: by showing that any pro

blem of a class C may be reduced to a given problem B we may 

show that B is at least as hard as the hardest problem in C. 
In particular if we consider the complexity class NP we may 

give the following definition. A set B is said to be NP-hard 
if given any set A in NP we have A < B. -p 

An example of NP-hard problem is the problem 

SATISFIABILITY = {w I w is a proposiftionalformulain conjunc

tive normal form and there exists a truth assignment to pro

positional variables which satisfies w}. 

Such problem has been shown to be NP-hard by means of 

the following argument. Let any set A E NP be given. Let MA 

be the nondeterministic Turing machine which accepts A in 

time PA(lxl> for a suitable polynomial PA' It is possible to 

construct a Boolean expression w[MA,x,PA1, depending on MA, 

PA and the input x, whose length is still polynomial in Ixl 

and which represents an accepting computation of MA on x. 

Clearly w can be satisfied if and only if such computation 

exists, that is if x E A. 

This result, one of the fundamental results of complexity 

theory, snows that SATISFIABILITY is at least as hard as any 

other problem in NP. Actually, since we already saw that 

SATISFIABILITY is in NP we may say that it is among the hard

est problems in NP. When a problem A is in NP and, at the 
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same time, it is shown to" be UP-hard we say that it is NP

complete. Hence SATISFIABILITY is an UP-complete problem. 

When we say that a problem is l'lP-complete we actually provide 

a characterization of its complexit'y in relative terms; the 

membership in NP corresponds in fact to an upper bound while 

the NP-hardness corresponds to a lower bound. 

The polynomial reducibility among decision problems is 

a transitive relation. Two consequences of this property are 

particularly relevant. First of all in order to show that a 

problem A is NP-hard we may simply show that any other NP

hard problem (SATISFIABILITY, for example) may be reduced to 

A. Secondly,if A and B are both NP-complete problems, since 

in this case we have A < Band B < A we may say that A:: B, -p -p p 
that is A and B are equivalent in terms of complexity (modulo 

a polynomial). The equivalence classes of polynomial reduci

bility are called polynomial complexity degrees. Beside the 

NP-complete degree, other examples of polynpmial degrees are 

the degree of GRAPH-IS0l10RPHISM" (that is the class of all 

those problems whose complexity is equivalent to the complex
ity of deciding whether two graphs are isomorphic or not) 

and, trivially, the class P. 

NP-complete problems represent a very interesting class 

of probems. Host problems considered in the introduction 

turn out to be in this class. This means that either all of 

them may be solved in polynomial time or, more likely, none 

of them is. Unless P = NP the only hope we have is to solve 

these problems by means of suitable approximate algorithms. 
To this issue is devoted the next paragraph. 

5. APPROXIMATION ALGORITHMS FOR NP-COMPLETE OPTIMIZATION 
PROBLEl1S 

Let us now go back to considering optimization problems. 
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As we will see the concepts of NP-hardness and NP-completeness 

may be extended from decision problems to optimization pro

blems. 

The fact that many interesting optimization problems 

are NP-hard and, hence, (probably) computationally intractable 

has determined the need for various techniques by means of 

which at least an approximate solution of the given problem 

may be achieved. When we consider approximation techniques 

we realize that NP-complete optimization problems fall into 

different subclasses according to the fact that they may be 

solved by approximation methods or not. 

First of all let us introduce a formalization of the 

concept of optimization problem. An NP-optimization problem 

is characterized by a polynomially decidable set INPUT of 

instances, a polynomially decidable set OUTPUT of possible 

outcomes, a mapping SOL:INPUT ~ P(OUTPUT) which, given any 

instance x of the peoblem, nondeterministically provides the 

feasible solutions of x in polynomial time, and a mapping 

m:OUTPUT ~ N which again in polynomial time provides the 
* measure of a feasible solution. We will denote by m (x) the 

best (maximal or minimal) solution for input x. 
To every NP-optimization problem A a decision problem 

may be associated by considering the set 

* AC = {( x,k ) Ix E INPUT and k .s. m(x)} 

Clearly if A is an UP-optimization problem then AC is a de

cision problem in NP. If AC is NP-complete then we say that 

A is an NP-complete optimization problem (NPCO). 

For example, the problem HAX-CLIQUE is an NPCO. It is 

characterized by the following items: 

INPUT = set of (representations of) all finite graphs 

OUTPUT= set of (representations of) all finite complete 
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gr.aphs 

SOL{x) =set of (representations of) all complete subgraphs 

of x 

m (y) = number of nodes of y 

The associated decision problem is the problem of reco

gnizing the set CLIQUE = {(x,k ) Ix is (the representation of) 

a graph which contains a complete 

subgraph of k nodes}. 

Given an NPCO problem we may say that an algorithm A is 

an E-approximate algorithm for A if, given any instance 

x E INPUT, we Have 

* m (x) -m{A{x)) 

* m (x) 
< E 

that is the algorithm provides a solution with a relative 

error smaller than E. Such an approximate algorithm is said 

to provide a performance guarantee. This situation is differ

ent from the case in which an algorithm in some cases provides 

a solution which is ontimal, a very close to the optimal, 

while in other cases the solution may be arbitrarily far from 

the optimal one. 

A problem A is said to be polynomially approximable if 

given any E > 0 there exists an E-approximate ~lgorithm for 

A which runs in polynomial time. A is said to be fully poly

nomially approximable if A is approximable and there exists 

a polynomial q such that given any E the running time of the 

E-approximate algorithm is bounded by q{lxl ,1/E). 

Clearly the fact that a problem A is polynomially ap

proximable is not enough for approaching its solution because 

for exarnpleit may happen that when we go from the approxima

tion 1/k to the approximation 1/{k+1) the running time of the 

approximate algorithm increases from O{lxl k ) to O{lxl k +1) and 
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soon the approximate solution becomes unfeasibly expensive. 

When a problem is fully approximable, instead, we may con

sider it to be essentially (even if not properly) an easy 

problem because the running time of the approximate algorithm 

does not encrease too much with the required precision. 

Let us now examine how approximate algorithms may be 

constructed. 

A constructive method that for any given € provides the 

corresponding polynomial €-approximate algorithm A€ is said 

to be a polynomial approximation scheme (PAS). If for every 

€ the running time is bounded by q(lxl ,1/€) for some poly

nomial q we say that the scheme is a fully polynomial ap

proximation scheme. 
In order to discuss various approximation schemes let 

us consider the typical KNAPSACK p~oblem(*). Such problem 

may be characterized in the following way: 

INPUT = n items (a1 ,c1 ), ••. ,(an,cn ) and bound b 

OUTPUT = 0-1 vectors (Y1'··· 'Yn) 

SOL(x) =0-1 vectors (Y1' ... 'Yn) such that 

m(x) = 'y.c. L ~ ~ 

'y.a. < b l. ~ ~ _ 

It consists in choosing a set of items such that the 

profit 'y.c. is maximized while the constraint b on the oc
L ~ ~ 

cupancy is satisfied. 
The fundamental technique for constructing fully poly

nomial approximation schemes are all based on the classic 

(*) The variation of knapsack problem in which a i = c i for 

all i is called SUBSET-SUM problem. 
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dynamic programming scheme. This scheme, in the case of the 

knapsack problem,can be summarized as follows; 

L:=la'i 

for all items i in x do 

end. 

for all sets S. in L do 
J 

end 

if s. U {i} satisfies the constraint b 
J 

then 
begin insert Sj U {i} in Li 

eliminate dominated elements 

end 

take the best solution in L. 

It is easy to see that the number of steps of the al

gorithm is proportional to the number of items in x times 

the lenght of the list L. 

Clearly variations of this scheme are obtained by con

sidering different conditions of dominance between elements. 

In the case of knapsack we can define the following 

dominance rule: 

Given two sets S1 and S2 in L we say that S1 is dominated 

if L c. < L c. and 
iES 1 1. iES 2 1. 

L a. > L a .. 
·S 1. ·S 1. 1.E 1 1.E 2 

Clearly the elimination of 8 1 does not introduce any 

error. 

Therefore we can obtain the following exact algorithm 

for the knapsack problem: 
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Algorithm A1 

L:=$li 

for i 1 to n do 

end 

for all sets Sj in L do 

if 1. a.+a i 2. b 
jES j ] 

then 
begin L:=L U (So U {i}) 

] 

eliminate all S' E L 

such that:3 S" E L 

I C. < 1. C. 
jES' ] - jES" ] 

and 

I a. > 1. a. 
jES' ] jES" ] 

end 

end 

take the best solution in L. 
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To evaluate the complexity of the above algorithm it is 

sufficient to see that, at each step, the number of solutions 
n n 

contained in the list L is less than min{b, 1. a., Y. c.). So 
j=1 ] j=1 ] 

with a suitable implementation of the elimination step it is 

not hard to see that the complexity of algorithm A1 is 
n n 

O{nomin{b, y. a., 
j=1 ] 

1. c.)), which means a complexity expo
j=1 ] 

nential in the size of the input, as we use a binary encoding 

for the numbers of the input. 

In order to achieve a fully polynomial approximation 

scheme the first technique 

approximate solution to the 

scaling all coefficients a i 

which was used for finding 

knapsack problem was based 

by a factor K = EoaMAX!n. 

an 

on 
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This technique is shown by the following algorithm 

AZgorithm A2 

for i = 1 to n do 
c! = k·c. 

J l. 

end; 
Apply algorithm A1 taking as input 

(c~ ... ,c~; a 1 ••• ,an ; b) 
take the best solution and multiply 

it for k. 

If m(A2 (x)) is the value of the approximate solution 

we have that 

On the other side we can assume that 

* m (x) > CMAX . 

It follows that 

* m (x)-m(A2 (x)) 

* m (x) 

With respect to the running time we have that the complexity 

of the algorithm is O(n· (Lci)). Due to the scaling we have 

that 

n·c 2 
\' '< MAX=n 
L c i _ k E 

3 
So the overall complexity is O(ns ). 

Such approximation scheme although very useful for many 

problems, suffers some drawbacks. 

In fact in order to find the fully polynomial approxima-
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* tion scheme we need to know good bounds to m and this is a 

severe limitation to the generality of the method as it can 

be easily seen if we simply switch from max knapsack to min 

knapsack problems. 
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Another limitation of this scheme is that it cannot be 

applied for solving other NP-complete optimization problems 

which instead can be shown to be fully approximable by other 

methods such as the product knapsack problem. 

Due to these facts the search for general full approxima

tion schemes has been pursued with the aim of finding results 

which,despite of a slight loss in efficiency,could be applied 

to a broader class of problems and that could provide some 

insight in the properties of fully approximable problems and 

in their characterization. 

The first attempt to provide such a general scheme was 

the condensation algorithm. With respect to the dynamic pro

gramming scheme (A 1 ) the elimination step is performed by 

eliminating more partial solutions and therefore introducing 

an error. 

More precisely we say that 8 2 dominates 8 1 

if (1- 0) L c. < I c. and 
i ES1 

l - iES 2 
l 

L a. > L a. 
i E8 1 

l - iE8 2 
l 

where 0 = min{E 2 , ~}, the condensing parameter, is the re-
n 

lative error introduced in the dominance test. As there is a 

propagation of the error then the total relative error is at 

least 0 2 2 E. Moreover the running time is 0 (max{ 1 x 41 , 1 x 2 1 IE 2 }). 

A different approach which leads to a more efficient 

algorithm is based on the technique of variable partitioning 

(as opposed to the constant partitioning technique). This 
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method is based on the partitioning of the range of the mea

sure into intervals of exponentially increasing size and on 

an elimination rule which preserves only one solution for 

every interval. 

To allow a better understanding of the advantages of 

this approach the method and the results will be given for 

the knapsack and the product knapsack. It can be immediately 

extended to other fully ,\pproximable problems. 

More in detail the method is as follows. 

Let R be the range of the possible values of the mea

sure. In a general NP-complete max-subset problem, and the
refore in our cases R is smaller than 2P (l x l) for some poly

nomial P and as we will see the whole development of the al

gori thm allows us to refer only to this general bound without 

* requiring any more precise extimate of a bound for m . The 

range R is then partitioned int~ K intervals [0,m1) ,[m1 ,m2), 

.•• [mx-1'~) where mi = (1+E/n)1. Let us denote Ti the i-th 
interval. 

The elimination rule for the 0/1 knapsack is the fol
lowing: 

Given two sets 51 and 52' 51 is dominated by 52 if 

if I c. E T., L c. E TJ. , j > i and 
iE51 1 1 iE5 2 1 

Clearly changing the sums in products we have the eli

mination rule for the product knapsack. 

In every interval there will be at most one feasible 

solution and hence, at each iteration, we will have, at most 
R elements in the list. 

The error that may result by using this algorithm may 



Complexity of Exact and Approximate Solution of Problems 25 

be bounded as follows. At stage i at most the error ~.=m.-m. 1 
~ ~ ~-

may arise; in the worst case this error may happen at every 

stage. Since there are n stages 

* that 1m (x)-m(AE(x)) I < n ~. 
- ~MAX 

and since ~i < ~i+1 we have 
where i MAX is such that 

* m. < m (x) < m. • From the 
~MAX-1 - l.MAX 

above inequalities we de-

duce that the overall error is 

* m (x)-m(A (x)) 
E 

* m (x) 
= E 

As far as the complexity is concerned, the number of 

steps of the given algorithm is as usual a function of nand 

the lenght of the list L. In this case the number of solu

tions which may be preserved in L is equal to the number of 

intervals K which should satisfy the following inequalities 

K log (1 +.£) < n p ( I x I) 

K < 
p ( I x I) 

E log(1 +-) 
n 

Hence with a suitable implementation the complexity of the 

method is 

O(n 0 
E log (1 + -) n 

Therefore in the case of knapsack we have that the range R 

is bounded by noaMAX and therefore in this case we have a 

complexity 
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log n + log aMAX 
O(n • log(1 + E/n) 

while in the case of product knapsack 

2 log aMAX 
o (n '":;"'1 o-g--;-:( 1~+:-'-E=/7'-n') • 

6. APPROXIMABLE AND NON APPROXIMABLE PROBLEMS 

G. Ausiello 

As we have already observed, not all NPCO problems are 

approximable or fully approximable. For many problems it is 

possible to show that even the problem of determining an ap

proximate solution is intractable. 

A classical example of a problem which is not E-approx

imable for any E is the traveling salesman problem (TSP)which 

consists in determining the shortest cycle which crosses 

every vertex of a weighted graph exactly once. In order to 
show that, given any 8, the problem of determining whether 

there exists an approximate solution with relative error 

smaller than E is NP-complete we may use the following re
duction from HAMILTONIAN-CIRCUIT. 

Let a graph G = (N,A) be given. Let us define a complete 

graph G' with weights on the edges r ij 

= { 11 Pij 

+ En if (i,j) ~ A 

if (i,j) E A 

where n = I N I • 
Clearly an Hamiltonian path in G exists if and only if 

in G' there exists a traveling salesman four of length n; in 

fact any other tour would entail a relative error e not smaller 
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than E 

e > 
n+En-n 

n 
= E 
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Another problems which is known not to be E-approximable at 

least for some values of E is the GRAPH-COLOURING problem; in 

this case it is known that to find a solution which uses less 

colours then the double of the chromatic number of the graph 

is still an NP-complete problem. 

Various attempts have been made to characterize the 

classes of NPCO problems which are not approximable, approx

imable or fully approximable. 

The first characterization is based on the complexity of 

subproblems of the given problem. 

Let an NPCO problem A be given. Let MAX(x) indicate the 

largest integer which appears in the input to the problem. 

For example if the input x is a weighted graph MAX(x) indic

ates the weight of the heaviest edge. Now let us consider the 

subproblem Ap of A obtained by taking into account only those 

instances in INPUT such that HAX(x) < p(lxl) for some polyno

mial p. We say that A is pseudopolynomial if A is a polyno-
p -

mially solvable problem; A is strongly NP-complete of A is 
p 

still an NP complete problem. SUBSET-SUM is a clear example 

of pseudopolynomial problem. In fact since we may solve the 

SUBSET-SUM problem in time O(nob) it t~rns out that the pro

blem is not polynomial in the size of the input, but is poly

nomial in the value appearing in the input. Hence if we bound 

MAX by a polynomial function we have a polynomially solvable 

problem. An the other side the problem MAX-CUT is a strongly 

NP-complete problem. In fact even if we restrict all weights 

to be equal to one we still remain with an NP-complete opti

mization problem. Similarly strongly NP-complete problems are 

GRAPH-COLOURING, TSP, MAX-CLIQUE etc. Clearly if a problem 

is strongly NP-complete it cannot. ".be pseudopolynomial and 
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viceversa. 

A fundamental result relates pseudopolynomiability and 

full approximability of problems: if for all input x we have 

* m (x) ~ q(lxl ,MAX (x) for a given polynomial q, then a problem 

is fully approximable if and only if it is pseudopolynomial. 

As a consequence, under the same hypothesis, if a problem is 

strongly NP-complete it cannot be fully polynomial. 

Actually such characterization is not enough. In fact 

when the condition is not satisfied (as it happens for the 

PRODUCT-KNAPSACK problem) then the concept of pseudopolyno

miability is not necessary to determine the full approximabi

lity of a problem. 

More recently new conditions have been proposed which 

completely characterize both approximable problems and fully 

approximable problems. 

In particular on the base of preceding results (appearing 

in the references) the following more recent result may be 

shown. 

Let us consider the class of optimization problems which 
may be stated as subset problems, that is those problems in 

which we look for the subsets of a given set of items which 
satisfy a given property and which maximize (or minimize) a 
given objective function m. Most problems that we have dis

cussed insofar are indeed subset problems. Given a subset 

problem P we say that P satisfies an h-dominanae test if,given 

any two feasible solutions S1 and S2' the fact that 

m(S1) - m(S2) 
min(mCS 1) ,m(S2» 

* * 

< h 

implies that if S1 and S2 are the best solutions which may be 
achieved from S1 and S2 respectively 

* * m(S1) > h o m(S2) 
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A necessary and sufficient condition for the full approxima

bility of a subset problem P is that for a suitable constant 

h P satisfies a polynomial h-dominance test. 
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The paper presents a model for optimum partitioning of tasks over a 

multiple-processor system. The minimization of the interprocessor. com

munications overhead and/or the message average delay are considered as 

a design criterion. The algorithmic approaches to the problem are briefly 

described and improuvements to the case of multiple copies of tasks are 

considered. A large set of references covering the area are included. 
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1. INTRODUCTION 

Many papers in the last years on issues on distributed systems have 

shown the necessity of models, both in the design of the system and 1n 

the resources management to avoid underutilization, overhead and con

gestion. 

In the references, a wide range of models concerning optimal parti

tion of objects in distributed systems is listed, see in particular [8, 

9,13,14,15,16,20,25,29,46,50,61,65,68]. The area of computer modelling 

is especially developed for computer networks. Synthesis models: optimi

zation of cost, capacity and lateness of the communication network; syn

thesis of fault tolerante networks; concurrency control; optimal mana

gement policies; analysis (prediction) models: performance evaluation, 

average transaction response time during peak traffic periods, utiliza

tion of var10US resources and system availability, deadlock detection 

and avoidance. 

One critical design problem of computer systems is that of assigning 

computational objects (files, programs of different klnd) to possibly 

different nodes in a computer network for query/update/execution purposes. 

Many measures of the optimality of the distribution can be consider

ed either as components of the objective function or as constraints of 

an optimization problem. 

One measure of optimality 1S minimal cost. The cost consist mainly 

of storage costs, query/update/execution local costs, communication costs 

and network cost. Unfortunatly, although the model can be as accurate 

and comprehensive as desired, solution techniques are very complex and 

wotk effectively only for toy examples. 

Another measure of optimality is performance. Common performance ob

jectives are minimum response time and maximum system throughput, but 

many others objectives can be considered as fault tolerance V1a alterna

tive routing capabilities and minimum communication flow on the inter

connection links or busses. In this framework distributed systems are 

commonly represented as queueing networks. Its performance is optimized 

with respect to some parameters (or decision variables) such as: network 
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topology, routing and scheduling strategies, device speeds, computational 

graph embedding strategies, device visit ratios. In this paper only the 

placement of computational objects among interconnected processors is 

considered. 

The paper presents a basic model for exact or approximate optimum 

partitioning and allocation of tasks over multiple-processor nodes. Mini

mization of the interprocessor communications overhead and/or the cor

responding message average delays has been chosen as a design criterium. 

Improuvements of the basic model for some classes of applications are 

considered. 

For sake of simplicity a completely homogeneous computer system is 

considered with all processors of equal capabilities and all processors 

interconnected by a fully connected netwotk. However the model can be 

easily generalized to networks with given message paths among all node 

pairs. The important case of random routing capability is not considered 

in this paper. Furthermore all transportation cost may be considered 

equal within the network. The performance in term of delay (see objective 

function OF 2.1) or in term of speed (number of bytes per unit time" see 

OF 2.2) for interprocessor communications ~s considered constant. In the 

first case the communication channels are supposed to have a speed grow

ing with the traffic incident on the channel such that the message delay 

remain constant. In case of networks requiring multiple interprocessor 

transmissions for each message, the total delay will be obtained as the 

sum of the delays on the utilized channels, plus the delays on the in

termediate nodes of the path. 

In section 2 the basic model is presented; in section 3 some algo

rithms for the different Objective functions presented in section 2 are 

briefly described; in section 4 some modifications of the basic model for 

given classes of applications are investigated. 



34 M. Lucertini 

2. THE BASIC MODEL 

2.1. Let be given: 

- a fully connected network of C similar computer with speed S (number 

of instruction per unit time); 

- n computational objects (files, tasks, jobs, ..• ) to be processed by 

the computer network, N. represents the (average) amount of instruc
~ 

tions to be executed to process the computational object i (NilS is 

the time needed to process i); 

- a computational graph'G(N,A) (INI = n, IAI = m) where N represents the 

set of computational objects and A the set of communication require

ments among the nodes, the arc weights A .. represent the (average) 
~J 

of 

of 

number of node j execution requests sent from node i, the node weights 

A .. represent the (average) number of node i execution requests sent 
~~ 

from outside the network, M .. represents the number of bytes exhanged 
~J 

between i and j for each execution request from i to j. 

The delay time analysis is performed under the standard hypotheses 

Poisson arrivals of all execution request, exponential distribution 

service times and independence assumptions [23] . 

Introducing the binary decision variables xik and the (average) 

total execution time for each node Ei' defined as: 

E. 
~ 

if node i is processed by computer k 

else 

n 
= ( L A,.)N·/s = A.N·/s 

. 1 J~ ~ ~ ~ 
J= 

we can easily write the following constraints of the basic optimization 

problem. 
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2.2. Basic model constraints 

C 

L xik = 1 vi (1) 
k=l 

E(xk) 
n 
L E.x. k < 1 \Ik (2) 

i=l 
l l -

xik 0, 1 V(i,k) ( 3) 

The first set of constraints indicates that each node must be as

signed to a computer, the equality imply that no multiple copies of nodes 

are allowed, in some applications this assumption is too restrictive and 

(1) will be relaxed to inequality constraints indicating that each node 

must be assigned to at least one computer (see section 4). 
The second set of constraints indicates that the total computational 

load assigned to each computer (with the given speed S) must be less or 

equal to the computer capacity. In fact this set of constraints is mean

ingfull only if we optimize with respect to the interprocessor overhead 

with deterministic arrivals. If we take into account delay and we have 

Poisson arrivals the objective function lS build such that if the total 

load allocated to a computer tend to 1 the delays tend to + 00 (a maximum 

load factor of about .8 is in practice acceptable). The two possibilities 

are investigated in the following sections. 

2.3. Basic model objective function 

OF1) Minimization of interprocessor communications overhead 

c 
min( L 

k=l 

c 
L 

h=l 
h;i:k 

or equivalently: 

c 
cost + max( L 

k=l 

n 

L 
i=l 

n 

L 
i=l 

n 

L 
j=l 
j;i:i 

n 

L 

x .kx .hA .. M .. ) 
l J lJ lJ 

j=l 
x.kx.kA .. M .. ) 

l J lJ lJ 

j;i:i 
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OF2) Minimization of system delays 

There exists two kind of delays in the system; the first one is the 

execution delay in the computers both for execution requests from outside 

the network and for execution requests from other nodes on the same com

puter or on other computers, the second one is the transmission delay 

for execution requests coming from nodes in other computers. The first 

one depends on the computer speed and the computer load, the second on 

the transmission channel speed and the channel load. A realistic hypo

thesis is that the channel speed depends on the load in such a way to 

mantain constant the transmission delay; in other words the links among 

computers are built after the allocation of nodes on the computers in 

order to meet such requirement. Under this assumption the transmission 

delay is equal to a constant for each couple of nodes allocated on dif

ferent computers and the transmission time depends only on the lenght of 

the data stream to be sent (M .. ). The first expression (OF2.1) of the 
l.J 

objective function holds under this assumption. Otherwise, if the speed 

of the intercomputer channels is a given value T (number of bytes per 

unit time), the objective function is shown in the second expression 

(OF2 .2). 

The computer k average execution delay Wk can be obtained utilizing 

the standard queueing systems formulae: 

1 

n n 
~k = S L xl.·k / L N.x'k 

i=l i=l l. l. 

n 

fk = L 
j=l 

n n 
L A, ,x'k = L A,x'k 

i=l l.J J j=l J J 

n 
It l.S easy to verif'y that ~k > fk if and only if L E,x'k < 1. 

i=l l. l. 
The total computer delay DC is given by: 

C 
DC = L fkWk 

k=l 
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as: 

The total transmission delay DT is given by: 

c c 
L L 

k=l h=l 

n 

L 
i=l 

n 
L (d+M .. )A. ,x,hx'k . 1 lJ lJ 1 J 

J= 
j# 

The first expression of the objective function can now be written 

(OF2.l) 
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Let us now analyze the second case, i.e. given channels speed. The 

flow fhk from computer h to computer k (number of requests per unit time) 

is given by: 

n 
= L 
i=l 

The capacity of channel (h,k), i.e. the maximum number of requests 

that can be sent from h to k, ~hk is given by: 

n 
= T( L 

i=l 

where 0 l(A .. ) is the unitary step function: 
- lJ 

, 1 (A .. )1 1 

if A .. > 0 lJ 

- lJ 
0 if A .. = 0 

lJ 

n 
L A .. x·hx· k ) 

. 1 lJ 1 J J= 

The transmission delay on channel (h,k) is now given by: 

Whk = 
1 

The total transmission delay DR can be written as: 

C 

DR = L 
k=l 
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and the objective function becomes: 

(OF2.2) 

Remark that if the intercomputer flows are small with respect to 

the channel capacity, DT can be considered a good approximation of DR. 

3. ALGORITHMS FOR THE TASK ASSIGNMENT PROBLEM 

3.1. The combinatorial optimization problem obtained from constraints 

(1),(2) and (3) and objective function OFl is a quadratic integer pro

gramming problem. It can be solved as a quadratic problem [32,37] or it 

can be transformed in a linear problem introducing the new binary va

riables Yijk (Yijk = xik 0 Xjk) and the additional constraints: 

2 o Y·"k < x· k + x"k 
~J - ~ J 

(4) 

y. ·k > x"k + x"k - 1 
~J - ~ J 

In practice, as the problem is a maximization problem and A .. M .. ~ 0, 
~J ~J 

the (5) can be dropped without affecting the optimal solution. 

In the general case the problem is NP-complete and very hard to 

solve [8,26,42,47,51,62] ;it can be efficiently solved only for particular 

graph topologies [2,3,19,39,42,48,50,52,60,64,66,67,73] or via heuristic 

algorithms [4,44,49,56,57,58]. 

An heuristic approach of particular interest consists in organizing 

the solution algorithm in as many main steps as the number of available 

computers (C) and, at each step, to identity, among the nodes of the 

computational graph, those to be assigned to a given computer such that 

the communications with the rest of the graph will be minimized; the 

nodes assigned at each step will be eliminated from the graph and are 

not considered in the sequel of the algorithm. The subproblem to be solved 

at each .step is again NP-complete but efficient solution procedures can 
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be utilized [30,40,41]. 

A different heuristic approach consists in introducing additional 

constraints in order to reduce the number of subsets of nodes to be con

sidered as feasible clusters to assign to a computer. Examples of addi

tional constraints leading to pOlynomial bounded algorithms can be found 

in [3,4,5,50,55,59,63]. 

3.2. The combinatorial optimization problems obtained from constraints 

(1),(2) and (3) and objective functions OF2 are are nonlinear integer 

programming problems and cannot be easily transformed in linear problems. 

Remark that for a given computer k as the left hand side of constraint 

(2) increase, the objective function also increase and tend to + 00 for 

E(xk) ~l-. Therefore all constraints (2) are satisfied with strict 

inequalities. But we cannot simply eliminate such constraints; in fact 

it is easy to verify that for E(~) ~ 1+ the objective ~ction tend to 

- 00 and the optimal solution is unbounded. On the other hand if 
n 

S ~ I 
i=l 

A.N. or we utilize suitable local search techniques to solve the 
~ ~ 

problem, the set of constraint (2) can be dropped. 

A local search technique leading in most practical cases to good 

solutions (without any "a priori" guarantee) work as follows. 

Let be given a feasible solution of the problem and the correspond

ing objective function. At each step of the algorithm take k nodes in all 

the possible ways and try to reallocate the k nodes in all the possible 

way. For each possibility calculate the corresponding value of the ob

jective function. If a better solution is found take it as the new solu

tion and go to the next step. Stop if no .reallocation of k nodes leads to 

a better solution. 

In practice it is not necessary to verify all the (~) subsets of 

size k of the set of nodes and all the (Ck-l) reallocations of k given 

nodes. Several rules can be pointed out to reduce the number of possibi

lities to be verified and (if necessary) to avoid illegal distribution 

of nodes. 

For k = 1 the algorithm is very efficient but the quality of the 
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results is in general poor, k = 3 seems to be in most cases a good compro

mize between efficiency and quality of the solution. 

3.3. Among the particular graph topologies leading to interesting algo

rithmic approaches, there are the tree structures. In fact many problems 

in computer system design can be formalized like tree partitioning pro

blems. 

Tree partitioning (TP) 

Given a weighted tree T (weights on the edges and/or on the vertices) 

and a scalar B, find a partition of the vertices in clusters such that 

the weight of each cluster (sum of the weights of its vertices) is not 

greater than B and the connection weight (sum of the weights of all edges 

with endpoints in different clusters) is minimized. 

TP is simply the basic model with objective function OFI and an un

derlying tree structure. TP (in decision form) is NP-complete (for B ~ 3) 

even if T is a star or a binary tree but can be solved in pseudo-polyno

mial time; TP is polynomial if all edge weights are equal, or if all 

vertex weights are equal, or if T is a chain (0(n2)); for general graphs 

and B ~ 3 the problem remains NP-complete even i~ all vertex and edge 

weights are I [42,3,60,50,34,35]. If we modifY the objective function by 

minimizing the number of clusters (instead of the connection weight) the 

problem became polynomial and can be solved in linear time [52]; for 

general graphs (even if unweighted) the problem is NP-complete. 

Equipartition of trees (ET) 

Given a weighted tree T and an integer m, find a partition in m non

empty clusters such that each cluster is a tree (such a partition can be 

obtained by deleting m-l edges of T) and a norm of the m-vector v of the 

differences between the clusters weight and the clusters average weight 

(sum of all vertex weights divited by m) is minimized. 

If T is a star, ET can be solved in polynomial time by sorting 

(O(n log n)) (for any norm). In the general case ET with L norm can be 
'" 

solved in polynomial time. More precisely the problem of finding a 



Models of the Task Assignment Problem in Distributed Systems 41 

mrpartition of T minimizing the maximum cluster weight can be solved by 

a shifting algorithm in time O(m3rd(T)+mon) where rd(T) 1S the number 

of edges in the radius of T [2]. The easiest probl~m of finding a 

mrpartition of T maximizing the minimum cluster weight can be solved 1n 

time O(m2 rd(T)+mon) [66]. Remark that the same two problems for general 

graphs are NP-complete. 

4. MULTIPLE COPIES OF NODES 

If multiple copies of nodes are allowed we must introduce new sets 

of variables and we must modifY consequently the formulation of the basic 

model. In the following we analyze only the model with objective function 

OF2.2, but all the results can be easily extended to the other simpler 

formulations. 

In this case we must also introduce new considerations about the 

behaviour of the system. In fact, if two or more copies of a node exists, 

every time we modifY the parameters or the data contained in a copy of 

the node we must modify in the same way also all the other copies, in

troducing an additional request of intercomputer flows. In order to 

simplifY the exposition 1n the sequel we ignore such flows, supposing 

that no node modifications occur. 

Under these assumptions the multiple coples problem can be formula

ted by intrOducing the variables: 

h Y ij = (average number of node j execution requests sent from node 

i to the copy h of node j). 

Obviously the following constraints hold: 

I y~. = A .. 
h EH. lJ lJ 

J 

h y .. > 0 
1J 

V( i,j) (6) 

V(h,i;j) 
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where R. represents the set of node j possible copies. In order to form
J 

ulate correctly the model, the binary variables xik transform in: 

h = { 1 if the copy h of node i lS located In the computer k 

xik 
o else 

with the additional constraints: 

L x\ < 1 
hER. l 

l 

C h 
L x'k < 1 

k=l l -

C 
L L x~ > 1 

k=l hER. lk 
l 

V(i,k) 

V(i,h) (8 ) 

Vi 

the (8) and (9) replace the set of constraints (1). The (2), if needed, 

will transform In: 

n n h h 
L L (( I y .. )N,!S)x· k < 1 

i=l hER. j=l Jl l l-
l 

(10) 

It is easy to see that such constraints lncrease of,an order of magnitude 

the solution algorithm. It would be therefore usefull to be able to drop 

constraints (10) on the gound of what has been said in the previous sec

tion. 

In the same way we can modifY the quantities defining the objective 

function by simply sUbstituting y~. to A .. and considering a new problem 
lJ lJ n 

with L 
i=l 

R. nodes to be located instead of n. 
l 

The overall model is quite complex and only poor heuristic solution 

algorithms exist. 
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APPROXIMATION ALGORITHMS FOR BIN-PACKING - AN UPDATED SURVEY 

1. Introduction 

E.G. Coffman, Jr. 
M.R. Garey 

D.S. Johnson 
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Murray Hill, New Jersey 07974 

This paper updates a survey [53J written about 3 years ago. All of the results mentioned there 

are covered here as well. However, as a major justification for this second edition we shall be 

presenting many new results, some of which represent important advances. As a measure of the 

impressive amount of research in just 3 years, the present reference list more than doubles the list in 

[53]. 

Characteristic of bin-packing applications is the necessity to pack or fit a collection of objects 

into well-defined regions so that they do not overlap. From an engineering point of view the 

problem is normally one of making efficient use of time and/or space. A basic mathematical model 

is defined in the classical one-dimensional bin packing problem: We are given a positive integer bin 

capacity C and a set or list of items L - (P\,P2, ... ,Pn), each item Pi having an integer size s (Pi) 

satisfying 0 <; S (Pi) <; C. What is the smallest integer m such that there is a partition 

L - B \ U B 2 U ... U Bm satisfying ~PleBJ S (P) <; C, 1 <; j <; m? We usually think of each 

set Bi as being the contents of a bin of capacity C, and view ourselves as attempting to minimize 
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the number of bins needed for a packing of L. 

By this choice of terms the obvious interpretation of bin-packing corresponds to problems of 

storage. However, the variety of other interpretations that can be placed on the parameters and 

terminology accounts for the fundamental importance of the problem. Packing trucks with a given 

weight limit and assigning commercials to station breaks on television [11] illustrate this variety in 

the real world. A commonly cited, general example is the following cutting-stock problem. 

Material such as cable, lumber, pipes, tapes, etc. is supplied in a standard length, C. Demands for 

pieces of the material are for arbitrary lengths not exceeding C. The problem is to use the 

minimum number of standard lengths in accommodating a given list of required pieces. 

Problems in which time is the dimension (resource) being partitioned are represented by the 

following scheduling problem: We are given a collection of identical processors on which a set of 

independent tasks with known execution times are to be executed. The problem is to determine the 

least number of processors that must be used in order that all tasks be completed by some given 

deadline. Here, the processors are bins, the deadline is the common bin capacity and the elements 

of L are the task execution times. 

This problem establishes the connection between bin-packing and combinatorial scheduling 

theory. Note in particular the close relationship between this problem and the multiprocessor 

scheduling problem, i.e. the problem of minimizing makes pan on parallel processors. (The 

makespan or length of a schedule is simply the latest task finishing time.) In bin-packing terms it 

corresponds to the bin design problem: Given L and a fixed set of m bins, what is the least capacity 

C such that L can be packed in m bins of this capacity? Historically, research on this problem 

was carried out exclusively under the heading of scheduling theory. These results are included here 

because both the classical and capacity minimization problems have significance in scheduling and 

storage applications, and because they are based on the same mathematical structure, i.e. they differ' 
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only in the descriptor held fixed and the one chosen as the objective function. 

It is consistent with the effort invested in these problems that efficiently computing optimal 

solutions has proved to be quite difficult. In fact, the bin-packing problem, or more precisely the 

decision problem "Given C, L, and an integer bound K, can L be packed into K or fewer bins of 

capacity C?" is NP-complete. A similar statement holds for the decision problem corresponding to 

multiprocessor scheduling. By the theory elaborated in [52,71,781, this means that it is unlikely that 

efficient, (Le., polynomial time) optimization algorithms can be found for these problems. Thus 

researchers have turned to the study of approximation algorithms, that is, algorithms which, 

although not guaranteed to find an optimal solution for every instance, attempt to find near-optimal 

solutions. The analysis of approximation algorithms is the dominant topic in the remainder of this 

paper. It is primarily this theme that has determined the literature we have chosen to survey. This 

theme will be further narrowed to those relatively simple but effective algorithms which have been 

successfully analyzed for measures of worst-case or average-case performance. 

Along with closely related partitioning problems, bin-packing and multiprocessor scheduling have 

played an important role in applications of complexity theory [521. They also hold a special place in 

the history of approximation algorithms. It was in these contexts that the first work was done in 

proving that fast approximation algorithms could actually guarantee near-optimal solutions. The 

early work of Graham [60,621 on multiprocessor scheduling inaugurated this approach, and the 

early work in bin packing (most notably [72)) served to popularize and extend the methodology. 

The scope of applications has been widened considerably by the study of a number of variants of 

the basic problem. Approximation algorithms have been designed and analyzed for the following 

four basic modifications: (1) Packings in which bounds are placed in advance on the number of 

items that can be packed in a bin, (2) Packings in which a partial order is associated with the set of 

items to be packed and constrains the ways in which items may be packed. (3) Packings in which 
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restrictions are placed on the items that may be packed in the same bin, and (4) Packings in which 

items may enter and leave the packing dynamically. These variants will be covered in Section 3 

following the survey of results in Section 2 for the classical problem. 

Multiprocessor scheduling results will be described in Section 4. In addition to this problem, 

there have been several others based on optimizing objective functions other than the number of 

bins. In Section 5 we shall consider such objective functions as the number of items packed and the 

sum of the squares of the bin levels, where bin level refers to the total size of the items in a bin. 

With the techniques that had developed for the one-dimensional problems it was natural that 

efforts eventually turn to higher dimensions. In Section 6 we discuss the results on vector packing 

where items sizes and bin capacity are assumed to be d -dimensional vectors. Such problems model 

scheduling applications in which jobs must use several different resources during their execution. 

In Section 7 we survey the large and growing literature on two dimensional packing. Once again 

the obvious industrial applications in stock cutting have been an important stimulus to this research. 

Further motivation has been provided by advances in VLSI technology in which layouts on chips 

pose a number of important combinatorial packing problems. The focus of this survey on the 

analysis of approximation algorithms essentially limits us to the research on packing rectangular 

figures into two dimensional "bins" or strips. 

We shall be covering numerous improvements to the early results in bin-packing that were not 

mentioned in [53]. This includes the discovery of polynomial approximation schemes for one

dimensional bin packing, and the many new results on the probabilistic analysis of packing 

algorithms. In the final section we shall mention a few of the many open problems still outstanding. 

1. The Classical Bin-Packing Problem 

We begin by describing three basic algorithms for the problem as defined in the preceding 
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section. The first, and simplest, is NEXT-FIT: We process the items in L in turn, starting withp\, 

which is placed in bin B\. Suppose that Pi is now to be packed, and let Bj be the highest indexed 

non-empty bin. If Pi will fit in Bj (the level of Bj does not exceed C-s (Pi», then put Pi in bin 

Bj . Otherwise, start a new bin (bin Bj+I) by putting Pi into it. 

This is clearly a fast algorithm (linear time). Moreover, it is not difficult to show that, if 

NF(L) is the number of bins used in the NEXT FIT packing of list Land OPT(L) is the number 

of bins required in an optimal packing, then for all lists L, NF(L) ~ 2·OPT(L). This is the best 

bound of this sort we can prove for NEXT FIT, since the examples shown in Figure 1 indicate that 

there are lists L with NF(L) ~ 2·OPT(L)-1. 

1 
2" 

1 
2" 

N bins 

OPT(L)=N+l 

1 
2N ~ 0 1 

2:1 

1 
2" 

2N bins 

tlF(L)=2N 

Figure 1. Examples of lists L with NF(L) = 2'OPT(L) - 1. 

To improve on this bound we need a new algorithm. One defect of NEXT FIT seems to be that 

it only tries to put Pi in one bin before it resorts to starting a new bin. This suggests that the 

following FIRST FIT algorithm might be an improvement: When packing Pi' put it in the lowest 

indexed bin into which it will fit (starting a new bin only if Pi will not fit into any non-empty bin). 

It can be shown (though the proof [49,72J is more difficult) that for all lists L, 
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FF(L) :E;; (t 7/1 O)'OPT (L) +1 [72] and, again, this is the best ratio possible, since there are lists 

L with arbitrarily large values of OPT(L) such that FF(L) ~ (I 7/10)'OPT(L)-8 [72]. These 

lists are too complicated to illustrate here, but Figure 2 shows examples that approach a ratio of 

5/3 - 1.6666 .... 

1 
6-2E 

!+E 
3 

I I 

*-2£ 

1 
6-2~ 

1 
6-2E 

% ~ 1/ 1 +E 
3" 

!+E 
2 

1 
6"-2 E 

1 
6-2~ 

i-2C 

!+E !+£ 
3 2 

6N bins N bins 3N bins 6N bins 

OPT(L)=6N FF(L)=lON 

Figure 2. Examples of lists L with FF(L) = j·OPT(L). 

From these examples a further improvement suggests itself. FIRST FIT seems to perform 

poorly when the large items occur at the end of the list. The algorithm FIRST FIT 

DECREASING seeks to avoid this effect by first ordering the items so that 

s (Pt) ~ s (P2) ~ '" ~ S (PrJ), and then applying FIRST FIT to the reordered list. For this 

algorithm it can be shown (with considerable difficulty [4,69,72]) that for all lists L, 

11 
FFD(L) :E;; 9'OPT(L)+4 and, once more, this is the best ratio possible, as illustrated in 

Figure 3. 
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1 
4" -2E 

1 
4"-2E /11/ IIIII 1 

4" -2E 

1 
4"+E 

1 
4" -2E 1 

4"+E 1 
4"-2E 

1 
2+E 

1 
4"+2E 1 

4"+E 
1 
4" -2E 

1 
4"+2E 

1 
4"+E 1 4" -2c 

6N bins 3N bins 6N bins 2N bins 3N bins 

OPT(L)=9N FFD (L)=llN 

Figure 3. Examples of lists L with FFD(L)=~PT(L). 

Let us formalize the type of worst case analysis we have been discussing. If A is an algorithm 

and A (L) is the number of bins used by that algorithm for list L, define 

RA (L) == A (L)/OPT(L). The absolute performance ratio RA for algorithm A is given by 

The asymptotic performance ratio R; for A is given by 

R; == inf{r ~ 1: for some N > 0, RA(L) ~ r for all L with OPT(L) ~ N} . 

The above results can now be summarized by saying that RNF - 2, R;;' - 17/10, and 

R;FD ... 11/9. Notice that RA need not equal R;. Although R;FD .. 11/9, it is easy to give 

lists L for which OPT(L) - 2 and FFD(L) - 3, so that RFFD ~ 3/2. The asymptotic ratios 

seem to be a more reasonable measure of performance for the basic bin packing problem, but 

absolute ratios do come up in some of the work on related problems that we shall be discussing later. 

Table I highlights the early results that were obtained for several other algorithms, along with 
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those just described. The quantity R;(t}, 0 < t ~ 1 is the asymptotic worst case ratio for 

algorithm A on lists all of whose items have size bounded by t·e. This measure is of interest in 

applications where the largest item expected is significantly smaller than the bin capacity. 

Algorithm Timing R; R;(1/2) R;(1/3) R;(1/4) 
WORST FIT 8{n log n} 2.0 2.0 1.5 1.333 ... 
NEXT FIT 8(n) 2.0 2.0 1.5 1.333 ... 
FIRST FIT 8(n log n) 1.7 1.5 1.333 ... 1.25 
BEST FIT 8(n log n) 1.7 1.5 1.333 ... 1.25 
ALMOST WORST FIT 8(n log n) 1.7 1.5 1.333 ... 1.25 
NF DECREASING 8(n log n) 1.691... 1.424 ... 1.302 ... 1.234 .. : 

REVISED FF 8(n log n) 1.666 ... NA NA NA 
GROUP FIT GROUPED 8(n) 1.5 1.333 ... 1.25 1.20 
FFGROUPED 8(n log n) 1.333 ... 1.333 ... 1.25 1.20 
ITERATED LFD 8(n log"n) 1.333 ... NA NA NA 
FF DECREASING 8(n log n) 1.222 ... 1.183 ... 1.183 ... 1.15 
BF DECREASING 8(n log n) 1.222 ... 1.183 ... 1.183. .. 1.15 
MODIFIED FFD 8(n log n) 1.183 ... 1.183. .. 1.183 ... 1.15 

Table I. Asymptotic worst case bounds for bin packing algorithms. 

The algorithms REVISED FIRST FIT and MODIFIED FIRST FIT DECREASING are recent 

developments which we shall be discussing in detail shortly. Most of the other results in the table 

were already known by 1973 [69,70). The algorithm BEST FIT (BF) is like FIRST FIT, except 

that Pi is placed in the bin into which it will fit with the smallest gap left over (with ties broken in 

favor of the lowest indexed bin) [72]. WORST FIT (WF) [69,70] places Pi in the non-empty bin 

with-the biggest gap <ties broken in the same way), starting a new bin if this biggest gap is not big 

enough. ALMOST WORST FIT (AWF) [69,70] tries the second largest gap first, and then 

proceeds as does WORST FIT - surprisingly, this makes a difference. The analysis of NEXT FIT 

DECREASING was done by Baker and Coffman [7]. GROUP FIT GROUPED (GFG) [69,70] 

uses "implicit rounding" to discretize the ranges of item sizes and bin levels, thus avoiding the 

sorting implicit in the FFD algorithm which it mimics. It also attains a linear running time, while 
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paying only a partial penalty in worst case behavior. FIRST FIT GROUPED (FFG) [69,70] is a 

hybrid algorithm, included mainly because it yields a different value of R;. The algorithm 

ITERATED LOWEST FIT DECREASING, which attains the same value, but more slowly, is due 

to Krause, Shen, and Schwetman [85], and will be discussed in more detail in the next section. 

A variety of other results were also obtained during the early 1970's. The precise 

values of R;(t) as a function of t were obtained for many of the algorithms [69,70,72]. Except 

for the algorithms WORST FIT and NEXT RT, which yield the continuous function 

R;(t) - 1+t(1-t), these tend to be step functions determined by llltJ. In [69] the asymptotic 

worst case behavior of FIRST FIT was completely determined for the case when all item sizes lie in 

a specified interval, as a function of the interval. The algorithms NEXT-k FIT, k ~ I, which 

resemble NEXT FIT except that Pi is placed in a new bin only if it will not fit in all,y of the last k 

non-empty bins (NEXT-! FIT is the same as NEXT FIn, were studied in [69,701. These papers 

also analyzed what might be considered "non-deterministic" bin packing algorithms: ANY FIT 

(AF), which can place Pi anywhere, except that it can never put it in a new bin unless it won't fit in 

any of the already non-empty bins, and ALMOST ANY FIT (AAF), which in addition can never 

put Pi in a bin whose gap is larger than that of all other bins unless that is the only place it fits. 

The results for ALMOST ANY FIT are the same as those for FIRST, BEST, and ALMOST 

WORST FIT (all of which obey the AAF assumptions), while the results for ANY FIT are the 

same as those for WORST FIT, which essentially makes the worst choices allowed under the AF 

assumptions. ANY FIT DECREASING and all DECREASING algorithms obeying the ANY FIT 

ground rules seem to obey the same bounds as FFD, although the best that has been proved for any 

such algorithms (other than FFD and BFD) is that RAoo ~ 5/4 - 1.25 [69,70]. 

Another special class of algorithms that has received attention consists of the "on-line" 

algorithms. An on-line algorithm is one which, like NEXT FIT or FIRST FIT, assigns items to 
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bins in exactly the order they are given in the original list, without using any knowledge about 

subsequent items in the list. FIRST FIT DECREASING, for example, is not an on-line algorithm, 

since it first re-orders the list. On-line algorithms may be the only ones that can be used in certain 

situations, where the items to be packed are arriving in a sequence according to some physical 

process and must be assigned to a bin as soon as they arrive. Thus, although it is known that "off

line" algorithms such as FFD can do much better than FIRST FIT, it is of interest to determine the 

best worst-case performance that anyon-line algorithm can have. On the basis of a clever analysis 

of the worst case examples for FIRST FIT, Yao [109] was able to devise a new algorithm, 

REVISED FIRST FIT (RFF) , with RRFF = 5/3 - 1.6666, which is to be compared with 

R;;" - 1.7. Even more significantly, he was able to show that for anyon-line algorithm A, we 

must have R; ~ 1.5. In subsequent work Brown [12] and Liang [911 independently extended 

Yao's lower bound results, improving the lower bound to 1.536. In addition Brown designed a 

further revision of FIRST FIT, whose asymptotic worst case ratio is better than 1.64 [14]. 

Galambos and Turan [46] quite recently considered the lower bound question for on-line 

algorithms when the list is assumed to be in non-increasing order. They showed that any such 

algorithm must have a worst-case bound that is at least 10/9. 

In [109] a slight improvement to FFD was also found. However, more significant improvements 

with an 0 (n log n) running time not much worse than that of FFD were discovered by Friesen 

and Langston [45] and by Garey and Johnson [54]. The first of these employs a hybrid algorithm: 

Both FFD and an algorithm called BEST TWO FIT are run on the input; the output is taken as the 

better of the two packings produced. Friesen and Langston showed that, for any list, the average of 

the number of bins required by the two component algorithms can not exceed 6/5 - 1.2, thus 

guaranteeing a weak upper bound on the minimum. 

Garey and Johnson devised the MODIFIED FIRST FIT DECREASING algorithm for which 

the tight asymptotic bound, RMFFD - 71/60 -·1.18333 ... , was proved. The algorithm is based on 
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a careful analysis of the 11/9 examples for FFD and what causes FFD to mispack them. It 

C 
proceeds as follows: Partition the input list L into three sublists LA - {Pi: s(P) E ('3' Cn, 

HC C HC. 
LD =- {Pi: s(P) E (n' '3n and Lx"" {Pi: s(p) E (0, nn. The first step IS to pack the 

sublist LA using FFD. In the resulting packing, call a bin containing only a single item from LA 

an "A-bin." Then pack as much of LD into A-bins as possible using the following loop: 

1. Let bin Bj be the A -bin with the currently largest gap. If the two smallest unpacked items in 

LD will not fit together in Bj , exit from the loop. 

2. Let Pi be the smallest unpacked item in LD, and place Pi in Bj . 

3. Let Pk be the largest unpacked item in LD that will now fit in B j , and place Pk in Bj . Go to 

1. 

The assignment of items to bins is then completed by combining the unpacked portion of LD with 

Lx and adding all these remaining items to the packing using FFD. 

It should be noted that the proofs of the results for the more effective algorithms 'are 

characteristically long and intricate "weighting function" arguments. This proof technique 

originated with the analysis of FIRST-FIT [72], and plays a central role in the theory. A tutorial 

discussion of the use of weighting functions can be found in [22]. 

A number of the detailed proofs have been so long as to preclude their full publication in 

technical journals (e.g. there are results in [33,72,86] whose proofs span 100 pages). Baker [4] has 

illustrated, however, that significantly shorter proofs may be possible; Baker gives a proof of the 

basic 11/9 theorem which is about 1/3 the length of the original. 

Other Item Constraints - As we have seen, when all piece sizes are known to be sufficiently small 

compared to C, the performance of approximation rules can improve substantially. Similar 
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improvements can be expected from other restrictions that occur frequently in practice. For 

example, suppose all item sizes are of the form C ( ! )i, j ~ 0, for some fixed positive integer k. 

Then it is not difficult to show that FFD(L) - OPT(L). As shown in [28] similar results hold for 

many of the approximation algorithms designed for the problems surveyed in the remaining sections 

of this paper. Note that power-of-two item sizes occur in important computer applications; by the 

nature of binary computers, if the sizes of records (files, pages, etc.) are constrained to be powers of 

two, algorithms for maintaining and allocating storage have much more efficient implementations. 

As another illustration suppose the number of different item sizes is fixed, and therefore the 

number of bin types (i.e. the number of possible item-size configurations that fit into a bin) is finite. 

In this case, the work of Gilmore and Gomory [55,56] in . the early 60's can be applied. (The 

importance of this work will emerge again shortly in our discussion of approximation schemes.) 

They were able to show that the linear programming relaxation of the problem, although still quite 

large (it has a variable for each bin type), can be solved using special techniques. An actual 

packing is then constructed by "rounding up" the solution values. In terms of worst case analysis, 

this algorithm will have R; - 1 for any fixed number of item sizes, since it can yield at most one 

excess bin for each possible bin type (a much larger, but still fixed number, independent of the 

number of items). We note in passing that when the number of item sizes is fixed, we actually can 

find optimal solutions in polynomial time, although the degree of the polynomial can be 

astronomical. Gilmore and Gomory's contribution is in obtaining almost optimal solutions with 

much less work. 

Approximation Schemes - The prospects for improved approximation algorithms came to be much 

better understood as the result of two major results of the past three years. The first was the 

discovery by Fernandez de la Vega and Lueker [40] that for every E > 0 there is a linear-time 

algorithm, A [E], with R,.;'id <; 1 +E. Algorithms of this type had long been known for problems 
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such as the knapsack problem, where performance is measured by absolute, rather than asymptotic 

worst-case ratios. A set of such algorithms {A [E]: E > O} has been termed an approximation 

scheme. It was shown in [40] that techniques from the knapsack approximation scheme could in 

fact be used in designing bin-packing algorithms satisfying 

and having a running time linear in the length of L for fixed E. The central idea in the proof is the 

reduction of the original bin-packing problem to one in which the number of possible item 

configurations in a bin is bounded. As in the Gilmore and Gomory [55] approach mentioned earlier 

the algorithm is formulated as a solution to a linear program. 

Subsequently, Karmarkar and Karp [74) eliminated a shortcoming of the above result, viz. the 

fact that the running time of A[d is exponential in (lfE)2. Using the Fernandez de la Vega and 

Lueker results and an impressive array of techniques from mathematical programming and 

complexity theory they devised a "fully polynomial" approximation scheme, i.e. one for which the 

running time is a polynomial in both liE and the length of L, and the additive constant is ~lso a 

polynomial in lIE. 

An interesting corollary to these results is that there exist polynomial time approximation 

algorithms with R; - 1. One need only choose E as an appropriate function of the given instance. 

Unfortunately, the actual guarantee provided by these algorithms is not OPT(L)+K for some 

constant, K, but OPT(L)+!(OPT(L)), where! is a slowly growing function. The best such 

function comes from Karmarkar and Karp's analysis, and is o (Iog2(OPT(L))). 

At present the above results are mainly theoretical in their significance, because the coefficients 

hidden in the term "polynomial time" are too large for practical purposes. However, in principle at 

least, the search for better approximation algorithms can now take a different tack: Instead of trying 

to improve old bounds without great sacrifices in running time, we can try to improve on old running 



62 E.G. Coffman, Jr., M.R. Garey, D.S. Johnson 

times without great sacrifices in the bound. 

Average Case Analysis - As might be expected from the greater difficulty in calculating 

probabilistic measures, the known results for the average case are less sharp and less general than 

those for the worst-case. However, as we shall see, the field is very active and a number of 

significant advances can be cited. 

Before getting into the analytical approach let us consider what has been learned from Monte 

Carlo simulations. The most extensive experiments appear to be those in [69], and subsequently 

those in [961. Our illustrations will be drawn from [691. Since the results in [96] measure 

percentage of waste per bin rather than number of excess bins, they are not readily comparable with 

our worst case results. A summary of some of the results is shown in Table 2. 

Algorithm· UNIFORM UNIFORM UNIFORM 
<0,1.0) <0,0.5) <0,0.25) 

NEXT FIT 31.1 [100.1 18.8 [100.1 7.4 [50.0] 
NEXT-2 FIT 21.9 [85.0] 8.5 [50.0] 2.2 [25.0] 
ALMOST WORST FIT 10.4 [70.0] 4.S [50.0] 1.4 [25.0] 
FIRST FIT 7.0 [70.0] 2.2 [50.0] 0.6 [25.0] 
BEST FIT 5.6 [70.0] 2.2 [50.0] 0.5 [25.0] 
GROUP FIT GROUPED 2.1 [50.0] 0.4 [33.3] 0.3 [20.0] 
A WF DECREASING 2.0 [22.2] 0.2 [18.3] 0.2 [15.0] 
FF DECREASING 1.9 [22.2] 0.1 [lS.3] 0.2 [15.0] 
BF DECREASING 1.9 [22.2] 0.1 [18.3] 0.2 [15.0] 

Table 2. Percentages of excess bins required on the average in bin-packings of 25 200-item lists 
with item sizes uniformly distributed within the stated ranges. [Percentage of excess in 
worst examples known are given in brackets.1 

We should note that the ratios given are not strictly speaking averages of RA (L), since the 

value of OPT(L) could not be determined (its computation being an NP-complete problem). 

Instead these values are for the ratio of A (L) to the sum of the item sizes. As we shall see later, 

however, there is strong evidence to support the claim that this approximation loses very little when 

L is large. 
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The interesting fact from these simulations is that the average behavior, although much better 

than the worst case behavior, still ranks the algorithms in the same relative order. Results for an 

approximation to a normal distribution, and for a distribution obtained by partitioning a set of items 

of size C into a random number of items, are slightly worse, but reflect the same trends [371. It 

should not be expected, however, that average case ranking will always reflect worst case ranking. 

In particular, certain of the new algorithms specifically designed for improved worst case behavior 

(although possibly not MFFD or the hybrid algorithm in [45]) may be comparatively bad on the 

average. 

Because of the restriction to 200-item list the results in Table 2 are not indicative of asymptotic 

behavior. Extensive simulation studies of asymptotic performance are currently in progress by 

Jon Bentley and Catherine McGeoch at Bell Laboratories. An interesting sample of their early 

results is that the expected performance of FF is n/2 + H (no.S) for C normalized to I and for n 

items with sizes uniformly distributed over [0,11. 

The first mathematical results appeared in an approximate analysis by Shapiro [1021. The 

approximation was based on the exponential distribution and estimated the expected value, given 

NF(L), of OPT(L). He concluded that as NF(L) approaches infinity, RNF(L) approaches I 

plus the average item size, when that average is C/5 or less. 

The first exact results were obtained by Coffman, So, Hofri and Yao [32] from an analysis of a 

Markov process defined on the bin levels. For item sizes uniformly distributed between 0 and C, it 

was shown that E(NF(L» is bounded by (4/3)E(OPT(L»+4. It was also shown that 

convergence to the stationary NEXT FIT bin-level distribution was exponentially fast. Hofri [68] 

and Ong, Magazine and Wee [97] have recently strengthened these results by working out the 

second moment of NF(L), and Hofri has derived an approximate probability generating function 

valid for general item size distributions. 
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Karmarkar [73] subsequently extended the NF results to cover uniform distributions over any 

interval (O,tC). Closed forms were obtained for ~ :E;; t :E;; I, and gave results within about .5% of 

the empirical results in [961. It is perhaps natural to expect that the stationary, expected bin-level 

would increase monotonically with decreases in the maximum piece size, t. However, as observed in 

the data of [96] and confirmed analytically in [73], this is not the case for NEXT FIT. In fact, 

packing efficiency was found to be least at t - 0.841, which agrees with empirically observed 

behavior. 

Results on algorithms other than NEXT FIT have also been obtained for uniformly distributed 

item sizes. In [42], Frederickson gives a rigorous proof of the rather intuitive fact that, for this 

particular distribution, the ratio E(FFD(L»/E(OPT(L» approaches 1 as n - 00, where n is 

the number of items. (Note that this ratio is not the same as E(FFD(L)/OPT(L»,) 

Frederickson achieves this result by analyzing a different algorithm which produces packings with a 

much simpler structure. Basically, working inward from both ends of an ordered list of the pieces. 

the algorithm attempts to pair large pieces with small ones. The analysis shows that the algorithm 

requires n/2 + O(n2/3) bins. on the average. to pack a list of n pieces with C - 1. 

Early results on the asymptotic properties of optimal packings were obtained by Loulou [93]. 

He proved that if the n item sizes are independent and identical random variables with the density 

function f. then the limit in probability. R. of the ratio of E(OPT(L» to the expected total of 

the item sizes divided by C is I as n - 00. if f is symmetric or if f is positive and decreasing over 

[0, C). Karmarkar [65] recently showed that this asymptotic result also holds if f is decreasing 

over [O,tC], 0 < t < 1. and 0 elsewhere. 

Results of this type have important consequences for the analysis of approximation algorithms. 

They suggest that for reasonably large lists, the approximation of OPT(L) by the sum of the item 

sizes divided by C is indeed a very good one for large classes of item size distributions. 
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Lueker [95] studied the same question specialized as follows: If f is uniform over [a, b], 

b > a, for what values of a and b does R - I? For a - 0 or a+b ... 1 it was known that 

R - 1, and for points in the region b > I-a it was known that R > 1. Lueker identified a 

substantial subset of the region 0 < a < b < I-a where R > I, and cited simulation results 

which suggest that R - 1 elsewhere in this region. 

KnOdel [82] and Lueker [94] have extended Frederickson's results for the uniform distribution to 

other approximation algorithms. With a slight modification of Frederickson's algorithm (C- 1) 

Lueker showed that the expected number of bins used can be tightened to nl2 + O(n l /2), a result 

that also applies to Knodel's algorithm. Within a multiplicative constant this is the best possible 

performance, since Lueker also showed that an optimal algorithm must use nl2 + 0(n 1/2) bins on 

the average. In [76] Karmarkar, Karp, Lueker and Murgolo generalized these results to any 

probability density symmetric about C/2 or positive and decreasing over [O,C]' thus strengthening 

Loulou's earlier result. 

Hoffmann [66] and more recently Lee and Lee [90] have considered more deeply the expected 

performance of on-line algorithms. They have designed algorithms based on "reservation" 

techniques whereby bins are dedicated to particular configurations of items. In [66] these 

configurations are based on those of Frederickson's pairing algorithm. Hoffmann has shown that his 

on-line algorithm retains asymptotic optimality (in the earlier expected value sense), but at the 

expense of a poor worst-case performance. 

Lee and Lee develop an algorithm with a good worst-case performance and with a good, though 

not asymptotically optimal, expected performance that is relatively easy to analyze. Their on-line 

HARMONIC algorithm, H, packs items so that the sizes of all items in any given bin are in the 

C C C C 
same interval of the set {(2"'C], (3'2"], ... ,(0, Mn, where M ~ 2 is a parameter of the 

algorithm. They show that R;;(M) ~ 1.692 for all M ~ 12, and that 
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lim R;;(M) =- 1.691... , thus improving on both NEXT FIT and FIRST FIT. The latter 
M-co 

bound, 

1 1 1 1 
1.691... - 1 + '2 + 2x3 + 6x7 + 42x43 + ... , 

is the same as the one given for NF DECREASING in Table I. (A worst-case analysis of NF 

DECREASING [7] also entails the analysis of HARMONIC packings.) 

The average-case performance of HARMONIC is analyzed for several item size distributions. 

For the uniform distribution over [O,C] they show that E (H(L»/E (OPT(L» is asymptotically 

no greater than 1.29 for all M > 12, which is to be compared with the corresponding 4/3 result 

for NEXT FIT. 

3. Bin-Packing Variants 

In this section we survey results for variants on the classical one-dimensional bin packing 

problem in which the goal is still to minimize the number of bins usC'.d. 

Constraints on the Number per Bin - This modification was considered by Krause, Shen, and 

Schwetman [85] as a model for multiprocessor scheduling under a single resource constraint when 

the number k of processors is fixed. In this case the items represent tasks to be executed, with the 

size of an item being the amount of the resource it requires (out of a total quantity of C). If we 

assume that all tasks have the same unit-length execution time, then a schedule corresponds to an 

assignment of tasks to integral starting times, such that at no time are there more than k tasks 

being executed or is there more than C of the resource being used. The objective is to minimize the 

latest starting time. This corresponds to bin packing where the bins represent starting times and can 

contain at most k items. 

Krause et al. analyze three algorithms for this problem. The first two are just FIRST FIT and 
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FIRST FIT DECREASING, suitably modified to account for the bound on the number of items per 

bin. The results are simply stated: 

Note that as k - 00, these bounds remain substantially worse than the corresponding bounds when 

the number of items per bin is not restricted (27/10 versus 17110 and 2 versus 1119). Thus the 

very existence of a limit, and not just its size, can have a substantial effect on the worst case 

behavior of the algorithms. 

The third algorithm studied was alluded to in the previous section. ITERATED LOWEST FIT 

DECREASING uses a technique we shall be meeting again in the next section, so we shall describe 

it in detail. We first put the items in non-decreasing order by size, as we do for FFD. We then 

pick some obvious lower bound q on OPT(L) and imagine we have q empty bins, B1,Bb ... ,Bq . 

Place PI in B I and proceed through the list of items, packing Pi in a bin whose current contents has 

minimum total size (breaking ties by bin index, when necessary). If we ever reach a point where Pi 

does not fit in any of the q bins (either because the capacity C or the limit m is exceeded), we halt 

the iteration, increase q by I, and start over. Eventually we will succeed in generating a packing 

for some value of q, and this will be the output. 

The running time of ILFD is O(n 2log n), but this can be improved to O(n log2n) by using 

binary search on q. The performance bound proved for ILFD is RtLFD ~ 2, which makes ILFD 

competitive with FFD. It is conjectured that the actual value of RliFD is closer to the 4/3 value 

we cited in the last section for the case when there is no limit on the number of items per bin. 

Partial Orders on L - Partial orders, ~, on the set L of items arise in two potential applications of 

bin-packing. One is again related to multiprocessor scheduling, and was studied by Garey, Graham, 

Johnson and Yao in [SO). Suppose we have a set of unit-length tasks Pl, ... ,Pn with resource 
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requirements subject to an over-all bound of C, as above, but with no limit on the number of 

processors. In this case a partial order !S is interpreted as follows: Pi !S Pj means that Pi must be 

executed before Pj' i.e., must be assigned to a bin with lower index than that to which Pj is 

assigned. 

The other application in which partial orders arise is in "assembly line balancing," and is studied 

by Wee and Magazine [107]. Here the items represent tasks to be performed on a single product as 

it moves along an assembly line. Each is performed at one of a sequence of workstations B 1 ,B 2' 

etc., and the item sizes correspond to the times required to execute the tasks. The assembly line 

advances in discrete steps, stopping for a period of time C at each workstation. Thus a set of tasks 

can be assigned to a work station (bin) if their total time (size) does not exceed C. The goal is to 

minimize the number of workstations required. In this case a partial order !S has the following 

interpretation: Pi !S Pj means that in any assignment of tasks to workstations (bins), Pi must be 

performed before Pj (but they could be performed at the same workstation, merely by doing Pi 

before Pj within the total time C allowed, so this time Pi can go either in an earlier bin or the same 

bin as Pj). 

Note that these two applications yield different interpretations of the partial order constraint 

within the bin packing context. See Figure 4. Although this difference might appear to be slight, 

its consequences, as shown in the figure, are nontrivial. The algorithm referred to there, 

ORDERED FIRST FIT DECREASING, is the best algorithm known for either version of the 

problem, but yields quite different guarantees. It is quite simple to describe. First, we order the 

items by non-increasing size, as with FFD. We then pack bins, rather than items, in sequence. Bin 

Bi is packed as follows: Place the largest unpacked item into Bi that the partial order will allow. 

Repeat until no more items can legally be packed into Bi • 

Note that this algorithm can be applied to either version of the problem, so long as the partial 
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Figure 4. Two interpretations of Pi ~ Pj and their consequences. 
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order is interpreted appropriately. Note also that, in the absence of a partial order, this algorithm 

generates the same packing as FIRST FIT DECREASING and hence has an asymptotic worst-case 

ratio of 11/9. 

Clustered Items - Here, the basic idea is that only "closely related" items may go in a bin together. 

The one example we cite is from a paper by Chandra, Hirschberg, and Wong [181, although other 

potential applications of this type might come to mind. Here the items are thought of as having 

geographical locations. Putting them in the same bin corresponds to assigning them to a common 

facility (computing service, telephone switching center, etc.>, where each such facility is assumed to 

have a standard capacity C. We desire that the items which are served by a common facility be in 
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close proximity to each other, and this restricts the types of packings that we allow. The main 

results in [I8] concern the case when the contents of a bin must all reside within the same unit 

square, although other figures, such as unit circles, are also considered. For the unit square case, a 

geometric algorithm is proposed and shown to have R; lying between 3.75 and 3.8. 

Dynamic Bin-Packing - This variant was proposed originally as a model of certain problems in 

computer storage allocation; however, storage applications in a general industrial setting are easily 

envisioned. In the computer application the bins correspond to storage units such as disk cylinders, 

and the items correspond to records which must be stored for certain specified periods of time. 

Associated with an item is thus not only a size s (P), but also a beginning time b (P) and an 

ending time e (Pi). A packing is an assignment of items to bins such that at any time t and for any 

bin B, the items assigned to that bin which have begun by time t and not yet ended by that time 

have total size no greater than the capacity C. 

The research reported by ourselves in [27] concentrates on "on-line" algorithms, where in this 

case an on-line algorithm packs items in the order in which they begin, and may not use information 

about items which are to begin later, or the ending times for items which are currently in the 

packing (this lack of information mirrors the predicament often faced by actual computer storage 

allocators). It is assumed that once an item is assigned to a bin it cannot be moved to another bin. 

The algorithm FIRST FIT can be readily adapted to this situation, but the dynamic nature of 

the environment significantly impairs its performance. For the case when no item size exceeds C /2, 

we have R FF O/2) - 1.5 in the classical case, but in the dynamic case it is shown in [27] that any 

on-line algorithm must obey RAooO/2) ~ 5/3 - 1.666.... For FIRST FIT it was proved that 

R FF O/2) lies. somewhere between 1.75 and 1.78. The case when items larger than C/2 are 

allowed is even more difficult to analyze (as seems usually to be the case with bin packing), but is 

clearly much worse. Here it is known that RFF lies somewhere between 2.75 and 2.89, and any on-
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line algorithm must obey R; ~ 2.5. 

Studies of dynamic packings are at the interface between bin-packing and dynamic storage 

allocation. The latter class of problems is distinguished by the assumption that items, once packed, 

can not be moved at all prior to their departure. (In dynamic bin packing the allowed movement of 

items within bins was implicit; only the movement of an item from one bin to another was 

disallowed.) Under this added assumption the fragmentation (alternating holes and occupied 

regions) that develops as items come and go can create far more wasted space; the space wasted by 

the partitioning of storage into "bins" is usually minor by comparison. The standard model considers 

only a single bin whose capacity is to be determined under a given algorithm and the assumptions: 

the total size of items present at any time never exceeds m and the maximum item size is j. (Note 

that m is our usual lower bound on the capacity required by an optimal algorithm.) 

FIRST FIT and BEST FIT are the principal approximation algorithms that have been studied. 

With FIRST FIT an arriving item is stored at the beginning of the first sufficiently large hole 

encountered in a scan of the bin. BEST FIT is defined similarly, where the hole is a smallest one 

exceeding the item size. Let C A (j ,m) denote the capacity needed in the worst-case under 

algorithm A, and in the spirit of our other asymptotic bounds let C;(j) - lim CA (j,m)/m. 
m-oo 

Robson [99] has shown that ~ log2.i ~ C;;'(j) ~ log2.i and C;;'(j) - S(j). The bound for 

FIRST FIT is a best possible one in the sense that an optimal algorithm must have a SOog j) 

worst case if, like FF and BF, it must allocate storage to each item at its time of arrival, and if no 

information is available on items that have not yet arrived. This last result of Robson [98] is in fact 

the classical one of dynamic storage allocation, and generalizes earlier results of Graham [611. 

There are many other interesting results for this problem, particularly those specializing item 

sizes to powers of two. Knuth [83] covers the elements of the subject and a recent survey appears in 

[23]. 
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4. Multiprocessor Scheduling 

We continue here with the bin-design problem defined in the Introduction: With the number of 

bins fixed, find the smallest, common bin capacity C sufficient to pack L. 

The initial work on approximation algorithms for this problem appears in [60,62]. We can 

define worst case ratios as we did before, noting that in this case the asymptotic and absolute worst 

case ratios will coincide for reasonable algorithms - any worst case example can be converted to 

one with an arbitrarily large value for C merely by scaling up all the sizes by an appropriate 

multiplicative factor. (In those applications in which there is a fixed upper bound on the possible 

item sizes, asymptotic worst case bounds would make sense, but due to the nature of the problem we 

would tend to get R; - 1 for most algorithms, e.g., see [SO)). Thus we shall express results for 

this problem in terms of the absolute ratio RA • Graham examined two basic algorithms. LOWEST 

FIT assigns the items to bins in order, placing Pi in a bin with current contents of minimum total 

size (ties broken by bin index when necessary). LOWEST FIT DECREASING first sorts the items 

so that they are in non-increasing order by size and then applies LOWEST FIT. Fixing m, the 

number of bins, Graham was able to prove that RLF - 2-{1/m) [60] and that 

RLFD ... (4/3)-O/3m) [621. In analogy with the results for R;(t> in the classical problem, 

Coffman and Sethi [35] showed that the LFD bound improves to RLFD(k) =E;; k+l - _1_ when 
k km 

it is known that there are at least k ~ 3 items per bin. In [SS] Langston demonstrated how the 

bad examples of LFD could be effectively avoided. The resulting algorithm, LFD*, uses an 

iterative technique and has a worst-case bound, R LFD* =E;; ! + 112 (2-k ), where k is the number 

of iterations chosen. 

Sahni [100] developed an approximation scheme for this problem several years ago. In 

particular, he showed that for any fixed value of m and any E > 0 there exists a polynomial time 
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algorithm with RA - 1 +E. As in the corresponding studies for the bin-packing problem discussed 

earlier, the result is primarily of theoretical interest; such algorithms are exponential in m (and 

polynomial in 1/E) and therefore unattractive for m > 3 or very small E. 

A more practical algorithm which is polynomial in m and still improves upon LFD was 

presented by ourselves in [261. The algorithm works on an iterative principle much like that of 

ILFD. Called MULTI FIT DECREASING, the algorithm works by guessing a capacity C and 

then applying FFD to the list. The next guess is either larger or smaller, depending on whether 

FFD used more than m bins of that capacity to pack the list or not. By using an appropriate 

binary search strategy and limiting the number of iterations performed to some small number k, we 

obtain an algorithm, denoted MF(k), for which we proved the bound RMFlkl :E;; 1.220+(l/2)k. 

Friesen [44] subsequently established the improved upper bound, 6/5 + (l/2)k, which again is 

independent of m. MF(k) improves upon LFD for all m > 2 when k ;> 5, at the cost of only a 

small increase in running time. The worst behavior known for this algorithm is shown in examples 

constructed by Friesen [44], which imply that RMFlkl ;> 13/11 ... 1.18181... for m ;> 13. 

(Better upper bounds are known for the cases when m :E;; 7 [26]). 

We remark in passing that the results for MULTI FIT DECREASING are proved by 

considering the following bin packing variant: Suppose we are given two sets of bins, one with bins 

all of capacity a, the other with bins all of capacity fJ. What is the asymptotic worst case ratio of 

the number of fJ-capacity bins used by FF (or FFD) to the minimum number of a-capacity bins 

needed? This question, first raised in [49], is investigated in detail in Friesen's thesis [44] as well as 

in [26], and is used in [49] for proposing a conjectural explanation of the mysterious fraction 17/10 

in the original theorem about RFF (a conjecture that, unfortunately, is only partially true [103]). 

An algorithm structurally different from any considered so far was introduced by Finn and 

Horowitz [411 and later improved by Langston [89]. It is based on finding approximate solutions to 
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the following closely related partitioning problem: Partition L into m blocks (bins) B \ , ... ,Bm so as 

to minimize the difference in the maximum and minimum bin levels, viz. 

D(B\, ... ,Bm ) -= max{t(Bi )} - min{t(Bi )} , 
i i 

where t(Bi ) = ~pEBIS (P). As is to be expected, good approximate solutions for this problem are 

good approximate solutions for the problem of minimizing bin capacity. (The two problems are 

equivalent, of course, for m "" 2.) The basic idea of the algorithm is iteratively to exchange items in 

the two bins having the maximum and minimum levels until D can no longer be reduced in. this 

way. 

As shown in [41] linear time algorithms can produce packings comparing favorably with those of 

MULTI FIT DECREASING, especially for large lists. Quite recently, however, Karmarkar and 

Karp [75] obtained even stronger results. Again concentrating on better performance for a large 

number, n, of items, they devised algorithms based on an operation called set differencing. These 

algorithms are best illustrated for the case m - 2. 

The differencing operation consists of selecting a pair of item sizes s (p) and s (P') from Land 

then restricting the solution to partitions in which p and p' appear in different bins. The new, 

smaller problem is then equivalent to partitioning 

L' - L-{s(p), s(P')} U {Is (P)-s(p')i} . 

Consider for example, the algorithm: While IL I > I. iteratively select the largest two elements s 

and s' of L and perform the operation L +- L-{s,s'} U {Is-s'i}. The last number, when 

I L I ,., 1, determines D (B \,B 2); the corresponding partition is trivial to construct by backtracking 

through the sequence of differencing operations. Figure 5 shows an example in the form of a tree. 

Other set-differencing algorithms can be obtained simply by altering the order in which elements are 

selected for differencing. 



Approximation Algorithms for Bin-Packing - An Updated Survey 75 

14 17 23 24 40 56 75 

16 19 

4 

1 

10 

~ ~ 
56 75 

24 

23 40 

The packing produced by backtracking: 

17 14 

Figure 5. An Illustration of Set-Differencing. 

The methods for m - 2 are extended in a natural way to classes of algorithms for arbitrary 

m > 2. For a particular linear-time algorithm Karmarkar and Karp show that, except in 

pathological cases, partitions are produced with D - 0 (n-1og n). This result is to be contrasted 

with the corresponding O(n-1) result that applies to LFD and MULTI FIT. To show that the 

pathological cases are extremely rare they use a simple probability model to verify that as n - 00 

the algorithm performs as claimed with probability I. We shall return briefly to this analysis later 

on. 
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Average-Case Analysis - The first such analysis of a specific approximation algorithm was by 

Coffman, Frederickson and Lueker [24]. They analyzed the LFD rule for m - 2 and showed that 

for item sizes uniformly distributed over [0,1] 

Note that n/4 is a lower bound on E[OPT(L) 1. Shortly thereafter they proved that 

..!!.... + O(!!!.) was the corresponding upper bound for the general case, m ;;?; 2 [25]. 
2m n 

More recently Bruno and Downey [J6J analyzed the LF rule assuming independent, uniformly 

d o °b ed 0 0 Th 0 • I' . f h '1 b bOI' p{ LF(L) > } Istrl ut Item sizes. elr mam resu t IS an estimate 0 t e tal pro a Iity OPT(L) x 

by which they were able to demonstrate numerically a fast convergence in probability of LF(L) to 

OPT(L) as n - 00. Using different techniques, Coffman and Gilbert [30J subsequently improved 

the bound on the tail probability and extended the analysis to exponentially distributed item sizes. 

Exponential convergence was demonstrated analytically for the latter distribution and an even faster 

convergence was found for the uniform case. Bounds on the expected values of the performance 

ratios were also derived for both cases. They are 

uniform: [ LF(L) ] 
E OPT(L) 

:E:; 1 + 2(m-J) . 
n-2 ' n > 2 

exponential: E [ LF(L) 1 :E:;l+ 
(m-J)Hm _ 1 

, n > m, 
OPT(L) n-m 

where Hi is the ith harmonic number. 

Asymptotic results of a more general nature were proved by Dempster et al. [36]. They showed 

that for any approximation algorithm, A, in a broad class (including all those considered in this 

survey), the ratio of A (L) to OPT(L) convergences in probability to 1 as n - 00, if the item 

sizes are independent and identically distributed random variables with finite variance. Loulou [92J 
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subsequently proved a stronger result for the LF and LFD rules, viz. the absolute errors 

LF(L)-OPT(L) and LFD(L)-OPT(L) converge in probability to finite random variables. 

Quite recently Frenk and Rinnooy Kan [43] dealt successfully with a conjecture of Loulou; they 

proved that LFD(L)-OPT(L) converges in probability to 0 as n - 00 if the item size 

distribution has a finite mean and a density f satisfying f (0) > O. They also show that if the 

distribution is uniform or exponential, the rate of convergence is 0 [ IO~ n ]. 

What appear to be the strongest results of this type currently known were obtained recently by 

Karmarkar and Karp [75] for one of the set-differencing algorithms discussed earlier in this section, 

where the objective function is again the difference D between the largest and smallest bin levels. 

For the particular algorithm used in [75] let D* (L) denote the output for a given m, and define 

D:,n'" sup D* (L) . 
IL: ILT"n} 

They showed that there is a positive constant a such that 

D" ... e-a(lnn)'/m m,n 

with probability 1 as n - 00 for any item size distribution satisfying a mild smoothness condition. 

A similar result is conjectured for the simple largest-pair-first algorithm illustrated in Fig. 5. 

However, a rather more elaborate, but still linear-time algorithm had to be adopted in order to avoid 

the usual difficulties in dealing with order statistics, as well as certain other problems. 

To help motivate the above result let us assume m" 2, where the simpler form 

D;,n ~ 0 (n-a log n) applies. Consider the following set-differencing algorithm which assumes that 

n - 2k, k ~ 1. Pair the largest two numbers in L, the next largest two, and so on. Differencing 

each pair we establish a reduced problem containing nl2 - 2k- 1 differences. The desired partition 

is obtained from this process repeated k times. Under general assumptions it is reasonable to 
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expect that at the end of each of the k stages the order of magnitude of the numbers is reduced 

approximately by a factor of n. Accordingly, we expect a final partition such that 

A result in a similar vein was recently proved by Karmarkar, Karp, Lueker and Odlyzko [77] for 

a problem posed by Michael Steele [105]. The problem was to find the rate of convergence of 

E[D(L)] as n - 00 assuming an optimal algorithm, m '"" 2 and item sizes uniformly distributed 

over [0,11. Using a technique called the second-moment method, they showed that 

S. Other Performance Criteria 

Sums of Squares of Bin Levels - In parallel efforts Cody and Coffman [21] and Chandra and 

Wong [17] studied bin packing problems arising in the allocation of records on computer auxiliary 

storage devices. The basic probability models are patterned after those analyzed by Knuth [83] in 

connection with similar storage assignment problems. In bin packing terms the "sizes" of items are 

the access frequencies of the corresponding records. 

The problem in [21] models paging drums where a given set of pages is to be partitioned among 

the m sectors (bins) of the drum so as to minimize average access time. This quantity is calculated 

to be m-2 + !!!. ~ t 2(B), where t(B) is the ith bin level, i.e. the sum of the access 
2 2 i-I 

frequencies of the pages in the ith sector. The minimization of this sum can be accomplished 

roughly by making the bin-levels all as close to each other as possible. In [211 the LFD rule is 

applied to this problem and the following result proved: RLFD ~ 1 + (I ). 
16 m-I 

The problem in [17] models arm contention in disk-pack computer storage. In this case, the 

object is to minimize the contention that occurs whenever two items from the same bin are 
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m 
requested at the same time. Contention is measured here by the simpler quantity, ~ e2(B;). The 

;-1 

algorithm LFD is analyzed in this context too, and it is shown that for this problem 

37 25 36 ~ RLFD ~ 24 In (38), Easton and Wong consider the variant in which no bin can contain 

more than k items. They analyze an appropriately modified version of LFD and showed that 

RLFD ~ 4/3. 

Wong and Yao (108) consider yet another variant based on minimizing access time (110). 

Suppose we wish to maximize, rather than minimize, the sum of squares in the above case where k 

items per bin are allowed. This might be considered as a bin packing problem where all items have 

both a size s (p) = 1 and an arbitrary weight w (P), the bin capacity is k, and the goal is to pack 

the items into m bins so as to maximize the sum of the squares of the total weight in each bin. As 

observed in (110), this is of course an easy matter: merely put the k largest items in the first bin, 

the next k largest in the second bin, etc. Wong and Yao consider the generalization where the sizes 

as well as the weights are arbitrary. 

In order that results for this maximization problem can be compared directly to those for the 

minimization problems we have been studying so far, we shall define RA (L) to be OPT(L)/A (L) 

for any approximation algorithm A (this is the inverse of our definition for minimization problems). 

R A and R;; are then defined as before and lie in the range [1,00). Wong and Yao propose a 

heuristic based on ordering the items by non-decreasing density (weight divided by size) and then 

applying NEXT FIT. They show that this heuristic satisfies RA ~ 2. 

Maximizing the Number of Items Packed - We consider again a maximization problem that fixes 

the number of bins and the bin capacity. This time the goal is to pack as many of the items in L as 

possible into the bins. Coffman, Leung, and Ting (34) consider the algorithm FIRST FIT 

INCREASING, which first sorts the items into non-decreasing order by size, and then applies FF 
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until an item is reached which will not fit in any of the bins (which implies that none of the 

remaining items will fit either). They show that RFFl = 4/3. In [33], Coffman and Leung 

consider an algorithm that, like ILFD and MFD, involves iteration. Their algorithm, denoted 

FFD*, works as follows: First sort the items in non-increasing order by size, and then apply FF. If 

some item fails to fit, stop, delete the first (largest) item in the list, and reapply FF to the shorter 

list. Repeat this until a list is obtained that FF does pack into the m bins. Coffman and Leung 

show that FFD* will always pack at least as many items as FFI, and indeed obeys the better 

bounds 8/7 ~ RFFO* ~ 7/6, making the added complexity of FFD* over FFI worth the effort~ 

Langston [87] has recently analyzed these heuristics for the more general model in which bin sizes 

may vary. By arranging bin sizes in non-decreasing order, he proves that RFFl - 2 and 

11/8 ~ RFFO* ~ 3/2. 

Maximizing the Number of Bins above a Given Level - Suppose a threshold T > 0 is given. 

Assmann, Johnson, Kleitman and Leung [3] studied the problem of finding a packing of L into a 

maximum number of bins such that each bin has a level not less than T. Similar to the sum of 

squares problem, for a good packing, the goal is roughly to pack every bin to a level as close as 

possible to, but not less than T. 

Two approximation algorithms were examined for this problem. The first that we shall describe 

begins by producing a standard FFD packing of L for some given capacity C > T. The second 

stage iteratively takes items from the last non-empty bin and places them in the currently lowest 

indexed bin having a level less than T; at the end of this stage some, possibly empty subset of 

highest indexed bins in the FFD packing will have been emptied in order to bring the levels of 

lower indexed bins up to at least T. The performance guarantee for this rule, called FFD[C), is 

an interesting function of the value of C chosen for the initial FFD stage. Using our inverted ratio 

OPT (L)/A (L) as before, it is shown in [3] that RFFO(C) ~ 3/2 for all C ~ T and 
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lim RFFD[C] = 2 and lim RFFD[C] = 2, whereas RFFD[C] = 3/2 if .! T ~ C < 23 T. In 
C-T C-2T 3 

other words, for best worst-case performance we should choose C in [ .! T, 1. T). 
3 2 

The second algorithm investigated was simply ITERATED LOWEST FIT DECREASING 

adapted to this problem. A value is guessed for the number, m, of bins in which to apply LFD. If 

each bin in the LFD packing has a level at least T, the algorithm halts. Otherwise, a smaller value 

of m is taken and the procedure repeated. It is easily verified that an efficient binary search can be 

organized around the fact that an appropriate m must exist in the range 

[ In 1 n 1 
2T .~ s(P), T .~ s(P) . 

I-I I-I 

The corresponding algorithm has the asymptotic bound 

R/'iFD = 4/3, thus improving on the bound for FFD[Cl 

An experimental analysis of average case behavior for these algorithms, plus a probabilistic 

analysis of NF analogous to that in [72] can be found in [21. 

Maximizing the minimum bin level - This dual to the capacity minimization problem was studied 

by Deuermeyer, Friesen and Langston [37]. Clearly, it is also closely related to the problem of 

minimizing the difference between maximum and minimum bin levels, which was discussed in the 

previous section. In [37) it is shown that the LFD rule has a 4/3 bound (using the inverted ratio) 

for the max-min problem, just as it has for the min-max problem. As might be expected, set-

differencing algorithms are also effective for this problem, but algorithms such as MUL TIFIT can 

perform very poorly. 

6. Vector Packing 

In this section we consider one way of generalizing the classical one-dimensional bin packing 

problem to higher dimensions. Instead of each s (p) being a single number, we consider the case 

when it is a d-dimensional vector s(P) - <SI(P),S2(P), ... ,sd(P». The bin capacity is also a 
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d-dimensional vector <C,C, ... ,C>, and the goal is to pack the items in a minimum number of 

bins, given that the contents of any given bin must have vector sum less than or equal to its 

capacity. This problem models multiprocessor scheduling of unit-length tasks in the case when there 

are d resources, rather than just one as we assumed before. For simplicity we have normalized the 

amounts of resources available so that all d bounds are the same. 

Note that the two-dimensional version of this problem is not the same as the problem of packing 

rectangles (to be discussed in the next section). A vector < s 1 (p ) ,s 2 (p ) > could be thought of as 

representing a rectangle with length SI (p) and width S2(P), and a bin of capacity <C,C> as a 

square into which the rectangles are to be packed. However, the only types of packings allowed 

here would correspond to ones in which the rectangles were placed corner to corner, diagonally 

across the bin. 

In [84], Kou and Markowsky show that any "reasonable" algorithm, i.e., one which does not 

yield packings in which the contents of two non-empty bins can be combined into a single bin, obeys 

the bound R A <; d + 1, where d is the number of dimensions (an alternative proof can be found in 

[48], although there the theorem is not stated in its full generality). We note in passing that, in 

spite of the obvious desirability of the above "reasonable" property, not all the algorithms we have 

mentioned so far are reasonable - an obvious offender is NEXT FIT. However, FIRST FIT, 

FIRST FIT DECREASING, and many others are reasonable and hence do obey the above

mentioned, not very impressive (when d is large), bound. They are, in fact, better than reasonable, 

but not by as much as one would like. In [50], Garey, Graham, Johnson, and Yao analyze the d

dimensional problem and appropriate adaptations of FF and FFD to this multi-dimensional case 

(in FFD the items are sorted in non-decreasing order by the maximum components of their size 

vectors). They show that RFF - d +7/10, which reduces to the familiar 17/10 result in the one

dimensional case, and that d <; RFFD <; d+l/3. To date, no one has found any polynomial time 

approximation algorithm for the general d-dimensional problem with R; < d. Yao has shown 
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[108] that any algorithm that is Jaster than FF or FFD, i.e., that has a running time that is 

o (n log n) in the decision tree model of computation, must have RA"" ~ d. Within this 

constraint, Fernandez de la Vega and Leuker [40] show, by extending their results in one dimension, 

that a polynomial time approximation scheme exists for the vector problem as well; i.e. there is a 

linear-time algorithm for finding solutions within E of d times the optimal. (The earlier caveats 

concerning running time apply here as well, however.} In spite of these results, we should note that 

the extensive simulation results of Maruyama, Chang, and Tang [96] for FF, FFD, and a variety 

of other algorithms indicate that average case behavior may not be nearly so bad here as the worst 

case bounds. 

In the variant on this problem in which a partial order is present, however, things definitely get 

worse. Suppose that the set of items has a partial order ~ associated with it that constrains the 

allowable packings as in Section 3 (the multiprocessor scheduling rather than the assembly line 

balancing case). In this case the natural generalization of the ORDERED FIRST FIT 

DECREASING algorithm of Section 3 can be shown [50] to obey 

O.69I)d+l ~ ROFFD ~ O.7)d+l, a definite worsening of our bounds when no partial order 

was present (the result mentioned in Section 3 for the one-dimensional version of this problem is a 

special case of this result). Similar results are obtained for the algorithm ORDERED FIRST FIT 

BY LEVEL, which works the same way as OFFD, except that instead of ordering items by non

increasing maximum size component, they are ordered by non-increasing "level" in the partial order 

[24]: RO'F'FL - (1.7)d+1. That some type of pre-ordering is necessary for even this standard of 

performance follows from the fact that the algorithm without any pre-ordering, ORDERED FIRST 

FIT, has ROFF - 00 [50]. 

7. Rectangle Packing 

In this section we consider an active area of bin packing research: the problem of packing 
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rectangles into two-dimensional bins. The first version of this problem to be studied from a 

performance guarantee point of view is due to Baker, CotTman, and Rivest [8], and models a variety 

of problems, from computer scheduling to stock cutting. In this version, the items Pi are rectangles, 

with height hi and width Wi' The goal is to pack them in a vertical strip of width C, so as to 

minimize the total height of the strip needed. The rectangles must be packed orthogonally, that is, 

no rotations are allowed: all rectangles must have their width parallel to the bottom of the strip. 

The orthogonality restriction is justified on the basis of the proposed application to scheduling. 

Here the items once again correspond to tasks. The height of an item is the amount of processing 

time it requires, and its width is the amount of contiguous memory it needs. The strip width C is 

then the total memory available; the strip length is the amount of time needed to schedule all the 

items. In this application it makes no sense to rotate a rectangle, even by ninety degrees, since 

execution time is not in general directly translatable into a memory requirement. 

Applications to stock-cutting occur in a variety of industrial settings where the "raw" material 

involved comes in rolls, for instance rolls of paper, rolls of cloth, rolls of sheet metal, etc. From 

these rolls we may wish to cut patterns (for labels, clothes, boxes, etc.) or merely just shorter, 

narrower rolls. In the simplest case, we can view the objects we wish to cut from the rolls as being, 

or approximating, rectangles. We minimize our wastage if we minimize the amount of roll (the 

strip length) used. Once again some form of orthogonality may be justified, since in many 

applications, the cutting is done by blades that must be either parallel or perpendicular to the strip, 

and the material may have a bias that dictates the orientation of the rectangles. However, ninety 

degree rotations may in some cases be allowable, and we will later say a bit about how the results 

we discuss can be extended to take this into account. 

Because of the economic importance of efficient stock-cutting, a broad range of classical heuristic 

and enumerative methods have been applied in the last 20 years. For example, solution techniques 
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have been designed around linear programming, dynamic programming, branch and bound, network 

flow and heuristic search methods. (See [1,10,19,571 for such studies and references to a number of 

others'> The performance of these solution techniques is normally evaluated experimentally, rather 

than analytically, so they fall outside the scope of this survey. 

In [81, Baker, Coffman, and Rivest consider a variety of strip packing algorithms based on a 

"bottom up - left justified" (BOTTOM-LEFf for short) packing rule. In a BOTTOM-LEFf 

packing, items are packed in turn, each item being placed as near to the bottom of the strip as it 

will fit and then as far to the left as it can be placed at that bottom-most level. Note that there is a 

difference in kind between two-dimensional packing rules, suc~ as the BOTTOM-LEFf rule, and 

one-dimensional rules such as FIRST FIT and NEXT FIT. In the one-dimensional case there 

always exists an ordering of the items such that FIRST FIT (NEXT FIT) constructs an optimal 

packing. However, as shown in [81 this is not the case for BOTTOM-LEFf. In fact, Brown [131 

has constructed instances in which the best BOTTOM-LEFf packing possible still yields a strip 

whose height is 5/4 times optimal. 

However, although no preordering of the items may be able to yield an optimal packing, some 

may still be better than others. Various BOTTOM-LEFf algorithms can be considered, depending 

on how (if at alO the set of rectangles is initially preordered. It turns out that only one of the 

standard orderings seems to make a difference as far as worst case behavior is concerned. If we let 

BL stand for the simple BOTTOM-LEFf algorithm, and BLIW, BLIH, BLDW, and BLDH 

stand for the algorithm with preordering by increasing (i.e., non-decreasing) width, increasing 

height, decreasing width, and decreasing height, then we have 

RBL - R BLIW - RBLIH - RBLDH - 00; R BLDW - 3 

For the special case of squares (hi - Wi for all p), the BLDH algorithm becomes equivalent to 

BLDW, and the result improves to R BLDW - 2 [81. 
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For the case of arbitrary rectangles, subsequent work has yielded some improvements. The 

FIRST FIT DECREASING HEIGHT "level" algorithm of Coffman, Garey, Johnson, and Tarjan 

[29] (to be described later) can be shown to have RFFDH = 2.7, and an algorithm of Sleator [104] 

further reduced the bound to RA .. 2.5. 

These results all concern absolute worst case performance ratios. Indeed, for this problem it 

would again seem as if absolute and asymptotic performance ratios should be equivalent, since 

heights can be scaled to arbitrarily large values. However, such scaling may not be sensible in many 

practical applications, where some strict upper bound on height may be imposed. In this case, 

asymptotic analysis may be a more meaningful measure, giving us guarantees that hold as the 

optimal strip length becomes very large with respect to this maximum possible item height. As 

might be expected, these asymptotic guarantees can be better than the absolute ones (although they 

do not equal I, as they would if all rectangle widths were equal, thus reducing us to the capacity 

minimization problem of Section 4). For instance, RBiDW .. 2, an improvement of lover the 

absolute guarantee for BLDW, but a long way from optimal. 

The search for strip packing algorithms with better asymptotic worst case ratios was taken up in 

[29] by Tarjan and ourselves. The new algorithms were based on a different type of packing rule, 

suggested by Golan [58], and were called "level" algorithms. These algorithms involve an attempt to 

apply our old knowledge about one dimensional bin packing. Note that if all rectangles have the 

same height, the two-dimensional problem essentially reduces to the one-dimensional case: in an 

optimal packing the items may be placed in rows or "levels." Each level in the packing then 

corresponds to a bin and the height of the packing corresponds to the number of bins used. The 

basic idea of a level algorithm is the following: First, the items are preordered by non-increasing 

height. The packing is then constructed as a sequence of levels, each rectangle being placed so that 

its bottom rests on one of these levels. The first level is simply the bottom of the bin. Each 

subsequent level is defined by a horizontal line drawn through the top of the tallest rectangle on the 
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previous level. This is best illustrated by considering the two basic level algorithms proposed in [291. 

In the algorithm NEXT FIT DECREASING HEIGHT rectangles are packed left-justified on a 

level until the next rectangle will not fit, in which case it is used to start a new level above the 

previous one, on which the packing proceeds. Note the analogy with the one-dimensional NEXT 

FIT algorithm. In the FIRST FIT DECREASING HEIGHT algorithm (another analog), each 

rectangle is placed left-justified on the first (j.e., lowest) level in which it will fit. If none of the 

current levels has room, a new one is started as with the NFDH algorithm. See Figure 6 for an 

example of an FFDH packing. 
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Figure 6. An example of FFDH packing. 
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At first glance, one would expect NFDH and FFDH to be worse than their one-dimensional 

counterparts, given all the space that may be wasted in a level above items which are shorter than 

the first one. However, it turns out that this wasted space is strictly bounded, and by a collapsing 

sum argument it can be concluded that, exactly as in the one-dimensional case, R;FDH "" 2 and 

RFFDH - 1.7. The results for bounded item widths also resemble their one-dimensional 

counterparts. 

For the special case of squares the asymptotic worst case ratio is reduced to 1.5. The 

INCREASING rules BLIH (or BLIW) and NFIH have also been analyzed for this special case. In 

[6] Baker, Calderbank, Coffman and Lagarias show that RBLlH .. R;F1H - 1.691, by extending 

the results in [71. These rules will be discussed later in connection with another application. 

We should note that level-by-level packings have a special significance stemming from their 

relation to guillotine cuts [57]. Guillotine cuts are edge-to-edge cuts of a rectangle or strip parallel 

to its length or width. The 3-stage guillotine cuts corresponding to level-by-level packings such as 

Figure 6 involve first a set of horizontal guillotine cuts, then a set of vertical cuts and finally another 

set of horizontal "trim" cuts. The special constraints of guillotine cuts apply in several applications, 

the chief one usually mentioned being the cutting of rectangular plates of glass. 

Returning to the general problem, let us consider where further improvements might be found. 

Further orderings by size to approach the FFD performance in one-dimension do not appear 

feasible; FFD requires that the items be preordered by non-increasing size, which here corresponds 

to non-increasing width, and since FFDH already requires items to be preordered by height, any 

additional preordering becomes impossible. Fortunately, there are ways of approximating FFD in 

the two-dimensional case. In the SPLIT FIT algorithm of [29], the set of rectangles is partitioned 

into two parts, those with width exceeding C /2 and those without, and each subset is ordered by 

non-increasing height. Packings for the two sets are then combined in an involved manner, and the 
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result is an algorithm with R;;' - 1.5. This idea of splitting the set of rectangles into subsets 

according to width can be carried even further. In [59] Golan described an algorithm for which 

R; ~ 4/3, and in [5] Baker, Brown, and Katseff devised a much more complicated algorithm for 

which R; ~ 5/4, a bound which is close to the 11/9 guarantee provided by FFD in the one

dimensional case. 

So far, all the rectangle packing algorithms we have discussed for which RAoo ~ 00 have 

involved some preordering of the rectangles, and hence are not "on-line" algorithms. However, such 

algorithms might well be required in scheduling applications, and so the question of finding an on

line algorithm with reasonable worst case behavior becomes relevant. Baker and Schwartz, in [9], 

show that such algorithms exist by devising what they call "shelr' algorithms. These are variants on 

the level algorithms above in which levels, rather than being determined by their tallest item, come 

in fixed sizes. If we assume that I is an a priori upper bound on rectangle height, the standard 

levels will come in heights r-k, k ~ 0, for some prespecified value of r, 0 < r < 1. Whenever a 

rectangle Pi is to be packed in the NEXT FIT SHELF(r) algorithm, one first determines that value 

of k such that rk+1 < hi ~ rk. If there is a level of height rk already in the packing, and Pi' will 

fit in the currently active one, it is placed there. Otherwise it is placed in a new such level, which 

becomes the currently active one for that height. The algorithm FIRST FIT SHELF(r) is· defined 

analogously. 

Although these shelf algorithms clearly have considerable space-wasting potential, it turns out 

that the wastage can once again be bounded, and in fact RNFS(r) - 2/r and RFFS(r) - 1.7/r. 

Note that these approach the values for NFDH and FFDH as r approaches 1. However, as r 

approaches 1 the amount of wastage to be expected in small examples increases as C/O -d, and so 

a trade-off is involved. The best absolute worst case ratio is obtained by FFS (r) when r - .622, 

in which case we have RFFS (,) - 6.9863. 
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The limitations inherent in the on-line approach are investigated by Brown, Baker and Katseff in 

[151. They show that anyon-line algorithm must obey RA ~ 2. (The paper also contains bounds 

for on-line algorithms in the special case where they happen to be given sets of rectangles in some 

sorted order, but must still pack each item in turn, without being able to look ahead or to move an 

item once it is placed). 

As a final contribution to strip packing we mention the results of Coffman and Gilbert [31] on 

dynamic packings in two dimensions. This is the natural extension of dynamic storage allocation in 

one dimension as defined in Section 3. In 13 11 the problem is specialized to squares and bottom up 

packings in a strip of width w. Extending the definitions in the one dimensional problem, let the 

squares in list L have a maximum size of j x j and assume that the total area of packed squares 

never exceeds mw. Let BL (L) be the maximum height achieved by squares in L under the 

BOTTOM LEFT algorithm. For the asymptotic bound 

it is proved in [31] that 

C oo (.) I' BL (L) 
BL ] = 1m sup , 

m-oo L m 
w-oo 

Hj 
CM (j) ~ ---"-- ~ 5.177 log.i , 

I 
log 2-'2 

where Hj is the jth harmonic number. Moreover, lists are given which show that 

CB""r (j) = eOog j). A number of results for finite m and ware given in [311 along with 

extensions to more than two dimensions. 

There have been two papers to date that cover average case analysis for strip packing. In [42], 

Frederickson proposes an off-line algorithm combining FFD with specially tuned shelf sizes and 

specifically designed for the case when item sizes and widths are independently and uniformly 

distributed between 0 and C. Although the expected wastage may be large in absolute terms 
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(proportional to n3/4), the ratio of expected strip length to a lower bound on the optimal length 

(obtained by dividing the expected total area of rectangles by the strip width C) approaches 1 as n 

goes to infinity. 

In [67], Hofri concentrates more on the on-line case, extending his earlier work with Coffman, 

So and Yao [32] on the expected behavior of one dimensional NEXT FIT to the strip packing 

problem. He considers two new on-line algorithms. The first is a level algorithm in which there is 

no initial reordering of the list of items, and hence the height of a level is not determined by its first 

rectangle but by the tallest, whichever one that might be. Otherwise the packing rule is basically a 

NEXT FIT one: an item is packed in the current level unless it cannot fit along the bottom, in 

which case it starts a new level, whose bottom is coincident with the top of the tallest item in the 

earlier level. Hofri calls this algorithm NEXT FIT, as opposed to NEXT FIT DECREASING 

HEIGHT where the items are preordered. Hofri's other new on-line algorithm is appropriate in the 

case where ninety degree rotations are allowed, and is called ROT AT ABLE NEXT FIT. This 

algorithm is the same as NEXT FIT except that each item is rotated before it is packed so that its 

height does not exceed its width. 

Both of these two new on-line algorithms have R; = co and so are not very attractive from a 

worst case point of view. However, Hofri shows that when heights and widths are independent and 

uniformly distributed between 0 and C, they are not that much worse than NEXT FIT 

DECREASING HEIGHT, which has RNFDH = 2 and is not an on-line algorithm. As n -+ co, 

Hofri's results indicate that NEXT FIT DECREASING HEIGHT averages roughly 4/3 times the 

above-mentioned lower bound on optimal strip length. ROTATABLE NEXT FIT is only slightly 

worse, and NEXT FIT's ratio is only about 3/2. 

Having introduced the case where ninety degree rotations are allowed, we should mention that 

some of the worst case results mentioned above also apply to this case, in that the values of RA and 
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R; are unchanged if such rotations are allowed in the construction of optimal packings. This holds 

true in particular for NFDH and BLDW, since the proofs of the bounds for these algorithms are 

based on pure area arguments. So far no algorithm has been found that attains improved 

guarantees by actually using such rotations itself, and the results mentioned above for the 

performance of strip packing algorithms when all items are squares (and hence ninety degree 

rotation cannot help) indicate that we can expect only limited improvements. 

A rectangle packing problem closely related to strip packing is that of packing a given set of 

rectangles into an enclosing rectangle of minimum area. Strip packing is the special case where the 

width is fixed. In this general problem both length and width are allowed to vary. To date there 

has not been much work on this problem from a performance guarantee point of view. Two papers 

of interest have addressed the case when all the items to be packed are squares. In [811, Kleitman 

and Krieger show that a collection of squares whose total area is unity can always be packed into a 

rectangle with area 4/../6, and this is the minimum area for which such a packing is guaranteed. 

Furthermore, a 2/.J3 by ..fi rectangle is the unique rectangle that will always suffice. In [391, 

Erdos and Graham consider the minimum sized square required to contain a collection of unit 

squares, and show that this size can be non trivially decreased if rotations other than ninety degrees 

are allowed. 

Approximation algorithms for a problem complementary to these have been studied by Baker, 

Calderbank, Coffman and Lagarias [61. Their problem was to pack the maximum number of 

squares from a given list into a rectangle of fixed dimensions. They analyzed both a BOTTOM UP 

INCREASING and a level-by-level NEXT FIT INCREASING algorithm and proved that 

RBUI - RNFI = 4/3, where again these are based on the inverted ratios OPT(L)/A (0. 

It must be pointed out that there is a sizable literature on square packing which we shall not 

survey here, primarily because it does not concern results closely related to approximation 
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algorithms. The following list illustrates informally the variety of questions that have been asked: 

What is the smallest square sufficient to enclose n unit squares, rotations allowed? Can a rectangle 

with integer sides be tiled by a sequence of consecutive squares with sides 1,2,3, ... ? What is the 

smallest number of squares with integer sides into which a given square with integer sides can be 

partitioned? Extensive discussions of these and other intriguing but difficult questions can be found 

in [47, I 0 I], along with discussions of similar problems in packing circles and spheres. 

The final rectangle packing problem we shall consider is a straightforward generalization of the 

one-dimensional case. Here the problem is once again simply to minimize the number of bins used, 

the bins now being large rectangles of some fixed dimensions into which the given set of rectangles 

must be packed. We first note that if the number of possible rectangle sizes is sufficiently small, a 

Gilmore-Gomory style linear programming approach can be applied [57] with useful results. For 

the general problem, the only algorithm which to date has been analyzed from the worst case point 

of view is a composite algorithm proposed by Chung, Garey and Johnson [201. We shaH denote this 

algorithm by "FFDH*FFD," as it is based on the algorithm FFDH for strip packing and FFD for 

one-dimensional bin packing. The idea of the algorithm is as follows: Suppose the standard bin has 

width Wand height H. First use the FFDH algorithm to pack the set of rectangles into a strip of 

width W. Next, decompose this packing into blocks corresponding to the levels created by FFDH. 

Each block can be viewed as a rectangle of width Wand height the height of the level. Thus, 

packing these blocks into rectangular bins of width W becomes a simple one-dimensional bin 

packing problem, where the size of an item (block) is its height. Apply FFD to this one

dimensional problem. 

The analysis of this algorithm in [20] shows that 2.022 ~ RFFDHOFFD ~ 2.125 .... Note that 

this leaves open the interesting possibility that RFFDHoFFD = (RFFDH) (RFFD ) -

(}7/lOHll/9) .. 2.0777 ... , although the proof of such a result might well represent quite a 

challenge. 
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Quite recently Karp, Luby and Spaccamela [79] have considered a probability model of this 

problem under the assumption that the enclosing rectangles are unit squares. The dimensions of 

each of the n rectangles to be packed are independent random variables uniformly distributed over 

[O,ll They devise an approximation algorithm requiring n/4 + O(n 1/21og n) bins on the average, 

thus generalizing the one-dimensional results in [76] and Frederickson's [42] strip packing results. 

Since the expected total area of the n rectangles is n/4, the ratio of the expected number of bins 

required by their algorithm to the expected number in a perfect packing approaches I as n - 00 

Similar results are derived for extensions to more than two dimensions. 

8. Directions for Future Research 

In this section we briefly mention some of the open problems that we feel are significant from 

either a mathematical or practical point of view. First there is the basic problem of finding simpler 

and more general proof techniques. Although we have concentrated here on results rather than 

proof techniques, most of the results we have cited have only been proved by very problem-specific 

techniques that have rarely been exploited in analyzing related problems. It is true that researchers 

have been able to use intuition gained in studying the classical one-dimensional case in deriving 

results for the more complicated variants and generalizations, but unfortunately this is not often 

very apparent in the resulting proofs. The closest to a general method for proving results of this sort 

is the "weighting function" approach, as noted in Section 2, but so far the details of how this 

approach is used vary considerably from one problem to the next. 

On a less fundamental level, there is of course the problem of finding better algorithms for the 

various problems, especially in the area of rectangle packing, and of tightening up the bounds on the 

algorithms already proposed but incompletely analyzed. There is also always room for new bin 

packing variants, the key being to find a variant that models practical problems and is susceptible to 

meaningful analysis. For instance, questions are often asked about the case when there are different 
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types of bins (i.e., different sizes, different costs, etc.). The only work that can be cited here appears 

to be that of Langston [87] mentioned in Section 5. 

Another technical problem is the very fundamental one of lower bounds. We have mentioned a 

number of lower bound results for on-line algorithms and we have cited the important recent 

developments in fully polynomial approximation schemes by Fernandez de la Vega and Lueker [40] 

and Karmarkar and Karp [74]. But the question of such schemes for two dimensional packings 

remains open, as does the question: Is there a polynomial time algorithm for the one dimensional 

problem that always comes within some additive constant of the optimum? 

Our final remarks concern probabilistic analysis. We have noted the impressive increase in this 

research in the past few years. The most far-reaching contributions appear to have been those 

establishing rates of convergence to optimality of certain approximation algorithms, in the sense of 

expected performance. These results have usually been in the form of bounds that leave 

considerable room for future improvements. There is the added challenge, of course, to provide 

measures of second moments, and indeed, distributions of objective functions. 

A characteristic weakness of many of the results to date has been that the algorithms analyzed 

have been chosen for their mathematical tractability rather than their attractiveness from a practical 

point of view. A prominent open problem is still a satisfactory average-case analysis of FIRST FIT, 

not to mention FIRST FIT DECREASING. A new such problem is to extend the O(n-1ogn ) 

performance estimate to the more natural largest-pair-first set-differencing algorithm [75] 

introduced in Section 4. In view of the methods currently available, expecting exact results may be 

unreasonable. However, good bounds and results for interesting special cases would appear to be 

well worth the effort. 
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1. INTRODUCTION 

The network synthesis problem with non simultaneous flow 

requirements has only recently become a research subject in 

mathematical programming (MI). Nevertheless this subject has 

been widely recognized as a main topic in distributed capaci

ty expansion problems (FR). 

Many classical results of network flow theory (HU) can 

be directly utilized in the non simultaneous flow environmen~ 

but new problems arise and new approaches must be pOinted ou~ 

In this paper the single commodity network design prob

lem with non simultaneous flow requirements is analyzed. More 

precisely, the problem formally stated in section 2 and 

solved in the following is the problem of finding the minimum 

total cost edge capacities, such that all demand vectors in a 

given set are not simultaneously satisfied. Such problem is 

solved both for directed and non directed networks. 

The basis ideas behind the model utilized have been 

first introducted in (LU) and (LP1). 

2. MODEL FORMULATION 

Let G(N,A,c) be a network where N is the set of nodes 

(a source s, two or more sinks 1,2, ... p, n-1-p intermediate 

nodes, let I be the corresponding set), A is a set of edges 

IAI = m and c is a capacity m-vector with non negative 

entries. Let g(i,j), (i,j) E A, be the edge capacity expan

sion unitary costs and R the set of demand p-vectors d(d(i) 

is the amount of flow required in node i = 1,2, •.• ,p) • 

In order to have simpler formulations of the results and 

simpler notations, we analyze, in sections 3, 4 and 5, a two 

sinks network, a finite set R( I RI = r) and a unique source. 

Almost all the results can be easily extended to a network 

with more sources or sinks (provided that the problem will be 
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single commodity) and a set R with infinite elements like, 

for example, a (bounded) polyhedron.The graph can be either 

directed or undirected (in this case f(i,j) +f(j,i) ~ c(i,j) 

and f(i,j) ~ 0 V (i,j) where f(i,j) is the flow on 

(i,j) E A from i to j and c(i,j) is the capacity of (i,j), 

obviously in practice we can suppose that f (i, j) • (f (j ,i) = 0) . 

If in a statement it is not specified whether or not the 

graph is directed, it meas that the statement holds both for 

directed and undirected graphs (graphs with both directed and 

undirected edges are not considered). 

Capacity expansion problem (CE) 

Find the minimum total cost edge capacities such that 

all demand vectors in R are non simultaneously satisfied (i.e. 

G(cl,A,c), with an infinite capacity source, which can satisfy 

either d 1 or d 2 or d 3 •. ,.or dr, with d i E Rand 

L c (i , j ) • g (i , j) is mi n i mum) . 
(i,j)EA 

The problem of finding the set of flow vectors feasible 

for G(N,A,c) is analyzed in section 3 and it is shown that 

for each network there exists a "flow equivalent" network 

equal to the "sum of basic networks" with uniform edge capaci 

ties (the terms "flow equivalent" and "sum of basic networks" 

will be defined in section 3). 

In section 4 and 5 the solution of CE is given for direc 

ted and non directed networks respectively. In both cases the 

optimal solution is shown to be the sum of three basic net

works with sui table uniform edge capacities. In the first case 

the three basic networks are two paths from s to 1 and 2 

respectively and a tree with endpoints in s, 1 and 2. In the 

second case the three basic networks are all paths (from s to 

1, from s to 2 and from 1 to 2). In section 6 the extension 

to multiterminal networks is presented. 
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3. NETWORK ANALYSIS 

Let be given G(N,A,c). Let CT12, CT1 and CT2 be the cap~ 

ci ties of the minimal cuts (X,X) such that (s E X and 1,2 EX), 

(s E X, 1 E X) and (s E X, 2 E X) respectively (remark that 

CT1 ~ C'f12, CT2 ~ CT12 and CT1 +CT2 ~ CT12). Let q be a 

2-vector where q(1) and q(2) denote the flow entering sink 1 

and sink 2 respectively and Q the set of sink flow vectors q 

such that both the capacity constraints and the flow conserv~ 

tion constraints are satisfied (what goes out of node i must 

be equal to what comes in for all intermediate nodes i E I); 

we call q feasible if q E Q. 

THEOREM 1 (HU) - Given G(N,A,c), q is feasible if and 

only if: 

q(1) ~ CT1, q(2) ~ CT2, q(1) +q(2) ~ CT12 

Obviously the max flow from s to 1 is CT1, from s to 2 is CT2 

and from s to both 1 and 2 is CT12; in general the flow from 

s to 1 depends on the flow from s to 2 and viceversa. 
Let G1, G2, G3 be three networks with the same nodes and 

edges but with different capacity vectors c(G1), c(G2), c(G3). 

DEFINITION 1 (Sum of networks) - G3 is said to be the 
sum of G1 and G2 if c(G3) = c(G1) +c(G2). 

DEFINITION 2 (FLow equivaLent networks) - G1 and G2 are 

said to be flow equivalent if Q(G1) = Q(G2) (where Q(G) indi
cates the feasibLe set of sink fLows of G). 

LEMMA 1 - G1 and G2 are flow equivaLent if and only if 
they have the same capacities Of minimum cuts CT1, CT2 and 
CT12. 

DEFINITION 3 (Basic networks) - Given G(N,A,c), a basic 
network is any network GB(N,A,cB) such that aLl entries Of 
capacity vector cB are either 0 or c' E~+ and aZZ the edges 
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with nonzero uniform capacity form one of the foLLowing sub
networks: 

1 ) 

2) 

3) 

path from s to 1 

path from s to 2 

(oriented network) tree with root in sand Leaves 

in 1 and 2 and a unique branching node; 
- (non-oriented network) cycLe connecting s, 1 and 2 

(aLso sum of paths from s to 1, from s to 2 and 
from 1 to 2 with the. same uniform capacity). 

Let GB1, GB2 and GB3 be the set of basic networks satis

fying condition 1, 2 and 3 (definition 3) respectively. 

THEOREM 2 - For each network G(N,A,c), there exists a 

flow equivalent network GE(N,A,cE) with cE < C, sum of basic 

networks. 0 

In the following of this section this result will be 

proved and some useful notations for the synthesis will be 

introduced. 

Remark that the proof of theorem 2 without the con

straints cE ~ c is trivial. In fact, given G(N,A,c) and the 

minimal cuts CT1, CT2 and CT12, we can easily build an equiv~ 

lent network, sum of three networks G1, G2 and G3, each of 
them sum of basic networks in the set GB1, GB2 and GB3 re

spectively, with minimal cuts given by: 

C 1 T 1 = C 1 T 1 2 = CT 1 2 - CT 2, C 1 T 2 = 0 

C2T1 = 0, C2T2 = C2Tt2·-= CT12 - CT1 

C3T1 = C3T2 = C3T12 = CT1 + CT2 - CT12 

( 1 ) 

where CiT1, CiT2 and CiT12 are the minimal cuts of the net

work Gi, i = 1 , 2 , 3 . 

DEFINITION 4 (MaximaL fLow) - Given G(N,A,c), a sink 

fLow vector q is said to be maximaL if it is not possibLe to 
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augment q(1) without reducing q(2) and viceversa. 

LEMMA 2 - Given G(~,A,c), a maximal sink flow vector q 

satisfies the following constraints: 

CT 1 2 - CT2 < q ( 1) < CT 1 

CT12 - CT1 < q (2) < CT2 

q (1) + q ( 2) = CT 1 2 

Rem~rk that G1 and G2 satisfy the minimum maximal flow 

on sink 1 and sink 2 respectively; G3 satisfies the flow 

(CT1 +CT2-CT12) that can be sent from s to 1 or to 2, but 

not simultaneously. 

The way of proving the existence of a flow equivalent 

network with cE ~ c is conceptually simple but quite long. In 

the following we give an outline of the proof. 

It is simple to find G1 and G2, sum of basic networks 

belonging to GB1 and GB2 respectively, such that the sum 

satisfies the minimum maximal flow from s to 1 and from s to 

2 simultaneously, and c(G1 +G2) ~ c; G1 and G2 can be obtained 

by solving a min-cost-max-flow problem, with demand on the 

sinks given by (CT12-CT2) and (CT12-CT1) and capacity con

straints c. In fact the two flows are independent. 

(G1 +G2) has minimal cuts CST1, CST2 and CST12 given by: 

CST1 = CT12 -CT2, CST2 = CT12 -CT1, 

CST12 = 2·CT12 - CT1 - CT2; 

since G has cuts CT1, CT2 and CT12, we obtain: 

CT1 - CST1 CT2 - CST2 = CT12 - CST12 CT 1 + CT2 - CT 1 2 

hence there exists a network G3 with all minimal cuts equal 
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to (CT1 + CT2 - CT12), obtained as: 

c(G3) = c(G) - c(G1 +G2). 

It is possible to verify that G3 is flow equivalent to a 

network G3, sum of basic networks belonging to GB3. 

4. DIRECTED NETWORK SYNTHESIS 

In order to solve CE it is not necessary to take into 

account the whole region R, but only few parameters charac~ 

terizing the region. More precisely, let d be a demand vector 

such that the sum of the entries wil be maximum (i.e. 

dM12 L (d(i) = max L d(i» and dMi be the maximum value of 
i dER i 

demand vectors entry i (i.e. dMi = max d(i». 
dER 

LEMMA 3 - The demand vectors d E R are non simuttaneousty 

satisfied if and onty if: 

CT1 > dM1, CT2 > dM2, CT12 > dM12. 

PROOF - If the minimal cuts satisfy the inequalities 

then all d E R for theorem 1 can be satisfied. On the other 

hand if all d E R can be satisfied, the minimal cuts are at 

least dM1, dM2 and dM12. 

Capacity expansion for directed network (CED) 

Find the minimum totat cost edge capacities such that 

the minimat cuts C1T1, C2T2 and C2T12 (characterizing the 

equivatent networks G1, G2 and G3) witt be non negative and 

satisfy the constraints: 
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CT1 = C1T1 + C3T12 > dM1 

CT2 C2T2 + C3T12 > dM2 (2) 

CT12 = C1T1 + C2T2 + C3T12 > dM12 

In fact, in the following, we will prove that the first 

two inequalities are satisfied (in an optimal solution) as 

equalities and CT12 can be either equal to dM12 or equal to 

dM1 + dM2. 

Let P1 (P2) be the shortest path from s to 1 (2) with 

weights g(i,j) and h1 (h2) be the corresponding lenght; let 

Q12 be the tree with root in s and leaves in 1 and 2 (and a 

unique branching node), with minimum total weight h12 (i.e. 

h12 = min(h(s,k)+h(k,1)+h(k,2) where h(i,j) indicates the 
kE(N-s) . 

lenght of the shortest path from i to j). h1 (h2) units of 

money invested on P1 (P2) are the cheapest way to send a 

unit of flow from s to 1 (2); h12 units of money invested on 

Q12 is the cheapest way to send a unitary flow from s to 1 or 
to 2 but not simultaneously. When we refer to investment on 
paths or on trees we intend uniform investment, i.e. such 
that the capacity of all edges of the path or the tree be the 

same. Let GP1 (c ' ), GP2(c ' ) and GQ12(c ' ) be the networks ob

tained by assigning the capacity c ' to all edges of the path 

P1, P2 and the tree 012 respectively (and the capacity zero 

to all other edges). Remark that GP1 (c ') E GB1, GP2 (c') E GB2 

and GQ12(c') E GB3 for all c' ER+; furthermore GP1 (C1T1) 

(GP2(C2T2» is the cheapest way to obtain a minimal cut 

C1T1 (C2T2), and GQ12(C3T12) is the cheapest way to obtain 

minimal cuts equal to C3T12 between sand 1, sand 2,1 and 2. 

We have in fact outlined the proof of the following result. 

THEOREM 3. There exist three non negative numbers c', 

c" and c"' such that one optimal solution of CED can be ob-
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tained as the sum of basic networks GP(c'),GP(c") and GQ12(c"') 

(i.e. the optimal solution can be obtained by investing only 

on the paths P1, P2 and on the tree Q12). 0 

The problem now reduces itself to finding C1T1, C2T2 

and C3T12 such that the demand constraints will be satisfied 

and the total cost will be minimized. 

From such values the edge capacities can be easily 

calculated. Remark that h12 < h1 + h2. 

THEOREM 4. A capacity vector, optimal for CEO, satisfies 

the following relations. If h12 < h1 + h2 then: 

C1T1 = dM12-dM2, C2T2 = d..1'v112-dM1, C3T12 = dM1 +dM2-dM12. 

If h12 = h1+h2 then an optimal solution is given by: 

C1T1 = dM1, C2T2 = dM2, C3T12 = O. 

PROOF. CEO can be written as a linear programming pro

blem with 3 variables and 3 inequality constraints: 

min(h1·C1T1+h2·C2T2+h12·C3T12) 

subject to the constraints (2). Solving this problem, we ob

tain the results of theorem 4. 0 

Remark that if h12 = h1+h2 but Q12 is not given as the 

sum of P1 and P2 (with suitable capacities), then all capa

city vectors are optimal if: 

o 2. C3T12 < dM1 +dM2-dM12, C1 T1 = dM1-C3T12, C2T2 = dM2-C3T12 

The optimal network capacities are given by: 

c (G) = c (GP1 (C 1T1 ) ) +c (GP2 (C2T2) ) +c (GQ12 (C3T12) ) . (3) 
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5. NON DIRECTED NETNORK SYNTHESIS 

For nondirected networks similar results to the ones 

presented in section 4 hold. In particular lemma 3 holds and 

the expansion capacity problem can be written as: 

Capacity expansion for non directed networks (CEN) 

Find the minimum cost edge capacities such that the mi

nimaZ cuts C1T1, C2T2 and C3T12 be non negative and satisfy 
the constraints: 

C1T1 + 2'C3T12 > dM1 

C2T2 + 2'C3T12 > dM2 (4) 

C1T1 + C2T2 + 2'C3T12 > dH12 

Also in this case, in an optimal solution, the first two 

inequalities are satisfied as equalities and CT12=C1T1+C2T2+ 

2'C3T12 can be either equal to dM12 or equal to dM1+dM2. 

Let P1,P2,h1 and h2 be defined as in section4, Q12 be 

the minimum cost cycle connecting s, 1 and 2 and h12 be the 

corresponding lenght. Q12 in this case is obtained as the 

link of three shortest paths: P1,P2 and the shortest path 

P12 from 1 to 2 (or equivalently from 2 to 1), hence h12 = 

= h1+h2+h(12) where h(12) indicates the lenght of P12. Let 

GP1 (c'), GP2(c') and GQ12(c') be the networks obtained by 

assigning the capacity c' to all edges of P1, P2 and Q12 

respectively (and the capacity zero to all other edges).With 

these definitions theorem 3 holds also for non directed net

works. Theorem 4 becames (remark that h12~2(h1+h2»: 

THEOREM 5. A capacity vector optimal for CEN satisfies 

the following relations: if h 12 < 2 (h 1 +h2) then: 

C1T1 = (-dM2+dM12), C2T2 = (-dM1+dM12) 
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C3T12 = (dM1+dM2-dM12)/2. 

If h12 = (h1+h2) then an optimal solution is given by: 

C1T1 = dM1, C2T2 = dM2, C3T12 = 0 
o 

Remark that, if h12 = 2(h1+h2) but Q12 is not given as the 

sum of P1 and P2 (with suitable capacities), then all capa

city vectors are optimal if: 

o 2.C3T12 2. (dM1+dM2-dM12)/2,C1T1 =dM1-C3T12, 

C2T2 = dM2 - C3T12 

The proof follows the same lines of the proof of Theorem 

4; the resulting capacities c(G) are given by (3). 

It is interesting to note that the difference core bet

ween the directed and the non directed network can be sum

marized in the following result. Let be given two non orient

ed networks G' and G", where G' is a minimum cost tree with 

endpoints s, 1 and 2, a unique branching node i E I and uni-

form edge capacities c'; G" is the cycle obtained as the link 

of P1, P2 and P12 with uniform edge capacities c' ; let 

h(G'(c'» and h(G"(c'» be the total costs of G' (c' ) and 

G"(c') respectively. 

COROLLARY. G'(c') and G"(c'/2) are flow equivalent net

works and 

h(G'(c')) > h(G"(c'/2)). 
o 

6. EXTENSION TO MULTITERMINAL NETWORKS 

All the results presented in the previous sections hold 

for multi terminal networks. In fact the single commodity case 

analyzed in this paper can allwavsbe formulated as a unique 
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source problem by introducing a supersource connected to all 

sources by infinite capacity edges. The problem is to deal 

with the case of three or more sinks. 
Both the cases of directed and non directed networks 

can be analyzed in the same way, in the following we develop 

the approach for the non directed networks. 

Let S be the set of sinks and let us denote by peT) the 

set of all the nonempty subsets of the set T(lp(T) I = 2I T I-1 ) 

and poeT) = P(T)-T. Let c(T) (with T E peS»~ be the (uni~orm) 

capacity of the (basic) minimum cost network aonnecting the 

source s and all the sinks belonging to the set Ti in prac

tice c(i) i E S will be the capacity of the shortest path 

from s to the sink i, c(T) with T E peS) and ITI ~ 2 will be 

the capacity of the minimum lenght.cycle connecting s and all 

i E Ti let h(T) be the corresponding lenght of the cycle or 

the lenght of the shortest path from s to i in case T = {i}. 

It is easy to verify that also in the multiterminal case 

there always exists an optimal solution, sum of optimal basic 

networks. Unfortunately the number of optimal basic networks 
grows exponentially with the number of sinks. 

Let oCT) be a scalar obtained as the maximum value of 
the sum of the demand vectors entries corresponding to the 
set T (i.e. oCT) = max E d(i» and ~(T) be the set of all 

d ER iET 
subsets U of S such that U n T ~ ~ and lui > 2. 

The problem can be formulated as a linear program as 
follows: 

min z = L h(T)c(T) 
TEP (S) 

L c(i) + 
iET 

1: 2·c(U) > 
UE~(T) 

oCT) VT E peS) (5 ) 
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LEMMA. The soZution of the (2 Isl _1) Zinear equations 

L c(i) + 
iET 

L 2·c(U) 
UEI/>(T) 

c (i) = 0 (S) - 0 (S- i) 

o (T) (VT E P (S) ) 

C(T) = i(o(S)-O(S-T) - L c(U» 
UEPo(T) 

is: 

Vi E S 

VT E P(S) 

o 

119 

Lemma 4 allows the computation of all c(T) for increasing 

sizes of T provided that all inequalities in (5) will be sa

tisfied as equalities. 

Remark that, although the solution given by Lemma 4 can 

contain negative values of c(T), the resulting arc capacities 

(sum of the capacities of all basic networks utilizing the 

given arc) are allways nonnegative. 

The problem now reduces to find under which hypotheses 

Lemma 4 provides the optimal solution of problem (5) and how 

to get the optimal solution if the hypotheses are not veri

fied. 

Let TI(T) be a partition in nonempty subsets of T and 

IT(T) the set of all possible partitions of T. 

THEOREM 6. If all minimum lenght cycles are uniques then 

all inequalities in (5) are satisfied in the optimal solution 

as equalities if and only if 

c(T) < L c(R) VTI(T) E IT(T) 
RETI(T) 

VT C S 
o 

Theorem 6 means that the solution given by Lemma 4 solves 

problem 5, if all the shortest lenght cycles cannot be ob

tained as sum of shortest lenght cycles over a smaller set 

of sinks. 
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The proof can be easily obtained by considering that if 

the statements of theorem 6 are not true, then there exists 

at least a cycle passing through the source two or more times; 

hence the total capacity leaving the source is greater than 

the minimum requirement (in fact we have in this case a po

sitive flow entering in the source). 

If some minimum lenght cycles are not unique we have an 

infinite optimal solution, see the remarks after theorem 4 

and 5 for the two-dimensional case. 

If the statements of theorem 6 are not true, then let ~ 

be the set of all cycles sum of cycles over a smaller set of 

sinks. 

In this case the optimal solution of problem (5) can be 

simply obtained by deleting the constraints corresponding to 

the cycles in ~ and the columns corresponding to the capa

cities of the cycles in ~. We obtain a reduced size problem 

of the same kind of the original one. As far as the complex

ity is concerned, the exponentiality of the algorithm with 

respect to the number of sinks depends on two different rea

sons: the exponential grow of the number of cycles and the 

computation of the minimum lenght cycles equivalent to a 

Travelling Salesman Problem with triangle inequality (~TSP 

[PS,RSL] ) . 

7. INTEGRALITY CONSTRAINTS 

In many applications the investments on the network 

edges cannot be chosen arbitrarily, but must belong to preas

signed discrete set of values. The corresponding formulation 

is an integer programming problem. 

It is interesting to observe that the optimal solutions 

of section 4 are integer, provided that the demand vectors 

are integers. The optimal solutions of section 5 (non direct-
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ed networks) can be in some cases non integers. In fact, if 

h12 < 2 (h1+h2), the solution is integer only if (dM1+dM2-dM12) 

is even. 

If (dM1+dM2-dM12) is odd, the solution given in section 

5 is not integer; but an integer solution can be easily found. 

Remark that the capacities assigned directly to P1 and P2 are 

integers and only the capacities assigned to Q12 are non in

tegers(but multiple of 1/2); the total capacities assigned 

directly or through Q12 to P1 and P2 are non integers. 

The optimal integer solution is the best one among the 

following three possibilities: 

a) increase the capacities of P1 and P2 to the upper integer 

and decrease the capacities of P12 to the lower integer; 

b) increase the capacities of P1 and P12 to the upper integer 

and decrease the capacities of P2 to the lower integer; 

c) increase the capacities of P2 and P12 to the upper integer 

and decrease the capacities of P1 to the lower integer. 

In the multiterminal network of section 6, the situation 

changes: the solution can be non integer (but multt~le of 

1/2) but in general it cannot be found by choosing the best 

one among all possible alternatives obtained by rounding the 

non integer path capacities to the nearest integers. 

In fact in this case new paths can become active in the 

optimal solution (see figu~e). 

sink 1 

2 

source sink 2 

2 

sink 3 Optimal solution 
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1 

d1 = 0 

0 

0 

d 2 = 1 

0 Optimal integer solution 

0 

d 3 = 0 

1 
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MINIMAL REPRESENTATIONS OF DIRECTED 
HYPERGRAPHS AND THEIR APPLICATION TO 

DATABASE DESIGN-
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In this paper the problem of minimal representations for sets of 

functional dependencies for relational databases is analyzed in terms of 

directed hypergraphs. Various concepts of minimal representations of 

directed hypergraphs are introduced as extensions to the concepts of 

transitive reduction and minimum equivalent graph of directed graphs.In 

particular we consider coverings which are the minimal representations 

with respect to all parameters which may be adopted to characterize a 

given hypergraph (number of hyperarcs, number of adjacency lists required 

for the representation, length of the overall description, etc.). The 

relationships among the various minimal coverings are discussed and the 

computational properties are analyzed. In order to derive such results a 

graphic representation of hypergraphs is introduced. Applications of 

these results to functional dependency manipulation are finally presented. 

* This research has been partially supported by MPI Nat. Proj. on 

"Theory of algorithms". 



126 G. Ausiello, A. D' Atri, D. Sacca 

1. INTRODUCTION 

Hypergraphs are a generalization of the concept of graph [4] which 

have been extensively used for representing structures and concepts in 

several areas of computer science (see, for example [3,5,6,8,12,16]). 

In this paper we consider a particular class of directed hypergraphs, 

the R-triangular hypergraphs which are a simple generalization of direct

ed graphs. 

In several applications of R-triangular hypergraphs, analogously to 

what happens in the case of graphs, the following concepts assume an 

important role: the concept of path (i.e. edge connection leading from a 

set of nodes to a single node), the concepts of closure (i.e. representa

tion of all paths over a hypergraph), the concept of "minimal" covering 

(i.e. representation of the closure which is minimal under some respect). 

In this paper R-triangular hypergraphs are applied for representing 

a set of functional dependencies among attributes in a relational data

base schema. In database design [ 10],[ 15] a major role is played by func

tional dependency manipulation. In particular in [10] the problem of de

termining minimal representations (coverings) of sets of functional de

pendencies is considered. Here the same problem is stated in much more 

general terms as the problem of determining minimal representations (co

verings) of directed hypergraphs. Various concepts of minimal coverings 

of directed hypergraphs are introduced and their complexity is discussed. 

In the case of R-triangular hypergraphs we may wish to determine the mi

nimal coverings with respect to all parameters which may be adopted to 

characterize a hypergraph (number of hyperarcs, number of adjacency lists 

required for the representation, length of the overall description,etc.). 

In particular, we consider two problems which are the generalization 

to hypergraphs of the transitive reduction [1] and of the minimum equiva

lent digraph problem [7] for directed graphs and we show that in the case 

of hypergraphs both problems are NP-complete while in the case of graphs 

the transitive reduction is polynomial. Moreover we consider other mini

mal coverings and we prove their intractability. A problem which is in

stead shown to be polynomial is the problem of determining a "source mi-
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ni mum " covering, which is shown to be a covering with the minimum number 

of lists in its representation by means of adjacency lists (and which is 

equivalent to a problem already considered in the theory of functional 

dependency in relational data bases [ 10] ). The relationships among the 

various concepts of minimality are also studied and in particular it is 

proved that there are coverings which are simultaneously minimal with 

respect to all criteria. 

A formulation based on directed labelled graphs (FD-graphs), pre

viously introduced in [2] is used as a representation of hypergraphs in 

order to prove the stated results. 

In the next paragraph, after providing the basic definitions of 

R-triangular hypergraphs and their minimal coverings, the main results 

of the paper concerning the complexity of determining the minimal co

verings and their relationships are stated. In Paragraph 3 the formalism 

of FD-graphs is introduced and the results stated in the preceding para

graph are proved. 

Finally, in Paragraph 4 we give examples of applications of hyper

graphs and their coverings to functional dependency manipulation [2,10] 

and to and-or graphs representation [ 13] • 

2. HYPERGRAPHS AND THEIR MINIMAL REPRESENTATIONS 

Various definitions of hypergraphs have been introduced in the li

terature (see for example [4,5]). A sufficiently general definition that 

suits our purpose is the following: 

DEFINITION 1. A generalized hypergraph is a pair < N,H > where N is 

the set of nodes and H is the set of hyperarcs, where a hyperarc is a 

structure which is either a node or a (either ordered or not) set of 

structures. 

Notice that hypergraphs (in the sense of [4]) and directed graphs 



128 G. Ausiello, A. D' Atri, D. Sacca 

represent special classes of generalized hypergraphs. 

In this paper we will deal with a particular class of generalized 

hypergraphs where a hyper arc is an ordered pair composed by a set of 

nodes and a single node. 

DEFINITION 2. A generalized hypergraph X = < N,H) is an R-triangular 

directed hypergraph if every hyperarc h E H is an ordered structure (X,i) 

where X ~ Nand i E N. Given an R-triangular hypergraph we call source 

set a set of nodes that appears as the left side of at least onehyperarc. 

From now on we will refer to R-triangular directed hypergraphs 

simply as hypergraphs. 

Example 1. The hyper graph J(= < {A,B,C,D,E,F},{({A,B},C),({B},D),({c,D},E), 

({C,D},F)}) 

is shown in Fig. 1, where hyperarcs are represented by arrows. 

yB\ CnD 
E F 

Fig. 1. R-triangular hypergraph. 

The basic parameters which will be taken into account in order to 

evaluate the algorithms presented in this paper will be the following: 

the number of nodes of the hypergraph (n) the number of hyper arcs (m), 

the number of source sets (n'), the source area (the sum of cardinalities 

of the source sets,(s) and the overall lenght of description of the hyper

graph IXI. 
In the previous example we have: 

n = 6, m = 4, n' = 3, s 5 

As far as the lenght of the description is concerned, if we assume a 

representation based on adjacency lists (where for every source set the 
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list of adjacent nodes is given) we have IJfl ~ s+m. According to the 

same representation, the number of source sets, n', corresponds to the 

number of adjacency lists. 

In order to simplify the notation, here and in the following, nodes 

will be denoted by the first latin upper case letters A,B, ... and sets 

of nodes will be expressed by concatenating the names of nodes (e.g. AB 

instead of {A,B} and, in particular, A instead of {A} when no ambiguity 

may arise). Besides, the last latin upper case letters X,Y, ... ,Z will be 

used to denote sets of nodes. In this case concatenation will stand for 

union (XY stands for X U Y) and the cardinality of X will be denoted by 

Ixl· 
Since the aim of this paper is to investigate both the concept of 

closure and of covering of hypergraphs, the main definition which will 

be used throughout the paper concerns paths in a hypergraph. 

Several different definitions of path in hypergraphs exist; in our 

case we introduce the concept of hyperpath which is derived by extending 

the reflexivity and transitivity rules used for the definition of path 

in a graph. 

DEFINITION 3. Let Jf = < N, H) be a hypergraph and let X f N, i EN. 

There exists a hyperpath < X,i) in Jf from X to i, if: 

- (X,i) E H, or 

- i E X (extended reflexivity), or 

- there exists a set of nodes Y = {n 1, ... ,nm} such that there exist hyper-

paths < X,n. ), for j = 1, ... ,m in Je and (Y,i) is a hyperarc in H (ex
J 

tended transitivity) . 

Note that when X and Yare singletons, the extended reflexivity and 

transitivity rules coincide with the usual definitions of reflexivity 

and transitivity as they are defined in graphs. Given the hypergraph X 
of Fig. 1 some of the hyperpaths which exist in X are: < AB,e ) , < AB,A ) , 

<AB,E). 

By means of the previous definition, we may introduce the concept of 

closure of a hypergraph. 



130 G. Ausiello, A. D' Atri, D. Sacca 

DEFINITION 4. Given a hyper graph JC = (N, H) the closure of JC, de

noted JC+ , is the hypergraph (N,H+) such that (X,i) is in H+ iff there 

exis ts a hyperpath ( X, i) in JC. 

Similarly to what happens in the case of graphs, a problem which 

arises for the manipulation of hypergraphs is to find a minimal repre

sentation of a hypergraph by means of an other hypergraph which has the 

same closure but fewer hyperarcs or some other kind of minimality pro

perty. Notice that the problem of finding a minimal representation in 

the case of hypergraphs is generally more complex than in the case of. 

graphs because, while in the case of graphs the number of arcs in the 

closure is at most quadratic in the number of nodes, in the case of 

hypergraphs the number of hyperarcs in the closure is always exponential 

in the size of N. 

DEFINITION 5. Let J{ = (N,H) be a hypergraph, a covering of J{ is 
- + - + a hypergraph j( = (N,H) such that JC = JC . 

Several concepts of minimal coverings of a hypergraph may be in

troduced. 

DEFINITION 6. Gi ven a hypergraph JC = (N, H ) , a hyperarc (X, i) E H 

is redundant if there exists a hyperpath (X,i) in JC' = (N,H-{(X,i)}) . 

DEFINITION 7. Given a hypergraph JC= (N,H) and a hyperarc (X,i)EH, 

a node j E X is redundant in (X,i) if there exists a hyperpath (X-{j},i) 

in JC. 

While, from the definition, the redundancy of a node seems to be 

relative to a hyperarc, the next result shows under which conditions it 

is indeed a property of a node itself. 

PROPOSITION 1. Let JC = (N,H) be a hypergraph and let the node j be 

redundant in the hyperarc (X,i). If the hyperarc (X,i) is not redundant 

then the node j is redundant in all hyperarcs (Y,kl such that Y 2 x. 

PROOF. Given all hyperpaths (X-{j},i) whose existence may be used 

to show that j is a redundant node, either there exists at least one 

hyperpath whose existence is based using the nyperarc (X,i) or not. In 
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the second case the hyperarc (X,i) would be redundant. In the first case, 

by Definition 3, there must exist the hyperpaths (x-b},r) for all 

rEx. Then, given any hyperarc (Y,k) where Y 2 x, we can prove that j 

is redundant with respect to this hyperarc by showing that there exists 

a hyperpath (Y-{j},k). In fact the hyperpaths (Y-{j},h) for every 

h E x-b} exist by reflexivity, the hyperpath (X-{j},j ) exists by hypo

thesis and hence (Y-{j},j) and (Y-{j},k) exist by transitivity. This 

concludes the proof. Q.E.D. 

DEFINITION 8. A hypergraph X = (N,H) is nonredundant if it contains 

neither redundant hyperarcs nor redundant nodes in the hyperarcs. 

Given a hypergraph X a nonredundant subhypergraph of X which has 

the same closure of X may be obtained by iteratively deleting the re

dundant arcs and, successively, the redundant nodes until no more re

dundant arcs and redundant nodes appear. An algorithm for determining a 

nonredundant subhypergraph of a given hypergraph and its analysis will 

be given in the next paragraph after introducing a graph formalism for 

hypergraph representation. The following theorem will then be proved: 

THEOREM 1. Given a hypergraph X = (N,H) the problem of determining 

a nonredundant subhypergraph of X which has the same closure as X may be' 

solved in time quadratic in IXI . 
E~mpLe 2. Given the hypergraph 3C of Fig. 2a, a non redundant covering 

I 

of X, 'JC may be obtained by eliminating the redundant hyperarc (A,D) and 

the redundant node E in the hyperarc (AE,B) (see Fig. 2b). 

r\~E ·E (A\. 
B'0) \y) 

D D 

a) b) 

Fig. 2. A nonredundant subhypergraph of a given hypergraph. 
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Notice that, by changing the order in which redundant arcs and nodes are 

eliminated, different nonredundant subhypergraphs may be obtained and, 

in particular, a non redundant subhypergraph with the smaller number of 

hyperarcs may be derived. 

" Example 3. In Fig. 3 a nonredundant subhypergraph X of the hypergraph 

given in Fig. 2a is given, which has fewer hyperarcs than the subhyper

graph of Fig. 2b. 

~ E 

Fig. 3. A nonredundant subhypergraph with the minimum number of 

hyperarcs. 

Finally we observe that a nonredundant covering with the minimum number 

of hyperarcs might not be a subhypergraph of the given hypergraph and 

hence it has to be obtained in a different way. 

Examp le 4. Let us consider the hypergraph JC I of Fig. 2b which is non-
" redundant. The hypergraph X of Fig. 3 is a covering of X which is 

not a subhypergraph of X and has the minimum number of hyperarcs. 

As we have already observed the problem of determining minimal co

verings of hypergraphs is more complex than in the case of graphs es

sentially because the closure of a hypergraph has an exponential number 

of hyperarcs and because, in the case of hypergraphs, we can define mi

nimality with respect to different parameters. 

The rest of this paragraph is devoted to introducing several dif-

ferent concepts of minimality of coverings and to state their properties. 

The first definition is a natural extension of the corresponding 

definition for graphs. 



Minimal Representations of Directed Hypergraphs 133 

DEFINITION 9. A minimum equivalent subhypergraph of a hypergraph X 
is a nonredundant subhypergraph of JC which has the same closure as JC and 

the minimum number of hyperarcs. 

For example the hypergraph JC of Fig. 3 is a minimum equivalent 

subhypergraph of the hypergraph JC of· Fig. 2a. The problem of determining 

a minimum equivalent subhypergraph of a given hypergraph is NP-complete(*) 

because this problem (which is clearly in NP) coincides with the problem 

of the minimum equivalent graph (known to be NP-complete [ 7]) when for 

every hyperarc (X,i) we have Ixi = 1. 

In the above definition it is required that the minimal covering 

which is considered is a subhypergraph of the given hypergraph. In the 

case of graphs if we drop this condition we obtain a simpler problem 

(transitive reduction [ 1] ). Analogously, in the case of hypergraphs we 

may consider minimal coverings which are not required to be subhyper

graphs. The first kind of covering, which may be considered the more 

natural extension to hypergraphs of the transitive reduction is provided 

in the following definition: 

DEFINITION 10. A non redundant covering of a hypergraph JC is said 

to be a hyperarc minimum covering (HM-covering) if the number of its 

hyperarcs is minimum (see again Example 4). 

From the computational point of view it is interesting to observe 

that the complexity of this problem increases dramatically when we go 

from graphs to hypergraphs. In fact, given a graph G = (N,A) , the pro

blem of finding the transitive reduction may be solved in polynomial time 

O(INI -IAI). Instead, in the case of hypergraphs we will prove the fol

lowing theorem. 

THEOREM 2. Given a hypergraph JC, the problem of determining a 

HM-covering is NP-complete. 

(*) Throughout all the paper we will refer to NP-optimization problem 

and NP-complete optimization problem as defined in [ 141 • 
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This result which shows that, in the case of hypergraphs, finding 

the transitive reduction is not simpler than to find the minimum equi

valent subhypergraph, suggests taking into consideration other concepts 

of minimality. In particular, since in the case of hypergraphs coverings 

may have a different number of source sets with respect to the original 

hyper graph , the following definition of minimality may be introduced. 

DEFINITION 11. A non redundant covering of a hypergraph X is said 

to be a source-minimum covering (SM-covering) if the number of its 

distinct source sets is minimum. 

Due to the reflexivity rule, the number of source sets in the clo

sure of a hypergraph increases exponentially in the number of nodes. It 

is hence very important to find coverings where such a number is strongly 

reduced. 

Example 5. 

~ ...- -
C A C 

~E E 

B 
'-----

D D 

Fig. 4. An SM-covering of a given hypergraph. 

In the hypergraph of Fig. 4a the source sets are AB,CD,C,D while in its 

non redundant covering if Fig. 4b the source sets are AB,C,D and it may 

be easily seen that there is no covering with fewer source sets. 

In the next paragraph the following result will be proved concerning 

the problem of determining an SM-covering of a given hypergraph: 

THEOREM 3. Given a hyper graph ;Ie = (N, H ), the prob lem of determining 

an SM-covering of X is polynomially solvable and requires time quadratic 

in IXI . 
Note that the definition of SM-covering is not meaningful in the 
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case of graphs, since the fact that the outdegree of a node is zero or 

not is invariant in all coverings. 

By composing the previous definitions and by taking into considera

tion the source area of a hyper graph as a new parameter to be minimized, 

the following three concepts of minimality may also be introduced: 

DEFINITION 12. A nonredundant covering of a hypergraph is said to 

be 

- a source-hyperarc-minimum covering (SHM-covering) if it is a HM-covering 

with the minimum number of source sets; 

an optimum source-minimum covering (OSM-covering) if it is an SM-co

vering with the minimum source area; 

an optimum covering (o-covering) if it is an SHM-covering with the 

minimum source area. 

Example 6. In Figure 5 we have: a) a nonredundant hypergraph j{, b) an 

SM-covering of X obtained by replacing the hyperarc (CD,E) by the hyper

arc (AB,E), (note that such a covering is not hyperarc minimum), c) a 

HM-covering of X obtained from it by replacing the hyperarcs (F,E) ,(E,G), 

(E,H) by the hyperarcs (F,G), (F,H), (note that such a covering is not 

source minimum), d) an SHM-covering of JC obtained by combining the above 

replacements (note that such a covering is not an OSM-covering), e) an 

OSM-covering of X obtained from the 8M-covering in b) by replacing the 

hyperarc (HGK,L) by (FK,L), (note that such a covering is neither SHM 

nor HM), f) an a-covering of X obtained from the SHM-covering in d) by 

replacing the hyperarc (HGK,L) by (FK,L). Notice that all such coverings 

are not subhypergraphs of X. 

Given a hypergraph X, finding an SHM-covering and an a-covering of 

JC are again NP-complete problems. This derives from the fact that in both 

cases such coverings are also required to be hyperarc minimum coverings 

by definition and we know that finding a HM-covering is NP-complete. 

Finding an OSM-covering is also an NP-complete problem as will be shown 

in the next paragraph: 

THEOREM 4. Given a hyper graph JC, the problem of determining an 
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a) a nonredundant hypergraph ~ 
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c) a HM-covering of ~ 
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e) an OSM-covering of 3C 
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b) a SM-covering of ~ 
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E 

H 
D GfK 

L 

d) a SHM-covering of ~ 

L 

f) an O-covering of ~ 

Fig. 5. Minimal coverings of a hypergraph. 
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OSM~covering is NP-complete. 

On the other hand it is interesting to observe the adequacy of the 

given concepts of minimality by stating the following theorems which 

establish the relationships between the various minimality criteria and 

which will also be proved in the next paragraph. 

THEOREM 5. An SHM-covering of a hyper graph X is also an SM-covering 

of X. 

THEOREM 6. An O-covering of a hypergraph X is also an OSM-covering 

of X. 

THEOREM 7. A non redundant covering of a hypergraph X is an OSM-co

vering if and only if it has the minimum source area among all coverings 

of X. 

The relationships among different types of minimal coverings which 

are stated in the previous theorems are summarized in the following 

Figure 6 (where A ~ B means that A-minimality implies B-minimality). 

~ non 
redundant 

HM ~ 

(:::::::::: S M 
~ 
( 

SHM~ 
~O 
~ 

OSM 12:. 

Fig. 6. Relationships among minimal coverings. 

Such results imply that the conditions given in Definition 12 (such 

as the fact that "an SHM-covering is a HM-covering" etc.) are not re

strictive and that there exist coverings which are simultaneously minimal 

with respect to all criteria: number of hyperarcs, number of source sets, 

source area. In particular it must be noted that the O-covering corres

ponds to a "minimum lenght" representation of a hypergraph among all pos

sible coverings, if we assume as lenght of a representation the sum of 

the number of hyperarcs and the source area (as it was suggested at the 

beginning of this paragraph). 
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3. GRAPH ALGORITHMS FOR THE MINIMAL REPRESENTATION OF HYPERGRAPHS 

Let us now provide the proofs of the results stated in the preceding 

paragraph. Some of these proofs are based on a graph representation of 

hypergraphs which has been previously introduced in [2] for the manipula

tion of functional dependency in relational data bases. 

DEFINITION 13 • Given a hypergraph Je = (N, H) the FD-graph of Je is 

the labelled graph GH = (NH,Af,Ad ) where: 

- N = NUN is a set of nodes, where N will be called the set of simple H c 
nodesandN {xl:3iENsuChthat (X,i) EHand Ixi of 1}willbe 

c 
called the set of compound nodes; 

- Af = {(X,i) I for every (X,i) E H} f NH x N is a set of arcs (labelled 

f) that will be called the set of full arcs; 

- Ad = {(X,j) I for every X E NC and j EX} f Nc x N is a set of arcs 

(labelled d) that will be called the set of dotted arcs. 

Example 7. Let us consider the hypergraph of Fig. 2a. Its FD-graph re

presentation is given in Fig. 7. In this case the set of simple nodes is 

N = {A,B,C,D,E,} and the set of compound nodes is N = {AE,BC} 
c 

AE 

.~ 

.. E 

Be 

J 
D 

Fig. 7. The FD-graph of the hypergraph in Fig. 2a. 

Given a hypergraph Jewith n nodes, m hyperarcs, n' source sets, nil 

source singletons (source sets with cardinality 1) and source area s, it 

will be represented by a FD-graph with n simple nodes, n 1 = n'-n" compound 
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nodes, m full arcs and m1 = s-n" dotted arcs. If we consider the lenght 

of the description of the FO-graph we may easily assume that it coincides 

with the lenght IJel ~ s+m of the description of the given hypergraph. 

The use of FO-graphs and of their closure in some cases allows to 

determine minimal coverings of hypergraphs without falling into the ex

ponential explosion of the hyper graph closure because the FO-graph clo

sure grows only at most quadratically. More precisely in order to find 

a covering of a hypergraph JCwith suitable minimality properties we first 

give the FO-graph representation GH of the given hypergraph, then we de-
, "11'+ termine the closure of GH (lnstead of ~ ) in order to provide the minimal 

covering JC I. 

The sequence of transformations that we may go through in such cases is 

given in Fig. 8 (continuous line). 

closure 

JC ------JC+ 

closure 

ul 
j(+ 

t 
I 

i 
-------------------------+. + 

GH GH 

minimal 
covering 

--- --- --- --- --- -JCI 

reduction 

r; 
(l) 

'0 
r; 
(l) 
til 
CD 
::l 
rt 
PI 
rt 
1-" 

,g 
-------------------------+G I 

H 

Fig. 8. The sequence of transformations to determine minimal coverings. 

First of all let us define the concept of FO-path that will be used in 

order to define the closure of an Fo-graph. 

DEFINITION 14. Given an Fo-graph GH = (NH,Af,Ad ) and a pair of 

nodes i,j E NH ' an Fo-path (i,j) from i to j is a minimal subgraph 

GH = (NH,Af,Ad of GH such that i,j E NH and either Af U Ad = {i,j)} or 

one of the following possib~lities holds: 

- j is a simple node and there exists a node k such that (k,j) E Af U Ad 
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-and there is an FD-path < i,k) in GH (transitivity) ; 

- j is a compound node with component nodes m1, .•. ,mr and (j,m1), •.. , 

(j,mr ) E Ad and there are FD-paths < i,m1 ), ... ,< i,mr ) in GH (union). 

Furthermore an FD-path < i, j 

dotted, otherwise it is full. 

is dotted if all its arcs leaving i are 

Example 8. In Fig. 9a a full FD-path and in Fig. 9b a dotted FD-path from 

the hypergraph of Fig. 7 are shown: 

B ' . ...... 

. . . . 
AE 

,:' 

~., 

A 

\.c 
Be 

i 
D 

a) 

. . . . 
:4 

b) 

Fig. 9. Examples of FD-paths. 

AE . . 

DEFINITION 15. Given an FD-graph GH = < NH,Af'Ad ) we define closure 

of GH the labelled graph G; = < NH,A;,A~) where an 'arc (i,j) is 

a) in A ~ iff there exis ts a dotted FD-pa th < i , j > 

b) in A; iff (i, j) 9!' A~ and there exists a full FD-path ( i, j > • 

In [2] an algorithm is shown which, given an FD-graph GH and a node i, 
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provides the sets of nodes which may be reached from the node i by means 

of a full or dotted FD-path (in time O(mH), where ~ m+m1 is the number 

of arcs of GH and m(m2) is the number of full (dotted) arcs. 

Such algorithm is an extension to FD-graphs of the usual transitive 

closure algorithm for graphs. The only substantial modification concerns 

the application of the union rule (see Definition 14) that is implemented 

by associating a counter with every compound node j. This counter keeps 

track of the number of component nodes of j which are currently reached 

from the source node i. By applying this algorithm to all the nodes, we 

may determine the closure of GH in time O(nH·~) where nH is the total 

number of nodes of GH with at least one outgoing arc. In terms of the 

parameters of the hypergraph we have that the closure algorithm runs in 

time 0 (n I ·1 Jel) since m = m+m1 < m+s ~ I Jel and n = n I • 
H - - H 

The closure of an FD-graph is a succint representation of the closure 

of the corresponding hypergraph in the sense expressed in the following 

theorem: 

THEOREM 8. Let Je = (N, H) be a hypergraph and GH = (NH ,Af ,Ad the 

corresponding FD-graph. Given a pair of nodes i,j E NH where j is a simple 
+ node, the arc (i,j) is in GH if and only if there exists a corresponding 

+ 
hyperarc in Je . 

+ 
PROOF. Only if part: since every arc'in GH incident into a simple 

node is either in GH or is derived by applying the transitivity and the 

union rules, it is easy to observe that the corresponding hyperarc is 

either in J( or is derived in Jf+ by applying the extended transitivity 

and the reflexivity rules. 
+ If part: if a hyperarc (i,j) is in U ,where j is a single node, 

the hyperpath (i, j) is in Je. By induction on the structure of a hyper

path the following cases may arise (the first two cases are the basis of 

the induction): 

- either (it j) is a hyperarc of j{ , then ( i ,j) is an FD-pa th in GH; 

- or (i, j). is a hyperarc of J{+ obtained by reflexivity, then the dotted 

arc(i,j) appears in GH; 
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- or there exists a set of simple nodes Y = {n l , ... ,nm} such that (i,nk 

for k = l, ... ,m are hyperpaths and (Y,j) is a hyperarc. In this case, 

by inductive hypothesis there exist FD-paths (i,~) in GH for 

k = l, ... ,m; then by union rule (or by transitivity rule if m = 1) there 

exists the FD-path ( i, j ) • 
Q.E.D. 

Notice that the subhypergraph of JC+ whose hyperarcs exist if and 
+ only if the corresponding arc exists in GH is the hypergraph that we 

-+ 
have denoted J( in figure 8 and is itself a covering of JC. 

The next step toward the determination of minimal coverings of a 

hypergraph will make use of the FD-graph representation of a hypergaph. 

Starting from the closure of the FD-graph we will apply transformation 

rules that bring the FD-graph into reduced forms and we will show that 

such reduced forms correspond .·to the FD-graphs of a nonredundant covering 

and of an SM-covering of the original hypergraph (see again Fig. 8). 

Let us first introduce the following definition. 

DEFINITION 16. Given an FD-graph we say that i) a compound node k 

is redundant if for every full arc (k,j) there exists a dotted FD-path 

(k,j ); ii) a dotted (fuZZ) arc (k,j) is redundant if there exists a 

dotted (full or dotted) FD-path (k, j ) which does not contain the arc 

(k, j) • 

By means of the following proposition, which is a straightforward 

consequence of Theorem 8, we give the first rules for reducing an FD-graph 

(see Fig. 8). Such rules allow us to find a nonredundant subhypergraph of 

a given hypergraph. 

PROPOSITION 2. Given an FD-graph GH ' every FD-graph obtained from 

GH by eliminating any redundant node together with all its outgoing arcs 

or any redundant arc, is the representation of a covering of the hyper

graph represented by GH• 

From now on, by "elimination of a redundant node in an FD-graph" we 

will mean also the elimination of all arcs leaving the redundant node 

(notice that, by definition of FD-graph, compound nodes do not have in-
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coming arcs) • 

Now we prove that, as we stated in the preceding paragraph, a non

redundant subhypergraph of a given hypergraph may be found in time 

o (IJCI2) : 

PROOF OF THEOREM 1. Given a hypergraph dC we 

1. determine the FO-graph GH corresponding to JC ; 

2. eliminate redundant nodes from ~ by determining the closure of GH; 

3. eliminate redundant full arcs from GH; 

4. eliminate redundant dotted arcs from GH; 

5. derive the hypergraph JC corresponding to the reduced FO-graph. 

In order to show the correctness of such algorithm we first observe , 
that JC is a covering of JC (by Proposition 2); then we show that JC has 

no redundancies. In fact, if there was a redundant hyperarc (X,i) in the 

hypergraph JC , there would be either a redundant full arc (X,i) in the 

FD-graph or at least a redundant compound node, namely the node X itself 

(contradiction). On the other side, if there was a redundant node j E X 

in the hypergraph, with respect to some nonredundant hyperarc (X,i) then 

there would be a redundant dotted arc (X,j) in the FD-graph. This means 

that the elimination of redundancies in the FO-graph implies the elimina

tion of redundancies in JC. Concerning the efficiency of the given pro

cedure, since both steps 1 and 5 require linear time in the size of the 

input, the cost is essentially due to steps 2,3 and 4. Step 2 requires 

time O(n'oIJCI), where n' is the number of source sets and IJCI is the 

length of the description of JC, because the elimination of redundant nodes 

in the FD-graph is immediately deduced from the closure (in fact a com

pound node is redundant if and only if all its outgoing arcs in theclos

ure are dotted). The elimination of redundant full arcs requires that for 

every full arc (h,i) we determine in time O(IJCI) all full FO-paths start

ing from the node h and which do not include the arc (h,i). The overall 

cost of step 3 is hence O(moIJCI). 

Finally,in order to eliminate redundant dotted arcs we may proceed 

in the following way: given any dotted arc (h,i) we may compute the set 



144 G. Ausiello, A. D' Atri, D. Sacca 

of nodes j such that a dotted H-path (h,j) exists which does not include 

the dotted arc (h,i). If i belongs to such a set this means that the arc 

(h,i) is redundant. Since the time required to answer this question is 

o (IXI) and since the number of dotted arcs is m1 = s-n" < s, the overall 

cost of step 4 is O(s·IXI). Taking into account that n' < s and that 

IXI = s+m we obtain that the cost of determining a nonredundant sub

hypergraph is 0 ( IXI2) . 
Q.E.D. 

A second rule for the reduction of FD-graphs will now be introduced. 

Let us first consider the following definition. 

DEFINITION 17. Given an FD-graph GH = (NH ,Af'Ad ) : 

- a pair of nodes i,j E NH are said to be equivalent if both the (full 

or dotted) arcs (i,j) and (j,i) belong to the closure of GH; 

a compound node i is said to be superfluous if there exists a dotted 

FD-path (i,j ) where j is equivalent to i. 
. L .. (*) d d - GH 1S R-~n~mum if it has neither re undant no es and arcs no~ 

superfluous nodes. 

Example 9. In the FD-graph of Figure lOa) (corresponding to the hyper

graph of Figure 4a), the nodes AB and CD are equivalent and the node CD 

is superfluous. The FD-graph in Fig. lOb) is LR-minimum. 

• E 

Fig. 10. FD-graph containing a superfluous node and LR-minimum FD-graph. 

(*) The name is due to the properties of a corresponding definition given 

in [10] for functional dependencies. 
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The rule of elimination of a superfluous node i from an FO-graph con

sists in eliminating i together with all its outgoing dotted arcs and 

moving, at the same time, all its outgoing full arcs to an equivalent 

node j which is connected to i by a dotted FO-path. 

PROPOSITION 3. Let GH = (NH,Af,Ad ) be the FO-graph representation 

of a hypergraph '3C. Let i be a superfluous node in GH and let j be a node 

equivalent to i such that there exists a dotted FO-path (i,j ). Let 

GH, = (N~,Af,Ad) be an FO-graph where: 

- A' 
f 

- A' 
d 

- N' 
H 

Then GH, is the FO-graph representation of a covering of the hypergraph 

Jf. 

PROOF. Starting from GH ' we construct the FO-graph GH" by adding 

the redundant arc (j,h) for every (i,h) in Af . Since GH can be obtained 

from GH" by eliminating the redundant full arcs introduced above by Pro

position 2 '3C" is a covering of '3C. Since the node i is redundant in 

GH" , because for every full arc (i,h) there is a dotted FO-path (i,h) 

passing through j, GH, can be obtained from GH" by eliminating the node 

i and all its outgoing arcs. By proposition 2, JC' is a covering of JC" and 

therefore of '3C as well. 
Q.E.O. 

From now on, by "elimination of a superfluous node" we will mean the 

procedure indicated in Proposition 3 (for instance, the Fo-graph in Fig. 

lOb is obtained from the Fo-graph in Fig. lOa by eliminating the super

fluous node CD). 

Before proceeding in proving the results stated in paragraph 2, we 

need the following two lemmata. Lemma 1 outlines a structural property 

of LR-minimum FO-graphs which allows to establish (by Lemma 2) a strong 

correspondence between LR-minimum FD-graphs and source minimum hypergraphs 

which will be needed for most of the subsequent results. Furthermore Lemma 
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1 will also be used to prove Theorem 6. Notice that all structural pro

perties of LR-minimum FD-graphs stated in [2] can be easily derived from 

Lemma 1 but the viceversa does not hold. 

LEMMA 1. Let GH, = (NH, ,Ai ,Ad)' GH" = (NH" ,Ai ,Ad) be the FD-graph 

representations of two coverings of a hypergraph ;Ie. If both GH, and GH" 

are LR-minimum then there exists a bijection </>: NH" -+ NH, such that,for 

every node i E NH"/NH, 

a) q, (i) E NH , /NH" 

b) q, (i) is equivalent to i in GH", = (NH, UNH" ,Ai,Ad U Ad > 

c) there exists a dotted FD-path (q, (i) , i) in GH", 

PROOF. In order to prove the lemma we need first to prove the fol

lowing claim. 

CLAIM 1. Let ;JC 1 and;JC 2 be two coverings of ;JC, 

+ + + + 
corresponding FD-graphs, GH = (NH ,A 1f'A 1d ) and GH 

1 1 2 
be their closures and let i,j be in NH n N . If 

1 H2 

+ 
(i,j) is in Alf and 

(i,j) is in A;d' then every dotted FD-path (i,j ) contains a 

node k equivalent to i. 

U 

such that k,~ are in 

N is also in GH and vice versa because GH contains more compound 
Hl 1 3 

nodes besides all compound nodes in NH but not more full arcs. Hence 
1 

(i,j) is also in A;f. Let us now consider any dotted FD-path (i,j > in 

GH2 and let k 1 , .•. ,ks be the intermediate nodes on (i,j). We have to 

prove that at least one of these intermediate nodes is equivalent to i. 

By Theorem 8, if (ke,kr ) is in A2f U A2d ' there exists an FD-path 

(k ,k ) in ~ because H3 is a covering of H1. Moreover, since no dotted 
e r 3 

FD-path (i, j) is in GH ' some FD-path (k ,k ) contains a full arc 
3 e r 
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leaving i. By Definition 14, in GH there exist FD-paths (i,k ) (because 
3 e 

the FD-pa th ( i, j) contains k ) 
e 

and (k ,i) (by Theorem 8 because the 
e 

FD-path (k ,k 
e r 

valent. 

in GH contains the node i). Hence i and ke are equi-
3 

END OF PROOF OF CLAIM 1. 

Let us now consider the two LR-minimum FD-graphs GH, and GH" as 

defined in the statement of the Lemma. We construct the bijection ¢ in 

the following way: when i E NH" n NH' then ¢(i) = i. Otherwise, if 

NH" = NH" \ NH I is not empty and i E NH" , then ¢ (i) j where j E NH I 

NH 1\ NH" and is derived in the following way. 

Let us construct the FD-graph GH ' by adding i and its outgoing 
+ ( -+-+) dotted arcs to GH I. Let GH I = _Nil I ,Ai: ,Ad be the closure of GH I. By 

Proposi tion 2, the hypergraph JCI is a covering of JC and then of JC" 

Since i is non redundant in GH" by hypothesis, there exists at least one 
+ 

simple node r such that (i,r) is in Ai and then in Ai . Instead, by con-
- + 

struction, the arc (i,r) is in Ad Hence, by Claim 1, every dotted 

FD-path ( i,r) in GH I contains at least a node k equivalent to i. Let 

j be a node in NH' equivalent to i and such that there is a dotted 

FD-path (i,j) in ~I that does not contain any other node equivalent to 

i. We may show that j is indeed in NH' by contradiction. In fact if j was 

n ,,+ in NH' NH" by Claim 1 the arc (i,j) would be in Ad and i would be 

superfluous in GH" (contradiction with the hypothesis that GH" is 

LR-minimum). We prove that ¢ is bijective by showing that ¢ is injective 

and that INH"I = INHI I. Let i be a node in NH" different from i. Let us 

suppose, by contradiction, that ¢(l) ¢(i) = j. Let GH" be the FD-graph 

obtained from GH" by adding the node j and all its outgoing dotted arcs 

d 1 + - ( -,,+ -,,+) b th 1 f an et~" - NH",Af ,Ad e e c osure 0 GH" • Since j is equiva
- + 

lent to i and i in ~" , (j,i) and (j,1) are 

the dotted FD-paths (i, j) and ( L j) in GH I 

in A" • Furthermore, since 
d 

do not contain other nodes 

equivalent to i or i and since H' is a covering of H", by Claim 1 there 

exist also dotted FD-paths ( i, j) and ( i, j) in~". Now, without loss of 
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generali ty, we suppose that the dotted FD-path ( j ,i) in Gii" does not 

contain the node i (otherwise we could refer to ( j, i ) ). Since in Gii" 

there exist the dotted FD-pa ths ( i, j and ( j ,i) and since ( j ,i) does 

not contain the node i, there exists also a dotted FD-path ( i, i) in Gii'" 

This FD-path is also in GH" because Gii" differs from GH" only in the 

compound node j that has no outgoing full arcs. Hence i is superfluous 

in GH" and we get a contradiction with the hypothesis that GH" is 

LR-minimum. Therefore the mapping cP is injective and, hence, INH" 1 < 

~ 1 NH, I· If we exchange GH, with GH" and viceversa in our argument, we 

obtain also 1 NH, 1 ~ 1 NH" I· Hence forth 1 NH, 1 = 1 NH" 1 and cP is a bij ection. 

This concludes the proof of Part a) of the lemma. In order to prove Part 

b) we observe that since i and j = CP(i) are equivalent in ~, and since 

Ii' is a covering of H'li by Proposition 2, i and j are equivalent in GHIII 

by Theorem 8. Finally we have to prove Part c), i.e. that there is a 

dotted FD-path ( j ,i) in GH'II First of all we notice that in GE" there 

is a dotted FD-path ( j , i ) . We show that this FD-path does not contain 

any node equivalent to j by contradiction. Let us suppose that there ex

is ts a node i equivalent to j in ( j, i ) . Without loss of generality we 

can suppose also that the dotted FD-path (j,i) does not contain any node 

equivalent to j. Since there is also a dotted FD-path (i,j in GE" (as 

we have already proved) there exists a dotted FD-path (i,i in Gii:" 

This FD-path is also in GH" and i is superfluous (contradiction with the 

hypothesis that GH" is LR-minimum). Therefore the dotted FD-path ( j ,i ) 

·in GE" does not contain any node equivalent to j. Hence, since E" is a 

covering of H'li , by Claim 1 there is a dotted FD-path ( j, i) in GHIII and 

this concludes the proof. 
Q.E.D. 

The next lemma establishes the correspondence between LR-minimum 

FD-graphs and source-minimum hypergraphs. This result is useful both for 

applying to source minimum hypergraphs the computational results proved 

in [2] for LR-minimum FD-graphs and for deriving other results stated in 

section 2, concerning the other concepts of minimal coverings. 

LEMMA 2. A hypergraph X is source minimum iff its FD-graph repre-
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sentation is LR-minimum. 

PROOF. Only if part. Let GH be the FD-graph representation of X. GH 

does not contain redundant or superfluous nodes, because otherwise we 

could reduce the number of source sets in Xby eliminating either the 

redundant or the superfluous nodes (by Proposit~ons 2 and 3). GH does 

not have redundant arcs because otherwise X would be redundant (by 

Theorem 8). Hence GH is LR-minimum. 

If part. Let GH (NH,Af,Ad > be the LR-minimum FD-graph representa

tion of the hypergraph X. Let J(' be an SM-covering of ;I( and let GH, = 

= < NH"Af,Ad > be its FO-graph representation. By the only if part of 

this lemma GH, is LR-minimum. Hence, by lemma 1, G and G , have the same 
H H, 

number of nodes with outdegree > O. This means that X and X have the 

same number of source sets, i.e. X is source minimal. 
Q.E.D. 

We are now able to prove that the problem of determining a source 

minimum covering of a given hypergraph X can be solved in time quadratic 

in the size of the description of X. 

PROOF OF THEOREM 3. An SM-covering of a given hyper graph X may be 

obtained by the following steps: 

1. determine the FO-graph representation of X; 

2. eliminate redundant nodes; 

3. eliminate superfluous nodes; 

4. eliminate redundant arcs; 

5. derive the hypergraph X' corresponding to the reduced FD-graph. 
, 

By Proposition 2 and 3, X is a covering of X. By Lemma 2, X is 

source minimum. As far as the complexity is concerned it has been shown 

in the proof of Theorem 1 that steps 1,2,4 and 5 require time quadratic 

in IXI. Superfluous nodes can be easily recognized from the closure. 

Hence the whole complexity of the algorithm remains quadratic in IXI 

Actually in [2] a more efficient implementation of this algorithm was 

given, that requires time O{t-IXI) where t (n' ~ t ~ IXI) is a parameter 
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depending on the structure of the hypergraph which takes value n' (number 

of nodes) when the hypergraph is indeed a graph. 
Q.E.D. 

After having considered the complexity properties of nonredundant 

and source minimum coverings let us now turn to the harder problems. 

First of all we provide the NP-completeness proofs for the hyperarc 

minimum and source optimum coverings. 

PROOF OF THEOREM 2. In order to prove that the problem of determin

ing an HM-covering is NP-complete we may give a polynomial reduction from 

the set-covering problem to the problem of minimizing the number of hyper

arcs of a nonredundant covering of a hypergraph, analogously to what is 

done in [9]. Let an instance of the set covering problem be given: let 

S = {sl, ... ,sn} be a set of elements and Sl"",Sm be a family of subsets 
m 

of S such that i~1 Si = S. The set-covering problem is the problem of 

finding a subfamily minimizing the number of sets S. , ... ,S. such that 
k 11 1k 
U s. S. Given the above instance we may construct a hypergraph whose 

j=1 1j - - - - -
nodes are s1, ••. ,sn' S1""'Sm ' T and for every Sj E Si there is a cor-

responding hyperarc (Si'~j); besides there are the hyperarcs ({~l""'~n}' 

S.) and the hyperarcs (T,S.) for all i = l, ... ,m (see Fig. 11). 
1 1 

Fig. 11. Hypergraph associated with an instance of the set-covering pro
blem. 

-
Note that if from the hypergraph the node T and the hyperarcs lea-

ving it are taken out, the remaining hypergraph is nonredundant and no 
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covering with a smaller number of arcs may exist. Hence the only redundant 
- (*) 

arcs may be those leaving T . In fact if the sets S, , ... ,S, provide 
II lk 

a covering of S, all arcs leaving T and different from (T,S, ) ... , (T,S, ) 
II lk 

are redundant and may be eliminated without changing the closure. Since 

the reduction from the instance of set covering to the instance of HM

covering of the hypergraph is polynomial we have shown that if we know 

how to minimize the number of hyperarcs in the hypergraph we would solve 

the se't covering problem. Hence the hyperarcs minimization problem is 

NP-hard. The easy observation that such problem is solvable in polynomial 

nondeterministic time completes the proof. 
Q.E.D. 

PROOF OF THEOREM 4. In order to prove that the problem of determin

ing an OSM-covering is NP-complete we may use a slight modification of 

the proof of Theorem 2. Let us again consider the hypergraph in Figure 11. 

First we add a new node T1 and then we replace the hyperarcs 

(T,Sl) , ... , (T,Sm) with the hyperarc (Sl' ... 'SmTl,T). This latter hyper

arc may contain redundant nodes. If we eliminate such nodes by Lemma 2 

we obtain a SM-covering of X since its FD-graph representation GH is 

LR-minimum. In fact in GH neither nodes nor arcs are redundant and no 

node is superfluous because there are no equivalent node. Notice that if 

we did not add the node T1 in GH ,the node Sl ... Sm would have been super

fluous with respect to the node sl ... sn. The OSM-covering of this hyper

graph is an SM-covering from which we have eliminated the maximal number 

of redundant nodes in the previous hyperarc. Hence by determining the 

OSM-covering we would also solve the set covering problem. 
Q.E.D. 

Finally we prove the results concerning implications among minimality 

concepts (see Fig. 6). 

(*) Note that in this case the HM-covering problem coincides with the mi
nimum equivalent subhypergraph problem and the relaxation of the sub
hypergraph constraint does not make the problem simpler. Actually the 
same theorem can also be used to prove the NP-completeness of the mi
numum equivalent subhypergraph problem. 
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Let us first of all prove that since source minimality is implied 

by source-hyperarc minimality an SHM-covering may be found among SM-co

verings. 
, 

PROOF OF THEOREM 5. Let a hypergraph J( be given. Let X be an SHM-

covering of J~ in order to prove that it is also an SM-covering let us 

proceed by contradiction. Let us suppose that J( is not an SM-covering 

of X and let GH ' be the FO-graph associated to X. By Lemma 2, GH ' is 

not LR-minimum. Since H' is nonredundant, GH ' has neither redundant 

nodes nor redundant arcs. Hence GH ' has at least one superfluous node. 

By eliminating such a node we would determine an FO-graph GH" which re-
" presents a hypergraph X which is a H-minimum covering of X but with a 

smaller number of source sets (contradiction). 
Q.E.O. 

The second result concerns the fact that an optimal covering may be 

found among optimal source minimum coverings. 

PROOF OF THEOREM 6. Let a hypergraph J( be given. Let X and X" be 

respectively an o-covering and an OSM-covering of X. By definition of 

O-covering, in order to prove the theorem, it is sufficient to find an 
~m ~" SHM-covering d~ which has the same source area as oe • To this goal we 

consider the FO-graphs GH, = (NH, ,Aj, ,Ad> and GH" = (NH", Ai ,Ad > as-

sociated to X' and JC" . We construct the FO-graph GHIII (NH, U NH" , 

Aj"Ad U Ad>. By Proposition 2, Xm is covering of X. By Lemma 1 every 

compound node in NH,\NH" is superfluous in GHIII . By eliminating such 

nodes we obtain an FD-graph with the same number of full arcs as GH, and 

the same set of nodes as GH" . Therefore the hypergraph represented by 

this FO-graph is an SHM-covering of JC which has the same source area as 
J(" 

Q.E.O. 

Finally we prove that a nonredundant covering with the minimum source 

area is necessarily a source-minimum covering. 

PROOF OF THEOREM 7. Let X be a hypergraph and let 'JC be a covering 
, 

of 'JC wi th the smallest source area. We may show that J( is also source-

minimum. Without loss of generality we assume that X is nonredundant 
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, 
(in fact, if JC was redundant, by eliminating redundancies we could ob-, 
tain a nonredundant covering of J( with the same source area as J( ). Let , , 
GH, be the FD-graph representation of JC Since J( is nonredundant, GH, 

has neither redundant nodes nor redundant arcs. Moreover GH, has no 

superfluous nodes because otherwise, by eliminating such nodes, we would 

find the FD-graph representation of a covering of J( with a smaller 

source area. Hence GH, is LR-minimum and by Lemma 2, J( is source-minimum. 
Q.E.D. 

4. APPLICATIONS OF MINIMAL REPRESENTATIONS OF HYPERGRAPHS 

FD-graphs were first introduced in [2] in connection with the re

presentation and manipulation of sets of functional dependencies in rela

tional data bases [15] • 

In this case, as it was shown in the mentioned reference, the pro

blem is to determine a minimal covering of a set of functional dependen

cies X. ~ Y. , 1 < i < k, defined over a set of attribute names U, where 
1 1 --

Xi and Yi are subsets of u. 
For example if A,B,C,D,E are attribute names, the following set of 

functional dependencies: 

AB ~ CD, B ~ E, E ~ C 

represents the implication between attribute values, that is the pair of 

values over A and B univokely determine the values over C and 0, etc. 

Given a set F of functional dependencies, a set of inference rules 

allows to determine the set F+ of all dependencies which may be derived 

as consequences of F. A central problem in relational theory is hence to 

determine a covering F' of F such that F'+ = F+ and F' is "minimal" with 

respect to some criteria [ 10]. By associating nodes to attributes and 

hyperarcs (A 1 ••• An ,B 1) , •.. , (A 1 ••• An ,Bm) to every functional dependency 

A1 ••• An ~ B1 ••. Bm ' we may represent a set of functional dependencies by 
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an R-triangular hypergraph. In [21 it has been shown that the problem of 

determining minimal coverings such as the ones considered in [101 may be 

efficiently solved by using FD-graphs and their manipulation algorithms. 

In particular such minimal coverings correspond to our source-minimum 

hypergraphs. 

Other kinds of dependencies in relational data base theory such as 

the existenae aonstraints introduced in [111 may also be treated by using 

hypergraph algorithms since inference rules for this kind of constraints 

have the same structure as inference rules for functional dependencies. 

FD-graphs may also be applied for the efficient manipulation of 

AND-OR graphs [ 131. In fact it is easy to see that these structures, 

which are used for the representation of reduction of problems in problem 

solving, may still be represented by hypergraphs (actually L-triangular 

hypergraphs since every hyperarc is usually directed from one node, pro

blem to be solved, to a set of nodes, subproblems whose solution is re

quired in order to solve the given problem) . 

Also in this case the problem of determining minimal descriptions 

of AND-OR graphs may arise. 

In order to represent and manipulate an AND-OR graph by means of a 

FD-graph we may consider the reversed (R-triangular) hypergraph which is 

obtained by reversing all hyperarcs. 

In Figure 12 we show an AND-OR graph and its representation by means 

of an FD-graph 

A ... _____ Be 
a) b) 

Fig. 12. AND-OR graph and its FD-graph representation. 
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In this case an FD-path from the empty compound node to a target simple 

node T represents a chain of problems that have to be solved in order to 

solve T. FD-graph algorithms may be adapted in order to be used to de

termine minimal representation of AND-OR graphs. In this case an inte

resting development may be to extend the FD-graph formalism by introduc

ing weighted arcs in order to study heuristic strategies. 

5. CONCLUSION 

In this paper the problem of determining minimal coverings of hyper

graphs has been studied. A graphic representation of hypergraphs has been 

proposed and properties of minimal coverings have been investigated. 

The computational results proved in this paper are summarized in the 

following table where they are compared with related results which hold 

for graphs: 

TYPE OF COVERING COMPLEXITY COMPLEXITY 
FOR GRAPHS FOR HYPERGRAPHS 

NONREDUNDANT SUBHYPERGRAPH o (m2) o ( [JC[2) 

MINIMUM EQUIVALENT NP-COMPLETE NP-COMPLETE 
SUBHYPERGRAPH (MINIMUM 

EQUIVALENT 
DIGRAPH) 

SM-COVERING - o ( [X[2) 

OSM-COVERING - NP-COMPLETE 

HM-COVERING I NP-COMPLETE 

SHM-COVERING j o (nom) NP-COMPLETE 

O-COVERING (TRANSITIVE NP-COMPLETE 
REDUCTION 

where nand m are the number of nodes and arcs in the graph and IXI is 
the length of the representation of the hypergraph. 
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Besides showing how the complexity of covering problems increases 

when we go from graphs to hypergraphs the results provided in the paper 

are also devoted to determining efficient algorithms for polynomially 

solvable covering problems. Concerning this point by generalizing re

sults in [ 2], it may be proven that in the case of SM-coverings, when 

hypergraphs degenerate into graphs (all source sets are singletons)., the 

complexity of the given FD-graph algorithms coincide with the best ef

ficiency which is known for graph algorithms. 

Applications to functional dependencies in relational theory and to 

and-or graphs manipulation were finally sketched. 
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ABSTRACT 

Various forms of parallel processing have been realized in computer 

systems in the last two decades, ranging from parallelization of data 

processing with respect to input and output operations, to the use of 

higlyparallel arithmetic units, to the construction of networks of 

tightly interconnected processors. In this introductory paper we examine 

various examples of abstract and real parallel machines with the aim of 

providing the basic concepts and discuss their fundamental characteristics. 

Besides we briefly discuss under what circumstances and up to what extent 

parallel devices may provide a more efficient solution to computational 

problems. 
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1. INTRODUcrION 

The interest for parallel computation arises from various points 

of view. First of all the organization of a computer system based on 

more than one processor may be used to increase the throughput and the 

reliability of the system; besides, in many cases, the possibility of 

performing several arithmetical operations simultaneously may increase 

the efficiency of a computation. These needs were present since the 

beginning of the introduction of electronic computers and several multi

processor computer systems were realized in the last two decades. The 

great technological advances in microelectronics have made parallel pro

cessing much more widespread and have made it possible to build systems 

with hundreds or thousands of computing units based on various organiza

tion principles. A speed up of 10 to 104 times in computation time 

became then possible. Processing tasks whose solution would have been 

extremely costly or even unfeasible on serial computers could instead 

be attacked with a parallel machine. A typical example in image pro

cessing is the processing of satellite pictures: a LANDSAT picture is 
6 made up of SolO pixels; when we process the image for various applica-

tions under real time constraint we may have to perform up to 10.000 

operations per pixel per second which would require a machine with 

computing power of 10 gips (10 3 times larger than the most efficient 

serial computer would allow). Such kind of problems may hence only be 

approached if we have a parallel machine (a 100 x 100 array of proces

sors, for example). 

On the other side, available multiprocessor systems would not be 

useful if we would not know how to solve problems by means of parallel 

algorithms. Hence the first motivation for the study of parallel algo

rithms is to exploit the power of parallel computation offered by the 

technology. 

Besides this practical reason the study of parallel algorithms is 

also interesting in order to have a better understanding of the computa-
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tional nature of a problem. 

In fact, if for some problems we know such properties as the struc

ture of the flow of data, the possible parallelization of computation 

steps, the trade-offs between different particular complexity measures 

or the lower bounds expressed in terms of a global complexity measure 

which takes into account the cost of execution, the cost of communica

tion and the number of processors, we have a much deeper knowledge of 

the intrinsic computational properties of that problem. 

Finally, as it has been pointed out in [Megiddo 83] the study of 

the parallel computer solution of one problem may turn out to be useful 

to provide an efficient serial solution for another related problem. 

In this introductory paper we will give a presentation of various 

abstract parallel machine models and of the basic results that may be 

established for these models (§2). Then we will discuss the various 

forms in which parallel processing has been introduced in computer 

systems (§3) and provide an overview of the main classes of (real or 

realistic) parallel machines with a brief discussion .of their fundamental 

characteristics (§4). 

Finally (§5) we consider what are the advantages in terms of ef

ficiency which may be obtained by using parallel processing systems and, 

on the other side, what are the limitations that make parallel proces

sing convenient only for particular classes of problems. 

2. ABSTRACT MODELS OF PARALLEL COMPUTER SYSTEMS 

The ability of performing synchronous or asynchronous parallel 

steps of computation was introduced in formal systems and abstract 

machines since the early stages of the development of theoretical com

puter science, not necessarily with the aim of modeling computer systems 

but often in connection with the mathematical description of physical, 

biological, physiologycal social phenomena where concurrent evolution 
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of events and actions performed by several actors is not the exception 

but the normal behavioural characteristic. This is the case with the 

first introduction and studies on cellular automata which started in 

the early fifties [Von Neumann 51] in connection with research on neural 

networks and the brain and in connection with the mathematical theory 

of self-reproduction [Moore 62]. Research on cellular automata (tes

sellation automata, iterative arrays [Cole 64]) was continued by Myhill, 

Amoroso, Yamada, Maruoka, etc. Only more recently, cellular automata 

and other kinds of polyautomata were considered as models of parallel 

computing machines and even as possible architectures of real parallel 

computers with applications in image processing and recognition (see 

[Duff, Levialdi 81]). Also in the case of developmental systems (or 

L-systems, introduced by Lindenmayer in 1968) the original aim was to 

study biological behaviour such as the growth of branches and leaves 

in plants according to specific patterns or the regeneration of parts 

of the body in worms etc. Then the underlying mathematical structure 

was deeply studied by several authors and provided an interesting model 

for parallel synchronous rewriting systems (see [Rozenberg, Salomaa 80]). 

Petri nets(introduced in Petri's thesis [petri 62]) provide a third 

example of model of parallelism which, though now widely applied in the 

representation of parallel computations [Peterson 77], was not originally 

intended to describe parallelism in computing, but, much more generally, 

was motivated by the ambition of modeling the flow of information in 

systems (e.g. physical and human organizations) in which events may 

occur concurrently and asynchronously, with limitations due to some con

straints (such as precedence, mutual exclusion etc.) . 

More closely related to the modelisation of parallel computers, has 

been the introduction of parallelism in classical abstract machine models 

such as Turing machines (see for example [Kozen 76; Chandra, Stockmeyer 

76] or random access machines (see for example [Pratt, Stockmeyer 76; 

Savitch, Stimson 76]). In these cases the main objective was to study 
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the computational power of such systems by comparing their resource 

bounded complexity classes. An example of a result that can be proved 

for some parallel abstract machines and that in general remains a con

jecture, though supported by strong evidence, is that if we allow an 

unbounded amount of parallelism the class of functions computable in 

polynomial time by a parallel machine corresponds to the class of func

tions computable by a serial machine which makes use of a polynomial 

amount of storage. In particular this result holds for the model of 

SIMD machine (see next paragraph) with a shared global memory, called 

SIMDAG in [Goldschlager 78], where all parallel processing units (PPU) 

are RAMs with the usual RAM instruction set augmented by parallel in

structions which are broadcast by the CPU and executed simultaneously 

by the PPUs. The guest for a general universal model of parallel ab

stract machine, capable of simulating all known abstract and real pa

rallel computers, thereby providing a sort of parallel version of 

Church's Thesis(*), and the need of establishing meaningful comparisons 

of computational power among them, has brought to the characterization 

of various general classes of parallel machines. 

The more general class, called paracomputers in [Schwartz 80] or 

idealistic parallel machines correspond to the following model: N 

identical processors share a common memory which they can read and write 

simultaneously in a single cycle (Fig. 1). This model is clearly unreali

stic due to physical fan in limitations. It can only provide a first 

approximate idea of the possible parallel solution of a problem and it 

(*) Church's Thesis may not be trivially extended to parallel machine 

models because in presence of nondeterminacy parallel computations 

may allow more than one output. In fact the sets of relations com

puted by parallel programs with non determinacy may not be even 

semidecidable [Chandra 79]. 
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MEMORY 

1 1 
1 l 
PI .. PH 

Fig. 1. The paracomputer 

can be used to derive trivial upper and lower bounds for parallel time 

complexity: in fact we know that if an algorithm requires time O(t(n» 

on a serial computer in the best case it can be executed in time 

O(t(n)/N) on a paracomputer and, on the other side, if a problem re

quires time ~(t(n» on a serial computer its lower bound on a parallel 

machine will be at least ~(t(n)/N). 

The second class is the class of realistic parallel computers, 

[Galil, Paul 81; Valiant, Brebner 81] called ultracomputers in [Schwartz 

80], which are based on the following model: N identical processors are 

located in the nodes of a potentially infinite recursive graph structure; 

all processors are connected, along the edges of the graph, to a small 

number of neighbours (for example a constant n~er d or a slowly gro

wing number log2N). This limitation of fan -in makes the model more 

Fig. 2. The tree machine 

realistic but clearly, at least in general, less efficient than a pa-
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racomputer. In the case that the processors are restricted to be finite 

state automata we obtain a smaller class of machines (which is still 

fairly general and includes for example iterative arrays and tree struc

tures (Fig. 2), called conglomerates and claimed in [Goldschlager 78) to 

include all synchronous parallel machines which could be feasibly built. 

In more general cases the processors may be assumed to be RAMs with 

a constant number of registers (possibly of bounded capacity). The main 

results which have been proved both for conglomerates and for the more 

general machine models was the existence of universal interconnection 

patterns. For example, in the case when the processors are RAMs it can 

be shown that there exists a universal parallel machine U such that given 

a parallel machine C with p processors which operates on input x of 

length n in time t, U simulates C on input x in time ott log2p) by using 

not more than O(p) processors 

Further research in this direction has been developped with the 

aim of finding efficient simulations of abstract models on more rea

listic parallel architectures. (See [Vishkin 83] for a survey). The simu

lation is realized by implementing parallel algorithms designed for the 

abstract model on the realistic machine. It is shown that in general 

small increase of the parallel complexity is obtained [Vishkin 82], 

[Eckstein 79],[schwartz 80). 

A central role in abstract parallel machine models such as in real 

parallel computers is played by interconnection schemes and communica

tion problems. In order to perform an efficient computation it may be 

required that the largest distance between two processors in a network 

be limited to a slowly growing function of the total number of processors, 

say log2N. 

While simple planar structures of N processors such as rectangular 

and hexagonal arrays determine a ~ growth of interprocessor communica

tion time, the logarithmic distance is realized in structures such as 

the k dimensional cub~ the shuffle - exchange network (Fig. 3), the mesh 

of trees [Leighton 81]. 
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3-cube Shuffle-exchange network 

Fig. 3. 

Unfortunately the practical application of these interconnection schemes 

is limited by three factors: 

- the difficulty of performing interprocessor communication in logarithmic 

time due to constraints on the capacity of communication lines; 

- the fan-in physical limitations which require that the number of 

neighbour processors be either constant or at most logarithmic; 

- the wiring constraints, which do not allow, especially for VLSI imple

mentations, more than two or three levels of wiring and which pose 

restrictions on the density and length of connection wires in a layout. 

Concerning the first problem, a remarkable result in [Valiant, 

Brebner 81] shows that a randomized routing algorithm may guarantee a 

logarithmic time communication among processors in various structures 

such as the k-cube, the shuffle exchange network etc. 

The second problem may be overcome by adopting the cube connected 

cycles (CCC) interconnection scheme [Preparata, Vuillemin 81] where 

every processor is constantly connected only to three neighbours, still 

preserving the general properties of the k-cube architecture (Fig. 4). 
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~---------
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Fig. 4. 
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The CCC has been shown to be optimal for several problems with re

spect to the area x time2 complexity measure for VLSI implementations. 

Nevertheless also in this case such as in most non-planar networks a 

severe limitation to the physical realization comes from the technolo

gical problems connected with the layout. 

3. VARIOUS FORMS OF PARALLELISM IN COMPUTER SYSTEMS 

Let us now consider how parallelism has been introduced in real 

computer systems and how it gave rise to various kinds of parallel 

computers and multiprocessors. The history of the evolution of parallel 

computer systems has been extensively discussed in several survey papers, 

together with various approaches to the characterization of such systems 

and to the classification of the corresponding algorithms [Flynn 66; 

Baer 73; Kuck 77; Ramamoorthy, Li 77; Enslow 77; Reddy, Hon 79; Kung 80] • 

Here and in the following paragraph we limit ourselves to providing some 

examples of various kinds of parallel machines and a discussion of the 

characteristics of the most important classes of parallel systems which 

have been introduced in the literature. References concerning the part

icular machines which we are taking into consideration may be found in 
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the above cited surveys. 

The idea of a computing machine capable of performing more than one 

operation at a time seems to be at least 140 years old. In [Kuck 77] a 

reference to a publication of Menabrea's description of Babbage's lec

tures in Turin (october 1842) remarks this fact. Of course more then 

100 years had to pass before electronic computers could be built ca

pable of performing different operations simultaneously. From this point 

on many designs of "parallel machines" appeared, and, successively, pro

totypes and commercial machines were built on. In the early 50s the 

first prototypes appeared, such as the multiprocessor Model V of the 

Bell Telephone Laboratories, with two processors, and the multiopera

tion processor of Leondes and Rubinoff oriented toward a drum memory. 

successively, in the 60s, many multioperation machines appeared. First 

of all, in that period, most of the computers had undergone a transforma

tion, oriented toward increasing the throughput, and more than one pro

cessor with different functional utilizations (I/O and processing) had 

been introduced in a computer, connected via multiple bus systems. 

Gradually parallelism between decoding and execution of operations and 

between execution of different arithmetic operations was introduced 

(IBM 360/91, CDC 6600, CDC 7600) by allowing several functional units 

to perform specific arithmetic functions in parallel. In some cases 

even several general purpose processing units were coupled in order to 

provide a higher efficiency (IBM 360/67, UNIVAC 1110 etc.). 

More massive use of several processing units was introduced in the 

late 60's and in the 70's in the realization of the first, so called, 

array processors (such as ILLIAC III and ILLIAC IV, the last one with 64 

processing elements each with a small private memory) or various other 

kinds of systems oriented toward the fast parallel processing of vectors 

(such as the SDC PEPE, 1971, the TEXAS ASC, 1972, the'CDC STAR-100, 1973, 

the CRAY-1, 1976, down to the more recent vector processors IBM 3838 and 

Hitachi lAP). Other examples of parallel computers appeared in connection 

with the fast processing of picture cells in images (such as CLIP, a 
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96 x 96 array of processors, or MPP, the Massively Parallel Processor). 

Beside these examples of systems with a tight coupling among pro

cessors several other kinds of multiprocessor architectures have been 

developped during the 70 such as multimini/multimicroprocessors (closely 

* coupled systems, such as DAP,C.mmp and Cm with a number of processor 

ranging from 16 to 256 in various stages of development) or local net

works (losely coupled systems). 

If one goes deeply in the hardware and software organization of 

these machines, one can easily see that the term "parallel processing" 

has been used in many different ways. In fact twenty five years ago it 

referred to arithmetic operations on whole words rather than on one bit 

at a time. 

Also the parallel execution Of instructions of programs and I/O 

operations in multiprogramming has been seen as parallel processing. 

The first true parallel machines can be thought of to be the 

machines of the 60's. They are often called array processors; the name 

is due to the fact that these machines can operate with high performance 

on arrays of data. These machines have a new form of parallelism: they 

operate simultaneously on different elements of the same vector. Two 

basic principles of organization of parallel operation are present in 

the computer systems described until now: the pipelined organization and 

the single instruction multiple data (SIMD [Flynn 66]) organization. In 

the pipelined machines such as CDC STAR-100 mentioned above a computa

tional process is segmented into several different subprocesses, which 

are executed by dedicated autonomous units. Successive processes can be 

overlapped, analogously to an industrial assembly line [Ramamoorthy 77]. 

In the SIMD machines, such as ILLIAC, all the units execute the same 

computational process on different data under the control of a central 

processing unit. 

Successively, other kinds of parallelism were developed: on one 

hand the parallel asynchronous execution of different tasks of the same 
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job on the processors of a multiprocessor system; each task requires a 

great amount of computation and the communication can be performed via 

global variables in a shared memory or via messages sent through high 

speed lines. 

These multiprocessor systems are often called MIMD (Multiple In

* struction Multiple Data stream): em and DAP are examples of this kind 

of machines. On the other hand the distribution of small amount of 

computation among simple processing units, connected together with 

simple geometrical architectures has been made possible by the evolution 

of VLSI. Many processing units emebedded in a chip alternatively per

form simple computations and send data, synchronized by a clock; the 

input data are entered by a driver and "pipelined" in the circuit, while 

the "instructions" are realized by the components of the circuit itself. 

The name "systolic" is used to refer to this way of parallel processing. 

4. CLASSES OF PARALLEL MACHINES AND ALGORITHMS 

Among all possible parameters which may be used to characterize 

parallel computer systems and which give rise to such a wide.variety 

of architectures, as we have seen in the preceding paragraphs, the fol

lowing appear to be the most relevant: 

a) QuaZity of processors: as we have seen, the processors which operate 

in parallel may be 

- homogeneous 

- non homogeneous 

and, in the first case, they may be 

- functionally specialized units (e.g. floating point adders and 

multipliers) 

- general purpose processors. 

b) ControZ of concurrent operations: three main kinds of concurrency 
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control schemes appear in the systems which are under discussion 

[Kung 77] 

- centralized control: all processing units are synchronized under 

the supervision of a central unit, 

- distributed control: in this case all units may operate either 

synchronously (via a clock) or asynchronously (via messages) , 
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- control via shared data: under this kind of asynchronous control, 

processes activate each other by means of global variables. 

c) Geometry(*) of the interconnection scheme: whatever is the character

ization of a parallel machine according to the first parameters, a 

large choice of regular communication geometries may be used: one 

dimensional array, binary tree, planar grid, cube, shuffle etc. In 

some cases, mainly in connectien with asynchronous control schemes, 

irregular geometries may also be adopted. 

Actually it has been observed by several authors that the basic 

operation principles of most real parallel computer systems fall into 

just a few classes with respect to those which may arise by combining 

the said parameters in all possible ways. 

On one side we have machines with a synchronous mode of operation; 

among them we may distinguish the following classes: 

i) SIMD (Single Instruction Multiple Data stream). In this case 

homogeneous processors, organized in a regular network, all per

form the same operation, broadcast by the central processing unit, 

at the same time (see for example ILLIAC IV). 

ii) Pipe~ine. As we have already observed, in this mode of operation 

data flow in the network of processors (which perform on them 

specialized functions) such as products in an assembly line. In 

(*) Since the interconnection scheme has to be embedded in a "metric" 

space the mere topology does not provide a sufficient characteriza

tion. 
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some examples of pipeline machines such as CRAY-l or STAR-lOa we 

have multiple stages floating point adders and multipliers. In 

other cases (vector processors) we may have elements of two 

vectors flowing through multipliers and adders in order to perform 

sequences of scalar products. 

iii) SystoZia. This type of synchronous, distributed control organiza

tion derives its name from the "systoles", the rythmic contrac

tions of the heart which make the blood flow in the arteries. In 

this case each processor organized in a multidimensional network 

takes data from nearby processors, performs a short computation 

and sends data again to nearby processors. Typically systolic 

systems may be realized using VLSI technology. In some applications 

systolic and pipeline modes of operation may be combined in order 

to increase the efficiency over sequences of computations. 

On the other side we have asynchronous multiprocessors; in this 

case there is mainly one mode of operation: 

MIMD (Multiple Instruction Multiple Data stream): various pro

cessors (usually general purpose processors connected by crossbar 

switches or high speed buses) with independent instruction counters 

perform different operations on different data. Communication and 

cooperation between processors is realized via shared variables 

* or via messages (see for example Cm cr Pluribus). 

From the point of view of the algorithms which are more suitable 

to be executed by parallel machines the given classification allows us 

to determine a first rough distinction: on one side we have algorithms 

in which the amount of computation which may be performed by every pro

cessor autonomously, without the need for an interprocessor communica

tion step, is large (in this case we speak of Zarge moduZe granuZarity 
[Kung 80] while on the other side we have frequent communication steps 

and very short processing steps (smaZZ moauZe granuZarity). The first 
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kind of algorithms will be better suited for an MIMD machine with 

asynchronous concurrency control. In this case the user language needed 

for programming the algorithm will have to be rich enough to provide 

visible interprocesses communication constructs for the specification 

of a logical level and the system language will have to support high 

level communication and synchronization primitives. 

Typical examples of this kind of algorithms are concurrent data 

base management and relaxed global and local optimization. 

Algorithms with small granularity are instead suitable for synchro

nous machines. The overhead due to synchronization and frequent com

munication would be unbearable on an MIMD machine. In this case a hard-

ware direct data communication path has to be provided and the program

ming language constructs, which are needed, may be much more simple at 

user level and much more related to the physical architecture of the 

processors than to the logical organization of processes. Examples of 

this kind of algorithms will be referred in the next paragraph. 

5. ADVANTAGES AND INHERENT LIMITATIONS OF PARALLEL PROCESSING 

Parallel algorithms were studied since 1960 (see a survey in 

[Miranker 1971]), although the first parallel machines were built only 

some years later. 

The advent of multiprocessors before and the recent advances in 

VLSI technology provided impetus to the investigation of parallel al

gorithms for different kinds of problems. In the field of numerical 

linear algebra (see [Heller 79] for a survey), parallel algorithms were 

studied for the solution of general and special linear systems of 

equations, computation of eigenvalues, evaluation of arithmetic ex

pressions, operations on matrices (product, inversion), FFT etc. In 

nonnumerical calculus, parallel sort, merge and search have received 

great attention. Parallel algorithms for operations on particular data 
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structures (priority queues, graphs) and on data bases, have been sug

gested [Kung, Lehman 80, Munro 79]; finally parallel algorithms for 

combinatorial optimization problems have been proposed (graph problems 

as max flow and connected components, , matching, scheduling,etc.). 

In [Heller 78] ,[Kung 80],[S~hwartz 80] [Vishkin 83] ,[Kindervater 

83] very wide bibliographies on parallel algorithms are contained, in 

[Kook 83] a classification of problems in terms of parallel complexity 

is given. 

The advantages of parallel processing are evident in many cases. 

Serial algorithms, for which linear time is required, can be performed 

in logarithmic time on parallel machines with a linear number of pro

cessors: examples are the evaluation of general expressions, the inner 

product, the addition of N values ['Heller' 78] ,[ Schwartz 80]. 

The sort of N elements can be performed in O(log2N) on N processors 

connected with the shuffle network [Schwartz 80] using bitonic sort 

(which would require O(N log2N) on a serial machine) while the same 

algorithm requires 0 ( ~'N"") on a two dimensional IN x IN array [Thompson 

77]. The classical matrix product algorithm requires O(log N) on the 

cube connected computer with N3 processors, and O(N) on an array of 

O(N2) hex-connected processors [Dekel 80] ,[Kung 80]. 

Another field of application is global optimization: both proba

bilistic and deterministic (gradient technique, search technique) serial 

methods require very high computational efforts in evaluating the func

tion; this characteristic makes the use of parallel processing methods 

attractive, as much of the computation may be carried out as a group of 

parallel tasks [MC Keown 80] ,[Dixon 81]. Looking at the examples, howe

ver, one can observe that the bounds defined in §2 in the case of the 

ideal model of paracomputer are very rarely achieved; moreover, in 

general, the performance depends on the computational model chosen. This 

is due firstly to the intrinsic characteristic of the problem: 

- problems, which require exponential time on a serial machine, can not 
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be solved in polynomial time unless using an exponential number of 

processors (see [Chi-Chin Yao 81] for the knapsack problem); 

- problems with N inputs and one output can not be solved, in a pa

rallel system with N processors, in less than log N steps, if only 

unary and binary operations are admitted [Heller 78] (see the ad

dition of N numbers), even if the paracomputer model is adopted. 
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The other fundamental reason of this limit is the fact that, while 

in the serial algorithm only computation steps must be evaluated, in 

parallel algorithms one must keep into account the overhead due to 

communication steps [Lint 81]. A quantitative limit is given in 

[Gentleman 78] on the performance of the matrix product in a N x N 

array processor. This limit can be generalized to the ultracomputer 

model: it is impossible to solve a problem on an ultracomputer in less 

than O(D) steps (D is the maximum distance between two processors) if 

the input data are required to be moved to any processor of the system. 

The odd even transposition sort of N elements requires O(N) in a linear 

array with N processors [Kung 80]; the bitonic sort of N2 elements re

quires O(N) in a N x N array processor, as O(N) communication steps are 

required to move data to the farthest position [Thompson 77]; the same 

is for the product of N x N matrices [Kung 80]. 

In systems communicating via a shared memory, memory contention 

causes the reduction of the performance: in this case more advantages 

can be obtained for problems in which computation time is much greater 

than communication time (see dynamic programming [Al Dabass 80] and 

numerical optimization [Dixon 81; Mc Keown 80]). 

In VLSI fan in and layout of wires limit the connection geometries, 

and the communication between distant processors strongly influence the 

performance. Of course there are problems for which such limit can be 

overcome: for some problems in image processing, and for particular 

classes of dynamiC programming problems it is possible to detect "lo

cality" in the operations, which make the number of communication steps 
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independent from the architecture and the input size. 

Finally one can see that the efficiency achievable with parallel 

processing for a particular problem is strongly influenced by the pa

rallel machine chosen (MIMD, SIMD, systolic) and in the VLSI technology, 

by the communication geometry: in fact the data of a problem must be 

moved according to a specific communication pattern (this is why, for 

example, sort on a bidimensional array is less efficient than in a 

shuffle exchange network). For this reason it would be greatly helpful 

to have computational models capable of evidentiating the intrinsic 

parallelism of a problem and its data communication pattern. In this 

way it would be possible to obtain indications on the convenience of 

studying a parallel algorithm for the given problem and help in the 

design of the best architecture for its execution. This research aim 

has been partially tackled in VLSI studies where the area x time2 bound 

may be considered a way of measuring how good is the matching between 

algorithm and circuit [Thompson 79]. The computational model proposed 

by Thompson is discussed in [Chazelle 81] and [Bilardi 81 who propose 

to restrict the hypothesis on independence of communication time on the 

wire length obtaining new values for the lower bounds AT2. Most of the 

theoretical research on parallel computation is likely to be directed 

toward this goal in the future years. 
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1. INTRODUCTION 

In the computer science community there is not a complete agreement 
on what a multiprocessor system is. 

There is a res,tricted definition that sounds: 

a multiprocessor architecture is one that consists of at least two pro
cessors satisfying the following conditions: 

i) 
ii) 
iii) 

the processors share a global memory 
they are not highly specialised 
each processor is capable of doing significant computation. 

Another definition, which enlarges the class of multiprocessor ar
chitectures,is based on the concept of instruction stream and data 
stream. A computer executes a sequence of instructions on a sequence-of 
data: mUltiplicities in these streams lead to four classes of computer 
architectures: 

SISO Single Instruction Single Data 
SIMD Single Instruction Multiple Data 
MISD MUltiple Instruction Single Data 
MIMD MUltiple Instruction Multiple Data 

A multiprocessor architecture falls in the class of MIMD machines and 
can be defined as follows: 

a multiprocessor architecture is one that consists of at least two com
puters/processors which cooperate to execute mUltiprocessing. 

In the sequel we will adopt this second definition which is more gen
eral and comprehend the class of multiprocessors with shared global 
memory and the class of multiple processors/computers which cooperate 
exchanging messages each o~her via parallel or serial communication 
links. 

At this point a question naturally arises: why mUltiprocessing? There 
are many motivations that can be used for answering to this question: 

i) the revolution of microelectronics and VLSI offers more and more 
powerfull microcomputers/microprocessors on chip at extremely low 
price which can be used as building blocks of multiorocessors with 
better performance/cost index 

ii) mUltiprocessing reduces the computation time exploiting the intrinsic 
parallelism of the application 

iii) modular architecture~ tipical of multiprocessor systems, lead to 
graceful growth and degradation 

iv) VLSI modules offer greater reliability, omogeneous modular architec
tures, greater availability. 

2. TIGHTLY COUPLED SYSTEMS 

A tightly coupled MIMD machine corres~onds to the first given defini
tion of mUltiprocessor system and its HW/SW organization can varIes ac-
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cording to the following charecteristics: 

- symmetric structure 
- semi symmetric structure 
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A symmetric structure in its most general form is depicted in fig.l. 
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Fig.l. Symmetric multiprocessor. 
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The structure in fig.l is HW/SW symmetric if the following conditions 
are satisfied: 

1) All processor modules are identical 
2) Each processor has access to the whole memory 
3) Each processor has access to all peripherals 
4) Each processor is anonymous and is considered as a resource by a 

single central operating system. 

The advantages of this architecture relies in the fact that the an
plication processes ignore the architecture and the number of the pro
cessors. The operating system provides on a dynamic basis to assign a 
free processor (resource) to a ready to run process. The system can 
grow and degrade with complete transparency for the application soft
ware. 

The concurrent processes can communicate each other on the basis of 
global variables located in the common memory, or by means of message 
passing technique via logical channels created by the kernel in the com
mon memory. 

Although this model of architecture seems a valid approach to achiev~ 
ing almost unlimited improvements in performance adding more processors, 
the reality is quite different. 

If the block SWITCH of fig.l is a system bus which all units (Proces
sor, memory, I/O modules) are attached to, it becomes a tremendous bot
tleneckwith very rapid saturation. Suppose, for example, that T is the 
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average time to execute an instruction (in usec), and XT (x<l) the 
fraction of time that a processor uses the system bus to access the 
memory: the number of instruction per second (MIPS) is liT for one pro
cessor and l/x'T(l) for the system if N~l/x. Considering that x lies 
in the range 0.3tO.5, no more than two or three processors can work si
multaneously. To overcome this saturation effect it is necessary to 
design the switch, the memory and the peripherals in a more complex way 
as reported in fig.2(2). 

NxK N x N 

switches switches 

Fig.2. Cross h.ar-interconnection for multiprocessors. 

In this architecture the conflict in accessing memory and I/O peri
pherals is drastically reduced but the interconnection structure is very 
expeBsive and unreliable. 

Moreover the partitioning of data structures and OD code in the me
mory modules is a complex task and can influence greatly the performance 

(1) This value supposes that the arbitration time to access the bus is 
negligible or is incorporated in XT and moreover that the pro
cessors will synchronize themselves in utilizing the l/x time 
slots offered 8n the system bus. 

(2) The architecture of fig.2 has been adopted, with some modifications, 
in the multiprocessor system C.mmD, develoned at Carnegie Mellon Uni
versity during the '70's. 
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of the system. 
Another complex problem to solve is the routing among I/O devices and 

processors: the communication processor-memory is always performed via a 
master-slave procedure, with the processor as master, whereas the pro
cessor-device communication can be activated by the devices too by means 
of interrupts. Considering that the processors are anonymous the routinr. 
of the interrupts to the processors is a complex task. 

A semisymmetric structure for memory-counled multiprocessor systems 
is a compromise to reduce the saturation effects on the system bus. The 
system memory is partitioned into private blocks and a common blOCK as 
outlined in fig.3. 
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Fig.3. Global memory multiprocessor. 
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To avoid saturation effects on the system bus, most code must be 
located in private memories. The common memory is dedicated to store 
kernel code and communication channels or global variables. 

In this way the bottleneck of the system busis reduced but the pro
cesses must be allocated statically, at compilation time, into the pro
cessors. 

The structure of fig.3 has the advantage of hardware simplicity but 
the rigid allocation. of processes and I/O devices to the processors 
leads to a loss of flexibility and fault tolerance. The last point ~ 
particularly important considering that one of the reasons claimed out 
for introducing multiprocessor architectures, is their aptitude to tol
erate processor faults. 

A more sophisticated and flexible architecture can be organized using 
semi-private memories as outlined in fig.4. 

SYSTEM BUS 

'/0 1 

Fig.4. Shared memory multiprocessor. 

In this architecture the common memory is partitioned into N blocks, 
one per processor, and each block, called SM, is a dual port memory. 

This architecture sup~orts a large variety of system configurations, 
including memory common to all processors, memory common to some pro
cessors and private memories for each processor. The system bus bot
tleneck is further reduced considering that every processor accesses 
directly the common memory block located into its node. 
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3.LOOSELY COUPLED SYSTE¥.S 

Although the concept of tightly coupled systems seems a valid approach 
to achieving improvements in performance adding more processors, there 
are several limitations on the diffusion of such architectures. The main 
limitations are: 

1) The direct sharing of memory and I/O results in access conflicts 
and saturation effects 

2) Any inefficiency in the operating system is greatly amplified in 
a tightly coupled system 

3) Concurrent programming languages that support effectively memory 
coupled architectures have not been adequately developed 

4) A local fault can influence the entire system due to error propa
gation 

5) The hardware complexity of a tightly-coupled system is high and 
its modularity (growth aptitude) is limited 

6) Due to the hardware complexity and the operating system cruciality, 
the reliability of these systems is not very high. 

For all these motivations the attention of many researches has been 
focused on loosely coupled systems as an alternative more effective ap
proach to mUltiprocessing. 

Loosely coupled systems are mUltiple computer systems in which the 
individual processors communicate one-another at the input-output level. 
There is no direct sharing of primary memory, therefore the operating 
system must be distributed with decentralized control, and the cooper
ation among processes must be performed via explicit messages from the 
source process to the destination one. This fact implies, of course, 
that both sender and receiving processors cooperate in the message ex
change,whereas in memory coupled systems the receiving processor does 
not partecipate in that activity. 

Loosely coupled systems are often divided in two categories according 
to the kind of node interconnection. 

1) Multiple-computer systems if the interconnection network has high 
bandwidth and the nodes of the system are physically close each 
other, may be in the same cabinet 

2) Local area network systems if the interconnection network is a 
data link with moderate bandwidth and the nodes of the system are 
physically remote each ofter. 

This difference in the interconnection network determines a substan~ 
tial difference in the operational of the two classes of loosely system& 

Local networks generally have the main function of sharing expensive 
resources among nodes (mass storage, line printers, etc.) but do not 
cooperate extensively each other; therefore local networks are not con
sidered actually ~'IMD machines and will not be considered in the sequel. 

MUltiple computer systems have been investigate extensively from many 
points of view including languages, operating syste~s and fault toler-
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ance. In this paper we will focuse the attention on the network inter
connection structures and the type of message passing techniques employ
able in loosely coupled multiprocessor systems. 

As concluding remarks we can state: 

i) memory coupled systems are particularly effective in process co
operation when a centralized operating system is adopted and shared 
data structures are used. The interconnection network must be ex
pensive otherwise becomes a bottleneck for the performance 

ii) I/O coupled systems offer a greater degree of modularity and fault 
tolerance; the need of a decentralized or distributed operating sys
tem leeds to simpler and more clear process cooperation. The in
terconnection network is used only for message passing. 

4. LOOSELY COUPLED SYSTEMS INTERCONNECTION STRUCTURES 

There are many connection structures for linking the nodes (process
ors) of a multicomputer network and more will be proposed in the future. 
As was stated in the previous ch~pter, one of the advantages of loosely 
coupled systems is their aptitude to grow, that is to increase the num
ber of nodes of the system. Therefore a useful index for comparing the 
interconnection structures proposed is one that incorporates several key 
factors: 

i) total interconnection cost 

ii) message traffic density 

iii) message routing delay 

CT 

T 

D 

supported by links or nodes 

We will discuss some of the most interesting interconnection struc
tures and introduce a global index as an attempt of evaluating them. 

4.1. Simple interconnection structures 

When the number of nodes of the architecture is not high simple to
pologies can be adopted to build a loosely-coupled HUm machine. The 
most popular ones are: 

i) Global bus system 

ii) Star 

iii) Ring 

iv) Fully connected mUlticomputer 

v) Tree network 
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Global bus system 

bus 1 

system bus k 

C 2 ------

Fig.5. Global bus system. 

The general archi tee ture is sho~Tn in fig. 5. There are N computers 
connec ted one another via K shared busses (K =1. 2 ... N) . 

The number of busses can be increased for reducing traffic density 
on each bus and for increasina availabilitv as well. The number of nodes 
cannot increase more than s~~e tens because electrical reasons limit the 
vumber of interfaces on the same bus. 

Star 

Star network is quite common for the simplicity of control (fig.6) 
and many realizations of this architecture have been appeared. 

Fig.6. Star network. 
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The central hub is a complex s,yitcher supported by a dedicated com
puter which is responsible of message routing. This architecture is 
the less modular and reliable, the hub represents a bottleneck since 
one message at a time can be routed by the hub itself which is not a 
crossbar switch. For all these reasons star networks cannot grow to high 
N values, although line and interface costs are low considered that 
they increase linearly with N. 

A ring interconnection structure can be considered a series of N 
shift registers with the output of the i-th register connected to the 
input of the (i+l)-th register in a loop fashion as shown in fig.7. 
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Fig.7. Ring network. 
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In the ring structure, independently from traffic congestion, there 
is a delay of h units in message passing from Pi to Pi+h and N-h 
units in the inverse communication due to the one way direction of mes
sage flow. Note that the ring has poor fault tolerant properties since 
a failure in one ring interface has catastrofic effects. 

Fully connected multicomputers 

These networks are characterized by a dedicated link between each 
pair of nodes, as shown in fig.8. 
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Fig.B. Fully connected net. 

The traffic density on a dedicated link decreases linearly with N, 
whereas the interconnection cost is very high since the links grow with 
1/2 N(N-l) and the interface cost with N-l • The fault tolerance char
acteristics ~ highest because there is neither a centralized unit nor 
a shared bus; as a negative figure of merit it should be pointed out that 
increasing N the dedicated links are poorly utilized. 

Trees 

Tree interconnection structures soffer some limitationBof ring net
works (delay in message passing) and some limitations of star architec
tures (bottlenecks at or near the root). 

A tree structure with B branches per node and p node levels from 
the root to the~aves is shown in fig~9. 

The total number of nodes is N=(BP-l)/(B-l). 
This architecture is in general considered constituted by computing 

nodes (leaves) and switching nodes (all other nodes of the tree). The 
message delay is variable from 2 (message between to brother leaves) and 
2 (p-l). 

From the point of view of fault-tolerance, the tree structure has 
not a good figure of merit considering that a fail in a switching node 
disconnects the whole subtree that has the failed node as root from the 
rest of the structure and that subtree is divided in two subtrees not 
communicating each other. The message traffic distribution in the tree 
is not uniform and the root as well as the nodes near the root can be
come a bottleneck for the performances of the whole system. 

The analysis of tree architecturesfrorn the point of view of cost 
complexity and traffic density is not simple considered that the struc-
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level 1 
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Fig.9. Tree connected system. 

ture is not uniform, therefore the cost index derived in the next chapter 
will not be applied eo it. 

4.2. Complex interconnection structures 

The simple architectures discussed in the previous paragraph, except 
perhaps the tree, can be used for small values of N. 

For very large networks more complex interconnection topologies must 
be u.sed. These topologies have been investigated mainly from a theo
retical point of view, but they will become realizable in the near future 
when a complete node (CPU, memory and I/O interface) will be putted on 
a sinele chip. The common characteristics of these complex structures 
is that they are enbedded into a D-dimensional hypercube with the N 
noded lieing on the WD lattice points (W-wide, I)-dimensional hyper
cube. 
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Nearest Neighbor Hesh (Nl'{M) 

This is a well known structure used in some realization of parallel 
machines and to implement parallel aleorithms. 

195 

In this structure there are M nodes per dimension connected as in 
fig.lO for D=2 ,therefore N=MD . Each node needs 2 switches per 
dimension hence the number of switches per node is 2D. In each dimension 
the distance between two nodes is variable between 1 and ~1/2 and the 
average distance is approximately ~1/4: the average delay for message 
passing in the HD hypercube is hence D.M/4. 

I 
I 
I 
I 
I 

1 

2 

c2 I &-n ___ ~ M 

LJ LJ 
Fig.lO. ~earest neighbor mesh interconnection. 

Spanning Bus Hypercube (SBH) 

This structure is similar to the nearest neighbor mesh, with the 
difference that in each dimension the t1 nodes are connected to a bus 
of width W=~1. Therefore N=\.;D, the number of switches per node is D , 
the average delay in message passing is ~D-I . In fig.ll a spanning 
bus hypercube with D=2 and Vl=4 is shown. 
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Fig.ll. Spanning bus hypercube. 

Cube Connected Cycle (CCC) 

This is one of the newest architectures proposed and ~ particular 
attractive for parallel algorithm computation and for VLSI implementation. 
The cee can be considered a D-dimensional cube of width D where 
each of the ZD vertices is substituted by a nearest neighbor mesh of 
dimension I and multiplicity D as shown in fig.12 for D=3 . 

Fig.IZ. Cube connected cycle. 

Therefore N=D'2D , each node is connected to three links, and the 
average delay in message passing is approximately 7D/4. 
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D-Dimensiona1 Array (DDA) 

This is a new architecture proposed by myself, and is particular 
attractive to realize large distributed computers with relatively small 
cost. The DDA can be considered a SBH toThere each node is substituted 
by a Blobal bus of width D . Therefore the total nu~her of nodes is 
N=D'~'l , the number of switches per node is 2, and the averaee delay in 
message passing IS approximately 2(D-I). 

The topology of a DDA with D=2 ~.,T=3 IS shown in fig.l3. 

Fig.13. DDA Architecture. 

5. A HODEL FOR THE EVALUATION OF INTERCON~ECTION SnUCTURES 

5.1. Key factors 

Let be given N processors (nodes) to be connected one another by 
means of L links or busses. K(i) is the number of poles of the switch 
attached to processor Pi for connecting Pi to ~(i) links or busses; 
in the most general case K(i) is function of i, whereas in uniform 
and symmetric structures (USS) ~ is constant. 

For bus connected structures let W(j) be the width of bus j , 
defined as the number of nodes connected to the bus. The link connected 
structures can be considered a particular case of bus connected struc
tures (W=2) for most of the considerations developed in the sequel. 

Unless exp1icity specified, the results presented hold for both type 
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of structures. 
It is easy to verify that the following general relation hold: 

L 
l: W(j) 

j=l 

N 
l: T{(i) 

i=l 
(1) 

In particular if K(i)=K and W(j)=W, as it is true for USS , the 
(1) becomes: 

LW NK (1') 

Let R(s,i) be the number of nodes rechable in s steps with a 
shortest path from node i: the average number of steps SCi) in mes
sage routing, defined as the average number of busses utilized by a 
message from the source i to the destination, is given by: 

S (i) 

sM(i) 
l: s·R(s,i) 

s=l 

N-l 
(2) 

where sM(i) is the maximum depth of the tree resulting by means of a 
breath-first-search algorithm applied to the interconnection graph rooted 
in node i. 

The structure average delay S is therefore: 

S 

N 
l: s (i) 

i=l 

N 

For USS R(s,i) is independent from i , hence: 

S 

sM 
l: sR(s) 

s=l 

]\]-1 

(3) 

(3' ) 

S ~s a crucial parameter for the performance of the overall struc
ture. In fact S influences the average number of messages per unite 
time (average traffic density) on busses and nodes as well as the cor
responding average delay in message passing. 

The considerations in the sequel are developed under the following 
assumptions: 
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the traffic is uniformely distributed. i.e. for every node pair the 
communication probability is the same 

the traffic generated by every node is the same and is considered u
nitary. 

Let TB(i.h) be the traffic density for message passing on bus 
h(h=l •...• K(i» connected to node i(l) ; the average traffic density 
(overhead traffic) on node i is: 

L 
hfB(i) 

(4) 

where B(i) 
For USS 

is the set of busses connected to node 
TB(i.h)=TB=NS/L • hence: 

i( I B(i) I =K(i» • 

HS 
K 

S - 1 

(5) 

It is worthwhile noticing that TB and TN depends through S on 
the network topology and size. Moreover the ratio between TB and TN+l 
(global traffic on each node) is: 

(6) 

i.e. for structures with N>L (typically bus connected structures) the 
bottlenecks are the busses. 

The average delay time ~B at a node for accessing a bus. under 
standard conditions (Poisson arrivals at each node. indipendence as
sumptions) is: 

(1) 

1 
~B = TM-TB 

where TM = bus capacity expressed 
as number of messages per unit time. 

For sake of simplicity we have used the notation TB(i.h) 
dentify explicitely the bus; this does not mean that TB 
only on i and h. 

to i
depends 
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The average end-to-end delay ~ is then: 

~ = SL\ 
B 

(7) 

In the analysis of asymptotic behavior of interconnection structures. 
Le. increasing number of nodes. for almost all the structures of prac
tical interest. TB is a monothonic increasing function of N. There
fore it is meaningless to consider TM constant; a resonable assumption 
consists on supposing constant the average delay time on a bus: ~B=al(2) 
With this assumption the end-to-end delay becomes: 

and the bus capacity: 

5.2. The cost index 

~ = a S 
I 

A cost index suitable for comparing different architectures will 
be defined as the product of two terms: 

I = hardware cost per node x message average time delay. 

(8) 

(9) 

The smaller is the index I. the better is the tradeoff between struc
tural"complexity of the network and its performance. 

The average time delay is given by the (8). The hardware cost per 
node. in the general case. can be considered the sum of four cost terms: 

i) node-bus interface channels: C 

ii) busses: CB 

iii) nodes: CN 

iv) bus arbiters: CA 

c 

(2) In the sequel all constants will be indicated by a.(i=I.2 •... ). 
1 
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CC IS assumed to be proportional to the number of channel interfaces 
time the width of the busses: 

C 
c 

l: W(j) 
je SCi) 

(10) 

In fact, for each interface channel the transmission speed must be 
proportional to the number of nodes connected to the same bus. 

The cost of a bus j is assumed to be proportional to its capacity 
TM(j) hence: 

L 
a3 l: TB(j) + a 4L 

j=l 

with similar considerations we obtain: 

N 
CN as l: (TN(i) + 1) 

i=l 

L 
CA a6 l: Iv (j ) 

j=l 

For USS the (10), (ll), (12) and (13) simplify in: 

C 
c 

cx 2NTZW 

CX 3TBL + a 4L 

cxSNS 

Finally the index I results: 

I 

and for USS: 

I 

/J. (C +C +C +C ) 
NcB N A 

(ll) 

(12) 

(13) 

(10' ) 

(ll' ) 

(12' ) 

(13') 

(14) 

(14' ) 
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Asymptotically we obtain: 

I = 0 (8 (Kvl+8) ) (15) 

5.3. Lower bounds for the cost index of U55 

In the previous paragraph we have obtained a cost index depending 
only ·on K,W,5. In order to evaluate different architectures it can be 
useful to compare the cost index behavior against a theoretical lower 
bound. It is common, in order to simplify the formulae, to consider the 
asymptotical behavior of the cost index as function of N. Therefore 
we must express W,K and 5 as function of N, and this will be done 
for the specific architectures analysed in the next section. As fa,r as 
the lower bound is concerned, we can derive a lower bound for I starting 
from a lower bound for 5, as function of N, Wand K. 

As stated by (15), the cost index depends on 5 and K·W. Now, if 
K=l the only interconnecting structure is the single bus, and since for 
this structure W=N and 5=1, the cost index becomes I=O(N). If K=2 
and W=2 , the only interconnecting structure ~ the linear array, for 
which 5=N/4 and I=O(N 2 ). On the other hand, if 8=1 the interconnect
ing structure must have either T.ol=N and K~l or T,v=2 and K=N-l; in 
both cases I=O(N). 

Therefore in order to obtain a cost index better than O(N) it is 
necessary that 5>1, K~2, W::2, and K·H>6. 

. _ ( log N ) Theorem 1. 5 - Q 1 W 1 K og + og 

Proof. consider the maximUm number of nodes reachable in p steps 
for given values of K and T.ol; R(p) is bounded by: 

[ JP-l 
R(p) ~ K(W-l) (K-l) (W-l) (16) 

Let Pmax be the maximum number of steps needed to reach all the 
nodes if the strict inequality in the (16) holds for at least a p, 
and p the same if_the (16) holds with the equality for all p except 
possibly p: Pmax~P • 

Pmax 
5ince 5 L P R(p)/(N-l) , substituting the right-hand side of the 

p=l 

(16) to R(p) this implies an increase of the number of nodes multi-
plied for smaller p, hence 

5 > K(W-l) 
N-l 

P 
L 

p=l 

p-l py where y=(K-l) (W-l) 
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Ii 
Since ~J-l < L !«W-lhP- l 

p=l 

P p-l 
b py 

p=l 
S > -"--_----

P p-l 
L y 

p=l p=o 

we can state: 

- yP 1 -
p (p - p(y-l)) ~ cp 

y -1 

203 

where 1/2.::;c.:d and c-+ 1 for increasing values of p and/or y._ 
On the other hand, with the hypothesis on K and W (K\V~6), N.::;4yP, 

hence: 

10gN -:- 210g 2 
p ~ logy and 

10gN 
S ~ logy 

Substituting in the (15) the expression 10gN/logy instead of S, 
we obtain a lower bound for I as function of Nand y : 

I (15') 

For 2~y~ N the two components of the right-hand side of the (15') 
vary as shown in fig.14. 

Remark that y = constant implies: 

2 
I = f.1 (log N) 

For y = feN) we can derive a different lower bound. 
In fact for y < Y the first component of the (15') dominates the 

second one, whereas for y > Y the second one is dominant. Fory = y the 
two components are equal, therefore y minimize the order of the lower 
bound of 1. On the other hand y depends on N as y'Y = N, and since 

4 10gN < 10gN 
O. 7 log 10gN y <1.37 log 10gN ' Y 

Therefore we have proved the following: 

Theorem 2: I = f.1 « log N .) 2) 
log log N 

10gN 
e (log 10gN) 
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6. eO}1PARISON OF THE AP.eHITECTURES 

With the cost index derived in the previous section, it is possible 
to compare the asymptothic behavior of the architectures introduced in 
section 4 with the exception of star and tree since these architectures 
are not USS. 

The parameters of the architectures presented are: 

1) Global bus K L' , W N' , S 1 

2) Ring K 2 . , H 2' , S N/2 

3) Fully connected: K N-l;W= 2; S 1 

4) NNH K = 2D; W = 2' N MD. S DM/4 , , 
5) SBH K D' N =WD; S " D-l , 
6) eee K 3; H 2 . , N D·2D. , S '" 7 D/ 4 

7) DDA K 2' , N D'WD; S"2(D-l) 

The cost index has been applied to the architectures 1~7 with the 
assumption M=W=D, to simplify the formulae. 

The behavior of the cost indexes are: 

II = O(LxN); 
2 

12 = O(N ); 

0« logN )4). IS 
log log N ' 

13 = O(N) 

0« logN _)3) 
log logN 

16 = 0(log2N); 17 = 0« logN _)2) 
log log N 

From the above cost indexes we can confirm that the USS architectures 
lieing on the lattice points within a hypercube have a better be
havior than the simpler ones. 

The DDA reaches the theoretical USS lower bound for bus inter-
connected structures, and the eee reaches the lower bound for link in
terconnected structures. 

Note that the DDA as all busses interconnected structures has a limi
tation Qn the width of the spanning and local busses and therefore on 
D. However small values of D produce vast number of nodes. For example 
D=S implies N=lS'62S, D=lO implies N=lOll 

Moreover Ws ' the width of the spanning busses, can be different 
from D . This fact in practice is very useful to vary in a finer way 
the number of nodes. 
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7. MESSAGE PASSING ORGANIZATION 

Loosely coupled multiprocessor systems found the cooperation between 
processes allocated into distinct nodes on the explicit transmission of 
a message from the source process to the destination one (3). 

This approach to the cooperation permits to achieve a more reliable 
system since there are two processes, source and destination, that co
operate in an explicit way in the information exchange. This fact allows 
a more general and rigorous control on the information passing since the 
logical channel assigned to the two part~er processes can be organized 
with special features (type of data, type of synchronization and so on) 
that increase the robusteness and the fault-tolerance aptitude of the 
whole system. 

To be more specific the communication mechanisms can be classified 
according to some features: 

a) synchronous communication: in this form of communication a "rendez
vous" is established between the source and the destination pro
cesses, i.e. the message exchange occurs if and only if both part
ners are ready to perform it; 

b) asynchronous communication: in this form of communication the source 
process puts the message into a message buffer of the destination 
process without waiting for any action from the latter. 

In the synchronous communication the "rendez-vous" can be limited to 
the message transfer phase (eSP-like languages) or extended when the 
source process performs, by means of the message, a remote procedure-call 
and then waits for the results (ADA and DP-like languages). 

The asynchronous form of communication is more efficient, considered 
that the source process must not synchronize itself with the destination 
one, whereas the synchronous form is more safe, considered that some 
rec.overy action can be immediately underta ke in case of logical fail
ures. 

There are other features that can be introduced for characterizing 
the kind of communication as the characteristic of the logical channel 
between the partner processes and the type of data exchanged via the 
channel. From the point of view of system performance loosely coupled 
systems lack in efficiency of cooperation since both sender processor 
and receiver processor participate to the message passing action, the 
former with an output routine, the latter with an input one. 

In this aspect we can consider tightly coupled systems as ones in 
which the cooperation is performed via processor-memory transfers, 
whereas loosely coupled systems as ones in which the cooperation 1S 

performed via processor-processor transfers. 
A better solution to this problem consists in providing each pro

cessor with DMA channels or specialized I/O processors which are 
dedicated to the message passing activity. This approach permits a 
much faster transmission, that can be considered a memory-memory trans
fer. Moreover this activity, as it is transparent to the processors can 
be concurrent with the process running. 
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A possible organization of memory-memory transmission ~s shown in 
fig.lS, for a bus connected architecture. 

G-8US 

Fig.lS. Distributed system organization. 

G :Global 

L : Local 

Note that during the transmission the partner processors are slowed 
down due to the bus stealing operated by the m1A channels. Better 
performances can be achieved if the memory area dedicated to I/O 
message buffers is a dual port memory block as shown in fig.16. In this 
case the D~~ channel becomes a specialized I/O processor. The slowing 
down of partner processors is dratically reduced since the normal ac
tivity of them is carried out on the private memory. 

to the G-8US 

Fig.16. Improved organization of distributed systems. 



208 G. Cioffi 

References 

111 D.P. Agrawal et alii: "A survey of Communication Processor Systems". 
Proceedings of COMPSAC/78. 

121 G.A. Anderson, E.n. Jensen: "Computer Interconnection Structures: 
taxonomy, characteristics and examples':ACM Computing Surveys,Vol.~ 
No.4, December 1975. 

131 D.P. Bhandarkar: "Some performance issues in multiprocessor system 
design". IEEE Trans. on Computers, Vol.C-26, No.5, May 1977. 

141 A.M. Despain, D.A. Patterson: "X-tree: a tree structured multi
processor computer architecture". Proceedings of the 5th Annual 
Symposium on Computer Architecture, April 1978. 

151 N. Jovic, G.W. Conturier: "Interprocessor Communication in systems 
with distributed control". IEEE Proc., September 1977, Vo1.65, No.9. 

161 G.J. Lipovsky, K.L. Doty: "Developments and Directions in Computer 
Architecture". Computer, August 1978. 

171 C.A. Head, M. Rem: "Cost and performance of VLSI computing struc
tures". IEEE Proc., Vo1.SC/4, No.4, April 1979. 

181 L.D. Wittie: "A distributed operating system for a reconfigurable 
network computer". Proceedings of the 1st International Conference 
on Distributed Computing Systems, Huntsville, Alabama, October 
1979. 

191 G. Cioffi, P. Corsini, G. Frosini, L. Lopriore: "HuTEAM: Architec
tural Insights of a Distributed Multimicroprocessor System". Proc. 
of 11th Fault-Tolerant Computing Symposium, June 1981. 

1101 F. Baiardi, A. Fantechi, A. Tomasi, r':. Vanneschi: "Mechanisms for 
a Robust Distributed Environment in the HuTEAM Kernel". Proc. of 
11th Fault-Tolerant Computing Symposium, June 1981. 

'1111 P. Ciompi, F. Grandoni, L. Simoncini: "Distributed Diagnosis in 
Multimicroprocessor Systems: The MuTEAM Approach". Proc. of 11th 
Fault-Tolerant Computing Symposium, June 1981. 

1121 P. Denning: "Fault Tolerant Operating Systems". ACM Computing Sur
veys, 8, 4, December 1976. 

1131 E.D. Jensen: "Hardware-Software Relationships in Distributed Sys
tems". Advanced Course on Distributed Systems - Architecture and 
Implementation, Springer-Verlag, 1980. 

1141 E.D. Jensen: "Distributed Control". Ref.1. 

1151 R.J. Swan, S.H. Fuller, D.P. Siewiorek: "CmIE - A Modular Hultimi
croprocessor". Proc. AFIPS 1977, NCC, 46. 

1161 C.A. Monson, P.R. Monson, C.P. Marshall: "A Cooperative Highly 
Available Hultiprocessor Architecture". Proc. COMPCON 79 Fall, 
September 1979. 



Functional Organization of Multiproc(:!isor Systems 

h71 R.E. Bryant, J.B. Dennis: "Concurrent Progrannning". MIT Report, 
MIT Cambridge Mass., 1979. 

209 

1181 D.L. Russel: "State Restoration in Systems of Connnunicating Pro
cesses". IEEE Trans. Software Eng., Vol. SE-6, 2, March 1980. 

1191 D.L. Parnas: "On the Criteria- to be Used in Decomposing Systems 
into Modules". Connn. of the ACt-I, 15, 12, December 1972. 

1201 C.A.R. Hoare: "Connnunicating Sequential Processes". Connn. of the 
ACM, 21, 8, August 1978. 

1211 C.A.R. Hoare: "A Model for Connnunicating Sequential Processes". 
Oxford University Report, July 1979. 



1. Introduction 

A VLSI SORTER 

C.K. Wong 

IBM Thomas J. Watson Research Cen~, 
P.O. Box 218, Yorktown Heights, NY 10598 

Sorting is one of the most important operations in data processing. It is estimated that in 

data processing centers, over 25 percent of CPU time is devoted to sorting [6]. Many 

sequential and parallel sorting algorithms have been proposed and studied [1-3, 5, 6, 8, 10, 

13-18]. Implementation of various sorting algorithms in different hardware structures has also 

been investigated [2-4, 7, 8, 11, 12, 16, 18]. 

In this paper, we describe a sorter where the sorting time is completely overlapped with 

the input/output time. It has complete parallel operations and process data in a pipelioed 

fashion. It can sort in both ascending and descending order and can overlap the sorting time 

of two consecutive input sequences. Because of the regularity of its structure, it is most 

suitable for VLSI implementation. A detailed implementation is presented to illustrate the 

basic principle. Further optimization in various aspects of the design is clearly possible. 

2. Principle 

The sorter consists basically of a linear array of n/2 cells. (we assume n is even), each of 

which can store two items of the sequence to be sorted (Figure 1). The initial sequence is 

input to the sorter one item at each step. After the input of the last item, the data flow 

direction is reversed and the sorted sequence is then output, also serially. Each step is 

executed synchronously and simultaneously by all the cells and has two phases: 

1) Compare: the two items in each and every cell are 

compared to each other, 
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2) Transfer: subject to the result of the comparison, 

desired sorting order (ascending or descending) 

and the sorting state (input or output), either 

one of the two items is transferred to the neighbor 

cell and receives one from the other neighbor cell. 

The sorter not only processes the items of a given sequence in a pipelined fashion, but also 

sorts different sequences in a pipelined way, i.e., while one sorted sequence is being output, a 

new sequence could be input at the same time from the other end of the sorter. This way, the 

I/O time of the sequence is completely absorbed by the sorting time needed by another . 

. Figure 2 is an example of the sorting of a sequence in ascending order. "00" represents 

the largest item possible. At the input stage the larger of the two items in each cell is 

transferred down; while at the output stage the smaller of the two is transferred up. Note that 

at the end of the input stage (step 6), the smallest item must be in the top cell, the second 

smallest must be in either the top or the second cell. In general, the i-th smallest item must be 

in one of the top i cells. This is why the output sequence is sorted. 

The same principle applies to descending sort; we have only to replace "00" by "-00", the 

smallest item and interchange larger and smaller. (It will be shown later that it is not neces

sary to flood the sorter initially with either "00" or "-00". (See Figure 14.» 

Let A,B be the two items stored in a cell. Let M=Max(A,B), m=min(A,B)' If we 

consi(ier the sorting of an isolated sequence, and the sequence is input and output through the 

top (top sequence), the specific action in the transfer phase can be summarized as follows, 

~ Stage 

s~~~ 
Ascending 

Descending 

Input (Down) 

M moves down to 

next cell (M"') 

m moves down to 

next cell (m"') 

Table 1 

Output (Up) 

m moves up to next 

cell (m+) 

M moves up to next 

cell (M+) 
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If the sequence is input and output through the bottom port of the sorter (bottom 

sequence), the table would be: 

~ Stage' 

SortOrder~ 

Ascending 

Descending 

Input (Up) 

Mt 

mt 

Output (Down) 

m~ 

M~ 

Table 2 

A fact to be noted is that the roles ofM and m are interchanged when we consider a descend

ing as opposed to ascending sort. 

When we overlap the output of a sequence with the input of another, it is clear from 

Tables 1 and 2 that the transfer actions are different for the two sequences. For example, for 

an ascending sort, in the upward movement, we have mt for the output (top) sequence and 

M t for the input (bottom) sequence. 

For this distinction, we attach a flag to each item when it is input: "0" (" 1 ") to items in 

top (bottom) sequence. This flag will be considered part of the item, in the comparison as 

well as in the transfer. And we obtain the table on transfer actions as follows: 

.___________ Tag bits 

Data Movement -"--- --,_ .. __ 0 0 I 0 
I 

Downward M ~ (m ~ ) 

Upward mt (Mt) :: :::: I :;~:::-
Table 3 

The parenthesized entries correspond to descending sort. l'he third column represents the 

frontier cell between the two sequences. If we include the tag bit as the most significant bit of 

the items for the purpose of comparison, the item from a bottom sequence with tag bit = 1 

will be always M and the two seqllences will always be kept separate. An example of the 

sorting with the added tag bits is shown in Figure 3. 
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3. Logic Design 

Throughout this paper, the cell array of the sorter will be represented vertically. Each 

cell, containing two w-bit items, is a horizontal linear array (row) of w dibit-cells. The overall 

topological layout is shown in Figure 4. In actual physical layout, a carpenter folding [9] of 

the cell array might be needed to obtain a more square-shaped chip. 

Dibit-cell. Each such cell is a compare/steer unit for two bits, one from each of the two 

items A and B, representing the same bit position. Figure 5 is the block diagram of a dibit

cell. In downward (upward) movements, after comparison, one of the two bits will be shifted 

out on line a (b) to the next (previous) cell, while a bit from the previous (next) cell is being 

shifted in on line I (0). In that Figure, the terms "input" and "output" refer to a top 

sequence, and the controls are indicated for an ascending sort. 

A circuit schematic of a dibit-cell is shown in Figure 6. The precharged carry-propagate

type comparator is shown together with the two bit-cells. It should be noted that every 

bit-cell of item A (B) in a cell row is controlled by the same 4 signals Ct , C2, C3 and C4 , " , ' 
(C),C2,C3 and C4), so that all the bits of an item are recycled or shifted at the same time. 

The comparators of the dibit-cells in a cell row are chained as in Figure 7. C is the 

comparison result of items A and B, i.e., C=l if item A~ item B, C=O otherwise. The 

comparison carry chain. is precharged during clock phase 1/» (gates Wand Y in Figure 6). 

Control. To illustrate, let us consider an ascending sort with a top sequence. Each cell is 

a 2-inverter loop controlled by 4 gates using a 2-nonoverlapping-phase clock. The required 

gatings for different situations with A~B (Le. comparison result C=l) are shown in Figure 8. 

In the case of A<B, just interchange the gatings for A and B. The boolean expressions 

obtained are listed as follows, 

, -
Ct = 1/>21'a: + I/>t Ia 



A VLSI Sorter 215 

1= 1 (0) indicates the downward (upward) movement. a is the boolean variable which takes 

opposite values (0 and 1) in opposite situations: 

- ascending (Opt=O) versus descending sort (Opt= 1), 

- top (SR=O) versus bottom sequence (SR=1), 

- and A~B (comparison carry C=1) versus A<B (C=O). 

It follows that a is the exclusive-OR of C, SR and Opt, i.e. 

~SR 
Opt~ 0 1 

o C C 

C C 

See Figure 9 for the circuit schematic of the cell control. 

To have homogeneous and regular cells, we have avoided the explicit use of the tag bit 

combination to distinguish top and bottom sequences (Table 3), instead we have a bidirection

al double shift-register chain, whose contents move up and down in synchrony with those of 

the cells and whose output at each level is taken to be SR, as shown in Figure 10, so that an 

item of a top (bottom) sequence is always chaperoned by SR=O (1). A slight complication 

occurs at the frontier. The desired transfer action table is then 

Ascending Descending 

II 
Tag-bits :1 

!I 
~ 

Down 

Up 

11 01 00 11 01 

----tt---:-:-- :~-+ :~~~=-i:--~~~~~:: 
00 

-----1+-------------'-----.--------. 

SR o o o 
" 

Table 4 
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The reader could easily check out from Figure 10 that the two extra unidirectional shift 

registers at the two ends are needed to fulfill the requirement of the third colu~n in both 

ascending and descending sort. 

4. Timing 

We use a 3-nonoverlapping-phase clock as shown in Figure 11. During phase <1>1' the 

transfer bit is read out from cell(i) while the other bit is recycled and the comparison carry 

chain precharged (Figure 12). During <1>2' the transfer bit is written into the next cell (i+ 1 or 

i-I) while the other bit is making a full recycle and the comparison taking place. At <1>3' the 

comparison result signal is fed into the control circuit of each cell. 

In addition, phase <1>3 is needed (see Figure 13) 

(1) for the transition from up to down and down to up stages, 

(2) for the initialization, 

(3) and to avoid racing condition in the loop of comparator, control, and bit cell. 

5. Initialization 

Before the beginning of a sort, instead of initializing all the cells with "00" or "-00", it is 

necessary only to fill in the two border cells with tags distinct from the tags of the sequence 

coming in, together with appropriate setting of the comparison shift registers as in Figure 14. 

Recall that top (bottom) sequences have tag bit "0" ("1"). So here "00" ("-00") represents 

any number with tag bit" 1" ("0"). It could be easily checked from Table 4 and e.g. Figure 

14e that these initializations are indeed adequate. 

All the initial values are injected into the sorter during clock phase <1>3. 

6. Concluding Remarks 

1) The circuits are drawn up as if the wires connecting dibit-cells of rows i and i+ 1 have 

enough capacitance to store the transfer bit. If they do not, it would be a simple matter to 

add to them connection inverters. Without the inverters, comparisons on ad1acent row cells 

must be implemented differently. Indeed, as can be seen in Figure 6, a bit leaving a cell is in 

complemented form than when it was input. Therefore, to produce the same comparison carry 

output we need to invert the roles of A and A, and also Band B as in Figure 15. A redrawn 

global block diagram is shown in Figure 16 where the alternation between adjacent rows is 
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clearly indicated. Note also that an even number of rows is recommended so that data are 

input and output in "true" form. (Otherwise either the top or bottom would be in "false", i.e. 

negated form.) 

2) For our implementation (Figure 6) we have a device count of 26 for a dibit-cell, i.e. 13 

per bit versus 6 in today's 16K static RAM. So a sorter chip would have very likely a capacity 

up to 8K bit or 256 32-bit cells. The sorter can be trivially extended to handle key/pointer 

pair by simply omitting the compare logic on the portion of the storage cell associated with the 

pointer. (Then it will require only 8 devices per pointer bit.) 

. 3) We can use the sorter to merge two sorted strings by repeatedly passing them through 

the sorter in an appropriate way. For example, the generalized odd-even merge algorithm 

described in ([6], p.241, Excerise 38) can be employed for this purpose. 
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TOWARDS A THEORY OF VLSI LAYOUT 

A Selected Annotated Bibliography 

F.P. Preparata 
University of Illinois at Urbana-Champaign 

As the complexity of digital systems grew, the need arose for ef

ficient packaging of the system components. Starting in the mid 50's, 

individual devices were placed on printed-circuit boards. As the size 

and the complexity of the modules grew - from individual devices to in

tegrated circuits - the princed-circuit board has preserved to this day 

its function as a fundamental packaging level in the assembly of digital 

systems. However, a new layout horizon emerged, represented by the in

ternal structure of the module.s themselves (chip complexity). Today, the 

latter is the predominant problem in system layout: however, in spite of 

largely different feature sizes, the two environments - VLSI chip and 

printed-circuit board - are both governed by analogous sets of rules for 

the layout of wires on a regular grid. The highly structured layout medium 

and the necessity to cope with problems of increasing size motivated the 

development of automatic techniques and stimulated the attending research. 

In general, the layout problem consists of two major subproblems: 

the placement of modules and the routing of wires to interconnect these 

modules. The identification of modules represents a hierarchical approach 

to layout: once the internal layout of the modules has been defined, the 

modules become unalterable geometric shapes, and only their external in

terconnection remains to be desired. Considerable flexibility exists as 

to the choice of modules: a particularly successful approach consists of 

adopting modules of identical shape and size and to place them on a re

gular grid (gate-array approach). 
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Although many approaches view placement and routing as two conse

cutive activities (see, e.g. reference [22] below), some gate-array

oriented methods attempt the simultaneous solution of the two problems. 

The most recent work along these lines is based on the theory of graph 

separators. If the graphs considered are planar, a fundamental reference 

is: 

[1] R.J. Lipton and R.E. Tarjan, "A separator theorem for planar graphs", 

SIAMJ. onAppl. Math., vol. 36, n. 2, pp. 177-189; April 1979. 

This paper shows that an n-vertex planar graph can be separated into two 

subgraphs of comparable sizes by removing at most 0(1n ) vertices, the 

separator. Since it has been noted that digital circuits have properties 

somehow similar to those of planar graphs, the above paper has motivated 

a substantial amount of layout research. The separator theory was applied 

to the layout of graphs in: 

[2] C.E. Leiserson, "Area-efficient graph layouts (for VLSI)", Proc.21st 

IEEE Symp. on Fondations of Computer Science, Syracuse, NY, October 

1980; pp. 270-281. 

and 

[3] L.G. Valiant, "Universality considerations in VLSI circuits", IEEE 

Trans. on Computers, vol. C-30, n. 2, pp. 135-140; February 1981. 

These (independently discovered) equivalent methods are based on the 

divide-and-conquer principle. The separator theory is used to subdivide 

the graph into two portions, these portions are recursively processed; 

and the final layout is obtained by routing, with insignificant pertur

bation, the wires perturbation, the wires pertaining to the separator. 

The important notions of "crossing number" and "wire area" of a 

given graph, which are relevant to the layout area of the graph, were 

introduced in 

[4] F.T. Leighton, "New lower bound techniques for VLSI", Proc. 22nd 

IEEE Symp. on Foundations of Computer Science, Nashville, Tenn., 

October 1981; pp. 1-12. 
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In this paper, Leighton also exhibited an n-vertex nonplanar graph--

the mesh of trees or orthogonal trees -- having a 8 (In )-separator but 

requiring r2(n log2 n) layout area. This result can then be used to exhibit 

an n-vertex planar graph -- the tree of meshes -- also with a 8 (In )-
para tor requiring r2 (n log n) layout area. This shows a gap between lower 

and upper bounds for planar graphs, which is still open today. Further 

methods, which are applicable to arbitrary circuit graphs and are based 

on the notion of "bifurcator", can be found in 

[5] F.T. Leighton, "A layout strategy which is provably good", Proc.14th 

ACM Symp. on Theory of Co~uting, San Francisco, CA, May 1982; pp. 

85-98. 

An interesting variation on the theory of separators (multicolor 

separators), presented in 

[6] J.R. Gilbert, "Graph separator theorems and sparse Gaussian Elimina

tion", Rep. N. STAN-CS-80-833, dept. of Compo Sci., Stanford Uni

versity; December 1980. 

has been successfully extended, and used in 

[7] S.N. Bhatt and F.T. Leighton, "A framework for solving VLSI graph 

layout problems", Journal of Computer and System Sciences, to appear. 

to prove the feasibility of "synchronous layouts". A synchronous layout 

of a directed computation graph is realized when a node is laid out in an 

area proportional to the total length of the wires corresponding to its 

outgoing arcs. Bhatt and Leighton showed that an arbitrary n-node graph 

laid out in area A, can be reprocessed to obtain a synchronous layout of 
2 

area at most 0 (A log (A/N)). 

A large amount of research has been done on the routing problem, 

defined by a fixed set of terminals on the uniform grid, the specifica

tion of their interconnection, and a region of the grid to be used to 

realize the layout. A very early paper, which has been the basis of many 

applications (especially for gate-array networks) is 
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[8] c. Y. Lee, "An algorithm for path connections and its applications", 

IRE Trans. on Computers, vol. EC-10, pp. 346-365; September 1961. 

This paper assumeS that module placement has been determined and succes

sively routes the wires, each on the shortest feasible path on the grid. 

The extreme simplicity of the technique - based on the propagation of a 

"distance wave" - has been the reason for its success. 

Another techniques presented in 

[9] D.W. Hightower, "A solution to line routing problems on the conti

nuous plane", Proc. 6th Design Automation Workshop, pp. 1-24, June 

1969. 

also aims at realizing wires as shortest paths (in the presence of bar

riers) in the L1-metric, but employs a different approach. Starting from 

the L1-shortest path, it verifies whether it crosses any barrier, and,if 

so, it introduces approximate detours. A final compaction step removes 

obvious redundancies. 

Worth mentioning are the so-called "iterative" techniques, where 

wires are laid out one after the other, until a wire is first found that 

cannot be succesfully laid out: at this point, a small set of wires is 

rerouted to allow the layout of the wire causing the impasse, and so on. 

Typical of this approach are 

[10] G~V. Dunn, "The design of printed circuit layouts by computer", Proc. 

3rd Australian Computer Conf. pp. 419-423, (1967). 

[11] S.E. Lass, "Automated printed circuit routing. with a stepping apert

ure", Comm. of the ACM, 12 n. 5, pp. 262-265, (1969). 

The notion of "channel" was introduced in the paper 

[12] A. Hashimoto and J. Stevens, "Wire routing by optimizing channel 

assignment within large apertures", Proc. 8th Design Automation Work

shop, pp. 155-169, JOle 1971. 

which has become one of the classic references in layout theory. In the 

channel routing problem, all terminals are on two parallel boards, whose 

spacing (width) is determined by the number of tracks used by the layout. 
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A set of terminals to be connected together is called a net. Hashimoto 

and Stevens intriduced the notion of "density", which constitutes a lower 

bound to channel width under the usual assumption that the two distinct 

wires are edge-disjoint paths in the grid (no overlap). 

Several papers have since addressed the channel routing problem 

(CRP). The following are two significant references: 

[13] B.W. Kernighan, D.G. Schweikert, G. Persky, "An optimum channel 

routing algorithm for polycell layouts of integrated circuits", 

Proc. 10th Design Automation Workshop, pp. 50-59, June 1973. 

[14] A. Deutsch, "A dogleg channel router", Proc. 13th Design Autmation 

Conference, pp. 425-433, 1976. 

The first paper breaks away from usual approach of applying a promising 

heuristic, and obtains an optimal solution (i.e., with the least number 

of tracks) by a branch and bound technique: of course running time is 

greatly affected by the problem size. The second paper presents an in

teresting method to reduce the number of tracks used. All the CRP techni

ques cited so far refer to the so-called Manhattan-mode (or two-layer) 

routing, where horizontal and vertical wires are on distinct conducting 

layers, with appropriate cuts (vias) established to provide the necessary 

contacts. 

A significant step forward is represented by the paper 

[15] R.L. Rivest, A. Baratz, and G. Miller, "Provably good channel routing 

algorithms", Proc. 1981 Carnegie-Mellon Conf. on VLSI, pp. 153-159, 

October 1981. 

The adopted layout mode is the knock-knee (earlier used by Thompson), 

where two distinct wires are allowed to share a bend-point. They prove 

that a two-terminal net CRP of density d can be laid out in d tracks in 

the knock-knee mode; however, since only two condicting layers are post

ulated, additional d-1 tracks are introduced to provide the necessary 

vias. The width 2d-1 was later found to be optimal for two-layer routing, 

as shown in: 

[16] F.T. Leighton, "New lower bounds for channel routing", draft 1981. 
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Since the use of two layers appears to be the determining factor of 

the 2d-1 width performance (rather than d), the paper 

[ 171 F. P. Prepara ta and W. Lipsk i, Jr ., "Three layers are enough", Proc. 

23rd IEEE Symp. on Foundations of Computer Science, Chicago, IL, 

pp. 350-357, November 1982 (see also: Preparata-Lipski, "Optimal 

three-layer channel routines", IEEE Trans. on Computers, May 1984 

(to appear)), 

showed indeed that for a two-terminal net CRP it is possible to produce 

a minimal width layout, which is wireable in no more than three layers. 

This paper is also the basis of the wireability theory to be briefly 

mentioned below. 

The routing of multiterminal nets, earlier approached on the basis 

of reasonable heuristics and the subject of intensive experimentation 

[13,141, has only recently received theoretical attention. Although 

density trivially represents a lower bound to channel width for this 

general CRP, the establishment of the optimum width in an NP-hard problem, 

at least in the Manhattan mode, as shown in: 

[18) T.G. Szymanski, "Dogleg channel routing is NP-complete", to appear 

(1982) • 

However, in an unpublished memorandum 

[19] D.J. Brown, F.P. Preparata, "Three-layer routing of multiterminal 

nets", unpublished manuscript, October 1982, 

an upper bound of 2d to the achievable channel width was established. 

This upper bound was later improved to (2d-1) in the paper 

[20] M. Sarrafzadeh and F.P. Preparata, "Compact channel routing of multi

terminal nets", Tech. Rep. ACT. 44, Coordinated Science Lab., Uni

versity of Illinois, October 1983. 

The algorithm reported in this paper produces the layout column by column 

in a left-to-right sweep of the channel, and falls in the general class 

of "greedy" channel routers. An experimentally efficient, but not yet 
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analyzed, greedy router for the Manhattan mode was described in the paper. 

[211 R.L. Rivest, C.M. Fiduccia, "A greedy channel router", Proc. 19 

Design Automation Conference, pp. 418-424, June 1982. 

This paper is part of the 'PL' system, presently being developed at M.I.T. 

An account of this layout system, encompassing placement and routing,can 

be found in 

[221 R.L. Rivest, "The 'PI' (Placement and Interconnect) System", Proc. 

19th Design Automation Conference, pp. 475-481, June 1982. 

The problem of the number of layers used to realize a given layout 

is currently the subject of active research. The general theoretical 

framework presented in [171 has been used in 

[221 W. Lipski, Jr., "The structure of three-layer wireable layouts", to 

appear in Advances in Computing Research, Volume 2, VLSI Theory, 

(1984) , 

to prove that the problem of deciding whether an arbitrary planar layout 

of multiterminal nets is wireable in three layers is NP-complete. How

ever, this result has been supplemented by the surprising and elegant 

finding that for the same problem no more than four layers are ever ne

cessary, as reported in 

[23) M. Brady and D.J. Brown, "VLSI routing: four layers suffice", in 

Advances in Computing Research Volume 2: VLSI Theory, (1984). 

Finally we mention some recent results on routing problems of a 

more general flavor than CRPs. The first problem, discussed in 

[241 A.S. LaPaugh, "A polynomial time algorithm for optimal routing 

around a rectangle", Proc. 21st Syrup. on Foundations of Computer Science 

(Syracuse), pp. 282-293, October 1980. 

[251 T.F. Gonzales and S.L. Lee, "An optimal algorithm for optimal routing 

around a rectangle", Proc. 20th Allerton Conference on Communication 

Control, and Computing, pp. 636-645, October 1982, 

concerns the construction of the layout when the terminals are placed on 
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the four sides of a rectangle and the wires must remain external to this 

rectangle ("Routing outside a rectangle"). The second - strictly related -

problem, for the same data, prescribes instead that the layout be con

structed inside the rectangle ("Routing inside a rectangle"). The general 

themry of the latter problem for two-terminal nets was first presented in 

[261 A. Frank, "Disjoint paths in a rectilinear grid", Combinatorica, 2, 

4, pp. 361-371, (1982), 

and an efficient algorithm was later developed in 

[271 K. Mehlhorn and F.P. Preparata, "Routing through a rectangle", Tech. 

Rep. ACT-42, Coordinated Science Lab., Univ. of Illinois, Urbana: 

October 1983; submitted for publication. 

These generalized routing problems for multi terminal nets have so far 

received scant attention. 

In conclusion, it emerges from this selected bibliography that, in 

spite of extensive studies and of significant heuristic accomplishmed 

the combinatorial understanding of the planar layout problem is still a 

preliminary stage. Although most problems are, or are likely to be in

tractable, there is a strong need for the development of fully analyzed 

approximation methods. 
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