
Marc Loy,
Patrick Niemeyer

 & Daniel Leuck

Learning

Java
An Introduction to Real-World Programming
with Java

Fifth
Edition

Marc Loy, Patrick Niemeyer, and Daniel Leuck

Learning Java
An Introduction to Real-World

Programming with Java

FIFTH EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05627-0

[LSI]

Learning Java
by Marc Loy, Patrick Niemeyer, and Daniel Leuck

Copyright © 2020 Marc Loy, Patrick Niemeyer, Daniel Leuck. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Developmental Editor: Amelia Blevins
Production Editor: Beth Kelly
Copyeditor: Sonia Saruba
Proofreader: Christina Edwards

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2000: First Edition
July 2002: Second Edition
May 2005: Third Edition
June 2013: Fourth Edition
March 2020: Fifth Edition

Revision History for the Fifth Edition
2020-03-27: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056270 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Java, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056270

Table of Contents

Preface. xi

1. A Modern Language. 1
Enter Java 2

Java’s Origins 2
Growing Up 3

A Virtual Machine 4
Java Compared with Other Languages 7
Safety of Design 10

Simplify, Simplify, Simplify… 11
Type Safety and Method Binding 12
Incremental Development 13
Dynamic Memory Management 13
Error Handling 14
Threads 15
Scalability 15

Safety of Implementation 16
The Verifier 17
Class Loaders 19
Security Managers 19

Application and User-Level Security 20
A Java Road Map 21

The Past: Java 1.0–Java 11 21
The Present: Java 14 23
The Future 25
Availability 25

iii

2. A First Application. 27
Java Tools and Environment 28

Installing the JDK 28
Installing OpenJDK on Linux 29
Installing OpenJDK on macOS 30
Installing OpenJDK on Windows 31
Configuring IntelliJ IDEA and Creating a Project 35
Running the Project 39
Grabbing the Learning Java Examples 39

HelloJava 41
Classes 44
The main() Method 44
Classes and Objects 46
Variables and Class Types 46
HelloComponent 47
Inheritance 48
The JComponent Class 49
Relationships and Finger-Pointing 50
Package and Imports 51
The paintComponent() Method 52

HelloJava2: The Sequel 53
Instance Variables 55
Constructors 56
Events 58
The repaint() Method 60
Interfaces 60

Goodbye and Hello Again 62

3. Tools of the Trade. 63
JDK Environment 63
The Java VM 64
Running Java Applications 64

System Properties 66
The Classpath 66

javap 68
Modules 68

The Java Compiler 69
Trying Java 70
JAR Files 77

File Compression 77
The jar Utility 77
The pack200 Utility 80

iv | Table of Contents

Building Up 81

4. The Java Language. 83
Text Encoding 84
Comments 86

Javadoc Comments 87
Variables and Constants 89
Types 90

Primitive Types 91
Reference Types 95
Inferring Types 97
Passing References 97
A Word About Strings 98

Statements and Expressions 99
Statements 100
Expressions 108

Arrays 114
Array Types 115
Array Creation and Initialization 115
Using Arrays 117
Anonymous Arrays 119
Multidimensional Arrays 119

Types and Classes and Arrays, Oh My! 121

5. Objects in Java. 123
Classes 124

Declaring and Instantiating Classes 125
Accessing Fields and Methods 127
Static Members 131

Methods 134
Local Variables 135
Shadowing 135
Static Methods 137
Initializing Local Variables 139
Argument Passing and References 140
Wrappers for Primitive Types 141
Method Overloading 143

Object Creation 145
Constructors 145
Working with Overloaded Constructors 146

Object Destruction 148
Garbage Collection 148

Table of Contents | v

Packages 149
Importing Classes 150
Custom Packages 151
Member Visibility and Access 153
Compiling with Packages 155

Advanced Class Design 155
Subclassing and Inheritance 156
Interfaces 161
Inner Classes 163
Anonymous Inner Classes 165

Organizing Content and Planning for Failure 167

6. Error Handling and Logging. 169
Exceptions 170

Exceptions and Error Classes 170
Exception Handling 172
Bubbling Up 175
Stack Traces 176
Checked and Unchecked Exceptions 177
Throwing Exceptions 178
try Creep 182
The finally Clause 183
try with Resources 184
Performance Issues 185

Assertions 186
Enabling and Disabling Assertions 187
Using Assertions 188

The Logging API 189
Overview 189
Logging Levels 191
A Simple Example 192
Logging Setup Properties 193
The Logger 195
Performance 195

Real-World Exceptions 196

7. Collections and Generics. 197
Collections 197

The Collection Interface 198
Collection Types 199
The Map Interface 201

Type Limitations 203

vi | Table of Contents

Containers: Building a Better Mousetrap 203
Can Containers Be Fixed? 205

Enter Generics 205
Talking About Types 208

“There Is No Spoon” 209
Erasure 210
Raw Types 211

Parameterized Type Relationships 213
Why Isn’t a List<Date> a List<Object>? 214

Casts 215
Converting Between Collections and Arrays 216
Iterator 217

A Closer Look: The sort() Method 218
Application: Trees on the Field 219
Conclusion 221

8. Text and Core Utilities. 223
Strings 223

Constructing Strings 224
Strings from Things 225
Comparing Strings 226
Searching 227
String Method Summary 228

Things from Strings 229
Parsing Primitive Numbers 229
Tokenizing Text 230

Regular Expressions 232
Regex Notation 232
The java.util.regex API 238

Math Utilities 243
The java.lang.Math Class 244
Big/Precise Numbers 247

Dates and Times 248
Local Dates and Times 248
Comparing and Manipulating Dates and Times 249
Time Zones 250
Parsing and Formatting Dates and Times 251
Parsing Errors 253
Timestamps 255

Other Useful Utilities 255

Table of Contents | vii

9. Threads. 257
Introducing Threads 258

The Thread Class and the Runnable Interface 258
Controlling Threads 262
Death of a Thread 267

Synchronization 268
Serializing Access to Methods 269
Accessing Class and Instance Variables from Multiple Threads 274

Scheduling and Priority 275
Thread State 277
Time-Slicing 278
Priorities 279
Yielding 280

Thread Performance 280
The Cost of Synchronization 280
Thread Resource Consumption 281

Concurrency Utilities 282

10. Desktop Applications. 285
Buttons and Sliders and Text Fields, Oh My! 286

Component Hierarchies 286
Model View Controller Architecture 287
Labels and Buttons 288
Text Components 294
Other Components 302

Containers and Layouts 306
Frames and Windows 307
JPanel 309
Layout Managers 310

Events 318
Mouse Events 319
Action Events 322
Change Events 325
Other Events 326

Modals and Pop Ups 327
Message Dialogs 327
Confirmation Dialogs 330
Input Dialogs 332

Threading Considerations 332
SwingUtilities and Component Updates 333
Timers 336

Next Steps 339

viii | Table of Contents

Menus 339
Preferences 341
Custom Components and Java2D 341
JavaFX 342

User Interface and User Experience 342

11. Networking and I/O. 343
Streams 343

Basic I/O 345
Character Streams 348
Stream Wrappers 349
The java.io.File Class 353
File Streams 358
RandomAccessFile 360

The NIO File API 361
FileSystem and Path 362
NIO File Operations 364

The NIO Package 366
Asynchronous I/O 367
Performance 367
Mapped and Locked Files 368
Channels 368
Buffers 369
Character Encoders and Decoders 372
FileChannel 374

Network Programming 377
Sockets 379

Clients and Servers 380
The DateAtHost Client 384
A Distributed Game 386

More to Explore 396

12. Programming for the Web. 397
Uniform Resource Locators 397
The URL Class 398

Stream Data 399
Getting the Content as an Object 400
Managing Connections 401
Handlers in Practice 402
Useful Handler Frameworks 403

Talking to Web Applications 403
Using the GET Method 404

Table of Contents | ix

Using the POST Method 405
The HttpURLConnection 408
SSL and Secure Web Communications 409

Java Web Applications 409
The Servlet Life Cycle 411
Servlets 412
The HelloClient Servlet 413
The Servlet Response 415
Servlet Parameters 416
The ShowParameters Servlet 417
User Session Management 419
The ShowSession Servlet 420

Servlet Containers 422
Configuration with web.xml and Annotations 423
URL Pattern Mappings 426
Deploying HelloClient 427

The World Wide Web Is, Well, Wide 428

13. Expanding Java. 429
Java Releases 429

JCP and JSRs 430
Lambda Expressions 430

Retrofitting Your Code 431
Expanding Java Beyond the Core 437
Final Wrap-Up and Next Steps 437

A. Code Examples and IntelliJ IDEA. 439

Glossary. 459

Index. 473

x | Table of Contents

Preface

This book is about the Java programming language and environment. Whether you
are a software developer or just someone who uses the internet in your daily life,
you’ve undoubtedly heard about Java. Its introduction was one of the most exciting
developments in the history of the web, and Java applications have powered much of
the growth of business on the internet. Java is, arguably, the most popular program‐
ming language in the world, used by millions of developers on almost every kind of
computer imaginable. Java has surpassed languages such as C++ and Visual Basic in
terms of developer demand and has become the de facto language for certain kinds of
development—especially for web-based services. Most universities are now using Java
in their introductory courses alongside the other important modern languages. Per‐
haps you are using this text in one of your classes right now!

This book gives you a thorough grounding in Java fundamentals and APIs. Learning
Java, Fifth Edition, attempts to live up to its name by mapping out the Java language
and its class libraries, programming techniques, and idioms. We’ll dig deep into inter‐
esting areas and at least scratch the surface of other popular topics. Other titles from
O’Reilly pick up where we leave off and provide more comprehensive information on
specific areas and applications of Java.

Whenever possible, we provide compelling, realistic, and fun examples and avoid
merely cataloging features. The examples are simple, but hint at what can be done.
We won’t be developing the next great “killer app” in these pages, but we hope to give
you a starting point for many hours of experimentation and inspired tinkering that
will lead you to develop one yourself.

Who Should Read This Book
This book is for computer professionals, students, technical people, and Finnish
hackers. It’s for everyone who has a need for hands-on experience with the Java lan‐
guage with an eye toward building real applications. This book could also be consid‐
ered a crash course in object-oriented programming, networking, and user interfaces.

xi

As you learn about Java, you’ll also learn a powerful and practical approach to soft‐
ware development, beginning with a deep understanding of the fundamentals of Java
and its APIs.

Superficially, Java looks like C or C++, so you’ll have a tiny headstart in using this
book if you have some experience with one of these languages. If you do not, don’t
worry. Don’t make too much of the syntactic similarities between Java and C or C++.
In many respects, Java acts like more dynamic languages such as Smalltalk and Lisp.
Knowledge of another object-oriented programming language should certainly help,
although you may have to change some ideas and unlearn a few habits. Java is consid‐
erably simpler than languages such as C++ and Smalltalk. If you learn well from con‐
cise examples and personal experimentation, we think you’ll like this book.

The last part of this book branches out to discuss Java in the context of web applica‐
tions, web services, and request processing, so you should be familiar with the basic
ideas behind web browsers, servers, and documents.

New Developments
This edition of Learning Java is actually the seventh edition—updated and retitled—
of our original, popular Exploring Java. With each edition, we’ve taken great care not
only to add new material covering additional features, but to thoroughly revise and
update the existing content to synthesize the coverage and add years of real-world
perspective and experience to these pages.

One noticeable change in recent editions is that we’ve de-emphasized the use of app‐
lets, reflecting their diminished role in recent years in creating interactive web pages.
In contrast, we’ve greatly expanded our coverage of Java web applications and web
services, which are now mature technologies.

We cover all of the important features of the latest “long-term support” release of
Java, officially called Java Standard Edition (SE) 11, OpenJDK 11, but we also add in a
few details from the “feature” releases of Java 12, Java 13, and Java 14. Sun Microsys‐
tems (Java’s keeper before Oracle) has changed the naming scheme many times over
the years. Sun coined the term Java 2 to cover the major new features introduced in
Java version 1.2 and dropped the term JDK in favor of SDK. With the sixth release,
Sun skipped from Java version 1.4 to Java 5.0, but reprieved the term JDK and kept its
numbering convention there. After that, we had Java 6, Java 7, and so on, and now we
are at Java 14.

This release of Java reflects a mature language with occasional syntactic changes and
updates to APIs and libraries. We’ve tried to capture these new features and update
every example in this book to reflect not only the current Java practice, but style as
well.

xii | Preface

New in This Edition (Java 11, 12, 13, 14)
This edition of the book continues our tradition of rework to be as complete and up-
to-date as possible. It incorporates changes from both the Java 11—again, the long-
term support version—and Java 12, 13, and 14 feature releases. (More on the specifics
of the Java features included and excluded in recent releases in Chapter 13.) New top‐
ics in this edition include:

• New language features, including type inference in generics and improved excep‐
tion handling and automatic resource management syntax

• New interactive playground, jshell, for trying out code snippets
• The proposed switch expression
• Basic lambda expressions
• Updated examples and analysis throughout the book

Using This Book
This book is organized roughly as follows:

• Chapters 1 and 2 provide a basic introduction to Java concepts and a tutorial to
give you a jump-start on Java programming.

• Chapter 3 discusses fundamental tools for developing with Java (the compiler, the
interpreter, jshell, and the JAR file package).

• Chapters 4 and 5 introduce programming fundamentals, then describe the Java
language itself, beginning with the basic syntax and then covering classes and
objects, exceptions, arrays, enumerations, annotations, and much more.

• Chapter 6 covers exceptions, errors, and the logging facilities native to Java.
• Chapter 7 covers collections alongside generics and parameterized types in Java.
• Chapter 8 covers text processing, formatting, scanning, string utilities, and much

of the core API utilities.
• Chapter 9 covers the language’s built-in thread facilities.
• Chapter 10 covers the basics of graphical user interface (GUI) development with

Swing.
• Chapter 11 covers Java I/O, streams, files, sockets, networking, and the NIO

package.
• Chapter 12 covers web applications using servlets, servlet filters, and WAR files,

as well as web services.

Preface | xiii

• Chapter 13 introduces the Java Community Process and highlights how to track
future changes to Java while helping you retrofit existing code with new features,
such as the lambda expressions introduced in Java 8.

If you’re like us, you don’t read books from front to back. If you’re really like us, you
usually don’t read the preface at all. However, on the off chance that you will see this
in time, here are a few suggestions:

• If you are already a programmer and just need to learn Java in the next five
minutes, you are probably looking for the examples. You might want to start by
glancing at the tutorial in Chapter 2. If that doesn’t float your boat, you should at
least look at the information in Chapter 3, which explains how to use the com‐
piler and interpreter. This should get you started.

• Chapters 11 and 12 are the places to head if you are interested in writing network
or web-based applications and services. Networking remains one of the more
interesting and important parts of Java.

• Chapter 10 discusses Java’s graphics features and component architecture. You
should read this if you are interested in writing desktop graphical Java
applications.

• Chapter 13 discusses how to stay on top of changes to the Java language itself,
regardless of your particular focus.

Online Resources
There are many online sources for information about Java.

Oracle’s official website for Java topics is https://oreil.ly/Lo8QZ; look here for the soft‐
ware, updates, and Java releases. This is where you’ll find the reference implementa‐
tion of the JDK, which includes the compiler, the interpreter, and other tools.

Oracle also maintains the OpenJDK site. This is the primary open source version of
Java and the associated tools. We’ll be using the OpenJDK for all the examples in this
book.

You should also visit O’Reilly’s site at http://oreilly.com/. There you’ll find information
about other O’Reilly books for both Java and a growing array of other topics. You
should also check out the online learning and conference options—O’Reilly is a real
champion for education in all its forms.

And of course, you can check the home page for Learning Java!

xiv | Preface

https://oreil.ly/Lo8QZ
https://oreil.ly/DrTm4
http://oreilly.com/
http://oreil.ly/Java_5E

Conventions Used in This Book
The font conventions used in this book are quite simple.

Italic is used for:

• Pathnames, filenames, and program names
• Internet addresses, such as domain names and URLs
• New terms where they are defined
• Program names, compilers, interpreters, utilities, and commands
• Threads

Constant width is used for:

• Anything that might appear in a Java program, including method names, variable
names, and class names

• Tags that might appear in an HTML or XML document
• Keywords, objects, and environment variables

Constant width bold is used for:

• Text that is typed by the user on the command line or in a dialog

Constant width italic is used for:

• Replaceable items in code

In the main body of text, we always use a pair of empty parentheses after a method
name to distinguish methods from variables and other creatures.

In the Java source listings, we follow the coding conventions most frequently used in
the Java community. Class names begin with capital letters; variable and method
names begin with lowercase. All the letters in the names of constants are capitalized.
We don’t use underscores to separate words in a long name; following common prac‐
tice, we capitalize individual words (after the first) and run the words together. For
example: thisIsAVariable, thisIsAMethod(), ThisIsAClass, and THIS_IS_A_CON
STANT. Also, note that we differentiate between static and nonstatic methods when we
refer to them. Unlike some books, we never write Foo.bar() to mean the bar()
method of Foo unless bar() is a static method (paralleling the Java syntax in that
case).

Preface | xv

Using Code Examples
If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Java, Fifth Edi‐
tion, by Marc Loy, Patrick Niemeyer, and Daniel Leuck (O’Reilly). Copyright 2020
Marc Loy, Patrick Niemeyer, and Daniel Leuck, 978-1-492-05627-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit http://
oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xvi | Preface

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://oreilly.com

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata and any additional informa‐
tion. You can access this page at https://oreil.ly/Java_5e.

The example code can be found separately on GitHub. There are two repositories for
this book: the main examples and the web examples. More details on accessing and
working the examples is provided in Appendix A.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, and news, see our website at http://
www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people have contributed to putting this book together, both in its Exploring
Java incarnation and in its current form as Learning Java. Foremost, we would like to
thank Tim O’Reilly for giving us the opportunity to write this book. Thanks to Mike
Loukides, the series editor, whose patience and experience continue to guide us.
Other folks from O’Reilly, including Amelia Blevins, Zan McQuade, Corbin Collins,
and Jessica Haberman, have provided consistent wisdom and encouragement. We
could not have asked for a more skillful or responsive team of people with whom to
work.

The original version of the glossary came from David Flanagan’s book Java in a Nut‐
shell (O’Reilly). We also borrowed several class hierarchy diagrams from David’s
book. These diagrams were based on similar diagrams by Charles L. Perkins.

Warm thanks to Ron Becker for sound advice and interesting ideas as seen from the
perspective of a layman well removed from the programming world. Thanks also to
James Elliott and Dan Leuck for their excellent and timely feedback on the technical
content of this edition. As with so many things in the programming world, extra eyes
are indispensible, and we are lucky to have had such attentive pairs in our corner.

Preface | xvii

https://oreil.ly/Java_5e
https://oreil.ly/i003i
https://oreil.ly/l5TwW
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://oreil.ly/Java_Nutshell_5
http://oreil.ly/Java_Nutshell_5

CHAPTER 1

A Modern Language

The greatest challenges and most exciting opportunities for software developers
today lie in harnessing the power of networks. Applications created today, whatever
their intended scope or audience, will almost certainly run on machines linked by a
global network of computing resources. The increasing importance of networks is
placing new demands on existing tools and fueling the demand for a rapidly growing
list of completely new kinds of applications.

We want software that works—consistently, anywhere, on any platform—and that
plays well with other applications. We want dynamic applications that take advantage
of a connected world, capable of accessing disparate and distributed information
sources. We want truly distributed software that can be extended and upgraded seam‐
lessly. We want intelligent applications that can roam the Net for us, ferreting out
information and serving as electronic emissaries. We have known for some time what
kind of software we want, but it is really only in the past few years that we have begun
to get it.

The problem, historically, has been that the tools for building these applications have
fallen short. The requirements of speed and portability have been, for the most part,
mutually exclusive, and security has been largely ignored or misunderstood. In the
past, truly portable languages were bulky, interpreted, and slow. These languages were
popular as much for their high-level functionality as for their portability. Fast lan‐
guages usually provided speed by binding themselves to particular platforms, so they
met the portability issue only halfway. There were even a few safe languages, but they
were primarily offshoots of the portable languages and suffered from the same prob‐
lems. Java is a modern language that addresses all three of these fronts: portability,
speed, and security. This is why it remains a dominant language in the world of pro‐
gramming more than two decades after its introduction.

1

Enter Java
The Java programming language, developed at Sun Microsystems under the guidance
of Net luminaries James Gosling and Bill Joy, was designed to be a machine-
independent programming language that is both safe enough to traverse networks
and powerful enough to replace native executable code. Java addresses the issues
raised here and played a starring role in the growth of the internet, leading to where
we are today.

Initially, most of the enthusiasm for Java centered on its capabilities for building
embedded applications for the web, called applets. But in the early days, applets and
other client-side GUI applications written in Java were limited. Today, Java has Swing,
a sophisticated toolkit for building graphical user interfaces. This development has
allowed Java to become a viable platform for developing traditional client-side appli‐
cation software, although many other contenders have entered this crowded field.

Of even more importance, however, Java has become the premier platform for web-
based applications and web services. These applications use technologies including
the Java Servlet API, Java web services, and many popular open source and commer‐
cial Java application servers and frameworks. Java’s portability and speed make it the
platform of choice for modern business applications. Java servers running on open
source Linux platforms are at the heart of the business and financial world today.

This book will show you how to use Java to accomplish real-world programming
tasks. In the coming chapters we’ll cover everything from text processing to network‐
ing, building desktop applications with Swing, and lightweight web-based applica‐
tions and services.

Java’s Origins
The seeds of Java were planted in 1990 by Sun Microsystems patriarch and chief
researcher Bill Joy. At the time, Sun was competing in a relatively small workstation
market, while Microsoft was beginning its domination of the more mainstream,
Intel-based PC world. When Sun missed the boat on the PC revolution, Joy retreated
to Aspen, Colorado, to work on advanced research. He was committed to the idea of
accomplishing complex tasks with simple software and founded the aptly named Sun
Aspen Smallworks.

Of the original members of the small team of programmers assembled in Aspen,
James Gosling will be remembered as the father of Java. Gosling first made a name for
himself in the early 80s as the author of Gosling Emacs, the first version of the popu‐
lar Emacs editor that was written in C and ran under Unix. Gosling Emacs became
popular but was soon eclipsed by a free version, GNU Emacs, written by Emacs’s
original designer. By that time, Gosling had moved on to design Sun’s NeWS, which
briefly contended with the X Window System for control of the Unix GUI desktop in

2 | Chapter 1: A Modern Language

1987. Although some people would argue that NeWS was superior to X, NeWS lost
because Sun kept it proprietary and didn’t publish source code, while the primary
developers of X formed the X Consortium and took the opposite approach.

Designing NeWS taught Gosling the power of integrating an expressive language with
a network-aware windowing GUI. It also taught Sun that the internet programming
community will ultimately refuse to accept proprietary standards, no matter how
good they may be. The seeds of Java’s licensing scheme and open (if not quite “open
source”) code were sown by NeWS’s failure. Gosling brought what he had learned to
Bill Joy’s nascent Aspen project. In 1992, work on the project led to the founding of
the Sun subsidiary FirstPerson, Inc. Its mission was to lead Sun into the world of con‐
sumer electronics.

The FirstPerson team worked on developing software for information appliances,
such as cellular phones and personal digital assistants (PDAs). The goal was to enable
the transfer of information and real-time applications over cheap infrared and tradi‐
tional packet-based networks. Memory and bandwidth limitations dictated small,
efficient code. The nature of the applications also demanded they be safe and robust.
Gosling and his teammates began programming in C++, but they soon found them‐
selves confounded by a language that was too complex, unwieldy, and insecure for the
task. They decided to start from scratch, and Gosling began working on something he
dubbed “C++ minus minus.”

With the foundering of the Apple Newton (Apple’s earliest handheld computer), it
became apparent that the PDA’s ship had not yet come in, so Sun shifted FirstPerson’s
efforts to interactive TV (ITV). The programming language of choice for ITV set-top
boxes was to be the near ancestor of Java, a language called Oak. Even with its ele‐
gance and ability to provide safe interactivity, Oak could not salvage the lost cause of
ITV at that time. Customers didn’t want it, and Sun soon abandoned the concept.

At that time, Joy and Gosling got together to decide on a new strategy for their inno‐
vative language. It was 1993, and the explosion of interest in the web presented a new
opportunity. Oak was small, safe, architecture-independent, and object-oriented. As
it happens, these are also some of the requirements for a universal, internet-savvy
programming language. Sun quickly changed focus, and, with a little retooling, Oak
became Java.

Growing Up
It wouldn’t be an overstatement to say that Java (and its developer-focused bundle, the
Java Development Kit, or JDK) caught on like wildfire. Even before its first official
release when Java was still a nonproduct, nearly every major industry player had jum‐
ped on the Java bandwagon. Java licensees included Microsoft, Intel, IBM, and virtu‐
ally all major hardware and software vendors. However, even with all this support,

Enter Java | 3

Java took a lot of knocks and experienced some growing pains during its first few
years.

A series of breach of contract and antitrust lawsuits between Sun and Microsoft over
the distribution of Java and its use in Internet Explorer hampered its deployment on
the world’s most common desktop operating system—Windows. Microsoft’s involve‐
ment with Java also become one focus of a larger federal lawsuit over serious anti‐
competitive practices at the company, with court testimony revealing concerted
efforts by the software giant to undermine Java by introducing incompatibilities in its
version of the language. Meanwhile, Microsoft introduced its own Java-derived lan‐
guage called C# (C-sharp) as part of its .NET initiative and dropped Java from inclu‐
sion in Windows. C# has gone on to become a very good language in its own right,
enjoying more innovation in recent years than has Java.

But Java continues to spread on a wide variety of platforms. As we begin looking at
the Java architecture, you’ll see that much of what is exciting about Java comes from
the self-contained, virtual machine environment in which Java applications run. Java
was carefully designed so that this supporting architecture can be implemented either
in software, for existing computer platforms, or in customized hardware. Hardware
implementations of Java are used in some smart cards and other embedded systems.
You can even buy “wearable” devices, such as rings and dog tags, that have Java inter‐
preters embedded in them. Software implementations of Java are available for all
modern computer platforms down to portable computing devices. Today, an offshoot
of the Java platform is the basis for Google’s Android operating system that powers
billions of phones and other mobile devices.

In 2010, Oracle corporation bought Sun Microsystems and became the steward of the
Java language. In a somewhat rocky start to its tenure, Oracle sued Google over its use
of the Java language in Android and lost. In July of 2011, Oracle released Java SE 7, a
significant Java release including a new I/O package in 2017. Java 9 introduced mod‐
ules to address some long-standing issues with the classpath and the growing size of
the JDK itself. Java 9 also kicked off a rapid update process leading to Java 11 being
the current version with long-term support. (More on these and other versions in “A
Java Road Map” on page 21.) Oracle continues to lead Java development; however,
they have also bifurcated the Java world by moving the main Java deployment envi‐
ronment to a costly commercial license and offering a free subsidiary OpenJDK
option that retains the accessibility many developers love and expect.

A Virtual Machine
Java is both a compiled and an interpreted language. Java source code is turned into
simple binary instructions, much like ordinary microprocessor machine code. How‐
ever, whereas C or C++ source is reduced to native instructions for a particular model

4 | Chapter 1: A Modern Language

of processor, Java source is compiled into a universal format—instructions for a vir‐
tual machine (VM).

Compiled Java bytecode is executed by a Java runtime interpreter. The runtime system
performs all the normal activities of a hardware processor, but it does so in a safe,
virtual environment. It executes a stack-based instruction set and manages memory
like an operating system. It creates and manipulates primitive data types and loads
and invokes newly referenced blocks of code. Most importantly, it does all this in
accordance with a strictly defined open specification that can be implemented by any‐
one who wants to produce a Java-compliant virtual machine. Together, the virtual
machine and language definition provide a complete specification. There are no fea‐
tures of the base Java language left undefined or implementation dependent. For
example, Java specifies the sizes and mathematical properties of all its primitive data
types rather than leaving it up to the platform implementation.

The Java interpreter is relatively lightweight and small; it can be implemented in
whatever form is desirable for a particular platform. The interpreter may be run as a
separate application or it can be embedded in another piece of software, such as a
web browser. Put together, this means that Java code is implicitly portable. The same
Java application bytecode can run on any platform that provides a Java runtime envi‐
ronment, as shown in Figure 1-1. You don’t have to produce alternative versions of
your application for different platforms, and you don’t have to distribute source code
to end users.

Figure 1-1. The Java runtime environment

A Virtual Machine | 5

The fundamental unit of Java code is the class. As in other object-oriented languages,
classes are application components that hold executable code and data. Compiled
Java classes are distributed in a universal binary format that contains Java bytecode
and other class information. Classes can be maintained discretely and stored in files
or archives locally or on a network server. Classes are located and loaded dynamically
at runtime as they are needed by an application.

In addition to the platform-specific runtime system, Java has a number of fundamen‐
tal classes that contain architecture-dependent methods. These native methods serve
as the gateway between the Java virtual machine and the real world. They are imple‐
mented in a natively compiled language on the host platform and provide low-level
access to resources such as the network, the windowing system, and the host filesys‐
tem. The vast majority of Java, however, is written in Java itself—bootstrapped from
these basic primitives—and is therefore portable. This includes fundamental Java
tools such as the Java compiler, networking, and GUI libraries, which are also written
in Java and are therefore available on all Java platforms in exactly the same way
without porting.

Historically, interpreters have been considered slow, but Java is not a traditional inter‐
preted language. In addition to compiling source code down to portable bytecode,
Java has also been carefully designed so that software implementations of the runtime
system can further optimize their performance by compiling bytecode to native
machine code on the fly. This is called just-in-time (JIT) or dynamic compilation.
With JIT compilation, Java code can execute as fast as native code and maintain its
transportability and security.

This is an often misunderstood point among those who want to compare language
performance. There is only one intrinsic performance penalty that compiled Java
code suffers at runtime for the sake of security and virtual machine design—array
bounds checking. Everything else can be optimized to native code just as it can with a
statically compiled language. Going beyond that, the Java language includes more
structural information than many other languages, providing for more types of opti‐
mizations. Also remember that these optimizations can be made at runtime, taking
into account the actual application behavior and characteristics. What can be done at
compile time that can’t be done better at runtime? Well, there is a trade-off: time.

The problem with a traditional JIT compilation is that optimizing code takes time. So
a JIT compiler can produce decent results, but may suffer significant latency when the
application starts up. This is generally not a problem for long-running server-side
applications, but is a serious problem for client-side software and applications that
run on smaller devices with limited capabilities. To address this, Java’s compiler tech‐
nology, called HotSpot, uses a trick called adaptive compilation. If you look at what
programs actually spend their time doing, it turns out that they spend almost all their
time executing a relatively small part of the code again and again. The chunk of code

6 | Chapter 1: A Modern Language

that is executed repeatedly may be only a small fraction of the total program, but its
behavior determines the program’s overall performance. Adaptive compilation also
allows the Java runtime to take advantage of new kinds of optimizations that simply
can’t be done in a statically compiled language, hence the claim that Java code can run
faster than C/C++ in some cases.

To take advantage of this fact, HotSpot starts out as a normal Java bytecode inter‐
preter, but with a difference: it measures (profiles) the code as it is executing to see
what parts are being executed repeatedly. Once it knows which parts of the code are
crucial to performance, HotSpot compiles those sections into optimal native machine
code. Since it compiles only a small portion of the program into machine code, it can
afford to take the time necessary to optimize those portions. The rest of the program
may not need to be compiled at all—just interpreted—saving memory and time. In
fact, the Java VM can run in one of two modes: client and server, which determine
whether it emphasizes quick startup time and memory conservation or flat-out per‐
formance. As of Java 9, you can also put Ahead-of-Time (AOT) compilation to use if
minimizing your application startup time is really important.

A natural question to ask at this point is, why throw away all this good profiling
information each time an application shuts down? Well, Sun partially broached this
topic with the release of Java 5.0 through the use of shared, read-only classes that are
stored persistently in an optimized form. This significantly reduced both the startup
time and overhead of running many Java applications on a given machine. The tech‐
nology for doing this is complex, but the idea is simple: optimize the parts of the pro‐
gram that need to go fast, and don’t worry about the rest.

Java Compared with Other Languages
Java draws on many years of programming experience with other languages in its
choice of features. It is worth taking a moment to compare Java at a high level with
some other languages, both for the benefit of those of you with other programming
experience and for the newcomers who need to put things in context. We do not
expect you to have knowledge of any particular programming language in this book,
and when we refer to other languages by way of comparison, we hope that the com‐
ments are self-explanatory.

At least three pillars are necessary to support a universal programming language
today: portability, speed, and security. Figure 1-2 shows how Java compares to a few
of the languages that were popular when it was created.

You may have heard that Java is a lot like C or C++, but that’s really not true except at
a superficial level. When you first look at Java code, you’ll see that the basic syntax
looks like C or C++. But that’s where the similarities end. Java is by no means a direct
descendant of C or a next-generation C++. If you compare language features, you’ll

Java Compared with Other Languages | 7

see that Java actually has more in common with highly dynamic languages, such as
Smalltalk and Lisp. In fact, Java’s implementation is about as far from native C as you
can imagine.

Figure 1-2. Programming languages compared

If you are familiar with the current language landscape, you will notice that C#, a
popular language, is missing from this comparison. C# is largely Microsoft’s answer
to Java, admittedly with a number of niceties layered on top. Given their common
design goals and approach (e.g., use of a virtual machine, bytecode, sandbox, etc.), the
platforms don’t differ substantially in terms of their speed or security characteristics.
C# is more or less as portable as Java. Like Java, C# borrows heavily from C syntax
but is really a closer relative of the dynamic languages. Most Java developers find it
relatively easy to pick up C# and vice versa. The majority of the time spent moving
from one to the other is learning the standard library.

The surface-level similarities to these languages are worth noting, however. Java bor‐
rows heavily from C and C++ syntax, so you’ll see terse language constructs, includ‐
ing an abundance of curly braces and semicolons. Java subscribes to the C philosophy
that a good language should be compact; in other words, it should be sufficiently
small and regular so a programmer can hold all the language’s capabilities in their
head at once. Just as C is extensible with libraries, packages of Java classes can be
added to the core language components to extend its vocabulary.

C has been successful because it provides a reasonably feature-packed programming
environment, with high performance and an acceptable degree of portability. Java
also tries to balance functionality, speed, and portability, but it does so in a very dif‐
ferent way. C trades functionality for portability; Java initially traded speed for porta‐
bility. Java also addresses security issues that C does not (although in modern
systems, many of those concerns are now addressed in the operating system and
hardware).

8 | Chapter 1: A Modern Language

1 If you are curious about Node.js, check out Andrew Mead’s Learning Node.js Development and Shelley Pow‐
ers’s Learning Node at the O’Reilly site.

In the early days before JIT and adaptive compilation, Java was slower than statically
compiled languages, and there was a constant refrain from detractors that it would
never catch up. But as we described in the previous section, Java’s performance is now
comparable to C or C++ for equivalent tasks, and those criticisms have generally
fallen quiet. ID Software’s open source Quake2 video game engine has been ported to
Java. If Java is fast enough for first-person combat video games, it’s certainly fast
enough for business applications.

Scripting languages such as Perl, Python, and Ruby remain popular. There’s no reason
a scripting language can’t be suitable for safe, networked applications. But most
scripting languages are not well suited for serious, large-scale programming. The
attraction to scripting languages is that they are dynamic; they are powerful tools for
rapid development. Some scripting languages such as Perl also provide powerful tools
for text-processing tasks that more general-purpose languages find unwieldy. Script‐
ing languages are also highly portable, albeit at the source code level.

Not to be confused with Java, JavaScript is an object-based scripting language origi‐
nally developed by Netscape for the web browser. It serves as a web browser resident
language for dynamic, interactive, web-based applications. JavaScript takes its name
from its integration with and similarities to Java, but the comparison really ends
there. There are, however, significant applications of JavaScript outside of the browser
such as Node.js,1 and it continues to rise in popularity for developers in a variety of
fields. For more information on JavaScript, check out JavaScript: The Definitive Guide
by David Flanagan (O’Reilly).

The problem with scripting languages is that they are rather casual about program
structure and data typing. Most scripting languages are not object-oriented. They also
have simplified type systems and generally don’t provide for sophisticated scoping of
variables and functions. These characteristics make them less suitable for building
large, modular applications. Speed is another problem with scripting languages; the
high-level, usually source-interpreted nature of these languages often makes them
quite slow.

Advocates of individual scripting languages would take issue with some of these gen‐
eralizations, and no doubt they’d be right in some cases. Scripting languages have
improved in recent years—especially JavaScript, which has had an enormous amount
of research poured into its performance. But the fundamental trade-off is undeniable:
scripting languages were born as loose, less-structured alternatives to systems pro‐
gramming languages and are generally not ideal for large or complex projects for a
variety of reasons, at least not today.

Java Compared with Other Languages | 9

https://oreil.ly/Dl_FL
https://oreil.ly/ZRl15
https://oreil.ly/qj5Jt

2 See, for example, G. Phipps, “Comparing Observed Bug and Productivity Rates for Java and C++”, Software—
Practice & Experience, volume 29, 1999.

Java offers some of the essential advantages of a scripting language: it is highly
dynamic, and has the added benefits of a lower-level language. Java has a powerful
Regular Expression API that competes with Perl for working with text and language
features that streamline coding with collections, variable argument lists, static
imports of methods, and other syntactic sugar that make it more concise.

Incremental development with object-oriented components, combined with Java’s
simplicity, make it possible to develop applications rapidly and change them easily.
Studies have found that development in Java is faster than in C or C++, strictly based
on language features.2 Java also comes with a large base of standard core classes for
common tasks such as building GUIs and handling network communications. Maven
Central is an external resource with an enormous range of libraries and packages that
can be quickly bundled into your environment to help you tackle all manner of new
programming problems. Along with these features, Java has the scalability and
software-engineering advantages of more static languages. It provides a safe structure
on which to build higher-level frameworks (and even other languages).

As we’ve already said, Java is similar in design to languages such as Smalltalk and
Lisp. However, these languages were used mostly as research vehicles rather than for
development of large-scale systems. One reason is that these languages never devel‐
oped a standard portable binding to operating system services, such as the C standard
library or the Java core classes. Smalltalk is compiled to an interpreted bytecode for‐
mat, and it can be dynamically compiled to native code on the fly, just like Java. But
Java improves on the design by using a bytecode verifier to ensure the correctness of
compiled Java code. This verifier gives Java a performance advantage over Smalltalk
because Java code requires fewer runtime checks. Java’s bytecode verifier also helps
with security issues, something that Smalltalk doesn’t address.

Throughout the rest of this chapter, we’ll present a bird’s-eye view of the Java lan‐
guage. We’ll explain what’s new and what’s not-so-new about Java and why.

Safety of Design
You have no doubt heard a lot about the fact that Java is designed to be a safe lan‐
guage. But what do we mean by safe? Safe from what or whom? The security features
that attract the most attention for Java are those features that make possible new types
of dynamically portable software. Java provides several layers of protection from dan‐
gerously flawed code as well as more mischievous things such as viruses and Trojan
horses. In the next section, we’ll take a look at how the Java virtual machine architec‐
ture assesses the safety of code before it’s run and how the Java class loader (the

10 | Chapter 1: A Modern Language

https://oreil.ly/zgpMa

bytecode loading mechanism of the Java interpreter) builds a wall around untrusted
classes. These features provide the foundation for high-level security policies that can
allow or disallow various kinds of activities on an application-by-application basis.

In this section, though, we’ll look at some general features of the Java programming
language. Perhaps more important than the specific security features, although often
overlooked in the security din, is the safety that Java provides by addressing common
design and programming problems. Java is intended to be as safe as possible from the
simple mistakes we make ourselves as well as those we inherit from legacy software.
The goal with Java has been to keep the language simple, provide tools that have
demonstrated their usefulness, and let users build more complicated facilities on top
of the language when needed.

Simplify, Simplify, Simplify…
With Java, simplicity rules. Since Java started with a clean slate, it was able to avoid
features that proved to be messy or controversial in other languages. For example,
Java doesn’t allow programmer-defined operator overloading (which in some lan‐
guages allows programmers to redefine the meaning of basic symbols like + and –).
Java doesn’t have a source code preprocessor, so it doesn’t have things like macros,
#define statements, or conditional source compilation. These constructs exist in
other languages primarily to support platform dependencies, so in that sense, they
should not be needed in Java. Conditional compilation is also commonly used for
debugging, but Java’s sophisticated runtime optimizations and features such as asser‐
tions solve the problem more elegantly. (Assertions are beyond the scope of this book,
but they are a worthy topic for exploration after you’ve gained a comfortable foothold
on basic programming in Java.)

Java provides a well-defined package structure for organizing class files. The package
system allows the compiler to handle some of the functionality of the traditional
make utility (a tool for building executables from source code). The compiler can also
work with compiled Java classes directly because all type information is preserved;
there is no need for extraneous source “header” files, as in C/C++. All this means that
Java code requires less context to read. Indeed, you may sometimes find it faster to
look at the Java source code than to refer to class documentation.

Java also takes a different approach to some structural features that have been trou‐
blesome in other languages. For example, Java supports only a single inheritance class
hierarchy (each class may have only one “parent” class), but allows multiple inheri‐
tance of interfaces. An interface, like an abstract class in C++, specifies the behavior of
an object without defining its implementation. It is a very powerful mechanism that
allows the developer to define a “contract” for object behavior that can be used and
referred to independently of any particular object implementation. Interfaces in Java
eliminate the need for multiple inheritance of classes and the associated problems.

Safety of Design | 11

3 The credit for the car analogy goes to Marshall P. Cline, author of the C++ FAQ.

As you’ll see in Chapter 4, Java is a fairly simple and elegant programming language,
and that is still a large part of its appeal.

Type Safety and Method Binding
One attribute of a language is the kind of type checking it uses. Generally, languages
are categorized as static or dynamic, which refers to the amount of information about
variables known at compile time versus what is known while the application is
running.

In a strictly statically typed language such as C or C++, data types are etched in stone
when the source code is compiled. The compiler benefits from this by having enough
information to catch many kinds of errors before the code is executed. For example,
the compiler would not allow you to store a floating-point value in an integer vari‐
able. The code then doesn’t require runtime type checking, so it can be compiled to be
small and fast. But statically typed languages are inflexible. They don’t support collec‐
tions as naturally as languages with dynamic type checking, and they make it impos‐
sible for an application to safely import new data types while it’s running.

In contrast, a dynamic language such as Smalltalk or Lisp has a runtime system that
manages the types of objects and performs necessary type checking while an applica‐
tion is executing. These kinds of languages allow for more complex behavior and are
in many respects more powerful. However, they are also generally slower, less safe,
and harder to debug.

The differences in languages have been likened to the differences among kinds of
automobiles.3 Statically typed languages such as C++ are analogous to a sports car:
reasonably safe and fast, but useful only if you’re driving on a nicely paved road.
Highly dynamic languages such as Smalltalk are more like an off-road vehicle: they
afford you more freedom but can be somewhat unwieldy. It can be fun (and some‐
times faster) to go roaring through the backwoods, but you might also get stuck in a
ditch or mauled by bears.

Another attribute of a language is the way it binds method calls to their definitions.
In a static language such as C or C++, the definitions of methods are normally bound
at compile time, unless the programmer specifies otherwise. Languages like Smalltalk,
on the other hand, are called late binding because they locate the definitions of meth‐
ods dynamically at runtime. Early binding is important for performance reasons; an
application can run without the overhead incurred by searching for methods at run‐
time. But late binding is more flexible. It’s also necessary in an object-oriented lan‐
guage where new types can be loaded dynamically and only the runtime system can
determine which method to run.

12 | Chapter 1: A Modern Language

Java provides some of the benefits of both C++ and Smalltalk; it’s a statically typed,
late-binding language. Every object in Java has a well-defined type that is known at
compile time. This means the Java compiler can do the same kind of static type
checking and usage analysis as C++. As a result, you can’t assign an object to the
wrong type of variable or call nonexistent methods on an object. The Java compiler
goes even further and prevents you from using uninitialized variables and creating
unreachable statements (see Chapter 4).

However, Java is fully runtime-typed as well. The Java runtime system keeps track of
all objects and makes it possible to determine their types and relationships during
execution. This means you can inspect an object at runtime to determine what it is.
Unlike C or C++, casts from one type of object to another are checked by the runtime
system, and it’s possible to use new kinds of dynamically loaded objects with a degree
of type safety. And because Java is a late binding language, it’s possible for a subclass
to override methods in its superclass, even a subclass loaded at runtime.

Incremental Development
Java carries all data type and method signature information with it from its source
code to its compiled bytecode form. This means that Java classes can be developed
incrementally. Your own Java source code can also be compiled safely with classes
from other sources your compiler has never seen. In other words, you can write new
code that references binary class files without losing the type safety you gain from
having the source code.

Java does not suffer from the “fragile base class” problem. In languages such as C++,
the implementation of a base class can be effectively frozen because it has many
derived classes; changing the base class may require recompilation of all of the
derived classes. This is an especially difficult problem for developers of class libraries.
Java avoids this problem by dynamically locating fields within classes. As long as a
class maintains a valid form of its original structure, it can evolve without breaking
other classes that are derived from it or that make use of it.

Dynamic Memory Management
Some of the most important differences between Java and lower-level languages such
as C and C++ involve how Java manages memory. Java eliminates ad hoc “pointers”
that can reference arbitrary areas of memory and adds object garbage collection and
high-level arrays to the language. These features eliminate many otherwise insur‐
mountable problems with safety, portability, and optimization.

Garbage collection alone has saved countless programmers from the single largest
source of programming errors in C or C++: explicit memory allocation and dealloca‐
tion. In addition to maintaining objects in memory, the Java runtime system keeps
track of all references to those objects. When an object is no longer in use, Java

Safety of Design | 13

automatically removes it from memory. You can, for the most part, simply ignore
objects you no longer use, with confidence that the interpreter will clean them up at
an appropriate time.

Java uses a sophisticated garbage collector that runs in the background, which means
that most garbage collecting takes place during idle times, between I/O pauses, mouse
clicks, or keyboard hits. Advanced runtime systems, such as HotSpot, have more
advanced garbage collection that can differentiate the usage patterns of objects (such
as short-lived versus long-lived) and optimize their collection. The Java runtime can
now tune itself automatically for the optimal distribution of memory for different
kinds of applications based on their behavior. With this kind of runtime profiling,
automatic memory management can be much faster than the most diligently
programmer-managed resources, something that some old-school programmers still
find hard to believe.

We’ve said that Java doesn’t have pointers. Strictly speaking, this statement is true, but
it’s also misleading. What Java provides are references—a safer kind of pointer. A ref‐
erence is a strongly typed handle for an object. All objects in Java, with the exception
of primitive numeric types, are accessed through references. You can use references to
build all the normal kinds of data structures a C programmer would be accustomed
to building with pointers, such as linked lists, trees, and so forth. The only difference
is that with references, you have to do so in a type-safe way.

Another important difference between a reference and a pointer is that you can’t play
games (perform pointer arithmetic) with references to change their values; they can
point only to specific methods, objects, or elements of an array. A reference is an
atomic thing; you can’t manipulate the value of a reference except by assigning it to
an object. References are passed by value, and you can’t reference an object through
more than a single level of indirection. The protection of references is one of the most
fundamental aspects of Java security. It means that Java code has to play by the rules;
it can’t peek into places it shouldn’t and circumvent the rules.

Finally, we should mention that arrays in Java are true, first-class objects. They can be
dynamically allocated and assigned like other objects. Arrays know their own size and
type, and although you can’t directly define or subclass array classes, they do have a
well-defined inheritance relationship based on the relationship of their base types.
Having true arrays in the language alleviates much of the need for pointer arithmetic,
such as that used in C or C++.

Error Handling
Java’s roots are in networked devices and embedded systems. For these applications,
it’s important to have robust and intelligent error management. Java has a powerful
exception-handling mechanism, somewhat like that in newer implementations of
C++. Exceptions provide a more natural and elegant way to handle errors. Exceptions

14 | Chapter 1: A Modern Language

allow you to separate error-handling code from normal code, which makes for
cleaner, more readable applications.

When an exception occurs, it causes the flow of program execution to be transferred
to a predesignated “catch” block of code. The exception carries with it an object that
contains information about the situation that caused the exception. The Java compiler
requires that a method either declare the exceptions it can generate or catch and deal
with them itself. This promotes error information to the same level of importance as
arguments and return types for methods. As a Java programmer, you know precisely
what exceptional conditions you must deal with, and you have help from the com‐
piler in writing correct software that doesn’t leave them unhandled.

Threads
Modern applications require a high degree of parallelism. Even a very single-minded
application can have a complex user interface—which requires concurrent activities.
As machines get faster, users become more sensitive to waiting for unrelated tasks
that seize control of their time. Threads provide efficient multiprocessing and distri‐
bution of tasks for both client and server applications. Java makes threads easy to use
because support for them is built into the language.

Concurrency is nice, but there’s more to programming with threads than just per‐
forming multiple tasks simultaneously. In most cases, threads need to be synchronized
(coordinated), which can be tricky without explicit language support. Java supports
synchronization based on the monitor and condition model—a sort of lock and key
system for accessing resources. The keyword synchronized designates methods and
blocks of code for safe, serialized access within an object. There are also simple, prim‐
itive methods for explicit waiting and signaling between threads interested in the
same object.

Java also has a high-level concurrency package that provides powerful utilities
addressing common patterns in multithreaded programming, such as thread pools,
coordination of tasks, and sophisticated locking. With the addition of the concur‐
rency package and related utilities, Java provides some of the most advanced thread-
related utilities of any language.

Although some developers may never have to write multithreaded code, learning to
program with threads is an important part of mastering programming in Java and
something all developers should grasp. See Chapter 9 for a discussion of this topic.

Scalability
At the lowest level, Java programs consist of classes. Classes are intended to be small,
modular components. Over classes, Java provides packages, a layer of structure that
groups classes into functional units. Packages provide a naming convention for

Safety of Design | 15

organizing classes and a second tier of organizational control over the visibility of
variables and methods in Java applications.

Within a package, a class is either publicly visible or protected from outside access.
Packages form another type of scope that is closer to the application level. This lends
itself to building reusable components that work together in a system. Packages also
help in designing a scalable application that can grow without becoming a bird’s nest
of tightly coupled code. The reuse and scale issues are really only enforced with the
module system (again, added in Java 9), but that is beyond the scope of this book. The
topic of modules is the sole focus of Java 9 Modularity by Paul Bakker and Sander
Mak (O’Reilly).

Safety of Implementation
It’s one thing to create a language that prevents you from shooting yourself in the
foot; it’s quite another to create one that prevents others from shooting you in
the foot.

Encapsulation is the concept of hiding data and behavior within a class; it’s an impor‐
tant part of object-oriented design. It helps you write clean, modular software. In
most languages, however, the visibility of data items is simply part of the relationship
between the programmer and the compiler. It’s a matter of semantics, not an assertion
about the actual security of the data in the context of the running program’s
environment.

When Bjarne Stroustrup chose the keyword private to designate hidden members of
classes in C++, he was probably thinking about shielding a developer from the messy
details of another developer’s code, not the issues of shielding that developer’s classes
and objects from attack by someone else’s viruses and Trojan horses. Arbitrary cast‐
ing and pointer arithmetic in C or C++ make it trivial to violate access permissions
on classes without breaking the rules of the language. Consider the following code:

 // C++ code
 class Finances {
 private:
 char creditCardNumber[16];
 ...
 };

 main() {
 Finances finances;

 // Forge a pointer to peek inside the class
 char *cardno = (char *)&finances;
 printf("Card Number = %.16s\n", cardno);
 }

16 | Chapter 1: A Modern Language

https://oreil.ly/TLbpl

In this little C++ drama, we have written some code that violates the encapsulation of
the Finances class and pulls out some secret information. This sort of shenanigan—
abusing an untyped pointer—is not possible in Java. If this example seems unrealistic,
consider how important it is to protect the foundation (system) classes of the runtime
environment from similar kinds of attacks. If untrusted code can corrupt the compo‐
nents that provide access to real resources such as the filesystem, network, or win‐
dowing system, it certainly has a chance at stealing your credit card numbers.

If a Java application is to be able to dynamically download code from an untrusted
source on the internet and run it alongside applications that might contain confiden‐
tial information, protection has to extend very deep. The Java security model wraps
three layers of protection around imported classes, as shown in Figure 1-3.

Figure 1-3. The Java security model

At the outside, application-level security decisions are made by a security manager in
conjunction with a flexible security policy. A security manager controls access to sys‐
tem resources such as the filesystem, network ports, and windowing environment. A
security manager relies on the ability of a class loader to protect basic system classes.
A class loader handles loading classes from local storage or the network. At the inner‐
most level, all system security ultimately rests on the Java verifier, which guarantees
the integrity of incoming classes.

The Java bytecode verifier is a special module and a fixed part of the Java runtime
system. Class loaders and security managers (or security policies, to be more precise),
however, are components that may be implemented differently by different applica‐
tions, such as servers or web browsers. All of these pieces need to be functioning
properly to ensure security in the Java environment.

The Verifier
Java’s first line of defense is the bytecode verifier. The verifier reads bytecode before it
is run and makes sure it is well-behaved and obeys the basic rules of the Java bytecode
specification. A trusted Java compiler won’t produce code that does otherwise.

Safety of Implementation | 17

However, it’s possible for a mischievous person to deliberately assemble bad Java
bytecode. It’s the verifier’s job to detect this.

Once code has been verified, it’s considered safe from certain inadvertent or mali‐
cious errors. For example, verified code can’t forge references or violate access per‐
missions on objects (as in our credit card example). It can’t perform illegal casts or
use objects in unintended ways. It can’t even cause certain types of internal errors,
such as overflowing or underflowing the internal stack. These fundamental guaran‐
tees underlie all of Java’s security.

You might be wondering, isn’t this kind of safety implicit in lots of interpreted lan‐
guages? Well, while it’s true that you shouldn’t be able to corrupt a BASIC interpreter
with a bogus line of BASIC code, remember that the protection in most interpreted
languages happens at a higher level. Those languages are likely to have heavyweight
interpreters that do a great deal of runtime work, so they are necessarily slower and
more cumbersome.

By comparison, Java bytecode is a relatively light, low-level instruction set. The ability
to statically verify the Java bytecode before execution lets the Java interpreter run at
full speed later with full safety, without expensive runtime checks. This was one of the
fundamental innovations in Java.

The verifier is a type of mathematical “theorem prover.” It steps through the Java
bytecode and applies simple, inductive rules to determine certain aspects of how the
bytecode will behave. This kind of analysis is possible because compiled Java bytecode
contains a lot more type information than the object code of other languages of this
kind. The bytecode also has to obey a few extra rules that simplify its behavior. First,
most bytecode instructions operate only on individual data types. For example, with
stack operations, there are separate instructions for object references and for each of
the numeric types in Java. Similarly, there is a different instruction for moving each
type of value into and out of a local variable.

Second, the type of object resulting from any operation is always known in advance.
No bytecode operations consume values and produce more than one possible type of
value as output. As a result, it’s always possible to look at the next instruction and its
operands and know the type of value that will result.

Because an operation always produces a known type, it’s possible to determine the
types of all items on the stack and in local variables at any point in the future by look‐
ing at the starting state. The collection of all this type information at any given time is
called the type state of the stack; this is what Java tries to analyze before it runs an
application. Java doesn’t know anything about the actual values of stack and variable
items at this time; it only knows what kind of items they are. However, this is enough
information to enforce the security rules and to ensure that objects are not manipu‐
lated illegally.

18 | Chapter 1: A Modern Language

To make it feasible to analyze the type state of the stack, Java places an additional
restriction on how Java bytecode instructions are executed: all paths to the same point
in the code must arrive with exactly the same type state.

Class Loaders
Java adds a second layer of security with a class loader. A class loader is responsible
for bringing the bytecode for Java classes into the interpreter. Every application that
loads classes from the network must use a class loader to handle this task.

After a class has been loaded and passed through the verifier, it remains associated
with its class loader. As a result, classes are effectively partitioned into separate name‐
spaces based on their origin. When a loaded class references another class name, the
location of the new class is provided by the original class loader. This means that
classes retrieved from a specific source can be restricted to interact only with other
classes retrieved from that same location. For example, a Java-enabled web browser
can use a class loader to build a separate space for all the classes loaded from a given
URL. Sophisticated security based on cryptographically signed classes can also be
implemented using class loaders.

The search for classes always begins with the built-in Java system classes. These
classes are loaded from the locations specified by the Java interpreter’s classpath (see
Chapter 3). Classes in the classpath are loaded by the system only once and can’t be
replaced. This means that it’s impossible for an application to replace fundamental
system classes with its own versions that change their functionality.

Security Managers
A security manager is responsible for making application-level security decisions. A
security manager is an object that can be installed by an application to restrict access
to system resources. The security manager is consulted every time the application
tries to access items such as the filesystem, network ports, external processes, and the
windowing environment; the security manager can allow or deny the request.

Security managers are primarily of interest to applications that run untrusted code as
part of their normal operation. For example, a Java-enabled web browser can run
applets that may be retrieved from untrusted sources on the Net. Such a browser
needs to install a security manager as one of its first actions. This security manager
then restricts the kinds of access allowed after that point. This lets the application
impose an effective level of trust before running an arbitrary piece of code. And once
a security manager is installed, it can’t be replaced.

The security manager works in conjunction with an access controller that lets you
implement security policies at a high level by editing a declarative security policy file.
Access policies can be as simple or complex as a particular application warrants.

Safety of Implementation | 19

Sometimes it’s sufficient simply to deny access to all resources or to general categories
of services, such as the filesystem or network. But it’s also possible to make sophisti‐
cated decisions based on high-level information. For example, a Java-enabled web
browser could use an access policy that lets users specify how much an applet is to be
trusted or that allows or denies access to specific resources on a case-by-case basis. Of
course, this assumes that the browser can determine which applets it ought to trust.
We’ll discuss how this problem is addressed through code-signing shortly.

The integrity of a security manager is based on the protection afforded by the lower
levels of the Java security model. Without the guarantees provided by the verifier and
the class loader, high-level assertions about the safety of system resources are mean‐
ingless. The safety provided by the Java bytecode verifier means that the interpreter
can’t be corrupted or subverted and that Java code has to use components as they are
intended. This, in turn, means that a class loader can guarantee that an application is
using the core Java system classes and that these classes are the only way to access
basic system resources. With these restrictions in place, it’s possible to centralize con‐
trol over those resources at a high level with a security manager and user-defined
policy.

Application and User-Level Security
There’s a fine line between having enough power to do something useful and having
all the power to do anything you want. Java provides the foundation for a secure envi‐
ronment in which untrusted code can be quarantined, managed, and safely executed.
However, unless you are content with keeping that code in a little black box and run‐
ning it just for its own benefit, you will have to grant it access to at least some system
resources so that it can be useful. Every kind of access carries with it certain risks and
benefits. For example, in the web browser environment, the advantages of granting an
untrusted (unknown) applet access to your windowing system are that it can display
information and let you interact in a useful way. The associated risks are that the app‐
let may instead display something worthless, annoying, or offensive.

At one extreme, the simple act of running an application gives it a resource—compu‐
tation time—that it may put to good use or burn frivolously. It’s difficult to prevent an
untrusted application from wasting your time or even attempting a “denial of service”
attack. At the other extreme, a powerful, trusted application may justifiably deserve
access to all sorts of system resources (e.g., the filesystem, process creation, network
interfaces); a malicious application could wreak havoc with these resources. The mes‐
sage here is that important and sometimes complex security issues have to be
addressed.

In some situations, it may be acceptable to simply ask the user to “okay” requests. The
Java language provides the tools to implement any security policies you want. How‐
ever, what these policies will be ultimately depends on having confidence in the

20 | Chapter 1: A Modern Language

identity and integrity of the code in question. This is where digital signatures come
into play.

Digital signatures, together with certificates, are techniques for verifying that data
truly comes from the source it claims to have come from and hasn’t been modified en
route. If the Bank of Boofa signs its checkbook application, you can verify that the
app actually came from the bank rather than an imposter and hasn’t been modified.
Therefore, you can tell your browser to trust applets that have the Bank of Boofa’s
signature.

A Java Road Map
With everything that’s going on, it’s hard to keep track of what’s available now, what’s
promised, and what’s been around for some time. The following sections constitute a
road map that imposes some order on Java’s past, present, and future. Don’t worry if
some of the terms are foreign to you. We’ll cover several of them in the coming chap‐
ters, and you can always research the other terms yourself as you gain skill and com‐
fort working with the basics of Java. As for the versions of Java, Oracle’s release notes
contain good summaries with links to further details. If you’re using older versions
for work, consider reading over the Oracle Technology Resources documents.

The Past: Java 1.0–Java 11
Java 1.0 provided the basic framework for Java development: the language itself plus
packages that let you write applets and simple applications. Although 1.0 is officially
obsolete, there are still a lot of applets in existence that conform to its API.

Java 1.1 superseded 1.0, incorporating major improvements in the Abstract Window
Toolkit (AWT) package (Java’s original GUI facility), a new event pattern, new lan‐
guage facilities such as reflection and inner classes, and many other critical features.
Java 1.1 is the version that was supported natively by most versions of Netscape and
Microsoft Internet Explorer for many years. For various political reasons, the browser
world was frozen in this condition for a long time.

Java 1.2, dubbed “Java 2” by Sun, was a major release in December 1998. It provided
many improvements and additions, mainly in terms of the set of APIs that were bun‐
dled into the standard distributions. The most notable additions were the inclusion of
the Swing GUI package as a core API and a new, full-fledged 2D drawing API. Swing
is Java’s advanced UI toolkit with capabilities far exceeding the old AWT’s. (Swing,
AWT, and some other packages have been variously called the JFC, or Java Founda‐
tion Classes.) Java 1.2 also added a proper Collections API to Java.

Java 1.3, released in early 2000, added minor features but was primarily focused on
performance. With version 1.3, Java got significantly faster on many platforms and

A Java Road Map | 21

https://oreil.ly/oi6eL

Swing received many bug fixes. In this timeframe, Java enterprise APIs such as Serv‐
lets and Enterprise JavaBeans also matured.

Java 1.4, released in 2002, integrated a major new set of APIs and many long-awaited
features. This included language assertions, regular expressions, preferences and log‐
ging APIs, a new I/O system for high-volume applications, standard support for
XML, fundamental improvements in AWT and Swing, and a greatly matured Java
Servlets API for web applications.

Java 5, released in 2004, was a major release that introduced many long-awaited lan‐
guage syntax enhancements including generics, type-safe enumerations, the
enhanced for-loop, variable argument lists, static imports, autoboxing and unboxing
of primitives, as well as advanced metadata on classes. A new concurrency API pro‐
vided powerful threading capabilities, and APIs for formatted printing and parsing
similar to those in C were added. Remote Method Invocation (RMI) was also over‐
hauled to eliminate the need for compiled stubs and skeletons. There were also major
additions in the standard XML APIs.

Java 6, released in late 2006, was a relatively minor release that added no new syntac‐
tic features to the Java language, but bundled new extension APIs such as those for
XML and web services.

Java 7, released in 2011, represented a fairly major update. Several small tweaks to the
language such as allowing strings in switch statements (more on both of those things
later!) along with major additions such as the java.nio new I/O library were packed
into the five years after the release of Java 6.

Java 8, released in 2014, completed a few of the features such as lambdas and default
methods that had been dropped from Java 7 as the release date of that version was
delayed again and again. This release also had some work done to the date and time
support, including the ability to create immutable date objects, handy for use in the
now-suppored lambdas.

Java 9, released after a number of delays in 2017, introduced the Module System
(Project Jigsaw) as well as a “repl” (Read Evaluate Print Loop) for Java: jshell. We’ll be
using jshell for much of our quick explorations of many of Java’s features throughout
the rest of this book. Java 9 also removed JavaDB from the JDK.

Java 10, released shortly after Java 9 in early 2018, updated garbage collection and
brought other features such as root certificates to the OpenJDK builds. Support for
unmodifiable collections was added, and support for old look-and-feel packages
(such as Apple’s Aqua) was removed.

Java 11, released in late 2018, added a standard HTTP client and TLS 1.3. JavaFX and
Java EE modules were removed. (JavaFX was redesigned to live on as a standalone
library.) Java applets were also removed. Along with Java 8, Java 11 is part of Oracle’s

22 | Chapter 1: A Modern Language

Long Term Support (LTS). Certain releases—Java 8, Java 11, and presumably Java 17
—will be maintained for longer periods of time. Oracle is trying to change the way
customers and developers engage with new releases, but good reasons still exist to
stick with known versions. You can read more about Oracle’s thoughts and plans for
both LTS and non-LTS releases at the Oracle Technology Network, Oracle Java SE
Support Roadmap.

Java 12, released in early 2019, added some minor language syntax enhancements
such as a switch expressions preview.

Java 13, released in September 2019, includes more language feature previews, such as
text blocks, as well as a big reimplementation of the Sockets API. Per the official
design docs, this impressive effort provides “a simpler and more modern implemen‐
tation that is easy to maintain and debug.”

The Present: Java 14
This book includes all the latest and greatest improvements through the late-phase
release of Java 14 in spring of 2020. This release adds some more language syntax
enhancement previews, some garbage collection updates, and removes the Pack200
tools and API. It also moves the switch expression first previewed in Java 12 out of its
preview state and into the standard language. With a six-month release cadence in
place, newer versions of the JDK will almost certainly be available by the time you
read this. As noted above, Oracle wants developers to treat these releases as feature
updates. For the purposes of this book, Java 11 is sufficient. (This is the latest long-
term support version.) You will not need to “keep up” while reading, but if you are
using Java for published projects, consider going over the road map to see if staying
current makes sense. Chapter 13 looks at how you can monitor that road map your‐
self and how you might retrofit existing code with new features.

Feature overview
Here’s a brief overview of the most important features of the current core Java API:

JDBC (Java Database Connectivity)
A general facility for interacting with databases (introduced in Java 1.1).

RMI (Remote Method Invocation)
Java’s distributed objects system. RMI lets you call methods on objects hosted by
a server running somewhere else on the network (introduced in Java 1.1).

Java Security
A facility for controlling access to system resources, combined with a uniform
interface to cryptography. Java Security is the basis for signed classes, which were
discussed earlier.

A Java Road Map | 23

https://oreil.ly/Ba97c
https://oreil.ly/Ba97c

Java Desktop
A catchall for a large number of features starting with Java 9, including the Swing
UI components; “pluggable look and feel,” which means the ability of the user
interface to adapt itself to the look and feel of the platform you’re using; drag and
drop; 2D graphics; printing; image and sound display, playback and manipula‐
tion; and accessibility, which means the ability to integrate with special software
and hardware for people with disabilities.

Internationalization
The ability to write programs that adapt themselves to the language and locale
the user wants to use; the program automatically displays text in the appropriate
language (introduced in Java 1.1).

JNDI (Java Naming and Directory Interface)
A general service for looking up resources. JNDI unifies access to directory serv‐
ices, such as LDAP, Novell’s NDS, and others.

The following are “standard extension” APIs. Some, such as those for working with
XML and web services, are bundled with the standard edition of Java; some must be
downloaded separately and deployed with your application or server.

JavaMail
A uniform API for writing email software.

Java Media Framework
Another catchall that includes Java 2D, Java 3D, the Java Media Framework (a
framework for coordinating the display of many different kinds of media), Java
Speech (for speech recognition and synthesis), Java Sound (high-quality audio),
Java TV (for interactive television and similar applications), and others.

Java Servlets
A facility that lets you write server-side web applications in Java.

Java Cryptography
Actual implementations of cryptographic algorithms. (This package was separa‐
ted from Java Security for legal reasons.)

XML/XSL
Tools for creating and manipulating XML documents, validating them, mapping
them to and from Java objects, and transforming them with stylesheets.

In this book, we’ll try to give you a taste of some of these features; unfortunately for
us (but fortunately for Java software developers), the Java environment has become so
rich that it’s impossible to cover everything in a single book.

24 | Chapter 1: A Modern Language

The Future
It is certainly not the new kid on the block these days, but Java continues to be one of
the most popular platforms for web and application development. This is especially
true in the areas of web services, web application frameworks, and XML tools. While
Java has not dominated mobile platforms in the way it seemed destined to, the Java
language and core APIs can be used to program for Google’s Android mobile OS,
which is used on billions of devices around the world. In the Microsoft camp, the
Java-derived C# language has taken over much .NET development and brought the
core Java syntax and patterns to those platforms.

The JVM itself is also an interesting area of exploration and growth. New languages
are cropping up to take advantage of the JVM’s feature set and ubiquity. Clojure is a
robust functional language with a growing fan base cropping up in work from hobby‐
ists to the biggest of the big box stores. And Kotlin is another language taking over
Android development (previously the dominion of Java) with gusto. It is a general-
purpose language that is gaining traction in new environments while retaining good
interoperability with Java.

Probably the most exciting areas of change in Java today are found in the trend
toward lighter weight, simpler frameworks for business, and the integration of the
Java platform with dynamic languages for scripting web pages and extensions. There
is much more interesting work to come.

Availability
You have several choices for Java development environments and runtime systems.
Oracle’s Java Development Kit is available for macOS, Windows, and Linux. Visit
Oracle’s Java website for more information about obtaining the latest JDK. This
book’s online content is available at the O’Reilly site.

Since 2017, Oracle has officially supported updates to the open source project,
OpenJDK. Individual and small (or even medium-sized) companies may find this
free version sufficient. The releases lag behind the commercial JDK release and do
not include Oracle’s professional support, but Oracle has stated a firm commitment
to maintaining free and open access to Java. All of the examples in this book were
written and tested using the OpenJDK. You can get more details direct from the
horse’s (Oracle’s?) mouth in the OpenJDK FAQ.

For quick installation of a free version of Java 11 (sufficient for almost all examples in
this book, although we do note a few language features from later releases), Amazon
offers its Corretto distribution online with friendly, familiar installers for all three
major platforms.

There is also a whole array of popular Java Integrated Development Environments.
We’ll discuss one in this book: the free Community Edition of JetBrains’s IntelliJ

A Java Road Map | 25

https://clojure.org
https://kotlinlang.org
https://oreil.ly/rDigu
http://oreil.ly/Java_5E
https://oreil.ly/gEaoq
https://oreil.ly/xCzad
https://oreil.ly/gpGao

IDEA. This all-in-one development environment lets you write, test, and package
software with advanced tools at your fingertips.

26 | Chapter 1: A Modern Language

https://oreil.ly/gpGao

CHAPTER 2

A First Application

Before diving into our full discussion of the Java language, let’s get our feet wet by
jumping into some working code and splashing around a bit. In this chapter, we’ll
build a friendly little application that illustrates many of the concepts used through‐
out the book. We’ll take this opportunity to introduce general features of the Java lan‐
guage and applications.

This chapter also serves as a brief introduction to the object-oriented and multithrea‐
ded aspects of Java. If these concepts are new to you, we hope that encountering them
here in Java for the first time will be a straightforward and pleasant experience. If you
have worked with another object-oriented or multithreaded programming environ‐
ment, you should especially appreciate Java’s simplicity and elegance. This chapter is
intended only to give you a bird’s eye view of the Java language and a feel for how it is
used. If you have trouble with any of the concepts introduced here, rest assured they
will be covered in greater detail later in the book.

We can’t stress enough the importance of experimentation as you learn new concepts
here and throughout the book. Don’t just read the examples—run them. Where we
can, we’ll show you how to use jshell (more on that in “Trying Java” on page 70) to try
things in real time. The source code for these examples and all of the examples in this
book can be found on GitHub. Compile the programs and try them. Then, turn our
examples into your examples: play with them, change their behavior, break them, fix
them, and hopefully have some fun along the way.

27

https://oreil.ly/QmkMk

Java Tools and Environment
Although it’s possible to write, compile, and run Java applications with nothing more
than Oracle’s open source Java Development Kit (OpenJDK) and a simple text editor
(e.g., vi, Notepad, etc.), today the vast majority of Java code is written with the benefit
of an Integrated Development Environment (IDE). The benefits of using an IDE
include an all-in-one view of Java source code with syntax highlighting, navigation
help, source control, integrated documentation, building, refactoring, and deploy‐
ment all at your fingertips. Therefore, we are going to skip an academic command-
line treatment and start with a popular, free IDE—IntelliJ IDEA CE (Community
Edition). If you are adverse to using an IDE, feel free to use the command-line com‐
mands javac HelloJava.java for compilation and java HelloJava to run the
upcoming examples.

IntelliJ IDEA requires Java to be installed. This book covers Java 11 language features
(with a few mentions of new things in 12 and 13), so although the examples in this
chapter will work with older versions, it’s best to have JDK 11 installed to ensure that
all examples in the book compile. The JDK includes several developer tools that we’ll
discuss in Chapter 3. You can check to see which version, if any, you have installed by
typing java -version at the command line. If Java isn’t present, or if it’s a version
older than JDK 11, you will want to download the latest version from Oracle’s
OpenJDK download page. All that is required for the examples in this book is the
basic JDK, which is the first option in the upper-left corner of the download page.

IntelliJ IDEA is an IDE available at jetbrains.com. For the purposes of this book, and
getting started with Java in general, the Community Edition is sufficient. The down‐
load is an executable installer or compressed archive: .exe for Windows, .dmg for
macOS, and .tar.gz on Linux. Double-click to expand and run the installer. Appen‐
dix A contains more details on downloading and installing IDEA as well as informa‐
tion on loading the code examples for this book.

Installing the JDK
It should be said at the outset that you are free to download and use the official, com‐
mercial JDK from Oracle for personal use. The versions available on Oracle’s down‐
load page include the latest version and the most recent long-term support version
(13 and 11, respectively, at the time of this writing) with links to older versions if leg‐
acy compatibility is something you must contend with.

If you plan to use Java in any commercial or shared capacity, however, the Oracle JDK
now comes with strict (and paid) licensing terms. For this and other more philosoph‐
ical reasons, we primarily use the OpenJDK mentioned previously in “Growing Up”
on page 3. Regrettably, this open source version does not include nice installers for
the different platforms. If you want a simple setup and are happy with one of the

28 | Chapter 2: A First Application

http://jdk.java.net
http://jdk.java.net
https://oreil.ly/Lo9Xk
https://oreil.ly/sYaZm

long-term support versions such as Java 8 or Java 11, check out other OpenJDK dis‐
tributions such as Amazon’s Corretto.

For those who want the latest release and don’t mind a little configuring work, let’s
take a look at the typical steps required for installing the OpenJDK on each of the
major platforms. Regardless of which operating system you use, if you are going to
use the OpenJDK, you’ll head to Oracle’s OpenJDK download page.

Installing OpenJDK on Linux
The file you download for generic Linux systems is a compressed tar file (tar.gz) and
can be unpacked in a shared directory of your choice. Using the terminal app, change
to the directory where you downloaded the file and run the following commands to
install and verify Java:

~$ cd Downloads

~/Downloads$ sudo tar tvf openjdk-13.0.1_linux-x64_bin.tar.gz \
 --directory /usr/lib/jvm
...
jdk-13.0.1/lib/src.zip
jdk-13.0.1/lib/tzdb.dat
jdk-13.0.1/release

~/Downloads$ /usr/lib/jvm/jdk-13.0.1/bin/java -version
openjdk version "13.0.1" 2019-10-15
OpenJDK Runtime Environment (build 13.0.1+9)
OpenJDK 64-Bit Server VM (build 13.0.1+9, mixed mode, sharing)

With Java successfully unpacked, you can configure your terminal to use that envi‐
ronment by setting the JAVA_HOME and PATH variables. We’ll test that setup by check‐
ing the version of the Java compiler, javac:

~/Downloads$ cd

~$ export JAVA_HOME=/usr/lib/jvm/jdk-13.0.1

~$ export PATH=$PATH:$JAVA_HOME/bin

~$ javac -version
javac 13.0.1

You’ll want to make those JAVA_HOME and PATH changes permanent by updating the
startup or rc scripts for your shell. For example, you could add both export lines just
as we used in the terminal to your .bashrc file.

It’s also worth noting that many Linux distributions make some versions of Java avail‐
able through their particular package managers. You may wish to search online for
things like “install java ubuntu” or “install java redhat” to see if there are alternative

Java Tools and Environment | 29

https://oreil.ly/W7noE
http://jdk.java.net

1 Unless you are a more advanced *nix user and know how to manipulate your environment variables and
paths. In that case you can certainly unpack the archive wherever you like. You may need to teach other appli‐
cations that use Java where you stored it, however, as many apps will only search “well-known” directories.

mechanisms to use that might fit in better with how you manage your Linux box
overall.

Installing OpenJDK on macOS
For users on macOS systems, the OpenJDK installation is quite similar to the Linux
process: download a tar.gz binary archive and unpack it in the right place. Unlike
Linux, “the right place” is quite specific.1

Using the Terminal app (in the Applications → Utilities folder) you can unpack and
relocate the OpenJDK folder like so:

~ $ cd Downloads

Downloads $ tar xf openjdk-13.0.1_osx-x64_bin.tar.gz

Downloads $ sudo mv jdk-13.0.1.jdk /Library/Java/JavaVirtualMachines/

The sudo command allows administrative users to perform special actions normally
reserved for the “super user” (the “s” and “u” in sudo). You’ll be asked for your pass‐
word. Once you have moved the JDK folder, set the JAVA_HOME environment variable.
The java command included with macOS is a wrapper that should now be able to
locate your install.

Downloads $ cd ~

~ $ export \
 JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-13.0.1.jdk/Contents/Home

~ $ java -version
openjdk version "13.0.1" 2019-10-15
OpenJDK Runtime Environment (build 13.0.1+9)
OpenJDK 64-Bit Server VM (build 13.0.1+9, mixed mode, sharing)

As with Linux, you will want to add that JAVA_HOME line to an appropriate startup file
(such as the .bash_profile file in your home directory) if you will be working with Java
at the command line.

For users on macOS 10.15 (Catalina) and presumably later versions, you may run
into a little extra friction when installing Java and testing it out. Owing to changes in
macOS, Oracle has not yet certified Java for Catalina. You can, of course, still run Java
on Catalina systems, but more advanced applications may hit bugs. Interested or
affected users can read the Oracle tech note on using a JDK with Catalina for more

30 | Chapter 2: A First Application

https://oreil.ly/t03Ti

details. The first portion of the tech note covers installation of the official JDK, while
the latter portion covers installing from a tar.gz archive as we showed above.

Installing OpenJDK on Windows
Windows systems share many of the same concepts as *nix systems even if the user
interface for working with those concepts is different. Go ahead and download the
OpenJDK archive for Windows—it should be a ZIP file rather than a tar.gz file. Unzip
the download file and then move it to an appropriate folder. As with Linux, “appro‐
priate” is really up to you. We created a Java folder in the C:\Program Files folder to
hold this (and future) versions, as shown in Figure 2-1.

Figure 2-1. Java folder on Windows

Once the JDK folder is in place, you’ll need to set a few environment variables, just as
with macOS and Linux. The quickest path to the variable settings is to search on
“environment” and look for the Control Panel entry titled “Edit the system environ‐
ment variables”, as shown in Figure 2-2.

Java Tools and Environment | 31

Figure 2-2. Finding the environment variable editor in Windows

From here you can create a new entry for the JAVA_HOME variable and update the Path
entry to know about Java. We chose to add these changes to the System portion,
although if you are the only user on your Windows machine, you can also add them
to your user account.

For JAVA_HOME, create a new variable and set it to the folder where you installed this
particular JDK, as shown in Figure 2-3.

32 | Chapter 2: A First Application

Figure 2-3. Creating the JAVA_HOME environment variable in Windows

With JAVA_HOME set, you can now add an entry to the Path variable so Windows
knows where to look for the java and javac tools. You want to point this value to the
bin folder where you installed Java. To use your JAVA_HOME value in the path, enclose
it with percent signs (%JAVA_HOME%), as shown in Figure 2-4.

Java Tools and Environment | 33

Figure 2-4. Editing the Path variable in Windows

You may not use a command line regularly in Windows, but the Command Prompt
application serves the same purpose as terminal apps do in macOS or Linux. Pull up
the Command Prompt program and check for the version of Java. You should see
something similar to Figure 2-5.

34 | Chapter 2: A First Application

Figure 2-5. Verifying Java in Windows

You can continue using Command Prompt, of course, but now you are also free to
point other applications such as IntelliJ IDEA at your installed JDK and simply work
with those tools.

Configuring IntelliJ IDEA and Creating a Project
The first time you run IDEA, you’ll be prompted to select a workspace. This is a root-
or top-level directory to hold new projects that you create within IntelliJ IDEA. The
default location varies depending on your platform. If the default seems fine, use it;
otherwise feel free to choose an alternate location and click OK.

We are going to create a project to hold all our examples. Select File → New → Java
Project from the application menu and type Learning Java in the “Project name”
field at the top of the dialog, as shown in Figure 2-6. Make sure the JRE version is set
to version 11 or later as shown in the figure, and click Next at the bottom.

Java Tools and Environment | 35

Figure 2-6. New Java project dialog

Choose the Command Line App template. This includes a minimal Java class with a
main() method that can be executed. The coming chapters will go into much more
detail about the structure of Java programs and the commands and statements you
can place in those programs. With the template selected as shown in Figure 2-7, click
Next.

36 | Chapter 2: A First Application

Figure 2-7. New Java project template selection

Lastly, you need to provide a name and location for your project. We chose the name
HelloJava but that name is not special. IDEA will suggest a location based on your
project name and the default IDEA projects folder, but you can use the ellipsis (“…”)
button to pick an alternate anywhere on your computer. When those two fields are
filled in, click Finish as shown in Figure 2-8.

Java Tools and Environment | 37

Figure 2-8. New Java project name and location

Congratulations! You now have a Java program. Well, almost. You do need to add one
line of code to print something to the screen. Inside the curly braces after the public
static void main(String[] args) line, add this line:

 System.out.println("Hello, World!");

Your completed program should resemble the one shown in the righthand panel of
Figure 2-9.

We’ll run this example next and then expand on it to give it a little more flair. The
coming chapters will present more interesting examples piecing together more and
more elements of Java. We’ll always build these examples in a similar setup, though.
These starting steps are good ones to get under your belt.

38 | Chapter 2: A First Application

Running the Project
Starting from the simple template provided by IDEA should leave you in good shape
to run your first program. Notice that the Main class listed under the src folder in the
project outline on the left has a tiny green “play” button on its class icon in
Figure 2-9. That addition indicates IDEA understands how to run the main() method
in this class. Try clicking the green triangle play button in the top toolbar. You will see
your “Hello World!” message show up in the Run tab along the bottom of the editor.
Congratulations are due again—you have now run your first Java program.

Figure 2-9. Running your Java project

Grabbing the Learning Java Examples
The examples from this book are available online at the GitHub site. GitHub has
become the de facto cloud respository site for open source projects available to the
public as well as closed source, enterprise projects. GitHub has many helpful tools
beyond simple source code storage and versioning. If you go on to develop an appli‐
cation or library that you want to share with others, it is worth setting up an account
with GitHub and exploring it deeper. Happily, you can also just grab ZIP files of pub‐
lic projects without logging in, as shown in Figure 2-10.

Java Tools and Environment | 39

https://oreil.ly/QmkMk

Figure 2-10. Downloading a ZIP from GitHub

You should end up with a file called learnjava5e-master.zip (since you are grabbing an
archive of the “master” branch of this repository). If you’re familiar with GitHub
from other projects, please feel free to clone the repository, but the static ZIP file con‐
tains everything you need to try the examples as you read through the rest of this
book. When you unzip the download, you’ll find folders for all of the chapters that
have examples as well as a completed game folder that contains a fun, light-hearted
apple tossing game to help illustrate most of the programming concepts presented
throughout the book in one cohesive application. We’ll go into more details on the
examples and the game in coming chapters.

As mentioned previously, you can compile and run the examples from the ZIP file
right from the command line. You can also import the code into your favorite IDE.
Appendix A contains detailed information on how to best import these examples into
IntelliJ IDEA.

40 | Chapter 2: A First Application

HelloJava
In the tradition of introductory programming texts, we will begin with Java’s equiva‐
lent of the archetypal “Hello World” application, HelloJava.

We’ll end up taking a few passes at this example before we’re done (HelloJava, Hello
Java2, etc.), adding features and introducing new concepts along the way. But let’s
start with the minimalist version:

 public class HelloJava {
 public static void main(String[] args) {
 System.out.println("Hello, Java!");
 }
 }

This five-line program declares a class called HelloJava and a method called main() .
It uses a predefined method called println() to write some text as output. This is a
command-line program, which means that it runs in a shell or DOS window and
prints its output there. If you used IDEA’s Hello World template, you might notice
that they chose the name Main for their class. There’s nothing incorrect there, but
more descriptive names will come in handy as you start building more complex pro‐
grams. We’ll try to use good names in our examples going forward. Regardless of the
name of the class, this approach is a bit old-school for our taste, so before we go any
further, we’re going to give HelloJava a GUI. Don’t worry about the code yet; just
follow along with the progression here, and we’ll come back for explanations in a
moment.

In place of the line containing the println() method, we’re going to use a JFrame
object to put a window on the screen. We can start by replacing the println line with
the following three lines:

 JFrame frame = new JFrame("Hello, Java!");
 frame.setSize(300, 300);
 frame.setVisible(true);

This snippet creates a JFrame object with the title “Hello, Java!” The JFrame is a
graphical window. To display it, we simply configure its size on the screen using the
setSize() method and make it visible by calling the setVisible() method.

If we stopped here, we would see an empty window on the screen with our “Hello,
Java!” banner as its title. We’d like our message inside the window, not just scrawled at
the top of it. To put something in the window, we need a couple more lines. The fol‐
lowing complete example adds a JLabel object to display the text centered in our
window. The additional import line at the top is necessary to tell Java where to find
the JFrame and JLabel classes (the definitions of the JFrame and JLabel objects that
we’re using).

HelloJava | 41

 import javax.swing.*;

 public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 frame.add(label);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
 }

Now, to compile and run this source, select the ch02/HelloJava.java class from the
package explorer along the left and click the Run button in the toolbar along the top.
The Run button is a green arrow pointing to the right. See Figure 2-11.

Figure 2-11. Running the HelloJava application

You should see the proclamation shown in Figure 2-12. Congratulations again, you
have now run your second Java application! Take a moment to bask in the glow of
your monitor.

42 | Chapter 2: A First Application

Figure 2-12. The output of the HelloJava application

Be aware that when you click on the window’s close box, the window goes away, but
your program is still running. (We’ll fix this shutdown behavior in a later version of
the example.) To stop the Java application in IDEA, click the red square button to the
right of the green play button we used to run the program. If you are running the
example on the command line, type Ctrl-C. Note that nothing stops you from run‐
ning more than one instance (copy) of the application at a time.

HelloJava may be a small program, but there is quite a bit going on behind the
scenes. Those few lines represent the tip of an iceberg. What lies under the surface are
the layers of functionality provided by the Java language and its Swing libraries.
Remember that in this chapter, we’re going to cover a lot of ground quickly in an
effort to show you the big picture. We’ll try to offer enough detail for a good under‐
standing of what is happening in each example, but will defer detailed explanations
until the appropriate chapters. This holds for both elements of the Java language and

HelloJava | 43

the object-oriented concepts that apply to them. With that said, let’s take a look now
at what’s going on in our first example.

Classes
The first example defines a class named HelloJava:

 public class HelloJava {
 ...

Classes are the fundamental building blocks of most object-oriented languages. A
class is a group of data items with associated functions that can perform operations
on that data. The data items in a class are called variables, or sometimes fields; in Java,
functions are called methods. The primary benefits of an object-oriented language are
this association between data and functionality in class units and also the ability of
classes to encapsulate or hide details, freeing the developer from worrying about low-
level details.

In an application, a class might represent something concrete, such as a button on a
screen or the information in a spreadsheet, or it could be something more abstract,
such as a sorting algorithm or perhaps the sense of ennui in a video game character. A
class representing a spreadsheet might, for example, have variables that represent the
values of its individual cells and methods that perform operations on those cells, such
as “clear a row” or “compute values.”

Our HelloJava class is an entire Java application in a single class. It defines just one
method, main() , which holds the body of our program:

 public class HelloJava {
 public static void main(String[] args) {
 ...

It is this main() method that is called first when the application is started. The bit
labeled String [] args allows us to pass command-line arguments to the application.
We’ll walk through the main() method in the next section. Finally, we’ll note that
although this version of HelloJava does not define any variables as part of its class, it
does use two variables, frame and label, inside its main() method. We’ll have more
to say about variables soon as well.

The main() Method
As we saw when we ran our example, running a Java application means picking a par‐
ticular class and passing its name as an argument to the Java virtual machine. When
we did this, the java command looked in our HelloJava class to see if it contained
the special method named main() of just the right form. It did, and so it was exe‐
cuted. If it had not been there, we would have received an error message. The main()
method is the entry point for applications. Every standalone Java application includes

44 | Chapter 2: A First Application

at least one class with a main() method that performs the necessary actions to start
the rest of the program.

Our main() method sets up a window (a JFrame) to hold the visual output of the
HelloJava class. Right now, it’s doing all the work in the application. But in an object-
oriented application, we normally delegate responsibilities to many different classes.
In the next incarnation of our example, we’re going to perform just such a split—cre‐
ating a second class—and we’ll see that as the example subsequently evolves, the
main() method remains more or less the same, simply holding the startup procedure.

Let’s quickly walk through our main() method, just so we know what it does. First,
main() creates a JFrame, the window that will hold our example:

 JFrame frame = new JFrame("Hello, Java!");

The word new in this line of code is very important. JFrame is the name of a class that
represents a window on the screen, but the class itself is just a template, like a build‐
ing plan. The new keyword tells Java to allocate memory and actually create a particu‐
lar JFrame object. In this case, the argument inside the parentheses tells the JFrame
what to display in its title bar. We could have left out the “Hello, Java” text and used
empty parentheses to create a JFrame with no title, but only because the JFrame
specifically allows us to do that.

When frame windows are first created, they are very small. Before we show the
JFrame, we set its size to something reasonable:

 frame.setSize(300, 300);

This is an example of invoking a method on a particular object. In this case, the set
Size() method is defined by the JFrame class, and it affects the particular JFrame
object we’ve placed in the variable frame. Like the frame, we also create an instance of
JLabel to hold our text inside the window:

 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);

JLabel is much like a physical label. It holds some text at a particular position—in
this case, on our frame. This is a very object-oriented concept: using an object to hold
some text, instead of simply invoking a method to “draw” the text and moving on.
The rationale for this will become clearer later.

Next, we have to place the label into the frame we created:

 frame.add(label);

Here, we’re calling a method named add()to place our label inside the JFrame. The
JFrame is a kind of container that can hold things. We’ll talk more about that later.
main()’s final task is to show the frame window and its contents, which otherwise
would be invisible. An invisible window makes for a pretty boring application.

HelloJava | 45

 frame.setVisible(true);

That’s the whole main() method. As we progress through the examples in this chap‐
ter, it will remain mostly unchanged as the HelloJava class evolves around it.

Classes and Objects
A class is a blueprint for a part of an application; it holds methods and variables that
make up that component. Many individual working copies of a given class can exist
while an application is active. These individual incarnations are called instances of the
class, or objects. Two instances of a given class may contain different data, but they
always have the same methods.

As an example, consider a Button class. There is only one Button class, but an appli‐
cation can create many different Button objects, each one an instance of the same
class. Furthermore, two Button instances might contain different data, perhaps giving
each a different appearance and performing a different action. In this sense, a class
can be considered a mold for making the object it represents, something like a cookie
cutter stamping out working instances of itself in the memory of the computer. As
you’ll see later, there’s a bit more to it than that—a class can in fact share information
among its instances—but this explanation suffices for now. Chapter 5 has the whole
story on classes and objects.

The term object is very general and in some other contexts is used almost inter‐
changeably with class. Objects are the abstract entities that all object-oriented lan‐
guages refer to in one form or another. We will use object as a generic term for an
instance of a class. We might, therefore, refer to an instance of the Button class as a
button, a Button object, or, indiscriminately, as an object.

The main() method in the previous example creates a single instance of the JLabel
class and shows it in an instance of the JFrame class. You could modify main() to cre‐
ate many instances of JLabel, perhaps each in a separate window.

Variables and Class Types
In Java, every class defines a new type (data type). A variable can be declared to be of
this type and then hold instances of that class. A variable could, for example, be of
type Button and hold an instance of the Button class, or of type SpreadSheetCell
and hold a SpreadSheetCell object, just as it could be any of the simpler types, such
as int or float, that represent numbers. The fact that variables have types and can‐
not simply hold any kind of object is another important feature of the language that
ensures the safety and correctness of code.

46 | Chapter 2: A First Application

Ignoring the variables used inside the main() method for the moment, only one other
variable is declared in our simple HelloJava example. It’s found in the declaration of
the main() method itself:

 public static void main(String [] args) {

Just like functions in other languages, a method in Java declares a list of parameters
(variables) that it accepts as arguments, and it specifies the types of those parameters.
In this case, the main method is requiring that when it is invoked, it be passed an
array of String objects in the variable named args. The String is the fundamental
object representing text in Java. As we hinted at earlier, Java uses the args parameter
to pass any command-line arguments supplied to the Java virtual machine (VM) into
your application. (We don’t use them here.)

Up to this point, we have loosely referred to variables as holding objects. In reality,
variables that have class types don’t so much contain objects as point to them. Class-
type variables are references to objects. A reference is a pointer to or a handle for an
object. If you declare a class-type variable without assigning it an object, it doesn’t
point to anything. It’s assigned the default value of null, meaning “no value.” If you
try to use a variable with a null value as if it were pointing to a real object, a runtime
error, NullPointerException, occurs.

Of course, object references have to come from somewhere. In our example, we cre‐
ated two objects using the new operator. We’ll examine object creation in more detail
a little later in the chapter.

HelloComponent
Thus far, our HelloJava example has contained itself in a single class. In fact, because
of its simple nature, it has really just served as a single, large method. Although we
have used a couple of objects to display our GUI message, our own code does not
illustrate any object-oriented structure. Well, we’re going to correct that right now by
adding a second class. To give us something to build on throughout this chapter, we’re
going to take over the job of the JLabel class (bye-bye, JLabel!) and replace it with
our own graphical class: HelloComponent. Our HelloComponent class will start sim‐
ple, just displaying our “Hello, Java!” message at a fixed position. We’ll add capabili‐
ties later.

The code for our new class is very simple; we added just a few more lines:

 import java.awt.*;

 class HelloComponent extends JComponent {
 public void paintComponent(Graphics g) {
 g.drawString("Hello, Java!", 125, 95);
 }
 }

HelloJava | 47

You can add this text to the HelloJava.java file, or you can place it in its own file called
HelloComponent.java. If you put it in the same file, you must move the new import
statement to the top of the file, along with the other one. To use our new class in place
of the JLabel, simply replace the two lines referencing the label with:

 frame.add(new HelloComponent());

This time when you compile HelloJava.java, you will see two binary class files: Hello‐
Java.class and HelloComponent.class (regardless of how you arranged the source).
Running the code should look much like the JLabel version, but if you resize the
window, you’ll notice that our class does not automatically adjust to center the code.

So what have we done, and why have we gone to such lengths to insult the perfectly
good JLabel component? We’ve created our new HelloComponent class, extending a
generic graphical class called JComponent. To extend a class simply means to add
functionality to an existing class, creating a new one. We’ll get into that in the next
section. Here we have created a new kind of JComponent that contains a method
called paintComponent(), which is responsible for drawing our message. Our paint
Component() method takes one argument named (somewhat tersely) g, which is of
type Graphics. When the paintComponent() method is invoked, a Graphics object is
assigned to g, which we use in the body of the method. We’ll say more about paint
Component() and the Graphics class in a moment. As for why, you’ll understand
when we add all sorts of new features to our new component later on.

Inheritance
Java classes are arranged in a parent-child hierarchy in which the parent and child are
known as the superclass and subclass, respectively. We’ll explore these concepts more
in Chapter 5. In Java, every class has exactly one superclass (a single parent), but pos‐
sibly many subclasses. The only exception to this rule is the Object class, which sits
atop the entire class hierarchy; it has no superclass.

The declaration of our class in the previous example uses the keyword extends to
specify that HelloComponent is a subclass of the JComponent class:

 public class HelloComponent extends JComponent { ... }

A subclass may inherit some or all the variables and methods of its superclass.
Through inheritance, the subclass can use those variables and methods as if it has
declared them itself. A subclass can add variables and methods of its own, and it can
also override or change the meaning of inherited methods. When we use a subclass,
overridden methods are hidden (replaced) by the subclass’s own versions of them. In
this way, inheritance provides a powerful mechanism whereby a subclass can refine
or extend the functionality of its superclass.

48 | Chapter 2: A First Application

For example, the hypothetical spreadsheet class might be subclassed to produce a new
scientific spreadsheet class with extra mathematical functions and special built-in
constants. In this case, the source code for the scientific spreadsheet might declare
methods for the added mathematical functions and variables for the special con‐
stants, but the new class automatically has all the variables and methods that consti‐
tute the normal functionality of a spreadsheet; they are inherited from the parent
spreadsheet class. This also means that the scientific spreadsheet maintains its iden‐
tity as a spreadsheet, and we can use the extended version anywhere the simpler
spreadsheet could be used. That last sentence has profound implications, which we’ll
explore throughout the book. It means that specialized objects can be used in place of
more generic objects, customizing their behavior without changing the underlying
application. This is called polymorphism and is one of the foundations of object-
oriented programming.

Our HelloComponent class is a subclass of the JComponent class and inherits many
variables and methods not explicitly declared in our source code. This is what allows
our tiny class to serve as a component in a JFrame, with just a few customizations.

The JComponent Class
The JComponent class provides the framework for building all kinds of UI compo‐
nents. Particular components—such as buttons, labels, and list boxes—are imple‐
mented as subclasses of JComponent.

We override methods in such a subclass to implement the behavior of our particular
component. This may sound restrictive, as if we are limited to some predefined set of
routines, but that is not the case at all. Keep in mind that the methods we are talking
about are ways to interact with the windowing system. We don’t have to squeeze our
whole application in there. A realistic application might involve hundreds or thou‐
sands of classes, with legions of methods and variables, and many threads of execu‐
tion. The vast majority of these are related to the particulars of our job (these are
called domain objects). The JComponent class and other predefined classes serve only
as a framework on which to base code that handles certain types of user interface
events and displays information to the user.

The paintComponent() method is an important method of the JComponent class; we
override it to implement the way our particular component displays itself on the
screen. The default behavior of paintComponent() doesn’t do any drawing at all. If we
hadn’t overridden it in our subclass, our component would simply have been invisi‐
ble. Here, we’re overriding paintComponent() to do something only slightly more
interesting. We don’t override any of the other inherited members of JComponent
because they provide basic functionality and reasonable defaults for this (trivial)
example. As HelloJava grows, we’ll delve deeper into the inherited members and use

HelloJava | 49

additional methods. We will also add some application-specific methods and vari‐
ables specifically for the needs of HelloComponent.

JComponent is really the tip of another iceberg called Swing. Swing is Java’s UI toolkit,
represented in our example by the import statement at the top; we’ll discuss it in
some detail in Chapter 10.

Relationships and Finger-Pointing
We can correctly refer to HelloComponent as a JComponent because subclassing can
be thought of as creating an “is a” relationship, in which the subclass “is a” kind of its
superclass. HelloComponent is therefore a kind of JComponent. When we refer to a
kind of object, we mean any instance of that object’s class or any of its subclasses.
Later, we will look more closely at the Java class hierarchy and see that JComponent is
itself a subclass of the Container class, which is further derived from a class called
Component, and so on, as shown in Figure 2-13.

In this sense, a HelloComponent object is a kind of JComponent, which is a kind of
Container, and each of these can ultimately be considered to be a kind of Component.
It’s from these classes that HelloComponent inherits its basic GUI functionality and
(as we’ll discuss later) the ability to have other graphical components embedded
within it as well.

Figure 2-13. Part of the Java class hierarchy

Component is a subclass of the top-level Object class, so all these classes are types of
Object. Every other class in the Java API inherits behavior from Object, which
defines a few basic methods, as you’ll see in Chapter 5. We’ll continue to use the word

50 | Chapter 2: A First Application

object (lowercase o) in a generic way to refer to an instance of any class; we’ll use
Object to refer specifically to the type of that class.

Package and Imports
We mentioned earlier that the first line of our example tells Java where to find some
of the classes that we’ve been using:

 import javax.swing.*;

Specifically, it tells the compiler that we are going to be using classes from the Swing
GUI toolkit (in this case, JFrame, JLabel, and JComponent). These classes are organ‐
ized into a Java package called javax.swing. A Java package is a group of classes that
are related by purpose or by application. Classes in the same package have special
access privileges with respect to one another and may be designed to work together
closely.

Packages are named in a hierarchical fashion with dot-separated components, such as
java.util and java.util.zip. Classes in a package must follow conventions about
where they are located in the classpath. They also take on the name of the package as
part of their “full name” or, to use the proper terminology, their fully qualified name.
For example, the fully qualified name of the JComponent class is javax.swing.JCompo
nent. We could have referred to it by that name directly, in lieu of using the import
statement:

 public class HelloComponent extends javax.swing.JComponent {...}

The statement import javax.swing.* enables us to refer to all the classes in the
javax.swing package by their simple names. So we don’t have to use fully qualified
names to refer to the JComponent, JLabel, and JFrame classes.

As we saw when we added our second example class, there may be one or more
import statements in a given Java source file. The imports effectively create a “search
path” that tells Java where to look for classes that we refer to by their simple, unquali‐
fied names. (It’s not really a path, but it avoids ambiguous names that can create
errors.) The imports we’ve seen use the dot star (.*) notation to indicate that the
entire package should be imported. But you can also specify just a single class. For
example, our current example uses only the Graphics class from the java.awt pack‐
age. So we could have used import java.awt.Graphics instead of using the wildcard
* to import all the Abstract Window Toolkit (AWT) package’s classes. However, we
are anticipating using several more classes from this package later.

The java. and javax. package hierarchies are special. Any package that begins with
java. is part of the core Java API and is available on any platform that supports Java.
The javax. package normally denotes a standard extension to the core platform,
which may or may not be installed. However, in recent years, many standard

HelloJava | 51

extensions have been added to the core Java API without renaming them. The
javax.swing package is an example; it is part of the core API in spite of its name.
Figure 2-14 illustrates some of the core Java packages, showing a representative class
or two from each.

Figure 2-14. Some core Java packages

java.lang contains fundamental classes needed by the Java language itself; this pack‐
age is imported automatically, and that is why we didn’t need an import statement to
use class names such as String or System in our examples. The java.awt package
contains classes of the older, graphical AWT; java.net contains the networking
classes; and so on.

As you gain more experience with Java, you will come to realize that having a com‐
mand of the packages available to you, what they do, when to use them, and how to
use them is a critical part of becoming a successful Java developer.

The paintComponent() Method
The source for our HelloComponent class defines a method, paintComponent(), that
overrides the paintComponent() method of the JComponent class:

 public void paintComponent(Graphics g) {
 g.drawString("Hello, Java!", 125, 95);
 }

The paintComponent() method is called when it’s time for our example to draw itself
on the screen. It takes a single argument, a Graphics object, and doesn’t return any
type of value (void) to its caller.

52 | Chapter 2: A First Application

Modifiers are keywords placed before classes, variables, and methods to alter their
accessibility, behavior, or semantics. paintComponent() is declared as public, which
means it can be invoked (called) by methods in classes other than HelloComponent.
In this case, it’s the Java windowing environment that is calling our paintCompo
nent() method. A method or variable declared as private is accessible only from its
own class.

The Graphics object, an instance of the Graphics class, represents a particular graph‐
ical drawing area. (It is also called a graphics context.) It contains methods that can be
used to draw in this area, and variables that represent characteristics such as clipping
or drawing modes. The particular Graphics object we are passed in the paintCompo
nent() method corresponds to our HelloComponent’s area of the screen, inside our
frame.

The Graphics class provides methods for rendering shapes, images, and text. In Hel
loComponent, we invoke the drawString() method of our Graphics object to scrawl
our message at the specified coordinates.

As we’ve seen earlier, we access a method of an object by appending a dot (.) and its
name to the object that holds it. We invoked the drawString() method of the Graph
ics object (referenced by our g variable) in this way:

 g.drawString("Hello, Java!", 125, 95);

It may be difficult to get used to the idea that our application is drawn by a method
that is called by an outside agent at arbitrary times. How can we do anything useful
with this? How do we control what gets done and when? These answers are forth‐
coming. For now, just think about how you would begin to structure applications that
respond on command instead of by their own initiative.

HelloJava2: The Sequel
Now that we’ve got some basics down, let’s make our application a little more interac‐
tive. The following minor upgrade allows us to drag the message text around with the
mouse. If you’re new to programming, though, the upgrade may not seem so minor.
Fear not! We will look closely at all of the topics covered in this example in later chap‐
ters. For now, enjoy playing with the example and use it as an opportunity to get
more comfortable creating and running Java programs even if you don’t feel as com‐
fortable with the code inside.

We’ll call this example HelloJava2 rather than cause confusion by continuing to
expand the old one, but the primary changes here and further on lie in adding capa‐
bilities to the HelloComponent class and simply making the corresponding changes to
the names to keep them straight (e.g., HelloComponent2, HelloComponent3, and so
on). Having just seen inheritance at work, you might wonder why we aren’t creating a

HelloJava2: The Sequel | 53

subclass of HelloComponent and exploiting inheritance to build upon our previous
example and extend its functionality. Well, in this case, that would not provide much
advantage, and for clarity we simply start over.

Here is HelloJava2:

 //file: HelloJava2.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class HelloJava2
 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("HelloJava2");
 frame.add(new HelloComponent2("Hello, Java!"));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
 }

 class HelloComponent2 extends JComponent
 implements MouseMotionListener
 {
 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

 public HelloComponent2(String message) {
 theMessage = message;
 addMouseMotionListener(this);
 }

 public void paintComponent(Graphics g) {
 g.drawString(theMessage, messageX, messageY);
 }

 public void mouseDragged(MouseEvent e) {
 // Save the mouse coordinates and paint the message.
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) { }
 }

Two slashes in a row indicate that the rest of the line is a comment. We’ve added a few
comments to HelloJava2 to help you keep track of everything.

Place the text of this example in a file called HelloJava2.java and compile it as before.
You should get new class files, HelloJava2.class and HelloComponent2.class, as a result.

54 | Chapter 2: A First Application

Run the example using the following command:

 C:\> java HelloJava2

Or, if you are following in IDEA, click the Run button. Feel free to substitute your
own salacious comment for the “Hello, Java!” message and enjoy many hours of fun,
dragging the text around with your mouse. Notice that now when you click the win‐
dow’s close button, the application exits; we’ll explain that later when we talk about
events. Now let’s see what’s changed.

Instance Variables
We have added some variables to the HelloComponent2 class in our example:

 int messageX = 125, messageY = 95;
 String theMessage;

messageX and messageY are integers that hold the current coordinates of our movable
message. We have crudely initialized them to default values that should place the
message somewhere near the center of the window. Java integers are 32-bit signed
numbers, so they can easily hold our coordinate values. The variable theMessage is of
type String and can hold instances of the String class.

You should note that these three variables are declared inside the braces of the class
definition, but not inside any particular method in that class. These variables are
called instance variables, and they belong to the object as a whole. Specifically, copies
of them appear in each separate instance of the class. Instance variables are always
visible to (and usable by) all the methods inside their class. Depending on their modi‐
fiers, they may also be accessible from outside the class.

Unless otherwise initialized, instance variables are set to a default value of 0, false, or
null, depending on their type. Numeric types are set to 0, Boolean variables are set to
false, and class type variables always have their value set to null, which means “no
value.” Attempting to use an object with a null value results in a runtime error.

Instance variables differ from method arguments and other variables that are
declared inside the scope of a particular method. The latter are called local variables.
They are effectively private variables that can be seen only by code inside a method or
other code block. Java doesn’t initialize local variables, so you must assign values
yourself. If you try to use a local variable that has not yet been assigned a value, your
code generates a compile-time error. Local variables live only as long as the method is
executing and then disappear, unless something else saves their value. Each time the
method is invoked, its local variables are recreated and must be assigned values.

We have used the new variables to make our previously stodgy paintComponent()
method more dynamic. Now all the arguments in the call to drawString() are deter‐
mined by these variables.

HelloJava2: The Sequel | 55

Constructors
The HelloComponent2 class includes a special kind of a method called a constructor. A
constructor is called to set up a new instance of a class. When a new object is created,
Java allocates storage for it, sets instance variables to their default values, and calls the
constructor method for the class to do whatever application-level setup is required.

A constructor always has the same name as its class. For example, the constructor for
the HelloComponent2 class is called HelloComponent2(). Constructors don’t have a
return type, but you can think of them as creating an object of their class’s type. Like
other methods, constructors can take arguments. Their sole mission in life is to con‐
figure and initialize newly born class instances, possibly using information passed to
them in these parameters.

An object is created with the new operator specifying the constructor for the class and
any necessary arguments. The resulting object instance is returned as a value. In our
example, a new HelloComponent2 instance is created in the main() method by this
line:

 frame.add(new HelloComponent2("Hello, Java!"));

This line actually does two things. We could write them as two separate lines that are
a little easier to understand:

 HelloComponent2 newObject = new HelloComponent2("Hello, Java!");
 frame.add(newObject);

The first line is the important one, where a new HelloComponent2 object is created.
The HelloComponent2 constructor takes a String as an argument and, as we have
arranged it, uses it to set the message that is displayed in the window. With a little
magic from the Java compiler, quoted text in Java source code is turned into a String
object. (See Chapter 8 for a discussion of the String class.) The second line simply
adds our new component to the frame to make it visible, as we did in the previous
examples.

While we’re on the topic, if you’d like to make our message configurable, you can
change the constructor line to the following:

 HelloComponent2 newobj = new HelloComponent2(args[0]);

Now you can pass the text on the command line when you run the application using
the following command:

 C:\> java HelloJava2 "Hello, Java!"

args[0] refers to the first command-line parameter. Its meaning will become clearer
when we discuss arrays in Chapter 4. If you are using an IDE, you will need to config‐
ure it to accept your parameters before running it, as shown for IntelliJ IDEA in
Figure 2-15.

56 | Chapter 2: A First Application

Figure 2-15. IDEA dialog for giving command-line parameters

HelloComponent2’s constructor then does two things: it sets the text of theMessage
instance variable and calls addMouseMotionListener(). This method is part of the
event mechanism, which we discuss next. It tells the system, “Hey, I’m interested in
anything that happens involving the mouse.”

 public HelloComponent2(String message) {
 theMessage = message;
 addMouseMotionListener(this);
 }

The special, read-only variable called this is used to explicitly refer to our object (the
“current” object context) in the call to addMouseMotionListener(). A method can
use this to refer to the instance of the object that holds it. The following two state‐
ments are therefore equivalent ways of assigning the value to theMessage instance
variable:

 theMessage = message;

or:

 this.theMessage = message;

We’ll normally use the shorter, implicit form to refer to instance variables, but we’ll
need this when we have to explicitly pass a reference to our object to a method in

HelloJava2: The Sequel | 57

another class. We often do this so that methods in other classes can invoke our public
methods or use our public variables.

Events
The last two methods of HelloComponent2, mouseDragged() and mouseMoved(), let
us get information from the mouse. Each time the user performs an action, such as
pressing a key on the keyboard, moving the mouse, or perhaps banging their head
against a touch screen, Java generates an event. An event represents an action that has
occurred; it contains information about the action, such as its time and location.
Most events are associated with a particular GUI component in an application. A key‐
stroke, for instance, can correspond to a character being typed into a particular text
entry field. Clicking a mouse button can activate a particular button on the screen.
Even just moving the mouse within a certain area of the screen can trigger effects
such as highlighting or changing the cursor’s shape.

To work with these events, we’ve imported a new package, java.awt.event, which
provides specific Event objects that we use to get information from the user. (Notice
that importing java.awt.* doesn’t automatically import the event package. Imports
are not recursive. Packages don’t really contain other packages, even if the hierarchi‐
cal naming scheme would imply that they do.)

There are many different event classes, including MouseEvent, KeyEvent, and Action
Event. For the most part, the meaning of these events is fairly intuitive. A MouseEvent
occurs when the user does something with the mouse, a KeyEvent occurs when the
user presses a key, and so on. ActionEvent is a little special; we’ll see it at work in
Chapter 10. For now, we’ll focus on dealing with MouseEvents.

GUI components in Java generate events for specific kinds of user actions. For exam‐
ple, if you click the mouse inside a component, the component generates a mouse
event. Objects can ask to receive the events from one or more components by regis‐
tering a listener with the event source. For example, to declare that a listener wants to
receive a component’s mouse-motion events, you invoke that component’s addMouse
MotionListener() method, specifying the listener object as an argument. That’s what
our example is doing in its constructor. In this case, the component is calling its own
addMouseMotionListener() method, with the argument this, meaning “I want to
receive my own mouse-motion events.”

That’s how we register to receive events. But how do we actually get them? That’s
what the two mouse-related methods in our class are for. The mouseDragged()
method is called automatically on a listener to receive the events generated when the
user drags the mouse—that is, moves the mouse with any button clicked. The mouse
Moved() method is called whenever the user moves the mouse over the area without
clicking a button. In this case, we’ve placed these methods in our HelloComponent2

58 | Chapter 2: A First Application

2 Event handling in Java 1.0 was a very different story. Early on, Java did not have a notion of event listeners
and all event handling happened by overriding methods in base GUI classes. This was both inefficient and led
to poor design with a proliferation of highly specialized components.

class and had it register itself as the listener. This is entirely appropriate for our new
text-dragging component. More generally, good design usually dictates that event lis‐
teners be implemented as adapter classes that provide better separation of GUI and
“business logic.” We’ll discuss that in detail in Chapter 10.

Our mouseMoved() method is boring: it doesn’t do anything. We ignore simple mouse
motions and reserve our attention for dragging. mouseDragged() has a bit more meat
to it. This method is called repeatedly by the windowing system to give us updates on
the position of the mouse. Here it is:

 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

The first argument to mouseDragged() is a MouseEvent object, e, that contains all the
information we need to know about this event. We ask the MouseEvent to tell us the x
and y coordinates of the mouse’s current position by calling its getX() and getY()
methods. We save these in the messageX and messageY instance variables for use else‐
where.

The beauty of the event model is that you have to handle only the kinds of events you
want. If you don’t care about keyboard events, you just don’t register a listener for
them; the user can type all they want and you won’t be bothered. If there are no lis‐
teners for a particular kind of event, Java won’t even generate it. The result is that
event handling is quite efficient.2

While we’re discussing events, we should mention another small addition we slipped
into HelloJava2:

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This line tells the frame to exit the application when its Close button is clicked. It’s
called the “default” close operation because this operation, like almost every other
GUI interaction, is governed by events. We could register a window listener to get
notification of when the user clicks on the Close button and take whatever action we
like, but this convenience method handles the common cases.

Finally, we’ve danced around a couple of questions here: how does the system know
that our class contains the necessary mouseDragged() and mouseMoved() methods
(where do these names come from)? And why do we have to supply a mouseMoved()
method that doesn’t do anything? The answer to these questions has to do with

HelloJava2: The Sequel | 59

interfaces. We’ll discuss interfaces after clearing up some unfinished business with
repaint().

The repaint() Method
Because we changed the coordinates for the message (when we dragged the mouse),
we would like HelloComponent2 to redraw itself. We do this by calling repaint(),
which asks the system to redraw the screen at a later time. We can’t call paintCompo
nent() directly, even if we wanted to, because we don’t have a graphics context to pass
to it.

We can use the repaint() method of the JComponent class to request that our com‐
ponent be redrawn. repaint() causes the Java windowing system to schedule a call to
our paintComponent() method at the next possible time; Java supplies the necessary
Graphics object, as shown in Figure 2-16.

This mode of operation isn’t just an inconvenience brought about by not having the
right graphics context handy. The foremost advantage to this mode of operation is
that the repainting behavior is handled by someone else while we are free to go about
our business. The Java system has a separate, dedicated thread of execution that han‐
dles all repaint() requests. It can schedule and consolidate repaint() requests as
necessary, which helps to prevent the windowing system from being overwhelmed
during painting-intensive situations like scrolling. Another advantage is that all the
painting functionality must be encapsulated through our paintComponent() method;
we aren’t tempted to spread it throughout the application.

Figure 2-16. Invoking the repaint() method

Interfaces
Now it’s time to face the question we avoided earlier: how does the system know to
call mouseDragged() when a mouse event occurs? Is it simply a matter of knowing
that mouseDragged() is some magic name that our event-handling method must
have? Not quite; the answer to the question touches on the discussion of interfaces,
which are one of the most important features of the Java language.

The first sign of an interface comes on the line of code that introduces the HelloCom
ponent2 class: we say that the class implements the MouseMotionListener interface:

60 | Chapter 2: A First Application

 class HelloComponent2 extends JComponent
 implements MouseMotionListener
 {

Essentially, an interface is a list of methods that the class must have; this particular
interface requires our class to have methods called mouseDragged() and mouse
Moved(). The interface doesn’t say what these methods have to do; indeed, mouse
Moved() doesn’t do anything. It does say that the methods must take a MouseEvent as
an argument and return no value (that’s what void means).

An interface is a contract between you, the code developer, and the compiler. By say‐
ing that your class implements the MouseMotionListener interface, you’re saying that
these methods will be available for other parts of the system to call. If you don’t pro‐
vide them, a compilation error will occur.

That’s not the only way interfaces impact this program. An interface also acts like a
class. For example, a method could return a MouseMotionListener or take a MouseMo
tionListener as an argument. When you refer to an object by an interface name in
this way, it means that you don’t care about the object’s actual class; the only require‐
ment is that the class implements that interface. addMouseMotionListener() is such a
method: its argument must be an object that implements the MouseMotionListener
interface. The argument we pass is this, the HelloComponent2 object itself. The fact
that it’s an instance of JComponent is irrelevant; it could be a Cookie, an Aardvark, or
any other class we dream up. What’s important is that it implements MouseMotionLis
tener and, thus, declares that it will have the two named methods. That’s why we
need a mouseMoved() method; even though the one we supplied doesn’t do anything,
the MouseMotionListener interface says we must have one.

The Java distribution comes with many interfaces that define what classes have to do.
This idea of a contract between the compiler and a class is very important. There are
many situations like the one we just saw where you don’t care what class something is,
you just care that it has some capability, such as listening for mouse events. Interfaces
give us a way of acting on objects based on their capabilities without knowing or car‐
ing about their actual type. They are a tremendously important concept in how we
use Java as an object-oriented language. We’ll talk about them in detail in Chapter 5.

Chapter 5 also discusses how interfaces provide a sort of escape clause to the Java rule
that any new class can extend only a single class (“single inheritance”). A class in Java
can extend only one class, but can implement as many interfaces as it wants. Inter‐
faces can be used as data types, can extend other interfaces (but not classes), and can
be inherited by classes (if class A implements interface B, subclasses of A also imple‐
ment B). The crucial difference is that classes don’t actually inherit methods from
interfaces; the interfaces merely specify the methods the class must have.

HelloJava2: The Sequel | 61

Goodbye and Hello Again
Well, it’s time to say goodbye to HelloJava. We hope that you have developed a feel
for some of the features of the Java language and the basics of writing and running a
Java program. This brief introduction should help you as you explore the details of
programming with Java. If you are a bit bewildered by some of the material presented
here, take heart. We’ll be covering all the major topics presented here again in their
own chapters throughout the book. This tutorial was meant to be something of a
“trial by fire” to get the important concepts and terminology into your brain so that
the next time you hear them you’ll have a head start.

While we are leaving HelloJava aside for the moment, we will be getting to know the
tools of the Java world better in the next chapter. We’ll see details on the commands
you have already seen such as javac, as well as go over other important utilities. Read
on to say hello to several of your new best friends as a Java developer!

62 | Chapter 2: A First Application

1 You can search for “OpenJDK provider” to find a current list of options as well as some useful comparisons
between providers.

CHAPTER 3

Tools of the Trade

While you will almost certainly do the majority of your Java development in an IDE
such as Eclipse, VS Code, or (the author’s favorite) IntelliJ IDEA, all of the core tools
you need to build Java applications are included in the JDK that you have likely
already downloaded in “Installing the JDK” on page 28 from Oracle or another
OpenJDK provider.1 In this chapter, we’ll discuss some of these command-line tools
that you can use to compile, run, and package Java applications. There are many addi‐
tional developer tools included in the JDK that we’ll discuss throughout this book.

For more details on IntelliJ IDEA and instructions for loading all of the examples in
this book as a project, see Appendix A.

JDK Environment
After you install Java, the core java runtime command may appear in your path
(available to run) automatically. However, many of the other commands provided
with the JDK may not be available unless you add the Java bin directory to your exe‐
cution path. The following commands show how to do this on Linux, macOS, and
Windows. You will, of course, have to change the path to match the version of Java
you have installed.

Linux
export JAVA_HOME=/usr/lib/jvm/java-12-openjdk-amd64
export PATH=$PATH:$JAVA_HOME/bin

Mac OS X
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-12.jdk/Contents/Home

63

export PATH=$PATH:$JAVA_HOME/bin

Windows
set JAVA_HOME=c:\Program Files\Java\jdk12
set PATH=%PATH%;%JAVA_HOME%\bin

On macOS, the situation may be more confusing because recent versions ship with
“stubs” for the Java commands installed. If you attempt to run one of these com‐
mands, the OS will prompt you to download Java at that time. You can preemptively
grab the OpenJDK from Oracle following the instructions in “Java Tools and Envi‐
ronment” on page 28.

When in doubt, your go-to test for determining which version of the tools you are
using is to use the -version flag on the java and javac commands:

java -version

openjdk version "12" 2019-03-19
OpenJDK Runtime Environment (build 12+33)
OpenJDK 64-Bit Server VM (build 12+33, mixed mode, sharing)

javac -version

javac 12

The Java VM
A Java virtual machine (VM) is software that implements the Java runtime system
and executes Java applications. It can be a standalone application like the java com‐
mand that comes with the JDK, or built into a larger application like a web browser.
Usually the interpreter itself is a native application, supplied for each platform, which
then bootstraps other tools written in the Java language. Tools such as Java compilers
and IDEs are often implemented directly in Java to maximize their portability and
extensibility. Eclipse, for example, is a pure-Java application.

The Java VM performs all the runtime activities of Java. It loads Java class files, veri‐
fies classes from untrusted sources, and executes the compiled bytecode. It manages
memory and system resources. Good implementations also perform dynamic optimi‐
zation, compiling Java bytecode into native machine instructions.

Running Java Applications
A standalone Java application must have at least one class containing a method called
main(), which is the first code to be executed upon startup. To run the application,
start the VM, specifying that class as an argument. You can also specify options to the
interpreter as well as arguments to be passed to the application:

 % java [interpreter options] class_name [program arguments]

64 | Chapter 3: Tools of the Trade

The class should be specified as a fully qualified class name, including the package
name, if any. Note, however, that you don’t include the .class file extension. Here are a
couple of examples:

% java animals.birds.BigBird
% java MyTest

The interpreter searches for the class in the classpath, a list of directories and archive
files where classes are stored. We’ll discuss the classpath in detail in the next section.
The classpath can be specified either by an environment variable or with the
command-line option -classpath. If both are present, the command-line option is
used.

Alternately, the java command can be used to launch an “executable” Java archive
(JAR) file:

 % java -jar spaceblaster.jar

In this case, the JAR file includes metadata with the name of the startup class contain‐
ing the main() method, and the classpath becomes the JAR file itself.

After loading the first class and executing its main() method, the application can ref‐
erence other classes, start additional threads, and create its user interface or other
structures, as shown in Figure 3-1.

Figure 3-1. Starting a Java application

The main() method must have the right method signature. A method signature is the
set of information that defines the method. It includes the method’s name, arguments,
and return type, as well as type and visibility modifiers. The main() method must be
a public, static method that takes an array of String objects as its argument and
does not return any value (void):

 public static void main (String [] myArgs)

The fact that main() is a public and static method simply means that it is globally
accessible and that it can be called directly by name. We’ll discuss the implications of

Running Java Applications | 65

visibility modifiers such as public and the meaning of static in Chapter 4 and
Chapter 5.

The main() method’s single argument, the array of String objects, holds the
command-line arguments passed to the application. The name of the parameter
doesn’t matter; only the type is important. In Java, the content of myArgs is an array.
(More on arrays in Chapter 4.) In Java, arrays know how many elements they contain
and can happily provide that information:

 int numArgs = myArgs.length;

myArgs[0] is the first command-line argument, and so on.

The Java interpreter continues to run until the main() method of the initial class file
returns and until any threads that it has started also exit. (More on threads in Chap‐
ter 9.) Special threads designated as daemon threads are automatically terminated
when the rest of the application has completed.

System Properties
Although it is possible to read host environment variables from Java, it is discouraged
for application configuration. Instead, Java allows any number of system property val‐
ues to be passed to the application when the VM is started. System properties are
simply name-value string pairs that are available to the application through the static
System.getProperty() method. You can use these properties as a more structured
and portable alternative to command-line arguments and environment variables for
providing general configuration information to your application at startup. Each sys‐
tem property is passed to the interpreter on the command line using the -D option
followed by name=value. For example:

 % java -Dstreet=sesame -Dscene=alley animals.birds.BigBird

The value of the street property is then accessible this way:

 String street = System.getProperty("street");

An application can get its configuration in a myriad of other ways, including via files
or network configuration at runtime.

The Classpath
The concept of a path should be familiar to anyone who has worked on a DOS or
Unix platform. It’s an environment variable that provides an application with a list of
places to look for some resource. The most common example is a path for executable
programs. In a Unix shell, the PATH environment variable is a colon-separated list of
directories that are searched, in order, when the user types the name of a command.
The Java CLASSPATH environment variable, similarly, is a list of locations that are

66 | Chapter 3: Tools of the Trade

searched for Java class files. Both the Java interpreter and the Java compiler use the
CLASSPATH when searching for packages and Java classes.

An element of the classpath can be a directory or a JAR file. Java also supports
archives in the conventional ZIP format, but JAR and ZIP are really the same format.
JARs are simple archives that include extra files (metadata) that describe each archi‐
ve’s contents. JAR files are created with the JDK’s jar utility; many tools for creating
ZIP archives are publicly available and can be used to inspect or create JAR files as
well. The archive format enables large groups of classes and their resources to be dis‐
tributed in a single file; the Java runtime automatically extracts individual class files
from the archive as needed.

The precise means and format for setting the classpath vary from system to system.
On a Unix system (including macOS), you set the CLASSPATH environment variable
with a colon-separated list of directories and class archive files:

% export CLASSPATH=/home/vicky/Java/classes:/home/josh/lib/foo.jar:.

This example specifies a classpath with three locations: a directory in the user’s home,
a JAR file in another user’s directory, and the current directory, which is always speci‐
fied with a dot (.). The last component of the classpath, the current directory, is use‐
ful when you are tinkering with classes.

On a Windows system, the CLASSPATH environment variable is set with a semicolon-
separated list of directories and class archive files:

C:\> set CLASSPATH=C:\home\vicky\Java\classes;C:\home\josh\lib\foo.jar;.

The Java launcher and the other command-line tools know how to find the core
classes, which are the classes included in every Java installation. The classes in the
java.lang, java.io, java.net, and javax.swing packages, for example, are all core
classes so you do not need to include these classes in your classpath.

The classpath may also include “*” wildcards that match all JAR files within a direc‐
tory. For example:

export CLASSPATH=/home/pat/libs/*

To find other classes, the Java interpreter searches the elements of the classpath in
order. The search combines the path location and the components of the fully quali‐
fied class name. For example, consider a search for the class animals.birds.BigBird.
Searching the classpath directory /usr/lib/java means that the interpreter looks for an
individual class file at /usr/lib/java/animals/birds/BigBird.class. Searching a ZIP or
JAR archive on the classpath, say /home/vicky/myutils.jar, means that the interpreter
looks for component file animals/birds/BigBird.class within that archive.

For the Java runtime, java, and the Java compiler, javac, the classpath can also be
specified with the -classpath option:

The Classpath | 67

 % javac -classpath /home/pat/classes:/utils/utils.jar:. Foo.java

If you don’t specify the CLASSPATH environment variable or command-line option, the
classpath defaults to the current directory (.); this means that the files in your current
directory are normally available. If you change the classpath and don’t include the
current directory, these files will no longer be accessible.

We suspect that about 80% of the problems that newcomers have when first learning
Java are classpath related. You may wish to pay particular attention to setting and
checking the classpath when getting started. If you’re working inside an IDE, it may
remove some or all of the burden of managing the classpath. Ultimately, however,
understanding the classpath and knowing exactly what is in it when your application
runs is very important to your long-term sanity. The javap command, discussed next,
can be useful in debugging classpath issues.

javap
A useful tool to know about is the javap command. With javap, you can print a
description of a compiled class. You don’t need the source code, and you don’t even
need to know exactly where it is, only that it is in your classpath. For example:

 % javap java.util.Stack

prints the information about the java.util.Stack class:

Compiled from "Stack.java"
public class java.util.Stack<E> extends java.util.Vector<E> {
 public java.util.Stack();
 public E push(E);
 public synchronized E pop();
 public synchronized E peek();
 public boolean empty();
 public synchronized int search(java.lang.Object);
}

This is very useful if you don’t have other documentation handy and can also be help‐
ful in debugging classpath problems. Using javap, you can determine whether a class
is in the classpath and possibly even which version you are looking at (many classpath
issues involve duplicate classes in the classpath). If you are really curious, you can try
javap with the -c option, which causes it to also print the JVM instructions for each
method in the class!

Modules
As of Java 9, as an alternative to the classic classpath approach (which remains avail‐
able), you can take advantage of the new modules approach to Java applications.
Modules allow for more fine-grained, performant application deployments—even
when the application in question is large. They require extra setup so we won’t be

68 | Chapter 3: Tools of the Trade

tackling them in this book, but it is important to know that any commercially dis‐
tributed app will likely be module-based. You can check out Java 9 Modularity by Paul
Bakker and Sander Mak for more details and help modularizing your own larger
projects if you start looking to share your work beyond just posting source to public
repositories.

The Java Compiler
In this section, we’ll say a few words about javac, the Java compiler in the JDK. The
javac compiler is written entirely in Java, so it’s available for any platform that sup‐
ports the Java runtime system. javac turns Java source code into a compiled class that
contains Java bytecode. By convention, source files are named with a .java extension;
the resulting class files have a .class extension. Each source code file is considered a
single compilation unit. As you’ll see in Chapter 5, classes in a given compilation unit
share certain features, such as package and import statements.

javac allows one public class per file and insists that the file has the same name as the
class. If the filename and class name don’t match, javac issues a compilation error. A
single file can contain multiple classes, as long as only one of the classes is public and
is named for the file. Avoid packing too many classes into a single source file. Packing
classes together in a .java file only superficially associates them. In Chapter 5, we’ll
talk about inner classes—classes that contain other classes and interfaces.

As an example, place the following source code in the file BigBird.java:

 package animals.birds;

 public class BigBird extends Bird {
 ...
 }

Next, compile it with:

 % javac BigBird.java

Unlike the Java interpreter, which takes just a class name as its argument, javac needs
a filename (with the .java extension) to process. The previous command produces the
class file BigBird.class in the same directory as the source file. While it’s nice to see the
class file in the same directory as the source for this example, for most real applica‐
tions, you need to store the class file in an appropriate place in the classpath.

You can use the -d option with javac to specify an alternative directory for storing the
class files javac generates. The specified directory is used as the root of the class hier‐
archy, so .class files are placed in this directory or in a subdirectory below it, depend‐
ing on whether the class is contained in a package. (The compiler creates
intermediate subdirectories automatically, if necessary.) For example, we can use the

The Java Compiler | 69

https://oreil.ly/Wjs1q

following command to create the BigBird.class file at /home/vicky/Java/classes/
animals/birds/BigBird.class:

 % javac -d /home/vicky/Java/classes BigBird.java

You can specify multiple .java files in a single javac command; the compiler creates a
class file for each source file. But you don’t need to list the other classes your class
references as long as they are in the classpath in either source or compiled form. Dur‐
ing compilation, Java resolves all other class references using the classpath.

The Java compiler is more intelligent than your average compiler, replacing some of
the functionality of a make utility. For example, javac compares the modification
times of the source and class files for all classes and recompiles them as necessary. A
compiled Java class remembers the source file from which it was compiled, and as
long as the source file is available, javac can recompile it if necessary. If, in the previ‐
ous example, class BigBird references another class, animals.furry.Grover, javac
looks for the source file Grover.java in an animals.furry package and recompiles it,
if necessary, to bring the Grover.class class file up-to-date.

By default, however, javac checks only source files that are referenced directly from
other source files. This means that if you have an out-of-date class file that is refer‐
enced only by an up-to-date class file, it may not be noticed and recompiled. For that
and many other reasons, most projects use a real build utility such as Gradle to man‐
age builds, packaging, and more.

Finally, it’s important to note that javac can compile an application even if only the
compiled (binary) versions of some of the classes are available. You don’t need source
code for all your objects. Java class files contain all the data type and method signa‐
ture information that source files contain, so compiling against binary class files is as
type safe (and exception safe) as compiling with Java source code.

Trying Java
Java 9 introduced a utility call jshell, which allows you to try out bits of Java code and
see the results immediately. jshell is a REPL—a Read Evaluate Print Loop. Many lan‐
guages have them, and prior to Java 9 there were many third-party variations avail‐
able, but nothing built into the JDK itself. We saw a hint of what jshell can do in the
previous chapter; let’s look a little more carefully at its capabilities.

You can use a terminal or command window from your operating system, or you can
open a terminal tab in IntelliJ IDEA, as shown in Figure 3-2. Just type jshell at your
command prompt and you’ll see a bit of version information along with a quick
reminder about how to view help from within the REPL.

70 | Chapter 3: Tools of the Trade

https://gradle.org

Figure 3-2. Starting jshell inside IDEA

Let’s go ahead and try that help command now:

| Welcome to JShell -- Version 12
| For an introduction type: /help intro

jshell> /help intro
|
| intro
| =====
|
| The jshell tool allows you to execute Java code, getting immediate results.
| You can enter a Java definition (variable, method, class, etc),
| like: int x = 8
| or a Java expression, like: x + x
| or a Java statement or import.
| These little chunks of Java code are called 'snippets'.
|
| There are also the jshell tool commands that allow you to understand and
| control what you are doing, like: /list
|
| For a list of commands: /help

Trying Java | 71

jshell is quite powerful, and we won’t be using all of its features in this book. However,
we will certainly be using it to try Java code and make quick tweaks here and
throughout most of the remaining chapters. Think back to our HelloJava2 example,
“HelloJava2: The Sequel” on page 53. We can create UI elements like that JFrame right
in the REPL and then manipulate them—all while getting immediate feedback! No
need to save, compile, run, edit, save, compile, run, etc. Let’s try:

jshell> JFrame frame = new JFrame("HelloJava2")
| Error:
| cannot find symbol
| symbol: class JFrame
| JFrame frame = new JFrame("HelloJava2");
| ^----^
| Error:
| cannot find symbol
| symbol: class JFrame
| JFrame frame = new JFrame("HelloJava2");
| ^----^

Oops! jshell is smart and feature rich, but it is also quite literal. Remember that if you
want to use a class not included in the default package, you have to import it. That’s
true in Java source files, and it’s true when using jshell. Let’s try again:

jshell> import javax.swing.*

jshell> JFrame frame = new JFrame("HelloJava2")
frame ==> javax.swing.JFrame[frame0,0,23,0x0,invalid,hidden ... led=true]

That’s better. A little strange, probably, but better. Our frame object has been created.
That extra information after the ==> arrow is just the details about our JFrame, such
as its size (0x0) and position on-screen (0,23). Other types of objects will show other
details. Let’s give our frame some width and height like we did before and get our
frame on the screen where we can see it:

jshell> frame.setSize(300,200)

jshell> frame.setLocation(400,400)

jshell> frame.setVisible(true)

You should see a window pop up right before your very eyes! It will be resplendent in
modern finery, as shown in Figure 3-3.

72 | Chapter 3: Tools of the Trade

Figure 3-3. Showing a JFrame from jshell

By the way, don’t worry about making mistakes in the REPL. You’ll see an error mes‐
sage, but you can just correct whatever was wrong and keep going. As a quick exam‐
ple, imagine making a typo when trying to change the size of the frame:

jshell> frame.setsize(300,300)
| Error:
| cannot find symbol
| symbol: method setsize(int,int)
| frame.setsize(300,300)
| ^-----------^

Java is case-sensitive so setSize() is not the same as setsize(). jshell gives you the
same kind of error information that the Java compiler would, but presents it inline.
Correct that mistake and watch the frame get a little bigger (Figure 3-4)!

Amazing! Well, alright, perhaps it is less than useful, but we’re just starting. Let’s add
some text using the JLabel class:

jshell> JLabel label = new JLabel("Hi jshell!")
label ==>
javax.swing.JLabel[,
0,0,0x0, ...
rticalTextPosition=CENTER]

jshell> frame.add(label)
$8 ==>
javax.swing.JLabel[,0,0,0x0, ...
text=Hi, ...]

Trying Java | 73

Figure 3-4. Changing the size of our frame

Neat, but why didn’t our label show up in the frame? We’ll go into much more detail
on this in the chapter on user interfaces, but Java allows some graphical changes to
build up before realizing them on your screen. This can be an immensely efficient
trick but it can sometimes catch you off guard. Let’s force the frame to redraw itself
(Figure 3-5):

jshell> frame.revalidate()

jshell> frame.repaint()

74 | Chapter 3: Tools of the Trade

Figure 3-5. Adding a JLabel to our frame

Now we can see our label. Some actions will automatically trigger a call to revali
date() or repaint(). Any component already added to our frame before we make it
visible, for example, would appear right away when we do show the frame. Or we can
remove the label similarly to how we added it. Watch again to see what happens when
we change the size of the frame immediately after removing our label (Figure 3-6):

jshell> frame.remove(label) // as with add(), things don't change immediately

jshell> frame.setSize(400,150)

Trying Java | 75

Figure 3-6. Removing a label and resizing our frame

See? We have a new, slimmer window and no label—all without forced repainting.
We’ll do more work with UI elements in later chapters, but let’s try one more tweak to
our label just to show you how easy it is to try out new ideas or methods you looked
up in the documentation. We can center the label’s text, for example, resulting in
something like Figure 3-7:

jshell> frame.add(label)
$45 ==>
javax.swing.JLabel[,0,0,300x278,...,
text=Hi jshell!,...]

jshell> frame.revalidate()

jshell> frame.repaint()

jshell> label.setHorizontalAlignment(JLabel.CENTER)

Figure 3-7. Centering the text on our label

76 | Chapter 3: Tools of the Trade

We know this was another whirlwind tour with several bits of code that might not
make sense yet, like why is CENTER in all caps? Or why is the class name JLabel used
before our center alignment? Hopefully, typing along, probably making a few small
mistakes, correcting them, and seeing the results makes you want to know more. We
just want to make sure you have the tools needed to continue playing along as you go
throughout the rest of this book. Like so many other skills, programming benefits
from doing in addition to reading!

JAR Files
Java archive (JAR) files are Java’s suitcases. They are the standard and portable way to
pack up all the parts of your Java application into a compact bundle for distribution
or installation. You can put whatever you want into a JAR file: Java class files, serial‐
ized objects, data files, images, audio, etc. A JAR file can also carry one or more digi‐
tal signatures that attest to its integrity and authenticity. A signature can be attached
to the file as a whole or to individual items in the file.

The Java runtime system can load class files directly from an archive in your CLASS
PATH, as described earlier. Nonclass files (data, images, etc.) contained in your JAR file
can also be retrieved from the classpath by your application using the getResource()
method. Using this facility, your code doesn’t have to know whether any resource is in
a plain file or a member of a JAR archive. Whether a given class or data file is an item
in a JAR file or an individual file on the classpath, you can always refer to it in a stan‐
dard way and let Java’s class loader resolve the location.

File Compression
Items stored in JAR files are compressed with the standard ZIP file compression.
Compression makes downloading classes over a network much faster. A quick survey
of the standard Java distribution shows that a typical class file shrinks by about 40%
when it is compressed. Text files such as HTML or ASCII containing English words
often compress to one-tenth their original size or less. (On the other hand, image files
don’t normally get smaller when compressed, as most common image formats are
themselves a compression format.)

Java also has an archive format called Pack200, which is optimized specifically for
Java class bytecode and can achieve over four times’ greater compression of Java
classes than ZIP alone. We’ll talk about Pack200 later in this chapter.

The jar Utility
The jar utility provided with the JDK is a simple tool for creating and reading JAR
files. Its user interface isn’t particularly friendly. It mimics the Unix tar (tape archive)
command. If you’re familiar with tar, you’ll recognize the following incantations:

JAR Files | 77

jar -cvf jarFile path [path] […]

Create jarFile containing path(s).

jar -tvf jarFile [path] […]

List the contents of jarFile, optionally showing just path(s).

jar -xvf jarFile [path] […]

Extract the contents of jarFile, optionally extracting just path(s).

In these commands, the flag letters c, t, and x tell jar whether it is creating an archive,
listing an archive’s contents, or extracting files from an archive. The f means that the
next argument is the name of the JAR file on which to operate. The optional v flag
tells jar to be verbose when displaying information about files. In verbose mode, you
get information about file sizes, modification times, and compression ratios.

Subsequent items on the command line (i.e., anything aside from the letters telling jar
what to do and the file on which jar should operate) are taken as names of archive
items. If you’re creating an archive, the files and directories you list are placed in it. If
you’re extracting, only the filenames you list are extracted from the archive. (If you
don’t list any files, jar extracts everything in the archive.)

For example, let’s say we have just completed our new game, spaceblaster. All the files
associated with the game are in three directories. The Java classes themselves are in
the spaceblaster/game directory, spaceblaster/images contains the game’s images, and
spaceblaster/docs contains associated game data. We can pack all this in an archive
with this command:

 % jar -cvf spaceblaster.jar spaceblaster

Because we requested verbose output, jar tells us what it is doing:

 adding:spaceblaster/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/game/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/game/Game.class (in=8035) (out=3936) (deflated 51%)
 adding:spaceblaster/game/Planetoid.class (in=6254) (out=3288) (deflated 47%)
 adding:spaceblaster/game/SpaceShip.class (in=2295) (out=1280) (deflated 44%)
 adding:spaceblaster/images/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/images/spaceship.gif (in=6174) (out=5936) (deflated 3%)
 adding:spaceblaster/images/planetoid.gif (in=23444) (out=23454) (deflated 0%)
 adding:spaceblaster/docs/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/docs/help1.html (in=3592) (out=1545) (deflated 56%)
 adding:spaceblaster/docs/help2.html (in=3148) (out=1535) (deflated 51%)

jar creates the file spaceblaster.jar and adds the directory spaceblaster, adding the
directories and files within spaceblaster to the archive. In verbose mode, jar reports
the savings gained by compressing the files in the archive.

We can unpack the archive with this command:

 % jar -xvf spaceblaster.jar

78 | Chapter 3: Tools of the Trade

Likewise, we can extract an individual file or directory with:

 % jar -xvf spaceblaster.jar filename

But, of course, you normally don’t have to unpack a JAR file to use its contents; Java
tools know how to extract files from archives automatically. We can list the contents
of our JAR with the command:

 % jar -tvf spaceblaster.jar

Here’s the output; it lists all the files, their sizes, and their creation times:

 0 Thu May 15 12:18:54 PDT 2003 META-INF/
 1074 Thu May 15 12:18:54 PDT 2003 META-INF/MANIFEST.MF
 0 Thu May 15 12:09:24 PDT 2003 spaceblaster/
 0 Thu May 15 11:59:32 PDT 2003 spaceblaster/game/
 8035 Thu May 15 12:14:08 PDT 2003 spaceblaster/game/Game.class
 6254 Thu May 15 12:15:18 PDT 2003 spaceblaster/game/Planetoid.class
 2295 Thu May 15 12:15:26 PDT 2003 spaceblaster/game/SpaceShip.class
 0 Thu May 15 12:17:00 PDT 2003 spaceblaster/images/
 6174 Thu May 15 12:16:54 PDT 2003 spaceblaster/images/spaceship.gif
 23444 Thu May 15 12:16:58 PDT 2003 spaceblaster/images/planetoid.gif
 0 Thu May 15 12:10:02 PDT 2003 spaceblaster/docs/
 3592 Thu May 15 12:10:16 PDT 2003 spaceblaster/docs/help1.html
 3148 Thu May 15 12:10:02 PDT 2003 spaceblaster/docs/help2.html

JAR manifests
Note that the jar command automatically adds a directory called META-INF to our
archive. The META-INF directory holds files describing the contents of the JAR file. It
always contains at least one file: MANIFEST.MF. The MANIFEST.MF file can contain
a “packing list” naming the files in the archive along with a user-definable set of
attributes for each entry.

The manifest is a text file containing a set of lines in the form keyword: value. The
manifest is, by default, empty and contains only JAR file version information:

 Manifest-Version: 1.0
 Created-By: 1.7.0_07 (Oracle Corporation)

It is also possible to sign JAR files with a digital signature. When you do this, digest
(checksum) information is added to the manifest for each archived item (as shown
next) and the META-INF directory holds digital signature files for items in the
archive:

 Name: com/oreilly/Test.class
 SHA1-Digest: dF2GZt8G11dXY2p4olzzIc5RjP3=
 ...

You can add your own information to the manifest descriptions by specifying your
own supplemental, manifest file when you create the archive. This is one possible

JAR Files | 79

place to store other simple kinds of attribute information about the files in the
archive, perhaps version or authorship information.

For example, we can create a file with the following keyword: value lines:

 Name: spaceblaster/images/planetoid.gif
 RevisionNumber: 42.7
 Artist-Temperament: moody

To add this information to the manifest in our archive, place it in a file called
myManifest.mf and give the following jar command:

 % jar -cvmf myManifest.mf spaceblaster.jar spaceblaster

We included an additional option, m, which specifies that jar should read additional
manifest information from the file given on the command line. How does jar know
which file is which? Because m is before f, it expects to find the manifest information
before the name of the JAR file it will create. If you think that’s awkward, you’re right;
get the names in the wrong order, and jar does the wrong thing.

An application can get this manifest information from a JAR file using the
java.util.jar.Manifest class.

Making a JAR file runnable
Aside from attributes, you can put a few special values in the manifest file. One of
these, Main-Class, allows you to specify the class containing the primary main()
method for an application contained in the JAR:

 Main-Class: com.oreilly.Game

If you add this to your JAR file manifest (using the m option described earlier), you
can run the application directly from the JAR:

 % java -jar spaceblaster.jar

Some GUI environments used to support double-clicking on the JAR file to launch
the application. The interpreter looks for the Main-Class value in the manifest, then
loads the designated class as the application’s startup class. This feature seems to be in
flux and is not supported on all operating systems, so you may need to investigate
other Java application distribution options if you are creating an app you want to
share with others.

The pack200 Utility
Pack200 is an archive format that is optimized for storing compiled Java class files.
Pack200 is not a new form of compression, but rather an efficient layout for class
information that eliminates many types of waste and redundancy across related
classes. It is effectively a bulk class-file format that deconstructs many classes and

80 | Chapter 3: Tools of the Trade

reassembles their parts efficiently into one catalog. This then allows a standard com‐
pression format like ZIP to work at maximum efficiency on the archive, achieving
four or more times’ greater compression. The Java runtime does not understand the
pack200 format, so you cannot place archives of this type into the classpath. Instead,
it is mainly an intermediate format that is very useful for transferring application
JARs over the network for applets or other kinds of web-based applications.

It was popular for delivering applets around the web back in the day, but as applets
have faded (well, disappeared), so too has the utility of the pack200 format. You may
still encounter some .pack.gz files so we wanted to mention the tools you would use,
but the tools themselves have been removed in Java 14.

You can convert a JAR to and from pack200 format with the pack200 and unpack200
commands supplied with the JDK and OpenJDK prior to Java version 14.

For example, to convert foo.jar to foo.pack.gz, use the pack200 command:

 % pack200 foo.pack.gz foo.jar

To convert foo.pack.gz to foo.jar:

 % unpack200 foo.pack.gz foo.jar

Note that the pack200 process completely tears down and reconstructs your classes at
the class level, so the resulting foo.jar file will not be byte-for-byte the same as the
original.

Building Up
Alrighty then. There are obviously quite a few tools in the Java ecosystem—they got
the name right with the initial bundling of everything into the Java Development
“Kit.” You won’t use every tool mentioned above right away so don’t worry if the list
of utilities seems a little overwhelming. We will focus on using the javac compiler
utility as you wade farther and farther into the Java waters. Even then, the compiler
and several other tools are helpfully wrapped up behind buttons in your IDE. Our
goal for this chapter is to make sure you know what tools are out there so that you
can come back for details when you need them.

Hopefully, now that you’ve seen some of the arsenal available to help process and
package Java code, you’re ready to write some of that code. The next several chapters
lay the foundations for doing just that, so let’s dive in!

Building Up | 81

CHAPTER 4

The Java Language

This chapter begins our introduction to the Java language syntax. Because readers
come to this book with different levels of programming experience, it is difficult to
set the right level for all audiences. We have tried to strike a balance between giving a
thorough tour with several examples of the language syntax for beginners and pro‐
viding enough background information so that a more experienced reader can
quickly gauge the differences between Java and other languages. Since Java’s syntax is
derived from C, we make some comparisons to features of that language, but no prior
knowledge of C is necessary. Chapter 5 will build on this chapter by talking about
Java’s object-oriented side and complete the discussion of the core language. Chap‐
ter 7 discusses generics, a feature that enhances the way types work in the Java lan‐
guage, allowing you to write certain kinds of classes more flexibly and safely. After
that, we dive into the Java APIs and see what we can do with the language. The rest of
this book is filled with concise examples that do useful things in a variety of areas. If
you are left with any questions after these introductory chapters, we hope they’ll be
answered as you look at the code. There is always more to learn, of course! We’ll try
to point out other resources along the way that might benefit folks looking to con‐
tinue their Java journey beyond the topics we cover.

For readers just beginning their programming journey, the web will likely be a con‐
stant companion. Many, many sites, Wikipedia articles, blog posts, and, well, the
entirety of Stack Overflow can help you dig into particular topics or answer small
questions that might arise. For example, while this book covers the Java language and
how to start writing useful programs with Java and its tools, we don’t cover lower,
core components of programming such as algorithms. These programming funda‐
mentals will naturally appear in our discussions and code examples, but you might
enjoy a few hyperlink tangents to help cement certain details or fill in gaps we must
necessarily leave.

83

https://oreil.ly/XHO1v
https://oreil.ly/hXXGL

1 For more information about Unicode, see http://www.unicode.org. Ironically, one of the scripts listed as “obso‐
lete and archaic” and not currently supported by the Unicode standard is Javanese—a historical language of
the people of the Island of Java.

Text Encoding
Java is a language for the internet. Since the citizens of the Net speak and write in
many different human languages, Java must be able to handle a large number of lan‐
guages as well. One of the ways in which Java supports internationalization is through
the Unicode character set. Unicode is a worldwide standard that supports the scripts
of most languages.1 The latest version of Java bases its character and string data on
the Unicode 6.0 standard, which uses at least two bytes to represent each symbol
internally.

Java source code can be written using Unicode and stored in any number of character
encodings, ranging from a full binary form to ASCII-encoded Unicode character val‐
ues. This makes Java a friendly language for non-English-speaking programmers who
can use their native language for class, method, and variable names just as they can
for the text displayed by the application.

The Java char type and String class natively support Unicode values. Internally, the
text is stored using either char[] or byte[]; however, the Java language and APIs
make this transparent to you and you will not generally have to think about it. Uni‐
code is also very ASCII-friendly (ASCII is the most common character encoding for
English). The first 256 characters are defined to be identical to the first 256 characters
in the ISO 8859-1 (Latin-1) character set, so Unicode is effectively backward-
compatible with the most common English character sets. Furthermore, one of the
most common file encodings for Unicode, called UTF-8, preserves ASCII values in
their single byte form. This encoding is used by default in compiled Java class files, so
storage remains compact for English text.

Most platforms can’t display all currently defined Unicode characters. As a result, Java
programs can be written with special Unicode escape sequences. A Unicode character
can be represented with this escape sequence:

 \uxxxx

xxxx is a sequence of one to four hexadecimal digits. The escape sequence indicates
an ASCII-encoded Unicode character. This is also the form Java uses to output (print)
Unicode characters in an environment that doesn’t otherwise support them. Java also
comes with classes to read and write Unicode character streams in specific encodings,
including UTF-8.

As with many long-lived standards in the tech world, Unicode was originally
designed with so much extra space that no conceivable character encoding could ever

84 | Chapter 4: The Java Language

http://www.unicode.org

possibly require more than 64K characters. Sigh. Naturally we have sailed past that
limit and some UTF-32 encodings are in popular circulation. Most notably, emoji
characters scattered throughout messaging apps are encoded beyond the standard
range of Unicode characters. (For example, the canonical smiley emoji has the Uni‐
code value 1F600.) Java supports multibyte UTF-16 escape sequences for such char‐
acters. Not every platform that supports Java will support emoji output, but you can
fire up jshell to find out if your environment can show emoji characters (see
Figure 4-1).

Figure 4-1. Printing emojis in the macOS Terminal app

Be careful about using such characters, though. We had to use a screenshot to make
sure you could see the little cuties in jshell running on a Mac. But fire up a Java desk‐
top app on that same system with a JFrame and JLabel like we did in Chapter 3 and
you get Figure 4-2.

jshell> import javax.swing.*

jshell> JFrame f = new JFrame("Emoji Test")
f ==>
javax.swing.JFrame[frame0
,0,23,0x0,invalid,hidden ...
=true]

jshell> JLabel l = new JLabel("Hi \uD83D\uDE00")
l ==> javax.swing.JLabel[,
0,0,0x0,invalid,alignmentX=0. ...
=CENTER]

jshell> f.add(l)
$12 ==> javax.swing.JLabel[,0,0,0x0,invalid,alignmentX= ...
rticalTextPosition=CENTER]

jshell> f.setSize(300,200)

Text Encoding | 85

jshell> f.setVisible(true)

It’s not that you can’t use or support emoji in your applications, you just have to be
aware of differences in output features. Make sure your users have a good experience
wherever they are running your code.

Figure 4-2. Failing to show emoji in a JFrame

Comments
Java supports both C-style block comments delimited by /* and */ and C++-style line
comments indicated by //:

 /* This is a
 multiline
 comment. */

 // This is a single-line comment
 // and so // is this

Block comments have both a beginning and end sequence and can cover large ranges
of text. However, they cannot be “nested,” meaning that you can’t have a block com‐
ment inside of a block comment without the compiler getting confused. Single-line
comments have only a start sequence and are delimited by the end of a line; extra //
indicators inside a single line have no effect. Line comments are useful for short com‐
ments within methods; they don’t conflict with block comments, so you can still com‐
ment out larger chunks of code in which they are nested.

86 | Chapter 4: The Java Language

Javadoc Comments
A block comment beginning with /** indicates a special doc comment. A doc com‐
ment is designed to be extracted by automated documentation generators, such as the
JDK’s javadoc program or the context-aware tooltips in many IDEs. A doc comment
is terminated by the next */, just as with a regular block comment. Within the doc
comment, lines beginning with @ are interpreted as special instructions for the docu‐
mentation generator, giving it information about the source code. By convention,
each line of a doc comment begins with a *, as shown in the following example, but
this is optional. Any leading spacing and the * on each line are ignored:

 /**
 * I think this class is possibly the most amazing thing you will
 * ever see. Let me tell you about my own personal vision and
 * motivation in creating it.
 * <p>
 * It all began when I was a small child, growing up on the
 * streets of Idaho. Potatoes were the rage, and life was good...
 *
 * @see PotatoPeeler
 * @see PotatoMasher
 * @author John 'Spuds' Smith
 * @version 1.00, 19 Nov 2019
 */
 class Potato {

javadoc creates HTML documentation for classes by reading the source code and
pulling out the embedded comments and @ tags. In this example, the tags cause
author and version information to be presented in the class documentation. The @see
tags produce hypertext links to the related class documentation.

The compiler also looks at the doc comments; in particular, it is interested in the @dep
recated tag, which means that the method has been declared obsolete and should be
avoided in new programs. The fact that a method is deprecated is noted in the com‐
piled class file so a warning message can be generated whenever you use a deprecated
feature in your code (even if the source isn’t available).

Doc comments can appear above class, method, and variable definitions, but some
tags may not be applicable to all of these. For example, the @exception tag can only
be applied to methods. Table 4-1 summarizes the tags used in doc comments.

Comments | 87

Table 4-1. Doc comment tags

Tag Description Applies to

@see Associated class name Class, method, or variable

@code Source code content Class, method, or variable

@link Associated URL Class, method, or variable

@author Author name Class

@version Version string Class

@param Parameter name and description Method

@return Description of return value Method

@exception Exception name and description Method

@deprecated Declares an item to be obsolete Class, method, or variable

@since Notes API version when item was added Variable

Javadoc as metadata
Javadoc tags in doc comments represent metadata about the source code; that is, they
add descriptive information about the structure or contents of the code that is not,
strictly speaking, part of the application. Some additional tools extend the concept of
Javadoc-style tags to include other kinds of metadata about Java programs that are
carried with the compiled code and can more readily be used by the application to
affect its compilation or runtime behavior. The Java annotations facility provides a
more formal and extensible way to add metadata to Java classes, methods, and vari‐
ables. This metadata is also available at runtime.

Annotations

The @ prefix serves another role in Java that can look similar to tags. Java supports the
notion of annotations as a means of marking certain content for special treatment.
You apply annotations to code outside of comments. The annotation can provide
information useful to the compiler or to your IDE. For example, the @SuppressWarn
ings annotation causes the compiler (and often your IDE as well) to hide warnings
about things such as unreachable code. As you get into creating more interesting
classes in “Advanced Class Design” on page 155, you may see your IDE add @Over
rides annotations to your code. This annotation tells the compiler to perform some
extra checks; these checks are meant to help you write valid code and catch errors
before you (or your users) run your program.

You can even create custom annotations to work with other tools or frameworks.
While a deeper discussion of annotations is beyond the scope of this book, we will
take advantage of some very handy annotations for web programming in Chapter 12.

88 | Chapter 4: The Java Language

Variables and Constants
While commenting your code is critical to producing readable, maintainable files, at
some point you have to start writing some compilable content. Programming is
manipulating that content. In just about every language, such information is stored in
variables and constants for easier use by the programmer. Java has both. Variables
store information that you plan to change and reuse over time (or information that
you don’t know ahead of time such as a user’s email address). Constants store infor‐
mation that is, well, constant. We’ve seen examples of both elements even in our tiny
starter programs. Recall our simple graphical label from “HelloJava” on page 41:

 import javax.swing.*;

 public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 frame.add(label);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
 }

In this snippet, frame is a variable. We load it up in line 5 with a new instance of the
JFrame class. Then we get to reuse that same instance in line 7 to add our label. We
reuse the variable again to set the size of our frame in line 8 and to make it visible in
line 9. All that reuse is exactly where variables shine.

Line 6 contains a constant: JLabel.CENTER. Constants contain some value that never
changes throughout your program. Information that doesn’t change may seem like a
strange thing to store—why not just use the information itself each time? Since the
programmer writing the code gets to select the name of the constant, one immediate
benefit is that you can describe the information in a useful way. JLabel.CENTER may
seem a little opaque still, but the word “CENTER” at least gives you a hint about
what’s happening.

The use of named constants also allows for simpler changes down the road. If you
code something like the maximum number of some resource you use, altering that
limit is much easier if all you have to do is change the initialized value of the constant.
If you use a literal number like “5,” you would have to hunt through all of your Java
files to track down every occurrence of a 5 and change it as well—if that particular 5
was in fact referring to the resource limit. That type of manual search and replace is
prone to error quite above and beyond being tedious.

We’ll see more details on the types and initial values of variables and constants later
in the next section. As always, feel free to use jshell to explore and discover some of
those details on your own! Although note that due to interpreter limitations, you

Variables and Constants | 89

cannot declare your own top-level constants in jshell. You can still use constants
defined for classes like JLabel.CENTER above or define them in your own classes you
might type into jshell. The Math class has all sorts of nifty functions and a constant for
π. Try calculating and storing the area of a circle in a variable. Then prove to yourself
that reassigning constants won’t work.

jshell> double radius = 42.0;
radius ==> 42.0

jshell> Math.PI
$2 ==> 3.141592653589793

jshell> Math.PI = 3;
| Error:
| cannot assign a value to final variable PI
| Math.PI = 3;
| ^-----^

jshell> double area = Math.PI * radius * radius;
area ==> 5541.769440932396

jshell> radius = 6;
radius ==> 6.0

jshell> area = Math.PI * radius * radius;
area ==> 113.09733552923255

jshell> area
area ==> 113.09733552923255

Notice the compiler error when we try to set π to 3. Also notice that both radius and
area can be changed after they were declared and intialized. But variables only hold
one value at a time. The latest calculation is the only thing that remains in the vari‐
able area.

Types
The type system of a programming language describes how its data elements (the
variables and constants we just touched on) are associated with storage in memory
and how they are related to one another. In a statically typed language, such as C or C
++, the type of a data element is a simple, unchanging attribute that often corre‐
sponds directly to some underlying hardware phenomenon, such as a register or a
pointer value. In a more dynamic language, such as Smalltalk or Lisp, variables can be
assigned arbitrary elements and can effectively change their type throughout their
lifetime. A considerable amount of overhead goes into validating what happens in
these languages at runtime. Scripting languages, such as Perl, achieve ease of use by
providing drastically simplified type systems in which only certain data elements can

90 | Chapter 4: The Java Language

be stored in variables, and values are unified into a common representation, such as
strings.

Java combines many of the best features of both statically and dynamically typed lan‐
guages. As in a statically typed language, every variable and programming element in
Java has a type that is known at compile time, so the runtime system doesn’t normally
have to check the validity of assignments between types while the code is executing.
Unlike traditional C or C++, Java also maintains runtime information about objects
and uses this to allow truly dynamic behavior. Java code may load new types at run‐
time and use them in fully object-oriented ways, allowing casting and full polymor‐
phism (extending of types). Java code may also “reflect” upon or examine its own
types at runtime, allowing advanced kinds of application behavior such as inter‐
preters that can interact with compiled programs dynamically.

Java data types fall into two categories. Primitive types represent simple values that
have built-in functionality in the language; they represent simple values such as num‐
bers, booleans, and characters. Reference types (or class types) include objects and
arrays; they are called reference types because they “refer to” a large data type that is
passed “by reference,” as we’ll explain shortly. Generic types and methods define and
operate on objects of various types while providing compile-time type safety. For
example, a List<String> is a List that can only contain Strings. These are also ref‐
erence types and we’ll see much more of them in Chapter 7.

Primitive Types
Numbers, characters, and boolean values are fundamental elements in Java. Unlike
some other (perhaps more pure) object-oriented languages, they are not objects. For
those situations where it’s desirable to treat a primitive value as an object, Java pro‐
vides “wrapper” classes. (More on this later.) The major advantage of treating primi‐
tive values as special is that the Java compiler and runtime can more readily optimize
their implementation. Primitive values and computations can still be mapped down
to hardware as they always have been in lower-level languages. Indeed, if you work
with native libraries using the Java Native Interface (JNI) to interact with other lan‐
guages or services, these primitive types will figure prominently in your code.

An important portability feature of Java is that primitive types are precisely defined.
For example, you never have to worry about the size of an int on a particular plat‐
form; it’s always a 32-bit, signed, two’s complement number. The “size” of a numeric
type determines how big (or how precise) a value you can store. For example, the
byte type is for small numbers, from -128 to 127, while the int type can handle most
numeric needs, storing values between (roughly) +/- two billion. Table 4-2 summari‐
zes Java’s primitive types.

Types | 91

Table 4-2. Java primitive data types

Type Definition Approximate range or precision

boolean Logical value true or false

char 16-bit, Unicode character 64K characters

byte 8-bit, signed, two’s complement integer -128 to 127

short 16-bit, signed, two’s complement integer -32,768 to 32,767

int 32-bit, signed, two’s complement integer -2.1e9 to 2.1e9

long 64-bit, signed, two’s complement integer -9.2e18 to 9.2e18

float 32-bit, IEEE 754, floating-point value 6-7 significant decimal places

double 64-bit, IEEE 754 15 significant decimal places

Those of you with a C background may notice that the primitive
types look like an idealization of C scalar types on a 32-bit
machine, and you’re absolutely right. That’s how they’re supposed
to look. The 16-bit characters were forced by Unicode, and ad hoc
pointers were deleted for other reasons. But overall, the syntax and
semantics of Java primitive types derive from C.

But why have sizes at all? Again, that goes back to efficiency and optimization. The
number of goals for a soccer match rarely crest the single digits—they would fit in a
byte variable. The number of fans watching that match, however, would need some‐
thing bigger. The total amount of money spent by all of the fans at all of the soccer
matches in all of the World Cup countries would need something bigger still. By pick‐
ing the right size, you give the compiler the best chance at optimizing your code, thus
making your application run faster or consume fewer system resources or both.

If you do need bigger numbers than the primitive types offer, you can check out the
BigInteger and BigDecimal classes in the java.Math package. These classes offer
near-infinite size or precision. Some scientific or cryptographic applications require
you to store and manipulate very large (or very small) numbers, and value accuracy
over performance. We won’t cover those classes in this book, but store their names
away in the back of your brain for a rainy day’s research.

Floating-point precision
Floating-point operations in Java follow the IEEE 754 international specification,
which means that the result of floating-point calculations is normally the same on dif‐
ferent Java platforms. However, Java allows for extended precision on platforms that
support it. This can introduce extremely small-valued and arcane differences in the
results of high-precision operations. Most applications would never notice this, but if
you want to ensure that your application produces exactly the same results on differ‐
ent platforms, you can use the special keyword strictfp as a class modifier on the

92 | Chapter 4: The Java Language

class containing the floating-point manipulation (we cover classes in the next chap‐
ter). The compiler then prohibits these platform-specific optimizations.

Variable declaration and initialization
Variables are declared inside of methods and classes with a type name followed by
one or more comma-separated variable names. For example:

 int foo;
 double d1, d2;
 boolean isFun;

Variables can optionally be initialized with an expression of the appropriate type
when they are declared:

 int foo = 42;
 double d1 = 3.14, d2 = 2 * 3.14;
 boolean isFun = true;

Variables that are declared as members of a class are set to default values if they aren’t
initialized (see Chapter 5). In this case, numeric types default to the appropriate fla‐
vor of zero, characters are set to the null character (\0), and boolean variables have
the value false. (Reference types also get a default value, null, but more on that soon
in “Reference Types” on page 95.) Local variables, which are declared inside a method
and live only for the duration of a method call, on the other hand, must be explicitly
initialized before they can be used. As we’ll see, the compiler enforces this rule so
there is no danger of forgetting.

Integer literals
Integer literals can be specified in binary (base 2), octal (base 8), decimal (base 10), or
hexadecimal (base 16). Binary, octal, and hexadecimal bases are mostly used when
dealing with low-level file or network data. They represent useful groupings of indi‐
vidual bits: 1, 3, and 4 bits, respectively. Decimal values have no such mapping, but
they are much more human-friendly for most numeric information. A decimal inte‐
ger is specified by a sequence of digits beginning with one of the characters 1–9:

 int i = 1230;

A binary number is denoted by the leading characters 0b or 0B (zero “b”), followed by
a combination of zeros and ones:

 int i = 0b01001011; // i = 75 decimal

Octal numbers are distinguished from decimal numbers by a simple leading zero:

 int i = 01230; // i = 664 decimal

Types | 93

A hexadecimal number is denoted by the leading characters 0x or 0X (zero “x”), fol‐
lowed by a combination of digits and the characters a–f or A–F, which represent the
decimal values 10–15:

 int i = 0xFFFF; // i = 65535 decimal

Integer literals are of type int unless they are suffixed with an L, denoting that they
are to be produced as a long value:

 long l = 13L;
 long l = 13; // equivalent: 13 is converted from type int
 long l = 40123456789L;
 long l = 40123456789; // error: too big for an int without conversion

(The lowercase letter l is also acceptable but should be avoided because it often looks
like the number 1.)

When a numeric type is used in an assignment or an expression involving a “larger”
type with a greater range, it can be promoted to the bigger type. In the second line of
the previous example, the number 13 has the default type of int, but it’s promoted to
type long for assignment to the long variable. Certain other numeric and comparison
operations also cause this kind of arithmetic promotion, as do mathematical expres‐
sions involving more than one type. For example, when multiplying a byte value by
an int value, the compiler promotes the byte to an int first:

 byte b = 42;
 int i = 43;
 int result = b * i; // b is promoted to int before multiplication

A numeric value can never go the other way and be assigned to a type with a smaller
range without an explicit cast, however:

 int i = 13;
 byte b = i; // Compile-time error, explicit cast needed
 byte b = (byte) i; // OK

Conversions from floating-point to integer types always require an explicit cast
because of the potential loss of precision.

Finally, we should note that if you are using Java 7 or later, you can add a bit of for‐
matting to your numeric literals by utilizing the “_” underscore character between
digits. So if you have particularly large strings of digits, you can break them up as in
the following examples:

 int RICHARD_NIXONS_SSN = 567_68_0515;
 int for_no_reason = 1___2___3;
 int JAVA_ID = 0xCAFE_BABE;
 long grandTotal = 40_123_456_789L;

Underscores may only appear between digits, not at the beginning or end of a num‐
ber or next to the “L” long integer signifier. Try out some big numbers in jshell. Notice

94 | Chapter 4: The Java Language

that if you try to store a long value without the signifier, you’ll get an error. You can
see how the formatting really is just for your convenience. It is not stored; only the
value is kept in your variable or constant.

jshell> long m = 41234567890;
| Error:
| integer number too large
| long m = 41234567890;
| ^

jshell> long m = 40123456789L;
m ==> 40123456789

jshell> long grandTotal = 40_123_456_789L;
grandTotal ==> 40123456789

Try some other examples. It can be useful to get a sense of what is readable to you. It
can also help drive home the kinds of promotions and castings that are available or
required. Nothing like immediate feedback to help learn these subtleties!

Floating-point literals
Floating-point values can be specified in decimal or scientific notation. Floating-point
literals are of type double unless they are suffixed with an f or F denoting that they
are to be produced as a float value. And just as with integer literals, in Java 7 you
may use “_” underscore characters to format floating-point numbers—but only
between digits, not at the beginning, end, or next to the decimal point or “F” signifier
of the number.

 double d = 8.31;
 double e = 3.00e+8;
 float f = 8.31F;
 float g = 3.00e+8F;
 float pi = 3.14_159_265_358;

Character literals
A literal character value can be specified either as a single-quoted character or as an
escaped ASCII or Unicode sequence:

 char a = 'a';
 char newline = '\n';
 char smiley = '\u263a';

Reference Types
In an object-oriented language like Java, you create new, complex data types from
simple primitives by creating a class. Each class then serves as a new type in the lan‐
guage. For example, if we create a new class called Foo in Java, we are also implicitly

Types | 95

2 The comparable code in C++ would be:
Foo& myFoo = *(new Foo());

Foo& anotherFoo = myFoo;

creating a new type called Foo. The type of an item governs how it’s used and where it
can be assigned. As with primitives, an item of type Foo can, in general, be assigned to
a variable of type Foo or passed as an argument to a method that accepts a Foo value.

A type is not just a simple attribute. Classes can have relationships with other classes
and so do the types that they represent. All classes in Java exist in a parent-child hier‐
archy, where a child class or subclass is a specialized kind of its parent class. The cor‐
responding types have the same relationship, where the type of the child class is
considered a subtype of the parent class. Because child classes inherit all of the func‐
tionality of their parent classes, an object of the child’s type is in some sense equiva‐
lent to or an extension of the parent type. An object of the child type can be used in
place of an object of the parent’s type. For example, if you create a new class, Cat, that
extends Animal, the new type, Cat, is considered a subtype of Animal. Objects of type
Cat can then be used anywhere an object of type Animal can be used; an object of type
Cat is said to be assignable to a variable of type Animal. This is called subtype poly‐
morphism and is one of the primary features of an object-oriented language. We’ll
look more closely at classes and objects in Chapter 5.

Primitive types in Java are used and passed “by value.” In other words, when a primi‐
tive value like an int is assigned to a variable or passed as an argument to a method,
its value is simply copied. Reference types (class types), on the other hand, are always
accessed “by reference.” A reference is a handle or a name for an object. What a vari‐
able of a reference type holds is a “pointer” to an object of its type (or of a subtype, as
described earlier). When the reference is assigned to a variable or passed to a method,
only the reference is copied, not the object to which it’s pointing. A reference is like a
pointer in C or C++, except that its type is strictly enforced. The reference value itself
can’t be explicitly created or changed. A variable acquires a reference value only
through assignment to an appropriate object.

Let’s run through an example. We declare a variable of type Foo, called myFoo, and
assign it an appropriate object:2

 Foo myFoo = new Foo();
 Foo anotherFoo = myFoo;

myFoo is a reference-type variable that holds a reference to the newly constructed Foo
object. (For now, don’t worry about the details of creating an object; again, we’ll cover
that in Chapter 5.) We declare a second Foo type variable, anotherFoo, and assign it
to the same object. There are now two identical references : myFoo and anotherFoo,
but only one actual Foo object instance. If we change things in the state of the Foo

96 | Chapter 4: The Java Language

object itself, we see the same effect by looking at it with either reference. We can see
behind the scenes a little bit by trying this with jshell:

jshell> class Foo {}
| created class Foo

jshell> Foo myFoo = new Foo()
myFoo ==> Foo@21213b92

jshell> Foo anotherFoo = myFoo
anotherFoo ==> Foo@21213b92

jshell> Foo notMyFoo = new Foo()
notMyFoo ==> Foo@66480dd7

Notice the result of the creation and assignments. Here you can see that Java refer‐
ence types come with a pointer value (21213b92, the right side of the @) and their type
(Foo, the left side of the @). When we create a new Foo object, notMyFoo, we get a dif‐
ferent pointer value. myFoo and anotherFoo point to the same object; notMyFoo points
to a second, separate object.

Inferring Types
Modern versions of Java have continually improved the ability to infer variable types
in many situations. You can use the var keyword in conjunction with the declaration
and intiation of a variable and allow the compiler to infer the correct type:

jshell> class Foo2 {}
| created class Foo2

jshell> Foo2 myFoo2 = new Foo2()
myFoo2 ==> Foo2@728938a9

jshell> var myFoo3 = new Foo2()
myFoo3 ==> Foo2@6433a2

Notice the (admittedly ugly) output when you create myFoo3 in jshell. Although we
did not explicitly give the type as we did for myFoo2, the compiler can easily under‐
stand the correct type to use, and we do, in fact, get a Foo2 object.

Passing References
Object references are passed to methods in the same way. In this case, either myFoo or
anotherFoo would serve as equivalent arguments:

 myMethod(myFoo);

An important, but sometimes confusing, distinction to make at this point is that the
reference itself is a value and that value is copied when it is assigned to a variable or
passed in a method call. Given our previous example, the argument passed to a

Types | 97

method (a local variable from the method’s point of view) is actually a third reference
to the Foo object, in addition to myFoo and anotherFoo. The method can alter the
state of the Foo object through that reference (calling its methods or altering its vari‐
ables), but it can’t change the caller’s notion of the reference to myFoo: that is, the
method can’t change the caller’s myFoo to point to a different Foo object; it can change
only its own reference. This will be more obvious when we talk about methods later.
Java differs from C++ in this respect. If you need to change a caller’s reference to an
object in Java, you need an additional level of indirection. The caller would have to
wrap the reference in another object so that both could share the reference to it.

Reference types always point to objects (or null), and objects are always defined by
classes. Similar to native types, instance or class variables that are not explicitly ini‐
tialized when they are declared will be assigned the default value of null. Also, like
native types, local variables that have a reference type are not initialized by default so
you must set your own value before using them. However, two special kinds of refer‐
ence types—arrays and interfaces—specify the type of object they point to in a
slightly different way.

Arrays in Java have a special place in the type system. They are a special kind of object
automatically created to hold a collection of some other type of object, known as the
base type. Declaring an array type reference implicitly creates the new class type
designed as a container for its base type, as you’ll see later in this chapter.

Interfaces are a bit sneakier. An interface defines a set of methods and gives it a corre‐
sponding type. An object that implements the methods of the interface can be
referred to by that interface type, as well as its own type. Variables and method argu‐
ments can be declared to be of interface types, just like other class types, and any
object that implements the interface can be assigned to them. This adds flexibility in
the type system and allows Java to cross the lines of the class hierarchy and make
objects that effectively have many types. We’ll cover interfaces in the next chapter as
well.

Generic types or parameterized types, as we mentioned earlier, are an extension of the
Java class syntax that allows for additional abstraction in the way classes work with
other Java types. Generics allow for specialization of classes by the user without
changing any of the original class’s code. We cover generics in detail in Chapter 7.

A Word About Strings
Strings in Java are objects; they are therefore a reference type. String objects do,
however, have some special help from the Java compiler that makes them look more
like primitive types. Literal string values in Java source code are turned into String
objects by the compiler. They can be used directly, passed as arguments to methods,
or assigned to String type variables:

98 | Chapter 4: The Java Language

 System.out.println("Hello, World...");
 String s = "I am the walrus...";
 String t = "John said: \"I am the walrus...\"";

The + symbol in Java is “overloaded” to perform string concatenation as well as regu‐
lar numeric addition. Along with its sister +=, this is the only overloaded operator in
Java:

 String quote = "Four score and " + "seven years ago,";
 String more = quote + " our" + " fathers" + " brought...";

Java builds a single String object from the concatenated strings and provides it as the
result of the expression. We discuss the String class and all things text-related in
great detail in Chapter 8.

Statements and Expressions
Java statements appear inside methods and classes; they describe all activities of a Java
program. Variable declarations and assignments, such as those in the previous sec‐
tion, are statements, as are basic language structures such as if/then conditionals and
loops. (More on these structures later in this chapter.)

 int size = 5;
 if (size > 10)
 doSomething();
 for (int x = 0; x < size; x++) { ... }

Expressions produce values; an expression is evaluated to produce a result that is to be
used as part of another expression or in a statement. Method calls, object allocations,
and, of course, mathematical expressions are examples of expressions.

 new Object()
 Math.sin(3.1415)
 42 * 64

One of the tenets of Java is to keep things simple and consistent. To that end, when
there are no other constraints, evaluations and initializations in Java always occur in
the order in which they appear in the code—from left to right, top to bottom. We’ll
see this rule used in the evaluation of assignment expressions, method calls, and array
indexes, to name a few cases. In some other languages, the order of evaluation is
more complicated or even implementation dependent. Java removes this element of
danger by precisely and simply defining how the code is evaluated. This doesn’t mean
you should start writing obscure and convoluted statements, however. Relying on the
order of evaluation of expressions in complex ways is a bad programming habit, even
when it works. It produces code that is hard to read and harder to modify.

Statements and Expressions | 99

Statements
In any program, statements perform the real magic. Statements help us implement
those algorithms we mentioned at the beginning of this chapter. In fact, they don’t
just help, they are precisely the programming ingredient we use; each step in an algo‐
rithm will correspond to one or more statements. Statements generally do one of four
things: gather input to assign to a variable, write output (to your terminal, to a JLa
bel, etc.), make a decision about which statements to execute, or repeat one or more
other statements. Let’s look at examples of each category in Java.

Statements and expressions in Java appear within a code block. A code block is syntac‐
tically a series of statements surrounded by an open curly brace ({) and a close curly
brace (}). The statements in a code block can include variable declarations and most
of the other sorts of statements and expressions we mentioned earlier:

 {
 int size = 5;
 setName("Max");
 ...
 }

Methods, which look like C functions, are in a sense just code blocks that take param‐
eters and can be called by their names—for example, the method setUpDog():

 setUpDog(String name) {
 int size = 5;
 setName(name);
 ...
 }

Variable declarations are limited in scope to their enclosing code block—that is, they
can’t be seen outside of the nearest set of braces:

 {
 int i = 5;
 }

 i = 6; // Compile-time error, no such variable i

In this way, code blocks can be used to arbitrarily group other statements and vari‐
ables. The most common use of code blocks, however, is to define a group of state‐
ments for use in a conditional or iterative statement.

if/else conditionals
One of the key concepts in programming is the notion of making a decision. “If this
file exists…” or “If the user has a WiFi connection…” are examples of the decisions
computer programs and apps make all the time. We can define an if/else clause as
follows:

100 | Chapter 4: The Java Language

3 Strings in switch statements were added in Java 7.

 if (condition)
 statement;
 else
 statement;

The whole of the preceding example is itself a statement and could be nested within
another if/else clause. The if clause has the common functionality of taking two
different forms: a “one-liner” or a block. The block form is as follows:

 if (condition) {
 [statement;]
 [statement;]
 [...]
 } else {
 [statement;]
 [statement;]
 [...]
 }

The condition is a Boolean expression. A Boolean expression is a true or false
value or an expression that evaluates to one of those. For example, i == 0 is a
Boolean expression that tests whether the integer i holds the value 0.

In the second form, the statements are in code blocks, and all their enclosed state‐
ments are executed if the corresponding (if or else) branch is taken. Any variables
declared within each block are visible only to the statements within the block. Like
the if/else conditional, most of the remaining Java statements are concerned with
controlling the flow of execution. They act for the most part like their namesakes in
other languages.

switch statements
Many languages support a “one of many” conditional commonly known as a “switch”
or “case” statement. Given one variable or expression, a switch statement provides
multiple options that might match. The first match wins, so ordering is important.
And we do mean might. A value does not have to match any of the switch options; in
that case nothing happens.

The most common form of the Java switch statement takes an integer (or a numeric
type argument that can be automatically “promoted” to an integer type), a string type
argument, or an “enum” type (discussed shortly) and selects among a number of
alternative, constant case branches:3

 switch (expression)
 {
 case constantExpression :

Statements and Expressions | 101

 statement;
 [case constantExpression :
 statement;]
 ...
 [default :
 statement;]
 }

The case expression for each branch must evaluate to a different constant integer or
string value at compile time. Strings are compared using the String equals()
method, which we’ll discuss in more detail in Chapter 8. An optional default case
can be specified to catch unmatched conditions. When executed, the switch simply
finds the branch matching its conditional expression (or the default branch) and exe‐
cutes the corresponding statement. But that’s not the end of the story. Perhaps coun‐
terintuitively, the switch statement then continues executing branches after the
matched branch until it hits the end of the switch or a special statement called break.
Here are a couple of examples:

 int value = 2;

 switch(value) {
 case 1:
 System.out.println(1);
 case 2:
 System.out.println(2);
 case 3:
 System.out.println(3);
 }

 // prints 2, 3!

Using break to terminate each branch is more common:

 int retValue = checkStatus();

 switch (retVal)
 {
 case MyClass.GOOD :
 // something good
 break;
 case MyClass.BAD :
 // something bad
 break;
 default :
 // neither one
 break;
 }

In this example, only one branch—GOOD, BAD, or the default—is executed. The “fall
through” behavior of the switch is justified when you want to cover several possible

102 | Chapter 4: The Java Language

case values with the same statement without resorting to a bunch of if/else
statements:

 int value = getSize();
 String size = "Unknown";

 switch(value) {
 case MINISCULE:
 case TEENYWEENIE:
 case SMALL:
 size = "Small";
 break;
 case MEDIUM:
 size = "Medium";
 break;
 case LARGE:
 case EXTRALARGE:
 size = "Large";
 break;
 }

 System.out.println("Your size is: " + size);

This example effectively groups the six possible values into three cases. And this
grouping feature can now appear directly in expressions. Java 12 offers a preview of a
switch expression. For example, rather than printing out the size names in the example
above, we could create a new variable for the size, like this:

 int value = getSize();
 String size = switch(value) {
 case MINISCULE:
 case TEENYWEENIE:
 case SMALL:
 break "Small";
 case MEDIUM:
 break "Medium";
 case LARGE:
 case EXTRALARGE:
 break "Large";
 }

 System.out.println("Your size is: " + size);

Note how we used the break statement with a value this time. You can also use a new
syntax within the switch statement to make things a little more compact and maybe
more readable:

 int value = getSize();
 String size = switch(value) {
 case MINISCULE, TEENYWEENIE, SMALL -> "Small";
 case MEDIUM -> "Medium";
 case LARGE, EXTRALARGE -> "Large";

Statements and Expressions | 103

 }

 System.out.println("Your size is: " + size);

These expressions are obviously new to the language (Java 12 even requires you to
compile with the --enable-preview flag to use them) so you might not find them
used very often in the online resources and examples we noted earlier. But you will
definitely find good examples devoted to explaining the power of switch expressions
if this statement tickles your conditional fancy.

do/while loops
The other major concept in controlling which statement gets executed next (“control
flow” in computer programmerese) is repetition. Computers are really good at doing
things over and over. Repeating a block of code is done with a loop. There are two
main varieties of loop in Java. The do and while iterative statements run while a
Boolean expression returns a true value:

 while (condition)
 statement;

 do
 statement;
 while (condition);

A while loop is perfect for waiting on some external condition, such as getting email:

 while(mailQueue.isEmpty())
 wait();

Of course, the wait() method needs to have a limit (typically a time limit such as
waiting for one second) so that it finishes and gives the loop another chance to run.
But once you do have some email, you also want to process all of the messages that
arrived, not just one. Again, a while loop is perfect:

 while(!mailQueue.isEmpty()) {
 EmailMessage message = mailQueue.takeNextMessage();
 String from = message.getFromAddress();
 System.out.println("Processing message from " + from);
 message.doSomethingUseful();
 }

In this little snippet, we use the boolean ! operator to negate the previous test. We
want to keep working while there is something in the queue. That question is often
expressed in programming as “not empty” rather than “has something.” Also, note
that the body of the loop is more than one statement so we put it inside the curly
braces. Inside those braces, we remove the next message from the queue and store it
in a local variable (message above). Then we do a few things with our message and

104 | Chapter 4: The Java Language

“loop back” to the condition to see if the queue is empty yet. If it is not empty, we
repeat the whole process, starting with taking the next available message.

Unlike while or for loops (which we’ll see next) that test their conditions first, a do-
while loop (or more often just a do loop) always executes its statement body at least
once. A classic example is validating input from a user or maybe a website. You know
you need to get some information, so request that information in the body of the
loop. The loop’s condtion can test for errors. If there’s a problem, the loop will start
over and request the information again. That process can repeat until your request
comes back without an error and you know you have good information.

The for loop

The most general form of the for loop is also a holdover from the C language:

 for (initialization; condition; incrementor)
 statement;

The variable initialization section can declare or initialize variables that are limited to
the scope of the for statement. The for loop then begins a possible series of rounds
in which the condition is first checked and, if true, the body statement (or block) is
executed. Following each execution of the body, the incrementor expressions are
evaluated to give them a chance to update variables before the next round begins:

 for (int i = 0; i < 100; i++) {
 System.out.println(i);
 int j = i;
 ...
 }

This loop will execute 100 times, printing values from 0 to 99. Note that the variable j
is local to the block (visible only to statements within it) and will not be accessible to
the code “after” the for loop. If the condition of a for loop returns false on the first
check, the body and incrementor section will never be executed.

You can use multiple comma-separated expressions in the initialization and incre‐
mentation sections of the for loop. For example:

 for (int i = 0, j = 10; i < j; i++, j--) {
 System.out.println(i + " < " + j);
 ...
 }

You can also initialize existing variables from outside the scope of the for loop within
the initializer block. You might do this if you wanted to use the end value of the loop
variable elsewhere, but generally this practice is frowned upon as prone to mistakes; it
can make your code difficult to reason about. Nonetheless, it is legal and you may hit
a situation where this behavior makes the most sense to you.

Statements and Expressions | 105

 int x;
 for(x = 0; hasMoreValue(); x++) {
 getNextValue();
 }
 // x is still valid and available
 System.out.println(x);

The enhanced for loop

Java’s auspiciously dubbed “enhanced for loop” acts like the foreach statement in
some other languages, iterating over a series of values in an array or other type of
collection:

 for (varDeclaration : iterable)
 statement;

The enhanced for loop can be used to loop over arrays of any type as well as any kind
of Java object that implements the java.lang.Iterable interface. This includes most
of the classes of the Java Collections API. We’ll talk about arrays in this and the next
chapter; Chapter 7 covers Java Collections. Here are a couple of examples:

 int [] arrayOfInts = new int [] { 1, 2, 3, 4 };

 for(int i : arrayOfInts)
 System.out.println(i);

 List<String> list = new ArrayList<String>();
 list.add("foo");
 list.add("bar");

 for(String s : list)
 System.out.println(s);

Again, we haven’t discussed arrays or the List class and special syntax in this exam‐
ple. What we’re showing here is the enhanced for loop iterating over an array of inte‐
gers and also a list of string values. In the second case, the List implements the
Iterable interface and thus can be a target of the for loop.

break/continue

The Java break statement and its friend continue can also be used to cut short a loop
or conditional statement by jumping out of it. A break causes Java to stop the current
loop (or switch) statement and resume execution after it. In the following example,
the while loop goes on endlessly until the condition() method returns true, trigger‐
ing a break statement that stops the loop and proceeds at the point marked “after
while”:

 while(true) {
 if (condition())
 break;

106 | Chapter 4: The Java Language

4 Jumping to named labels is still considered bad form.

 }
 // after while

A continue statement causes for and while loops to move on to their next iteration
by returning to the point where they check their condition. The following example
prints the numbers 0 through 99, skipping number 33:

 for(int i=0; i < 100; i++) {
 if (i == 33)
 continue;
 System.out.println(i);
 }

The break and continue statements look like those in the C language, but Java’s
forms have the additional ability to take a label as an argument and jump out multiple
levels to the scope of the labeled point in the code. This usage is not very common in
day-to-day Java coding, but may be important in special cases. Here is an outline:

 labelOne:
 while (condition) {
 ...
 labelTwo:
 while (condition) {
 ...

 // break or continue point
 }
 // after labelTwo
 }
 // after labelOne

Enclosing statements, such as code blocks, conditionals, and loops, can be labeled
with identifiers like labelOne and labelTwo. In this example, a break or continue
without argument at the indicated position has the same effect as the earlier exam‐
ples. A break causes processing to resume at the point labeled “after labelTwo”; a con
tinue immediately causes the labelTwo loop to return to its condition test.

The statement break labelTwo at the indicated point has the same effect as an ordi‐
nary break, but break labelOne breaks both levels and resumes at the point labeled
“after labelOne.” Similarly, continue labelTwo serves as a normal continue, but con
tinue labelOne returns to the test of the labelOne loop. Multilevel break and con
tinue statements remove the main justification for the evil goto statement in C/C++.4

There are a few Java statements we aren’t going to discuss right now. The try , catch,
and finally statements are used in exception handling, as we’ll discuss in Chapter 6.
The synchronized statement in Java is used to coordinate access to statements among

Statements and Expressions | 107

https://oreil.ly/849H0l

multiple threads of execution; see Chapter 9 for a discussion of thread
synchronization.

Unreachable statements
On a final note, we should mention that the Java compiler flags “unreachable” state‐
ments as compile-time errors. An unreachable statement is one that the compiler
determines won’t be called at all. Of course, many methods may never actually be
called in your code, but the compiler detects only those that it can “prove” are never
called by simple checking at compile time. For example, a method with an uncondi‐
tional return statement in the middle of it causes a compile-time error, as does a
method with a conditional that the compiler can tell will never be fulfilled:

 if (1 < 2) {
 // This branch always runs
 System.out.println("1 is, in fact, less than 2");
 return;
 } else {
 // unreachable statements, this branch never runs
 System.out.println("Look at that, seems we got \"math\" wrong.");
 }

Expressions
An expression produces a result, or value, when it is evaluated. The value of an
expression can be a numeric type, as in an arithmetic expression; a reference type, as
in an object allocation; or the special type, void, which is the declared type of a
method that doesn’t return a value. In the last case, the expression is evaluated only
for its side effects; that is, the work it does aside from producing a value. The type of
an expression is known at compile time. The value produced at runtime is either of
this type or in the case of a reference type, a compatible (assignable) subtype.

We’ve seen several expressions already in our example programs and code snippets.
We’ll also see many more examples of expressions in the section “Assignment” on
page 110.

Operators
Operators help you combine or alter expressions in various ways. They “operate”
expressions. Java supports almost all standard operators from the C language. These
operators also have the same precedence in Java as they do in C, as shown in
Table 4-3.

108 | Chapter 4: The Java Language

Table 4-3. Java operators

Precedence Operator Operand type Description
1 ++, — Arithmetic Increment and decrement

1 +, - Arithmetic Unary plus and minus

1 ~ Integral Bitwise complement

1 ! Boolean Logical complement

1 (type) Any Cast

2 *, /, % Arithmetic Multiplication, division, remainder

3 +, - Arithmetic Addition and subtraction

3 + String String concatenation

4 << Integral Left shift

4 >> Integral Right shift with sign extension

4 >>> Integral Right shift with no extension

5 <, <=, >, >= Arithmetic Numeric comparison

5 instanceof Object Type comparison

6 ==, != Primitive Equality and inequality of value

6 ==, != Object Equality and inequality of reference

7 & Integral Bitwise AND

7 & Boolean Boolean AND

8 ^ Integral Bitwise XOR

8 ^ Boolean Boolean XOR

9 | Integral Bitwise OR

9 | Boolean Boolean OR

10 && Boolean Conditional AND

11 || Boolean Conditional OR

12 ?: N/A Conditional ternary operator

13 = Any Assignment

We should also note that the percent (%) operator is not strictly a modulo, but a
remainder, and can have a negative value. Try playing with some of these operators in
jshell to get a better sense of their effects. If you’re new to programming, it is particu‐
larly useful to get comfortable with operators and their order of precedence. You’ll
regularly encounter expressions and operators even when performing mundane tasks
in your code.

jshell> int x = 5
x ==> 5

jshell> int y = 12
y ==> 12

Statements and Expressions | 109

jshell> int sumOfSquares = x * x + y * y
sumOfSquares ==> 169

jshell> int explictOrder = (((x * x) + y) * y)
explictOrder ==> 444

jshell> sumOfSquares % 5
$7 ==> 4

Java also adds some new operators. As we’ve seen, the + operator can be used with
String values to perform string concatenation. Because all integral types in Java are
signed values, the >> operator can be used to perform a right-arithmetic-shift opera‐
tion with sign extension. The >>> operator treats the operand as an unsigned number
and performs a right-arithmetic-shift with no sign extension. We don’t manipulate
the individual bits in our variable nearly as much as we used to, so you likely won’t
see those shift operators very often. If they do crop up in some code you read online,
feel free to pop into jshell to see how they work or figure out just what the example
code is up to. (This is one of our favorite uses for jshell!) The new operator is used to
create objects; we will discuss it in detail shortly.

Assignment
While variable initialization (i.e., declaration and assignment together) is considered
a statement with no resulting value, variable assignment alone is an expression:

 int i, j; // statement
 i = 5; // both expression and statement

Normally, we rely on assignment for its side effects alone, but an assignment can be
used as a value in another part of an expression:

 j = (i = 5);

Again, relying on order of evaluation extensively (in this case, using compound
assignments in complex expressions) can make code obscure and hard to read.

The null value

The expression null can be assigned to any reference type. It means “no reference.” A
null reference can’t be used to reference anything and attempting to do so generates a
NullPointerException at runtime. Recall from “Reference Types” on page 95 that
null is the default value assigned to uninitialized class and instance variables; be sure
to perform your initializations before using reference type variables to avoid that
exception.

110 | Chapter 4: The Java Language

Variable access

The dot (.) operator is used to select members of a class or object instance. (We’ll talk
about those in detail in the following chapters.) It can retrieve the value of an instance
variable (of an object) or a static variable (of a class). It can also specify a method to
be invoked on an object or class:

 int i = myObject.length;
 String s = myObject.name;
 myObject.someMethod();

A reference-type expression can be used in compound evaluations by selecting fur‐
ther variables or methods on the result:

 int len = myObject.name.length();
 int initialLen = myObject.name.substring(5, 10).length();

Here we have found the length of our name variable by invoking the length() method
of the String object. In the second case, we took an intermediate step and asked for a
substring of the name string. The substring method of the String class also returns a
String reference, for which we ask the length. Compounding operations like this is
also called chaining method calls, which we’ll talk about later. One chained selection
operation that we’ve used a lot already is calling the println() method on the vari‐
able out of the System class:

 System.out.println("calling println on out");

Method invocation
Methods are functions that live within a class and may be accessible through the class
or its instances, depending on the kind of method. Invoking a method means to exe‐
cute its body statements, passing in any required parameter variables and possibly
getting a value in return. A method invocation is an expression that results in a value.
The value’s type is the return type of the method:

 System.out.println("Hello, World...");
 int myLength = myString.length();

Here, we invoked the methods println() and length() on different objects. The
length() method returned an integer value; the return type of println() is void (no
value). It’s worth emphasizing that println() produces output but no value. We can’t
assign that method to a variable like we did above with length().

jshell> String myString = "Hi there!"
myString ==> "Hi there!"

jshell> int myLength = myString.length()
myLength ==> 9

jshell> int mistake = System.out.println("This is a mistake.")

Statements and Expressions | 111

| Error:
| incompatible types: void cannot be converted to int
| int mistake = System.out.println("This is a mistake.");
| ^--------------------------------------^

Methods make up the bulk of a Java program. While you could write some trivial
applications that exist entirely inside a lone main() method of a class, you will quickly
find you need to break things up. Methods not only make your application more
readable, they also open the doors to complex, interesting, and useful applications
that simply are not possible without them. Indeed, look back at our graphical Hello
World applications in “HelloJava” on page 41. We used several methods defined for
the JFrame class.

These are simple examples, but in Chapter 5 we’ll see that it gets a little more complex
when there are methods with the same name but different parameter types in the
same class or when a method is redefined in a child class.

Statements, expressions, and algorithms
Let’s assemble a collection of statements and expressions of these different types to
accomplish an actual goal. In other words, let’s write some Java code to implement an
algorithm. A classic example of an algorithm is Euclid’s process for finding the great‐
est common denominator of two numbers using a simple (if tedious) process of
repeated subtraction. We can use Java’s while loop, if/else conditional, and some
assignments to get the job done:

 int a = 2701;
 int b = 222;
 while (b != 0) {
 if (a > b) {
 a = a - b;
 } else {
 b = b - a;
 }
 }
 System.out.println("GCD is " + a);

It’s not fancy, but it works and it is exactly the type of task a computer program is
great at performing. This is what you’re here for! Well, you’re probably not here for
the greatest common denominator of 2701 and 222 (37, by the way), but you are here
to start formulating the solutions to problems as algorithms and translating those
algorithms into executable Java code in turn. Hopefully a few more pieces of the pro‐
gramming puzzle are starting to fall into place. But don’t worry if these ideas are still
fuzzy. This whole coding process takes a lot of practice. Try getting that block of code
above into a real Java class inside the main() method. Try changing the values of a
and b. In Chapter 8 we’ll look at converting strings to numbers so that you can find

112 | Chapter 4: The Java Language

the GCD simply by running the program again, passing two numbers as parameters
to the main() method, as shown in Figure 2-9, without recompiling.

Object creation

Objects in Java are allocated with the new operator:

 Object o = new Object();

The argument to new is the constructor for the class. The constructor is a method that
always has the same name as the class. The constructor specifies any required param‐
eters to create an instance of the object. The value of the new expression is a reference
of the type of the created object. Objects always have one or more constructors,
though they may not always be accessible to you.

We look at object creation in detail in Chapter 5. For now, just note that object cre‐
ation is a type of expression and that the result is an object reference. A minor oddity
is that the binding of new is “tighter” than that of the dot (.) selector. So you can cre‐
ate a new object and invoke a method in it without assigning the object to a reference
type variable if you have some reason to:

 int hours = new Date().getHours();

The Date class is a utility class that represents the current time. Here we create a new
instance of Date with the new operator and call its getHours() method to retrieve the
current hour as an integer value. The Date object reference lives long enough to ser‐
vice the method call and is then cut loose and garbage-collected at some point in the
future (see “Garbage Collection” on page 148 for more information about garbage
collection).

Calling methods in object references in this way is, again, a matter of style. It would
certainly be clearer to allocate an intermediate variable of type Date to hold the new
object and then call its getHours() method. However, combining operations like this
is common. As you learn Java and get comfortable with its classes and types, you’ll
probably take up some of these patterns. Until that time, however, don’t worry about
being “verbose” in your code. Clarity and readability are more important as you work
through this book.

The instanceof operator

The instanceof operator can be used to determine the type of an object at runtime.
It tests to see if an object is of the same type or a subtype of the target type. (Again,
more on this class hierarchy to come!) This is the same as asking if the object can be
assigned to a variable of the target type. The target type may be a class, interface, or
array type as we’ll see later. instanceof returns a boolean value that indicates
whether the object matches the type:

Statements and Expressions | 113

 Boolean b;
 String str = "foo";
 b = (str instanceof String); // true, str is a String
 b = (str instanceof Object); // also true, a String is an Object
 //b = (str instanceof Date); // The compiler is smart enough to catch this!

instanceof also correctly reports whether the object is of the type of an array or a
specified interface (as we’ll discuss later):

 if (foo instanceof byte[])
 ...

It is also important to note that the value null is not considered an instance of any
class. The following test returns false, no matter what the declared type of the vari‐
able is:

 String s = null;
 if (s instanceof String)
 // false, null isn't an instance of anything

Arrays
An array is a special type of object that can hold an ordered collection of elements.
The type of the elements of the array is called the base type of the array; the number
of elements it holds is a fixed attribute called its length. Java supports arrays of all
primitive and reference types.

If you have done any programming in C or C++, the basic syntax of arrays looks sim‐
ilar. We create an array of a specified length and access the elements with the index
operator, []. Unlike other languages, however, arrays in Java are true, first-class
objects. An array is an instance of a special Java array class and has a corresponding
type in the type system. This means that to use an array, as with any other object, we
first declare a variable of the appropriate type and then use the new operator to create
an instance of it.

Array objects differ from other objects in Java in three respects:

• Java implicitly creates a special array class type for us whenever we declare a new
type of array. It’s not strictly necessary to know about this process in order to use
arrays, but it helps in understanding their structure and their relationship to
other objects in Java later.

• Java lets us use the [] operator to access array elements so that arrays look as we
expect. We could implement our own classes that act like arrays, but we would
have to settle for having methods such as get() and set() instead of using the
special [] notation.

114 | Chapter 4: The Java Language

• Java provides a corresponding special form of the new operator that lets us con‐
struct an instance of an array with a specified length with the [] notation, or ini‐
tialize it directly from a structured list of values.

Array Types
An array type variable is denoted by a base type followed by the empty brackets, [].
Alternatively, Java accepts a C-style declaration with the brackets placed after the
array name.

The following are equivalent:

 int [] arrayOfInts; // preferred
 int arrayOfInts []; // C-style

In each case, arrayOfInts is declared as an array of integers. The size of the array is
not yet an issue because we are declaring only the array type variable. We have not yet
created an actual instance of the array class, with its associated storage. It’s not even
possible to specify the length of an array when declaring an array type variable. The
size is strictly a function of the array object itself, not the reference to it.

An array of reference types can be created in the same way:

 String [] someStrings;
 Button [] someButtons;

Array Creation and Initialization
Thenew operator is used to create an instance of an array. After the new operator, we
specify the base type of the array and its length with a bracketed integer expression:

 arrayOfInts = new int [42];
 someStrings = new String [number + 2];

We can, of course, combine the steps of declaring and allocating the array:

 double [] someNumbers = new double [20];
 Component [] widgets = new Component [12];

Array indices start with zero. Thus, the first element of someNumbers[] is 0, and the
last element is 19. After creation, the array elements are initialized to the default val‐
ues for their type. For numeric types, this means the elements are initially zero:

 int [] grades = new int [30];
 grades[0] = 99;
 grades[1] = 72;
 // grades[2] == 0

The elements of an array of objects are references to the objects—just like individual
variables they point to—but do not actually contain instances of the objects. The

Arrays | 115

5 The analog in C or C++ is an array of pointers to objects. However, pointers in C or C++ are themselves two-
or four-byte values. Allocating an array of pointers is, in actuality, allocating the storage for some number of
those pointer objects. An array of references is conceptually similar, although references are not themselves
objects. We can’t manipulate references or parts of references other than by assignment, and their storage
requirements (or lack thereof) are not part of the high-level Java language specification.

default value of each element is therefore null until we assign instances of appropri‐
ate objects:

 String names [] = new String [4];
 names [0] = new String();
 names [1] = "Walla Walla";
 names [2] = someObject.toString();
 // names[3] == null

This is an important distinction that can cause confusion. In many other languages,
the act of creating an array is the same as allocating storage for its elements. In Java, a
newly allocated array of objects actually contains only reference variables, each with
the value null.5 That’s not to say that there is no memory associated with an empty
array; memory is needed to hold those references (the empty “slots” in the array).
Figure 4-3 illustrates the names array of the previous example.

Figure 4-3. A Java array

names is a variable of type String[] (i.e., a string array). This particular String[]
object contains four String type variables. We have assigned String objects to the
first three array elements. The fourth has the default value null.

Java supports the C-style curly braces {} construct for creating an array and initializ‐
ing its elements:

 int [] primes = { 2, 3, 5, 7, 7+4 }; // e.g., primes[2] = 5

An array object of the proper type and length is implicitly created, and the values of
the comma-separated list of expressions are assigned to its elements. Note that we did

116 | Chapter 4: The Java Language

not use the new keyword or the array type here. The type of the array was inferred
from the assignment.

We can use the {} syntax with an array of objects. In this case, each expression must
evaluate to an object that can be assigned to a variable of the base type of the array or
the value null. Here are some examples:

 String [] verbs = { "run", "jump", someWord.toString() };
 Button [] controls = { stopButton, new Button("Forwards"),
 new Button("Backwards") };
 // All types are subtypes of Object
 Object [] objects = { stopButton, "A word", null };

The following are equivalent:

 Button [] threeButtons = new Button [3];
 Button [] threeButtons = { null, null, null };

Using Arrays
The size of an array object is available in the public variable length:

 char [] alphabet = new char [26];
 int alphaLen = alphabet.length; // alphaLen == 26

 String [] musketeers = { "one", "two", "three" };
 int num = musketeers.length; // num == 3

length is the only accessible field of an array; it is a variable, not a method. (Don’t
worry; the compiler tells you when you accidentally use parentheses as if it were a
method, as everyone does now and then.)

Array access in Java is just like array access in other languages; you access an element
by putting an integer-valued expression between brackets after the name of the array.
The following example creates an array of Button objects called keyPad and then fills
the array with Button objects:

 Button [] keyPad = new Button [10];
 for (int i=0; i < keyPad.length; i++)
 keyPad[i] = new Button(Integer.toString(i));

Remember that we can also use the enhanced for loop to iterate over array values.
Here we’ll use it to print all the values we just assigned:

 for (Button b : keyPad)
 System.out.println(b);

Attempting to access an element that is outside the range of the array generates an
ArrayIndexOutOfBoundsException. This is a type of RuntimeException, so you can
either catch and handle it yourself if you really expect it, or ignore it, as we will

Arrays | 117

discuss in Chapter 6. Here’ a taste of the try/catch syntax Java uses to wrap such
potentially problematic code:

 String [] states = new String [50];

 try {
 states[0] = "California";
 states[1] = "Oregon";
 ...
 states[50] = "McDonald's Land"; // Error: array out of bounds
 }
 catch (ArrayIndexOutOfBoundsException err) {
 System.out.println("Handled error: " + err.getMessage());
 }

It’s a common task to copy a range of elements from one array into another. One way
to copy arrays is to use the low-level arraycopy() method of the System class:

 System.arraycopy(source, sourceStart, destination, destStart, length);

The following example doubles the size of the names array from an earlier example:

 String [] tmpVar = new String [2 * names.length];
 System.arraycopy(names, 0, tmpVar, 0, names.length);
 names = tmpVar;

A new array, twice the size of names, is allocated and assigned to a temporary variable,
tmpVar. The arraycopy() method is then used to copy the elements of names to the
new array. Finally, the new array is assigned to names. If there are no remaining refer‐
ences to the old array object after names has been copied, it is garbage-collected on
the next pass.

An easier way is to use the java.util.ArrayscopyOf() and copyOfRange() methods:

 byte [] bar = new byte[] { 1, 2, 3, 4, 5 };

 byte [] barCopy = Arrays.copyOf(bar, bar.length);
 // { 1, 2, 3, 4, 5 }
 byte [] expanded = Arrays.copyOf(bar, bar.length+2);
 // { 1, 2, 3, 4, 5, 0, 0 }

 byte [] firstThree = Arrays.copyOfRange(bar, 0, 3);
 // { 1, 2, 3 }
 byte [] lastThree = Arrays.copyOfRange(bar, 2, bar.length);
 // { 3, 4, 5 }
 byte [] lastThreePlusTwo = Arrays.copyOfRange(bar, 2, bar.length+2);
 // { 3, 4, 5, 0, 0 }

The copyOf() method takes the original array and a target length. If the target length
is larger than the original array length, then the new array is padded (with zeros or
nulls) to the desired length. The copyOfRange() takes a starting index (inclusive) and

118 | Chapter 4: The Java Language

6 If this idea is interesting to you, check out Oracle’s technote on the topic. You can also use the shorthand
name “varargs” in searches.

an ending index (exclusive) and a desired length, which will also be padded if
necessary.

Anonymous Arrays
Often it is convenient to create “throwaway” arrays, arrays that are used in one place
and never referenced anywhere else. Such arrays don’t need a name because you
never need to refer to them again in that context. For example, you may want to cre‐
ate a collection of objects to pass as an argument to some method. It’s easy enough to
create a normal, named array, but if you don’t actually work with the array (if you use
the array only as a holder for some collection), you shouldn’t need to do this. Java
makes it easy to create “anonymous” (i.e., unnamed) arrays.

Let’s say you need to call a method named setPets(), which takes an array of Animal
objects as arguments. Provided Cat and Dog are subclasses of Animal, here’s how to
call setPets() using an anonymous array:

 Dog pokey = new Dog ("gray");
 Cat boojum = new Cat ("grey");
 Cat simon = new Cat ("orange");
 setPets (new Animal [] { pokey, boojum, simon });

The syntax looks similar to the initialization of an array in a variable declaration. We
implicitly define the size of the array and fill in its elements using the curly-brace
notation. However, because this is not a variable declaration, we have to explicitly use
the new operator and the array type to create the array object.

Anonymous arrays were sometimes used as a substitute for variable-length argument
lists to methods. Perhaps familiar to C programmers, a variable-length argument list
allows you to send an arbitrary amount of data to a method. An example might be a
method that calculates an average of a batch of numbers. You could put all the num‐
bers into one array, or you could allow your method to accept one or two or three or
many numbers as arguments. With the introduction of variable-length argument lists
in Java,6, the usefulness of anonymous arrays has diminished.

Multidimensional Arrays
Java supports multidimensional arrays in the form of arrays of array type objects. You
create a multidimensional array with C-like syntax, using multiple bracket pairs, one
for each dimension. You also use this syntax to access elements at various positions
within the array. Here’s an example of a multidimensional array that represents a
chessboard:

Arrays | 119

https://oreil.ly/zNSWs

 ChessPiece [][] chessBoard;
 chessBoard = new ChessPiece [8][8];
 chessBoard[0][0] = new ChessPiece.Rook;
 chessBoard[1][0] = new ChessPiece.Pawn;
 ...

Here, chessBoard is declared as a variable of type ChessPiece[][] (i.e., an array of
ChessPiece arrays). This declaration implicitly creates the type ChessPiece[] as well.
The example illustrates the special form of the new operator used to create a multidi‐
mensional array. It creates an array of ChessPiece[] objects and then, in turn, makes
each element into an array of ChessPiece objects. We then index chessBoard to spec‐
ify values for particular ChessPiece elements. (We’ll neglect the color of the pieces
here.)

Of course, you can create arrays with more than two dimensions. Here’s a slightly
impractical example:

 Color [][][] rgbCube = new Color [256][256][256];
 rgbCube[0][0][0] = Color.black;
 rgbCube[255][255][0] = Color.yellow;
 ...

We can specify a partial index of a multidimensional array to get a subarray of array
type objects with fewer dimensions. In our example, the variable chessBoard is of
type ChessPiece[][]. The expression chessBoard[0] is valid and refers to the first
element of chessBoard, which, in Java, is of type ChessPiece[]. For example, we can
populate our chessboard one row at a time:

 ChessPiece [] homeRow = {
 new ChessPiece("Rook"), new ChessPiece("Knight"),
 new ChessPiece("Bishop"), new ChessPiece("King"),
 new ChessPiece("Queen"), new ChessPiece("Bishop"),
 new ChessPiece("Knight"), new ChessPiece("Rook")
 };

 chessBoard[0] = homeRow;

We don’t necessarily have to specify the dimension sizes of a multidimensional array
with a single new operation. The syntax of the new operator lets us leave the sizes of
some dimensions unspecified. The size of at least the first dimension (the most signif‐
icant dimension of the array) has to be specified, but the sizes of any number of trail‐
ing, less significant array dimensions may be left undefined. We can assign
appropriate array-type values later.

We can create a checkerboard of boolean values (which is not quite sufficient for a
real game of checkers either) using this technique:

 boolean [][] checkerBoard;
 checkerBoard = new boolean [8][];

120 | Chapter 4: The Java Language

Here, checkerBoard is declared and created, but its elements, the eight boolean[]
objects of the next level, are left empty. Thus, for example, checkerBoard[0] is null
until we explicitly create an array and assign it, as follows:

 checkerBoard[0] = new boolean [8];
 checkerBoard[1] = new boolean [8];
 ...
 checkerBoard[7] = new boolean [8];

The code of the previous two examples is equivalent to:

 boolean [][] checkerBoard = new boolean [8][8];

One reason we might want to leave dimensions of an array unspecified is so that we
can store arrays given to us by another method.

Note that because the length of the array is not part of its type, the arrays in the
checkerboard do not necessarily have to be of the same length; that is, multidimen‐
sional arrays don’t have to be rectangular. Here’s a defective (but perfectly legal in
Java) checkerboard:

 checkerBoard[2] = new boolean [3];
 checkerBoard[3] = new boolean [10];

And here’s how you could create and initialize a triangular array:

 int [][] triangle = new int [5][];
 for (int i = 0; i < triangle.length; i++) {
 triangle[i] = new int [i + 1];
 for (int j = 0; j < i + 1; j++)
 triangle[i][j] = i + j;
 }

Types and Classes and Arrays, Oh My!
Java has a wide variety of types for storing information, each with their own way of
representing literal bits of that information. Over time, you’ll gain a familiarity and
comfort with ints and doubles and chars and Strings. But don’t rush—these funda‐
mental building blocks are exactly the kind of thing jshell was designed to help you
explore. It’s always worth a moment to check your understanding of what a variable
can store. Arrays in particular might benefit from a little experimentation. You can
try out the different declaration techniques and confirm that you have a grasp of how
to access the individual elements inside single-dimensional and multidimensional
structures.

You can also play with simple flow of control statements in jshell like our if branch‐
ing and while looping statements. It requires a little patience to type in the occasional
multiline snippet, but we can’t overstate how useful play and practice like this is as
you load more and more details of Java into your brain. Programming languages are

Types and Classes and Arrays, Oh My! | 121

certainly not as complex as human languages, but they still have many similarities.
You can gain a literacy in Java just as you have in English (or the language you’re
using to read this book if you have a translation). You will start to get a feel for what
the code is meant to do even if you don’t immediately understand the particulars.

And some parts of Java, like arrays, are definitely full of particulars. We noted earlier
that arrays are instances of special array classes in the Java language. If arrays have
classes, where do they fit into the class hierarchy and how are they related? These are
good questions, but we need to talk more about the object-oriented aspects of Java
before answering them. That’s the subject of the next chapter. For now, take it on faith
that arrays fit into the class hierarchy.

122 | Chapter 4: The Java Language

1 Once you have some experience with basic object-oriented concepts, you might want to look at Design Pat‐
terns: Elements of Reusable Object-Oriented Software by Erich Gamma et al. (Addison-Wesley). This book cat‐
alogs useful object-oriented designs that have been refined over the years by experience. Many appear in the
design of the Java APIs.

CHAPTER 5

Objects in Java

In this chapter, we get to the heart of Java and explore the object-oriented aspects of
the language. The term object-oriented design refers to the art of decomposing an
application into some number of objects, which are self-contained application com‐
ponents that work together. The goal is to break your problem down into a number of
smaller problems that are simpler and easier to handle and maintain. Object-based
designs have proven themselves over the years, and object-oriented languages such as
Java provide a strong foundation for writing applications—from the very small to the
very large. Java was designed from the ground up to be an object-oriented language,
and all of the Java APIs and libraries are built around solid object-based design
patterns.

An object design “methodology” is a system or a set of rules created to help you break
down your application into objects. Often this means mapping real-world entities
and concepts (sometimes called the “problem domain”) into application components.
Various methodologies attempt to help you factor your application into a good set of
reusable objects. This is good in principle, but the problem is that good object-
oriented design is still more art than science. While you can learn from the various
off-the-shelf design methodologies, none of them will help you in all situations. The
truth is that there is no substitute for experience.

We won’t try to push you into a particular methodology here; there are shelves full of
books to do that.1 Instead, we’ll provide some common-sense hints along the way as
you get started.

123

Classes
Classes are the building blocks of a Java application. A class can contain methods
(functions), variables, initialization code, and, as we’ll discuss later, other classes. Sep‐
arate classes that describe individual parts of a more complex idea are often bundled
in packages, which help you organize larger projects. (Every class belongs to some
package, even the simple examples we’ve seen so far.) An interface can describe some
specific commonalities between otherwise disparate classes. Classes can be related to
each other by extension or to interfaces by implementation. Figure 5-1 illustrates the
ideas in this very dense paragraph.

Figure 5-1. Class, interface, and package overview

In this figure, you can see the Object class in the upper-left corner. Object is the
foundational class at the heart of every other class in Java. It is part of the core Java
package, java.lang. Java also has a package for its graphical UI elements called
javax.swing. Inside that package the JComponent class defines all of the low-level,
common properties of graphical things like frames and buttons and canvases. The
JLabel class, for example, extends the JComponent class. That means JLabel inherits
details from JComponent but adds things specific to labels. You might have noticed
that JComponent itself extends from Object, or at least, it eventually extends back to
Object. For brevity’s sake we left out the intermediate classes and packages in
between.

We can define our own classes and packages as well. The ch05 package in the lower-
right corner is a custom package we built. In it, we have our game classes like Apple
and Field. You can also see the GamePiece interface that will contain some common,

124 | Chapter 5: Objects in Java

required elements for all game pieces and is implemented by the Apple, Tree, and
Physicist classes. (In our game, the Field class is where all of the game pieces will
be shown, but it is not a game piece itself. Notice that it does not implement the Game
Piece interface.)

We’ll be going into much more detail with more examples of each concept as you
continue through this chapter. It’s important to try the examples as you go and to use
the jshell tool discussed in “Trying Java” on page 70 to help cement your understand‐
ing of new topics.

Declaring and Instantiating Classes
A class serves as a blueprint for making instances, which are runtime objects (individ‐
ual copies) that implement the class structure. You declare a class with the class key‐
word and a name of your choosing. For example, our game allows physicists to throw
apples at trees. Each of the nouns in that sentence are good targets for becoming
classes. Inside a class, we add variables that store details or other useful information,
and methods that describe what we can do to and with instances of this class.

Let’s get started with a class for our apples. By (strong!) convention, class names start
with capital letters. That makes the word “Apple” a good name to use. We won’t try to
get everything we need to know about our game apples into the class right away, just a
few elements to help illustrate how a class, variables, and methods fit together.

package ch05;

class Apple {
 float mass;
 float diameter = 1.0f;
 int x, y;

 boolean isTouching(Apple other) {
 ...
 }
 ...
}

The Apple class contains four variables: mass, diameter, x, and y. It also defines a
method called isTouching(), which takes a reference to another Apple as an argu‐
ment and returns a boolean value as a result. Variables and method declarations can
appear in any order, but variable initializers can’t make “forward references” to other
variables that appear later. (In our little snippet, the diameter variable could use the
mass variable to help calculate its initial value, but mass could not use the diameter
variable to do the same.) Once we’ve defined the Apple class, we can create an Apple
object (an instance of that class) as follows:

Classes | 125

 Apple a1;
 a1 = new Apple();

 // Or all in one line...
 Apple a2 = new Apple();

Recall that our declaration of the variable a1 doesn’t create an Apple object; it simply
creates a variable that refers to an object of type Apple. We still have to create the
object, using the new keyword, as shown in the second line of the preceding code
snippet. But you can combine those steps into a single line as we did for the a2 vari‐
able. The same separate actions occur under the hood, of course. Sometimes the com‐
bined declaration and initialization will feel more readable.

Now that we’ve created an Apple object, we can access its variables and methods, as
we’ve seen in several of our examples from Chapter 4 or even our graphical “Hello”
app from “HelloJava” on page 41. While not very exciting, we could now build
another class, PrintAppleDetails, that is a complete application to create an Apple
instance, and print its details:

package ch05;

public class PrintAppleDetails {
 public static void main(String args[]) {
 Apple a1 = new Apple();
 System.out.println("Apple a1:");
 System.out.println(" mass: " + a1.mass);
 System.out.println(" diameter: " + a1.diameter);
 System.out.println(" position: (" + a1.x + ", " + a1.y +")");
 }
}

If you compile and run this example, you should see the following output in your ter‐
minal or in the terminal window of your IDE:

Apple a1:
 mass: 0.0
 diameter: 1.0
 position: (0, 0)

But hmm, why don’t we have a mass? If you look back at how we declared the vari‐
ables for our Apple class, we only initialized diameter. All the other variables will get
the Java-assigned default value of 0 since they are numeric types. (Quickly, boolean
variables get a default of false and reference types get a default of null.) We would
ideally like to have a more interesting apple. Let’s see how to provide those interesting
bits.

126 | Chapter 5: Objects in Java

Accessing Fields and Methods
Once you have a reference to an object, you can use and manipulate its variables and
methods using the dot notation we saw in Chapter 4. Let’s create a new class, PrintAp
pleDetails2, provide some values for the mass and position of our a1 instance, and
then print the new details:

package ch05;

public class PrintAppleDetails2 {
 public static void main(String args[]) {
 Apple a1 = new Apple();
 System.out.println("Apple a1:");
 System.out.println(" mass: " + a1.mass);
 System.out.println(" diameter: " + a1.diameter);
 System.out.println(" position: (" + a1.x + ", " + a1.y +")");
 // fill in some information on a1
 a1.mass = 10.0f;
 a1.x = 20;
 a1.y = 42;
 System.out.println("Updated a1:");
 System.out.println(" mass: " + a1.mass);
 System.out.println(" diameter: " + a1.diameter);
 System.out.println(" position: (" + a1.x + ", " + a1.y +")");
 }
}

And the new output:

Apple a1:
 mass: 0.0
 diameter: 1.0
 position: (0, 0)
Updated a1:
 mass: 10.0
 diameter: 1.0
 position: (20, 42)

Great! a1 is looking a little better. But look at the code again. We had to repeat the
three lines that print the object’s details. That type of exact replication calls out for a
method. Methods allow us to “do stuff ” inside a class. We’ll go into much more detail
in “Methods” on page 134. We could improve the Apple class to provide these print
statements:

public class Apple {
 float mass;
 float diameter = 1.0f;
 int x, y;

 // ...

 public void printDetails() {

Classes | 127

 System.out.println(" mass: " + mass);
 System.out.println(" diameter: " + diameter);
 System.out.println(" position: (" + x + ", " + y +")");
 }

 // ...
}

With those detail statements relocated, we can create PrintAppleDetails3 more suc‐
cinctly than its predecessor:

package ch05;

public class PrintAppleDetails3 {
 public static void main(String args[]) {
 Apple a1 = new Apple();
 System.out.println("Apple a1:");
 a1.printDetails();
 // fill in some information on a1
 a1.mass = 10.0f;
 a1.x = 20;
 a1.y = 42;
 System.out.println("Updated a1:");
 a1.printDetails();
 }
}

Take another look at the printDetails() method we added to the Apple class. Inside
a class, we can access variables and call methods of the class directly by name. The
print statements just use the simple names like mass and diameter. Or consider fill‐
ing out the isTouching() method. We can use our own x and y coordinates without
any special prefix. But to access the coordinates of some other apple, we need to go
back to the dot notation. Here’s one way to write that method using some math (more
of this in “The java.lang.Math Class” on page 244) and the if/then statement we saw
in “if/else conditionals” on page 100:

 // File: ch05/Apple.java

 public boolean isTouching(Apple other) {
 double xdiff = x - other.x;
 double ydiff = y - other.y;
 double distance = Math.sqrt(xdiff * xdiff + ydiff * ydiff);
 if (distance < diameter / 2 + other.diameter / 2) {
 return true;
 } else {
 return false;
 }
 }

Let’s fill out a bit more of our game and create our Field class that uses a few Apple
objects. It creates instances as member variables and works with those objects in the

128 | Chapter 5: Objects in Java

setupApples() and detectCollision() methods, invoking Apple methods and
accessing variables of those objects through the references a1 and a2, visualized in
Figure 5-2.

package ch05;

public class Field {
 Apple a1 = new Apple();
 Apple a2 = new Apple();

 public void setupApples() {
 a1.diameter = 3.0f;
 a1.mass = 5.0f;
 a1.x = 20;
 a1.y = 40;
 a2.diameter = 8.0f;
 a2.mass = 10.0f;
 a2.x = 70;
 a2.y = 200;
 }

 public void detectCollisions() {
 if (a1.isTouching(a2)) {
 System.out.println("Collision detected!");
 } else {
 System.out.println("Apples are not touching.");
 }
 }
}

Figure 5-2. Instances of the Apple class

Classes | 129

We can prove that Field has access to the apples’ variables and methods with another
iteration of our application, PrintAppleDetails4:

package ch05;

public class PrintAppleDetails4 {
 public static void main(String args[]) {
 Field f = new Field();
 f.setupApples();
 System.out.println("Apple a1:");
 f.a1.printDetails();
 System.out.println("Apple a2:");
 f.a2.printDetails();
 f.detectCollisions();
 }
}

We should see the familiar apple details followed by an answer to whether or not the
two apples are touching:

% java PrintAppleDetails4
Apple a1:
 mass: 5.0
 diameter: 3.0
 position: (20, 40)
Apple a2:
 mass: 10.0
 diameter: 8.0
 position: (70, 200)
Apples are not touching.

Great, just what we expected. Before reading further, try changing the positions of the
apples to make them touch.

Access modifiers preview
Several factors affect whether class members can be accessed from another class. You
can use the visibility modifiers public, private, and protected to control access;
classes can also be placed into a package, which affects their scope. The private
modifier, for example, designates a variable or method for use only by other members
of the class itself. In the previous example, we could change the declaration of our
variable diameter to private:

 class Apple {
 ...
 private float diameter;
 ...

Now we can’t access diameter from Field:

 class Field {
 Apple a1 = new Apple();

130 | Chapter 5: Objects in Java

 Apple a2 = new Apple();
 ...
 void setupApples() {
 a1.diameter = 3.0f; // Comple-time error
 ...
 a2.diameter = 8.0f; // Comple-time error
 ...
 }
 ...
 }

If we still need to access diameter in some capacity, we would usually add public get
Diameter() and setDiameter() methods to the Apple class:

 public class Apple {
 private float diameter = 1.0f;
 ...

 public void setDiameter(float newDiameter) {
 diameter = newDiameter;
 }

 public float getDiameter() {
 return diameter;
 }

 ...
 }

Creating methods like this is a good design rule because it allows future flexibility in
changing the type or behavior of the value. We’ll look more at packages, access modi‐
fiers, and how they affect the visibility of variables and methods later in this chapter.

Static Members
As we’ve said, instance variables and methods are associated with and accessed
through an instance of the class (i.e., through a particular object, like a1 or f in the
previous examples). In contrast, members that are declared with the static modifier
live in the class and are shared by all instances of the class. Variables declared with the
static modifier are called static variables or class variables; similarly, these kinds of
methods are called static methods or class methods. Static members are useful as flags
and identifiers, which can be accessed from anywhere. We can add a static variable to
our Apple example, maybe to store the value of acceleration due to gravity so we can
calculate the trajectory of a tossed apple when we start animating our game:

 class Apple {
 ...
 static float gravAccel = 9.8f;
 ...

Classes | 131

We have declared the new float variable gravAccel as static. That means that it is
associated with the class, not with an individual instance, and if we change its value
(either directly or through any instance of Apple), the value changes for all Apple
objects, as shown in Figure 5-3.

Figure 5-3. Static variables shared by all instances of a class

Static members can be accessed like instance members. Inside our Apple class, we can
refer to gravAccel like any other variable:

 class Apple {
 ...
 float getWeight () {
 return mass * gravAccel;
 }
 ...
 }

However, since static members exist in the class itself, independent of any instance,
we can also access them directly through the class. If we want to toss apples on Mars,
for example, we don’t need an Apple object like a1 or a2 to get or set the variable
gravAccel. Instead, we can use the class to select the variable:

 Apple.gravAccel = 3.7;

This changes the value of gravAccel as seen by all instances. We don’t have to man‐
ually set each instance of Apple to fall on Mars. Static variables are useful for any kind
of data that is shared among classes at runtime. For instance, you can create methods
to register your object instances so that they can communicate, or so that you can
keep track of all of them. It’s also common to use static variables to define constant

132 | Chapter 5: Objects in Java

values. In this case, we use the static modifier along with the final modifier. So, if
we cared only about apples under the influence of the Earth’s gravitational pull, we
might change Apple as follows:

 class Apple {
 ...
 static final float EARTH_ACCEL = 9.8f;
 ...

We have followed a common convention here and named our constant with capital
letters and underscores (if the name has more than one word). The value of
EARTH_ACCEL is a constant; it can be accessed through the class Apple or its instances,
but its value can’t be changed at runtime.

It’s important to use the combination of static and final only for things that are
really constant. The compiler is allowed to “inline” such values within classes that ref‐
erence them. This means that if you change a static final variable, you may have
to recompile all code that uses that class (this is really the only case where you have to
do that in Java). Static members are also useful for values needed in the construction
of an instance itself. In our example, we might declare a number of static values to
represent various sizes of Apple objects:

 class Apple {
 ...
 static int SMALL = 0, MEDIUM = 1, LARGE = 2;
 ...

We might then use these options in a method that sets the size of an Apple, or in a
special constructor, as we’ll discuss shortly:

 Apple typicalApple = new Apple();
 typicalApple.setSize(Apple.MEDIUM);

Again, inside the Apple class, we can use static members directly by name, as well;
there’s no need for the Apple. prefix:

 class Apple {
 ...
 void resetEverything() {
 setSize (MEDIUM);
 ...
 }
 ...
 }

Classes | 133

Methods
So far, our example classes have been fairly simple. We keep a few bits of information
around—apples have mass, fields have a couple of apples, etc. But we have also
touched on the idea of making those classes do stuff. All of our various PrintAppleDe
tails classes have a list of steps that get executed when we run the program, for
example. As we noted briefly before, in Java, those steps are bundled into a method.
In the case of PrintAppleDetails, that is the main() method.

Everywhere you have steps to take or decisions to make, you need a method. In addi‐
tion to storing variables like the mass and diameter in our Apple class, we also added
a few pieces of code that contained actions and logic. Methods are so fundamental to
classes that we had to create a few (think back to the printDetails() method in
Apple or the setupApples() method in Field) even before getting here to the formal
discussion of them! Hopefully, the methods we have discussed so far have been
straightforward enough to follow just from context. But methods can do much more
than print out a few variables or calculate a distance. They can contain local variable
declarations and other Java statements that are executed when the method is invoked.
Methods may return a value to the caller. They always specify a return type, which
can be a primitive type, a reference type, or the type void, which indicates no
returned value. Methods may take arguments, which are values supplied by the caller
of the method.

Here’s a simple example:

 class Bird {
 int xPos, yPos;

 double fly (int x, int y) {
 double distance = Math.sqrt(x*x + y*y);
 flap(distance);
 xPos = x;
 yPos = y;
 return distance;
 }
 ...
 }

In this example, the class Bird defines a method, fly(), that takes as arguments two
integers: x and y. It returns a double type value as a result, using the return keyword.

134 | Chapter 5: Objects in Java

2 We don’t go into the details of such argument lists, but if you’re curious and would like to do a little reading
on your own, search online for the programmer-speak keyword “varargs.”

Our method has a fixed number of arguments (two); however, methods can have
variable-length argument lists, which allow the method to specify that it can take any
number of arguments and sort them out itself at runtime.2

Local Variables
Our fly() method declares a local variable called distance, which it uses to compute
the distance flown. A local variable is temporary; it exists only within the scope (the
block) of its method. Local variables are allocated when a method is invoked; they are
normally destroyed when the method returns. They can’t be referenced from outside
the method itself. If the method is executing concurrently in different threads, each
thread has its own version of the method’s local variables. A method’s arguments also
serve as local variables within the scope of the method; the only difference is that they
are initialized by being passed in from the caller of the method.

An object created within a method and assigned to a local variable may or may not
persist after the method has returned. As we’ll see in detail in “Object Destruction” on
page 148, it depends on whether any references to the object remain. If an object is
created, assigned to a local variable, and never used anywhere else, that object is no
longer referenced when the local variable disappears from scope, so garbage collec‐
tion (more on this process in “Garbage Collection” on page 148) removes the object.
If, however, we assign the object to an instance variable of an object, pass it as an
argument to another method, or pass it back as a return value, it may be saved by
another variable holding its reference.

Shadowing
If a local variable or method argument and an instance variable have the same name,
the local variable shadows or hides the name of the instance variable within the scope
of the method. This might sound like an odd situation, but it happens fairly often
when the instance variable has a common or obvious name. For example, we could
add a move method to our Apple class. Our method will need the new coordinate tell‐
ing us where to place the apple. An easy choice for the coordinate arguments would
be x and y. But we already have instance variables of the same name:

 class Apple {
 int x, y;
 ...

 public void moveTo(int x, int y) {
 System.out.println("Moving apple to " + x + ", " + y);
 ...

Methods | 135

 }
 ...
 }

If the apple is currently at position (20, 40) and we call moveTo(40, 50), what do you
think that println() statement will show? Inside moveTo(), the x and y names refer
only to the arguments with those names. Our output would be:

Moving apple to 40, 50

If we can’t get to the x and y instance variables, how can we move the apple? Turns
out Java understands shadowing and provides a mechanism for working around
these situations.

The “this” reference

You can use the special reference this any time you need to refer explicitly to the cur‐
rent object or a member of the current object. Often you don’t need to use this,
because the reference to the current object is implicit; such is the case when using
unambiguously named instance variables inside a class. But we can use this to refer
explicitly to instance variables in our object, even if they are shadowed. The following
example shows how we can use this to allow argument names that shadow instance
variable names. This is a fairly common technique because it saves having to make up
alternative names. Here’s how we could implement our moveTo() method with shad‐
owed variables:

 class Apple {
 int x, y;
 ...

 public void moveTo(int x, int y) {
 System.out.println("Moving apple to " + x + ", " + y);
 this.x = x;
 if (y > diameter / 2) {
 this.y = y;
 } else {
 this.y = (int)(diameter / 2);
 }
 }
 ...
 }

In this example, the expression this.x refers to the instance variable x and assigns it
the value of the local variable x, which would otherwise hide its name. We do the
same for this.y but add a little protection to make sure we don’t move the apple
below our ground. The only reason we need to use this in the previous example is
because we’ve used argument names that hide our instance variables, and we want to
refer to the instance variables. You can also use the this reference any time you want
to pass a reference to “the current” enclosing object to some other method like we did

136 | Chapter 5: Objects in Java

3 It turns out the Math class cannot be instantiated at all. It contains only static methods and has no public con‐
structor. Trying to call new Math() would result in a compiler error.

for the graphical version of our “Hello Java” application in “HelloJava2: The Sequel”
on page 53.

Static Methods
Static methods (class methods), like static variables, belong to the class and not to
individual instances of the class. What does this mean? Well, foremost, a static
method lives outside of any particular class instance. It can be invoked by name,
through the class name, without any objects around. Because it is not bound to a par‐
ticular object instance, a static method can directly access only other static members
(static variables and other static methods) of the class. It can’t directly see any
instance variables or call any instance methods, because to do so we’d have to ask, “on
which instance?” Static methods can be called from instances, syntactically just like
instance methods, but the important thing is that they can also be used
independently.

Our isTouching() method uses a static method, Math.sqrt(), which is defined by
the java.lang.Math class; we’ll explore this class in detail in Chapter 8. For now, the
important thing to note is that Math is the name of a class and not an instance of a
Math object.3 Because static methods can be invoked wherever the class name is avail‐
able, class methods are closer to C-style functions. Static methods are particularly
useful for utility methods that perform work that is useful either independently of
instances or in working on instances. For example, in our Apple class, we could enu‐
merate all of the available sizes as human-readable strings from the constants we cre‐
ated in “Accessing Fields and Methods” on page 127:

 class Apple {
 ...
 public static String[] getAppleSizes() {
 // Return names for our constants
 // The index of the name should match the value of the constant
 return new String[] { "SMALL", "MEDIUM", "LARGE" };
 }
 ...
 }

Here, we’ve defined a static method, getAppleSizes(), that returns an array of
strings containing apple size names. We make the method static because the list of
sizes is the same regardless of what size any given instance of Apple might be. We can
still use getAppleSizes() from within an instance of Apple if we wanted, just like an
instance method. We could change the (nonstatic) printDetails method to print a
size name rather than an exact diameter, for example:

Methods | 137

 public void printDetails() {
 System.out.println(" mass: " + mass);
 // Print the exact diameter:
 //System.out.println(" diameter: " + diameter);
 // Or a nice, human-friendly approximate
 String niceNames[] = getAppleSizes();
 if (diameter < 5.0f) {
 System.out.println(niceNames[SMALL]);
 } else if (diameter < 10.0f) {
 System.out.println(niceNames[MEDIUM]);
 } else {
 System.out.println(niceNames[LARGE]);
 }
 System.out.println(" position: (" + x + ", " + y +")");
 }

However, we can also call it from other classes, using the Apple class name with the
dot notation. For example, the very first PrintAppleDetails class could use similar
logic to print a summary statement using our static method and static variables, like
so:

public class PrintAppleDetails {
 public static void main(String args[]) {
 String niceNames[] = Apple.getAppleSizes();
 Apple a1 = new Apple();
 System.out.println("Apple a1:");
 System.out.println(" mass: " + a1.mass);
 System.out.println(" diameter: " + a1.diameter);
 System.out.println(" position: (" + a1.x + ", " + a1.y +")");
 if (a1.diameter < 5.0f) {
 System.out.println("This is a " + niceNames[Apple.SMALL] + " apple.");
 } else if (a1.diameter < 10.0f) {
 System.out.println("This is a " + niceNames[Apple.MEDIUM] + " apple.");
 } else {
 System.out.println("This is a " + niceNames[Apple.LARGE] + " apple.");
 }
 }
}

Here we have our trusty instance of the Apple class, a1, but it is not needed to get the
list of our sizes. Notice that we load the list of nice names before we create a1. But
everything still works as seen in the output:

Apple a1:
 mass: 0.0
 diameter: 1.0
 position: (0, 0)
This is a SMALL apple.

Static methods also play an important role in various design patterns, where you limit
the use of the new operator for a class to one method—a static method called a factory
method. We’ll talk more about object construction in “Constructors” on page 145.

138 | Chapter 5: Objects in Java

There’s no naming convention for factory methods, but it is common to see usage like
this:

 Apple bigApple = Apple.createApple(Apple.LARGE);

We won’t be writing any factory methods, but you’re likely to find them in the wild,
especially when looking up questions on sites like Stack Overflow.

Initializing Local Variables
Unlike instance variables that receive default values if we don’t provide an explicit
one, local variables must be initialized before they can be used. It’s a compile-time
error to try to access a local variable without first assigning it a value:

 int foo;

 void myMethod() {
 int bar;

 foo += 1; // This is ok, foo has the default 0
 bar += 1; // compile-time error, bar is uninitialized

 bar = 99;
 bar += 1; // Now this calculation would be ok
 }

Notice that this doesn’t imply local variables have to be initialized when declared, just
that the first time they are referenced must be in an assignment. More subtle possibil‐
ities arise when making assignments inside conditionals:

 void myMethod {
 int bar;
 if (someCondition) {
 bar = 42;
 ...
 }
 bar += 1; // Still a compile-time error, foo may not be initialized
 }

In this example, bar is initialized only if someCondition is true. The compiler doesn’t
let you make this wager, so it flags the use of bar as an error. We could correct this
situation in several ways. We could initialize the variable to a default value in advance
or move the usage inside the conditional. We could also make sure the path of execu‐
tion doesn’t reach the uninitialized variable through some other means, depending on
what makes sense for our particular application. For example, we could simply make
sure that we assign bar a value in both the if and else branch. Or we could return
from the method abruptly:

 void myMethod {
 int bar;
 ...

Methods | 139

 if (someCondition) {
 bar = 42;
 ...
 } else {
 return;
 }
 bar += 1; // This is ok!
 ...
 }

In this case, there’s no chance of reaching bar in an uninitialized state, so the com‐
piler allows the use of bar after the conditional.

Why is Java so picky about local variables? One of the most common (and insidious)
sources of errors in other languages like C or C++ is forgetting to initialize local vari‐
ables, so Java tries to help out.

Argument Passing and References
In the beginning of Chapter 4, we described the distinction between primitive types,
which are passed by value (by copying), and objects, which are passed by reference.
Now that we’ve got a better handle on methods in Java, let’s walk through an example:

 void myMethod(int j, SomeKindOfObject o) {
 ...
 }

 // use the method
 int i = 0;
 SomeKindOfObject obj = new SomeKindOfObject();
 myMethod(i, obj);

The chunk of code calls myMethod(), passing it two arguments. The first argument, i,
is passed by value; when the method is called, the value of i is copied into the meth‐
od’s parameter (a local variable to it) named j. If myMethod() changes the value of j,
it’s changing only its copy of the local variable.

In the same way, a copy of the reference to obj is placed into the reference variable o
of myMethod(). Both references refer to the same object, so any changes made
through either reference affect the actual (single) object instance. If we change the
value of, say, o.size, the change is visible both as o.size (inside myMethod()) or as
obj.size (in the calling method). However, if myMethod() changes the reference o
itself—to point to another object—it’s affecting only its local variable reference. It
doesn’t affect the caller’s variable obj, which still refers to the original object. In this
sense, passing the reference is like passing a pointer in C and unlike passing by refer‐
ence in C++.

140 | Chapter 5: Objects in Java

What if myMethod() needs to modify the calling method’s notion of the obj reference
as well (i.e., make obj point to a different object)? The easy way to do that is to wrap
obj inside some kind of object. For example, we could wrap the object up as the lone
element in an array:

SomeKindOfObject [] wrapper = new SomeKindOfObject [] { obj };

All parties could then refer to the object as wrapper[0] and would have the ability to
change the reference. This is not aesthetically pleasing, but it does illustrate that what
is needed is the level of indirection.

Another possibility is to use this to pass a reference to the calling object. In that case,
the calling object serves as the wrapper for the reference. Let’s look at a piece of code
that could be from an implementation of a linked list:

 class Element {
 public Element nextElement;

 void addToList(List list) {
 list.insertElement(this);
 }
 }

 class List {
 void insertElement(Element element) {
 ...
 element.nextElement = getFirstElement();
 setFirstElement(element);
 }
 }

Every element in a linked list contains a pointer to the next element in the list. In this
code, the Element class represents one element; it includes a method for adding itself
to the list. The List class itself contains a method for adding an arbitrary Element to
the list. The method addToList() calls insertElement() with the argument this
(which is, of course, an Element). insertElement() can use the this reference that
was passed in to modify the Element’s nextElement instance variable and then again
to update the start of the list. The same technique can be used in conjunction with
interfaces to implement callbacks for arbitrary method invocations.

Wrappers for Primitive Types
As we described in Chapter 4, there is a schism in the Java world between class types
(i.e., objects) and primitive types (i.e., numbers, characters, and boolean values). Java
accepts this trade-off simply for efficiency reasons. When you’re crunching numbers,
you want your computations to be lightweight; having to use objects for primitive
types complicates performance optimizations. For the times you want to treat values

Methods | 141

as objects, Java supplies a standard wrapper class for each of the primitive types, as
shown in Table 5-1.

Table 5-1. Primitive type wrappers

Primitive Wrapper

void java.lang.Void

boolean java.lang.Boolean

char java.lang.Character

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

An instance of a wrapper class encapsulates a single value of its corresponding type.
It’s an immutable object that serves as a container to hold the value and let us retrieve
it later. You can construct a wrapper object from a primitive value or from a String
representation of the value. The following statements are equivalent:

 Float pi = new Float(3.14);
 Float pi = new Float("3.14");

The wrapper constructors throw a NumberFormatException when there is an error in
parsing a string.

Each of the numeric type wrappers implements the java.lang.Number interface,
which provides “value” methods access to its value in all the primitive forms. You can
retrieve scalar values with the methods doubleValue(), floatValue(), longValue(),
intValue(), shortValue(), and byteValue():

 Double size = new Double (32.76);

 double d = size.doubleValue(); // 32.76
 float f = size.floatValue(); // 32.76
 long l = size.longValue(); // 32
 int i = size.intValue(); // 32

This code is equivalent to casting the primitive double value to the various types.

The most common need for a wrapper is when you want to pass a primitive value to a
method that requires an object. For example, in Chapter 7, we’ll look at the Java Col‐
lections API, a sophisticated set of classes for dealing with object groups, such as lists,
sets, and maps. The Collections API works on object types, so primitives must be
wrapped when stored in them. We’ll see in the next section that Java makes this

142 | Chapter 5: Objects in Java

wrapping process automatic. For now, however, let’s do it ourselves. As we’ll see, a
List is an extensible collection of Objects. We can use wrappers to hold numbers in a
List (along with other objects):

 // Simple Java code
 List myNumbers = new ArrayList();
 Integer thirtyThree = new Integer(33);
 myNumbers.add(thirtyThree);

Here, we have created an Integer wrapper object so that we can insert the number
into the List, using the add() method, which accepts an object. Later, when we are
extracting elements from the List, we can recover the int value as follows:

 // Simple Java code
 Integer theNumber = (Integer)myNumbers.get(0);
 int n = theNumber.intValue(); // 33

As we alluded to earlier, allowing Java to do this for us (“autoboxing”) makes the code
more concise and safer. The usage of the wrapper class is mostly hidden from us by
the compiler, but it is still being used internally:

 // Java code using autoboxing and generics
 List<Integer> myNumbers = new ArrayList<Integer>();
 myNumbers.add(33);
 int n = myNumbers.get(0);

We’ll see more of generics later.

Method Overloading
Method overloading is the ability to define multiple methods with the same name in a
class; when the method is invoked, the compiler picks the correct one based on the
arguments passed to the method. This implies that overloaded methods must have
different numbers or types of arguments. (In “Overriding methods” on page 159, we’ll
look at method overriding, which occurs when we declare methods with identical sig‐
natures in subclasses.)

Method overloading (also called ad hoc polymorphism) is a powerful and useful fea‐
ture. The idea is to create methods that act in the same way on different types of argu‐
ments. This creates the illusion that a single method can operate on many types of
arguments. The print() method in the standard PrintStream class is a good exam‐
ple of method overloading in action. As you’ve probably deduced by now, you can
print a string representation of just about anything using this expression:

 System.out.print(argument)

The variable out is a reference to an object (a PrintStream) that defines nine differ‐
ent, “overloaded” versions of the print() method. The versions take arguments of

Methods | 143

the following types: Object, String, char[], char, int, long, float, double, and
boolean.

 class PrintStream {
 void print(Object arg) { ... }
 void print(String arg) { ... }
 void print(char [] arg) { ... }
 ...
 }

You can invoke the print() method with any of these types as an argument, and it’s
printed in an appropriate way. In a language without method overloading, this
requires something more cumbersome, such as a uniquely named method for print‐
ing each type of object. In that case, it’s your responsibility to figure out what method
to use for each data type.

In the previous example, print() has been overloaded to support two reference
types: Object and String. What if we try to call print() with some other reference
type? Say, a Date object? When there’s not an exact type match, the compiler searches
for an acceptable, assignable match. Since Date, like all classes, is a subclass of Object,
a Date object can be assigned to a variable of type Object. It’s therefore an acceptable
match, and the Object method is selected.

What if there’s more than one possible match? For example, what if we want to print
the literal "Hi there"? That literal is assignable to either String (since it is a String)
or to Object. Here, the compiler makes a determination as to which match is “better”
and selects that method. In this case, it’s the String method.

The intuitive explanation for this is that the String class is “closer” to the literal "Hi
there" in the inheritance hierarchy. It is a more specific match. A slightly more rigor‐
ous way of specifying it would be to say that a given method is more specific than
another method if the argument types of the first method are all assignable to the
argument types of the second method. In this case, the String method is more spe‐
cific because type String is assignable to type Object. The reverse is not true.

If you’re paying close attention, you may have noticed we said that the compiler
resolves overloaded methods. Method overloading is not something that happens at
runtime; this is an important distinction. It means that the selected method is chosen
once, when the code is compiled. Once the overloaded method is selected, the choice
is fixed until the code is recompiled, even if the class containing the called method is
later revised and an even more specific overloaded method is added. This is in con‐
trast to overridden methods, which are located at runtime and can be found even if
they didn’t exist when the calling class was compiled. In practice, this distinction will
not usually be relevant to you, as you will likely recompile all of the necessary classes
at the same time. We’ll talk about method overriding later in the chapter.

144 | Chapter 5: Objects in Java

Object Creation
Objects in Java are allocated on a system “heap” memory space. Unlike some other
languages, however, we needn’t manage that memory ourselves. Java takes care of
memory allocation and deallocation for you. Java explicitly allocates storage for an
object when you create it with the new operator. More importantly, objects are
removed by garbage collection when they’re no longer referenced.

Constructors
Objects are allocated with the new operator using a constructor. A constructor is a spe‐
cial method with the same name as its class and no return type. It’s called when a new
class instance is created, which gives the class an opportunity to set up the object for
use. Constructors, like other methods, can accept arguments and can be overloaded
(they are not, however, inherited like other methods).

 class Date {
 long time;

 Date() {
 time = currentTime();
 }

 Date(String date) {
 time = parseDate(date);
 }
 ...
 }

In this example, the class Date has two constructors. The first takes no arguments; it’s
known as the default constructor. Default constructors play a special role: if we don’t
define any constructors for a class, an empty default constructor is supplied for us.
The default constructor is what gets called whenever you create an object by calling
its constructor with no arguments. Here we have implemented the default construc‐
tor so that it sets the instance variable time by calling a hypothetical method, current
Time(), which resembles the functionality of the real java.util.Date class. The
second constructor takes a String argument. Presumably, this String contains a
string representation of the time that can be parsed to set the time variable. Given the
constructors in the previous example, we create a Date object in the following ways:

 Date now = new Date();
 Date christmas = new Date("Dec 25, 2020");

In each case, Java chooses the appropriate constructor at compile time based on the
rules for overloaded method selection.

If we later remove all references to an allocated object, it’ll be garbage-collected, as
we’ll discuss shortly:

Object Creation | 145

 christmas = null; // fair game for the garbage collector

Setting this reference to null means it’s no longer pointing to the "Dec 25, 2006"
date object. Setting the variable christmas to any other value would have the same
effect. Unless the original date object is referenced by another variable, it’s now inac‐
cessible and can be garbage-collected. We’re not suggesting that you have to set refer‐
ences to null to get the values garbage-collected. Often this just happens naturally
when local variables fall out of scope, but items referenced by instance variables of
objects live as long as the object itself lives (through references to it), and static vari‐
ables live effectively forever.

A few more notes: constructors can’t be declared abstract, synchronized, or final
(we’ll define the rest of those terms later). Constructors can, however, be declared
with the visibility modifiers public, private, or protected, just like other methods,
to control their accessibility. We’ll talk in detail about visibility modifiers in the next
chapter.

Working with Overloaded Constructors
A constructor can refer to another constructor in the same class or the immediate
superclass using special forms of the this and super references. We’ll discuss the first
case here and return to that of the superclass constructor after we have talked more
about subclassing and inheritance. A constructor can invoke another overloaded con‐
structor in its class using the self-referential method call this() with appropriate
arguments to select the desired constructor. If a constructor calls another constructor,
it must do so as its first statement:

 class Car {
 String model;
 int doors;

 Car(String model, int doors) {
 this.model = model;
 this.doors = doors;
 // other, complicated setup
 ...
 }

 Car(String model) {
 this(model, 4 /* doors */);
 }
 ...
 }

In this example, the class Car has two constructors. The first, more explicit, one
accepts arguments specifying the car’s model and its number of doors. The second
constructor takes just the model as an argument and, in turn, calls the first construc‐
tor with a default value of four doors. The advantage of this approach is that you can

146 | Chapter 5: Objects in Java

have a single constructor do all the complicated setup work; other auxiliary construc‐
tors simply feed the appropriate arguments to that constructor.

The special call to this() must appear as the first statement in our delegating con‐
structor. The syntax is restricted in this way because there’s a need to identify a clear
chain of command in the calling of constructors. At the end of the chain, Java invokes
the constructor of the superclass (if we don’t do it explicitly) to ensure that inherited
members are initialized properly before we proceed.

There’s also a point in the chain, just after invoking the constructor of the superclass,
where the initializers of the current class’s instance variables are evaluated. Before that
point, we can’t even reference the instance variables of our class. We’ll explain this sit‐
uation again in complete detail after we have talked about inheritance.

For now, all you need to know is that you can invoke a second constructor (delegate
to it) only as the first statement of your constructor. For example, the following code
is illegal and causes a compile-time error:

 Car(String m) {
 int doors = determineDoors();
 this(m, doors); // Error: constructor call
 // must be first statement
 }

The simple model name constructor can’t do any additional setup before calling the
more explicit constructor. It can’t even refer to an instance member for a constant
value:

 class Car {
 ...
 final int default_doors = 4;
 ...

 Car(String m) {
 this(m, default_doors); // Error: referencing
 // uninitialized variable
 }
 ...
 }

The instance variable defaultDoors is not initialized until a later point in the chain of
constructor calls setting up the object, so the compiler doesn’t let us access it yet. For‐
tunately, we can solve this particular problem by using a static variable instead of an
instance variable:

 class Car {
 ...
 static final int DEFAULT_DOORS = 4;
 ...

 Car(String m) {

Object Creation | 147

4 It’s still possible in Java to write code that holds onto objects forever, consuming more and more memory.
This isn’t really a leak so much as it is hoarding memory. It is also usually much easier to track down with the
correct tools and techniques.

 this(m, DEFAULT_DOORS); // Okay!
 }
 ...
 }

The static members of a class are initialized when the class is first loaded into the vir‐
tual machine, so it’s safe to access them in a constructor.

Object Destruction
Now that we’ve seen how to create objects, it’s time to talk about their destruction. If
you’re accustomed to programming in C or C++, you’ve probably spent time hunting
down memory leaks in your code. Java takes care of object destruction for you; you
don’t have to worry about traditional memory leaks, and you can concentrate on
more important programming tasks.4

Garbage Collection
Java uses a technique known as garbage collection to remove objects that are no longer
needed. The garbage collector is Java’s grim reaper. It lingers in the background, stalk‐
ing objects and awaiting their demise. It finds and watches them, periodically count‐
ing references to them to see when their time has come. When all references to an
object are gone and it’s no longer accessible, the garbage-collection mechanism
declares the object unreachable and reclaims its space back to the available pool of
resources. An unreachable object is one that can no longer be found through any
combination of “live” references in the running application.

Garbage collection uses a variety of algorithms; the Java virtual machine architecture
doesn’t require a particular scheme. It’s worth noting, however, how some implemen‐
tations of Java have accomplished this task. In the beginning, Java used a technique
called “mark and sweep.” In this scheme, Java first walks through the tree of all acces‐
sible object references and marks them as alive. Java then scans the heap, looking for
identifiable objects that aren’t marked. In this technique, Java is able to find objects
on the heap because they are stored in a characteristic way and have a particular sig‐
nature of bits in their handles unlikely to be reproduced naturally. This kind of algo‐
rithm doesn’t become confused by the problem of cyclic references, in which objects
can mutually reference each other and appear alive even when they are dead (Java
handles this problem automatically). This scheme wasn’t the fastest method, however,
and caused pauses in the program. Since then, implementations have become much
more sophisticated.

148 | Chapter 5: Objects in Java

Modern Java garbage collectors effectively run continuously without forcing any
lengthy delay in execution of the Java application. Because they are part of a runtime
system, they can also accomplish some things that could not be done statically. Sun’s
Java implementation divides the memory heap into several areas for objects with dif‐
ferent estimated lifespans. Short-lived objects are placed on a special part of the heap,
which drastically reduces the time to recycle them. Objects that live longer can be
moved to other, less volatile parts of the heap. In recent implementations, the garbage
collector can even “tune” itself by adjusting the size of parts of the heap based on the
actual application performance. The improvement in Java’s garbage collection since
the early releases has been remarkable and is one of the reasons that Java is now
roughly equivalent in speed to many traditional languages that place the burden of
memory management on the shoulders of the programmer.

In general, you do not have to concern yourself with the garbage-collection process.
But one garbage-collection method can be useful for debugging. You can prompt the
garbage collector to make a clean sweep explicitly by invoking the System.gc()
method. This method is completely implementation dependent and may do nothing,
but it can be used if you want some guarantee that Java has cleaned up before you do
an activity.

Packages
Even sticking to simpler examples, you may have noticed that solving problems in
Java requires creating a number of classes. For our game classes above, we have our
apples and our physicists and our playing field, just to name a few. For more complex
applications or libraries, you can have hundreds or even thousands of classes. You
need a way to organize things, and Java uses the notion of a package to accomplish
this task.

Recall our second Hello World example in Chapter 2. The first few lines in the file
show us a lot of information on where the code will live:

 import javax.swing.*;

 public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 ...

We named the Java file according to the main class in that file. When we talk about
organizing things that go in files, you might naturally think of using folders to orga‐
nize those files in turn. That is essentially what Java does. Packages map onto folder
names much the way classes map onto filenames. If you were looking at the Java
source code for the Swing components we used in HelloJava, for example, you

Packages | 149

would find a folder named javax, and under that, one named swing, and under that
you would find files like JFrame.java and JLabel.java.

Importing Classes
One of Java’s biggest strengths lies in the vast collection of supporting libraries avail‐
able under both commercial and open source licensing. Need to output a PDF?
There’s a library for that. Need to import a spreadsheet? There’s a library for that.
Need to turn on that smart lightbulb in the basement from your web server? There’ a
library for that, too. If computers are doing some task or other, you will almost always
find a Java library to help you write code to perform that task as well.

Importing individual classes
In programming, you’ll often hear the maxim that “less is more.” Less code is more
maintainable. Less overhead means more throughput, etc., etc. (Although in pursuing
this way of coding, we do want to remind you to follow another famous quote from
no less a thinker than Einstein: “Everything should be made as simple as possible, but
no simpler.”) If you only need one or two classes from an external package, you can
import exactly those classes. This makes your code a little more readable—others
know exactly what classes you’ll be using.

Let’s re-examine that snippet of HelloJava above. We used a blanket import (more on
that in the next section), but we could tighten things up a bit by importing just the
classes we need, like so:

 import javax.swing.JFrame;
 import javax.swing.JLabel;

 public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 ...

This type of import setup is certainly more verbose when writing and reading, but
again, it means anyone reading or compiling your code knows exactly what other
dependencies exist. Many IDEs even have an “Optimize Imports” function that will
automatically find those dependencies and list them individually. Once you get in the
habit of listing and seeing these explicit imports, it is suprising how useful they
become when orienting yourself in a new (or perhaps long-forgotten) class.

Importing entire packages
Of course, not every package lends itself to onesie-twosie imports. That same Swing
package, javax.swing, is a great example. If you are writing a graphical desktop

150 | Chapter 5: Objects in Java

application, you’ll almost certainly use Swing—and lots and lots of its components.
You can import every class in the package using the syntax we glossed over earlier:

 import javax.swing.*;

 public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 ...

The * is a sort of wildcard for class imports. This version of the import statement tells
the compiler to have every class in the package ready to use. You’ll see this type of
import quite often for many of the common Java packages such as AWT, Swing, Utils,
and I/O. Again, it works for any package, but where it makes sense to be more spe‐
cific, you’ll gain some compile-time performance boosts and improve the readability
of your code.

Skipping imports
You have another option for using external classes from other packages—you do not
have to import them at all. You can use their fully qualified names right in your code.
For example, our HelloJava class used the JFrame and JLabel classes from the
javax.swing package. We could import only the JLabel class if we wanted:

 import javax.swing.JLabel;

 public class HelloJava {
 public static void main(String[] args) {
 javax.swing.JFrame frame = new javax.swing.JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 ...

This might seem overly verbose for one line where we create our frame, but in larger
classes with an already lengthy list of imports, one-off usages can actually make your
code more readable. Such a fully qualified entry often points to the sole use of this
class within a file. If you were using it many times, you would import it. This type of
usage is never a requirement, but you will see it in the wild from time to time.

Custom Packages
As you continue learning Java and write more code and solve larger problems, you
will undoubtedly start to collect a larger and larger number of classes. You can use
packages yourself to help organize that collection. You use the package keyword to
declare a custom package. As noted at the top of this section, you then place the file
with your class inside a folder structure corresponding to the package name. As a
quick reminder, packages use all lowercase names (by convention) separated by peri‐
ods, such as in our graphical interface package, javax.swing.

Packages | 151

Another convention applied widely to package names is something called “reverse
domain name” naming. Apart from the packages associated directly with Java, third-
party libraries and other contributed code is usually organized using the domain
name of the company or individual’s email address. For example, the Mozilla Founda‐
tion has contributed a variety of Java libraries to the open source community. Most of
those libraries and utilities will be in packages starting with Mozilla’s domain,
mozilla.org, in reverse order: org.mozilla. This reverse naming has the handy (and
intended) side effect of keeping the folder structure at the top fairly small. It is not
uncommon to have good-sized projects that use libraries from only the com and org
top-level domains.

If you are building your own packages separate from any company or contract work,
you can use your email address and reverse it, similar to company domain names.
Another popular option for code distributed online is to use the domain of your
hosting provider. GitHub, for example, hosts many, many Java projects for hobbyists
and enthusiasts. You might create a package named com.github.myawesomeproject
where “myawesomeproject” would obviously be replaced by your actual project
name. Be aware that repositories at sites like GitHub often allow names that are not
valid in package names. You might have a project named my-awesome-project, but
dashes are not allowed in any portion of a package name. Often such illegal charac‐
ters are simply omitted to create a valid name.

You may have already taken a peek at more of the examples in the code archive for
this book. If so, you will have noticed we placed them in packages. While the organiz‐
ing of classes within packages is a woolly topic with no great best practices available,
we’ve taken an approach designed to make the examples easy to locate as you’re read‐
ing the book. For small examples in a chapter, you’ll see a package like ch05. For the
ongoing game example, we use game. We could rewrite our very first examples to fit
into this scheme quite easily:

 package ch02;

 import javax.swing.*;

 public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 ...

We would need to create the folder structure ch02 and then place our HelloJava.java
file in that ch02 folder. We could then compile and run the example at the command
line by staying at the top of the folder hierarchy and using the fully qualified path of
the file and name of the class, like so:

152 | Chapter 5: Objects in Java

 %javac ch02/HelloJava.java
 %java ch02.HelloJava

If you are using an IDE, it will happily manage these package issues for you. Simply
create and organize your classes and continue to identify the main class that kicks off
your program.

Member Visibility and Access
We’ve talked a bit about the access modifiers you can use when declaring variables
and methods. Making something public means anyone, anywhere can see your vari‐
able or call your method. Making something protected means any subclass can
access the variable, call the method, or override the method to provide some alternate
functionality more appropriate to your subclass. The private modifier means the
variable or method is only available within the class itself.

Packages affect protected members. In addition to being accessible by any subclass,
such members are visible and overridable by other classes in that package. Packages
also come into play if you leave off the modifier altogether. Consider some example
text components in the custom package mytools.text, as shown in Figure 5-4.

Figure 5-4. Packages and class visibility

The class TextComponent has no modifier. It has default visibility or “package private”
visibility. This means that other classes in the same package can access the class, but
those classes outside the package cannot. This can be very useful for implementation-
specific classes or internal helpers. You can use the package private elements freely,
but other programmers will use only your public and protected elements.
Figure 5-5 shows some more details with variables and methods being used by both
subclasses and external code.

Packages | 153

Figure 5-5. Packages and member visibility

Notice that extending the TextArea class gives you access to the public getText()
and setText() methods as well as the protected method formatText(). But MyText
Display (more on subclasses and extends shortly in “Subclassing and Inheritance”
on page 156) does not have access to the package private variable linecount. Within
the mytools.text package where we create the TextEditor class, however, we can get
to linecount as well as those methods that are public or protected. Our internal
storage for the content, text, remains private and unavailable to anyone other than
the TextArea class itself.

Table 5-2 summarizes the levels of visibility available in Java; it runs generally from
most to least restrictive. Methods and variables are always visible within a declaring
class itself, so the table doesn’t address that scope.

Table 5-2. Visibility modifiers

Modifier Visibility outside the class

private None

No modifier (default) Classes in the package

protected Classes in package and subclasses inside or outside the package

public All classes

154 | Chapter 5: Objects in Java

5 Maven sufficiently changed the landscape for dependency management in Java and even other JVM-based
languages that you can now find tools such as Gradle, which were based on Maven’s success.

Compiling with Packages
You’ve already seen a few examples of using a fully qualified class name to compile a
simple example. If you’re not using an IDE, you have other options available to you.
For example, you may wish to compile all of the classes in a given package. If so, you
can do this:

% javac ch02/*.java
% java ch02.HelloJava

Note that for commercial applications, you often see more complex package names
meant to avoid collisions. A common practice is to reverse the internet domain name
of your company. For example, this book from O’Reilly might more appropriately use
a full package prefix such as com.oreilly.learningjava5e. Each chapter would be a
subpackage under that prefix. Compiling and running classes in such packages is
fairly straightforward, if a bit verbose:

% javac com/oreilly/learningjava5e/ch02/*.java
% java com.oreilly.learningjava5e.ch02.HelloJava

The javac command also understands basic class dependency. If your main class uses
a few other classes in the same source hierarchy—even if they are not all in the same
package—compiling that main class will “pick up” the other, dependent classes and
compile them as well.

Beyond simple programs with a few classes, though, you really are more likely to rely
on your IDE or a build management tool such as Gradle or Maven. Those tools are
outside the scope of this book, but there are many references for them online. Maven
in particular is great for managing large projects with many dependencies. See
Maven: The Definitive Guide by Maven creator Jason Van Zyl and his team at Sona‐
type (O’Reilly) for a true exploration of the features and capabilities of this popular
tool.5

Advanced Class Design
You may recall from “HelloJava2: The Sequel” on page 53 that we had two classes in
the same file. That simplified the compiling process but didn’t grant either class any
special access to the other. As you start thinking about more complex problems, you
will encounter cases where more advanced class design that does grant special access
is not just handy but critical to writing maintainable code.

Advanced Class Design | 155

https://gradle.org
https://oreil.ly/ya4DY

Subclassing and Inheritance
Classes in Java exist in a hierarchy. A class in Java can be declared as a subclass of
another class using the extends keyword. A subclass inherits variables and methods
from its superclass and can use them as if they were declared within the subclass itself:

 class Animal {
 float weight;
 ...
 void eat() {
 ...
 }
 ...
 }

 class Mammal extends Animal {
 // inherits weight
 int heartRate;
 ...

 // inherits eat()
 void breathe() {
 ...
 }
 }

In this example, an object of type Mammal has both the instance variable weight and
the method eat(). They are inherited from Animal.

A class can extend only one other class. To use the proper terminology, Java allows
single inheritance of class implementation. Later in this chapter, we’ll talk about inter‐
faces, which take the place of multiple inheritance as it’s primarily used in other
languages.

A subclass can be further subclassed. Normally, subclassing specializes or refines a
class by adding variables and methods (you cannot remove or hide variables or meth‐
ods by subclassing). For example:

 class Cat extends Mammal {
 // inherits weight and heartRate
 boolean longHair;
 ...

 // inherits eat() and breathe()
 void purr() {
 ...
 }
 }

The Cat class is a type of Mammal that is ultimately a type of Animal. Cat objects
inherit all the characteristics of Mammal objects and, in turn, Animal objects. Cat also

156 | Chapter 5: Objects in Java

provides additional behavior in the form of the purr() method and the longHair
variable. We can denote the class relationship in a diagram, as shown in Figure 5-6.

Figure 5-6. A class hierarchy

A subclass inherits all members of its superclass not designated as private. As we’ll
discuss shortly, other levels of visibility affect which inherited members of the class
can be seen from outside of the class and its subclasses, but at a minimum, a subclass
always has the same set of visible members as its parent. For this reason, the type of a
subclass can be considered a subtype of its parent, and instances of the subtype can be
used anywhere instances of the supertype are allowed. Consider the following
example:

 Cat simon = new Cat();
 Animal creature = simon;

The Cat instance simon in this example can be assigned to the Animal type variable
creature because Cat is a subtype of Animal. Similarly, any method accepting an Ani
mal object would accept an instance of a Cat or any Mammal type as well. This is an
important aspect of polymorphism in an object-oriented language such as Java. We’ll
see how it can be used to refine a class’s behavior, as well as add new capabilities to it.

Shadowed variables
We have seen that a local variable of the same name as an instance variable shadows
(hides) the instance variable. Similarly, an instance variable in a subclass can shadow
an instance variable of the same name in its parent class, as shown in Figure 5-7.
We’re going to cover the details of this variable hiding now for completeness and in
preparation for more advanced topics, but in practice you should almost never do
this. It is much better in practice to structure your code to clearly differentiate vari‐
ables using different names or naming conventions.

In Figure 5-7, the variable weight is declared in three places: as a local variable in the
method foodConsumption() of the class Mammal, as an instance variable of the class
Mammal, and as an instance variable of the class Animal. The actual variable selected

Advanced Class Design | 157

6 Note that a better way to design our calculators would be to have an abstract Calculator class with two sub‐
classes: IntegerCalculator and DecimalCalculator.

when you reference it in the code would depend on the scope in which we are work‐
ing and how you qualify the reference to it.

Figure 5-7. The scope of shadowed variables

In the previous example, all variables were of the same type. A slightly more plausible
use of shadowed variables would involve changing their types. We could, for example,
shadow an int variable with a double variable in a subclass that needs decimal values
instead of integer values. We can do this without changing the existing code because,
as its name suggests, when we shadow variables, we don’t replace them but instead
mask them. Both variables still exist; methods of the superclass see the original vari‐
able, and methods of the subclass see the new version. The determination of what
variables the various methods see occurs at compile time.

Here’s a simple example:

 class IntegerCalculator {
 int sum;
 ...
 }

 class DecimalCalculator extends IntegerCalculator {
 double sum;
 ...
 }

In this example, we shadow the instance variable sum to change its type from int to
double.6 Methods defined in the class IntegerCalculator see the integer variable
sum, while methods defined in DecimalCalculator see the floating-point variable

158 | Chapter 5: Objects in Java

sum. However, both variables actually exist for a given instance of DecimalCalcula
tor, and they can have independent values. In fact, any methods that DecimalCalcu
lator inherits from IntegerCalculator actually see the integer variable sum.

Because both variables exist in DecimalCalculator, we need a way to reference the
variable inherited from IntegerCalculator. We do that using the super keyword as
a qualifier on the reference:

 int s = super.sum;

Inside of DecimalCalculator, the super keyword used in this manner selects the sum
variable defined in the superclass. We’ll explain the use of super more fully in a bit.

Another important point about shadowed variables has to do with how they work
when we refer to an object by way of a less derived type (a parent type). For example,
we can refer to a DecimalCalculator object as an IntegerCalculator by using it via
a variable of type IntegerCalculator. If we do so and then access the variable sum,
we get the integer variable, not the decimal one:

 DecimalCalculator dc = new DecimalCalculator();
 IntegerCalculator ic = dc;

 int s = ic.sum; // accesses IntegerCalculator sum

The same would be true if we accessed the object using an explicit cast to the Integer
Calculator type or when passing an instance into a method that accepts that parent
type.

To reiterate, the usefulness of shadowed variables is limited. It’s much better to
abstract the use of variables like this in other ways than to use tricky scoping rules.
However, it’s important to understand the concepts here before we talk about doing
the same thing with methods. We’ll see a different and more dynamic type of behav‐
ior when methods shadow other methods, or to use the correct terminology, override
other methods.

Overriding methods
We have seen that we can declare overloaded methods (i.e., methods with the same
name but a different number or type of arguments) within a class. Overloaded
method selection works in the way we described on all methods available to a class,
including inherited ones. This means that a subclass can define additional overloaded
methods that add to the overloaded methods provided by a superclass.

A subclass can do more than that; it can define a method that has exactly the same
method signature (name and argument types) as a method in its superclass. In that
case, the method in the subclass overrides the method in the superclass and effectively
replaces its implementation, as shown in Figure 5-8. Overriding methods to change

Advanced Class Design | 159

7 The Platypus is a highly unusual egg-laying Mammal. We could override the reproduce() behavior again for it
in its own subclass of Mammal.

8 An overridden method in Java acts like a virtual method in C++.

the behavior of objects is called subtype polymorphism. It’s the usage most people
think of when they talk about the power of object-oriented languages.

Figure 5-8. Method overriding

In Figure 5-8, Mammal overrides the reproduce() method of Animal, perhaps to spe‐
cialize the method for the behavior of mammals giving birth to live young.7 The Cat
object’s sleeping behavior is also overridden to be different from that of a general Ani
mal, perhaps to accommodate catnaps. The Cat class also adds the more unique
behaviors of purring and hunting mice.

From what you’ve seen so far, overridden methods probably look like they shadow
methods in superclasses, just as variables do. But overridden methods are actually
more powerful than that. When there are multiple implementations of a method in
the inheritance hierarchy of an object, the one in the “most derived” class (the fur‐
thest down the hierarchy) always overrides the others, even if we refer to the object
through a reference of one of the superclass types.8

For example, if we have a Cat instance assigned to a variable of the more general type
Animal, and we call its sleep() method, we still get the sleep() method imple‐
mented in the Cat class, not the one in Animal:

 Cat simon = new Cat();
 Animal creature = simon;
 ...
 creature.sleep(); // accesses Cat sleep();

160 | Chapter 5: Objects in Java

In other words, for purposes of behavior (invoking methods), a Cat acts like a Cat,
regardless of whether you refer to it as such. In other respects, the variable creature
here may behave like an Animal reference. As we explained earlier, access to a shad‐
owed variable through an Animal reference would find an implementation in the Ani
mal class, not the Cat class. However, because methods are located dynamically,
searching subclasses first, the appropriate method in the Cat class is invoked, even
though we are treating it more generally as an Animal object. This means that the
behavior of objects is dynamic. We can deal with specialized objects as if they were
more general types and still take advantage of their specialized implementations of
behavior.

Interfaces
Java expands on the concept of abstract methods with interfaces. It’s often desirable to
specify a group of abstract methods defining some behavior for an object without
tying it to any implementation at all. In Java, this is called an interface. An interface
defines a set of methods that a class must implement. A class in Java can declare that
it implements an interface if it implements the required methods. Unlike extending an
abstract class, a class implementing an interface doesn’t have to inherit from any par‐
ticular part of the inheritance hierarchy or use a particular implementation.

Interfaces are kind of like Boy Scout or Girl Scout merit badges. A scout who has
learned to build a birdhouse can walk around wearing a little sleeve patch with a pic‐
ture of one. This says to the world, “I know how to build a birdhouse.” Similarly, an
interface is a list of methods that define some set of behavior for an object. Any class
that implements each method listed in the interface can declare at compile time that it
implements the interface and wear, as its merit badge, an extra type—the interface’s
type.

Interface types act like class types. You can declare variables to be of an interface type,
you can declare arguments of methods to accept interface types, and you can specify
that the return type of a method is an interface type. In each case, what is meant is
that any object that implements the interface (i.e., wears the right merit badge) can fill
that role. In this sense, interfaces are orthogonal to the class hierarchy. They cut
across the boundaries of what kind of object an item is and deal with it only in terms
of what it can do. A class can implement as many interfaces as it desires. In this way,
interfaces in Java replace much of the need for multiple inheritance in other lan‐
guages (and all its messy complications).

An interface looks, essentially, like a purely abstract class (i.e., a class with only
abstract methods). You define an interface with the interface keyword, and list its
methods with no bodies, just prototypes (signatures):

 interface Driveable {
 boolean startEngine();

Advanced Class Design | 161

 void stopEngine();
 float accelerate(float acc);
 boolean turn(Direction dir);
 }

The previous example defines an interface called Driveable with four methods. It’s
acceptable, but not necessary, to declare the methods in an interface with the
abstract modifier; we haven’t done that here. More importantly, the methods of an
interface are always considered public, and you can optionally declare them as so.
Why public? Well, the user of the interface wouldn’t necessarily be able to see them
otherwise, and interfaces are generally intended to describe the behavior of an object,
not its implementation.

Interfaces define capabilities, so it’s common to name interfaces after their capabili‐
ties. Driveable, Runnable, and Updateable are good interface names. Any class that
implements all the methods can then declare that it implements the interface by using
a special implements clause in its class definition. For example:

 class Automobile implements Driveable {
 ...
 public boolean startEngine() {
 if (notTooCold)
 engineRunning = true;
 ...
 }

 public void stopEngine() {
 engineRunning = false;
 }

 public float accelerate(float acc) {
 ...
 }

 public boolean turn(Direction dir) {
 ...
 }
 ...
 }

Here, the class Automobile implements the methods of the Driveable interface and
declares itself a type of Driveable using the implements keyword.

As shown in Figure 5-9, another class, such as Lawnmower, can also implement the
Driveable interface. The figure illustrates the Driveable interface being imple‐
mented by two different classes. While it’s possible that both Automobile and Lawn
mower could derive from some primitive kind of vehicle, they don’t have to in this
scenario.

162 | Chapter 5: Objects in Java

Figure 5-9. Implementing the Driveable interface

After declaring the interface, we have a new type, Driveable. We can declare vari‐
ables of type Driveable and assign them any instance of a Driveable object:

 Automobile auto = new Automobile();
 Lawnmower mower = new Lawnmower();
 Driveable vehicle;

 vehicle = auto;
 vehicle.startEngine();
 vehicle.stopEngine();

 vehicle = mower;
 vehicle.startEngine();
 vehicle.stopEngine();

Both Automobile and Lawnmower implement Driveable, so they can be considered
interchangeable objects of that type.

Inner Classes
All of the classes we’ve seen so far in this book have been top-level, “freestanding”
classes declared at the file and package level. But classes in Java can actually be
declared at any level of scope, within any set of curly braces (i.e., almost anywhere
that you could put any other Java statement). These inner classes belong to another
class or method as a variable would and may have their visibility limited to its scope
in the same way. Inner classes are a useful and aesthetically pleasing facility for struc‐
turing code. Their cousins, anonymous inner classes, are an even more powerful

Advanced Class Design | 163

shorthand that make it seem as if you can create new kinds of objects dynamically
within Java’s statically typed environment. In Java, anonymous inner classes play part
of the role of closures in other languages, giving the effect of handling state and
behavior independently of classes.

However, as we delve into their inner workings, we’ll see that inner classes are not
quite as aesthetically pleasing or dynamic as they seem. Inner classes are pure syntac‐
tic sugar; they are not supported by the VM and are instead mapped to regular Java
classes by the compiler. As a programmer, you may never need be aware of this; you
can simply rely on inner classes like any other language construct. However, you
should know a little about how inner classes work to better understand the compiled
code and a few potential side effects.

Inner classes are essentially nested classes. For example:

 Class Animal {
 Class Brain {
 ...
 }
 }

Here, the class Brain is an inner class: it is a class declared inside the scope of class
Animal. Although the details of what that means require a bit of explanation, we’ll
start by saying that Java tries to make the meaning, as much as possible, the same as
for the other members (methods and variables) living at that level of scope. For exam‐
ple, let’s add a method to the Animal class:

 Class Animal {
 Class Brain {
 ...
 }
 void performBehavior() { ... }
 }

Both the inner class Brain and the method performBehavior() are within the scope
of Animal. Therefore, anywhere within Animal, we can refer to Brain and performBe
havior() directly, by name. Within Animal, we can call the constructor for Brain
(new Brain()) to get a Brain object or invoke performBehavior() to carry out that
method’s function. But neither Brain nor performBehavior() are generally accessible
outside of the class Animal without some additional qualification.

Within the body of the inner Brain class and the body of the performBehavior()
method, we have direct access to all the other methods and variables of the Animal
class. So, just as the performBehavior() method could work with the Brain class and
create instances of Brain, methods within the Brain class can invoke the performBe
havior() method of Animal as well as work with any other methods and variables

164 | Chapter 5: Objects in Java

declared in Animal. The Brain class “sees” all of the methods and variables of the Ani
mal class directly in its scope.

That last bit has important consequences. From within Brain, we can invoke the
method performBehavior(); that is, from within an instance of Brain, we can invoke
the performBehavior() method of an instance of Animal. Well, which instance of Ani
mal? If we have several Animal objects around (say, a few Cats and Dogs), we need to
know whose performBehavior() method we are calling. What does it mean for a
class definition to be “inside” another class definition? The answer is that a Brain
object always lives within a single instance of Animal: the one that it was told about
when it was created. We’ll call the object that contains any instance of Brain its
enclosing instance.

A Brain object cannot live outside of an enclosing instance of an Animal object. Any‐
where you see an instance of Brain, it will be tethered to an instance of Animal.
Although it is possible to construct a Brain object from elsewhere (i.e., another class),
Brain always requires an enclosing instance of Animal to “hold” it. We’ll also say now
that if Brain is to be referred to from outside of Animal, it acts something like an
Animal.Brain class. And just as with the performBehavior() method, modifiers can
be applied to restrict its visibility. All of the usual visibility modifiers apply, and inner
classes can also be declared static, as we’ll discuss later.

Anonymous Inner Classes
Now we get to the best part. As a general rule, the more deeply encapsulated and
limited in scope our classes are, the more freedom we have in naming them. We saw
this in our earlier iterator example. This is not just a purely aesthetic issue. Naming is
an important part of writing readable, maintainable code. We generally want to use
the most concise, meaningful names possible. A corollary to this is that we prefer to
avoid doling out names for purely ephemeral objects that are going to be used only
once.

Anonymous inner classes are an extension of the syntax of the new operation. When
you create an anonymous inner class, you combine a class declaration with the alloca‐
tion of an instance of that class, effectively creating a “one-time only” class and a class
instance in one operation. After the new keyword, you specify either the name of a
class or an interface, followed by a class body. The class body becomes an inner class,
which either extends the specified class or, in the case of an interface, is expected to
implement the interface. A single instance of the class is created and returned as the
value.

For example, we could revisit the graphical application from “HelloJava2: The Sequel”
on page 53 that creates a HelloComponent2 that extends JComponent and implements
the MouseMotionListener interface. Looking at the example a little more closely, we

Advanced Class Design | 165

never expect HelloComponent2 to respond to mouse motion events coming from
other components. It might make more sense to create an anonymous inner class
specifically to move our “Hello” label around. Indeed, since HelloComponent2 is
really meant for use only by our demo. We could refactor (a common developer pro‐
cess done to optimize or improve code that is already working) that separate class
into an inner class. Now that we know a little more about constructors and inheri‐
tance, we could also make our class an extension of JFrame rather than building a
frame inside our main() method.

Here’s our HelloJava3 with just these refactorings in place:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class HelloJava3 extends JFrame {
 public static void main(String[] args) {
 HelloJava3 demo = new HelloJava3();
 demo.setVisible(true);
 }

 public HelloJava3() {
 super("HelloJava3");
 add(new HelloComponent3("Hello, Inner Java!"));
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setSize(300, 300);
 }

 class HelloComponent3 extends JComponent {
 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

 public HelloComponent3(String message) {
 theMessage = message;
 addMouseMotionListener(new MouseMotionListener() {
 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) { }
 });
 }

 public void paintComponent(Graphics g) {
 g.drawString(theMessage, messageX, messageY);
 }
 }
}

166 | Chapter 5: Objects in Java

Try compiling and running this example. It should behave exactly as the original Hel
loJava2 application does. The real difference is how we have organized the classes
and who can access them (and the variables and methods inside them).

Organizing Content and Planning for Failure
Classes are the single most important idea in Java. They form the core of every exe‐
cutable program, portable library, or helper. We looked at the contents of classes and
how classes relate to each other in a larger project. We know more about how to cre‐
ate and destroy objects based on the classes we write. And we’ve seen how inner
classes (and anonymous inner classes) can help us write more maintainable code.
We’ll be seeing more of these inner classes as we get into deeper topics such as
threads in Chapter 9 and Swing in Chapter 10.

As you build your classes, there are a few guidelines to keep in mind:

• Hide as much of your implementation as possible. Never expose more of the
internals of an object than you need to. This is key to building maintainable,
reusable code. Avoid public variables in your objects, with the possible exception
of constants. Instead define accessor methods to set and return values (even if
they are simple types). Later, when you need to, you’ll be able to modify and
extend the behavior of your objects without breaking other classes that rely on
them.

• Specialize objects only when you have to—use composition instead of inheritance.
When you use an object in its existing form, as a piece of a new object, you are
composing objects. When you change or refine the behavior of an object (by sub‐
classing), you are using inheritance. You should try to reuse objects by composi‐
tion rather than inheritance whenever possible because when you compose
objects, you are taking full advantage of existing tools. Inheritance involves
breaking down the encapsulation of an object and should be done only when
there’s a real advantage. Ask yourself if you really need to inherit the whole class
(do you want to be a “kind” of that object?) or whether you can just include an
instance of that class in your own class and delegate some work to the included
object.

• Minimize relationships between objects and try to organize related objects in
packages. Classes that work closely together can be grouped using Java packages
(recall Figure 5-1), which can also hide those that are not of general interest.
Only expose classes that you intend other people to use. The more loosely cou‐
pled your objects are, the easier it will be to reuse them later.

We can apply these principles even on small projects. The ch05 examples folder con‐
tains simple versions of the classes and interfaces we’ll use to create our apple tossing

Organizing Content and Planning for Failure | 167

game. Take a moment to see how the Apple, Tree, and Physicist classes implement
the GamePiece interface—like the draw() method every class includes. Notice how
Field extends JComponent and how the main game class, AppleToss, extends JFrame.
You can see these pieces playing together in the admittedly simple Figure 5-10. To try
it yourself, compile and run the ch05.AppleToss class using the steps discussed ear‐
lier in “Custom Packages” on page 151.

Figure 5-10. Our very first game classes in action

Look over the comments in the classes. Try tweaking a few things. Add another tree.
More play is always good. We’ll be building on these classes throughout the remain‐
ing chapters, so getting comfortable with how they fit together will make it easier to
read through upcoming discussions.

Regardless of how you organize the members in your classes, the classes in your
packages, or the packages in your project, you’ll have to contend with errors cropping
up. Some of those errors are simple syntax errors you’ll fix in your editor. Other
errors are more interesting and may only crop up while your program is actually run‐
ning. The next chapter will cover Java’s notion of these problems and help you handle
them.

168 | Chapter 5: Objects in Java

1 The somewhat obscure setjmp() and longjmp() statements in C can save a point in the execution of code
and later return to it unconditionally from a deeply buried location. In a limited sense, this is the functionality
of exceptions in Java.

CHAPTER 6

Error Handling and Logging

Java has its roots in embedded systems—software that runs inside specialized devices,
such as handheld computers, cellular phones, and fancy toasters that we might con‐
sider part of the internet of things (IoT) these days. In those kinds of applications, it’s
especially important that software errors be handled robustly. Most users would agree
that it’s unacceptable for their phone to simply crash or for their toast (and perhaps
their house) to burn because their software failed. Given that we can’t eliminate the
possibility of software errors, it’s a step in the right direction to recognize and deal
with anticipated application-level errors methodically.

Dealing with errors in some languages is entirely the responsibility of the program‐
mer. The language itself provides no help in identifying error types and no tools for
dealing with them easily. In the C language, a routine generally indicates a failure by
returning an “unreasonable” value (e.g., the idiomatic -1 or null). As the program‐
mer, you must know what constitutes a bad result and what it means. It’s often awk‐
ward to work around the limitations of passing error values in the normal path of
data flow.1 An even worse problem is that certain types of errors can legitimately
occur almost anywhere, and it’s prohibitive and unreasonable to explicitly test for
them at every point in the software.

In this chapter we’ll consider how Java tackles the problem of, well, problems. We’ll
go over the notion of exceptions to look at how and why they occur as well as how
and where to handle them. We’ll also be looking at errors and assertions. Errors rep‐
resent more serious problems that often cannot be fixed at runtime but can still be

169

2 For example, the getHeight() method of the Image class returns -1 if the height isn’t known yet. No error has
occurred; the height will be available in the future. In this situation, throwing an exception would be excessive
and would impact performance.

logged for debugging. Assertions are a popular way of innoculating your code against
exceptions or errors by verifying that safe conditions exist ahead of time.

Exceptions
Java offers an elegant solution to aid the programmer in addressing common coding
and runtime problems through exceptions. (Java exception handling is similar to, but
not quite the same as, exception handling in C++.) An exception indicates an unusual
condition or an error condition. Program control becomes unconditionally transfer‐
red or “thrown” to a specially designated section of code where that condition is
caught and handled. In this way, error handling is independent of the normal flow of
the program. We don’t need special return values for all of our methods; errors are
handled by a separate mechanism. Control can be passed a long distance from a
deeply nested routine and handled in a single location when that is desirable, or an
error can be handled immediately at its source. A few standard Java API methods still
return -1 as a special value, but these are generally limited to situations where we are
expecting a special value and the situation is not really out of bounds.2

A Java method is required to specify the checked exceptions it can throw, and the
compiler makes sure that callers of the method handle them. In this way, the informa‐
tion about what errors a method can produce is promoted to the same level of impor‐
tance as its argument and return types. You may still decide to punt and ignore
obvious errors, but in Java you must do so explicitly. (We’ll discuss runtime excep‐
tions and errors, which are not required to be declared or handled by the method, in
a moment.)

Exceptions and Error Classes
Exceptions are represented by instances of the class java.lang.Exception and its
subclasses. Subclasses of Exception can hold specialized information (and possibly
behavior) for different kinds of exceptional conditions. However, more often they are
simply “logical” subclasses that serve only to identify a new exception type. Figure 6-1
shows the subclasses of Exception in the java.lang package. It should give you a feel
for how exceptions are organized; we’ll go into more details on class organization in
the next chapter. Most other packages define their own exception types, which usu‐
ally are subclasses of Exception itself or of its important subclass RuntimeException,
which we’ll get to in a moment.

170 | Chapter 6: Error Handling and Logging

For example, another important exception class is IOException in the package
java.io. The IOException class extends Exception and has many subclasses for typi‐
cal I/O problems (such as a FileNotFoundException) and networking problems
(such as a MalformedURLException). Network exceptions belong to the java.net
package.

Figure 6-1. The java.lang.Exception subclasses

An Exception object is created by the code at the point where the error condition
arises. It can be designed to hold any information that is necessary to describe the
exceptional condition and also includes a full stack trace for debugging. A stack trace
is the (occasionally unwieldy) list of all the methods called and the order in which
they were called up to the point where the exception was thrown. We’ll look at these
useful lists in more detail in “Stack Traces” on page 176. The Exception object is
passed as an argument to the handling block of code, along with the flow of control.
This is where the terms throw and catch come from: the Exception object is thrown
from one point in the code and caught by the other, where execution resumes.

The Java API also defines the java.lang.Error class for unrecoverable errors. The
subclasses of Error in the java.lang package are shown in Figure 6-2. A notable
Error type is AssertionError, which is used by the Java assert statement to indicate

Exceptions | 171

a failure (assertions are discussed later in this chapter). A few other packages define
their own subclasses of Error, but subclasses of Error are much less common (and
less useful) than subclasses of Exception. You generally needn’t worry about these
errors in your code (i.e., you do not have to catch them); they are intended to indicate
fatal problems or virtual machine errors. An error of this kind usually causes the Java
interpreter to display a message and exit. You are actively discouraged from trying to
catch or recover from them because they are supposed to indicate a fatal program
bug, not a routine condition.

Figure 6-2. The java.lang.Error subclasses

Both Exception and Error are subclasses of Throwable. The Throwable class is the
base class for objects that can be “thrown” with the throw statement. In general, you
should extend only Exception, Error, or one of their subclasses.

Exception Handling
The try/catch guarding statements wrap a block of code and catch designated types
of exceptions that occur within it:

 try {
 readFromFile("foo");
 ...
 }

172 | Chapter 6: Error Handling and Logging

 catch (Exception e) {
 // Handle error
 System.out.println("Exception while reading file: " + e);
 ...
 }

In this example, exceptions that occur within the body of the try portion of the state‐
ment are directed to the catch clause for possible handling. The catch clause acts like
a method; it specifies as an argument the type of exception it wants to handle and if
it’s invoked, it receives the Exception object as an argument. Here, we receive the
object in the variable e and print it along with a message.

We can try this ourselves. Recall the simple program to calculate the greatest com‐
mon denominator using the Euclid algorithm back in Chapter 4. We could augment
that program to allow the user to pass in the two numbers a and b as command-line
arguments via that args[] array in the main() method. However, that array is of type
String. If we cheat a little bit and jump forward a couple chapters, we can use a pars‐
ing method we cover in “Parsing Primitive Numbers” on page 229 to turn those argu‐
ments into int values. However, that parsing method can throw an exception if we
don’t pass a valid number. Here’s a look at our new Euclid2 class:

public class Euclid2 {
 public static void main(String args[]) {
 int a = 2701;
 int b = 222;
 // Only try to parse arguments if we have exactly 2
 if (args.length == 2) {
 try {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 } catch (NumberFormatException nfe) {
 System.err.println("Arguments were not both numbers.
 Using defaults.");
 }
 } else {
 System.err.println("Wrong number of arguments (expected 2).
 Using defaults.");
 }
 System.out.print("The GCD of " + a + " and " + b + " is ");
 while (b != 0) {
 if (a > b) {
 a = a - b;
 } else {
 b = b - a;
 }
 }
 System.out.println(a);
 }
}

Exceptions | 173

If we run this program from a terminal window or use the command-line arguments
option in our IDE like we did in Figure 2-9, we can try several numbers without
recompiling:

$ javac ch06/Euclid2.java

$ java ch06.Euclid2 18 6
The GCD of 18 and 6 is 6

$ java ch06.Euclid2 547832 2798
The GCD of 547832 and 2798 is 2

But if we pass in arguments that are not numeric, we’ll get that NumberFormatExcep
tion and see our error message. Note, however, that we recover gracefully and still
provide some output. This is the essence of error handling. You will always encounter
errors in the real world. How you handle them helps show the quality of your code.

$ java ch06.Euclid2 apples oranges
Arguments were not both numbers. Using defaults.
The GCD of 2701 and 222 is 37

A try statement can have multiple catch clauses that specify different types (sub‐
classes) of Exception:

 try {
 readFromFile("foo");
 ...
 }
 catch (FileNotFoundException e) {
 // Handle file not found
 ...
 }
 catch (IOException e) {
 // Handle read error
 ...
 }
 catch (Exception e) {
 // Handle all other errors
 ...
 }

The catch clauses are evaluated in order, and the first assignable match is taken. At
most, one catch clause is executed, which means that the exceptions should be listed
from most to least specific. In the previous example, we anticipate that the hypotheti‐
cal readFromFile() can throw two different kinds of exceptions: one for a file not
found and another for a more general read error. In the preceding example, FileNot
FoundException is a subclass of IOException, so if the first catch clause were not
there, the exception would be caught by the second in this case. Similarly, any sub‐
class of Exception is assignable to the parent type Exception, so the third catch
clause would catch anything passed by the first two. It acts here like the default

174 | Chapter 6: Error Handling and Logging

clause in a switch statement and handles any remaining possibilities. We’ve shown it
here for completeness, but in general you want to be as specific as possible in the
exception types you catch.

One advantage of the try/catch scheme is that any statement in the try block can
assume that all previous statements in the block succeeded. A problem won’t arise
suddenly because a programmer forgot to check the return value from a method. If
an earlier statement fails, execution jumps immediately to the catch clause; later
statements are never executed.

Starting with Java 7, there is an alternative to using multiple catch clauses, and that is
to handle multiple discrete exception types in a single catch clause using the “|” or
syntax:

 try {
 // read from network...
 // write to file..
 catch (ZipException | SSLException e) {
 logException(e);
 }

Using this “|” or syntax, we receive both types of exception in the same catch clause.
So, what is the actual type of the e variable that we are passing to our log method?
(What can we do with it?) In this case, it will be neither ZipException nor SSLExcep
tion but IOException, which is the two exceptions’ nearest common ancestor (the
closest parent class type to which they are both assignable). In many cases, the nearest
common type among the two or more argument exception types may simply be
Exception, the parent of all exception types. The difference between catching these
discrete exception types with a multiple-type catch clause and simply catching the
common parent exception type is that we are limiting our catch to only these specifi‐
cally enumerated exception types and we will not catch all the other IOException
types, as would be the alternative in this case. The combination of multiple-type
catch and ordering your catch clauses from most specific to most broad (“narrow”
to “wide”) types gives you great flexibility to structure your catch clauses. You can
consolidate error-handling logic where it is appropriate and to not repeat code. There
are more nuances to this feature, and we will return to it after we have discussed
“throwing” and “rethrowing” exceptions.

Bubbling Up
What if we hadn’t caught the exception? Where would it have gone? Well, if there is
no enclosing try/catch statement, the exception pops up from the method in which
it originated and is thrown from that method up to its caller. If that point in the call‐
ing method is within a try clause, control passes to the corresponding catch clause.
Otherwise, the exception continues propagating up the call stack, from one method

Exceptions | 175

to its caller. In this way, the exception bubbles up until it’s caught, or until it pops out
of the top of the program, terminating it with a runtime error message. There’s a bit
more to it than that because in this case, the compiler might have forced us to deal
with it along the way. “Checked and Unchecked Exceptions” on page 177 talks about
this distinction in more detail.

Let’s look at another example. In Figure 6-3, the method getContent() invokes the
method openConnection() from within a try/catch statement. In turn, openConnec
tion() invokes the method sendRequest(), which calls the method write() to send
some data.

Figure 6-3. Exception propagation

In this figure, the second call to write() throws an IOException. Since sendRe
quest() doesn’t contain a try/catch statement to handle the exception, it’s thrown
again from the point where it was called in the method openConnection(). Since
openConnection() doesn’t catch the exception either, it’s thrown once more. Finally,
it’s caught by the try statement in getContent() and handled by its catch clause.
Notice that each throwing method must declare with a throws clause that it can
throw the particular type of exception. We’ll discuss this below in “Checked and
Unchecked Exceptions” on page 177.

Adding a high-level try statement early in your code can also help handle errors that
might bubble up from background threads. We’ll discuss threads in much more detail
in Chapter 9, but it is worth noting here that uncaught exceptions can lead to debug‐
ging headaches in larger, more complex programs.

Stack Traces
Because an exception can bubble up quite a distance before it is caught and handled,
we may need a way to determine exactly where it was thrown. It’s also very important
to know the context of how the point of the exception was reached; that is, which
methods called which methods to get to that point. For these kinds of debugging and
logging purposes, all exceptions can dump a stack trace that lists their method of

176 | Chapter 6: Error Handling and Logging

origin and all the nested method calls it took to arrive there. Most commonly, the
user sees a stack trace when it is printed using the printStackTrace() method.

 try {
 // complex, deeply nested task
 } catch (Exception e) {
 // dump information about exactly where the exception occurred
 e.printStackTrace(System.err);
 ...
 }

For example, the stack trace for an exception might look like this:

 java.io.FileNotFoundException: myfile.xml
 at java.io.FileInputStream.<init>(FileInputStream.java)
 at java.io.FileInputStream.<init>(FileInputStream.java)
 at MyApplication.loadFile(MyApplication.java:137)
 at MyApplication.main(MyApplication.java:5)

This stack trace indicates that the main() method of the class MyApplication called
the method loadFile(). The loadFile() method then tried to construct a FileIn
putStream, which threw the FileNotFoundException. Note that once the stack trace
reaches Java system classes (like FileInputStream), the line numbers may be lost.
This can also happen when the code is optimized by some virtual machines. Usually,
there is a way to disable the optimization temporarily to find the exact line numbers.
However, in tricky situations, changing the timing of the application can affect the
problem you’re trying to debug, and other debugging techniques may be required.

Methods on the exception allow you to retrieve the stack trace information program‐
matically as well by using the Throwable getStackTrace() method. (Throwable is
the base class of Exception and Error.) This method returns an array of StackTra
ceElement objects, each of which represents a method call on the stack. You can ask a
StackTraceElement for details about that method’s location using the methods getFi
leName(), getClassName(), getMethodName(), and getLineNumber(). Element zero
of the array is the top of the stack, the final line of code that caused the exception;
subsequent elements step back one method call each until the original main()
method is reached.

Checked and Unchecked Exceptions
We mentioned earlier that Java forces us to be explicit about our error handling, but
it’s not necessary to require that every conceivable type of error be handled explicitly
in every situation. Java exceptions are therefore divided into two categories: checked
and unchecked. Most application-level exceptions are checked, which means that any
method that throws one, either by generating it itself (as we’ll discuss in “Throwing
Exceptions” on page 178) or by ignoring one that occurs within it, must declare that it
can throw that type of exception in a special throws clause in its method declaration.

Exceptions | 177

For now, all you need to know is that methods have to declare the checked exceptions
they can throw or allow to be thrown.

Again in Figure 6-3, notice that the methods openConnection() and sendRequest()
both specify that they can throw an IOException. If we had to throw multiple types
of exceptions, we could declare them, separated by commas:

 void readFile(String s) throws IOException, InterruptedException {
 ...
 }

The throws clause tells the compiler that a method is a possible source of that type of
checked exception and that anyone calling that method must be prepared to deal with
it. The caller must then either use a try/catch block to handle it, or it must, in turn,
declare that it can throw the exception from itself.

In contrast, exceptions that are subclasses of either the class java.lang.RuntimeEx
ception or the class java.lang.Error are unchecked. See Figure 6-1 for the sub‐
classes of RuntimeException. (Subclasses of Error are generally reserved for serious
class loading or runtime system problems.) It’s not a compile-time error to ignore the
possibility of these exceptions; methods also don’t have to declare they can throw
them. In all other respects, unchecked exceptions behave the same as other excep‐
tions. We are free to catch them if we wish, but in this case we aren’t required to.

Checked exceptions are intended to cover application-level problems, such as missing
files and unavailable hosts. As good programmers (and upstanding citizens), we
should design software to recover gracefully from these kinds of conditions.
Unchecked exceptions are intended for system-level problems, such as “out of mem‐
ory” and “array index out of bounds.” While these may indicate application-level pro‐
gramming errors, they can occur almost anywhere and usually aren’t possible to
recover from. Fortunately, because they are unchecked exceptions, you don’t have to
wrap every one of your array-index operations in a try/catch statement (or declare
all of the calling methods as a potential source of them).

To sum up, checked exceptions are problems that a reasonable application should try
to handle gracefully; unchecked exceptions (runtime exceptions or errors) are prob‐
lems from which we would not normally expect our software to recover. Error types
are those explicitly intended to be conditions that we should not normally try to han‐
dle or recover from.

Throwing Exceptions
We can throw our own exceptions—either instances of Exception, one of its existing
subclasses, or our own specialized exception classes. All we have to do is create an
instance of the Exception and throw it with the throw statement:

 throw new IOException();

178 | Chapter 6: Error Handling and Logging

Execution stops and is transferred to the nearest enclosing try/catch statement that
can handle the exception type. (There is little point in keeping a reference to the
Exception object we’ve created here.) An alternative constructor lets us specify a
string with an error message:

 throw new IOException("Sunspots!");

You can retrieve this string by using the Exception object’s getMessage() method.
Often, though, you can just print (or toString()) the exception object itself to get
the message and stack trace.

By convention, all types of Exception have a String constructor like this. The pre‐
ceding String message is not very useful. Normally, it will throw a more specific sub‐
class Exception, which captures details or at least a more specific string explanation.
Here’s another example:

 public void checkRead(String s) {
 if (new File(s).isAbsolute() || (s.indexOf("..") != -1))
 throw new SecurityException(
 "Access to file : "+ s +" denied.");
 }

In this code, we partially implement a method to check for an illegal path. If we find
one, we throw a SecurityException with some information about the transgression.

Of course, we could include any other information that is useful in our own special‐
ized subclasses of Exception. Often, though, just having a new type of exception is
good enough because it’s sufficient to help direct the flow of control. For example, if
we are building a parser, we might want to make our own kind of exception to indi‐
cate a particular kind of failure:

 class ParseException extends Exception {
 private int lineNumber;

 ParseException() {
 super();
 this.lineNumber = -1;
 }

 ParseException(String desc, int lineNumber) {
 super(desc);
 this.lineNumber = lineNumber;
 }

 public int getLineNumber() {
 return lineNumber;
 }
 }

Exceptions | 179

See “Constructors” on page 145 for a full description of classes and class constructors.
The body of our Exception class here simply allows a ParseException to be created
in the conventional ways we’ve created exceptions previously (either generically or
with a little extra information). Now that we have our new exception type, we can
guard like this:

 // Somewhere in our code
 ...
 try {
 parseStream(input);
 } catch (ParseException pe) {
 // Bad input...
 // We can even tell them which line was bad!
 } catch (IOException ioe) {
 // Low-level communications problem
 }

As you can see, even without the special information like the line number where our
input caused a problem, our custom exception lets us distinguish a parse error from
an arbitrary I/O error in the same chunk of code.

Chaining and rethrowing exceptions
Sometimes you’ll want to take some action based on an exception and then turn
around and throw a new exception in its place. This is common when building
frameworks where low-level detailed exceptions are handled and represented by
higher-level exceptions that can be managed more easily. For example, you might
want to catch an IOException in a communications package, possibly perform some
cleanup, and ultimately throw a higher-level exception of your own, maybe some‐
thing like LostServerConnection.

You can do this in the obvious way by simply catching the exception and then throw‐
ing a new one, but then you lose important information, including the stack trace of
the original “causal” exception. To deal with this, you can use the technique of excep‐
tion chaining. This means that you include the causal exception in the new exception
that you throw. Java has explicit support for exception chaining. The base Exception
class can be constructed with an exception as an argument or the standard String
message and an exception:

 throw new Exception("Here's the story...", causalException);

You can get access to the wrapped exception later with the getCause() method. More
importantly, Java automatically prints both exceptions and their respective stack
traces if you print the exception or if it is shown to the user.

You can add this kind of constructor to your own exception subclasses (delegating to
the parent constructor) or you can take advantage of this pattern by using the

180 | Chapter 6: Error Handling and Logging

Throwable method initCause() to set the causal exception explicitly after construct‐
ing your exception and before throwing it:

 try {
 // ...
 } catch (IOException cause) {
 Exception e =
 new IOException("What we have here is a failure to communicate...");
 e.initCause(cause);
 throw e;
 }

Sometimes it’s enough to simply do some logging or take some action and then
rethrow the original exception:

 try {
 // ...
 } catch (IOException cause) {
 log(cause); // Log it
 throw cause; // rethrow it
 }

Narrowed rethrow

Prior to Java 7, if you wanted to handle a bunch of exception types in a single catch
clause and then rethrow the original exception, you would inevitably end up widen‐
ing the declared exception type to what was required to catch them all or having to do
a lot of work to avoid that. In Java 7, the compiler has become smarter and can now
do most of the work for us by allowing us to narrow the type of exceptions thrown
back to the original types in most cases. This is best explained by example:

 void myMethod() throws ZipException, SSLException
 {
 try {
 // Possible cause of ZipException or SSLException
 } catch (Exception e) {
 log(e);
 throw e;
 }
 }

In this example, we are exceedingly lazy and simply catch all exceptions with a broad
catch Exception clause in order to log them prior to rethrowing. Prior to Java 7, the
compiler would have insisted that the throws clause of our method declare that it
throws the broad Exception type as well. However, the Java compiler is now smart
enough in most cases to analyze the actual types of exceptions that may be thrown
and allow us to prescribe the precise set of types. The same would be true if we had
used the mutiple-type catch clause in this example, as you might have guessed. The
preceding is a bit less intuitive, but very useful in shoring up the specificity of

Exceptions | 181

exception handling of code, including code written prior to Java 7, without requiring
potentially tricky reworking of catch clauses.

try Creep
The try statement imposes a condition on the statements that it guards. It says that if
an exception occurs within it, the remaining statements are abandoned. This has con‐
sequences for local variable initialization. If the compiler can’t determine whether a
local variable assignment placed inside a try/catch block will happen, it won’t let us
use the variable. For example:

 void myMethod() {
 int foo;

 try {
 foo = getResults();
 }
 catch (Exception e) {
 ...
 }

 int bar = foo; // Compile-time error: foo may not have been initialized

In this example, we can’t use foo in the indicated place because there’s a chance it was
never assigned a value. One obvious option is to move the assignment inside the try
statement:

 try {
 foo = getResults();

 int bar = foo; // Okay because we get here only
 // if previous assignment succeeds
 }
 catch (Exception e) {
 ...
 }

Sometimes this works just fine. However, now we have the same problem if we want
to use bar later in myMethod(). If we’re not careful, we might end up pulling every‐
thing into the try statement. The situation changes, however, if we transfer control
out of the method in the catch clause:

 try {
 foo = getResults();
 }
 catch (Exception e) {
 ...
 return;
 }

182 | Chapter 6: Error Handling and Logging

 int bar = foo; // Okay because we get here only
 // if previous assignment succeeds

The compiler is smart enough to know that if an error had occurred in the try clause,
we wouldn’t have reached the bar assignment, so it allows us to refer to foo. Your
code will dictate its own needs; you should just be aware of the options.

The finally Clause
What if we have something important to do before we exit our method from one of
the catch clauses? To avoid duplicating the code in each catch branch and to make
the cleanup more explicit, you can use the finally clause. A finally clause can be
added after a try and any associated catch clauses. Any statements in the body of the
finally clause are guaranteed to be executed no matter how control leaves the try
body, whether an exception was thrown or not:

 try {
 // Do something here

 }
 catch (FileNotFoundException e) {
 ...
 }
 catch (IOException e) {
 ...
 }
 catch (Exception e) {
 ...
 }
 finally {
 // Cleanup here is always executed
 }

In this example, the statements at the cleanup point are executed eventually, no mat‐
ter how control leaves the try. If control transfers to one of the catch clauses, the
statements in finally are executed after the catch completes. If none of the catch
clauses handles the exception, the finally statements are executed before the excep‐
tion propagates to the next level.

If the statements in the try execute cleanly, or if we perform a return, break, or con
tinue, the statements in the finally clause are still executed. To guarantee that some
operations will run, we can even use try and finally without any catch clauses:

 try {
 // Do something here
 return;
 }
 finally {

Exceptions | 183

 System.out.println("Whoo-hoo!");
 }

Exceptions that occur in a catch or finally clause are handled normally; the search
for an enclosing try/catch begins outside the offending try statement, after the
finally has been executed.

try with Resources
A common use of the finally clause is to ensure that resources used in a try clause
are cleaned up, no matter how the code exits the block.

 try {
 // Socket sock = new Socket(...);
 // work with sock
 } catch(IOException e) {
 ...
 }
 finally {
 if (sock != null) { sock.close(); }
 }

What we mean by “cleaned up” here is to deallocate expensive resources or close con‐
nections such as files, sockets, or database connections. In some cases, these resources
might get cleaned up on their own eventually as Java reclaims the garbage, but that
would at best be at an unknown time in the future and at worst may never happen or
may not happen before you run out of resources. So it is always best to guard against
these situations. There are two problems with this venerable approach: first, it
requires extra work to carry out this pattern in all of your code, including important
things like null checks, as shown in our example, and second, if you are juggling mul‐
tiple resources in a single finally block, you have the possibility of your cleanup
code throwing an exception (e.g., on close()) and leaving the job unfinished.

In Java 7, things have been greatly simplified via the new “try with resources” form of
the try clause. In this form, you may place one or more resource initialization state‐
ments within parentheses after a try keyword, and those resources will automatically
be “closed” for you when control leaves the try block:

 try (
 Socket sock = new Socket("128.252.120.1", 80);
 FileWriter file = new FileWriter("foo");
)
 {
 // work with sock and file
 } catch (IOException e) {
 ...
 }

184 | Chapter 6: Error Handling and Logging

In this example, we initialize both a Socket object and a FileWriter object within the
try-with-resources clause and use them within the body of the try statement. When
control leaves the try statement, either after successful completion or via an excep‐
tion, both resources are automatically closed by calling their close() method.
Resources are closed in the reverse of the order in which they were constructed, so
dependencies among them can be accommodated. This behavior is supported for any
class that implements the AutoCloseable interface (which, at current count, over one
hundred different built-in classes do). The close() method of this interface is pre‐
scribed to release all resources associated with the object, and you can implement this
easily in your own classes as well. When using try with resources, we don’t have to
add any code specifically to close the file or socket; it is done for us automatically.

Another problem that try with resources solves is the pesky situation we alluded to
where an exception may be thrown during a close operation. Looking back to the
prior example in which we used a finally clause to do our cleanup, if an exception
had been raised by the close() method, it would have been thrown at that point,
completely abandoning the original exception from the body of the try clause. But in
using try with resources, we preserve the original exception. If an exception occurs
while within the body of the try and one or more exceptions is raised during the sub‐
sequent auto-closing operations, it is the original exception from the body of the try
that is bubbled up to the caller. Let’s look at an example:

 try (
 Socket sock = new Socket("128.252.120.1", 80); // potential exception #3
 FileWriter file = new FileWriter("foo"); // potential exception #2
)
 {
 // work with sock and file // potential exception #1
 }

Once the try has begun, if an exception occurs as exception point #1, Java will
attempt to close both resources in reverse order, leading to potential exceptions at
locations #2 and #3. In this case, the calling code will still receive exception #1. Excep‐
tions #2 and #3 are not lost, however; they are merely “suppressed” and can be
retrieved via the Throwable getSuppressed() method of the exception thrown to the
caller. This returns an array of all of the supressed exceptions.

Performance Issues
Because of the way the Java VM is implemented, guarding against an exception being
thrown (using a try) is free. It doesn’t add any overhead to the execution of your
code. However, throwing an exception is not free. When an exception is thrown, Java
has to locate the appropriate try/catch block and perform other time-consuming
activities at runtime.

Exceptions | 185

3 If you have done some programming, hopefully you have not written such opaque error messages! The more
helpful and explanatory your messages, the better.

The result is that you should throw exceptions only in truly “exceptional” circumstan‐
ces and avoid using them for expected conditions, especially when performance is an
issue. For example, if you have a loop, it may be better to perform a small test on each
pass and avoid throwing the exception rather than throwing it frequently. On the
other hand, if the exception is thrown only once in a gazillion times, you may want to
eliminate the overhead of the test code and not worry about the cost of throwing that
exception. The general rule should be that exceptions are used for “out of bounds” or
abnormal situations, not routine and expected conditions (such as the end of a file).

Assertions
An assertion is a simple pass/fail test of some condition, performed while your appli‐
cation is running. Assertions can be used to “sanity check” your code anywhere you
believe certain conditions are guaranteed by correct program behavior. Assertions are
distinct from other kinds of tests because they check conditions that should never be
violated at a logical level: if the assertion fails, the application is to be considered bro‐
ken and generally halts with an appropriate error message. Assertions are supported
directly by the Java language and they can be turned on or off at runtime to remove
any performance penalty of including them in your code.

Using assertions to test for the correct behavior of your application is a simple but
powerful technique for ensuring software quality. It fills a gap between those aspects
of software that can be checked automatically by the compiler and those more gener‐
ally checked by “unit tests” and human testing. Assertions test assumptions about
program behavior and make them guarantees (at least while they are activated).

If you have programmed before, you may have seen something like the following:3

 if (!condition)
 throw new AssertionError("fatal error: 42");

An assertion in Java is equivalent to this example, but is performed with the assert
language keyword. It takes a Boolean condition and an optional expression value. If
the assertion fails, an AssertionError is thrown, which usually causes Java to bail out
of the application.

The optional expression may evaluate to either a primitive or object type. Either way,
its sole purpose is to be turned into a string and shown to the user if the assertion
fails; most often you’ll use a string message explicitly. Here are some examples:

 assert false;
 assert (array.length > min);

186 | Chapter 6: Error Handling and Logging

 assert a > 0 : a // shows value of a to the user
 assert foo != null : "foo is null!" // shows message "foo is null!" to user

In the event of failure, the first two assertions print only a generic message, whereas
the third prints the value of a, and the last prints the foo is null! message.

Again, the important thing about assertions is not just that they are more terse than
the equivalent if condition, but that they can be enabled or disabled when you run
the application. Disabling assertions means that their test conditions are not even
evaluated, so there is no performance penalty for including them in your code (other
than, perhaps, space in the class files when they are loaded).

Enabling and Disabling Assertions
Assertions are turned on or off at runtime. When disabled, assertions still exist in the
class files but are not executed and consume no time. You can enable and disable
assertions for an entire application or on a package-by-package or even class-by-class
basis. By default, assertions are turned off in Java. To enable them for your code, use
the java command flag -ea or -enableassertions:

 % java -ea MyApplication

To turn on assertions for a particular class, append the class name:

 % java -ea:com.oreilly.examples.Myclass MyApplication

To turn on assertions just for particular packages, append the package name with
trailing ellipses (. . .):

 % java -ea:com.oreilly.examples... MyApplication

When you enable assertions for a package, Java also enables all subordinate package
names (e.g., com.oreilly.examples.text). However, you can be more selective by
using the corresponding -da or -disableassertions flag to negate individual pack‐
ages or classes. You can combine all this to achieve arbitrary groupings like this:

 % java -ea:com.oreilly.examples...
 -da:com.oreilly.examples.text -ea:com.oreilly.examples.text.MonkeyTypewriters
 MyApplication

This example enables assertions for the com.oreilly.examples package as a whole,
excludes the package com.oreilly.examples.text, and then turns exceptions on for
just one class, MonkeyTypewriters, in that package.

Assertions | 187

Using Assertions
An assertion enforces a rule about something that should be unchanging in your code
and would otherwise go unchecked. You can use an assertion for added safety
anywhere you want to verify your assumptions about program behavior that can’t be
checked by the compiler.

A common situation that cries out for an assertion is testing for multiple conditions
or values where one should always be found. In this case, a failing assertion as the
default or “fall through” behavior indicates the code is broken. For example, suppose
we have a value called direction that should always contain either the constant value
LEFT or RIGHT:

 if (direction == LEFT)
 doLeft();
 else if (direction == RIGHT)
 doRight()
 else
 assert false : "bad direction";

The same applies to the default case of a switch:

 switch (direction) {
 case LEFT:
 doLeft();
 break;
 case RIGHT:
 doRight();
 break;
 default:
 assert false;
 }

In general, you should not use assertions for checking the validity of arguments to
methods because you want that behavior to be part of your application, not just a test
for quality control that can be turned off. The validity of input to a method is called
its preconditions, and you should usually throw an exception if they are not met; this
elevates the preconditions to part of the method’s “contract” with the user. However,
checking the correctness of the results of your methods with assertions before return‐
ing them is a good idea; these are called postconditions.

Sometimes determining what is or is not a precondition depends on your point of
view. For example, when a method is used internally within a class, preconditions
may already be guaranteed by the methods that call it. Public methods of the class
should probably throw exceptions when their preconditions are violated, but a pri‐
vate method might use assertions because its callers are always closely related code
that should obey the correct behavior.

188 | Chapter 6: Error Handling and Logging

4 For those who do grow beyond the features of the Java Logging API, check out Apache’s log4j 2 and the Sim‐
ple Logging Facade for Java (SLF4J), which make it possible to further tailor your logging at deployment time.

The Logging API
The java.util.logging package provides a highly flexible and easy-to-use logging
framework for system information, error messages, and fine-grained tracing (debug‐
ging) output. With the logging package, you can apply filters to select log messages,
direct their output to one or more destinations (including files and network services),
and format the messages appropriately for their consumers.

Most importantly, much of this basic logging configuration can be set up externally at
runtime through the use of a logging setup properties file or an external program. For
example, by setting the right properties at runtime, you can specify that log messages
are to be sent both to a designated file in XML format and also logged to the system
console in a digested, human-readable form. Furthermore, for each of those destina‐
tions, you can specify the level or priority of messages to be logged, discarding those
below a certain threshold of significance. By following the correct source conventions
in your code, you can even make it possible to adjust the logging levels for specific
parts of your application, allowing you to target individual packages and classes for
detailed logging without being overwhelmed by too much output. The Java Logging
API can even be controlled remotely via Java Management Extensions MBean APIs.

Overview
Any good logging API must have at least two guiding principles. First, performance
should not inhibit the developer from using log messages freely. As with Java lan‐
guage assertions, when log messages are turned off, they should not consume any sig‐
nificant amount of processing time. This means that there’s no performance penalty
for including logging statements as long as they’re turned off. Second, although some
users may want advanced features and configuration, a logging API must have some
simple mode of usage that is convenient enough for time-starved developers to use in
lieu of the old standby System.out.println(). Java’s Logging API provides a simple
model and many convenience methods that make it very tempting.4

Loggers

The heart of the logging framework is the logger, an instance of java.util.log
ging.Logger. In most cases, this is the only class your code will ever have to deal
with. A logger is constructed from the static Logger.getLogger() method, with a
logger name as its argument. Logger names place loggers into a hierarchy with a
global, root logger at the top and a tree and children below. This hierarchy allows the
configuration to be inherited by parts of the tree so that logging can be automatically

The Logging API | 189

https://oreil.ly/0l8XA
http://www.slf4j.org
http://www.slf4j.org

configured for different parts of your application. The convention is to use a separate
logger instance in each major class or package and to use the dot-separated package
and/or class name as the logger name. For example:

 package com.oreilly.learnjava;
 public class Book {
 static Logger log = Logger.getLogger("com.oreilly.learnjava.Book");

The logger provides a wide range of methods to log messages; some take very detailed
information, and some convenience methods take only a string for ease of use. For
example:

 log.warning("Disk 90% full.");
 log.info("New user joined chat room.");

We cover methods of the logger class in detail a bit later. The names warning and
info are two examples of logging levels; there are seven levels ranging from SEVERE
at the top to FINEST at the bottom. Distinguishing log messages in this way allows us
to select the level of information that we want to see at runtime. Rather than simply
logging everything and sorting through it later (with negative performance impact),
we can tweak which messages are generated. We’ll talk more about logging levels in
the next section.

We should also mention that for convenience in very simple applications or experi‐
ments, a logger for the name “global” is provided in the static field Logger.global.
You can use it as an alternative to the old standby System.out.println() for those
cases where that is still a temptation:

 Logger.global.info("Doing foo...")

Handlers
Loggers represent the client interface to the logging system, but the actual work of
publishing messages to destinations (such as files or the console) is done by handler
objects. Each logger may have one or more Handler objects associated with it, which
includes several predefined handlers supplied with the Logging API: ConsoleHan
dler, FileHandler, StreamHandler, and SocketHandler. Each handler knows how to
deliver messages to its respective destination. ConsoleHandler is used by the default
configuration to print messages on the command line or system console. FileHan
dler can direct output to files using a supplied naming convention and automatically
rotate the files as they become full. The others send messages to streams and sockets,
respectively. There is one additional handler, MemoryHandler, that can hold a number
of log messages in memory. MemoryHandler has a circular buffer, which maintains a
certain number of messages until it is triggered to publish them to another designated
handler.

190 | Chapter 6: Error Handling and Logging

As we said, loggers can be set to use one or more handlers. Loggers also send mes‐
sages up the tree to each of their parent logger’s handlers. In the simplest configura‐
tion, this means that all messages end up distributed by the root logger’s handlers.
We’ll soon see how to set up output using the standard handlers for the console, files,
etc.

Filters
Before a logger hands off a message to its handlers or its parent’s handlers, it first
checks whether the logging level is sufficient to proceed. If the message doesn’t meet
the required level, it is discarded at the source. In addition to level, you can imple‐
ment arbitrary filtering of messages by creating Filter classes that examine the log
message before it is processed. A Filter class can be applied to a logger externally at
runtime in the same way that the logging level, handlers, and formatters, which are
discussed next, can be. A Filter may also be attached to an individual Handler to
filter records at the output stage (as opposed to the source).

Formatters
Internally, messages are carried in a neutral format, including all the source informa‐
tion provided. It is not until they are processed by a handler that they are formatted
for output by an instance of a Formatter object. The logging package comes with two
basic formatters: SimpleFormatter and XMLFormatter. The SimpleFormatter is the
default used for console output. It produces short, human-readable summaries of log
messages. XMLFormatter encodes all the log message details into an XML record for‐
mat. The DTD for the format can be found at https://oreil.ly/iiDCW.

Logging Levels
Table 6-1 lists the logging levels from most to least significant.

Table 6-1. Logging API logging levels

Level Meaning

SEVERE Application failure

WARNING Notification of potential problem

INFO Messages of general interest to end users

CONFIG Detailed system configuration information for administrators

FINE,
FINER,
FINEST

Successively more detailed application tracing information for developers

The Logging API | 191

https://oreil.ly/iiDCW

These levels fall into three camps: end user, administrator, and developer. Applica‐
tions often default to logging only messages of the INFO level and above (INFO,
WARNING, and SEVERE). These levels are generally seen by end users, and messages log‐
ged to them should be suitable for general consumption. In other words, they should
be written clearly so they make sense to an average user of the application. Often
these kinds of messages are presented to the end user on a system console or in a
pop-up message dialog.

The CONFIG level should be used for relatively static but detailed system information
that could assist an administrator or installer. This might include information about
the installed software modules, host system characteristics, and configuration param‐
eters. These details are important, but probably not as meaningful to an end user.

The FINE, FINER, and FINEST levels are for developers or others with knowledge of
the internals of the application. These should be used for tracing the application at
successive levels of detail. You can define your own meanings for these. We’ll suggest
a rough outline in our example, coming up next.

A Simple Example
In the following (admittedly very contrived) example, we use all the logging levels so
that we can experiment with logging configuration. Although the sequence of mes‐
sages is nonsensical, the text is representative of messages of that type.

 import java.util.logging.*;

 public class LogTest {
 public static void main(String argv[])
 {
 Logger logger = Logger.getLogger("com.oreilly.LogTest");

 logger.severe("Power lost - running on backup!");
 logger.warning("Database connection lost, retrying...");
 logger.info("Startup complete.");
 logger.config("Server configuration: standalone, JVM version 1.5");
 logger.fine("Loading graphing package.");
 logger.finer("Doing pie chart");
 logger.finest("Starting bubble sort: value ="+42);
 }
 }

There’s not much to this example. We ask for a logger instance for our class using the
static Logger.getLogger() method, specifying a class name. The convention is to use
the fully qualified class name, so we’ll pretend that our class is in a com.oreilly
package.

Now, run LogTest. You should see output like the following on the system console:

192 | Chapter 6: Error Handling and Logging

 Jan 6, 2019 3:24:36 PM LogTest main
 SEVERE: Power lost - running on backup!
 Jan 6, 2019 3:24:37 PM LogTest main
 WARNING: Database connection lost, retrying...
 Jan 6, 2019 3:24:37 PM LogTest main
 INFO: Startup complete.

We see the INFO, WARNING, and SEVERE messages, each identified with a date and time‐
stamp and the name of the class and method (LogTest main) from which they came.
Notice that the lower-level messages did not appear. This is because the default log‐
ging level is normally set to INFO, meaning that only messages of severity INFO and
above are logged. Also note that the output went to the system console and not to a
logfile somewhere; that’s also the default. Now we’ll describe where these defaults are
set and how to override them at runtime.

Logging Setup Properties
As we said in the introduction, probably the most important feature of the Logging
API is the ability to configure so much of it at runtime through the use of external
properties or applications. The default logging configuration is stored in the file
jre/lib/logging.properties in the directory where Java is installed. It’s a standard Java
properties file (of the kind we described earlier in this chapter).

The format of this file is simple. You can make changes to it, but you don’t have to.
Instead, you can specify your own logging setup properties file on a case-by-case
basis using a system property at runtime, as follows:

 % java -Djava.util.logging.config.file=myfile.properties

In this command line, myfile is your properties file that contains the directive, which
we’ll describe next. If you want to make this file designation more permanent, you
can do so by setting the filename in the corresponding entry using the Java Preferen‐
ces API. You can go even further and instead of specifying a setup file, supply a class
that is responsible for setting up all logging configuration, but we won’t get into that
here.

A very simple logging properties file might look like this:

 # Set the default logging level
 .level = FINEST
 # Direct output to the console
 handlers = java.util.logging.ConsoleHandler

Here, we have set the default logging level for the entire application using the .level
(that’s dot-level) property. We have also used the handlers property to specify that an
instance of the ConsoleHandler should be used (just like the default setup) to show
messages on the console. If you run our application again, specifying this properties
file as the logging setup, you will now see all our log messages.

The Logging API | 193

But we’re just getting warmed up. Next, let’s look at a more complex configuration:

 # Set the default logging level
 .level = INFO

 # Ouput to file and console
 handlers = java.util.logging.FileHandler, java.util.logging.ConsoleHandler

 # Configure the file output
 java.util.logging.FileHandler.level = FINEST
 java.util.logging.FileHandler.pattern = %h/Test.log
 java.util.logging.FileHandler.limit = 25000
 java.util.logging.FileHandler.count = 4
 java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter

 # Configure the console output
 java.util.logging.ConsoleHandler.level = WARNING

 # Levels for specific classes
 com.oreilly.LogTest.level = FINEST

In this example, we have configured two log handlers: a ConsoleHandler with the
logging level set to WARNING and also an instance of FileHandler that sends the out‐
put to an XML file. The file handler is configured to log messages at the FINEST level
(all messages) and to rotate logfiles every 25,000 lines, keeping a maximum of 4 files.

The filename is controlled by the pattern property. Forward slashes in the filename
are automatically localized to backslash (\) if necessary. The special symbol %h refers
to the user home. You can use %t to refer to the system temporary directory. If file‐
names conflict, a number is appended automatically after a dot (starting at zero).
Alternatively, you can use %u to indicate where a unique number should be inserted
into the name. Similarly, when files rotate, a number is appended after a dot at the
end. You can take control of where the rotation number is placed with the %g
identifier.

In our example, we specified the XMLFormatter class. We could also have used the
SimpleFormatter class to send the same kind of simple output to the console. The
ConsoleHandler also allows us to specify any formatter we wish, using the formatter
property.

Finally, we promised earlier that you could control logging levels for parts of your
applications. To do this, set properties on your application loggers using their hier‐
archical names:

 # Levels for specific logger (class) names
 com.oreilly.LogTest.level = FINEST

194 | Chapter 6: Error Handling and Logging

Here, we’ve set the logging level for just our test logger, by name. The log properties
follow the hierarchy, so we could set the logging level for all classes in the oreilly
package with:

 com.oreilly.level = FINEST

Logging levels are set in the order in which they are read in the properties file, so set
the general ones first. Note that the levels set on the handlers allow the file handler to
filter only the messages being supplied by the loggers. Therefore, setting the file han‐
dler to FINEST won’t revive messages squelched by a logger set to SEVERE (only the
SEVERE messages will make it to the handler from that logger).

The Logger
In our example, we used the seven convenience methods named for the various log‐
ging levels. There are also three groups of general methods that can be used to pro‐
vide more detailed information. The most general are:

 log(Level level, String msg)
 log(Level level, String msg, Object param1)
 log(Level level, String msg, Object params[])
 log(Level level, String msg, Throwable thrown)

These methods accept as their first argument a static logging level identifier from the
Level class, followed by a parameter, array, or exception type. The level identifier is
one of Level.SEVERE, Level.WARNING, Level.INFO, and so on.

In addition to these four methods, there are convenience methods called entering(),
exiting(), and throwing() that developers can use to log detailed trace information.

Performance
In the introduction, we said that performance is a priority of the Logging API. To that
end we’ve described that log messages are filtered at the source, using logging levels to
cut off processing of messages early. This saves much of the expense of handling
them. However, it cannot prevent certain kinds of setup work that you might do
before the logging call. Specifically, because we’re passing things into the log methods,
it’s common to construct detailed messages or render objects to strings as arguments.
Often this kind of operation is costly. To avoid unnecessary string construction, you
should wrap expensive log operations in a conditional test using the Logger isLogga
ble() method to test whether you should carry out the operation:

 if (log.isLoggable(Level.CONFIG)) {
 log.config("Configuration: "+ loadExpensiveConfigInfo());
 }

The Logging API | 195

Real-World Exceptions
Java’s adoption of exceptions as an error-handling technique makes it much simpler
for developers to write robust code. The compiler forces you to think about checked
exceptions ahead of time. Unchecked exceptions will definitely pop up, but assertions
can help you watch out for those runtime problems and hopefully prevent a crash.

The try-with-resources feature added in Java 7 makes it even simpler for developers
to keep their code clean and “do the right thing” when interracting with limited sys‐
tem resources, such as files and network connections. As we noted at the beginning
of the chapter, other languages certainly have facilities or customs for dealing with
these problems. Java, as a language, works hard to help you thoughtfully consider
issues that can arise in your code. And the more you work through resolving those
issues, the more stable your application will be, and thus the happier your users.

And even when the errors are subtle and don’t cause your application to crash, Java
provides the java.util.logging package to help track down the root problem. You
can adjust the details that are produced in the logs while keeping your application
performing well.

Many of our examples so far have been straightforward and have not really required
any fancy error checking. Rest assured we’ll be exploring more interesting code with
many, many things that merit exception handling. Later chapters will cover topics like
multithreaded programming and networking. Those topics are rife with situations
that can go wrong at runtime, such as a big calculation running amok or a WiFi con‐
nection dropping. Pardon the pun, but you’ll be trying all of these new exception and
error tricks soon enough!

196 | Chapter 6: Error Handling and Logging

CHAPTER 7

Collections and Generics

As we start to use our growing knowledge of objects to handle more and more inter‐
esting problems, one recurring question will emerge. How do we store the data we’re
manipulating in the course of solving those problems? We’ll definitely use variables of
all the different types, but we’ll also need bigger, fancier storage options. The arrays
we discussed back in “Arrays” on page 114 are a start, but arrays have some limita‐
tions. In this chapter we will see how to get efficient, flexible access to large amounts
of data. That’s where the Java Collections API that we tackle in the next section comes
in. We’ll also see how to deal with the various types of data we want to store in these
big containers like we do with invididual values in variables. That’s where generics
come in. We’ll get to those in “Type Limitations” on page 203.

Collections
Collections are data structures that are fundamental to all types of programming.
Whenever we need to refer to a group of objects, we have some kind of collection. At
the core language level, Java supports collections in the form of arrays. But arrays are
static, and because they have a fixed length, they are awkward for groups of things
that grow and shrink over the lifetime of an application. Arrays also do not represent
abstract relationships between objects well. In the early days, the Java platform had
only two basic classes to address these needs: the java.util.Vector class, which rep‐
resents a dynamic list of objects, and the java.util.Hashtable class, which holds a
map of key/value pairs. Today, Java has a more comprehensive approach to collec‐
tions called the Collections Framework. The older classes still exist, but they have
been retrofitted into the framework (with some eccentricities) and are generally no
longer used.

197

Though conceptually simple, collections are one of the most powerful parts of any
programming language. Collections implement data structures that lie at the heart of
managing complex problems. A great deal of basic computer science is devoted to
describing the most efficient ways to implement certain types of algorithms over col‐
lections. Having these tools at your disposal and understanding how to use them can
make your code both much smaller and faster. It can also save you from reinventing
the wheel.

The original Collections Framework had two major drawbacks. The first was that col‐
lections were by necessity untyped and worked only with undifferentiated Objects
instead of specific types like Dates and Strings. This meant that you had to perform a
type cast every time you took an object out of a collection. This flew in the face of
Java’s compile-time type safety. But in practice, this was less a problem than it was just
plain cumbersome and tedious. The second issue was that, for practical reasons, col‐
lections could work only with objects and not with primitive types. This meant that
any time you wanted to put a number or other primitive type into a collection, you
had to store it in a wrapper class first and unpack it later upon retrieving it. The com‐
bination of these factors made code working with collections less readable and more
dangerous to boot.

This all changed with the introduction of generic types and autoboxing of primitive
values. First, the introduction of generic types (again, more on this in “Type Limita‐
tions” on page 203) has made it possible for truly type-safe collections to be under the
control of the programmer. Second, the introduction of autoboxing and unboxing of
primitive types means that you can generally treat objects and primitives as equals
where collections are concerned. The combination of these new features can signifi‐
cantly reduce the amount of code you write and add safety. As we’ll see, all of the col‐
lections classes now take advantage of these features.

The Collections Framework is based around a handful of interfaces in the java.util
package. These interfaces are divided into two hierarchies. The first hierarchy
descends from the Collection interface. This interface (and its descendants) repre‐
sents a container that holds other objects. The second, separate hierarchy is based on
the Map interface, which represents a group of key/value pairs where the key can be
used to retrieve the value in an efficient way.

The Collection Interface
The mother of all collections is an interface appropriately named Collection. It
serves as a container that holds other objects, its elements. It doesn’t specify exactly
how the objects are organized; it doesn’t say, for example, whether duplicate objects
are allowed or whether the objects are ordered in any way. These kinds of details are
left to child interfaces. Nevertheless, the Collection interface defines some basic
operations common to all collections:

198 | Chapter 7: Collections and Generics

public boolean add(element)
Adds the supplied object to this collection. If the operation succeeds, this method
returns true. If the object already exists in this collection and the collection does
not permit duplicates, false is returned. Furthermore, some collections are read-
only. Those collections throw an UnsupportedOperationException if this
method is called.

public boolean remove(element)
Removes the specified object from this collection. Like the add() method, this
method returns true if the object is removed from the collection. If the object
doesn’t exist in this collection, false is returned. Read-only collections throw an
UnsupportedOperationException if this method is called.

public boolean contains(element)
Returns true if the collection contains the specified object.

public int size()

Returns the number of elements in this collection.

public boolean isEmpty()

Returns true if this collection has no elements.

public Iterator iterator()

Examines all the elements in this collection. This method returns an Iterator,
which is an object you can use to step through the collection’s elements. We’ll talk
more about iterators in the next section.

Additionally, the methods addAll(), removeAll(), and containsAll() accept
another Collection and add, remove, or test for all of the elements of the supplied
collection.

Collection Types
The Collection interface has three child interfaces. Set represents a collection in
which duplicate elements are not allowed. List is a collection whose elements have a
specific order. The Queue interface is a buffer for objects with a notion of a “head”
element that’s next in line for processing.

Set

Set has no methods besides the ones it inherits from Collection. It simply enforces
its no-duplicates rule. If you try to add an element that already exists in a Set, the
add() method simply returns false. SortedSet maintains elements in a prescribed
order; like a sorted list that can contain no duplicates. You can retrieve subsets (which
are also sorted) using the subSet(), headSet(), and tailSet() methods. These

Collections | 199

methods accept one or a pair of elements that mark the boundaries. The first(),
last(), and comparator() methods provide access to the first element, the last ele‐
ment, and the object used to compare elements (more on this in “A Closer Look: The
sort() Method” on page 218).

Java 7 added NavigableSet, which extends SortedSet and adds methods for finding
the closest match greater or lesser than a target value within the sort order of the Set.
This interface can be implemented efficiently using techniques such as skip lists,
which make finding ordered elements fast.

List

The next child interface of Collection is List. The List is an ordered collection,
similar to an array but with methods for manipulating the position of elements in the
list:

public boolean add(E element)
Adds the specified element to the end of the list.

public void add(int index , E element)
Inserts the given object at the supplied position in the list. If the position is less
than zero or greater than the list length, an IndexOutOfBoundsException will be
thrown. The element that was previously at the supplied position, and all ele‐
ments after it, are moved up one index position.

public void remove(int index)
Removes the element at the specified position. All subsequent elements move
down one index position.

public E get(int index)
Returns the element at the given position.

public Object set(int index , E element)
Changes the element at the given position to the specified object. There must
already be an object at the index or else an IndexOutOfBoundsException is
thrown.

The type E in these methods refers to the parameterized element type of the List
class. Collection, Set, and List are all interface types. This is an example of the
Generics feature we hinted at in the introduction to this chapter, and we’ll look at
concrete implementations of these shortly.

200 | Chapter 7: Collections and Generics

Queue

A Queue is a collection that acts like a buffer for elements. The queue maintains the
insertion order of items placed into it and has the notion of a “head” item. Queues
may be first in, first out (FIFO) or last in, first out (LIFO), depending on the imple‐
mentation:

public boolean offer(E element), public boolean add(E element)
The offer() method attempts to place the element into the queue, returning
true if successful. Different Queue types may have different limits or restrictions
on element types (including capacity). This method differs from the add()
method inherited from Collection in that it returns a Boolean value instead of
throwing an exception to indicate that the element cannot be accepted.

public E poll(), public E remove()
The poll() method removes the element at the head of the queue and returns it.
This method differs from the Collection method remove() in that if the queue
is empty, null is returned instead of throwing an exception.

public E peek()
Returns the head element without removing it from the queue. If the queue is
empty, null is returned.

The Map Interface
The Collections Framework also includes the java.util.Map, which is a collection of
key/value pairs. Other names for map are “dictionary” or “associative array.” Maps
store and retrieve elements with key values; they are very useful for things like caches
or minimalist databases. When you store a value in a map, you associate a key object
with a value. When you need to look up the value, the map retrieves it using the key.

With generics, a Map type is parameterized with two types: one for the keys and one
for the values. The following snippet uses a HashMap, which is an efficient but unor‐
dered type of map implementation that we’ll discuss later:

 Map<String, Date> dateMap = new HashMap<String, Date>();
 dateMap.put("today", new Date());
 Date today = dateMap.get("today");

In legacy code, maps simply map Object types to Object types and require the appro‐
priate cast to retrieve values.

The basic operations on Map are straightforward. In the following methods, the type K
refers to the key parameter type, and the type V refers to the value parameter type:

Collections | 201

public V put(K key , V value)
Adds the specified key/value pair to the map. If the map already contains a value
for the specified key, the old value is replaced and returned as the result.

public V get(K key)
Retrieves the value corresponding to key from the map.

public V remove(K key)
Removes the value corresponding to key from the map. The value removed is
returned.

public int size()

Returns the number of key/value pairs in this map.

You can retrieve all the keys or values in the map using the following methods:

public Set keySet()

This method returns a Set that contains all the keys in this map.

public Collection values()

Use this method to retrieve all the values in this map. The returned Collection
can contain duplicate elements.

public Set entrySet()

This method returns a Set that contains all the key/value pairs (as Map.Entry
objects) in this map.

Map has one child interface, SortedMap. A SortedMap maintains its key/value pairs
sorted in a particular order according to the key values. It provides the subMap(),
headMap(), and tailMap() methods for retrieving sorted map subsets. Like Sorted
Set, it also provides a comparator() method, which returns an object that determines
how the map keys are sorted. We’ll talk more about that in “A Closer Look: The sort()
Method” on page 218. Java 7 added a NavigableMap with functionality parallel to that
of NavigableSet; namely, it adds methods to search the sorted elements for an ele‐
ment greater or lesser than a target value.

Finally, we should make it clear that although related, Map is not literally a type of
Collection (Map does not extend the Collection interface). You might wonder why.
All of the methods of the Collection interface would appear to make sense for Map,
except for iterator(). A Map, again, has two sets of objects: keys and values, and sep‐
arate iterators for each. This is why a Map does not implement a Collection. If you do
want a Collection-like view of a Map with both keys and values, you can use the
entrySet() method.

One more note about maps: some map implementations (including Java’s standard
HashMap) allow null to be used as a key or value, but others may not.

202 | Chapter 7: Collections and Generics

Type Limitations
Generics are about abstraction. Generics let you create classes and methods that work
in the same way on different types of objects. The term generic comes from the idea
that we’d like to be able to write general algorithms that can be broadly reused for
many types of objects rather than having to adapt our code to fit each circumstance.
This concept is not new; it is the impetus behind object-oriented programming itself.
Java generics do not so much add new capabilities to the language as they make reus‐
able Java code easier to write and easier to read.

Generics take reuse to the next level by making the type of the objects with which we
work an explicit parameter of the generic code. For this reason, generics are also
referred to as parameterized types. In the case of a generic class, the developer speci‐
fies a type as a parameter (an argument) whenever they use the generic type. The
class is parameterized by the supplied type to which the code adapts itself.

In other languages, generics are sometimes referred to as templates, which is more of
an implementation term. Templates are like intermediate classes, waiting for their
type parameters so that they can be used. Java takes a different path, which has both
benefits and drawbacks that we’ll describe in detail in this chapter.

There is much to say about Java generics. Some of the fine points may seem a bit
obscure at first, but don’t get discouraged. The vast majority of what you’ll do with
generics—using existing classes such as List and Set, for example—is easy and intu‐
itive. Designing and creating your own generics requires a more careful understand‐
ing and will come with a little patience and tinkering.

Indeed, we begin our discussion in that intuitive space with the most compelling case
for generics: the container classes and collections we just covered. Next, we take a
step back and look at the good, bad, and ugly of how Java generics work. We conclude
by looking at a couple of real-world generic classes in the Java API.

Containers: Building a Better Mousetrap
In an object-oriented programming language like Java, polymorphism means that
objects are always to some degree interchangeable. Any child of a type of object can
serve in place of its parent type and, ultimately, every object is a child of
java.lang.Object, the object-oriented “Eve,” so to speak. It is natural, therefore, for
the most general types of containers in Java to work with the type Object so that they
can hold just about anything. By containers, we mean classes that hold instances of
other classes in some way. The Java Collections API we looked at in the previous sec‐
tion is the best example of containers. List, to recap, holds an ordered collection of
elements of type Object. And Map holds an association of key/value pairs, with the
keys and values also being of the most general type, Object. With a little help from
wrappers for primitive types, this arrangement has served us well. But (not to get too

Type Limitations | 203

Zen on you) in a sense, a “collection of any type” is also a “collection of no type,” and
working with Objects pushes a great deal of responsibility onto the user of the
container.

It’s kind of like a costume party for objects where everybody is wearing the same
mask and disappears into the crowd of the collection. Once objects are dressed as the
Object type, the compiler can no longer see the real types and loses track of them. It’s
up to the user to pierce the anonymity of the objects later by using a type cast. And
like attempting to yank off a partygoer’s fake beard, you’d better have the cast correct
or you’ll get an unwelcome surprise.

 Date date = new Date();
 List list = new ArrayList();
 list.add(date);
 ...
 Date firstElement = (Date)list.get(0); // Is the cast correct? Maybe.

The List interface has an add() method that accepts any type of Object. Here, we
assigned an instance of ArrayList, which is simply an implementation of the List
interface, and added a Date object. Is the cast in this example correct? It depends on
what happens in the elided “…” period of time. Indeed, the Java compiler knows this
type of activity is fraught and currently issues warnings when you add elements to a
simple ArrayList as above. We can see this with a little jshell detour. After importing
from the java.util and javax.swing packages, try creating an ArrayList and add a
few disparate elements:

jshell> import java.util.ArrayList;

jshell> import javax.swing.JLabel;

jshell> ArrayList things = new ArrayList();
things ==> []

jshell> things.add("Hi there");
| Warning:
| unchecked call to add(E) as a member of the raw type java.util.ArrayList
| things.add("Hi there");
| ^--------------------^
$3 ==> true

jshell> things.add(new JLabel("Hi there"));
| Warning:
| unchecked call to add(E) as a member of the raw type java.util.ArrayList
| things.add(new JLabel("Hi there"));
| ^--------------------------------^
$5 ==> true

jshell> things
things ==> [Hi there, javax.swing.JLabel[...,text=Hi there,...]]

204 | Chapter 7: Collections and Generics

You can see the warning is the same no matter what type of object we add(). In the
last step where we display the contents of things, both the plain String object and
the JLabel object are happily in the list. The compiler is not worried about disparate
types being used; it is helpfully warning you that it will not know whether casts such
as the (Date) cast above will work at runtime.

Can Containers Be Fixed?
It’s natural to ask if there is a way to make this situation better. What if we know that
we are only going to put Dates into our list? Can’t we just make our own list that only
accepts Date objects, get rid of the cast, and let the compiler help us again? The
answer, surprisingly perhaps, is no. At least, not in a very satisfying way.

Our first instinct may be to try to “override” the methods of ArrayList in a subclass.
But of course, rewriting the add() method in a subclass would not actually override
anything; it would add a new overloaded method:

 public void add(Object o) { ... } // still here
 public void add(Date d) { ... } // overloaded method

The resulting object still accepts any kind of object—it just invokes different methods
to get there.

Moving along, we might take on a bigger task. For example, we might write our own
DateList class that does not extend ArrayList, but rather delegates the guts of its
methods to the ArrayList implementation. With a fair amount of tedious work, that
would get us an object that does everything a List does but that works with Dates in
a way that both the compiler and the runtime environment can understand and
enforce. However, we’ve now shot ourselves in the foot because our container is no
longer an implementation of List and we can’t use it interoperably with all of the
utilities that deal with collections, such as Collections.sort(), or add it to another
collection with the Collection addAll() method.

To generalize, the problem is that instead of refining the behavior of our objects, what
we really want to do is to change their contract with the user. We want to adapt their
API to a more specific type and polymorphism doesn’t allow that. It would seem that
we are stuck with Objects for our collections. And this is where generics come in.

Enter Generics
As we noted when introducing the type limitations in the previous section, generics
are an enhancement to the syntax of classes that allow us to specialize the class for a
given type or set of types. A generic class requires one or more type parameters wher‐
ever we refer to the class type and uses them to customize itself.

Enter Generics | 205

1 You may also see the term type variable used. The Java Language Specification mostly uses “parameter” so
that’s what we try to stick with, but you may see both names used in the wild.

2 That is, unless you want to use a generic type in a nongeneric way. We’ll talk about “raw” types later in this
chapter.

If you look at the source or Javadoc for the List class, for example, you’ll see it
defines something like this:

 public class List< E > {
 ...
 public void add(E element) { ... }
 public E get(int i) { ... }
 }

The identifier E between the angle brackets (<>) is a type parameter.1 It indicates that
the class List is generic and requires a Java type as an argument to make it complete.
The name E is arbitrary, but there are conventions that we’ll see as we go on. In this
case, the type variable E represents the type of elements we want to store in the list.
The List class refers to the type variable within its body and methods as if it were a
real type, to be substituted later. The type variable may be used to declare instance
variables, arguments to methods, and the return type of methods. In this case, E is
used as the type for the elements we’ll be adding via the add() method and the return
type of the get() method. Let’s see how to use it.

The same angle bracket syntax supplies the type parameter when we want to use the
List type:

 List<String> listOfStrings;

In this snippet, we declared a variable called listOfStrings using the generic type
List with a type parameter of String. String refers to the String class, but we could
have a specialized List with any Java class type. For example:

 List<Date> dates;
 List<java.math.BigDecimal> decimals;
 List<Foo> foos;

Completing the type by supplying its type parameter is called instantiating the type. It
is also sometimes called invoking the type, by analogy with invoking a method and
supplying its arguments. Whereas with a regular Java type, we simply refer to the type
by name, a generic type must be instantiated with parameters wherever it is used.2

Specifically, this means that we must instantiate the type everywhere types can appear
as the declared type of a variable (as shown in this code snippet), as the type of a
method argument, as the return type of a method, or in an object allocation expres‐
sion using the new keyword.

206 | Chapter 7: Collections and Generics

Returning to our listOfStrings, what we have now is effectively a List in which the
type String has been substituted for the type variable E in the class body:

 public class List< String > {
 ...
 public void add(String element) { ... }
 public String get(int i) { ... }
 }

We have specialized the List class to work with elements of type String and only
elements of type String. This method signature is no longer capable of accepting an
arbitrary Object type.

List is just an interface. To use the variable, we’ll need to create an instance of some
actual implementation of List. As we did in our introduction, we’ll use ArrayList.
As before, ArrayList is a class that implements the List interface, but in this case,
both List and ArrayList are generic classes. As such, they require type parameters
to instantiate them where they are used. Of course, we’ll create our ArrayList to hold
String elements to match our List of Strings:

 List<String> listOfStrings = new ArrayList<String>
 // Or shorthand in Java 7.0 and later
 List<String> listOfStrings = new ArrayList<>();

As always, the new keyword takes a Java type and parentheses with possible argu‐
ments for the class’s constructor. In this case, the type is ArrayList<String>—the
generic ArrayList type instantiated with the String type.

Declaring variables as shown in the first line of the preceding example is a bit cum‐
bersome because it requires us to type the generic parameter type twice (once on the
left side in the variable type and once on the right in the initialing expression). And in
complicated cases, the generic types can get very lengthy and nested within one
another. Starting with Java 7, the compiler is smart enough to infer the type of the
initializing expression from the type of the variable to which you are assigning it.
This is called generic type inference and boils down to the fact that you can use short‐
hand on the right side of your variable declarations by leaving out the contents of the
<> notation, as shown in the example’s second version.

We can now use our specialized List with strings. The compiler prevents us from
even trying to put anything other than a String object (or a subtype of String if
there were any) into the list and allows us to fetch them with the get() method
without requiring any cast:

jshell> ArrayList<String> listOfStrings = new ArrayList<>();
listOfStrings ==> []

jshell> listOfStrings.add("Hey!");
$8 ==> true

Enter Generics | 207

jshell> listOfStrings.add(new JLabel("Hey there"));
| Error:
| incompatible types: javax.swing.JLabel cannot be converted to java.lang.String
| listOfStrings.add(new JLabel("Hey there"));
| ^---------------------^

jshell> String s = strings.get(0);
s ==> "Hey!"

Let’s take another example from the Collections API. The Map interface provides a
dictionary-like mapping that associates key objects with value objects. Keys and val‐
ues do not have to be of the same type. The generic Map interface requires two type
parameters: one for the key type and one for the value type. The Javadoc looks like
this:

 public class Map< K, V > {
 ...
 public V put(K key, V value) { ... } // returns any old value
 public V get(K key) { ... }
 }

We can make a Map that stores Employee objects by Integer “employee ID” numbers
like this:

 Map< Integer, Employee > employees = new HashMap< Integer, Employee >();
 Integer bobsId = 314; // hooray for autoboxing!
 Employee bob = new Employee("Bob", ...);

 employees.put(bobsId, bob);
 Employee employee = employees.get(bobsId);

Here, we used HashMap, which is a generic class that implements the Map interface,
and instantiated both types with the type parameters Integer and Employee. The Map
now works only with keys of type Integer and holds values of type Employee.

The reason we used Integer here to hold our number is that the type parameters to a
generic class must be class types. We can’t parameterize a generic class with a primi‐
tive type, such as int or boolean. Fortunately, autoboxing of primitives in Java (see
“Wrappers for Primitive Types” on page 141) makes it almost appear as if we can by
allowing us to use primitive types as though they were wrapper types.

Dozens of other APIs beyond collections use generics to let you adapt them to spe‐
cific types. We’ll talk about them as they occur throughout the book.

Talking About Types
Before we move on to more important things, we should say a few words about the
way we describe a particular parameterization of a generic class. Because the most
common and compelling case for generics is for container-like objects, it’s common

208 | Chapter 7: Collections and Generics

3 For those of you who might like some context for the title of this section, here is where it comes from: Boy:
Do not try and bend the spoon. That’s impossible. Instead, only try to realize the truth. Neo: What truth? Boy:
There is no spoon. Neo: There is no spoon? Boy: Then you’ll see that it is not the spoon that bends, it is only
yourself. —The Wachowskis. The Matrix. 136 minutes. Warner Brothers, 1999.

to think in terms of a generic type “holding” a parameter type. In our example, we
called our List<String> a “list of strings” because, sure enough, that’s what it was.
Similarly, we might have called our employee map a “Map of employee IDs to
Employee objects.” However, these descriptions focus a little more on what the classes
do than on the type itself. Take instead a single object container called Trap< E > that
could be instantiated on an object of type Mouse or of type Bear; that is, Trap<Mouse>
or Trap<Bear>. Our instinct is to call the new type a “mouse trap” or “bear trap.” Sim‐
ilarly, we could have thought of our list of strings as a new type: “string list,” or our
employee map as a new “integer employee object map” type. You may use whatever
verbiage you prefer, but these latter descriptions focus more on the notion of the
generic as a type and may help you keep the terms straight when we discuss how
generic types are related in the type system. There we’ll see that the container termi‐
nology turns out to be a little counterintuitive.

In the following section, we’ll continue our discussion of generic types in Java from a
different perspective. We’ve seen a little of what they can do; now we need to talk
about how they do it.

“There Is No Spoon”
In the movie The Matrix,3 the hero Neo is offered a choice. Take the blue pill and
remain in the world of fantasy, or take the red pill and see things as they really are. In
dealing with generics in Java, we are faced with a similar ontological dilemma. We can
go only so far in any discussion of generics before we are forced to confront the real‐
ity of how they are implemented. Our fantasy world is one created by the compiler to
make our lives writing code easier to accept. Our reality (though not quite the dysto‐
pian nightmare in the movie) is a harsher place, filled with unseen dangers and ques‐
tions. Why don’t casts and tests work properly with generics? Why can’t I implement
what appear to be two different generic interfaces in one class? Why is it that I can
declare an array of generic types, even though there is no way in Java to create such
an array?!? We’ll answer these questions and more in this chapter, and you won’t even
have to wait for the sequel. You’ll be bending spoons (well, types) in no time. Let’s get
started.

The design goals for Java generics were formidable: add a radical new syntax to the
language that safely introduces parameterized types with no impact on performance
and, oh, by the way, make it backward compatible with all existing Java code and
don’t change the compiled classes in any serious way. It’s actually quite amazing that

“There Is No Spoon” | 209

these conditions could be satisfied at all and no surprise that it took a while. But as
always, compromises were required, which led to some headaches.

Erasure
To accomplish this feat, Java employs a technique called erasure, which relates to the
idea that since most everything we do with generics applies statically at compile time,
generic information does not need to be carried over into the compiled classes. The
generic nature of the classes, enforced by the compiler, can be “erased” in the com‐
piled classes, which allows us to maintain compatibility with nongeneric code. While
Java does retain information about the generic features of classes in the compiled
form, this information is used mainly by the compiler. The Java runtime does not
know anything about generics at all.

Let’s take a look at a compiled generic class: our friend, List. We can do this easily
with the javap command:

 % javap java.util.List

 public interface java.util.List extends java.util.Collection{
 ...
 public abstract boolean add(java.lang.Object);
 public abstract java.lang.Object get(int);

The result looks exactly like it did prior to Java generics, as you can confirm with any
older version of the JDK. Notably, the type of elements used with the add() and
get() methods is Object. Now, you might think that this is just a ruse and that when
the actual type is instantiated, Java will create a new version of the class internally. But
that’s not the case. This is the one and only List class, and it is the actual runtime
type used by all parameterizations of List; for example, List<Date> and
List<String>, as we can confirm:

 List<Date> dateList = new ArrayList<Date>();
 System.out.println(dateList instanceof List); // true!

But our generic dateList clearly does not implement the List methods just
discussed:

 dateList.add(new Object()); // Compile-time Error!

This illustrates the somewhat schizophrenic nature of Java generics. The compiler
believes in them, but the runtime says they are an illusion. What if we try something a
little more sane and simply check that our dateList is a List<Date>:

 System.out.println(dateList instanceof List<Date>); // Compile-time Error!
 // Illegal, generic type for instanceof

This time the compiler simply puts its foot down and says, “No.” You can’t test for a
generic type in an instanceof operation. Since there are no actual differentiable

210 | Chapter 7: Collections and Generics

4 When generics were added in Java 5.0, things were carefully arranged such that the raw type of all of the
generic classes worked out to be exactly the same as the earlier, nongeneric types. So the raw type of a List in
Java 5.0 is the same as the old, nongeneric List type that had been around since JDK 1.2. Since the vast
majority of current Java code at the time did not use generics, this type equivalency and compatibility was
very important.

classes for different parameterizations of List at runtime, there is no way for the
instanceof operator to tell the difference between one incarnation of List and
another. All of the generic safety checking was done at compile time and now we’re
just dealing with a single actual List type.

What has really happened is that the compiler has erased all of the angle bracket syn‐
tax and replaced the type variables in our List class with a type that can work at run‐
time with any allowed type: in this case, Object. We would seem to be back where we
started, except that the compiler still has the knowledge to enforce our usage of the
generics in the code at compile time and can, therefore, handle the cast for us. If you
decompile a class using a List<Date> (the javap command with the -c option shows
you the bytecode, if you dare), you will see that the compiled code actually contains
the cast to Date, even though we didn’t write it ourselves.

We can now answer one of the questions we posed at the beginning of the section:
“Why can’t I implement what appear to be two different generic interfaces in one
class?” We can’t have a class that implements two different generic List instantiations
because they are really the same type at runtime and there is no way to tell them
apart:

 public abstract class DualList implements List<String>, List<Date> { }
 // Error: java.util.List cannot be inherited with different arguments:
 // <java.lang.String> and <java.util.Date>

Fortunately, there are always workarounds. In this case, for example, you can use a
common superclass or create multiple classes. The alternatives may not be as elegant
as you’d like, but you can almost always land on a clean answer even if it is a little
verbose.

Raw Types
Although the compiler treats different parameterizations of a generic type as different
types (with different APIs) at compile time, we have seen that only one real type exists
at runtime. For example, the class of List<Date> and List<String> shares the plain
old Java class List. List is called the raw type of the generic class. Every generic has a
raw type. It is the degenerate, “plain” Java form from which all of the generic type
information has been removed and the type variables replaced by a general Java type
like Object.4

“There Is No Spoon” | 211

It is still possible to use raw types in Java just as before generics were added to the
language. The only difference is that the Java compiler generates a warning wherever
they are used in an “unsafe” way. Outside jshell, the compiler still notices these
problems:

 // nongeneric Java code using the raw type
 List list = new ArrayList(); // assignment ok
 list.add("foo"); // Compiler warning on usage of raw type

This snippet uses the raw List type just as old-fashioned Java code prior to Java 5
would have. The difference is that now the Java compiler issues an unchecked warning
about the code if we attempt to insert an object into the list:

 % javac MyClass.java
 Note: MyClass.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

The compiler instructs us to use the -Xlint:unchecked option to get more specific
information about the locations of unsafe operations:

 % javac -Xlint:unchecked MyClass.java
 warning: [unchecked] unchecked call to add(E) as a member of the raw type
 java.util.
 List: list.add("foo");

Note that creating and assigning the raw ArrayList does not generate a warning. It is
only when we try to use an “unsafe” method (one that refers to a type variable) that
we get the warning. This means that it’s still OK to use older-style, nongeneric Java
APIs that work with raw types. We only get warnings when we do something unsafe
in our own code.

One more thing about erasure before we move on. In the previous examples, the type
variables were replaced by the Object type, which could represent any type applicable
to the type variable E. Later, we’ll see that this is not always the case. We can place
limitations or bounds on the parameter types, and, when we do, the compiler can be
more restrictive about the erasure of the type, for example:

 class Bounded< E extends Date > {
 public void addElement(E element) { ... }
 }

This parameter type declaration says that the element type E must be a subtype of the
Date type. In this case, the erasure of the addElement() method is therefore more
restrictive than Object, and the compiler uses Date:

 public void addElement(Date element) { ... }

Date is called the upper bound of this type, meaning that it is the top of the object
hierarchy here and the type can be instantiated only on type Date or on “lower”
(more derived) types.

212 | Chapter 7: Collections and Generics

Now that we have a handle on what generic types really are, we can go into a little
more detail about how they behave.

Parameterized Type Relationships
We know now that parameterized types share a common, raw type. This is why our
parameterized List<Date> is just a List at runtime. In fact, we can assign any instan‐
tiation of List to the raw type if we want:

 List list = new ArrayList<Date>();

We can even go the other way and assign a raw type to a specific instantiation of the
generic type:

 List<Date> dates = new ArrayList(); // unchecked warning

This statement generates an unchecked warning on the assignment, but thereafter the
compiler trusts that the list contained only Dates prior to the assignment. It is also
permissible, albeit pointless, to perform a cast in this statement. We’ll talk about cast‐
ing to generic types shortly in “Casts” on page 215.

Whatever the runtime types, the compiler is running the show and does not let us
assign things that are clearly incompatible:

 List<Date> dates = new ArrayList<String>(); // Compile-time Error!

Of course, the ArrayList<String> does not implement the methods of List<Date>
conjured by the compiler, so these types are incompatible.

But what about more interesting type relationships? The List interface, for example,
is a subtype of the more general Collection interface. Is a particular instantiation of
the generic List also assignable to some instantiation of the generic Collection?
Does it depend on the type parameters and their relationships? Clearly, a List<Date>
is not a Collection<String>. But is a List<Date> a Collection<Date>? Can a
List<Date> be a Collection<Object>?

We’ll just blurt out the answer here first, then walk through it and explain. The rule is
that for the simple types of generic instantiations we’ve discussed so far, inheritance
applies only to the “base” generic type and not to the parameter types. Furthermore,
assignability applies only when the two generic types are instantiated on exactly the
same parameter type. In other words, there is still one-dimensional inheritance, fol‐
lowing the base generic class type, but with the additional restriction that the parame‐
ter types must be identical.

For example, recalling that a List is a type of Collection, we can assign instantia‐
tions of List to instantiations of Collection when the type parameter is exactly the
same:

Parameterized Type Relationships | 213

 Collection<Date> cd;
 List<Date> ld = new ArrayList<Date>();
 cd = ld; // Ok!

This code snippet says that a List<Date> is a Collection<Date>—pretty intuitive.
But trying the same logic on a variation in the parameter types fails:

 List<Object> lo;
 List<Date> ld = new ArrayList<Date>();
 lo = ld; // Compile-time Error! Incompatible types.

Although our intuition tells us that the Dates in that List could all live happily as
Objects in a List, the assignment is an error. We’ll explain precisely why in the next
section, but for now just note that the type parameters are not exactly the same and
that there is no inheritance relationship among parameter types in generics. This is a
case where thinking of the instantiation in terms of types and not in terms of what
they do helps. These are not really a “list of dates” and a “list of objects,” but more like
a DateList and an ObjectList, the relationship of which is not immediately obvious.

Try to pick out what’s OK and what’s not OK in the following example:

 Collection<Number> cn;
 List<Integer> li = new ArrayList<Integer>();
 cn = li; // Compile-time Error! Incompatible types.

It is possible for an instantiation of List to be an instantiation of Collection, but
only if the parameter types are exactly the same. Inheritance doesn’t follow the
parameter types and this example fails.

One more thing: earlier we mentioned that this rule applies to the simple types of
instantiations we’ve discussed so far in this chapter. What other types are there? Well,
the kinds of instantiations we’ve seen so far where we plug in an actual Java type as a
parameter are called concrete type instantiations. Later, we’ll talk about wildcard
instantiations, which are akin to mathematical set operations on types. We’ll see that
it’s possible to make more exotic instantiations of generics where the type relation‐
ships are actually two-dimensional, depending both on the base type and the parame‐
terization. But don’t worry: this doesn’t come up very often and is not as scary as it
sounds.

Why Isn’t a List<Date> a List<Object>?
It’s a reasonable question. Even with our brains thinking of arbitrary DateList and
ObjectList types, we can still ask why they couldn’t be assignable. Why shouldn’t we
be able to assign our List<Date> to a List<Object> and work with the Date elements
as Object types?

The reason gets back to the heart of the rationale for generics that we discussed in the
introduction: changing APIs. In the simplest case, supposing an ObjectList type

214 | Chapter 7: Collections and Generics

extends a DateList type, the DateList would have all of the methods of ObjectList
and we could still insert Objects into it. Now, you might object that generics let us
change the APIs, so that doesn’t apply anymore. That’s true, but there is a bigger
problem. If we could assign our DateList to an ObjectList variable, we would have
to be able to use Object methods to insert elements of types other than Date into it.
We could alias (provide an alternate, broader type) the DateList as an ObjectList
and try to trick it into accepting some other type:

 DateList dateList = new DateList();
 ObjectList objectList = dateList; // Can't really do this
 objectList.add(new Foo()); // should be runtime error!

We’d expect to get a runtime error when the actual DateList implementation was
presented with the wrong type of object. And therein lies the problem. Java generics
have no runtime representation. Even if this functionality were useful, there is no way
with the current scheme for Java to know what to do at runtime. Another way to look
at it is that this feature is simply dangerous because it allows for an error at runtime
that couldn’t be caught at compile time. In general, we’d like to catch type errors at
compile time.

You might think Java could guarantee that your code is type safe if it compiles with no
unchecked warnings by disallowing these assignments. Unfortunately it can’t, but it
doesn’t have to do with generics; it has to do with arrays. If this all sounds familiar to
you, it’s because we mentioned it previously in relation to Java arrays. Array types
have an inheritance relationship that allows this kind of aliasing to occur:

 Date [] dates = new Date[10];
 Object [] objects = dates;
 objects[0] = "not a date"; // Runtime ArrayStoreException!

However, arrays have runtime representations as different classes and they check
themselves at runtime, throwing an ArrayStoreException in just this case. So in
theory, Java code is not guaranteed type safe by the compiler if you use arrays in this
way.

Casts
We’ve now talked about relationships between generic types and even between
generic types and raw types. But we haven’t really explored the concept of casts in the
world of generics yet. No cast was necessary when we interchanged generics with
their raw types. Instead, we just crossed a line that triggers unchecked warnings from
the compiler:

 List list = new ArrayList<Date>();
 List<Date> dl = list; // unchecked warning

Casts | 215

Normally, we use a cast in Java to work with two types that could be assignable. For
example, we could attempt to cast an Object to a Date because it is plausible that the
Object is a Date value. The cast then performs the check at runtime to see if we are
correct. Casting between unrelated types is a compile-time error. For example, we
can’t even try to cast an Integer to a String. Those types have no inheritance rela‐
tionship. What about casts between compatible generic types?

 Collection<Date> cd = new ArrayList<Date>();
 List<Date> ld = (List<Date>)cd; // Ok!

This code snippet shows a valid cast from a more general Collection<Date> to a
List<Date>. The cast is plausible here because a Collection<Date> is assignable
from and could actually be a List<Date>. Similarly, the following cast catches our
mistake where we have aliased a TreeSet<Date> as a Collection<Date> and tried to
cast it to a List<Date>:

 Collection<Date> cd = new TreeSet<Date>();
 List<Date> ld = (List<Date>)cd; // Runtime ClassCastException!
 ld.add(new Date());

There is one case where casts are not effective with generics, however, and that is
when we are trying to differentiate the types based on their parameter types:

 Object o = new ArrayList<String>();
 List<Date> ld = (List<Date>)o; // unchecked warning, ineffective
 Date d = ld.get(0); // unsafe at runtime, implicit cast may fail

Here, we aliased an ArrayList<String> as a plain Object. Next, we cast it to a
List<Date>. Unfortunately, Java does not know the difference between a
List<String> and a List<Date> at runtime, so the cast is fruitless. The compiler
warns us of this by generating an unchecked warning at the location of the cast; we
should be aware that when we try to use the cast object later, we might find out that it
is incorrect. Casts on generic types are ineffective at runtime because of erasure and
the lack of type information.

Converting Between Collections and Arrays
Converting between collections and arrays is easy. For convenience, the elements of a
collection can be retrieved as an array using the following methods:

 public Object[] toArray()
 public <E> E[] toArray(E[] a)

The first method returns a plain Object array. With the second form, we can be more
specific and get back an array of the correct element type. If we supply an array of
sufficient size, it will be filled in with the values. But if the array is too short (e.g., zero
length), a new array of the same type but the required length will be created and
returned to us. So you can just pass in an empty array of the correct type like this:

216 | Chapter 7: Collections and Generics

 Collection<String> myCollection = ...;
 String [] myStrings = myCollection.toArray(new String[0]);

(This trick is a little awkward and it would be nice if Java let us specify the type
explicitly using a Class reference, but for some reason, this isn’t the case.) Going the
other way, you can convert an array of objects to a List collection with the static
asList() method of the java.util.Arrays class:

 String [] myStrings = ...; List list = Arrays.asList(myStrings);

Iterator
An iterator is an object that lets you step through a sequence of values. This kind of
operation comes up so often that it is given a standard interface: java.util.Itera
tor. The Iterator interface has only two primary methods:

public E next()

This method returns the next element (an element of generic type E) of the asso‐
ciated collection.

public boolean hasNext()

This method returns true if you have not yet stepped through all the Collec
tion’s elements. In other words, it returns true if you can call next() to get the
next element.

The following example shows how you could use an Iterator to print out every ele‐
ment of a collection:

 public void printElements(Collection c, PrintStream out) {
 Iterator iterator = c.iterator();
 while (iterator.hasNext()) {
 out.println(iterator.next());
 }
 }

In addition to the traversal methods, Iterator provides the ability to remove an ele‐
ment from a collection:

public void remove()

This method removes the most recent object returned from next() from the
associated Collection.

Not all iterators implement remove(). It doesn’t make sense to be able to remove an
element from a read-only collection, for example. If element removal is not allowed,
an UnsupportedOperationException is thrown from this method. If you call
remove() before first calling next(), or if you call remove() twice in a row, you’ll get
an IllegalStateException.

Casts | 217

for loop over collections

A form of the for loop, described in “The for loop” on page 105, can operate over all
Iterable types, which means it can iterate over all types of Collection objects as
that interface extends Iterable. For example, we can now step over all of the ele‐
ments of a typed collection of Date objects like so:

 Collection<Date> col = ...
 for(Date date : col)
 System.out.println(date);

This feature of the Java built-in for loop is called the “enhanced” for loop (as
opposed to the pregenerics, numeric-only for loop). The enhanced for loop applies
only to Collection type collections, not Maps. Maps are another type of beast that
really contain two distinct sets of objects (keys and values), so it’s not obvious what
your intentions would be in such a loop. But because looping over a map does seem
reasonable, you can use the Map methods keySet() or values() (or even entrySet()
if you really wanted each key/value pair as a single entity) to get the right collection
from your map that does work with this enhanced for loop.

A Closer Look: The sort() Method
Poking around in the java.util.Collections class, we find all kinds of static utility
methods for working with collections. Among them is this goody—the static generic
method sort():

 <T extends Comparable<? super T>> void sort(List<T> list) { ... }

Another nut for us to crack. Let’s focus on the last part of the bound:

 Comparable<? super T>

This is a wildcard instantiation of the Comparable interface, so we can read the
extends as implements if it helps. Comparable holds a compareTo() method for some
parameter type. A Comparable<String> means that the compareTo() method takes
type String. Therefore, Comparable<? super T> is the set of instantiations of Compa
rable on T and all of its superclasses. A Comparable<T> suffices and, at the other end,
so does a Comparable<Object>. What this means in English is that the elements must
be comparable to their own type or some supertype of their own type for the sort()
method to make use of them. This is sufficient to ensure that the elements can all be
compared to one another, but not as restrictive as saying that they must all implement
the compareTo() method themselves. Some of the elements may inherit the Compara
ble interface from a parent class that knows how to compare only to a supertype of T,
and that is exactly what is allowed here.

218 | Chapter 7: Collections and Generics

Application: Trees on the Field
There is a lot of theory in this chapter. Don’t be afraid of theory—it can help you pre‐
dict behavior in novel scenarios and inspire solutions to new problems. But practice
is just as important, so let’s put some of these collections into practice by revisiting
our game that we started in “Classes” on page 124. In particular, it’s time to store
more than one object of each type.

In Chapter 11 we’ll cover networking and consider creating a multiplayer setup that
would require storing multiple physicists. For now, we still have our one physicist
able to throw one apple at a time. But we can populate our field with several trees for
target practice. Newton will have his revenge!

Let’s add six trees, although we’ll use a pair of loops so you can easily increase the tree
count if you wish. Our Field currently stores a lone tree instance. We can make that a
typed list. From there we can approach adding and removing trees in a number of
ways. We can create some methods for Field that work with the list and maybe
enforce some other game rules (like managing a maximum number of trees). We
could just use the list directly since the List class already has nice methods for most
of the things we want to do. Or we could use some combination of those approaches:
special methods where it makes sense and direct manipulation everywhere else.

Since we do have some game rules that are peculiar to our Field, we’ll take the first
approach here. (But look at the examples and think about how you might alter them
to use the list of trees directly.) We’ll start with an addTree() method. One benefit of
this approach is that we can also relocate the creation of the tree instance to our
method rather than creating and manipulating the tree separately. Here’s one way to
add a tree at a desired point on the field:

 public void addTree(int x, int y) {
 Tree tree = new Tree();
 tree.setPosition(x,y);
 trees.add(tree);
 }

With that method in place, we could add a couple of trees quite quickly:

 Field field = new Field();
 ...
 field.addTree(100,100);
 field.addTree(200,100);

Those two lines add a pair of trees side by side. Let’s go ahead and write the loops we
need to create our six trees:

 Field field = new Field();
 ...
 for (int row = 1; row <= 2; row++) {
 for (int col = 1; col <=3; col++) {

Application: Trees on the Field | 219

 field.addTree(col * 100, row * 100);
 }
 }

Hopefully, you can see now how easy it would be to add eight or nine or one hundred
trees if you wanted. As we noted before, computers are really good at repetition.

Hooray for creating our forest of apple targets! We left off a few critical details,
though. The most important of which is showing that forest on the screen. We need
to upgrade our drawing method for the Field class so that it understands and uses
our list of trees correctly. Eventually we’ll do the same for our physicists and apples as
we add more and more functionality to our game. We’ll also need a way to remove
elements that are no longer active. But first, our forest!

 protected void paintComponent(Graphics g) {
 g.setColor(fieldColor);
 g.fillRect(0,0, getWidth(), getHeight());
 for (Tree t : trees) {
 t.draw(g);
 }
 physicist.draw(g);
 apple.draw(g);
 }

Since we are already in the Field class where our trees are stored, there is no need to
write any separate function for pulling out an individual tree and painting it. We can
use the nifty alternate for loop structure and quickly get all of our trees on the field,
as shown in Figure 7-1. Neat!

Figure 7-1. Rendering all the trees in our List

220 | Chapter 7: Collections and Generics

Conclusion
Java collections and generics are very powerful and useful additions to the language.
Although some of the details we delved into in the latter half of this chapter may seem
daunting, the common usage is very simple and compelling: generics make collec‐
tions better. As you begin to write more code using generics, you will find that your
code becomes more readable and more understandable. Collections allow for elegant,
efficient storage. Generics make explicit what previously had to be inferred from
usage.

Conclusion | 221

CHAPTER 8

Text and Core Utilities

If you’ve been reading this book sequentially, you’ve read all about the core Java lan‐
guage constructs, including the object-oriented aspects of the language and the use of
threads. Now it’s time to shift gears and start talking about the Java application pro‐
gramming interface (API), the collection of classes that compose the standard Java
packages and come with every Java implementation. Java’s core packages are one of its
most distinguishing features. Many other object-oriented languages have similar fea‐
tures, but none has as extensive a set of standardized APIs and tools as Java does. This
is both a reflection of and a reason for Java’s success.

Strings
We’ll start by taking a closer look at the Java String class (or, more specifically,
java.lang.String). Because working with Strings is so fundamental, it’s important
to understand how they are implemented and what you can do with them. A String
object encapsulates a sequence of Unicode characters. Internally, these characters are
stored in a regular Java array, but the String object guards this array jealously and
gives you access to it only through its own API. This is to support the idea that
Strings are immutable; once you create a String object, you can’t change its value.
Lots of operations on a String object appear to change the characters or length of a
string, but what they really do is return a new String object that copies or internally
references the needed characters of the original. Java implementations make an effort
to consolidate identical strings used in the same class into a shared-string pool and to
share parts of Strings where possible.

The original motivation for all of this was performance. Immutable Strings can save
memory and be optimized for speed by the Java VM. The flip side is that a program‐
mer should have a basic understanding of the String class in order to avoid creating

223

1 When in doubt, measure it! If your String-manipulating code is clean and easy to understand, don’t rewrite it
until someone proves to you that it is too slow. Chances are that they will be wrong. And don’t be fooled by
relative comparisons. A millisecond is 1,000 times slower than a microsecond, but it still may be negligible to
your application’s overall performance.

2 Java 13 has a preview of multiline string literals: https://oreil.ly/CIlNB.

an excessive number of String objects in places where performance is an issue. That
was especially true in the past, when VMs were slow and handled memory poorly.
Nowadays, string usage is not usually an issue in the overall performance of a real
application.1

Constructing Strings
Literal strings, defined in your source code, are declared with double quotes and can
be assigned to a String variable:

 String quote = "To be or not to be";

Java automatically converts the literal string into a String object and assigns it to the
variable.

Strings keep track of their own length, so String objects in Java don’t require special
terminators. You can get the length of a String with the length() method. You can
also test for a zero-length string by using isEmpty():

 int length = quote.length();
 boolean empty = quote.isEmpty();

Strings can take advantage of the only overloaded operator in Java, the + operator,
for string concatenation. The following code produces equivalent strings:

 String name = "John " + "Smith";
 String name = "John ".concat("Smith");

Literal strings can’t (yet2) span lines in Java source files, but we can concatenate lines
to produce the same effect:

 String poem =
 "'Twas brillig, and the slithy toves\n" +
 " Did gyre and gimble in the wabe:\n" +
 "All mimsy were the borogoves,\n" +
 " And the mome raths outgrabe.\n";

Embedding lengthy text in source code is not normally something you want to do. In
Chapter 11, we’ll talk about ways to load Strings from files and URLs.

In addition to making strings from literal expressions, you can construct a String
directly from an array of characters:

224 | Chapter 8: Text and Core Utilities

https://oreil.ly/CIlNB

3 On most platforms the default encoding is UTF-8. You can get more details on character sets, default sets, and
standard sets supported by Java in the official Javadoc for the java.nio.charset.Charset class.

 char [] data = new char [] { 'L', 'e', 'm', 'm', 'i', 'n', 'g' };
 String lemming = new String(data);

You can also construct a String from an array of bytes:

 byte [] data = new byte [] { (byte)97, (byte)98, (byte)99 };
 String abc = new String(data, "ISO8859_1");

In this case, the second argument to the String constructor is the name of a
character-encoding scheme. The String constructor uses it to convert the raw bytes
in the specified encoding to the internally used encoding chosen by the runtime. If
you don’t specify a character encoding, the default encoding scheme on your system
is used.3

Conversely, the charAt() method of the String class lets you access the characters of
a String in an array-like fashion:

 String s = "Newton";
 for (int i = 0; i < s.length(); i++)
 System.out.println(s.charAt(i));

This code prints the characters of the string one at a time.

The notion that a String is a sequence of characters is also codified by the String
class implementing the interface java.lang.CharSequence, which prescribes the
methods length() and charAt() as a way to get a subset of the characters.

Strings from Things
Objects and primitive types in Java can be turned into a default textual representation
as a String. For primitive types like numbers, the string should be fairly obvious; for
object types, it is under the control of the object itself. We can get the string represen‐
tation of an item with the static String.valueOf() method. Various overloaded ver‐
sions of this method accept each of the primitive types:

 String one = String.valueOf(1); // integer, "1"
 String two = String.valueOf(2.384f); // float, "2.384"
 String notTrue = String.valueOf(false); // boolean, "false"

All objects in Java have a toString() method that is inherited from the Object class.
For many objects, this method returns a useful result that displays the contents of the
object. For example, a java.util.Date object’s toString() method returns the date it
represents formatted as a string. For objects that do not provide a representation, the
string result is just a unique identifier that can be used for debugging. The
String.valueOf() method, when called for an object, invokes the object’s

Strings | 225

https://oreil.ly/UarRO

toString() method and returns the result. The only real difference in using this
method is that if you pass it a null object reference, it returns the String “null” for
you, instead of producing a NullPointerException:

 Date date = new Date();
 // Equivalent, e.g., "Fri Dec 19 05:45:34 CST 1969"
 String d1 = String.valueOf(date);
 String d2 = date.toString();

 date = null;
 d1 = String.valueOf(date); // "null"
 d2 = date.toString(); // NullPointerException!

String concatenation uses the valueOf() method internally, so if you “add” an object
or primitive using the plus operator (+), you get a String:

 String today = "Today's date is :" + date;

You’ll sometimes see people use the empty string and the plus operator (+) as short‐
hand to get the string value of an object. For example:

 String two = "" + 2.384f;
 String today = "" + new Date();

Comparing Strings
The standard equals() method can compare strings for equality; they contain exactly
the same characters in the same order. You can use a different method, equalsIgnore
Case(), to check the equivalence of strings in a case-insensitive way:

 String one = "FOO";
 String two = "foo";

 one.equals(two); // false
 one.equalsIgnoreCase(two); // true

A common mistake for novice programmers in Java is to compare strings with the ==
operator when they intend to use the equals() method. Remember that strings are
objects in Java, and == tests for object identity; that is, whether the two arguments
being tested are the same object. In Java, it’s easy to make two strings that have the
same characters but are not the same string object. For example:

 String foo1 = "foo";
 String foo2 = String.valueOf(new char [] { 'f', 'o', 'o' });

 foo1 == foo2 // false!
 foo1.equals(foo2) // true

This mistake is particularly dangerous because it often works for the common case in
which you are comparing literal strings (strings declared with double quotes right in
the code). The reason for this is that Java tries to manage strings efficiently by com‐

226 | Chapter 8: Text and Core Utilities

bining them. At compile time, Java finds all the identical strings within a given class
and makes only one object for them. This is safe because strings are immutable and
cannot change. You can coalesce strings yourself in this way at runtime using the
String intern() method. Interning a string returns an equivalent string reference
that is unique across the VM.

The compareTo() method compares the lexical value of the String to another
String, determining whether it sorts alphabetically earlier than, the same as, or later
than the target string. It returns an integer that is less than, equal to, or greater than
zero:

 String abc = "abc";
 String def = "def";
 String num = "123";

 if (abc.compareTo(def) < 0) // true
 if (abc.compareTo(abc) == 0) // true
 if (abc.compareTo(num) > 0) // true

The compareTo() method compares strings strictly by their characters’ positions in
the Unicode specification. This works for simple text but does not handle all language
variations well. The Collator class, discussed next, can be used for more sophistica‐
ted comparisons.

Searching
The String class provides several simple methods for finding fixed substrings within
a string. The startsWith() and endsWith() methods compare an argument string
with the beginning and end of the String, respectively:

 String url = "http://foo.bar.com/";
 if (url.startsWith("http:")) // true

The indexOf() method searches for the first occurrence of a character or substring
and returns the starting character position, or -1 if the substring is not found:

 String abcs = "abcdefghijklmnopqrstuvwxyz";
 int i = abcs.indexOf('p'); // 15
 int i = abcs.indexOf("def"); // 3
 int I = abcs.indexOf("Fang"); // -1

Similarly, lastIndexOf() searches backward through the string for the last occur‐
rence of a character or substring.

The contains() method handles the very common task of checking to see whether a
given substring is contained in the target string:

 String log = "There is an emergency in sector 7!";
 if (log.contains("emergency")) pageSomeone();

Strings | 227

 // equivalent to
 if (log.indexOf("emergency") != -1) ...

For more complex searching, you can use the Regular Expression API, which allows
you to look for and parse complex patterns. We’ll talk about regular expressions later
in this chapter.

String Method Summary
Table 8-1 summarizes the methods provided by the String class. We’ve included sev‐
eral methods we have not discussed in this chapter to make sure you’re aware of other
String capabilities. Feel free to try these methods out in jshell or look up the docu‐
mentation online.

Table 8-1. String methods

Method Functionality

charAt() Gets a particular character in the string

compareTo() Compares the string with another string

concat() Concatenates the string with another string

contains() Checks whether the string contains another string

copyValueOf() Returns a string equivalent to the specified character array

endsWith() Checks whether the string ends with a specified suffix

equals() Compares the string with another string

equalsIgnore
Case()

Compares the string with another string, ignoring case

getBytes() Copies characters from the string into a byte array

getChars() Copies characters from the string into a character array

hashCode() Returns a hashcode for the string

indexOf() Searches for the first occurrence of a character or substring in the string

intern() Fetches a unique instance of the string from a global shared-string pool

isBlank() Returns true if the string is zero length or contains only whitespace

isEmpty() Returns true if the string is zero length

lastIndexOf() Searches for the last occurrence of a character or substring in a string

length() Returns the length of the string

lines() Returns a stream of lines separated by line terminators

matches() Determines if the whole string matches a regular expression pattern

regionMatches() Checks whether a region of the string matches the specified region of another string

repeat() Returns a concatenation of this string repeated a given number of times

replace() Replaces all occurrences of a character in the string with another character

replaceAll() Replaces all occurrences of a regular expression pattern with a pattern

228 | Chapter 8: Text and Core Utilities

https://oreil.ly/lbM1R
https://oreil.ly/lbM1R

Method Functionality

replaceFirst() Replaces the first occurrence of a regular expression pattern with a pattern

split() Splits the string into an array of strings using a regular expression pattern as a delimiter

startsWith() Checks whether the string starts with a specified prefix

strip() Removes leading and trailing whitespace as defined by Character.isWhitespace()

stripLeading() Removes leading whitespace similar to strip() above

stripTrailing() Removes trailing whitespace similar to strip() above

substring() Returns a substring from the string

toCharArray() Returns the array of characters from the string

toLowerCase() Converts the string to lowercase

toString() Returns the string value of an object

toUpperCase() Converts the string to uppercase

trim() Removes leading and trailing whitespace defined here as any character with a codepoint less than
or equal to 32 (the “space” character)

valueOf() Returns a string representation of a value

Things from Strings
Parsing and formatting text is a large, open-ended topic. So far in this chapter, we’ve
looked at only primitive operations on strings—creation, searching, and turning sim‐
ple values into strings. Now we’d like to move on to more structured forms of text.
Java has a rich set of APIs for parsing and printing formatted strings, including num‐
bers, dates, times, and currency values. We’ll cover most of these topics in this chap‐
ter, but we’ll wait to discuss date and time formatting in “Local Dates and Times” on
page 248.

We’ll start with parsing—reading primitive numbers and values as strings, and chop‐
ping long strings into tokens. Then we’ll take a look at regular expressions, the most
powerful text-parsing tool Java offers. Regular expressions let you define your own
patterns of arbitrary complexity, search for them, and parse them from text.

Parsing Primitive Numbers
In Java, numbers, characters, and booleans are primitive types—not objects. But for
each primitive type, Java also defines a primitive wrapper class. Specifically, the
java.lang package includes the following classes: Byte, Short, Integer, Long, Float,
Double, Character, and Boolean. We talked about these in “Wrappers for Primitive
Types” on page 141, but we bring them up now because these classes hold static utility
methods that know how to parse their respective types from strings. Each of these
primitive wrapper classes has a static “parse” method that reads a String and returns
the corresponding primitive type. For example:

Things from Strings | 229

https://oreil.ly/NK1Nl

 byte b = Byte.parseByte("16");
 int n = Integer.parseInt("42");
 long l = Long.parseLong("99999999999");
 float f = Float.parseFloat("4.2");
 double d = Double.parseDouble("99.99999999");
 boolean b = Boolean.parseBoolean("true");

Alternatively, the java.util.Scanner provides a single API for not only parsing indi‐
vidual primitive types from strings, but reading them from a stream of tokens. This
example shows how to use it in place of the preceding wrapper classes:

 byte b = new Scanner("16").nextByte();
 int n = new Scanner("42").nextInt();
 long l = new Scanner("99999999999").nextLong();
 float f = new Scanner("4.2").nextFloat();
 double d = new Scanner("99.99999999").nextDouble();
 boolean b = new Scanner("true").nextBoolean();

Tokenizing Text
A common programming task involves parsing a string of text into words or “tokens”
that are separated by some set of delimiter characters, such as spaces or commas. The
first example contains words separated by single spaces. The second, more realistic
problem involves comma-delimited fields.

 Now is the time for all good men (and women)...

 Check Number, Description, Amount
 4231, Java Programming, 1000.00

Java has several (unfortunately overlapping) APIs for handling situations like this.
The most powerful and useful are the String split() and Scanner APIs. Both uti‐
lize regular expressions to allow you to break the string on arbitrary patterns. We
haven’t talked about regular expressions yet, but in order to show you how this works
we’ll just give you the necessary magic and explain in detail later in this chapter. We’ll
also mention a legacy utility, java.util.StringTokenizer, which uses simple char‐
acter sets to split a string. StringTokenizer is not as powerful, but doesn’t require an
understanding of regular expressions.

The String split() method accepts a regular expression that describes a delimiter
and uses it to chop the string into an array of Strings:

 String text = "Now is the time for all good men";
 String [] words = text.split("\\s");
 // words = "Now", "is", "the", "time", ...

 String text = "4231, Java Programming, 1000.00";
 String [] fields = text.split("\\s*,\\s*");
 // fields = "4231", "Java Programming", "1000.00"

230 | Chapter 8: Text and Core Utilities

In the first example, we used the regular expression \\s, which matches a single
whitespace character (space, tab, or carriage return). The split() method returned
an array of eight strings. In the second example, we used a more complicated regular
expression, \\s*,\\s*, which matches a comma surrounded by any number of con‐
tiguous spaces (possibly zero). This reduced our text to three nice, tidy fields.

With the new Scanner API, we could go a step further and parse the numbers of our
second example as we extract them:

 String text = "4231, Java Programming, 1000.00";
 Scanner scanner = new Scanner(text).useDelimiter("\\s*,\\s*");
 int checkNumber = scanner.nextInt(); // 4231
 String description = scanner.next(); // "Java Programming"
 float amount = scanner.nextFloat(); // 1000.00

Here, we’ve told the Scanner to use our regular expression as the delimiter and then
called it repeatedly to parse each field as its corresponding type. The Scanner is con‐
venient because it can read not only from Strings but directly from stream sources
(more in Chapter 11) such as InputStreams, Files, and Channels:

 Scanner fileScanner = new Scanner(new File("spreadsheet.csv"));
 fileScanner.useDelimiter("\\s*,\\s*);
 // ...

Another thing that you can do with the Scanner is to look ahead with the “hasNext”
methods to see if another item is coming:

 while(scanner.hasNextInt()) {
 int n = scanner.nextInt();
 ...
 }

StringTokenizer

Even though the StringTokenizer class that we mentioned is now a legacy item, it’s
good to know that it’s there because it’s been around since the beginning of Java and is
used in a lot of code. StringTokenizer allows you to specify a delimiter as a set of
characters and matches any number or combination of those characters as a delimiter
between tokens. The following snippet reads the words of our first example:

 String text = "Now is the time for all good men (and women)...";
 StringTokenizer st = new StringTokenizer(text);

 while (st.hasMoreTokens()) {
 String word = st.nextToken();
 ...
 }

We invoke the hasMoreTokens() and nextToken() methods to loop over the words of
the text. By default, the StringTokenizer class uses standard whitespace characters—

Things from Strings | 231

carriage return, newline, and tab—as delimiters. You can also specify your own set of
delimiter characters in the StringTokenizer constructor. Any contiguous combina‐
tion of the specified characters that appears in the target string is skipped between
tokens:

 String text = "4231, Java Programming, 1000.00";
 StringTokenizer st = new StringTokenizer(text, ",");

 while (st.hasMoreTokens()) {
 String word = st.nextToken();
 // word = "4231", " Java Programming", "1000.00"
 }

This isn’t as clean as our regular expression example. Here we used a comma as the
delimiter so we get extra leading whitespace in our description field. If we had added
space to our delimiter string, the StringTokenizer would have broken our descrip‐
tion into two words, “Java” and “Programming,” which is not what we wanted. A sol‐
ution here would be to use trim() to remove the leading and trailing space on each
element.

Regular Expressions
Now it’s time to take a brief detour on our trip through Java and enter the land of
regular expressions. A regular expression, or regex for short, describes a text pattern.
Regular expressions are used with many tools—including the java.util.regex pack‐
age, text editors, and many scripting languages—to provide sophisticated text-
searching and powerful string-manipulation capabilities.

If you are already familiar with the concept of regular expressions and how they are
used with other languages, you may wish to skim through this section. At the very
least, you’ll need to look at “The java.util.regex API” on page 238 later in this chapter,
which covers the Java classes necessary to use them. On the other hand, if you’ve
come to this point on your Java journey with a clean slate on this topic and you’re
wondering exactly what regular expressions are, then pop open your favorite bever‐
age and get ready. You are about to learn about the most powerful tool in the arsenal
of text manipulation and what is, in fact, a tiny language within a language, all in the
span of a few pages.

Regex Notation
A regular expression describes a pattern in text. By pattern, we mean just about any
feature you can imagine identifying in text from the literal characters alone, without
actually understanding their meaning. This includes features, such as words, word
groupings, lines and paragraphs, punctuation, case, and more generally, strings and
numbers with a specific structure to them, such as phone numbers, email addresses,

232 | Chapter 8: Text and Core Utilities

and quoted phrases. With regular expressions, you can search the dictionary for all
the words that have the letter “q” without its pal “u” next to it, or words that start and
end with the same letter. Once you have constructed a pattern, you can use simple
tools to hunt for it in text or to determine if a given string matches it. A regex can also
be arranged to help you dismember specific parts of the text it matched, which you
could then use as elements of replacement text if you wish.

Write once, run away
Before moving on, we should say a few words about regular expression syntax in gen‐
eral. At the beginning of this section, we casually mentioned that we would be discus‐
sing a new language. Regular expressions do, in fact, constitute a simple form of
programming language. If you think for a moment about the examples we cited ear‐
lier, you can see that something like a language is going to be needed to describe even
simple patterns—such as email addresses—that have some variation in form.

A computer science textbook would classify regular expressions at the bottom of the
hierarchy of computer languages, in terms of both what they can describe and what
you can do with them. They are still capable of being quite sophisticated, however. As
with most programming languages, the elements of regular expressions are simple,
but they can be built up in combination to arbitrary complexity. And that is where
things start to get sticky.

Since regexes work on strings, it is convenient to have a very compact notation that
can be easily wedged between characters. But compact notation can be very cryptic,
and experience shows that it is much easier to write a complex statement than to read
it again later. Such is the curse of the regular expression. You may find that in a
moment of late-night, caffeine-fueled inspiration, you can write a single glorious pat‐
tern to simplify the rest of your program down to one line. When you return to read
that line the next day, however, it may look like Egyptian hieroglyphics to you. Sim‐
pler is generally better, but if you can break your problem down and do it more
clearly in several steps, maybe you should.

Escaped characters
Now that you’re properly warned, we have to throw one more thing at you before we
build you back up. Not only can the regex notation get a little hairy, but it is also
somewhat ambiguous with ordinary Java strings. An important part of the notation is
the escaped character—a character with a backslash in front of it. For example, the
escaped d character, \d, (backslash “d”) is shorthand that matches any single digit
character (0–9). However, you cannot simply write \d as part of a Java string, because
you might recall that Java uses the backslash for its own special characters and to
specify Unicode character sequences (\uxxxx). Fortunately, Java gives us a replace‐
ment: an escaped backslash, which is two backslashes (\\), means a literal backslash.

Regular Expressions | 233

The rule is, when you want a backslash to appear in your regex, you must escape it
with an extra one:

 "\\d" // Java string that yields backslash "d"

And just to make things crazier, because regex notation itself uses a backslash to
denote special characters, it must provide the same “escape hatch” as well—allowing
you to double up backslashes if you want a literal backslash. So if you want to specify
a regular expression that includes a single literal backslash, it looks like this:

 "\\\\" // Java string yields two backslashes; regex yields one

Most of the “magic” operator characters you read about in this section operate on the
character that precedes them, so these also must be escaped if you want their literal
meaning. This includes such characters as ., *, +, braces {}, and parentheses ().

If you need to create part of an expression that has lots of literal characters in it, you
can use the special delimiters \Q and \E to help you. Any text appearing between \Q
and \E is automatically escaped. (You still need the Java String escapes—double
backslashes for backslash, but not quadruple.) There is also a static method called
Pattern.quote(), which does the same thing, returning a properly escaped version
of whatever string you give it.

Beyond that, our only suggestion to help maintain your sanity when working with
these examples is to keep two copies—a comment line showing the naked regular
expression, and the real Java string, where you must double up all backslashes. And
don’t forget about jshell! It can be a very powerful playground for testing and tweak‐
ing your patterns.

Characters and character classes
Now, let’s dive into the actual regex syntax. The simplest form of a regular expression
is plain, literal text, which has no special meaning and is matched directly (character
for character) in the input. This can be a single character or more. For example, in the
following string, the pattern “s” can match the character s in the words rose and is:

 "A rose is $1.99."

The pattern “rose” can match only the literal word rose. But this isn’t very interesting.
Let’s crank things up a notch by introducing some special characters and the notion
of character “classes.”

Any character: dot (.)
The special character dot (.) matches any single character. The pattern “.ose”
matches rose, nose, _ose (space followed by ose), or any other character followed
by the sequence ose. Two dots match any two characters (prose, close, etc.), and
so on. The dot operator is not discriminating; it normally stops only for an end-
of-line character (and, optionally, you can tell it not to; we discuss that later).

234 | Chapter 8: Text and Core Utilities

We can consider “.” to represent the group or class of all characters. And regexes
define more interesting character classes as well.

Whitespace or nonwhitespace character: \s, \S
The special character \s matches a literal-space character or one of the following
characters: \t (tab), \r (carriage return), \n (newline), \f (formfeed), and back‐
space. The corresponding special character \S does the inverse, matching any
character except whitespace.

Digit or nondigit character: \d, \D
\d matches any of the digits 0-9. \D does the inverse, matching all characters
except digits.

Word or nonword character: \w, \W
\w matches a “word” character, including upper- and lowercase letters A-Z, a-z,
the digits 0-9, and the underscore character (_). \W matches everything except
those characters.

Custom character classes
You can define your own character classes using the notation […]. For example, the
following class matches any of the characters a, b, c, x, y, or z:

 [abcxyz]

The special x-y range notation can be used as shorthand for the alphanumeric char‐
acters. The following example defines a character class containing all upper- and low‐
ercase letters:

 [A-Za-z]

Placing a caret (^) as the first character inside the brackets inverts the character class.
This example matches any character except uppercase A-F:

 [^A-F] // G, H, I, ..., a, b, c, ... etc.

Nesting character classes simply adds them:

 [A-F[G-Z]\w] // A-Z plus whitespace

The && logical AND notation can be used to take the intersection (characters in
common):

 [a-p&&[l-z]] // l, m, n, o, p
 [A-Z&&[^P]] // A through Z except P

Position markers
The pattern “[Aa] rose” (including an upper- or lowercase A) matches three times in
the following phrase:

Regular Expressions | 235

 "A rose is a rose is a rose"

Position characters allow you to designate the relative location of a match. The most
important are ^ and $, which match the beginning and end of a line, respectively:

 ^[Aa] rose // matches "A rose" at the beginning of line
 [Aa] rose$ // matches "a rose" at end of line

To be a little more precise, ^ and $ match the beginning and end of “input,” which is
often a single line. If you are working with multiple lines of text and wish to match
the beginnings and endings of lines within a single large string, you can turn on
“multiline” mode with a flag, as described later in “Special options” on page 237.

The position markers \b and \B match a word boundary or nonword boundary,
respectively. For example, the following pattern matches rose and rosemary, but not
primrose:

 \brose

Iteration (multiplicity)
Simply matching fixed character patterns would not get us very far. Next, we look at
operators that count the number of occurrences of a character (or more generally, of a
pattern, as we’ll see in “Pattern” on page 239):

Any (zero or more iterations): asterisk (*)
Placing an asterisk (*) after a character or character class means “allow any num‐
ber of that type of character”—in other words, zero or more. For example, the
following pattern matches a digit with any number of leading zeros (possibly
none):

 0*\d // match a digit with any number of leading zeros

Some (one or more iterations): plus sign (+)
The plus sign (+) means “one or more” iterations and is equivalent to XX* (pat‐
tern followed by pattern asterisk). For example, the following pattern matches a
number with one or more digits, plus optional leading zeros:

 0*\d+ // match a number (one or more digits) with optional leading
 // zeros

It may seem redundant to match the zeros at the beginning of an expression
because zero is a digit and is thus matched by the \d+ portion of the expression
anyway. However, we’ll show later how you can pick apart the string using a regex
and get at just the pieces you want. In this case, you might want to strip off the
leading zeros and keep only the digits.

236 | Chapter 8: Text and Core Utilities

Optional (zero or one iteration): question mark (?)
The question mark operator (?) allows exactly zero or one iteration. For example,
the following pattern matches a credit card expiration date, which may or may
not have a slash in the middle:

 \d\d/?\d\d // match four digits with an optional slash in the middle

Range (between x and y iterations, inclusive): {x,y}
The {x,y} curly-brace range operator is the most general iteration operator. It
specifies a precise range to match. A range takes two arguments: a lower bound
and an upper bound, separated by a comma. This regex matches any word with
five to seven characters, inclusive:

 \b\w{5,7}\b // match words with at least 5 and at most 7 characters

At least x or more iterations (y is infinite): {x,}
If you omit the upper bound, simply leaving a dangling comma in the range, the
upper bound becomes infinite. This is a way to specify a minimum of occur‐
rences with no maximum.

Alternation

The vertical bar (|) operator denotes the logical OR operation, also called alternation
or choice. The | operator does not operate on individual characters but instead
applies to everything on either side of it. It splits the expression in two unless con‐
strained by parentheses grouping. For example, a slightly naive approach to parsing
dates might be the following:

 \w+, \w+ \d+ \d+|\d\d/\d\d/\d\d // pattern 1 or pattern 2

In this expression, the left matches patterns such as Fri, Oct 12, 2001, and the right
matches 10/12/2001.

The following regex might be used to match email addresses with one of three
domains (net, edu, and gov):

 \w+@[\w.]*\.(net|edu|gov) // email address ending in .net, .edu, or .gov

Special options
There are several special options that affect the way the regex engine performs its
matching. These options can be applied in two ways:

• You can pass in one or more flags during the Pattern.compile() step (discussed
in the next section).

• You can include a special block of code in your regex.

Regular Expressions | 237

We’ll show the latter approach here. To do this, include one or more flags in a special
block (?x), where x is the flag for the option we want to turn on. Generally, you do
this at the beginning of the regex. You can also turn off flags by adding a minus sign
(?-x), which allows you to apply flags to select parts of your pattern.

The following flags are available:

Case-insensitive: (?i)
The (?i) flag tells the regex engine to ignore case while matching. For example:

 (?i)yahoo // match Yahoo, yahoo, yahOO, etc.

Dot all: (?s)
The (?s) flag turns on “dot all” mode, allowing the dot character to match any‐
thing, including end-of-line characters. It is useful if you are matching patterns
that span multiple lines. The s stands for “single-line mode,” a somewhat confus‐
ing name derived from Perl.

Multiline: (?m)
By default, ^ and $ don’t really match the beginning and end of lines (as defined
by carriage return or newline combinations); they instead match the beginning
or end of the entire input text. In many cases, “one line” is synonymous with the
entire input. If you have a big block of text to process, you’ll often break that
block up into separate lines for other reasons, and then checking any given line
for a regular expression is straightforward and ^ and $ behave as expected. How‐
ever, if you want to use a regex with the entire input string containing multiple
lines (separated by those carriage return or newline combinations), you can turn
on multiline mode with (?m). This flag causes ^ and $ to match the beginning
and end of the individual lines within the block of text as well as the beginning
and end of the entire block. Specifically, this means the spot before the first char‐
acter, the spot after the last character, and the spots just before and after line ter‐
minators inside the string.

Unix lines: (?d)
The (?d) flag limits the definition of the line terminator for the ^, $, and . special
characters to Unix-style newline only (\n). By default, carriage return newline
(\r\n) is also allowed.

The java.util.regex API
Now that we’ve covered the theory of how to construct regular expressions, the hard
part is over. All that’s left is to investigate the Java API for applying these expressions.

238 | Chapter 8: Text and Core Utilities

4 Validation of email addresses turns out to be much trickier than we can address here. Regular expressions can
cover most valid addresses, but if you are doing validation for a commercial or other professional application,
you may want to investigate third-party libraries, such as those available from Apache Commons.

Pattern
As we’ve said, the regex patterns that we write as strings are, in actuality, little pro‐
grams describing how to match text. At runtime, the Java regex package compiles
these little programs into a form that it can execute against some target text. Several
simple convenience methods accept strings directly to use as patterns. More generally,
however, Java allows you to explicitly compile your pattern and encapsulate it in an
instance of a Pattern object. This is the most efficient way to handle patterns that are
used more than once, because it eliminates needlessly recompiling the string. To
compile a pattern, we use the static method Pattern.compile():

 Pattern urlPattern = Pattern.compile("\\w+://[\\w/]*");

Once you have a Pattern, you can ask it to create a Matcher object, which associates
the pattern with a target string:

 Matcher matcher = urlPattern.matcher(myText);

The matcher executes the matches. We’ll talk about that next. But before we do, we’ll
just mention one convenience method of Pattern. The static method Pat

tern.matches() simply takes two strings—a regex and a target string—and deter‐
mines if the target matches the regex. This is very convenient if you want to do a
quick test once in your application. For example:

 Boolean match = Pattern.matches("\\d+\\.\\d+f?", myText);

This line of code can test if the string myText contains a Java-style floating-point
number such as “42.0f.” Note that the string must match completely in order to be
considered a match. If you want to see if a small pattern is contained within a larger
string but don’t care about the rest of the string, you have to use a Matcher as
described in “The Matcher” on page 241.

Let’s try another (simplified) pattern that we could use in our game once we start let‐
ting multiple players compete against each other. Many login systems use email
addresses as the user identifier. Such systems aren’t perfect, of course, but an email
address will work great for our needs. We would like to invite the user to input their
email address, but we want to make sure it looks valid before using it. A regular
expression can be a quick way to perform such a validation.4

Much like writing algorithms to solve programming problems, designing a regular
expression requires you to break down your pattern matching problem into bite-
sized pieces. If we think about email addresses, there are a few patterns that stand out

Regular Expressions | 239

https://oreil.ly/JEjEk

5 You are welcome to apply for your own, custom global TLD if you have a few (hundred) thousand dollars
lying around.

right away. The most obvious is the @ in the middle of every address. A naive (but
better than nothing!) pattern relying on that fact could be built like this:

 String sample = "my.name@some.domain";
 Boolean validEmail = Pattern.matches(".*@.*", sample);

But that pattern is too permissive. It will certainly recognize valid email addresses, but
it will also recognize many invalid ones like "bad.address@" or "@also.bad" or even
"@@". (Test these out in a jshell and maybe cook up a few more bad examples of your
own!) How can we make better matches? One quick adjustment would be to use the +
modifier instead of the *. The upgraded pattern now requires at least one character
on each side of the @. But we know a few other things about email addresses. For
example, the left “half ” of the address (the name portion) cannot contain the @ char‐
acter. For that matter, neither can the domain portion. We can use a custom character
class for this next upgrade:

 String sample = "my.name@some.domain";
 Boolean validEmail = Pattern.matches("[^@]+@[^@]+", sample);

This pattern is better, but still allows several invalid addresses such as "still@bad"
since domain names have at least a name followed by a period (.) followed by a top-
level domain (TLD) such as “oreilly.com”. So maybe a pattern like this:

 String sample = "my.name@some.domain";
 Boolean validEmail = Pattern.matches("[^@]+@[^@]+\\.(com|org)", sample);

That pattern fixes our issue with an address like "still@bad", but we’ve gone a bit
too far the other way. There are many, many TLDs—too many to reasonably list even
if we ignore the problem of maintaining that list as new TLDs are added.5 So let’s step
back a little. We’ll keep the “dot” in the domain portion, but remove the specific TLD
and just accept a simple run of letters:

 String sample = "my.name@some.domain";
 Boolean validEmail = Pattern.matches("[^@]+@[^@]+\\.[a-z]+", sample);

Much better. We can add one last tweak to make sure we don’t worry about the case
of the address since all email addresses are case-insensitive. Just tack on a flag:

 String sample = "my.name@some.domain";
 Boolean validEmail = Pattern.matches("(?i)[^@]+@[^@]+\\.[a-z]+", sample);

Again, this is by no means a perfect email validator, but it is definitely a good start
and will suffice for our simple login system once we add networking. If you want to
tinker around with the validation pattern and expand or improve it, remember you
can “reuse” lines in jshell with the keyboard arrow keys. Use the up arrow to retrieve

240 | Chapter 8: Text and Core Utilities

https://oreil.ly/lMRnm

the previous line. Indeed, you can use the up arrow and down arrow to navigate all of
your recent lines. Within a line, use the left arrow and right arrow to move around
and delete/add/edit your command. Then just press the Return key to run the newly
altered command—you do not need to move the cursor to the end of the line before
pressing Return.

jshell> Pattern.matches("(?i)[^@]+@[^@]+\\.[a-z]+", "good@some.domain")
$1 ==> true

jshell> Pattern.matches("(?i)[^@]+@[^@]+\\.[a-z]+", "good@oreilly.com")
$2 ==> true

jshell> Pattern.matches("(?i)[^@]+@[^@]+\\.[a-z]+", "oreilly.com")
$3 ==> false

jshell> Pattern.matches("(?i)[^@]+@[^@]+\\.[a-z]+", "bad@oreilly@com")
$4 ==> false

jshell> Pattern.matches("(?i)[^@]+@[^@]+\\.[a-z]+", "me@oreilly.COM")
$5 ==> true

jshell> Pattern.matches("[^@]+@[^@]+\\.[a-z]+", "me@oreilly.COM")
$6 ==> false

In the examples above, we only typed in the full Pattern.matches(…) line once. After
that it was a simple up arrow and then edit and then Return for the subsequent five
lines. Can you see why the final match test failed?

The Matcher

A Matcher associates a pattern with a string and provides tools for testing, finding,
and iterating over matches of the pattern against it. The Matcher is “stateful.” For
example, the find() method tries to find the next match each time it is called. But
you can clear the Matcher and start over by calling its reset() method.

If you’re just interested in “one big match”—that is, you’re expecting your string to
either match the pattern or not—you can use matches() or lookingAt(). These cor‐
respond roughly to the methods equals() and startsWith() of the String class. The
matches() method asks if the string matches the pattern in its entirety (with no string
characters left over) and returns true or false. The lookingAt() method does the
same, except that it asks only whether the string starts with the pattern and doesn’t
care if the pattern uses up all the string’s characters.

More generally, you’ll want to be able to search through the string and find one or
more matches. To do this, you can use the find() method. Each call to find()
returns true or false for the next match of the pattern and internally notes the posi‐
tion of the matching text. You can get the starting and ending character positions

Regular Expressions | 241

with the Matcher start() and end() methods, or you can simply retrieve the
matched text with the group() method. For example:

 import java.util.regex.*;

 String text="A horse is a horse, of course of course...";
 String pattern="horse|course";

 Matcher matcher = Pattern.compile(pattern).matcher(text);
 while (matcher.find())
 System.out.println(
 "Matched: '"+matcher.group()+"' at position "+matcher.start());

The previous snippet prints the starting location of the words “horse” and “course”
(four in all):

 Matched: 'horse' at position 2
 Matched: 'horse' at position 13
 Matched: 'course' at position 23
 Matched: 'course' at position 33

The method to retrieve the matched text is called group() because it refers to capture
group zero (the entire match). You can also retrieve the text of other numbered cap‐
ture groups by giving the group() method an integer argument. You can determine
how many capture groups you have with the groupCount() method:

 for (int i=1; i < matcher.groupCount(); i++)
 System.out.println(matcher.group(i));

Splitting and tokenizing strings
A very common need is to parse a string into a bunch of fields based on some delim‐
iter, such as a comma. It’s such a common problem that the String class contains a
method for doing just this. The split() method accepts a regular expression and
returns an array of substrings broken around that pattern. Consider the following
string and split() calls:

 String text = "Foo, bar , blah";
 String[] badFields = text.split(",");
 String[] goodFields = text.split("\\s*,\\s*");

The first split() returns a String array, but the naive use of “,” to separate the string
means the space in our text variable remains stuck to the more interesting charac‐
ters. We get Foo as a single word as expected, but then we get bar<space> and finally
<space><space><space>blah. Yikes! The second split() also yields a String array,
but this time containing the expected Foo, bar (with no trailing space), and blah
(with no leading spaces).

242 | Chapter 8: Text and Core Utilities

If you are going to use an operation like this more than a few times in your code, you
should probably compile the pattern and use its split() method, which is identical
to the version in String. The String split() method is equivalent to:

 Pattern.compile(pattern).split(string);

As we noted before, there is a lot to learn about regular expressions above and
beyond the specific regex capabilities provided by Java. Revisit using jshell (“Pattern”
on page 239) to play around with expressions and splitting. This is definitely a topic
that benefits from practice.

Math Utilities
Java supports integer and floating-point arithmetic directly in the language. Higher-
level math operations are supported through the java.lang.Math class. As you may
have seen by now, wrapper classes for primitive data types allow you to treat them as
objects. Wrapper classes also hold some methods for basic conversions.

First, a few words about built-in arithmetic in Java. Java handles errors in integer
arithmetic by throwing an ArithmeticException:

 int zero = 0;

 try {
 int i = 72 / zero;
 } catch (ArithmeticException e) {
 // division by zero
 }

To generate the error in this example, we created the intermediate variable zero. The
compiler is somewhat crafty and would have caught us if we had blatantly tried to
perform division by a literal zero.

Floating-point arithmetic expressions, on the other hand, don’t throw exceptions.
Instead, they take on the special out-of-range values shown in Table 8-2.

Table 8-2. Special floating-point values

Value Mathematical representation

POSITIVE_INFINITY 1.0/0.0

NEGATIVE_INFINITY -1.0/0.0

NaN 0.0/0.0

The following example generates an infinite result:

 double zero = 0.0;
 double d = 1.0/zero;

Math Utilities | 243

 if (d == Double.POSITIVE_INFINITY)
 System.out.println("Division by zero");

The special value NaN (not a number) indicates the result of dividing zero by zero.
This value has the special mathematical distinction of not being equal to itself (NaN !
= NaN evaluates to true). Use Float.isNaN() or Double.isNaN() to test for NaN.

The java.lang.Math Class
The java.lang.Math class is Java’s math library. It holds a suite of static methods cov‐
ering all of the usual mathematical operations like sin(), cos(), and sqrt(). The
Math class isn’t very object-oriented (you can’t create an instance of Math). Instead, it’s
really just a convenient holder for static methods that are more like global functions.
As we saw in Chapter 5, it’s possible to use the static import functionality to import
the names of static methods and constants like this directly into the scope of our class
and use them by their simple, unqualified names.

Table 8-3 summarizes the methods in java.lang.Math.

Table 8-3. Methods in java.lang.Math

Method Argument type(s) Functionality

Math.abs(a) int, long, float, double Absolute value

Math.acos(a) double Arc cosine

Math.asin(a) double Arc sine

Math.atan(a) double Arc tangent

Math.atan2(a,b) double Angle part of rectangular-to-polar coordinate transform

Math.ceil(a) double Smallest whole number greater than or equal to a

Math.cbrt(a) double Cube root of a

Math.cos(a) double Cosine

Math.cosh(a) double Hyperbolic cosine

Math.exp(a) double Math.E to the power a

Math.floor(a) double Largest whole number less than or equal to a

Math.hypot(a,b) double Precision calculation of the sqrt() of a2 + b2

Math.log(a) double Natural logarithm of a

Math.log10(a) double Log base 10 of a

Math.max(a, b) int, long, float, double The value a or b closer to Long.MAX_VALUE

Math.min(a, b) int, long, float, double The value a or b closer to Long.MIN_VALUE

Math.pow(a, b) double a to the power b

Math.random() None Random-number generator

Math.rint(a) double Converts double value to integral value in double format

244 | Chapter 8: Text and Core Utilities

Method Argument type(s) Functionality

Math.round(a) float, double Rounds to whole number

Math.signum(a) double, float Get the sign of the number at 1.0, –1.0, or 0

Math.sin(a) double Sine

Math.sinh(a) double Hyperbolic sine

Math.sqrt(a) double Square root

Math.tan(a) double Tangent

Math.tanh(a) double Hyperbolic tangent

Math.toDegrees(a) double Convert radians to degrees

Math.toRadians(a) double Convert degrees to radians

log(), pow(), and sqrt() can throw a runtime ArithmeticException. abs(), max(),
and min() are overloaded for all the scalar values, int, long, float, or double, and
return the corresponding type. Versions of Math.round() accept either float or
double and return int or long, respectively. The rest of the methods operate on and
return double values:

 double irrational = Math.sqrt(2.0); // 1.414...
 int bigger = Math.max(3, 4); // 4
 long one = Math.round(1.125798); // 1

And just to highlight the convenience of that static import option, we can try these
simple functions in jshell:

jshell> import static java.lang.Math.*

jshell> double irrational = sqrt(2.0)
irrational ==> 1.4142135623730951

jshell> int bigger = max(3,4)
bigger ==> 4

jshell> long one = round(1.125798)
one ==> 1

Math also contains the static final double values E and PI:

 double circumference = diameter * Math.PI;

Math in action

We’ve already touched on using the Math class and its static methods in “Accessing
Fields and Methods” on page 127. We can use it again in making our game a little
more fun by randomizing where the trees appear. The Math.random() method
returns a random double greater than or equal to 0 and less than 1. Add in a little
arithmetic and rounding or truncating, and you can use that value to create random

Math Utilities | 245

numbers in any range you need. In particular, converting this value into a desired
range follows this formula:

 int randomValue = min + (int)(Math.random() * (max - min));

Try it! Try to generate a random four-digit number in jshell. You could set the min to
1000 and the max to 10000, like so:

jshell> int min = 1000
min ==> 1000

jshell> int max = 10000
max ==> 10000

jshell> int fourDigit = min + (int)(Math.random() * (max - min))
fourDigit ==> 9603

jshell> fourDigit = min + (int)(Math.random() * (max - min))
fourDigit ==> 9178

jshell> fourDigit = min + (int)(Math.random() * (max - min))
fourDigit ==> 3789

To place our trees, we’ll need two random numbers for the x and y coordinates. We
can set a range that will keep the trees on the screen by thinking about a margin
around the edges. For the x coordinate, one way to do that might look like this:

private int goodX() {
 // at least half the width of the tree plus a few pixels
 int leftMargin = Field.TREE_WIDTH_IN_PIXELS / 2 + 5;
 // now find a random number between a left and right margin
 int rightMargin = FIELD_WIDTH - leftMargin;

 // And return a random number starting at the left margin
 return leftMargin + (int)(Math.random() * (rightMargin - leftMargin));
}

Set up a similar method for finding a y value and you should start to see something
like the image shown in Figure 8-1. You could even get fancy and use the isTouch
ing() method we discussed back in Chapter 5 to avoid placing any trees in direct
contact with our physicist. Here’s our upgraded tree setup loop:

for (int i = field.trees.size(); i < Field.MAX_TREES; i++) {
 Tree t = new Tree();
 t.setPosition(goodX(), goodY());
 // Trees can be close to each other and overlap,
 // but they shouldn't intersect our physicist
 while(player1.isTouching(t)) {
 // We do intersect this tree, so let's try again
 t.setPosition(goodX(), goodY());
 System.err.println("Repositioning an intersecting tree...");
 }

246 | Chapter 8: Text and Core Utilities

 field.addTree(t);
}

Figure 8-1. Randomly distributed trees

Try quitting the game and launching it again. You should see the trees in different
places each time you run the application.

Big/Precise Numbers
If the long and double types are not large or precise enough for you, the java.math
package provides two classes, BigInteger and BigDecimal, that support arbitrary-
precision numbers. These full-featured classes have a bevy of methods for performing
arbitrary-precision math and precisely controlling rounding of remainders. In the
following example, we use BigDecimal to add two very large numbers and then create
a fraction with a 100-digit result:

 long l1 = 9223372036854775807L; // Long.MAX_VALUE
 long l2 = 9223372036854775807L;
 System.out.println(l1 + l2); // -2 ! Not good.

 try {
 BigDecimal bd1 = new BigDecimal("9223372036854775807");
 BigDecimal bd2 = new BigDecimal(9223372036854775807L);

Math Utilities | 247

 System.out.println(bd1.add(bd2)); // 18446744073709551614

 BigDecimal numerator = new BigDecimal(1);
 BigDecimal denominator = new BigDecimal(3);
 BigDecimal fraction =
 numerator.divide(denominator, 100, BigDecimal.ROUND_UP);
 // 100 digit fraction = 0.333333 ... 3334
 }
 catch (NumberFormatException nfe) { }
 catch (ArithmeticException ae) { }

If you implement cryptographic or scientific algorithms for fun, BigInteger is cru‐
cial. BigDecimal, in turn, can be found in applications dealing with currency and
financial data. Other than that, you’re not likely to need these classes.

Dates and Times
Working with dates and times without the proper tools can be a chore. Prior to Java 8,
you had access to three classes that handled most of the work for you. The
java.util.Date class encapsulates a point in time. The java.util.GregorianCalen
dar class, which extends the abstract java.util.Calendar, translates between a point
in time and calendar fields like month, day, and year. Finally, the java.text.DateFor
mat class knows how to generate and parse string representations of dates and times
in many languages.

While the Date and Calendar classes covered many use cases, they lacked granularity
and were missing other features. This caused the creation of several third-party libra‐
ries, all aimed at making it easier for developers to work with dates and times and
time durations. Java 8 provided much needed improvements in this area with the
addition of the java.time package. We will explore this new package, but you will
still encounter many, many Date and Calendar examples in the wild, so it’s useful to
know they exist. As always, the online docs are an invaluable source for reviewing
parts of the Java API we don’t tackle here.

Local Dates and Times
The java.time.LocalDate class represents a date without time information for your
local region. Think of a holiday such as May 4, 2019. Similarly, java.time.LocalTime
represents a time without any date information. Perhaps your alarm clock goes off at
7:15 every morning. The java.time.LocalDateTime stores both date and time values
for things like appointments with your eye doctor so you can keep reading books on
Java. All of these classes offer static methods for creating new instances using either
appropriate numeric values with of() or by parsing strings with parse(). Let’s pop
into jshell and try creating a few examples.

248 | Chapter 8: Text and Core Utilities

https://oreil.ly/Behlk

jshell> import java.time.*

jshell> LocalDate.of(2019,5,4)
$2 ==> 2019-05-04

jshell> LocalDate.parse("2019-05-04")
$3 ==> 2019-05-04

jshell> LocalTime.of(7,15)
$4 ==> 07:15

jshell> LocalTime.parse("07:15")
$5 ==> 07:15

jshell> LocalDateTime.of(2019,5,4,7,0)
$6 ==> 2019-05-04T07:00

jshell> LocalDateTime.parse("2019-05-04T07:15")
$7 ==> 2019-05-04T07:15

Another great static method for creating these objects is now(), which provides the
current date or time or date-and-time as you might expect:

jshell> LocalTime.now()
$8 ==> 15:57:24.052935

jshell> LocalDate.now()
$9 ==> 2019-12-12

jshell> LocalDateTime.now()
$10 ==> 2019-12-12T15:57:37.909038

Great! After importing the java.time package, we can create instances of each of the
Local… classes for specific moments or for “right now.” You may have noticed the
objects created with now() include seconds and nanoseconds. You can supply those
values to the of() and parse() methods if you want or need them. Not much excit‐
ing there, but once you have these objects, you can do a lot with them. Read on!

Comparing and Manipulating Dates and Times
One of the big advantages of using java.time classes is the consistent set of methods
you have available for comparing and changing dates and times. For example, many
chat applications will show you “how long ago” a message was sent. The
java.time.temporal subpackage has just what we need: the ChronoUnit interface. It
contains several date and time units such as MONTHS, DAYS, HOURS, MINUTES, etc. These
units can be used to calculate differences. For example, we could calculate how long it
takes us to create two example date-times in jshell using the between() method:

jshell> LocalDateTime first = LocalDateTime.now()
first ==> 2019-12-12T16:03:21.875196

Dates and Times | 249

jshell> LocalDateTime second = LocalDateTime.now()
second ==> 2019-12-12T16:03:33.175675

jshell> import java.time.temporal.*

jshell> ChronoUnit.SECONDS.between(first, second)
$12 ==> 11

A visual spot check shows that it did indeed take about 11 seconds to type in the line
that created our second variable. You should check out the docs for ChronoUnit for a
complete list of units available, but you get the full range from nanoseconds up to
millennia.

Those units can also help you manipulate dates and times with the plus() and
minus() methods. To set a reminder for one week from today, for example:

jshell> LocalDate today = LocalDate.now()
today ==> 2019-12-12

jshell> LocalDate reminder = today.plus(1, ChronoUnit.WEEKS)
reminder ==> 2019-12-19

Neat! But this reminder example brings up another bit of manipulation you may
need to perform from time to time. You might want the reminder at a particular time
on the 19th. You can convert between dates or times and date-times easily enough
with the atDate() or atTime() methods:

jshell> LocalDateTime betterReminder = reminder.atTime(LocalTime.of(9,0))
betterReminder ==> 2019-12-19T09:00

Now we’ll get that reminder at 9 A.M. Except, what if we set that reminder in Atlanta
and then flew to San Francisco? When would the alarm go off? LocalDateTime is,
well, local! So the T09:00 portion is still 9 A.M. wherever we are when we run the
program. But if we are handling something like a shared calendar and scheduling a
meeting, we cannot ignore the different time zones involved. Fortunately the
java.time package has thought of that, too.

Time Zones
The authors of the new java.time package certainly encourage you to use the local
variations of the time and date classes where possible. Adding support for time zones
means adding complexity to your app—they want you to avoid that complexity if
possible. But there are many scenarios where support for time zones is unavoidable.
You can work with “zoned” dates and times using the ZonedDateTime and OffsetDa
teTime classes. The zoned variant understands named time zones and things like day‐
light saving adjustments. The offset variant is a constant, simple numeric offset from
UTC/Greenwich.

250 | Chapter 8: Text and Core Utilities

https://oreil.ly/BhCr2

Most user-facing uses of dates and times will use the named zone approach, so let’s
look at creating a zoned date-time. To attach a zone, we use the ZoneId class, which
has the common of() static method for creating new instances. You can supply a
region zone as a String to get your zoned value:

jshell> LocalDateTime piLocal = LocalDateTime.parse("2019-03-14T01:59")
piLocal ==> 2019-03-14T01:59

jshell> ZonedDateTime piCentral = piLocal.atZone(ZoneId.of("America/Chicago"))
piCentral ==> 2019-03-14T01:59-05:00[America/Chicago]

And now you can do things like make sure your friends in Paris are able to join you
at the correct moment using the verbose but aptly named withZoneSameInstant()
method:

jshell> ZonedDateTime piAlaMode =
piCentral.withZoneSameInstant(ZoneId.of("Europe/Paris"))
piAlaMode ==> 2019-03-14T07:59+01:00[Europe/Paris]

If you have other friends who aren’t conveniently located in a major metropolitan
region but you want them to join as well, you can use the systemDefault() method
of ZoneId to pick up their time zone programmatically:

jshell> ZonedDateTime piOther =
piCentral.withZoneSameInstant(ZoneId.systemDefault())
piOther ==> 2019-03-14T02:59-04:00[America/New_York]

In our case, jshell was running on a laptop in the standard Eastern time zone (not
during the daylight saving period) of the United States, and piOther comes out
exactly as hoped. The systemDefault() zone ID is a very handy way to quickly tailor
date-times from some other zone to match what your user’s clock and calendar are
most likely to say. In commercial applications you may want to let the user tell you
their preferred zone, but systemDefault() is usually a good guess.

Parsing and Formatting Dates and Times
For creating and showing our local and zoned date-times using strings, we’ve been
relying on the default formats that follow ISO values and generally work wherever we
need to accept or display dates and times. But as every programmer knows, “gener‐
ally” is not “always.” Fortunately, you can use the utility class java.time.format.Date
TimeFormatter to help with both parsing input and formatting output.

The core of DateTimeFormatter centers on building a format string that governs both
parsing and formatting. You build up your format with the pieces listed in Table 8-4.
We are only listing a portion of the options available here, but these should get you
through the bulk of the dates and times you will encounter. Note that case matters
when using the characters mentioned!

Dates and Times | 251

Table 8-4. Popular DateTimeFormatter elements

Character Description Example
y year-of-era 2004; 04

M month-of-year 7; 07

L month-of-year Jul; July; J

d day-of-month 10

E day-of-week Tue; Tuesday; T

a am-pm-of-day PM

h clock-hour-of-am-pm (1-12) 12

K hour-of-am-pm (0-11) 0

k clock-hour-of-day (1-24) 24

H hour-of-day (0-23) 0

m minute-of-hour 30

s second-of-minute 55

S fraction-of-second 033954

z time-zone name Pacific Standard Time; PST

Z zone-offset +0000; -0800; -08:00

To put together a common US short format, for example, you could use the M, d, and
y characters. You build the formatter using the static ofPattern() method. Now the
formatter can be used (and reused) with the parse() method of any of the date or
time classes:

jshell> import java.time.format.DateTimeFormatter

jshell> DateTimeFormatter shortUS = DateTimeFormatter.ofPattern("MM/dd/yy")
shortUS ==> Value(MonthOfYe ... (YearOfEra,2,2,2000-01-01)

jshell> LocalDate valentines = LocalDate.parse("02/14/19", shortUS)
valentines ==> 2019-02-14

jshell> LocalDate piDay = LocalDate.parse("03/14/19", shortUS)
piDay ==> 2019-03-14

And as we mentioned earlier, the formatter works in both directions. Just use the for
mat() method of your formatter to produce a string representation of your date or
time:

jshell> LocalDate today = LocalDate.now()
today ==> 2019-12-14

jshell> shortUS.format(today)
$30 ==> "12/14/19"

252 | Chapter 8: Text and Core Utilities

jshell> shortUS.format(piDay)
$31 ==> "03/14/19"

Of course, formatters work for times and date-times as well!

jshell> DateTimeFormatter military = DateTimeFormatter.ofPattern("HHmm")
military ==> Value(HourOfDay,2)Value(MinuteOfHour,2)

jshell> LocalTime sunset = LocalTime.parse("2020", military)
sunset ==> 20:20

jshell> DateTimeFormatter basic = DateTimeFormatter.ofPattern("h:mm a")
basic ==> Value(ClockHourOfAmPm)':'Value(MinuteOfHour,2)' 'Text(AmPmOfDay,SHORT)

jshell> basic.format(sunset)
$42 ==> "8:20 PM"

jshell> DateTimeFormatter appointment =
DateTimeFormatter.ofPattern("h:mm a MM/dd/yy z")
appointment ==>
Value(ClockHourOfAmPm)':' ...
0-01-01)' 'ZoneText(SHORT)

jshell> ZonedDateTime dentist =
ZonedDateTime.parse("10:30 AM 11/01/19 EST", appointment)
dentist ==> 2019-11-01T10:30-04:00[America/New_York]

jshell> ZonedDateTime nowEST = ZonedDateTime.now()
nowEST ==> 2019-12-14T09:55:58.493006-05:00[America/New_York]

jshell> appointment.format(nowEST)
$47 ==> "9:55 AM 12/14/19 EST"

Notice in the ZonedDateTime portion above that we put the time zone identifier (the z
character) at the end—probably not where you were expecting it! We wanted to illus‐
trate the power of these formats. You can design a format to accommodate a very
wide range of input or output styles. Legacy data and poorly designed web forms
come to mind as direct examples of where DateTimeFormatter can help you retain
your sanity.

Parsing Errors
Even with all this parsing power at your fingertips, things will sometimes go wrong.
And regrettably, the exceptions you see are often too vague to be immediately useful.
Consider the following attempt to parse a time with hours, minutes, and seconds:

jshell> DateTimeFormatter withSeconds = DateTimeFormatter.ofPattern("hh:mm:ss")
withSeconds ==>
Value(ClockHourOfAmPm,2)':' ...
Value(SecondOfMinute,2)

Dates and Times | 253

jshell> LocalTime.parse("03:14:15", withSeconds)
| Exception java.time.format.DateTimeParseException:
| Text '03:14:15' could not be parsed: Unable to obtain
| LocalTime from TemporalAccessor: {MinuteOfHour=14, MilliOfSecond=0,
| SecondOfMinute=15, NanoOfSecond=0, HourOfAmPm=3,
| MicroOfSecond=0},ISO of type java.time.format.Parsed
| at DateTimeFormatter.createError (DateTimeFormatter.java:2020)
| at DateTimeFormatter.parse (DateTimeFormatter.java:1955)
| at LocalTime.parse (LocalTime.java:463)
| at (#33:1)
| Caused by: java.time.DateTimeException:
 Unable to obtain LocalTime from ...
| at LocalTime.from (LocalTime.java:431)
| at Parsed.query (Parsed.java:235)
| at DateTimeFormatter.parse (DateTimeFormatter.java:1951)
| ...

Yikes! A DateTimeParseException will be thrown any time the string input cannot be
parsed. It will also be thrown in cases like our example above; the fields were correctly
parsed from the string but they did not supply enough information to create a Local
Time object. It may not be obvious, but our time, “3:14:15,” could be either mid-
afternoon or very, very early in the morning. Our choice of the hh pattern for the
hours turns out to be the culprit. We can either pick an hour pattern that uses an
unambiguous 24-hour scale or we can add an explicit AM/PM element:

jshell> DateTimeFormatter valid1 = DateTimeFormatter.ofPattern("hh:mm:ss a")
valid1 ==> Value(ClockHourOfAmPm,
2)':'Value(MinuteOfHour,2)' ... 2)' 'Text(AmPmOfDay,SHORT)

jshell> DateTimeFormatter valid2 = DateTimeFormatter.ofPattern("HH:mm:ss")
valid2 ==> Value(HourOfDay,2)':'Value(MinuteOfHour,2)':'Value(SecondOfMinute,2)

jshell> LocalTime piDay1 = LocalTime.parse("03:14:15 PM", valid1)
piDay1 ==> 15:14:15

jshell> LocalTime piDay2 = LocalTime.parse("03:14:15", valid2)
piDay2 ==> 03:14:15

So if you ever get a DateTimeParseException but your input looks like a correct
match for the format, double-check that your format itself includes everything neces‐
sary to create your date or time. One parting thought on these exceptions: you may
need to use the nonmnemonic “u” character for parsing years.

There are many, many more details on DateTimeFormatter. More than most utility
classes, it’s worth a trip to read the docs online.

254 | Chapter 8: Text and Core Utilities

https://oreil.ly/rhosl

Timestamps
One other popular date-time concept that java.time understands is the notion of a
timestamp. In any situation where tracking the flow of information is required, you’ll
need a record of exactly when the information is produced or modified. You will still
see the java.util.Date class used to store these moments in time, but the
java.time.Instant class carries everything you need for a timestamp and comes
with all the other benefits of the other classes in the java.time package:

jshell> Instant time1 = Instant.now()
time1 ==> 2019-12-14T15:38:29.033954Z

jshell> Instant time2 = Instant.now()
time2 ==> 2019-12-14T15:38:46.095633Z

jshell> time1.isAfter(time2)
$54 ==> false

jshell> time1.plus(3, ChronoUnit.DAYS)
$55 ==> 2019-12-17T15:38:29.033954Z

If dates or times appear in your work, the java.time package makes for a welcome
addition to Java. You now have a mature, well-designed set of tools for dealing with
this data—no third-party libraries needed!

Other Useful Utilities
We’ve looked at some of Java’s building blocks, including strings and numbers, as well
as one of the most popular combinations of those strings and numbers—dates—in
the LocalDate and LocalTime classes. Hopefully this range of utilities has given you a
sense of how Java works with many simple or common elements you are likely to
encounter when solving real-world problems. Be sure to read the documentation on
the java.util, java.text, and java.time packages for more utilities that may come
in handy. For example, you could look into using java.util.Random for generating
the random coordinates of the trees we saw in Figure 8-1. It is also important to point
out that sometimes “utility” work is actually complex and requires careful attention to
detail. You can often search online to find code examples or even complete libraries
written by other developers that may speed up your own efforts.

Next up we want to start building on these more fundamental concepts. Java remains
as popular as it is because it includes support for more advanced techniques in addi‐
tion to the basics. One of those advanced techniques that played an important role in
Java’s early success is the “thread” features baked right in. Threads provide the pro‐
grammer with better access to modern, powerful systems, keeping your applications
performant even while handling many complex tasks. Let’s dig in to see how you can
take advantage of this signature support.

Other Useful Utilities | 255

CHAPTER 9

Threads

We take for granted that modern computer systems can manage many applications
and operating system (OS) tasks running concurrently and make it appear that all the
software is running simultaneously. Most systems today have multiple processors and
or at least multiple cores and can achieve an impressive degree of parallelism. The OS
still juggles applications at a higher level but turns its attention from one to the next
so quickly that they also appear to run at once.

In the old days, the unit of concurrency for such systems was the application or pro‐
cess. To the OS, a process was more or less a black box that decided what to do on its
own. If an application required greater concurrency, it could get it only by running
multiple processes and communicating between them, but this was a heavyweight
approach and not very elegant. Later, the concept of threads was introduced. Threads
provide fine-grained concurrency within a process under the application’s own con‐
trol. Threads have existed for a long time, but have historically been tricky to use. In
Java, support for threading is built into the language, making it easier to work with
threads. The Java concurrency utilities address common patterns and practices in
multithreaded applications and raise them to the level of tangible Java APIs. Collec‐
tively, this means that Java is a language that supports threading both natively and at a
high level. It also means that Java’s APIs take full advantage of threading, so it’s impor‐
tant that you gain some degree of familiarity with these concepts early in your explo‐
ration of Java. Not all developers will need to write applications that explicitly use
threads or concurrency, but most will use some feature that is impacted by them.

Threads are integral to the design of many Java APIs, especially those involved in
client-side applications, graphics, and sound. For example, when we look at GUI pro‐
gramming later in this book, you’ll see that a component’s paint() method isn’t
called directly by the application but rather by a separate drawing thread within the
Java runtime system. At any given time, many such background threads may be

257

performing activities in parallel with your application. On the server side, Java
threads are there as well, servicing every request and running your application com‐
ponents. It’s important to understand how your code fits into that environment.

In this chapter, we’ll talk about writing applications that create and use their own
threads explicitly. We’ll talk about the low-level thread support built into the Java lan‐
guage first and then discuss the java.util.concurrent thread utilities package in
detail at the end of this chapter.

Introducing Threads
Conceptually, a thread is a flow of control within a program. A thread is similar to the
more familiar notion of a process, except that threads within the same application are
much more closely related and share much of the same state. It’s kind of like a golf
course, which many golfers use at the same time. The threads cooperate to share a
working area. They have access to the same objects, including static and instance
variables, within their application. However, threads have their own copies of local
variables, just as players share the golf course but do not share some personal items
like clubs and balls.

Multiple threads in an application have the same problems as the golfers—in a word,
synchronization. Just as you can’t have two sets of players blindly playing the same
green at the same time, you can’t have several threads trying to access the same vari‐
ables without some kind of coordination. Someone is bound to get hurt. A thread can
reserve the right to use an object until it’s finished with its task, just as a golf party
gets exclusive rights to the green until it’s done. And a thread that is more important
can raise its priority, asserting its right to play through.

The devil is in the details, of course, and those details have historically made threads
difficult to use. Fortunately, Java makes creating, controlling, and coordinating
threads simpler by integrating some of these concepts directly into the language.

It is common to stumble over threads when you first work with them because creat‐
ing a thread exercises many of your new Java skills all at once. You can avoid confu‐
sion by remembering that two players are always involved in running a thread: a Java
language Thread object that represents the thread itself and an arbitrary target object
that contains the method that the thread is to execute. Later, you will see that it is pos‐
sible to play some sleight of hand and combine these two roles, but that special case
just changes the packaging, not the relationship.

The Thread Class and the Runnable Interface
All execution in Java is associated with a Thread object, beginning with a “main”
thread that is started by the Java VM to launch your application. A new thread is born
when we create an instance of the java.lang.Thread class. The Thread object

258 | Chapter 9: Threads

represents a real thread in the Java interpreter and serves as a handle for controlling
and coordinating its execution. With it, we can start the thread, wait for it to com‐
plete, cause it to sleep for a time, or interrupt its activity. The constructor for the
Thread class accepts information about where the thread should begin its execution.
Conceptually, we would like to simply tell it what method to run. There are a number
of ways to do this; Java 8 allows method references that would do the trick. Here we
will take a short detour and use the java.lang.Runnable interface to create or mark
an object that contains a “runnable” method. Runnable defines a single, general-
purpose run() method:

 public interface Runnable {
 abstract public void run();
 }

Every thread begins its life by executing the run() method in a Runnable object,
which is the “target object” that was passed to the thread’s constructor. The run()
method can contain any code, but it must be public, take no arguments, have no
return value, and throw no checked exceptions.

Any class that contains an appropriate run() method can declare that it implements
the Runnable interface. An instance of this class is then a runnable object that can
serve as the target of a new thread. If you don’t want to put the run() method directly
in your object (and very often you don’t), you can always make an adapter class that
serves as the Runnable for you. The adapter’s run() method can then call any method
it wants after the thread is started. We’ll show examples of these options later.

Creating and starting threads
A newly born thread remains idle until we give it a figurative slap on the bottom by
calling its start() method. The thread then wakes up and proceeds to execute the
run() method of its target object. start() can be called only once in the lifetime of a
thread. Once a thread starts, it continues running until the target object’s run()
method returns (or throws an unchecked exception of some kind). The start()
method has a sort of evil twin method called stop(), which kills the thread perma‐
nently. However, this method is deprecated and should no longer be used. We’ll
explain why and give some examples of a better way to stop your threads later in this
chapter. We will also look at some other methods you can use to control a thread’s
progress while it is running.

Let’s look at an example. The following class, Animator, implements a run() method
to drive a drawing loop we could use in our game for updating the Field:

 class Animator implements Runnable {
 boolean animating = true;

 public void run() {

Introducing Threads | 259

 while (animating) {
 // move apples one "frame"
 // repaint field
 // pause
 ...
 }
 }
 }

To use it, we create a Thread object, passing it an instance of Animator as its target
object, and invoke its start() method. We can perform these steps explicitly:

 Animator myAnimator = new Animator();
 Thread myThread = new Thread(myAnimator);
 myThread.start();

Figure 9-1. Animator as an implementation of Runnable

We created an instance of our Animator class and passed it as the argument to the
constructor for myThread. As shown in Figure 9-1, when we call the start() method,
myThread begins to execute Animator’s run() method. Let the show begin!

A natural-born thread

The Runnable interface lets us make an arbitrary object the target of a thread, as we
did in the previous example. This is the most important general usage of the Thread
class. In most situations in which you need to use threads, you’ll create a class (possi‐
bly a simple adapter class) that implements the Runnable interface.

However, we’d be remiss not to show you the other technique for creating a thread.
Another design option is to make our target class a subclass of a type that is already
runnable. As it turns out, the Thread class itself conveniently implements the Runna
ble interface; it has its own run() method, which we can override directly to do our
bidding:

 class Animator extends Thread {
 boolean animating = true;

260 | Chapter 9: Threads

 public void run() {
 while (animating) {
 // draw Frames
 ...
 }
 }
 }

The skeleton of our Animator class looks much the same as before, except that our
class is now a subclass of Thread. To go along with this scheme, the default construc‐
tor of the Thread class makes itself the default target—that is, by default, the Thread
executes its own run() method when we call the start() method, as shown in
Figure 9-2. Now our subclass can just override the run() method in the Thread class.
(Thread itself defines an empty run() method.)

Figure 9-2. Animator as a subclass of Thread

Next, we create an instance of Animator and call its start() method (which it also
inherited from Thread):

 Animator bouncy = new Animator();
 bouncy.start();

Alternatively, we can have the Animator object start its thread when it is created:

 class Animator extends Thread {

 Animator () {
 start();
 }
 ...
 }

Here, our Animator object just calls its own start() method when an instance is cre‐
ated. (It’s probably better form to start and stop our objects explicitly after they’re cre‐
ated rather than starting threads as a hidden side effect of object creation, but this
serves the example well.)

Introducing Threads | 261

1 interrupt() has not worked consistently in all Java implementations historically.

Subclassing Thread may seem like a convenient way to bundle a thread and its target
run() method. However, this approach often isn’t the best design. If you subclass
Thread to implement a thread, you are saying you need a new type of object that is a
kind of Thread, which exposes all of the public API of the Thread class. While there is
something satisfying about taking an object that’s primarily concerned with perform‐
ing a task and making it a Thread, the actual situations where you’ll want to create a
subclass of Thread should not be very common. In most cases, it is more natural to
let the requirements of your program dictate the class structure and use Runnables to
connect the execution and logic of your program.

Controlling Threads
We have seen the start() method used to begin execution of a new thread. Several
other instance methods let us explicitly control a thread’s execution:

• The static Thread.sleep() method causes the currently executing thread to wait
for a designated period of time (give or take), without consuming much (or pos‐
sibly any) CPU time.

• The methods wait() and join() coordinate the execution of two or more
threads. We’ll discuss them in detail when we talk about thread synchronization
later in this chapter.

• The interrupt() method wakes up a thread that is sleeping in a sleep() or
wait() operation or is otherwise blocked on a long I/O operation.1

Deprecated methods

We should also mention three deprecated thread control methods: stop(), sus
pend(), and resume(). The stop() method complements start(); it destroys the
thread. start() and the deprecated stop() method can be called only once in the
thread’s life cycle. By contrast, the deprecated suspend() and resume() methods were
used to arbitrarily pause and then restart the execution of a thread.

Although these deprecated methods still exist in the latest version of Java (and will
probably be there forever), they shouldn’t be used in new code development. The
problem with both stop() and suspend() is that they seize control of a thread’s exe‐
cution in an uncoordinated, harsh way. This makes programming difficult; it’s not
always easy for an application to anticipate and properly recover from being interrup‐
ted at an arbitrary point in its execution. Moreover, when a thread is seized using one
of these methods, the Java runtime system must release all its internal locks used for

262 | Chapter 9: Threads

thread synchronization. This can cause unexpected behavior and, in the case of sus
pend(), which does not release these locks, can easily lead to deadlock.

A better way to affect the execution of a thread—which requires just a bit more work
on your part—is by creating some simple logic in your thread’s code to use monitor
variables (if these variables are boolean, you might see them referred to as “flags”),
possibly in conjunction with the interrupt() method, which allows you to wake up
a sleeping thread. In other words, you should cause your thread to stop or resume
what it is doing by asking it nicely rather than by pulling the rug out from under it
unexpectedly. The thread examples in this book use this technique in one way or
another.

The sleep() method
We often need to tell a thread to sit idle, or “sleep,” for a fixed period of time. While a
thread is asleep, or otherwise blocked from input of some kind, it doesn’t consume
CPU time or compete with other threads for processing. For this, we can call the
static method Thread.sleep(), which affects the currently executing thread. The call
causes the thread to go idle for a specified number of milliseconds:

 try {
 // The current thread
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // someone woke us up prematurely
 }

The sleep() method may throw an InterruptedException if it is interrupted by
another thread via the interrupt() method (more below). As you saw in the previ‐
ous code, the thread can catch this exception and take the opportunity to perform
some action—such as checking a variable to determine whether or not it should exit
—or perhaps just perform some housekeeping and then go back to sleep.

The join() method
Finally, if you need to coordinate your activities with another thread by waiting for it
to complete its task, you can use the join() method. Calling a thread’s join()
method causes the caller to block until the target thread completes. Alternatively, you
can poll the thread by calling join() with a number of milliseconds to wait. This is a
very coarse form of thread synchronization. Java supports more general and powerful
mechanisms for coordinating thread activity including the wait() and notify()
methods, as well as higher-level APIs in the java.util.concurrent package. We
have to leave those topics mostly for your own exploration, but it’s worth pointing out
that the Java language makes multithreaded code easier to write than many of its
predecessors.

Introducing Threads | 263

The interrupt() method

Earlier, we described the interrupt() method as a way to wake up a thread that is
idle in a sleep(), wait(), or lengthy I/O operation. Any thread that is not running
continuously (not a “hard loop”) must enter one of these states periodically and so
this is intended to be a point where the thread can be flagged to stop. When a thread
is interrupted, its interrupt status flag is set. This can happen at any time, whether the
thread is idle or not. The thread can test this status with the isInterrupted()
method. isInterrupted(boolean), another form, accepts a Boolean value indicating
whether or not to clear the interrupt status. In this way, a thread can use the interrupt
status as a flag and a signal.

This is indeed the prescribed functionality of the method. However, historically, this
has been a weak spot, and Java implementations have had trouble getting it to work
correctly in all cases. In the earliest Java VMs (prior to version 1.1), interrupt() did
not work at all. More recent versions still have problems with interrupting I/O calls.
By an I/O call, we mean when an application is blocked in a read() or write()
method, moving bytes to or from a source such as a file or the network. In this case,
Java is supposed to throw an InterruptedIOException when the interrupt() is per‐
formed. However, this has never been reliable across all Java implementations. The
New I/O framework (java.nio) was introduced all the way back in Java 1.4 with one
of its goals being to specifically address these problems. When the thread associated
with an NIO operation is interrupted, the thread wakes up and the I/O stream (called
a “channel”) is automatically closed. (See Chapter 11 for more about the NIO
package.)

Revisiting animation with threads
As we discussed at the beginning of this chapter, a common task in graphical inter‐
faces is managing animations. Sometimes the animations are subtle transitions, other
times they are the focus of the application itself as with our apple tossing game. There
are a number of ways to implement animation; we’ll look at using simple threads
alongside the sleep() functions as well as using a timer. Pairing those options with
some type of stepping or “next frame” function is a popular approach that is also easy
to understand. We’ll show both techniques to animate our flying apples.

We can use a thread similar to “Creating and starting threads” on page 259 to pro‐
duce real animation. The basic idea is to paint or position all of your animated
objects, pause, move them to their next spots, and then repeat. Let’s take a look at
how we draw some pieces of our game field without animation first.

// From the Field class...
 protected void paintComponent(Graphics g) {
 g.setColor(fieldColor);
 g.fillRect(0,0, getWidth(), getHeight());
 physicist.draw(g);

264 | Chapter 9: Threads

 for (Tree t : trees) {
 t.draw(g);
 }
 for (Apple a : apples) {
 a.draw(g);
 }
 }

// And from the Apple class...
 public void draw(Graphics g) {
 // Make sure our apple will be red, then paint it!
 g.setColor(Color.RED);
 g.fillOval(x, y, scaledLength, scaledLength);
 }

Easy enough. We start by painting the background field, then our physicist, then the
trees, and finally any apples. That guarantees the apples will show “on top” of the
other elements. The Field class overrides the mid-level paintComponent() method
available to all graphical elements in Java’s Swing for custom drawing, but more on
that in Chapter 10.

Now if we think about what changes on the screen as we play, there are really two
“moveable” items: the apple our physicist is aiming at from their tower, and any
apples actively flying after being tossed. We know the aiming “animation” is just in
response to updating the physicist as we move a slider. That doesn’t require separate
animation. So we only need to concentrate on handling flying apples. That means our
game’s step function should move every apple that is active according to the rules of
gravity. Here are the two methods that cover this work. We set up the initial condi‐
tions in the toss() method according to the values of our physicist’s aiming and force
sliders. Then we make one move for the apple in the step() method.

// From the Apple class...

 public void toss(float angle, float velocity) {
 lastStep = System.currentTimeMillis();
 double radians = angle / 180 * Math.PI;
 velocityX = (float)(velocity * Math.cos(radians) / mass);
 // Start with negative velocity since "up" means smaller values of y
 velocityY = (float)(-velocity * Math.sin(radians) / mass);
 }

 public void step() {
 // Make sure we're moving at all using our lastStep tracker as a sentinel
 if (lastStep > 0) {
 // let's apply our gravity
 long now = System.currentTimeMillis();
 float slice = (now - lastStep) / 1000.0f;
 velocityY = velocityY + (slice * Field.GRAVITY);
 int newX = (int)(centerX + velocityX);
 int newY = (int)(centerY + velocityY);

Introducing Threads | 265

 setPosition(newX, newY);
 }
 }

Now that we know how to update our apples, we can put that in an animation loop
that will do the update calculations, repaint our field, pause, and repeat.

public static final int STEP = 40; // duration of an animation frame in milliseconds

// ...

class Animator implements Runnable {
 public void run() {
 // "animating" is a global variable that allows us to stop animating
 // and conserve resources if there are no active apples to move
 while (animating) {
 System.out.println("Stepping " + apples.size() + " apples");
 for (Apple a : apples) {
 a.step();
 detectCollisions(a);
 }
 Field.this.repaint();
 cullFallenApples();
 try {
 Thread.sleep((int)(STEP * 1000));
 } catch (InterruptedException ie) {
 System.err.println("Animation interrupted");
 animating = false;
 }
 }
 }
}

We’ll use this implementation of Runnable in a simple thread. Our Field class will
keep an instance of the thread around and contains the following simple start
method:

 Thread animationThread;

 // ...

 void startAnimation() {
 animationThread = new Thread(new Animator());
 animationThread.start();
 }

With the UI events we’ll be discussing in “Events” on page 318, we could launch our
apples on command. For now, we’ll just launch the first apple as soon as our game
starts. We know Figure 9-3 doesn’t look like much as a still screenshot, but trust us, it
is amazing in person. :)

266 | Chapter 9: Threads

Figure 9-3. Tossable apples in action

Death of a Thread
A thread continues to execute until one of the following happens:

• It explicitly returns from its target run() method.
• It encounters an uncaught runtime exception.
• The evil and nasty deprecated stop() method is called.

What happens if none of these things occurs, and the run() method for a thread
never terminates? The answer is that the thread can live on, even after what is ostensi‐
bly the part of the application that created it has finished. This means we have to be
aware of how our threads eventually terminate, or an application can end up leaving
orphaned threads that unnecessarily consume resources or keep the application alive
when it would otherwise quit.

In many cases, we really want to create background threads that do simple, periodic
tasks in an application. The setDaemon() method can be used to mark a thread as a

Introducing Threads | 267

daemon thread that should be killed and discarded when no other nondaemon appli‐
cation threads remain. Normally, the Java interpreter continues to run until all
threads have completed. But when daemon threads are the only threads still alive, the
interpreter will exit.

Here’s a devilish example using daemon threads:

 class Devil extends Thread {
 Devil() {
 setDaemon(true);
 start();
 }
 public void run() {
 // perform evil tasks
 }
 }

In this example, the Devil thread sets its daemon status when it is created. If any
Devil threads remain when our application is otherwise complete, the runtime sys‐
tem kills them for us. We don’t have to worry about cleaning them up.

Daemon threads are primarily useful in standalone Java applications and in the
implementation of server frameworks, but not in component applications (where a
small piece of code runs inside a larger one). Since these components run inside
another Java application, any daemon threads they might create can continue to live
until the controlling application exits—probably not the desired effect. Any such
application can use ThreadGroups to contain all the threads created by subsystems or
components and then clean them up if necessary.

One final note about killing threads gracefully. A very common problem new devel‐
opers encounter the first time they create an application using a Swing component is
that their application never exits; the Java VM seems to hang indefinitely after every‐
thing is finished. When working with graphics, Java has created a UI thread to pro‐
cess input and painting events. The UI thread is not a daemon thread, so it doesn’t
exit automatically when other application threads have completed, and the developer
must call System.exit() explicitly. (If you think about it, this makes sense. Because
most GUI applications are event-driven and simply wait for user input, they would
otherwise simply exit after their startup code completed.)

Synchronization
Every thread has a mind of its own. Normally, a thread goes about its business
without any regard for what other threads in the application are doing. Threads may
be time-sliced, which means they can run in arbitrary spurts and bursts as directed by
the OS. On a multiprocessor or multicore system, it is even possible for many differ‐
ent threads to be running simultaneously on different CPUs. This section is about

268 | Chapter 9: Threads

2 Don’t confuse the term serialize in this context with Java object serialization, which is a mechanism for mak‐
ing objects persistent. The underlying meaning (to place one thing after another) does apply to both, however.
In the case of object serialization, the object’s data is laid out, byte for byte, in a certain order.

coordinating the activities of two or more threads so that they can work together and
not collide in their use of the same variables and methods (coordinating their play on
the golf course).

Java provides a few simple structures for synchronizing the activities of threads. They
are all based on the concept of monitors, a widely used synchronization scheme. You
don’t have to know the details about how monitors work to be able to use them, but it
may help you to have a picture in mind.

A monitor is essentially a lock. The lock is attached to a resource that many threads
may need to access, but that should be accessed by only one thread at a time. It’s very
much like a restroom with a lock on the door; if it’s unlocked, you can enter and lock
the door while you are using it. If the resource is not being used, the thread can
acquire the lock and access the resource. When the thread is done, it relinquishes the
lock, just as you unlock the restroom door and leave it open for the next person.
However, if another thread already has the lock for the resource, all other threads
must wait until the current thread is done and has released the lock. This is just like
when the restroom is occupied when you arrive: you have to wait until the current
user is done and unlocks the door.

Fortunately, Java makes the process of synchronizing access to resources fairly easy.
The language handles setting up and acquiring locks; all you need to do is specify the
resources that require synchronization.

Serializing Access to Methods
The most common need for synchronization among threads in Java is to serialize
their access to some resource (an object)—in other words, to make sure that only one
thread at a time can manipulate an object or variable.2 In Java, every object has an
associated lock. To be more specific, every class and every instance of a class has its
own lock. The synchronized keyword marks places where a thread must acquire the
lock before proceeding.

For example, suppose we implemented a SpeechSynthesizer class that contains a
say() method. We don’t want multiple threads calling say() at the same time because
we wouldn’t be able to understand anything being said. So we mark the say() method
as synchronized, which means that a thread must acquire the lock on the SpeechSyn
thesizer object before it can speak:

 class SpeechSynthesizer {
 synchronized void say(String words) {

Synchronization | 269

 // speak
 }
 }

Because say() is an instance method, a thread must acquire the lock on the Speech
Synthesizer instance it’s using before it can invoke the say() method. When say()
has completed, it gives up the lock, which allows the next waiting thread to acquire
the lock and run the method. It doesn’t matter whether the thread is owned by the
SpeechSynthesizer itself or some other object; every thread must acquire the same
lock, that of the SpeechSynthesizer instance. If say() were a class (static) method
instead of an instance method, we could still mark it as synchronized. In this case,
because no instance object is involved, the lock is on the class object itself.

Often, you want to synchronize multiple methods of the same class so that only one
method modifies or examines parts of the class at a time. All static synchronized
methods in a class use the same class object lock. By the same token, all instance
methods in a class use the same instance object lock. In this way, Java can guarantee
that only one of a set of synchronized methods is running at a time. For example, a
SpreadSheet class might contain a number of instance variables that represent cell
values as well as some methods that manipulate the cells in a row:

 class SpreadSheet {
 int cellA1, cellA2, cellA3;

 synchronized int sumRow() {
 return cellA1 + cellA2 + cellA3;
 }

 synchronized void setRow(int a1, int a2, int a3) {
 cellA1 = a1;
 cellA2 = a2;
 cellA3 = a3;
 }
 ...
 }

In this example, methods setRow() and sumRow() both access the cell values. You can
see that problems might arise if one thread were changing the values of the variables
in setRow() at the same moment another thread was reading the values in sumRow().
To prevent this, we have marked both methods as synchronized. When threads are
synchronized, only one runs at a time. If a thread is in the middle of executing
setRow() when another thread calls sumRow(), the second thread waits until the first
one finishes executing setRow() before it runs sumRow(). This synchronization allows
us to preserve the consistency of the SpreadSheet. The best part is that all this lock‐
ing and waiting is handled by Java; it’s invisible to the programmer.

270 | Chapter 9: Threads

In addition to synchronizing entire methods, the synchronized keyword can be used
in a special construct to guard arbitrary blocks of code. In this form, it also takes an
explicit argument that specifies the object for which it is to acquire a lock:

 synchronized (myObject) {
 // Functionality that needs exclusive access to resources
 }

This code block can appear in any method. When it is reached, the thread has to
acquire the lock on myObject before proceeding. In this way, we can synchronize
methods (or parts of methods) in different classes in the same way as methods in the
same class.

A synchronized instance method is, therefore, equivalent to a method with its state‐
ments synchronized on the current object. Thus:

 synchronized void myMethod () {
 ...
 }

is equivalent to:

 void myMethod () {
 synchronized (this) {
 ...
 }
 }

We can demonstrate the basics of synchronization with a classic “producer/
consumer” scenario. We have some common resources with producers creating new
resources and consumers grabbing and using those resources. An example might be a
series of web crawlers picking up images online. The “producer” in this could be a
thread (or multiple threads) doing the actual work of loading and parsing web pages
looking for images and their URLs. Those URLs could be placed in a common queue
and the “consumer” thread(s) would pick up the next URL in the queue and actually
download the image to the filesystem or a database. We won’t try to do all of the real
I/O here (more on files and networking in Chapter 11) but we can easily set up some
producing and consuming threads to see how the synchronization works.

Synchronizing a queue of URLs
Let’s look first at the queue where the URLs will be stored. We’re not trying to be
fancy with the queue itself; it’s just a list where we can append URLs (as Strings) to
the end and pull them off from the front. We’ll use a LinkedList similar to the Array
List we saw in Chapter 7. It is a structure designed for the efficient access and
manipulation that we want for this queue.

package ch09;

import java.util.LinkedList;

Synchronization | 271

3 Even with fault tolerance, modern, multicore systems can wreak havoc on systems without perfect knowledge.
And perfection is difficult! If you expect to work with threads in the real world, “Java Concurrency In Prac‐
tice” by Brian Goetz, is required reading.

public class URLQueue {
 LinkedList<String> urlQueue = new LinkedList<>();

 public synchronized void addURL(String url) {
 urlQueue.add(url);
 }

 public synchronized String getURL() {
 if (!urlQueue.isEmpty()) {
 return urlQueue.removeFirst();
 }
 return null;
 }

 public boolean isEmpty() {
 return urlQueue.isEmpty();
 }
}

Note that not every method is synchronized! We allow any thread to ask about
whether the queue is empty or not without holding up other threads that might be
adding or removing. This does mean that we might report a wrong answer—if the
timing of different threads is exactly wrong—but our system is somewhat fault toler‐
ant, so the efficiency of not locking the queue just to check its size wins out over more
perfect knowledge.3

Now that we know how we’ll be storing and retrieving our URLs, we can create the
producer and consumer classes. The producer will run a simple loop to make up fake
URLs, prefix them with a producer ID, and store them in our queue. Here’s the run()
method for URLProducer:

 public void run() {
 for (int i = 1; i <= urlCount; i++) {
 String url = "https://some.url/at/path/" + i;
 queue.addURL(producerID + " " + url);
 System.out.println(producerID + " produced " + url);
 try {
 Thread.sleep(delay.nextInt(500));
 } catch (InterruptedException ie) {
 System.err.println("Producer " + producerID + " interrupted. Quitting.");
 break;
 }
 }
 }

272 | Chapter 9: Threads

https://jcip.net
https://jcip.net

The consumer class will actually be quite similar, with the obvious exception of tak‐
ing URLs out of the queue. It will pull a URL out, prefix it with a consumer ID, and
start over until the producers are done producing and the queue is empty.

public void run() {
 while (keepWorking || !queue.isEmpty()) {
 String url = queue.getURL();
 if (url != null) {
 System.out.println(consumerID + " consumed " + url);
 } else {
 System.out.println(consumerID + " skipped empty queue");
 }
 try {
 Thread.sleep(delay.nextInt(1000));
 } catch (InterruptedException ie) {
 System.err.println("Consumer " + consumerID + " interrupted.
 Quitting.");
 break;
 }
 }
}

We can start by running our simulation with very small numbers: two producers and
two consumers, where each producer will create only three URLs.

package ch09;

public class URLDemo {
 public static void main(String args[]) {
 URLQueue queue = new URLQueue();
 URLProducer p1 = new URLProducer("P1", 3, queue);
 URLProducer p2 = new URLProducer("P2", 3, queue);
 URLConsumer c1 = new URLConsumer("C1", queue);
 URLConsumer c2 = new URLConsumer("C2", queue);
 System.out.println("Starting...");
 p1.start();
 p2.start();
 c1.start();
 c2.start();
 try {
 // Waiti for the producers to finish creating urls
 p1.join();
 p2.join();
 } catch (InterruptedException ie) {
 System.err.println("Interrupted waiting for producers to finish");
 }
 c1.setKeepWorking(false);
 c2.setKeepWorking(false);
 try {
 // Now wait for the workers to clean out the queue
 c1.join();
 c2.join();

Synchronization | 273

 } catch (InterruptedException ie) {
 System.err.println("Interrupted waiting for consumers to finish");
 }
 System.out.println("Done");
 }
}

And even with these tiny numbers involved, we can still see the effects of using multi‐
ple threads to do the work:

Starting...
C1 skipped empty queue
C2 skipped empty queue
P2 produced https://some.url/at/path/1
P1 produced https://some.url/at/path/1
P1 produced https://some.url/at/path/2
P2 produced https://some.url/at/path/2
C2 consumed P2 https://some.url/at/path/1
P2 produced https://some.url/at/path/3
P1 produced https://some.url/at/path/3
C1 consumed P1 https://some.url/at/path/1
C1 consumed P1 https://some.url/at/path/2
C2 consumed P2 https://some.url/at/path/2
C1 consumed P2 https://some.url/at/path/3
C1 consumed P1 https://some.url/at/path/3
Done

Notice that the threads don’t take perfect, round-robin turns, but that every thread
does get at least some work time. And you can see that the consumers are not locked
to specific producers. Again the idea is to make efficient use of limited resources. Pro‐
ducers can keep adding tasks without worrying about how long each task will take or
who to assign it to. Consumers, in turn, can grab a task without worry about other
consumers. If one consumer gets handed a simple task and finishes before other con‐
sumers, it can go back and get a new task right away.

Try running this example yourself and bump up some of those numbers. What hap‐
pens with hundreds of URLs? What happens with hundreds of producers or consum‐
ers? At scale, this type of multitasking is almost required. You won’t find large
programs out there that don’t use threads to manage at least some of their back‐
ground work. Indeed, we saw above that Java’s own graphical package, Swing, needs a
separate thread to keep the UI responsive and correct no matter how small your
application might be.

Accessing Class and Instance Variables from Multiple Threads
In the SpreadSheet example, we guarded access to a set of instance variables with a
synchronized method in order to avoid changing one of the variables while someone
was reading the others. We wanted to keep them coordinated. But what about indi‐
vidual variable types? Do they need to be synchronized? Normally, the answer is no.

274 | Chapter 9: Threads

Almost all operations on primitives and object reference types in Java happen
atomically: that is, they are handled by the VM in one step, with no opportunity for
two threads to collide. This prevents threads from looking at references while they are
in the process of being accessed by other threads.

But watch out—we did say almost. If you read the Java VM specification carefully, you
will see that the double and long primitive types are not guaranteed to be handled
atomically. Both of these types represent 64-bit values. The problem has to do with
how the Java VM’s stack handles them. It is possible that this specification will be bee‐
fed up in the future. But for now, to be strict, you should synchronize access to your
double and long instance variables through accessor methods, or use the volatile
keyword or an atomic wrapper class, which we’ll describe next.

Another issue, independent of the atomicity of the values, is the notion of different
threads in the VM caching values for periods of time—that is, even though one
thread may have changed the value, the Java VM may not be obliged to make that
value appear until the VM reaches a certain state known as a “memory barrier.” You
can start to address this by declaring the variable with the volatile keyword. This
keyword indicates to the VM that the value may be changed by external threads and
effectively synchronizes access to it automatically. We qualify that statement with
“start to address” because multicore systems introduce yet more chances for inconsis‐
tent, buggy behavior. The closing paragraphs of “Concurrency Utilities” on page 282
have some great reading suggestions if you have commercial development plans for
your multithreaded code.

Finally, the java.util.concurrent.atomic package provides synchronized wrapper
classes for all primitive types and references. These wrappers provide not only simple
set() and get() operations on the values but also specialized “combo” operations,
such as compareAndSet(), that work atomically and can be used to build higher-level
synchronized application components. The classes in this package were designed
specifically to map down to hardware-level functionality in many cases and can be
very efficient.

Scheduling and Priority
Java makes few guarantees about how it schedules threads. Almost all of Java’s thread
scheduling is left up to the Java implementation and, to some degree, the application.
Although it might have made sense (and would certainly have made many developers
happier) if Java’s developers had specified a scheduling algorithm, a single algorithm
isn’t necessarily suitable for all the roles that Java can play. Instead, Java’s designers put

Scheduling and Priority | 275

4 A notable alternative to this is the real-time Java specification that defines specialized thread behavior for cer‐
tain types of applications. It was developed under the Java community process and can be found at https://
oreil.ly/F0_qn.

5 Java Threads by Scott Oaks and Henry Wong (O’Reilly) includes a detailed discussion of synchronization,
scheduling, and other thread-related issues.

6 Technically, a thread can also terminate with the deprecated stop() call but as we noted at the start of the
chapter, this is bad for myriad reasons.

the burden on you to write robust code that works no matter the scheduling algo‐
rithm, and let the implementation tune the algorithm for the best fit.4

The priority rules that we describe next are carefully worded in the Java language
specification to be a general guideline for thread scheduling. You should be able to
rely on this behavior overall (statistically), but it is not a good idea to write code that
relies on very specific features of the scheduler to work properly. You should instead
use the control and synchronization tools that we have described in this chapter to
coordinate your threads.5

Every thread has a priority value. In general, any time a thread of a higher priority
than the current thread becomes runnable (is started, stops sleeping, or is notified), it
preempts the lower-priority thread and begins executing. By default, threads with the
same priority are scheduled round-robin, which means once a thread starts to run, it
continues until it does one of the following:

• Sleeps, by calling Thread.sleep() or wait()
• Waits for a lock, in order to run a synchronized method
• Blocks on I/O, for example, in a read() or accept() call
• Explicitly yields control, by calling yield()
• Terminates by completing its target method6

This situation looks something like Figure 9-4.

276 | Chapter 9: Threads

https://oreil.ly/F0_qn
https://oreil.ly/F0_qn
https://oreil.ly/AbbQk

Figure 9-4. Priority preemptive, round-robin scheduling

Thread State
At any given time, a thread is in one of five general states that encompass its life cycle
and activities. These states are defined in the Thread.State enumeration and queried
via the getState() method of the Thread class:

NEW

The thread has been created but not yet started.

RUNNABLE

The normal active state of a running thread, including the time when a thread is
blocked in an I/O operation, like a read or write or network connection.

BLOCKED

The thread is blocked, waiting to enter a synchronized method or code block.
This includes the time when a thread has been awakened by a notify() and is
attempting to reacquire its lock after a wait().

WAITING, TIMED_WAITING

The thread is waiting for another thread via a call to wait() or join(). In the
case of TIMED_WAITING, the call has a timeout.

TERMINATED

The thread has completed due to a return, an exception, or being stopped.

We can show the state of all threads in Java (in the current thread group) with the
following snippet of code:

 Thread [] threads = new Thread [64]; // max threads to show
 int num = Thread.enumerate(threads);
 for(int i = 0; i < num; i++)
 System.out.println(threads[i] +":"+ threads[i].getState());

Scheduling and Priority | 277

You will probably not use this API in general programming, but it is interesting and
useful for experimenting and learning about Java threads.

Time-Slicing
In addition to prioritization, all modern systems (with the exception of some embed‐
ded and “micro” Java environments) implement thread time-slicing. In a time-sliced
system, thread processing is chopped up so that each thread runs for a short period of
time before the context is switched to the next thread, as shown in Figure 9-5.

Figure 9-5. Priority preemptive, time-sliced scheduling

Higher-priority threads still preempt lower-priority threads in this scheme. The addi‐
tion of time-slicing mixes up the processing among threads of the same priority; on a
multiprocessor machine, threads may even be run simultaneously. This can introduce
a difference in behavior for applications that don’t use threads and synchronization
properly.

Strictly speaking, because Java doesn’t guarantee time-slicing, you shouldn’t write
code that relies on this type of scheduling; any software you write should function
under round-robin scheduling. If you’re wondering what your particular flavor of
Java does, try the following experiment:

 public class Thready {
 public static void main(String args []) {
 new ShowThread("Foo").start();
 new ShowThread("Bar").start();
 }

 static class ShowThread extends Thread {
 String message;

 ShowThread(String message) {
 this.message = message;
 }
 public void run() {
 while (true)

278 | Chapter 9: Threads

 System.out.println(message);
 }
 }
 }

The Thready class starts up two ShowThread objects. ShowThread is a thread that goes
into a hard loop (very bad form) and prints its message. Because we don’t specify a
priority for either thread, they both inherit the priority of their creator, so they have
the same priority. When you run this example, you will see how your Java implemen‐
tation does its scheduling. Under a round-robin scheme, only “Foo” should be
printed; “Bar” never appears. In a time-slicing implementation, you should occasion‐
ally see the “Foo” and “Bar” messages alternate.

Priorities
As we said before, the priorities of threads exist as a general guideline for how the
implementation should allocate time among competing threads. Unfortunately, with
the complexity of how Java threads are mapped to native thread implementations,
you cannot rely upon the exact meaning of priorities. Instead, you should only con‐
sider them a hint to the VM.

Let’s play with the priority of our threads:

 class Thready {
 public static void main(String args []) {
 Thread foo = new ShowThread("Foo");
 foo.setPriority(Thread.MIN_PRIORITY);
 Thread bar = new ShowThread("Bar");
 bar.setPriority(Thread.MAX_PRIORITY);

 foo.start();
 bar.start();
 }
 }

We would expect that with this change to our Thready class, the Bar thread would
take over completely. If you run this code on an old Solaris implementation of Java
5.0, that’s what happens. The same is not true on Windows or with some older ver‐
sions of Java. Similarly, if you change the priorities to values other than min and max,
you may not see any difference at all. The subtleties relating to priority and perfor‐
mance relate to how Java threads and priorities are mapped to real threads in the OS.
For this reason, thread priorities should be reserved for system and framework
development.

Scheduling and Priority | 279

Yielding
Whenever a thread sleeps, waits, or blocks on I/O, it gives up its time slot and another
thread is scheduled. As long as you don’t write methods that use hard loops, all
threads should get their due. However, a thread can also signal that it is willing to give
up its time voluntarily at any point with the yield() call. We can change our previous
example to include a yield() on each iteration:

 ...
 static class ShowThread extends Thread {
 ...
 public void run() {
 while (true) {
 System.out.println(message);
 yield();
 }
 }
 }

You should see “Foo” and “Bar” messages strictly alternating. If you have threads that
perform very intensive calculations or otherwise eat a lot of CPU time, you might
want to find an appropriate place for them to yield control occasionally. Alternatively,
you might want to drop the priority of your compute-intensive thread so that more
important processing can proceed around it.

Unfortunately, the Java language specification is very weak with respect to yield(). It
is another one of those things that you should consider an optimization hint rather
than a guarantee. In the worst case, the runtime system may simply ignore calls to
yield().

Thread Performance
The way that applications use threads and the associated costs and benefits have
greatly impacted the design of many Java APIs. We will discuss some of the issues in
detail in other chapters. But it is worth briefly mentioning some aspects of thread
performance and how the use of threads has dictated the form and functionality of
several recent Java packages.

The Cost of Synchronization
The act of acquiring locks to synchronize threads takes time, even when there is no
contention. In older implementations of Java, this time could be significant. With
newer VMs, it is almost negligible. However, unnecessary low-level synchronization
can still slow applications by blocking threads where legitimate concurrent access
otherwise could be allowed. Because of this, two important APIs, the Java Collections

280 | Chapter 9: Threads

API and the Swing GUI API, were specifically crafted to avoid unnecessary synchro‐
nization by placing it under the developer’s control.

The java.util Collections API replaces earlier, simple Java aggregate types—namely,
Vector and Hashtable—with more fully featured and, notably, unsynchronized types
(List and Map). The Collections API instead defers to application code to synchron‐
ize access to collections when necessary and provides special “fail fast” functionality
to help detect concurrent access and throw an exception. It also provides synchroni‐
zation “wrappers” that can provide safe access in the old style. Special concurrent-
access-friendly implementations of the Map and Queue collections are included as part
of the java.util.concurrent package. These implementations go even further in
that they are written to allow a high degree of concurrent access without any user
synchronization.

The Java Swing GUI has taken a different approach to providing speed and safety.
Swing dictates that modification of its components (with notable exceptions) must all
be done by a single thread: the main event queue. Swing solves performance prob‐
lems as well as nasty issues of determinism in event ordering by forcing a single
super-thread to control the GUI. The application may access the event queue thread
indirectly by pushing commands onto a queue through a simple interface. We’ll see
how to do just that in Chapter 10 and apply that knowledge to the common problem
of reacting to information delivered externally over the network in Chapter 11.

Thread Resource Consumption
A fundamental pattern in Java is to start many threads to handle asynchronous exter‐
nal resources, such as socket connections. For maximum efficiency, a web server
might be tempted to create a thread for each client connection it is servicing. With
each client having its own thread, I/O operations may block and restart as needed.
But as efficient as this may be in terms of throughput, it is a very inefficient use of
server resources. Threads consume memory; each thread has its own “stack” for local
variables, and switching between running threads (context switching) adds overhead
to the CPU. While threads are relatively lightweight (in theory, it is possible to have
hundreds or thousands running on a large server), at a certain point, the resources
consumed by the threads themselves start defeating the purpose of starting more
threads. Often, this point is reached with only a few dozen threads. Creating a thread
per client is not always a scalable option.

An alternative approach is to create “thread pools” where a fixed number of threads
pull tasks from a queue and return for more when they are finished. This recycling of
threads makes for solid scalability, but it has historically been difficult to implement
efficiently for servers in Java because stream I/O (for things like sockets) has not fully
supported nonblocking operations. The NIO package has asynchronous I/O chan‐
nels: nonblocking reads and writes plus the ability to “select” or test the readiness of

Thread Performance | 281

streams for moving data. Channels can also be asynchronously closed, allowing
threads to work with them gracefully. With the NIO package, it is possible to create
servers with much more sophisticated, scalable thread patterns.

Thread pools and job “executor” services are codified as utilities as part of the
java.util.concurrent package, meaning you don’t have to write these yourself.
We’ll summarize them next when we discuss the concurrency utilities in Java.

Concurrency Utilities
So far in this chapter, we’ve demonstrated how to create and synchronize threads at a
low level, using Java language primitives. The java.util.concurrent package and
subpackages introduced with Java 5.0 build on this functionality, adding important
threading utilities and codifying some common design patterns by supplying stan‐
dard implementations. Roughly in order of generality, these areas include:

Thread-aware Collections implementations
The java.util.concurrent package augments the Java Collections API in Chap‐
ter 7 with several implementations for specific threading models. These include
timed wait and blocking implementations of the Queue interface, as well as non‐
blocking, concurrent-access optimized implementations of the Queue and Map
interfaces. The package also adds “copy on write” List and Set implementations
for extremely efficient “almost always read” cases. These may sound complex, but
actually cover some fairly simple cases very well.

Executors
Executors run tasks, including Runnables, and abstract the concept of thread
creation and pooling from the user. Executors are intended to be a high-level
replacement for the idiom of creating new threads to service a series of jobs.
Along with Executors, the Callable and Future interfaces are introduced, which
expand upon Runnable to allow management, value return, and exception han‐
dling.

Low-level synchronization constructs
The java.util.concurrent.locks package holds a set of classes, including Lock
and Condition, that parallels the Java language-level synchronization primitives
and promotes them to the level of a concrete API. The locks package also adds
the concept of nonexclusive reader/writer locks, allowing for greater concurrency
in synchronized data access.

High-level synchronization constructs
This includes the classes CyclicBarrier, CountDownLatch, Semaphore, and
Exchanger. These classes implement common synchronization patterns drawn

282 | Chapter 9: Threads

from other languages and systems and can serve as the basis for new high-level
tools.

Atomic operations (sounds very James Bond, doesn’t it?)
The java.util.concurrent.atomic package provides wrappers and utilities for
atomic, “all-or-nothing” operations on primitive types and references. This
includes simple combination atomic operations like testing a value before setting
it and getting and incrementing a number in one operation.

With the possible exception of optimizations done by the Java VM for the atomic
operations package, all of these utilities are implemented in pure Java, on top of the
standard Java language synchronization constructs. This means that they are in a
sense only convenience utilities and don’t truly add new capabilities to the language.
Their main role is to offer standard patterns and idioms in Java threading and make
them safer and more efficient to use. A good example of this is the Executor utility,
which allows a user to manage a set of tasks in a predefined threading model without
having to delve into creating threads at all. Higher-level APIs like this both simplify
coding and allow for greater optimization of the common cases.

While we won’t be looking at any of these packages in this chapter, we want you to
know where you might dig next if concurrency is interesting to you or seems useful
in the type of problems you need to solve at work. As we (foot)noted in “Synchroniz‐
ing a queue of URLs” on page 271, “Java Concurrency In Practice” by Brian Goetz, is
required reading for real-world projects. We also want to give a shout-out to Doug
Lea, the author of Concurrent Programming in Java (Addison-Wesley), who led the
group that added these packages to Java and is largely responsible for creating them.

We have mentioned the Java Swing framework in passing several times in this book—
even in this chapter with respect to thread performance. Next up it is finally time to
look at that framework in more detail.

Concurrency Utilities | 283

https://jcip.net

1 If you are curious about this topic and want to see behind the curtains of a commercial, desktop Java applica‐
tion, JetBrains publishes the source code for the Community Edition.

CHAPTER 10

Desktop Applications

Java leapt to fame and glory on the power of applets—amazing, interactive elements
on a web page. Sounds mundane these days, but at the time it was nothing short of a
marvel. But Java also had cross-platform support up its sleeve and could run the same
code on Windows, Unix, and macOS systems. The early JDKs had a rudimentary set
of graphical components collectively known as the Abstract Window Toolkit (AWT).
The “abstract” in AWT comes from the use of common classes (Button, Window, etc.)
with native implementations. You write AWT applications with abstract, cross-
platform code; your computer runs your application and provides concrete, native
components.

That nifty combination of abstract and native comes with some pretty serious limita‐
tions, unfortunately. In the abstract realm, you encounter “lowest common denomi‐
nator” designs that only give you access to features available on every platform Java
supports. In native implementations even some features roughly available everywhere
were distinctly different when actually rendered on the screen. Many desktop devel‐
opers working with Java in those early days joked that the “write once, run every‐
where” tagline was really “write once, debug everywhere.” The Java Swing package set
out to ameliorate this woeful state. While Swing didn’t solve every problem of cross-
platform application delivery, it did make serious desktop application development
possible in Java. You can find many quality open source projects and even some com‐
mercial applications written in Swing. Indeed, the IDE we detail in Appendix A,
IntelliJ IDEA, is a Swing application! It clearly goes toe-to-toe with native IDEs on
both performance and usability.1

285

https://oreil.ly/YleE5

2 The javax package prefix was introduced early by Sun to accomodate packages that were distributed with
Java but not “core.” The decision was modestly controversial, but javax has stuck and has been used with
other packages as well.

If you look at the documentation for the javax.swing2 package, you will see it con‐
tains a multitude of classes. And you will still need some pieces of the original
java.awt realm as well. There are entire books on AWT (Java AWT Reference,
Zukowski, O’Reilly) and on Swing (Java Swing, 2nd Edition, Loy, et al., O’Reilly), and
even books on subpackages such as 2D graphics (Java 2D Graphics, Knudsen,
O’Reilly). In this chapter, we’ll settle for covering some popular components such as
buttons and text fields. We’ll look at how to lay them out in your application window
and how to interact with them. You may be surprised by how sophistocated your
application can get with these simple starting topics. If you do more desktop develop‐
ment after this book, you may also be surprised by how much more graphical user
interface (GUI, or just UI) content is out there for Java. We want to whet your appe‐
tite while acknowledging that there are many, many more UI discussions we must
leave aside for you to discover later. With that said, let the whirlwind tour commence!

Buttons and Sliders and Text Fields, Oh My!
So where to begin? We have a bit of a chicken and the egg problem. We need to dis‐
cuss the “things” to put on the screen, such as the JLabel objects we used in “Hello‐
Java” on page 41. But we also need to discuss what you put those things into. And
where you put those things merits discussion as it’s a nontrivial process. So now we
have a chicken, egg, and brunch problem. Grab a cup of coffee or a mimosa and we’ll
get started. We will cover some popular components (the “things”) first, then their
containers, and finally the topic of laying out your components in those containers.
Once you can put a nice set of widgets on the screen, we’ll discuss how to interact
with them as well as how to handle the UI in a multithreaded world.

Component Hierarchies
As we’ve discussed in previous chapters, Java classes are designed and extended in a
hierarchical fashion. JComponent and JContainer sit at the top of the Swing class
hierarchy, as shown in Figure 10-1. We won’t cover these two classes in much detail,
but remember their names. You will find several common attributes and methods in
these classes as you read the Swing documentation. As you advance in your program‐
ming endeavors, you’ll likely hit a point where you want to build your own compo‐
nent. JComponent is a great starting point. We’ll be doing just that to fill out our apple
tossing game example.

286 | Chapter 10: Desktop Applications

https://oreil.ly/_92UF
https://oreil.ly/bO7g6
https://oreil.ly/o3YxN

Figure 10-1. Partial (very partial) Swing class hierarchy

We will be covering most of the other classes mentioned in the abridged hierarchy
above, but you will definitely want to visit the online documentation to see the many
components we had to leave out.

Model View Controller Architecture
At the base of Swing’s notion of “things” is a design pattern known as Model View
Controller (MVC). The Swing package authors worked hard to consistently apply this
pattern so that when you encounter new components, their behavior and usage
should feel familiar. MVC architecture aims to compartmentalize what you see (the
view) from the behind-the-scenes state (the model) and from the collection of inter‐
actions (the controller) that causes changes to those parts. This separation of con‐
cerns allows you to concentrate on getting each piece right. Network traffic can
update the model behind the scenes. The view can be synchronized at regular inter‐
vals that feel smooth and responsive to the user. MVC provides a powerful yet man‐
ageable framework to use when building any desktop application.

Buttons and Sliders and Text Fields, Oh My! | 287

https://oreil.ly/H7KhT

As we look at our small selection of components, we’ll highlight the model and the
view elements. We’ll then go into more detail on the controllers in “Events” on page
318. If you find the notion of programming patterns intriguing, Design Patterns: Ele‐
ments of Reusable Object-Oriented Software by Gamma, Helm, Johnson, and Vlissides
(the reknowned Gang of Four), is the seminal work. For more details on the use of
the MVC pattern in Swing, see the introductory chapter of Java Swing, 2nd Edition by
Loy et al.

Labels and Buttons
The simplest UI component is not surprisingly one of the most popular. Labels are
used all over the place to indicate functionality, display status, and draw focus. We
used a label for our first graphical application back in Chapter 2. We’ll use many more
labels as we continue building more interesting programs. The JLabel component is
a versatile tool. Let’s get some examples up so we can see how to use JLabel and cus‐
tomize its many attributes. We’ll start by revisiting our “Hello, Java” program with a
few preparatory tweaks:

package ch10;

import javax.swing.*;
import java.awt.*;

public class Labels {

 public static void main(String[] args) {
 JFrame frame = new JFrame("JLabel Examples");
 frame.setLayout(new FlowLayout());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);

 JLabel basic = new JLabel("Default Label");

 frame.add(basic);

 frame.setVisible(true);
 }
}

Briefly, the interesting parts are:

Setting the layout manager for use by the frame.

Setting the action taken when using the operating system’s “close” button (in this
case, the red dot in the upper-left corner of the window). The action we selected
here exits the application.

Creating our simple label.

288 | Chapter 10: Desktop Applications

You can see the label declared and initialized then added to the frame. Hopefully, that
is familiar. What is likely new is our use of a FlowLayout instance. That line helps us
produce the screenshot shown in Figure 10-2.

Figure 10-2. A single, simple JLabel

We’ll go over layout managers in much more detail in “Containers and Layouts” on
page 306, but we need something to get us off the ground that also allows us to add
multiple components to a single container. The FlowLayout class fills a container by
horizontally centering components at the top, adding from left to right until that
“row” runs out of room, then continuing on a new row below. This type of arrang‐
ment won’t be of much use in larger applications, but it is ideal for getting several
things on the screen quickly.

Let’s prove that point by adding a few more labels. Just add a few more label declara‐
tions and add them to the frame, then check out the results shown in Figure 10-3:

public class Labels {

 public static void main(String[] args) {
 JFrame frame = new JFrame("JLabel Examples");
 frame.setLayout(new GridLayout(0,1));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);

 JLabel basic = new JLabel("Default Label");
 JLabel another = new JLabel("Another Label");
 JLabel simple = new JLabel("A Simple Label");
 JLabel standard = new JLabel("A Standard Label");

 frame.add(basic);

Buttons and Sliders and Text Fields, Oh My! | 289

 frame.add(another);
 frame.add(simple);
 frame.add(standard);

 frame.setVisible(true);
 }
}

Figure 10-3. Several basic JLabel objects

Neat, right? Again, this simple layout is not meant for most types of content you find
in production applications, but it’s definitely useful as you get started. One more
point about layouts that we want to make, as we’ll encounter this idea later: FlowLay
out also deals with the size of the labels. That can be hard to notice in this example
because labels have a transparent background by default. If we import the
java.awt.Color class, we can use that class to help make them opaque and give them
a specific background color:

 // ...
 JLabel basic = new JLabel("Default Label");
 basic.setOpaque(true);
 basic.setBackgroundColor(Color.YELLOW);
 JLabel another = new JLabel("Another Label");
 another.setOpaque(true);
 another.setBackgroundColor(Color.GREEN);

 frame.add(basic);
 frame.add(another);
 // ...

If we do the same for all of our labels, we can now see their true sizes and the gaps
between them in Figure 10-4. But if we can control the background color of labels,

290 | Chapter 10: Desktop Applications

what else can we do? Can we change the foreground color? (Yes.) Can we change the
font? (Yes.) Can we change the alignment? (Yes.) Can we add icons? (Yes.) Can we
create self-aware labels that eventually build Skynet and bring about the end of
humanity? (Maybe, but probably not, and certainly not easily. Just as well.)
Figure 10-5 shows some of these possible tweaks.

Figure 10-4. Opaque, colored labels

Figure 10-5. More labels with fancier options

And here is the respective source code that built this variety:

Buttons and Sliders and Text Fields, Oh My! | 291

3 You’ll need to start jshell from the directory containing your compiled class files. If you are using IntelliJ
IDEA, you can start their terminal and switch directories using *cd out/production/LearningJava5e* and
then start jshell.

 // ...
 JLabel centered = new JLabel("Centered Text", JLabel.CENTER);
 centered.setPreferredSize(new Dimension(150, 24));
 centered.setOpaque(true);
 centered.setBackground(Color.WHITE);

 JLabel times = new JLabel("Times Roman");
 times.setOpaque(true);
 times.setBackground(Color.WHITE);
 times.setFont(new Font("TimesRoman", Font.BOLD, 18));

 JLabel styled = new JLabel("<html>Some <i>styling</i>" +
 " is also allowed</html>");
 styled.setOpaque(true);
 styled.setBackground(Color.WHITE);

 JLabel icon = new JLabel("Verified", new ImageIcon("ch10/check.png"),
 JLabel.LEFT);
 icon.setOpaque(true);
 icon.setBackground(Color.WHITE);

 // ...
 frame.add(centered);
 frame.add(times);
 frame.add(styled);
 frame.add(icon);

 // ...

We used a few other classes to help out, such as java.awt.Font and
javax.swing.ImageIcon. There are many more options we could review, but we need
to look at some other components. If you want to play around with these labels and
try out more of the options you see in the Java documentation, try importing a helper
we built for jshell and playing around.3 The results of our few lines are shown in
Figure 10-6.

jshell> import javax.swing.*

jshell> import java.awt.*

jshell> import ch10.Widget

jshell> Widget w = new Widget()
w ==> ch10.Widget[frame0,0,23,300x300,layout=java.awt.B ... abled=true]

jshell> JLabel label1 = new JLabel("Green")

292 | Chapter 10: Desktop Applications

label1 ==> javax.swing.JLabel[,0,0,0x0,invalid,alignmentX=0. ... ion=CENTER]

jshell> label1.setOpaque(true)

jshell> label1.setBackground(Color.GREEN)

jshell> w.add(label1)
$8 ==> javax.swing.JLabel[,0,0,0x0,...]

jshell> w.add(new JLabel("Quick test"))
$9 ==> javax.swing.JLabel[,0,0,0x0,...]

Figure 10-6. Using our Widget class in jshell

Hopefully you see how easy it is now to create a label (or other component such as a
button that we’ll be exploring next) and tweak its parameters interactively. This is a
great way to familiarize yourself with the bits and pieces you have at your disposal for
building Java desktop applications. If you use our Widget much, you may find its
reset() method handy. This method removes all of the current components and
refreshes the screen so you can start over quickly.

Buttons
The other near-universal component you’ll need for graphical applications is the but‐
ton. The JButton class is your go-to button in Swing. (You’ll also find other popular
button types such as JCheckbox and JToggleButton in the documentation.) Creating
a button is very similar to creating a label, as shown in Figure 10-7.

package ch10;

import javax.swing.*;

Buttons and Sliders and Text Fields, Oh My! | 293

import java.awt.*;

public class Buttons {
 public static void main(String[] args) {
 JFrame frame = new JFrame("JButton Examples");
 frame.setLayout(new FlowLayout());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 200);

 JButton basic = new JButton("Try me!");
 frame.add(basic);

 frame.setVisible(true);
 }
}

Figure 10-7. A simple JButton

You can control the colors, alignment, font, and so on for buttons in much the same
way as you do for labels. The difference, of course, is that you can click on a button
and react to that click in your program, whereas labels are static for the most part. Try
running this example and clicking on the button. It should change color and feel
“pressed” even though it does not perform any other function in our program yet.
Hopefully you’ve used enough applications or websites to be familiar with buttons
and their behavior. We want to go through a few more components before tackling
that notion of “reacting” to a button click (an “event” in Swing-speak), but you can
jump to “Events” on page 318 if you just can’t wait!

Text Components
Right behind buttons and labels in popularity would be text fields. These input ele‐
ments that allow for free-form entry of information are nearly ubiquitous in online
forms. You can grab names, email addresses, phone numbers, and credit card num‐
bers. You can do all that in languages that compose their characters, or others that
read from right to left. It would be impossible to imagine a desktop or web

294 | Chapter 10: Desktop Applications

application today without the availability of text input. Swing has three big text com‐
ponents: JTextField, JTextArea, and JTextPane; all extend a common parent, JText
Component. JTextField is a classic text field meant for brief, single-word or single-
line input. JTextArea allows for much more input spread across multiple lines.
JTextPane is a specialized component meant for editing rich text. We won’t be using
JTextPane in this chapter, but it is worth noting that there are some very interesting
components available in Swing without using third-party libraries.

Text fields
Let’s get an example of each up in our simple, flowing application. We’ll pare things
back to a pair of labels and corresponding text fields, by far the more common of the
two input components:

package ch10;

import javax.swing.*;
import java.awt.*;

public class TextInputs {
 public static void main(String[] args) {
 JFrame frame = new JFrame("JTextField Examples");
 frame.setLayout(new FlowLayout());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(400, 200);

 JLabel nameLabel = new JLabel("Name:");
 JTextField nameField = new JTextField(10);
 JLabel emailLabel = new JLabel("Email:");
 JTextField emailField = new JTextField(24);

 frame.add(nameLabel);
 frame.add(nameField);
 frame.add(emailLabel);
 frame.add(emailField);

 frame.setVisible(true);
 }
}

Notice in Figure 10-8 that the size of a text field is dictated by the number of columns
we specified in its constructor. That’s not the only way to initialize a text field, but it is
useful when there are no other layout mechanisms dictating the width of the field.
(Here the FlowLayout failed us a bit—the “Email:” label did not stay on the same line
as the email text field. But again, more on layouts soon.) Go ahead and type some‐
thing! You can enter and delete text; cut, copy, and paste as you’d expect; and high‐
light stuff inside the field with your mouse.

Buttons and Sliders and Text Fields, Oh My! | 295

Figure 10-8. Simple labels and JTextFields

We still need the ability to react to this input, coming up in “Events” on page 318, but
if you add a text field to our demo app in jshell, as shown in Figure 10-9, you can call
its getText() method to see that the content is indeed available to you.

Figure 10-9. Retrieving the contents of a JTextField

jshell> w.reset()

jshell> JTextField emailField = new JTextField(15)
emailField ==> javax.swing.JTextField[,0,0,0x0, ... lignment=LEADING]

jshell> w.add(new JLabel("Email:"))
$12 ==> javax.swing.JLabel[,0,0,0x0, ... sition=CENTER]

jshell> w.add(emailField)
$13 ==> javax.swing.JTextField[,0,0,0x0, ... lignment=LEADING]

// Enter an email address, we typed in "me@some.company"

jshell> emailField.getText()
$14 ==> "me@some.company"

Note that the text property is read-write. You can call setText() on your text field to
change its content programmatically. This can be great for setting default values,
auto-formatting things like phone numbers, or for prefilling a form from information
you gather over the network. Try it out in jshell.

296 | Chapter 10: Desktop Applications

Text areas
When simple words or even long URL entries are not enough, you’ll likely turn to
JTextArea to give the user enough room. We can create an empty text area with a
similar constructor as the one we used for JTextField, but this time specify the num‐
ber of rows in addition to the number of columns. The code to add our text area to
our running text input demo app is below, and the results are shown in Figure 10-10:

 JLabel bodyLabel = new JLabel("Body:");
 JTextArea bodyArea = new JTextArea(10,30);

 frame.add(bodyLabel);
 frame.add(bodyArea);

You can easily see we have room for multiple lines of text. Go ahead and run this new
version and try it yourself. What happens if you type past the end of a line? What
happens when you press the Return key? Hopefully, you get the behaviors you’re
familiar with. We’ll see how to adjust those behaviors below, but we do want to point
out you still have access to its content just like you do with a text field.

Figure 10-10. Adding a JTextArea

Let’s add a text area to our widget in jshell:
jshell> w.reset()

jshell> w.add(new JLabel("Body:"))
$16 ==> javax.swing.JLabel[,0,0,0x0, ... ition=CENTER]

jshell> JTextArea bodyArea = new JTextArea(5,20)
bodyArea ==> javax.swing.JTextArea[,0,0,0x0, ... word=false,wrap=false]

jshell> w.add(bodyArea)
$18 ==> javax.swing.JTextArea[,0,0,0x0, ... lse,wrap=false]

Buttons and Sliders and Text Fields, Oh My! | 297

jshell> bodyArea.getText()
$19 ==> "This is the first line.\nThis should be the second.\nAnd the third..."

Great! You can see that the Return key we typed to produce our three lines in
Figure 10-11 gets encoded as the \n character in the string we retrieve.

Figure 10-11. Retrieving the contents of a JTextArea

But what if you did try to type a long, run-on sentence that runs past the end of the
line? You may get an odd text area that expanded to the size of our window and
beyond, as shown in Figure 10-12.

Figure 10-12. An overly long line in a simple JTextArea

298 | Chapter 10: Desktop Applications

We can fix that incorrect sizing behavior by looking at a pair of properties of JTex
tArea, shown in Table 10-1.

Table 10-1. Wrap properties of JTextArea

Property Default Description

lineWrap false Whether lines longer than the table should wrap at all

wrapStyleWord false If lines do wrap, whether the line breaks should be on word or character boundaries

So let’s start fresh and turn on the word wrap. We can use setLineWrap(true) to
make sure the text wraps. But that’s probably not enough. Use setWrapStyle
Word(true) in addition to make sure the text area doesn’t just break words in the
middle. That should get us the image in Figure 10-13.

Figure 10-13. A wrapping line in a simple JTextArea

You can try that yourself in jshell or your own app if you want to prove to yourself
that the third line wraps. When you retrieve the text from our bodyArea object, you
should not see a line break (\n) in line three between the second “on” and the “but.”

Text scrolling
We’ve fixed what happens if we have too many characters for one line, but what hap‐
pens if we have too many rows? On its own, JTextArea does that odd “grow until we
can’t” trick, as shown in Figure 10-14.

To fix this problem, we need to call in some support from a standard Swing helper
component: JScrollPane. This is a general-purpose container that makes it easy to

Buttons and Sliders and Text Fields, Oh My! | 299

4 As we create Swing components for use in these jshell examples, we’ll be omitting much of the resulting out‐
put. jshell prints a lot of information about each component, although it also uses ellipses when things get too
extreme. Don’t be alarmed if you see extra details about an element’s attributes while you’re playing. That’s
normal. We just want to keep the text concise and have chosen to omit some of this output that isn’t relevant
to the topic.

present large components in confined spaces. To show you just how easy this is, let’s
fix our text area:4

jshell> w.remove(bodyArea); // So we can start with a fresh text area

jshell> bodyArea = new JTextArea(5,20)
bodyArea ==> javax.swing.JTextArea[,0,0,0x0,inval... word=false,wrap=false]

jshell> w.add(new JScrollPane(bodyArea))
$17 ==> javax.swing.JScrollPane[,47,5,244x84, ... ortBorder=]

Figure 10-14. Too many lines in a simple JTextArea

You can see in Figure 10-15 that we no longer grow beyond the bounds of the frame.
You can also see the standard scroll bars along the side and bottom. If you just need
simple scrolling, you’re done! But like most other components in Swing, JScrollPane
has many fine details you can adjust as needed. We won’t cover most of those here,
but we do want to show you how to tackle a common setup for text areas: line wrap‐
ping (breaking on words) with vertical scrolling—meaning no horizontal scrolling.

300 | Chapter 10: Desktop Applications

Figure 10-15. Too many lines in a JTextArea embedded in a JScrollPane

We should end up with a text area like the one shown in Figure 10-16.

 JLabel bodyLabel = new JLabel("Body:");
 JTextArea bodyArea = new JTextArea(10,30);
 bodyArea.setLineWrap(true);
 bodyArea.setWrapStyleWord(true);
 JScrollPane bodyScroller = new JScrollPane(bodyArea);
 bodyScroller.setHorizontalScrollBarPolicy(
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
 bodyScroller.setVerticalScrollBarPolicy(
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

 frame.add(bodyLabel);
 // note we don't add bodyArea, it's already in bodyScroller
frame.add(bodyScroller);

Hooray! You now have a taste of the most common Swing components, including
labels, buttons, and text fields. But we really have just scratched the surface of these
components. They all have many different attributes that can be easily adjusted with
calls like the setBackground() method we used on our JLabel instances in “Labels
and Buttons” on page 288. Look over the Java documentation and play around with
each of these components in jshell or in your own mini applications. Getting comfort‐
able with UI design rests on practice. We definitely encourage you to look up other
books and online resources if you will be building desktop applications for work or
even just to share with friends, but nothing beats time spent at the keyboard actually
creating an app and fixing the things that invariably go awry.

Buttons and Sliders and Text Fields, Oh My! | 301

5 We should also note that there are many open source projects with yet fancier components for handling
things like syntax highlighting in text, various selection helpers, and composite inputs like date or time pick‐
ers.

Figure 10-16. A well-formed JTextArea in a JScrollPane

Other Components
If you’ve already looked at the documentation on the javax.swing package, you
know there are several dozen other components available for use in your applications.
Within that large list, there are a few that we want to make sure you know about.5

JSlider
Sliders are a nifty, efficient input component when you have a range of values. You
have probably seen sliders in things like font size selectors, color pickers (think the
ranges of red, green, and blue), zoom selectors, etc. Indeed, a slider is perfect for both
the angle and the force values we need in our apple tossing game. Our angles range
from 0 to 180, and our force value ranges from 0 to 20 (our arbitrary maximum).
Figure 10-17 shows these sliders in place—just ignore how we achieved the layout for
now.

302 | Chapter 10: Desktop Applications

Figure 10-17. Using JSlider in our apple tossing game

To create a new slider, you typically provide three values: the minimum (0 for our
angle slider), the maximum (180), and the initial value (we’ll go for the middle at 90).
We can add just such a slider to our jshell playground like this:

jshell> w.reset()

jshell> JSlider slider = new JSlider(0, 180, 90);
slider ==> javax.swing.JSlider[,0,0,0x0, ... ks=false,snapToValue=true]

jshell> w.add(slider)
$20 ==> javax.swing.JSlider[,0,0,0x0, ... alue=true]

Scoot the slider around like you see in Figure 10-18, and then look at its current value
using the getValue() method:

jshell> slider.getValue()
$21 ==> 112

Buttons and Sliders and Text Fields, Oh My! | 303

Figure 10-18. A simple JSlider in jshell

In “Events” on page 318, we’ll see how to receive those values as the user changes
them in real time.

If you look over the documentation for the JSlider constructors, you’ll notice that
they use integers for the minimum and maximum values. You may have also noticed
that getValue() also returns an integer. If you need fractional values, that falls to you.
The force slider in our game, for example, would benefit from supporting more than
21 discrete levels. We can address that type of need by building the slider with a
(often much) larger range and then simply dividing the current value by an appropri‐
ate scale factor.

jshell> JSlider force = new JSlider(0, 200, 100)
force ==> javax.swing.JSlider[,0,0,0x0, ... ks=false,snapToValue=true]

jshell> w.add(force)
$23 ==> javax.swing.JSlider[,0,0,0x0,invalid ... alue=true]

jshell> force.getValue()
$24 ==> 68

jshell> float myForce = force.getValue() / 10.0f;
myForce ==> 6.8

JList
If you have a range of values but those values are not simple, contiguous integers, the
“list” UI element is a great choice. JList is the Swing implementation of this input
type. You can set it to allow single or multiple selections, and if you dig deeper into

304 | Chapter 10: Desktop Applications

Swing’s features, you can produce custom views that display the items in your list
with extra information or details. (For example, you can make lists of icons, or icons
and text, or multiline text, etc., etc.)

Unlike the other components we’ve seen so far, JList requires a little more informa‐
tion to get started. To make a useful list component, you need to use one of the con‐
structors that takes the data you intend to show. The simplest such constructor
accepts an Object array. While you can pass an array of strange objects, the default
behavior of JList will be to show the output of your objects’ toString() method in
the list. Using an array of String objects is very common and produces the expected
results. Figure 10-19 shows a simple list of cities.

Figure 10-19. A simple JList of four cities in jshell

jshell> w.reset()

jshell> String[] cities = new String[] { "Atlanta", "Boston", "Chicago",
 "Denver" };
cities ==> String[4] { "Atlanta", "Boston", "Chicago", "Denver" }

jshell> JList cityList = new JList<String>(cities);
cityList ==> javax.swing.JList[,0,0,0x0, ... ,layoutOrientation=0]

jshell> w.add(cityList)
$29 ==> javax.swing.JList[,0,0,0x0,invalid ... ation=0]

Notice we use the same <String> type information with the constructor as we do
when creating collection objects such as ArrayList (see “Type Limitations” on page
203). As Swing was added well before generics, you may encounter examples online
or in books that do not add the type information. As with the collections classes, this

Buttons and Sliders and Text Fields, Oh My! | 305

doesn’t stop your code from compiling or running, but you will receive the same
unchecked warning message at compile time.

Similar to getting the current value of a slider, you can retrieve the selected item or
items in a list using one of four methods:

• getSelectedIndex() for single-select lists, returns an int
• getSelectedIndices() for multiselect lists, returns an array of int
• getSelectedValue() for single-select lists, returns an object
• getSelectedValues() for multiselect lists, returns an array of objects

Obviously the main difference is whether the index of the selected item(s) or the
actual value(s) is more useful to you. Playing with our city list in jshell, we can pull
out a selected city like so:

jshell> cityList.getSelectedIndex()
$31 ==> 2

jshell> cityList.getSelectedIndices()
$32 ==> int[1] { 2 }

jshell> cityList.getSelectedValue()
$33 ==> "Chicago"

jshell> cities[cityList.getSelectedIndex()]
$34 ==> "Chicago"

Note that for large lists, you’ll probably want a scroll bar. Swing promotes reusability
in its code, so perhaps it is no surprise that you can use a JScrollPane with JList
just like we did for text areas in “Text scrolling” on page 299.

Containers and Layouts
That is quite a list of components! And it really is only a subset of the widgets avail‐
able for your graphical applications. But we’ll leave the exploration of the other Swing
components to you as you get more comfortable with Java in general and design spe‐
cific programming solutions to actual problems. In this section, we want to concen‐
trate on assembling the components above into useful arrangements. Those
arrangements happen inside a container so let’s start this discussion by looking at the
most common containers.

306 | Chapter 10: Desktop Applications

Frames and Windows
Every desktop application will need at least one window. This term predates Swing
and is used by most graphical interfaces available on the three big operating systems.
Swing does provide a low-level JWindow class if you need it, but most likely you will
build your application inside a JFrame. Indeed, our first graphical application in
Chapter 2 used a JFrame. Figure 10-20 illustrates the class hierarchy of JFrame. We
will stick to the basic features of JFrame, but as your applications become richer, you
may want to create your own windows using elements higher up in the hierarchy.

Figure 10-20. The JFrame class hierarchy

Let’s revisit the creation of that first graphical application and focus a bit more on
exactly what we do with the JFrame object we build:

 import javax.swing.*;

 public class HelloJavaAgain {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);

 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 frame.add(label);

 frame.setVisible(true);
 }
 }

Containers and Layouts | 307

The string we pass to the JFrame constructor becomes the title of the window. We
then set a few specific properties on our object. We make sure that when the user
closes the window, we quit our program. (That might seem obvious, but complex
applications might have multiple windows, such as tool palettes or support for multi‐
ple documents. Closing a window in these applications may not mean “quit.”) We
then pick a starting size for the window and add our actual label component, the
frame (which in turn places the label in its content pane, more on that in a minute).
Once the component is added, we make the window visible, and the result is
Figure 10-21.

Figure 10-21. A simple JFrame with an added label

This basic process is the foundation of every Swing application. The interesting part
of your application comes from what you do with that content pane. But what is that
content pane? Turns out the frame uses its own component/container—an instance of
JPanel (more on JPanel in the next section). If you look closely at the documenta‐
tion for JFrame, you might notice that you can set your own content pane to be any
object descended from java.awt.Container, but we’ll be sticking with the default for
now. As you may have noticed above, we are also using a shortcut to add our label.
The JFrame version of add() will call the content pane’s add(). We could have said,
for example:

 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 frame.getContentPane().add(label);

The JFrame class does not have shortcuts for everything you might do with the con‐
tent pane, however. Read the documentation and use a shortcut if it exists. If it does

308 | Chapter 10: Desktop Applications

not, don’t hesitate to grab a reference via getContentPane() and then configure or
tweak that object.

JPanel
The JPanel class is the go-to container in Swing. It is a component just like JButton
or JLabel, so your panels can contain other panels. Such nesting often plays a big role
in the layout of an application. For example, you could create a JPanel to house the
formatting buttons of a text editor in a “toolbar” so that it is easy to move that toolbar
around according to user preferences.

JPanel gives you the ability to add and remove components from the screen. (More
accurately, those add/remove methods are inherited from the Container class, but we
access them through our JPanel objects.) You can also repaint() a panel if some‐
thing has changed and you want to update your UI. We can see the effects of the
add() and remove() methods shown in Figure 10-22 using our playground object in
jshell:

jshell> Widget w = new Widget()
w ==> ch10.Widget[frame0,0,23,300x300, ... tPaneCheckingEnabled=true]

jshell> JLabel emailLabel = new JLabel("Email:")
emailLabel ==> javax.swing.JLabel[,0,0,0x0, ... extPosition=CENTER]

jshell> JTextField emailField = new JTextField(12)
emailField ==> javax.swing.JTextField[,0,0,0x0, ... talAlignment=LEADING]

jshell> JButton submitButton = new JButton("Submit")
submitButton ==> javax.swing.JButton[,0,0,0x0, ... aultCapable=true]

jshell> w.add(emailLabel);
$8 ==> javax.swing.JLabel[,0,0,0x0, ... ition=CENTER]
// Left screenshot in image above

jshell> w.add(emailField)
$9 ==> javax.swing.JTextField[,0,0,0x0, ... nment=LEADING]

jshell> w.add(submitButton)
$10 ==> javax.swing.JButton[,0,0,0x0, ... pable=true]
// Now we have the middle screenshot

jshell> w.remove(emailLabel)
// And finally the right screenshot

Try it yourself! Most applications, however, don’t add and remove components willy-
nilly. You usually build up your interface by adding what you need and then simply
leave it alone. You may enable or disable some buttons along the way, but you don’t
want to be in the habit of surprising the user with disappearing parts or new elements
popping up.

Containers and Layouts | 309

Figure 10-22. Adding and removing components in a JPanel

Layout Managers
The other key feature of JPanel in Swing (or of any descendant of Container, really)
is the notion of where the components you add end up in the container and what size
they have. In UI-speak, this is “laying out” your container, and Java provides several
layout managers to help you achieve your desired results.

BorderLayout

We’ve already seen the FlowLayout in action (at least in its horizontal orientation, one
of its constructors can make a column of components). We were also using another
layout manager without really knowing it. The content pane of a JFrame uses the Bor
derLayout by default. Figure 10-23 shows the five areas controlled by BorderLayout,
along with the names of their region. Notice that the NORTH and SOUTH regions are as
wide as the application window, but only as tall as required to fit the label. Similarly,
the EAST and WEST regions fill the vertical gap between the NORTH and SOUTH regions,
but are only as wide as required, leaving the remaining space to be filled both hori‐
zontally and vertically by the CENTER region.

import java.awt.*;
import javax.swing.*;

public class BorderLayoutDemo {
 public static void main(String[] args) {
 JFrame frame = new JFrame("BorderLayout Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(400, 200);

 JLabel northLabel = new JLabel("Top - North", JLabel.CENTER);
 JLabel southLabel = new JLabel("Bottom - South", JLabel.CENTER);
 JLabel eastLabel = new JLabel("Right - East", JLabel.CENTER);
 JLabel westLabel = new JLabel("Left - West", JLabel.CENTER);
 JLabel centerLabel = new JLabel("Center (everything else)",
 JLabel.CENTER);

310 | Chapter 10: Desktop Applications

 // Color the labels so we can see their boundaries better
 northLabel.setOpaque(true);
 northLabel.setBackground(Color.GREEN);
 southLabel.setOpaque(true);
 southLabel.setBackground(Color.GREEN);
 eastLabel.setOpaque(true);
 eastLabel.setBackground(Color.RED);
 westLabel.setOpaque(true);
 westLabel.setBackground(Color.RED);
 centerLabel.setOpaque(true);
 centerLabel.setBackground(Color.YELLOW);

 frame.add(northLabel, BorderLayout.NORTH);
 frame.add(southLabel, BorderLayout.SOUTH);
 frame.add(eastLabel, BorderLayout.EAST);
 frame.add(westLabel, BorderLayout.WEST);
 frame.add(centerLabel, BorderLayout.CENTER);

 frame.setVisible(true);
 }
}

Figure 10-23. The regions available with BorderLayout

Notice the add() method in this case takes an extra argument. That argument is
passed to the layout manager. Not all managers need this argument, as we saw with
FlowLayout.

Here is an example where nesting JPanel objects can be very handy—main app in a
JPanel in the center, toolbar in a JPanel along the top, status bar in a JPanel along
the bottom, project manager in a JPanel on the side, etc. BorderLayout defines those
regions using compass directions. Figure 10-24 shows a very simple example of such
container nesting. We use a text area for a large message in the center and then add
some action buttons to a panel along the bottom. Again, without the events we’ll
cover in the next section, none of these buttons do anything, but we want to show

Containers and Layouts | 311

you how to work with multiple containers. And you could continue nesting JPanel
objects if you wanted; just make sure your hierarchy is readable. Sometimes a better
top-level layout choice makes your app both more maintainable and more
performant.

public class NestedPanelDemo {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Nested Panel Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(400, 200);

 // Create the text area and go ahead and add it to the center
 JTextArea messageArea = new JTextArea();
 frame.add(messageArea, BorderLayout.CENTER);

 // Create the button container
 JPanel buttonPanel = new JPanel(new FlowLayout());

 // Create the buttons
 JButton sendButton = new JButton("Send");
 JButton saveButton = new JButton("Save");
 JButton resetButton = new JButton("Reset");
 JButton cancelButton = new JButton("Cancel");

 // Add the buttons to their container
 buttonPanel.add(sendButton);
 buttonPanel.add(saveButton);
 buttonPanel.add(resetButton);
 buttonPanel.add(cancelButton);

 // And finally, add the button container to the bottom of the app
 frame.add(buttonPanel, BorderLayout.SOUTH);

 frame.setVisible(true);
 }
}

Figure 10-24. A simple nested container example

Two things to point out in this example. First, you might see that we did not specify
the number of rows or columns when creating our JTextArea object. Unlike

312 | Chapter 10: Desktop Applications

FlowLayout, BorderLayout will set the size of its components when possible. For the
top and bottom, this means using the component’s own height, similar to how Flow
Layout works, but then setting the width of the component to fill the frame. The sides
use their components’ width, but then set the height. The component in the center,
like our text area above, gets its width and height set by BorderLayout.

The second thing may be obvious, but we want to call attention to it just the same.
Notice that when we add the messageArea and buttonPanel objects to the frame, we
specify the extra “where” argument to the frame’s add() method. However, when we
are adding the buttons themselves to buttonPanel, we use the simpler version of
add() with only the component argument. Those various add() calls are tied to the
container doing the calling, and they pass arguments appropriate for that container’s
layout manager. So even though the buttonPanel is in the SOUTH region of the frame,
the saveButton and its compatriots don’t know or care about that detail.

GridLayout
Many times you need (or want) your components or labels to occupy symmetric
spaces. Think of the Yes, No, and Cancel buttons along the bottom of a confirmation
dialog. (Swing can make those dialogs, too, but more on that in “Modals and Pop
Ups” on page 327.) The GridLayout class is one of the early layout managers that
helps with such even spacing. Let’s try using GridLayout for those buttons in our pre‐
vious example. All we have to do is change one line:

 // Create the button container
 // old version: JPanel buttonPanel = new JPanel(new FlowLayout());
 JPanel buttonPanel = new JPanel(new GridLayout(1,0));

The calls to add() remain exactly the same; no separate constraint argument is
needed. The result is shown in Figure 10-25.

Figure 10-25. Using GridLayout for a row of buttons

As you can see in Figure 10-25, the GridLayout buttons are the same size, even
though the text of the Cancel button is a bit longer than the others. In creating the
layout manager, we told it we want exactly one row, no restrictions (the “zero”) on
how many columns. Although as the name implies, grids can be two-dimensional

Containers and Layouts | 313

and we can specify exactly how many rows and columns we want. Figure 10-26 shows
the classic phone keypad layout.

public class PhoneGridDemo {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Nested Panel Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 300);

 // Create the phone pad container
 JPanel phonePad = new JPanel(new GridLayout(4,3));

 // Create and add the 12 buttons, top-left to bottom-right
 phonePad.add(new JButton("1"));
 phonePad.add(new JButton("2"));
 phonePad.add(new JButton("3"));

 phonePad.add(new JButton("4"));
 phonePad.add(new JButton("5"));
 phonePad.add(new JButton("6"));

 phonePad.add(new JButton("7"));
 phonePad.add(new JButton("8"));
 phonePad.add(new JButton("9"));

 phonePad.add(new JButton("*"));
 phonePad.add(new JButton("0"));
 phonePad.add(new JButton("#"));

 // And finally, add the pad to the center of the app
 frame.add(phonePad, BorderLayout.CENTER);

 frame.setVisible(true);
 }
}

Adding the buttons in order from left to right, top to bottom, should result in the app
you see in Figure 10-26.

Very handy and very easy if you need perfectly symmetric elements. But what if you
want mostly symmetric? Think of popular web forms with a column of labels on the
left and a column of text fields on the right. GridLayout could absolutely handle a
basic form like that, but many times your labels are short and simple, while your text
fields are wider, allowing for more input from the user. How do we accommodate
those layouts?

314 | Chapter 10: Desktop Applications

Figure 10-26. A two-dimensional grid layout for a phone pad

GridBagLayout

If you need a more interesting layout but don’t want to nest lots of panels, the GridBa
gLayout is a possibility. It’s a little more complex to set up, but it allows for some
nicely intricate layouts that still keep elements aesthetically aligned and sized. Similar
to BorderLayout, you add components with an extra argument. The argument for
GridBagLayout, however, is a rich GridBagConstraints object rather than a simple
String.

The “grid” in GridBagLayout is exactly that, a rectangular container divvied up into
various rows and columns. The “bag” part, though, comes from a sort of grab bag
notion of how you use the cells created by those rows and columns. The rows and
columns can each have their own height or width, and components can occupy any
rectangular collection of cells. We can take advantage of this flexibility to build out
our game interface with a single JPanel rather than with several nested panes.
Figure 10-27 shows one way of carving up the screen into four rows and three col‐
umns, and then placing the components.

Containers and Layouts | 315

Figure 10-27. An example grid for use with GridBagLayout

You can see the different row heights and column widths. And notice how some com‐
ponents occupy more than one cell. This type of arrangement won’t work for every
application, but it is powerful and works for many UIs that need more than simple
layouts.

To build an application with a GridBagLayout, you need to keep a couple of refer‐
ences around as you add components. Let’s set up the grid first:

 public static final int SCORE_HEIGHT = 30;
 public static final int CONTROL_WIDTH = 300;
 public static final int CONTROL_HEIGHT = 40;
 public static final int FIELD_WIDTH = 3 * CONTROL_WIDTH;
 public static final int FIELD_HEIGHT = 2 * CONTROL_WIDTH;
 public static final float FORCE_SCALE = 0.7f;

 GridBagLayout gameLayout = new GridBagLayout();

 gameLayout.columnWidths = new int[]
 { CONTROL_WIDTH, CONTROL_WIDTH, CONTROL_WIDTH };
 gameLayout.rowHeights = new int[]

316 | Chapter 10: Desktop Applications

 { SCORE_HEIGHT, FIELD_HEIGHT, CONTROL_HEIGHT, CONTROL_HEIGHT };

 JPanel gamePane = new JPanel(gameLayout);

Great. This step requires a little planning on your part, but it’s always easy to adjust
once you get a few components on the screen. To get those components added, you
need to create and configure a GridBagConstraints object. Fortunately, you can
reuse the same object for all of your components—you just need to repeat the config‐
uration portion before adding each element. Here’s an example of how we could add
the main playing field component:

 GridBagConstraints gameConstraints = new GridBagConstraints();

 gameConstraints.fill = GridBagConstraints.BOTH;
 gameConstraints.gridy = 1;
 gameConstraints.gridx = 0;
 gameConstraints.gridheight = 1;
 gameConstraints.gridwidth = 3;

 Field field = new Field();
 gamePane.add(field, gameConstraints);

Notice how we set which cells the field will occupy. This is the core of configuring
grid bag constraints. You can also adjust things like how a component will fill the cells
it occupies and how much of a margin each component gets. We’ve settled on simply
filling all of the space available in a group of cells (“both” a horizontal fill and a
vertical fill), but you can read about more options in the documentation for
GridBagConstraints.

Let’s add a scorekeeping label at the top:

 gameConstraints.fill = GridBagConstraints.BOTH;
 gameConstraints.gridy = 0;
 gameConstraints.gridx = 0;
 gameConstraints.gridheight = 1;
 gameConstraints.gridwidth = 1;

 JLabel scoreLabel = new JLabel(" Player 1: 0");
 gamePane.add(scoreLabel, gameConstraints);

For this second component, notice how similar the setup of the constraints is to how
we handled the game field? Any time you see similarities like this, you should con‐
sider pulling those steps into a function you can reuse. We could do just that:

 private GridBagConstraints buildConstraints(int row, int col,
 int rowspan, int colspan)
 {
 // Use our global reference to the gameConstraints object
 gameConstraints.fill = GridBagConstraints.BOTH;
 gameConstraints.gridy = row;
 gameConstraints.gridx = col;

Containers and Layouts | 317

 gameConstraints.gridheight = rowspan;
 gameConstraints.gridwidth = colspan;
 return gameConstraints;
 }

And then rewrite the earlier blocks of code for the score label and game field, like
this:

 GridBagConstraints gameConstraints = new GridBagConstraints();

 JLabel scoreLabel = new JLabel(" Player 1: 0");
 Field field = new Field();
 gamePane.add(scoreLabel, buildConstraints(0,0,1,1));
 gamePane.add(field, buildConstraints(1,0,1,3));

With that function in place, we can quickly add the various other components and
labels we want to complete our game interface. For example, the toss button in the
lower-right corner of Figure 10-27 can be set up like this:

 JLabel tossButton = new JButton("Toss");
 gamePane.add(tossButton, buildConstraints(2,2,2,1));

Much cleaner! We simply continue building our components and placing them on the
correct row and column, with the appropriate spans. In the end we have a reasonably
interesting set of components laid out in a single container.

As with other sections in this chapter, we don’t have time to cover every layout man‐
ager, or even every feature of the layout managers we do discuss. Be sure to check the
Java documentation and try creating a few dummy apps to play with the different lay‐
outs. As a starting point, BoxLayout is a nice upgrade to the grid idea, and GroupLay
out can produce some nicely aligned data entry forms. For now, though, we’re going
to move on and finally get all these components “hooked up” and start responding to
all the typing and clicking and button pushing—all actions that are encoded in Java as
events.

Events
When thinking about the MVC architecture, we can see that the model and view ele‐
ments are straightforward. We’ve seen several Swing components already and
touched on their view, as well as the model for more interesting components like
JList. (Labels and buttons also have models, of course, they just aren’t very complex.)
With that background in place, let’s look at the controller functionality. In Swing (and
Java more generally), interaction between users and components is communicated via
events. An event contains general information, such as when it occurred, as well as
information specific to the event type, such as the point on your screen where you
clicked your mouse. A listener (or handler) picks up the message and can respond in
some useful way.

318 | Chapter 10: Desktop Applications

As you work through the examples below, you’ll likely notice that some of the events
and listeners are part of the javax.swing.event package, while others live in
java.awt.event. This reflects the fact that Swing succeeded AWT. The parts of AWT
that are still relevant remain in use, but Swing added a number of new items to
accommodate the expanding functionality provided by the library.

Mouse Events
The easiest way to get started is just to generate and handle an event. Let’s return to
our simple HelloJava application (updated to HelloMouse!) and add a listener for
mouse events. When we click our mouse, we’ll use that click event to determine the
position of our JLabel. (This will require removing the layout manager, by the way.
We want to set the coordinates of our label manually.) Here is the code of our new,
interactive application:

package ch10;

import java.awt.*;
import javax.swing.*;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

public class HelloMouse extends JFrame implements MouseListener {
 JLabel label;

 public HelloMouse() {
 super("MouseEvent Demo");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(null);
 setSize(300, 100);

 label = new JLabel("Hello, Mouse!", JLabel.CENTER);
 label.setOpaque(true);
 label.setBackground(Color.YELLOW);
 label.setSize(100,20);
 label.setLocation(100,100);
 add(label);

 getContentPane().addMouseListener(this);
 }

 public void mouseClicked(MouseEvent e) {
 label.setLocation(e.getX(), e.getY());
 }

 public void mousePressed(MouseEvent e) { }
 public void mouseReleased(MouseEvent e) { }
 public void mouseEntered(MouseEvent e) { }
 public void mouseExited(MouseEvent e) { }

Events | 319

 public static void main(String[] args) {
 HelloMouse frame = new HelloMouse();
 frame.setVisible(true);
 }
}

Go ahead and run the application. You’ll get a fairly familiar “Hello, World” graphical
application, as shown in Figure 10-28. The friendly message should follow you
around as you click around.

Figure 10-28. Using a MouseEvent to position a label

As you look at the source code for this example, pay attention to a few particular
items:

As you click, your computer is generating low-level events that are handed to the
JVM and end up in your code to be handled by a listener. In Java, listeners are
interfaces, and you can make special classes just to implement the interface, or
you can implement listeners as part of your main application class like we did
here. Where you handle events really depends on what actions you need to take
in response. You’ll see a number of examples of both approaches throughout the
rest of this book.

We implemented the MouseListener interface in addition to extending JFrame.
We had to provide a body for every method listed in MouseListener, but we do
our real work in mouseClicked(). You can see we take the coordinates of the
click from the event object, and use them to change the position of our label.
The MouseEvent class contains a wealth of information about the event. When it
occurred, which component it occurred on, which mouse button was involved,
the (x,y) coordinate where the event occurred, etc. Try printing some of that
information in some of the unimplemented methods, such as mouseDown().

You may have noticed that we added quite a few methods for other types of
mouse events that we didn’t use. That’s common with lower-level events, such as
mouse and keyboard events. The listener interfaces are designed to give you a
central point to get many related events. You just respond to the particular events
you care about and leave the other methods empty.

320 | Chapter 10: Desktop Applications

The other critical bit of new code is the call to addMouseListener() for our con‐
tent pane. The syntax may look a little odd, but it’s a valid approach. The use of
getContentPane() on the left says “this is where the events will be generated,”
and the use of this as the argument says “this is where events will be delivered.”
For our example, the events from the frame’s content pane will be delivered back
to the same class, which is where we put all of the mouse-handling code.

Mouse adapters
If we want to try the helper class approach, we could add another, separate class to
our file and implement MouseListener in that class. But if we’re going to create a sep‐
arate class, we can take advantage of a shortcut Swing provides for many listeners.
The MouseAdapter class is a simple, empty implementation of the MouseListener
interface with empty methods written for every type of event. When you extend this
class, you are free to override only the methods you care about. That can make for a
cleaner handler.

package ch10;

import java.awt.*;
import java.awt.event.MouseEvent;
import java.awt.event.MouseAdapter;
import javax.swing.*;

public class HelloMouseHelper {
 public static void main(String[] args) {
 JFrame frame = new JFrame("MouseEvent Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(null);
 frame.setSize(300, 300);

 JLabel label = new JLabel("Hello, Mouse!", JLabel.CENTER);
 label.setOpaque(true);
 label.setBackground(Color.YELLOW);
 label.setSize(100,20);
 label.setLocation(100,100);
 frame.add(label);

 LabelMover mover = new LabelMover(label);
 frame.getContentPane().addMouseListener(mover);
 frame.setVisible(true);
 }
}

/**
 * Helper class to move a label to the position of a mouse click.
 */
class LabelMover extends MouseAdapter {
 JLabel labelToMove;

Events | 321

 public LabelMover(JLabel label) {
 labelToMove = label;
 }

 public void mouseClicked(MouseEvent e) {
 labelToMove.setLocation(e.getX(), e.getY());
 }
}

The important thing to remember about helper classes is that they need to have a ref‐
erence to every object they’ll be interacting with. You can see we passed our label to
the constructor. That’s a popular way to establish the necessary connections, but you
could certainly add the required access later—as long as the handler can communi‐
cate with every object it needs before it starts receiving events.

Action Events
While mouse and keyboard events are available on just about every Swing compo‐
nent, they can be a little tedious. Most UI libraries provide higher-level events that are
simpler to think about. Swing is no exception. The JButton class, for example, sup‐
ports an ActionEvent that lets you know the button has been clicked. Most of the
time this is exactly what you want. But the mouse events are still available if you need
some special behavior such as reacting to clicks from different mouse buttons, or to
distinguish between a long and a short press on a touch screen.

A popular way to demonstrate the button click event is to build a simple counter like
the one you see in Figure 10-29. Each time you click the button, we update the label.
This simple proof of concept shows that you are ready to add many buttons with
many responses. Let’s see the wiring required for this demo:

package ch10;

import javax.swing.*;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ActionDemo1 extends JFrame implements ActionListener {
 int counterValue = 0;
 JLabel counterLabel;

 public ActionDemo1() {
 super("ActionEvent Counter Demo");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());
 setSize(300, 180);

 counterLabel = new JLabel("Count: 0", JLabel.CENTER);

322 | Chapter 10: Desktop Applications

 add(counterLabel);

 JButton incrementer = new JButton("Increment");
 incrementer.addActionListener(this);
 add(incrementer);
 }

 public void actionPerformed(ActionEvent e) {
 counterValue++;
 counterLabel.setText("Count: " + counterValue);
 }

 public static void main(String[] args) {
 ActionDemo1 demo = new ActionDemo1();
 demo.setVisible(true);
 }
}

Figure 10-29. Using ActionEvent to increment a counter

Not too bad. We update a simple counter variable and display the result inside the
actionPerformed() method, which is where ActionListener objects receive their
events. We used the direct listener implementation approach, but we could just as
easily have created a helper class as we did with the first example in “Mouse Events”
on page 319.

Action events are straightforward; they don’t have as many details available as mouse
events, but they do carry a “command” property. This property can be customized,
but for buttons, the default is to pass the text of the button’s label. The JTextField
class also generates an action event if you press the Return key while typing in the
text field. In this case, the command passed would be the text currently in the field.
Figure 10-30 shows a little demo that hooks up a button and a text field to a label.

Events | 323

Figure 10-30. Using ActionEvents from different sources

public class ActionDemo2 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("ActionListener Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 frame.setSize(300, 180);

 JLabel label = new JLabel("Results go here", JLabel.CENTER);
 ActionCommandHelper helper = new ActionCommandHelper(label);

 JButton simpleButton = new JButton("Button");
 simpleButton.addActionListener(helper);

 JTextField simpleField = new JTextField(10);
 simpleField.addActionListener(helper);

 frame.add(simpleButton);
 frame.add(simpleField);
 frame.add(label);

 frame.setVisible(true);
 }
}

/**
 * Helper class to show the command property of any ActionEvent in a given label.
 */
class ActionCommandHelper implements ActionListener {
 JLabel resultLabel;

 public ActionCommandHelper(JLabel label) {
 resultLabel = label;
 }

 public void actionPerformed(ActionEvent ae) {
 resultLabel.setText(ae.getActionCommand());
 }
}

324 | Chapter 10: Desktop Applications

Notice a very interesting thing about this code: we used one ActionListener object
to handle the events for both the button and the text field. This is a great feature of
the listener approach that Swing takes to handling events. Any component that gener‐
ates a given type of event can report to any listener that receives that type. Sometimes
the event handlers are unique and you’ll build a separate handler for each compo‐
nent. But many applications offer multiple ways to accomplish the same task. You can
often handle those different inputs with a single listener. And the less code you have,
the less that can go wrong!

Change Events
Another event type that appears in several Swing components is the ChangeEvent.
This is a simple event that mainly lets you know something, well, changed. The
JSlider class uses just this mechanism to report changes to the position of the slider.
The ChangeEvent class has a reference to the component that changed (the event’s
source) but no details on what might have changed within that component. It’s up to
you to go ask the component for those details. That listen-then-query process might
seem tedious, but it does allow for efficient notifications that updates are necessary
without creating hundreds of classes with thousands of methods to cover all the event
variations that might come up.

We won’t reproduce the entire application here, but let’s take a look at how the apple
tossing game uses ChangeListener to map the aiming slider to our physicist:

 gamePane.add(buildAngleControl(), buildConstraints(2, 0, 1, 1));

 // ...

 private JSlider buildAngleControl() {
 // Our aim can range from 0 to 180 degrees
 JSlider slider = new JSlider(0,180);

 // but trigonometric 0 is on the right side, not the left
 slider.setInverted(true);

 // And now, any time the slider value changes, we should update
 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 player1.setAimingAngle((float)slider.getValue());
 field.repaint();
 }
 });
 return slider;
 }

In this snippet, we use a factory pattern to create our slider and return it for use in the
add() method of our gamePane container. You can see we create a simple anonymous
inner class. Changing our aiming slider has one effect, and there is only one way to

Events | 325

aim the apple. Since there is no possibility of class reuse, the anonymous inner class is
very efficient. There is nothing wrong with creating a complete helper class and pass‐
ing it the player1 and field elements as arguments to a constructor or initialization
method, but you will find the approach used above quite often in the wild. While it
may seem a little odd at first, after you get comfortable with the pattern, it becomes
easy. It becomes self-documenting and you can trust that there are no hidden side
effects. For programmers, “what you see is what you get” is a wonderful situation.

Our Widget isn’t really good for event trial and error in jshell. While you certainly can
write code like the anonymous inner ChangeListener above at a command line, it
can be tedious and prone to errors—which are not easy to fix from that same com‐
mand line. It’s usually simpler to write small, focused demo apps. While we encourage
you to fire up the apple tossing game to play with the slider shown in the code above,
you should also try your hand at a few original apps.

Other Events
There are dozens of other events and listeners spread across the java.awt.event and
javax.swing.event packages. It’s worth peeking at the documentation just to get a
sense of the other types of events you might run into. Table 10-2 shows the events and
listeners associated with the components we’ve discussed so far in this chapter as well
as a few that are worth checking out as you work more with Swing. Again, this is not
an exhaustive list, but should help you work with these basic components and leave
you confident about exploring other components and their events.

Table 10-2. Swing and AWT events and associated listeners

S/A Event class Listener interface Generating components
A ActionEvent ActionListener JButton, JMenuItem, JTextField

S ChangeEvent ChangeListener JSlider

A ItemEvent ItemListener JCheckBox, JRadioButton

A KeyEvent KeyListener Descendants of Component

S ListSelectionEvent ListSelectionListener JList

A MouseEvent MouseListener Descendants of Component

A MouseMotionEvent MouseMotionListener Descendants of Component

AWT events (A) from java.awt.event, Swing events (S) from javax.swing.event

If you’re unsure what events a particular component supports, check its documenta‐
tion for methods that look like addXYZListener(). That “XYZ” type will hand you a
direct clue about where else to look in the documentation. Once you have the docu‐
mentation for the listener, try implementing every method and simply printing which

326 | Chapter 10: Desktop Applications

event was reported. It’s a little trial and error, but you can learn a lot about how the
various Swing components react to keyboard and mouse events this way.

Modals and Pop Ups
Events let the user get your attention, or at least the attention of some method in your
application. But what if you need to get the user’s attention? A popular mechanism
for this task in UIs is the pop-up window. You’ll often hear such a window referred to
as a “modal” or “dialog” or even “modal dialog.” The use of dialog comes from the fact
that these pop ups present some information to the user and expect or require a
response. Perhaps not as lofty as a Socratic symposium, but still. The modal name
refers to the fact that some of those dialogs that require a response will actually dis‐
able the rest of the application until you have provided that response. You may have
experienced such a dialog in other desktop applications. If your software requires you
to stay up-to-date with the latest release, for example, it might “gray out” the applica‐
tion indicating you can’t use it and then show you a modal dialog with a button that
initiates the update process. The application has forced you into a restricted mode
until you indicate how to proceed.

A “pop up” is a more general term. While you can certainly have modal pop ups, you
can also have plain (or “modeless,” though use of that technical definition is fading)
pop ups that do not block you from using the rest of the application. Think of a
search dialog that you can leave available and just scoot off to the side of your main
word processing document.

Message Dialogs
Swing provides a bare JDialog class that can be used to create custom dialog win‐
dows, but for typical dialog interactions with your users, the JOptionPane class has
some really handy shortcuts.

Perhaps the single most annoying pop up is the “something broke” dialog letting you
know (vaguely) that the application is not working as expected. This pop up shows
the user a brief message and an OK button that can be clicked to get rid of the dialog.
The purpose of this dialog is to hold up operation of the program until the user
acknowledges that they have seen the message. Figure 10-31 shows a basic example of
presenting a message dialog in response to clicking a button.

Modals and Pop Ups | 327

Figure 10-31. A simple JOptionPanes modal pop up

package ch10;

import javax.swing.*;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ModalDemo extends JFrame implements ActionListener {

 JLabel modalLabel;

 public ModalDemo() {
 super("Modal Dialog Demo");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());
 setSize(300, 180);

 modalLabel = new JLabel("Press 'Go' to show the popup!", JLabel.CENTER);
 add(modalLabel);

 JButton goButton = new JButton("Go");
 goButton.addActionListener(this);
 add(goButton);
 }

328 | Chapter 10: Desktop Applications

6 “Duke” is the official Java mascot. You can find out more at https://oreil.ly/H7KhT.

 public void actionPerformed(ActionEvent ae) {
 JOptionPane.showMessageDialog(this, "We're going!", "Alert",
 JOptionPane.INFORMATION_MESSAGE);
 modalLabel.setText("Go pressed! Press again if you like.");
 }

 public static void main(String args[]) {
 ModalDemo demo = new ModalDemo();
 demo.setVisible(true);
 }
}

Hopefully, you recognize the code connecting our goButton to the this listener. It’s
the same pattern we used with our very first ActionEvent. What is new is what we do
with that event. We show our message dialog and then update our label to indicate
that we successfully presented the dialog.

The showMessageDialog() call takes four arguments. The this argument you see in
the first position is the frame or window “owning” the pop up; the alert will try to
center itself over its owner when shown. We specify our application itself as the
owner. The second and third arguments are Strings for the dialog’s message and title,
respectively. The final argument indicates the “type” of pop up, which mostly affects
the icon you see. You can specify several types:

• ERROR_MESSAGE, red Stop icon
• INFORMATION_MESSAGE, Duke6 icon
• WARNING_MESSAGE, yellow triangle icon
• QUESTION_MESSAGE, Duke icon
• PLAIN_MESSAGE, no icon

If you want to play around with these pop ups, you can head back to your jshell. We
can use our Widget object as the owner, or you can employ the handy option of using
null to indicate there is no particular frame or window in charge, but that the pop up
should pause the entire application and show itself at the center of your screen, like
so:

jshell> import javax.swing.*

jshell> JOptionPane.showMessageDialog(null, "Hi there", "jshell Alert",
JOptionPane.ERROR_MESSAGE)

Modals and Pop Ups | 329

https://oreil.ly/H7KhT

Figure 10-32. A JOptionPane launched from jshell

You might have to run the ModalDemo a few times, but watch the text in our modalLa
bel object. Notice that it only changes after you dismiss the pop up. It is important to
remember that these modal dialogs halt the normal flow of your application. That is
exactly what you want for error conditions or where some user input is required, but
may not be what you want for simple status updates.

Perhaps you can imagine other, more valuable situations for such an alert. Or if you
do encounter the “something broke” situation in your application, hopefully you can
provide a useful error message that helps the user fix whatever went wrong. Remem‐
ber the email validating regular expression from “Pattern” on page 239? You could
attach an ActionListener to a text field and when the user presses Return, pop up an
error dialog if the content of the field doesn’t look like an email address.

Confirmation Dialogs
Another common task for pop ups is verifying the user’s intent. Many applications
ask if you’re sure you want to quit, or delete something, or do some other ostensibly
irreversible action like snapping your fingers while wearing a gauntlet studded with
Infinity Stones. JOptionPane has you covered. We can try out this new dialog in jshell
like so:

jshell> JOptionPane.showConfirmDialog(null, "Are you sure?")
$18 ==> 0

330 | Chapter 10: Desktop Applications

Figure 10-33. A confirmation JOptionPane

And that should produce a pop up with the Yes, No, and Cancel buttons, as shown in
Figure 10-33. You can determine which answer the user selected by keeping the
return value (an int) from the showConfirmDialog() method call. (In running this
example as we wrote this chapter, we clicked the Yes button. That’s the 0 return value
shown in the jshell snippet above.) So let’s modify our call to catch that answer (we’ll
click Yes again):

jshell> int answer = JOptionPane.showConfirmDialog(null, "Are you sure?")
answer ==> 0

jshell> answer == JOptionPane.YES_OPTION ? "They said yes!" :
"They said no or canceled. :("
$20 ==> "They said yes!"

There are other standard confirmation dialogs that can be shown with an extra pair
of arguments: a String title to show on the dialog, and one of the following option
types:

• YES_NO_OPTION

• YES_NO_CANCEL_OPTION

• OK_CANCEL_OPTION

You may notice that our example did not specify the extra arguments so we got the
default title of “Select an Option” and the buttons dictated by the YES_NO_CAN
CEL_OPTION type constant. In most situations, having both a “No” and a “Cancel”
choice is confusing for users. We recommend using an option such as “Yes No,” or
“OK Cancel,” or only “OK,” but not “Yes No Cancel.” The user can always close the
dialog using the standard window “x” window control without clicking any of the

Modals and Pop Ups | 331

provided buttons. You can detect that closing action by testing for JOption
Pane.CLOSED_OPTION in the result.

We won’t cover it here, but you can use the showOptionDialog() method if you need
to create something similar to the confirmation dialogs above but you want to use a
custom set of buttons. As always, the JDK documentation is your friend!

Input Dialogs
Last but not least in the world of pop ups are windows that ask for a quick bit of arbi‐
trary input. You can use the showInputDialog() method to ask a question and allow
the user to type in an answer. That answer (a String) can be stored similar to how
you keep the confirmation choice. Let’s add one more pop-up producing button to
our demo, as shown in Figure 10-34.

Figure 10-34. An “input” JOptionPane

jshell> String pin = JOptionPane.showInputDialog(null, "Please enter your PIN:")

pin ==> "1234"

This is handy for one-off requests, but is not something to do if you have a series of
questions to ask the user. Keep modals confined to quick tasks. They interrupt the
user. Sometimes that is exactly what you need, but if you abuse that attention, you’re
likely to annoy the user and they’ll learn to simply ignore every pop up from your
application.

Threading Considerations
If you have read any of the JDK documentation on Swing as you’ve been working
through this chapter, you may have come across the warning that Swing components
are not thread safe. If you recall from Chapter 9, Java supports multiple threads of
execution to take advantage of modern computer processing power. One of the con‐
cerns about multithreaded applications is that two threads might fight over the same

332 | Chapter 10: Desktop Applications

resource or update the same variable at the same time but with different values. Not
knowing if your data is correct can severely impact your ability to debug a program
or even just trust its output. For Swing components, this warning is reminding you
that your UI elements are subject to this type of corruption.

To help maintain a consistent UI, Swing encourages you to update your components
on the AWT event dispatch thread. This is the thread that naturally handles things like
button clicks. If you update a component in response to an event (such as our counter
example in “Action Events” on page 322 above), you are set. The idea is that if every
other thread in your application sends UI updates to the event dispatch thread, no
component can be adversely affected by simultaneous, possibly conflicting changes.

A common example of when threading is front and center in graphical applications is
the “long-running task.” Think of downloading a file from the cloud while an anima‐
ted spinner sits on your screen, hopefully keeping you entertained. But what if you
get impatient? What if it seems like the download has failed but the spinner is still
going? If your long-running task is using the event dispatch thread, your user won’t
be able to click a Cancel button or take any action at all. Long-running tasks should
be handled by separate threads that can run in the background, leaving your applica‐
tion responsive and available. But then how do we update the UI when that back‐
ground thread finishes? Swing has a helper for just that task.

SwingUtilities and Component Updates
You can use the SwingUtilities class from any thread to perform updates to your UI
components in a safe, stable manner. There are two static methods you can use to
communicate with your UI:

• invokeAndWait()

• invokeLater()

As their names imply, the first method runs some UI update code and makes the cur‐
rent thread wait for that code to finish before continuing. The second method hands
off some UI update code to the event dispatch thread and then immediately resumes
executing on the current thread. Which one you use really depends on whether your
background thread needs to know the state of the UI before continuing. For example,
if you are adding a new button to your interface, you might want to use invokeAnd
Wait() so that by the time your background thread continues, it can be sure that
future updates to the added button will actually have a button to update.

If you aren’t as concerned about when something gets updated, just that it does even‐
tually get handled safely by the dispatch thread, invokeLater() is perfect. Think
about updating a progress bar as a large file is downloading. You might fire off several
updates with more and more of the download completed. You don’t need to wait for

Threading Considerations | 333

those graphical updates to finish before resuming your download. If a progress
update gets delayed or runs very close to a second update, there’s no real harm. But
you don’t want a busy graphical interface to interrupt your download—especially if
the server is sensitive to pauses.

We’ll see several examples of exactly this type of network/UI interaction in the next
chapter, but let’s fake some network traffic and update a small label to show off Swing
Utilities. We can set up a Start button that will update a status label with a simple
percentage display and kick off a background thread that simply sleeps for a second,
then increments the progress. Each time the thread wakes up, it will update the label
using invokeLater() to correctly set the label’s text. First, let’s look at setting up our
demo:

public class ProgressDemo {
 public static void main(String[] args) {
 JFrame frame = new JFrame("SwingUtilities 'invoke' Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 frame.setSize(300, 180);

 JLabel label = new JLabel("Download Progress Goes Here!",
 JLabel.CENTER);
 Thread pretender = new Thread(new ProgressPretender(label));

 JButton simpleButton = new JButton("Start");
 simpleButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 simpleButton.setEnabled(false);
 pretender.start();
 }
 });

 JLabel checkLabel = new JLabel("Can you still type?");
 JTextField checkField = new JTextField(10);

 frame.add(label);
 frame.add(simpleButton);
 frame.add(checkLabel);
 frame.add(checkField);
 frame.setVisible(true);
 }
}

Hopefully, most of this looks familiar, but we do want to point out a few interesting
details. First, look at how we create our thread. We pass a new ProgressPretender
call as the the argument to our Thread constructor. We could have broken that into
separate parts, but since we do not refer to our ProgressPretender object again, we
can stick with this tidier, denser approach. We do refer to the thread itself, however,
so we make a proper variable for it. We can then start our thread running in the

334 | Chapter 10: Desktop Applications

ActionListener for our button. Notice in this listener that we disable our Start but‐
ton. We don’t want the user trying to start a thread that is already running!

The other thing we want to point out is that we added a text field for you to type in.
While the progress is being updated, your application should continue responding to
user input like typing. Try it! The text field isn’t connected to anything, of course, but
you should be able to enter and delete text all while watching the progress counter
slowly climb up, as shown in Figure 10-35.

Figure 10-35. Thread-safe updates to a progress label

So how did we update that label without locking up the application? Let’s look at the
ProgressPretender class and inspect the run() method:

class ProgressPretender implements Runnable {
 JLabel label;
 int progress;

 public ProgressPretender(JLabel label) {
 this.label = label;
 progress = 0;
 }

 public void run() {
 while (progress <= 100) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 label.setText(progress + "%");
 }
 });
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ie) {
 System.err.println("Someone interrupted us. Skipping download.");
 break;
 }
 progress++;
 }
 }
}

Threading Considerations | 335

In this class, we store the label passed to our constructor so we know where to display
our updated progress. The run() method has three basic steps: 1) update the label, 2)
sleep for 1000 milliseconds, and 3) increment our progress.

For step 1, notice the fairly complex argument we pass to invokeLater(). It looks a
lot like a class definition, but it is based on the Runnable interface we saw in Chap‐
ter 9. This is another example of using anonymous inner classes in Java. There are
other ways to create the Runnable object, but like handling simple events with anony‐
mous listeners, this thread pattern is very common. This nested Runnable argument
updates the label with our current progress value—but again, it performs this update
on the event dispatch thread. This is the magic that leaves the text field responsive
even though our “progress” thread is sleeping most of the time.

Step 2 is standard-issue thread sleeping. Recall that the sleep() method knows it can
be interrupted, so the compiler will make sure you supply a try/catch block like
we’ve done above. There are many ways we could handle the interruption, but in this
case we chose to simply break out of the loop.

Finally, we increment our progress counter and start the whole process over. Once we
hit 100, the loop ends and our progress label should stop changing. If you wait
patiently, you’ll see that final value. The app itself should remain active, though. You
can still type in the text field. Our download is complete and all is well with the
world!

Timers
The Swing library also includes a timer that is designed to work in the UI space. The
javax.swing.Timer class is fairly straightforward. It waits a specified period of time
and then fires off an action event. It can fire that action once or repeatedly. There are
many reasons to use timers with graphical applications. Besides an animation loop,
you might want to automatically cancel some action, like loading a network resource
if it is taking too long. Or conversely, you might put up a little “please wait” spinner
or message to let the user know the operation is ongoing. You might want to take
down a modal dialog if the user doesn’t respond within a specified time span. In all
these cases, simple one-time timers are great. Swing’s Timer can handle all of them.

Animation with Timer
Let’s revisit our flying apples animation from “Revisiting animation with threads” on
page 264 and try implementing it with an instance of Timer. We actually glossed over
using a correct utility method such as invokeLater() to safely repaint the game when
using standard threads. The Timer class takes care of that detail for us. And happily
we can still use our step() method in the Apple class from our first pass at

336 | Chapter 10: Desktop Applications

animation. We just need to alter the start method and keep a suitable variable around
for the timer:

 public static final int STEP = 40; // frame duration in milliseconds
 Timer animationTimer;

 // ...

 void startAnimation() {
 if (animationTimer == null) {
 animationTimer = new Timer(STEP, this);
 animationTimer.setActionCommand("repaint");
 animationTimer.setRepeats(true);
 animationTimer.start();
 } else if (!animationTimer.isRunning()) {
 animationTimer.restart();
 }
 }

 // ...

 public void actionPerformed(ActionEvent event) {
 if (animating && event.getActionCommand().equals("repaint")) {
 System.out.println("Timer stepping " + apples.size() + " apples");
 for (Apple a : apples) {
 a.step();
 detectCollisions(a);
 }
 repaint();
 cullFallenApples();
 }
 }

There are two nice things about this approach. It’s definitely easier to read because we
are not responsible for the pauses between actions. We create the Timer by passing
the constructor the time interval between events and an ActionListener to receive
the events—our Field class in this case. We give the timer a nice action command,
make it a repeating timer, and start it up! As we noted as part of the motiviation for
looking at timers, the other nice thing is specific to Swing and graphical applications:
javax.swing.Timer fires its action events on the event dispatch thread. You do not
need to wrap anything in invokeAndWait() or invokeLater(). Just put your time-
based code in an attached listener’s actionPerformed() method and you are good to
go!

Because several components generate ActionEvent objects as we’ve seen, we did take
a little precaution against collisions by setting the actionCommand attribute for our
timer. This step is not strictly necessary in our case, but it leaves room for the Field
class to handle other events down the road without breaking our animation.

Threading Considerations | 337

Other Timer uses
As mentioned at the top of this section, mature, polished applications have a variety
of small moments where it helps to have a one-time timer. Our apple game is simple
by comparison to most commercial apps or games, but even here we can add a little
“realism” with a timer: after tossing an apple, we could make the physicist pause
before being able to fire another apple. The physicist has to bend down and grab
another apple from a bucket before aiming or tossing. This kind of delay is another
perfect spot for a Timer.

We can add such a pause to the bit of code in the Field class where we toss the apple:

 public void startTossFromPlayer(Physicist physicist) {
 if (!animating) {
 System.out.println("Starting animation!");
 animating = true;
 startAnimation();
 }
 if (animating) {
 // Check to make sure we have an apple to toss
 if (physicist.aimingApple != null) {
 Apple apple = physicist.takeApple();
 apple.toss(physicist.aimingAngle, physicist.aimingForce);
 apples.add(apple);
 Timer appleLoader = new Timer(800, physicist);
 appleLoader.setActionCommand("New Apple");
 appleLoader.setRepeats(false);
 appleLoader.start();
 }
 }
 }

Notice this time that we set the timer to run only once with the setRepeats(false)
call. This means after a little less than a second, a single event will be fired off to our
physicist. The Physicist class, in turn, needs to add the implements ActionLis
tener portion to the class definition and include an appropriate actionPerformed()
function, like so:

 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("New Apple")) {
 getNewApple();
 if (field != null) {
 field.repaint();
 }
 }
 }

Again, using Timer isn’t the only way to accomplish such tasks, but in Swing, the
combination of efficient time-based events and automatic use of the event dispatch
thread make it worth considering. If nothing else, it is a great way to prototype. You

338 | Chapter 10: Desktop Applications

can always come back and refactor your application to use custom threading code if
needed.

Next Steps
As we noted at the beginning of the chapter, there are many, many more discussions
and topics and explorations available in the world of Java graphical applications. We’ll
leave it to you to do that exploring, but wanted to go through at least a few key topics
worth focusing on first if you have plans for a desktop app.

Menus
While not technically required, most desktop applications have an application-wide
menu of common tasks, such as saving changed files or setting preferences, and spe‐
cific features like spreadsheet apps that allow sorting the data in a column or selec‐
tion. The JMenu, JMenuBar, and JMenuItem classes help you add this functionality to
your Swing apps. Menus go inside a menu bar, and menu items go inside menus.
Swing has three prebuilt menu item classes: JMenuItem for basic menu entries, JCheck
boxMenuItem for option items, and JRadioButtonMenuItem for grouped menu items
such as you might see for the currently selected font or color theme. The JMenu class
is itself a valid menu item so that you can build nested menus. JMenuItem behaves like
a button (as do its menu item compatriots) and you can catch menu events using the
same listeners.

Figure 10-36 shows an example of a simple menu bar populated with some menus
and items.

Figure 10-36. JMenu and JMenuItem on macOS and Linux

Notice that the macOS application differs slightly from the Linux version. Swing (and
Java) still reflect many aspects of the native environments they run in. Although a
glaring discrepancy here is that macOS applications typically use a global menu bar at
the top of their main screen. You can do platform-specific things such as using the

Next Steps | 339

macOS menu or setting application icons as you get more comfortable with program‐
ming and want to start sharing your code or distributing your application to others.
But for now we’ll live with the macOS menu local to the application’s window.

package ch10;

import javax.swing.*;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class MenuDemo extends JFrame implements ActionListener {
 JLabel resultsLabel;

 public MenuDemo() {
 super("JMenu Demo");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());
 setSize(300, 180);

 resultsLabel = new JLabel("Click a menu item!");
 add(resultsLabel);

 // Now let's create a couple menus and populate them
 JMenu fileMenu = new JMenu("File");
 JMenuItem saveItem = new JMenuItem("Save");
 saveItem.addActionListener(this);
 fileMenu.add(saveItem);
 JMenuItem quitItem = new JMenuItem("Quit");
 quitItem.addActionListener(this);
 fileMenu.add(quitItem);

 JMenu editMenu = new JMenu("Edit");
 JMenuItem cutItem = new JMenuItem("Cut");
 cutItem.addActionListener(this);
 editMenu.add(cutItem);
 JMenuItem copyItem = new JMenuItem("Copy");
 copyItem.addActionListener(this);
 editMenu.add(copyItem);
 JMenuItem pasteItem = new JMenuItem("Paste");
 pasteItem.addActionListener(this);
 editMenu.add(pasteItem);

 // And finally build a JMenuBar for the application
 JMenuBar mainBar = new JMenuBar();
 mainBar.add(fileMenu);
 mainBar.add(editMenu);
 setJMenuBar(mainBar);
 }

 public void actionPerformed(ActionEvent event) {
 resultsLabel.setText("Menu selected: " + event.getActionCommand());

340 | Chapter 10: Desktop Applications

 }

 public static void main(String args[]) {
 MenuDemo demo = new MenuDemo();
 demo.setVisible(true);
 }
}

We obviously don’t do much with the menu item actions here, but we want to show
how you can start building out the expected parts of a professional application.

Preferences
The Java Preferences API accommodates the need to store both system and per-user
configuration data persistently across executions of the Java VM. The Preferences
API is like a portable version of the Windows registry, a mini-database in which you
can keep small amounts of information, accessible to all applications. Entries are
stored as name/value pairs, where the values may be of several standard types, includ‐
ing strings, numbers, Booleans, and even short byte arrays (remember we said small
amounts of data). As you build more interesting desktop applications, you will cer‐
tainly encounter elements that your users can customize. The Preferences API is a
great way to keep that information available in a cross-platform form that is easy to
use and will improve the user experience.

You can read more from Oracle online in their Preferences technote.

Custom Components and Java2D
We touched briefly on creating custom components with our game and its Field
class. We provided a custom paintComponent() method to draw our apples, trees,
and physicists. This is a start, but you can add a lot (a lot) more functionality. You can
take low-level mouse and keyboard events and map them onto fancier visual inter‐
faces. You can generate your own custom events. You can build your own layout
manager. You can even create an entire look and feel that touches every component in
the Swing library! This amazing extensibility requires some pretty in-depth knowl‐
edge of Swing and Java, but it’s there waiting for you.

In the drawing arena, you can check out the Java 2D API (see Oracle’s online over‐
view). This API provides several nice upgrades to the drawing and imaging capabili‐
ties in the AWT package. If you have an interest in Java’s 2D graphics capabilities, be
sure to check out Java 2D Graphics by Jonathan Knudsen. And again, Java Swing, 2nd
Edition by Loy et al., is an in-depth resource for all things Swing.

Next Steps | 341

https://oreil.ly/Vrbfz
https://oreil.ly/Bprke
https://oreil.ly/Bprke
https://oreil.ly/4xYdN
https://oreil.ly/M6kQg
https://oreil.ly/M6kQg

JavaFX
Another API you should look at is JavaFX. This collection of packages was originally
designed to replace Swing and includes rich media options such as video and high
fidelity audio. It is sufficiently different from Swing that both libraries remain a part
of the JDK and there appear to be no real plans to deprecate or remove Swing. As of
Java 11—recall this is the current long-term support version—the OpenJDK gained
support for JavaFX in the form of the OpenJFX project. You can find more online at
https://openjfx.io.

User Interface and User Experience
This was a whirlwind tour of some of the more common elements that you’ll be using
when creating a UI for your desktop applications. We’ve seen components such as
JButton, JLabel, and JTextField that will likely be in any graphical application you
make. We discussed how to arrange those components in containers and how to cre‐
ate more complex combinations of containers and components to handle more inter‐
esting presentations. Hopefully, we also introduced enough of the other components
to give you the tools you need to make sure the UX of your application is a positive
one.

These days, desktop applications are only part of the story. Many applications work
online in coordination with other applications. The remaining two chapters will
cover networking basics and introduce Java’s web programming capacity.

342 | Chapter 10: Desktop Applications

https://openjfx.io

1 While NIO was introduced with Java 1.4—so not very new anymore—it was newer than the original, basic
package and the name has stuck.

CHAPTER 11

Networking and I/O

In this chapter, we continue our exploration of the Java API by looking at many of the
classes in the java.io and java.nio packages. These packages offer a rich set of tools
for basic I/O (input/output) and also provide the framework on which all file and
network communication in Java is built. Figure 11-1 shows the class hierarchy of
these packages. We’ll only cover a selection of this hierarchy, but you can see that it is
quite broad. Once you have a handle on local file I/O, we’ll add the java.net package
and look at some basic networking concepts. (We’ll tackle the most popular of net‐
working environments—the web—in Chapter 12.)

We’ll start by looking at the stream classes in java.io, which are subclasses of the
basic InputStream, OutputStream, Reader, and Writer classes. Then we’ll examine
the File class and discuss how you can read and write files using classes in java.io.
We also take a quick look at data compression and serialization. Along the way, we’ll
also introduce the java.nio package. The NIO package (or “new” I/O) adds signifi‐
cant functionality tailored for building high-performance services and in some cases
simply provides newer, better APIs that can be used in place of some java.io
features.1

Streams
Most fundamental I/O in Java is based on streams. A stream represents a flow of data
with (at least conceptually) a writer at one end and a reader at the other. When you
are working with the java.io package to perform terminal input and output, reading
or writing files, or communicating through sockets in Java, you are using various

343

types of streams. Later in this chapter, we’ll look at the NIO package, which introdu‐
ces a similar concept called a channel. One difference betwen the two is that streams
are oriented around bytes or characters, while channels are oriented around “buffers”
containing those data types—yet they perform roughly the same job. Let’s start by
summarizing the available types of streams:

InputStream, OutputStream
Abstract classes that define the basic functionality for reading or writing an
unstructured sequence of bytes. All other byte streams in Java are built on top of
the basic InputStream and OutputStream.

Reader, Writer
Abstract classes that define the basic functionality for reading or writing a
sequence of character data, with support for Unicode. All other character streams
in Java are built on top of Reader and Writer.

InputStreamReader, OutputStreamWriter
Classes that bridge byte and character streams by converting according to a spe‐
cific character-encoding scheme. (Remember: in Unicode, a character is not nec‐
essarily one byte!)

DataInputStream, DataOutputStream
Specialized stream filters that add the ability to read and write multibyte data
types, such as numeric primitives and String objects in a universal format.

ObjectInputStream, ObjectOutputStream
Specialized stream filters that are capable of writing whole groups of serialized
Java objects and reconstructing them.

BufferedInputStream, BufferedOutputStream, BufferedReader, BufferedWriter
Specialized stream filters that add buffering for additional efficiency. For real-
world I/O, a buffer is almost always used.

PrintStream, PrintWriter
Specialized streams that simplify printing text.

PipedInputStream, PipedOutputStream, PipedReader, PipedWriter
“Loopback” streams that can be used in pairs to move data within an application.
Data written into a PipedOutputStream or PipedWriter is read from its corre‐
sponding PipedInputStream or PipedReader.

FileInputStream, FileOutputStream, FileReader, FileWriter
Implementations of InputStream, OutputStream, Reader, and Writer that read
from and write to files on the local filesystem.

344 | Chapter 11: Networking and I/O

Streams in Java are one-way streets. The java.io input and output classes represent
the ends of a simple stream, as shown in Figure 11-1. For bidirectional conversations,
you’ll use one of each type of stream.

Figure 11-1. Basic input and output stream functionality

InputStream and OutputStream are abstract classes that define the lowest-level inter‐
face for all byte streams. They contain methods for reading or writing an unstruc‐
tured flow of byte-level data. Because these classes are abstract, you can’t create a
generic input or output stream. Java implements subclasses of these for activities such
as reading from and writing to files and communicating with sockets. Because all byte
streams inherit the structure of InputStream or OutputStream, the various kinds of
byte streams can be used interchangeably. A method specifying an InputStream as an
argument can accept any subclass of InputStream. Specialized types of streams can
also be layered or wrapped around basic streams to add features such as buffering,
filtering, or handling higher-level data types.

Reader and Writer are very much like InputStream and OutputStream, except that
they deal with characters instead of bytes. As true character streams, these classes cor‐
rectly handle Unicode characters, which is not always the case with byte streams.
Often, a bridge is needed between these character streams and the byte streams of
physical devices, such as disks and networks. InputStreamReader and OutputStream
Writer are special classes that use a character-encoding scheme to translate between
character and byte streams.

This section describes all the interesting stream types with the exception of FileIn
putStream, FileOutputStream, FileReader, and FileWriter. We postpone the dis‐
cussion of file streams until the next section, where we cover issues involved with
accessing the filesystem in Java.

Basic I/O
The prototypical example of an InputStream object is the standard input of a Java
application. Like stdin in C or cin in C++, this is the source of input to a
command-line (non-GUI) program. It is an input stream from the environment—
usually a terminal window or possibly the output of another command. The

Streams | 345

2 Standard error is a stream that is usually reserved for error-related text messages that should be shown to the
user of a command-line application. It is differentiated from the standard output, which often might be redi‐
rected to a file or another application and not seen by the user.

java.lang.System class, a general repository for system-related resources, provides a
reference to the standard input stream in the static variable System.in. It also pro‐
vides a standard output stream and a standard error stream in the out and err vari‐
ables, respectively.2 The following example shows the correspondence:

 InputStream stdin = System.in;
 OutputStream stdout = System.out;
 OutputStream stderr = System.err;

This snippet hides the fact that System.out and System.err aren’t just OutputStream
objects, but more specialized and useful PrintStream objects. We’ll explain these later
in “PrintWriter and PrintStream” on page 352, but for now we can reference out and
err as OutputStream objects because they are derived from OutputStream.

We can read a single byte at a time from standard input with the InputStream’s
read() method. If you look closely at the API, you’ll see that the read() method of
the base InputStream class is an abstract method. What lies behind System.in is a
particular implementation of InputStream that provides the real implementation of
the read() method:

 try {
 int val = System.in.read();
 } catch (IOException e) {
 ...
 }

Although we said that the read() method reads a byte value, the return type in the
example is int, not byte. That’s because the read() method of basic input streams in
Java uses a convention carried over from the C language to indicate the end of a
stream with a special value. Data byte values are returned as unsigned integers in the
range 0 to 255, and the special value of -1 is used to indicate that the end of the
stream has been reached. You’ll need to test for this condition when using the simple
read() method. You can then cast the value to a byte if needed. The following exam‐
ple reads each byte from an input stream and prints its value:

 try {
 int val;
 while((val=System.in.read()) != -1)
 System.out.println((byte)val);
 } catch (IOException e) { ... }

As we’ve shown in the examples, the read() method can also throw an IOException
if there is an error reading from the underlying stream source. Various subclasses of

346 | Chapter 11: Networking and I/O

IOException may indicate that a source such as a file or network connection has had
an error. Additionally, higher-level streams that read data types more complex than a
single byte may throw EOFException (“end of file”), which indicates an unexpected or
premature end of stream.

An overloaded form of read() fills a byte array with as much data as possible up to
the capacity of the array and returns the number of bytes read:

 byte [] buff = new byte [1024];
 int got = System.in.read(buff);

In theory, we can also check the number of bytes available for reading at a given time
on an InputStream using the available() method. With that information, we could
create an array of exactly the right size:

 int waiting = System.in.available();
 if (waiting > 0) {
 byte [] data = new byte [waiting];
 System.in.read(data);
 ...
 }

However, the reliability of this technique depends on the ability of the underlying
stream implementation to detect how much data can be retrieved. It generally works
for files but should not be relied upon for all types of streams.

These read() methods block until at least some data is read (at least one byte). You
must, in general, check the returned value to determine how much data you got and if
you need to read more. (We look at nonblocking I/O later in this chapter.) The
skip() method of InputStream provides a way of jumping over a number of bytes.
Depending on the implementation of the stream, skipping bytes may be more effi‐
cient than reading them.

The close() method shuts down the stream and frees up any associated system
resources. It’s important for performance to remember to close most types of streams
when you are finished using them. In some cases, streams may be closed automati‐
cally when objects are garbage-collected, but it is not a good idea to rely on this
behavior. In Java 7, the try-with-resources language feature was added to make auto‐
matically closing streams and other closeable entities easier. We’ll see some examples
of that in “File Streams” on page 358. The flag interface java.io.Closeable identifies
all types of stream, channel, and related utility classes that can be closed.

Finally, we should mention that in addition to the System.in and System.out stan‐
dard streams, Java provides the java.io.Console API through System.console().
You can use the Console to read passwords without echoing them to the screen.

Streams | 347

Character Streams
In early versions of Java, some InputStream and OutputStream types included meth‐
ods for reading and writing strings, but most of them operated by naively assuming
that a 16-bit Unicode character was equivalent to an 8-bit byte in the stream. This
works only for Latin-1 (ISO 8859-1) characters and not for the world of other encod‐
ings that are used with different languages. In Chapter 8, we saw that the
java.lang.String class has a byte array constructor and a corresponding get
Bytes() method that each accept character encoding as an argument. In theory, we
could use these as tools to transform arrays of bytes to and from Unicode characters
so that we could work with byte streams that represent character data in any encod‐
ing format. Fortunately, however, we don’t have to rely on this because Java has
streams that handle this for us.

The java.io Reader and Writer character stream classes were introduced as streams
that handle character data only. When you use these classes, you think only in terms
of characters and string data, and allow the underlying implementation to handle the
conversion of bytes to a specific character encoding. As we’ll see, some direct imple‐
mentations of Reader and Writer exist, for example, for reading and writing files. But
more generally, two special classes, InputStreamReader and OutputStreamWriter,
bridge the gap between the world of character streams and the world of byte streams.
These are, respectively, a Reader and a Writer that can be wrapped around any
underlying byte stream to make it a character stream. An encoding scheme is used to
convert between possible multibyte encoded values and Java Unicode characters. An
encoding scheme can be specified by name in the constructor of InputStreamReader
or OutputStreamWriter. For convenience, the default constructor uses the system’s
default encoding scheme.

For example, let’s parse a human-readable string from the standard input into an inte‐
ger. We’ll assume that the bytes coming from System.in use the system’s default
encoding scheme:

 try {
 InputStream in = System.in;
 InputStreamReader charsIn = new InputStreamReader(in);
 BufferedReader bufferedCharsIn = new BufferedReader(inReader);

 String line = bufferedCharsIn.readLine();
 int i = NumberFormat.getInstance().parse(line).intValue();
 } catch (IOException e) {
 } catch (ParseException pe) { }

First, we wrap an InputStreamReader around System.in. This reader converts the
incoming bytes of System.in to characters using the default encoding scheme. Then,
we wrap a BufferedReader around the InputStreamReader. BufferedReader adds
the readLine() method, which we can use to grab a full line of text (up to a

348 | Chapter 11: Networking and I/O

platform-specific, line-terminator character combination) into a String. The string is
then parsed into an integer using the techniques described in Chapter 8.

The important thing to note is that we have taken a byte-oriented input stream, Sys
tem.in, and safely converted it to a Reader for reading characters. If we wished to use
an encoding other than the system default, we could have specified it in the Input
StreamReader’s constructor, like so:

 InputStreamReader reader = new InputStreamReader(System.in, "UTF-8");

For each character that is read from the reader, the InputStreamReader reads one or
more bytes and performs the necessary conversion to Unicode.

We return to the topic of character encodings when we discuss the java.nio.char
set API, which allows you to query for and use encoders and decoders explicitly on
buffers of characters and bytes. Both InputStreamReader and OutputStreamWriter
can accept a Charset codec object as well as a character-encoding name.

Stream Wrappers
What if we want to do more than read and write a sequence of bytes or characters?
We can use a “filter” stream, which is a type of InputStream, OutputStream, Reader,
or Writer that wraps another stream and adds new features. A filter stream takes the
target stream as an argument in its constructor and delegates calls to it after doing
some additional processing of its own. For example, we can construct a BufferedIn
putStream to wrap the system standard input:

 InputStream bufferedIn = new BufferedInputStream(System.in);

The BufferedInputStream is a type of filter stream that reads ahead and buffers a
certain amount of data. The BufferedInputStream wraps an additional layer of func‐
tionality around the underlying stream. Figure 11-2 shows this arrangement for a
DataInputStream, which is a type of stream that can read higher-level data types,
such as Java primitives and strings.

As you can see from the previous code snippet, the BufferedInputStream filter is a
type of InputStream. Because filter streams are themselves subclasses of the basic
stream types, they can be used as arguments to the construction of other filter
streams. This allows filter streams to be layered on top of one another to provide dif‐
ferent combinations of features. For example, we could first wrap our System.in with
a BufferedInputStream and then wrap the BufferedInputStream with a DataInput
Stream for reading special data types with buffering.

Java provides base classes for creating new types of filter streams: FilterInput
Stream, FilterOutputStream, FilterReader, and FilterWriter. These superclasses
provide the basic machinery for a “no op” filter (a filter that doesn’t do anything) by

Streams | 349

delegating all their method calls to their underlying stream. Real filter streams sub‐
class these and override various methods to add their additional processing. We’ll
make an example filter stream later in this chapter.

Figure 11-2. Layered streams

Data streams

DataInputStream and DataOutputStream are filter streams that let you read or write
strings and primitive data types composed of more than a single byte. DataInput
Stream and DataOutputStream implement the DataInput and DataOutput interfaces,
respectively. These interfaces define methods for reading or writing strings and all of
the Java primitive types, including numbers and Boolean values. DataOutputStream
encodes these values in a machine-independent manner and then writes them to its
underlying byte stream. DataInputStream does the converse.

You can construct a DataInputStream from an InputStream and then use a method
such as readDouble() to read a primitive data type:

 DataInputStream dis = new DataInputStream(System.in);
 double d = dis.readDouble();

This example wraps the standard input stream in a DataInputStream and uses it to
read a double value. The readDouble() method reads bytes from the stream and con‐
structs a double from them. The DataInputStream methods expect the bytes of
numeric data types to be in network byte order, a standard that specifies that the high-
order bytes are sent first (also known as “big endian,” as we discuss later).

The DataOutputStream class provides write methods that correspond to the read
methods in DataInputStream. For example, writeInt() writes an integer in binary
format to the underlying output stream.

350 | Chapter 11: Networking and I/O

The readUTF() and writeUTF() methods of DataInputStream and DataOutput
Stream read and write a Java String of Unicode characters using the UTF-8 “trans‐
formation format” character encoding. UTF-8 is an ASCII-compatible encoding of
Unicode characters that is very widely used. Not all encodings are guaranteed to pre‐
serve all Unicode characters, but UTF-8 does. You can also use UTF-8 with Reader
and Writer streams by specifying it as the encoding name.

Buffered streams

The BufferedInputStream, BufferedOutputStream, BufferedReader, and Buffered
Writer classes add a data buffer of a specified size to the stream path. A buffer can
increase efficiency by reducing the number of physical read or write operations that
correspond to read() or write() method calls. You create a buffered stream with an
appropriate input or output stream and a buffer size. (You can also wrap another
stream around a buffered stream so that it benefits from the buffering.) Here’s a sim‐
ple buffered input stream called bis:

 BufferedInputStream bis = new BufferedInputStream(myInputStream, 32768);
 ...
 bis.read();

In this example, we specify a buffer size of 32 KB. If we leave off the size of the buffer
in the constructor, a reasonably sized one is chosen for us. (Currently the default is 8
KB.) On our first call to read(), bis tries to fill our entire 32 KB buffer with data, if
it’s available. Thereafter, calls to read() retrieve data from the buffer, which is refilled
as necessary.

A BufferedOutputStream works in a similar way. Calls to write() store the data in a
buffer; data is actually written only when the buffer fills up. You can also use the
flush() method to wring out the contents of a BufferedOutputStream at any time.
The flush() method is actually a method of the OutputStream class itself. It’s impor‐
tant because it allows you to be sure that all data in any underlying streams and filter
streams has been sent (before, for example, you wait for a response).

Some input streams such as BufferedInputStream support the ability to mark a loca‐
tion in the data and later reset the stream to that position. The mark() method sets
the return point in the stream. It takes an integer value that specifies the number of
bytes that can be read before the stream gives up and forgets about the mark. The
reset() method returns the stream to the marked point; any data read after the call
to mark() is read again.

This functionality could be useful when you are reading the stream in a parser. You
may occasionally fail to parse a structure and so must try something else. In this sit‐
uation, you can have your parser generate an error and then reset the stream to the
point before it began parsing the structure:

Streams | 351

 BufferedInputStream input;
 ...
 try {
 input.mark(MAX_DATA_STRUCTURE_SIZE);
 return(parseDataStructure(input));
 }
 catch (ParseException e) {
 input.reset();
 ...
 }

The BufferedReader and BufferedWriter classes work just like their byte-based
counterparts, except that they operate on characters instead of bytes.

PrintWriter and PrintStream

Another useful wrapper stream is java.io.PrintWriter. This class provides a suite
of overloaded print() methods that turn their arguments into strings and push them
out the stream. A complementary set of println() convenience methods appends a
new line to the end of the strings. For formatted text output, printf() and the identi‐
cal format() methods allow you to write printf-style formatted text to the stream.

PrintWriter is an unusual character stream because it can wrap either an Output
Stream or another Writer. PrintWriter is the more capable big brother of the legacy
PrintStream byte stream. The System.out and System.err streams are PrintStream
objects; you have already seen such streams strewn throughout this book:

 System.out.print("Hello, world...\n");
 System.out.println("Hello, world...");
 System.out.printf("The answer is %d", 17);
 System.out.println(3.14);

Early versions of Java did not have the Reader and Writer classes and used Print
Stream, which converted bytes to characters by simply making assumptions about the
character encoding. You should use a PrintWriter for all new development.

When you create a PrintWriter object, you can pass an additional Boolean value to
the constructor, specifying whether it should “auto-flush.” If this value is true, the
PrintWriter automatically performs a flush() on the underlying OutputStream or
Writer each time it sends a newline:

 PrintWriter pw = new PrintWriter(myOutputStream, true /*autoFlush*/);
 pw.println("Hello!"); // Stream is automatically flushed by the newline.

When this technique is used with a buffered output stream, it corresponds to the
behavior of terminals that send data line by line.

The other big advantage that PrintStream and PrintWriter have over regular char‐
acter streams is that they shield you from exceptions thrown by the underlying

352 | Chapter 11: Networking and I/O

streams. Unlike methods in other stream classes, the methods of PrintWriter and
PrintStream do not throw IOExceptions. Instead, they provide a method to explic‐
itly check for errors if required. This makes life a lot easier for printing text, which is
a very common operation. You can check for errors with the checkError() method:

 System.out.println(reallyLongString);
 if (System.out.checkError()){ ... // uh oh

The java.io.File Class
The java.io.File class encapsulates access to information about a file or directory. It
can be used to get attribute information about a file, list the entries in a directory, and
perform basic filesystem operations, such as removing a file or making a directory.
While the File object handles these “meta” operations, it doesn’t provide the API for
reading and writing file data; there are file streams for that purpose.

File constructors

You can create an instance of File from a String pathname:

 File fooFile = new File("/tmp/foo.txt");
 File barDir = new File("/tmp/bar");

You can also create a file with a relative path:

 File f = new File("foo");

In this case, Java works relative to the “current working directory” of the Java inter‐
preter. You can determine the current working directory by reading the user.dir
property in the System Properties list:

 System.getProperty("user.dir"); // e.g.,"/Users/pat"

An overloaded version of the File constructor lets you specify the directory path and
filename as separate String objects:

 File fooFile = new File("/tmp", "foo.txt");

With yet another variation, you can specify the directory with a File object and the
filename with a String:

 File tmpDir = new File("/tmp"); // File for directory /tmp
 File fooFile = new File (tmpDir, "foo.txt");

None of these File constructors actually creates a file or directory, and it is not an
error to create a File object for a nonexistent file. The File object is just a handle for
a file or directory whose properties you may wish to read, write, or test. For example,
you can use the exists() instance method to learn whether the file or directory
exists.

Streams | 353

Path localization
One issue with working with files in Java is that pathnames are expected to follow the
conventions of the local filesystem. Two differences are that the Windows filesystem
uses “roots” or drive letters (for example, C:) and a backslash (\) instead of the for‐
ward slash (/) path separator that is used in other systems.

Java tries to compensate for the differences. For example, on Windows platforms, Java
accepts paths with either forward slashes or backslashes. (On others, however, it only
accepts forward slashes.)

Your best bet is to make sure you follow the filename conventions of the host filesys‐
tem. If your application has a GUI that is opening and saving files at the user’s
request, you should be able to handle that functionality with the Swing JFileChooser
class. This class encapsulates a graphical file-selection dialog box. The methods of the
JFileChooser take care of system-dependent filename features for you.

If your application needs to deal with files on its own behalf, however, things get a
little more complicated. The File class contains a few static variables to make this
task possible. File.separator defines a String that specifies the file separator on the
local host (e.g., / on Unix and macOS systems, and \ on Windows systems);
File.separatorChar provides the same information as a char.

You can use this system-dependent information in several ways. Probably the sim‐
plest way to localize pathnames is to pick a convention that you use internally, such as
the forward slash (/), and do a String replace to substitute for the localized separator
character:

 // we'll use forward slash as our standard
 String path = "mail/2004/june/merle";
 path = path.replace('/', File.separatorChar);
 File mailbox = new File(path);

Alternatively, you could work with the components of a pathname and build the local
pathname when you need it:

 String [] path = { "mail", "2004", "june", "merle" };

 StringBuffer sb = new StringBuffer(path[0]);
 for (int i=1; i< path.length; i++) {
 sb.append(File.separator + path[i]);
 }
 File mailbox = new File(sb.toString());

One thing to remember is that Java interprets a literal backslash
character (\) in source code as an escape character when used in a
String. To get a backslash in a String, you have to use \\.

354 | Chapter 11: Networking and I/O

To grapple with the issue of filesystems with multiple “roots” (for example, C:\ on
Windows), the File class provides the static method listRoots(), which returns an
array of File objects corresponding to the filesystem root directories. Again, in a
GUI application, a graphical file chooser dialog shields you from this problem
entirely.

File operations

Once we have a File object, we can use it to ask for information about and perform
standard operations on the file or directory it represents. A number of methods let us
ask questions about the File. For example, isFile() returns true if the File repre‐
sents a regular file, while isDirectory() returns true if it’s a directory. isAbsolute()
indicates whether the File encapsulates an absolute path or relative path specification.
An absolute path is a system-dependent notion that means that the path doesn’t
depend on the application’s working directory or any concept of a working root or
drive (e.g., in Windows, it is a full path including the drive letter: c:\\Users\pat
\foo.txt).

Components of the File pathname are available through the following methods: get
Name(), getPath(), getAbsolutePath(), and getParent(). getName() returns a
String for the filename without any directory information. If the File has an abso‐
lute path specification, getAbsolutePath() returns that path. Otherwise, it returns
the relative path appended to the current working directory (attempting to make it an
absolute path). getParent() returns the parent directory of the file or directory.

The string returned by getPath() or getAbsolutePath() may not follow the same
case conventions as the underlying filesystem. You can retrieve the filesystem’s own or
“canonical” version of the file’s path by using the method getCanonicalPath(). In
Windows, for example, you can create a File object whose getAbsolutePath() is C:
\Autoexec.bat but whose getCanonicalPath() is C:\AUTOEXEC.BAT; both actually
point to the same file. This is useful for comparing filenames that may have been sup‐
plied with different case conventions or for showing them to the user.

You can get or set the modification time of a file or directory with lastModified()
and setLastModified() methods. The value is a long that is the number of milli‐
seconds since the epoch (Jan 1, 1970, 00:00:00 GMT). We can also get the size of the
file, in bytes, with length().

Here’s a fragment of code that prints some information about a file:

 File fooFile = new File("/tmp/boofa");

 String type = fooFile.isFile() ? "File " : "Directory ";
 String name = fooFile.getName();
 long len = fooFile.length();
 System.out.println(type + name + ", " + len + " bytes ");

Streams | 355

If the File object corresponds to a directory, we can list the files in the directory with
the list() method or the listFiles() method:

 File tmpDir = new File("/tmp");
 String [] fileNames = tmpDir.list();
 File [] files = tmpDir.listFiles();

list() returns an array of String objects that contains filenames. listFiles()
returns an array of File objects. Note that in neither case are the files guaranteed to
be in any kind of order (alphabetical, for example). You can use the Collections API
to sort strings alphabetically, like so:

 List list = Arrays.asList(fileNames);
 Collections.sort(list);

If the File refers to a nonexistent directory, we can create the directory with mkdir()
or mkdirs(). The mkdir() method creates at most a single directory level, so any
intervening directories in the path must already exist. mkdirs() creates all directory
levels necessary to create the full path of the File specification. In either case, if the
directory cannot be created, the method returns false. Use renameTo() to rename a
file or directory and delete() to delete a file or directory.

Although we can create a directory using the File object, this isn’t the most common
way to create a file; that’s normally done implicitly when we intend to write data to
it with a FileOutputStream or FileWriter, as we’ll discuss in a moment. The excep‐
tion is the createNewFile() method, which can be used to attempt to create a new
zero-length file at the location pointed to by the File object. The useful thing about
this method is that the operation is guaranteed to be “atomic” with respect to all other
file creation in the filesystem. createNewFile() returns a Boolean value that tells
you whether the file was created or not. This is sometimes used as a primitive locking
feature—whoever creates the file first “wins.” (The NIO package supports true file
locks, as we’ll see later.) This is useful in combination deleteOnExit(), which flags
the file to be automatically removed when the Java VM exits. This combination
allows you to guard resources or make an application that can only be run in a single
instance at a time. Another file creation method that is related to the File class itself
is the static method createTempFile(), which creates a file in a specified location
using an automatically generated unique name. This, too, is useful in combination
with deleteOnExit().

The toURL() method converts a file path to a file: URL object. URLs are an abstrac‐
tion that allows you to point to any kind of object anywhere on the Net. Converting a
File reference to a URL may be useful for consistency with more general utilities that
deal with URLs. File URLs also come into greater use with the NIO File API where
they can be used to reference new types of filesystems that are implemented directly
in Java code.

356 | Chapter 11: Networking and I/O

Table 11-1 summarizes the methods provided by the File class.

Table 11-1. File methods

Method Return type Description

canExecute() Boolean Is the file executable?

canRead() Boolean Is the file (or directory) readable?

canWrite() Boolean Is the file (or directory) writable?

createNewFile() Boolean Creates a new file.

createTempFile
(String pfx,
Stringsfx)

File Static method to create a new file, with the specified prefix and
suffix, in the default temp file directory.

delete() Boolean Deletes the file (or directory).

deleteOnExit() Void When it exits, Java runtime system deletes the file.

exists() Boolean Does the file (or directory) exist?

getAbsolutePath() String Returns the absolute path of the file (or directory).

getCanonical
Path()

String Returns the absolute, case-correct, and relative-element-resolved
path of the file (or directory).

getFreeSpace() long Gets the number of bytes of unallocated space on the partition
holding this path or 0 if the path is invalid.

getName() String Returns the name of the file (or directory).

getParent() String Returns the name of the parent directory of the file (or directory).

getPath() String Returns the path of the file (or directory). (Not to be confused with
toPath().)

getTotalSpace() long Gets the size of the partition that contains the file path, in bytes, or
0 if the path is invalid.

getUseableSpace() long Gets the number of bytes of user-accessible unallocated space on
the partition holding this path or 0 if the path is invalid. This
method attempts to take into account user write permissions.

isAbsolute() boolean Is the filename (or directory name) absolute?

isDirectory() boolean Is the item a directory?

isFile() boolean Is the item a file?

isHidden() boolean Is the item hidden? (System dependent.)

lastModified() long Returns the last modification time of the file (or directory).

length() long Returns the length of the file.

list() String [] Returns a list of files in the directory.

listFiles() File[] Returns the contents of the directory as an array of File objects.

listRoots() File[] Returns an array of root filesystems, if any (e.g., C:/, D:/).

mkdir() boolean Creates the directory.

mkdirs() boolean Creates all directories in the path.

Streams | 357

Method Return type Description

renameTo(File
dest)

boolean Renames the file (or directory).

setExecutable() boolean Sets execute permissions for the file.

setLastModified() boolean Sets the last-modified time of the file (or directory).

setReadable() boolean Sets read permissions for the file.

setReadOnly() boolean Sets the file to read-only status.

setWriteable() boolean Sets the write permissions for the file.

toPath() java.nio.file.Path Convert the file to an NIO file path (see the NIO File API). (Not to be
confused with getPath().)

toURL() java.net.URL Generates a URL object for the file (or directory).

File Streams
OK, you’re probably sick of hearing about files already and we haven’t even written a
byte yet! Well, now the fun begins. Java provides two fundamental streams for read‐
ing from and writing to files: FileInputStream and FileOutputStream. These
streams provide the basic byte-oriented InputStream and OutputStream functionality
that is applied to reading and writing files. They can be combined with the filter
streams described earlier to work with files in the same way as other stream
communications.

You can create a FileInputStream from a String pathname or a File object:

 FileInputStream in = new FileInputStream("/etc/passwd");

When you create a FileInputStream, the Java runtime system attempts to open the
specified file. Thus, the FileInputStream constructors can throw a FileNotFoundEx
ception if the specified file doesn’t exist, or an IOException if some other I/O error
occurs. You must catch these exceptions in your code. Wherever possible, it’s a good
idea to get in the habit of using the Java 7 try-with-resources construct to automati‐
cally close files for you when you are finished with them:

try (FileInputStream fin = new FileInputStream("/etc/passwd")) {

 // fin will be closed automatically if needed upon exiting the try clause.
}

When the stream is first created, its available() method and the File object’s
length() method should return the same value.

To read characters from a file as a Reader, you can wrap an InputStreamReader
around a FileInputStream. You can also use the FileReader class instead, which is
provided as a convenience. FileReader is just a FileInputStream wrapped in an
InputStreamReader with some defaults.

358 | Chapter 11: Networking and I/O

The following class, ListIt , is a small utility that sends the contents of a file or direc‐
tory to standard output:

 //file: ListIt.java
 import java.io.*;

 class ListIt {
 public static void main (String args[]) throws Exception {
 File file = new File(args[0]);

 if (!file.exists() || !file.canRead()) {
 System.out.println("Can't read " + file);
 return;
 }

 if (file.isDirectory()) {
 String [] files = file.list();
 for (String file : files)
 System.out.println(file);
 } else
 try {
 Reader ir = new InputStreamReader(
 new FileInputStream(file));

 BufferedReader in = new BufferedReader(ir);
 String line;
 while ((line = in.readLine()) != null)
 System.out.println(line);
 }
 catch (FileNotFoundException e) {
 System.out.println("File Disappeared");
 }
 }
 }

ListIt constructs a File object from its first command-line argument and tests the
File to see whether it exists and is readable. If the File is a directory, ListIt outputs
the names of the files in the directory. Otherwise, ListIt reads and outputs the file,
line by line.

For writing files, you can create a FileOutputStream from a String pathname or a
File object. Unlike FileInputStream, however, the FileOutputStream constructors
don’t throw a FileNotFoundException. If the specified file doesn’t exist, the FileOut
putStream creates the file. The FileOutputStream constructors can throw an IOEx
ception if some other I/O error occurs, so you still need to handle this exception.

If the specified file does exist, the FileOutputStream opens it for writing. When you
subsequently call the write() method, the new data overwrites the current contents
of the file. If you need to append data to an existing file, you can use a form of the
constructor that accepts a Boolean append flag:

Streams | 359

 FileInputStream fooOut =
 new FileOutputStream(fooFile); // overwrite fooFile
 FileInputStream pwdOut =
 new FileOutputStream("/etc/passwd", true); // append

Another way to append data to files is with RandomAccessFile, which we’ll discuss
shortly.

Just as with reading, to write characters (instead of bytes) to a file, you can wrap an
OutputStreamWriter around a FileOutputStream. If you want to use the default
character-encoding scheme, you can use the FileWriter class instead, which is pro‐
vided as a convenience.

The following example reads a line of data from standard input and writes it to the
file /tmp/foo.txt:

 String s = new BufferedReader(
 new InputStreamReader(System.in)).readLine();
 File out = new File("/tmp/foo.txt");
 FileWriter fw = new FileWriter (out);
 PrintWriter pw = new PrintWriter(fw)
 pw.println(s);pw.close();

Notice how we wrapped the FileWriter in a PrintWriter to facilitate writing the
data. Also, to be a good filesystem citizen, we called the close() method when we’re
done with the FileWriter. Here, closing the PrintWriter closes the underlying
Writer for us. We also could have used try-with-resources here.

RandomAccessFile
The java.io.RandomAccessFile class provides the ability to read and write data at a
specified location in a file. RandomAccessFile implements both the DataInput and
DataOutput interfaces, so you can use it to read and write strings and primitive types
at locations in the file just as if it were a DataInputStream and DataOutputStream.
However, because the class provides random, rather than sequential, access to file
data, it’s not a subclass of either InputStream or OutputStream.

You can create a RandomAccessFile from a String pathname or a File object. The
constructor also takes a second String argument that specifies the mode of the file.
Use the string r for a read-only file or rw for a read/write file.

 try {
 RandomAccessFile users = new RandomAccessFile("Users", "rw")
 } catch (IOException e) { ... }

When you create a RandomAccessFile in read-only mode, Java tries to open the
specified file. If the file doesn’t exist, RandomAccessFile throws an IOException. If,
however, you’re creating a RandomAccessFile in read/write mode, the object creates

360 | Chapter 11: Networking and I/O

the file if it doesn’t exist. The constructor can still throw an IOException if another
I/O error occurs, so you still need to handle this exception.

After you have created a RandomAccessFile, call any of the normal reading and writ‐
ing methods, just as you would with a DataInputStream or DataOutputStream. If you
try to write to a read-only file, the write method throws an IOException.

What makes a RandomAccessFile special is the seek() method. This method takes a
long value and uses it to set the byte offset location for reading and writing in the file.
You can use the getFilePointer() method to get the current location. If you need to
append data to the end of the file, use length() to determine that location, then
seek() to it. You can write or seek beyond the end of a file, but you can’t read beyond
the end of a file. The read() method throws an EOFException if you try to do this.

Here’s an example of writing data for a simplistic database:

 users.seek(userNum * RECORDSIZE);
 users.writeUTF(userName);
 users.writeInt(userID);
 ...

In this snippet, we assume that the String length for userName, along with any data
that comes after it, fits within the specified record size.

The NIO File API
We are now going to turn our attention from the original, “classic” Java File API to
the new NIO File API introduced with Java 7. As we mentioned earlier, the NIO File
API can be thought of as either a replacement for or a complement to the classic API.
Included in the NIO package, the new API is nominally part of an effort to move Java
toward a higher performance and more flexible style of I/O supporting selectable and
asynchronously interruptable channels. However, in the context of working with files,
the new API’s strength is that it provides a fuller abstraction of the filesystem in Java.

In addition to better support for existing, real world, filesystem types—including for
the first time the ability to copy and move files, manage links, and get detailed file
attributes like owners and permissions—the new File API allows entirely new types of
filesystems to be implemented directly in Java. The best example of this is the new
ZIP filesystem provider that makes it possible to “mount” a ZIP archive file as a file‐
system and work with the files within it directly using the standard APIs, just like any
other filesystem. Additionally, the NIO File package provides some utilities that
would have saved Java developers a lot of repeated code over the years, including
directory tree change monitoring, filesystem traversal (a visitor pattern), filename
“globbing,” and convenience methods to read entire files directly into memory.

The NIO File API | 361

We’ll cover the basic NIO File API in this section and return to the topic of buffers
and channels at the end of the chapter. In particular, we’ll talk about ByteChannels
and FileChannel, which you can think of as alternate, buffer-oriented streams for
reading and writing files and other types of data.

FileSystem and Path
The main players in the java.nio.file package are: the FileSystem, which repre‐
sents an underlying storage mechanism and serves as a factory for Path objects; the
Path, which represents a file or directory within the filesystem; and the Files utility,
which contains a rich set of static methods for manipulating Path objects to perform
all of the basic file operations analogous to the classic API.

The FileSystems (plural) class is our starting point. It is a factory for a FileSystem
object:

// The default host computer filesystem
FileSystem fs = FileSystems.getDefault();

// A custom filesystem for ZIP files, no special properties
Map<String,String> props = new HashMap<>();
URI zipURI = URI.create("jar:file:/Users/pat/tmp/MyArchive.zip");
FileSystem zipfs = FileSystems.newFileSystem(zipURI, props));

As shown in this snippet, often we’ll simply ask for the default filesystem to manipu‐
late files in the host computer’s environment, as with the classic API. But the FileSys
tems class can also construct a FileSystem by taking a URI (a special identifier
similar to a URL) that references a custom filesystem type. Here we use jar:file as
our URI protocol to indicate we are working with a JAR or ZIP file.

FileSystem implements Closeable, and when a FileSystem is closed, all open file
channels and other streaming objects associated with it are closed as well. Attempting
to read or write to those channels will throw an exception at that point. Note that the
default filesystem (associated with the host computer) cannot be closed.

Once we have a FileSystem, we can use it as a factory for Path objects that represent
files or directories. A Path can be constructed using a string representation just like
the classic File, and subsequently used with methods of the Files utility to create,
read, write, or delete the item.

Path fooPath = fs.getPath("/tmp/foo.txt");
OutputStream out = Files.newOutputStream(fooPath);

This example opens an OutputStream to write to the file foo.txt. By default, if the file
does not exist, it will be created, and if it does exist, it will be truncated (set to zero
length) before new data is written—but you can change these results using options.
We’ll talk more about Files methods in the next section.

362 | Chapter 11: Networking and I/O

The Path object implements the java.lang.Iterable interface, which can be used to
iterate through its literal path components (e.g., the slash-separated “tmp” and
“foo.txt” in the preceding snippet). Although if you want to traverse the path to find
other files or directories, you might be more interested in the DirectoryStream and
FileVisitor that we’ll discuss later. Path also implements the java.nio.file.Watch
able interface, which allows it to be monitored for changes. We’ll also discuss watch‐
ing file trees for changes in an upcoming section.

Path has convenience methods for resolving paths relative to a file or directory:

Path patPath = fs.getPath("/User/pat/");

Path patTmp = patPath.resolve("tmp"); // "/User/pat/tmp"

// Same as above, using a Path
Path tmpPath = fs.getPath("tmp");
Path patTmp = patPath.resolve(tmpPath); // "/User/pat/tmp"

// Resolving a given absolute path against any path just yields given path
Path absPath = patPath.resolve("/tmp"); // "/tmp"

// Resolve sibling to Pat (same parent)
Path danPath = patPath.resolveSibling("dan"); // "/Users/dan"

In this snippet, we’ve shown the Pathresolve() and resolveSibling() methods
used to find files or directories relative to a given Path object. The resolve() method
is generally used to append a relative path to an existing Path representing a direc‐
tory. If the argument provided to the resolve() method is an absolute path, it will
just yield the absolute path (it acts kind of like the Unix or DOS cd command). The
resolveSibling() method works the same way, but it is relative to the parent of the
target Path; this method is useful for describing the target of a move() operation.

Path to classic file and back

To bridge the old and new APIs, corresponding toPath() and toFile() methods
have been provided in java.io.File and java.nio.file.Path, respectively, to con‐
vert to the other form. Of course, the only types of Paths that can be produced from
File are paths representing files and directories in the default host filesystem.

Path tmpPath = fs.getPath("/tmp");
File file = tmpPath.toFile();
File tmpFile = new File("/tmp");
Path path = tmpFile.toPath();

The NIO File API | 363

NIO File Operations
Once we have a Path, we can operate on it with static methods of the Files utility to
create the path as a file or directory, read and write to it, and interrogate and set its
properties. We’ll list the bulk of them and then discuss some of the more important
ones as we proceed.

Table 11-2 summarizes these methods of the java.nio.file.Files class. As you
might expect, because the Files class handles all types of file operations, it contains a
large number of methods. To make the table more readable, we have elided overloa‐
ded forms of the same method (those taking different kinds of arguments) and grou‐
ped corresponding and related types of methods together.

Table 11-2. NIO Files methods

Method Return type Description

copy() long or Path Copy a stream to a file path, file path to stream, or path to
path. Returns the number of bytes copied or the target
Path. A target file may optionally be replaced if it exists
(the default is to fail if the target exists). Copying a directory
results in an empty directory at the target (the contents are
not copied). Copying a symbolic link copies the linked file’s
data (producing a regular file copy).

createDirectory(), create
Directories()

Path Create a single directory or all directories in a specified path.
createDirectory() throws an exception if the
directory already exists, whereas createDirecto
ries() will ignore existing directories and only create as
needed.

createFile() Path Creates an empty file. The operation is atomic and will only
succeed if the file does not exist. (This property can be used
to create flag files to guard resources, etc.)

createTempDirectory(),
createTempFile()

Path Create a temporary, guaranteed, uniquely named directory
or file with the specified prefix. Optionally place it in the
system default temp directory.

delete(), deleteIfExists() void Delete a file or an empty directory. deleteIfExists()
will not throw an exception if the file does not exist.

exists(), notExists() boolean Determine whether the file exists (notExists() simply
returns the opposite). Optionally specify whether links
should be followed (by default they are).

exists(), isDirectory(),
isExecutable(), isHidden(),
isReadable(), isRegular
File(), isWriteable()

boolean Tests basic file features: whether the path exists, is a
directory, and other basic attributes.

364 | Chapter 11: Networking and I/O

Method Return type Description

createLink(), create
SymbolicLink(),
isSymbolicLink(),
readSymbolicLink(),
createLink()

boolean or Path Create a hard or symbolic link, test to see if a file is a
symbolic link, or read the target file pointed to by the
symbolic link. Symbolic links are files that reference other
files. Regular (“hard”) links are low-level mirrors of a file
where two filenames point to the same underlying data. If
you don’t know which to use, use a symbolic link.

getAttribute(), set
Attribute(), getFile
AttributeView(),
readAttributes()

Object, Map, or
FileAttribute
View

Get or set filesystem-specific file attributes such as access
and update times, detailed permissions, and owner
information using implementation-specific names.

getFileStore() FileStore Get a FileStore object that represents the device,
volume, or other type of partition of the filesystem on which
the path resides.

getLastModifiedTime(), set
LastModifiedTime()

FileTime or
Path

Get or set the last modified time of a file or directory.

getOwner(), setOwner() UserPrincipal Get or set a UserPrincipal object representing the
owner of the file. Use toString() or getName() to get
a string representation of the username.

getPosixFilePer
missions(), setPosixFile
Permissions()

Set or Path Get or set the full POSIX user-group-other style read and
write permissions for the path as a Set of PosixFile
Permission enum values.

isSameFile() boolean Test to see whether the two paths reference the same file
(which may potentially be true even if the paths are not
identical).

move() Path Move a file or directory by renaming or copying it, optionally
specifying whether to replace any existing target. Rename
will be used unless a copy is required to move a file across
file stores or filesystems. Directories can be moved using this
method only if the simple rename is possible or if the
directory is empty. If a directory move requires copying files
across file stores or filesystems, the method throws an IOEx
ception. (In this case, you must copy the files yourself.
See walkFileTree().)

newBufferedReader(), new
BufferedWriter()

BufferedReader
or Buffered
Writer

Open a file for reading via a BufferedReader, or create
and open a file for writing via a BufferedWriter. In
both cases, a character encoding is specified.

newByteChannel() SeekableByte
Channel

Create a new file or open an existing file as a seekable byte
channel. (See the full discussion of NIO later in this chapter.)
Consider using FileChannelopen() as an alternative.

newDirectoryStream() Directory
Stream

Return a DirectoryStream for iterating over a directory
hierarchy. Optionally, supply a glob pattern or filter object to
match files.

newInputStream(),
newOutputStream()

InputStream or
OutputStream

Open a file for reading via an InputStream or create and
open a file for writing via an OuputStream. Optionally,
specify file truncation for the output stream; the default is to
create a truncate on write.

The NIO File API | 365

Method Return type Description

probeContentType() String Returns the MIME type of the file if it can be determined by
installed FileTypeDetector services or null if
unknown.

readAllBytes(), readAll
Lines()

byte[] or
List<String>

Read all data from the file as a byte [] or all characters as a
list of strings using a specified character encoding.

size() long Get the size, in bytes, of the file at the specified path.

walkFileTree() Path Apply a FileVisitor to the specified directory tree,
optionally specifying whether to follow links and a
maximum depth of traversal.

write() Path Write an array of bytes or a collection of strings (with a
specified character encoding) to the file at the specified path
and close the file, optionally specifying append and
truncation behavior. The default is to truncate and write the
data.

With the preceding methods, we can fetch input or output streams or buffered read‐
ers and writers to a given file. We can also create paths as files and directories, and
iterate through file hierarchies. We’ll discuss directory operations in the next section.

As a reminder, the resolve() and resolveSibling() methods of Path are useful for
constructing targets for the copy() and move() operations:

// Move the file /tmp/foo.txt to /tmp/bar.txt
Path foo = fs.getPath("/tmp/foo.txt");
Files.move(foo, foo.resolveSibling("bar.txt"));

For quickly reading and writing the contents of files without streaming, we can use
the various readAll… and write methods that move byte arrays or strings in and out
of files in a single operation. These are very convenient for files that easily fit into
memory.

// Read and write collection of String (e.g., lines of text)
Charset asciiCharset = Charset.forName("US-ASCII");
List<String> csvData = Files.readAllLines(csvPath, asciiCharset);
Files.write(newCSVPath, csvData, asciiCharset);

// Read and write bytes
byte [] data = Files.readAllBytes(dataPath);
Files.write(newDataPath, data);

The NIO Package
We are now going to complete our introduction to core Java I/O facilities by return‐
ing to the java.nio package. As previously mentioned, the name NIO stands for
“New I/O” and, as we saw earlier in this chapter in our discussion of java.nio.file,
one aspect of NIO is simply to update and enhance features of the legacy java.io

366 | Chapter 11: Networking and I/O

package. Much of the general NIO functionality does indeed overlap with existing
APIs. However, NIO was first introduced to address specific issues of scalability for
large systems, especially in networked applications. The following section outlines the
basic elements of NIO, which center on working with buffers and channels.

Asynchronous I/O
Most of the need for the NIO package was driven by the desire to add nonblocking
and selectable I/O to Java. Prior to NIO, most read and write operations in Java were
bound to threads and were forced to block for unpredictable amounts of time.
Although certain APIs such as Sockets (which we’ll see in “Sockets” on page 379) pro‐
vided specific means to limit how long an I/O call could take, this was a workaround
to compensate for the lack of a more general mechanism. In many languages, even
those without threading, I/O could still be done efficiently by setting I/O streams to a
nonblocking mode and testing them for their readiness to send or receive data. In a
nonblocking mode, a read or write does only as much work as can be done immedi‐
ately—filling or emptying a buffer and then returning. Combined with the ability to
test for readiness, this allows a single-threaded application to continuously service
many channels efficiently. The main thread “selects” a stream that is ready, works
with it until it blocks, and then moves on to another. On a single-processor system,
this is fundamentally equivalent to using multiple threads. It turns out that this style
of processing has scalability advantages even when using a pool of threads (rather
than just one). We’ll discuss this in detail in Chapter 12 when we discuss web pro‐
gramming and building servers that can handle many clients simultaneously.

In addition to nonblocking and selectable I/O, the NIO package enables closing and
interrupting I/O operations asynchronously. As discussed in Chapter 9, prior to NIO
there was no reliable way to stop or wake up a thread blocked in an I/O operation.
With NIO, threads blocked in I/O operations always wake up when interrupted or
when the channel is closed by anyone. Additionally, if you interrupt a thread while it
is blocked in an NIO operation, its channel is automatically closed. (Closing the
channel because the thread is interrupted might seem too strong, but usually it’s the
right thing to do. Leaving it open could result in unexpected behavior or subject the
channel to unwanted manipulation.)

Performance
Channel I/O is designed around the concept of buffers, which are a sophisticated
form of array, tailored to working with communications. The NIO package supports
the concept of direct buffers—buffers that maintain their memory outside the Java
VM in the host operating system. Because all real I/O operations ultimately have to
work with the host OS by maintaining the buffer space there, some operations can be
made much more efficient. Data moving between two external endpoints can be
transferred without first copying it into Java and back out.

The NIO Package | 367

Mapped and Locked Files
NIO provides two general-purpose file-related features not found in java.io:
memory-mapped files and file locking. We’ll discuss memory-mapped files later, but
suffice it to say that they allow you to work with file data as if it were all magically
resident in memory. File locking supports the concept of shared and exclusive locks
on regions of files—useful for concurrent access by multiple applications.

Channels
While java.io deals with streams, java.nio works with channels. A channel is an
endpoint for communication. Although in practice channels are similar to streams,
the underlying notion of a channel is more abstract and primitive. Whereas streams
in java.io are defined in terms of input or output with methods to read and write
bytes, the basic channel interface says nothing about how communications happen. It
simply has the notion of being open or closed, supported via the methods isOpen()
and close(). Implementations of channels for files, network sockets, or arbitrary
devices then add their own methods for operations, such as reading, writing, or trans‐
ferring data. The following channels are provided by NIO:

• FileChannel

• Pipe.SinkChannel, Pipe.SourceChannel
• SocketChannel, ServerSocketChannel, DatagramChannel

We’ll cover FileChannel in this chapter. The Pipe channels are simply the channel
equivalents of the java.io Pipe facilities. Additionally, in Java 7 there are now asyn‐
chronous versions of both the file and socket channels: AsynchronousFileChannel,
AsynchronousSocketChannel, AsynchronousServerSocketChannel, and Asynchro
nousDatagramChannel. These asynchronous versions essentially buffer all of their
operations through a thread pool and report results back through an asynchronous
API. We’ll talk about the asynchronous file channel later in this chapter.

All these basic channels implement the ByteChannel interface, designed for channels
that have read and write methods like I/O streams. ByteChannels read and write Byte
Buffers, however, as opposed to plain byte arrays.

In addition to these channel implementations, you can bridge channels with java.io
I/O streams and readers and writers for interoperability. However, if you mix these
features, you may not get the full benefits and performance offered by the NIO
package.

368 | Chapter 11: Networking and I/O

Buffers
Most of the utilities of the java.io and java.net packages operate on byte arrays.
The corresponding tools of the NIO package are built around ByteBuffers (with
character-based buffer CharBuffer for text). Byte arrays are simple, so why are buf‐
fers necessary? They serve several purposes:

• They formalize the usage patterns for buffered data, provide for things like
read-only buffers, and keep track of read/write positions and limits within a
large buffer space. They also provide a mark/reset facility like that of java.io
.BufferedInputStream.

• They provide additional APIs for working with raw data representing primitive
types. You can create buffers that “view” your byte data as a series of larger primi‐
tives, such as shorts, ints, or floats. The most general type of data buffer, Byte
Buffer, includes methods that let you read and write all primitive types just like
DataOutputStream does for streams.

• They abstract the underlying storage of the data, allowing for special optimiza‐
tions by Java. Specifically, buffers may be allocated as direct buffers that use
native buffers of the host operating system instead of arrays in Java’s memory.
The NIO Channel facilities that work with buffers can recognize direct buffers
automatically and try to optimize I/O to use them. For example, a read from a file
channel into a Java byte array normally requires Java to copy the data for the read
from the host operating system into Java’s memory. With a direct buffer, the data
can remain in the host operating system, outside Java’s normal memory space
until and unless it is needed.

Buffer operations

A buffer is a subclass of a java.nio.Buffer object. The base Buffer class is some‐
thing like an array with state. It does not specify what type of elements it holds (that is
for subtypes to decide), but it does define functionality that is common to all data
buffers. A Buffer has a fixed size called its capacity. Although all the standard
Buffers provide “random access” to their contents, a Buffer generally expects to be
read and written sequentially, so Buffers maintain the notion of a position where the
next element is read or written. In addition to position, a Buffer can maintain two
other pieces of state information: a limit, which is a position that is a “soft” limit to
the extent of a read or write, and a mark, which can be used to remember an earlier
position for future recall.

Implementations of Buffer add specific, typed get and put methods that read and
write the buffer contents. For example, ByteBuffer is a buffer of bytes and it has
get() and put() methods that read and write bytes and arrays of bytes (along with

The NIO Package | 369

many other useful methods we’ll discuss later). Getting from and putting to the
Buffer changes the position marker, so the Buffer keeps track of its contents some‐
what like a stream. Attempting to read or write past the limit marker generates a Buf
ferUnderflowException or BufferOverflowException, respectively.

The mark, position, limit, and capacity values always obey the following formula:

 mark <= position <= limit <= capacity

The position for reading and writing the Buffer is always between the mark, which
serves as a lower bound, and the limit, which serves as an upper bound. The capacity
represents the physical extent of the buffer space.

You can set the position and limit markers explicitly with the position() and
limit() methods. Several convenience methods are provided for common usage pat‐
terns. The reset() method sets the position back to the mark. If no mark has been
set, an InvalidMarkException is thrown. The clear() method resets the position to
0 and makes the limit the capacity, readying the buffer for new data (the mark is dis‐
carded). Note that the clear() method does not actually do anything to the data in
the buffer; it simply changes the position markers.

The flip() method is used for the common pattern of writing data into the buffer
and then reading it back out. flip makes the current position the limit and then
resets the current position to 0 (any mark is thrown away), which saves having to
keep track of how much data was read. Another method, rewind(), simply resets the
position to 0, leaving the limit alone. You might use it to write the same size data
again. Here is a snippet of code that uses these methods to read data from a channel
and write it to two channels:

 ByteBuffer buff = ...
 while (inChannel.read(buff) > 0) { // position = ?
 buff.flip(); // limit = position; position = 0;
 outChannel.write(buff);
 buff.rewind(); // position = 0
 outChannel2.write(buff);
 buff.clear(); // position = 0; limit = capacity
 }

This might be confusing the first time you look at it because here, the read from the
Channel is actually a write to the Buffer and vice versa. Because this example writes
all the available data up to the limit, either flip() or rewind() have the same effect in
this case.

Buffer types
As stated earlier, various buffer types add get and put methods for reading and writ‐
ing specific data types. Each of the Java primitive types has an associated buffer type:

370 | Chapter 11: Networking and I/O

ByteBuffer, CharBuffer, ShortBuffer, IntBuffer, LongBuffer, FloatBuffer, and
DoubleBuffer. Each provides get and put methods for reading and writing its type
and arrays of its type. Of these, ByteBuffer is the most flexible. Because it has the
“finest grain” of all the buffers, it has been given a full complement of get and put
methods for reading and writing all the other data types as well as byte. Here are
some ByteBuffer methods:

 byte get()
 char getChar()
 short getShort()
 int getInt()
 long getLong()
 float getFloat()
 double getDouble()

 void put(byte b)
 void put(ByteBuffer src)
 void put(byte[] src, int offset, int length)
 void put(byte[] src)
 void putChar(char value)
 void putShort(short value)
 void putInt(int value)
 void putLong(long value)
 void putFloat(float value)
 void putDouble(double value)

As we said, all the standard buffers also support random access. For each of the afore‐
mentioned methods of ByteBuffer, an additional form takes an index; for example:

 getLong(int index)
 putLong(int index, long value)

But that’s not all. ByteBuffer can also provide “views” of itself as any of the coarse-
grained types. For example, you can fetch a ShortBuffer view of a ByteBuffer with
the asShortBuffer() method. The ShortBuffer view is backed by the ByteBuffer,
which means that they work on the same data, and changes to either one affect the
other. The view buffer’s extent starts at the ByteBuffer’s current position, and its
capacity is a function of the remaining number of bytes, divided by the new type’s
size. (For example, shorts consume two bytes each, floats four, and longs and dou
bles take eight.) View buffers are convenient for reading and writing large blocks of a
contiguous type within a ByteBuffer.

CharBuffers are interesting as well, primarily because of their integration with
Strings. Both CharBuffers and Strings implement the java.lang.CharSequence
interface. This is the interface that provides the standard charAt() and length()
methods. Because of this, newer APIs (such as the java.util.regex package) allow
you to use a CharBuffer or a String interchangeably. In this case, the CharBuffer
acts like a modifiable String with user-configurable, logical start and end positions.

The NIO Package | 371

3 The terms big endian and little endian come from Jonathan Swift’s novel Gulliver’s Travels, where they denoted
two camps of Lilliputians: those who eat eggs from the big end and those who eat them from the little end.

Byte order
Because we’re talking about reading and writing types larger than a byte, the question
arises: in what order do the bytes of multibyte values (e.g., shorts and ints) get writ‐
ten? There are two camps in this world: “big endian” and “little endian.”3 Big endian
means that the most significant bytes come first; little endian is the reverse. If you’re
writing binary data for consumption by some native application, this is important.
Intel-compatible computers use little endian, and many workstations that run Unix
use big endian. The ByteOrder class encapsulates the choice. You can specify the byte
order to use with the ByteBuffer order() method, using the identifiers ByteOr
der.BIG_ENDIAN and ByteOrder.LITTLE_ENDIAN, like so:

 byteArray.order(ByteOrder.BIG_ENDIAN);

You can retrieve the native ordering for your platform using the static ByteOr
der.nativeOrder() method. (We know you’re curious.)

Allocating buffers

You can create a buffer either by allocating it explicitly using allocate() or by wrap‐
ping an existing plain Java array type. Each buffer type has a static allocate()
method that takes a capacity (size) and also a wrap() method that takes an existing
array:

 CharBuffer cbuf = CharBuffer.allocate(64*1024);
 ByteBuffer bbuf = ByteBuffer.wrap(someExistingArray);

A direct buffer is allocated in the same way, with the allocateDirect() method:

 ByteBuffer bbuf2 = ByteBuffer.allocateDirect(64*1024);

As we described earlier, direct buffers can use operating system memory structures
that are optimized for use with some kinds of I/O operations. The trade-off is that
allocating a direct buffer is a little slower and heavier weight operation than a plain
buffer, so you should try to use them for longer-term buffers.

Character Encoders and Decoders
Character encoders and decoders turn characters into raw bytes and vice versa, map‐
ping from the Unicode standard to particular encoding schemes. Encoders and
decoders have long existed in Java for use by Reader and Writer streams and in the
methods of the String class that work with byte arrays. However, early on there was
no API for working with encoding explicitly; you simply referred to encoders and

372 | Chapter 11: Networking and I/O

decoders wherever necessary by name as a String. The java.nio.charset package
formalized the idea of a Unicode character set encoding with the Charset class.

The Charset class is a factory for Charset instances, which know how to encode
character buffers to byte buffers and decode byte buffers to character buffers. You can
look up a character set by name with the static Charset.forName() method and use it
in conversions:

 Charset charset = Charset.forName("US-ASCII");
 CharBuffer charBuff = charset.decode(byteBuff); // to ascii
 ByteBuffer byteBuff = charset.encode(charBuff); // and back

You can also test to see if an encoding is available with the static Charset.isSuppor
ted() method.

The following character sets are guaranteed to be supplied:

• US-ASCII
• ISO-8859-1
• UTF-8
• UTF-16BE
• UTF-16LE
• UTF-16

You can list all the encoders available on your platform using the static available
Charsets() method:

 Map map = Charset.availableCharsets();
 Iterator it = map.keySet().iterator();
 while (it.hasNext())
 System.out.println(it.next());

The result of availableCharsets() is a map because character sets may have
“aliases” and appear under more than one name.

In addition to the buffer-oriented classes of the java.nio package, the InputStream
Reader and OutputStreamWriter bridge classes of the java.io package have been
updated to work with Charset as well. You can specify the encoding as a Charset
object or by name.

CharsetEncoder and CharsetDecoder
You can get more control over the encoding and decoding process by creating an
instance of CharsetEncoder or CharsetDecoder (a codec) with the Charset newEn
coder() and newDecoder() methods. In the previous snippet, we assumed that all the
data was available in a single buffer. More often, however, we might have to process

The NIO Package | 373

data as it arrives in chunks. The encoder/decoder API allows for this by providing
more general encode() and decode() methods that take a flag specifying whether
more data is expected. The codec needs to know this because it might have been left
hanging in the middle of a multibyte character conversion when the data ran out. If it
knows that more data is coming, it does not throw an error on this incomplete con‐
version. In the following snippet, we use a decoder to read from a ByteBuffer bbuff
and accumulate character data into a CharBuffer cbuff:

 CharsetDecoder decoder = Charset.forName("US-ASCII").newDecoder();

 boolean done = false;
 while (!done) {
 bbuff.clear();
 done = (in.read(bbuff) == -1);
 bbuff.flip();
 decoder.decode(bbuff, cbuff, done);
 }
 cbuff.flip();
 // use cbuff. . .

Here, we look for the end of input condition on the in channel to set the flag done.
Note that we take advantage of the flip() method on ByteBuffer to set the limit to
the amount of data read and reset the position, setting us up for the decode operation
in one step. The encode() and decode() methods also return a result object, CoderRe
sult, that can determine the progress of encoding (we do not use it in the previous
snippet). The methods isError(), isUnderflow(), and isOverflow() on the Coder
Result specify why encoding stopped: for an error, a lack of bytes on the input buffer,
or a full output buffer, respectively.

FileChannel
Now that we’ve covered the basics of channels and buffers, it’s time to look at a real
channel type. The FileChannel is the NIO equivalent of the java.io.RandomAccess
File , but it provides several core new features in addition to some performance opti‐
mizations. In particular, use a FileChannel in place of a plain java.io file stream if
you wish to use file locking, memory-mapped file access, or highly optimized data
transfer between files or between file and network channels.

A FileChannel can be created for a Path using the static FileChannel open()
method:

 FileSystem fs = FileSystems.getDefault();
 Path p = fs.getPath("/tmp/foo.txt");

 // Open default for reading
 try (FileChannel channel = FileChannel.open(p) {
 ...
 }

374 | Chapter 11: Networking and I/O

 // Open with options for writing
 import static java.nio.file.StandardOpenOption.*;

 try (FileChannel channel = FileChannel.open(p, WRITE, APPEND, ...)) {
 ...
 }

By default, open() creates a read-only channel for the file. We can open a channel for
writing or appending and control other, more advanced features such as atomic cre‐
ate and data syncing by passing additional options, as shown in the second part of the
previous example. Table 11-3 summarizes these options.

Table 11-3. java.nio.file.StandardOpenOption

Option Description

READ, WRITE Open the file for read-only or write-only (default is read-only). Use both for read-write.

APPEND Open the file for writing; all writes are positioned at the end of the file.

CREATE Use with WRITE to open the file and create it if needed.

CREATE_NEW Use with WRITE to create a file atomically; failing if the file already exists.

DELETE_ON_CLOSE Attempt to delete the file when it is closed or, if open, when the VM exits.

SYNC, DSYNC Wherever possible, guarantee that write operations block until all data is written to storage.
SYNC does this for all file changes including data and metadata (attributes), whereas DSYNC
only adds this requirement for the data content of the file.

SPARSE Use when creating a new file; requests the file be sparse. On filesystems where this is supported,
a sparse file handles very large, mostly empty files without allocating as much real storage for
empty portions.

TRUNCATE_EXISTING Use WRITE on an existing file; set the file length to zero upon opening it.

A FileChannel can also be constructed from a classic FileInputStream, FileOutput
Stream, or RandomAccessFile:

 FileChannel readOnlyFc = new FileInputStream("file.txt").getChannel();
 FileChannel readWriteFc = new RandomAccessFile("file.txt", "rw")
 .getChannel();

FileChannels created from these file input and output streams are read-only or
write-only, respectively. To get a read/write FileChannel, you must construct a Ran
domAccessFile with read/write options, as in the previous example.

Using a FileChannel is just like a RandomAccessFile, but it works with a ByteBuffer
instead of byte arrays:

 ByteBuffer bbuf = ByteBuffer.allocate(...);
 bbuf.clear();
 readOnlyFc.position(index);
 readOnlyFc.read(bbuf);

The NIO Package | 375

 bbuf.flip();
 readWriteFc.write(bbuf);

You can control how much data is read and written either by setting buffer position
and limit markers or using another form of read/write that takes a buffer starting
position and length. You can also read and write to a random position by supplying
indexes with the read and write methods:

 readWriteFc.read(bbuf, index)
 readWriteFc.write(bbuf, index2);

In each case, the actual number of bytes read or written depends on several factors.
The operation tries to read or write to the limit of the buffer, and the vast majority of
the time that is what happens with local file access. The operation is guaranteed to
block only until at least one byte has been processed. Whatever happens, the number
of bytes processed is returned, and the buffer position is updated accordingly, prepar‐
ing you to repeat the operation until it is complete, if needed. This is one of the con‐
veniences of working with buffers; they can manage the count for you. Like standard
streams, the channel read() method returns -1 upon reaching the end of input.

The size of the file is always available with the size() method. It can change if you
write past the end of the file. Conversely, you can truncate the file to a specified
length with the truncate() method.

Concurrent access

FileChannels are safe for use by multiple threads and guarantee that data “viewed”
by them is consistent across channels in the same VM. Unless you specify the SYNC or
DSYNC options, no guarantees are made about how quickly writes are propagated to
the storage mechanism. If you only intermittently need to be sure that data is safe
before moving on, you can use the force() method to flush changes to disk. This
method takes a Boolean argument indicating whether file metadata, including time‐
stamp and permissions, must be written (sync or dsync). Some systems keep track of
reads on files as well as writes, so you can save a lot of updates if you set the flag to
false, which indicates that you don’t care about syncing that data immediately.

As with all Channels, a FileChannel may be closed by any thread. Once closed, all its
read/write and position-related methods throw a ClosedChannelException.

File locking

FileChannels support exclusive and shared locks on regions of files through the
lock() method:

 FileLock fileLock = fileChannel.lock();
 int start = 0, len = fileChannel2.size();
 FileLock readLock = fileChannel2.lock(start, len, true);

376 | Chapter 11: Networking and I/O

Locks may be either shared or exclusive. An exclusive lock prevents others from
acquiring a lock of any kind on the specified file or file region. A shared lock allows
others to acquire overlapping shared locks but not exclusive locks. These are useful as
write and read locks, respectively. When you are writing, you don’t want others to be
able to write until you’re done, but when reading, you need only to block others from
writing, not reading concurrently.

The no-args lock() method in the previous example attempts to acquire an exclusive
lock for the whole file. The second form accepts a starting and length parameter as
well as a flag indicating whether the lock should be shared (or exclusive). The File
Lock object returned by the lock() method can be used to release the lock:

 fileLock.release();

Note that file locks are only guaranteed to be a cooperative API; they do not necessar‐
ily prevent anyone from reading or writing to the locked file contents. In general, the
only way to guarantee that locks are obeyed is for both parties to attempt to acquire
the lock and use it. Also, shared locks are not implemented on some systems, in
which case all requested locks are exclusive. You can test whether a lock is shared
with the isShared() method.

FileChannel locks are held until the channel is closed or interrupted, so performing
locks within a try-with-resources statement will help ensure that locks are released
more robustly:

try (FileChannel channel = FileChannel.open(p, WRITE)) {
 channel.lock();
 ...
}

Network Programming
The network is the soul of Java. Most of what is interesting about Java centers on the
potential for dynamic, networked applications. As Java’s networking APIs have
matured, Java has also become the language of choice for implementing traditional
client/server applications and services. In this section, we start our discussion of the
java.net package, which contains the fundamental classes for communications and
working with networked resources. Networking is a big topic, though! Chapter 12
will cover more networking goodies, focusing on internet-related topics.

The classes of java.net fall into two general categories: the Sockets API for working
with low-level internet protocols and higher-level, web-oriented APIs that work with
Uniform Resource Locators (URLs). Figure 11-3 shows the java.net package.

Network Programming | 377

Figure 11-3. The java.net package

378 | Chapter 11: Networking and I/O

4 For a discussion of sockets in general, see Unix Network Programming by W. Richard Stevens (Prentice-Hall).

Java’s Sockets API provides access to the standard network protocols used for com‐
munications between hosts on the internet. Sockets are the mechanism underlying all
other kinds of portable networked communications. Sockets are the lowest-level tool
in the general networking toolbox—you can use sockets for any kind of communica‐
tions between client and server or peer applications on the Net, but you have to
implement your own application-level protocols for handling and interpreting the
data. Higher-level networking tools, such as remote method invocation, HTTP, and
web services, are implemented on top of sockets.

These days, web services is the term for the more general technology that provides
platform-independent, loosely coupled invocation of services on remote servers using
web standards such as HTTP and JSON. We talk about web services in Chapter 12
when we discuss programming for the web.

In this chapter, we’ll provide some simple, practical examples of both high- and low-
level Java network programming using sockets. In Chapter 12, we’ll look at the other
half of the java.net package, which lets clients work with web servers and services
via URLs. It also introduces Java servlets and the tools that allow you to write your
own web applications and services.

Sockets
Sockets are a low-level programming interface for networked communications. They
send streams of data between applications that may or may not be on the same host.

Sockets originated in BSD Unix and are, in some programming languages, hairy,
complicated things with lots of small parts that can break off and endanger little chil‐
dren. The reason for this is that most socket APIs can be used with almost any kind of
underlying network protocol. Since the protocols that transport data across the net‐
work can have radically different features, the socket interface can be quite complex.4

The java.net package supports a simplified, object-oriented socket interface that
makes network communications considerably easier. If you’ve done network pro‐
gramming using sockets in other languages, you should be pleasantly surprised at
how simple things can be when objects encapsulate the gory details. If this is the first
time you’ve come across sockets, you’ll find that talking to another application over
the network can be as simple as reading a file or getting user input. Most forms of I/O
in Java, including most network I/O, use the stream classes described in “Streams” on
page 343. Streams provide a unified I/O interface so that reading or writing across the
internet is similar to reading or writing on the local system. In addition to the

Sockets | 379

stream-oriented interfaces, the Java networking APIs can work with the Java NIO
buffer-oriented API for highly scalable applications. We’ll see both in this chapter.

Java provides sockets to support three distinct classes of underlying protocols:
Sockets, DatagramSockets, and MulticastSockets. In this section, we look at Java’s
basic Socket class, which uses a connection-oriented and reliable protocol. A
connection-oriented protocol provides the equivalent of a telephone conversation.
After establishing a connection, two applications can send streams of data back and
forth, and the connection stays in place even when no one is talking. Because the pro‐
tocol is reliable, it also ensures that no data is lost (resending data as necessary), and
that whatever you send always arrives in the order in which you sent it.

We’ll have to leave the DatagramSocket class, which uses a connectionless, unreliable
protocol, for you to explore on your own. (You could start with Java Network Pro‐
gramming by Elliotte Rusty Harold, O’Reilly.) A connectionless protocol is like the
postal service. Applications can send short messages to each other, but no end-to-end
connection is set up in advance and no attempt is made to keep the messages in
order. It’s not even guaranteed that the messages will arrive at all. A MulticastSocket
is a variation of a DatagramSocket that performs multicasting—simultaneously send‐
ing data to multiple recipients. Working with multicast sockets is very much like
working with datagram sockets.

In theory, just about any protocol can be used underneath the socket layer (old-
schoolers will remember things like Novell’s IPX, Apple’s AppleTalk, etc.). But in
practice, there’s only one important protocol family used on the internet, and only
one protocol family that Java supports: the Internet Protocol (IP). The Socket class
speaks TCP, the connection-oriented flavor of IP, and the DatagramSocket class
speaks UDP, the connectionless kind.

Clients and Servers
When writing network applications, it’s common to talk about clients and servers.
The distinction is increasingly vague, but the side that initiates the conversation is
usually considered the client. The side that accepts the request is usually the server. In
the case where two peer applications use sockets to talk, the distinction is less impor‐
tant, but for simplicity we’ll use this definition.

For our purposes, the most important difference between a client and a server is that
a client can create a socket to initiate a conversation with a server application at any
time, while a server must be prepared in advance to listen for incoming conversa‐
tions. The java.net.Socket class represents one side of an individual socket connec‐
tion on both the client and server. In addition, the server uses the
java.net.ServerSocket class to listen for new connections from clients. In most
cases, an application acting as a server creates a ServerSocket object and waits,

380 | Chapter 11: Networking and I/O

https://oreil.ly/M6kQg
https://oreil.ly/M6kQg

blocked in a call to its accept() method, until a connection arrives. When it arrives,
the accept() method creates a Socket object that the server uses to communicate
with the client. A server may carry on conversations with multiple clients at once; in
this case, there is still only a single ServerSocket, but the server has multiple Socket
objects—one associated with each client, as shown in Figure 11-4.

Figure 11-4. Clients and servers, Sockets and ServerSockets

At the socket level, a client needs two pieces of information to locate and connect to a
server on the internet: a hostname (used to find the host computer’s network address)
and a port number. The port number is an identifier that differentiates between multi‐
ple clients or servers on the same host. A server application listens on a prearranged
port while waiting for connections. Clients use the port number assigned to the ser‐
vice they want to access. If you think of the host computers as hotels and the applica‐
tions as guests, the ports are like the guests’ room numbers. For one person to call
another, they must know the other party’s hotel name and room number.

Clients

A client application opens a connection to a server by constructing a Socket that
specifies the hostname and port number of the desired server:

 try {
 Socket sock = new Socket("wupost.wustl.edu", 25);
 } catch (UnknownHostException e) {
 System.out.println("Can't find host.");
 } catch (IOException e) {
 System.out.println("Error connecting to host.");
 }

This code fragment attempts to connect a Socket to port 25 (the SMTP mail service)
of the host wupost.wustl.edu. The client handles the possibility that the hostname
can’t be resolved (UnknownHostException) and that it might not be able to connect to
it (IOException). In the preceding case, Java used DNS, the standard Domain Name

Sockets | 381

Service, to resolve the hostname to an IP address for us. The constructor can also
accept a string containing the host’s raw IP address:

 Socket sock = new Socket("22.66.89.167", 25);

After a connection is made, input and output streams can be retrieved with the
Socket getInputStream() and getOutputStream() methods. The following (rather
arbitrary) code sends and receives some data with the streams:

 try {
 Socket server = new Socket("foo.bar.com", 1234);
 InputStream in = server.getInputStream();
 OutputStream out = server.getOutputStream();

 // write a byte
 out.write(42);

 // write a newline or carriage return delimited string
 PrintWriter pout = new PrintWriter(out, true);
 pout.println("Hello!");

 // read a byte
 byte back = (byte)in.read();

 // read a newline or carriage return delimited string
 BufferedReader bin =
 new BufferedReader(new InputStreamReader(in));
 String response = bin.readLine();

 server.close();
 }
 catch (IOException e) { ... }

In this exchange, the client first creates a Socket for communicating with the server.
The Socket constructor specifies the server’s hostname (foo.bar.com) and a prear‐
ranged port number (1234). Once the connection is established, the client writes a
single byte to the server using the OutputStream’s write() method. To send a string
of text more easily, it then wraps a PrintWriter around the OutputStream. Next, it
performs the complementary operations: reading a byte back from the server using
InputStream’s read() method and then creating a BufferedReader from which to get
a full string of text. The client then terminates the connection with the close()
method. All these operations have the potential to generate IOExceptions; our appli‐
cation will deal with these using the catch clause.

Servers

After a connection is established, a server application uses the same kind of Socket
object for its side of the communications. However, to accept a connection from a

382 | Chapter 11: Networking and I/O

client, it must first create a ServerSocket, bound to the correct port. Let’s recreate the
previous conversation from the server’s point of view:

 // Meanwhile, on foo.bar.com...
 try {
 ServerSocket listener = new ServerSocket(1234);

 while (!finished) {
 Socket client = listener.accept(); // wait for connection

 InputStream in = client.getInputStream();
 OutputStream out = client.getOutputStream();

 // read a byte
 byte someByte = (byte)in.read();

 // read a newline or carriage-return-delimited string
 BufferedReader bin =
 new BufferedReader(new InputStreamReader(in));
 String someString = bin.readLine();

 // write a byte
 out.write(43);

 // say goodbye
 PrintWriter pout = new PrintWriter(out, true);
 pout.println("Goodbye!");

 client.close();
 }

 listener.close();
 }
 catch (IOException e) { ... }

First, our server creates a ServerSocket attached to port 1234. On some systems,
there are rules about which ports an application can use. Port numbers below 1024
are usually reserved for system processes and standard, well-known services, so we
pick a port number outside of this range. The ServerSocket is created only once;
thereafter, we can accept as many connections as arrive.

Next, we enter a loop, waiting for the accept() method of the ServerSocket to
return an active Socket connection from a client. When a connection has been estab‐
lished, we perform the server side of our dialog, then close the connection and return
to the top of the loop to wait for another connection. Finally, when the server
application wants to stop listening for connections altogether, it calls the close()
method of the ServerSocket.

This server is single threaded; it handles one connection at a time, not calling
accept() to listen for a new connection until it’s finished with the current

Sockets | 383

5 Indeed, the publically available site we use from NIST strongly encourages users to upgrade. See the introduc‐
tory notes for more information.

connection. A more realistic server would have a loop that accepts connections con‐
currently and passes them off to their own threads for processing, or perhaps use a
non-blocking ServerSocketChannel.

Sockets and security
The previous examples presuppose that the client has permission to connect to the
server and that the server is allowed to listen on the specified socket. If you’re writing
a general, standalone application, this is normally the case (and you can probably skip
this section). However, untrusted applications run under the auspices of a security
policy that can impose arbitrary restrictions on what hosts they may or may not talk
to and whether or not they can listen for connections.

If you are going to run your own application under a security manager, you should be
aware that the default security manager disallows all network access. So in order to
make network connections, you would have to modify your policy file to grant the
appropriate permissions to your code (see Chapter 3 for details). The following policy
file fragment sets the socket permissions to allow connections to or from any host on
any nonprivileged port:

 grant {
 permission java.net.SocketPermission
 "*:1024-", "listen,accept,connect";
 };

When starting the Java runtime, you can install the security manager and use this file
(call it mysecurity.policy):

% java -Djava.security.manager \
-Djava.security.policy=mysecurity.policy MyApplication

The DateAtHost Client
In the past, many networked computers ran a simple time service that dispensed their
clock’s local time on a well-known port. This was a precursor of NTP, the more gen‐
eral Network Time Protocol.5 The next example, DateAtHost, includes a subclass of
java.util.Date that fetches the time from a remote host instead of initializing itself
from the local clock. (See Chapter 8 for a discussion of the Date class, which is still
good for some uses but has been largely replaced by its newer, more flexible cousins,
LocalDate and LocalTime.)

384 | Chapter 11: Networking and I/O

https://oreil.ly/hYBSO
https://oreil.ly/hYBSO

DateAtHost connects to the time service (port 37) and reads four bytes representing
the time on the remote host. These four bytes have a peculiar specification that we
decode to get the time. Here’s the code:

 //file: DateAtHost.java
 import java.net.Socket;
 import java.io.*;

 public class DateAtHost extends java.util.Date {
 static int timePort = 37;
 // seconds from start of 20th century to Jan 1, 1970 00:00 GMT
 static final long offset = 2208988800L;

 public DateAtHost(String host) throws IOException {
 this(host, timePort);
 }

 public DateAtHost(String host, int port) throws IOException {
 Socket server = new Socket(host, port);
 DataInputStream din =
 new DataInputStream(server.getInputStream());
 int time = din.readInt();
 server.close();

 setTime((((1L << 32) + time) - offset) * 1000);
 }
 }

That’s all there is to it. It’s not very long, even with a few frills. We have supplied two
possible constructors for DateAtHost. Normally we’d expect to use the first, which
simply takes the name of the remote host as an argument. The second constructor
specifies the hostname and the port number of the remote time service. (If the time
service were running on a nonstandard port, we would use the second constructor to
specify the alternate port number.) This second constructor does the work of making
the connection and setting the time. The first constructor simply invokes the second
(using the this() construct) with the default port as an argument. Supplying simpli‐
fied constructors that invoke their siblings with default arguments is a common and
useful pattern in Java; that is the main reason we’ve shown it here.

The second constructor opens a socket to the specified port on the remote host. It
creates a DataInputStream to wrap the input stream and then reads a four-byte inte‐
ger using the readInt() method. It’s no coincidence that the bytes are in the right
order. Java’s DataInputStream and DataOutputStream classes work with the bytes of
integer types in network byte order (most significant to least significant). The time
protocol (and other standard network protocols that deal with binary data) also uses
the network byte order, so we don’t need to call any conversion routines. Explicit data
conversions would probably be necessary if we were using a nonstandard protocol,
especially when talking to a non-Java client or server. In that case, we’d have to read

Sockets | 385

byte by byte and do some rearranging to get our four-byte value. After reading the
data, we’re finished with the socket, so we close it, terminating the connection to the
server. Finally, the constructor initializes the rest of the object by calling Date’s set
Time() method with the calculated time value.

The four bytes of the time value are interpreted as an integer representing the num‐
ber of seconds since the beginning of the 20th century. DateAtHost converts this to
Java’s notion of absolute time—the count of milliseconds since January 1, 1970 (an
arbitrary date standardized by C and Unix). The conversion first creates a long value,
which is the unsigned equivalent of the integer time. It subtracts an offset to make the
time relative to the epoch (January 1, 1970) rather than the century, and multiplies by
1,000 to convert to milliseconds. The converted time is used to initialize the object.

The DateAtHost class can work with a time retrieved from a remote host almost as
easily as Date is used with the time on the local host. The only additional overhead is
dealing with the possible IOException that can be thrown by the DateAtHost
constructor:

 try {
 Date d = new DateAtHost("time.nist.gov");
 System.out.println("The time over there is: " + d);
 }
 catch (IOException e) { ... }

This example fetches the time at the host time.nist.gov and prints its value.

A Distributed Game
We can use our newfound networking skills to extend our apple tossing game and go
multiplayer. We’ll have to keep this foray simple, but you might be surprised by how
quickly we can get a proof of concept off the ground. While there are several mecha‐
nisms two players could use to get connected for a shared experience, our example
uses the basic client/server model we’ve been discussing in this chapter. One user will
start the server and the second user will be able to contact that server as the client to
“join.” Once both players are connected, they’ll race to see who can clear their trees
the fastest!

Setting up the UI
Let’s start by adding a menu to our game. Recall from “Menus” on page 339 that
menus live in a menu bar and work with ActionEvent objects much like standard
buttons. We need an option for starting a server and another for joining a game at a
server someone has already started. The core code for these menu items is straight‐
forward; we can use another helper method in the AppleToss class:

 private void setupNetworkMenu() {
 JMenu netMenu = new JMenu("Multiplayer");

386 | Chapter 11: Networking and I/O

6 The game code for this chapter (in the ch11/game folder) contains the setupNetworkMenu() method but the
anonymous inner action listeners just pop up an info dialog to indicate which menu item was selected. You
get to build the Multiplayer class and call the actual multiplayer methods! But do feel free to check out the
completed game—including the networking parts— in the top-level game folder of the examples for the book.

 multiplayerHelper = new Multiplayer();

 JMenuItem startItem = new JMenuItem("Start Server");
 startItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 multiplayerHelper.startServer();
 }
 });
 netMenu.add(startItem);

 JMenuItem joinItem = new JMenuItem("Join Game...");
 joinItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String otherServer = JOptionPane.showInputDialog(AppleToss.this,
 "Enter server name or address:");
 multiplayerHelper.joinGame(otherServer);
 }
 });
 netMenu.add(joinItem);

 JMenuItem quitItem = new JMenuItem("Disconnect");
 quitItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 multiplayerHelper.disconnect();
 }
 });
 netMenu.add(quitItem);

 // build a JMenuBar for the application
 JMenuBar mainBar = new JMenuBar();
 mainBar.add(netMenu);
 setJMenuBar(mainBar);
 }

The use of anonymous inner classes for each menu’s ActionListener should look
familiar. (Or see “Method references” on page 435 to read about how you could use a
feature introduced in Java 8 for a more compact setup.) We also use the JOptionPane
discussed in “Input Dialogs” on page 332 to ask the second player for the name or IP
address of the server where the first player is waiting. The networking logic is han‐
dled in a separate class. We’ll look at the Mutliplayer class in more detail in the com‐
ing sections, but you can see the methods we’ll be implementing.6

Sockets | 387

The game server
As before in “Servers” on page 382, we need to pick a port and set up a socket that is
listening for an incoming connection. We’ll use port 8677—“TOSS” on a phone num‐
ber pad. We can create a Server inner class in our Multiplayer class to drive a thread
ready for network communications. Hopefully, the other bits in the snippet below
look familiar. The reader and writer variables will be used to send and receive the
actual game data; more on that in “The game protocol” on page 391.

 class Server implements Runnable {
 ServerSocket listener;

 public void run() {
 Socket socket = null;
 try {
 listener = new ServerSocket(gamePort);
 while (keepListening) {
 socket = listener.accept(); // wait for connection

 InputStream in = socket.getInputStream();
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(in));
 OutputStream out = socket.getOutputStream();
 PrintWriter writer = new PrintWriter(out, true);

 // ... game protocol logic starts here

We set up our ServerSocket and then wait for a new client inside a loop. While we
only plan to play one opponent at a time, this allows us to accept subsequent clients
without going through all the network setup again. To actually start the server listen‐
ing the first time, we just need a new thread that uses our Server class:

 // from Multiplayer
 Server server;

 // ...

 public void startServer() {
 keepListening = true;
 // ... other game state can go here
 server = new Server();
 serverThread = new Thread(server);
 serverThread.start();
 }

We keep a reference to the instance of Server in our Multiplayer class so that we
have ready access to shutting down the connections if the user selects the “discon‐
nect” option from the menu, like so:

 // from Multiplayer
 public void disconnect() {

388 | Chapter 11: Networking and I/O

 disconnecting = true;
 keepListening = false;
 // Are we in the middle of a game and regularly checking these flags?
 // If not, just close the server socket to interrupt the blocking
 // accept() method.
 if (server != null && keepPlaying == false) {
 server.stopListening();
 }

 // ... clean up other game state here
 }

The keepPlaying flag is mainly used once we’re in our game loop, but it comes in
handy above, too. If we have a valid server reference but we’re not currently playing
a game (so keepPlaying is false), we know to shut down the listener socket. The sto
pListening() method in the Server inner class is straightforward:

 public void stopListening() {
 if (listener != null && !listener.isClosed()) {
 try {
 listener.close();
 } catch (IOException ioe) {
 System.err.println("Error disconnecting listener: " +
 ioe.getMessage());
 }
 }
 }

The game client

The setup and teardown of the client side is similar—without the listening Server
Socket of course. We’ll mirror the Server inner class with a Client inner class and
build a smart run() method to implement our client logic:

 class Client implements Runnable {
 String gameHost;
 boolean startNewGame;

 public Client(String host) {
 gameHost = host;
 keepPlaying = false;
 startNewGame = false;
 }

 public void run() {
 try (Socket socket = new Socket(gameHost, gamePort)) {

 InputStream in = socket.getInputStream();
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(in));
 OutputStream out = socket.getOutputStream();
 PrintWriter writer = new PrintWriter(out, true);

Sockets | 389

 // ... game protocol logic starts here

We use a constructor for Client to pass the name of the server we will connect to,
and rely on the common gamePort variable used by Server to set up the listening
socket. We use the “try with resource” technique discussed in “try with Resources” on
page 184 to create our socket and make sure it gets cleaned up when we’re done.
Inside that resource try block, we create our reader and writer instances for the cli‐
ent’s half of the conversation, as shown in Figure 11-5.

Figure 11-5. Game client and server connections

To get this going, we’ll add another handy method to our Multiplayer helper class:

 // from Multiplayer

 public void joinGame(String otherServer) {
 clientThread = new Thread(new Client(otherServer));
 clientThread.start();
 }

There’s no need for a separate disconnect() method, as the state variables used by
the server can also drive the polite shutdown of the client. For the client, the server
reference will be null, so there won’t be any attempt to shut down a nonexistent
listener.

390 | Chapter 11: Networking and I/O

The game protocol

You likely noticed we left out the bulk of the run() method for both the Server and
Client classes. After we build and connect our data streams, the remaining work is
all about collaboratively sending and receiving information about the state of our
game. This structured communication is the game’s protocol. Every network service
has a protocol. Think of the “P” in HTTP. Even our simple DateAtHost example uses
a (very simple) protocol so that clients and servers know who is expected to talk and
who must listen at any given moment. If each of the two sides ends up waiting for the
other side to say something (e.g., both the server and the client are blocking on a
reader.readLine() call), then the connection will appear to hang.

Managing those communication expectations is the core of any protocol, but what to
say and how to respond are also important. Indeed, this portion of a protocol often
requires the most work on the part of the developer. Part of the difficulty is that you
really need both sides to test your work as you go. You can’t test a server without a
client and vice versa. Building up both sides as you go can feel tedious but it is worth
the extra effort. As with other debugging advice, fixing a small incremental change is
much simpler than figuring out what might be wrong with a large block of code.

In our example, we’ll have the server steer the conversation. This choice is arbitrary—
we could have used the client, or we could have built a fancier foundation and
allowed both the client and the server to be in charge of certain things simultane‐
ously. But with the “server in charge” decision made, we can try a very simple first
step in our protocol. We’ll have the server send a “NEW_GAME” command and then
wait for the client to respond with an “OK” answer. The server-side code might look
like so:

 // Create a new game with the client
 writer.println("NEW_GAME");

 // If the client agrees, send over the location of the trees
 String response = reader.readLine();
 if (response != null && response.equals("OK")) {
 System.out.println("Starting a new game!")
 // ... write tree data here
 } else {
 System.err.println("Unexpected start response: " + response);
 System.err.println("Skipping game and waiting again.");
 keepPlaying = false;
 }

If we get the expected “OK” response, we can proceed with setting up a new game
and sharing the tree locations with our opponent—but more on that in a minute. The
corresponding client-side code for this first step flows similarly:

 // We expect to see the NEW_GAME command first
 String response = reader.readLine();

Sockets | 391

 // If we don't see that command, disconnect and quit
 if (response == null || !response.equals("NEW_GAME")) {
 System.err.println("Unexpected initial command: " + response);
 System.err.println("Disconnecting");
 writer.println("DISCONNECT");
 return;
 }
 // Yay! We're going to play a game. Acknowledge this command
 writer.println("OK");

If you compile and run the game at this point, you could start your server from one
system and then join that game from a second system. (You could also just launch a
second copy of the game from a separate terminal window. In that case, the “other
host” would be the networking keyword localhost.) Almost immediately after join‐
ing from the second game instance, you should see the “Starting a new game!” confir‐
mation printed in the terminal of the first game. Congratulations! You’re on your way
to designing a game protocol. Let’s keep going.

Once we know we’re starting a new game, we need to even the playing field—quite
literally. The server will tell the game to build a new field and then it can ship the
coordinates of all the new trees to the client. The client, in turn, can accept all the
incoming trees and place them on a clean field. Once the server has sent all of the
trees, it can send a “START” command and play can begin. We’ll stick to using strings
to communicate our messages. Here’s one way we can pass our tree details to the
client:

 gameField.setupNewGame();
 for (Tree tree : gameField.trees) {
 writer.println("TREE " + tree.getPositionX() + " " + tree.getPositionY());
 }

 // ...

 // Start the action!
 writer.println("START");
 response = reader.readLine();
 keepPlaying = response.equals("OK");

On the client side, we can call readLine() in a loop for “TREE” lines until we see the
“START” line, like so (with a little error handling thrown in):

 // And now gather the trees and set up our field
 gameField.trees.clear();
 response = reader.readLine();
 while (response.startsWith("TREE")) {
 String[] parts = response.split(" ");
 int x = Integer.parseInt(parts[1]);
 int y = Integer.parseInt(parts[2]);
 Tree tree = new Tree();
 tree.setPosition(x, y);

392 | Chapter 11: Networking and I/O

 gameField.trees.add(tree);
 response = reader.readLine();
 }
 if (!response.equals("START")) {
 // Hmm, we should have ended the list of trees with a START,
 // but didn't. Bail out.
 System.err.println("Unexpected start to the game: " + response);
 System.err.println("Disconnecting");
 writer.println("DISCONNECT");
 return;
 } else {
 // Yay again! We're starting a game. Acknowledge this command
 writer.println("OK");
 keepPlaying = true;
 gameField.repaint();
 }

At this point both games should have the same trees and can begin playing to clear
them. The server will enter a polling loop and send the current score twice a second.
The client will reply with its current score. Note that there are certainly other options
for how to share changes in the score. While polling is straightforward, more
advanced games or games that require more immediate feedback regarding remote
players will likely use more direct communication options. For now, we mainly want
to concentrate on a good network back-and-forth, so polling keeps our code simpler.

The server should keep sending the current score until the local player has cleared
out all of the trees or we see a game-ending response from the client. We’ll need to
parse the client’s response to update the other player’s score and watch for them end‐
ing the game or simply disconnecting. That loop would look something like this:

 while (keepPlaying) {
 try {
 if (gameField.trees.size() > 0) {
 writer.print("SCORE ");
 } else {
 writer.print("END ");
 keepPlaying = false;
 }
 writer.println(gameField.getScore(1));
 response = reader.readLine();
 if (response == null) {
 keepPlaying = false;
 disconnecting = true;
 } else {
 String parts[] = response.split(" ");
 switch (parts[0]) {
 case "END":
 keepPlaying = false;
 case "SCORE":
 gameField.setScore(2, parts[1]);
 break;

Sockets | 393

 case "DISCONNECT":
 disconnecting = true;
 keepPlaying = false;
 break;
 default:
 System.err.println("Warning. Unexpected command: " +
 parts[0] + ". Ignoring.");
 }
 }
 Thread.sleep(500);
 } catch(InterruptedException e) {
 System.err.println("Interrupted while polling. Ignoring.");
 }
 }

And again, the client will mirror these actions. Fortunately for the client, it is just
reacting to the commands coming from the server. We don’t need a separate polling
mechanism here. We block waiting to read a line, parse it, and then build our
response.

 while (keepPlaying) {
 response = reader.readLine();
 String[] parts = response.split(" ");
 switch (parts[0]) {
 case "END":
 keepPlaying = false;
 case "SCORE":
 gameField.setScore(2, parts[1]);
 break;
 case "DISCONNECT":
 disconnecting = true;
 keepPlaying = false;
 break;
 default:
 System.err.println("Unexpected game command: " +
 response + ". Ignoring.");
 }
 if (disconnecting) {
 // We're disconnecting or they are. Acknowledge and quit.
 writer.println("DISCONNECT");
 return;
 } else {
 // If we're not disconnecting, reply with our current score
 if (gameField.trees.size() > 0) {
 writer.print("SCORE ");
 } else {
 keepPlaying = false;
 writer.print("END ");
 }
 writer.println(gameField.getScore(1));
 }
 }

394 | Chapter 11: Networking and I/O

When a player has cleared all of their trees, they send (or respond with) an “END”
command that includes their final score. At that point, we ask if the same two players
want to play again. If so, we can continue using the same reader and writer instan‐
ces for both the server and the client. If not, we’ll let the client disconnect and the
server will go back to listening for another player to join.

 // If we're not disconnecting, ask about playing again with the same player
 if (!disconnecting) {
 String message = gameField.getWinner() +
 " Would you like to ask them to play again?";
 int myPlayAgain = JOptionPane.showConfirmDialog(gameField, message,
 "Play Again?", JOptionPane.YES_NO_OPTION);

 if (myPlayAgain == JOptionPane.YES_OPTION) {
 // If they haven't disconnected, ask if they want to play again
 writer.println("PLAY_AGAIN");
 String playAgain = reader.readLine();
 if (playAgain != null) {
 switch (playAgain) {
 case "YES":
 startNewGame = true;
 break;
 case "DISCONNECT":
 keepPlaying = false;
 startNewGame = false;
 disconnecting = true;
 break;
 default:
 System.err.println("Warning. Unexpected response: "
 + playAgain + ". Not playing again.");
 }
 }
 }
 }

And one last reciprocal bit of code for the client:

 if (!disconnecting) {
 // Check to see if they want to play again
 response = reader.readLine();
 if (response != null && response.equals("PLAY_AGAIN")) {
 // Do we want to play again?
 String message = gameField.getWinner() +
 " Would you like to play again?";
 int myPlayAgain = JOptionPane.showConfirmDialog(gameField, message,
 "Play Again?", JOptionPane.YES_NO_OPTION);
 if (myPlayAgain == JOptionPane.YES_OPTION) {
 writer.println("YES");
 startNewGame = true;
 } else {
 // Not playing again so disconnect.
 disconnecting = true;

Sockets | 395

 writer.println("DISCONNECT");
 }
 }
 }

Table 11-4 summarizes our simple protocol.

Table 11-4. AppleToss game protocol

Server command Args (optional) Client response Args (optional)
NEW_GAME OK

TREE x y

START OK

SCORE score SCORE
END
DISCONNECT

score
score

END score SCORE
DISCONNECT

score

PLAY_AGAIN YES
DISCONNECT

DISCONNECT

We could spend much more time on our game. We could expand the protocol to
allow multiple opponents. We could change the objective to clear the trees and
destroy your opponent. We could make the protocol more bidirectional, allowing the
client to initiate some of the updates. We could use alternate lower-level protocols
supported by Java, such as UDP rather than TCP. Indeed, there are entire books devo‐
ted to games, to network programming, or to programming networked games!

More to Explore
As always we have to leave those explorations to you, but hopefully you have a sense
of Java’s strong support for networked applications. If you do explore some of those
advanced topics, you’ll undoubtedly start with a web search. The World Wide Web is
perhaps the greatest example of a networked environment. Given Java’s broad support
for networking, it should come as no surprise that Java has some great features devo‐
ted to working with the web. The next chapter introduces some of those features for
both the client, or frontend, and the server, or backend.

396 | Chapter 11: Networking and I/O

CHAPTER 12

Programming for the Web

When you think about the web, you probably think of web-based applications and
services. If you are asked to go deeper, you may consider tools such as web browsers
and web servers that support those applications and move data around the network.
But it’s important to note that standards and protocols, not the applications and tools
themselves, have enabled the web’s growth. Since the earliest days of the internet,
there have been ways to move files from here to there, and document formats that
were just as powerful as HTML, but there was not a unifying model for how to iden‐
tify, retrieve, and display information, nor was there a universal way for applications
to interact with that data over the network. Since the web explosion began, HTML
has reigned supreme as a common format for documents, and most developers have
at least some familiarity with it. In this chapter, we’re going to talk a bit about its
cousin, HTTP, the protocol that handles communications between web clients and
servers, and URLs—Uniform Resource Locators—which provide a standard for nam‐
ing and addressing objects on the web. Java provides a very simple API for working
with URLs to address objects on the web. In this chapter, we’ll discuss how to write
web clients that can interact with the servers using the HTTP GET and POST methods,
and also say a bit about web services, which are the next step up the evolutionary
chain. In “Java Web Applications” on page 409, we’ll jump over to the server side and
take a look at servlets and web services, which are Java programs that run on web
servers and implement the other side of these conversations.

Uniform Resource Locators
A URL points to an object on the internet. It’s a text string that identifies an item, tells
you where to find it, and specifies a method for communicating with it or retrieving it
from its source. A URL can refer to any kind of information source. It might point to
static data, such as a file on a local filesystem, a web server, or an FTP site; or it can

397

point to a more dynamic object such as an RSS news feed or a record in a database.
URLs can even refer to more dynamic resources such as communication sessions and
email addresses.

Because there are many different ways to locate an item on the internet, and different
mediums and transports require different kinds of information, URLs can have many
forms. The most common form has four components: a network host or server, the
name of the item, its location on that host, and a protocol by which the host should
communicate:

 protocol://hostname/path/item-name

protocol (also called the “scheme”) is an identifier such as http or ftp; hostname is
usually an internet host and domain name; and the path and item components form
a unique path that identifies the object on that host. Variants of this form allow extra
information to be packed into the URL, specifying, for example, port numbers for the
communications protocol and fragment identifiers that reference sections inside
documents. Other, more specialized types of URLs, such as “mailto” URLs for email
addresses or URLs for addressing things like database components, may not follow
this format precisely, but do conform to the general notion of a protocol followed by
a unique identifier. (Some of these would more properly be called URIs—Uniform
Resource Identifiers. URIs can specify the name or the location of a resource. URLs
are a subset of URIs.)

Because most URLs have the notion of a hierarchy or path, we sometimes speak of a
URL that is relative to another URL, called a base URL. In that case, we are using the
base URL as a starting point and supplying additional information to target an object
relative to that URL. For example, the base URL might point to a directory on a web
server and a relative URL might name a particular file in that directory or in a
subdirectory.

The URL Class
Bringing this down to a more concrete level is the Java URL class. The URL class rep‐
resents a URL address and provides a simple API for accessing web resources, such as
documents and applications on servers. It can use an extensible set of protocol and
content handlers to perform the necessary communication and, in theory, even data
conversion. With the URL class, an application can open a connection to a server on
the network and retrieve content with just a few lines of code. As new types of servers
and new formats for content evolve, additional URL handlers can be supplied to
retrieve and interpret the data without modifying your applications.

398 | Chapter 12: Programming for the Web

A URL is represented by an instance of the java.net.URL class. A URL object manages
all the component information within a URL string and provides methods for retriev‐
ing the object it identifies. We can construct a URL object from a URL string or from
its component parts:

try {
 URL aDoc =
 new URL("http://foo.bar.com/documents/homepage.html");
 URL sameDoc =
 new URL("http","foo.bar.com","documents/homepage.html");
} catch (MalformedURLException e) { ... }

These two URL objects point to the same network resource, the homepage.html docu‐
ment on the server foo.bar.com. Whether the resource actually exists and is available
isn’t known until we try to access it. When initially constructed, the URL object con‐
tains only data about the object’s location and how to access it. No connection to the
server has been made. We can examine the various parts of the URL with the getProto
col(), getHost(), and getFile() methods. We can also compare it to another URL
with the sameFile() method (an unfortunate name for something that may not point
to a file), which determines whether two URLs point to the same resource. It’s not
foolproof, but sameFile() does more than compare the URL strings for equality; it
takes into account the possibility that one server may have several names as well as
other factors. It doesn’t go as far as to fetch the resources and compare them,
however.

When a URL is created, its specification is parsed to identify just the protocol compo‐
nent. If the protocol doesn’t make sense, or if Java can’t find a protocol handler for it,
the URL constructor throws a MalformedURLException. A protocol handler is a Java
class that implements the communications protocol for accessing the URL resource.
For example, given an http URL, Java prepares to use the HTTP protocol handler to
retrieve documents from the specified web server.

As of Java 7, URL protocol handlers are guaranteed to be provided for http, https
(secure HTTP), and ftp, as well as local file URLs and jar URLs that refer to files
inside JAR archives. Outside of that, it gets a little dicey. We’ll talk more about the
issues surrounding content and protocol handlers a bit later in this chapter.

Stream Data
The lowest-level and most general way to get data back from a URL is to ask for an
InputStream from the URL by calling openStream(). Getting the data as a stream may
also be useful if you want to receive continuous updates from a dynamic information
source. The drawback is that you have to parse the contents of the byte stream your‐
self. Working in this mode is basically the same as working with a byte stream from
socket communications, but the URL protocol handler has already dealt with all of

The URL Class | 399

the server communications and is providing you with just the content portion of the
transaction. Not all types of URLs support the openStream() method because not all
types of URLs refer to concrete data; you’ll get an UnknownServiceException if the
URL doesn’t.

The following code (a simplification of the Read.java file available in the examples
folder for this chapter) prints the contents of an HTML file from a web server:

try {
 URL url = new URL("http://server/index.html");

 BufferedReader bin = new BufferedReader (
 new InputStreamReader(url.openStream()));

 String line;
 while ((line = bin.readLine()) != null) {
 System.out.println(line);
 }
 bin.close();
} catch (Exception e) { }

We ask for an InputStream with openStream() and wrap it in a BufferedReader to
read the lines of text. Because we specify the http protocol in the URL, we enlist the
services of an HTTP protocol handler. Note that we haven’t talked about content han‐
dlers yet. In this case, because we’re reading directly from the input stream, no con‐
tent handler (no transformation of the content data) is involved.

Getting the Content as an Object
As we said previously, reading raw content from a stream is the most general mecha‐
nism for accessing data over the web. openStream() leaves the parsing of data up to
you. The URL class, however, was intended to support a more sophisticated, plugga‐
ble, content-handling mechanism. We’ll discuss this now, but be aware that it is not
widely used because of lack of standardization and limitations in how you can deploy
new handlers. Although the Java community made some progress in recent years in
standardizing a small set of protocol handlers, no such effort was made to standard‐
ize content handlers. This means that although this part of the discussion is interest‐
ing, its usefulness is limited.

If Java knows the type of content being retrieved from a URL and a proper content
handler is available, you can retrieve the URL content as an appropriate Java object by
calling the URL’s getContent() method. In this mode of operation, getContent() ini‐
tiates a connection to the host, fetches the data for you, determines the type of data,
and then invokes a content handler to turn the bytes into a Java object. Java will try to

400 | Chapter 12: Programming for the Web

1 Perhaps “media type” would be a more friendly term. MIME is a bit of a historical acronym: Multipurpose
Internet Mail Extensions.

determine the type of the content by looking at its MIME type,1 its file extension, or
even by examining the bytes directly.

For example, given the URL http://foo.bar.com/index.html, a call to getContent()
uses the HTTP protocol handler to retrieve data and might use an HTML content
handler to turn the data into an appropriate document object. Similarly, a GIF file
might be turned into an AWT ImageProducer object using a GIF content handler. If
we access the GIF file using an FTP URL, Java would use the same content handler
but a different protocol handler to receive the data.

Since the content handler must be able to return any type of object, the return type of
getContent() is Object. This might leave us wondering what kind of object we got.
In a moment, we’ll describe how we could ask the protocol handler about the object’s
MIME type. Based on this, and whatever other knowledge we have about the kind of
object we are expecting, we can cast the Object to its appropriate, more specific type.
For example, if we expect an image, we might cast the result of getContent() to
ImageProducer:

try {
 ImageProducer ip = (ImageProducer)myURL.getContent();
} catch (ClassCastException e) { ... }

Various kinds of errors can occur when trying to retrieve the data. For example, get
Content() can throw an IOException if there is a communications error. Other kinds
of errors can occur at the application level: some knowledge of how the application-
specific content and protocol handlers deal with errors is necessary. One problem
that could arise is that a content handler for the data’s MIME type wouldn’t be avail‐
able. In this case, getContent() invokes a special “unknown type” handler that
returns the data as a raw InputStream (back to square one).

In some situations, we may also need knowledge of the protocol handler. For exam‐
ple, consider a URL that refers to a nonexistent file on an HTTP server. When reques‐
ted, the server returns the familiar “404 Not Found” message. To deal with protocol-
specific operations like this, we may need to talk to the protocol handler, which we’ll
discuss next.

Managing Connections
Upon calling openStream() or getContent() on a URL, the protocol handler is con‐
sulted and a connection is made to the remote server or location. Connections are
represented by a URLConnection object, subtypes of which manage different protocol-

The URL Class | 401

specific communications and offer additional metadata about the source. The
HttpURLConnection class, for example, handles basic web requests and also adds
some HTTP-specific capabilities such as interpreting “404 Not Found” messages and
other web server errors. We’ll talk more about HttpURLConnection later in this chap‐
ter.

We can get a URLConnection from our URL directly with the openConnection()
method. One of the things we can do with the URLConnection is ask for the object’s
content type before reading data. For example:

URLConnection connection = myURL.openConnection();
String mimeType = connection.getContentType();
InputStream in = connection.getInputStream();

Despite its name, a URLConnection object is initially created in a raw, unconnected
state. In this example, the network connection was not actually initiated until we
called the getContentType() method. The URLConnection does not talk to the source
until data is requested or its connect() method is explicitly invoked. Prior to connec‐
tion, network parameters and protocol-specific features can be set up. For example,
we can set timeouts on the initial connection to the server and on reads:

URLConnection connection = myURL.openConnection();
connection.setConnectTimeout(10000); // milliseconds
connection.setReadTimeout(10000); // milliseconds
InputStream in = connection.getInputStream();

As we’ll see in “Using the POST Method” on page 405, we can get at the protocol-
specific information by casting the URLConnection to its specific subtype.

Handlers in Practice
The content- and protocol-handler mechanisms we’ve described are very flexible; to
handle new types of URLs, you need only add the appropriate handler classes. One
interesting application of this would be Java-based web browsers that could handle
new and specialized kinds of URLs by downloading them over the internet. The idea
for this was touted in the earliest days of Java. Unfortunately, it never came to fru‐
ition. There is no API for dynamically downloading new content and protocol han‐
dlers. In fact, there is no standard API for determining what content and protocol
handlers exist on a given platform.

Java currently mandates protocol handlers for HTTP, HTTPS, FTP, FILE, and JAR.
While in practice you will generally find these basic protocol handlers with all ver‐
sions of Java, that’s not entirely comforting, and the story for content handlers is even
less clear. The standard Java classes don’t, for example, include content handlers for
HTML, GIF, PNG, JPEG, or other common data types. Furthermore, although con‐
tent and protocol handlers are part of the Java API and an intrinsic part of the mech‐
anism for working with URLs, specific content and protocol handlers aren’t defined.

402 | Chapter 12: Programming for the Web

Even those protocol handlers that have been bundled in Java are still packaged as part
of the Sun implementation classes and are not truly part of the core API for all to see.

In summary, the Java content- and protocol-handler mechanism was a forward-
thinking approach that never quite materialized. The promise of web browsers that
dynamically extend themselves for new types of protocols and new content is, like fly‐
ing cars, always just a few years away. Although the basic mechanics of the protocol-
handler mechanism are useful (especially now with some standardization) for
decoding content in your own applications, you should probably turn to other, newer
frameworks that have a bit more specificity.

Useful Handler Frameworks
The idea of dynamically downloadable handlers could also be applied to other kinds
of handler-like components. For example, the Java XML community is fond of refer‐
ring to XML as a way to apply semantics (meaning) to documents and to Java as a
portable way to supply the behavior that goes along with those semantics. It’s possible
that an XML viewer could be built with downloadable handlers for displaying XML
tags.

Fortunately, for working with URL streams of images, music, and video, very mature
APIs are available. The Java Advanced Imaging API (JAI) includes a well-defined,
extensible set of handlers for most image types, and the Java Media Framework (JMF)
can play most common music and video types found online.

Talking to Web Applications
Web browsers are the universal clients for web applications. They retrieve documents
for display and serve as a user interface, primarily through the use of HTML, Java‐
Script, and linked documents. In this section, we’ll show how to write client-side Java
code that uses HTTP through the URL class to work with web applications directly
using GET and POST operations to retrieve and send data.

There are many reasons an application might want to communicate via HTTP. For
example, compatibility with another browser-based application might be important,
or you might need to gain access to a server through a firewall where direct socket
connections (and RMI) are problematic. HTTP is the lingua franca of the internet,
and despite its limitations (or more likely because of its simplicity), it has rapidly
become one of the most widely supported protocols in the world. As for using Java
on the client side, all the other reasons you would write a client-side GUI or non-GUI
application (as opposed to a pure web/HTML-based application) also present them‐
selves. A client-side GUI can perform sophisticated presentation and validation
while, with the techniques presented here, still using web-enabled services over the
network.

Talking to Web Applications | 403

The primary task we discuss here is sending data to the server, specifically HTML
form-encoded data. In a web browser, the name/value pairs of HTML form fields are
encoded in a special format and sent to the server using one of two methods. The first
method, using the HTTP GET command, encodes the user’s input into the URL and
requests the corresponding document. The server recognizes that the first part of the
URL refers to a program and invokes it, passing along the information encoded in the
URL as a parameter. The second method uses the HTTP POST command to ask the
server to accept the encoded data and pass it to a web application as a stream. In Java,
we can create a URL that refers to a server-side program and request or send it data
using the GET and POST methods. In “Java Web Applications” on page 409 below, we’ll
see how to build web applications that implement the other side of this conversation.

Using the GET Method
Using the GET method of encoding data in a URL is pretty easy. All we have to do is
create a URL pointing to a server program and use a simple convention to tack on the
encoded name/value pairs that make up our data. For example, the following code
snippet opens a URL to an old-school CGI program called login.cgi on the server
myhost and passes it two name/value pairs. It then prints whatever text the CGI sends
back:

URL url = new URL(
 // this string should be URL-encoded
 "http://myhost/cgi-bin/login.cgi?Name=Pat&Password=foobar");

BufferedReader bin = new BufferedReader (
 new InputStreamReader(url.openStream()));

String line;
while ((line = bin.readLine()) != null) {
 System.out.println(line);
}

To form the URL with parameters, we start with the base URL of login.cgi; we add a
question mark (?), which marks the beginning of the parameter data, followed by the
first name/value pair. We can add as many pairs as we want, separated by ampersand
(&) characters. The rest of our code simply opens the stream and reads back the
response from the server. Remember that creating a URL doesn’t actually open the
connection. In this case, the URL connection was made implicitly when we called
openStream(). Although we are assuming here that our server sends back text, it
could send anything.

It’s important to point out that we have skipped a step here. This example works
because our name/value pairs happen to be simple text. If any “nonprintable” or spe‐
cial characters (including ? or &) are in the pairs, they must be encoded first. The

404 | Chapter 12: Programming for the Web

java.net.URLEncoder class provides a utility for encoding the data. We’ll show how
to use it in the next example in “Using the POST Method” on page 405.

Another important thing is that although this small example sends a password field,
you should never send sensitive data using this simplistic approach. The data in this
example is sent in clear text across the network (it is not encrypted). And in this case,
the password field would appear anywhere the URL is printed as well (e.g., server
logs, browser history, and bookmarks). We’ll talk about secure web communications
later in this chapter when we discuss writing web applications using servlets.

Using the POST Method
For larger amounts of input data or for sensitive content, you’ll likely use the POST
option. Here’s a small application that acts like an HTML form. It gathers data from
two text fields—name and password—and posts the data to a specified URL using the
HTTP POST method. This Swing-based client application works with a server-side
web-based application, just like a web browser.

Here’s the code:

//file: ch12/Post.java
package ch12;

import java.net.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * A small graphical application that demonstrates use of the
 * HTTP POST mechanism. Provide a POST-able URL to the command line
 * and use the "Post" button to send sample name and password
 * data to the URL.
 *
 * See the servlet section of this chapter for the ShowParameters
 * example that can serve (ha!) as the receiving (server) side.
 */
public class Post extends JPanel implements ActionListener {
 JTextField nameField;
 JPasswordField passwordField;
 String postURL;

 GridBagConstraints constraints = new GridBagConstraints();

 void addGB(Component component, int x, int y) {
 constraints.gridx = x; constraints.gridy = y;
 add (component, constraints);
 }

Talking to Web Applications | 405

 public Post(String postURL) {

 this.postURL = postURL;

 setBorder(BorderFactory.createEmptyBorder(5, 10, 5, 5));
 JButton postButton = new JButton("Post");
 postButton.addActionListener(this);
 setLayout(new GridBagLayout());
 constraints.fill = GridBagConstraints.HORIZONTAL;
 addGB(new JLabel("Name ", JLabel.TRAILING), 0, 0);
 addGB(nameField = new JTextField(20), 1, 0);
 addGB(new JLabel("Password ", JLabel.TRAILING), 0, 1);
 addGB(passwordField = new JPasswordField(20), 1, 1);
 constraints.fill = GridBagConstraints.NONE;
 constraints.gridwidth = 2;
 constraints.anchor = GridBagConstraints.EAST;
 addGB(postButton, 1, 2);
 }

 public void actionPerformed(ActionEvent e) {
 postData();
 }

 protected void postData() {
 StringBuilder sb = new StringBuilder();
 String pw = new String(passwordField.getPassword());
 try {
 sb.append(URLEncoder.encode("Name", "UTF-8") + "=");
 sb.append(URLEncoder.encode(nameField.getText(), "UTF-8"));
 sb.append("&" + URLEncoder.encode("Password", "UTF-8") + "=");
 sb.append(URLEncoder.encode(pw, "UTF-8"));
 } catch (UnsupportedEncodingException uee) {
 System.out.println(uee);
 }
 String formData = sb.toString();

 try {
 URL url = new URL(postURL);
 HttpURLConnection urlcon =
 (HttpURLConnection) url.openConnection();
 urlcon.setRequestMethod("POST");
 urlcon.setRequestProperty("Content-type",
 "application/x-www-form-urlencoded");
 urlcon.setDoOutput(true);
 urlcon.setDoInput(true);
 PrintWriter pout = new PrintWriter(new OutputStreamWriter(
 urlcon.getOutputStream(), "8859_1"), true);
 pout.print(formData);
 pout.flush();

 // Did the post succeed?
 if (urlcon.getResponseCode() == HttpURLConnection.HTTP_OK)

406 | Chapter 12: Programming for the Web

 System.out.println("Posted ok!");
 else {
 System.out.println("Bad post...");
 return;
 }
 // Hooray! Go ahead and read the results...
 //InputStream in = urlcon.getInputStream();
 // ...

 } catch (MalformedURLException e) {
 System.out.println(e); // bad postURL
 } catch (IOException e2) {
 System.out.println(e2); // I/O error
 }
 }

 public static void main(String [] args) {
 if (args.length != 1) {
 System.err.println("Must specify URL on command line. Exiting.");
 System.exit(1);
 }
 JFrame frame = new JFrame("SimplePost");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.add(new Post(args[0]), "Center");
 frame.pack();
 frame.setVisible(true);
 }
}

When you run this application, you must specify the URL of the server program on
the command line. For example:

% java Post http://www.myserver.example/cgi-bin/login.cgi

The beginning of the application creates the form using Swing elements like we did in
Chapter 10. All the magic happens in the protected postData() method. First, we
create a StringBuilder (a nonsynchronized version of StringBuffer) and load it
with name/value pairs, separated by ampersands. (We don’t need the initial question
mark when we’re using the POST method because we’re not appending to a URL
string.) Each pair is first encoded using the static URLEncoder.encode() method. We
run the name fields through the encoder as well as the value fields, even though we
know that in this case they contain no special characters.

Next, we set up the connection to the server program. In our previous example, we
weren’t required to do anything special to send the data because the request was made
by the simple act of opening the URL on the server. Here, we have to carry some of
the weight of talking to the remote web server. Fortunately, the HttpURLConnection
object does most of the work for us; we just have to tell it that we want to do a POST to
the URL and the type of data we are sending. We ask for the URLConnection object
that is using the URL’s openConnection() method. We know that we are using the

Talking to Web Applications | 407

HTTP protocol, so we should be able to cast it to an HttpURLConnection type, which
has the support we need. Because HTTP is one of the guaranteed protocols, we can
safely make this assumption. (Speaking of safely, we use HTTP here only for demon‐
stration purposes. So much data these days is considered sensitive. Industry guide‐
lines have settled on defaulting to HTTPS; more on that soon in “SSL and Secure Web
Communications” on page 409.)

We then use setRequestMethod() to tell the connection we want to do a POST opera‐
tion. We also use setRequestProperty() to set the Content-Type field of our HTTP
request to the appropriate type—in this case, the proper MIME type for encoded
form data. (This is necessary to tell the server what kind of data we’re sending.)
Finally, we use the setDoOutput() and setDoInput() methods to tell the connection
that we want to both send and receive stream data. The URL connection infers from
this combination that we are going to do a POST operation and expects a response.
Next, we get an output stream from the connection with getOutputStream() and
create a PrintWriter so that we can easily write our encoded data.

After we post the data, our application calls getResponseCode() to see whether the
HTTP response code from the server indicates that the POST was successful. Other
response codes (defined as constants in HttpURLConnection) indicate various fail‐
ures. At the end of our example, we indicate where we could have read back the text
of the response. For this application, we’ll assume that simply knowing that the post
was successful is sufficient.

Although form-encoded data (as indicated by the MIME type we specified for the
Content-Type field) is the most common, other types of communications are possi‐
ble. We could have used the input and output streams to exchange arbitrary data
types with the server program. The POST operation could send any kind of data; the
server application simply has to know how to handle it. One final note: if you are
writing an application that needs to decode form data, you can use the java.net.URL
Decoder to undo the operation of the URLEncoder. Be sure to specify UTF8 when call‐
ing decode().

The HttpURLConnection
Other information from the request is available from the HttpURLConnection as well.
We could use getContentType() and getContentEncoding() to determine the
MIME type and encoding of the response. We could also interrogate the HTTP
response headers by using getHeaderField(). (HTTP response headers are metadata
name/value pairs carried with the response.) Convenience methods can fetch integer-
and date-formatted header fields, getHeaderFieldInt() and getHeaderFieldDate(),
which return an int and a long type, respectively. The content length and last modi‐
fication date are provided through getContentLength() and getLastModified().

408 | Chapter 12: Programming for the Web

SSL and Secure Web Communications
The previous examples sent a field called Password to the server. However, standard
HTTP doesn’t provide encryption to hide our data. Fortunately, adding security for
GET and POST operations like this is easy (trivial, in fact, for the client-side developer).
Where available, you simply need to use a secure form of the HTTP protocol—
HTTPS:

https://www.myserver.example/cgi-bin/login.cgi

HTTPS is a version of the standard HTTP protocol run over Secure Sockets Layer
(SSL), which uses public-key encryption techniques to encrypt the browser-to-server
communications. Most web browsers and servers currently come with built-in sup‐
port for HTTPS (or raw SSL sockets). Therefore, if your web server supports HTTPS
and has it configured, you can use a browser to send and receive secure data simply
by specifying the https protocol in your URLs. There is much more to learn about
SSL and related aspects of security, such as authenticating whom you are actually talk‐
ing to, but as far as basic data encryption goes, this is all you have to do. It is not
something your code has to deal with directly. The Java JRE standard edition ships
with SSL and HTTPS support, and beginning with Java 5.0, all Java implementations
must support HTTPS as well as HTTP for URL connections.

Java Web Applications
During Java’s early years, web-based applications followed the same basic paradigm:
the browser makes a request to a particular URL; the server generates a page of
HTML in response; and actions by the user drive the browser to the next page. In this
exchange, most or all of the work is done on the server side, which is seemingly logi‐
cal given that that’s where data and services often reside. The problem with this appli‐
cation model is that it is inherently limited by the loss of responsiveness, continuity,
and state experienced by the user when loading new “pages” in the browser. It’s diffi‐
cult to make a web-based application as seamless as a desktop application when the
user must jump through a series of discrete pages, and it is technically more challeng‐
ing to maintain application data across those pages. After all, web browsers were not
designed to host applications, they were designed to host documents.

But a lot has changed in web application development in recent years. Standards for
HTML and JavaScript have matured to the point where it is practical, indeed com‐
mon, to write applications in which most of the user interface and logic reside on the
client side, and background calls are made to the server for data and services. In this
paradigm, the server effectively returns just a single “page” of HTML that references
the bulk of the JavaScript, CSS, and other resources used to render the application
interface. JavaScript then takes over, manipulating elements on the page or creating
new ones dynamically using advanced HTML DOM features to produce the UI.

Java Web Applications | 409

JavaScript also makes asynchronous (background) calls to the server to fetch data and
invoke services. In early years, the results were returned as XML, leading to the term
Asynchronous JavaScript and XML (AJAX) for this style of interaction. You still hear
that term, although these days the JavaScript Object Notation (JSON) format is more
popular than XML and an explosion of asynchronous JavaScript libraries has taken
over. Since all of the libraries have the “asynchronous JavaScript” part in common,
you mostly hear developers (and hiring managers) talk about the particular library or
framework they use, such as React or Angular.

This new model simplifies and empowers web development in many ways. No longer
must the client work in a single-page, request-response regime where views and
requests are ping-ponged back and forth. The client is now more equivalent to a
desktop application in that it can respond to user input fluidly and manage remote
data and services without interrupting the user.

So far we’ve used the term web application generically, referring to any kind of
browser-based application that is located on a web server, whether it was a single page
or a collection of many pages. Now we are going to be more precise with that term. In
the context of the Java Servlet API, a web application is a collection of servlets and
Java web services that support Java classes, content such as HTML, Java Server Pages
(JSP), images or other media, and configuration information. For deployment (instal‐
lation on a web server), a web application is bundled into a WAR file. We’ll discuss
WAR files in detail later, but suffice it to say that they are really just JAR archives that
contain all the application files along with some deployment information. The impor‐
tant thing is that the standardization of WAR files means not only that the Java code
is portable, but also that the process of deploying the application to a server is
standardized.

Most WAR archives have at their core a web.xml file. This is an XML configuration
file that describes which servlets are to be deployed, their names and URL paths, their
initialization parameters, and a host of other information, including security and
authentication requirements. In recent years, however, the web.xml file has become
optional for many applications due to the introduction of Java annotations that take
the place of the XML configuration. In most cases, you can now deploy your servlets
and Java web services simply by annotating the classes with the necessary informa‐
tion and packaging them into the WAR file, or using a combination of the two. We’ll
discuss this in detail later in the chapter.

Web applications, or web apps, also have a well-defined runtime environment. Each
web app has its own “root” path on the web server, meaning that all the URLs
addressing its servlets and files start with a common unique prefix (e.g., http://
www.oreilly.com/someapplication/). The web app’s servlets are also isolated from those
of other web applications. Web apps cannot directly access each other’s files (although
they may be allowed to do so through the web server, of course). Each web app also

410 | Chapter 12: Programming for the Web

has its own servlet context. We’ll discuss the servlet context in more detail, but in
brief, it is a common area for servlets within an application to share information and
get resources from the environment. The high degree of isolation between web appli‐
cations is intended to support the dynamic deployment and updating of applications
required by modern business systems and to address security and reliability concerns.
Web apps are intended to be coarse-grained, relatively complete applications—not to
be tightly coupled with other web apps. Although there’s no reason you can’t make
web apps cooperate at a high level, for sharing logic across applications you might
want to consider web services, which we’ll discuss later in this chapter.

The Servlet Life Cycle
Let’s jump now to the Servlet API and get started building servlets. We’ll fill in the
gaps later when we discuss various parts of the APIs and WAR file structure in more
detail. The Servlet API is very simple. The base Servlet class has three life cycle
methods—init(), service(), and destroy()—along with some methods for getting
configuration parameters and servlet resources. However, these methods are not
often used directly by developers. Typically, developers will implement the doGet()
and doPost() methods of the HttpServlet subclass and access shared resources
through the servlet context, as we’ll discuss shortly.

Generally, only one instance of each deployed servlet class is instantiated per con‐
tainer. More precisely, it is one instance per servlet entry in the web.xml file, but we’ll
talk more about servlet deployment in “Servlet Containers” on page 422. In the past,
there was an exception to that rule when using the special SingleThreadModel type of
servlet. As of Servlet API 2.4, single-threaded servlets have been deprecated.

By default, servlets are expected to handle requests in a multithreaded way; that is,
the servlet’s service methods may be invoked by many threads at the same time. This
means that you should not store per-request or per-client data in instance variables of
your servlet object. (Of course, you can store general data related to the servlet’s oper‐
ation, as long as it does not change on a per-request basis.) Per-client state informa‐
tion can be stored in a client session object on the server or in a client-side cookie,
which persists across client requests. We’ll talk about client state later as well.

The service() method of a servlet accepts two parameters: a servlet “request” object
and a servlet “response” object. These provide tools for reading the client request and
generating output; we’ll talk about them (or rather their HttpServlet versions) in
detail in the examples below.

Java Web Applications | 411

Servlets
The package of primary interest to us here is javax.servlet.http, which contains
APIs specific to servlets that handle HTTP requests for web servers. In theory, you
can write servlets for other protocols, but nobody really does that, and we are going
to discuss servlets as if all were HTTP related.

Notice that the javax package prefix is similar to what we saw with the Swing pack‐
ages. The Servlet API is certainly an important part of Java, but it is not included with
the base developer kit. You need to download a separate library, servlet-api.jar, from a
third-party provider. Apache provides the reference implementation of the Servlet
API. Details on downloading this library and using it on the command line or with
the IntelliJ IDEA IDE can be found in “Grabbing the Web Code Examples” on page
454.

The primary tool provided by the javax.servlet.http package is the HttpServlet
base class. This is an abstract servlet that provides some basic implementation details
related to handling an HTTP request. In particular, it overrides the generic servlet
service() request and breaks it out into several HTTP-related methods, including
doGet(), doPost(), doPut(), and doDelete(). The default service() method exam‐
ines the request to determine what kind it is and dispatches it to one of these meth‐
ods, so you can override one or more of them to implement the specific protocol
behavior you need.

doGet() and doPost() correspond to the standard HTTP GET and POST operations.
GET is the standard request for retrieving a file or document at a specified URL. POST
is the method by which a client sends an arbitrary amount of data to the server.
HTML forms utilize POST to send data as do most web services.

To round these out, HttpServlet provides the doPut() and doDelete() methods.
These methods correspond to a part of the HTTP protocol popular with web applica‐
tions using a REST (REpresentational State Transfer) API style. They provide a way to
upload and remove files or other entities such as database records. doPut() is sup‐
posed to be like POST but with slightly different semantics (a PUT is supposed to logi‐
cally replace the item identified by the URL, whereas POST presents new data to it);
doDelete() would be its opposite.

HttpServlet also implements three other HTTP-related methods for you: doHead(),
doTrace(), and doOptions(). You don’t normally need to override these methods.
doHead() implements the HTTP HEAD request, which asks for the headers of a GET
request without the body. HttpServlet implements this by default in the trivial way,
by performing the GET method and then sending only the headers. You may wish to
override doHead() with a more efficient implementation if you can provide one as an
optimization. doTrace() and doOptions() implement other features of HTTP that

412 | Chapter 12: Programming for the Web

https://oreil.ly/97Vmc

allow for debugging and simple client/server capabilities negotiation. You shouldn’t
normally need to override these.

Along with HttpServlet, javax.servlet.http also includes subclasses of the objects
ServletRequest and ServletResponse, as well as HttpServletRequest and
HttpServletResponse. These subclasses provide, respectively, the input and output
streams needed to read and write client data. They also provide the APIs for getting
or setting HTTP header information and, as we’ll see, client session information.
Rather than document these dryly, we’ll show them in the context of some examples.
As usual, we’ll start with the simplest possible example.

The HelloClient Servlet
Here’s our servlet version of “Hello, World,” HelloClient:

@WebServlet(urlPatterns={"/hello"})
public class HelloClient extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html"); // must come first
 PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Hello Client!</title></head><body>"
 + "<h1>Hello Client!</h1>"
 + "</body></html>");
 }
}

If you want to try this servlet right away, skip ahead to “Servlet Containers” on page
422, where we walk through the process of deploying this servlet. Because we’ve
included the WebServlet annotation in our class, this servlet does not need a web.xml
file for deployment. All you have to do is bundle the class file into a particular folder
within a WAR archive (a fancy ZIP file) and drop it into a directory monitored by the
Tomcat server. For now, we’re going to focus on just the servlet example code itself,
which is pretty simple in this case. The code examples for this portion of the book are
available in a second repository on GitHub. Details for downloading and setting up
IntelliJ IDEA to use the appropriate servlet library can be found in “Grabbing the
Web Code Examples” on page 454.

Let’s have a look at the example. HelloClient extends the base HttpServlet class and
overrides the doGet() method to handle simple requests. In this case, we want to
respond to any GET request by sending back a one-line HTML document that says
“Hello Client!” First, we tell the container what kind of response we are going to gen‐
erate, using the setContentType() method of the HttpServletResponse object. We
specify the MIME type “text/html” for our HTML response. Then, we get the output

Java Web Applications | 413

https://oreil.ly/BipfR

stream using the getWriter() method and print the message to it. It is not necessary
for us to explicitly close the stream. We’ll talk more about managing the output
stream throughout this chapter.

ServletExceptions

The doGet() method of our example servlet declares that it can throw a ServletEx
ception. All of the service methods of the Servlet API may throw a ServletExcep
tion to indicate that a request has failed. A ServletException can be constructed
with a string message and an optional Throwable parameter that can carry any corre‐
sponding exception representing the root cause of the problem:

 throw new ServletException("utter failure", someException);

By default, the web server determines exactly what is shown to the user whenever a
ServletException is thrown; often there is a “development mode” where the excep‐
tion and its stack trace are displayed. Most servlet containers (like Tomcat) allow you
to designate custom error pages, but that’s beyond the scope of this chapter.

Alternatively, a servlet may throw an UnavailableException, a subclass of ServletEx
ception, to indicate that it cannot handle requests. This exception can be thrown to
indicate that the condition is permanent or that it should last for a specified period of
seconds.

Content type
Before fetching the output stream and writing to it, we must specify the kind of out‐
put we are sending by calling the response parameter’s setContentType() method.
In this case, we set the content type to text/html, which is the proper MIME type for
an HTML document. In general, though, it’s possible for a servlet to generate any
kind of data, including audio, video, or some other kind of text or binary document.
If we were writing a generic FileServlet to serve files like a regular web server, we
might inspect the filename extension and determine the MIME type from that or
from direct inspection of the data. (This is a good use for the java.nio.file.Files
probeConentType() method!) For writing binary data, you can use the getOutput
Stream() method to get an OutputStream as opposed to a Writer.

The content type is used in the Content-Type: header of the server’s HTTP response,
which tells the client what to expect even before it starts reading the result. This
allows your web browser to prompt you with the “Save File” dialog when you click on
a ZIP archive or executable program. When the content-type string is used in its full
form to specify the character encoding (e.g., text/html; charset=UTF-8), the infor‐
mation is also used by the servlet engine to set the character encoding of the Print
Writer output stream. As a result, you should always call the setContentType()
method before fetching the writer with the getWriter() method. The character

414 | Chapter 12: Programming for the Web

encoding can also be set separately via the servlet response setCharacterEncoding()
method.

The Servlet Response
In addition to providing the output stream for writing content to the client, the
HttpServletResponse object provides methods for controlling other aspects of the
HTTP response, including headers, error result codes, redirects, and servlet container
buffering.

HTTP headers are metadata name/value pairs sent with the response. You can add
headers (standard or custom) to the response with the setHeader() and addHeader()
methods (headers may have multiple values). There are also convenience methods for
setting headers with integer and date values:

 response.setIntHeader("MagicNumber", 42);
 response.setDateHeader("CurrentTime", System.currentTimeMillis());

When you write data to the client, the servlet container automatically sets the HTTP
response code to a value of 200, which means OK. Using the sendError() method,
you can generate other HTTP response codes. HttpServletResponse contains prede‐
fined constants for all of the standard codes. Here are a few common ones:

 HttpServletResponse.SC_OK
 HttpServletResponse.SC_BAD_REQUEST
 HttpServletResponse.SC_FORBIDDEN
 HttpServletResponse.SC_NOT_FOUND
 HttpServletResponse.SC_INTERNAL_SERVER_ERROR
 HttpServletResponse.SC_NOT_IMPLEMENTED
 HttpServletResponse.SC_SERVICE_UNAVAILABLE

When you generate an error with sendError(), the response is over and you can’t
write any actual content to the client. You can specify a short error message, however,
which may be shown to the client. (See the section “The Servlet Life Cycle” on page
411.)

An HTTP redirect is a special kind of response that tells the client web browser to go
to a different URL. Normally this happens quickly and without any interaction from
the user. You can send a redirect with the sendRedirect() method:

 response.sendRedirect("http://www.oreilly.com/");

While we’re talking about the response, we should say a few words about buffering.
Most responses are buffered internally by the servlet container until the servlet ser‐
vice method has exited or a preset maximum size has been reached. This allows the
container to set the HTTP content-length header automatically, telling the client how
much data to expect. You can control the size of this buffer with the setBufferSize()
method, specifying a size in bytes. You can even clear it and start over if no data has

Java Web Applications | 415

been written to the client. To clear the buffer, use isCommitted() to test whether any
data has been sent, then use resetBuffer() to dump the data if none has been sent. If
you are sending a lot of data, you may wish to set the content length explicitly with
the setContentLength() method.

Servlet Parameters
Our first example showed how to accept a basic request. Of course, to do anything
really useful, we’ll need to get some information from the client. Fortunately, the serv‐
let engine handles this for us, interpreting both GET and POST form-encoded data
from the client and providing it to us through the simple getParameter() method of
the servlet request.

GET, POST, and “extra path”
There are two common ways to pass information from your web browser to a servlet
or CGI program. The most general is to “post” it, meaning that your client encodes
the information and sends it as a stream to the program, which decodes it. Posting
can be used to upload large amounts of form data or other data, including files. The
other way to pass information is to somehow encode the information in the URL of
your client’s request. The primary way to do this is to use GET-style encoding of
parameters in the URL string. In this case, the web browser encodes the parameters
and appends them to the end of the URL string. The server decodes them and passes
them to the application.

As we described earlier, GET-style encoding takes the parameters and appends them
to the URL in a name/value fashion, with the first parameter preceded by a question
mark (?) and the rest separated by ampersands (&). The entire string is expected to be
URL-encoded: any special characters (such as spaces, ?, and & in the string) are spe‐
cially encoded.

Another way to pass data in the URL is called extra path. This simply means that
when the server has located your servlet or CGI program as the target of a URL, it
takes any remaining path components of the URL string and hands them over as an
extra part of the URL. For example, consider these URLs:

 http://www.myserver.example/servlets/MyServlet
 http://www.myserver.example/servlets/MyServlet/foo/bar

Suppose the server maps the first URL to the servlet called MyServlet. When given
the second URL, the server also invokes MyServlet, but considers /foo/bar to be the
“extra path” that can be retrieved through the servlet request getExtraPath()
method. This technique is useful for making more human-readable and meaningful
URL pathnames, especially for document-centric content.

416 | Chapter 12: Programming for the Web

Both GET and POST encoding can be used with HTML forms on the client by specify‐
ing get or post in the action attribute of the form tag. The browser handles the
encoding; on the server side, the servlet engine handles the decoding.

The content type used by a client to post form data to a servlet is: “application/x-
www-form-urlencoded”. The Servlet API automatically parses this kind of data and
makes it available through the getParameter() method. However, if you do not call
the getParameter() method, the data remains available, unparsed, in the input
stream, and can be read by the servlet directly.

GET or POST: Which one to use?

To users, the primary difference between GET and POST is that they can see the GET
information in the encoded URL shown in their web browser. This can be useful
because the user can cut and paste that URL (the result of a search, for example) and
mail it to a friend or bookmark it for future reference. POST information is not visible
to the user and ceases to exist after it’s sent to the server. This behavior goes along
with the protocol’s intent that GET and POST are to have different semantics. By con‐
vention, the result of a GET operation is not supposed to have any side effects; that is,
it’s not supposed to cause the server to perform any persistent operations (such as
making a purchase in a shopping cart). In theory, that’s the job of POST. That’s why
your web browser warns you about reposting form data again if you hit reload on a
page that was the result of a form posting.

The extra path style would be useful for a servlet that retrieves files or handles a range
of URLs in a human-readable way. Extra path information is often useful for URLs
that the user must see or remember, because it looks like any other path.

The ShowParameters Servlet
Our first example didn’t do much. This next example prints the values of any parame‐
ters that were received. We’ll start by handling GET requests and then make some triv‐
ial modifications to handle POST as well. Here’s the code:

import java.io.*;
import javax.servlet.http.*;
import java.util.*;

@WebServlet(urlPatterns={"/showParameter"})
public class ShowParameters extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException
 {
 showRequestParameters(request, response);
 }

Java Web Applications | 417

 void showRequestParameters(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Show Parameters</title></head><body>"
 + "<h1>Parameters</h1>");

 Map<String, String[]> params = request.getParameterMap();
 for (String name : params.keySet())
 {
 String [] values = params.get(name);
 out.println(""+ name +" = "+ Arrays.asList(values));
 }

 out.close();
 }
}

As in the first example, we override the doGet() method. We delegate the request to a
helper method that we’ve created, called showRequestParameters(), a method that
enumerates the parameters using the request object’s getParameterMap() method,
which returns a map of parameter names to values and prints them. Note that a
parameter may have multiple values if it is repeated in the request from the client,
hence the map contains String []. To make the thing pretty, we listed each parame‐
ter in HTML with an tag.

As it stands, our servlet would respond to any URL that contains a GET request. Let’s
round it out by adding our own form to the output and also accommodating POST
method requests. To accept posts, we override the doPost() method. The implemen‐
tation of doPost() could simply call our showRequestParameters() method, but we
can make it simpler still. The API lets us treat GET and POST requests interchangeably
because the servlet engine handles the decoding of request parameters. So we simply
delegate the doPost() operation to doGet().

Add the following method to the example:

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 doGet(request, response);
 }

Now, let’s add an HTML form to the output. The form lets the user fill in some
parameters and submit them to the servlet. Add this line to the showRequestParame
ters() method before the call to out.close():

418 | Chapter 12: Programming for the Web

 out.println("<p><form method=\"POST\" action=\""
 + request.getRequestURI() + "\">"
 + "Field 1 <input name=\"Field 1\" size=20>
"
 + "Field 2 <input name=\"Field 2\" size=20>
"
 + "
<input type=\"submit\" value=\"Submit\"></form>"
);

The form’s action attribute is the URL of our servlet so that our servlet will get the
data back. We use the getRequestURI() method to get the location of our servlet. For
the method attribute, we’ve specified a POST operation, but you can try changing the
operation to GET to see both styles.

So far, we haven’t done anything terribly exciting. In the next example, we’ll add some
power by introducing a user session to store client data between requests.

User Session Management
One of the nicest features of the Servlet API is its simple mechanism for managing a
user session. By a session, we mean that the servlet can maintain information over
multiple pages and through multiple transactions as navigated by the user; this is also
called maintaining state. Providing continuity through a series of web pages is impor‐
tant in many kinds of applications, such as handling a login process or tracking pur‐
chases in a shopping cart. In a sense, session data takes the place of instance data in
your servlet object. It lets you store data between invocations of your service meth‐
ods. Without such a mechanism, your servlet would have no way of knowing that two
requests came from the same user.

Session tracking is supported by the servlet container; you normally don’t have to
worry about the details of how it’s accomplished. It’s done in one of two ways: using
client-side cookies or URL rewriting. Client-side cookies are a standard HTTP mecha‐
nism for getting the client web browser to cooperate in storing state information for
you. A cookie is basically just a name/value attribute that is issued by the server,
stored on the client, and returned by the client whenever it is accessing a certain
group of URLs on a specified server. Cookies can track a single session or multiple
user visits.

URL rewriting appends session-tracking information to the URL, using GET-style
encoding or extra path information. The term rewriting applies because the server
rewrites the URL before it is seen by the client and absorbs the extra information
before it is passed back to the servlet. In order to support URL rewriting, a servlet
must take the extra step to encode any URLs it generates in content (e.g., HTML links
that may return to the page) using a special method of the HttpServletResponse
object. You need to allow for URL rewriting by the server if you want your applica‐
tion to work with browsers that do not support cookies or have them disabled. Many
sites simply choose not to work without cookies.

Java Web Applications | 419

To the servlet programmer, state information is made available through an HttpSes
sion object, which acts like a hash table for storing any objects you would like to
carry through the session. The objects stay on the server side; a special identifier is
sent to the client through a cookie or URL rewriting. On the way back, the identifier
is mapped to a session, and the session is associated with the servlet again.

The ShowSession Servlet
Here’s a simple servlet that shows how to store some string information to track a
session:

import java.io.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import java.util.Enumeration;

@WebServlet(urlPatterns={"/showSession"})
public class ShowSession extends HttpServlet {

 public void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 doGet(request, response);
 }

 public void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 HttpSession session = request.getSession();
 boolean clear = request.getParameter("clear") != null;
 if (clear)
 session.invalidate();
 else {
 String name = request.getParameter("Name");
 String value = request.getParameter("Value");
 if (name != null && value != null)
 session.setAttribute(name, value);
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Show Session</title></head><body>");

 if (clear)
 out.println("<h1>Session Cleared:</h1>");
 else {
 out.println("<h1>In this session:</h1>");
 Enumeration names = session.getAttributeNames();

420 | Chapter 12: Programming for the Web

 while (names.hasMoreElements()) {
 String name = (String)names.nextElement();
 out.println(""+name+" = " +session.getAttribute(
 name));
 }
 }

 out.println(
 "<p><hr><h1>Add String</h1>"
 + "<form method=\"POST\" action=\""
 + request.getRequestURI() +"\">"
 + "Name: <input name=\"Name\" size=20>
"
 + "Value: <input name=\"Value\" size=20>
"
 + "
<input type=\"submit\" value=\"Submit\">"
 + "<input type=\"submit\" name=\"clear\" value=\"Clear\"></form>"
);
 }
}

When you invoke the servlet, you are presented with a form that prompts you to
enter a name and a value. The value string is stored in a session object under the
name provided. Each time the servlet is called, it outputs the list of all data items
associated with the session. You will see the session grow as each item is added (in
this case, until you restart your web browser or the server).

The basic mechanics are much like our ShowParameters servlet. Our doGet()
method generates the form, which points back to our servlet via a POST method. We
override doPost() to delegate back to our doGet() method, allowing it to handle
everything. Once in doGet(), we attempt to fetch the user session object from the
request object using getSession(). The HttpSession object supplied by the request
functions like a hash table. There is a setAttribute() method, which takes a string
name and an Object argument, and a corresponding getAttribute() method. In
our example, we use the getAttributeNames() method to enumerate the values cur‐
rently stored in the session and to print them.

By default, getSession() creates a session if one does not exist. If you want to test for
a session or explicitly control when one is created, you can call the overloaded version
getSession(false), which does not automatically create a new session and returns
null if there is no session. Alternately, you can check to see if a session was just cre‐
ated with the isNew() method. To clear a session immediately, we can use the inva
lidate() method. After calling invalidate() on a session, we are not allowed to
access it again, so we set a flag in our example and show the “Session Cleared” mes‐
sage. Sessions may also become invalid on their own by timing out. You can control
session timeout programmatically, in the application server, or through the web.xml
file (via the “session-timeout” value of the “session config” section). In general, this
appears to the application as either no session or a new session on the next request.

Java Web Applications | 421

2 Amazon Web Services is one of the largest providers, with everything from free trials to enterprise-level tiers.
But there are many, many online Java hosting options, including Heroku and Google’s App Engine, which is
not a servlet container per se but still allows you to bring your Java skills to the web.

User sessions are private to each web application and are not shared across
applications.

We mentioned earlier that an extra step is required to support URL rewriting for web
browsers that don’t support cookies. To do this, we must make sure that any URLs we
generate in content are first passed through the HttpServletResponse encodeURL()
method. This method takes a string URL and returns a modified string only if URL
rewriting is necessary. Normally, when cookies are available, it returns the same
string. In our previous example, we could have encoded the server form URL that
was retrieved from getRequestURI() before passing it to the client if we wanted to
allow for users without cookies.

Servlet Containers
It’s finally time to run all of that example code! There are many tools—known as con‐
tainers—available for deploying servlets. Neither the OpenJDK nor the official Oracle
JDK come with a servlet container built in. Online services such as AWS2 can provide
reasonably quick, reasonably cheap containers to make your servlets available to the
world. For development though, you will undoubtedly want a local environment you
can control and change and restart as you learn your way around the Servlet API.
Since we have to set up this local environment ourselves, we will be installing the “ref‐
erence implementation” container, Apache Tomcat. We’ll be installing version 9, but
older versions still support all of the servlet basics we’ve discussed so far.

As we described earlier, a WAR file is an archive that contains all the parts of a web
application: Java class files for servlets and web services, JSPs, HTML pages, images,
and other resources. The WAR file is simply a JAR file (which is itself a fancy ZIP file)
with specified directories for the Java code and one designated configuration file: the
web.xml file, which tells the application server what to run and how to run it. WAR
files always have the extension .war, but they can be created and read with the stan‐
dard jar tool.

The contents of a typical WAR might look like this, as revealed by the jar tool:

 $ jar tvf shoppingcart.war

 index.html
 purchase.html
 receipt.html
 images/happybunny.gif
 WEB-INF/web.xml

422 | Chapter 12: Programming for the Web

https://aws.amazon.com
https://www.heroku.com
https://oreil.ly/uT2u5

 WEB-INF/classes/com/mycompany/PurchaseServlet.class
 WEB-INF/classes/com/mycompany/ReturnServlet.class
 WEB-INF/lib/thirdparty.jar

When deployed, the name of the WAR becomes, by default, the root path of the web
application—in this case, shoppingcart. Thus, the base URL for this web app, if
deployed on http://www.oreilly.com, is http://www.oreilly.com/shoppingcart/, and all
references to its documents, images, and servlets start with that path. The top level
of the WAR file becomes the document root (base directory) for serving files. Our
index.html file appears at the base URL we just mentioned, and our happybunny.gif
image is referenced as http://www.oreilly.com/shoppingcart/images/happybunny.gif.

The WEB-INF directory (all caps, hyphenated) is a special directory that contains all
deployment information and application code. This directory is protected by the web
server, and its contents are not visible to outside users of the application, even if you
add WEB-INF to the base URL. Your application classes can load additional files from
this area using getResource() on the servlet context, however, so it is a safe place to
store application resources. The WEB-INF directory also contains the web.xml file,
which we’ll talk more about in the next section.

The WEB-INF/classes and WEB-INF/lib directories contain Java class files and JAR
libraries, respectively. The WEB-INF/classes directory is automatically added to the
classpath of the web application, so any class files placed here (using the normal Java
package conventions) are available to the application. After that, any JAR files located
in WEB-INF/lib are appended to the web app’s classpath (the order in which they are
appended is, unfortunately, not specified). You can place your classes in either loca‐
tion. During development, it is often easier to work with the “loose” classes directory
and use the lib directory for supporting classes and third-party tools. It’s also possible
to install JAR files directly in the servlet container to make them available to all web
apps running on that server. This is often done for common libraries that will be used
by many web apps. The location for placing the libraries, however, is not standard
and any classes that are deployed in this way cannot be automatically reloaded if
changed—a feature of WAR files that we’ll discuss later. The Servlet API requires that
each server provide a directory for these extension JARs and that the classes there will
be loaded by a single classloader and made visible to the web application.

Configuration with web.xml and Annotations
The web.xml file is an XML configuration file that lists servlets and related entities to
be deployed, the relative names (URL paths) under which to deploy them, their initi‐
alization parameters, and their deployment details, including security and authoriza‐
tion. For most of the history of Java web applications, this was the only deployment
configuration mechanism. However, as of the Servlet 3.0 API (Tomcat 7 and later),
there are additional options. Most configuration can now be done using Java
annotations. We saw the WebServlet annotation used in the first example, Hello

Servlet Containers | 423

Client, to declare the servlet and specify its deployment URL path. Using the annota‐
tion, we could deploy the servlet to the Tomcat server without any web.xml file.
Another option with the Servlet 3.0 API is to deploy servlet procedurally—using Java
code at runtime.

In this section we will describe both the XML and annotation style of configuration.
For most purposes, you will find it easier to use the annotations, but there are a cou‐
ple of reasons to understand the XML configuration as well. First, the web.xml can be
used to override or extend the hardcoded annotation configuration. Using the XML,
you can change configuration at deployment time without recompiling the classes. In
general, configuration in the XML will take precedence over the annotations. It is also
possible to tell the server to ignore the annotations completely, using an attribute
called metadata-complete in the web.xml. Next, there may be some residual configu‐
ration, especially relating to options of the servlet container, which can only be done
through XML.

We will assume that you have at least a passing familiarity with XML, but you can
simply copy these examples in a cut-and-paste fashion. Let’s start with a simple
web.xml file for our HelloClient servlet example. It looks like this:

 <web-app>
 <servlet>
 <servlet-name>helloclient1</servlet-name>
 <servlet-class>HelloClient</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>helloclient1</servlet-name>
 <url-pattern>/hello</url-pattern>
 </servlet-mapping>
 </web-app>

The top-level element of the document is called <web-app>. Many types of entries
may appear inside the <web-app>, but the most basic are <servlet> declarations and
<servlet-mapping> deployment mappings. The <servlet> declaration tag is used to
declare an instance of a servlet and, optionally, to give it initialization and other
parameters. One instance of the servlet class is instantiated for each <servlet> tag
appearing in the web.xml file.

At minimum, the <servlet> declaration requires two pieces of information: a
<servlet-name>, which serves as a handle to reference the servlet elsewhere in the
web.xml file, and the <servlet-class> tag, which specifies the Java class name of the
servlet. Here, we named the servlet helloclient1. We named it like this to emphasize
that we could declare other instances of the same servlet if we wanted to, possibly giv‐
ing them different initialization parameters, etc. The class name for our servlet is, of
course, HelloClient. In a real application, the servlet class would likely have a full
package name, such as com.oreilly.servlets.HelloClient.

424 | Chapter 12: Programming for the Web

A servlet declaration may also include one or more initialization parameters, which
are made available to the servlet through the ServletConfig object’s getInitParame
ter() method:

 <servlet>
 <servlet-name>helloclient1</servlet-name>
 <servlet-class>HelloClient</servlet-class>
 <init-param>
 <param-name>foo</param-name>
 <param-value>bar</param-value>
 </init-param>
 </servlet>

Next, we have our <servlet-mapping>, which associates the servlet instance with a
path on the web server:

 <servlet-mapping>
 <servlet-name>helloclient1</servlet-name>
 <url-pattern>/hello</url-pattern>
 </servlet-mapping>

Here we mapped our servlet to the path /hello. (We could include additional url-
patterns in the mapping if desired.) If we later name our WAR learningjava.war and
deploy it on www.oreilly.com, the full path to this servlet would be http://
www.oreilly.com/learningjava/hello. Just as we could declare more than one servlet
instance with the <servlet> tag, we could declare more than one <servlet-
mapping> for a given servlet instance. We could, for example, redundantly map the
same helloclient1 instance to the paths /hello and /hola. The <url-pattern> tag
provides some very flexible ways to specify the URLs that should match a servlet.
We’ll talk about this in detail in the next section.

Finally, we should mention that although the web.xml example listed earlier will work
on some application servers, it is technically incomplete because it is missing formal
information that specifies the version of XML it is using and the version of the
web.xml file standard with which it complies. To make it fully compliant with the
standards, add a line such as:

 <?xml version="1.0" encoding="ISO-8859-1"?>

As of Servlet API 2.5, the web.xml version information takes advantage of XML sche‐
mas. The additional information is inserted into the <web-app> element:

 <web-app
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd”
 version="2.5">

Servlet Containers | 425

If you leave them out, the application may still run, but it will be harder for the servlet
container to detect errors in your configuration and give you clear error messages.
Some smart editors also take advantage of the schema information to help with syn‐
tax highlighting, autocompletion, and other niceties.

The equivalent of the preceding servlet declaration and mapping is, as we saw earlier,
our one-line annotation:

@WebServlet(urlPatterns={"/hello", "/hola"})
public class HelloClient extends HttpServlet {
 ...
}

Here the WebServlet attribute urlPatterns allows us to specify one or more URL
patterns that are the equivalent to the url-pattern declaration in the web.xml.

URL Pattern Mappings
The <url-pattern> specified in the previous example was a simple string, /hello.
For this pattern, only an exact match of the base URL followed by /hello would
invoke our servlet. The <url-pattern> tag is capable of more powerful patterns,
however, including wildcards. For example, specifying a <url-pattern> of /hello*
allows our servlet to be invoked by URLs such as http://www.oreilly.com/learningjava/
helloworld or …/hellobaby. You can even specify wildcards with extensions (e.g.,
*.html or *.foo, meaning that the servlet is invoked for any path that ends with
those characters).

Using wildcards can result in more than one match. Consider URLs ending in /
scooby* and /scoobydoo*. Which should be matched for a URL ending in …/scooby
doobiedoo? What if we have a third possible match because of a wildcard suffix
extension mapping? The rules for resolving these are as follows.

First, any exact match is taken. For example, /hello matches the /hello URL pattern
in our example regardless of any additional /hello*. Failing that, the container looks
for the longest prefix match. So /scoobydoobiedoo matches the second pattern, /
scoobydoo*, because it is longer and presumably more specific. Failing any matches
there, the container looks at wildcard suffix mappings. A request ending in .foo
matches a *.foo mapping at this point in the process. Finally, failing any matches
there, the container looks for a default, catchall mapping named /*. A servlet mapped
to /* picks up anything unmatched by this point. If there is no default servlet map‐
ping, the request fails with a “404 not found” message.

426 | Chapter 12: Programming for the Web

Deploying HelloClient
Once you’ve deployed the HelloClient servlet, it should be easy to add examples to
the WAR as you work with them in this chapter. In this section, we’ll show you how
to build a WAR by hand. There are certainly a variety of tools out there to help auto‐
mate and manage WARs, but the manual approach is straightforward and helps illu‐
minate the contents.

To create the WAR by hand, we first create the WEB-INF and WEB-INF/classes direc‐
tories. If you are using a web.xml file, place it into WEB-INF. (Remember that the
web.xml file is not necessary if you are using the WebServlet annotation with Tomcat
7 or later.) Put the HelloClient.class into WEB-INF/classes. Use the jar command to
create learningjava.war (WEB-INF at the “top” level of the archive):

 $ jar cvf learningjava.war WEB-INF

You can also include documents and other resources in the WAR by adding their
names after the WEB-INF directory. This command produces the file learning‐
java.war. You can verify the contents using the jar command:

 $ jar tvf learningjava.war
 document1.html
 WEB-INF/web.xml
 WEB-INF/classes/HelloClient.class

Now all that is necessary is to drop the WAR into the correct location for your server.
If you have not already, you should download and install Apache Tomcat. You can
download version 9 and find some useful documentation at Apache’s Tomcat site.

The location for WAR files is the webapps directory within your Tomcat installation
directory. Place your WAR here, and start the server. If Tomcat is configured with the
default port number, you should be able to point to the HelloClient servlet with one
of two URLs: http://localhost:8080/learningjava/hello or http://<yourserver>:8080/
learningjava/hello, where <yourserver> is the name or IP address of your server. If
you have trouble, look in the logs directory of the Tomcat folder for errors.

Reloading web apps
All servlet containers are supposed to provide a facility for reloading WAR files; many
support reloading of individual servlet classes after they have been modified. Reload‐
ing WARs is part of the servlet specification and is especially useful during develop‐
ment. Support for reloading web apps varies from server to server. Normally, all that
you have to do is drop a new WAR in place of the old one in the proper location (e.g.,
the webapps directory for Tomcat), and the container shuts down the old application
and deploys the new version. This works in Tomcat when the “autoDeploy” attribute
is set (it is on by default) and also in Oracle’s WebLogic application server when it is
configured in development mode.

Servlet Containers | 427

https://oreil.ly/7Bub3
https://tomcat.apache.org

Some servers, including Tomcat, “explode” WARs by unpacking them into a directory
under the webapps directory, or they allow you explicitly to configure a root directory
(or “context”) for your unpacked web app through their own configuration files. In
this mode, they may allow you to replace individual files, which can be especially use‐
ful for tweaking HTML or JSPs. Tomcat automatically reloads WAR files when you
change them (unless configured not to), so all you have to do is drop an updated
WAR over the old one and it will redeploy it as necessary. In some cases, it may be
necessary to restart the server to make all changes take effect. When in doubt, shut
down and restart.

The World Wide Web Is, Well, Wide
We have only scratched the surface of all that you can accomplish with Java and the
web. We looked at how built-in facilities in Java make accessing and interacting with
online resources as simple as dealing with files. We also saw how to start putting your
own Java code out into the world with servlets. As you explore servlets, you’ll
undoubtedly run into other third-party libraries to add to your project just as we did
with the servlet-api.jar file. Perhaps you are starting to understand just how big the
Java ecosystem has become!

It is not just libraries and add-ons around Java that are expanding, either. The Java
language itself continues to grow and evolve. In the next chapter, we’ll look at how to
watch for new features on the horizon as well as how to work recently published fea‐
tures into existing code.

428 | Chapter 12: Programming for the Web

CHAPTER 13

Expanding Java

The Java language is now over 25 years old. It has grown and changed a great deal in
that time. Some of the growth has been quiet and incremental. Other changes can feel
abrupt. Even the process for how changes are introduced into the language has
evolved.

In this chapter we’ll be looking at where those changes start and how they end up in
an actual release of Java. We’ll recap the release process we discussed in “A Java Road
Map” on page 21 and take a peek at some of the topics being discussed for future
releases. We’ll also return to the present and go over updating your existing code with
a new feature—and when that makes sense. Not every new feature in Java will be of
interest to every Java developer. On the flip side, almost every developer will find
something of interest somewhere in the vast catalog of capabilities present directly in
Java or in its many, many third-party libraries.

Java Releases
As we write this fifth edition, Java 14 is available as a preview release. We’ve been
working with the open source version of the developer kit, the OpenJDK. You can see
recent and upcoming releases at the JDK Project page. Again, Oracle maintains the
official JDK, which may be appropriate for large, corporate customers looking for
paid support. You can follow the progress of the official releases at Oracle’s landing
page: Java Standard Edition overview. If you’re curious about exactly what features
and changes come with each version, check out Oracle’s JDK Release Notes page.

After Java 9, Oracle moved to a six-month release cycle for smaller, feature-based
releases of the language. That rapid cadence means you’ll see regular updates to Java.
You might look forward to each new release and working its new features into your
code right away. Or you might choose to stick with one of the designated long-term

429

https://oreil.ly/5qJ_8
https://oreil.ly/o2l81
https://oreil.ly/YNDdj

support releases like Java 8 or Java 11. As we noted before, not all changes to Java will
be useful to you. But we want to make sure you know how to evaluate new features as
well as how to watch for what’s coming next.

JCP and JSRs
We’ll start the explanation of what features get added to Java by adding a few more
acronyms. The Java Community Process (JCP) Program is designed to invite public
participation in shaping Java’s road map. Through that process, Java Specification
Requests (JSRs) are created and refined. A JSR is just a document outlining a particu‐
lar, scoped idea for implementation and development by some team of programmers.
For example, JSR 376 describes the Java Platform Module System for better handling
of the parts necessary to build and deploy Java applications. (You can also browse all
JSRs if you are curious about what is out there—including ideas that were specified
but ultimately withdrawn or rejected.) Any JSR of sufficient interest might earn a spot
as a preview feature in an upcoming version of Java. If an idea is not quite ready for a
full specification, it might pop up as a JDK Enhancement Proposal (JEP). Not all pro‐
posals will grow out of that stage, but you can see there is a fairly robust environment
for trying out new ideas and moving any winners forward for eventual inclusion.

If you want to see which features are going into the next release, check out Oracle’s
JDK build site. Here you will see current JDKs as well as those available for early
access. The early access builds include release notes on what’s around the bend. But as
you look at those early access releases, take the first disclaimer from the site to heart:
“Early-access (EA) functionality might never make it into a general-availability (GA)
release.” Indeed, the releases of Java themselves are wrapped in “umbrella” JSRs such
as JSR 337 for Java 8. These umbrella JSRs are a bit dry, but they are an authoritative
description of what’s coming in the given release.

Lambda Expressions
JSR 337, for example, presaged some big changes in Java. The previous edition of this
book left off with Java 7. The try-with-resources (among many other features) we
used in Chapter 11 was hot off the presses. Developers at the time were already look‐
ing for other features that had been discussed but ultimately not included. One of the
most anticipated additions was the idea of lambda expressions (JSR 335). Lambda
expressions allow you to treat a bit of code as a first-class object. (In relation to
lambda expressions, these bits of code are called functions.) If you don’t need to use
that function anywhere else, this can lead to more concise and readable programs that
are easier to understand, once you are familiar with the syntax. Like anonymous
classes, lambda functions can access local variables that are in scope where they are
written. They work really well with function-oriented APIs like the

430 | Chapter 13: Expanding Java

https://oreil.ly/bV_ct
https://oreil.ly/9Ssdp
https://oreil.ly/9Ssdp
https://openjdk.java.net/jeps/0
https://jdk.java.net
https://oreil.ly/sSofa
https://oreil.ly/typ6B

1 James Elliott, a reviewer for this book and a fellow O’Reilly author, provides a bit of historical context: “The
reason they are called ‘lambda’ functions is that they were invented as part of the lambda calculus, which was
introduced by mathematician Alonzo Church in the 1930s to produce rigorous mathematical definitions of
how computation works. They became an actual programming language construct almost accidentally in
1958 when MIT students realized it would be pretty easy to implement a running version of the Lisp language
that professor John McCarthy was using as a practical mathematical notation for analyzing computer pro‐
grams. Although Lisp is the second-oldest high level language that is still in use (Fortran is one year older), its
extreme expressivity allowed it to pioneer concepts that took a long time to spread into mainstream use, and
Java was the language that helped many of them do so, notably garbage collection and dynamic typing.”

java.util.stream package, also noted in JSR 335. These impressive additions did
indeed make it into Java 8.

Lambda functions1 allow you to approach problems with a more functional outlook.
Functional programming is a more declarative style of programming. You focus on
writing functions—methods with some specific restrictions—rather than on manipu‐
lating objects. We won’t go into the details of functional programming, but it is a
powerful paradigm and one worth exploring as you continue your coding journey.
We include some good books for functional programming homework in “Expanding
Java Beyond the Core” on page 437 at the end of the chapter.

Retrofitting Your Code
Lambda expressions seem pretty interesting. What if we want to use them in our own
code? That’s a great question and one that will apply to any new feature. As we’ve
noted, the release schedule for Java means that you will always be facing new ver‐
sions. Let’s tackle these lambda expressions with an eye toward evaluating and poten‐
tially integrating new Java features.

Feature research
With any new feature, you’ll first need to understand what the feature itself encom‐
passes. That might be as simple as a small syntax change or as complex as a new way
to build Java binaries. Our lambda expressions fall somewhere in between. Let’s look
at a very simple expression and then use it in a bit of code.

So where would we begin with lambda expressions? If you have some programming
experience from a functional language like Lisp, perhaps you already know what
lambdas are and where they might be used. If you don’t know much about the term,
you could search online. If the feature has been available for some time (like lambda
expressions in Java as we write this edition of the book at the dawn of 2020) you will
likely turn up some good tutorials. If it’s a very new feature or your initial searches
are not turning up useful results, you can go back to the JSR. For lambda expressions,
again that’s JSR 335. Section 2 of a JSR is the Request section and usually contains

Lambda Expressions | 431

https://oreil.ly/typ6B

some helpful hints. Here’s the opening paragraph from section 2.7 providing a short
description of the feature:

We propose extending the Java Language to support compact lambda expressions
(otherwise known as closures or anonymous methods.) Additionally, we will extend
the language to support a conversion known as “SAM conversion” to allow lambda
expressions to be used where a single-abstract-method interface or class is expected,
enabling forward compatibility of existing libraries.

—JSR 335 Section 2.7

There are several keywords in just those few sentences that could help you search for
more background material. What are “closures”? What is “SAM conversion”? The last
sentence even gives you clue about where lambda expressions would be used: wher‐
ever a particular type of interface or class is allowed. That paragraph is certainly not
enough to fully grasp lambda expressions on their own, but again, it has some hints
about the right topics to research.

The rest of the JSR should give you more documentation you can read. It may include
content that is immediately useful, but more often you’ll find links to supporting
material, design documents by members of the team working on the JSR, or even ear‐
lier drafts of the request itself so you can see its evolution. You should also be able to
find more concrete information in the Java documentation for the version containing
your feature (Java 8 in our lambda example). Even the early access builds will have
some official documentation available.

You should feel free to do some of that research on lambda expressions right now.
Read some of the supporting documents from the JSR. Check out the Oracle tutorials
on lambdas in Java 8. Try searching online at sites like Stack Overflow. You’ll want to
become comfortable finding examples you understand from sources you trust. New
releases of Java are now rolling out every six months. It will pay to know how you can
best stay up to date!

Basic lambda expressions
While we hope you do some of that research homework, we do want to show you
some examples of how compact and powerful lambda expressions can be. The basic
syntax of a lambda expression is simple:

(params) -> expression or block

The “params” are zero or more named (and possibly typed) parameters that are
passed to the expression on the right side of the new → operator. The expression (or
block of statements inside the usual pair of curly braces) can return a value or execute
some code. For example, here’s a common “increment” lambda expression for a single
input parameter:

(n) -> n + 1

432 | Chapter 13: Expanding Java

It’s important to note that this lambda expression does not alter the value of the
parameter n. It just performs a calculation. You could think of this particular example
as a “next” operation for integers. If you had some other context that used a next()
method to do some work, you could supply this lambda expression. That becomes
more powerful when you want to use that same context to work with other types of
objects like strings or dates. What is the “next” date? Is it the next day? The next year?
With a lambda expression, you can provide a tailored version of “next” right where
you need it.

You can pass more than one parameter to your function. Or you can pass none. In
the wild, you will see all these variations, including a popular shortcut: if you have
exactly one parameter, you do not need to use parentheses on the left side of the
expression. The following expressions are all valid:

// 1 parameter
(n) -> n + 1

n -> n + 1

n -> System.out.println("Working on " + n)

// No parameters
() -> System.out.println("Done working")

// Multiple parameters
(a, b, c) -> (a + b + c) / 3

Consider sorting lists. If we have a list of numbers (we’ll use the Integer wrapper
class in this example), sorting is straightforward:

jshell> ArrayList<Integer> numbers = new ArrayList<>();
numbers ==> []

jshell> numbers.add(19)
$5 ==> true

jshell> numbers.add(6)
$6 ==> true

jshell> numbers.add(12)
$7 ==> true

jshell> numbers.add(7)
$8 ==> true

jshell> numbers
numbers ==> [19, 6, 12, 7]

jshell> Collections.sort(numbers)

Lambda Expressions | 433

jshell> numbers
numbers ==> [6, 7, 12, 19]

But what if we wanted the numbers in reverse order? Previously, we would have to
write a special class that implements the Comparator interface, or provide an anony‐
mous inner class:

jshell> Collections.sort(numbers, new Comparator<Integer>() {
 ...> public int compare(Integer a, Integer b) {
 ...> return b.compareTo(a);
 ...> }
 ...> })

jshell> numbers
numbers ==> [19, 12, 7, 6]

Fair enough, the anonymous inner class worked, but it was a little bulky. We could
use a lambda expression instead to write a more compact version:

jshell> Collections.sort(numbers) // put the array back in ascending order

jshell> numbers
numbers ==> [6, 7, 12, 19]

jshell> Collections.sort(numbers, (a, b) -> b.compareTo(a))

jshell> numbers
numbers ==> [19, 12, 7, 6]

Wow! That is much cleaner. You have to understand what the Collections.sort()
method is expecting as arguments and know that the Comparator interface has only
one abstract method (i.e., it is a single-abstract-method—or SAM—interface; remem‐
ber the JSR description?). But when you do have the right environment, a lambda
expression can be quite efficient.

We could take these techniques and rewrite several of our “list generating” examples
from throughout the book. Let’s take the snippet from “File operations” on page 355
using java.io.File objects. We could sort and list the names using the actual File
objects with the help of the Arrays.asList() method (to get an Iterable) and then
use a lambda expression with the forEach() method, like so:

File tmpDir = new File("/tmp");
File [] files = tmpDir.listFiles();

Arrays.sort(files, (a,b) -> a.getName().compareTo(b.getName()))
Arrays.asList(files).forEach(n -> System.out.println(n.getName()))

We were able to get filenames before without lambdas, but in many cases we can
write more concise code with them. You have to get comfortable with the lambda
syntax, of course, but that’s what all this practice is for!

434 | Chapter 13: Expanding Java

2 See the answer to this question provided by Brian Goetz on Stack Overflow.

Method references
That process of sorting complex objects using one of their attributes is so common, in
fact, there’s a Java helper method that creates the right function already in the API.
The Comparator.comparing() static method can help write something similar to our
lambda expression that uses compareTo() in the previous section. It takes advantage
of method references, a simplified type of lambda expression that uses existing meth‐
ods from other classes.

There are many details and use cases for method references that we won’t go into
here, but the basic syntax and usage is straightforward. You place the :: separator
between a class name and a method name. The Comparator.comparing() method is
expecting a reference to a method that can be used on the objects being sorted (i.e.,
you should still call appropriate methods). When sorting our File objects, we can use
any of the getter methods that return sort-friendly information, like the name or size
of the file:

Arrays.sort(files, Comparator.comparing(File::getName));

That is pretty clean! And we can see exactly what is intended: we are going to sort a
bunch of files by comparing their names. Which, of course, is exactly what we did with
lambdas in the previous section. Remember, it’s not that using method references is
better—they can always be replaced by a lambda expression—it’s that many times,
method references can provide more readable code once you get used to the new syn‐
tax (just like with lambda expressions themselves).2

Eventful lambdas
We have seen a few other code examples that have similarly constrained environ‐
ments. Think back to the many event handlers in Chapter 10. Several listeners were
exactly the single-abstract-method variety like the ActionListener interface used by
JButton or JMenuItem. Where appropriate, we can use a lambda expression to sim‐
plify our event-handling code. We often have simple, temporary handlers to check
the basic ability to click a button, like so:

 JButton okButton = new JButton("OK");
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 System.out.println("OK pressed!");
 }
 });

We can now use a lambda expression to shorten that up quite a bit. It makes writing
such quick proof-of-concept code for several buttons much easier:

Lambda Expressions | 435

https://oreil.ly/UqfJW

 JButton okButton = new JButton("OK");
 okButton.addActionListener(ae -> System.out.println("OK pressed"));
 JButton noButton = new JButton("Cancel");
 noButton.addActionListener(ae -> System.out.println("Cancel pressed"));

Great! Lambda expressions can provide a nice way to tackle situations where a little
dynamic code is needed. Not every event handler will lend itself to this type of con‐
version, of course. But many will and the more compact notation can help make your
code more readable, too.

Replacing Runnable

Another popular interface that fits this model is the Runnable interface introduced in
Chapter 9 and used again in Chapter 10. We saw examples of using both inner classes
and anonymous inner classes to create new Thread objects. The SwingUtili
ties.invokeLater() method also needed a Runnable instance as an argument. We
can use a lambda expression in these cases as well. Recall the ProgressPretender
example from “SwingUtilities and Component Updates” on page 333. We were
already inside the run() method of a class that implements the Runnable interface
when we had to create a second, anonymous instance of Runnable to update a label:

 public void run() {
 while (progress <= 100) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 label.setText(progress + "%");
 }
 });
 // ...

But now we can use a lambda expression to keep the focus on the real work the
thread is doing:

 public void run() {
 while (progress <= 100) {
 SwingUtilities.invokeLater(() -> label.setText(progress + "%"));
 // ...

Again, a much more compact—and hopefully readable—bit of code. It is not a
required change, nor does it improve performace of the application, but if you (and
any members of your team in a work setting) understand lambda expressions, this
code can increase maintainability and leave you more time to work on other
problems.

436 | Chapter 13: Expanding Java

3 Interestingly, Java 8 remains one of the most deployed versions of Java according to a variety of industry sur‐
veys as of 2019.

Expanding Java Beyond the Core
It’s important to point out that many parts of Java make use of JSRs beyond core lan‐
guage features. JSR 369, for example, covers the Java Servlet 4.0 specification. You
might recall from “Servlets” on page 412 that we needed the separate servlet-api.jar
file to compile and run the servlet examples. Looking over the description for JSR
369, we see that the 4.0 spec is designed to support features found in HTTP/2. If you
dig into those features, one of the most anticipated additions is support for server
push—the ability for the server to speed up delivery of complex pages by “pushing”
some files or resources ahead of their actual use.

Under the HTTP/1.1 protocol, an HTML page would be delivered to your browser
when you visited a site. That page would, in turn, tell the browser to request other
resources such as JavaScript files, style sheets, images, etc. Each of those resources
would require a separate request. Caches speed up some of this process, but the first
time you visit a new site, nothing is in the cache so the load time can be quite signifi‐
cant. HTTP/2 allows the server to send resources in advance—making efficient use of
an existing connection. This optimization speeds up delivery of a page even if it con‐
tains things that are not, or cannot be, cached.

Now, transitioning to HTTP/2 is itself quite a Big Deal and not every site will be
using it nor will every browser support it or support all of the options. We can’t cover
it here, but if web-related work is part of your daily life, it might be worth some
online research. Either way, it’s good to remember that you can watch the JCP site to
see what’s coming in Java with regards to the language itself and its wider ecosystem.

Final Wrap-Up and Next Steps
We have only scratched the surface of lambda expressions and their related parts of
Java 8, including method references and the Streams API. Sadly, like so many other
fun topics we’ve touched on in this book, we must leave further exploration to you.
Happily, Java 8 has been out for many, many years3 now and online resources for
these features abound. You can also get some great details on lambdas in particular
and functional programming in Java more generally in Java 8 Lambdas by Richard
Warburton (O’Reilly). In the servlet world, version 4 of the specification is newer, but
there are still some great resources online covering both this spec and HTTP/2.

But whew! You made it! Saying we covered a lot of ground is quite an understate‐
ment. Hopefully you have a good basis to use going forward learning more details
and advanced techniques. Pick an area that interests you and go a little deeper. If

Expanding Java Beyond the Core | 437

https://oreil.ly/DolSd

you’re still curious about Java in general, try connecting parts of this book. For exam‐
ple, you could write a servlet to answer requests similar to those made by the DateA
tHost client from “The DateAtHost Client” on page 384. You could try using regular
expressions to parse our apple toss game protocol. Or you could build a more sophis‐
ticated protocol altogether and pass binary blocks over the network rather than sim‐
ple strings. For practice writing more complex programs, you could rewrite some of
the inner and anonymous classes in the game to be separate, standalone classes, or
take advantage of lambda expressions.

If you want to explore other Java libraries and packages while sticking with some of
the examples you have already worked on, you could dig into the Java2D API and
make nicer looking apples and trees. You could research the JSON format and try
rewriting the ShowParameters and ShowSession servlets to return a block of valid
JSON rather than an HTML page. You could try out some of the other collection
objects, like TreeMap or Stack.

And if you’re ready to branch out further, you could see how Java works off the desk‐
top by trying some Android development. Or look at very large networked environ‐
ments and the Jakarta Enterprise Edition from the Eclipse Foundation. Maybe big
data is on your radar? The Apache Foundation has several projects such as Hadoop or
Spark. Java does have its detractors, but it remains a vibrant, vital part of the profes‐
sional developer world.

With all those options in front of you, we are ready to wrap up the main part of our
book. The Glossary contains a quick reference of many useful terms and topics we’ve
covered. And Appendix A goes over installing the IntelliJ IDEA editor as well as get‐
ting the code examples imported and running. We hope that you’ve enjoyed Learning
Java. This, the fifth edition of Learning Java, is really the seventh edition of the series
that began over two decades years ago with Exploring Java. It has been a long and
amazing trip watching Java develop in that time, and we thank those of you who have
come along with us over the years. As always, we welcome your feedback to help us
keep making this book better in the future. Ready for another decade of Java? We are!

438 | Chapter 13: Expanding Java

APPENDIX A

Code Examples and IntelliJ IDEA

This appendix will help you get up and running with the code examples found
throughout the book. Some of the steps here were mentioned in Chapter 2 but we
want to go through them a little slower here with specific details on how to use them
inside the free Community Edition of IntelliJ IDEA from JetBrains.

We also want to reiterate that IntelliJ IDEA is not the only Java-friendly integrated
development environment out there. It’s not even the only free one! Microsoft’s VS
Code can be quickly configured to support Java. And Eclipse, maintained by IBM,
remains available. And for beginners looking for a tool designed to ease them into
both Java programming and the world of Java IDEs, you can check out BlueJ created
by King’s College London.

Grabbing the Main Code Examples
Quite apart from what—if any—IDE you use, you’ll want to grab the code examples
for the book from GitHub. While we often include complete source listings when dis‐
cussing particular topics, many times we have left out things like import or package
statements or the enclosing class structure for brevity and readability. The code
examples aim to be complete so that you can pull them up in an editor or IDE to
review them, or compile them and run them to help reinforce the discussions in the
book.

You can visit GitHub in a browser to meander through the individual examples
without downloading anything. Just head to the learnjava5e repository. (If that link
doesn’t work, just go to github.com and search for the term “learnjava5e”.) It might be
worth poking around GitHub generally as it has become the primary watering hole
for open source developers and even corporate teams. You can look over the history
of a repository as well as report bugs and discuss issues related to the code.

439

https://oreil.ly/pv2JX
https://oreil.ly/pv2JX
https://oreil.ly/zxBL1
https://www.bluej.org
https://oreil.ly/QmkMk
https://github.com

The site’s name refers to the git tool, a source code control system or source code
manager, which developers use to manage revisions among teams for code projects. If
your platform does not already have the git command available, you can download it
here. GitHub has its own site to help you learn about git at try.github.io. Once git is
installed, you can clone the project to a folder on your computer. You can work from
that clone or keep it as a clean copy of the code examples. If we publish any fixes or
updates down the road, you can also easily sync your cloned folder.

You can also just grab the whole batch of examples by downloading the master
branch of the project as a ZIP archive. (If the link in this document is not usable, just
look for the “Clone or Download” button on the main page for the repository.) Once
downloaded, just unzip the file into a folder where you can easily find the examples.
You should see a folder structure similar to that in Figure A-1.

Figure A-1. Folder structure for the code examples

The next sections will cover getting IntelliJ IDEA up and running, and then we’ll
import the code examples.

440 | Appendix A: Code Examples and IntelliJ IDEA

https://oreil.ly/YfF4H
http://try.github.io/
https://oreil.ly/y4nNh

Installing IntelliJ IDEA
To get started, you’ll want to head to the JetBrains site and download a copy of the
free Community Edition from https://oreil.ly/4bexF. The site can usually detect your
platform, but be sure you grab the right binary for your operating system (or for the
system where you plan to install and run IntelliJ IDEA if you have more than one
machine).

There is a very handy installation guide with everything you need to get started, but
we’ll recap the essentials here for each platform.

Installing on Linux
On Linux, JetBrains recommends installing the app in the /opt folder. You can cer‐
tainly install IntelliJ IDEA to an alternate location if you like. Similar to the OpenJDK
itself (see “Installing OpenJDK on Linux” on page 29) you can extract the tar.gz to
your chosen destination, like so:

~ $ cd Downloads

~/Downloads $ sudo tar xf ideaIC-2019.2.4.tar.gz -C /opt

To run it, look for the idea.sh script file in the bin folder wherever you unpacked the
download. You’ll have to accept the license agreement and answer a few startup ques‐
tions such as the color scheme you want to use and what plugins you might use. After
answering these (one-time) questions, you should see the welcome screen shown in
Figure A-2.

We go through the steps to import the source examples in “Importing the Examples”
on page 444.

Code Examples and IntelliJ IDEA | 441

https://oreil.ly/4bexF
https://oreil.ly/XGkyc

Figure A-2. IntelliJ IDEA welcome screen on Linux

Installing on a macOS
On a macOS, you’ll download a .dmg file that you can double-click to mount and
then drag the IntelliJ IDEA app file to your Applications folder as you would for other
standalone macOS installs. Once that file is copied over, you can launch it and answer
the licensing and preference question. You should see a screen similar to Figure A-3,
although you likely won’t see the previously opened project list on the left. (If you
close all of your active IntelliJ IDEA windows, this welcome screen reappears and the
list on the left will be populated with your projects.)

We go through the steps to import the source examples in “Importing the Examples”
on page 444.

442 | Appendix A: Code Examples and IntelliJ IDEA

Figure A-3. IntelliJ IDEA welcome screen on macOS (with previous projects list)

Installing on Windows
The Windows download page at JetBrains allows you to pick a .zip archive or an .exe
self-extracting archive. Just unpack whichever version you downloaded. You can
launch the app right where you unpack it; the first launch will walk you through set‐
ting up IntelliJ IDEA and ask you where to install it and whether you want desktop
shortcuts and such.

After the installation process finishes, you can run IntelliJ IDEA. As with the other
platforms, you’ll have to answer a few startup questions and agree to the license.
You’ll end up with the same welcome screen, as shown in Figure A-4.

Now we’ll look at importing the source code examples so that you can use them easily
inside IntelliJ IDEA.

Code Examples and IntelliJ IDEA | 443

Figure A-4. IntelliJ IDEA welcome screen on Windows

Importing the Examples
Before we look at the import process in IntelliJ IDEA, you may want to rename the
folder where you downloaded the code examples from GitHub. If you used the .zip
archive or the simplest checkout process, you likely have a folder named learnjava5e-
master. That’s a perfectly fine name, but if you want something friendlier (or shorter)
go ahead and select that name now. It’ll make importing the IDE simpler. We will
rename the folder LearningJava.

444 | Appendix A: Code Examples and IntelliJ IDEA

Now head back to that welcome screen and select the “Import Project” option. (If you
have already used IntelliJ IDEA and don’t see the welcome screen, you can also select
File → New → Project from Existing Sources….) Navigate to your code example
folder, as shown in Figure A-5. Be sure you select the top folder and not one of the
individual chapter folders.

Figure A-5. Importing the code examples folder

Code Examples and IntelliJ IDEA | 445

After opening the examples folder, you’ll be asked to review any libraries found, as
shown in Figure A-6. There are none yet, so go ahead and click Next.

Figure A-6. Library review dialog

446 | Appendix A: Code Examples and IntelliJ IDEA

You can change the project name if you like on the next screen, but make sure the
location remains pointing at your top-level code examples folder. We like our “Lear‐
ningJava” name so we left both items alone, as you can see in Figure A-7.

Figure A-7. Project name and location dialog

Code Examples and IntelliJ IDEA | 447

Source files should be found, so go ahead and leave the checkbox checked on the next
screen (see Figure A-8) and click Next.

Figure A-8. Source folder dialog

As of version 2019-2.4, you will be asked a second time about any libraries that were
found (similar to Figure A-6 above). There are still none associated with our simple
examples, so go ahead and click Next. (We discuss adding the necessary servlet
library for the examples in “Grabbing the Web Code Examples” on page 454.)

448 | Appendix A: Code Examples and IntelliJ IDEA

Our examples don’t take advantage of any of the module features introduced in Java
9, so just keep the lone checkbox checked on the next screen (Figure A-9) and click
Next.

Figure A-9. Modules dialog

Code Examples and IntelliJ IDEA | 449

You’ll next be asked to select your SDK (software development kit, in this case it’s
synonymous with the version of Java). We chose the long-term support version (11),
as you can see in Figure A-10, but you can choose version 11 or greater that you may
have installed. (See “Installing the JDK” on page 28 if you want a refresher on down‐
loading and installing the Java SDK.)

Figure A-10. SDK selection dialog

450 | Appendix A: Code Examples and IntelliJ IDEA

Click Finish and you should have an IntelliJ IDEA project ready to go, as shown in
Figure A-11.

Figure A-11. IntelliJ IDEA is ready!

Running the Examples
As noted in Chapters 2 and 3, you can use a terminal or command prompt to compile
the examples with javac and then run them with java. But since we have IntelliJ IDEA
all set up, let’s see how to run the examples from within the IDE.

Go ahead and navigate through your project to the ch02 folder and double-click on
the HelloJava entry. You should now have a source tab with HelloJava.java, as shown
in Figure A-12.

Code Examples and IntelliJ IDEA | 451

Figure A-12. The HelloJava class source

You can edit the file now, of course, but we’ll leave it as is for the moment. Back in the
project structure on the left, right-click the HelloJava entry and select the “Run Hello‐
Java.main()” option; you should find it toward the middle of the context menu that
pops up, as seen in Figure A-13.

452 | Appendix A: Code Examples and IntelliJ IDEA

Figure A-13. Running a class from the context menu

Once you have run a particular class, IntelliJ IDEA will usually set that class as the
default action for the “play” button in the toolbar. That’s a quicker way to launch the
same application again—perfect if you are testing a new class, making changes, and
testing again. If you move on to a new class, however, you’ll need to come back and
launch the new class using the right-click context menu. At that point, the new class
should be the default for the play button.

Our friendly (if simple) window should pop up, as shown in Figure A-14.

Code Examples and IntelliJ IDEA | 453

Figure A-14. Successfully launching our HelloJava app

Congratulations! IntelliJ IDEA is set up and ready for you to start exploring the
amazing and gratifying world of Java programming. If you aren’t interested in using
Java for web programming, you can leave the ch12 folder excluded. If you do plan to
try out the examples in that chapter—and we certainly recommend you do—read on
for adding the required library.

Grabbing the Web Code Examples
Head back to GitHub in a browser and look for the second repository. (Again, if the
link doesn’t work, just go to github.com and search for the term “learnjava5e-web”.)
This is a much smaller repository and is set up exactly like the main examples. We’ve
separated them out here so that you can focus on the first examples without needing
extra libraries.

You can use git from the terminal as before or grab the ZIP archive. If you grab the
ZIP, unpack it. We’ll rename the top folder LearningJavaWeb.

Now select File → New → Project from Existing Sources… and navigate to your web
example folder. Be sure you select the top folder and not the individual ch12 folder.
You should now have a second IDEA project, but we need an extra bit for servlets.

454 | Appendix A: Code Examples and IntelliJ IDEA

https://oreil.ly/BipfR
https://github.com

Working with Servlets
Chapter 12 discusses using Java in the world of web programming. There’s a lot that
you can do with Java and the web with nothing other than the APIs available in the
JDK. But if you want to write servlets, you need to download a container and let
IntelliJ IDEA know where to find the servlet library.

As noted in “Deploying HelloClient” on page 427, you should download and install
Apache Tomcat. You can grab the latest version and find some useful documentation
at Apache’s Tomcat site. You can also jump right to downloading version 9 here:
https://oreil.ly/HWy7I. You can grab the .zip or .tar.gz format, whichever you pre‐
fer. Unpack the archive in any handy folder where you can easily find it later. You’ll
need version 9 if you want to explore the server push feature mentioned in “Expand‐
ing Java Beyond the Core” on page 437, but you can review which versions of Tomcat
support which versions of the Servlet API at Tomcat’s Which Version page.

In IntelliJ IDEA, open the “Project Structure” window. You can right-click the project
(the very top LearningJavaWeb entry in our case) and select “Open Modules Settings”
or use the File → Project Structure… menu option. You should see the window
shown in Figure A-15. Select the Libraries option from the hierarchy on the left.

Figure A-15. Settings for your project libraries

Code Examples and IntelliJ IDEA | 455

https://tomcat.apache.org
https://oreil.ly/HWy7I
https://oreil.ly/w6Cr9

Click the + icon in the upper-left corner of the middle column and select Java for the
type of library you are adding. Now you need to navigate to where you downloaded
and unpacked Tomcat. We need the servlet-api.jar file from the lib folder, as shown in
Figure A-16.

Figure A-16. The lib folder of Tomcat

Go ahead and click Open on that file and then OK when you see the next dialog not‐
ing that we are adding to the LearningJava module. You should end up with a Libra‐
ries section that looks like Figure A-17. Go ahead and click OK.

456 | Appendix A: Code Examples and IntelliJ IDEA

Figure A-17. Properly configured servlet library

To check that the servlet library is installed correctly, you can build the project using
the Build → Build Project menu option. IntelliJ IDEA should think for a moment and
then report that the build completed successfully. You still need to follow the deploy‐
ment steps in “Deploying HelloClient” on page 427, but now you can use all the great
IDE features like code completion with your servlet examples.

If you are doing (or are eventually going to do) a lot of web programming, you may
want to look into the paid, “ultimate” edition of IntelliJ IDEA. It has several fantastic
features for working with servlets and related web technologies. You can preview
more of what the Ultimate Edition can do in the help section on Web Applications.

Code Examples and IntelliJ IDEA | 457

https://oreil.ly/RCh9y

Glossary

abstract
The abstract keyword is used to declare
abstract methods and classes. An abstract
method has no implementation defined; it
is declared with arguments and a return
type as usual, but the body enclosed in
curly braces is replaced with a semicolon.
The implementation of an abstract
method is provided by a subclass of the
class in which it is defined. If an abstract
method appears in a class, the class is also
abstract. Attempting to instantiate an
abstract class will fail at compile time.

annotations
Metadata added to Java source code using
the @ tag syntax. Annotations can be used
by the compiler or at runtime to augment
classes, provide data or mappings, or flag
additional services.

Ant
An older, XML-based build tool for Java
applications. Ant builds can compile,
package, and deploy Java source code as
well as generate documentation and per‐
form other activities through pluggable
“targets.”

Application Programming Interface (API)
An API consists of the methods and vari‐
ables programmers use to work with a
component or tool in their applications.
The Java language APIs consist of the
classes and methods of the java.lang,

java.util, java.io, java.text, java

.net packages and many others.

application
A Java program that runs standalone, as
compared with an applet.

Annotation Processing Tool (APT)
A frontend for the Java compiler that pro‐
cesses annotations via a pluggable factory
architecture, allowing users to implement
custom compile-time annotations.

assertion
A language feature used to test for condi‐
tions that should be guaranteed by pro‐
gram logic. If a condition checked by an
assertion is found to be false, a fatal error
is thrown. For added performance, asser‐
tions can be disabled when an application
is deployed.

atomic
Discrete or transactional in the sense that
an operation happens as a unit, in an all-
or-nothing fashion. Certain operations in
the Java virtual machine (VM) and pro‐
vided by the Java concurrency API are
atomic.

Abstract Window Toolkit (AWT)
Java’s original platform-independent win‐
dowing, graphics, and UI toolkit.

459

Boojum
The mystical, spectral, alter ego of a
Snark. From the 1876 Lewis Carroll poem
“The Hunting of the Snark.”

Boolean
A primitive Java data type that contains a
true or false value.

bounds
In Java generics, a limitation on the type
of a type parameter. An upper bound
specifies that a type must extend (or is
assignable to) a specific Java class. A lower
bound is used to indicate that a type must
be a supertype of (or is assignable from)
the specified type.

boxing
Wrapping of primitive types in Java by
their object wrapper types. See also unbox‐
ing.

byte
A primitive Java data type that’s an 8-bit
two’s-complement signed number.

callback
A behavior that is defined by one object
and then later invoked by another object
when a particular event occurs. The Java
event mechanism is a kind of callback.

cast
The changing of the apparent type of a
Java object from one type to another,
specified type. Java casts are checked both
statically by the Java compiler and at
runtime.

catch
The Java catch statement introduces an
exception-handling block of code follow‐
ing a try statement. The catch keyword is
followed by one or more exception type
and argument name pairs in parentheses
and a block of code within curly braces.

certificate
An electronic document using a digital
signature to assert the identity of a person,
group, or organization. Certificates attest

to the identity of a person or group and
contain that organization’s public key. A
certificate is signed by a certificate author‐
ity with its digital signature.

certificate authority (CA)
An organization that is entrusted to issue
certificates, taking whatever steps are nec‐
essary to verify the real-world identity for
which it is issuing the certificate.

char
A primitive Java data type; a variable of
type char holds a single 16-bit Unicode
character.

class
1. The fundamental unit that defines an

object in most object-oriented program‐
ming languages. A class is an encapsulated
collection of variables and methods that
may have privileged access to one another.
Usually a class can be instantiated to pro‐
duce an object that’s an instance of the
class, with its own unique set of data.

2. The class keyword is used to declare a
class, thereby defining a new object type.

classloader
An instance of the class java.lang.Class
Loader, which is responsible for loading
Java binary classes into the Java VM.
Classloaders help partition classes based
on their source for both structural and
security purposes and can also be chained
in a parent-child hierarchy.

class method
See static method.

classpath
The sequence of path locations specifying
directories and archive files containing
compiled Java class files and resources,
which are searched in order to find com‐
ponents of a Java application.

class variable
See static variable.

Boojum

460 | Glossary

client
The consumer of a resource or the party
that initiates a conversation in the case of
a networked client/server application. See
also server.

Collections API
Classes in the core java.util package for
working with and sorting structured col‐
lections or maps of items. This API
includes the Vector and Hashtable

classes as well as newer items such as
List, Map, and Queue.

compilation unit
The unit of source code for a Java class. A
compilation unit normally contains a sin‐
gle class definition and in most current
development environments is simply a file
with a .java extension.

compiler
A program that translates source code
into executable code.

component architecture
A methodology for building parts of an
application. It is a way to build reusable
objects that can be easily assembled to
form applications.

composition
Combining existing objects to create
another, more complex object. When you
compose a new object, you create complex
behavior by delegating tasks to the inter‐
nal objects. Composition is different from
inheritance, which defines a new object by
changing or refining the behavior of an
old object. See also inheritance.

constructor
A special method that is invoked automat‐
ically when a new instance of a class is
created. Constructors are used to initialize
the variables of the newly created object.
The constructor method has the same
name as the class and no explicit return
value.

content handler
A class that is called to parse a particular
type of data and convert it to an appropri‐
ate object.

datagram
A packet of data normally sent using a
connectionless protocol such as UDP,
which provides no guarantees about deliv‐
ery or error checking and provides no
control information.

data hiding
See encapsulation.

deep copy
A duplicate of an object along with all of
the objects that it references, transitively.
A deep copy duplicates the entire “graph”
of objects, instead of just duplicating ref‐
erences. See also shallow copy.

Document Object Model (DOM)
An in-memory representation of a fully
parsed XML document using objects with
names like Element, Attribute, and Text.
The Java XML DOM API binding is stan‐
dardized by the World Wide Web Consor‐
tium (W3C).

double
A Java primitive data type; a double value
is a 64-bit (double-precision) floating-
point number in IEEE-754 (binary64)
binary format.

Document Type Definition (DTD)
A document containing specialized lan‐
guage that expresses constraints on the
structure of XML tags and tag attributes.
DTDs are used to validate an XML docu‐
ment, and can constrain the order and
nesting of tags as well as the allowed val‐
ues of attributes.

Enterprise JavaBeans (EJBs)
A server-side business component archi‐
tecture named for, but not significantly
related to, the JavaBeans component
architecture. EJBs represent business serv‐
ices and database components, and pro‐
vide declarative security and transactions.

Enterprise JavaBeans (EJBs)

Glossary | 461

encapsulation
The object-oriented programming techni‐
que of limiting the exposure of variables
and methods to simplify the API of a class
or package. Using the private and pro‐
tected keywords, a programmer can limit
the exposure of internal (“black box”)
parts of a class. Encapsulation reduces
bugs and promotes reusability and modu‐
larity of classes. This technique is also
known as data hiding.

enum
The Java keyword for declaring an enu‐
merated type. An enum holds a list of
constant object identifiers that can be
used as a type-safe alternative to numeric
constants that serve as identifiers or
labels.

enumeration
See enum.

erasure
The implementation technique used by
Java generics in which generic type infor‐
mation is removed (erased) and distilled
to raw Java types at compilation. Erasure
provides backward compatibility with
nongeneric Java code, but introduces
some difficulties in the language.

event
1. A user’s action, such as a mouse-click or

keypress.

2. The Java object delivered to a registered
event listener in response to a user action
or other activity in the system.

exception
A signal that some unexpected condition
has occurred in the program. In Java,
exceptions are objects that are subclasses
of Exception or Error (which themselves
are subclasses of Throwable). Exceptions
in Java are “raised” with the throw key‐
word and handled with the catch key‐
word. See also catch, throw, and throws.

exception chaining
The design pattern of catching an excep‐
tion and throwing a new, higher-level, or
more appropriate exception that contains
the underlying exception as its cause. The
“cause” exception can be retrieved if
necessary.

extends
A keyword used in a class declaration to
specify the superclass of the class being
defined. The class being defined has
access to all the public and protected
variables and methods of the superclass
(or, if the class being defined is in the
same package, it has access to all
nonprivate variables and methods). If a
class definition omits the extends clause,
its superclass is taken to be
java.lang.Object.

final
A keyword modifier that may be applied
to classes, methods, and variables. It has a
similar, but not identical, meaning in each
case. When final is applied to a class, it
means that the class may never be sub‐
classed. java.lang.System is an example
of a final class. A final method cannot
be overridden in a subclass. When final
is applied to a variable, the variable is a
constant—that is, it can’t be modified.
(The contents of a mutable object can still
be changed; the final variable always
points to the same object.)

finalize
A reserved method name. The final
ize() method is called by the Java VM
when an object is no longer being used
(i.e., when there are no further references
to it) but before the object’s memory is
actually reclaimed by the system. Largely
disfavored in light of newer approaches
such as the Closeable interface and try-
with-resources.

finally
A keyword that introduces the finally
block of a try/catch/finally construct.

encapsulation

462 | Glossary

catch and finally blocks provide excep‐
tion handling and routine cleanup for
code in a try block. The finally block is
optional and appears after the try block,
and after zero or more catch blocks. The
code in a finally block is executed once,
regardless of how the code in the try block
executes. In normal execution, control
reaches the end of the try block and pro‐
ceeds to the finally block, which gener‐
ally performs any necessary cleanup.

float
A Java primitive data type; a float value
is a 32-bit (single-precision) floating-
point number represented in IEEE 754
format.

garbage collection
The process of reclaiming the memory of
objects no longer in use. An object is no
longer in use when there are no references
to it from other objects in the system and
no references in any local variables on any
thread’s method call stack.

generics
The syntax and implementation of para‐
meterized types in the Java language,
added in Java 5.0. Generic types are Java
classes that are parameterized by the user
on one or more additional Java types to
specialize the behavior of the class. Gener‐
ics are sometimes referred to as templates
in other languages.

generic class
A class that uses the Java generics syntax
and is parameterized by one or more type
variables, which represent class types to be
substituted by the user of the class.
Generic classes are particularly useful for
container objects and collections that can
be specialized to operate on a specific type
of element.

generic method
A method that uses the Java generics syn‐
tax and has one or more arguments or
return types that refer to type variables
representing the actual type of data ele‐

ment the method will use. The Java com‐
piler can often infer the types of the type
variables from the usage context of the
method.

graphics context
A drawable surface represented by the
java.awt.Graphics class. A graphics con‐
text contains contextual information
about the drawing area and provides
methods for performing drawing opera‐
tions in it.

graphical user interface (GUI)
A traditional, visual user interface consist‐
ing of a window containing graphical
items such as buttons, text fields, pull-
down menus, dialog boxes, and other
standard interface components.

hashcode
A random-looking identifying number,
based on the data content of an object,
used as a kind of signature for the object.
A hashcode is used to store an object in a
hash table (or hash map). See also hash
table.

hash table
An object that is like a dictionary or an
associative array. A hash table stores and
retrieves elements using key values called
hashcodes. See also hashcode.

hostname
The human-readable name given to an
individual computer attached to the inter‐
net.

Hypertext Transfer Protocol (HTTP)
The protocol used by web browsers or
other clients to talk to web servers. The
simplest form of the protocol uses the
commands GET to request a file and POST
to send data.

Integrated Development Environment (IDE)
A GUI tool such as IntelliJ IDEA or
Eclipse that provides source editing,
compiling, running, debugging, and
deployment functionality for developing
Java applications.

Integrated Development Environment (IDE)

Glossary | 463

implements
A keyword used in class declarations to
indicate that the class implements the
named interface or interfaces. The imple
ments clause is optional in class declara‐
tions; if it appears, it must follow the
extends clause (if any). If an implements
clause appears in the declaration of a non-
abstract class, every method from each
specified interface must be implemented
by the class or by one of its superclasses.

import
The import statement makes Java classes
available to the current class under an
abbreviated name or disambiguates
classes imported in bulk by other import
statements. (Java classes are always avail‐
able by their fully qualified name, assum‐
ing the appropriate class file can be found
relative to the CLASSPATH environment
variable and that the class file is readable.
import doesn’t make the class available; it
just saves typing and makes your code
more legible.) Any number of import
statements may appear in a Java program.
They must appear, however, after the
optional package statement at the top of
the file, and before the first class or inter‐
face definition in the file.

inheritance
An important feature of object-oriented
programming that involves defining a
new object by changing or refining the
behavior of an existing object. Through
inheritance, an object implicitly contains
all of the non-private variables and
methods of its superclass. Java supports
single inheritance of classes and multiple
inheritance of interfaces.

inner class
A class definition that is nested within
another class or a method. An inner class
functions within the lexical scope of
another class.

instance
An occurrence of something, usually an
object. When a class is instantiated to pro‐
duce an object, we say the object is an
instance of the class.

instance method
A non-static method of a class. Such a
method is passed an implicit this refer‐
ence to the object that invoked it. See also
static, static method.

instanceof
A Java operator that returns true if the
object on its left side is an instance of the
class (or implements the interface) speci‐
fied on its right side. instanceof returns
false if the object isn’t an instance of the
specified class or doesn’t implement the
specified interface. It also returns false if
the specified object is null.

instance variable
A non-static variable of a class. Each
instance of a class has an independent
copy of all of the instance variables of the
class. See also class variable, static.

int
A primitive Java data type that’s a 32-bit
two’s-complement signed number.

interface
1. A keyword used to declare an interface.

2. A collection of abstract methods that col‐
lectively define a type in the Java lan‐
guage. Classes implementing the methods
may declare that they implement the
interface type, and instances of them may
be treated as that type.

internationalization
The process of making an application
accessible to people who speak a variety of
languages. Sometimes abbreviated I18N.

interpreter
The module that decodes and executes
Java bytecode. Most Java bytecode is not,
strictly speaking, interpreted any longer

implements

464 | Glossary

but compiled to native code dynamically
by the Java VM.

introspection
The process by which a JavaBean provides
additional information about itself, sup‐
plementing information learned by reflec‐
tion.

ISO 8859-1
An 8-bit character encoding standardized
by the ISO. This encoding is also known
as Latin-1 and contains characters from
the Latin alphabet suitable for English and
most languages of western Europe.

JavaBeans
A component architecture for Java. It is a
way to build interoperable Java objects
that can be manipulated easily in a visual
application builder environment.

Java beans
Java classes that are built following the
JavaBeans design patterns and conven‐
tions.

JavaScript
A language developed early in the history
of the web by Netscape for creating
dynamic web pages. From a programmer’s
point of view, it’s unrelated to Java,
although some of its syntax is similar.

Java API for XML Binding (JAXB)
A Java API that allows for generation of
Java classes from XML DTD or Schema
descriptions and the generation of XML
from Java classes.

Java API for XML Parsers (JAXP)
The Java API that allows for pluggable
implementations of XML and XSL
engines. This API provides an
implementation-neutral way to construct
parsers and transforms.

JAX-RPC
The Java API for XML Remote Procedure
Calls, used by web services.

Java Database Connectivity (JDBC)
The standard Java API for talking to an
SQL (Structured Query Language)
database.

JDOM
A native Java XML DOM created by Jason
Hunter and Brett McLaughlin. JDOM is
easier to use than the standard DOM API
for Java. It uses the Java Collections API
and standard Java conventions. Available
at the JDOM Project site.

Java Web Services Developer Pack (JDSDP)
A bundle of standard extension APIs
packaged as a group with an installer from
Sun. The JWSDP includes JAXB, JAX-
RPC, and other XML and web services-
related packages.

lambda (or lambda expression)
A compact way to put the entire definition
of a small, anonymous function right
where you are using it in the code.

Latin-1
A nickname for ISO 8859-1.

layout manager
An object that controls the arrangement
of components within the display area of a
Swing or AWT container.

lightweight component
A pure Java GUI component that has no
native peer in the AWT.

local variable
A variable that is declared inside a
method. A local variable can be seen only
by code within that method.

Logging API
The Java API for structured logging and
reporting of messages from within appli‐
cation components. The Logging API sup‐
ports logging levels indicating the
importance of messages, as well as filter‐
ing and output capabilities.

long
A primitive Java data type that’s a 64-bit
two’s-complement signed number.

long

Glossary | 465

http://www.jdom.org

message digest
A cryptographically computed number
based on the content of a message, used to
determine whether the message’s contents
have been changed in any way. A change
to a message’s contents will change its
message digest. When implemented prop‐
erly, it is almost impossible to create two
similar messages with the same digest.

method
The object-oriented programming term
for a function or procedure.

method overloading
Provides definitions of more than one
method with the same name but with dif‐
ferent argument lists. When an overloa‐
ded method is called, the compiler
determines which one is intended by
examining the supplied argument types.

method overriding
Defines a method that matches the name
and argument types of a method defined
in a superclass. When an overridden
method is invoked, the interpreter uses
dynamic method lookup to determine
which method definition is applicable to
the current object. Beginning in Java 5.0,
overridden methods can have different
return types, with restrictions.

MIME (or MIME type)
A media type classification system often
associated with email attachments or web
page content.

Model-View-Controller (MVC) framework
A UI design that originated in Smalltalk.
In MVC, the data for a display item is
called the model. A view displays a partic‐
ular representation of the model, and a
controller provides user interaction with
both. Java incorporates many MVC con‐
cepts.

modifier
A keyword placed before a class, variable,
or method that alters the item’s accessibil‐
ity, behavior, or semantics. See also

abstract, final, native method, private, pro‐
tected, public, static, synchronized.

NaN (not-a-number)
This is a special value of the double and
float data types that represents an unde‐
fined result of a mathematical operation,
such as zero divided by zero.

native method
A method that is implemented in a native
language on a host platform, rather than
being implemented in Java. Native meth‐
ods provide access to such resources as
the network, the windowing system, and
the host filesystem.

new
A unary operator that creates a new object
or array (or raises an OutOfMemoryExcep
tion if there is not enough memory
available).

NIO
The Java “new” I/O package. A core pack‐
age introduced in Java 1.4 to support
asynchronous, interruptible, and scalable
I/O operations. The NIO API supports
nonthreadbound “select” style I/O han‐
dling.

null
null is a special value that indicates that a
reference-type variable doesn’t refer to any
object instance. Static and instance vari‐
ables of classes default to the value null if
not otherwise assigned.

object
1. The fundamental structural unit of an

object-oriented programming language,
encapsulating a set of data and behavior
that operates on that data.

2. An instance of a class, having the struc‐
ture of the class but its own copy of data
elements. See also instance.

message digest

466 | Glossary

<object> tag
An HTML tag used to embed media
objects and applications into web
browsers.

package
The package statement specifies the Java
package for a Java class. Java code that is
part of a particular package has access to
all classes (public and non-public) in the
package, and all non-private methods
and fields in all those classes. When Java
code is part of a named package, the com‐
piled class file must be placed at the
appropriate position in the CLASSPATH

directory hierarchy before it can be
accessed by the Java interpreter or other
utilities. If the package statement is omit‐
ted from a file, the code in that file is part
of an unnamed default package. This is
convenient for small test programs run
from the command line, or during devel‐
opment because it means that the code
can be interpreted from the current
directory.

parameterized type
A class, using Java generics syntax, that is
dependent on one or more types to be
specified by the user. The user-supplied
parameter types fill in type values in the
class and adapt it for use with the speci‐
fied types.

polymorphism
One of the fundamental principles of an
object-oriented language. Polymorphism
states that a type that extends another type
is a “kind of ” the parent type and can be
used interchangeably with the original
type by augmenting or refining its capa‐
bilities.

Preferences API
The Java API for storing small amounts of
information on a per-user or system-wide
basis across executions of the Java VM.
The Preferences API is analogous to a
small database or the Windows registry.

primitive type
One of the Java data types: boolean, char,
byte, short, int, long, float, and dou
ble. Primitive types are manipulated,
assigned, and passed to methods “by
value” (i.e., the actual bytes of the data are
copied). See also reference type.

printf
A style of text formatting originating in
the C language, relying on an embedded
identifier syntax and variable-length argu‐
ment lists to supply parameters.

private
The private keyword is a visibility modi‐
fier that can be applied to method and
field variables of classes. A private method
or field is not visible outside its class defi‐
nition and cannot be accessed by sub‐
classes.

protected
A keyword that is a visibility modifier; it
can be applied to method and field vari‐
ables of classes. A protected field is visi‐
ble only within its class, within subclasses,
and within the package of which its class
is a part. Note that subclasses in different
packages can access only protected fields
within themselves or within other objects
that are subclasses; they cannot access
protected fields within instances of the
superclass.

protocol handler
A URL component that implements the
network connection required to access a
resource for a type of URL scheme (such
as HTTP or FTP). A Java protocol handler
consists of two classes: a StreamHandler
and a URLConnection.

public
A keyword that is a visibility modifier; it
can be applied to classes and interfaces
and to the method and field variables of
classes and interfaces. A public class or
interface is visible everywhere. A non-
public class or interface is visible only
within its package. A public method or

public

Glossary | 467

variable is visible everywhere its class is
visible. When none of the private, pro
tected, or public modifiers are specified,
a field is visible only within the package of
which its class is a part.

public-key cryptography
A cryptographic system that requires pub‐
lic and private keys. The private key can
decrypt messages encrypted with the cor‐
responding public key, and vice versa. The
public key can be made available to the
public without compromising security
and used to verify that messages sent by
the holder of the private key must be
genuine.

queue
A list-like data structure normally used in
a first in, first out fashion to buffer work
items.

raw type
In Java generics, the plain Java type of a
class without any generic type parameter
information. This is the true type of all
Java classes after they are compiled. See
also erasure.

reference type
Any object or array. Reference types are
manipulated, assigned, and passed to
methods “by reference.” In other words,
the underlying value is not copied; only a
reference to it is. See also primitive type.

reflection
The ability of a programming language to
interact with structures of the language
itself at runtime. Reflection in Java allows
a Java program to examine class files at
runtime to find out about their methods
and variables, and to invoke methods or
modify variables dynamically.

regular expression
A compact yet powerful syntax for
describing a pattern in text. Regular
expressions can be used to recognize and
parse most kinds of textual constructs,
allowing for wide variation in their form.

Regular Expression API
The core java.util.regex package for
using regular expressions. The regex
package can be used to search and replace
text based on sophisticated patterns.

Schema
XML schemas are a replacement for
DTDs. Introduced by the W3C, XML
Schema is an XML-based language for
expressing constraints on the structure of
XML tags and tag attributes, as well as the
structure and type of the data content.
Other types of XML Schema languages
have different syntaxes.

Software Development Kit (SDK)
A package of software distributed by Ora‐
cle for Java developers. It includes the Java
interpreter, Java classes, and Java develop‐
ment tools: compiler, debugger, disassem‐
bler, applet viewer, stub file generator, and
documentation generator. Also called the
JDK.

SecurityManager
The Java class that defines the methods
the system calls to check whether a certain
operation is permitted in the current
environment.

serialize
To serialize means to put in order or make
sequential. Serialized methods are meth‐
ods that have been synchronized with
respect to threads so that only one may be
executing at a given time.

server
The party that provides a resource or
accepts a request for a conversation in the
case of a networked client/server applica‐
tion. See also client.

servlet
A Java application component that imple‐
ments the javax.servlet.Servlet API,
allowing it to run inside a servlet con‐
tainer or web server. Servlets are widely
used in web applications to process user

public-key cryptography

468 | Glossary

data and generate HTML or other forms
of output.

servlet context
In the Servlet API, this is the web applica‐
tion environment of a servlet that pro‐
vides server and application resources.
The base URL path of the web application
is also often referred to as the servlet
context.

shadow
To declare a variable with the same name
as a variable defined in a superclass. We
say the variable “shadows” the superclass’s
variable. Use the super keyword to refer
to the shadowed variable or refer to it by
casting the object to the type of the super‐
class.

shallow copy
A copy of an object that duplicates only
values contained in the object itself. Refer‐
ences to other objects are repeated as ref‐
erences and are not duplicated
themselves. See also deep copy.

short
A primitive Java data type that’s a 16-bit
two’s-complement signed number.

signature
1. Referring to a digital signature. A combi‐

nation of a message’s message digest,
encrypted with the signer’s private key,
and the signer’s certificate, attesting to the
signer’s identity. Someone receiving a
signed message can get the signer’s public
key from the certificate, decrypt the
encrypted message digest, and compare
that result with the message digest com‐
puted from the signed message. If the two
message digests agree, the recipient knows
that the message has not been modified
and that the signer is who they claim to
be.

2. Referring to a Java method. The method
name and argument types and possibly
return type, collectively uniquely identify‐
ing the method in some context.

signed applet
An applet packaged in a JAR file signed
with a digital signature, allowing for
authentication of its origin and validation
of the integrity of its contents.

signed class
A Java class (or Java archive) that has a
signature attached. The signature allows
the recipient to verify the class’s origin
and that it is unmodified. The recipient
can therefore grant the class greater run‐
time privileges.

sockets
A networking API originating in BSD
Unix. A pair of sockets provide the end‐
points for communication between two
parties on the network. A server socket
listens for connections from clients and
creates individual server-side sockets for
each conversation.

spinner
A GUI component that displays a value
and a pair of small up and down buttons
that increment or decrement the value.
The Swing JSpinner can work with num‐
ber ranges and dates as well as arbitrary
enumerations.

static
A keyword that is a modifier applied to
method and variable declarations within a
class. A static variable is also known as a
class variable as opposed to nonstatic
instance variables. While each instance of
a class has a full set of its own instance
variables, there is only one copy of each
static class variable, regardless of the num‐
ber of instances of the class (perhaps zero)
that are created. static variables may be
accessed by class name or through an
instance. Non-static variables can be
accessed only through an instance.

static import
A statement, similar to the class and pack‐
age import, that imports the names of
static methods and variables of a class into
a class scope. The static import is a

static import

Glossary | 469

convenience that provides the effect of
global methods and constants.

static method
A method declared static. Methods of this
type are not passed implicit this refer‐
ences and may refer only to class variables
and invoke other class methods of the
current class. A class method may be
invoked through the class name, rather
than through an instance of the class.

static variable
A variable declared static. Variables of this
type are associated with the class, rather
than with a particular instance of the
class. There is only one copy of a static
variable, regardless of the number of
instances of the class that are created.

stream
A flow of data, or a channel of communi‐
cation. All fundamental I/O in Java is
based on streams. The NIO package uses
channels, which are packet oriented. Also
a framework for functional programming
introduced in Java 8.

string
A sequence of character data and the Java
class used to represent this kind of charac‐
ter data. The String class includes many
methods for operating on string objects.

subclass
A class that extends another. The subclass
inherits the public and protected meth‐
ods and variables of its superclass. See also
extends.

super
A keyword used by a class to refer to vari‐
ables and methods of its parent class. The
special reference super is used in the same
way as the special reference this is used
to qualify references to the current object
context.

superclass
A parent class, extended by some other
class. The superclass’s public and pro

tected methods and variables are avail‐
able to the subclass. See also extends.

synchronized
A keyword used in two related ways in
Java: as a modifier and as a statement.
First, it is a modifier applied to class or
instance methods. It indicates that the
method modifies the internal state of the
class or the internal state of an instance of
the class in a way that is not threadsafe.
Before running a synchronized class
method, Java obtains a lock on the class to
ensure that no other threads can modify
the class concurrently. Before running a
synchronized instance method, Java
obtains a lock on the instance that
invoked the method, ensuring that no
other threads can modify the object at the
same time. Synchronization also ensures
that changes to a value are propagated
between threads, and so eventually visible
throughout all your processor cores.

Java also supports a synchronized state‐
ment that serves to specify a “critical sec‐
tion” of code. The synchronized keyword
is followed by an expression in parenthe‐
ses and a statement or block of statements.
The expression must evaluate to an object
or array. Java obtains a lock on the speci‐
fied object or array before executing the
statements.

TCP (Transmission Control Protocol)
A connection-oriented, reliable protocol.
One of the protocols on which the inter‐
net is based.

this
Within an instance method or constructor
of a class, this refers to “this object”— the
instance currently being operated on. It is
useful to refer to an instance variable of
the class that has been shadowed by a
local variable or method argument. It is
also useful to pass the current object as an
argument to static methods or methods of
other classes. There is one additional use
of this: when it appears as the first
statement in a constructor method, it

static method

470 | Glossary

refers to one of the other constructors of
the class.

thread
An independent stream of execution
within a program. Because Java is a multi‐
threaded programming language, more
than one thread may be running within
the Java interpreter at a time. Threads in
Java are represented and controlled
through the Thread object.

thread pool
A group of “recyclable” threads used to
service work requests. A thread is alloca‐
ted to handle one item and then returned
to the pool.

throw
The throw statement signals that an
exceptional condition has occurred by
throwing a specified Throwable (excep‐
tion) object. This statement stops pro‐
gram execution and passes it to the
nearest containing catch statement that
can handle the specified exception object.

throws
The throws keyword is used in a method
declaration to list the exceptions the
method can throw. Any exceptions a
method can raise that are not subclasses
of Error or RuntimeException must
either be caught within the method or
declared in the method’s throws clause.

try
The try keyword indicates a guarded
block of code to which subsequent catch
and finally clauses apply. The try state‐
ment itself performs no special action. See
also catch and finally for more informa‐
tion on the try/catch/finally construct.

try-with-resources
A try block which also opens resources
that implement the Closeable interface
for automatic cleanup.

type instantiation
In Java generics, the point at which a
generic type is applied by supplying actual
or wildcard types as its type parameters. A
generic type is instantiated by the user of
the type, effectively creating a new type in
the Java language specialized for the
parameter types.

type invocation
See type instantiation. The term type invo‐
cation is sometimes used by analogy with
the syntax of method invocation.

User Datagram Protocol (UDP)
A connectionless unreliable protocol.
UDP describes a network data connection
based on datagrams with little packet
control.

unboxing
Unwrapping a primitive value that is held
in its object wrapper type and retrieving
the value as a primitive.

Unicode
A universal standard for text character
encoding, accommodating the written
forms of almost all languages. Unicode is
standardized by the Unicode Consortium.
Java uses Unicode for its char and String
types.

UTF-8 (UCS transformation format 8-bit form)
An encoding for Unicode characters (and
more generally, UCS characters) com‐
monly used for transmission and storage.
It is a multibyte format in which different
characters require different numbers of
bytes to be represented.

variable-length argument list
A method in Java may indicate that it can
accept any number of a specified type of
argument after its initial fixed list of argu‐
ments. The arguments are handled by
packaging them as an array.

varargs
See variable length argument list.

varargs

Glossary | 471

vector
A dynamic array of elements.

verifier
A kind of theorem prover that steps
through the Java bytecode before it is run
and makes sure that it is well behaved and
does not violate the Java security model.
The bytecode verifier is the first line of
defense in Java’s security model.

Web Applications Resources file (WAR file)
A JAR file with additional structure to
hold classes and resources for web appli‐
cations. A WAR file includes a WEB-INF
directory for classes, libraries, and the
web.xml deployment file.

web application
An application that runs on a web server
or application server, normally using a
web browser as a client.

web service
An application-level service that runs on a
server and is accessed in a standard way
using XML for data marshalling and
HTTP as its network transport.

wildcard type
In Java generics, a “*” syntax used in lieu
of an actual parameter type for type

instantiation to indicate that the generic
type represents a set or supertype of many
concrete type instantiations.

XInclude
An XML standard and Java API for inclu‐
sion of XML documents.

Extensible Markup Language (XML)
A universal markup language for text and
data, using nested tags to add structure
and meta-information to the content.

XPath
An XML standard and Java API for
matching elements and attributes in XML
using a hierarchical, regex-like expression
language.

Extensible Stylesheet Language/XSLTransformations
(XSL/XSLT)

An XML-based language for describing
styling and transformation of XML docu‐
ments. Styling involves simple addition of
markup, usually for presentation. XSLT
allows complete restructuring of docu‐
ments, in addition to styling.

vector

472 | Glossary

Index

Symbols
& (ampersand)

bitwise or logical AND operator, 109
separating URL parameters, 404, 416

&& (ampersand, double)
conditional AND operator, 109
intersection of matches, 235

-> (arrow), in lambda expressions, 432
* (asterisk)

multiplication operator, 109
wildcard type, in generics, 472
wildcard, in export command, 67
wildcard, in import statement, 51, 151
wildcard, in URL pattern, 426
zero or more iterations, 236

@ (at-sign)
preceding annotations, 88
preceding doc comment tags, 87
preceding pointer values, 97

\ (backslash), preceding escape sequences, 84,
95, 233

[] (brackets)
array creation, 115, 119
array indexing, 114, 117
array type declaration, 115
enclosing custom character classes, 235

^ (caret)
beginning of line match, 236
bitwise or logical XOR operator, 109
inverted character class, 235

{ } (curly braces)
enclosing code blocks, 100
enclosing initial array values, 116
enclosing range iteration, 237

$ (dollar sign), end of line match, 236
. (dot)

any character match, 234
class or objectmember selection, 111, 113,

127
“ ” (double quotes), enclosing string literals,

224
… (ellipses), following package names on com‐

mand line, 187
= (equal sign), assignment operator, 109, 110
== (equal sign, double), equality operator, 109,

226
! (exclamation point), logical complement oper‐

ator, 104, 108
!= (exclamation point, equal sign), inequality

operator, 109
/ (forward slash), division operator, 109
/* */ (forward slash, asterisk), enclosing block

comments, 86
/** */ (forward slash, asterisks, double), enclos‐

ing Javadoc comments, 87
// (forward slashes, double), preceding line

comments, 54, 86
< (left angle bracket), less than operator, 109
<< (left angle bracket, double), left shift opera‐

tor, 109
<= (left angle bracket, equal sign), less than or

equal operator, 109
- (minus sign)

subtraction operator, 109
unary minus operator, 108

-- (minus sign, double), decrement operator,
108

() (parentheses)

473

cast operator, 109
in expressions, 109
in method invocation, 111
in try statement, 184

% (percent sign), remainder operator, 109
+ (plus sign)

addition operator, 109
one or more iterations, 236
string concatenation, 99, 109, 224, 226
unary plus operator, 108

++ (plus sign, double), increment operator, 108
? (question mark)

preceding regex flags, 238
preceding URL parameters, 404, 416
zero or one iteration, 237

?: (question mark, colon), conditional ternary
operator, 109

> (right angle bracket), greater than operator,
109

>> (right angle bracket, double), right shift with
sign operator, 109

>= (right angle bracket, equal sign), greater
than or equal operator, 109

>>> (right angle bracket, triple), right shift
operator, 109

~ (tilde), bitwise complement operator, 108
_ (underscore), in numeric literals, 94
| (vertical bar)

alternation match, 237
bitwise or logical OR operator, 109
separating catch exceptions, 175

|| (vertical bar, double), conditional OR opera‐
tor, 109

0, preceding octal literals, 93
0b or 0B, preceding binary literals, 93
0L, suffixing long literals, 94
0x or 0X, preceding hexadecimal literals, 94

A
abs() method, Math, 244
absolute path, 355
abstract methods, 161
abstract modifier, 459
Abstract Window Toolkit (see AWT)
accept() method, ServerSocket, 380, 383
access modifiers (see visibility modifiers)
accessor methods, 167
acos() method, Math, 244
action events, 322-325

ActionEvent class, 322, 326
ActionListener interface, 323, 326
ad hoc polymorphism, 143

(see also methods: overloading)
adaptive compilation, 6
add() method, Collection, 199
add() method, JFrame, 45
add() method, List, 200
addAll() method, Collection, 199
addHeader() method, HttpServletResponse,

415
addition operator (+), 109
addMouseMotionListener() method, JCompo‐

nent, 57, 58
Ahead of Time (AOT) compilation, 7
AJAX (Asynchronous JavaScript and XML),

410
allocate() method, Buffer, 372
allocateDirect() method, Buffer, 372
Amazon Corretto, 25, 28
Amazon Web Services (AWS), 422
ampersand (&)

bitwise or logical AND operator, 109
separating URL parameters, 404, 416

ampersand, double (&&)
conditional AND operator, 109
intersection of matches, 235

Angular, 410
Annotation Processing Tool (APT), 459
annotations, 88, 423, 426, 459
anonymous arrays, 119
anonymous inner classes, 163, 165-167
Ant tool, 459
AOT (Ahead-of-Time) compilation, 7
Apache Tomcat, 422, 455-457
API (Application Programming Interface), 459
applets, xii, 2

(see also web programming; web services)
Application Programming Interface (see API)
applications, 459

command-line arguments for, 44
desktop applications (see desktop applica‐

tions; Swing)
digital signatures for, 21
Java’s suitability for, 2
language requirements for, 1, 7
running, 55, 64-66
stopping, 43, 59
web applications, 472

474 | Index

(see also web programming)
APT (Annotation Processing Tool), 459
arguments, 47

defining, 134
passing, 140
variable-length argument list, 135, 471

arithmetic operations (see Math class; opera‐
tors)

array type variable, 115
arraycopy() method, System, 118
arrays, 14, 98, 114-121

accessing elements of, 117
anonymous, 119
converting to collections, 216
copying, 118
creating, 115
declaring, 115
default values for, 115
index of, 114, 115
initializing, 116
iterating over, 117
length of, 117
multidimensional, 119-121

arrow (->), in lambda expressions, 432
ASCII character encoding, 84
ASCII escape sequence, 95
asin() method, Math, 244
assert keyword, 186
AssertionError class, 186
assertions, 11, 186-188, 459
assignment operator (=), 109, 110
asterisk (*)

multiplication operator, 109
wildcard type, in generics, 472
wildcard, in export command, 67
wildcard, in import statement, 51, 151
wildcard, in URL pattern, 426
zero or more iterations, 236

asynchronous I/O, 367
Asynchronous JavaScript and XML (AJAX),

410
AsynchronousDatagramChannel class, 368
AsynchronousServerSocketChannel class, 368
AsynchronousSocketChannel class, 368
at-sign (@)

preceding annotations, 88
preceding doc comment tags, 87
preceding pointer values, 97

atan() method, Math, 244

atan2() method, Math, 244
atDate() method, dates and times, 250
atomic operations, 283, 459
atomicity of variables, 274
atTime() method, dates and times, 250
autoboxing, 198, 208
available() method, InputStream, 347
availableCharsets() method, Charset, 373
AWS (Amazon Web Services), 422
AWT (Abstract Window Toolkit), 52, 285-286,

459
(see also java.awt package)
event dispatch thread, 333, 337
events, 319, 326

B
\B, non-word boundary, 236
\b, word boundary, 236
background (daemon) threads, 66, 267
backslash (\), preceding escape sequences, 84,

95, 233
Bakker, Paul (author)

Java 9 Modularity (O’Reilly), 16, 68
base URL, 398
beans, Java (see Java beans)
between() method, dates and times, 249
big endian, 372
BigDecimal class, 92, 247
BigInteger class, 92, 247
binary literals, 93
binding (see method binding)
bitwise AND operator (&), 109
bitwise complement operator (~), 108
bitwise OR operator (|), 109
bitwise XOR operator (^), 109
BLOCKED state, 277
boojum, 460
books and publications

Concurrent Programming in Java (Addison-
Wesley), 283

Design Patterns (Addison-Wesley), 123, 288
Java 2D Graphics (O’Reilly), 286, 341
Java 8 Lambdas (O’Reilly), 437
Java 9 Modularity (O’Reilly), 16, 68
Java AWT Reference (O’Reilly), 286
Java Concurrency in Practice (Addison-

Wesley), 283
Java Swing, 2nd Edition (O’Reilly), 286, 288,

341

Index | 475

JavaScript: The Definitive Guide (O’Reilly),
9

Maven: The Definitive Guide (O’Reilly), 155
Boolean (logical) operators, 108-109
Boolean class, 229
Boolean expressions, 101
boolean type, 91, 142, 460
BorderLayout class, 310-313
bounds, for type parameters, 212, 460
boxing, 460

(see also autoboxing; unboxing)
brackets ([])

array creation, 115, 119
array indexing, 114, 117
array type declaration, 115
enclosing custom character classes, 235

break statement, 102, 103, 106
Buffer class, 369
BufferedInputStream class, 344, 349, 351
BufferedOutputStream class, 344, 351
BufferedReader class, 344, 348, 351, 400
BufferedWriter class, 344, 351
buffers, 367, 369-372

allocating, 372
byte order of, 372
operations on, 369
types of, 370

Button class, 46
buttons, 46, 293-294
Byte class, 229
byte order, 372
byte type, 91, 93, 142, 225, 460
ByteBuffer class, 369, 369, 370, 375
ByteChannel interface, 368
bytecode, 5
bytecode verifier (see verifier)
ByteOrder class, 372

C
C

compared to Java, 7
error handling, 169
primitive types derived from, 92
private keyword, 16

C#, 4, 8, 25
C++, 7, 16
CA (certificate authority), 460
Calendar class, 248
callbacks, 460

canExecute() method, File, 357
canRead() method, File, 357
canWrite() method, File, 357
capitalization, style conventions for, xv, 125
caret (^)

beginning of line match, 236
bitwise or logical XOR operator, 109
inverted character class, 235

case expression, in switch statement, 102
cast operator (()), 94, 109, 215
casting, 94, 215-218, 460
catch clause, 173-175, 460
cbrt() method, Math, 244
ceil() method, Math, 244
certificate authority, 460
certificates, 21, 460

(see also digital signatures)
change events, 325-326
ChangeEvent class, 325, 326
ChangeListener interface, 325, 326
channels, 344, 368-368, 374-377
char type, 91, 95, 142, 224, 460
Character class, 229
character encoders and decoders, 372-374
character encoding, 84-86

ASCII, 84
ASCII escape sequences, 95
emoji characters, 85
ISO 8859-1 (Latin-1), 465
for string construction, 225
Unicode escape sequences, 84, 95
Unicode standard, 84, 471
UTF-8, 84, 471
UTF-16, 85

character sets, 373
character streams, 348-349
character-encoding scheme, 345
charAt() method, String, 225, 228
CharBuffer class, 369, 370, 371
CharSequence interface, 371
Charset class, 373
CharsetDecoder class, 373
CharsetEncoder class, 373
ChronoUnit interface, 249
.class extension, 69
class keyword, 125, 460
class loader, 10, 17, 19, 460
class method (see static method)
class types (see reference types)

476 | Index

class variable (see static variable)
classes, 6, 44, 124-133, 460

compiling, 69-70
declaring, 125-126
defining, 44
design guidelines for, 167-168
enabling assertions for, 187
extending, 48
external, fully-qualified names for, 151
hierarchy of, 50
imported, security for, 17
importing, 150-151
inner classes, 163-165
instances of (see objects)
methods of (see methods)
naming conventions, 125
parent, 96
printing description of, 68
scalability and, 15
scope of, 130
single inheritance for, 11, 156
subclasses, 48-49, 50, 96, 156-157, 470
superclasses, 48, 156, 470
variables of (see variables)

classpath, 19, 65, 460
CLASSPATH variable, 66-69
clean sweep, invoking, 149
clear() method, Buffer, 370
client-side communications, 403-409
client-side cookies, 419
clients, 380-382, 461
Clojure, 25
close() method

InputStream, 347
ServerSocket, 383
Socket, 382

closures, anonymous inner classes used as, 164
code blocks, 100
code examples

downloading, xvii, 27, 39-40, 439-440
importing to IDEA, 40, 444-451
running, 451-454
style conventions used in, xv
using, xvi
web examples, downloading, 454

CoderResult class, 374
Collection interface, 198-201
collections, 197-202

concurrency with, 281, 282

as containers, 203
converting to arrays, 216
iterating over, 199
lambda expressions with, 434
lists, 200
maps, 201-202
methods of, 199
queues, 201, 468
sets, 199, 202
types of, 199-201

Collections API, 197, 461
Color class, 290
command-line arguments, 44
comments, 86-88

@ tags in, 87
block comments (/* */), 86
Javadoc comments (/** */), 87
line comments (//), 54, 86

Comparable interface, 218
comparator() method

SortedSet, 200
comparator() method, SortedMap, 202
compareTo() method, String, 227, 228
comparing() method, Comparator, 435
comparison operators, 108-109
compilation units, 69, 461
compiler, 4, 69-70, 461

adaptive, 6
AOT (Ahead-of-Time), 7
conditional compilation, 11
JIT, 6
optimizations by, 6-7
for packages, 155

component architecture, 461
components, 286-306

buttons, 293-294
creating, 47-48

(see also JComponent class)
custom, 341
events associated with, 326
hierarchy of, 286
labels, 288-293
lists, 304-306
scroll panes, 299-301
sliders, 302-304
text areas, 297-299
text fields, 294-296
updating, 333-336

composition, 167, 461

Index | 477

concat() method, String, 228
concatenation operator (+), 99, 109, 224, 226
concrete (simple) type instantiations, 213, 214
concurrency, 15, 257

(see also threads)
processes for, 257
threads for, 257-268
utilities for, 282-283

Concurrent Programming in Java (Addison-
Wesley), 283

conditional AND operator (&&), 109
conditional compilation, 11
conditional OR operator (||), 109
conditional ternary operator (?:), 109
conditionals, if/else clause, 100
CONFIG logging level, 192
confirmation dialogs, 330-332
connect() method, URLConnection, 402
connection-oriented protocol, 380
Console class, 347
ConsoleHandler class, 190
constants, 89-90, 133
constructors, 56, 113, 145-148, 461
contact information for this book, xvi
containers (classes), 203-205
containers (components), 306-309
contains() method

Collection, 199
String, 227, 228

containsAll() method, Collection, 199
content handlers, 400, 402, 403, 461
content pane, 308
continue statement, 107
conventions used in this book, xv
cookies, 419
copyOf() method, Arrays, 118
copyOfRange() method, Arrays, 118
copyValueOf() method, String, 228
core packages, 51
Corretto, 25, 28
cos() method, Math, 244
cosh() method, Math, 244
CountDownLatch class, 282
createNewFile() method, File, 356, 357
createTempFile() method, File, 357
curly braces ({ })

enclosing code blocks, 100
enclosing initial array values, 116
enclosing range iteration, 237

CyclicBarrier class, 282

D
\d, digit, 235
\D, nondigit match, 235
?d, Unix lines flag, 238
daemon (background) threads, 66, 267
data hiding (see encapsulation)
data types (see types)
datagram, 461
DatagramChannel class, 368
DatagramSocket class, 380
DataInputStream class, 344, 349-351, 385
DataOutputStream class, 344, 350, 385
Date class, 248, 384-386
DateAtHost class, 384-386
DateFormat class, 248
dates and times, 248-255

adding and substracting, 250
comparing and manipulating, 249
conversions between, 250
creating, 248
current, obtaining, 249
formatting, 251-254
local, 248
parsing, 248, 251-254
time zones for, 250
timestamps, 255
unit constants for, 249

DateTimeFormatter class, 251-254
DateTimeParseException error, 254
decode() method, CharsetDecoder, 374
decoders, 372-374
decrement operator (--), 108
deep copy, 461
delete() method, File, 356, 357
deleteOnExit() method, File, 357
design patterns

factory methods in, 138
MVC (Model-View-Controller), 287, 466

Design Patterns (Addison-Wesley), 123, 288
desktop applications

commercial, 285
components, 286-306
containers, 306-309
creating, 41
custom components, 341
drawing capabilities, 341
events, 58-60, 318-327, 462

478 | Index

layout managers, 310-318
menus, 339-341
pop-up windows, 327-332
preferences, 341
Swing used for, 285-286
threads and, 332-339
timers, 336-339

destroy() method, Servlet, 411
development environments, 25, 28
development, incremental, 10, 13
dialogs (see pop-up windows)
digital signatures, 21, 79

(see also certificates)
division operator (/), 109
DNS (Domain Name Service), 381
do statement, 104
Document Object Model (DOM), 461
Document Type Definition (DTD), 461
doDelete() method, HttpServlet, 412
doGet() method

HttpServlet, 411, 412, 413
HttpServletRequest, 418

doHead() method, HttpServlet, 412
dollar sign ($), end of line match, 236
DOM (Document Object Model), 461
Domain Name Service (DNS), 381
domain objects, 49
doOptions() method, HttpServlet, 412
doPost() method

HttpServlet, 411, 412
HttpServletRequest, 418

doPut() method, HttpServlet, 412
dot (.)

any character match, 234
class or object member selection, 111, 113,

127
doTrace() method, HttpServlet, 412
Double class, 229
double quotes (“ ”), enclosing string literals,

224
double type, 92, 95, 142, 275, 461
DoubleBuffer class, 370
drawing capabilities, 341
drawString() method, Graphics, 53
DTD (Document Type Definition), 461
dynamic memory management, 13-14
dynamic typing, 12

E
early binding, 12
EJB (Enterprise JavaBeans), 461
ellipses (…), following package names on com‐

mand line, 187
emoji characters, 85
encapsulation, 16, 462
encode() method, CharsetEncoder, 374
encoders, 372-374
encodeURL() method, HttpServletResponse,

422
endsWith() method, String, 227, 228
entering() method, logger, 195
Enterprise JavaBeans (EJB), 461
entrySet() method, Map, 202
enum keyword, 462
enumeration, 462
EOFException class, 347
equal sign (=), assignment operator, 109, 110
equal sign, double (==), equality operator, 109,

226
equality operator (==), 109, 226
equals() method, String, 226, 228
equalsIgnoreCase() method, String, 226, 228
erasure, 210-211, 212, 462
Error class, 171, 178
error handling, 14, 169

assertions, 186-188
exceptions, 170-186
unrecoverable errors, 171

escaped characters in regular expressions, 233
event dispatch thread, 333, 337
events, 58-60, 318-327, 462

action events, 322-325
change events, 325-326
keyboard events, 59, 320
lambda expressions for, 435
list of, 326
mouse events, 319-322
timers and, 337

Exception class, 170-171
exceptions, 14, 170-186, 462

catching, 171, 172-175
causal, including in rethrow, 180
chaining, 180, 462
checked, 177-178
cleaning up resources after, 184-185
creating new types of, 179
hierarchy of, 170-171

Index | 479

message from, retrieving, 179
methods specifying, 170
narrowed rethrow of, 181
performance issues with, 185
side effects on local variables, 182-183
stack traces for, 171, 176-177
throwing, 171, 178-182
uncaught, propagating upward, 175-176
unchecked, 178

Exchanger class, 282
exclamation point (!), logical complement oper‐

ator, 104, 108
exclamation point, equal sign (!=), inequality

operator, 109
executors, 282
exists() method, File, 357
exit() method, System, 268
exiting() method, logger, 195
exp() method, Math, 244
expressions, 99, 108-114

(see also operators; regular expressions)
assignment as, 110
Boolean, 101
method invocation, 111-112
object creation, 113
switch, 103

extends keyword, 48, 156, 462
Extensible Markup Language (see XML)
Extensible Stylesheet Language/XSLTransfor‐

mations (see XSL/XSLT)

F
f or F, suffixing float literals, 95
factory method, 138
fields (see variables)
File API, in NIO, 361-366
File class, 353-358

constructors for, 353
methods for, 355-358
path localization, 354

file extensions
.class extension, 69
.jar extension (see JAR files)
.java extension, 69

file locking, 368, 376
FILE protocol handler, 399, 402
file streams, 358-360
FileChannel class, 368, 374-377
FileHandler class, 190

FileInputStream class, 344, 358, 375
FileOutputStream class, 344, 358, 359, 375
FileReader class, 344, 358
FileWriter class, 344, 360
Filter class, 191
filter streams, 349-353
FilterInputStream class, 349
FilterOutputStream class, 349
FilterReader class, 349
FilterWriter class, 349
final modifier, 133, 462
finalize() method, 462
finally clause, 183-184, 462
find() method, Matcher, 241
FINE logging level, 192
FINER logging level, 192
FINEST logging level, 192
first() method, SortedSet, 200
Flanagan, David (author), 9
flip() method, Buffer, 370
Float class, 229
float type, 92, 95, 142, 463
FloatBuffer class, 370
floor() method, Math, 244
FlowLayout class, 289, 290
Font class, 292
for statement, 105-106, 117, 218
force() method, FileChannel, 376
format() method, System, 352
Formatter class, 191
forward slash (/), division operator, 109
forward slash, asterisk (/* */), enclosing block

comments, 86
forward slash, asterisks, double (/** */), enclos‐

ing Javadoc comments, 87
forward slashes, double (//), preceding line

comments, 54, 86
fragile base class, 13
frames, 306-309
FTP protocol handler, 399, 402
functional programming, 431

(see also lambda expressions)

G
Gamma, Erich (author)

Design Patterns (Addison-Wesley), 123, 288
garbage collection, 13-14, 148-149, 463
generic class, 463
generic method, 463

480 | Index

generic type inference, 207
generic types, 91, 98
generics, 203, 205-209, 463

autoboxing and, 198
casts with, 215-218
concrete (simple) type instantiations, 213,

214
erasure with, 210-211, 212
example using, 219-220
inheritance and, 213
instantiating the type, 206
raw types of, 211-213
type parameters for, 205-207
type relationships in, 213-215
type terminology for, 208
wildcard type instantiations, 214

GET method, HTTP, 404, 416-419
get() method

List, 200
Map, 202

getAbsolutePath() method, File, 355, 357
getAttribute() method, HttpSession, 421
getBytes() method, String, 228
getCanonicalPath() method, File, 355, 357
getCause() method, Exception, 180
getChars() method, String, 228
getClassName() method, StackTraceElement,

177
getContent() method, URL, 400
getContentEncoding() method, HttpURLCon‐

nection, 408
getContentLength() method, HttpURLConnec‐

tion, 408
getContentType() method, HttpURLConnec‐

tion, 408
getContentType() method, URLConnection,

402
getFile() method, URL, 399
getFileName() method, StackTraceElement, 177
getFilePointer() method, RandomAccessFile,

361
getFreeSpace() method, File, 357
getHeaderField() method, HttpURLConnec‐

tion, 408
getHeaderFieldDate() method, HttpURLCon‐

nection, 408
getHeaderFieldInt() method, HttpURLConnec‐

tion, 408
getHost() method, URL, 399

getInputStream() method, Socket, 382
getLastModified() method, HttpURLConnec‐

tion, 408
getLineNumber() method, StackTraceElement,

177
getMessage() method, Exception, 179
getMethodName() method, StackTraceElement,

177
getName() method, File, 355, 357
getOutputStream() method, HttpURLConnec‐

tion, 408
getOutputStream() method, Socket, 382
getParameter() method, HttpServletRequest,

416
getParent() method, File, 355, 357
getPath() method, File, 355, 357
getProtocol() method, URL, 399
getRequestURI() method, HttpServletRequest,

419
getResource() method, 77
getResponseCode() method, HttpURLConnec‐

tion, 408
getSelectedIndex() method, JList, 306
getSelectedIndices() method, JList, 306
getSelectedValue() method, JList, 306
getSelectedValues() method, JList, 306
getSession() method, HttpServletRequest, 421
getStackTrace() method, Throwable, 177
getTotalSpace() method, File, 357
getUseableSpace() method, File, 358
getValue() method, JSlider, 303
getWriter() method, HttpServletResponse, 413
GitHub, code examples from, xvii, 27, 39
Goetz, Brian (author)

Java Concurrency in Practice (Addison-
Wesley), 283

graphical user interface (see GUI)
Graphics class, 53
graphics context, 53, 463
greater than operator (>), 109
greater than or equal operator (>=), 109
GregorianCalendar class, 248
GridBagLayout class, 315-318
GridLayout class, 313-314
group() method, Matcher, 242
GUI (graphical user interface), 463

(see also desktop applications; Swing)

Index | 481

H
Handler class, 190
hash table, 463
hashcode, 463
hashCode() method, String, 228
hasMoreTokens() method, StringTokenizer,

231
hasNext() method, Iterator, 217
hasNextInt() method, Scanner, 231
headMap() method, SortedMap, 202
headSet() method, SortedSet, 199
Helm, Richard (author)

Design Patterns (Addison-Wesley), 123, 288
hostname, 381, 398, 399, 463
HotSpot, 6, 14
HTTP (Hypertext Transfer Protocol), 403-408,

463
HTTP protocol handler, 399, 402
HTTP/2, 437
HTTPS (Hypertext Transfer Protocol over

SSL), 409
HTTPS protocol handler, 399, 402
HttpServlet class, 411-413
HttpServletRequest class, 413
HttpServletResponse class, 413, 415-416
HttpSession class, 420, 421
HttpURLConnection class, 402, 407-408
Hypertext Transfer Protocol (see HTTP)
hypot() method, Math, 244

I
?i, case-insensitive flag, 238
I/O (input/output), 343

NIO package, 361-377
streams, 343-361

IDE (Integrated Development Environment),
25, 28, 463

IDEA (IntelliJ IDEA), 25, 28
command-line arguments, specifying, 56
configuring, 35
importing code examples to, 40, 444-451
installing, 28, 441-443
projects, creating, 35-38
projects, running, 39
template, selecting, 36

if/else clause, 100
ImageIcon class, 292
implements keyword, 60, 162, 464
import statement, 41, 50, 51, 150, 151, 464

increment operator (++), 108
incremental development, 13
index operator ([]), 114
indexOf() method, String, 227, 228
inequality operator (!=), 109
INFO logging level, 192
inheritance, 11, 48-49, 61, 156-157, 464

generics and, 213
multiple, 161
single, 156
when to use, 167

init() method, Servlet, 411
initCause() method, Throwable, 181
inner classes, 163-165, 464

anonymous, 163, 165-167
scope of, 164

input dialogs, 332
input/output (see I/O)
InputStream class, 344, 345-347, 399
InputStreamReader class, 344, 345, 348, 358
installation

IntelliJ IDEA, 28, 441-443
JDK, 28
OpenJDK, 28-35

instance methods, 464
instance variables, 55, 464
instanceof operator, 109, 113, 464
instances, 46, 464

(see also objects)
Instant class, 255
int type, 92, 93, 142, 464
IntBuffer class, 370
Integer class, 229
Integrated Development Environment (see

IDE)
IntelliJ IDEA (see IDEA)
interface keyword, 161, 464
interface types, 161
interfaces, 60-61, 98, 124, 161-163, 464

implementing, 60
multiple inheritance for, 11

intern() method, String, 226, 228
internationalization, 464
Internet Protocol (IP), 380
interpreter, 5-7, 464
interrupt() method, Thread, 262, 264
introspection, 465
invalidate() method, HttpSession, 421

482 | Index

invokeAndWait() method, SwingUtilities,
333-336

invokeLater() method, SwingUtilities, 333-336,
436

IOException class, 171, 346
IP (Internet Protocol), 380
IP address, 381
isAbsolute() method, File, 355, 358
isAfter() method, Instant, 255
isBlank() method, String, 228
isCommitted() method, HttpServletResponse,

416
isDirectory() method, File, 355, 358
isEmpty() method, Collection, 199
isEmpty() method, String, 224, 228
isError() method, CoderResult, 374
isFile() method, File, 355, 358
isHidden() method, File, 358
isInterrupted() method, Thread, 264
isLoggable() method, logger, 195
isNew() method, HttpSession, 421
ISO 8859-1 (Latin-1) character encoding, 465
isOverflow() method, CoderResult, 374
isShared() method, FileChannel, 377
isSupported() method, Charset, 373
isUnderflow() method, CoderResult, 374
ItemEvent class, 326
ItemListener interface, 326
Iterator object, 199, 217
iterator() method, Collection, 199

J
JAI (Java Advanced Imaging), 403
JAR (Java archive) files, 65, 67, 77-81

compression of, Pack200 format, 80-81
compression of, ZIP format, 77
creating, 78
digitally signing, 79
extracting files from, 79
listing contents of, 79
making runnable, 80
manifests for, 79
unpacking, 78

jar command, 77-80
JAR protocol handler, 399, 402
Java, xi, 2-7

class hierarchy, 50
classes (see classes)
collections (see collections)

compared with other languages, 7-10
compiler for, 4, 69-70
desktop applications (see desktop applica‐

tions)
development environments for, 25, 28
development time with, 10
error handling (see error handling)
expressions (see expressions)
future of, 25
generics (see generics)
history of, 2-4, 21-23
interpreter for, 5-7
logging (see logging API)
methods (see methods)
network programming (see sockets; web

programming)
as object-oriented language, 123
objects (see objects)
packages (see packages)
performance of (see performance)
portability of, 5-6
resources for, xiv
runtime systems, 25, 64
statements (see statements)
style conventions, xv
threads (see threads)
types (see types)
variables (see variables)
versions of, xii-xiii, 21-24, 429-430

Java 2D API, 341
Java 2D Graphics (O’Reilly), 286, 341
Java 8 Lambdas (O’Reilly), 437
Java 9 Modularity (O’Reilly), 16, 68
Java Advanced Imaging (JAI), 403
Java API for Remote Procedure Calls (JAX-

RPC), 465
Java API for XML Binding (JAXB), 465
Java API for XML Parsers (JAXP), 465
Java AWT Reference (O’Reilly), 286
Java beans, 465
java command, 28, 55, 63, 64

‐classpath option, 65, 67
‐D option, 66
‐da or ‐disableassertions option, 187
‐ea or ‐enableassertions option, 187
‐jar option, 65
‐version option, 28, 64

Java Community Process (JCP), 430

Index | 483

Java Concurrency in Practice (Addison-
Wesley), 283

Java Database Connectivity (JDBC), 465
Java Development Kit (see JDK)
.java extension, 69
Java Media Framework (JMF), 403
Java Native Interface (JNI), 91
Java new I/O (NIO) package (see NIO package)
Java Server Pages (JSP), 410
Java Servlet API, 2
Java Specification Request (JSR), 430
Java Swing (see Swing)
Java Swing, 2nd Edition (O’Reilly), 286, 288,

341
Java virtual machine (see VM)
Java Web Services Developer Pack (JDSDP),

465
Java XML DOM (JDOM), 465
java. package hierarchy, 51
java.awt package, 52, 286

(see also AWT (Abstract Window Toolkit))
java.awt.event package, 58, 319, 326
java.io package, 171, 343

(see also File class; RandomAccessFile class;
streams)

java.io.Closeable interface, 347
java.lang package, 52, 124

Boolean wrapper, 142
Byte wrapper, 142
Character wrapper, 142
Double wrapper, 142
Exception class, 170

(see also Exception class)
Float wrapper, 142
Integer wrapper, 142
Long wrapper, 142
Number interface, 142
Short wrapper, 142
Void wrapper, 142

java.Math package, 92
java.net package, 377-379

(see also sockets; web programming)
java.nio package, 366

(see also NIO package)
java.nio.charset package, 373
java.nio.file package, 362
java.text package, 255
java.time package, 248-255, 255
java.time.temporal subpackage, 249

java.util package, 255
java.util.concurrent package, 263, 282
java.util.concurrent.atomic package, 275, 283
java.util.concurrent.locks package, 282
java.util.logging package, 189

(see also logging API)
JavaBeans, 465
javac command, 28, 69-70, 155

‐classpath option, 67
‐d option, 69
‐enable-preview option, 104
‐version option, 64

JavaFX API, 342
javap command, 68, 210
JavaScript, 9, 409, 465
JavaScript Object Notation (JSON), 410
JavaScript: The Definitive Guide (O’Reilly), 9
javax. package hierarchy, 51
javax.servlet.http package, 412-413
javax.swing package, 51, 124, 286

(see also Swing)
javax.swing.event package, 319, 326
JAVA_HOME variable, 29, 30, 32-35, 63
JAX-RPC (Java API for Remote Procedure

Calls), 465
JAXB (Java API for XML Binding), 465
JAXP (Java API for XML Parsers), 465
JButton class, 293-294, 322
JCheckbox class, 293
JComponent class, 47, 49, 124, 286
JContainer class, 286
JCP (Java Community Process), 430
JDBC (Java Database Connectivity), 465
JDialog class, 327
JDK (Java Development Kit), 3, 25

bin directory settings for, 63
installing, 28
versions of, 28

JDK Enhancement Proposal (JEP), 430
JDOM (Java XML DOM), 465
JDSDP (Java Web Services Developer Pack),

465
JEP (JDK Enhancement Proposal), 430
JetBrain IntelliJ IDEA (see IntelliJ IDEA)
JFileChooser class, 354
JFrame class, 41, 45, 306-309
JIT (just-in-time) compilation, 6
JLabel class, 41, 45, 124, 288-293
JList class, 304-306

484 | Index

JMenu class, 339-341
JMenuBar class, 339-341
JMenuItem class, 339-341
JMF (Java Media Framework), 403
JNI (Java Native Interface), 91
Johnson, Ralph (author)

Design Patterns (Addison-Wesley), 123, 288
join() method, Thread, 262, 263
JOptionPane class, 327-332
JPanel class, 309, 311
JScrollPane class, 299-301
jshell command, 70-77, 89
JSlider class, 302-304
JSON (JavaScript Object Notation), 410
JSP (Java Server Pages), 410
JSR (Java Specification Request), 430
JTextArea class, 297-299
JTextField class, 294-296
JToggleButton class, 293
just-in-time compilation (see JIT compilation)
JVM (Java virtual machine) (see VM)
JWindow class, 307

K
keyboard events, 59, 320
KeyEvent class, 58, 326
KeyListener interface, 326
keySet() method, Map, 202
Knudsen, Jonathan (author)

Java 2D Graphics (O’Reilly), 286, 341
Kotlin, 25

L
labels, 288-293
lambda expressions, 430-436, 465
last() method, SortedSet, 200
lastIndexOf() method, String, 227, 228
lastModified() method, File, 355, 358
late binding, 12
Latin-1 (ISO 8859-1) character encoding, 465
layout managers, 310-318, 465
Lea, Doug (author)

Concurrent Programming in Java (Addison-
Wesley), 283

left angle bracket (<), less than operator, 109
left angle bracket, double (<<), left shift opera‐

tor, 109
left angle bracket, equal sign (<=), less than or

equal operator, 109

left shift operator (<<), 109
length variable, arrays, 117
length() method, File, 355, 358
length() method, RandomAccessFile, 361
length() method, String, 224, 228
less than operator (<), 109
less than or equal operator (<=), 109
lightweight component, 465
limit() method, Buffer, 370
lines() method, String, 228
Linux

installing IntelliJ IDEA, 441
OpenJDK installation, 29

Lisp, 8, 10
List interface, 200, 206
list() method, File, 356, 358
Listener interface, 326
listeners, 58
listFiles() method, File, 356, 358
listRoots() method, File, 358
lists (collections), 200
lists (components), 304-306
ListSelectionEvent class, 326
ListSelectionListener interface, 326
little endian, 372
local variables, 55, 135, 139, 465
LocalDate class, 248
LocalDateTime class, 248
LocalTime class, 248
lock() method, FileChannel, 376
locks (monitors), 269
log() method

logger, 195
Math, 244

log10() method, Math, 244
Logger class, 189-190
logging API, 189-195, 465

filename for, 194
filters, 191
formatters, 191, 194
global logger, 190
handlers, 190, 193, 194
loggers, 189-190, 195
logging levels, 191-193, 194
performance issues, 189, 195
setup properties, 193-195

logging.properties file, 193
logical AND operator (&), 109
logical complement operator (!), 108

Index | 485

logical OR operator (|), 109
logical XOR operator (^), 109
Long class, 229
long type, 92, 93, 94, 142, 275, 465
LongBuffer class, 370
lookingAt() method, Matcher, 241
loops (see do statement; for statement; while

statement)
Loy, Marc (author)

Java Swing, 2nd Edition (O’Reilly), 286, 288,
341

M
?m, multiline flag, 238
Macintosh

OpenJDK installation, 30
macOS

CLASSPATH, setting, 67
installing IntelliJ IDEA, 442

macros, 11
Main class, 39, 41
main() method, 39, 41, 44-46, 64-66
Mak, Sander (author)

Java 9 Modularity (O’Reilly), 16, 68
MANIFEST.MF file, 79
Map interface, 198, 201, 208
maps, 201-202
Matcher class, 241
matches() method, Matcher, 241
matches() method, String, 228
Math class, 137, 243-247
Maven Central, 10
Maven: The Definitive Guide (O’Reilly), 155
max() method, Math, 244
memory management, dynamic, 13-14

(see also garbage collection)
memory-mapped files, 368
MemoryHandler class, 190
menus, 339-341
message dialogs, 327-330
message digest, 466
META-INF directory, 79
metadata, 88
method binding, 12
method references, 435
methods, 44, 134-144, 466

abstract, 161
accessing, 126-131
accessor methods, 167

arguments for, 47, 134
chaining method calls, 111
constructors, 56, 113, 145-148, 461
declaring thrown exceptions, 177-178
defining, 100, 125, 127
exceptions specified in, 170
factory method, 138
input validation for, 188
invoking, 111-112
local variables for, 135
native, 6, 466
overloading, 143-144, 466
overriding, 48, 49, 52-53, 144, 159-161, 466
parameters for, 47, 56
results checking for, 188
return type of, 111
return values for, 134
static, 131-133, 137-139, 470
synchronized keyword with, 269-274
variable-length argument list for, 471
void type for, 108

Microsoft, 4
MIME type, 466
min() method, Math, 244
minus sign (-)

subtraction operator, 109
unary minus operator, 108

minus sign, double (--), decrement operator,
108

minus() method, dates and times, 250
mkdir() method, File, 356, 358
mkdirs() method, File, 356, 358
modals (see pop-up windows)
Model-View-Controller (MVC), 287, 466
modifiers, 53, 466

abstract modifier, 459
constructors not allowing, 146
final modifier, 462
static modifier, 131-133, 469
strictfp modifier, 92
visibility (access) modifiers, 53, 130,

153-154, 157
modules, 16, 68
monitor and condition model, 15
monitors (see locks)
mouse events, 319-322
MouseAdapter class, 321-322
mouseDragged() method, MouseEvent, 58-60
MouseEvent class, 58-60, 326

486 | Index

MouseListener interface, 319-321, 326
MouseMotionEvent class, 326
mouseMoved() method, MouseEvent, 58-60
MulticastSocket class, 380
multiple inheritance, 11, 161
multiplication operator (*), 109
multithreaded programming (see concurrency;

threads)
MVC (Model-View-Controller), 287, 466

N
NaN (not-a-number), 243, 466
native machine code, 7
native methods, 6, 466
NavigableMap interface, 202
NavigableSet interface, 200
NEGATIVE_INFINITY value, 243
network byte order, 385
network programming, 377-379

sockets (see sockets)
web programming (see web programming)

new operator, 45, 207, 466
compared to dot operator (.), 113
for anonymous arrays, 119
for anonymous inner classes, 165
for arrays, 115, 115
for objects, 47, 56, 113
for variables, 126

NEW state, 277
newDecoder() method, Charset, 373
newEncoder() method, Charset, 373
next() method, Iterator, 217
nextToken() method, StringTokenizer, 231
NIO package, 281, 466

asynchronous I/O, 367
buffers, 367, 369-372
channels, 344, 368-368, 374-377
character encoders and decoders, 372-374
File API, 361-366
file locking, 368
memory-mapped files, 368
performance of, 367

nonblocking I/O, 367
not-a-number (NaN), 243, 466
notify() method, Thread, 263
now() method, Instant, 255
now() method, local dates and times, 249
null value, 110, 114, 466

O
Object class, 48, 50, 124
<object> tag, 467
object-oriented design, 123
ObjectInputStream class, 344
ObjectOutputStream class, 344
objects, 46, 466

composition of, 167
constructing strings from, 225
creating, 47, 56, 113, 126, 145-148
destruction of, 148-149
determining type of, 113
locks (monitors) for, 269
passing by reference, 140
wrapping, 141

octal literals, 93
of() method, local dates and times, 248
of() method, ZoneId, 251
offer() method, Queue, 201
OffsetDateTime class, 250
ofPattern() method, DateTimeFormatter, 252
online resources

Apache Tomcat, 455
code examples, xvii, 27, 39-40
for this book, xiv, xvii
IntelliJ IDEA, 441
Java, xiv
Java releases, 429, 430
OpenJFX project, 342

open() method, FileChannel, 374
openConnection() method, URL, 402
OpenJDK, 25, 28, 28-35
OpenJFX project, 342
openStream() method, URL, 399
operators, 108-109

cast operator (()), 94, 109, 215
dot operator (.), 111, 113, 127
index operator ([]), 114
instanceof operator, 109, 113, 464
new operator, 45, 47, 56, 113, 115, 119, 126,

165, 207, 466
overloading, 11

optimizations, compiler, 6-7
Oracle, 4

JDK, 25
OpenJDK, 25, 28

order of evaluation, 99
OutputStream class, 344, 345-347
OutputStreamWriter class, 344, 345, 348, 360

Index | 487

@Overrides annotation, 88

P
pack200 command, 81
Pack200 format, 80-81
package keyword, 151, 467
package system, 15
packages, 11, 51-52, 124, 149-155

affecting scope of classes, 130
compiling, 155
core packages, 51
custom, declaring, 151-153
enabling assertions for, 187
guidelines for, 167
importing, 51
importing all classes from, 150
importing classes from, 150-151
location of, 149, 151
naming, 152, 155
naming of, 51
visibility of members in, 153

paintComponent() method, JComponent, 49,
52-53, 60

panels, 309-309
parameter types (see type parameters)
parameterized types, 203, 467

(see also generics)
parameters, 47, 56
parent class, 96
parentheses (())

cast operator, 109
in expressions, 109
in method invocation, 111
in try statement, 184

parse() method, dates and times, 252
parse() method, local dates and times, 248
parseBoolean() method, Boolean, 229
parseByte() method, Byte, 229
parseCharacter() method, Character, 229
parseDouble() method, Double, 229
parseFloat() method, Float, 229
parseInteger() method, Integer, 229
parseLong() method, Long, 229
parseShort() method, Short, 229
parsing text, 230-232, 242
path

absolute, 355
relative, 355
URL, 398

path localization, 354
PATH variable, 29, 32-35, 63
Pattern class, 239-241
patterns, in regular expressions, 232
peek() method, Queue, 201
percent sign (%), remainder operator, 109
performance

array bounds checking affecting, 6
historical improvements in, 9
logging API affecting, 189, 195
NIO package, 367
strings affecting, 223
of threads, 280-282
throwing exceptions affecting, 185

Perl, 9
Pipe.SinkChannel class, 368
Pipe.SourceChannel class, 368
PipedInputStream class, 344
PipedOutputStream class, 344
PipedReader class, 344
PipedWriter class, 344
plus sign (+)

addition operator, 109
one or more iterations, 236
string concatenation, 99, 109, 224, 226
unary plus operator, 108

plus sign, double (++), increment operator, 108
plus() method, dates and times, 250
plus() method, Instant, 255
pointers, 14 (see references)

(see also references)
poll() method, Queue, 201
polymorphism, 49, 467

ad hoc, 143
subtype, 96, 159

pop-up windows, 327-332
confirmation dialogs, 330-332
input dialogs, 332
message dialogs, 327-330

port number, 381
portability, 5-6
position() method, Buffer, 370
POSITIVE_INFINITY value, 243
POST method, HTTP, 405-408, 416-419
post-conditions, 188
pow() method, Math, 244
preconditions, 188
Preferences API, 341, 467
primitive types, 91-95, 467

488 | Index

autoboxing of, 198, 208
boxing, 460
constructing strings from, 225
parsing strings into, 229
passed by value, 96, 140
unboxing, 471
wrapping, 141-143

primitive wrapper classes, 229
print() method, System, 352
printf formatting, 467
printf() method, System, 352
println() method, System, 38, 41, 352
printStackTrace() method, Exception, 177
PrintStream class, 344, 346, 352
PrintWriter class, 344, 352
priority of threads, 276-277, 279
private keyword, C++, 16
private modifier, 53, 130, 153, 154, 157, 467
processes, 257
programming languages

C, 7
C#, 4, 8
C++, 7
Java compared with others, 7-10
JavaScript, 9
Lisp, 8, 10
scripting languages, 9
Smalltalk, 8, 10
universal, requirements for, 1, 7

projects
creating, 35-38
running, 39

protected modifier, 130, 153, 154, 467
protocol handlers, 399, 402, 467
protocol, in URL, 398, 399
public keyword, 167
public modifier, 53, 130, 153, 154, 467
public-key cryptography, 468
put() method, Map, 202
Python, 9

Q
question mark (?)

preceding regex flags, 238
preceding URL parameters, 404, 416
zero or one iteration, 237

question mark, colon (?:), conditional ternary
operator, 109

Queue interface, 201

queues, 201, 468

R
Random class, 255
random() method, Math, 244-247
RandomAccessFile class, 360, 375
raw types, 211-213, 468
React, 410
Read Evaluate Print Loop (REPL), 70
read() method, FileChannel, 376
read() method, InputStream, 346
readDouble() method, DataInputStream, 350
Reader class, 344, 345, 348
readers, 343
readLine() method, BufferedReader, 348
readUTF() method, DataInputStream, 351
reference (class) types, 46, 91, 95-97, 468

arrays, 98
default values of, 98
dot operator (.) for, 111
null value for, 110
passing, 97-98
pointer values of, 97
strings as, 98

references, 14, 47, 96
(see also this reference)

reflection, 21, 468
regex (see regular expressions)
regionMatches() method, String, 228
Regular Expression API, 468
regular expressions, 230, 232-243, 468

alternation in, 237
character classes, matching, 234
characters, matching, 234
cryptic nature of notation, 233
escaped characters in, 233
iteration in, 236
Java API for, 238-243
matching patterns to strings, 241
option flags for, 237
patterns for, 239-241
patterns in, 232
position markers in, 235
splitting strings using, 242

relative path, 355
release() method, FileChannel, 377
reliable protocol, 380
remainder operator (%), 109
remove() method

Index | 489

Collection, 199
Iterator, 217
List, 200
Map, 202

removeAll() method, Collection, 199
renameTo() method, File, 356, 358
repaint() method

JComponent, 60
JFrame, 74
JPanel, 309

repeat() method, String, 228
REPL (Read Evaluate Print Loop), 70
replace() method, String, 228
replaceAll() method, String, 229
replaceFirst() method, String, 229
REpresentational State Transfer (REST), 412
reset() method, Buffer, 370
reset() method, Matcher, 241
resetBuffer() method, HttpServletResponse,

416
resources (see books and publications; online

resources)
REST (REpresentational State Transfer), 412
resume() method, Thread, 262
return statement, 108, 182
return value for methods, 134
revalidate() method, JFrame, 74
reverse domain name naming, 152, 155
rewind() method, Buffer, 370
right angle bracket (>), greater than operator,

109
right angle bracket, double (>>), right shift with

sign operator, 109
right angle bracket, equal sign (>=), greater

than or equal operator, 109
right angle bracket, triple (>>>), right shift

operator, 109
right shift operator (>>>), 109
right shift with sign operator (>>), 109
rint() method, Math, 244
round() method, Math, 245
Ruby, 9
run() method

Runnable, 259
Thread, 260

Runnable interface, 259-266, 436
RUNNABLE state, 277
runtime systems, 25, 64
runtime typing, 13

RuntimeException class, 178

S
?s, dot all flag, 238
\S, nonwhitespace match, 235
\s, whitespace match, 235
safety (see security)
sameFile() method, URL, 399
scalability, 15
Scanner class, 230, 230, 231
scheduling of threads, 275-277
Schema, XML, 468
scope

of class members (see visibility modifiers)
of inner classes, 164
of local variables, 55, 135
of shadowed variables, 158
of variables, 100
of variables in for statement, 105

scripting languages, 9
scroll panes, 299-301
SDK (Software Development Kit), 468
Secure Sockets Layer (SSL), 409
security

application and user-level features for, 20
design features for, 10-16
implementation features for, 16-20
sockets and, 384
SSL, 409

security manager, 17, 19
security policies, 19
SecurityManager class, 468
seek() method, RandomAccessFile, 361
selectable I/O, 367
Semaphore class, 282
sendError() method, HttpServletResponse, 415
sendRedirect() method, HttpServletResponse,

415
serialize, 468
servers, 380, 382-384, 468
ServerSocket class, 380, 382-384
ServerSocketChannel class, 368, 384
service() method, Servlet, 411, 412
Servlet class, 411
servlet context, 410, 469
ServletException class, 414
servlets, 410-415, 437, 468

Apache Tomcat for, downloading, 455-457
containers for, 422-428

490 | Index

content type, 414
deploying, 427-428
exceptions from, 414
life cycle of, 411
parameters for, 416-419
response from, 415-416
threads used by, 411
user session management, 419-422

Set interface, 199
set() method, List, 200
setAttribute() method, HttpSession, 421
setBufferSize() method, HttpServletResponse,

415
setContentType() method, HttpServletRes‐

ponse, 413, 414
setDaemon() method, Thread, 267
setDateHeader() method, HttpServletResponse,

415
setDefaultCloseOperation() method, JFrame,

59
setDoInput() method, HttpURLConnection,

408
setDoOutput() method, HttpURLConnection,

408
setExecutable() method, File, 358
setHeader() method, HttpServletResponse, 415
setIntHeader() method, HttpServletResponse,

415
setLastModified() method, File, 355, 358
setLineWrap() method, JTextArea, 299
setReadable() method, File, 358
setReadOnly() method, File, 358
setRequestMethod() method, HttpURLCon‐

nection, 408
setRequestProperty() method, HttpURLCon‐

nection, 408
sets, 199, 202
setSize() method, JFrame, 41, 45
setTime() method, Date, 386
setVisible() method, JFrame, 41, 45
setWrapStyleWord() method, JTextArea, 299
setWriteable() method, File, 358
SEVERE logging level, 192
shadowing variables, 135, 157-159, 469
shallow copy, 469
Short class, 229
short type, 91, 93, 142, 469
ShortBuffer class, 370, 371

showConfirmDialog() method, JOptionPane,
331

showInputDialog() method, JOptionPane, 332
showMessageDialog() method, JOptionPane,

329
showOptionDialog() method, JOptionPane,

332
signature (digital), 469
signature (for a method), 469
signed applet, 469
signed class, 469
signum() method, Math, 245
SimpleFormatter class, 191
sin() method, Math, 245
single inheritance, 11
sinh() method, Math, 245
size() method

Collection, 199
FileChannel, 376
Map, 202

skip() method, InputStream, 347
sleep() method, Thread, 262, 263
sliders, 302-304
Smalltalk, 8, 10
Socket class, 380, 381
SocketChannel class, 368
SocketHandler class, 190
sockets, 379, 379-396, 469

clients and servers with, 380-384
connection-oriented protocol for, 380
distributed game using, 386-396
reliable protocol for, 380
security and, 384
time service for, 384-386

Software Development Kit (SDK), 468
sort() method, Collections, 218
SortedMap interface, 202
SortedSet interface, 199
source files, extension for, 69
speed (see performance)
spinner, 469
split() method, String, 229, 230, 242
sqrt() method, Math, 245
SSL (Secure Sockets Layer), 409
stack traces, 171, 176-177
StackTraceElement class, 177
standard error stream, 345
standard input stream, 345
standard output stream, 345

Index | 491

start() method, Thread, 259, 260
startsWith() method, String, 227, 229
state of threads, 277
statements, 99-108

(see also specific statements)
code blocks for, 100
order of evaluation, 99
unreachable, 108

static import statement, 469
static methods, 131-133, 137-139, 470
static modifier, 131-133, 469
static typing, 12
static variables, 131-133, 148, 470
stop() method, Thread, 259, 262
StreamHandler class, 190
streams, 343-361, 379, 470

buffered streams, 351
character streams, 348-349
data streams, 350
file streams, 358-360
from URLs, 399
list of, 344-345
print streams, 352
reading, 346-349
wrappers for, 349-353

strictfp modifier, 92
String class, 223, 228-229, 371, 470
string literals, 98, 224
StringBuilder class, 407
strings, 98, 223-229

accessing characters of, 225
comparing, 226-227
concatenating, 99, 109, 224, 226
constructing, 224-225
from array of bytes, 225
from array of characters, 224
from objects, 225
from primitive types, 225
as immutable, 223
length of, 224
list of methods for, 228-229
multiline, 224
parsing into tokens, 230-232, 242
performance issues, 223
primitive numbers parsed from, 229
searching, 227

StringTokenizer class, 231
strip() method, String, 229
stripLeading() method, String, 229

stripTrailing() method, String, 229
style conventions, xv

class names, 125
for constants, 133
for package names, 152, 155

subclasses, 48-49, 50, 96, 156-157, 470
overriding methods in, 159-161
shadowed variables and, 157-159
visibility of, 157

subMap() method, SortedMap, 202
subSet() method, SortedSet, 199
substring() method, String, 229
subtraction operator (-), 109
subtype polymorphism, 96, 159
Sun Microsystems, 2-4
super keyword, 470
superclasses, 48, 156, 470
@SuppressWarnings annotation, 88
suspend() method, Thread, 262
Swing, 2, 50, 51, 285-286

(see also desktop applications)
events, 319, 326
JButton class, 293-294, 322
JComponent class, 286
JContainer class, 286
JDialog class, 327
JFrame class, 306-309
JLabel class, 288-293
JList, 304-306
JMenu classes, 339-341
JOptionPane class, 327-332
JPanel class, 309, 311
JScrollPane class, 299-301
JSlider, 302-304
JTextArea class, 297-299
JTextField class, 294-296
SwingUtilities class, 333-336
threads with, 281, 332-339
Timer class, 336-339

SwingUtilities class, 333-336
switch expression, 103
switch statement, 101-104
synchronization of threads, 268-275
synchronized keyword, 15, 269-274, 470
synchronized statement, 470
system properties, 66
System.console() method, 347
System.err variable, 345
System.gc() method, 149

492 | Index

System.getProperty() method, 66
System.in variable, 345
System.out variable, 345
systemDefault() method, ZoneId, 251

T
tailMap() method, SortedMap, 202
tailSet() method, SortedSet, 199
tan() method, Math, 245
tanh() method, Math, 245
TCP (Transmission Control Protocol), 380, 470
templates, generics as, 203

(see also generics)
templates, IDEA, 36
TERMINATED state, 277
testing, assertions for, 186-188
text areas, 297-299
text encoding (see character encoding)
text fields, 294-296
text, parsing into tokens, 230-232, 242
this reference, 57, 136, 141, 470
this() method, 146
Thread class, 258-268
thread pools, 281, 471
ThreadGroups class, 268
threads, 15, 257-268, 471

(see also concurrency)
animation using, 264-266
coordinating with other threads, 263
creating, 259-262
daemon (background) threads, 66, 267
deprecated methods of, 262
FileChannel and, 376
I/O and, 367
locks (monitors) with, 269
performance of, 280-282
priority of, 276-277, 279
resource consumption of, 281
scheduling of, 275-277
serializing method access, 269-274
servlets and, 411
sleeping, 262, 263
starting, 259, 261
state of, 277
stopping, 267-268
Swing and, 281, 332-339
synchronizing, 15, 268-275
terminating, 267-268
time-slicing for, 278

UI thread, 268
variable access by, 274
waking, 262, 264
yielding, 280

throw statement, 172, 178-182, 186, 471
Throwable class, 172
throwing() method, logger, 195
throws keyword, 177-178, 471
tilde (~), bitwise complement operator, 108
time-slicing, 278
TIMED_WAITING state, 277
Timer class, 336-339
toCharArray() method, String, 229
toDegrees() method, Math, 245
tokenizing text, 230-232, 242
toLowerCase() method, String, 229
toPath() method, File, 358
toRadians() method, Math, 245
toString() method, 225

String, 229
toUpperCase() method, String, 229
toURL() method, File, 356, 358
Transmission Control Protocol (TCP), 380, 470
trim() method, String, 229, 232
truncate() method, FileChannel, 376
try statement, 172-175, 471

catch clause, 173-175, 460
finally clause, 183-185
resources in, 184-185
side effects on local variables, 182-183

try-with-resources statement, 471
type instantiation, 471
type invocation, 471

(see also type instantiation)
type parameters, 205-207

bounds of, 212, 460
instantiating the type using, 206

type safety, 12, 14
type state, 18
types, 90-99

(see also Math class; operators)
arrays (see arrays)
BigDecimal class, 92, 247
BigInteger class, 92, 247
casting, 94, 215-218, 460
character literals, 95
class (reference) (see reference types)
dates and times (see dates and times)
dynamic features of, 91

Index | 493

floating-point literals, 95
floating-point precision, 92
generic, 91, 98, 208

(see also generics)
inferring, 97
integer literals, 93
interfaces, 98
numeric, promotion of, 94
numeric, underscores in, 94, 95
parameterized, 467

(see also generics)
primitive, 91-95, 467
raw, 468
static features of, 91
strings (see strings)
synchronized wrapper classes for, 275
variable declarations using, 93
void, 108

U
\u escape sequence, 84, 95
UDP (User Datagram Protocol), 380, 471
UI (user interface) (see GUI)
UI thread, 268
unary minus operator (-), 108
unary plus operator (+), 108
unboxing, 471
unchecked warning, 212
underscore (_), in numeric literals, 94, 95
_ (underscore), in numeric literals, 95
Unicode escape sequences, 84, 95
Unicode standard, 84, 471
Uniform Resource Locator (URL), 397-398
Unix CLASSPATH, setting, 67
unpack200 command, 81
unreachable statements, 108
URL (Uniform Resource Locator), 397-398

on java command line, 407
parameters with, 404

URL class, 398-403
accessing parts of, 399
comparing URL objects, 399
connections from, managing, 401
constructor for, 399
content from, as objects, 400-401
content from, as stream data, 399

URL pattern mappings, 426
URL rewriting, 419
URLConnection class, 401

URLEncoder class, 405
User Datagram Protocol (UDP), 380, 471
User Experience (UX), 342
user interface (see GUI)
user session management, 419-422
users, security policies based on, 20
UTF-8 character encoding, 84, 471
UTF-16 character encoding, 85
UX (User Experience), 342

V
valueOf() method, String, 225, 226, 229
values() method, Map, 202
Van Zyl, Jason (author)

Maven: The Definitive Guide (O’Reilly), 155
var keyword, 97
varargs (see variable-length argument lists)
variable-length argument lists, 119, 135, 471
variables, 44, 46, 89-90

accessing, 126-131
atomicity of, 274
declaring, 93, 100, 125
default values for, 93
initializing, 93, 126
instance variables, 55
local, 55, 135, 139, 465
scope of, 100
shadowing, 135, 157-159, 469
static, 131-133, 148, 470
visibility of, 167
volatile, 275

vector, 472
verifier, 17-19, 472
vertical bar (|)

alternation match, 237
bitwise or logical OR operator, 109
separating catch exceptions, 175

vertical bar, double (||), conditional OR opera‐
tor, 109

virtual machine (see VM)
visibility (access) modifiers, 53, 130, 153-154,

157
Vlissides, John (author)

Design Patterns (Addison-Wesley), 123, 288
VM (virtual machine), 4, 25, 64
void type, 108, 142
volatile keyword, 275

494 | Index

W
\W, non-word character match, 235
\w, word character match, 235
wait() method, Thread, 262, 263
WAITING state, 277
WAR (Web Applications Resources) file, 472
WAR files, 410, 422-423, 427-428
Warburton, Richard (author), 437
WARNING logging level, 192
web applications, 472

(see also web programming)
Web Applications Resources (WAR) file (see

WAR file)
web programming, 397

client-side communications, 403-409
content handlers, 400, 402, 403
JavaScript and, 409
Java’s suitability for, 2
protocol handlers, 399, 402
servlet containers, 422-428
servlets, 410-415
URL class, 398-403
URLs, 397-398
web services, 2, 379, 409-411, 422, 472

web services, 2, 379, 409-411, 422, 472
web.xml file, 410, 411, 423-426
website resources (see online resources)
while statement, 104
widgets (see components)
wildcard (*)

in export command, 67
in import statement, 51, 151
in URL pattern, 426

wildcard instantiation, 218
wildcard type, 472
wildcard type instantiations, 214
Windows

CLASSPATH, setting, 67

installing IntelliJ IDEA, 443
OpenJDK installation, 31-35

windows, 307
creating, 45

(see also JFrame class)
visibility of, setting, 45

withZoneSameInstant() method, ZonedDate‐
Time, 251

wrap() method, Buffer, 372
wrappers

for objects, 141
for primitive types, 141-143

write() method, FileChannel, 376
writeInt() method, DataOutputStream, 350
Writer class, 344, 345, 348
writers, 343
writeUTF() method, DataOutputStream, 351

X
XInclude standard, 472
XML (Extensible Markup Language), 472
XML content, 403, 410
XML Schema, 468
XMLFormatter class, 191
XPath, 472
XSL/XSLT (Extensible Stylesheet Language/

XSLTransformations), 472

Y
yield() method, Thread, 280
yielding threads, 280

Z
ZIP format, 67, 77
ZonedDateTime class, 250
ZoneId class, 251
Zukowski, John (author), 286

Index | 495

About the Authors
Marc Loy caught the Java bug after seeing a beta copy of the HotJava browser show‐
ing a sorting algorithm animation back in 1994. He developed and delivered Java
training classes at Sun Microsystems back in the day and has continued training a
(much) wider audience ever since. He now spends his days consulting and writing on
technical and media topics. He has also caught the maker bug and is exploring the
fast-growing world of embedded electronics and wearables.

Patrick Niemeyer became involved with Oak (Java’s predecessor) while working at
Southwestern Bell Technology Resources. He is the CTO of Ikayzo, Inc., and an inde‐
pendent consultant and author. Pat is the creator of BeanShell, a popular Java script‐
ing language. He has served as a member of several JCP expert groups that guided
features of the Java language and is a contributor to many open source projects. Most
recently, Pat has been developing analytics software for the financial industry as well
as advanced mobile applications. He currently lives in St. Louis with his family and
various creatures.

Dan Leuck is the CEO of Ikayzo, Inc., a Tokyo- and Honolulu-based interactive
design and software development firm with customers that include Sony, Oracle,
Nomura, PIMCO, and the federal government. He previously served as Senior Vice
President of Research and Development for Tokyo-based ValueCommerce, Asia’s
largest online marketing company; Global Head of Development for London-based
LastMinute.com, Europe’s largest B2C website; and President of the US division of
DML. Dan has extensive experience managing teams of 150-plus developers in five
countries. He has served on numerous advisory boards and panels for companies
such as Macromedia and Sun Microsystems. Dan is active in the Java community, is a
contributor to BeanShell and the project lead for SDL, and sits on numerous Java
Community Process expert groups.

Colophon
The animals on the cover of Learning Java, Fifth Edition are a Bengal tiger and her
cubs. The Bengal is a subsepecies of tiger (Panthera tigris tigris) found in Southern
Asia. It has been hunted practically to extinction and now lives mostly in natural pre‐
serves and national parks, where it is strictly protected. It’s estimated that there are
fewer than 3,500 Bengal tigers left in the wild.

The Bengal tiger is reddish orange with narrow black, gray, or brown stripes, gener‐
ally in a vertical direction. Males can grow to nine feet long and weigh as much as 500
pounds; they are the largest existing members of the cat family. Preferred habitats
include dense thickets, long grass, or tamarisk shrubs along river banks. Maximum
longevity can be 26 years but is usually only about 15 years in the wild.

Tigers most commonly conceive after the monsoon rains; the majority of cubs are
born between February and May after a gestation of three and a half months. Females
bear one litter every two to three years. Cubs weigh under three pounds at birth and
are striped. Litters usually consist of one to four cubs, but it’s unusual for more than
two or three to survive. Cubs are weaned at four to six months but depend on their
mother for food and protection for another two years. Female tigers are mature at
three to four years, males at four to five years.

Bengals are an endangered species threatened by poaching, habitat loss, and habitat
fragmentation. Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The color illustration is by Karen Montgomery, based on a black and white engraving
from a loose plate, source unknown. The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://learning.oreilly.com/home/

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	New Developments
	New in This Edition (Java 11, 12, 13, 14)

	Using This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. A Modern Language
	Enter Java
	Java’s Origins
	Growing Up

	A Virtual Machine
	Java Compared with Other Languages
	Safety of Design
	Simplify, Simplify, Simplify…
	Type Safety and Method Binding
	Incremental Development
	Dynamic Memory Management
	Error Handling
	Threads
	Scalability

	Safety of Implementation
	The Verifier
	Class Loaders
	Security Managers

	Application and User-Level Security
	A Java Road Map
	The Past: Java 1.0–Java 11
	The Present: Java 14
	The Future
	Availability

	Chapter 2. A First Application
	Java Tools and Environment
	Installing the JDK
	Installing OpenJDK on Linux
	Installing OpenJDK on macOS
	Installing OpenJDK on Windows
	Configuring IntelliJ IDEA and Creating a Project
	Running the Project
	Grabbing the Learning Java Examples

	HelloJava
	Classes
	The main() Method
	Classes and Objects
	Variables and Class Types
	HelloComponent
	Inheritance
	The JComponent Class
	Relationships and Finger-Pointing
	Package and Imports
	The paintComponent() Method

	HelloJava2: The Sequel
	Instance Variables
	Constructors
	Events
	The repaint() Method
	Interfaces

	Goodbye and Hello Again

	Chapter 3. Tools of the Trade
	JDK Environment
	The Java VM
	Running Java Applications
	System Properties

	The Classpath
	javap
	Modules

	The Java Compiler
	Trying Java
	JAR Files
	File Compression
	The jar Utility
	The pack200 Utility

	Building Up

	Chapter 4. The Java Language
	Text Encoding
	Comments
	Javadoc Comments

	Variables and Constants
	Types
	Primitive Types
	Reference Types
	Inferring Types
	Passing References
	A Word About Strings

	Statements and Expressions
	Statements
	Expressions

	Arrays
	Array Types
	Array Creation and Initialization
	Using Arrays
	Anonymous Arrays
	Multidimensional Arrays

	Types and Classes and Arrays, Oh My!

	Chapter 5. Objects in Java
	Classes
	Declaring and Instantiating Classes
	Accessing Fields and Methods
	Static Members

	Methods
	Local Variables
	Shadowing
	Static Methods
	Initializing Local Variables
	Argument Passing and References
	Wrappers for Primitive Types
	Method Overloading

	Object Creation
	Constructors
	Working with Overloaded Constructors

	Object Destruction
	Garbage Collection

	Packages
	Importing Classes
	Custom Packages
	Member Visibility and Access
	Compiling with Packages

	Advanced Class Design
	Subclassing and Inheritance
	Interfaces
	Inner Classes
	Anonymous Inner Classes

	Organizing Content and Planning for Failure

	Chapter 6. Error Handling and Logging
	Exceptions
	Exceptions and Error Classes
	Exception Handling
	Bubbling Up
	Stack Traces
	Checked and Unchecked Exceptions
	Throwing Exceptions
	try Creep
	The finally Clause
	try with Resources
	Performance Issues

	Assertions
	Enabling and Disabling Assertions
	Using Assertions

	The Logging API
	Overview
	Logging Levels
	A Simple Example
	Logging Setup Properties
	The Logger
	Performance

	Real-World Exceptions

	Chapter 7. Collections and Generics
	Collections
	The Collection Interface
	Collection Types
	The Map Interface

	Type Limitations
	Containers: Building a Better Mousetrap
	Can Containers Be Fixed?

	Enter Generics
	Talking About Types

	“There Is No Spoon”
	Erasure
	Raw Types

	Parameterized Type Relationships
	Why Isn’t a List<Date> a List<Object>?

	Casts
	Converting Between Collections and Arrays
	Iterator

	A Closer Look: The sort() Method
	Application: Trees on the Field
	Conclusion

	Chapter 8. Text and Core Utilities
	Strings
	Constructing Strings
	Strings from Things
	Comparing Strings
	Searching
	String Method Summary

	Things from Strings
	Parsing Primitive Numbers
	Tokenizing Text

	Regular Expressions
	Regex Notation
	The java.util.regex API

	Math Utilities
	The java.lang.Math Class
	Big/Precise Numbers

	Dates and Times
	Local Dates and Times
	Comparing and Manipulating Dates and Times
	Time Zones
	Parsing and Formatting Dates and Times
	Parsing Errors
	Timestamps

	Other Useful Utilities

	Chapter 9. Threads
	Introducing Threads
	The Thread Class and the Runnable Interface
	Controlling Threads
	Death of a Thread

	Synchronization
	Serializing Access to Methods
	Accessing Class and Instance Variables from Multiple Threads

	Scheduling and Priority
	Thread State
	Time-Slicing
	Priorities
	Yielding

	Thread Performance
	The Cost of Synchronization
	Thread Resource Consumption

	Concurrency Utilities

	Chapter 10. Desktop Applications
	Buttons and Sliders and Text Fields, Oh My!
	Component Hierarchies
	Model View Controller Architecture
	Labels and Buttons
	Text Components
	Other Components

	Containers and Layouts
	Frames and Windows
	JPanel
	Layout Managers

	Events
	Mouse Events
	Action Events
	Change Events
	Other Events

	Modals and Pop Ups
	Message Dialogs
	Confirmation Dialogs
	Input Dialogs

	Threading Considerations
	SwingUtilities and Component Updates
	Timers

	Next Steps
	Menus
	Preferences
	Custom Components and Java2D
	JavaFX

	User Interface and User Experience

	Chapter 11. Networking and I/O
	Streams
	Basic I/O
	Character Streams
	Stream Wrappers
	The java.io.File Class
	File Streams
	RandomAccessFile

	The NIO File API
	FileSystem and Path
	NIO File Operations

	The NIO Package
	Asynchronous I/O
	Performance
	Mapped and Locked Files
	Channels
	Buffers
	Character Encoders and Decoders
	FileChannel

	Network Programming
	Sockets
	Clients and Servers
	The DateAtHost Client
	A Distributed Game

	More to Explore

	Chapter 12. Programming for the Web
	Uniform Resource Locators
	The URL Class
	Stream Data
	Getting the Content as an Object
	Managing Connections
	Handlers in Practice
	Useful Handler Frameworks

	Talking to Web Applications
	Using the GET Method
	Using the POST Method
	The HttpURLConnection
	SSL and Secure Web Communications

	Java Web Applications
	The Servlet Life Cycle
	Servlets
	The HelloClient Servlet
	The Servlet Response
	Servlet Parameters
	The ShowParameters Servlet
	User Session Management
	The ShowSession Servlet

	Servlet Containers
	Configuration with web.xml and Annotations
	URL Pattern Mappings
	Deploying HelloClient

	The World Wide Web Is, Well, Wide

	Chapter 13. Expanding Java
	Java Releases
	JCP and JSRs

	Lambda Expressions
	Retrofitting Your Code

	Expanding Java Beyond the Core
	Final Wrap-Up and Next Steps

	Appendix A. Code Examples and IntelliJ IDEA
	Grabbing the Main Code Examples
	Installing IntelliJ IDEA
	Installing on Linux
	Installing on a macOS
	Installing on Windows

	Importing the Examples
	Running the Examples
	Grabbing the Web Code Examples
	Working with Servlets

	Glossary
	Index
	About the Authors
	Colophon

