

Hands-On Enterprise Java
Microservices with Eclipse
MicroProfile

Build and optimize your microservice architecture with Java

Cesar Saavedra
Heiko W. Rupp
Jeff Mesnil
Pavol Loffay
Antoine Sabot-Durand
Scott Stark

BIRMINGHAM - MUMBAI

Hands-On Enterprise Java Microservices
with Eclipse MicroProfile
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Denim Pinto
Content Development Editor: Rohit Kumar Singh
Senior Editor: Afshaan Khan
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Alishon Mendonsa

First published: August 2019

Production reference: 1300819

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-310-2

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Cesar Saavedra has been working in the IT industry since 1990 and holds a master of
science degree in computer science and an MBA. He has worked as a developer, consultant,
technical seller, and technical marketer throughout his career. He currently does technical
product marketing for Red Hat JBoss EAP, Eclipse MicroProfile, OpenJDK, Quarkus, and
Jakarta EE. He also manages technical marketing for the runtimes, integration, Business
Process Management (BPM), and rules management portfolio, and works closely with
engineering and product management on thought leadership. Cesar has authored white
papers, e-Books, and blog posts, and is a conference and webinar speaker, giving
presentations to customers and partners.

I would like to thank my wife, Isabelle, and my children, Angeline and Max, for their
unwavering support.

Heiko W. Rupp is an open source enthusiast with more than a decade of experience
working at Red Hat in the area of middleware monitoring and management. In this role, he
has been project lead of the RHQ and Hawkular monitoring systems and has also
contributed to various other projects, including Kiali.

Currently, he is helping to define the next route to be taken by Java microservices with his
work on Eclipse MicroProfile. As such, he is the specification lead of the Eclipse
MicroProfile Metrics effort and is also contributing to other specifications. Heiko has
written the first German book about JBoss AS and one of the first German books on EJB3.
He lives with his family in Stuttgart, Germany.

I would like to thank my family, whose support enables me to work on projects like this
book.

Jeff Mesnil is employed by Red Hat as a senior software engineer and currently works for
JBoss, Red Hat's middleware division, on the WildFly and JBoss EAP application servers.
He is a member of the core team in charge of developing the internals of the application
servers and heads up its messaging subsystem (which provides the JMS API).

Previously, he contributed to the HornetQ messaging broker that was integrated into
WildFly and EAP.

He is a proponent of open source development and all the code he writes, either
professionally or privately, is available under open source licenses. Nowadays, it is mostly
hosted on GitHub.

He has a keen interest in messaging systems and has written several open source libraries
related to messaging.

Pavol Loffay is senior software engineer at Red Hat. Pavol is working on observability
tools for microservice architectures. He is mostly involved in the tracing domain, where he
is an active committer on the Jaeger and OpenTracing projects. He is also a member of the
OpenTracing Specification Council (OTSC) and a lead for the MicroProfile-OpenTracing
specification. He has authored many blog posts and given presentations at several
conferences. In his free time, Pavol likes to climb mountains and ski steep slopes in the
Alps.

Antoine Sabot-Durand is a Java champion who works for Red Hat, where he leads the Java
EE, now Jakarta EE CDI, spec. He is involved in various projects linked to the CDI
ecosystem, MicroProfile, and Jakarta EE. He is also a member of the Devoxx France
committee. He lives in France with his wife and three children.

Scott Stark began his career in chemical engineering, got steered into parallel computers as
part of his PhD work, and then made software his career, beginning with a stint in finance
on Wall Street. He then got into open source with the fledgling JBoss company, working on
the application server and Java EE. He has worked with microkernel efforts, the IoT,
standards, Jakarta EE, Eclipse MicroProfile, and Quarkus. He lives in the Pacific Northwest
with his wife.

I would like to thank my wife, Evening, and furry children, Colette and d'Artagnan.

About the reviewers
David R. Heffelfinger is an independent consultant based in the Washington D.C. area. He
is a Java champion, a member of the NetBeans Dream Team, and is a part of the JavaOne
content committee.

He has written several books on Java EE, application servers, NetBeans, and JasperReports.
His previous titles include Java EE 7 Development with NetBeans 8, Java EE 7 with GlassFish 4
Application Server, and JasperReports 3.5 for Java Developers, and others. David has been a
speaker at conferences such as JavaOne and Oracle Code on multiple occasions.

He has also been a speaker at NetBeans Day in San Francisco and Montreal, showcasing
NetBeans features that enhance the development of Java EE applications. You can follow
him on Twitter at @ensode.

Yogesh Prajapati is an engineer with experience of the architecture, design, and
development of scalable and distributed enterprise applications.

He authored the book Java Hibernate Cookbook, published by Packt. He has more than 8
years' experience with different aspects of Java, Spring, and cloud development, such as
REST and microservices, with hands-on experience in technologies/frameworks including
Backbase, Hibernate, AWS Cloud, Google Cloud, Node.js, JavaScript, Angular, MongoDB,
and Docker.

He is currently working as a lead full stack consultant at dotin Inc. – The Personality DNA
Company.

He completed his Master of Computer Applications from Gujarat University. You can
follow Yogesh on his blog – kode12.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: MicroProfile in the Digital Economy
Chapter 1: Introduction to Eclipse MicroProfile 7

Enterprise Java microservices 7
Forces that fuel the digital economy 9

Multi-speed IT 10
Introducing Eclipse MicroProfile 11
MicroProfile value proposition 16
Summary 17
Questions 18

Chapter 2: Governance and Contributions 19
Current Eclipse MicroProfile governance 19

Sandbox approach to open contribution 22
Umbrella releases versus projects outside the umbrella 23

MicroProfile Starter 24
A quick tour of MicroProfile Starter 24

Summary 31
Questions 32

Section 2: MicroProfile's Current Capabilities
Chapter 3: MicroProfile Config and Fault Tolerance 34

Understanding Eclipse MicroProfile Config 34
Reading configuration from the MicroProfile Config API 35

The Config object 36
The @ConfigProperty annotation 37

Providing sources of configuration 38
Default ConfigSources 38
Custom ConfigSources implementations 39

Using converters for high-level configuration 40
Built-in converters 41
Automatic converters 41
Custom converters 42

Understanding Eclipse MicroProfile Fault Tolerance 43
MicroProfile Fault Tolerance in action 44

The @Asynchronous policy 45
The @Retry policy 45
The @Fallback policy 46

Table of Contents

[ii]

The @Timeout policy 47
The @CircuitBreaker policy 47
The @Bulkhead policy 47
Tolerance with MicroProfile config 48

Summary 49
Questions 49
Further reading 50

Chapter 4: MicroProfile Health Check and JWT Propagation 51
Technical requirements 52
Understanding health checks and how MicroProfile handles them 52

The Health Check protocol and wire format 53
The Health Check Java API 54

Integration with the cloud platform 58
Human operators 58
Changes in Health Check response messages 59

Using JSON Web Token Propagation in MicroProfile 59
Recommendations for interoperability 60

Required MP-JWT claims 61
The high-level description of the MP-JWT API 62
Sample code that uses MP-JWT 64

Injection of JsonWebToken information 65
Injection of JWT claim values 66

Configuring authentication of JWTs 68
Running the samples 69

Summary 75
Questions 76

Chapter 5: MicroProfile Metrics and OpenTracing 77
MicroProfile Metrics 77

Metadata 78
Retrieving metrics from the server 79

Accessing specific scopes 81
Supplying application-specific metrics 81

More types of metric 82
Gauges 82
Meter 83
Histograms 83
Timers 84

Tagging 84
Server-wide tags 84
Per-metrics tags 85

Using Prometheus to retrieve metrics 85
New in MP-Metrics 2.0 87

Change for counters – introducing ConcurrentGauge 88
Tagging 88
Changes in data output format 89

MicroProfile OpenTracing 89
OpenTracing project 90

Table of Contents

[iii]

Configuration properties 91
Automatic instrumentation 92

JAX-RS 92
MicroProfile Rest Client 93

Explicit instrumentation 93
@Traced annotation 94
Tracer injection 94

Tracing with Jaeger 95
Summary 98
Questions 98

Chapter 6: MicroProfile OpenAPI and Type-Safe REST Client 99
Introduction to MicroProfile OpenAPI and its capabilities 99

Configuration 100
Generating the OpenAPI document 101
MicroProfile OpenAPI annotations 102

Usage examples 102
Static OpenAPI files 104
Programming model 106
Using a filter for updates 106

Introduction to the MicroProfile REST Client and its capabilities 107
Defining the endpoint Interface 108
MicroProfile REST Client programmatic API usage 109
MicroProfile REST Client CDI usage 110

MicroProfile Config integration 111
Simplifying configuration keys 112

Dealing with client headers 113
Provider registration for advanced usage 114

Provider priority 115
Feature registration 115
Default providers 116

Exception mapping 116
Default exception mapping 117

Async support 118
Summary 119
Questions 120

Section 3: MicroProfile Implementations and
Roadmap
Chapter 7: MicroProfile Implementations, Quarkus, and Interoperability
via the Conference Application 122

Current MicroProfile implementations 123
Thorntail 124
Open Liberty 126
Apache TomEE 127
Payara Micro 127

Table of Contents

[iv]

Hammock 128
KumuluzEE 129
Launcher 130
Helidon 130
Generating sample code for the current implementations 131
Other projects that implement MicroProfile 132

Quarkus 132
How to quark a generated MicroProfile project 134

MicroProfile interoperability – the conference application 139
Summary 141
Questions 142

Section 4: A Working MicroProfile Example
Chapter 8: A Working Eclipse MicroProfile Code Sample 144

Technical requirements 144
Sample architecture of a multiservice MicroProfile application 145

Running the sample application 146
The Docker shell commands 146
The Svcs1 shell command 148
The Svcs2 shell command 148
The web shell command 149

Details of the sample application 149
The Config tab 149
The Health tab 151
The Metrics tab 153
The OpenTracing tab 155
The OpenAPI tab 158
The KeyCloak tab 162
The JWT tab 165
The RestClient tab 167

Summary 172
Questions 172
Further reading 173

Section 5: A Peek into the Future
Chapter 9: Reactive Programming and Future Developments 175

Reactive programming work in Eclipse MicroProfile 176
An overview of Reactive Messaging 176

MicroProfile reactive messaging architecture 177
Message shapes 178

MicroProfile Reactive Streams operators 181
MicroProfile Context Propagation 181

MicroProfile reactive messaging examples 181
MicroProfile future developments 186

Projects outside the umbrella 186

Table of Contents

[v]

Long Running Actions 187
Context Propagation 188
GraphQL 190

Differences between GraphQL and REST 190
GraphQL and databases 191

Projects in the sandbox 191
MicroProfile Boost 191

Eclipse MicroProfile and Jakarta EE 192
Summary 193
Questions 194
Further reading 194

Chapter 10: Using MicroProfile in Multi-Cloud Environments 195
Using Eclipse MicroProfile for cloud-native application
development 196

Microservices versus cloud native versus container native 196
What about 12-factor applications? 198
What about serverless and FaaS? 199
Cloud-native application development 200

Developing and running MicroProfile applications across clouds 203
Bare-metal machines versus VMs versus containers 204
Considerations when using MicroProfile in a hybrid cloud deployment 204
Challenges when using MicroProfile OpenTracing in a multi-cloud
deployment 205
Considerations when using Eclipse MicroProfile in a service mesh 206

Retry 206
Fallback 206
Fault injection in the service mesh 207
Conclusion 207

Summary 208
Questions 209

Appendix A: Assessments 210
Chapter 1 210
Chapter 2 212
Chapter 3 214
Chapter 4 215
Chapter 5 215
Chapter 6 216
Chapter 7 216
Chapter 8 219
Chapter 9 219
Chapter 10 220

Other Books You May Enjoy 225

Index 228

Preface
This book will help you learn about Eclipse MicroProfile, an open source specification for
enterprise Java microservices that started back in 2016, along with its background and
history, its value proposition to organizations and businesses, its community governance,
the current Eclipse MicroProfile sub-projects (more are being added as the open source
project evolves), its implementations, and its interoperability. It will also provide a peek
into the future direction of Eclipse MicroProfile, a sample application in Red Hat's
implementation of Eclipse MicroProfile in Thorntail, one of the runtimes provided by Red
Hat Runtimes, and guidance and considerations for running Eclipse MicroProfile in hybrid-
cloud and multi-cloud environments. This book will follow a step-by-step approach to help
you understand the Eclipse MicroProfile project and its implementations in the market.

Who this book is for
This book is for Java developers who wish to create enterprise microservices. To get the
most out of this book, you need to be familiar with Java EE and the concept of
microservices.

What this book covers
Chapter 1, Introduction to Eclipse MicroProfile, frames the discussion within the context of
the digital economy and describes what an enterprise Java microservice is and what the rest
of the book will cover.

Chapter 2, Governance and Contributions, covers governance, processes, and how to
contribute to the MicroProfile project.

Chapter 3, MicroProfile Config and Fault Tolerance, goes over config and fault tolerance in
MicroProfile sub-projects in detail, explaining what problem each solves and giving code
examples for each.

Chapter 4, MicroProfile Health Check and JWT Propagation, takes you through the Health
Check and JWT Propagation sub-projects, helping you understand what challenges they
tackle with the help of code examples.

Preface

[2]

Chapter 5, MicroProfile Metrics and OpenTracing, discusses the Metrics and OpenTracing
sub-projects and the problems they solve. You will learn how to work with code examples
of these sub-projects.

Chapter 6, MicroProfile OpenAPI and Type-Safe REST Client, covers two more sub-projects:
OpenAPI and type-safe REST client. This chapter will help you work with code examples
and understand the utility of these sub-projects in solving your enterprise problems.

Chapter 7, MicroProfile Implementations, Quarkus, and Interoperability via the Conference
Application, provides details on the implementations of MicroProfile that are currently
available on the market and discusses the project's progress to date. It also delves into The
Conference Application, a demo that showcases the integration of different vendors'
implementations of MicroProfile.

Chapter 8, A Working Eclipse MicroProfile Code Sample, provides a fully working project
developed using MicroProfile (based on the Conference Application) and also gives
coordinates to download the assets described.

Chapter 9, Reactive Programming and Future Developments, goes over present APIs currently
being incubated/developed and APIs being discussed for future inclusion in the
MicroProfile specification. In addition, it covers MicroProfile candidate APIs for reactive
programming as well as potential future relationships between MicroProfile and Jakarta
EE.

Chapter 10, MicroProfile in Multi-Cloud Environments, discusses how MicroProfile is a great
specification for microservices-based applications in the cloud and provides guidance and
considerations for using MicroProfile in hybrid-cloud and multi-cloud environments.

To get the most out of this book
A basic understanding of microservices and enterprise Java is required. Other installation
and setup instructions are provided where necessary.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packtpub.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Enterprise- Java-Microservices- with- Eclipse-
MicroProfile. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781838643102_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The checks array object type consists of a required name and status string,
along with an optional data object that contains optional key and value pairs."

http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

package org.eclipse.microprofile.health;

@FunctionalInterface
public interface HealthCheck {
 HealthCheckResponse call();
}

Any command-line input or output is written as follows:

Scotts-iMacPro:jwtprop starksm$ curl http://localhost:8080/jwt/secureHello;
echo
Not authorized

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The advent and accessibility of the internet created a critical category-formation
time opportunity for organizations."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/submit/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: MicroProfile in the

Digital Economy
In this section, you will learn why microservices are important in the digital economy and
how MicroProfile addresses the need for enterprise Java microservices. In addition, you
will also learn about the sub-projects that currently make up MicroProfile, its value
proposition to organizations and developers, and its current processes and governance
(that is, how things get done).

This section contains the following chapters:

Chapter 1, Introduction to Eclipse MicroProfile
Chapter 2, Governance and Contributions

1
Introduction to Eclipse

MicroProfile
Eclipse MicroProfile is a set of specifications for microservices written in the Java language.
It is a project that is community-driven with many implementations in the market. The
project, first announced in June 2016, continues to develop a set of common Application
Programming Interfaces (APIs) for implementing Java microservices suitable for modern
application development techniques, architectures, and environments. In this chapter, you
will learn about the origin and importance of Eclipse MicroProfile.

The following topics will be covered in this chapter:

Enterprise Java microservices
Forces that fuel the digital economy and the need for multi-speed IT
Introducing Eclipse MicroProfile
MicroProfile value proposition

Enterprise Java microservices
Application development no longer consists of using a single high-level programming
language that runs on your favorite operating system. Nowadays, there are a myriad of
languages, specifications, frameworks, proprietary and open source software and tools,
underlying deployment infrastructures, and development methodologies that
programmers need to learn to develop modern applications. Development at IT
organizations has become polyglot, that is, multiple programming languages are used
depending on the needs of specific projects. In this age of the cloud, containers,
microservices, reactive programming, 12-factor applications, serverless, MINI services,
polyglot environments, and so on, developers now have the option to choose the right tool
for their task, making them more effective and productive.

Introduction to Eclipse MicroProfile Chapter 1

[8]

With the recent move of Java EE to the Eclipse Foundation under the new name of Jakarta
EE, MicroProfile will play a very important role in the future of Enterprise Java because of
its synergy with Jakarta EE and the potential ways it can influence it.

The advent of the cloud and mobile, along with the acceleration of open and the Internet of
Things (IoT) have brought about the digital economy. While this has opened up new
markets, it has also imposed new demands on businesses and their IT organizations, which
are now required to not only support and maintain traditional workloads but also deliver
new applications at a faster pace.

Many technologies, languages, architectures, and frameworks have become popular within
organizations in an attempt to tackle these new demands. One of these is microservices,
specifically, Enterprise Java microservices, since Java is still one of the most popular
languages in IT companies. But what is an Enterprise Java microservice?

An Enterprise Java microservice has the following features:

It is written using the Java language.
It can use any Java framework.
It can use any Java API.
It must be enterprise-grade; that is, reliable, available, scalable, secure, robust,
and performant.
It must fulfill the characteristics of microservice architectures as listed at https:/
/martinfowler. com/ microservices/ , which are as follows:

Componentization via services
Organized around business capabilities
Products not projects
Smart endpoints and dumb pipes
Decentralized governance
Decentralized data management
Infrastructure automation
Design for failure
Evolutionary design

https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/

Introduction to Eclipse MicroProfile Chapter 1

[9]

Forces that fuel the digital economy
The terms digital economy and digital transformation describe the convergence of four
different forces that are changing the needs of businesses: mobile, cloud, IoT, and open
source:

Before the internet, organizations required brick-and-mortar stores or phone lines to
conduct their businesses. The advent and accessibility of the internet created a critical
category-formation time opportunity for organizations. Businesses started to use the
internet mainly as a storefront or display in order to drive people to their brick-and-mortar
stores. It was also used for advertising purposes.

Soon after this, businesses began adding the ability to purchase things online, and
companies, such as Amazon, realized that they could capitalize on the economies-of-scale,
product aggregation, consolidation, recommendation, and pricing optimization that an
online store could provide. This was the very beginning of cloud and cloud-native
applications. This is the first force that fueled the digital economy.

But what really accelerated the digital needs of businesses was the appearance of the
second focus mobile devices, which connected even more people to the internet. More
people now had a digital presence on the internet and businesses realized that these people
were a new market that they could exploit. This new market required applications to scale
to what people now call the internet scale. But paying for software licenses for this type of
scalability was too expensive and prohibitive. This is where open source software, the third
force that fueled the digital economy, came to the rescue. The power of the
community accelerated the development of open source projects via crowdsourcing and
open source collaboration. Anyone from anywhere in the globe could contribute to open
source projects. Likewise, internet-scale companies, such as Amazon, Netflix, and Lyft,
either use open source software or have created and contributed open source to the
community.

Introduction to Eclipse MicroProfile Chapter 1

[10]

Another benefit of open source software is its adoption of subscription-type support (for
organizations that require external support for the software they run in production), which
is significantly cheaper than software licensing. The growth of open source software
fulfilled this need in the market, and companies such as Red Hat, purveyors of open source
software, have succeeded in delivering enterprise-grade open source solutions.

As virtualization technologies matured and companies built and proved out internet-scale
technologies and infrastructures, they realized that they could rent out these resources,
such as compute and memory, to anybody. Consumption-based pricing made these
resources even more accessible. Companies realized the value of saving costs, productivity,
and speed-to-market of the cloud and started rushing to adopt this new model. Major
companies such as Microsoft, Google, and Amazon all have cloud offerings.

IoT is the last and fourth force that is fueling the digital economy. Like the data generated
by the digital presence of each person using the internet, IoT also generates large amounts
of data that can be exploited to make sound business decisions. IoT demands internet-scale
technologies and infrastructures that the cloud and big data technologies fulfill.

The convergence of these four different forces means that organizations have to adapt in
the way they create and maintain business applications, thus affecting the speed at which
they introduce innovation to their organizations. This is what is known as multi-speed IT,
which we will discuss in more detail in the following section.

Multi-speed IT
Implementing and delivering applications as fast as possible is not a new requirement. In
fact, since the invention of the first computer, increasing efficiency has always been in the
minds of computer scientists. High-level programming languages, encapsulation,
reusability, inheritance, event-driven design, SOA, microservices, machine learning, and
AI, are all concepts that address the challenge of doing things faster. With each wave of
new technology, the gearbox adds a new speed requirement to the evolution of how we
develop and deliver software. The digital economy has added another high-speed gear to
the gearbox.

Businesses need to adapt to the new demands of the digital economy. Not only do they
have to create, run, and support traditional-style applications, but also applications that
conform to the new demands of the digital economy. They have to support both waterfall
and DevOps processes, hybrid cloud infrastructures, and SOA and microservice
architectures.

Introduction to Eclipse MicroProfile Chapter 1

[11]

This imposes many challenges on IT organizations, whose processes, people, and
technology have all been geared toward the implementation, delivery, and maintenance of
traditional-style applications. Many organizations have already embarked on, or are
starting, their journey of digital transformation, which addresses the challenges of the
digital economy. This journey includes changes in technologies, frameworks, languages,
and processes for the development, delivery, integration, and maintenance of applications.

Whether you call it bimodal IT (https:/ /www. gartner. com/ it- glossary/ bimodal) or a
business technology strategy (https:/ / go.forrester. com/ wp- content/ uploads/
Forrester-False- Promise- of- Bimodal- IT. pdf), the fact is that IT needs to deliver faster
than ever before on the needs of the business, for both existing and new applications. This
means IT needs to also speed up the maintenance and delivery of existing applications
while exclusively adopting Agile methodologies for new applications. This does not
preclude, however, the need to still use different development processes, release cycles, and
support timelines to handle existing applications versus new applications, which is
effectively the multi-speed nature of IT.

Introducing Eclipse MicroProfile
Java EE has been an extremely successful platform. The Java Community Process (JCP) has
been the steward of over 20 compatible implementations during its nearly 20-year history,
resulting in a $4 billion industry. However, the management of Java EE by Oracle
(unintentional or not) of Java EE (unintentional or not) stalled innovations, and while other
standards have developed, the Java community worldwide and CIOs at all major
enterprises desired an open standard for Java within their enterprise.

In its early stages, J2EE grew somewhat quickly from J2EE 1.2 up to J2EE 1.4, as the
platform needed to address the immediate requirements of the enterprise. Beginning with
Java EE 5 in May 2006, the pace began to slow down as the platform began to mature, and it
was 3 years and 6 months between releases. After Java EE 7, which was released on June 12,
2013, there has been a long delay in its development. Java EE 8 was formally launched in
September 2014 at JavaOne, where Oracle announced that it would be completed by
JavaOne 2016. But then in June 2015, Oracle updated its release date to the first half of 2017.
And again, at JavaOne 2016 (September), Oracle revised the Java EE 8 release date to the
end of 2017. Java EE 8 was finally released on September 21, 2017, at JavaOne.

https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf

Introduction to Eclipse MicroProfile Chapter 1

[12]

The following diagram shows the evolution timeline:

Java EE had been following the slower release cadence that a standards organization
typically reflects. A standards-based release cadence by design does not address rapid
innovations. And while this was occurring, the digital economy happened, which brought
about the popularity and rising use of the cloud, containers, Agile methodologies, DevOps,
continuous integration and continuous delivery, microservices, API management, and open
source projects (Red Hat has been successful in delivering many of these solutions to the
marketplace).

The slowdown in Java EE releases (and maturity) opened the door to competing
technologies, such as Spring and Node.js, for example, which were able to fulfill the needs
and requirements of digital businesses. In addition to this, many vendors, such as Red Hat
and IBM, started innovating with Enterprise Java microservices based on a subset of Java
EE and decided to collaborate in the open, potentially providing a wider effort upstream.
This culminated in the announcement of Eclipse MicroProfile in June 2016 by many
vendors, Java Champions, Java User Groups, and corporations.

Since MicroProfile was announced on June 27, 2016, at DevNation, a lot has happened.
MicroProfile v 1.0 was released on September 19, 2016. Its implementation interoperability
was demonstrated in November 2016 at Devoxx Belgium, where Red Hat, IBM, Tomitribe,
and Payara demonstrated a unified web application (known as the Conference Application)
with underlying microservices that had been developed separately by each vendor using
MicroProfile. Additionally, MicroProfile became part of the Eclipse Foundation as an
incubation project on December 14, 2016. New members, including SOUJava, Hazelcast,
Fujitsu, Hammock, kumuluzEE, Oracle, Lightbend, and Microsoft, have joined the
MicroProfile project. The complete list of members can be found
at https://microprofile.io/.

https://microprofile.io/
http://microprofile.io/

Introduction to Eclipse MicroProfile Chapter 1

[13]

Eclipse MicroProfile is a community-driven innovation project whose goal is to work on
microservice patterns for Enterprise Java and to integrate applications with the
infrastructures they run on (that is, a cloud environment) with patterns such as health
checks and metrics. The focus of Eclipse MicroProfile is rapid collaborative innovation and
this is why the project has a time-boxed release schedule, with each release including
incremental updates or new features, and there is no guarantee of backward compatibility
across releases. The Eclipse MicroProfile community is composed of individuals, vendors,
and organizations.

Eclipse MicroProfile is not Java EE or a subset of Java EE. This confusion occurred because
the first release of MicroProfile (before it became part of the Eclipse Foundation) was a
collection of three Java EE APIs, namely, CDI, JSON-P, and JAX-RS. The MicroProfile
community purposely made the first release of MicroProfile small because they wanted the
community to decide the best path of evolution for the project.

The MicroProfile community took a no need to reinvent the wheel approach for the first
release and chose three enterprise-grade, market- and production-proven APIs from Java
EE to get started. In fact, MicroProfile utilizes some existing Java EE APIs and combines
them with new APIs to create a platform for Java microservice architectures.

At the time of writing this book, Eclipse MicroProfile consists of 12 APIs (or sub-projects)
under the project umbrella. Four of them come from Java EE APIs: CDI, JSON-P, JAX-RS,
and JSON-B, and the remaining eight are MicroProfile-specific project. They are as follows:

Config
Fault Tolerance
JWT Propagation
Health Check
Metrics
Open API
Open Tracing
REST Client
CDI (a specification from Java EE)
JSON-P (a specification from Java EE)
JAX-RS (a specification from Java EE)
JSON-B (a specification from Java EE)

Introduction to Eclipse MicroProfile Chapter 1

[14]

Here is a high-level explanation of the requirement that each of the aforementioned APIs
fulfills:

MicroProfile Config addresses the need for changing the environmental
parameters as an application or microservice moves across development, unit
testing, integration/system testing, preproduction, and production environments,
for example. MicroProfile Config makes it possible to set or modify configuration
data from outside the application without repackaging it.
MicroProfile Fault Tolerance provides different strategies for when an
application or microservice encounters a fault. MicroProfile Fault Tolerance
provides specifications for constructs such as retries, circuit breakers, bulkheads,
and timeouts, among others.
MicroProfile JWT Propagation handles security propagation across
microservices.
MicroProfile Health Check fulfills the need to probe the state of a computing
node from another machine, that is, a Kubernetes service controller. This
specification examines cloud-infrastructure environments where the node state is
tracked by automated processes.
MicroProfile Metrics delivers on the need to monitor the essential parameters of
a running service, such as the system, application, business- and vendor-specific
metrics in order to ensure its reliable operation.
MicroProfile Open API provides Java interfaces and programming models to
natively produce OpenAPI v3 documents for RESTful services that can facilitate
the management of microservice APIs.
MicroProfile Open Tracing defines the specification for equipping microservices
to be traceable in a highly-distributed environment where messages can traverse
different architectural tiers and services.
MicroProfile REST Client provides a type-safe approach to invoke RESTful
services over HTTP in a consistent and easy-to-reuse fashion.
CDI (a specification from Java EE) handles all aspects of dependency injection.
JSON-P (a specification from Java EE) covers all aspects related to the processing
of JSON objects.
JAX-RS (a specification from Java EE) handles all aspects related to RESTful
communication.
JSON-B (a specification from Java EE) covers all aspects related from the object
to JSON mapping.

Introduction to Eclipse MicroProfile Chapter 1

[15]

It is worth mentioning that all the APIs (or sub-projects) created by the MicroProfile
projects are not created in a vacuum. Although anybody can participate and is welcome in
any sub-project, members of each sub-project are subject-matter experts with long and
extensive expertise and experience. They apply their knowledge gained from the field,
considering best practices, past lessons-learned, and other existing open source
specifications and projects, to come up with the best approach for the corresponding
MicroProfile sub-project.

Eclipse MicroProfile has been evolving rapidly and their versions have been progressively
adding more functionality as follows:

Eclipse MicroProfile 1.1 included Config, which is a MicroProfile sub-project
Eclipse MicroProfile 1.2 included updates to Config as well as the new
MicroProfile sub-projects: JWT Propagation, Metrics, Fault Tolerance, and Health
Check.
Likewise, Eclipse MicroProfile 1.3 included additional brand new MicroProfile
sub-projects: Open API, Open Tracing, and Rest Client.
MicroProfile 1.4 included updates to Config, JWT Propagation, Fault Tolerance,
Open Tracing, and Rest Client.
In addition, MicroProfile 2.0 included the latest updates to CDI, JSON-P, JAX-RS,
and the addition of JSON-B, all from Java EE 8. With these releases, Eclipse
MicroProfile will offer the same level of functionality to be usable with either
Java EE 7 or Java EE 8.
Eclipse MicroProfile 2.1 included updates to Open Tracing.
Eclipse MicroProfile 2.2 included updates to Fault Tolerance, Type Safe Rest
Client, Open API, and Open Tracing.
Lastly, MicroProfile 3.0 included updates to Rest Client, and non-backward-
compatible changes to Metrics and Health Check.

There are currently many implementations of Eclipse MicroProfile on the market. Eclipse
MicroProfile is one of the tools that developers can leverage to solve problems and
implement solutions with the enterprise capabilities needed to run workloads in
production. In addition, developers familiar with Enterprise Java frameworks, such as Java
EE, will find in MicroProfile a natural progression of Enterprise Java into the world of
cloud-native application development.

Introduction to Eclipse MicroProfile Chapter 1

[16]

MicroProfile value proposition
For customers who trust Enterprise Java to run their production workloads, Eclipse
MicroProfile provides customers with a vendor-neutral specification for Enterprise Java
microservices. Eclipse MicroProfile enables them to better fulfill the needs of the business
via improved agility and scalability, faster time-to-market, higher development
productivity, easier debugging and maintenance, and continuous integration and
continuous deployment.

The benefits customers get by using Eclipse MicroProfile are the same benefits gained by
using microservices. In general, according to Martin Fowler, a respected software
developer, author, and speaker, microservices provide the following benefits (https:/ /
martinfowler.com/ articles/ microservice- trade- offs. html):

Strong module boundaries: Microservices reinforce modular structure, which is
particularly important for larger teams.
Independent deployment: Simple services are easier to deploy and, since they
are autonomous, they are less likely to cause system failures when things go
wrong.
Technology diversity: With microservices, you can mix multiple languages,
development frameworks, and data storage technologies.

In addition to the general benefits of microservices, Eclipse MicroProfile specifically
provides the following:

The benefits of community collaboration: Eclipse MicroProfile is an open
source project run by the community. No single vendor controls or determines
the evolution and maturation of the specification.
Freedom of choice of implementation: Many vendors have implemented Eclipse
MicroProfile as part of their software stacks and customers have the option to
select whichever implementation is the most appropriate for their environment.
Faster evolution: Since Eclipse MicroProfile is an innovation project, new and
improved functionality is delivered frequently in time-boxed releases. This
allows developers and customers to have these at their fingertips and start
leveraging updates in their projects sooner rather than later.
Based on decades of experience: Not only do the specification's subject-matter
experts bring with them a vast wealth of experience, expertise, and knowledge,
but Eclipse MicroProfile also leverages market-tested and production-proven
capabilities in the Java EE APIs that it builds upon, offering maturity to
developers.

https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html

Introduction to Eclipse MicroProfile Chapter 1

[17]

Familiarity with Enterprise Java: Eclipse MicroProfile builds upon familiar
Enterprise Java constructs, making it easy for Enterprise Java developers to
adopt.
No retraining needed: Your existing Enterprise Java developers will find Eclipse
MicroProfile to be a natural progression of their expertise. There is little to no
learning curve. They will be able to leverage their skills.
Interoperability: The different MicroProfile implementations are interoperable,
with each one providing users with the freedom to select one, or combine many,
MicroProfile implementations in an application.
Multiple ways to use the APIs: Eclipse MicroProfile APIs provide easy-to-use
interfaces, such as CDI-based, programmatic, command-line, and file-based
(configuration-based) interfaces.
A thorough set of artifacts: Each API includes a Test Compatibility Kit (TCK),
Javadoc, PDF document for download, API Maven artifact coordinates, Git tags,
and downloads (specification and source code).
Many other benefits that are particular to each API. These are discussed in each
Eclipse MicroProfile sub-project section throughout this book.

Summary
In this chapter, we have discussed the new trends in software development, consisting of
polyglot deployments using new approaches, such as microservices, containers, mobile,
and Internet-of-Things (IoT) running on-premises and in the cloud; and in hybrid or multi-
cloud environments. These trends required the evolution of Enterprise Java in the
microservices world, which is what MicroProfile addresses. The four forces that fuel the
digital economy, namely, cloud, mobile, IoT, and open source, have contributed to the need
for organizations to have multi-speed IT departments, which are necessary to maintain
and evolve their existing applications as well as to take advantage of new technological
trends to develop new applications that can help them to remain competitive.

Eclipse MicroProfile, a vendor-neutral specification founded by the community for the
community, is one of these new trends for Enterprise Java microservices. Lastly, Eclipse
MicroProfile brings rapid innovation to Enterprise Java by its development agility based on
lessons learned and decades of experience by the subject-matter experts who participate in
its sub-teams. This chapter has helped you to understand what an Enterprise Java
microservice is and what the rest of the book will cover.

Introduction to Eclipse MicroProfile Chapter 1

[18]

In the next chapter, we will go over the governance, that is, the lightweight process that
anybody in the community can follow to contribute to the Eclipse MicroProfile project.
Additionally, we will examine the contributions made to the project, namely, the Eclipse
MicroProfile Starter, which is a sample source code generator contribution.

Questions
What is an Enterprise Java microservice?1.
What are the four forces that fuel the digital economy?2.
Why are IT organizations having to develop and maintain applications at3.
different speeds? What is multi-speed IT?
Why are Java and Java EE still important to organizations?4.
What was one of the key reasons that caused MicroProfile to come into existence?5.
What are the APIs/specifications that are part of the MicroProfile6.
umbrella/platform release?
What release of MicroProfile introduced the first revolutionary changes?7.
Why is MicroProfile valuable to organizations?8.

2
Governance and Contributions

Eclipse MicroProfile is governed by community members. In other words, it is not
governed by a single vendor. In addition, it receives contributions from developers and
subject-matter experts across a spectrum of organizations, corporations, and individual
contributors. The project is characterized by its innovation, speed, and agility via light
processes and governance. The topics in this chapter will help you to understand the
governance of the MicroProfile project, and you will discover how you can contribute to the
MicroProfile project too.

The following topics will be covered in this chapter:

How the Eclipse MicroProfile project is governed
How the community collaborates and contributes to its constant innovation
The Eclipse MicroProfile Starter project—an example source code generator

Current Eclipse MicroProfile governance
Eclipse MicroProfile is transparent in its operations and decision-making processes, which
are intended to be very lightweight. Governance focuses on creating, innovating, and
evolving specifications in a collaborative manner.

Eclipse MicroProfile, first and foremost, is an Eclipse project and it, therefore, follows
Eclipse processes. This includes committer approvals, project releases, intellectual property
safeguarding, license review processes, and more. However, the Eclipse Foundation is
flexible enough for projects such as MicroProfile to offer some additional lightweight
processes for multiple specifications to move forward in parallel with ways to communicate
across and align specifications.

Governance and Contributions Chapter 2

[20]

One of these lightweight processes is the Eclipse MicroProfile bi-weekly Hangout
meeting/call (whose meeting URL is https:/ /eclipse. zoom. us/ j/949859967, and whose
recordings can be found on the Eclipse MicroProfile YouTube channel at https:/ /www.
youtube.com/channel/ UC_ Uqc8MYFDoCItFIGheMD_ w), which is open to anybody in the
community and serves as a forum where topics brought up by attendees are discussed and
decisions are made, from sub-project statuses and release contents to release dates and sub-
project creation approvals. It should be noted that MicroProfile is not a standards
organization, although it can seem that way. MicroProfile was created by the community
for the community, and it moves at the speed that the community determines as it
innovates in its different sub-projects. MicroProfile defines specifications that encourage
multiple implementations, much like a standards organization. However, MicroProfile
truly operates as a fast-evolving open source project whose source code is specifications.

The main means of community communication, discussion, and debate is the Eclipse
MicroProfile Google Group (https:/ / groups. google. com/ forum/ #!forum/ microprofile).
You can use your favorite web browser to read, post, answer, or start forum messages for
any MicroProfile-related topic in the Google Group. You can also use the Group's email to
start new forum messages. Anybody can start new forum threads to discuss topics, such as
potential new functionality to be added to MicroProfile. After the community discusses a
new idea at length in the forum and/or the MicroProfile Hangout call, and it's been
determined that it is worth furthering the debate, the community decides to create a
working group for this new idea, and a lead or a group of leads, who are usually subject-
matter experts in the topic at hand, are designated to serve as its facilitators.

One important aspect to note is that the lead or leads of a working group (or sub-project for
that matter) do not single-handedly shape or determine the evolution of a specification or
what capabilities are included or not. They do not have the power of veto or a final say in
the decisions made with respect to their specification. By their sharing of ideas, expertise,
past experiences, analysis of existing technologies, and best practices, the working group
will come up with their best proposal possible. In addition, all unresolved issues need to be
discussed by the community and brought up in the bi-weekly Hangout meeting/call for
further debate, if needed. Through discussion, collaboration, and feedback from the
community, many points of view are analyzed, allowing the best option or options to
bubble up to the top. The working group will establish a recurring weekly or bi-weekly
meeting, which is entered in the MicroProfile Google Calendar (https:/ /calendar.
google.com/calendar/ embed? src= gbnbc373ga40n0tvbl88nkc3r4%40group. calendar.
google.com). This contains information of all MicroProfile Hangout calls, MicroProfile sub-
project calls, and MicroProfile release dates.

https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com

Governance and Contributions Chapter 2

[21]

While anybody can attend these meetings, there's usually a core number of people that
serve as the subject-matter experts who participate in these calls. After a few meetings, the
working group decides whether or not the new functionality should be brought up to the
MicroProfile Hangout call to discuss its proposal to become a MicroProfile sub-project.

At the MicroProfile Hangout call, a sub-project proposal may be rejected or accepted. It
should be said that by the time the sub-project proposal is brought to the MicroProfile
Hangout call, most of the discussion of whether or not it should move forward will have
taken place already, so the decision taken at the call should really be of no surprise to the
sub-project working group. The rejection of a sub-project does not mean that it does not
fulfill a specific developmental need, but rather an affirmation that its goals are not a good
match to advance the MicroProfile specification, whose goal is the optimization of
Enterprise Java for a microservices architecture.

For example, if a sub-project proposal addresses a need that is unrelated to microservices,
then the chances are that the sub-project proposal will not move forward as a MicroProfile
sub-project. The acceptance of a sub-project means that it effectively addresses a need that
enriches the specification toward its goal of optimizing Enterprise Java for a microservices
architecture. It is at this moment that a sub-project becomes an official MicroProfile API.
Once the sub-project becomes a MicroProfile API, then a determination is made as to
whether it should be a standalone sub-project outside the umbrella or a sub-project
included in the umbrella MicroProfile releases. A high-level flowchart of this process is as
follows:

Governance and Contributions Chapter 2

[22]

At the time of writing this book, these are the Eclipse MicroProfile APIs/sub-projects (with
the project leads listed):

MicroProfile API/Sub-project name Sub-project lead(s)
MicroProfile Project Leads John Clingan and Kevin Sutter
Config Emily Jiang and Mark Struberg
Fault Tolerance Emily Jiang
Health Check Antoine Sabot-Durand
JWT Propagation Scott Stark
Metrics Heiko Rupp
OpenAPI Arthur De Magalhaes
OpenTracing Pavol Loffay
Rest Client John D. Ament and Andy McCright

Eclipse MicroProfile follows a time-boxed rapid incremental release schedule, which is
public and is listed at the Eclipse Foundation MicroProfile Project page (https:/ /
projects.eclipse. org/ projects/ technology. microprofile). Major Eclipse MicroProfile
releases, for example, from 1.x to 2.x, include major updates to MicroProfile APIs that may
introduce breaking changes. Minor releases, that is point releases, include small API
updates or new APIs that make the predetermined release date. Currently, the MicroProfile
community release windows are in February, June, and November of every year for minor
and/or major releases.

Sandbox approach to open contribution
The creation of a working group for a potential MicroProfile sub-project may also be
assigned a sandbox, which is another resource that the MicroProfile community offers to
try out new ideas. The sandbox repository, which is a GitHub repository located at https:/
/github.com/eclipse/ microprofile- sandbox, is for incubating ideas and code examples
that will eventually turn into a separate repository for a new specification. Anybody can
open pull requests and use the sandbox for experimentation of new ideas and to share code
and documentation, which can be used as part of the discussion in the community Google
Group, the MicroProfile Hangout calls, or working group meetings. Keeping your pull
requests open will also allow discussion of your code and documentation within the
community. Potential sub-projects live under the sandbox directory named
proposals (https:/ /github. com/ eclipse/ microprofile- sandbox/ tree/ master/
proposals).

https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals

Governance and Contributions Chapter 2

[23]

If you need to accept and merge a pull request, you need to contact one of the MicroProfile
project committers (https:/ /projects. eclipse. org/projects/ technology.
microprofile/who) for guidance.

Likewise, if you feel that your idea has reached a level of maturity that deserves its own
separate repository, that is graduating out of the sandbox, then you need to contact one of
the MicroProfile project committers for guidance and/or reach them via the MicroProfile
mailing list: microprofile@googlegroups.com. These graduation requests are also
discussed at the MicroProfile Hangout call/meeting.

Umbrella releases versus projects outside the
umbrella
Eclipse MicroProfile is composed of a set of specifications, each with a specific focus. For
example, the Eclipse MicroProfile Config specification encompasses everything related to
configuring parameters for microservices. A version of a specification can be included as
part of an umbrella release of Eclipse MicroProfile or be released outside the umbrella. As a
concrete example, the latest umbrella release of Eclipse MicroProfile 2.2, which came out on
February 12, 2019, included the following specifications:

Eclipse MicroProfile Open Tracing 1.3
Eclipse MicroProfile Open API 1.1
Eclipse MicroProfile Rest Client 1.2
Eclipse MicroProfile Fault Tolerance 2.0
Eclipse MicroProfile Config 1.3
Eclipse MicroProfile Metrics 1.1
Eclipse MicroProfile JWT Propagation 1.1
Eclipse MicroProfile Health Check 1.0
CDI 2.0
JSON-P 1.1
JAX-RS 2.1
JSON-B 1.0

https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who

Governance and Contributions Chapter 2

[24]

Eclipse MicroProfile, however, also has other specifications that have been released outside
the umbrella release. For example, Eclipse MicroProfile Reactive Streams Operators 1.0,
which we will cover in Chapter 9, Reactive Programming and Future Developments, is a
specification that was recently released outside the umbrella. So, why does MicroProfile
allow specifications outside the umbrella? Well, the reason is that by releasing outside the
umbrella first, it gives the community and end users an opportunity to utilize and test the
new technology and, therefore, proving it in real applications before it can be considered
for inclusion in the umbrella.

MicroProfile Starter
MicroProfile Starter is a sample source code generator, whose goal is to aid developers to
quickly get started using and exploiting the capabilities of the community-driven open
source specification for Enterprise Java microservices, Eclipse MicroProfile, by generating
working sample code in a Maven project.

The idea of having MicroProfile Starter has been around since the creation of the project
back in mid-2016 and was publicly discussed at Devoxx BE 2016 (the week of November 7,
2016). In its first two weeks of being available, developers around the world have created
over 1,200 projects through the MicroProfile Starter project, which is a good and positive
indication of its adoption worldwide.

A quick tour of MicroProfile Starter
Let's take a quick tour of MicroProfile Starter:

When you go to the MicroProfile Starter "Beta" page, https:/ / start.1.
microprofile. io/ , you will see the following landing page:

https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/

Governance and Contributions Chapter 2

[25]

You can accept the defaults for the Maven-related parameters (https:/ /
maven. apache. org/ guides/ mini/ guide- naming- conventions.
html), groupId and artifactId, or change them to your liking. The
groupId parameter uniquely identifies your project across all projects, and
artifactId is the name of the JAR file without the MicroProfile version
number. For this tour, accept all of the defaults.

Next, select MicroProfile Version from the drop-down list:2.

https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html

Governance and Contributions Chapter 2

[26]

For this tour, select MicroProfile version MP 2.1. Notice that, depending on
the version of MicroProfile you select, the number of specifications listed in
the Example for specifications section will vary. This number depends on
how many APIs were included as part of each MicroProfile umbrella release.
To find out what APIs were included in each release, please refer to the
MicroProfile community presentation (https:/ /docs. google. com/
presentation/ d/1BYfVqnBIffh- QDIrPyromwc9YSwIbsawGUECSsrSQB0/
edit#slide= id. g4ef35057a0_ 6_ 205).

Then, select MicroProfile Server from the drop-down list:3.

For this tour, select Thorntail V2, which is the open source project that Red
Hat uses to implement the Eclipse MicroProfile specification.

Leave all the Examples for specifications checkboxes selected (that is, do not4.
uncheck any of the checkboxes):

This will generate example working code for all of the APIs included in
MicroProfile version 2.1.

The last step in the samples source code generation process using MicroProfile5.
Starter is to click on the DOWNLOAD button, which will create a ZIP
archive. Ensure you save the demo.zip file to your local drive. Then, unzip
demo.zip in your local drive. The contents should look like this:

https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205

Governance and Contributions Chapter 2

[27]

Notice that there's a readme.md file in the generated content. This file
contains instructions on how to compile and run the generated code, which
includes a sample web application that exercises the different capabilities of
Eclipse MicroProfile.

Change directory to wherever you unzipped the demo project. In my case, I had6.
it in my Downloads directory:

$ cd Downloads/demo

Governance and Contributions Chapter 2

[28]

Compile the generated sample code by entering the following command:7.

$ mvn clean package

Run the microservice:8.

$ java -jar target/demo-thorntail.jar

After a few seconds, you will see the following message:9.

$ INFO [org.wildfly.swarm] (main) WFSWARM99999: Thorntail is Ready

This indicates that the microservice is up and running.

Open your favorite web browser and point it to10.
http://localhost:8080/index.html.

This will open up the sample web application, as follows:

Governance and Contributions Chapter 2

[29]

To see the capabilities of MicroProfile Config, click on Injected config values. A11.
window tab will open with the following display:

Likewise, if you click on Config values by lookup, another window tab will be12.
displayed as follows:

The parameter value's injected value and lookup value that we saw previously
are defined in the ./demo/src/main/resources/META-
INF/microprofile-config.properties file, as shown here:

$ cat ./src/main/resources/META-INF/microprofile-
config.properties
injected.value=Injected value
value=lookup value

Imagine that you need to use a different value for the value parameter between13.
development and system testing. You could do this by passing a parameter in the
command line when starting the microservice as follows (ensure to exit the
running application by pressing Ctrl + C on the Terminal window first):

$ java -jar target/demo-thorntail.jar -Dvalue=hola

Now, when you click on Config values by lookup, another window tab is14.
displayed:

Note that the source code executing this logic is located in the generated
./src/main/java/com/example/demo/config/ConfigTestControlle

r.java file.

Governance and Contributions Chapter 2

[30]

To see the capabilities of MicroProfile Fault Tolerance, click on Fallback after15.
timeout. A window tab will open with the following display:

For more information on the MicroProfile Config API, please refer to its
documentation (https:/ / github. com/ eclipse/ microprofile- config/
releases/ download/ 1. 3/ microprofile- config- spec- 1.3. pdf).

The sample code is exercising the @Fallback annotation in combination
with @Timeout. Here's the sample code:

@Fallback(fallbackMethod = "fallback") // fallback handler
 @Timeout(500)
 @GET
 public String checkTimeout() {
 try {
 Thread.sleep(700L);
 } catch (InterruptedException e) {
 //
 }
 return "Never from normal processing";
 }
 public String fallback() {
 return "Fallback answer due to timeout";
 }

The @Timeout annotation specifies that if the method takes longer than 500 milliseconds to
execute, a timeout exception should be thrown. This annotation can be used together with
@Fallback, which, in this case, invokes the fallback handler called fallback when the
timeout exception occurs. In the previously generated sample code, the timeout exception
will always happen because the method is executing—that is, sleeping for 700 milliseconds,
which is longer than 500 milliseconds.

Note that the source code executing this logic is located in the generated
./src/main/java/com/example/demo/resilient/ResilienceController.java file
.

https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf

Governance and Contributions Chapter 2

[31]

For more information on the MicroProfile Fault Tolerance API, please
refer to its documentation (https:/ /github. com/ eclipse/ microprofile-
opentracing/ releases/ download/ 1. 2/microprofile- opentracing- spec-
1.2.pdf).

The MicroProfile community welcomes your feedback as well as collaboration or
contributions toward the continued development of the MicroProfile Starter project. To
give feedback, you need to click on the Give Feedback button in the top-right of the
MicroProfile Starter "Beta"(https:/ / start. microprofile. io/) landing page and create an
issue.

The MicroProfile Starter project groups and prioritizes requested items and fixes in
milestones with the goal of releasing continuously. The MicroProfile Starter working group
meets on a regular basis and if you'd like to help the project with your development skills,
please send an email to microprofile@googlegroups.com or join the discussion on its
Gitter channel (https:/ / gitter. im/ eclipse/ microprofile- starter). The project
information, including the location of its source code, can be found at https:/ /wiki.
eclipse.org/MicroProfile/ StarterPage.

Summary
In this chapter, we learned about the lightweight governance processes of the Eclipse
MicroProfile project, its rapid approach to innovation, and how sandboxes are used to
foster collaboration and encourage code development and documentation. We also learned
about its sub-projects, the leaders of these sub-projects, and how they can be released either
standalone or as part of an Eclipse MicroProfile umbrella release.

In addition, you learned about MicroProfile Starter, which is a Maven project generation
tool that provides code samples so that developers can get their MicroProfile applications
started quickly. Finally, we got a sneak-peek at how an application's properties can be
easily modified using Eclipse MicroProfile Config constructs, and how to use the @Timeout
and @Fallback annotations from the Eclipse MicroProfile Fault Tolerance specification.

In the next chapter, we will delve deeper into the Eclipse MicroProfile Config and Eclipse
MicroProfile Fault Tolerance specifications and provide code samples on how to use them.

https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage

Governance and Contributions Chapter 2

[32]

Questions
What are the main means of communication for the MicroProfile community?1.
What is the goal of the bi-weekly MicroProfile Hangout call?2.
What is the role of a sub-project (MicroProfile specification) lead/leads?3.
What is the process followed by a new MicroProfile specification proposal?4.
What is the release schedule that the MicroProfile project follows?5.
What is the goal of the MicroProfile sandbox?6.
What is the difference between projects released under the umbrella/platform7.
MicroProfile release and outside it?
What is MicroProfile Starter and what benefits does it provide?8.

2
Section 2: MicroProfile's

Current Capabilities
This section goes over the capabilities of the project and its sub-projects, along with code
examples.

This section contains the following chapters:

Chapter 3, MicroProfile Config and Fault Tolerance
Chapter 4, MicroProfile Health Check and JWT Propagation
Chapter 5, MicroProfile Metrics and OpenTracing
Chapter 6, MicroProfile OpenAPI and the Type-Safe REST Client

3
MicroProfile Config and Fault

Tolerance
In this chapter, we will start by introducing MicroProfile Config as it is the basis for the
configuration of other MicroProfile features, in addition to application-level configuration.
The MicroProfile Config specification provides a common way to retrieve configuration
coming from a variety of sources (properties files, system properties, environment
variables, databases, and so on).

The topics we will cover include the following:

Reading configuration from your application
Providing additional sources of configuration to your application
Providing conversion from plain configuration into application-specific objects

Understanding Eclipse MicroProfile Config
Every application needs some external configuration to adapt its behavior to the runtime
platform it's running on. It can range from the HTTP endpoints that the application must
connect to, or the size of some internal structures.

MicroProfile Config and Fault Tolerance Chapter 3

[35]

These configuration parameters can also come from different sources:

From the operating system or the container in a cloud-native environment
(through the use of environment variables)
From the Java virtual machine (with system properties)
From some external configuration files (such as the Java properties file)
From other places (an LDAP server, database, key-value store, and so on)

On the one hand, these configuration parameters come from many different sources. On the
other hand, we want to consume them in the Java application in a simple way that does not
depend on the source of the configuration. The Eclipse MicroProfile Config specification
addresses this problem.

The MicroProfile Config API is split into two parts that tackle the two sides of the problem:

The API defines the Config and @ConfigProperty types that are used by the
Java application to get the values of the configuration parameters.
The API also defines a Service Provider Interface (SPI) to let other projects (or
the Java application itself) provide the sources of configuration parameters.

Implementations of MicroProfile Config must provide default
ConfigSource implementations that are always available to the application.

For most use cases, the application will mainly be interested in reading configuration from
the Config API, which we will cover in the next section.

Reading configuration from the MicroProfile
Config API
The MicroProfile Config specification defines two objects to read the value of configuration
parameters:

The Config object to programmatically access the configuration values
The @ConfigProperty annotation to inject the configuration values
using Contexts and Dependency Injection (CDI)

Let's discuss them in detail.

MicroProfile Config and Fault Tolerance Chapter 3

[36]

The Config object
The org.eclipse.microprofile.config.Config interface is the entry point to retrieve
configuration in a Java application.

There are two ways to get an instance of Config:

The first (and preferred) way is to use CDI to inject it into the code:1.

@Inject
private Config config;

The second way is to call the static method,2.
org.eclipse.microprofile.config.ConfigProvider#getConfig(), to
obtain an instance of Config:

Config config = ConfigProvider.getConfig();

The Config interface provides two methods to retrieve properties:

getValue(String propertyName, Class propertyType): This method
throws a runtime exception if the property is not present in the configuration.
This method must be used only for mandatory configuration (the application
would not be able to function properly in its absence).

getOptionalValue(String propertyName, Class propertyType): This
method returns a java.util.Optional object that is empty if the property is
not present in the configuration. This method is used for optional configuration.

Both methods will also throw exceptions if the property value, retrieved as String from
the configuration, cannot be converted into the expected Java type passed as the second
argument (converters are described in a later section).

In both methods, you need to specify the Java type you are expecting from the property.
For example, if the property corresponds to a URL, you can get its value as java.net.URL
directly:

URL myURL = config.getValue("my.url", URL.class);

MicroProfile Config and Fault Tolerance Chapter 3

[37]

The Config interface also defines methods to list config sources and all of the properties:

Iterable<String>getPropertyNames() returns the names of the properties
from all of the sources of configuration provided by the Config object.
Iterable<ConfigSource>getConfigSources() returns all of the sources of
configurations provided by the Config object.

The @ConfigProperty annotation
The @ConfigProperty annotation can be used to inject configuration values in Java fields
or method parameters using CDI, as shown:

@Inject
@ConfigProperty(name="my.url")
private URL myURL;

The @ConfigProperty annotation can have defaultValue, which is used to configure the
field if the configuration property is not found in the underlying Config:

@Inject
@ConfigProperty(name="my.url", defaultValue="http://localhost/")
private URL myURL;

If defaultValue is not set and no property is found, the application will throw
DeploymentException as it cannot be properly configured.

It is possible to use Optional if a configuration property might not be present, as shown in
the following code block:

@Inject
@ConfigProperty(name="my.url")
private Optional<URL> someUrl; // will be set to Optional.empty if the
 // property `my.url` cannot be found

After reading the configuration, we need to provide source configuration sources, which
will be covered in the next section.

MicroProfile Config and Fault Tolerance Chapter 3

[38]

Providing sources of configuration
The source of a configuration is represented by the ConfigSource interface. You do not
need to implement this interface unless you want to provide a source of configurations that
are not available by the MicroProfile implementation you use in your application.

If a property is found in multiple config sources, Config will return the value from the
ConfigSource interface with the highest ordinal value.

Ordering ConfigSource is important as users can provide custom
ConfigSource interfaces in addition to the default ones provided by the MicroProfile
Config implementation.

Default ConfigSources
By default, a MicroProfile Config implementation must provide three sources of
configuration:

System properties from the Java virtual machine (with an ordinal of 400)
Environment variables (with an ordinal of 300)
Properties stored in META-INF/microprofile-config.properties (with an
ordinal of 100)

The ordinal value of a config source determines the precedence of the
config source. In particular, if a property is defined both in the system
properties and the environment variables, the value will be taken from the
system properties (which has a higher ordinal than the environment
variables).

There are no restrictions on the names of properties. However, some operating systems can
impose some restrictions on the name of the environment variables (for example, "." is not
allowed by most Unix shells). If you have a property that could be configured from the
environment variables, you have to name your property accordingly.

For example, the property name my_url can be used by an environment variable while
my.url cannot.

MicroProfile Config and Fault Tolerance Chapter 3

[39]

New in MicroProfile Config 1.3
MicroProfile Config 1.3 introduces a mapping rule from the config
property name to the environment variable. This rule searches three
environment variable variants for each property name:

Exact match
Replace any non-alphanumeric character with _
Replace any non-alphanumeric character with _ and use
uppercase

This means that, in the Java application, we can have a property
named app.auth.url and use the APP_AUTH_URL environment variable
to configure it.

Let's move on to the other type of configuration source.

Custom ConfigSources implementations
It is possible to provide additional sources of configuration in your application that will be
automatically added by the MicroProfile Config implementation.

You need to define an implementation
of org.eclipse.microprofile.config.spi.ConfigSource and add a Java
ServiceLoader configuration for it, and put that file in your application archive as META-
INF/services/org.eclipse.microprofile.config.spi.ConfigSource. For your
reference, here is an example of the definition of an implementation of an environment
ConfigSource:

package io.packt.sample.config;

import java.io.Serializable;
import java.util.Collections;
import java.util.Map;

import org.eclipse.microprofile.config.spi.ConfigSource;

public class EnvConfigSource implements ConfigSource, Serializable {

 EnvConfigSource() {
 }

 @Override
 public Map<String, String> getProperties() {

MicroProfile Config and Fault Tolerance Chapter 3

[40]

 return Collections.unmodifiableMap(System.getenv());
 }

 @Override
 public int getOrdinal() {
 return 300;
 }

 @Override
 public String getValue(String name) {
 if (name == null) {
 return null;
 }

 // exact match
 String value = System.getenv(name);
 if (value != null) {
 return value;
 }

 // replace non-alphanumeric characters by underscores
 name = name.replaceAll("[^a-zA-Z0-9_]", "_");

 value = System.getenv(name);
 if (value != null) {
 return value;
 }

 // replace non-alphanumeric characters by underscores and convert
 // to uppercase
 return System.getenv(name.toUpperCase());
 }

 @Override
 public String getName() {
 return "EnvConfigSource";
 }
}

In addition to providing additional ConfigSource, the MicroProfile Config API allows
users to convert raw config property values into application-specific objects using
converters, as described in the next section.

MicroProfile Config and Fault Tolerance Chapter 3

[41]

Using converters for high-level configuration
MicroProfile Config will read Java String objects from its ConfigSource. However, it
provides facilities to convert these String objects into more specific types in your
application.

For example, the myUrl field we described previously is a URL object. The corresponding
property, my.url, is read as a String object and then converted into a URL object before it
is injected.

If the application uses the Config object, the MicroProfile Config implementation will also
convert the String object into the type passed as the second argument of the getValue
and getOptionalValue methods. This conversion can be done using different converter
types: built-in, automatic, and custom. We will talk about them in detail now.

Built-in converters
The MicroProfile Config implementation provides built-in converters for the primitive
types (boolean, int, long, byte, float, and double) and their corresponding Java types
(for example, Integer).

It also provides support for arrays in the property value using the "," as the item
separator. If the "," must be part of an item, it must be escaped with a backslash "\":

private String[] pets = config.getValue("myPets", String[].class)

If the value of the myPets property is dog,cat,dog\\,cat, the elements of the array
stored in pets would be {"dog", "cat", "dog,cat"}.

Automatic converters
MicroProfile Config also defines automatic converters. If a converter is not known for a given
Java type, it will attempt to convert a String object into it using any one of the three
different approaches:

The Java type has a public constructor with a String parameter.
It has a public static valueOf(String) method.
It has a public static parse(String) method.

That's how the my.url property was converted from String into URL since the
java.net.URL type has the public URL(String) constructor.

MicroProfile Config and Fault Tolerance Chapter 3

[42]

Custom converters
If your application defines Java types that do not provide any of these three cases covered
by the automatic converters, MicroProfile Config can still provide conversion using custom
converters that extend the org.eclipse.microprofile.config.spi.Converter
interface defined in the following:

public interface Converter<T> {
 /**
 * Configure the string value to a specified type
 * @param value the string representation of a property value.
 * @return the converted value or null
 *
 * @throws IllegalArgumentException if the value cannot be converted to
 the specified type.
 */
 T convert(String value);

You have to write an implementation of
org.eclipse.microprofile.config.spi.Converter, then add its name to the /META-
INF/services/org.eclipse.microprofile.config.spi.Converter file and put that
file in your application archive. For your reference, here is an example of the
implementation of a custom converter that supports a named number concept:

package io.packt.sample.config;

import org.eclipse.microprofile.config.spi.Converter;

public class NamedNumberConverter implements Converter<NamedNumber> {
 /**
 * Parses an assignment type of expression into a name and number value
 * @param value name=Number expression
 * @return NamedNumber instance
 */
 @Override
 public NamedNumber convert(String value) {
 String[] parts = value.split("="); // 1
 return new NamedNumber(parts[0], parts[1]);
 }
}

package io.packt.sample.config;

public class NamedNumber {
 private String name;
 private Number number;

MicroProfile Config and Fault Tolerance Chapter 3

[43]

 public NamedNumber(String name, Number number) {
 this.name = name;
 this.number = number;
 }

...
}

The converter takes a string and splits it based on a comma separator to extract the name
and corresponding value to build the NamedNumber instance.

You would then specify a named number in your configuration, as shown here:

microprofile-config.properties NamedNumber example
injected.namedNumber=jdoe,2.0

The addition of NamedNumberConverter allows us to use the NamedNumber type as a
configuration type that can be injected. Here is an example that would match the
configuration setting shown previously:

@Inject
@ConfigProperty(name="injected.namedNumber")
NamedNumber configuredNumber;

With the base MicroProfile Config feature covered, let's move onto another feature,
MicroProfile Fault Tolerance.

Understanding Eclipse MicroProfile Fault
Tolerance
Fault Tolerance provides a collection of tools that prevent code from failing by making it
more resilient. Most of these tools are inspired by development good practices (such as
retry or fallback) or well-known development patterns (such as circuit breaker or
bulkhead).

Fault Tolerance is based on CDI and, more precisely, on the CDI interceptor
implementation. It also relies on the MicroProfile Config specification to allow external
configuration for Fault Tolerance policies.

The main idea of the specification is to decouple business logic from Fault Tolerance
boilerplate code. To achieve that, the specification defines interceptor-binding annotations
to apply Fault Tolerance policies on a method execution or on a class (in that case, all class
methods have the same policy).

MicroProfile Config and Fault Tolerance Chapter 3

[44]

Policies included in the Fault Tolerance specification are the following:

Timeout: This is applied with the @Timeout annotation. It adds a timeout to the
current operation.
Retry: This is applied with the @Retry annotation. It adds retry behavior and
allows its configuration on the current operation.
Fallback: This is applied with the @Fallback annotation. It defines the code to
execute, should the current operation fail.
Bulkhead: This is applied with the @Bulkhead annotation. It isolates failures in
the current operation to preserve the execution of other operations.
Circuit Breaker: This is applied with the @CircuitBreaker annotation. It
provides an automatic fast failing execution to prevent overloading the system.
Asynchronous: This is applied with the @Asynchronous annotation. It makes
the current operation asynchronous (that is, code will be invoked
asynchronously).

Applying one or more of these policies is as easy as adding the required annotations on the
method (or the class) for which you'd like to have these policies enabled. So, using Fault
Tolerance is rather simple. But this simplicity doesn't prevent flexibility, thanks to all of the
configuration parameters available for each policy.

Right now, the following vendors provide an implementation for the Fault Tolerance
specification:

Red Hat in Thorntail and Quarkus
IBM in Open Liberty
Payara in Payara Server
Apache Safeguard for Hammock and TomEE
KumuluzEE for KumuluzEE framework

All of these implementations support Fault Tolerance and hence support the same set of
features that are described in the next section.

MicroProfile Fault Tolerance in action
As we just discussed, the Fault Tolerance specification provides a set of annotations that
you have to apply on a class or method to enforce Fault Tolerance policies. That being said,
you have to keep in mind that these annotations are interceptors binding and hence are
only usable on CDI beans. So, be careful to define your class as CDI beans before applying
Fault Tolerance annotations on them or their methods.

MicroProfile Config and Fault Tolerance Chapter 3

[45]

In the following sections, you'll find usage examples for each Fault Tolerance annotation.

The @Asynchronous policy
Making an operation asynchronous is as simple as the following:

@Asynchronous
public Future<Connection> service() throws InterruptedException {
 Connection conn = new Connection() {
 {
 Thread.sleep(1000);
 }

 @Override
 public String getData() {
 return "service DATA";
 }
 };
 return CompletableFuture.completedFuture(conn);
}

The only constraint is to have the @Asynchronous method return Future or
CompletionStage; otherwise, the implementation should throw an exception.

The @Retry policy
Should the operation fail, you can apply the retry policy to have the operation invoked
again. The @Retry annotation can be used on a class or method level like this:

@Retry(maxRetries = 5, maxDuration= 1000, retryOn = {IOException.class})
public void operationToRetry() {
 ...
}

In the previous example, the operation should be retried a maximum of five times only on
IOException. If the total duration of all retries lasts more than 1,000 ms, the operation will
be aborted.

MicroProfile Config and Fault Tolerance Chapter 3

[46]

The @Fallback policy
The @Fallback annotation can only be applied on a method; annotating a class will give an
unexpected result:

@Retry(maxRetries = 2)
@Fallback(StringFallbackHandler.class)
public String shouldFallback() {
 ...
}

The fallback method is called after the number of retries is reached. In the previous
example, the method will be retried twice in case of an error, and then the fallback will be
used to invoke another piece of code—in this case, the following
StringFallbackHandler class:

import javax.enterprise.context.ApplicationScoped;

import org.eclipse.microprofile.config.inject.ConfigProperty;
import org.eclipse.microprofile.faulttolerance.ExecutionContext;
import org.eclipse.microprofile.faulttolerance.FallbackHandler;

@ApplicationScoped
public class StringFallbackHandler implements FallbackHandler<String> {
 @ConfigProperty(name="app1.requestFallbackReply", defaultValue =
"Unconfigured Default Reply")
 private String replyString;

 @Override
 public String handle(ExecutionContext ec) {
 return replyString;
 }
}

Fallback code can be defined by a class implementing the FallbackHandler interface (see
the previous code) or by a method in the current bean. In the StringFallbackHandler
code, a MicroProfile Config property named app1.requestFallbackReply is used to
externalize the application's fallback string value.

MicroProfile Config and Fault Tolerance Chapter 3

[47]

The @Timeout policy
The @Timeout annotation could be applied to a class or method to make sure that an
operation doesn't last forever:

@Timeout(200)
public void operationCouldTimeout() {
 ...
}

In the preceding example, the operation will be stopped should it last more than 200 ms.

The @CircuitBreaker policy
The @CircuitBreaker annotation can be applied to a class or method. The circuit breaker
pattern was introduced by Martin Fowler to protect the execution of an operation by
making it fail fast in case of a dysfunction:

@CircuitBreaker(requestVolumeThreshold = 4, failureRatio=0.75, delay =
1000)
public void operationCouldBeShortCircuited(){
 ...
}

In the previous example, the method applies the CircuitBreaker policy. The circuit will
be opened if three (4 x 0.75) failures occur among the rolling window of four consecutive
invocations. The circuit will stay open for 1,000 ms and then be back to half-open. After a
successful invocation, the circuit will be back to closed again.

The @Bulkhead policy
The @Bulkhead annotation can also be applied to a class or method to enforce the bulkhead
policy. This pattern isolates failures in the current operation to preserve the execution of
other operations. The implementation does this by limiting the number of concurrent
invocations on a given method:

@Bulkhead(4)
public void bulkheadedOperation() {
 ...
}

MicroProfile Config and Fault Tolerance Chapter 3

[48]

In the previous code, this method only supports four invocations at the same time. Should
more than four simultaneous requests come into the bulkheadedOperation method, the
system will hold the fifth and later requests until one of the four active invocations
completes. The bulkhead annotation can also be used with @Asynchronous to limit the
thread number in an asynchronous operation.

Tolerance with MicroProfile config
As we saw in the previous sections, Fault Tolerance policies are applied by using
annotations. For most use cases, this is enough, but for others, this approach may not be
satisfactory because configuration is done at the source code level.

That's the reason why the parameters of MicroProfile Fault Tolerance annotations can be
overridden using MicroProfile Config.

The annotation parameters can be overwritten via config properties using the following
naming convention: <classname>/<methodname>/<annotation>/<parameter>.

To override maxDuration for @Retry on the doSomething method in the MyService
class, set the config property like this:

org.example.microservice.MyService/doSomething/Retry/maxDuration=3000

If the parameters for a particular annotation need to be configured with the same value for
a particular class, use the <classname>/<annotation>/<parameter> config property for
configuration.

For instance, use the following config property to override all maxRetries for @Retry
specified on the MyService class to 100:

org.example.microservice.MyService/Retry/maxRetries=100

Sometimes, the parameters need to be configured with the same value for the whole
microservice (that is, all occurrences of the annotation in the deployment).

In this circumstance, the <annotation>/<parameter> config property overrides the
corresponding parameter value for the specified annotation. For instance, to override all
maxRetries for all of @Retry to be 30, specify the following config property:

Retry/maxRetries=30

This brings us to the end of discussion on Fault Tolerance in MicroProfile.

MicroProfile Config and Fault Tolerance Chapter 3

[49]

Summary
In this chapter, we learned how to use MicroProfile Config to configure MicroProfile
applications and MicroProfile Fault Tolerance to make them more resilient.

In MicroProfile Config, the sources of the configuration can be many; some values come
from properties files and others from system properties or environment variables, but they
are all accessed consistently from the Java application. The values will likely differ
according to the deployment environment (for example, testing and production) but that is
transparent in the application code.

MicroProfile Fault Tolerance helps to prevent failure in applications by applying specific
policies in the code. It comes with default behavior but can be configured thanks to
MicroProfile Config.

The next chapter will show how MicroProfile applications can provide information
regarding their status (health) and how they can be secured thanks to MicroProfile JWT
propagation.

Questions
What are the default sources of configuration properties supported by1.
MicroProfile Config?
What can you do if you need to integrate another source of configuration2.
properties?
Are only the string type of properties supported?3.
Does injecting a configuration property into your code force you to provide a4.
value for that property?
Suppose you have complex property types. Is there a way to integrate them5.
into MicroProfile Config?
What happens when a Fault Tolerance annotation is applied to a class?6.
True or false: there are at least 10 different Fault Tolerance policies?7.
Does a @Retry policy require a retry on all failures?8.
Are we stuck with the Fault Tolerance annotation setting that is used in the9.
application code?

MicroProfile Config and Fault Tolerance Chapter 3

[50]

Further reading
Additional details for the MicroProfile Config feature can be found in the MicroProfile
Config specification at https:/ /github. com/ eclipse/ microprofile- config/
releases. Additional details for the MicroProfile Fault Tolerance feature can be found in
the MicroProfile Config specification at https:/ /github. com/ eclipse/ microprofile-
config/releases.

https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases

4
MicroProfile Health Check and

JWT Propagation
In this chapter, we will introduce the MicroProfile Health Check and JSON Web Token
(JWT) Propagation projects. The Health Check project is concerned with exposing the
application-defined health to the outside world, and JWT Propagation is concerned with
defining an interoperable security token and use of that token in an application. In this
chapter, you will learn the concerns that these specifications address, their constructs, and
how to use them in your application. The code snippets throughout this chapter are for
reference only. If you would like a working code version of this specification, please refer to
Chapter 8, A Working Eclipse MicroProfile Code Sample.

We will cover the following topics:

What a health check is
How MicroProfile Health Check exposes the health check endpoint and the
format of a query to that endpoint
How to write a MicroProfile Health Check for your application
The required format for the tokens in MicroProfile JWT Propagation
How we can leverage MicroProfile JWT Propagation for security decisions

MicroProfile Health Check and JWT Propagation Chapter 4

[52]

Technical requirements
To build and run the samples in this chapter, you need Maven 3.5+ and a Java 8 JDK. The
code for this chapter can be found at https:/ / github. com/ PacktPublishing/ Hands- On-
Enterprise-Java- Microservices- with- Eclipse- MicroProfile/ tree/ master/ Chapter04-
healthcheck and https:/ /github. com/ PacktPublishing/ Hands- On-Enterprise- Java-
Microservices-with- Eclipse- MicroProfile/ tree/ master/ Chapter04- jwtpropagation for
the MicroProfile Health Check and MicroProfile Propagation JWT sections, respectively.

Understanding health checks and how
MicroProfile handles them
In cloud-native architectures, health checks are used to determine whether a computing
node is alive and ready to perform work. The concept of readiness describes the state when
containers start up or roll over (that is, redeployment). During this time, the cloud platform
needs to ensure that no network traffic is routed to that instance before it is ready to
perform work.

Liveness, on the other hand, describes the state of a running container; that is, can it still
respond to requests? If either the liveness or readiness states are seen as invalid, the
computing node will be discarded (terminated or shut down) and eventually replaced by
another, healthy, instance.

Health checks are an essential contract with the orchestration framework and scheduler of
the cloud platform. The check procedures are provided by the application developer and
the platform uses these to continuously ensure the availability of your application or
service.

MicroProfile Health Check 1.0 (MP-HC) supports a single health check endpoint that can be
utilized for either a liveness or readiness check. MicroProfile Health Check 2.0 plans to add
support for multiple endpoints to allow an application to define both liveness and
readiness probes.

The MP-HC specification details two elements: a protocol along with a response wire
format part and a Java API for defining the response content.

The architecture of the MP-HC feature is modeled as an application that consists of zero or
more health check procedures that are logically linked together with AND to derive the
overall health check status. A procedure represents an application-defined check of a
required condition that has a name, state, and, optionally, data about the check.

https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation

MicroProfile Health Check and JWT Propagation Chapter 4

[53]

The Health Check protocol and wire format
The MP-HC specification defines the requirement to support the HTTP GET requests
against a logical /health REST endpoint that may return any one of the following codes to
represent the endpoint's status:

200: It is up and healthy.
500: It is unhealthy due to an unknown error.
503: It is down and not ready to respond to requests.

Note that many cloud environments simply look at the request return code as either success
or failure, so the differentiation between a 500 and 503 code may not be distinguishable.

The payload of a /health request must be a JSON object that matches the schema given in
the following (for more information on the JSON schema syntax see http:/ /jsonschema.
net/#/).

Following is the JSON schema for MicroProfile Health Check responses:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "outcome": {
 "type": "string"
 },
 "checks": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "state": {
 "type": "string"
 },
 "data": {
 "type": "object",
 "properties": {
 "key": {
 "type": "string"
 },
 "value": {
 "type": "string|boolean|int"
 }

http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/

MicroProfile Health Check and JWT Propagation Chapter 4

[54]

 }
 }
 },
 "required": [
 "name",
 "state"
]
 }
 }
 },
 "required": [
 "outcome",
 "checks"
]
}

So, an MP-HC response consists of a JSON object that contains a status property of the
string type and a checks property of the array of objects type. The checks array object
type consists of a required name and status string, along with an optional data object that
contains optional key and value pairs. In the next section, we will see how a microservice
specifies a health check response.

The Health Check Java API
Most of the plumbing is performed by the application framework that implements the MP-
HC specification. Your part is to decide how liveness or readiness are determined through
the health check procedures that your microservice defines using the MP-HC API.

To do this, you need to implement a health check procedure by implementing one or more
instances of the HealthCheck interface using beans that are marked with a Health
annotation.

The HealthCheck interface is provided in the following code block:

package org.eclipse.microprofile.health;

@FunctionalInterface
public interface HealthCheck {
 HealthCheckResponse call();
}

MicroProfile Health Check and JWT Propagation Chapter 4

[55]

The code for the Health annotation is provided in the following code block:

package org.eclipse.microprofile.health;

import javax.inject.Qualifier;
import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Qualifier
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface Health {
}

An example HealthCheck implementation that represents the status of a hypothetical disk
space check is shown in the following example. Note that the check includes the current
free space as part of the response data. The HealthCheckResponse class supports a
builder interface to populate the response object.

Following is a hypothetical disk space HealthCheck procedure implementation:

import javax.enterprise.context.ApplicationScoped;
import org.eclipse.microprofile.health.Health;
import org.eclipse.microprofile.health.HealthCheck;
import org.eclipse.microprofile.health.HealthCheckResponse;

@Health
@ApplicationScoped
public class CheckDiskspace implements HealthCheck {
 @Override
 public HealthCheckResponse call() {
 return HealthCheckResponse.named("diskspace")
 .withData("free", "780mb")
 .up()
 .build();
 }
}

In this example, we created a health response that is named diskspace with a status of
up and custom data named free with a string value of 780mb.

Another health check example representing some service endpoint is shown in the
following.

MicroProfile Health Check and JWT Propagation Chapter 4

[56]

A hypothetical service HealthCheck procedure implementation is shown here:

package io.packt.hc.rest;
//ServiceCheck example

import javax.enterprise.context.ApplicationScoped;
import org.eclipse.microprofile.health.Health;
import org.eclipse.microprofile.health.HealthCheck;
import org.eclipse.microprofile.health.HealthCheckResponse;

@Health
@ApplicationScoped
public class ServiceCheck implements HealthCheck {
 public HealthCheckResponse call() {
 return HealthCheckResponse.named("service-check")
 .withData("port", 12345)
 .withData("isSecure", true)
 .withData("hostname", "service.jboss.com")
 .up()
 .build();
 }
}

In this example, we created a health response named service-check with a status of up
that includes the following additional data:

A port item with an integer value of 12345
An isSecure item with a Boolean value of true
A hostname item with a string value of service.jboss.com

The CDI-managed health checks are discovered and registered automatically by the
application runtime. The runtime automatically exposes an HTTP endpoint, /health, used
by the cloud platform to poke into your application to determine its state. You can test this
by building the Chapter04-healthcheck application and running it. You will see the
following output:

Scotts-iMacPro:hc starksm$ mvn package
[INFO] Scanning for projects…
...
Resolving 144 out of 420 artifacts

[INFO] Repackaging .war:
/Users/starksm/Dev/JBoss/Microprofile/PacktBook/Chapter04-
metricsandhc/hc/target/health-check.war

[INFO] Repackaged .war:

MicroProfile Health Check and JWT Propagation Chapter 4

[57]

/Users/starksm/Dev/JBoss/Microprofile/PacktBook/Chapter04-
metricsandhc/hc/target/health-check.war

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 7.660 s

[INFO] Finished at: 2019-04-16T21:55:14-07:00

[INFO] --

Scotts-iMacPro:hc starksm$ java -jar target/health-check-thorntail.jar

2019-04-16 21:57:03,305 INFO [org.wildfly.swarm] (main) THORN0013:
Installed fraction: MicroProfile Fault Tolerance - STABLE
io.thorntail:microprofile-fault-tolerance:2.4.0.Final

…

2019-04-16 21:57:07,449 INFO [org.jboss.as.server] (main) WFLYSRV0010:
Deployed "health-check.war" (runtime-name : "health-check.war")

2019-04-16 21:57:07,453 INFO [org.wildfly.swarm] (main) THORN99999:
Thorntail is Ready

Once the server has started, test the health checks by querying the health endpoint:

Scotts-iMacPro:Microprofile starksm$ curl -s http://localhost:8080/health |
jq
{
 "outcome": "UP",
 "checks": [
 {
 "name": "service-check",
 "state": "UP",
 "data": {
 "hostname": "service.jboss.com",
 "port": 12345,
 "isSecure": true
 }
 },

MicroProfile Health Check and JWT Propagation Chapter 4

[58]

 {
 "name": "diskspace",
 "state": "UP",
 "data": {
 "free": "780mb"
 }
 }
]
}

This shows the overall health to be UP. The overall status is the logical OR of all of the health
check procedures found in the application. In this case, it is AND of the two health check
procedures we have seen: diskspace and service-check.

Integration with the cloud platform
Most cloud platforms support both TCP- and HTTP-based checks. To integrate health
checks with your selected cloud platform, you need to configure your cloud deployment to
point to the HTTP entry point, /health, on the node that hosts your application.

The cloud platform will invoke a GET query on the HTTP entry point; all checks that are
registered will be performed and the sum of individual checks determines the overall
outcome.

Usually, the response payload is ignored by the cloud platform and it only looks at the
HTTP status code to determine the liveness or readiness of your application. A successful
outcome, UP, will be mapped to 200 and DOWN to 503.

Human operators
The primary use case for the JSON response payload is to provide a way for operators to
investigate the application state. To support this, health checks allow for additional data to
be attached to a health check response as we have seen in the CheckDiskspace and
ServiceCheck examples. Consider the following fragment:

[...]
return HealthCheckResponse
 .named("memory-check")
 .withData("free-heap", "64mb")
 .up()
 .build();
[...]

MicroProfile Health Check and JWT Propagation Chapter 4

[59]

Here, the additional information about free-heap is provided and will become part of the
response payload, as shown in this response fragment. The JSON response fragment
showing memory-check procedure content is as follows:

{
...
 "checks": [
 {
 "name": "memory-check",
 "state": "UP",
 "data": {
 "free-heap": "64mb"
 }
 }
],
 "outcome": "UP"
}

Here, we see the memory-check procedure with its UP state and additional free-heap
data item of the string type with the value of 64mb.

Eclipse resources/GitHub coordinates for MP-Health:
The MP-Health project source code can be found at https:/ /github. com/
eclipse/ microprofile- health.

Changes in Health Check response messages
MicroProfile Health Check 3.0 introduced changes to the message format of health check
JSON responses. Specifically, the field's outcome and state have been replaced by the field
status.

In addition, the @Health qualifier was deprecated in the Health Check 3.0 release, while
the @Liveness and @Readiness qualifiers were introduced. For the two qualifiers, the
/health/live and /health/ready endpoints were also introduced to call all the
liveliness and readiness procedures, respectively. Lastly, for backward compatibility,
/health endpoint now calls all the procedures that have @Health, @Liveness, or
@Readiness qualifiers. 

It's time to discuss JWT Propagation now.

https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health

MicroProfile Health Check and JWT Propagation Chapter 4

[60]

Using JSON Web Token Propagation in
MicroProfile
A JSON Web Token (JWT) is a common format for carrying security information that is
used by many different web-based security protocols. However, there is a lack of
standardization around exactly what the contents of the JWT are and what security
algorithms are used with signed JWTs. The MicroProfile JWT (MP-JWT) Propagation
project specification looked at the OpenID Connect (OIDC)-based (http:/ /openid. net/
connect/) JWT (https:/ /tools. ietf. org/ html/ rfc7519) specifications and built upon
those to define a set of requirements to promote interoperability of JWTs for use in
MicroProfile-based microservices, along with APIs to access information from the JWTs.

For a description of how OIDC and JWT work, including how an
application/microservice intercepts bearer tokens, please refer to the Basic
Client Implementer's Guide at http:/ / openid. net/ connect/ .

In this section, you will learn about the following:

The claims and signature algorithms from OIDC and JWT specifications that
were required for interoperability
Using JWTs for Role-Based Access Control (RBAC) of microservice endpoints
How to use the MP-JWT APIs to access a JWT and its claim values

Recommendations for interoperability
The maximum utility of MP-JWT as a token format depends on the agreement between
both identity providers and service providers. This means identity providers—responsible
for issuing tokens—should be able to issue tokens using the MP-JWT format in a way that
service providers can understand to inspect the token and gather information about a
subject. The primary goals for MP-JWT are as follows:

It should be usable as an authentication token.
It should be usable as an authorization token that contains application-level roles
indirectly granted via a group's claim.
It can support additional standard claims described in IANA JWT Assignments
(https:/ / www. iana. org/ assignments/ jwt/ jwt.xhtml), as well as non-standard
claims.

http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/connect/
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml

MicroProfile Health Check and JWT Propagation Chapter 4

[61]

To meet those requirements, we introduced two new claims to the MP-JWT:

upn: A human-readable claim that uniquely identifies the subject or user
principal of the token, across the MicroProfile services with which the token will
be accessed
groups: The token subject's group memberships that will be mapped to RBAC-
style application-level roles in the MicroProfile service container

Required MP-JWT claims
The required set of MP-JWT claims for which an implementation needs to provide support
contains the following:

typ: This header parameter identifies the token type and is required to be JWT.
alg: This header algorithm was used to sign the JWT and must be specified as
RS256.
kid: This header parameter provides a hint about which public key was used to
sign the JWT.
iss: This is the issuer and signer of the token.
sub: This identifies the subject of the JWT.
exp: This identifies the expiration time on, or after, which the JWT MUST NOT
be accepted for processing.
iat: This identifies the time at which the JWT was issued and can be used to
determine the age of the JWT.
jti: This provides a unique identifier for the JWT.
upn: This MP-JWT custom claim is the preferred way to specify a user principal
name.
groups: This MP-JWT custom claim is the list of group or role names assigned to
the JWT principal.

NumericDate used by exp, iat, and other date-related claims is a JSON
numeric value representing the number of seconds from
1970-01-01T00:00:00Z UTC until the specified UTC date/time,
ignoring leap seconds. Additionally, more details about the standard
claims may be found in the MP-JWT specification (https:/ / github. com/
eclipse/ microprofile- jwt-auth/ releases/ tag/ 1.1. 1) and the JSON
Web Token RFC (https:/ / tools. ietf. org/ html/ rfc7519).

https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://github.com/eclipse/microprofile-jwt-auth/releases/tag/1.1.1
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

MicroProfile Health Check and JWT Propagation Chapter 4

[62]

An example basic MP-JWT in JSON would be a sample header and payload of an MP-JWT
compatible JWT, as shown here:

{
 "typ": "JWT",
 "alg": "RS256",
 "kid": "abc-1234567890"
}
{
 "iss": "https://server.example.com",
 "jti": "a-123",
 "exp": 1311281970,
 "iat": 1311280970,
 "sub": "24400320",
 "upn": "jdoe@server.example.com",
 "groups": ["red-group", "green-group", "admin-group", "admin"],
}
{
*** base64 signature not shown ***
}

This example shows the header with typ=JWT, alg=RS256, and kid=abc-1234567890.
The body includes the iss, jti, exp, iat, sub, upn, and groups claims.

The high-level description of the MP-JWT API
The MP-JWT project introduces the following API interfaces and classes under the
org.eclipse.microprofile.jwt package namespace:

JsonWebToken: This is a java.security.Principal interface extension that
makes the set of required claims available via get-style accessors, along with
general access to any claim in the JWT.
Claims: This is an enumeration utility class that encapsulates all of the standard
JWT-related claims along with a description and the required Java type for the
claim as returned from the JsonWebToken#getClaim(String) method.
Claim: This is a qualifier annotation used to signify an injection point
for ClaimValue.
ClaimValue<T>: This is a java.security.Principal interface extension for
use with the Claim qualifier to directly inject claim values from the JWT.

MicroProfile Health Check and JWT Propagation Chapter 4

[63]

There is an additional org.eclipse.microprofile.auth.LoginConfig annotation that
is used to define security context information such as the realm name and authentication
mechanism name. This is needed because MicroProfile does not specify a deployment
format and currently does not rely on servlet metadata descriptors. The LoginConfig
annotation provides the same information as web.xml login-config element.

Before we start looking at code samples, the following screenshot is an exploded view of
this chapter's source code layout. It will help you to understand where the files are located
as we reference them in subsequent examples:

MicroProfile Health Check and JWT Propagation Chapter 4

[64]

Its intended usage is to mark a JAX-RS application as requiring MicroProfile JWT RBAC, as
shown in the following sample:

package io.pckt.jwt.rest;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;
import org.eclipse.microprofile.auth.LoginConfig;

@LoginConfig(authMethod = "MP-JWT", realmName = "Packt")
@ApplicationPath("/")
public class JaxrsApplication extends Application {
}

For security constraint declarations, MP-JWT implementations rely on the Java(TM)
Common Annotations security annotations found in the javax.annotation.security
package. The annotations that MP-JWT implementations must support include the
following:

DenyAll: It marks that no access is allowed regardless of the roles contained in
the JWT. This is often used as the class level to specify a default behavior that
disallows access.
PermitAll: It marks that all access is allowed, including unauthenticated access
that includes no JWT information.
RolesAllowed: It defines the roles and groups that are required to be granted to
the JWT for access to the endpoint.

Sample code that uses MP-JWT
The basic usage of the MP-JWT API is to inject JsonWebToken, its ClaimValue, or both. In
this section, we present snippets of typical usage. This book's code for this section is
available at https:/ / github. com/ PacktPublishing/ Hands- On- Enterprise- Java-
Microservices-with- Eclipse- MicroProfile/ tree/ master/ Chapter04- jwtpropagation.

https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation

MicroProfile Health Check and JWT Propagation Chapter 4

[65]

Injection of JsonWebToken information
The following code sample illustrates access of the incoming MP-JWT token
as JsonWebToken, the raw JWT token string, the upn claim, and integration with JAX-RS
SecurityContext:

package io.pckt.jwt.rest;

import javax.annotation.security.DenyAll;
import javax.annotation.security.PermitAll;
import javax.annotation.security.RolesAllowed;
import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.SecurityContext;
import org.eclipse.microprofile.jwt.Claim;
import org.eclipse.microprofile.jwt.Claims;
import org.eclipse.microprofile.jwt.JsonWebToken;

@Path("/jwt")
@DenyAll //1
public class SecureEndpoint {
 @Inject
 private JsonWebToken jwt; //2
 @Inject
 @Claim(standard = Claims.raw_token)
 private String jwtString; //3

 @Inject
 @Claim(standard = Claims.upn)
 private String upn; //4

 @Context
 private SecurityContext context; //5

 @GET
 @Path("/openHello")
 @Produces(MediaType.TEXT_PLAIN)
 @PermitAll //6
 public String openHello() {
 String user = jwt == null ? "anonymous" : jwt.getName();
 String upnClaim = upn == null ? "no-upn" : upn;
 return String.format("Hello[open] user=%s, upn=%s", user,
 upnClaim);
 }

MicroProfile Health Check and JWT Propagation Chapter 4

[66]

 @GET
 @Path("/secureHello")
 @Produces(MediaType.TEXT_PLAIN)
 @RolesAllowed("User") //7
 public String secureHello() {
 String user = jwt == null ? "anonymous" : jwt.getName();
 String scheme = context.getAuthenticationScheme(); //8
 boolean isUserRole = context.isUserInRole("User"); //9
 return String.format("Hello[secure] user=%s, upn=%s, scheme=%s,
 isUserRole=%s", user, upn, scheme, isUserRole);
 }
}

Let's discuss the commented notations:

The class level DenyAll annotation marks that the default access to the1.
endpoints is to disallow any access.
This is the direct injection of the JsonWebToken interface view of the JWT.2.
This is the injection of the raw JWT token string. This could be used to propagate3.
the incoming token in a chained call.
This is the injection of the upn claim value.4.
This is the JAX-RS SecurityContext interface. This integrates with the MP-JWT5.
layer to provide access to the principal form of the JWT as well as its RBAC
information.
The PermitAll annotation indicates that any caller, regardless of authentication6.
status, can access the /jwt/openHello endpoint.
The RolesAllowed annotation indicates that the caller must have a User role7.
assigned to access the /jwt/secureHello endpoint.
The SecurityContext#getAuthenticationScheme method is called to check8.
the deployment authentication scheme. This should match MP-JWT from the
LoginConfig annotation on the application class.
The SecurityContext#isUserInRole(String) method is called to illustrate9.
that programmatic access to the JWT groups information integrates with the
JAX-RS security layer.

Injection of JWT claim values
The code snippet in this section illustrates the injection of individual JWT claim values.
There are several different formats we can use for the injected value. Standard claims
support the object subtypes defined in the Claim#getType field and JsonValue subtypes.
Custom claim types only support the injection of the JsonValue subtypes.

MicroProfile Health Check and JWT Propagation Chapter 4

[67]

The following code example illustrates injection of the standard groups and iss claims,
along with customString, customInteger, customDouble, and customObject custom
claims:

package io.pckt.jwt.rest;

import java.util.Set;
import javax.annotation.security.DenyAll;
import javax.annotation.security.RolesAllowed;
import javax.inject.Inject;
import javax.json.JsonArray;
import javax.json.JsonNumber;
import javax.json.JsonObject;
import javax.json.JsonString;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

import org.eclipse.microprofile.jwt.Claim;
import org.eclipse.microprofile.jwt.Claims;

@Path("/jwt")
@DenyAll
public class InjectionExampleEndpoint {
 @Inject
 @Claim(standard = Claims.groups)
 Set<String> rolesSet; // 1
 @Inject
 @Claim(standard = Claims.iss)
 String issuer; // 2

 @Inject
 @Claim(standard = Claims.groups)
 JsonArray rolesAsJson; // 3
 @Inject
 @Claim(standard = Claims.iss)
 JsonString issuerAsJson; // 4
 // Custom claims as JsonValue types
 @Inject
 @Claim("customString")
 JsonString customString; // 5
 @Inject
 @Claim("customInteger")
 JsonNumber customInteger; // 6
 @Inject
 @Claim("customDouble")
 JsonNumber customDouble; // 7
 @Inject
 @Claim("customObject")

MicroProfile Health Check and JWT Propagation Chapter 4

[68]

 JsonObject customObject; // 8

 @GET
 @Path("/printClaims")
 @RolesAllowed("Tester")
 public String printClaims() {
 return String.format("rolesSet=%s\n");
 }
}

The eight commented injections are as follows:

Injection of the standard groups claim as its default Set<String> type1.
Injection of the standard iss claim as its default String type2.
Injection of the standard groups claim as its default JsonArray type3.
Injection of the standard iss claim as its default JsonString type4.
Injection of a non-standard customString claim as a JsonString type5.
Injection of a non-standard customInteger claim as a JsonNumber type6.
Injection of a non-standard customDouble claim as a JsonNumber type7.
Injection of a non-standard customObject claim as a JsonString type8.

Configuring authentication of JWTs
To accept a JWT as representing an identity that should be authenticated and therefore
trusted, we need to configure the MP-JWT feature with the information to verify who
signed and who issued the JWT. This is done via MP-Config properties:

mp.jwt.verify.publickey: This provides the embedded key material of the
public key for the MP-JWT signer, typically in PKCS8 PEM format.
mp.jwt.verify.issuer: This specifies the expected value of the iss claim
found in the JWT.

An example microprofile-configuration.properties file for this book is as follows:

MP-JWT Config
mp.jwt.verify.publickey=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAlivFI8q
B4D0y2jy0CfEqFyy46R0o7S8TKpsx5xbHKoU1VWg6QkQm+ntyIv1p4kE1sPEQO73+HY8+Bzs75X
wRTYL1BmR1w8J5hmjVWjc6R2BTBGAYRPFRhor3kpM6ni2SPmNNhurEAHw7TaqszP5eUF/F9+KEB
WkwVta+PZ37bwqSE4sCb1soZFrVz/UT/LF4tYpuVYt3YbqToZ3pZOZ9AX2o1GCG3xwOjkc4x0W7
ezbQZdC9iftPxVHR8irOijJRRjcPDtA6vPKpzLl6CyYnsIYPd99ltwxTHjr3npfv/3Lw50bAkbT
4HeLFxTx4flEoZLKO/g0bAoV2uqBhkA9xnQIDAQAB
mp.jwt.verify.issuer=http://io.packt.jwt

MicroProfile Health Check and JWT Propagation Chapter 4

[69]

The complete process of authenticating an MP-JWT is as follows:

Verify that the JWT has a valid header indicating the JWT was signed using the1.
RS256 algorithm.
Verify that the JWT is signed correctly using the public key provided via the2.
mp.jwt.verify.publickey setting.
Verify that the JWT#iss claim matches the mp.jwt.verify.issuer setting.3.
Verify that the JWT is not expired4.

Running the samples
The samples we looked at can be deployed to Thorntail and accessed via command-line
queries against the endpoints to validate the expected behaviors. Since authentication
against the endpoints marked with security constraints requires a valid JWT, we need a
way to generate a JWT that will be accepted by the Thorntail server.

This chapter's code provides an io.packt.jwt.test.GenerateToken utility that will
create a JWT signed by a key that has been configured with the Thorntail server. The claims
included in the JWT are defined by the src/test/resources/JwtClaims.json
document of this chapter's project. You run the utility using the mvn exec:java
command, as shown here:

Scotts-iMacPro:jwtprop starksm$ mvn exec:java -
Dexec.mainClass=io.packt.jwt.test.GenerateToken -Dexec.classpathScope=test
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------< io.microprofile.jwt:jwt-propagation >-------------

[INFO] Building JWT Propagation 1.0-SNAPSHOT
[INFO] --------------------------------[war]-----------------------------

[INFO]
[INFO] --- exec-maven-plugin:1.6.0:java (default-cli) @ jwt-propagation ---
Setting exp: 1555684338 / Fri Apr 19 07:32:18 PDT 2019
 Added claim: sub, value: 24400320
 Added claim: customIntegerArray, value: [0,1,2,3]
 Added claim: customDoubleArray, value: [0.1,1.1,2.2,3.3,4.4]
 Added claim: iss, value: http://io.packt.jwt
 Added claim: groups, value:
 ["Echoer","Tester","User","group1","group2"]
 Added claim: preferred_username, value: jdoe
 Added claim: customStringArray, value: ["value0","value1","value2"]
 Added claim: aud, value: [s6BhdRkqt3]
 Added claim: upn, value: jdoe@example.com

MicroProfile Health Check and JWT Propagation Chapter 4

[70]

 Added claim: customInteger, value: 123456789
 Added claim: auth_time, value: 1555683738
 Added claim: customObject, value: {"my-service":{"roles":["role-in-my-
 service"],"groups":["group1","group2"]},"service-B":{"roles":["role-in-
 B"]},"service-C":{"groups":["groupC","web-tier"]},"scale":0.625}
 Added claim: exp, value: Fri Apr 19 07:32:18 PDT 2019
 Added claim: customDouble, value: 3.141592653589793
 Added claim: iat, value: Fri Apr 19 07:22:18 PDT 2019
 Added claim: jti, value: a-123
 Added claim: customString, value: customStringValue
eyJraWQiOiJcL3ByaXZhdGUta2V5LnBlbSIsInR5cCI6IkpXVCIsImFsZyI6IlJTMjU2In0.eyJ
zdWIiOiIyNDQwMDMyMCIsImN1c3RvbUludGVnZXJBcnJheSI6WzAsMSwyLDNdLCJjdXN0b21Eb3
VibGVBcnJheSI6WzAuMSwxLjEsMi4yLDMuMyw0LjRdLCJpc3MiOiJodHRwOlwvXC9pby5wYWNrd
C5qd3QiLCJncm91cHMiOlsiRWNob2VyIiwiVGVzdGVyIiwiVXNlciIsImdyb3VwMSIsImdyb3Vw
MiJdLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJqZG9lIiwiY3VzdG9tU3RyaW5nQXJyYXkiOlsidmF
sdWUwIiwidmFsdWUxIiwidmFsdWUyIl0sImF1ZCI6InM2QmhkUmtxdDMiLCJ1cG4iOiJqZG9lQG
V4YW1wbGUuY29tIiwiY3VzdG9tSW50ZWdlciI6MTIzNDU2Nzg5LCJhdXRoX3RpbWUiOjE1NTU2O
DM3MzgsImN1c3RvbU9iamVjdCI6eyJteS1zZXJ2aWNlIjp7InJvbGVzIjpbInJvbGUtaW4tbXkt
c2VydmljZSJdLCJncm91cHMiOlsiZ3JvdXAxIiwiZ3JvdXAyIl19LCJzZXJ2aWNlLUIiOnsicm9
sZXMiOlsicm9sZS1pbi1CIl19LCJzZXJ2aWNlLUMiOnsiZ3JvdXBzIjpbImdyb3VwQyIsIndlYi
10aWVyIl19LCJzY2FsZSI6MC42MjV9LCJleHAiOjE1NTU2ODQzMzgsImN1c3RvbURvdWJsZSI6M
y4xNDE1OTI2NTM1ODk3OTMsImlhdCI6MTU1NTY4MzczOCwianRpIjoiYS0xMjMiLCJjdXN0b21T
dHJpbmciOiJjdXN0b21TdHJpbmdWYWx1ZSJ9.bF7CnutcQnA2gTlCRNOp4QMmWTWhwP86cSiPCS
xWr8N36FG79YC9Lx0Ugr-Ioo2Zw35z0Z0xEwjAQdKkkKYU9_1GsXiJgfYqzWS-
XxEtwhiinD0hUK2qiBcEHcY-ETx-
bsJud8_mSlrzEvrJEeX58Xy1Om1FxnjuiqmfBJxNaotxECScDcDMMH-DeA1Z-
nrJ3-0sdKNW6QxOxoR_RNrpci1F9y4pg-
eYOd8zE4tN_QbT3KkdMm91xPhv7QkKm71pnHxC0H4SmQJVEAX6bxdD5lAzlNYrEMAJyyEgKuJeH
TxH8qzM-0FQHzrG3Yhnxax2x3Xd-6JtEbU-_E_3HRxvvw
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 1.339 s
[INFO] Finished at: 2019-04-19T07:22:19-07:00
[INFO] --

The utility outputs the claims that were added and then prints out the base64-encoded JWT.
You would use this JWT as the value in the Authorization: Bearer … header of the
curl command line you used to access the server endpoints.

MicroProfile Health Check and JWT Propagation Chapter 4

[71]

To start up the Thorntail server with the example endpoints, cd into the Chapter04-
jwtpropagation project directory and then run mvn to build the executable JAR:

Scotts-iMacPro:jwtprop starksm$ mvn package
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------< io.microprofile.jwt:jwt-propagation >-------------

[INFO] Building JWT Propagation 1.0-SNAPSHOT
...
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 8.457 s
[INFO] Finished at: 2019-04-19T08:25:09-07:00
[INFO] --

The resulting executable JAR is located at target/jwt-propagation-thorntail.jar.
You start up the Thorntail server with this chapter's sample deployment using java -jar
…:

Scotts-iMacPro:jwtprop starksm$ java -jar target/jwt-propagation-
thorntail.jar
2019-04-19 08:27:33,425 INFO [org.wildfly.swarm] (main) THORN0013:
Installed fraction: MicroProfile Fault Tolerance - STABLE
io.thorntail:microprofile-fault-tolerance:2.4.0.Final
2019-04-19 08:27:33,493 INFO [org.wildfly.swarm] (main) THORN0013:
Installed fraction: Bean Validation - STABLE io.thorntail:bean-
validation:2.4.0.Final
2019-04-19 08:27:33,493 INFO [org.wildfly.swarm] (main) THORN0013:
Installed fraction: MicroProfile Config - STABLE
io.thorntail:microprofile-config:2.4.0.Final
2019-04-19 08:27:33,493 INFO [org.wildfly.swarm] (main) THORN0013:
Installed fraction: Transactions - STABLE
io.thorntail:transactions:2.4.0.Final
2019-04-19 08:27:33,494 INFO [org.wildfly.swarm] (main) THORN0013:
Installed fraction: CDI Configuration - STABLE io.thorntail:cdi-
config:2.4.0.Final
2019-04-19 08:27:33,494 INFO [org.wildfly.swarm] (main) THORN0013:
Installed fraction: MicroProfile JWT RBAC Auth - STABLE
io.thorntail:microprofile-jwt:2.4.0.Final
…
2019-04-19 08:27:37,708 INFO [org.jboss.as.server] (main) WFLYSRV0010:
Deployed "jwt-propagation.war" (runtime-name : "jwt-propagation.war")

MicroProfile Health Check and JWT Propagation Chapter 4

[72]

2019-04-19 08:27:37,713 INFO [org.wildfly.swarm] (main) THORN99999:
Thorntail is Ready

At this point, we can query the server endpoints. There is one endpoint that we defined that
does not require any authentication. This is the jwt/openHello endpoint of the
io.pckt.jwt.rest.SecureEndpoint class. Run the following command to validate that
your Thorntail server is running as expected:

Scotts-iMacPro:jwtprop starksm$ curl http://localhost:8080/jwt/openHello;
echo
Hello[open] user=anonymous, upn=no-upn

Next, try the secured endpoint. It should fail with a 401 Not authorized error because we
are not providing any authorization information:

Scotts-iMacPro:jwtprop starksm$ curl http://localhost:8080/jwt/secureHello;
echo
Not authorized

Now, we need to generate a fresh JWT and pass that along with the curl command in the
Authorization header, so let's try that. We will save the JWT generated by the mvn
command in a JWT environment variable to simplify the curl command line:

Scotts-iMacPro:jwtprop starksm$ mvn exec:java -
Dexec.mainClass=io.packt.jwt.test.GenerateToken -Dexec.classpathScope=test
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------< io.microprofile.jwt:jwt-propagation >-------------

[INFO] Building JWT Propagation 1.0-SNAPSHOT
[INFO] --------------------------------[war]-----------------------------

[INFO]
[INFO] --- exec-maven-plugin:1.6.0:java (default-cli) @ jwt-propagation ---
Setting exp: 1555688712 / Fri Apr 19 08:45:12 PDT 2019
 Added claim: sub, value: 24400320
 Added claim: customIntegerArray, value: [0,1,2,3]
 Added claim: customDoubleArray, value: [0.1,1.1,2.2,3.3,4.4]
 Added claim: iss, value: http://io.packt.jwt
 Added claim: groups, value:
 ["Echoer","Tester","User","group1","group2"]
 Added claim: preferred_username, value: jdoe
 Added claim: customStringArray, value: ["value0","value1","value2"]
 Added claim: aud, value: [s6BhdRkqt3]
 Added claim: upn, value: jdoe@example.com
 Added claim: customInteger, value: 123456789
 Added claim: auth_time, value: 1555688112

MicroProfile Health Check and JWT Propagation Chapter 4

[73]

 Added claim: customObject, value: {"my-service":{"roles":["role-in-my-
 service"],"groups":["group1","group2"]},"service-B":{"roles":["role-in-
 B"]},"service-C":{"groups":["groupC","web-tier"]},"scale":0.625}
 Added claim: exp, value: Fri Apr 19 08:45:12 PDT 2019
 Added claim: customDouble, value: 3.141592653589793
 Added claim: iat, value: Fri Apr 19 08:35:12 PDT 2019
 Added claim: jti, value: a-123
 Added claim: customString, value: customStringValue
eyJraWQiOiJ...
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 1.352 s
[INFO] Finished at: 2019-04-19T08:35:12-07:00
[INFO] --

Scotts-iMacPro:jwtprop starksm$ JWT="eyJraWQiOi..."
Scotts-iMacPro:jwtprop starksm$ curl -H "Authorization: Bearer $JWT"
http://localhost:8080/jwt/secureHello; echo
Hello[secure] user=jdoe@example.com, upn=jdoe@example.com, scheme=MP-JWT,
isUserRole=true

In the previous code snippet, for Windows users, please install a bash-
compatible shell for Windows; otherwise, you will get an error due to the
echo command.

This time, the query succeeds and we see that the username, upn claim value, scheme, and
isUserInRole("User") check are as expected.

Now, try accessing the /jwt/printClaims endpoint that illustrated the injection of
standard and non-standard claims as different types:

Scotts-iMacPro:jwtprop starksm$ curl -H "Authorization: Bearer $JWT"
http://localhost:8080/jwt/printClaims
+++ Standard claims as primitive types
rolesSet=[Echoer, Tester, User, group2, group1]
issuer=http://io.packt.jwt
+++ Standard claims as JSON types
rolesAsJson=["Echoer","Tester","User","group2","group1"]
issuerAsJson="http://io.packt.jwt"
+++ Custom claim JSON types
customString="customStringValue"
customInteger=123456789
customDouble=3.141592653589793

MicroProfile Health Check and JWT Propagation Chapter 4

[74]

customObject={"my-service":{"roles":["role-in-my-
service"],"groups":["group1","group2"]},"service-B":{"roles":["role-in-
B"]},"service-C":{"groups":["groupC","web-tier"]},"scale":0.625}

Note that, if you begin to experience Not authorized errors after a while, the problem
is that the JWT has expired. You either need to generate a new token or generate a token
with a longer expiration. You can do this by passing in the expiration in seconds to the
GenerateToken utility. For example, to generate a token that is valid for a full hour's use,
perform the following:

Scotts-iMacPro:jwtprop starksm$ mvn exec:java -
Dexec.mainClass=io.packt.jwt.test.GenerateToken -Dexec.classpathScope=test
-Dexec.args="3600"
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------< io.microprofile.jwt:jwt-propagation >-------------

[INFO] Building JWT Propagation 1.0-SNAPSHOT
[INFO] --------------------------------[war]-----------------------------

[INFO]
[INFO] --- exec-maven-plugin:1.6.0:java (default-cli) @ jwt-propagation ---
Setting exp: 1555692188 / Fri Apr 19 09:43:08 PDT 2019
 Added claim: sub, value: 24400320
 Added claim: customIntegerArray, value: [0,1,2,3]
 Added claim: customDoubleArray, value: [0.1,1.1,2.2,3.3,4.4]
 Added claim: iss, value: http://io.packt.jwt
 Added claim: groups, value:
["Echoer","Tester","User","group1","group2"]
 Added claim: preferred_username, value: jdoe
 Added claim: customStringArray, value: ["value0","value1","value2"]
 Added claim: aud, value: [s6BhdRkqt3]
 Added claim: upn, value: jdoe@example.com
 Added claim: customInteger, value: 123456789
 Added claim: auth_time, value: 1555688588
 Added claim: customObject, value: {"my-service":{"roles":["role-in-my-
service"],"groups":["group1","group2"]},"service-B":{"roles":["role-in-
B"]},"service-C":{"groups":["groupC","web-tier"]},"scale":0.625}
 Added claim: exp, value: Fri Apr 19 09:43:08 PDT 2019
 Added claim: customDouble, value: 3.141592653589793
 Added claim: iat, value: Fri Apr 19 08:43:08 PDT 2019
 Added claim: jti, value: a-123
 Added claim: customString, value: customStringValue
eyJraWQiOiJcL3ByaXZhdGUta2V5LnBlbSIsInR5cCI6IkpXVCIsImFsZyI6IlJTMjU2In0.eyJ
zdWIiOiIyNDQwMDMyMCIsImN1c3RvbUludGVnZXJBcnJheSI6WzAsMSwyLDNdLCJjdXN0b21Eb3
VibGVBcnJheSI6WzAuMSwxLjEsMi4yLDMuMyw0LjRdLCJpc3MiOiJodHRwOlwvXC9pby5wYWNrd
C5qd3QiLCJncm91cHMiOlsiRWNob2VyIiwiVGVzdGVyIiwiVXNlciIsImdyb3VwMSIsImdyb3Vw

MicroProfile Health Check and JWT Propagation Chapter 4

[75]

MiJdLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJqZG9lIiwiY3VzdG9tU3RyaW5nQXJyYXkiOlsidmF
sdWUwIiwidmFsdWUxIiwidmFsdWUyIl0sImF1ZCI6InM2QmhkUmtxdDMiLCJ1cG4iOiJqZG9lQG
V4YW1wbGUuY29tIiwiY3VzdG9tSW50ZWdlciI6MTIzNDU2Nzg5LCJhdXRoX3RpbWUiOjE1NTU2O
Dg1ODgsImN1c3RvbU9iamVjdCI6eyJteS1zZXJ2aWNlIjp7InJvbGVzIjpbInJvbGUtaW4tbXkt
c2VydmljZSJdLCJncm91cHMiOlsiZ3JvdXAxIiwiZ3JvdXAyIl19LCJzZXJ2aWNlLUIiOnsicm9
sZXMiOlsicm9sZS1pbi1CIl19LCJzZXJ2aWNlLUMiOnsiZ3JvdXBzIjpbImdyb3VwQyIsIndlYi
10aWVyIl19LCJzY2FsZSI6MC42MjV9LCJleHAiOjE1NTU2OTIxODgsImN1c3RvbURvdWJsZSI6M
y4xNDE1OTI2NTM1ODk3OTMsImlhdCI6MTU1NTY4ODU4OCwianRpIjoiYS0xMjMiLCJjdXN0b21T
dHJpbmciOiJjdXN0b21TdHJpbmdWYWx1ZSJ9.Tb8Fet_3NhABc6E5z5N6afwNsxzcZaa9q0eWWL
m1AP4HPbJCOA14L275D-
jAO42s7yQlHS7sUsi9_nWStDV8MTqoey4PmN2rcnOAaKqCfUiLehcOzg3naUk0AxRykCBO4YIck
-
qqvlEaZ6q8pVW_2Nfj5wZml2uPDq_X6aVLfxjaRzj2F4OoeKGH51-88yeu7H2THUMNLLPB2MY4M
a0xDUFXVL1TXU49ilOXOWTHAo7wAdqleuZUavtt_ZQfRwCUoI1Y-
dltH_WtLdjjYw6aFIeJtsyYCXdqONiP6TqOpfACOXbV_nBYNKpYGn4GMiPsxmpJMU8JAhm-
jJzf9Yhq6A
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 1.328 s
[INFO] Finished at: 2019-04-19T08:43:08-07:00
[INFO] --

These samples should give you a feel for the interaction between the microservice client
and how the use of JWTs to secure microservice endpoints allows for stateless
authentication and RBAC, as well as custom authorization based on claims in the JWT.

Summary
In this chapter, we learned about the MicroProfile Health Check and JWT Propagation
projects. You should now understand what a health check is and how to add application-
specific checks, known as procedures. These allow your microservice to describe its non-
trivial health requirements in a cloud environment. You should also understand how JWTs
can be used to provide an authentication and authorization capability on top of your
microservices to control access to your endpoints. You should also understand how content
from the JWT can be used to augment your microservice in user-specific ways.

The next chapter will introduce the MicroProfile Metrics and OpenTracing features. These
allow your microservices to provide additional information regarding common and
application metrics and to trace the interactions between microservices.

MicroProfile Health Check and JWT Propagation Chapter 4

[76]

Questions
Is the MP-HC wire format useful in all environments?1.
Can an MP-HC response contain arbitrary properties?2.
What if my application has different types of services that need to report health3.
status?
What is a JWT?4.
What is a claim?5.
Are there restrictions on what can be in a JWT?6.
What is/are the main step(s) in authenticating a JWT?7.
Beyond the security annotations, how might we perform an authorization check8.
using JWTs?

5
MicroProfile Metrics and

OpenTracing
Once developers have written code and it is put into production, there is a need to observe
what the code is doing, how well it is performing, and what resources it is using.
MicroProfile has created two specifications to deal with these concerns: Metrics and
(integration with) OpenTracing.

Starting off with the Metrics section, we will discuss the following topics:

The rationale behind specifications
Exposition formats of metrics on an enabled server
Providing metrics from within your application
Using Prometheus, a cloud-native time series database, to retrieve and analyze
metric data

In the OpenTracing section, we will discuss the following:

An introduction to the tracing domain
Configuration properties
Automatic and explicit tracing
Showing data in the Jaeger tracing system

MicroProfile Metrics
MicroProfile Metrics exposes the metric data (often called telemetry) of the running server,
for example, CPU and memory usage, and the thread count. This data is then often fed into
charting systems to visualize metrics over time or to serve capacity-planning purposes; of
course, they also serve to notify DevOps people when the values go outside a predefined
threshold range.

MicroProfile Metrics and OpenTracing Chapter 5

[78]

The Java Virtual Machine had a way to expose data for a long time via MBeans and the
MBeanServer. Java SE 6 saw the introduction of an (RMI-based) remote protocol for all
VMs defining how to access the MBean Server from remote processes. Dealing with this
protocol is difficult and does not fit in with today's HTTP-based interactions.

The other pain point is that many globally existing servers have different properties
exposed under different names. It is thus not easy to set up monitoring of different kinds of
server.

MicroProfile has created a monitoring specification that addresses these two points via an
HTTP-based API permitting access by monitoring agents and a Java API that allows
application-specific metrics to be exported on top of a set of servers and JVM metrics.

MicroProfile Metrics is developing the 2.x version of the specification that
has some breaking changes to 1.x. The following sections talk about 1.x –
the changes in 2.0 are discussed in the New in MP-Metrics 2.0 section.

The specification defines three scopes for metrics:

Base: These are metrics, mostly JVM statistics, that every compliant vendor has to
support.
Vendor: Optional vendor-specific metrics that are not portable.
Application: Optional metrics from deployed applications. The Java API will be
shown in the Supplying application-specific metrics section.

Another issue with the classic JMX approach, which MicroProfile Metrics addresses, is the
lack of metadata information about the semantics of a metric.

Metadata
Metadata is a very important part of MicroProfile Metrics. While it is possible to expose a
metric foo with a value of 142, it is not self-describing. An operator seeing that metric can't
tell what this is about, what the unit is, and whether 142 is a good value or not.

Metadata is used to provide units and also a description of the metric so that the preceding
could now be foo: runtime; 142 seconds. This now allows for correct scaling on the
display to two minutes and 22 seconds. And the user receiving an alert relating to this metric
can understand that it refers to some runtime timing.

MicroProfile Metrics and OpenTracing Chapter 5

[79]

Retrieving metrics from the server
MicroProfile Metrics exposes metrics via a REST interface, by default, under the /metrics
context root. You can find the code at https:/ /github. com/ PacktPublishing/ Hands- On-
Enterprise-Java- Microservices- with- Eclipse- MicroProfile/ tree/ master/ Chapter05-
metrics. Follow the README.md file to build the code, run it, and hit the http:/ /
localhost:8080/book- metrics/ hello and http:/ /localhost:8080/ book- metrics
endpoints a few times with your browser to generate some data.

As of MicroProfile 1.3/2.0, there is nothing in the specifications about
securing that endpoint. This is thus left to the individual implementation.

Using this REST interface, it is easy to retrieve the data, for example, via the following curl command:

$ curl http://localhost:8080/metrics

This command shows the Metrics 1.x output in Prometheus text format (abbreviated):

TYPE base:classloader_total_loaded_class_count counter
base:classloader_total_loaded_class_count 13752.0
TYPE base:cpu_system_load_average gauge
base:cpu_system_load_average 2.796875
TYPE base:thread_count counter
base:thread_count 76.0
TYPE vendor:memory_pool_metaspace_usage_max_bytes gauge
vendor:memory_pool_metaspace_usage_max_bytes 7.0916056E7
TYPE application:hello_time_rate_per_second gauge
application:hello_time_rate_per_second{app="shop",type="timer"}
3.169298061424996E-10
TYPE application:hello_time_one_min_rate_per_second gauge
application:hello_time_one_min_rate_per_second{app="shop",type="timer"} 0.0
[...]

If you do not provide a media type, the default output format is the Prometheus text format
(which can also be rendered nicely in the browser). The Prometheus format exposes
additional metadata to the values in the # TYPE and # HELP lines. You can also see in the
previous example how the scopes (base, vendor, and application) are prepended to the
actual metrics name.

Alternatively, it is possible to retrieve data in the JSON format by providing an HAccept
header (again abbreviated):

$ curl -HAccept:application/json http://localhost:8080/metrics

https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter05-metrics

MicroProfile Metrics and OpenTracing Chapter 5

[80]

This command results in the following output:

{
 "application" :
 {
 "helloTime" : {
 "p50": 1.4884994E7,
 [...]
 "count": 1,
 "meanRate": 0.06189342578194245
 },
 "getCounted" : 1
 },
 "base" :
 {
 "classloader.totalLoadedClass.count" : 13970,
 "cpu.systemLoadAverage" : 2.572265625,
 "gc.PS Scavenge.time" : 290
 },
 "vendor" :
 {
 "test" : 271,
 "memoryPool.Metaspace.usage.max" : 72016928,
 }

In this case, the pure data is exposed; the scopes form a top level, and respective metrics are
nested inside. Matching metadata can be retrieved via an HTTP XOPTIONS call:

$ curl XOPTIONS -HAccept:application/json http://localhost:8080/metrics

The output now contains the metadata as a map:

{
"application" : {
 "helloTime": {
 "unit": "nanoseconds",
 "type": "timer",
 "description": "Timing of the Hello call",
 "tags": "app=shop,type=timer",
 "displayName": "helloTime"
 }
}
[...]
}

Now that we have seen how we can retrieve different types of data and metadata, we will
have a quick look at how we can limit retrieval to specific scopes.

MicroProfile Metrics and OpenTracing Chapter 5

[81]

Accessing specific scopes
It is also possible to retrieve data for only a single scope by appending the scope name to
the path. In the following example, we only retrieve metrics for the base scope:

$ curl http://localhost:8080/metrics/base

This now only shows metrics for the base scope:

TYPE base:classloader_total_loaded_class_count counter
base:classloader_total_loaded_class_count 13973.0
TYPE base:cpu_system_load_average gauge
base:cpu_system_load_average 1.92236328125

In this section, we have seen how to retrieve metrics from a MicroProfile Metrics-enabled
server. Metrics in base and vendor scopes are predefined by the server. Metrics in the
application scope can be defined by the user, which we are going to explore in the next
section.

Supplying application-specific metrics
Applications can choose to expose metric data via a CDI programming model. This model
was inspired by DropWizard Metrics, so that it is easier to transition applications to MP-
Metrics. It also uses the annotations from DropWizard Metrics, which have been
augmented to support metadata.

Let’s start with an example by defining a counter that is then incremented in code:

@Inject
@Metric(absolute = true, description = "# calls to /health")
Counter hCount; // This is the counter

@GET
@Path("/health")
public Response getHealth() throws Exception {
 hCount.inc(); // It is increased in the application
 [...]
}

In this example, we are registering a counter by getting it injected into the hCount variable:

The @Metric annotation provides additional information, such as the description, and also
indicates that the name is the variable name without an additional package
(absolute=true).

MicroProfile Metrics and OpenTracing Chapter 5

[82]

In the following example, we let the implementation do the counting for us. This
implements the common use case of counting the number of invocations of a method or
REST endpoint:

@Counted(absolute=true,
 description="# calls to getCounted",
 monotonic=true)
@GET
@Path("/c")
public String getCounted() {
 return "Counted called";
}

The monotonic attribute of @Counted says to keep increasing the counter, otherwise it will
be decreased when leaving the method.

More types of metric
Counters are only one type of metric that can be exposed and, very often, more complex
types are needed, for example, to record the distribution of the duration of method calls.

Let's have a quick look at these. Most follow the pattern of @Counted.

Gauges
A gauge is a metric whose value arbitrarily goes up and down. Gauges are always backed
by a method that supplies the value of the gauge:

@Gauge
int provideGaugeValue() {
 return 42; // The value of the gauge is always 42
}

The gauge's value is computed, like all other values, when a client requests the values. This
requires the implementation of the gauge method to be very quick, so that a caller is not
blocked.

MicroProfile Metrics and OpenTracing Chapter 5

[83]

Meter
A meter measures the rate at which the decorated method is called over time. For a JAX-RS
endpoint, this would be the number of requests per second. Meters can be declared via an
annotation:

@GET
@Path("/m")
@Metered(absolute = true)
public String getMetered() {
 return "Metered called";
}

When a client requests the data from the meter, the server supplies the mean rate, as well as
one-, five-, and fifteen-minute moving averages. The latter may be familiar to some readers
from the Unix/Linux uptime command.

Histograms
A histogram is a type of metric that samples the distribution of data. It is mostly used to
record the distribution of the time it takes to execute the decorated method. Histograms
cannot be declared via dedicated annotation, unlike other types, but a timer, for example,
includes histogram data. To use a histogram on its own, you need to register and update it
in code:

// Register the Histogram
@Inject
@Metric(absolute = true)
private Histogram aHistogram;

// Update with a value from 0 to 10
@GET
@Path("/h")
public String getHistogram() {
 aHistogram.update((int) (Math.random() * 10.0));
 return "Histogram called";
}

This way of using metrics in code is feasible for the other types as well.

MicroProfile Metrics and OpenTracing Chapter 5

[84]

Timers
A timer basically is a combination of a histogram and a meter and can again be declared via
an annotation:

@GET
@Path("/hello")
@Timed(name="helloTime", absolute = true,
 description = "Timing of the Hello call",
 tags={"type=timer","app=shop"})
public String getHelloTimed() {
 try {
 Thread.sleep((long) (Math.random()*200.0));
 } catch (InterruptedException e) {
 // We don't care if the sleep is interrupted.
 }
 return "Hello World";
}

The code in this example waits for a small random amount of time to make the output a bit
more interesting.

Tagging
Tags or labels are a way to additionally organize information. These became popular with
Docker and Kubernetes. Within MicroProfile Metrics 1.x, they are directly forwarded to the
output without further ado and do not serve to distinguish metrics. MicroProfile Metrics
supports server-wide and per-metrics tags, which are then merged together in the output.

Server-wide tags
Server-wide tags are set via the environment variable, MP_METRICS_TAGS, as shown:

export MP_METRICS_TAGS=app=myShop
java -jar target/metrics-thorntail.jar

These tags will be added to all metrics defined in the server and also added to the
respective output format.

So, given the preceding command, a counter, @Counted(absolute=true) int
myCount;, would end up in Prometheus as follows:

TYPE application:my_count counter
application:my_count{app="myShop"} 0

MicroProfile Metrics and OpenTracing Chapter 5

[85]

Per-metrics tags
Tags can also be supplied on a per-metric basis:

@Counted(tags=[“version=v1”,”commit=abcde”])
void doSomething() {
 [...]
}

This example defines two labels, version=v1 and commit=abcde, on the metric with the
name doSomething. Those will be merged with the global tags for the output. With the
preceding global tag, there would thus be three tags in the output.

In this section, we have seen how to add labels to metrics to provide additional metadata.
These can be global, for all metrics exposed from a server, or application-specific, for one
single metric.

Using Prometheus to retrieve metrics
Now that we have seen what metrics are exposed and how we can define our own, let's
have a look at how we can collect them in a time series database (TSDB). For this purpose,
we use Prometheus, a CNCF (https:/ /www.cncf. io/) project that has gained widespread
adoption in the cloud-native world.

You can download Prometheus from https:/ /prometheus. io or on macOS via brew
install prometheus.

Once Prometheus is downloaded, we need a configuration file that defines which targets to
scrape and can then start the server. For our purposes, we will use the following simple file:

.Prometheus configuration for a Thorntail Server, prom.yml
scrape_configs:
Configuration to poll from Thorntail
- job_name: 'thorntail'
 scrape_interval: 15s
 # translates to http://localhost:8080/metrics
 static_configs:
 - targets: ['localhost:8080']

The configuration for Prometheus is different for different servers, as
MicroProfile Metrics only specifies the content of the endpoint, but not its
location. OpenLiberty, for example, uses a password and TLS-protected
endpoint on port 9443.

https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/

MicroProfile Metrics and OpenTracing Chapter 5

[86]

With that, we can start Prometheus via prometheus --config.file prom.yml.

Give it a moment and then head over to the Prometheus web console at
http://localhost:9090 and then to the
http://localhost:9090/targets[Status->Targets] entry.

You will see our server being detected:

When everything is OK, you can click on Prometheus in the top-left corner or select the
Graph menu. You are presented with a text field. Start entering base and you'll see a list of
metrics. Selecting one of them and then clicking on the Graph tab yields a simple but nice
graph of the metric:

MicroProfile Metrics and OpenTracing Chapter 5

[87]

Application metrics will not show up directly after the start, as they may only be created
programmatically when the code that creates them is executed for the first time.

A good practice though is to initialize metrics close to the start of the application if possible.

New in MP-Metrics 2.0
NOTE: MicroProfile Metrics 2.0 may not be released when you read this, and the content
may have changed slightly depending on feedback from early users/implementors.

MicroProfile Metrics and OpenTracing Chapter 5

[88]

Change for counters – introducing ConcurrentGauge
Counters in Metrics 1.x had two functions:

To provide a measure for the number of concurrent invocations
As a metric that can count up to the number of transactions committed, for
example

Unfortunately, the first way was the default when using the annotation without specifying
the monotonic keyword, which is unexpected and was confusing a lot of users. The second
version of this also had its issues, as a counter value could also decrease at will, which
violates the understanding that a counter is a monotonically increasing metric.

For this reason, the Metrics working group has decided to change the behavior of counters
so they only work as monotonically increasing metrics and to defer the use case of counting
concurrent invocations to a new metric type, the ConcurrentGauge. As with most other
metrics, ConcurrentGauge can be used as a type or by annotating a method.

Tagging
Tags now also serve to distinguish metrics with the same name and type, but different tags.
They could be used to support many metrics result_code on a REST endpoint to count
the number of (un)successful calls:

@Inject
@Metric(tags="{code,200}", name="result_code")
Counter result_code_200k;

@Inject
@Metric(tags="{code,500}", name="result_code")
Counter result_code_500;

@GET
@Path("/")
public String getData(String someParam) {

 String result = getSomeData(someParam);
 if (result == null) {
 result_code_500.inc();
 } else {
 result_code_200.inc();
 }
 return result;
}

MicroProfile Metrics and OpenTracing Chapter 5

[89]

Under the covers, metrics are no longer only keyed by name and type, but also by their
tags. For this, new MetricID has been introduced to host the name and the tags.

Changes in data output format
The introduction of multi-tag metrics in MicroProfile Metrics 2.0 necessitated changes in the
format of metric data that is made available to clients.

The Prometheus format also had some inconsistencies, so we decided to revamp the
formats in sometimes incompatible ways:

The colon (:) as a separator between the scope and metric name has been changed
to an underscore (_).
The Prometheus output format no longer requires that camelCase is turned into
snake_case.
The format of the base metrics for garbage collectors has changed and now uses
tags for the various garbage collectors.

Please consult the release notes in the MicroProfile 2.0 specification at https:/ /github.
com/eclipse/microprofile- metrics/ releases/ tag/2. 0 for more details.

MicroProfile Metrics facilitates the gathering of performance data from individual servers
over an HTTP-based API for alerting and capacity planning purposes. In a microservice
architecture, this is not enough to troubleshoot, for example, latency issues that an end user
may be seeing. OpenTracing can help here in finding the service that is causing the
slowdown. Looking at the telemetry of the service can then help to pin down the issue
further.

Now, let's discuss OpenTracing.

MicroProfile OpenTracing
In the modern world of microservices, a single request can traverse multiple processes
running on different machines, data centers, or even geographical regions.

The observability of such systems is a challenging task but, when done right, it allows us to
tell the story about each individual request as opposed to the overall state of the system
derived from signals such as metrics and logs. In this chapter, we will introduce you to
distributed tracing and explain OpenTracing with its integration in MicroProfile
OpenTracing 1.3.

https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0

MicroProfile Metrics and OpenTracing Chapter 5

[90]

In the previous section, we learned about metrics and how they observe an application or
each individual component. This information is no doubt very valuable and provides a
macro view of the system, but, at the same time, it says very little about each individual
request that traverses multiple components. Distributed tracing shows a micro view of
what happened with a request end to end so that we can retrospectively understand the
behavior of each individual component of the application.

Distributed tracing is action-based; in other words, it records everything related to an
action in the system. For example, it captures detailed information of a request and all
causally related activities. We will not go through the details of how this tracing works, but,
in a nutshell, we can state the following:

The tracing infrastructure attaches contextual metadata to each request, typically,
a set of unique IDs – traceId, spanId, and parentId.
The instrumentation layer records profiling data and propagates metadata inside
and between processes.
The captured profiling data contains metadata and causality references to
preceding events.

Based on the captured data, distributed tracing systems usually offer the following
functionality:

Root-cause analysis
Latency optimization – critical path analysis
Distributed context propagation – baggage
Contextualized logging
Service dependency analysis

Before we delve into MicroProfile OpenTracing, let's briefly look at OpenTracing so that we
can better understand what the API offers.

OpenTracing project
The OpenTracing project (https:/ /opentracing. io) provides a vendor-neutral
specification (https://github.com/opentracing/specification) and polyglot APIs for
describing distributed transactions. Vendor neutrality is important because code
instrumentation is the most time-consuming and challenging task when enabling
distributed tracing in large organizations. We would like to stress that OpenTracing is just
an API. A real deployment will require a plugged tracer implementation that runs inside
the monitored process and sends data to a tracing system.

https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://opentracing.io/
https://github.com/opentracing/specification

MicroProfile Metrics and OpenTracing Chapter 5

[91]

From an API perspective, there are three key concepts: Tracer, Span, and SpanContext.
Tracer is a singleton object available to the application that can be used to model a unit of
work by creating a Span instance. A Span typically models an invocation in the system – a
request or a method call. A set of spans (directed acyclic graph) is called a trace and
represents end-to-end invocation. This object is not directly represented in API and it is
modeled as a list of Spans. Spans hold timing information, tags, and logs. Context metadata
and causality information are encapsulated in an object called SpanContext.

The following diagram demonstrates tracing for two services:

Let's now discuss the configuration part.

Configuration properties
OpenTracing is vendor-neutral and can, therefore, work with any vendor's tracing
implementation that uses this API. Each tracer implementation will be configured
differently. Therefore, the configuration is outside the scope of the MicroProfile
OpenTracing specification. However, the specification itself exposes a couple of
configuration properties to adjust the tracing scope or generated data. The configuration
leverages the MicroProfile Config specification to provide a consistent means for all
supported configuration options.

Currently, the specification exposes the following:

mp.opentracing.server.skip-pattern: A skip pattern to avoid the tracing
of selected REST endpoints.
mp.opentracing.server.operation-name-provider: This specifies the
operation name provider for server spans. Possible values are http-path and
class-method. The default value is class-method, which fully uses a qualified
class name concatenated with a method name; for
example, GET:org.eclipse.Service.get. The http-path uses a value of
@Path annotation as an operation name.

MicroProfile Metrics and OpenTracing Chapter 5

[92]

Automatic instrumentation
The motivation here is to have tracing automatically capture all crucial performance
information and also automatically propagate tracing context between runtimes. The
second part is especially crucial because it ensures that traces are not broken and we are
able to investigate end-to-end invocation. For successful tracing, every communication
technology between runtimes has to be instrumented. In the case of MicroProfile, it is JAX-
RS and MicroProfile Rest Client.

JAX-RS
MicroProfile OpenTracing automatically traces all inbound JAX-RS endpoints. However,
the JAX-RS client side is more tricky and requires the registration
API, org.eclipse.microprofile.opentracing.ClientTracingRegistrar.configu
re(ClientBuilder clientBuilder), to be called to add tracing capability. MicroProfile
implementation can enable tracing for all client interfaces globally; however, it is
recommended to use the registration API for better portability.

The default tracing behavior can be modified by disabling the tracing of specific requests or
changing operation names of produced server spans. For more information, refer to the
Configuration properties section later in this chapter. The instrumentation layer automatically
adds the following request-scoped information to each span:

http.method: The HTTP method of the request.
http.status_code: The status code of the request.
http.url: The URL of the request.
component: The name of the instrumented component, jaxrs.
span.kind: The client or server.
error – true or false. This is optional and, if present, instrumentation also
adds an exception as error.object to span logs.

All these tags can be used to query data via the tracing system user interface, or they can be
used for data analytics jobs that many tracing systems provide. Additional metadata can be
added to the current active span via an injected tracer instance. This can be conducted
globally in filters or locally in rest handlers, as shown in the following code example, by
adding a user agent header to the server span (1):

@Path("/")
public class JaxRsService {
 @Inject
 private io.opentracing.Tracer tracer;

MicroProfile Metrics and OpenTracing Chapter 5

[93]

 @GET
 @Path("/hello")
 @Traced(operationName="greeting") (2)
 public String hello(@HeaderParam("user-agent") String userAgent) {
 tracer.activeSpan().setTag("user-agent", userAgent); (1)
 }
}

By default, server-side spans have the operation name
http_method:package.className.method. However, this can be changed locally by
using the @Traced annotation (2), or globally via the configuration property (refer to the
configuration section).

MicroProfile Rest Client
As was mentioned in the previous section, all REST client interfaces are, by default,
automatically traced with no additional configuration required. This behavior can be
changed by applying the @Traced annotation to the interface or method to disable tracing.
When applied to the interface, all methods are skipped from tracing. Note that the tracing
context is not being propagated. Therefore, if the request continues to an instrumented
runtime, a new trace is started.

Explicit instrumentation
Sometimes, the automatic instrumentation does not capture all critical timing information
and, therefore, additional trace points are needed. For example, we would like to trace an
invocation of a business layer or initialize third-party instrumentation provided by the
OpenTracing project (https:/ / github. com/ opentracing- contrib).

The explicit instrumentation can be done in three ways:

Add the @Traced annotation on Context and Dependency Injection (CDI)
beans.
Inject the tracer and create spans manually.
Initialize third-party instrumentation. The initialization of external
instrumentation depends on its own initialization requirements. MicroProfile just
has to provide a tracer instance, which is covered in the previous bullet point.

Let's now discuss these in detail.

https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib
https://github.com/opentracing-contrib

MicroProfile Metrics and OpenTracing Chapter 5

[94]

@Traced annotation
MicroProfile OpenTracing defines an @Traced annotation that can be used to enable
tracing on CDI beans or disable tracing on automatically traced interfaces. The annotation
can also be used to override the operation name on other automatically traced components
– JAX-RS endpoints.

The following code example shows how the @Traced annotation can be used to enable
tracing on a CDI bean. (1) enables tracing for all methods the bean defines. (2) overrides
the default operation name (package.className.method) to get_all_users. (3)
disables tracing of the health method:

@Traced (1)
@ApplicationScoped
public class Service {
 @Traced(operationName = "get_all_users") (2)
 public void getUsers() {
 // business code
 }

 @Traced(false) (3)
 public void health() {
 // business code
 }
}

Now, we will look at the next method.

Tracer injection
The application can inject an io.opentracing.Tracer bean that exposes the full
OpenTracing API. This allows application developers to leverage more advanced use cases,
such as adding metadata to the currently active span, manually creating spans, using
baggage for context propagation, or initializing additional third-party instrumentation.

MicroProfile Metrics and OpenTracing Chapter 5

[95]

The following code shows how the tracer is used to attach data to the currently active
span, (1):

@Path("/")
public class Service {
 @Inject
 private Tracer tracer;

 @GET
 @Path("")
 @Produces(MediaType.TEXT_PLAIN)
 public String greeting() {
 tracer.activeSpan()
 .setTag("greeting", "hello"); (1)
 return "hello";
 }
}

This can be useful for adding business-related data to spans, but also to log exceptions or
any other profiling information.

Tracing with Jaeger
So far, we have only talked about different aspects of the instrumentation. However, to run
the full tracing infrastructure, we need a tracing backend. In this section, we will use Jaeger
(https://www.jaegertracing. io/) to demonstrate how collected tracing data is presented
in a tracing system. We have chosen Jaeger because Thorntail provides direct integration
with Jaeger. Other vendors can provide integrations with other systems, for instance,
Zipkin, and Instana. Almost every tracing system offers a Gannt chart style view (or
timeline) of a trace. This view might be overwhelming for tracing novices, but it is a great
tool to systematically analyze an invocation in a distributed system.

The following screenshot shows a search screen in the Jaeger system. In this case, we are
searching for traces from the opentracing-example service and all operations.

https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/

MicroProfile Metrics and OpenTracing Chapter 5

[96]

The example application, with instructions on how to run it, can be found in the attached
Git repository:

The following screenshot shows a timeline view (end-to-end invocation) of a chaining REST
invocation from /conversation to /bonjour within the same service. The source code
can be found in the attached Git repository:

MicroProfile Metrics and OpenTracing Chapter 5

[97]

Each horizontal line represents one unit of work or invocation a (span in OpenTracing
terminology).

On the left-hand side, there are service names (opentracing-example) with operation names.
The first operation is GET:io.pckt.ot.rest.Endpoint.conversaion for the server-side
endpoint, /conversation. The right-hand side shows duration relative to other
invocations (blue lines). From this view, it is obvious that the first operation was the longest
(12.31 ms) and it was blocked until all descendant operations finished. The bottom part of
the screen shows an expanded view of the last span (the bonjour operation) where we can
see all metadata attached to the span.

MicroProfile Metrics and OpenTracing Chapter 5

[98]

Summary
In this chapter, we learned about the observability of servers and applications.

Metrics, or telemetry, can help to pinpoint the performance characteristics of a server or an
application. MicroProfile offers, via the Metrics specification, a way to export Metrics in
standardized ways. Application writers can use MicroProfile Metrics to expose their data to
monitoring clients decoratively via annotations or via calls to the Metrics API.

The chapter further explained how OpenTracing integration in MicroProfile provides an
end-to-end view for each individual transaction going through the system. We went
through the configuration properties, showcasing tracing for JAX-RS, and finally
investigating data in the Jaeger system.

In the next chapter, we will learn how to document (REST) APIs via OpenAPI and call
those APIs via the type-safe REST client.

Questions
What is the difference between distributed tracing and metrics? 1.
What functionality do distributed tracing systems usually provide?2.
What parts of the system are automatically traced in MicroProfile OpenTracing?3.
Which tags are added for every REST request by MicroProfile OpenTracing?4.
How can explicit instrumentation be added to the business code?5.
What are scopes in Metrics and what is their rationale?6.
What determines the output format of a REST request to the Metrics API?7.
What ways are available to export metrics within a user application?8.

6
MicroProfile OpenAPI and

Type-Safe REST Client
Eclipse MicroProfile has a rich set of specifications for Java microservices. Two of these,
Eclipse MicroProfile OpenAPI and Eclipse MicroProfile REST Client, help with the API
documentation for your microservices and provide an API for type-safe invocation on
REST endpoints, respectively. OpenAPI simplifies the documentation for microservice
endpoints and makes this metadata available for perusal by third-party developers. A type-
safe REST client simplifies the marshalling and unmarshalling of objects to HTTP or JSON.

The following topics will be covered in this chapter:

The capabilities offered by each of these specifications
Simple code examples of some of these capabilities
How to obtain further information about each of these specifications

Introduction to MicroProfile OpenAPI and its
capabilities
The mobile force that fuels the digital economy led to the need for businesses to establish
an omni-channel approach to development in order to optimize costs, increase efficiencies,
and improve customer experience. A facilitator of this approach was APIs, which led to the
API economy and concepts such as API-led or API-first development practices. In addition,
the microservices architecture has become the architecture of choice for modern
development. API-based (that is, RESTful) communication among microservices has been
adopted as the de facto standard because it is a good fit for the smart endpoints and dumb
pipes, decentralized governance, and decentralized data management characteristics of
microservices.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[100]

However, as the number of microservices increases in a microservices architecture, their
management can become unwieldy. However, you can manage your microservices via their
APIs. You can apply management, security, load balancing, and throttling policies to the
APIs that are fronting your microservices.

Eclipse MicroProfile OpenAPI provides Java interfaces to developers for generating
OpenAPI v3 documents from their Java RESTful Web Services (JAX-RS) applications. The
specification requires that a fully processed OpenAPI document be available at the root
URL, /openapi, as an HTTP GET operation, as follows:

GET http://myHost:myPort/openapi

The required protocol is http. However, implementors of the specification are strongly
encouraged to also support the https protocol for secure connectivity to the OpenAPI
endpoint.

There are three sources from which the OpenAPI document is created. These three sources
(described in later sections in this chapter) are as follows:

Generated by processing the JAX-RS annotations (and optional OpenAPI
annotations) found in the application
Programmatically built by an application by providing a Java class that
implements OasModelReader
A static OpenAPI document included in application deployment

These three sources (any combination) are combined to produce a single OpenAPI
document, which can be filtered (by providing a Java class that implements the OasFilter
interface) and then served at the preceding /openapi endpoint.

Configuration
The MicroProfile OpenAPI specification makes use of the MicroProfile configuration
specification to configure its parameters and values. For example, for injecting
configuration values, MicroProfile OpenAPI can use the default and custom ConfigSources.

For more information on ConfigSources, you can visit https:/ /github.
com/eclipse/ microprofile- config/ blob/ master/ spec/ src/ main/
asciidoc/ configsources. asciidoc.

https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc
https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[101]

There are many configurable items. The following table contains a subset of them:

Configuration item Description
mp.openapi.scan.di
sable

Configuration property to disable annotation scanning. The default value is false.

mp.openapi.servers
Configuration property to specify the list of global servers that provide connectivity
information; for example,
mp.openapi.servers=https://xyz.com/v1,https://abc.com/v1.

mp.openapi.servers
.path

Prefix of the configuration property to specify an alternative list of servers to service
all operations in a path; for example,
mp.openapi.servers.path./airlines/bookings/{id}=https://xyz.io/v1.

mp.openapi.servers
.operation

Prefix of the configuration property to specify an alternative list of servers to service
an operation. Operations that want to specify an alternative list of servers must
define an operationId, a unique string used to identify the operation; for example,
mp.openapi.servers.operation.getBooking=https://abc.io/v1.

For a complete list of configuration items, please refer to the Eclipse
MicroProfile OpenAPI specification document at the following location –
https://github.com/eclipse/microprofile-open-api, which is
also listed at the end of the chapter.

Generating the OpenAPI document
As already described, the MicroProfile OpenAPI specification requires that an OpenAPI
document be generated from a combination of three sources.

You then have a number of choices:

Extend the OpenAPI document generated by the JAX-RS annotations using the
MicroProfile OpenAPI annotations.
Leverage the initial output from /openapi, which you can use as a reference to
start documenting your APIs. In this case, you can write static OpenAPI files
(described in a later section in this chapter) before any code is written, which is a
usual approach adopted by organizations to lock-in the contract of the API, that
is, it is an API-first development practice.
Bootstrap or complete the OpenAPI model tree by coding using the
programming model, covered later in this chapter.

Additionally, you can use a filter to update the OpenAPI model after it has been built.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[102]

MicroProfile OpenAPI annotations
Probably the most common source of OpenAPI information is the set of annotations that
make up the definition of a standard JAX-RS application. These annotations, along with
additional (optional) annotations defined by the MicroProfile OpenAPI specification, can be
scanned and processed by the MicroProfile platform to produce an OpenAPI document.

The MP OpenAPI specification requires the generation of a valid
OpenAPI document from pure JAX-RS 2.0 applications. If you are new to
OpenAPI, you can simply deploy your existing JAX-RS application to a
MicroProfile OpenAPI runtime and check out the output from /openapi.

To fill out additional details of the generated OpenAPI document, you may further
annotate your JAX-RS application with the many annotations defined by the MicroProfile
OpenAPI specification. The following table contains a partial list of these additional
annotations:

Annotation Description
@APIResponse Describes a single response from an API operation
@Content Provides a schema and examples for a particular media type
@Operation Describes an operation or typically a HTTP method against a specific path
@Parameter Describes a single parameter of an operation
@Schema Allows the definition of input and output data types

For a complete list of annotations, please refer to the MicroProfile
OpenAPI specification document listed at the end of this chapter.

Usage examples
Some usage examples of MicroProfile OpenAPI annotations are as follows:

Example 1 – Simple operation description (abbreviated):

@GET
@Path("/findByMake")
@Operation(summary = "Finds cars by make",
 description = "Find cars by their manufacturer")
public Response findCarsByMake(...)
{ ... }

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[103]

The following is the output for example 1:

/car/findByMake:
 get:
 summary: Finds cars by make
 description: Find cars by their manufacturer

Example 2 – Operation with different responses (abbreviated):

@GET
@Path("/{name}")
@Operation(summary = "Get customer by name")
 @APIResponse(description = "The customer",
 content = @Content(mediaType = "application/json",
 schema = @Schema(implementation =
Customer.class))),
@APIResponse(responseCode = "400", description = "Customer not found")
public Response getCustomerByName(
 @Parameter(description = "The name of the customer to be fetched",
required = true) @PathParam("name") String name)

{...}

The following is the output for example 2:

/customer/{name}:
 get:
 summary: Get customer by name
 operationId: getCutomerByName
 parameters:
 - name: name
 in: path
 description: 'The name of the customer to be fetched'
 required: true
 schema:
 type: string
 responses:
 default:
 description: The customer
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Customer'
 400:
 description: Customer not found

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[104]

For more examples, please refer to the MicroProfile OpenAPI specification
wiki at https:/ /github. com/eclipse/ microprofile- open- api/ wiki.

Static OpenAPI files
As mentioned earlier in the chapter, static OpenAPI files are one of the three sources from
which the OpenAPI document can be created. In the following, we give you a short
introductory description of how you could generate one and how to include it in your
deployment. Many organizations use an API-first development practice, which entails
defining static OpenAPI files even before any code is implemented for them.

First, you can create an OpenAPI document by using an open source editor such as
Swagger Editor (https:/ /editor. swagger. io). The following is a screenshot shows this:

https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://github.com/eclipse/microprofile-open-api/wiki
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[105]

Using this editor, you can start with sample API definitions and modify them to your needs
or you can start typing afresh. Ensure that the document is converted to OpenAPI 3 by
selecting Convert to OpenAPI 3 in the Edit menu as follows:

When you are finished defining your APIs in the document, export them as YAML by
selecting Save as YAML in the File menu as follows:

Finally, you can include the saved OpenAPI document in your application deployment.

If a document is fully complete, then set the mp.openapi.scan.disable
configuration property to true. If a document is partially complete, then
you will need to augment the OpenAPI snippet with annotations or the
programming model.

Vendors are required to fetch a single document named openapi with an extension of
.yml, .yaml, or json inside the application module's (that is, the WAR artifact's) META-
INF folder.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[106]

Programming model
You can provide OpenAPI elements via Java POJOs (Plain Old Java Objects) by using the
MicroProfile OpenAPI programming model. The complete set of models is described in the
org.eclipse.microprofile.openapi.models package. You can read more about it at
https://github.com/eclipse/microprofile-open-

api/tree/master/api/src/main/java/org/eclipse/microprofile/openapi/models.

You can create an OpenAPI tree by using OASFactory. Refer to the following code block
by way of an example:

OASFactory.createObject(Info.class).title("Weather")
 .description("Weather APIs").version("1.0.0");

To bootstrap the OpenAPI model tree, you can use the OASModelReader interface. You can
then create an implementation of this interface and register it using the
mp.openapi.model.reader configuration key.

The following is globally an example of what its definition would look like in META-
INF/microprofile-config.properties:

mp.openapi.model.reader=com.mypackage.MyModelReader

Like static files, the model reader can be used to provide either complete
or partial model trees. To provide a complete OpenAPI model tree, you
should set the mp.openapi.scan.disable configuration to true.
Otherwise, this partial model will be assumed.

Using a filter for updates
To update or remove certain elements and fields of the OpenAPI document, you can use a
filter. The OASFilter (https:/ /github. com/ eclipse/ microprofile- open- api/ blob/
master/api/src/main/ java/ org/ eclipse/ microprofile/ openapi/ OASFilter. java)
interface allows you to receive callbacks for various OpenAPI elements. It allows you to
override the methods you care about. You can create an implementation of this interface
and register it using the mp.openapi.filter configuration key.

Here's an example of what its definition would look like in META-INF/microprofile-
config.properties:

mp.openapi.filter=com.mypackage.MyFilter

https://github.com/eclipse/microprofile-open-api/tree/master/api/src/main/java/org/eclipse/microprofile/openapi/models
https://github.com/eclipse/microprofile-open-api/tree/master/api/src/main/java/org/eclipse/microprofile/openapi/models
https://github.com/eclipse/microprofile-open-api/tree/master/api/src/main/java/org/eclipse/microprofile/openapi/models
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java
https://github.com/eclipse/microprofile-open-api/blob/master/api/src/main/java/org/eclipse/microprofile/openapi/OASFilter.java

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[107]

A registered filter is called once for each model element. For example, the
filterPathItem method is called for each corresponding PathItem element in the model
tree.

The MicroProfile OpenAPI project can be found at the following link:
https://github.com/eclipse/microprofile-open-api.

MicroProfile OpenAPI enables the generation of API documentation for your
microservices. For organizations using an API-first development approach, MicroProfile
OpenAPI helps them to define their APIs before any coding is done for their corresponding
microservices. In addition, for organizations that may already have REST-based
microservices, MicroProfile OpenAPI can automatically generate API documentation. In
the next section, we delve into how you can leverage the capabilities of the MicroProfile
REST Client to create endpoints for your microservices.

Introduction to the MicroProfile REST Client
and its capabilities
The MicroProfile REST Client (MP-RC) provides an API for type-safe invocation on REST
endpoints. It can be used from applications to perform remote invocations on other
services.

It leverages JAX-RS annotations on Java interfaces to describe the actual contract with
remotes services. These interfaces are then used to create client proxies that hide much of
the underlying HTTP communication.

The MP-RC specification defines the requirements for leveraging the JAX-RS annotations
on the Java interface, as well as MP-RC-specific annotations to augment behavior, including
how incoming request headers should be propagated, how to augment JAX-RS behaviors
using providers, exception mapping, CDI support, and integration with other MicroProfile
specifications. We will look at MP-RC in more detail by starting with the definition of a
type-safe endpoint interface.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[108]

Defining the endpoint Interface
To define the type-safe interface for an endpoint, we create a Java interface that leverages
JAX-RS annotations to map interface methods to the REST endpoint they proxy. A basic
example is illustrated in the following WorldClockApi interface:

package io.pckt.restc.contract;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/api/json")
public interface WorldClockApi {
 static final String BASE_URL = "http://worldclockapi.com/api/json";

 @GET
 @Path("/utc/now")
 @Produces(MediaType.APPLICATION_JSON)
 Now utc();

 @GET
 @Path("{tz}/now")
 @Produces(MediaType.APPLICATION_JSON)
 Now tz(@PathParam("tz") String tz);
}
public class Now {
 String currentDateTime;
 String utcOffset;
 boolean isDayLightSavingsTime;
 String dayOfTheWeek;
 String timeZoneName;
...
// Getter/Setter
}

Here, two interface methods are defined, utc() and tz(). Both represent GET HTTP
method type requests, and both return application/json content types in the form of a
Plain Old Java Object (POJO) bean. The utc() method accepts no parameters and has an
endpoint path of /api/json/utc/now. The tz() method accepts a tz parameter taken
from the request path using the JAX-RS @PathParam annotation, and has an endpoint path
of /api/json/{tz}/now, where the {tz} reference corresponds to the 3-letter time zone
name that is used in the request, for example, /api/json/cst/now for central standard
time in the US.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[109]

All built-in HTTP methods are supported by the client API. Likewise, all the following
parameter types are supported:

javax.ws.rs.QueryParam

javax.ws.rs.BeanParam

javax.ws.rs.CookieParam

javax.ws.rs.PathParam

javax.ws.rs.FormParam

javax.ws.rs.MatrixParam

If you are only interested in the body of a request response, you can return a POJO, as was
done previously. Otherwise, you can return a javax.ws.rs.Response object and parse
the body and header information from the server response.

Users may specify the media (MIME) type of the outbound request using the JAX-RS
@Consumes annotation, which would be passed as the content-type HTTP header in the
request, and the expected media type(s) of the response by using the JAX-RS @Produces
annotation, which would be passed as the accept HTTP header. If no @Consumes or
@Produces annotation is specified for a given interface method, it will default to
javax.ws.rs.core.MediaType.APPLICATION_JSON, or application/json.

MicroProfile REST Client programmatic API
usage
MP-RC supports both programmatic lookup and CDI injection approaches for usage. An
example of a REST service making use of
org.eclipse.microprofile.rest.client.RestClientBuilder to create a type-safe
client for the WorldClockApi interface is listed in the following as
WorldClockUser.java:

package io.pckt.restc.contract;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/api")
@ApplicationScoped

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[110]

public class WorldClockUser {
 @GET
 @Path("/now-utc")
 @Produces(MediaType.TEXT_PLAIN)
 public String getCurrentDateTime() {
 WorldClockApi remoteApi = RestClientBuilder.newBuilder()
 .baseUri(URI.create(WorldClockApi.BASE_URL))
 .build(WorldClockApi.class);
 Now now = remoteApi.utc();
 return now.getCurrentDateTime();
 }
}

The baseUri() method is used to specify the server URI against which the
WorldClockApi method paths are to be resolved. The build() method takes the Java
interface of the type-safe client that is to be built. Additional RestClientBuilder methods
include the following:

baseUrl(URL): Similar to baseUri, but takes a java.net.URL type.
connectTimeout(long timeout, TimeUnit unit): The amount of time to
wait to connect to the remote server. A value of 0 indicates having to wait
forever.
readTimeout(long timeout, TimeUnit unit): The amount of time to wait
on reads of the remote server connection. A value of 0 indicates having to wait
forever.
executorService(ExecutorService executor): Used for async requests.
We will return to this in the async section.

MicroProfile REST Client CDI usage
MP-RC type-safe interfaces may be injected as CDI beans. The runtime must create a CDI
bean for each interface annotated with @RegisterRestClient. A CDI client injects bean
created will include a qualifier, @RestClient , to differentiate use as an MP-RC injection
point. The following update to our WorldClockApi interface illustrates the use of the
@RegisterRestClient annotation:

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[111]

@Path("/api/json")
@RegisterRestClient()
public interface WorldClockApi {
 static final String BASE_URL = "http://worldclockapi.com/api/json";
...
}

An alternative client that makes use of CDI to obtain a WorldClockApi MP-RC interface is
shown in the following WorldClockCDIUser.java snippet:

import org.eclipse.microprofile.rest.client.inject.RestClient;
@ApplicationScoped
@Path("/cdi")
public class WorldClockCDIUser {
 @Inject
 @RestClient
 WorldClockApi remoteApi;

 @GET
 @Path("/now-utc")
 @Produces(MediaType.TEXT_PLAIN)
 public String getCurrentDateTime() {
 Now now = remoteApi.utc();
 return now.getCurrentDateTime();
 }
}

The client injects the WorldClockApi interface, and the MP-RC implementation is
responsible for producing the type-safe proxy to be injected.

MicroProfile Config integration
For CDI-defined interfaces, it is possible to use MicroProfile Config properties to define
additional behaviors that are available via the RestClientBuilder API. Given our
io.pckt.restc.contract.WorldClockApi interface, the following MicroProfile Config
properties are available to control the generated proxy behavior:

io.pckt.restc.contract.WorldClockApi/mp-rest/url: The base URL to
use for this service, the equivalent of the RestClientBuilder#baseUrl
method.
io.pckt.restc.contract.WorldClockApi/mp-rest/scope: The fully
qualified class name to a CDI scope to use for injection; it defaults to
javax.enterprise.context.Dependent.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[112]

io.pckt.restc.contract.WorldClockApi/mp-rest/providers: A comma-
separated list of fully qualified provider class names to include in the client, the
equivalent of the RestClientBuilder#register method or the
@RegisterProvider annotation.
io.pckt.restc.contract.WorldClockApi/mp-

rest/providers/com.mycompany.MyProvider/priority: This will override
the priority of the com.mycompany.MyProvider provider for this interface.
io.pckt.restc.contract.WorldClockApi/mp-rest/connectTimeout: The
timeout specified in milliseconds to wait to connect to the remote endpoint.
io.pckt.restc.contract.WorldClockApi/mp-rest/readTimeout: The
timeout specified in milliseconds to wait for a response from the remote
endpoint.

Simplifying configuration keys
Since the default MP Config property names for a CDI interface can be quite long due to the
inclusion of the interface package name, the MP-RC specification supports a way to
simplify the property name prefix using the configKey attribute of the
@RegisterRestClient annotation:

@Path("/api/json")
@RegisterRestClient(baseUri = WorldClockApi.BASE_URL, configKey =
"worldClock")
public interface WorldClockApi {
 static final String BASE_URL = "http://worldclockapi.com/api/json";
...
}

With the worldClock configKey, the previous list of property names simplifies to the
following:

worldClock/mp-rest/url

worldClock/mp-rest/uri

worldClock/mp-rest/scope

worldClock/mp-rest/providers

worldClock/mp-rest/providers/com.mycompany.MyProvider/priority

worldClock/mp-rest/connectTimeout

worldClock/mp-rest/readTimeout

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[113]

The same configKey value can be used with more than one interface, and this would allow
more than one interface to be configured with a single MP Config property.

Dealing with client headers
Let's say you want to specify credentials in the HTTP authorization header to a secure
remote service, but you do not want to have a string authHeader parameter in the client
interface method. The MP-RC @ClientHeaderParam annotation can be used to specify
HTTP headers that should be sent without altering the client interface method signature.

The following example illustrates two uses of the @ClientHeaderParam annotation to
provide a User-Agent HTTP header in a variation of the WorldClockApi interface:

WorldClockApiWithHeaders.java
public interface WorldClockApiWithHeaders {
 static final String BASE_URL = "http://worldclockapi.com/api/json";

 default String lookupUserAgent() {
 Config config = ConfigProvider.getConfig();
 String userAgent = config.getValue("WorldClockApi.userAgent",
String.class);
 if(userAgent == null) {
 userAgent = "MicroProfile REST Client 1.2";
 }
 return userAgent;
 }

 @GET
 @Path("/utc/now")
 @Produces(MediaType.APPLICATION_JSON)
 @ClientHeaderParam(name = "User-Agent", value = "{lookupUserAgent}")
 Now utc();

 @GET
 @Path("{tz}/now")
 @Produces(MediaType.APPLICATION_JSON)
 @ClientHeaderParam(name = "User-Agent", value = "MicroProfile REST Client
1.2")
 Now tz(@PathParam("tz") String tz);
}

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[114]

It is also possible to add or propagate headers in bulk using a ClientHeadersFactory
implementation:

package org.eclipse.microprofile.rest.client.ext;

public interface ClientHeadersFactory {
 MultivaluedMap<String, String> update(
 MultivaluedMap<String, String> incomingHeaders,
 MultivaluedMap<String, String> clientOutgoingHeaders);
}

In the preceding code snippet, the incomingHeaders and clientOutgoingHeaders
parameters are used as follows:

incomingHeaders: Represents the map of headers for the inbound request
clientOutgoingHeaders: Represents the read-only map of header values
specified on the client interface, the union of header values from
@ClientHeaderParam, @HeaderParam, and so on

The update method should return a MultivaluedMap that contains the headers to merge
with the clientOutgoingHeaders map for the complete map of headers to be sent to the
outbound request. Providers such as filters, interceptors, and message body writers could
still modify the final map of headers prior to sending the HTTP request.

To enable a ClientHeadersFactory, the client interface must be annotated with the
@RegisterClientHeaders annotation. If this annotation specifies a value, the client
implementation must invoke an instance of the specified ClientHeadersFactory
implementation class. If no value is specified, then the client implementation must invoke
DefaultClientHeadersFactoryImpl. This default factory will propagate specified
headers from the inbound JAX-RS request to the outbound request – these headers are
specified with a comma-separated list using the MicroProfile Config property,
org.eclipse.microprofile.rest.client.propagateHeaders.

Provider registration for advanced usage
The RestClientBuilder interface extends the Configurable interface from JAX-RS,
allowing a user to register custom providers while it is being built. The behavior of the
providers supported is defined by the JAX-RS Client API specification. An MP-RC
implementation will support ClientResponseFilter, ClientRequestFilter,
MessageBodyReader, MessageBodyWriter, ParamConverter, ReaderInterceptor,
and WriterInterceptor from JAX-RS.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[115]

For the ClientResponseFilter and ClientRequestFilter interfaces that have a
ClientRequestContext parameter in their filter method, MP-RC implementations add
an org.eclipse.microprofile.rest.client.invokedMethod property, the value of
which is the java.lang.reflect.Method object representing the REST Client interface
method currently being invoked.

In addition to defining providers via RestClientBuilder, interfaces may use the
@RegisterProvider annotation to define classes to be registered as providers.

Providers may also be registered by implementing the RestClientBuilderListener or
RestClientListener interfaces. These interfaces are intended as SPIs to allow global
provider registration, and implementations of these interfaces must be specified in a META-
INF/services/org.eclipse.microprofile.rest.client.spi.RestClientBuilder

Listener or a META-
INF/services/org.eclipse.microprofile.rest.client.spi.RestClientListene

r file, respectively, following the ServiceLoader pattern.

Provider priority
Providers may be registered via both annotations and RestClientBuilder. Providers
registered via a builder will take precedence over the @RegisterProvider annotation. The
@RegisterProvider annotation priority value takes precedence over any
@javax.annotation.Priority annotation on the class. Provider priorities can be
overridden when using the register methods on the RestClientBuilder interface as it
allows for priority.

Feature registration
If the type of provider registered is a JAX-RS Feature, then the priority set by that
Feature will be part of the builder as well. Implementations maintain the overall priority
of registered providers, regardless of how they are registered. Feature will be used to
register additional providers at runtime, and may be registered via @RegisterProvider,
configuration, or via RestClientBuilder. Feature will be executed immediately. As a
result, its priority is not taken into account (features are always executed).

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[116]

Default providers
MP-RC implementations must provide a minimum set of providers, including the
following:

*/json types:
JSON-P, javax.json.JsonValue
JSON-B, javax.json.bind

* types:
byte[]

java.lang.String

java.io.InputStream

java.io.Reader

text/plain types:
java.lang.Number and subtypes

int, long, float and double

java.lang.Character and char

java.lang.Boolean and boolean

Exception mapping
MP-RC provides support for mapping an invocation response into an exception via the
org.eclipse.microprofile.rest.client.ext.ResponseExceptionMapper

interface:

import javax.annotation.Priority;
import javax.ws.rs.Priorities;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.Response;
import java.util.Optional;

public interface ResponseExceptionMapper<T extends Throwable> {
 int DEFAULT_PRIORITY = Priorities.USER;

 T toThrowable(Response response);

 default boolean handles(int status, MultivaluedMap<String, Object>
headers) {
 return status >= 400;
 }

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[117]

 default int getPriority() {
 return
Optional.ofNullable(getClass().getAnnotation(Priority.class))
 .map(Priority::value)
 .orElse(DEFAULT_PRIORITY);
 }
}

Consider the following interface:

@Path("/")
public interface SomeService {
 @GET
 public String get() throws SomeException;
}

To map an error status code onto the application-specific SomeException value, you
would need the following:

public class SomeExceptionExceptionMapper implements
ResponseExceptionMapper<SomeException> {

 @Override
 public SomeException toThrowable(Response response) {
 // Possibly get message from response...
 return new SomeException();
 }
}

Since the default ResponseExceptionMapper#handles() method returns true for any
status code >= 400, this would be called to generate a SomeException value on any
unsuccessful invocation of the SomeService#get() method.

Default exception mapping
Each implementation provides a default ResponseExceptionMapper implementation that
will map and invoke a response to javax.ws.rs.WebApplicationException when the
response status code is >= 400. It has a priority of Integer.MAX_VALUE, and is meant to be
used as a fallback whenever an error is encountered. This mapper will be registered by
default to all client interfaces, but this can be disabled by setting an MP Config property,
microprofile.rest.client.disable.default.mapper, to true. It can also be
disabled on a per-client basis by using the same property when building the client:

RestClientBuilder.newBuilder().property("microprofile.rest.client.disable.d
efault.mapper",true)

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[118]

Async support
MP-RC supports asynchronous method invocations. A client interface method is
asynchronous when the return type of the method is of the
java.util.concurrent.CompletionStage<?> type. An alternative version, called
WorldClockApiAsync.java, of the WorldClockApi interface that declares an
asynchronous method is as follows:

import java.util.concurrent.CompletionStage;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/api/json")
public interface WorldClockApiAsync {
 String BASE_URL = "http://worldclockapi.com/api/json";

 @GET
 @Path("/utc/now")
 @Produces(MediaType.APPLICATION_JSON)
 CompletionStage<Now> utc();

 @GET
 @Path("{tz}/now")
 @Produces(MediaType.APPLICATION_JSON)
 CompletionStage<Now> tz(@PathParam("tz") String tz);
}

In this version, the utc() and tz(String) methods return CompletionStage<Now>
types, so the MP-RC implementation will handle the request on one thread and the
response on a different thread. It does not specify which thread providers on the outbound
client request are run. A client may specify java.util.concurrent.ExecutorService
to use for asynchronous processing. This is done using the
RestClient.executorService(ExecutorService) method when building the client
proxy. All asynchronous methods built using a given executor must be processed using
that executor.

An example client of this WorldClockApiAsync interface is
WorldClockCDIAsyncUser.java, which is illustrated as follows:

@ApplicationScoped
@Path("/cdi-async")
public class WorldClockCDIAsyncUser {

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[119]

 @Inject
 @RestClient
 WorldClockApiAsync remoteApi;

 @GET
 @Path("/now-utc")
 @Produces(MediaType.TEXT_PLAIN)
 public Response getCurrentDateTime() {
 CompletionStage<Now> nowCS = remoteApi.utc();
 Now now = null;
 try {
 now = nowCS.toCompletableFuture().get();
 } catch (Exception e) {
 return Response.status(Response.Status.INTERNAL_SERVER_ERROR)
 .entity("Failed to : " + e.getMessage())
 .build();
 }
 return Response.ok(now.getCurrentDateTime()).build();
 }
}

Here, we have shown you support for asynchronous method invocation by MP-RC.

The MP-RC project source code can be found at the following location:
https://github.com/eclipse/microprofile-rest-client.

Summary
In this chapter, we have learned about two Eclipse MicroProfile specifications, namely,
Eclipse MicroProfile OpenAPI and Eclipse MicroProfile REST Client. The former provides a
specification for generating OpenAPI-compliant documentation for your microservices,
and the latter supplies a specification for calling REST endpoints in a type-safe manner. In
this chapter, we covered the specific capabilities of these specifications, provided some
example code, and supplied pointers on how to get further information about these
specifications. You have learned the features and capabilities of the Eclipse MicroProfile
OpenAPI and Eclipse MicroProfile REST Client specifications, how to use their annotations
and programmatic interfaces, and how you could incorporate them into your applications.

In the next chapter, we will discuss and delve into the open source implementations of
Eclipse MicroProfile that currently exist on the market.

MicroProfile OpenAPI and Type-Safe REST Client Chapter 6

[120]

Questions
Do you need to do anything to get information supplied to the /openapi1.
endpoint?
Can I enhance OpenAPI output with just one or two extra annotations?2.
What is the point of using static OpenAPI files?3.
Do I need the REST endpoint microservice I want to use to provide the MP-REST4.
interface?
How do you externalize the base URL for a type-safe interface?5.
What if I need to propagate incoming request headers?6.

3
Section 3: MicroProfile

Implementations and Roadmap
This section goes over the current market implementations and a possible roadmap for
future projects.

This section contains the following chapter:

Chapter 7, MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application

7
MicroProfile Implementations,
Quarkus, and Interoperability

via the Conference Application
One of the benefits of Eclipse MicroProfile is that it provides a specification that allows
many implementations to be interoperable with each other. This benefit has encouraged
many vendors and community groups to implement the Eclipse MicroProfile specification
as open source implementations. There are currently eight implementations of Eclipse
MicroProfile in the market, with a ninth entrant, Quarkus.

The following topics will be covered in this chapter:

A description of the eight implementations of Eclipse MicroProfile and how to
find further information on each
How to generate Eclipse MicroProfile sample code for each of these
implementations
A description of the ninth implementation of Eclipse MicroProfile, Quarkus
A description of The Conference Application, an Eclipse MicroProfile
interoperability proof-of-concept

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[123]

Current MicroProfile implementations
At the time of writing, there are eight implementations of Eclipse MicroProfile, all of which
are open source. Here is a table of these implementations:

Open source project basis Project location Supporting
vendor

Thorntail (http:// thorntail. io/) https:/ / github. com/
thorntail/ thorntail Red Hat

Open Liberty (https:/ /openliberty. io/) https:/ / github. com/
openliberty IBM

Apache TomEE (http:/ /tomee. apache.
org/)

https:/ / github. com/
apache/ tomee Tomitribe

Payara Micro (https:/ /www. payara.
fish/payara_micro)

https:/ / github. com/
payara/ Payara

Payara Services
Ltd.

Hammock (https:/ /hammock- project.
github.io/)

https:/ / github. com/
hammock- project Hammock

KumuluzEE (https:/ / ee. kumuluz. com/) https:/ / github. com/
kumuluz KumuluzEE

Launcher (https:/ /github. com/ fujitsu/
launcher)

https:/ / github. com/
fujitsu/ launcher Fujitsu

Helidon (https:// helidon. io/ #) https:/ / github. com/
oracle/ helidon Oracle

Some of these implementations are based on application servers, such as Payara and Open
Liberty, while others are based on application assemblers that include only the functionality
that the application needs, instead of requiring an application server to be up and running,
and commonly generate an executable JAR. However, the implementations based on
application servers are also capable of producing executable JAR as well.

An application assembler can generate an uberjar, a self-contained
runnable JAR file, or an application jar with its runtime dependencies
located in a subdirectory, for example, an accompanying lib or libs
subdirectory.

http://thorntail.io/
http://thorntail.io/
http://thorntail.io/
http://thorntail.io/
http://thorntail.io/
http://thorntail.io/
http://thorntail.io/
http://thorntail.io/
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://github.com/thorntail/thorntail
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/
https://github.com/openliberty
https://github.com/openliberty
https://github.com/openliberty
https://github.com/openliberty
https://github.com/openliberty
https://github.com/openliberty
https://github.com/openliberty
https://github.com/openliberty
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
http://tomee.apache.org/
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://github.com/apache/tomee
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://www.payara.fish/payara_micro
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://github.com/payara/Payara
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://hammock-project.github.io/
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://github.com/hammock-project
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
https://github.com/kumuluz
https://github.com/kumuluz
https://github.com/kumuluz
https://github.com/kumuluz
https://github.com/kumuluz
https://github.com/kumuluz
https://github.com/kumuluz
https://github.com/kumuluz
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://github.com/fujitsu/launcher
https://helidon.io/#
https://helidon.io/#
https://helidon.io/#
https://helidon.io/#
https://helidon.io/#
https://helidon.io/#
https://helidon.io/#
https://helidon.io/#
https://helidon.io/#
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon
https://github.com/oracle/helidon

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[124]

Eclipse MicroProfile implementations that pass the MicroProfile Test Compatibility Kit
(TCK) for the entire umbrella release, or a specific version of a MicroProfile API are listed
at https://wiki.eclipse. org/ MicroProfile/ Implementation. At the moment, inclusion
in this list uses the honor system because it does not require proof of the TCK results; it just
requires that the publishers assert that their implementation has passed the TCK.

The project also has a site where organizations/groups can self-include in the list of
production deployments of MicroProfile. This list can be found at https:/ / wiki. eclipse.
org/MicroProfile/Adoptions.

In the next sections, we provide brief descriptions of these implementations and how to get
more information on each of them.

Thorntail
Red Hat are the sponsors of the open source Thorntail project, which implements the
Eclipse MicroProfile specification. Thorntail is an application assembler that packages just
the server runtime components required by your application and creates a runnable JAR
(that is, an uberjar), which you can execute by invoking the following command:

$ java -jar <executable JAR file>

Not only is Thorntail MicroProfile-compatible, but it can also include functionality beyond
MicroProfile in your application. It has the concept of a fraction, which is a specific library
that contains functionality you want to include in your application. A fraction is included in
the Maven POM file of your application as a dependency. Beyond the MicroProfile fraction,
Thorntail provides fractions for OpenShift, Batch, Cassandra, data, encryption, monitoring,
tracing, Hibernate, Fault Tolerance, Integration, Management, REST, NoSQL, Reactive,
Security, Web, and more. For a list of valid fractions that can be used as dependencies, you
can check the project's GitHub location at https:/ /github. com/ thorntail/ thorntail/
tree/master/fractions, or you can click on the View all available dependencies link in
the Thorntail Generator, which we describe in the next paragraph.

https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Implementation
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://wiki.eclipse.org/MicroProfile/Adoptions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions
https://github.com/thorntail/thorntail/tree/master/fractions

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[125]

The Thorntail Generator (https:/ /thorntail. io/ generator/) is a tool that allows you to
create a sample Hello World executable JAR that includes all the fractions/dependencies you
choose via its user interface, which is as follows:

You can leave Group ID and Artifact ID with their default values and enter the fractions
you would like to include as dependencies in your application in the field titled
Dependencies, which has auto-complete capabilities as you type the dependency name. As
mentioned in the previous paragraph, if you'd like to see all the available dependencies,
click on the View all available dependencies link right under the Dependencies field.

Thorntail leverages SmallRye, an open source project that's a partial implementation of
Eclipse MicroProfile. The idea of SmallRye is to develop code that can be reused across
multiple implementations of MicroProfile. For example, in addition to Thorntail, SmallRye
is also leveraged by other open source projects, such as WildFly and Quarkus.

https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/
https://thorntail.io/generator/

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[126]

For more information on SmallRye, please refer to https:/ / smallrye. io.

Red Hat recently announced that it will be superseding Thorntail with Quarkus and
WildFly. They will continue to offer production support for Thorntail until November 2020
to give ample time for customers to either migrate to Quarkus or WildFly.

For more information on this announcement, refer to https:/ /thorntail.
io/posts/ thorntail- community- announcement- on-quarkus.

Now, let's move on to the next implementation of MicroProfile in the market.

Open Liberty
IBM are the sponsors of the open source Open Liberty project, which implements the
Eclipse MicroProfile specification. Open Liberty is the upstream open source project for the
IBM WebSphere Liberty application server. Open Liberty is an application server capable of
generating an uberjar, which contains your application with an embedded Open Liberty
server inside of it. To run the uberjar, you need to enter the following command:

$ java -jar <executable JAR file>

This command will explode the JAR file into your username's temporary directory, and
then it will execute the application from there.

Ensure there are no spaces in the path to the JAR file, otherwise the start
up process will fail.

The generated uberjar can contain only a subset of application server functionality as
defined by the features included in the server.xml file. To build an uberjar with this
minimal set of features, you need to use the minify-runnable-package profile when
running Maven.

The Open Liberty documentation is very thorough and replete with guides and reference
documents.

https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus
https://thorntail.io/posts/thorntail-community-announcement-on-quarkus

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[127]

You can find the Open Liberty documentation at https:/ /openliberty.
io/docs/ .

In their documentation, they have a section dedicated to MicroProfile guides, which
provide well-documented tutorials.

Apache TomEE
Tomitribe are the sponsors of the open source TomEE project, which implements the
Eclipse MicroProfile specification. Apache TomEE is assembled from Apache Tomcat with
added Java EE features. TomEE is Java EE 6 Web Profile-certified. As its GitHub describes
it, Apache TomEE is a lightweight, yet powerful, JavaEE Application server with feature-rich
tooling. There are a few different versions of TomEE that you can download; for example,
TomEE, TomEE+, and TomEE WebApp, but the one we are interested in is TomEE
MicroProfile. For MicroProfile, TomEE generates an uberjar for your microservice, which
you can run as follows:

$ java -jar <executable JAR file>

Although the TomEE MicroProfile documentation is scarce, a set of thorough MicroProfile
examples are provided at the Apache TomEE documentation site.

To access the MicroProfile examples, go to the Apache TomEE
documentation site at http:/ / tomee. apache. org/ docs. html, and select
the Examples link under the latest release section.

Apache TomEE is often described as the Java Enterprise Edition of Apache Tomcat and as a
MicroProfile-compliant application server.

Payara Micro
Payara are the sponsors of the open source Payara Micro project, which implements the
Eclipse MicroProfile specification. Payara Server is based on the open source application
server, GlassFish. Payara Micro is based on Payara Server, albeit a slimmed-down version
of it. As their website describes, Payara Micro is the microservices-ready version of Payara
Server.

https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
https://openliberty.io/docs/
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html
http://tomee.apache.org/docs.html

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[128]

The way Payara Micro works is that a Payara Micro instance starts and then your
MicroProfile microservice is deployed to it as a WAR file. For example, to start a Payara
Micro instance, you would enter the following command:

$ java -jar payara-micro.jar

To start a Payara Micro instance and deploy your application to it, you would enter the
following command:

$ java -jar payara-micro.jar --deploy <WAR file>

Payara Micro supports Java EE application deployments and it is also compatible with
Eclipse MicroProfile.

For the Payara Micro documentation, please refer to https:/ /docs.
payara. fish/ documentation/ payara- micro/ payara- micro. html.

Lastly, Payara Micro supports automatic clustering by using a third-party in-memory data
grid product.

Hammock
John Ament is the sponsor of the open source Hammock project, which implements the
Eclipse MicroProfile specification. Similar to Thorntail, Hammock is an application
assembler that generates uberjars. To run the uberjar, you need to enter the following
command:

$ java -jar <executable JAR file>

Hammock is an opinionated microservices framework for building applications. It is a CDI-
based framework, meaning that it is on a CDI container with CDI-based beans that run in it.
It supports two CDI implementations (JBoss Weld and Apache OpenWebBeans), three JAX-
RS implementations (Apache CXF, Jersey, and JBoss RestEasy), and three different servlet
containers (Apache Tomcat, JBoss Undertow, and Eclipse Jetty). Besides these, Hammock
also supports other dependencies that you can bring into your application, such as Security,
Metrics, Arquillian, and Apache ActiveMQ Artemis.

https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html
https://docs.payara.fish/documentation/payara-micro/payara-micro.html

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[129]

For the list of modules supported by Hammock, please refer to https:/ /
github. com/ hammock- project/ hammock/ wiki/ Modules.

Hammock strongly recommends using Capsule (http:/ /www. capsule. io) to package your
applications. In addition, it provides basic JPA support and its database migration
capabilities are based on FlywayDB (https:/ /flywaydb. org). Its documentation is a
bit scarce, and despite not offering a sample project generator, it provides some simple
examples on how to get started.

KumuluzEE
Sunesis are the sponsors of the open source KumuluzEE project, which implements the
Eclipse MicroProfile specification. KumuluzEE defines itself as a lightweight microservices
framework using Java and Java EE technologies and as Eclipse MicroProfile-compliant
implementation. KumuluzEE allows you to bootstrap a Java EE application using just the
components that you need, and it also supports the packing and running microservices as
uberjars. Just like other implementations that support uberjars, you can run your
microservices by entering the following command:

$ java -jar <executable JAR file>

KumuluzEE also provides a POM generator that can create a pom.xml with the selected
options and features you would like to include for the microservice you plan to develop.
The POM generator provides a clear and organized list of profiles, components, and
projects supported by KumuluzEE that you can select to include in the pom.xml file.

KumuluzEE provides a handful of samples for the different MicroProfile APIs.

For documentation related to the KumuluzEE implementation of Eclipse
MicroProfile, refer to https:/ /ee. kumuluz. com/ microprofile.

Lastly, KumuluzEE provides some interesting tutorials at https:/ /ee. kumuluz. com/
tutorials/.

https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
https://github.com/hammock-project/hammock/wiki/Modules
http://www.capsule.io
http://www.capsule.io
http://www.capsule.io
http://www.capsule.io
http://www.capsule.io
http://www.capsule.io
http://www.capsule.io
http://www.capsule.io
http://www.capsule.io
https://flywaydb.org
https://flywaydb.org
https://flywaydb.org
https://flywaydb.org
https://flywaydb.org
https://flywaydb.org
https://flywaydb.org
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/microprofile
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/
https://ee.kumuluz.com/tutorials/

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[130]

Launcher
Fujitsu are the sponsors of the open source Launcher project, which implements the Eclipse
MicroProfile specification. Launcher leverages an embedded GlassFish Server and Apache
Geronimo MicroProfile API implementations. You can run your microservice as a WAR
file, as follows:

$ java -jar launcher-1.0.jar --deploy my-app.war

In addition, Launcher can create uberjars. To create and run your microservice as an
uberjar, first generate the uberjar and then invoke it using java -jar, as follows:

$ java -jar launcher-1.0.jar --deploy my-app.war --generate my-uber.jar
$ java -jar my-uber.jar

The documentation for Launcher is very scarce and limited. You can find usage information
about Launcher at https:/ /github. com/ fujitsu/ launcher/ blob/ master/ doc/ Usage.
adoc and download it from https:/ / github. com/ fujitsu/ launcher/ releases.

Helidon
Oracle Corporation are the sponsors of the open source Helidon project, which implements
the Eclipse MicroProfile specification. Helidon is a set of Java libraries that enable a
developer to write microservices. It leverages Netty, a non-blocking I/O client server
framework. Helidon is an application assembler in that it generates application JAR. Once
you have built the application JAR, you can execute it with the following command:

$ java -jar <executable JAR file>

Helidon comes in two flavors: SE and MP. Helidon SE is the functional programming style
provided by all Helidon libraries and it provides a microservices framework called
MicroFramework. Helidon MP implements the MicroProfile specification for microservices,
and it's built on top of Helidon libraries. There is no sample project generator tool, but
Helidon provides a rich and thorough set of documentation manuals.

The documentation for Helidon can be found at https:/ /helidon. io/
docs/ latest/ #/about/ 01_ overview.

Helidon SE provides a WebServer, which is an asynchronous and reactive API for creating
web applications. Helidon MP provides a MicroProfile server implementation that
encapsulates the Helidon WebServer.

https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/blob/master/doc/Usage.adoc
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://github.com/fujitsu/launcher/releases
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview
https://helidon.io/docs/latest/#/about/01_overview

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[131]

Generating sample code for the current
implementations
As described in the previous sections, most MicroProfile implementations do not provide
their own sample project generators. Instead, they just provide documentation. This is
where the MicroProfile Starter comes to the rescue!

The MicroProfile Starter is sponsored by the MicroProfile community and is a tool that
generates sample project and source code for the MicroProfile specifications for all of the
MicroProfile implementations that have passed the MicroProfile TCK. In Chapter 2,
Governance and Contributions, we gave you a tour of the MicroProfile Starter. To avoid being
repetitive, we just want to point out that you can select the MicroProfile version in the
drop-down menu as follows:

A list of MicroProfile implementations will appear on the drop-down list for MicroProfile
implementations:

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[132]

For example, if you select MP 1.2 for the MicroProfile version, five implementations will be
displayed (in random order) for MicroProfile servers, for which the MicroProfile Starter can
generate sample source code and projects. In this example, TomEE, Thorntail, KumuluzEE,
Open Liberty, and Helidon are the implementations that support MicroProfile 1.2. The
generated ZIP file will contain a README file that contains instructions on how to build
and run the generated project for the specific MicroProfile server you selected.

Other projects that implement MicroProfile
SmallRye is an open source project that develops implementations of Eclipse MicroProfile
usable by any vendor or project. It's a community effort and everyone is welcome to
participate and contribute to SmallRye, https:/ /smallrye. io. As an example of this, the
community recently contributed the Extensions for MicroProfile project into SmallRye,
hence enriching its functionality with extensions for Config Sources, OpenAPI, Health,
JAX-RS, and REST Client.

The Extensions for MicroProfile project website is https:/ / www.
microprofile- ext. org, and its GitHub is https:/ /github. com/
microprofile- extensions.

SmallRye implementations are tested against, and have passed, the Eclipse MicroProfile
TCKs.

Open source projects that consume SmallRye are Thorntail (https:/ /thorntail. io),
WildFly (https:// wildfly. org), and Quarkus (https:/ /quarkus. io).

Quarkus
The open source Quarkus project made its debut in 2019. Quarkus is a Kubernetes-native
Java stack with that can compile to native machine language or building to HotSpot
(OpenJDK). When using Quarkus, your application consumes very little memory, has great
performance that allows it to handle a high throughput of invocations, and has a very fast
start up time (that is, boot plus first response time), making Quarkus a great runtime for
containers, as well as cloud-native and serverless deployments. Quarkus also provides an
extension framework that allows the quarking of libraries and projects to make them work
seamlessly with Quarkus.

https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://smallrye.io
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://www.microprofile-ext.org
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://github.com/microprofile-extensions
https://thorntail.io
https://thorntail.io
https://thorntail.io
https://thorntail.io
https://thorntail.io
https://thorntail.io
https://thorntail.io
https://wildfly.org
https://wildfly.org
https://wildfly.org
https://wildfly.org
https://wildfly.org
https://wildfly.org
https://wildfly.org
https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[133]

Quarkus's mission is to transform your full application and the libraries it uses into an
optimal output for GraalVM. To do this, you need to analyze and understand the full closed
world of the application. Without the full and complete context, the best that can be
achieved is partial and limited generic support. By using the Quarkus extension approach,
we can bring high density to Java applications.

The Quarkus extension framework makes a significant impact even when GraalVM is not
used (for example in HotSpot). Let's list the actions an extension perform:

An extension hosts code substitution so that libraries can run on GraalVM:1.
Most changes are pushed upstream to help the underlying library run
on GraalVM.
Not all changes can be pushed upstream; extensions host code
substitutions – which is a form of code patching – so that libraries can
run.

An extension host code substitution to help dead code elimination based on the2.
requirements of the application:

This is application-dependent and cannot really be shared in the
library itself.
For example, Quarkus optimizes the Hibernate code because it knows
it only needs a specific connection pool and cache provider.

An extension gather build time metadata and generates code:3.
This part has nothing to do with GraalVM; it is how Quarkus starts
frameworks at build time.
The extension framework facilitates the reading of metadata, scanning
classes, and generating classes as needed.

An extension send metadata to GraalVM for classes in need of reflection:4.
This information is not static per library (for example, Hibernate), but
the framework has the semantic knowledge and knows which classes
need to have reflection (for example, @Entity classes)

An extension offers an opinionated choice based on the close world view of the5.
application, including configuration.

All the preceding steps are done at build time and not runtime. This is what is known as
compile-time boot.

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[134]

As an example of what extensions do, the Quarkus Arc extension (our CDI injection
facility) generates direct bytecode to wire your components together. This means that if you
have three candidate beans to resolve an injection point, we do not resolve this at runtime
(as traditionally done in Java). We instead solve this at build time and transform your
application to directly instantiate the correct bean. This type of code is easy for a static
compiler such as GraalVM to determine what precise code can be eliminated. Without this
type of work, GraalVM would have to assume all three beans were needed.

The Quarkus project welcomes and encourages other open source projects to quark their
libraries. In fact, this is how Eclipse MicroProfile is included as part of the Java stack
included with Quarkus. Some community-quarked projects include swagger-ui, Flyway,
and R-script, among others.

As a Java stack, it supports many Java libraries, one of them being Eclipse MicroProfile.

For more information on Quarkus, refer to its website, https:/ /quarkus.
io.

Quarkus has many get-started examples, as well as numerous guides. You can find them at
https://quarkus. io/ guides/ . In addition, you can find a lot of informational videos at the
Quarkus YouTube channel, which features Quarkus Tips or Q-tips, which are short 5-minute
videos on a variety of Quarkus topics.

Earlier in this chapter, we covered how to generate sample MicroProfile code by using the
MicroProfile Starter. As you probably may have noticed by now, Quarkus was not one of
the possible MicroProfile servers listed in the MicroProfile Starter. At the time of writing,
Quarkus is still in Beta, so the MicroProfile Starter development team will take it up and
support it once Quarkus releases its first GA release. However, this doesn't stop you from
quarking a project generated by the MicroProfile Starter today. The next section goes over
the steps to do just that.

How to quark a generated MicroProfile project
Before we start with the steps on how to quark a generated MicroProfile project by the
MicroProfile Starter, we need to first make sure to have GRAALVM_HOME installed,
defined, and configured in your environment. To this end, follow these steps:

Go to https://github.com/oracle/graal/releases and download the1.
latest release of GraalVM for your operating system.

https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/
https://quarkus.io/guides/

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[135]

Unzip the downloaded file into a sub-directory of your choosing. By the way, the2.
unzipping will create a sub-directory for GraalVM, /Users/[YOUR HOME
DIRECTORY]/graalvm-ce-1.0.0-rc13, for example:

$ cd $HOME
$ tar -xzf graalvm-ce-1.0.0-rc16-macos-amd64.tar.gz

Open a terminal window and create an environment variable called3.
GRAALVM_HOME, for example:

$ export GRAALVM_HOME=/Users/[YOUR HOME DIRECTORY]/graalvm-
ce-1.0.0-rc13/Contents/Home

Now that we have installed GraalVM, we can move on to the steps on how to quark a
generated MicroProfile project with MicroProfile Starter:

First, point your browser to https:/ /start. microprofile. io and select1.
Thorntail as the MicroProfile Server.

You can leverage the following steps to quark any existing Java application
as well.

If you don't recall how to do this, go to Chapter 2, Governance and
Contributions, and follow the instructions in the Quick tour of the
MicroProfile Starter section up to step 5, where the demo.zip file is
downloaded to your local Downloads directory.

Expand the demo.zip file that the MicroProfile Starter generated under your2.
Downloads local directory using your favorite unzipping tool. If your demo.zip
file didn't get automatically expanded, here are the commands to do it (assuming
Linux; for Windows, please use the equivalent commands):

$ cd $HOME/Downloads
$ unzip demo.zip

This will create a demo sub-directory with an entire directory tree structure under
it with all the source files needed to build and run the Thorntail sample
MicroProfile project using Maven.

Instead of making changes in the demo sub-directory, let's create a second3.
directory called Qproj4MP alongside the demo sub-directory, as follows:

$ mkdir $HOME/Downloads/Qproj4MP

https://start.microprofile.io
https://start.microprofile.io
https://start.microprofile.io
https://start.microprofile.io
https://start.microprofile.io
https://start.microprofile.io
https://start.microprofile.io
https://start.microprofile.io
https://start.microprofile.io

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[136]

This should create a sub-directory called Qproj4MP at the same level as your
existing demo sub-directory in your Downloads directory.

Change your directory to Qproj4MP and create an empty Quarkus project by4.
entering the following commands:

$ cd $HOME/Downloads/Qproj4MP
$ mvn io.quarkus:quarkus-maven-plugin:0.12.0:create \
 -DprojectGroupId=com.example \
 -DprojectArtifactId=demo \
 -Dextensions="smallrye-health, smallrye-metrics, smallrye-openapi,
smallrye-fault-tolerance, smallrye-jwt, resteasy, resteasy-jsonb,
arc"

Within the Qproj4MP directory, delete the src sub-directory and replace it5.
with the src sub-directory from the Thorntail sample MicroProfile project by
entering the following commands:

$ cd $HOME/Downloads/Qproj4MP # ensuring you are in the Qproj4MP
sub-directory
$ rm -rf ./src
$ cp -pR $HOME/Downloads/demo/src .

Quarkus and Thorntail differ in their expectations of where some configuration6.
and web app-related files need to be. So, in order to make Quarkus happy, let's
copy some files around by entering the following commands:

$ cd $HOME/Downloads/Qproj4MP # ensuring you are in the Qproj4MP
sub-directory
$ mkdir src/main/resources/META-INF/resources
$ cp /Users/csaavedr/Downloads/demo/src/main/webapp/index.html
src/main/resources/META-INF/resources
$ cp -p src/main/resources/META-INF/microprofile-config.properties
src/main/resources/application.properties

We could have moved these files from their original locations, but we chose to
just copy them for this example.

The Thorntail sample MicroProfile project that was generated by MicroProfile7.
Starter and whose src sub-directory contents you copied to Qproj4MP uses a
security library called bouncycastle. The reason for this is that the generated
code includes an example for the MicroProfile JWT Propagation specification,
which allows you propagate security across microservices. Because of this, we
also need to add two more dependencies to the Quarkus project POM file, one
for bouncycastle and one for nimbusds.

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[137]

The bouncycastle dependency will be removed from the Thorntail
server code generation in the next sprint release of MicroProfile Starter.

To add these dependencies, edit the pom.xml file under your
$HOME/Downloads/Qproj4MP directory and, in the section for <dependencies>,
enter the following code block:

 <dependency>
 <groupId>org.bouncycastle</groupId>
 <artifactId>bcpkix-jdk15on</artifactId>
 <version>1.53</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>6.7</version>
 <scope>test</scope>
 </dependency>

We are now ready to compile the quarked MicroProfile project.

In addition to supporting building a Java project to run on OpenJDK, Quarkus8.
supports compiling a Java project all the way down to machine code. Enter the
following command to compile the quarked sample project to native code:

$ cd $HOME/Downloads/Qproj4MP # ensuring you are in the Qproj4MP
sub-directory
$./mvnw package -Pnative

To run the application, enter the following command:9.

$./target/demo-1.0-SNAPSHOT-runner

To test the application, please follow the instructions listed in Chapter 2,
Governance and Contributions, in the Quick tour of MicroProfile
Starter section, starting at step 10.

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[138]

If you'd like to run the quarked project in development mode, first stop the10.
running process and then enter the following commands:

$ cd $HOME/Downloads/Qproj4MP # ensuring you are in the Qproj4MP
sub-directory
$./mvnw compile quarkus:dev

At this point, you can open up the project with an IDE of your choice, such as
Visual Studio Code or Eclipse IDE, and start making changes to the source code.
Quarkus supports hot reloads, meaning that, as soon as you make any changes to
the source code, Quarkus rebuilds and redeploys your application in the
background so that you can immediately see and test the effect of the changes. In
addition, if you make a syntactical mistake in your source code, Quarkus will
propagate meaningful error messages to the web app to help you fix your errors,
making you more productive.

If you'd like to generate an executable application JAR, enter the following11.
commands:

$ cd $HOME/Downloads/Qproj4MP # ensuring you are in the Qproj4MP
sub-directory
$./mvn clean package

To run the executable application JAR, enter the following command:12.

$ java -jar target/demo-1.0-SNAPSHOT-runner.jar

A lib directory is created alongside the application JAR with the library files it
needs to run.

We have shown you the steps to quark a MicroProfile project generated by MicroProfile
Starter. Although these steps apply to a specific generated project, you could use the same
instructions to quark an existing Java application or microservice so that you can take
advantage of the benefits that Quarkus provides, such as low memory consumption, fast
start up time, and native compilation of your Java code so that you can run it efficiently in
containers, the cloud, and Function-as-a-Service environments. No matter which
implementation of MicroProfile you are using, a big benefit that MicroProfile provides to
end users is interoperability. This means that you can design an application with
microservices that use different implementations of MicroProfile, which is the topic of the
following section.

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[139]

MicroProfile interoperability – the
conference application
The Conference Application, first presented (https:/ /www. youtube. com/ watch? v= iG-
XvoIfKtg) during Devoxx Belgium in November 2016, is a MicroProfile demo that
showcases the integration and interoperability of different MicroProfile vendor
implementations. This is important because it demonstrates the separation between
implementation and interfaces of the specification, which provides a platform that allows
vendors to develop and provide their own implementation that could coexist side by side
with other competing implementations. The common interfaces across all implementations
also provided end users with the benefit of flexibility and choice to use whichever
MicroProfile implementation(s) makes the most sense for them. This interoperability also
supports the notion of microservices and microservices architectures, in that each
microservice could use any underlying technology and could be a cog in a larger
application by means of its common interfaces, that is, API-based endpoints. So, let's delve
into the structure of this demo that drives the very important interoperability aspect of
MicroProfile. The demo consists of four microservices, each developed by a different
vendor implementation of MicroProfile. This demo application (https:/ /github. com/
eclipse/microprofile- conference) is maintained by the community.

The Conference Application mimics an application used by the attendees of a technical
conference to do the following:

See a list of sessions to attend (Session microservice)
See a list of speakers delivering sessions (Speaker microservice)
Schedule sessions to attend (Schedule microservice)
Vote for a session (Vote microservice)

The application also has a web app component as a frontend user interface that directly
subscribes to each of the microservices.

https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://www.youtube.com/watch?v=iG-XvoIfKtg
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference
https://github.com/eclipse/microprofile-conference

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[140]

Here is a diagram of the architecture of The Conference Application:

The following table summarizes each microservice, its underlying open source
implementation, and the vendor that developed the microservice business logic:

Microservice name Description Open source
implementation Vendor

microservice-session The Session microservice lists
available conference sessions. Thorntail Red Hat

microservice-schedule
The Schedule microservice
allows the scheduling of
conference sessions.

Payara Micro Payara
Services Ltd.

microservice-speaker The Speaker microservice lists
conference session speakers. Apache TomEE Tomitribe

microservice-vote
The Vote microservice allows
the user to vote for conference
sessions.

Open Liberty IBM

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[141]

The beauty of microservices is that they communicate via their APIs using standard
message formats, such as XML and JSON, and standard protocols, such as web services and
REST. This permits an application to leverage microservices without caring about the
programming language or underlying framework that the microservice is using for its
implementation. Microservices implemented using the Eclipse MicroProfile specification
have these characteristics. The Conference Application demonstrates the power of Eclipse
MicroProfile APIs, which permit microservices developed by different implementations of
the MicroProfile specification to be integral parts of an application by interoperating
seamlessly with each other using standard mechanisms for transport and message
communication and security, for example. This is a concrete expression of how
microservices must work in a microservices architecture to instantiate a 12-factor
application. The Conference Application is an insightful and preponderant example of the
practicality, ease, and usability of a specification that is supported and developed by the
community and for the community.

In the next chapter, you will find the resources to download, build, and run an adapted
version of The Conference Application, which has been updated and enriched with the
latest versions of the MicroProfile APIs.

Summary
In this chapter, we have learned about the open source MicroProfile implementations that
currently exist on the market, what types of implementation they are, how to get more
information about each of them, and how to generate sample code for these
implementations using MicroProfile Starter. We have also covered the latest MicroProfile
implementation entrant, Quarkus, which introduces significant improvements to Java in
start up time and memory consumption in interpreted and compiled modes, improving
MicroProfile for cloud-native microservices and serverless environments even more. You
also learned about The Conference Application, which demonstrates the interoperability of
MicroProfile across different implementations.

As a consumer of Eclipse MicroProfile and its nature of being interoperable across
implementations, you have the freedom to select the implementation that makes the most
sense to your organization or is the best fit for your environment, ultimately giving you the
option to choose the right tool for the right task. Moreover, you don't need to be stuck with
a single vendor for a commercially supported version of Eclipse MicroProfile, and, as a
result of this, you have the advantage to negotiate on your terms and select from a rich set
of MicroProfile features offered by different vendors.

In the next chapter, we will cover a full code sample for the entire set of MicroProfile APIs.

MicroProfile Implementations, Quarkus, and Interoperability via the
Conference Application Chapter 7

[142]

Questions
At present, how many implementations of MicroProfile exist in the market? List1.
them.
What is the difference between an application server and an application2.
assembler?
Describe each of the eight implementations of MicroProfile that exist in the3.
market.
What is Quarkus?4.
What is compile-time boot?5.
What types of deployment is Quarkus a great runtime for?6.
What is the Quarkus extension framework?7.
What is the key benefit that The Conference Application demonstrates?8.

4
Section 4: A Working
MicroProfile Example

This section goes over an application that showcases MicroProfile.

This section contains the following chapter:

Chapter 8, A Working Eclipse MicroProfile Code Sample

8
A Working Eclipse MicroProfile

Code Sample
In this chapter, we will discuss a sample application that makes use of the various
MicroProfile features introduced earlier in this book. The MicroProfile runtime we will use
in this chapter is the Quarkus runtime, a Kubernetes-native Java stack tailored for GraalVM
and OpenJDK HotSpot, crafted from best of breed Java libraries and standards. Key topics
that we will cover include the following:

Use of configuration for both application and MicroProfile container behaviors
Realistic health checks
Securing an application with an external JWT security provider
Integrating and viewing trace information with a Jaeger instance
Inspecting microservice endpoint information using Swagger
Viewing individual and complete application metrics
Accessing both intra-cloud and external microservices using the rest client

The purpose of these topics is to provide you with a realistic overview of a non-trivial
MicroProfile application that you can run and experiment with.

Technical requirements
For this chapter, we'll require the following:

An IDE
JDK 1.8+ installed with JAVA_HOME configured appropriately
Apache Maven 3.5.3+
A running Docker environment

A Working Eclipse MicroProfile Code Sample Chapter 8

[145]

The code for this chapter can be found at https:/ /github. com/ PacktPublishing/ Hands-
On-Enterprise-Java- Microservices- with- Eclipse- MicroProfile/ tree/ master/
Chapter08-mpcodesample.

The sample in this chapter can be compiled into a native binary using the
GraalVM (https:/ / github. com/ oracle/ graal/ releases/ tag/ vm- 1.0. 0-
rc16) integration of Quarkus. This has additional requirements for the
installation of the 1.0-RC16 version Graal VM and a working C
development environment. The details of the native image generation
requirements can be found at https:/ /quarkus. io/ guides/ building-
native- image- guide.

Sample architecture of a multiservice
MicroProfile application
The sample application we will go over in this chapter is composed of an HTML frontend,
two MicroProfile-based microservices, two external services we spin up using Docker, and
an external time service on the web we have no control over. The architecture of our sample
application is shown in the following diagram:

https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter08-mpcodesample
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc16
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide
https://quarkus.io/guides/building-native-image-guide

A Working Eclipse MicroProfile Code Sample Chapter 8

[146]

The key elements in this diagram include the following:

Svcs1 Image: This is a collection of REST endpoints that make use of MP-HC,
MP-Metrics, MP-OT, MP-JWT, MP-OAPI, MP-FT, and MP-RC in a Quarkus
runtime.
Svcs2 Image: This is a collection of REST endpoints that make use of MP-HC and
MP-Metrics in a Quarkus runtime.
Jaeger: This a Docker image that runs the Jaeger server for the collection of trace
loggings.
KeyCloak: This is a Docker image that runs a KeyCloak 6.0.0 server instance.
WorldClock: This is an external service on the web that exposes an endpoint for
the current date-time.
Web: This is an HTML/CSS/Bootstrap frontend that accesses the Svcs1, Svcs2,
and KeyCloak deployments running in a Quarkus runtime.

For more information on the Quarkus runtime, visit the https:/ /
quarkus. io/ website.

Running the sample application
The sample application is designed to be run from four different shells, so let's organize
them into four shell windows, as shown here:

Docker Shell Web Shell
Svcs1 Shell Svcs2 Shell

In each shell, run the commands as outlined in the correspondingly named sections that
follow.

The Docker shell commands
A common way to provide preconfigured servers/services is to use a Docker image that
contains the service and all of its dependencies. In this example, we use Docker to run
KeyCloak and Jaeger images. If you are not familiar with Docker or do not have the docker
command installed, see the instructions for how to install Docker for your platform
(https://docs.docker. com/ v17. 12/ install/).

https://quarkus.io/
https://quarkus.io/
https://quarkus.io/
https://quarkus.io/
https://quarkus.io/
https://quarkus.io/
https://quarkus.io/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/
https://docs.docker.com/v17.12/install/

A Working Eclipse MicroProfile Code Sample Chapter 8

[147]

This project depends on KeyCloak for the MP-JWT token generation. To launch KeyCloak
in a Docker container, run the following command in your shell:

docker run -d --name keycloak -e KEYCLOAK_USER=admin -e
KEYCLOAK_PASSWORD=admin -p 8180:8180 -v `pwd`/packt-mp-
realm.json:/config/quarkus-packt.json -it jboss/keycloak:6.0.1 -b 0.0.0.0
-Djboss.http.port=8180 -Dkeycloak.migration.action=import
-Dkeycloak.migration.provider=singleFile
-Dkeycloak.migration.file=/config/quarkus-packt.json
-Dkeycloak.migration.strategy=OVERWRITE_EXISTING

This project also depends on Jaeger for the collection of the MP OpenTracing information.
To launch the Jaeger tracing system in a Docker container, run the following command:

docker run -d -e COLLECTOR_ZIPKIN_HTTP_PORT=9411 -p 5775:5775/udp -p
6831:6831/udp -p 6832:6832/udp -p 5778:5778 -p 16686:16686 -p 14268:14268 -
p 9411:9411 jaegertracing/all-in-one:latest

Once you have executed those commands, you can check the status of the Docker image
startup using the docker ps command. Running that will produce something like the
following:

Scotts-iMacPro:Chapter08-mpcodesample starksm$ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
0202385b4076 jaegertracing/all-in-one:latest "/go/bin/all-in-one-
…" 10 seconds ago Up 9 seconds 0.0.0.0:5775->5775/udp,
0.0.0.0:5778->5778/tcp, 0.0.0.0:9411->9411/tcp, 0.0.0.0:14268->14268/tcp,
0.0.0.0:6831-6832->6831-6832/udp, 0.0.0.0:16686->16686/tcp, 14250/tcp
reverent_williamson
68c0b51f78b3 jboss/keycloak:6.0.1
"/opt/jboss/tools/do…" 22 seconds ago Up 21 seconds 8080/tcp,
0.0.0.0:8180->8180/tcp
keycloak

With those images running, we have set up the KeyCloak instance we will use to secure our
microservices using MP-JWT and the Jaeger instance we will use to capture and inspect the
MP-OT traces. Next, we will bring up the first MicroProfile microservice instance.

A Working Eclipse MicroProfile Code Sample Chapter 8

[148]

The Svcs1 shell command
Next, in the Svcs1 Terminal window you were asked to open earlier, navigate to the svcs1
subdirectory of the project and then run the following command to execute the svcs1
image in development mode:

mvn compile quarkus:dev

You will see the following output:

Scotts-iMacPro:svcs1 starksm$ mvn compile quarkus:dev
[INFO] Scanning for projects...
...
20:56:27 INFO [io.quarkus]] (main) Quarkus 0.15.0 started in 2.492s.
Listening on: http://[::]:8081
20:56:27 INFO [io.quarkus]] (main) Installed features: [cdi, jaeger,
resteasy, resteasy-jsonb, security, smallrye-fault-tolerance, smallrye-
health, smallrye-jwt, smallrye-metrics, smallrye-openapi, smallrye-
opentracing, smallrye-rest-client, swagger-ui]

In the output, we see that this instance is listening on the 8081 port for HTTP requests, and
we see various Quarkus features that are installed to support our MicroProfile feature
usage.

The Svcs2 shell command
Next, in the Svcs2 Terminal window you were asked to open earlier, cd to the svcs2
subdirectory of the project and then run the following command to build the svcs2 image:

mvn clean package

Once the build is finished, to run the svcs2 JAR, enter the following command:

 java -jar target/sample-svcs2-runner.jar

You will get the following output:

Scotts-iMacPro:svcs2 starksm$ java -jar target/sample-svcs2-runner.jar
...
20:58:55 INFO [io.quarkus]] (main) Quarkus 0.15.0 started in 0.936s.
Listening on: http://[::]:8082
20:58:55 INFO [io.quarkus]] (main) Installed features: [cdi, jaeger,
resteasy, resteasy-jsonb, security, smallrye-health, smallrye-jwt,
smallrye-metrics, smallrye-opentracing, smallrye-rest-client]

A Working Eclipse MicroProfile Code Sample Chapter 8

[149]

Here, we see that this image is listening on the 8082 port for HTTP requests, and we see the
roughly the same set of Quarkus features as we did in the svcs1 image.

The web shell command
Next, in the web shell Terminal window you were asked to open, clone this project to your
computer, cd to the web subdirectory, and then run the following command to execute the
web application in development mode:

mvn clean package

Once the build is finished, to run the web subproject JAR, enter the following:

java -jar target/sample-web-runner.jar

Once the application is up and running, point your browser to the web application at
http://localhost:8080/ index. html. In the next section, we will go over the web
application details.

Details of the sample application
Let's discuss in detail the various tabs in our application.

The Config tab
The initial view of the application shows the Config tab, as shown in the following
screenshot:

http://localhost:8080/index.html
http://localhost:8080/index.html
http://localhost:8080/index.html
http://localhost:8080/index.html
http://localhost:8080/index.html
http://localhost:8080/index.html
http://localhost:8080/index.html
http://localhost:8080/index.html
http://localhost:8080/index.html

A Working Eclipse MicroProfile Code Sample Chapter 8

[150]

The three links are on the page reference endpoints in the
io.packt.sample.config.ConfigTestController class of the Chapter08-
mpcodesample/svcs1 subproject. Clicking on the various links displays the MP-Config
values. The value displayed in the previous screenshot corresponds to the second link and
the injected.piValue config value. The relevant settings from Chapter08-
mpcodesample/svcs1/src/main/resources/application.properties are shown
here:

MP Config values for ConfigTestController
injected.value=Injected value
injected.piValue=3.1415926532
lookup.value=A Lookup value

Of note here is the override of the default five-digit value set via
the @ConfigProperty(name = "injected.piValue", defaultValue =
"pi5=3.14159") annotation in ConfigTestController to the full 10-digit value of PI as
seen in the previous screenshot.

A Working Eclipse MicroProfile Code Sample Chapter 8

[151]

The Health tab
Clicking on the Health tab of the application displays a page like the following:

The links on the page correspond to the health check endpoints for the svcs1 and svcs2
images. Selecting either shows the health check output from the image. The svcs1 image
health check is composed of the io.packt.sample.health.ServiceHealthCheck and
io.packt.sample.health.CheckDiskspace. Furthermore, ServiceHealthCheck is
just a mock implementation that always returns an up status. The CheckDiskspace health
check procedure looks to a path set using the MP-
Config health.pathToMonitor property and then sets the procedure status to up/down,
based on whether or not the filesystem containing the path has free space greater or equal
to the configured health.freeSpaceThreshold property.

The following snippet from Chapter08-
mpcodesample/svcs1/src/main/resources/application.properties shows the
values that are used to configure CheckDiskspace as found in the code repository:

Diskspace health check properties
health.pathToMonitor=/Users/starksm
health.freeSpaceThreshold=1073741824

A Working Eclipse MicroProfile Code Sample Chapter 8

[152]

Now health.pathToMonitor is unlikely to exist on your system, so the health check
output should be something like the following
where health.pathToMonitor=/tmp/bad-path refers to an invalid path:

{
 "outcome": "DOWN",
 "checks": [
 {
 "name": "diskspace",
 "state": "DOWN",
 "data": {
 "pctFree": 0,
 "path": "/tmp/bad-path",
 "exits": false,
 "freeSpace": 0,
 "usableSpace": 0
 }
 },
 {
 "name": "service-check",
 "state": "UP",
 "data": {
 "hostname": "service.jboss.com",
 "port": 12345,
 "isSecure": true
 }
 }
]
}

The CheckDiskspace code that manages the check is shown here:

@Health
@ApplicationScoped
public class CheckDiskspace implements HealthCheck {
 @Inject
 @ConfigProperty(name = "health.pathToMonitor")
 String pathToMonitor;
 @Inject
 @ConfigProperty(name = "health.freeSpaceThreshold")
 long freeSpaceThreshold;

 @Override
 public HealthCheckResponse call() {
 HealthCheckResponseBuilder builder =
HealthCheckResponse.named("diskspace");
 checkDiskspace(builder);
 return builder.build();

A Working Eclipse MicroProfile Code Sample Chapter 8

[153]

 }

 private void checkDiskspace(HealthCheckResponseBuilder builder) {
 File root = new File(pathToMonitor);
 long usableSpace = root.getUsableSpace();
 long freeSpace = root.getFreeSpace();
 long pctFree = 0;
 if (usableSpace > 0) {
 pctFree = (100 * usableSpace) / freeSpace;
 }
 builder.withData("path", root.getAbsolutePath())
 .withData("exits", root.exists())
 .withData("usableSpace", usableSpace)
 .withData("freeSpace", freeSpace)
 .withData("pctFree", pctFree)
 .state(freeSpace >= freeSpaceThreshold);
 }
}

The checkDiskspace method checks the configured path and validates if its freeSpace is
more than or equal to the configured freeSpace threshold. It then adds a number of data
items to indicate the reason for the health check status. Update the
health.pathToMonitor property to point to a valid path on your system, then rebuild the
svcs1 image and restart it. Alternatively, you could simply run the svcs1 image and
override the health.pathToMonitor property via a system property like this:

mvn compile quarkus:dev -Dhealth.pathToMonitor=/mypath

Do this and then click on the Svcs1 health status link again. This time, you should see an
UP status on the check with information about your selected path included in the reply.

The Metrics tab
The Metrics tab shows the following view containing three links:

A Working Eclipse MicroProfile Code Sample Chapter 8

[154]

The first link accesses the following endpoint in the
io.packt.sample.metric.MetricController class:

@Path("timed")
@Timed(name = "timed-request")
@GET
@Produces(MediaType.TEXT_PLAIN)
public String timedRequest() {
 long start = System.currentTimeMillis();
 // Demo, not production style
 int wait = new Random().nextInt(1000);
 try {
 Thread.sleep(wait);
 } catch (InterruptedException e) {
 // Demo
 e.printStackTrace();
 }
 long end = System.currentTimeMillis();
 long delay = end - start;

 doIncrement();
 long count = getCustomerCount();
 return String.format("MetricController#timedRequest, delay[0-1000]=%d,
 count=%d", delay, count);
}

A Working Eclipse MicroProfile Code Sample Chapter 8

[155]

This annotates the timed path endpoint with an @Timed(name = "timed-request")
annotation. This method uses a random delay between 0-1,000 ms to generate a distribution
of response times. The next link is a direct link to the application-level metric for the
timedRequest() method. The MP-Metrics specification defines the path
as metrics/application/io.packt.sample.metric.MetricController.timed-
request. After a few accesses to the first link to generate a range of response times,
accessing the second link to retrieve the timedRequest() method metric will show
something like the following:

TYPE
application:io_packt_sample_metric_metric_controller_timed_request_rate_per
_second gauge
application:io_packt_sample_metric_metric_controller_timed_request_rate_per
_second 0.4434851530761856
TYPE
application:io_packt_sample_metric_metric_controller_timed_request_one_min_
rate_per_second gauge
application:io_packt_sample_metric_metric_controller_timed_request_one_min_
rate_per_second 0.552026648777594
...
TYPE
application:io_packt_sample_metric_metric_controller_timed_request_seconds
summary
application:io_packt_sample_metric_metric_controller_timed_request_seconds_
count 6.0
application:io_packt_sample_metric_metric_controller_timed_request_seconds{
quantile="0.5"} 0.923901552
...
application:io_packt_sample_metric_metric_controller_timed_request_seconds{
quantile="0.999"} 0.970502841

This is the range of information that the @Timed style of metric generates. The final link
accesses the metrics endpoint that returns all of the metrics available in the image.

The OpenTracing tab
The OpenTracing tab shows the following view with two links:

A Working Eclipse MicroProfile Code Sample Chapter 8

[156]

The first link accesses the following io.packt.sample.tracing.TracedEndpoint
method:

@GET
@Path("/randomDelay")
@Produces(MediaType.TEXT_PLAIN)
@Traced(operationName = "TracedEndpoint#demoRandomDelay")
public String randomDelay() {
 long start = System.currentTimeMillis();
 // 0-5 seconds random sleep
 long sleep = Math.round(Math.random() * 5000);
 try {
 Thread.sleep(sleep);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 long end = System.currentTimeMillis();
 return String.format("TracedEndpoint.randomDelay[0-5000], elapsed=%d",
 (end - start));
}

A Working Eclipse MicroProfile Code Sample Chapter 8

[157]

The method uses a random delay between 0-5,000 ms to generate a range of response times.
It is marked with the MP-OT @Traced(operationName =
"TracedEndpoint#demoRandomDelay") annotation that assigns the
TracedEndpoint#demoRandomDelay name to the trace operation.

The second link opens the Jaeger UI. If you open this link after clicking on the endpoint link
for randomDelay and then navigate to the traces under the QuarkusMPDemo service, you
will see something similar to the following view showing
the TracedEndpoint#demoRandomDelay traces:

A Working Eclipse MicroProfile Code Sample Chapter 8

[158]

Hovering over the various circles in the graph gives the name of the trace. The range of the
response times for the TracedEndpoint#demoRandomDelay method lies within the
0-5,000 ms range as we expect. As you continue through the application links, you can
return to the Jaeger UI to view how the traces are recorded.

The OpenAPI tab
The OpenAPI tab view contains two links and is as shown in the following screenshot:

A Working Eclipse MicroProfile Code Sample Chapter 8

[159]

The first link generates an OpenAPI document, a YAML file that contains descriptions for
all endpoints in the application. This can be fed into other programs or applications capable
of consuming the OpenAPI format. The second link is an example of such an application,
the Swagger UI. Opening that link will bring up a new window similar to the following:

There are three sections in this view of the sample application. The first section is
information that was specified on the JAX-RS application bean via the OpenAPI
annotations, as shown in this code fragment:

@ApplicationPath("/demo1")
@LoginConfig(authMethod = "MP-JWT", realmName = "quarkus-quickstart")
@OpenAPIDefinition(
 info = @Info(
 title = "Quarkus MicroProfile 2.2 Extensions Demo",
 version = "1.0",
 contact = @Contact(
 name = "QUARKUS - COMMUNITY",
 url = "https://quarkus.io/community/",
 email = "quarkus-dev+subscribe@googlegroups.com"),

A Working Eclipse MicroProfile Code Sample Chapter 8

[160]

 license = @License(
 name = "Apache 2.0",
 url = "http://www.apache.org/licenses/LICENSE-2.0.html")
),
 servers = {
 @Server(url = "http://localhost:8080/", description = "demo1
host"),
 @Server(url = "http://localhost:8081/", description = "demo2 host")
 },
 externalDocs = @ExternalDocumentation(url="http://microprofile.io",
description =
 "Eclipse MicroProfile Homepage")
)
public class DemoRestApplication extends Application {
...

Comparing this information to that shown in the Swagger UI shows that all of the
information from the @OpenAPIDefinition annotation has been incorporated into the UI
top section. The next section of the Swagger UI with the time and default subheadings
corresponds to the operation information taken from the application REST endpoint. The
default section corresponds to endpoints that did not include any OpenAPI specification
annotations. There is a default behavior to create an OpenAPI endpoint definition for any
JAX-RS endpoint found in the application.

The time section corresponds to the following
io.packt.sample.restclient.TimeService endpoint code fragment that has included
the @Tag, @ExternalDocumentation, and @Operation MP-OpenAPI annotations:

@GET
@Path("/now")
@Produces(MediaType.APPLICATION_JSON)
@Tag(name = "time", description = "time service methods")
@ExternalDocumentation(description = "Basic World Clock API Home.",
 url = "http://worldclockapi.com/")
@Operation(summary = "Queries the WorldClockApi using the MP-RestClient",
 description = "Uses the WorldClockApi type proxy injected by the
 MP-RestClient to access the worldclockapi.com service")
public Now utc() {
 return clockApi.utc();
}

A Working Eclipse MicroProfile Code Sample Chapter 8

[161]

If you expand the first operation under the time section, you will obtain a view like this:

You can see that the @Tag has defined the time section and its description, and the
@Operation annotation has augmented the operation summary and description sections.
This shows how you can provide more information to consumers of your endpoints using
the MP-OAPI annotations and OpenAPI aware apps like the Swagger UI.

A Working Eclipse MicroProfile Code Sample Chapter 8

[162]

The KeyCloak tab
We'll skip to the KeyCloak tab next because the RestClient and JWT tabs include secured
calls that require a JWT to access the endpoints. When you access the KeyCloak tab for the
first time, it should look like the following:

A Working Eclipse MicroProfile Code Sample Chapter 8

[163]

It will not show any token information, and the status line just below the Refresh checkbox
should indicate (Not Authenticated). Click on the green Login button to bring up the
following Log In screen:

Enter the following for the Username and Password fields, respectively:

packt-mp-book

password

This username and password were created when we started KeyCloak in
Docker and passed in the packt-mp-realm.json file to set up the realm
that was created to support the example in this book.

You should be returned to the KeyCloak tab with a view that now includes Access Token
information. The following screenshot contains a blow-up of the information obtained and
decoded by the KeyCloak JavaScript library used by the application when I ran through the
login process:

A Working Eclipse MicroProfile Code Sample Chapter 8

[164]

A Working Eclipse MicroProfile Code Sample Chapter 8

[165]

This is the JSON content of the MP-JWT compatible token that was generated by the login
action. This token will expire in 300 seconds, but the web app automatically refreshes it
with the KeyCloak server as long as the Refresh checkbox is selected. There are a few
claims of note that the sample application makes use of: the zoneinfo=PST, upn=packt-
mp-book, and groups=["PacktMPUser", ...] claims.

The zoneinfo claim value is used in one of the secured RestClient calls, the upn claim is
used in a few secured calls to identify the caller, and the groups claim provides the roles
that have been assigned to the user and will determine which endpoints secured with the
JAX-RS @RolesAllowed("...") annotations will be accessed using the JWT. We'll look at
these in more detail in the following sections with secured endpoints.

Now that we can access the secured endpoints, let's go to the JWT tab.

The JWT tab
After clicking on the JWT tab, you should see a view similar to the following with two
endpoint links:

The first link makes a request to an unsecured endpoint that will print the name from the
JWT along with the upn claim if it exists.

A Working Eclipse MicroProfile Code Sample Chapter 8

[166]

However, since the web frontend is not providing a JWT for this request, the following will
be displayed in the output section:

Hello[open] user=anonymous, upn=no-upn

Clicking on the second link accesses a secured version of the endpoint that has this code
fragment:

public class JwtEndpoint {
 @Inject
 private JsonWebToken jwt;
 @Inject
 @Claim(standard = Claims.raw_token)
 private ClaimValue<String> jwtString;
 @Inject
 @Claim(standard = Claims.upn)
 private ClaimValue<String> upn;
 @Context
 private SecurityContext context;
...
 @GET
 @Path("/secureHello")
 @Produces(MediaType.TEXT_PLAIN)
 @RolesAllowed("user") // 1
 public String secureHello() {
 String user = jwt == null ? "anonymous" : jwt.getName(); // 2
 String scheme = context.getAuthenticationScheme(); // 3
 boolean isUserInRole = context.isUserInRole("PacktMPUser"); // 4
 return String.format("Hello[secure] user=%s, upn=%s, scheme=%s,
 isUserInRole(PacktMPUser)=%s", user, upn.getValue(),
 scheme, isUserInRole);
 }

Let's discuss the important lines:

The @RolesAllowed("user") annotation indicates that the endpoint is secured1.
and that the caller needs the user role. The JWT groups claim we saw earlier
had this role.
The user is taken from the JWT via the getName() method. As explained in the2.
MP-JWT chapter, this maps to the upn claim in the JWT.
The current security authentication scheme is obtained from the injected3.
SecurityContext.
A programmatic security check of whether the caller has the PacktMPUser role4.
is made. The check will return true as the JWT groups claim we saw earlier had
this role.

A Working Eclipse MicroProfile Code Sample Chapter 8

[167]

This information is combined into a string that is the return value of the secureHello
method. Clicking on the demo1/jwt/secureHello link button produces the following output
string in the response area:

Hello[secure] user=packt-mp-book, upn=packt-mp-book, scheme=MP-JWT,
isUserInRole(PacktMPUser)=true

By using the combination of @RolesAllowed annotations and integration with the MP-
JWT feature, we can see how we can both secure access to our microservice endpoints as
well as introduce application behaviors based on content in the authenticated JWT. Next,
let's return to the RestClient tab.

The RestClient tab
The RestClient tab contains three links, as shown in this view:

The links correspond to endpoints that make use of an external world clock public endpoint
that returns information about the current time when accessed. The following MP-RC
interface has been created to encapsulate the external endpoint:

@RegisterRestClient(baseUri = WorldClockApi.BASE_URL)
public interface WorldClockApi {
 static final String BASE_URL = "http://worldclockapi.com/api/json";

A Working Eclipse MicroProfile Code Sample Chapter 8

[168]

 @GET
 @Path("/utc/now")
 @Produces(MediaType.APPLICATION_JSON)
 Now utc();

 @GET
 @Path("{tz}/now")
 @Produces(MediaType.APPLICATION_JSON)
 Now tz(@PathParam("tz") String tz);
}

The first link accesses the io.packt.sample.restclient.TimeService#utc() method
in the svcs1 image that makes use of this WorldClockApi interface to obtain the current
time in UTC without any use of a JWT. Hitting the first link will produce a string like the
following:

{"currentDateTime":"2019-06-03T02:58Z","dayLightSavingsTime":false,"dayOfTh
eWeek":"Monday","timeZoneName":"UTC","utcOffset":"00:00:00"}

The second link accesses the io.packt.sample.secure.TimeService#userNow()
method in the svcs2 image. This call entails several pieces, so here is a sequence diagram
illustrating the interaction between endpoints involved in the call:

A Working Eclipse MicroProfile Code Sample Chapter 8

[169]

Let's see how this works:

When the Web frontend calls the userNow() endpoint on Svcs2#TimeService,
it includes the current JWT token even though the TimeService endpoint is not
secured. This is because that endpoint will end up calling a secured endpoint to
extract zoneinfo for the caller. The Web frontend properties that declare that
the JWT authorization header should be propagated in calls are shown in the Web
MP-RC configuration.
The Svcs2#TimeService#userNow() endpoint method code is shown in
Svcs2:TimeService. It uses an MP-RC interface defined later in
Svcs2:UserTimeZoneService MP-RC Interface. This MP-RC interface uses
the @RegisterClientHeaders annotation to propagate all of the incoming
client request headers. Svcs2#TimeService#userNow() calls to
the Svcs2#ZoneInfoEndpoint#getSubscriberZoneInfo() method to
determine the caller's time zone.
The Svcs2#ZoneInfoEndpoint#getSubscriberZoneInfo() method is
shown in Svcs2:ZoneInfoEndpoint. This code injects the zoneinfo claim
from the caller JWT and returns that from the getSubscriberZoneInfo()
method, which is secured with
@RolesAllowed("WorldClockSubscriber"). WorldClockSubscriber is a
role we saw in the JWT groups claim.
The Svcs2#TimeService#userNow() method uses zoneinfo to request the
current time in that time zone by using the WorldClockApi MP-RC interface,
passing in zoneinfo as the tz parameter.

So, now, click on the second link button, and you should see a string like the following
displayed in the result output section:

{"currentDateTime":"2019-06-02T21:39-07:00","dayLightSavingsTime":false,"da
yOfTheWeek":"Sunday","timeZoneName":"Pacific Standard
Time","utcOffset":"-07:00:00"}

This time, the currentDateTime value is displayed in the PST time zone and the
timeZoneName matches that.

A Working Eclipse MicroProfile Code Sample Chapter 8

[170]

The Svcs2:UserTimeZoneService MP-RC interface is as follows:

// svcs2/io.packt.sample.secure.UserTimeZoneService
@RegisterRestClient(baseUri = "http://localhost:8081/demo2/secure")
@RegisterClientHeaders
public interface UserTimeZoneService {
 @GET
 @Path("/userTZ")
 @Produces(MediaType.TEXT_PLAIN)
 String getUserTZ();
}

The Svcs2:TimeService endpoint is as follows:

// svcs2/io.packt.sample.secure.TimeService
@Path("/time")
@ApplicationScoped
public class
TimeService {
 @Inject
 @RestClient
 WorldClockApi clockApi;
 @Inject
 @RestClient
 UserTimeZoneService userTimeZone;

 @GET
 @Path("/userNow")
 @Produces(MediaType.APPLICATION_JSON)
 public Now userNow() {
 String tz = userTimeZone.getUserTZ();
 Now userTime = clockApi.tz(tz);
 System.out.printf("TimeService.userNow: %s\n", userTime);
 return userTime;
 }
}

The Svcs2:ZoneInfoEndpoint endpoint is as follows:

// svcs2/io.packt.sample.secure.ZoneInfoEndpoint
@Path("/protected")
@RequestScoped
public class ZoneInfoEndpoint {

 @Inject
 @Claim("zoneinfo")
 private String zoneinfo;
 @Inject

A Working Eclipse MicroProfile Code Sample Chapter 8

[171]

 JsonWebToken jwt;

 @GET
 @Path("/userTZ")
 @RolesAllowed("WorldClockSubscriber")
 @Produces(MediaType.TEXT_PLAIN)
 @Timed
 public String getSubscriberZoneInfo() {
 System.out.printf("Zoneinfo for %s: %s\n", jwt.getName(), zoneinfo);
 return zoneinfo;
 }
}

The Web MP-RC configuration is shown as follows:

This overrides the WorldClockApi baseUri.
io.packt.sample.restclient.WorldClockApi/mp-rest/url=http://worldclockapi.c
om/api/json
Propagate Authentication and OpenTracing headers
org.eclipse.microprofile.rest.client.propagateHeaders=Authorization,X-B3-
TraceId,X-B3-ParentSpanId,X-B3-SpanId,X-B3-Sampled

The io.packt.sample.restclient.WorldClockApi/mp-rest/url property sets the
location of the WorldClockApi MP-RC endpoint to the public URL for the service.
The org.eclipse.microprofile.rest.client.propagateHeaders property tells the
MP-RC feature to automatically propagate any of the indicated incoming headers with the
outgoing calls. This allows the headers that impact the MP-JWT and MP-OT features to
be automatically propagated so that endpoints in the target containers of the outgoing calls
will behave as expected even though the calls involve multiple MicroProfile containers in
separate processes.

We have now looked at each of the MicroProfile features used in the sample application
and have a better understanding of how we can build up a MicroProfile-based application
using microservices and external services to create an application.

A Working Eclipse MicroProfile Code Sample Chapter 8

[172]

Summary
This chapter has walked us through a sample service mesh composed of a web application,
two microservice images using MP features in a new Quarkus implementation, an external
web service, and two Docker-based services. This showed the interplay between the
various MP features and external services you will find in cloud environments, along with
integration with web services external to the local mesh environment. This should give you
a feeling of the steps involved when composing microservices using the MicroProfile APIs
and implementations.

In the next chapter, we will take a look at MicroProfile specifications that are under
development to have an idea of what directions are being explored. While these
specifications are currently outside of the MicroProfile core feature set, they are candidates
for future inclusion, and looking at them will give us an idea of where MicroProfile may be
headed.

Questions
Do the MP-Config settings affect application code, MP feature code, or both?1.
Were you able to update health.pathToMonitor to a valid path and see an2.
updated health status reply?
What does the Svcs2 health status link (http://localhost:8082/health) on3.
the Health tab show as its output? If you stop the KeyCloak Docker image and
click on the link again, does the output change?
What happens if you select the MetricController.timed-request4.
link (http://localhost:8080/metrics/application/io.packt.sample.m
etric.MetricController.timed-request) in the Metrics tab without first
hitting the Timed endpoint link
(http://localhost:8080/demo1/metric/timed) at least once?
Go to the RestClient tab and hit the link, making sure you have a valid JWT.5.
Next, go to the OpenTracing tab and open the Jaeger UI, and pull up the current
traces by clicking the Find Traces button. You should see a QuarkusMPDemo:
GET:io.packt.sample.restclient.TimeService.proxyUserTZ trace. Click
that and inspect the calls. Based on these calls, what is the difference between the
second and third links on the RestClient page?

A Working Eclipse MicroProfile Code Sample Chapter 8

[173]

The Swagger UI allows us to access the endpoints from within the UI. Try6.
accessing the /demo1/time/now endpoint using the Swagger UI. Are there
differences relative to the Web UI of the sample application?
What happens if you log out on the KeyCloak tab and then try to access a7.
secured endpoint or try to access a secured endpoint without logging into
KeyCloak?
The KeyCloak tab has an Access Base64 Token section. What is displayed there8.
when you are logged into KeyCloak? Is there anything you can do with that
content?

Further reading
Going over the code, trying changes, and then interacting with the updated code is a good
way to understand more of the details behind the sample services. The Quarkus
MicroProfile implementation supports live reload features that allow you to make changes
without having to rebuild. For more information on this topic, see Maven Tooling (https:/
/quarkus.io/guides/ maven- tooling. html) on the Quarkus site.

https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html
https://quarkus.io/guides/maven-tooling.html

5
Section 5: A Peek into the

Future
This section covers existing projects that are outside the umbrella, such as candidate APIs,
and discusses how MicroProfile fits into multi-cloud environments.

This section contains the following chapters:

Chapter 9, Reactive Programming and Future Developments
Chapter 10, MicroProfile in Multi-Cloud Environments

9
Reactive Programming and

Future Developments
Event-driven architectures have been around for a long time, and asynchronous method
invocations, message-driven beans, event control logic, and so on are constructs that
developers are familiar with. However, with the popularity and adoption of cloud
resources and on-demand scalability, organizations have a renewed interest in reactive
programming approaches that can exploit serverless and function as service-type
environments. Eclipse MicroProfile also includes specifications related to reactive
programming in projects that currently live outside the Eclipse MicroProfile
umbrella/platform release.

In addition to these, there are also projects in the Eclipse MicroProfile sandbox that the
community is currently discussing, implementing, and evaluating to decide whether or not
they should be promoted to official MicroProfile projects. This chapter will help you learn
about the current MicroProfile specifications related to reactive programming as well as
give you a glimpse into what is already in motion and what is upcoming in relation to the
projects that sit outside the umbrella/platform release and in the MicroProfile sandbox. The
following topics will be covered in this chapter:

An overview of what reactive messaging is
An explanation of the reactive messaging architecture within Eclipse
MicroProfile
A description of the Eclipse MicroProfile specifications related to reactive
programming
Examples of how to use the reactive message specification of Eclipse MicroProfile
An overview of MicroProfile projects/specifications that sit outside the umbrella
or platform release
A description of projects that sit within the Eclipse MicroProfile sandbox
An insight into the current relationship between Eclipse MicroProfile and Jakarta
EE and an analysis of their possible futures

Reactive Programming and Future Developments Chapter 9

[176]

Reactive programming work in Eclipse
MicroProfile
At the time of writing, the reactive-related specifications that are part of Eclipse
MicroProfile are Reactive Streams Operators, Reactive Messaging, and Context
Propagation. Reactive work within the MicroProfile community continues to evolve, and
new specifications may surface in the future as well as newer releases of existing reactive-
related ones.

An overview of Reactive Messaging
The Reactive Manifesto defines the characteristics of reactive systems to including an
asynchronous messaging core that is used to build elastic, resilient systems. This is typically
illustrated via a diagram such as the following:

The idea is that interaction via asynchronous messages promotes resilience, elasticity, and,
in turn, responsiveness.

The MicroProfile Reactive Messaging (MP-RM) specification aims to enable microservice-
based applications with the characteristics of reactive systems via event-driven
microservices. The specification focuses on versatility and is suitable for building different
types of architecture and applications.

Asynchronous interactions with different services and resources can be implemented using
reactive messaging. Typically, asynchronous database drivers can be used in conjunction
with reactive messaging to read and write into a data store in a non-blocking and
asynchronous manner.

https://www.reactivemanifesto.org/

Reactive Programming and Future Developments Chapter 9

[177]

When building microservices, Command Query Responsibility Segregation (CQRS) and
event-sourcing patterns provide an answer to data sharing between microservices (https:/
/martinfowler.com/ bliki/ CQRS. html). Reactive messaging can also be used as the
foundation for CQRS and the event-sourcing mechanism, as these patterns embrace
message-passing as a core communication pattern.

MicroProfile reactive messaging architecture
An application using reactive messaging is composed of CDI beans that consume, produce,
and process messages. The messages can be internal to the application, or can be sent and
received via external message brokers, as illustrated in the following diagram:

This figure shows a Kafka topic publishing messages to a first bean, which does some
processing and publishes it to a second bean, which does its own processing/filtering, and
finally publishes the message as an AMQP topic.

As we will see when we look into MP-RM examples, application beans contain methods
annotated with @Incoming and/or @Outgoing annotations. A method with an @Incoming
annotation consumes messages from a channel. A method with an @Outgoing annotation
publishes messages to a channel. A method with both @Incoming and @Outgoing
annotations is a message processor; it consumes messages from a channel, does some
transformation on them, and publishes messages to another channel.

The architecture makes use of the following concepts:

Channels: An opaque and unique name indicating which source or destination
of messages is used. There are two types of channel:

Internal channels are local to the application. They allow the
implementation of multi-step processing where several beans from
the same application form a processing chain.
External channels are connected to remote brokers or various
message transport layers, such as Apache Kafka, or to an AMQP
broker. These channels are managed by connectors.

https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html

Reactive Programming and Future Developments Chapter 9

[178]

Messages: A logical envelope wrapping a payload. A message is sent to a specific
channel and, when received and processed successfully, is acknowledged.
Connectors: These are extensions managing communication with a specific
transport technology. They are responsible for mapping a specific channel to a
remote sink or source of messages. This mapping is configured in the application
configuration.
Reactive Streams: A potentially infinite stream with operators that can filter and
transform the stream content. The back pressure mechanism of reactive streams
means that a publisher will not send data to a subscriber unless there are
outstanding subscriber requests. This implies that the data flow along the stream
is enabled by the first request for data received by the publisher. MP-RM
depends on the JDK 6-compatible org.reactivestreams Reactive Stream API,
which provides Publisher, Subscriber, Subscription, and Processor
interfaces. For more information, you can check this link: https:/ /www.
reactive- streams. org/ .
Message stream operators: An API for manipulating reactive streams, providing
operators such as map, filter, and flatMap, in a similar fashion to the
java.util.stream API introduced in Java 8. It also provides an SPI for
implementing and providing custom reactive stream engines, allowing
application developers to use whichever engine they see fit.

Message shapes
The MP-RM specification defines a number of supported signature types that beans can use
to define publish and subscriber behaviors. These signatures depend on a few key types
that are outlined in the following list:

org.reactivestreams.Publisher: A Reactive Streams Publisher<T> is a
provider of a potentially unlimited number of sequenced elements, publishing
them according to the demand received from its link subscriber(s).
org.reactivestreams.Subscriber: A Reactive Stream Subscriber<T>
interface that is used to signal demand to Publisher. It provides events for
subscription information, zero or more data events, and error and completion
events.
org.reactivestreams.Processor: This Reactive Stream Processor<T,R>
interface simply extends both Subscriber<T> and Publisher<R>.

https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/

Reactive Programming and Future Developments Chapter 9

[179]

org.eclipse.microprofile.reactive.streams.operators.PublisherBu

ilder: The MP Reactive Streams Operators PublisherBuilder interface allows
you to build up a Reactive Streams Publisher from various sources and apply
operations to transform/filter ultimately published messages.
org.eclipse.microprofile.reactive.streams.operators.ProcessorBu

ilder: The MP Reactive Streams Operators ProcessorBuilder interface allows
you to build up a Reactive Streams Processor from various sources and apply
operations to transform/filter ultimately published messages.
org.eclipse.microprofile.reactive.streams.operators.SubscriberB

uilder: The MP Reactive Streams Operators ProcessorBuilder
interface allows you to build up a Reactive Streams Subscriber from various
sources and apply operations to transform/filter ultimately published messages.
java.util.concurrent.CompletionStage: This JDK concurrent util
package interface defines a stage of computation that is typically asynchronous,
and computes an action or value. CompletionStage can be combined so that a
graph of stages may be executed to produce the final result.
org.eclipse.microprofile.reactive.messaging.Message<T>: An MP-
RM interface that provides a wrapper around the payload of type T and an ack
method to acknowledge receipt of the message.

With these types defined, we can look at the various types of method that produce data by
pushing messages onto outgoing channels that MP-RM supports. The publisher method
types of methods all have an @Outgoing("channel-name") annotation and support
signatures as follows:

Publisher<Message<T>> method()

Publisher<T> method()

PublisherBuilder<Message<T>> method()

PublisherBuilder<T> method()

T method()

CompletionStage<T> method()

Reactive Programming and Future Developments Chapter 9

[180]

Consumer methods all have an @Incoming("channel-name") annotation and support
signatures as follows:

Subscriber<Message<T>> method()

Subscriber<T> method()

SubscriberBuilder<Message<T>>

SubscriberBuilder<T>

void method(Message<T> payload)

void method(T payload)

CompletionStage<?> method(Message<T> payload)

CompletionStage<?> method(T payload)

Methods that both consume and produce data are known as processors, and will have both
an @Incoming("channel-in") and @Outgoing("channel-out") annotation.
Supported signatures are as follows:

Processor<Message<I>, Message<O>> method()

Processor<I, O> method();

ProcessorBuilder<Message<I>, Message<O>>method()

ProcessorBuilder<I, O> method();

Publisher<Message<O>> method(Message<I> msg)

Publisher<O> method(I payload)

PublisherBuilder<Message<O>> method(Message<I> msg)

PublisherBuilder<O> method(I payload)

Message<O> method(Message<I> msg)

O method(I payload)

CompletionStage<Message<O>> method(Message<I> msg)

CompletionStage<O> method(I payload)

Publisher<Message<O>> method(Publisher<Message<I>> pub)

PublisherBuilder<Message<O>>
method(PublisherBuilder<Message<I>> pub)

Publisher<O> method(Publisher<I> pub)

PublisherBuilder<O> method(PublisherBuilder<I> pub)

Now, we will look at some examples of using beans with these signatures to build up
message processing chains.

Reactive Programming and Future Developments Chapter 9

[181]

MicroProfile Reactive Streams operators
Reactive Streams requires more than just plumbing publishers to subscribers. Typically, a
stream needs to be manipulated in some way, such as applying operations including map,
filter, and flatMap. Neither Reactive Streams nor the JDK provide an API for
performing these manipulations. Since users are not meant to implement Reactive Streams
themselves, this means the only way to do these manipulations currently is to depend on a
third-party library providing operators, such as Akka Streams, RxJava, or Reactor.

The MicroProfile Reactive Streams Operators API seeks to fill that gap so that MicroProfile
application developers can manipulate Reactive Streams without bringing in a third-party
dependency. By itself, this API is not useful to MicroProfile, but with the addition of other
Reactive features, such as MicroProfile Reactive Messaging, it is essential.

MicroProfile Context Propagation
This specification, which sits outside the MicroProfile umbrella of platform release, is still
in the proposed or draft state. We will discuss this specification in more detail in the
MicroProfile Future Developments section later in this chapter, but we would like to give you
a high-level introduction here.

The MicroProfile Context Propagation specification introduces APIs for propagating
contexts across units of work that are thread-agnostic. It makes it possible to propagate
context that was traditionally associated with the current thread across various types of
units of work, such as CompletionStage, CompletableFuture,
Function, and Runnable, regardless of which particular thread ends up executing them.

MicroProfile reactive messaging examples
In this section, we will cover some examples of using MP-RM to create CDI beans that
produce and consume messages.

Let's say you want a CDI bean to act as a source of a Message<String> such that
whenever its publishMessage(String) method is called, an MP-RM message is posted
to some MP-RM channel. To do this, we need to define a connector that bridges between
the CDI bean and the MP-RM layer. An example of an incoming message connector that
does this is shown in the following code:

package io.pckt.reactive;

import javax.enterprise.context.ApplicationScoped;

Reactive Programming and Future Developments Chapter 9

[182]

import javax.inject.Inject;

import org.eclipse.microprofile.config.Config;
import org.eclipse.microprofile.reactive.messaging.Message;
import org.eclipse.microprofile.reactive.messaging.spi.Connector;
import
org.eclipse.microprofile.reactive.messaging.spi.IncomingConnectorFactory;
import
org.eclipse.microprofile.reactive.streams.operators.PublisherBuilder;
import
org.eclipse.microprofile.reactive.streams.operators.SubscriberBuilder;

@ApplicationScoped
@Connector(BeanConnector.CONNECTOR_NAME) (1)
public class BeanConnector implements IncomingConnectorFactory (2) {
 public static final String CONNECTOR_NAME = "cdibean";
 @Inject
 BeanSource beanSource; (3)

 public BeanConnector() {
 System.out.printf("BeanConnector.ctor\n");
 }

 @Override
 public PublisherBuilder<? extends Message> getPublisherBuilder(Config
 config) {
 System.out.printf("getPublisherBuilder, config=%s\n", config);
 return beanSource.source(); (4)
 }
}

The @Connector annotation defines this as an MP-RM connector and specifies1.
the name of the connector.
A connector supports either an incoming or outgoing factory, or both. We will2.
only implement the outgoing factory to create a message publisher.
The injected BeanSource is the CDI bean that transforms method invocation into3.
outgoing messages.
We obtain the outgoing PublisherBuilder instance from the4.
BeanSource#source() method. We will look at this code in the next example.

Now, the associated BeanSource is given in the following example code:

package io.packt.reactive;

import java.util.concurrent.CompletableFuture;

Reactive Programming and Future Developments Chapter 9

[183]

import javax.enterprise.context.ApplicationScoped;

import io.reactivex.processors.BehaviorProcessor;
import org.eclipse.microprofile.reactive.messaging.Message;
import
org.eclipse.microprofile.reactive.streams.operators.PublisherBuilder;
import org.eclipse.microprofile.reactive.streams.operators.ReactiveStreams;

@ApplicationScoped
public class BeanSource {
 CompletableFuture<Message<String>> future = new CompletableFuture<>();
 BehaviorProcessor<Message<String>> processor =
 BehaviorProcessor.create(); (1)

 public void publishMessage(String payload) (2){
 System.out.printf("publishMessage, payload=%s\n", payload);
 Message<String> msg = Message.of(payload); (3)
 processor.onNext(msg); (4)
 }
 public void done() {
 future.complete(Message.of("End of transmission"));
 }
 public PublisherBuilder<? extends Message> source() { (5)
 PublisherBuilder<? extends Message> publisherBuilder =
 ReactiveStreams.fromPublisher(processor);
 return publisherBuilder;
 }
}

Let's see how this works:

BehaviorProcessor is a Reactive Streams processor implementation that emits1.
the most recent item it has observed and all subsequent observed items to each
subscriber.

The publishMessage(String) method takes a method invocation2.
This then wraps the incoming payload in an MP-RM3.
This, in turn, passes the message to the BehaviorProcessor so it can pass the4.
message to all subscribers of the channel that will be configured to use the
connector.

So, how would this connector get mapped to an MP-RM channel? We need to configure this
using the MP-Config properties defined by MP-RM. The pattern for setting an incoming
channel connector is as follows:

mp.messaging.incoming.[channel-name].connector=[connector-name]

Reactive Programming and Future Developments Chapter 9

[184]

So, to map an @Incoming("sink") annotated consumer to use the cdibean connector,
you would specify the following:

mp.messaging.incoming.sink.connector=cdibean

With this configuration, any invocation of the BeanSource#publishMessage(String)
method would result in the method argument being sent to all subscribers of the
sink channel.

Now, let's look at an example of a message producer bean method that generates a 100-
second counter stream, as shown in the following example:

package io.packt.reactive;

import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;

import javax.enterprise.context.ApplicationScoped;

import org.eclipse.microprofile.reactive.messaging.Outgoing;
import
org.eclipse.microprofile.reactive.streams.operators.PublisherBuilder;
import org.eclipse.microprofile.reactive.streams.operators.ReactiveStreams;

@ApplicationScoped
public class CounterSource {
 @Outgoing("counter") (1)
 public PublisherBuilder<Integer> nextCount() {
 final AtomicInteger count = new AtomicInteger(0);
 Supplier<Integer> counter = () -> { (2)
 try {
 Thread.sleep(1000);
 } catch (Exception e) {
 }
 return count.incrementAndGet();
 };
 PublisherBuilder<Integer> publisherBuilder =
 ReactiveStreams.generate(counter).limit(100); (3)
 return publisherBuilder;
 }
}

The @Outgoing("counter") annotation indicates that this is a publisher of1.
messages and that the name of the channel is counter.

Reactive Programming and Future Developments Chapter 9

[185]

Here, we wrap a Java concurrency util, Supplier, in PublisherBuilder to2.
create the stream of Integer.
The MP-RM ReactiveStreams utility interface is used to transform the integer3.
stream into PublisherBuild<Integer> and then limits the number of
messages to 100.

An example consumer bean that accepts both counter and sink channel producers shown
previously is given in the following example:

import java.util.ArrayList;
import java.util.List;

import javax.enterprise.context.ApplicationScoped;

import org.eclipse.microprofile.reactive.messaging.Acknowledgment;
import org.eclipse.microprofile.reactive.messaging.Incoming;

@ApplicationScoped
public class TestBean {
 static final List<String> COLLECTOR = new ArrayList<>();

 @Incoming("sink")
 @Acknowledgment(Acknowledgment.Strategy.PRE_PROCESSING)
 public void sink(String input) {
 System.out.printf("TestBean.incoming(sink), input=%s\n", input);
 }

 @Incoming("counter")
 @Acknowledgment(Acknowledgment.Strategy.PRE_PROCESSING)
 public void counted(Integer input) {
 System.out.printf("TestBean.incoming(counter), input=%s\n", input);
 }

}

Here, the sink and counted methods act as simple consumers that accept whatever
messages are sent to the associated @Incoming channels and terminate the processing
chain.

In the next section, we will look at projects that are currently in development as possible
future MicroProfile specifications.

Reactive Programming and Future Developments Chapter 9

[186]

MicroProfile future developments
As mentioned in Chapter 2, Governance and Contributions, new ideas brought to the Eclipse
MicroProfile project are first tried in the MicroProfile sandbox following an
implementation-first approach to innovation. The sandbox exercise gives the opportunity
for the implementor and the community to discuss, analyze, and evaluate how this new
idea fits in with the MicroProfile project. If, at the end of the sandbox exercise, the
community deems that this new idea is worth adding to the project, a specific MicroProfile
sub-project is created for it. The sub-project must issue at least one release before it can be
considered for addition to a MicroProfile umbrella/platform release. At a very high-level,
this is the process that new ideas and future developments follow under the MicroProfile
project.

In the next sections, we will discuss two types of projects those globally that are currently
MicroProfile sub-projects that presebtly sit outside the MicroProfile umbrella/platform
release (think of these as projects that have already graduated out of the MicroProfile
sandbox), and the ones that are still in the MicroProfile sandbox. Lastly, we will discuss the
current relationship between Eclipse MicroProfile and Jakarta EE and how their roadmaps
may or may not meet.

Projects outside the umbrella
In this section, we will cover projects that sit outside the Eclipse MicroProfile umbrella
release, at the time of writing, of course. These are as follows:

Reactive Streams Operators
Reactive Messaging
Long Running Actions
Context Propagation
GraphQL

Reactive Streams Operators and Reactive Messaging projects were already discussed in the
previous sections of this chapter, so in this section we will cover only Long Running
Actions, Context Propagation, and GraphQL.

Reactive Programming and Future Developments Chapter 9

[187]

Long Running Actions
In a loosely-coupled service environment, the motivation behind the Long Running
Actions (LRA) specification is to provide consistent outcomes by business processes
comprised of calls to many microservices without the need to lock data. One way to think
about LRA is as transactions for microservices. Examples of situations when you need LRA
include the following:

Ordering a book online will require the retirement of a book from the inventory,
the processing of a payment, and finally shipping of the book. All these tasks
need to happen atomically, in other words, they need to be processed all
together, in that, if any of the tasks fail, then all tasks must be undone.
Making a flight reservation will require the removal of a seat from the airplane's
list of available seats, the selection and assignment of a specific seat to the
traveler, processing the payment, and the creation of a record locator. Again, all
these tasks have to happen within the same long running action.

Not only do the preceding examples have to happen atomically, but they also have to
generate a result where the data is consistent, even if any of their intermediate steps failed.

The current proposed solution for MicroProfile LRA has taken its inspiration
from the OASIS Web Services Composite Application Framework Technical Committee (https:/ /
www.oasis-open.org/ committees/ tc_ home. php? wg_abbrev= ws-caf), namely, the Web
Services Long Running Action transaction model (https:/ /www. oasis- open. org/ committees/
document.php?document_ id= 12794), but has been updated to be more suited for use in
microservice-based architectures.

For further information on the MicroProfile LRA specification, refer
to https:/ / github. com/ eclipse/ microprofile- lra/ blob/ master/ spec/
src/main/ asciidoc/ microprofile- lra-spec. adoc.

The MicroProfile Long Running Actions specification model includes three main entities:
compensators, a logical coordinator, and a client. A client can explicitly start a new LRA in
two different ways:

Via an annotation, or
Via an API call

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://www.oasis-open.org/committees/document.php?document_id=12794
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc
https://github.com/eclipse/microprofile-lra/blob/master/spec/src/main/asciidoc/microprofile-lra-spec.adoc

Reactive Programming and Future Developments Chapter 9

[188]

Either one creates a new LRA. If a service does something that may need to be later
undone, then the client needs to register a compensator with the LRA. If the client chooses
to close or cancel the LRA, the compensator will undo the work the service performed
within the scope of the LRA or compensate for any uncompleted work.

The following are globally some of the main LRA annotations:

@LRA controls the life cycle of an LRA.
@Compensate indicates that the method should be invoked if the LRA is
canceled.
@Complete indicates that the method should be invoked if the LRA is closed.
@Forget indicates that the method may release any resources that were allocated
for this LRA.
@Leave indicates that this class is no longer interested in this LRA.
@Status reports the status when the annotated method is invoked.

You can use these annotations with JAX-RS and non-JAX-RS methods. In addition, this
specification supports asynchronous and reactive features of JAX-RS, LRA nesting, and
timeouts. Finally, it is worth mentioning that the LRA specification ensures atomicity and
eventual consistency by placing certain requirements on the entities that participate in the
protocol. As a MicroProfile project, the MicroProfile LRA specification, at the time of
writing, is in a proposed or draft state.

Context Propagation
The goal of the MicroProfile Context Propagation specification is to propagate context
across units of work that are thread-agnostic. In a reactive model, the execution of logic
is split into units of work that are chained together to assemble a reactive pipeline. Each
unit of work executes within a context, which is often unpredictable and depends on the
particular reactive engine being used. Some units might run with the context of a thread
awaiting completion, or the context of a previous unit that completed and triggered the
dependent unit, or with no context at all. The MicroProfile Context Propagation
specification makes it possible for thread context propagation to easily be done in a type-
safe manner, keeping boilerplate code to a minimum and allowing for thread context
propagation to be done automatically whenever possible.

Reactive Programming and Future Developments Chapter 9

[189]

For more information about the MicroProfile Context Propagation
specification, please refer
to https://github.com/eclipse/microprofile-context-propaga
tion.

The MicroProfile Context Propagation specification has two implementations:

ManagedExecutor: This provides methods for obtaining managed instances of
CompletableFuture that are backed by the managed executor as the default
asynchronous execution facility and the default mechanism for defining thread
context propagation. The MicroProfile ManagedExecutor builder also
implements the Java SE java.util.concurrent.ExecutorService interface,
using managed threads when asynchronous invocation is required.
ThreadContext: This provides methods for individually contextualizing units of
work such as CompletionStage, CompletionFuture, Runnable, Function,
and Supplier, without tying them to a particular thread execution model and
giving the user fine-grained control over the capture and propagation of thread
context by remaining thread execution-agnostic.

ManagedExecutor and ThreadContext are instantiated via their builder() APIs, which
allows the user to specify a variety of parameter options that can also be configured using
Eclipse MicroProfile Config mechanisms. An example of how to use the ManagedExecutor
builder is as follows:

ManagedExecutor executor = ManagedExecutor.builder()
 .propagated(ThreadContext.APPLICATION)
 .cleared(ThreadContext.ALL_REMAINING)
 .maxAsync(5)
 .build();

An example of how to use the ThreadContext builder is as follows:

ThreadContext threadContext = ThreadContext.builder()
 .propagated(ThreadContext.APPLICATION, ThreadContext.CDI)
 .cleared(ThreadContext.ALL_REMAINING)
 .build();

Lastly, a convenient mechanism for sharing instances across an application is the definition
of CDI producers as application scope, combined with injection.

Reactive Programming and Future Developments Chapter 9

[190]

GraphQL
GraphQL is an open source data query and manipulation language for APIs, and a runtime
for fulfilling queries with existing data. It interprets strings from the client and returns data
in an understandable, predictable, and predefined manner. GraphQL is an alternative to
REST, though not necessarily a replacement. The goal of the MicroProfile GraphQL
specification is to provide a set of APIs to enable users to quickly develop portable
GraphQL-based applications in Java. As a MicroProfile project, the MicroProfile GraphQL
specification is currently, at the time of writing, in a proposed or draft state.

GraphQL is based on a Facebook specification. For more information on
this, please refer to https://graphql.github.io/graphql-spec. A
more general overview of GraphQL can be found on https:/ / graphql.
org/.

GraphQL and REST have many similarities and are both widely used in modern
microservice-based applications.

Differences between GraphQL and REST
 Here are the main differentiating features of GraphQL when compared to REST:

Schema-driven: The schema acts as a contract between the server and its clients.
Single HTTP endpoint: A single endpoint and access to data and operations are
achieved through the query language.
Flexible data retrieval: Enables the client to select data in the response with a
fine level of granularity, thereby avoiding over- or under-fetching data.
Reduction of server requests: The language allows the client to aggregate the
expected data into a single request.
Easier version management: Enables the creation of new data while deprecating
old ones.
Partial results: A result is made up of data and errors. Clients are responsible for
processing the partial results.
Low coupling with HTTP: Unlike REST, GraphQL does not try to make the most
of HTTP semantics. For example, queries can be made using GET or POST
requests. The HTTP result code does not reflect the GraphQL response.

https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/

Reactive Programming and Future Developments Chapter 9

[191]

Challenging authorization handling: An appropriate data access authorization
policy must be defined and implemented to counter the extreme flexibility of the
query language.
Challenging API management: GraphQL API has a single entry point. It may be
necessary to analyze the client request data to ensure that it conforms to
established policies.

GraphQL and databases
GraphQL is not a database technology. Instead, it is a data query and manipulation tool for
APIs and is agnostic to any database or storage technologies. However, it can be used in
front of any backend and is capable of aggregating data from multiple backend data
sources with a single API.

Projects in the sandbox
The MicroProfile Project sandbox is where the community can come up with ideas by
trying out an implementation of features and capabilities to elicit feedback, discussion, and
evaluation from members within the community with the goal of deciding whether or not
the idea should become a new API/specification for the MicroProfile project.

The MicroProfile sandbox is located at https:/ /github. com/ eclipse/
microprofile- sandbox.

Past project proposals that graduated from the sandbox into official MicroProfile projects
were GraphQL and Reactive Streams Operators. At the time of writing, there is only one
proposal project in the sandbox, Boost.

MicroProfile Boost
At the time of writing, the MicroProfile Boost is under community evaluation in the
MicroProfile sandbox. Boost is a Maven plugin that enhances builds for your MicroProfile
applications.

For more information on Boost, go to https:/ /github. com/ eclipse/
microprofile- sandbox/ tree/ master/ proposals/ boost.

https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/boost

Reactive Programming and Future Developments Chapter 9

[192]

Boost defines Maven dependencies, known as boosters, for MicroProfile APIs, for example
mpConfig for MicroProfile Config, as well as for Java EE APIs. In addition, it defines
dependencies for the runtimes that implement the different MicroProfile APIs, for example
openliberty. One more Boost-defined maven dependency specified as a BOM (Bill-of-
Material) indicates the version of the MicroProfile umbrella project to use for the maven
build with respect to the MicroProfile APIs. The BOM contents are managed by the plugin.
As a user of Boost, you include these dependencies in your pom.xml file to ease the build
process of your MicroProfile application.

Eclipse MicroProfile and Jakarta EE
What is the relationship between the Eclipse Jakarta Enterprise Java project and the Eclipse
MicroProfile project? Short answer: it remains to be seen. Long answer: let's begin.

The Eclipse MicroProfile project was initiated to address a lack of progress in the Java EE
specifications under the Java Community Process (JCP).

For more information on the Java Community Process, please visit
https://jcp.org/en/home/index.

It has been over two years since the MicroProfile project moved to the Eclipse Foundation.
Approximately one year later, Oracle announced its intention to move Java EE over to the
Eclipse Foundation and rename it Jakarta EE. The move to Jakarta has been a long drawn-
out process that is still not completely finalized. The negotiations between Oracle and the
Eclipse Foundation resulted in a requirement that future versions of the Jakarta EE
specifications that are updated should require that the associated javax.* package names
of APIs in the specification be changed to use a jakarta.* package.

In the Jakarta Platform development mailing list discussion of how this package migration
should happen, it is clear that there is a desire by some Java EE developers that the Jakarta
and MicroProfile projects should merge in some way. However, in MicroProfile hangout
meetings where the topic has come up, there is a clear undercurrent of desire to maintain
the MicroProfile project as an entity separate from Jakarta. There are suggestions that
MicroProfile could be an incubator-type project that develops new specifications that are
later promoted to Jakarta EE specifications as the need arises; the MicroProfile
Configuration project started this conversion prior to Java EE moving from the JCP. So,
while the configuration project continues to evolve under MicroProfile, it may still also
undergo development under the Jakarta project.

Reactive Programming and Future Developments Chapter 9

[193]

Since the MicroProfile project depends on a few core Jakarta specifications, as these evolve,
the MicroProfile project will likely update its dependencies on the updated specifications in
a future MicroProfile platform version. MicroProfile community participants will be
involved in updating those core specifications as they have a vested interest in their
evolution.

So, while there almost certainly will be some interaction between the MicroProfile and
Jakarta communities, the exact nature of that relationship from a formalized perspective is
still to be determined. It is possible that the Jakarta and MicroProfile projects may share
some procedural roots in the future, or they may simply continue as independent projects
where MicroProfile is a client/consumer of Jakarta EE, and the MicroProfile project may
look to promote projects to Jakarta EE as they are deemed to have matured and/or need
longer-term stabilization under a Jakarta EE profile.

No matter how things end up, both projects can benefit from one another. The benefit that
MicroProfile provides to Jakarta EE is the rapid innovation and proofing of new
microservice APIs that could then be promoted to the Jakarta EE standards. Likewise,
Jakarta EE can serve as a stable, reliable, standards-based platform where MicroProfile APIs
can continue to be used. Customers also benefit from having two projects. Using
terminology from the five stages of technology adoption, the innovators, early adopters,
and those who want to get their hands on the leading edge of microservices specifications,
can choose MicroProfile, while the late majority, laggards, and those who prefer established
standards, can choose Jakarta EE.

Summary
In this chapter, we learned about future developments in the MicroProfile specification
with the Long Running Actions, Context Propagation, and GraphQL projects outside the
umbrella release, and the Boost project that's still in the MicroProfile sandbox. In addition,
you learned about reactive messaging concepts, the MicroProfile reactive messaging
architecture, and how to implement reactive microservices using Eclipse MicroProfile
reactive constructs via code examples. You also gained some knowledge of the background
of each of these projects, their capabilities, annotations, and code examples when
applicable, as well as their current state. Lastly, we presented the relationship between two
similar but different projects: Eclipse MicroProfile and Jakarta EE, and discussed how their
possible relationship could evolve in the future.

In the next chapter, we will learn about Eclipse MicroProfile in multi-cloud environments
and deployments.

Reactive Programming and Future Developments Chapter 9

[194]

Questions
If I have a source of messages, how do I integrate this into my MicroProfile1.
applications?
Which of the existing MicroProfile specifications will MicroProfile Context2.
Propagation best support?
What are the current MicroProfile specifications that support reactive3.
programming?
What are the MicroProfile specifications that currently sit outside the4.
umbrella/platform MicroProfile release?
What is the purpose of having a MicroProfile sandbox?5.
What are the projects that currently sit in the MicroProfile sandbox?6.
What is the current relationship between Eclipse MicroProfile and Jakarta EE?7.
What will the future relationship between Eclipse MicroProfile and Jakarta EE8.
look like?

Further reading
For MicroProfile reactive messaging, the http:/ /reactivex. io/ site provides
motivation, tutorials, language bindings, and more.
A good starting point for GraphQL is the https:/ /graphql. org/ site, which
provides more background on the motivation behind it, as well as many
resources for exploring how to put it to use.

http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/

10
Using MicroProfile in Multi-

Cloud Environments
Microservices and microservices architectures are ideal development approaches for cloud
and multi-cloud environments, including hybrid cloud deployments, where your
application comprises on-premise logic as well as logic that runs in the cloud. Eclipse
MicroProfile is a specification that optimizes Java for microservices architecture and thus
provides constructs so that you can implement microservices in Java and the cloud. These
topics will help you to understand why Eclipse MicroProfile is ideal for developing
applications in hybrid and multi-cloud environments, and what you must take into
consideration when using it in these types of deployments.

In this chapter, we will discuss the following topics:

How Eclipse MicroProfile facilitates cloud-native application development
How Eclipse MicroProfile relates to cloud-native and container-native
application development
The relationship between Eclipse MicroProfile and the 12-factor app
How Eclipse MicroProfile can be used in serverless and Function-as-a-Service
(FaaS) environments
Eight steps to guide your journey to cloud-native applications and how Eclipse
MicroProfile can help at each step
Considerations when using Eclipse MicroProfile to develop applications that
span across clouds
When to run Eclipse MicroProfile on bare-metal machines versus virtual
machines (VMs) versus containers
What to consider when running Eclipse MicroProfile microservices in hybrid
cloud applications

Using MicroProfile in Multi-Cloud Environments Chapter 10

[196]

What challenges to be aware of when running Eclipse MicroProfile OpenTracing
in a multi-cloud deployment
What to consider when using Eclipse MicroProfile in a service mesh

Using Eclipse MicroProfile for cloud-native
application development
What is a cloud-native application? Typically, a definition for cloud-native entails the
following characteristics:

Designed as loosely coupled services, such as microservices
Loosely coupled services that interact via language-independent communication
protocols, which allow microservices to be implemented in different
programming languages and frameworks
Lightweight containers that can scale up and down on-demand or via resource
utilization metrics
Managed through Agile DevOps processes, with each microservice of a cloud-
native application going through an independent life cycle that's managed
through an Agile process using continuous integration/continuous delivery
(CI/CD) pipelines

However, Eclipse MicroProfile's goal is to optimize Java for microservice architectures, so
does it make it suitable for cloud-native application development? What about container-
native development? What is the relationship between microservices, cloud-native
development, and container-native development? How do these differ or compare? Let's
find out!

Microservices versus cloud native versus
container native
First, let's draw the differences between these three terms with respect to how an
application is developed. As we discussed in Chapter 1, Introduction to Eclipse MicroProfile,
an Enterprise Java microservice has the following features:

It is a microservice written using the Java language.
It can use any Java framework.
It can use any Java API.

Using MicroProfile in Multi-Cloud Environments Chapter 10

[197]

It must be enterprise grade, which means it must have high reliability,
availability, scalability, security, robustness, and performance.
It must fulfill the characteristics of a microservice, all of which are listed at
https:// martinfowler. com/ microservices/ .

By its definition, a microservice does not prescribe specific details of the underlying
platform on which it runs. The microservice definition is about the how, not the specific
product or technology to use when writing a microservice. However, when we talk about
an Enterprise Java microservice, the only functional requirements that are imposed are all,
of course, related to the Java language. This implies that a microservice – or any Enterprise
Java microservice – can run on any underlying platform that will support it, whether this is
on bare-metal machines, virtualized ones, or in cloud or containerized environments. In
fact, microservices and the microservices architecture started being implemented and
deployed by organizations on bare-metal, virtualized, and cloud environments, even before
containers were popularized.

Cloud native is a term that was first coined by Netflix around 2010, and its meaning has
more to do with where and how an application, service, or microservice is developed in the
cloud. Born-on-the-cloud is a term that's evoked by cloud native, but this is a simplistic way
of looking at it. Cloud native encompasses technologies and methodologies on how to
develop an application in the cloud. The Cloud Native Computing Foundation (CNCF) is
part of the non-profit Linux Foundation and serves as the vendor-neutral home for many
open source cloud native technologies. The CNCF defines cloud native as a set of
technologies that permit organizations to run applications in the clouds, whether they are
private, public, or hybrid. These technologies, which include microservices, service meshes,
containers, APIs, immutable infrastructures, and so on, together with rigorous automation,
facilitate systems that are loosely coupled, resilient, observable, and manageable, allow
developers to make impactful changes with minimal effort.

So, cloud native is inclusive of technologies and techniques that permit the building and
running of scalable applications at web scale. Some of these may be containers, automation,
DevOps, microservices, API-driven development, and so on. But do you need containers to
be cloud native? You can create cloud-native applications on virtualized and cloud
environments without the need for containers. However, as the market is now realizing, to
gain even more productivity, operational reliability, and flexibility, containers and
container orchestration are great cloud-native technologies to use. This brings us to the
question, what is container native?

https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/

Using MicroProfile in Multi-Cloud Environments Chapter 10

[198]

Containers and microservices are examples of technologies and approaches that empower
organizations to do cloud-native development. Container-native describes an application
that has been written to take advantage of container technologies, such as Docker, Buildah,
Podman, Kubernetes, and OpenShift. In other words, it's an application that has been
developed and implemented for containers and its rich ecosystem of technologies.

In short, microservices that are developed using containers as their units of deployment
provide one of the best approaches to developing highly distributed systems in the cloud
and on-premises. Likewise, Eclipse MicroProfile provides one of the best approaches when
it comes to developing microservices using Enterprise Java. But what about 12-factor
applications? Can you use Eclipse MicroProfile to develop 12-factor applications?

What about 12-factor applications?
Just like the microservices and microservices architecture definitions, a 12-factor app does
not prescribe the underlying technologies, for example, the programming language,
database, caches, and so on, or frameworks that should be used to implement them. The 12-
factor app is a methodology that's used for implementing applications. These twelve factors
are as follows:

One codebase tracked in revision control, many deploys
Explicitly declare and isolate dependencies
Store config in the environment
Treat backing services as attached resources
Strictly separate build and run stages
Execute the app as one or more stateless processes
Export services via port binding
Scale out via the process model
Maximize robustness with fast startup and graceful shutdown
Keep development, staging, and production as similar as possible
Treat logs as event streams
Run admin/management tasks as one-off processes

Implementing an application using this methodology helps us do the following:

Minimize time and cost for new developers joining the project
Offer portability between execution environments

Using MicroProfile in Multi-Cloud Environments Chapter 10

[199]

Easily deploy the application to cloud platforms
Minimize the differences between development and production
Scale it up without changes

You can read all about the 12 factors at https:/ / 12factor. net.

The 12-factor app is a methodology that a developer can follow while designing and
implementing microservices and applications, independent of the programming language
or framework that's being used to implement them. The framework that a developer can
use to implement microservices using the 12-factor app is Eclipse MicroProfile. The 12-
factor app and Eclipse MicroProfile are not mutually exclusive but really complement each
other.

But what about a methodology for designing and implementing applications that's not the
12-factor app? What about serverless and Function-as-a-Service (FaaS) technologies? How
does Eclipse MicroProfile fit into these newer cloud-native technologies?

What about serverless and FaaS?
Serverless and FaaS cloud-native technologies have been experiencing steady interest and
growth in the market, as evidenced by offerings from all the major cloud providers, that is,
AWS Lambda, Azure Functions, Oracle Functions, and Google Cloud Functions. In an era
where organizations are increasingly using the cloud for development and production
workloads, and compute and memory costs are operational expenses that need to be
tracked and monitored, FaaS is attractive because it abstracts compute and memory
management away from the user, who is then able to focus on developing business logic,
thereby becoming a lot more productive than ever before.

With FaaS, developers don't need to set up VMs and memory, install software on them, or
manage software versions, updates, and patches. This is all hidden away from the user in a
FaaS, which typically charges per invocation and execution time. Developers can dedicate
their time to writing just the logic that each call to a FaaS will execute. Each function should
start up fast, be short-lived (no long-running logic should be executed in a FaaS), and do
one task well, which is very similar to what a microservice does. Therefore, a microservice
approach can be used for implementing functions for a FaaS.

https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net

Using MicroProfile in Multi-Cloud Environments Chapter 10

[200]

Most –if not all – market FaaS offerings support Java. As such, developers can write the
function bodies in one of the many implementations of Eclipse MicroProfile, which are all
in Java. The ease of use and rich functionality of Eclipse MicroProfile, combined with the
simplicity of a FaaS platform, can greatly improve the ability of developers to deliver value
to the business faster. In addition, a technology such as Quarkus, which implements Eclipse
MicroProfile, uses low amounts of memory, and has fast start up times, is an ideal runtime
for a FaaS.

Now that we have discussed how Eclipse MicroProfile is well suited for cloud-native
application development as well as serverless and FaaS environments, let's discuss how
Eclipse MicroProfile can help organizations on the path to cloud-native application
development.

Cloud-native application development
There are two complementary aspects or components to cloud-native application
development: application services and infrastructure services. Application services speed
up the development of the business logic of a cloud-native application, and infrastructure
services speed up its delivery and deployment. These two aspects are complementary and
integral to cloud-native application development. You cannot have one without the other.
They are essentially the yin and the yang of cloud-native application development, as
depicted by the following diagram:

Using MicroProfile in Multi-Cloud Environments Chapter 10

[201]

As we mentioned earlier in this chapter, cloud-native application development is an
approach to building and running applications that takes full advantage of the cloud
computing model, which is based on four key tenets:

A service-based architecture (miniservices, microservices, SOA services, and so
on)
An API-driven approach for inter-service communication
An underlying infrastructure that's based on containers
DevOps processes

The following diagram depicts the four key tenets of cloud-native application development:

As shown in the previous diagram, the architecture and communication aspects are related
to the development concerns of cloud-native applications, and the infrastructure and the
process aspects are related to their delivery/deployment.

Organizations who are on their journey to adopting cloud-native application development
can benefit from eight steps, as described by the e-Book titled The path to cloud-native
applications: 8 steps to guide your journey.

To obtain the e-Book The path to cloud-native applications: 8 steps to guide
your journey, please refer to https:/ / www.redhat. com/ en/resources/
path- to- cloud- native- applications- ebook.

https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook
https://www.redhat.com/en/resources/path-to-cloud-native-applications-ebook

Using MicroProfile in Multi-Cloud Environments Chapter 10

[202]

Let's discuss how Eclipse MicroProfile can play a role in these eight steps:

Evolve the DevOps culture and practices: "Take advantage of new technology, faster1.
approaches, and tighter collaboration by embracing the principles and cultural values of
DevOps and organizing your organization around those values." Although this is an
organizational and process-related step, Eclipse MicroProfile, as a specification
for microservices, can be a good fit for this adaptation of culture and process
because microservices, due to their characteristics, closely support DevOps
processes.
Speed up existing applications using fast monoliths: "Accelerate existing2.
applications by migrating to a modern, container-based platform – and break up
monolithic applications into microservices or miniservices for additional efficiency gains."
Eclipse MicroProfile can be of great help when breaking up your monolith into
microservices. As you identify bounded contexts in your monolith, consider
using Eclipse MicroProfile to implement each of the microservices that
implement the logic of each bounded context.
Use application services to speed up development: "Speed up software3.
development with reusability. Cloud-native application services are ready-to-use
developer tools. However, these reusable components must be optimized and integrated
into the underlying cloud-native infrastructure to maximize their benefits." An In-
Memory Data Grid (IMDG) and Messaging Brokers are application services that
help speed up the development of business logic. A microservice, developed
using Eclipse MicroProfile, can leverage these application services by invoking
them from within its method bodies. Eclipse MicroProfile does not impose any
kind of restriction when integrating to application services, such as an IMDG or a
Messaging Broker.
Choose the right tool for the right task: "Use a container-based application platform4.
that supports the right mix of frameworks, languages, and architectures – and can be
tailored to your specific business application need." Eclipse MicroProfile is one of the
tools that a developer can use when choosing the right tool for the right task. For
example, Red Hat Application Runtimes is a collection of runtimes and tools,
which includes Eclipse MicroProfile, Node.js, Spring Boot, and Vertex.
Provide developers with a self-service, on-demand infrastructure: "Use5.
containers and container orchestration technologies to simplify access to the underlying
infrastructure, give control and visibility to IT operations teams, and provide robust
application life cycle management across various infrastructure environments, such as
data centers, private clouds, and public clouds." The microservices you develop with
Eclipse MicroProfile can be deployed to one or more containers. By easily
managing these containers and your microservices architecture, which is running
on them, you can accelerate your development cycles to deliver value to
the business faster.

Using MicroProfile in Multi-Cloud Environments Chapter 10

[203]

Automate IT to accelerate application delivery: "Create automation sandboxes in6.
order to learn about the automation language and process, establish collaborative dialog
across organizations for defining service requirements, create self-service catalogs that
empower users and speed delivery, and use metering, monitoring, and chargeback policies
and processes." Eclipse MicroProfile provides capabilities for metrics, fault
tolerance, and health checks, all of which can be used as input to the IT
automation processes.
Implement continuous delivery and advanced deployment7.
techniques: "Accelerate the delivery of your cloud-native applications with automated
delivery, CI/CD pipelines, rolling blue/green and canary deployments, and A/B testing."
The use of microservices in combination with CI/CD can facilitate advanced
deployment techniques. For example, you can introduce a MicroProfile-based
microservice with new functionality as part of a blue/green or canary
deployment into production and switch all of the traffic to it once you have
proven that the new functionality works as expected.
Evolve a more modular architecture: "Choose a modular design that makes sense for8.
your specific needs, using microservices, a monolith-first approach, or miniservices – or a
combination." For this step, you can use Eclipse MicroProfile to develop
microservices for new applications or as you break specific bounded contexts of
your monolith into microservices.

Now that we have discussed how Eclipse MicroProfile facilitates cloud-native application
development and how it can help in each of the eight steps to guide you in your journey to
cloud-native applications, let's turn to the topic of running MicroProfile-based applications
across clouds.

Developing and running MicroProfile
applications across clouds
What features does MicroProfile provide to support development across clouds?
Microservices and support for language-agnostic communication based on HTTP REST API
are two of the main features that are supported. In addition, MicroProfile Config supports
the integration of cloud environment variables that define integration with the cloud
environment. MicroProfile Health Check supports integration with the cloud
environment health checks. MicroProfile Metrics and MicroProfile OpenTracing support
integration with the DevOps monitoring tasks. Finally, MicroProfile fault tolerance
supports fallback and recovery behaviors between the independent microservices.

Using MicroProfile in Multi-Cloud Environments Chapter 10

[204]

Eclipse MicroProfile provides capabilities that allow for the development of microservices
and applications across clouds. But what about the underlying cloud compute resources
that are being used? Does it matter if a MicroProfile-based application is running on bare-
metal machines, VMs, or containers? We will discuss that now.

Bare-metal machines versus VMs versus
containers
The decision of whether to run a MicroProfile-based microservice or application on bare-
metal machines, VMs, or containers depends on the specific requirements of your
application. In fact, the determination of what type of underlying cloud compute resource
rests squarely on your application needs and not the framework being used for its
development, that is, Eclipse MicroProfile. For example, if your application or microservice
requires real or near-real-time response times, then you'd most likely favor a bare-metal or
container (running on bare-metal) deployment. This decision would be made independent
of the framework you are using to write your business logic, whether that be Eclipse
MicroProfile or another one.

Since Eclipse MicroProfile supports microservices and language-agnostic communication
based on HTTP REST, your inter-microservice communication is unaffected by the type of
underlying compute on which your microservices are running; for example, you could
have a microservice running on a VM communicating via REST with another microservice
running on a bare-metal machine. But what if your application consists of microservices
running on-premises and another running on the cloud, also known as a hybrid cloud
application? What considerations do you need to have in mind?

Considerations when using MicroProfile in a
hybrid cloud deployment
A hybrid cloud application comprises on-premises logic as well as on-cloud logic. In other
words, if part of your application logic runs on-premises and part of it runs in the cloud,
you effectively have a hybrid cloud application. When using Eclipse MicroProfile in this
type of deployment, here are the things you need to consider:

Configuration of communication routes between the cloud environment and the
on-premises environment needs to be done using whatever DNS support the
cloud environment supports

Using MicroProfile in Multi-Cloud Environments Chapter 10

[205]

Configuration of MicroProfile OpenTracing to enable the capture of tracing
across cloud environments
Monitoring of the split MicroProfile Metrics information across cloud
environments
Setting up CI tasks to target the appropriate cloud environment in order to
maintain the correct microservices

Out of the preceding list, MicroProfile OpenTracing presents challenges that are unique.
These will be discussed in the following section.

Challenges when using MicroProfile OpenTracing
in a multi-cloud deployment
Distributed tracing in a multi-cloud environment can be challenging. We want to fulfill the
same objective that we would with a single cloud environment, that is, to visualize the
single end-to-end trace associated with a request as it passes through services within and
across each cloud, but may face complications when dealing with different context
propagation formats and storage of the tracing data in different formats per cloud.

The first challenge is to ensure that a trace continues across different cloud environments.
This is a problem because, at the time of writing this book, there is not a widely adopted or
standardized trace context format. Usually, each tracing system uses different headers and
formats to propagate the tracing context. For instance, Zipkin uses B3 propagation, Jaeger
uses a ber-trace-id header, Amazon X-Ray uses X-Amzn-Trace-Id, and Google uses X-
Cloud-Trace-Context. Therefore, if a request has to be traced across heterogenous
tracing systems, each time it leaves or enters a different environment, the trace context has
to be converted. This can usually be done by configuring a tracer with a custom injector or
extractor implementation. However, this is currently beyond the scope of the MicroProfile
OpenTracing project. In the future, the trace context format might be standardized under
the W3C Trace Context project (https:/ /www. w3.org/ TR/ trace- context/).

The second challenge, even in a homogenous tracing environment, is to visualize tracing
data from multi-cloud environments. This can be problematic because tracing data in each
cloud might be stored in different databases or in different formats. This can be overcome
by replicating the data to a single unified storage or sending missing tracing data between
systems on-demand with the appropriate data format adjustments.

Next, we will discuss the challenges of using Eclipse MicroProfile in a service mesh, such as
Istio.

https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/

Using MicroProfile in Multi-Cloud Environments Chapter 10

[206]

Considerations when using Eclipse MicroProfile
in a service mesh
Service meshes such as Istio or LinkerD offer services at the platform level on top of
Kubernetes in the areas of discovery, routing, and fault tolerance. Some of those services
can also be found in MicroProfile. When you deploy a MicroProfile application into such a
service mesh, you need to consider whether you want to use the version from MicroProfile
or the one from the mesh.

The MicroProfile feature that is most likely affected here is fault tolerance, especially the
retry logic.

Retry
Retry in fault tolerance lets you retry a request to another service in case the first request
fails (see Chapter 3, MicroProfile Config and Fault Tolerance, for more information). Now,
consider that you have the following code:

@Retry (maxRetries = 3)
void aMethod() {
 callBackend();
}

Although this tells Istio to retry 5 times, you may end up with 15 retries (Istio will retry 5
times for each of the 3 retries in your code before it returns an error) before aMethod finally
ends with an error. You may consider turning off the retries in code, as changes to the
number of retries in Istio can be made on the fly without the need to restart a pod.

Fallback
On the other hand, Istio does not have a fallback policy for when all the retries fail – it is not
possible to have Istio call another version of your workload. When you annotate the
preceding code with the @Fallback annotation, it is possible to execute another action in
case the original call fails:

@Fallback(fallbackMethod = "fallbackForA")
@Retry (maxRetries = 3)
string aMethod() {
 callBackend();
}

Using MicroProfile in Multi-Cloud Environments Chapter 10

[207]

void String fallbackForA() {
 return "A cached string";
}

In this case, the fallbackForA fallback method will be called once all the retries from Istio,
times those from MicroProfile, have been exhausted. If you remove the @Retry annotation
from the preceding example, the fallback method is called when the Istio retries have been
exhausted.

Fault injection in the service mesh
Istio lets you inject faults into the results pretty easily. This sounds counterproductive at the
start, but can be a very nice way of testing that you get the fault tolerance handling
right. The following VirtualService for Istio defines such fault injection:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: fault-injection-service
spec:
 hosts:
 - myTarget
 http:
 - route:
 - destination:
 host: myTarget
 fault:
 abort:
 httpStatus: 404
 percent: 20
 delay:
 percent: 50
 fixedDelay: 200ms

Istio will hear for calls to the destination host, myTarget, and send a 404 response for 20%
of the calls instead of the real response code. On top of this, it will delay every other
response by 200 milliseconds.

Conclusion
MicroProfile defines primitives in the area of fault tolerance that can also be provided by
other means, such as in a service mesh. If this is the case for you, you have to consider
which one to activate. Activating both may result in unexpected behavior.

Using MicroProfile in Multi-Cloud Environments Chapter 10

[208]

Summary
In this chapter, you have learned how Eclipse MicroProfile facilitates cloud-native
application development, regardless of whether it is a hybrid cloud or multi-cloud
application. We also discussed the relationship between microservices, cloud-native
development, and container-native development, and how microservices running on
containers are an ideal option for cloud-native development. You also learned how Eclipse
MicroProfile relates to the 12-factor app, as well as serverless and FaaS environments.

We covered the eight steps to guide your journey into cloud-native applications and how
Eclipse MicroProfile can help at each step. In addition, we discussed what you need to
consider when using Eclipse MicroProfile for applications that span across clouds, when to
run Eclipse MicroProfile on bare-metal machines versus VMs versus containers, what to
consider when running Eclipse MicroProfile microservices in hybrid cloud applications, the
challenges to be aware of when running Eclipse MicroProfile OpenTracing in a multi-cloud
deployment, and finally what to consider when using Eclipse MicroProfile in a service
mesh.

Throughout this book, we've covered the origins of MicroProfile, a specification for Java
microservices, and the history behind how it came into being. We introduced the open
source project, its mission, governance, benefits, how to contribute to it, and the life cycle of
its sub-projects. We then delved into each of the MicroProfile APIs/sub-projects that make
up the umbrella/platform release, as well as the sub-projects outside the umbrella release.

We also covered the current implementations of MicroProfile in the market, including
Quarkus, and showed you how to "quark" a generated MicroProfile project by the
MicroProfile Starter. We discussed the Conference Application, a community sample
project that demonstrates the interoperability of MicroProfile across different vendor
implementations. We also provided code examples throughout for reference and discussion
purposes, and also provided a fully working project with source code that implemented all
the MicroProfile APIs that you can freely access, download, compile, and reuse in your
development efforts and to get jump-started with MicroProfile. Later, we discussed the
reactive functionality offered by MicroProfile and its future developments, such as sub-
projects in the pipeline and in the MicroProfile sandbox, as well as its likely future
relationship with Jakarta EE.

Using MicroProfile in Multi-Cloud Environments Chapter 10

[209]

Lastly, we went over how MicroProfile-based applications and microservices are a good fit
for implementing solutions in containers, the cloud, and serverless/FaaS deployments.
Whether you are new to Java microservices or an experienced Java developer, you can use
all the knowledge you have gained from this book to start developing microservices that
are based on this new and innovative community-driven specification for the creation of
observable, scalable, secure, and highly available hybrid and multi-cloud applications so
that you can deliver value to your business faster.

Questions
How does Eclipse MicroProfile facilitate cloud-native application development?1.
What are the two complementary concerns of cloud-native application2.
development? How does Eclipse MicroProfile fit into these concerns?
What are the four key tenets of cloud-native application development? How does3.
Eclipse MicroProfile relate to these?
How does Eclipse MicroProfile contribute to each of the eight steps to guide your4.
journey through cloud-native applications?
How does Eclipse MicroProfile relate to the 12-factor app?5.
How can Eclipse MicroProfile facilitate serverless and FaaS environments?6.
What should you consider when implementing and running Eclipse MicroProfile7.
across clouds?
What are the challenges when using Eclipse MicroProfile OpenTracing in a8.
multi-cloud deployment?
What should you consider when using Eclipse MicroProfile in a service mesh?9.

Assessments

Chapter 1
An enterprise Java microservice has the following features:1.

It is written using the Java language.
It can use any Java framework.
It can use any Java APIs.
It must be enterprise-grade: reliable, available, scalable, secure, robust,
and performant.
It must fulfill the characteristics of microservice architectures as listed
at https:/ /martinfowler. com/ microservices/ , which are as follows:

Componentization via services
Organized around business capabilities
Products not projects
Smart endpoints and dumb pipes
Decentralized governance
Decentralized data management
Infrastructure automation
Design for failure
Evolutionary design

The terms digital economy and digital transformation describe the convergence2.
of four different forces that are changing the needs of businesses: mobile, cloud,
IoT, and open source.
Businesses need to adapt to the new demands of the digital economy. Not only3.
do they have to create, run, and support traditional-style applications, but also
such applications that need to conform to the new demands of the digital
economy. They have to support both waterfall and DevOps processes, hybrid
cloud infrastructures, and SOA and microservice architectures.

https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/

Assessments

[211]

At the time of writing, and according to the TIOBI index and others, Java is the #14.
or #2 most popular language for programming at organizations. With an
estimated more than 10 million Java programmers worldwide, Java is still very
relevant and important to companies, vendors, and the community at large, who
are all heavily invested in Java and are hungry to continue to leverage the
expertise and experience of their Java developers.
The slowdown in innovation in the Java EE specification was one of the5.
key reasons that caused MicroProfile to come into existence.
At the time of writing this book, Eclipse MicroProfile consists of 12 APIs (or sub-6.
projects) under the project umbrella. Four of them come from Java EE APIs (CDI,
JSON-P, JAX-RS, and JSON-B), and the remaining eight are created by the
MicroProfile project. The 12 APIs are as follows:

Config
Fault Tolerance
JWT Propagation
Health Check
Metrics
Open API
Open Tracing
REST Client
CDI (a specification from Java EE)
JSON-P (a specification from Java EE)
JAX-RS (a specification from Java EE)
JSON-B (a specification from Java EE)

Health Check and Metrics in Eclipse MicroProfile 3.0 introduced the first7.
breaking changes.
In addition to the general benefits of microservices, Eclipse MicroProfile8.
particularly provides:

The benefits of community collaboration: Eclipse MicroProfile is an
open source project run by the community. No single vendor controls
or determines the evolution and maturation of the specification.
Freedom of choice of implementation: Many vendors have
implemented Eclipse MicroProfile as part of their software stacks and
customers have the option to select whichever implementation is the
most appropriate for their environment.

Assessments

[212]

Faster evolution: Since Eclipse MicroProfile is an innovation project,
new and improved functionality is delivered frequently in time-boxed
releases. This allows developers and customers to have these at their
fingertips and start leveraging updates in their projects sooner rather
than later.
Based on decades of experience: Not only do the specifications subject-
matter experts bring with them a vast wealth of experience, expertise,
and knowledge, but Eclipse MicroProfile also leverages market-tested
and production-proven capabilities in the Java EE APIs that it builds
upon, offering maturity to developers.
Familiarity with enterprise Java: Eclipse MicroProfile builds upon
familiar enterprise Java constructs, making it easy for enterprise Java
developers to adopt.
No re-training needed: Your existing enterprise Java developers will
find Eclipse MicroProfile to be a natural progression of their expertise.
There is little to no learning curve. They will be able to leverage their
skills.
Interoperability: The different MicroProfile implementations are
interoperable with each other, providing users the freedom to select
one or combine many MicroProfile implementations in an application.
Multiple ways to use the APIs: Eclipse MicroProfile APIs provide easy-
to-use interfaces, such as CDI-based, programmatic, command-line,
and file-based (configuration-based).
Thorough set of artifacts: Each API includes a Test Compatibility Kit
(TCK), Javadoc, PDF document for download, API Maven artifact
coordinates, Git tags, and downloads (specification and source code).

Chapter 2
The main means of communication for the MicroProfile community is their1.
Google Group, called Eclipse MicroProfile. You can post a message to it by sending
an email to microprofile@googlegroups.com. Another great way to get your
voice heard is by attending the bi-weekly MicroProfile Hangout call. Please check
the MicroProfile Google Calendar to find out the exact date, time, and meeting
information to join.
The MicroProfile Hangout call serves as a forum where topics brought up by2.
attendees are discussed and decisions are made, from sub-project statuses and
release contents to release dates and sub-project creation approvals.

Assessments

[213]

A sub-project (MicroProfile specification) lead or a group of leads are usually3.
subject-matter experts in the topic at hand and are designated to serve as its
facilitators. One important aspect to note is that the lead or leads of a working
group (or sub-project for that matter) do not single-handedly shape or determine
the evolution of a specification or what capabilities are included or not. They do
not have veto power or a final say in the decisions made with respect to their
specification. By sharing of ideas, expertise, past experiences, analysis of existing
technologies, and best practices, the working group will come up with their best
proposal possible.
After the community discusses a new idea at length in the MicroProfile Google4.
Group and/or the MicroProfile Hangout call, and it's been determined that it is
worth furthering the debate, the community decides to create a working group
for this new idea, and a lead or a group of leads, who are usually subject-matter
experts in the topic at hand, are designated to serve as its facilitators. The
working group will establish a recurring weekly or bi-weekly meeting, which is
entered in the MicroProfile Google Calendar. Anybody can attend these
meetings, but there's usually a core number of people that serve as the subject-
matter experts that participate in these calls. After a few meetings, the working
group decides whether or not the new functionality should be brought up to the
MicroProfile Hangout call to discuss its proposal to become a MicroProfile sub-
project. At the MicroProfile Hangout call, a sub-project proposal may be rejected
or accepted. The acceptance of a sub-project means that it effectively addresses a
need that enriches the specification towards its goal of optimizing enterprise Java
for a microservices architecture. It is at this moment, that a sub-project becomes
an official MicroProfile API. Once the sub-project becomes a MicroProfile API,
then a determination is made whether it should be a standalone sub-project
outside the umbrella or a sub-project included in the umbrella of MicroProfile
releases.
Eclipse MicroProfile follows a time-boxed rapid incremental release schedule,5.
which is public and listed on the Eclipse Foundation MicroProfile Project page.
Major Eclipse MicroProfile releases, for example, from 1.x to 2.x, include major
updates to MicroProfile APIs that may introduce breaking changes. Minor
releases, that is, point releases, include small API updates or new APIs that make
the predetermined release date. Currently, the MicroProfile community release
windows are in February, June, and November of every year for minor and/or
major releases.

Assessments

[214]

The sandbox repository, which is a GitHub repository, is for incubating ideas and6.
code examples that will eventually turn into a separate repository, contributing
to a new specification. Anybody can open pull requests and use the sandbox for
experimentation of new ideas and to share code and documentation, which can
be used as part of the discussion in the community Google Group, the
MicroProfile Hangout calls, or working group meetings.
The reason for releasing a sub-project outside the MicroProfile umbrella/platform7.
release is that it gives the community and end users an opportunity to utilize and
test the new technology, hence proving it in real applications before it can be
considered for inclusion to the umbrella. The MicroProfile project encourages
that a new sub-project specification at least release one version outside the
umbrella before its inclusion in the umbrella/platform release can be considered.
The MicroProfile Starter is a samples source code generator, whose goal is to aid8.
developers to quickly get started using and exploiting the capabilities of the
community-driven open source specification for enterprise Java microservices,
Eclipse MicroProfile, by generating working sample code in a Maven project.

Chapter 3
The default sources of configuration properties are environment variables, Java1.
system properties, and the META-INF/microprofile-config.properties file.
You can provide a custom ConfigSource implementation that maps property2.
names to values in the custom source.
Strings are not the only supported types, as MP-Config supports type conversion3.
via a pluggable SPI, and provides several default conversions by default.
You do not need to provide a value for an injected property if you have given a4.
defaultValue, or have injected the property as an Optional<?> value.
Complex property types can be handled using a custom Converter<?>5.
implementation that takes a string and returns the complex type.
When an annotation is specified at the class level, it applies to all methods of the6.
class.
False: there are currently six MP-FT policies.7.
No: we can configure @Retry to only retry for certain exception types.8.
No: most MP-FT annotation settings can be overridden with MP-Config9.
properties that the MP-FT specification defines.

Assessments

[215]

Chapter 4
The wire format is not usable in environments that only look at the HTTP status1.
code to determine the HC status.
An MP-HC response can include arbitrary properties using2.
the HealthCheckResponse#withData() methods.
You can create a HealthCheck implementation for each service, and the MP-HC3.
feature will logically combine them to produce an overall status response.
A JWT is a JSON Web Token, a JSON-formatted object that has a header,4.
payload, and signature component.
A claim is a single named value from the JWT payload. 5.
Anything that can be represented in JSON can be used in a JWT.6.
The single main step in authenticating a JWT is validating that it is signed via the7.
RS256 algorithm based on a configured public key.
One could look at claims other that the groups claim to make checks to add8.
application specific authorization decisions.

Chapter 5
Distributed tracing provides a micro-view of what happened with a request from1.
end to end, whereas metrics expose scalar numerical values from a single
component.
Distributed tracing systems usually provide features such as the root cause and2.
critical path analysis, contextualized logging, distributed context propagation,
and service dependency diagrams.
Automatically traced are JAX-RS server endpoints and MicroProfile Rest clients.3.
Some vendors can also automatically trace JAX-RS clients.
These tags are added for every REST request http.method,4.
http.status_code, http.url, component, span.kind and error if an
exception is thrown.
Explicit instrumentation can be added by using @Traced annotation or injecting5.
the tracer and creating spans manually.
There are three scopes: base for server metrics that apply to all runtimes, vendor6.
for metrics that are server-specific, and application for application metrics.
The latter can be supplied in the user's application.

Assessments

[216]

The output format is determined by REST content negotiation: if the7.
Accepts Header is set to application/json, the JSON form is emitted. If the
header is either text/plain or omitted, then the OpenMetrics format is
returned.
Application metrics can either be supplied via annotations (@Counted) or8.
programmatically.

Chapter 6
No: by default, any REST endpoint will have OpenAPI generated for it even if1.
none of the MP OpenAPI annotations are used.
Yes: you can choose to use as many or as few of the MP OpenAPI annotations as2.
you wish, to represent the REST endpoints in your microservice.
The notion is that you predefine the expected contracts of your endpoints and3.
encapsulate these in OpenAPI documents that can be bundled with your
microservice.
No: you just need to know what the formats of the request and response are, and4.
then you can create your own type-safe interface.
By using the .../mp-rest/url MP Config setting, where ... is either the5.
interface name of the type-safe interface or the configKey passed to
the RegisterRestClient annotation.
One way is to register a ClientHeadersFactory implementation. Another is to6.
list the headers in
the org.eclipse.microprofile.rest.client.propagateHeaders MP-
Config property.

Chapter 7
At the time of writing, there are eight implementations of Eclipse MicroProfile,1.
all of which are open source. They are Thorntail, Open Liberty, Apache TomEE,
Payara Micro, Hammock, KumuluzEE, Launcher, and Helidon. There is also
Quarkus as the latest entrant.

Assessments

[217]

An application server is a container for Java EE applications. An application2.
assembler only includes the functionality that the application needs, instead of
requiring an application server to be up and running, and commonly generates
an executable JAR. An application assembler can generate an uberjar, a self-
contained runnable JAR file, or an application jar with its runtime dependencies
located in a sub-directory, for example, an accompanying lib or libs sub-
directory.
Here is a short description of the current eight MicroProfile implementations on3.
the market:

Red Hat are the sponsors of the open source Thorntail project, which1.
implements the Eclipse MicroProfile specification. Thorntail is an
application assembler that packages just the server runtime
components required by your application, and creates a runnable JAR.
IBM are the sponsors of the open source Open Liberty project, which2.
implements the Eclipse MicroProfile specification. Open Liberty is the
upstream open source project for the IBM WebSphere Liberty
application server. Open Liberty is an application server capable of
generating an uberjar, which contains your application with an
embedded Open Liberty server inside it.
Tomitribe are the sponsors of the open source TomEE project, which3.
implements the Eclipse MicroProfile specification. Apache TomEE is
assembled from Apache Tomcat with added Java EE features. TomEE
is Java EE 6 Web Profile certified. As its GitHub describes it, "Apache
TomEE is a lightweight, yet powerful, JavaEE Application server with feature
rich tooling."
Payara are the sponsors of the open source Payara Micro project,4.
which implements the Eclipse MicroProfile specification. Payara
Server is based on the open source GlassFish application server.
Payara Micro is based on Payara Server, albeit a slimmed down
version of it. As their website describes, "Payara Micro is the
microservices-ready version of Payara Server."
Hammock is an opinionated Microservices framework for building5.
applications. It is a CDI-based framework, meaning that it is on a CDI
container with CDI-based beans that run in it. John Ament is the
sponsor of the open source Hammock project, which implements the
Eclipse MicroProfile specification. Similar to Thorntail, Hammock is an
application assembler that generates uberjars.

Assessments

[218]

Sunesis are the sponsors of the open source KumuluzEE project, which6.
implements the Eclipse MicroProfile specification. KumuluzEE defines
itself as a lightweight microservices framework using Java and Java EE
technologies and as an Eclipse MicroProfile compliant implementation.
KumuluzEE allows you to bootstrap a Java EE application using just
the components that you need, and it also supports the packing and
running microservices as uberjars.
Fujitsu are the sponsors of the open source Launcher project, which7.
implements the Eclipse MicroProfile specification. Launcher leverages
an embedded GlassFish server and Apache Geronimo MicroProfile
API implementations.
Oracle Corporation are the sponsors of the open source8.
Helidon project, which implements the Eclipse MicroProfile
specification. Helidon is a set of Java libraries that enable a developer
to write microservices. It leverages Netty, a non-blocking I/O client
server framework. Helidon is an application assembler in that it
generates application jars.

Quarkus is a Kubernetes-native Java stack with the capability of compiling to4.
native machine language or building to HotSpot (OpenJDK). When using
Quarkus, your application consumes very little memory, has great performance
that allows it to handle a high throughput of invocations, and has a very fast
startup time (boot plus first response time), making Quarkus a great runtime for
containers, cloud-native, and serverless deployments. Quarkus also provides an
extension framework that allows the "quarking" of libraries and projects to make
them seamlessly work under Quarkus.
Compile-time boot is the process that Quarkus applies to a Java application at5.
build time to resolve all the dynamic aspects of the language that usually happen
at runtime. For example, classpath scanning, reflection, configuration parsing,
gathering metadata, and building runtime model are steps that Quarkus
performs at build time.
Containers, cloud, serverless, and Function-as-a-Service deployments.6.
Quarkus provides an extension framework that allows the quarking of libraries7.
and projects to make them seamlessly work under Quarkus.
The Conference Application showcases the integration and interoperability of8.
different MicroProfile vendor implementations.

Assessments

[219]

Chapter 8
We have seen many examples throughout the book and this chapter that MP-1.
Config settings affect both application and MP features.
As long as the path you supplied exists, you should be able to see a successful2.
heath check with information about that path.
It shows information about the KeyCloak server. If KeyCloak is stopped, it shows3.
an error.
It will not be found because the metric is generated lazily on first request.4.
TBD.5.
For unsecured methods the behavior should be similar. For secured methods, the6.
Swagger-UI invocations fail.
You will see error responses.7.
That is the encoded MP-JWT. You can use that in a curl command as the8.
Authorization: Bearer ... header value where you would replace the ... with the
string found in the Access Base64 Token field.

Chapter 9
MicroProfile Reactive Messaging is a great option for handling message sources1.
via connectors, especially in situations where the source is generating messages
at a high frequency and an asynchronous approach to processing them makes the
most sense.
MicroProfile Context Propagation best supports MicroProfile Reactive Streams2.
Operators and MicroProfile Reactive Messaging in that it allows the propagation
of context that was traditionally associated with the current thread across various
types of units of work.
The current specifications that support reactive programming are MicroProfile3.
Reactive Streams Operators, MicroProfile Reactive Messaging, and MicroProfile
Context Propagation.
At the time of writing, the projects that sit outside the Eclipse MicroProfile4.
umbrella release are as follows:

Reactive Streams Operators
Reactive Messaging
Long Running Actions
Context Propagation
GraphQL

Assessments

[220]

The MicroProfile Project sandbox is a place where the community can ideate by5.
trying out an implementation of features and capabilities to elicit feedback,
discussion, and evaluation from the community with the goal of deciding
whether or not the idea should become a new API/specification for the
MicroProfile project.
At the time of writing, the MicroProfile Boost is under community evaluation in6.
the MicroProfile sandbox.
At the time of writing, Eclipse MicroProfile and Jakarta EE are two separate7.
projects.
Although MicroProfile leverages four APIs from Java EE (and will most likely8.
update these to their Jakarta EE equivalents when Jakarta EE is released), it does
have thirteen APIs of its own. MicroProfile has an aggressive release cadence and
is an engine of constant innovation that does not promise backward
compatibility, whereas Jakarta EE has a slower release cadence with a backward
compatibility promise. There are other differences between these two projects
that warrant their continued autonomous development. However, their
relationship is to be determined in the future.

Chapter 10
Eclipse MicroProfile provide one of the best approaches to develop microservices1.
using enterprise Java. In turn, microservices developed using containers as their
unit of deployment provide one of the best approaches to develop highly
distributed systems in the cloud and on-premises, that is, cloud-native
applications. Hence, MicroProfile-based microservices facilitate the development
of cloud-native applications.
There are two complementary aspects or components to cloud-native application2.
development: application services and infrastructure services. Application
services speed up the development of business logic of a cloud-native
application, and infrastructure services speed up its delivery and deployment.
These two aspects are complementary and integral to cloud-native application
development.

Assessments

[221]

Cloud-native application development is an approach to building and running3.
applications that takes full advantage of the cloud computing model based upon
four key tenets: a) A service-based architecture (miniservices, microservices, SOA
services, and so on); b) An API-driven approach for inter-service communication;
c) An underlying infrastructure that’s based on containers; and d) DevOps
processes. The architecture and communication aspects are related to the
development concerns of cloud-native applications, and the infrastructure and
the process aspects are related to their delivery/deployment. Eclipse MicroProfile
relates to these tenets in that it supports the implementation of microservices that
can be part of an architecture that uses containers as its underlying
infrastructure, where microservices communicate with each other using their
APIs, and are developed using DevOps processes.
This is how Eclipse MicroProfile contributes to each of the eight steps to guide4.
your journey to cloud-native applications:

Evolve a DevOps culture and practices: "Take advantage of new1.
technology, faster approaches, and tighter collaboration by embracing
the principles and cultural values of DevOps and organizing your
organization around those values." Although this is an organizational
and process-related step, Eclipse MicroProfile, as a specification for
microservices, can be a good fit for this adaptation of culture and
process because microservices, due to its characteristics, closely
support DevOps processes.
Speed up existing applications using fast monoliths: "Accelerate2.
existing applications by migrating to a modern, container-based
platform—and break up monolithic applications into microservices or
miniservices for additional efficiency gains." Eclipse MicroProfile can
be of great help when breaking up your monolith into microservices.
As you identify bounded contexts in your monolith, consider using
Eclipse MicroProfile to implement each of the microservices that
implement the logic of each bounded context.

Assessments

[222]

Use application services to speed up development: "Speed software3.
development with reusability. Cloud-native application services are
ready-to-use developer tools. However, these reusable components
must be optimized and integrated into the underlying cloud-native
infrastructure to maximize benefits." An In-Memory-Data-Grid
(IMDG) and a messaging broker are application services that help
speed up the development of business logic. A microservice,
developed using Eclipse MicroProfile, can leverage these application
services by invoking them from within its method bodies. Eclipse
MicroProfile does not impose any kind of restriction when integrating
to application services, such as an IMDG or a messaging broker.
Choose the right tool for the right task: "Use a container-based4.
application platform that supports the right mix of frameworks,
languages, and architectures—and can be tailored to your specific
business application need." Eclipse MicroProfile is one of these tools
that a developer can use when choosing the right tool for the right
task. For example, Red Hat Application Runtimes is a collection of
runtimes and tools, which includes Eclipse MicroProfile, Node.js,
Spring Boot, and Vert.x.
Provide developers with self-service on-demand infrastructure: "Use5.
containers and container orchestration technology to simplify access to
underlying infrastructure, give control and visibility to IT operations
teams, and provide robust application life-cycle management across
various infrastructure environments, such as datacenters, private
clouds, and public clouds." The microservices you develop with
Eclipse MicroProfile can be deployed to one or more containers. By
easily managing these containers and your microservices architecture
running on them, you can accelerate your development cycles to
deliver value to the business faster.
Automate IT to accelerate application delivery: "Create automation6.
sandboxes for learning the automation language and process, establish
collaborative dialog across organizations for defining service
requirements, create self-service catalogs that empower users and
speed delivery, and use metering, monitoring, and chargeback policies
and processes." Eclipse MicroProfile provides capabilities for metrics,
fault tolerance, and health checks, all of which can be used as input to
the IT automation processes.

Assessments

[223]

Implement continuous delivery and advanced deployment techniques:7.
"Accelerate the delivery of your cloud-native applications with
automated delivery, continuous integration/continuous delivery
(CI/CD) pipelines, rolling blue/green and canary deployments, and
A/B testing." The use of microservices in combination with CI/CD can
facilitate advanced deployment techniques. For example, you can
introduce a MicroProfile-based microservice with new functionality as
part of a blue/green or canary deployment intro production, and
switch all of the traffic to it once you have proven that the new
functionality works as expected.
Evolve a more modular architecture: "Choose a modular design that8.
makes sense for your specific needs, using microservices, a monolith-
first approach, or miniservices—or a combination." For this step, you
can use Eclipse MicroProfile to develop microservices for new
applications or as you break specific bounded contexts of your
monolith into microservices.

Twelve-factor app is a methodology that a developer can follow while designing5.
and implementing microservices and applications, independent of the
programming language or framework being used to implement them. The
framework that a developer can use to implement microservices using twelve-
factor app is Eclipse MicroProfile. Twelve-factor app and Eclipse MicroProfile are
not mutually exclusive, but are complementary to each other.
Most, if not all, market FaaS offerings support Java. As such, developers can6.
write the function bodies in one of the many implementations of Eclipse
MicroProfile, which are all in Java. The ease of use and rich functionality of
Eclipse MicroProfile combined with the simplicity of a FaaS platform can greatly
improve the ability of developers to deliver value to the business faster. In
addition, a technology such as Quarkus, which implements Eclipse MicroProfile,
uses low amounts of memory and has fast startup times, is an ideal runtime for a
FaaS.
When using Eclipse MicroProfile in a deployment across clouds, here are the7.
things you need to consider:

Configuration of communication routes between the cloud
environment and the on-premise environment needs to be done using
whatever DNS support the cloud environment provides.
Configuration of MicroProfile OpenTracing to enable capture of
tracing across the cloud environments.

Assessments

[224]

Monitoring of the split MicroProfile Metrics information across the
cloud environments
Setting up the CI tasks to target the appropriate cloud environment
to maintain the correct microservices.

Distributed tracing in a multi-cloud environment can be challenging. We want to8.
fulfill the same objective as with a single cloud environment to visualize the
single end-to-end trace associated with a request as it passes through services
within and across each cloud, but may face complications when dealing with
different context propagation formats and storage of the tracing data in different
formats per cloud. The first challenge is to ensure that a trace continues across
different cloud environments. This is a problem because, at the time of writing,
there is not widely adopted or standardized trace context format. Usually, each
tracing system uses different headers and formats to propagate the tracing
context. The second challenge, even in a homogenous tracing environment, is to
visualize tracing data from multi-cloud environments. This can be problematic
because tracing data in each cloud might be stored in different databases or in
different formats. This can be overcome by replicating the data to a single unified
storage or sending missing tracing data between systems on-demand with the
appropriate data format adjustments.
Service Meshes such as Istio or LinkerD offer services at the platform level on top9.
of Kubernetes in the areas of discovery, routing, and fault tolerance. Some of
those services can also be found in MicroProfile. When you deploy a MicroProfile
application into such a Service Mesh, you need to consider if you want to use the
version from MicroProfile or the one from the Mesh. The MicroProfile feature
that is most likely affected here is Fault Tolerance, and especially the retry logic.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Microservices with Java - Third Edition
Sourabh Sharma

ISBN: 978-1-78953-072-8

Use domain-driven designs to develop and implement microservices
Understand how to implement microservices using Spring Boot
Explore service orchestration and distributed transactions using the Sagas
Discover interprocess communication using REpresentational State Transfer
(REST) and events
Gain knowledge of how to implement and design reactive microservices
Deploy and test various microservices

https://www.packtpub.com/application-development/mastering-microservices-java-third-edition

Other Books You May Enjoy

[226]

Microservice Patterns and Best Practices
Vinicius Feitosa Pacheco

ISBN: 978-1-78847-403-0

How to break monolithic application into microservices
Implement caching strategies, CQRS and event sourcing, and circuit breaker
patterns
Incorporate different microservice design patterns, such as shared data,
aggregator, proxy, and chained
Utilize consolidate testing patterns such as integration, signature, and monkey
tests
Secure microservices with JWT, API gateway, and single sign on
Deploy microservices with continuous integration or delivery, Blue-Green
deployment

https://www.packtpub.com/application-development/microservice-patterns-and-best-practices

Other Books You May Enjoy

[227]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

1
12-factor applications 198, 199

A
Apache TomEE
 about 127
 reference link 127
Application Programming Interfaces (APIs) 7
application-specific metrics, tags
 about 84
 per-metrics tags 85
 server-wide tags 84
application-specific metrics, types
 about 82
 gauges 82
 histogram 83
 meter 83
 timers 84
application-specific metrics
 supplying 81, 82
automatic instrumentation, MicroProfile

OpenTracing
 JAX-RS 92
 MicroProfile Rest Client 93

B
bare-metal
 versus containers 204
 versus virtual machines 204
bi-weekly meeting, MicroProfile Google Calendar
 reference link 20
bimodal IT
 URL 11
boosters 192

C
Cloud Native Computing Foundation (CNCF) 197
cloud-native application development
 reference link 201
cloud-native application
 developing, with Eclipse MicroProfile 196
 development 200, 201, 202, 203
 versus container-native 196, 197, 198
 versus Eclipse MicroProfile 196, 197, 198
clouds
 MicroProfile applications, developing across 203
 MicroProfile applications, running across 203
Command Query Responsibility Segregation

(CQRS) 177
compile-time boot 133
ConcurrentGauge 88
conference application 139, 140, 141
ConfigSources
 reference link 100
container-native
 versus cloud-native application 196, 197, 198
 versus Eclipse MicroProfile 196, 197, 198
containers
 versus bare-metal 204
 versus virtual machines 204
Context Propagation 188, 189
Contexts and Dependency Injection (CDI) 35, 93
continuous integration/continuous delivery (CI/CD)

pipelines
 using 196

D
databases
 with GraphQL 191
digital economy 9, 10
digital transformation 9

[229]

Docker shell commands
 about 146, 147
 URL 146

E
Eclipse MicroProfile Config, configuration sources
 custom ConfigSources 39, 40
 default ConfigSources 38
 providing 38
Eclipse MicroProfile Config, converters
 automatic converters 41
 built-in converters 41
 custom converters 42, 43
Eclipse MicroProfile Config
 about 34, 35
 converters, using for high-level configuration 41
Eclipse MicroProfile Fault Tolerance
 @Asynchronous policy 45
 @Bulkhead policy 47, 48
 @CircuitBreaker policy 47
 @Fallback policy 46
 @Retry policy 45
 @Timeout policy 47
 about 43, 44
 in action 44
 specification 44
 with MicroProfile config 48
Eclipse MicroProfile Google Group, debate
 reference link 20
Eclipse MicroProfile implementations
 about 123, 124
 Apache TomEE 127
 code, generating for 131, 132
 Hammock 128, 129
 Helidon 130
 KumuluzEE 129
 Launcher 130
 Open Liberty 126, 127
 Payara Micro 127, 128
 projects 132
 Thorntail 124, 125
Eclipse MicroProfile, APIs
 CDI 14
 JAX-RS 14
 JSON-B 14

 JSON-P 14
 MicroProfile Config 14
 MicroProfile Fault Tolerance 14
 MicroProfile Health Check 14
 MicroProfile JWT Propagation 14
 MicroProfile Metrics 14
 MicroProfile Open API 14
 MicroProfile Open Tracing 14
 MicroProfile REST Client 14
Eclipse MicroProfile, bi-weekly Hangout

meeting/call
 URL 20
Eclipse MicroProfile
 about 11, 12, 13, 15, 192, 193
 advantages 16, 17
 governance 19, 20, 21, 22
 reactive programming 176
 sandbox approaches 22
 specifications 23
 umbrella releases, versus projects outside

umbrella 23, 24
 URL 12
 using, for cloud-native application development

196

 using, in hybrid cloud deployment considerations
204

 using, in service mesh considerations 206
 value proposition 16
 versions 15
 versus cloud-native application 196, 197, 198
 versus container-native 196, 197, 198
Enterprise Java microservices
 about 7
 advantages, reference link 16
 features 8
explicit instrumentation, MicroProfile OpenTracing
 @Traced annotation 94
 tracer injection 94, 95

F
Fault Tolerance
 conclusion 207
 fallback 206
 injecting, in Service Mesh 207
 retry 206

[230]

Function-as-a-Service (FaaS) 195, 199

G
generated MicroProfile project
 making, quark 134, 135, 136, 137, 138
GraphQL
 about 190
 versus REST 190
 with databases 191

H
Hammock
 about 128, 129
 reference link 128
Health Check Java API
 about 54, 55, 56, 58
 Health Check response messages, modifying 59
 human operators 58, 59
 integrating, with cloud platform 58
health checks
 handling, with MicroProfile 52
Helidon
 about 130
 reference link 130
hybrid cloud deployment
 consideration, when using Eclipse MicroProfile

204

I
IANA JWT Assignments
 URL 60
In-Memory-Data-Grid (IMDG) 202
Internet of Things (IoT) 8, 10
internet scale 9

J
Jaeger
 URL 95
 used, for MicroProfile OpenTracing 95, 96, 97
Jakarta EE 192, 193
Java Community Process (JCP) 11, 192
JSON schema syntax
 URL 53
JSON Web Token (JWT) Propagation

 about 51, 60
 authentication, configuring 68, 69
 samples, running 69, 70, 72, 73, 75
 using, in MicroProfile 60

K
KumuluzEE
 about 129
 reference link 129

L
Launcher
 about 130
 reference link 130
Long Running Actions (LRA) 187, 188

M
MicroProfile 2.0
 reference link 89
MicroProfile applications
 developing, across clouds 203
 running, across clouds 203
MicroProfile Boost 191, 192
MicroProfile Config API
 @ConfigProperty annotation 37
 Config object 36, 37
 configuration, reading 35
 reference link 30
MicroProfile Config integration
 about 111
 configuration keys, simplifying 112
MicroProfile Context Propagation 181
MicroProfile Fault Tolerance API
 reference link 30
MicroProfile Health Check protocol
 about 53, 54
 recommendations 61
MicroProfile interoperability
 conference application 139, 140, 141
MicroProfile JWT (MP-JWT) Propagation 60
MicroProfile Metrics
 about 77, 78
 application-specific metrics, supplying 81, 82
 metadata 78
 retrieving, from server 79, 80

[231]

 retrieving, with Prometheus 85, 86, 87
 specific scopes, accessing 81
MicroProfile OpenAPI annotations
 usage, examples 102, 103
MicroProfile OpenAPI
 annotations 102
 capabilities 99, 100
 configuration 100
 document, generating 101
 filter, using for updates 106, 107
 model, programming 106
MicroProfile OpenTracing
 about 89, 90
 automatic instrumentation 92
 configuration properties 91
 explicit instrumentation 93
 using, in multi-cloud deployment challenges 205
 with Jaeger 95, 96, 97
MicroProfile project committers
 reference link 23
MicroProfile Project page
 URL 22
MicroProfile Project sandbox 191
MicroProfile Reactive Messaging (MP-RM)
 about 176, 178
 architecture 177
 examples 181, 182, 184, 185
 message shapes 178, 180
MicroProfile Reactive Streams Operators 181
MicroProfile REST Client (MP-RC)
 about 112
 async support 118, 119
 capabilities 107
 CDI usage 110, 111
 dealing, with client headers 113, 114
 default providers 116
 endpoint Interface, defining 108, 109
 exception mapping 116, 117
 exception mapping, default 117
 feature registration 115
 programmatic API usage 109, 110
 provider, priority 115
 provider, registration for advanced usage 114,

115

MicroProfile Starter

 about 24, 25, 26, 27, 28, 29, 31
 URL 31
MicroProfile
 developments 186
 JSON Web Token (JWT) Propagation, using 60
 used, for handling health checks 52
MP-JWT API
 high-level description 62, 63, 64
 recommendations, for interoperability 60
 using 64
MP-JWT claims
 requisites 61, 62
MP-Metrics 2.0
 about 87
 ConcurrentGauge 88
 data output format, changes 89
 tags 88, 89
multi-cloud deployment
 challenges, while using MicroProfile

OpenTracing 205
multi-service MicroProfile application
 Config tab 149, 150
 details 149
 Health tab 151, 152, 153
 JWT tab 165, 166, 167
 KeyCloak tab 162, 163, 165
 Metrics tab 153, 154, 155
 OpenAPI tab 158, 159, 160, 161
 OpenTracing tab 155, 157, 158
 RestClient tab 167, 168, 169
 running 146
 sample architecture 145, 146
multi-speed IT 10

O
Open Liberty
 about 126, 127
 reference link 126
OpenID Connect (OIDC)-based
 about 60
 URL 60
OpenTracing project
 about 90, 91
 reference link 90

P
Payara Micro
 about 127, 128
 reference link 128
Plain Old Java Object (POJO) 108
Prometheus
 download link 85
proposals 22

Q
Quarkus runtime
 URL 146
Quarkus
 about 132, 133, 134
 reference link 132, 134

R
Reactive Messaging
 overview 176, 177
reactive programming
 in Eclipse MicroProfile 176
REST
 versus GraphQL 190
Role-Based Access Control (RBAC) 60

S
sample application
 RestClient tab 171
sample code, MP-JWT API
 injection, of JsonWebToken information 65, 66

 injection, of JWT claim values 66, 68
serverless 199
service mesh
 consideration, when using Eclipse MicroProfile

206

Service Provider Interface (SPI) 35
SmallRye
 reference link 126, 132
static OpenAPI files 104, 105
Svcs1 shell command 148
Svcs2 shell command 148
Swagger Editor
 URL 104

T
telemetry 77
Test Compatibility Kit (TCK) 17
Thorntail 124, 125
Thorntail Generator
 reference link 125
time series database (TSDB) 85

V
virtual machines
 versus bare-metal 204
 versus containers 204

W
W3C Trace-Context project
 URL 205
web shell command 149
wire format 53, 54

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: MicroProfile in the Digital Economy
	Chapter 1: Introduction to Eclipse MicroProfile
	Enterprise Java microservices
	Forces that fuel the digital economy
	Multi-speed IT

	Introducing Eclipse MicroProfile
	MicroProfile value proposition
	Summary
	Questions

	Chapter 2: Governance and Contributions
	Current Eclipse MicroProfile governance
	Sandbox approach to open contribution
	Umbrella releases versus projects outside the umbrella

	MicroProfile Starter
	A quick tour of MicroProfile Starter

	Summary
	Questions

	Section 2: MicroProfile's Current Capabilities
	Chapter 3: MicroProfile Config and Fault Tolerance
	Understanding Eclipse MicroProfile Config
	Reading configuration from the MicroProfile Config API
	The Config object
	The @ConfigProperty annotation

	Providing sources of configuration
	Default ConfigSources
	Custom ConfigSources implementations

	Using converters for high-level configuration
	Built-in converters
	Automatic converters
	Custom converters

	Understanding Eclipse MicroProfile Fault Tolerance
	MicroProfile Fault Tolerance in action
	The @Asynchronous policy
	The @Retry policy
	The @Fallback policy
	The @Timeout policy
	The @CircuitBreaker policy
	The @Bulkhead policy
	Tolerance with MicroProfile config

	Summary
	Questions
	Further reading

	Chapter 4: MicroProfile Health Check and JWT Propagation
	Technical requirements
	Understanding health checks and how MicroProfile handles them
	The Health Check protocol and wire format
	The Health Check Java API
	Integration with the cloud platform
	Human operators
	Changes in Health Check response messages

	Using JSON Web Token Propagation in MicroProfile
	Recommendations for interoperability
	Required MP-JWT claims
	The high-level description of the MP-JWT API
	Sample code that uses MP-JWT
	Injection of JsonWebToken information
	Injection of JWT claim values

	Configuring authentication of JWTs
	Running the samples

	Summary
	Questions

	Chapter 5: MicroProfile Metrics and OpenTracing
	MicroProfile Metrics
	Metadata
	Retrieving metrics from the server
	Accessing specific scopes

	Supplying application-specific metrics
	More types of metric
	Gauges
	Meter
	Histograms
	Timers

	Tagging
	Server-wide tags
	Per-metrics tags

	Using Prometheus to retrieve metrics
	New in MP-Metrics 2.0
	Change for counters – introducing ConcurrentGauge
	Tagging
	Changes in data output format

	MicroProfile OpenTracing
	OpenTracing project
	Configuration properties
	Automatic instrumentation
	JAX-RS
	MicroProfile Rest Client

	Explicit instrumentation
	@Traced annotation
	Tracer injection

	Tracing with Jaeger

	Summary
	Questions

	Chapter 6: MicroProfile OpenAPI and Type-Safe REST Client
	Introduction to MicroProfile OpenAPI and its capabilities
	Configuration
	Generating the OpenAPI document
	MicroProfile OpenAPI annotations
	Usage examples

	Static OpenAPI files
	Programming model
	Using a filter for updates

	Introduction to the MicroProfile REST Client and its capabilities
	Defining the endpoint Interface
	MicroProfile REST Client programmatic API usage
	MicroProfile REST Client CDI usage
	MicroProfile Config integration
	Simplifying configuration keys

	Dealing with client headers
	Provider registration for advanced usage
	Provider priority
	Feature registration
	Default providers

	Exception mapping
	Default exception mapping

	Async support

	Summary
	Questions

	Section 3: MicroProfile Implementations and Roadmap
	Chapter 7: MicroProfile Implementations, Quarkus, and Interoperability via the Conference Application
	Current MicroProfile implementations
	Thorntail
	Open Liberty
	Apache TomEE
	Payara Micro
	Hammock
	KumuluzEE
	Launcher
	Helidon
	Generating sample code for the current implementations
	Other projects that implement MicroProfile

	Quarkus
	How to quark a generated MicroProfile project

	MicroProfile interoperability – the conference application
	Summary
	Questions

	Section 4: A Working MicroProfile Example
	Chapter 8: A Working Eclipse MicroProfile Code Sample
	Technical requirements
	Sample architecture of a multiservice MicroProfile application
	Running the sample application
	The Docker shell commands
	The Svcs1 shell command
	The Svcs2 shell command
	The web shell command

	Details of the sample application
	The Config tab
	The Health tab
	The Metrics tab
	The OpenTracing tab
	The OpenAPI tab
	The KeyCloak tab
	The JWT tab
	The RestClient tab

	Summary
	Questions
	Further reading

	Section 5: A Peek into the Future
	Chapter 9: Reactive Programming and Future Developments
	Reactive programming work in Eclipse MicroProfile
	An overview of Reactive Messaging
	MicroProfile reactive messaging architecture
	Message shapes

	MicroProfile Reactive Streams operators
	MicroProfile Context Propagation

	MicroProfile reactive messaging examples

	MicroProfile future developments
	Projects outside the umbrella
	Long Running Actions
	Context Propagation
	GraphQL
	Differences between GraphQL and REST
	GraphQL and databases

	Projects in the sandbox
	MicroProfile Boost

	Eclipse MicroProfile and Jakarta EE

	Summary
	Questions
	Further reading

	Chapter 10: Using MicroProfile in Multi-Cloud Environments
	Using Eclipse MicroProfile for cloud-native application development
	Microservices versus cloud native versus container native
	What about 12-factor applications?
	What about serverless and FaaS?
	Cloud-native application development

	Developing and running MicroProfile applications across clouds
	Bare-metal machines versus VMs versus containers
	Considerations when using MicroProfile in a hybrid cloud deployment
	Challenges when using MicroProfile OpenTracing in a multi-cloud deployment
	Considerations when using Eclipse MicroProfile in a service mesh
	Retry
	Fallback
	Fault injection in the service mesh
	Conclusion

	Summary
	Questions

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	Other Books You May Enjoy
	Index

