Hands-On
Enterprise Java
Microservices with
Eclipse MicroProfile

Cesar Saavedra, Heiko W. Rupp, Jeff Mesnil,
Pavol Loffay, Antoine Sabot-Durand and Scott Stark




Hands-On Enterprise Java
Microservices with Eclipse
MicroProfile

Build and optimize your microservice architecture with Java

Cesar Saavedra

Heiko W. Rupp

Jeff Mesnil

Pavol Loffay

Antoine Sabot-Durand
Scott Stark

BIRMINGHAM - MUMBAI



Hands-On Enterprise Java Microservices
with Eclipse MicroProfile

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Denim Pinto

Content Development Editor: Rohit Kumar Singh
Senior Editor: Afshaan Khan

Technical Editor: Ketan Kamble

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik

Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Alishon Mendonsa

First published: August 2019
Production reference: 1300819
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83864-310-2

www.packt.com


http://www.packt.com

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.


https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Cesar Saavedra has been working in the IT industry since 1990 and holds a master of
science degree in computer science and an MBA. He has worked as a developer, consultant,
technical seller, and technical marketer throughout his career. He currently does technical
product marketing for Red Hat JBoss EAP, Eclipse MicroProfile, Open]DK, Quarkus, and
Jakarta EE. He also manages technical marketing for the runtimes, integration, Business
Process Management (BPM), and rules management portfolio, and works closely with
engineering and product management on thought leadership. Cesar has authored white
papers, e-Books, and blog posts, and is a conference and webinar speaker, giving
presentations to customers and partners.

I would like to thank my wife, Isabelle, and my children, Angeline and Max, for their
unwavering support.

Heiko W. Rupp is an open source enthusiast with more than a decade of experience
working at Red Hat in the area of middleware monitoring and management. In this role, he
has been project lead of the RHQ and Hawkular monitoring systems and has also
contributed to various other projects, including Kiali.

Currently, he is helping to define the next route to be taken by Java microservices with his
work on Eclipse MicroProfile. As such, he is the specification lead of the Eclipse
MicroProfile Metrics effort and is also contributing to other specifications. Heiko has
written the first German book about JBoss AS and one of the first German books on EJB3.
He lives with his family in Stuttgart, Germany.

I would like to thank my family, whose support enables me to work on projects like this
book.



Jeff Mesnil is employed by Red Hat as a senior software engineer and currently works for
JBoss, Red Hat's middleware division, on the WildFly and JBoss EAP application servers.
He is a member of the core team in charge of developing the internals of the application
servers and heads up its messaging subsystem (which provides the J]MS API).

Previously, he contributed to the HornetQ messaging broker that was integrated into
WildFly and EAP.

He is a proponent of open source development and all the code he writes, either
professionally or privately, is available under open source licenses. Nowadays, it is mostly
hosted on GitHub.

He has a keen interest in messaging systems and has written several open source libraries
related to messaging.

Pavol Loffay is senior software engineer at Red Hat. Pavol is working on observability
tools for microservice architectures. He is mostly involved in the tracing domain, where he
is an active committer on the Jaeger and OpenTracing projects. He is also a member of the
OpenTracing Specification Council (OTSC) and a lead for the MicroProfile-OpenTracing
specification. He has authored many blog posts and given presentations at several
conferences. In his free time, Pavol likes to climb mountains and ski steep slopes in the
Alps.

Antoine Sabot-Durand is a Java champion who works for Red Hat, where he leads the Java
EE, now Jakarta EE CDI, spec. He is involved in various projects linked to the CDI
ecosystem, MicroProfile, and Jakarta EE. He is also a member of the Devoxx France
committee. He lives in France with his wife and three children.

Scott Stark began his career in chemical engineering, got steered into parallel computers as
part of his PhD work, and then made software his career, beginning with a stint in finance
on Wall Street. He then got into open source with the fledgling JBoss company, working on
the application server and Java EE. He has worked with microkernel efforts, the IoT,
standards, Jakarta EE, Eclipse MicroProfile, and Quarkus. He lives in the Pacific Northwest
with his wife.

[ would like to thank my wife, Evening, and furry children, Colette and d’Artagnan.



About the reviewers

David R. Heffelfinger is an independent consultant based in the Washington D.C. area. He
is a Java champion, a member of the NetBeans Dream Team, and is a part of the JavaOne
content committee.

He has written several books on Java EE, application servers, NetBeans, and JasperReports.
His previous titles include Java EE 7 Development with NetBeans 8, Java EE 7 with GlassFish 4
Application Server, and JasperReports 3.5 for Java Developers, and others. David has been a
speaker at conferences such as JavaOne and Oracle Code on multiple occasions.

He has also been a speaker at NetBeans Day in San Francisco and Montreal, showcasing
NetBeans features that enhance the development of Java EE applications. You can follow
him on Twitter at @ensode.

Yogesh Prajapati is an engineer with experience of the architecture, design, and
development of scalable and distributed enterprise applications.

He authored the book Java Hibernate Cookbook, published by Packt. He has more than 8
years' experience with different aspects of Java, Spring, and cloud development, such as
REST and microservices, with hands-on experience in technologies/frameworks including
Backbase, Hibernate, AWS Cloud, Google Cloud, Node.js, JavaScript, Angular, MongoDB,
and Docker.

He is currently working as a lead full stack consultant at dotin Inc. — The Personality DNA
Company.

He completed his Master of Computer Applications from Gujarat University. You can
follow Yogesh on his blog — kode12.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.


http://authors.packtpub.com

Table of Contents

Preface

Section 1: MicroProfile in the Digital Economy

Chapter 1: Introduction to Eclipse MicroProfile 7
Enterprise Java microservices 7
Forces that fuel the digital economy 9

Multi-speed IT 10
Introducing Eclipse MicroProfile 11
MicroProfile value proposition 16
Summary 17
Questions 18

Chapter 2: Governance and Contributions 19

Current Eclipse MicroProfile governance 19
Sandbox approach to open contribution 22
Umbrella releases versus projects outside the umbrella 23

MicroProfile Starter 24
A quick tour of MicroProfile Starter 24

Summary 31

Questions 32

Section 2: MicroProfile's Current Capabilities

Chapter 3: MicroProfile Config and Fault Tolerance 34
Understanding Eclipse MicroProfile Config 34

Reading configuration from the MicroProfile Config API 35
The Config object 36
The @ConfigProperty annotation 37

Providing sources of configuration 38
Default ConfigSources 38
Custom ConfigSources implementations 39

Using converters for high-level configuration 40
Built-in converters 41
Automatic converters 41
Custom converters 42

Understanding Eclipse MicroProfile Fault Tolerance 43
MicroProfile Fault Tolerance in action 44

The @Asynchronous policy 45
The @Retry policy 45
The @Fallback policy 46



Table of Contents

The @Timeout policy 47

The @CircuitBreaker policy 47

The @Bulkhead policy 47
Tolerance with MicroProfile config 48
Summary 49
Questions 49
Further reading 50
Chapter 4: MicroProfile Health Check and JWT Propagation 51
Technical requirements 52
Understanding health checks and how MicroProfile handles them 52
The Health Check protocol and wire format 53
The Health Check Java API 54
Integration with the cloud platform 58

Human operators 58
Changes in Health Check response messages 59

Using JSON Web Token Propagation in MicroProfile 59
Recommendations for interoperability 60
Required MP-JWT claims 61

The high-level description of the MP-JWT API 62
Sample code that uses MP-JWT 64

Injection of JsonWebToken information 65

Injection of JWT claim values 66

Configuring authentication of JWTs 68
Running the samples 69
Summary 75
Questions 76
Chapter 5: MicroProfile Metrics and OpenTracing 77
MicroProfile Metrics 77
Metadata 78
Retrieving metrics from the server 79
Accessing specific scopes 81
Supplying application-specific metrics 81
More types of metric 82

Gauges 82

Meter 83

Histograms 83

Timers 84

Tagging 84
Server-wide tags 84

Per-metrics tags 85

Using Prometheus to retrieve metrics 85
New in MP-Metrics 2.0 87
Change for counters — introducing ConcurrentGauge 88
Tagging 88
Changes in data output format 89
MicroProfile OpenTracing 89
OpenTracing project 90

[ii]



Table of Contents

Configuration properties 91
Automatic instrumentation 92
JAX-RS 92
MicroProfile Rest Client 93
Explicit instrumentation 93
@Traced annotation 94
Tracer injection 94
Tracing with Jaeger 95
Summary 98
Questions 98
Chapter 6: MicroProfile OpenAPI and Type-Safe REST Client 99
Introduction to MicroProfile OpenAPI and its capabilities 99
Configuration 100
Generating the OpenAPI document 101
MicroProfile OpenAPI annotations 102
Usage examples 102
Static OpenAPI files 104
Programming model 106
Using a filter for updates 106
Introduction to the MicroProfile REST Client and its capabilities 107
Defining the endpoint Interface 108
MicroProfile REST Client programmatic API usage 109
MicroProfile REST Client CDI usage 110
MicroProfile Config integration 111
Simplifying configuration keys 112
Dealing with client headers 113
Provider registration for advanced usage 114
Provider priority 115
Feature registration 115
Default providers 116
Exception mapping 116
Default exception mapping 117
Async support 118
Summary 119
Questions 120
Section 3: MicroProfile Implementations and
Roadmap
Chapter 7: MicroProfile Implementations, Quarkus, and Interoperability
via the Conference Application 122
Current MicroProfile implementations 123
Thorntail 124
Open Liberty 126
Apache TomEE 127
Payara Micro 127

[ iii]



Table of Contents

Hammock 128
KumuluzEE 129
Launcher 130
Helidon 130
Generating sample code for the current implementations 131
Other projects that implement MicroProfile 132
Quarkus 132
How to quark a generated MicroProfile project 134
MicroProfile interoperability — the conference application 139
Summary 141
Questions 142
Section 4: A Working MicroProfile Example
Chapter 8: A Working Eclipse MicroProfile Code Sample 144
Technical requirements 144
Sample architecture of a multiservice MicroProfile application 145
Running the sample application 146
The Docker shell commands 146
The Svcs1 shell command 148
The Svcs2 shell command 148
The web shell command 149
Details of the sample application 149
The Config tab 149
The Health tab 151
The Metrics tab 153
The OpenTracing tab 155
The OpenAPI tab 158
The KeyCloak tab 162
The JWT tab 165
The RestClient tab 167
Summary 172
Questions 172
Further reading 173
Section 5: A Peek into the Future
Chapter 9: Reactive Programming and Future Developments 175
Reactive programming work in Eclipse MicroProfile 176
An overview of Reactive Messaging 176
MicroProfile reactive messaging architecture 177
Message shapes 178
MicroProfile Reactive Streams operators 181
MicroProfile Context Propagation 181
MicroProfile reactive messaging examples 181
MicroProfile future developments 186
Projects outside the umbrella 186

[iv]



Table of Contents

Long Running Actions 187
Context Propagation 188
GraphQL 190
Differences between GraphQL and REST 190
GraphQL and databases 191
Projects in the sandbox 191
MicroProfile Boost 191
Eclipse MicroProfile and Jakarta EE 192
Summary 193
Questions 194
Further reading 194
Chapter 10: Using MicroProfile in Multi-Cloud Environments 195
Using Eclipse MicroProfile for cloud-native application
development 196
Microservices versus cloud native versus container native 196
What about 12-factor applications? 198
What about serverless and FaaS? 199
Cloud-native application development 200
Developing and running MicroProfile applications across clouds 203
Bare-metal machines versus VMs versus containers 204
Considerations when using MicroProfile in a hybrid cloud deployment 204
Challenges when using MicroProfile OpenTracing in a multi-cloud
deployment 205
Considerations when using Eclipse MicroProfile in a service mesh 206
Retry 206
Fallback 206
Fault injection in the service mesh 207
Conclusion 207
Summary 208
Questions 209
Appendix A: Assessments 210
Chapter 1 210
Chapter 2 212
Chapter 3 214
Chapter 4 215
Chapter 5 215
Chapter 6 216
Chapter 7 216
Chapter 8 219
Chapter 9 219
Chapter 10 220
Other Books You May Enjoy 225
Index 228

[v]



Preface

This book will help you learn about Eclipse MicroProfile, an open source specification for
enterprise Java microservices that started back in 2016, along with its background and
history, its value proposition to organizations and businesses, its community governance,
the current Eclipse MicroProfile sub-projects (more are being added as the open source
project evolves), its implementations, and its interoperability. It will also provide a peek
into the future direction of Eclipse MicroProfile, a sample application in Red Hat's
implementation of Eclipse MicroProfile in Thorntail, one of the runtimes provided by Red
Hat Runtimes, and guidance and considerations for running Eclipse MicroProfile in hybrid-
cloud and multi-cloud environments. This book will follow a step-by-step approach to help
you understand the Eclipse MicroProfile project and its implementations in the market.

Who this book is for

This book is for Java developers who wish to create enterprise microservices. To get the
most out of this book, you need to be familiar with Java EE and the concept of
microservices.

What this book covers

Chapter 1, Introduction to Eclipse MicroProfile, frames the discussion within the context of
the digital economy and describes what an enterprise Java microservice is and what the rest
of the book will cover.

Chapter 2, Governance and Contributions, covers governance, processes, and how to
contribute to the MicroProfile project.

Chapter 3, MicroProfile Config and Fault Tolerance, goes over config and fault tolerance in
MicroProfile sub-projects in detail, explaining what problem each solves and giving code
examples for each.

Chapter 4, MicroProfile Health Check and JWT Propagation, takes you through the Health
Check and JWT Propagation sub-projects, helping you understand what challenges they
tackle with the help of code examples.



Preface

Chapter 5, MicroProfile Metrics and OpenTracing, discusses the Metrics and OpenTracing
sub-projects and the problems they solve. You will learn how to work with code examples
of these sub-projects.

Chapter 6, MicroProfile OpenAPI and Type-Safe REST Client, covers two more sub-projects:
OpenAPI and type-safe REST client. This chapter will help you work with code examples
and understand the utility of these sub-projects in solving your enterprise problems.

Chapter 7, MicroProfile Implementations, Quarkus, and Interoperability via the Conference
Application, provides details on the implementations of MicroProfile that are currently
available on the market and discusses the project's progress to date. It also delves into The
Conference Application, a demo that showcases the integration of different vendors'
implementations of MicroProfile.

Chapter 8, A Working Eclipse MicroProfile Code Sample, provides a fully working project
developed using MicroProfile (based on the Conference Application) and also gives
coordinates to download the assets described.

Chapter 9, Reactive Programming and Future Developments, goes over present APIs currently
being incubated/developed and APIs being discussed for future inclusion in the
MicroProfile specification. In addition, it covers MicroProfile candidate APIs for reactive
programming as well as potential future relationships between MicroProfile and Jakarta
EE.

Chapter 10, MicroProfile in Multi-Cloud Environments, discusses how MicroProfile is a great
specification for microservices-based applications in the cloud and provides guidance and
considerations for using MicroProfile in hybrid-cloud and multi-cloud environments.

To get the most out of this book

A basic understanding of microservices and enterprise Java is required. Other installation
and setup instructions are provided where necessary.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

[2]


http://www.packt.com
http://www.packtpub.com/support

Preface

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-

MicroProfile. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781838643102_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "The checks array object type consists of a required name and status string,
along with an optional data object that contains optional key and value pairs."

[3]


http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838643102_ColorImages.pdf

Preface

A block of code is set as follows:

package org.eclipse.microprofile.health;

@FunctionalInterface

public interface HealthCheck {
HealthCheckResponse call();

}

Any command-line input or output is written as follows:
Scotts-iMacPro: jwtprop starksm$ curl http://localhost:8080/jwt/secureHello;

echo
Not authorized

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The advent and accessibility of the internet created a critical category-formation

time opportunity for organizations."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

[4]



Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[5]


http://www.packtpub.com/submit/errata
http://authors.packtpub.com/
http://www.packt.com/

Section 1: MicroProfile in the
Digital Economy

In this section, you will learn why microservices are important in the digital economy and
how MicroProfile addresses the need for enterprise Java microservices. In addition, you
will also learn about the sub-projects that currently make up MicroProfile, its value
proposition to organizations and developers, and its current processes and governance
(that is, how things get done).

This section contains the following chapters:

e Chapter 1, Introduction to Eclipse MicroProfile
® Chapter 2, Governance and Contributions



Introduction to Eclipse
MicroProfile

Eclipse MicroProfile is a set of specifications for microservices written in the Java language.
It is a project that is community-driven with many implementations in the market. The
project, first announced in June 2016, continues to develop a set of common Application
Programming Interfaces (APIs) for implementing Java microservices suitable for modern
application development techniques, architectures, and environments. In this chapter, you
will learn about the origin and importance of Eclipse MicroProfile.

The following topics will be covered in this chapter:

e Enterprise Java microservices

e Forces that fuel the digital economy and the need for multi-speed IT
¢ Introducing Eclipse MicroProfile

e MicroProfile value proposition

Enterprise Java microservices

Application development no longer consists of using a single high-level programming
language that runs on your favorite operating system. Nowadays, there are a myriad of
languages, specifications, frameworks, proprietary and open source software and tools,
underlying deployment infrastructures, and development methodologies that
programmers need to learn to develop modern applications. Development at IT
organizations has become polyglot, that is, multiple programming languages are used
depending on the needs of specific projects. In this age of the cloud, containers,
microservices, reactive programming, 12-factor applications, serverless, MINI services,
polyglot environments, and so on, developers now have the option to choose the right tool
for their task, making them more effective and productive.



Introduction to Eclipse MicroProfile Chapter 1

With the recent move of Java EE to the Eclipse Foundation under the new name of Jakarta
EE, MicroProfile will play a very important role in the future of Enterprise Java because of
its synergy with Jakarta EE and the potential ways it can influence it.

The advent of the cloud and mobile, along with the acceleration of open and the Internet of
Things (IoT) have brought about the digital economy. While this has opened up new
markets, it has also imposed new demands on businesses and their IT organizations, which
are now required to not only support and maintain traditional workloads but also deliver
new applications at a faster pace.

Many technologies, languages, architectures, and frameworks have become popular within
organizations in an attempt to tackle these new demands. One of these is microservices,
specifically, Enterprise Java microservices, since Java is still one of the most popular
languages in IT companies. But what is an Enterprise Java microservice?

An Enterprise Java microservice has the following features:

e It is written using the Java language.
e It can use any Java framework.
e [t can use any Java APL
e It must be enterprise-grade; that is, reliable, available, scalable, secure, robust,
and performant.
o It must fulfill the characteristics of microservice architectures as listed at https:/
/martinfowler.com/microservices/, which are as follows:
e Componentization via services
¢ Organized around business capabilities

Products not projects

Smart endpoints and dumb pipes

Decentralized governance

Decentralized data management
Infrastructure automation

Design for failure

Evolutionary design

[8]


https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/

Introduction to Eclipse MicroProfile Chapter 1

Forces that fuel the digital economy

The terms digital economy and digital transformation describe the convergence of four
different forces that are changing the needs of businesses: mobile, cloud, IoT, and open
source:

THE DIGITAL ECONOMY

Converging forces that fuel the Digital Economy

RN coud
{{!l!}} Open Source

|
Mobile '.’"3
=4 ]

Before the internet, organizations required brick-and-mortar stores or phone lines to
conduct their businesses. The advent and accessibility of the internet created a critical
category-formation time opportunity for organizations. Businesses started to use the
internet mainly as a storefront or display in order to drive people to their brick-and-mortar
stores. It was also used for advertising purposes.

Soon after this, businesses began adding the ability to purchase things online, and
companies, such as Amazon, realized that they could capitalize on the economies-of-scale,
product aggregation, consolidation, recommendation, and pricing optimization that an
online store could provide. This was the very beginning of cloud and cloud-native
applications. This is the first force that fueled the digital economy.

But what really accelerated the digital needs of businesses was the appearance of the
second focus mobile devices, which connected even more people to the internet. More
people now had a digital presence on the internet and businesses realized that these people
were a new market that they could exploit. This new market required applications to scale
to what people now call the internet scale. But paying for software licenses for this type of
scalability was too expensive and prohibitive. This is where open source software, the third
force that fueled the digital economy, came to the rescue. The power of the

community accelerated the development of open source projects via crowdsourcing and
open source collaboration. Anyone from anywhere in the globe could contribute to open
source projects. Likewise, internet-scale companies, such as Amazon, Netflix, and Lyft,
either use open source software or have created and contributed open source to the
community.

[9]



Introduction to Eclipse MicroProfile Chapter 1

Another benefit of open source software is its adoption of subscription-type support (for
organizations that require external support for the software they run in production), which
is significantly cheaper than software licensing. The growth of open source software
fulfilled this need in the market, and companies such as Red Hat, purveyors of open source
software, have succeeded in delivering enterprise-grade open source solutions.

As virtualization technologies matured and companies built and proved out internet-scale
technologies and infrastructures, they realized that they could rent out these resources,
such as compute and memory, to anybody. Consumption-based pricing made these
resources even more accessible. Companies realized the value of saving costs, productivity,
and speed-to-market of the cloud and started rushing to adopt this new model. Major
companies such as Microsoft, Google, and Amazon all have cloud offerings.

IoT is the last and fourth force that is fueling the digital economy. Like the data generated
by the digital presence of each person using the internet, IoT also generates large amounts
of data that can be exploited to make sound business decisions. IoT demands internet-scale
technologies and infrastructures that the cloud and big data technologies fulfill.

The convergence of these four different forces means that organizations have to adapt in
the way they create and maintain business applications, thus affecting the speed at which
they introduce innovation to their organizations. This is what is known as multi-speed IT,
which we will discuss in more detail in the following section.

Multi-speed IT

Implementing and delivering applications as fast as possible is not a new requirement. In
fact, since the invention of the first computer, increasing efficiency has always been in the
minds of computer scientists. High-level programming languages, encapsulation,
reusability, inheritance, event-driven design, SOA, microservices, machine learning, and
Al are all concepts that address the challenge of doing things faster. With each wave of
new technology, the gearbox adds a new speed requirement to the evolution of how we
develop and deliver software. The digital economy has added another high-speed gear to
the gearbox.

Businesses need to adapt to the new demands of the digital economy. Not only do they
have to create, run, and support traditional-style applications, but also applications that
conform to the new demands of the digital economy. They have to support both waterfall
and DevOps processes, hybrid cloud infrastructures, and SOA and microservice
architectures.

[10]



Introduction to Eclipse MicroProfile Chapter 1

This imposes many challenges on IT organizations, whose processes, people, and
technology have all been geared toward the implementation, delivery, and maintenance of
traditional-style applications. Many organizations have already embarked on, or are
starting, their journey of digital transformation, which addresses the challenges of the
digital economy. This journey includes changes in technologies, frameworks, languages,
and processes for the development, delivery, integration, and maintenance of applications.

Whether you call it bimodal IT (https://www.gartner.com/it-glossary/bimodal) Or a
business technology strategy (https://go.forrester.com/wp-content/uploads/
Forrester-False-Promise-of-Bimodal-IT.pdf), the fact is that IT needs to deliver faster
than ever before on the needs of the business, for both existing and new applications. This
means IT needs to also speed up the maintenance and delivery of existing applications
while exclusively adopting Agile methodologies for new applications. This does not
preclude, however, the need to still use different development processes, release cycles, and
support timelines to handle existing applications versus new applications, which is
effectively the multi-speed nature of IT.

Introducing Eclipse MicroProfile

Java EE has been an extremely successful platform. The Java Community Process (JCP) has
been the steward of over 20 compatible implementations during its nearly 20-year history,
resulting in a $4 billion industry. However, the management of Java EE by Oracle
(unintentional or not) of Java EE (unintentional or not) stalled innovations, and while other
standards have developed, the Java community worldwide and CIOs at all major
enterprises desired an open standard for Java within their enterprise.

In its early stages, J2EE grew somewhat quickly from J2EE 1.2 up to J2EE 1.4, as the
platform needed to address the immediate requirements of the enterprise. Beginning with
Java EE 5 in May 2006, the pace began to slow down as the platform began to mature, and it
was 3 years and 6 months between releases. After Java EE 7, which was released on June 12,
2013, there has been a long delay in its development. Java EE 8 was formally launched in
September 2014 at JavaOne, where Oracle announced that it would be completed by
JavaOne 2016. But then in June 2015, Oracle updated its release date to the first half of 2017.
And again, at JavaOne 2016 (September), Oracle revised the Java EE 8 release date to the
end of 2017. Java EE 8 was finally released on September 21, 2017, at JavaOne.

[11]


https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://www.gartner.com/it-glossary/bimodal
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf
https://go.forrester.com/wp-content/uploads/Forrester-False-Promise-of-Bimodal-IT.pdf

Introduction to Eclipse MicroProfile Chapter 1

The following diagram shows the evolution timeline:

[ 52 months
42 months
30 months
L | | | | | | |
1 | | | | | 1 1
JPE J2EE1.2 J2EE13 J2EE14 Java EE 5 JavaEE 6 JavaEE7 JavaEE 8

Java EE had been following the slower release cadence that a standards organization
typically reflects. A standards-based release cadence by design does not address rapid
innovations. And while this was occurring, the digital economy happened, which brought
about the popularity and rising use of the cloud, containers, Agile methodologies, DevOps,
continuous integration and continuous delivery, microservices, APl management, and open
source projects (Red Hat has been successful in delivering many of these solutions to the
marketplace).

The slowdown in Java EE releases (and maturity) opened the door to competing
technologies, such as Spring and Node.js, for example, which were able to fulfill the needs
and requirements of digital businesses. In addition to this, many vendors, such as Red Hat
and IBM, started innovating with Enterprise Java microservices based on a subset of Java
EE and decided to collaborate in the open, potentially providing a wider effort upstream.
This culminated in the announcement of Eclipse MicroProfile in June 2016 by many
vendors, Java Champions, Java User Groups, and corporations.

Since MicroProfile was announced on June 27, 2016, at DevNation, a lot has happened.
MicroProfile v 1.0 was released on September 19, 2016. Its implementation interoperability
was demonstrated in November 2016 at Devoxx Belgium, where Red Hat, IBM, Tomitribe,
and Payara demonstrated a unified web application (known as the Conference Application)
with underlying microservices that had been developed separately by each vendor using
MicroProfile. Additionally, MicroProfile became part of the Eclipse Foundation as an
incubation project on December 14, 2016. New members, including SOUJava, Hazelcast,
Fujitsu, Hammock, kumuluzEE, Oracle, Lightbend, and Microsoft, have joined the
MicroProfile project. The complete list of members can be found

at https://microprofile.io/.

[12]


https://microprofile.io/
http://microprofile.io/

Introduction to Eclipse MicroProfile Chapter 1

Eclipse MicroProfile is a community-driven innovation project whose goal is to work on
microservice patterns for Enterprise Java and to integrate applications with the
infrastructures they run on (that is, a cloud environment) with patterns such as health
checks and metrics. The focus of Eclipse MicroProfile is rapid collaborative innovation and
this is why the project has a time-boxed release schedule, with each release including
incremental updates or new features, and there is no guarantee of backward compatibility
across releases. The Eclipse MicroProfile community is composed of individuals, vendors,
and organizations.

Eclipse MicroProfile is not Java EE or a subset of Java EE. This confusion occurred because
the first release of MicroProfile (before it became part of the Eclipse Foundation) was a
collection of three Java EE APIs, namely, CDI, JSON-P, and JAX-RS. The MicroProfile
community purposely made the first release of MicroProfile small because they wanted the
community to decide the best path of evolution for the project.

The MicroProfile community took a no need to reinvent the wheel approach for the first
release and chose three enterprise-grade, market- and production-proven APIs from Java
EE to get started. In fact, MicroProfile utilizes some existing Java EE APIs and combines
them with new APIs to create a platform for Java microservice architectures.

At the time of writing this book, Eclipse MicroProfile consists of 12 APIs (or sub-projects)
under the project umbrella. Four of them come from Java EE APIs: CDI, JSON-P, JAX-RS,
and JSON-B, and the remaining eight are MicroProfile-specific project. They are as follows:

e Config

Fault Tolerance

JWT Propagation

Health Check

Metrics

Open API

Open Tracing

REST Client

CDI (a specification from Java EE)
JSON-P (a specification from Java EE)
¢ JAX-RS (a specification from Java EE)
¢ JSON-B (a specification from Java EE)

[13]



Introduction to Eclipse MicroProfile Chapter 1

Here is a high-level explanation of the requirement that each of the aforementioned APIs
tulfills:

e MicroProfile Config addresses the need for changing the environmental
parameters as an application or microservice moves across development, unit
testing, integration/system testing, preproduction, and production environments,
for example. MicroProfile Config makes it possible to set or modify configuration
data from outside the application without repackaging it.

e MicroProfile Fault Tolerance provides different strategies for when an
application or microservice encounters a fault. MicroProfile Fault Tolerance
provides specifications for constructs such as retries, circuit breakers, bulkheads,
and timeouts, among others.

e MicroProfile JWT Propagation handles security propagation across
microservices.

e MicroProfile Health Check fulfills the need to probe the state of a computing
node from another machine, that is, a Kubernetes service controller. This
specification examines cloud-infrastructure environments where the node state is
tracked by automated processes.

e MicroProfile Metrics delivers on the need to monitor the essential parameters of
a running service, such as the system, application, business- and vendor-specific
metrics in order to ensure its reliable operation.

¢ MicroProfile Open API provides Java interfaces and programming models to
natively produce OpenAPI v3 documents for RESTful services that can facilitate
the management of microservice APIs.

¢ MicroProfile Open Tracing defines the specification for equipping microservices
to be traceable in a highly-distributed environment where messages can traverse
different architectural tiers and services.

e MicroProfile REST Client provides a type-safe approach to invoke RESTful
services over HTTP in a consistent and easy-to-reuse fashion.

e CDI (a specification from Java EE) handles all aspects of dependency injection.

® JSON-P (a specification from Java EE) covers all aspects related to the processing
of JSON objects.

* JAX-RS (a specification from Java EE) handles all aspects related to RESTful
communication.

¢ JSON-B (a specification from Java EE) covers all aspects related from the object
to JSON mapping.

[14]



Introduction to Eclipse MicroProfile Chapter 1

It is worth mentioning that all the APIs (or sub-projects) created by the MicroProfile
projects are not created in a vacuum. Although anybody can participate and is welcome in
any sub-project, members of each sub-project are subject-matter experts with long and
extensive expertise and experience. They apply their knowledge gained from the field,
considering best practices, past lessons-learned, and other existing open source
specifications and projects, to come up with the best approach for the corresponding
MicroProfile sub-project.

Eclipse MicroProfile has been evolving rapidly and their versions have been progressively
adding more functionality as follows:

e Eclipse MicroProfile 1.1 included Config, which is a MicroProfile sub-project

e Eclipse MicroProfile 1.2 included updates to Config as well as the new
MicroProfile sub-projects: JWT Propagation, Metrics, Fault Tolerance, and Health
Check.

¢ Likewise, Eclipse MicroProfile 1.3 included additional brand new MicroProfile
sub-projects: Open API, Open Tracing, and Rest Client.

e MicroProfile 1.4 included updates to Config, JWT Propagation, Fault Tolerance,
Open Tracing, and Rest Client.

e In addition, MicroProfile 2.0 included the latest updates to CDI, JSON-P, JAX-RS,
and the addition of JSON-B, all from Java EE 8. With these releases, Eclipse
MicroProfile will offer the same level of functionality to be usable with either
Java EE 7 or Java EE 8.

e Eclipse MicroProfile 2.1 included updates to Open Tracing.

e Eclipse MicroProfile 2.2 included updates to Fault Tolerance, Type Safe Rest
Client, Open API, and Open Tracing.

e Lastly, MicroProfile 3.0 included updates to Rest Client, and non-backward-
compatible changes to Metrics and Health Check.

There are currently many implementations of Eclipse MicroProfile on the market. Eclipse
MicroProfile is one of the tools that developers can leverage to solve problems and
implement solutions with the enterprise capabilities needed to run workloads in
production. In addition, developers familiar with Enterprise Java frameworks, such as Java
EE, will find in MicroProfile a natural progression of Enterprise Java into the world of
cloud-native application development.

[15]



Introduction to Eclipse MicroProfile Chapter 1

MicroProfile value proposition

For customers who trust Enterprise Java to run their production workloads, Eclipse
MicroProfile provides customers with a vendor-neutral specification for Enterprise Java
microservices. Eclipse MicroProfile enables them to better fulfill the needs of the business
via improved agility and scalability, faster time-to-market, higher development
productivity, easier debugging and maintenance, and continuous integration and
continuous deployment.

The benefits customers get by using Eclipse MicroProfile are the same benefits gained by
using microservices. In general, according to Martin Fowler, a respected software
developer, author, and speaker, microservices provide the following benefits (https://

martinfowler.com/articles/microservice-trade-offs.html):

¢ Strong module boundaries: Microservices reinforce modular structure, which is
particularly important for larger teams.

¢ Independent deployment: Simple services are easier to deploy and, since they
are autonomous, they are less likely to cause system failures when things go
wrong.

e Technology diversity: With microservices, you can mix multiple languages,
development frameworks, and data storage technologies.

In addition to the general benefits of microservices, Eclipse MicroProfile specifically
provides the following:

¢ The benefits of community collaboration: Eclipse MicroProfile is an open
source project run by the community. No single vendor controls or determines
the evolution and maturation of the specification.

¢ Freedom of choice of implementation: Many vendors have implemented Eclipse
MicroProfile as part of their software stacks and customers have the option to
select whichever implementation is the most appropriate for their environment.

e Faster evolution: Since Eclipse MicroProfile is an innovation project, new and
improved functionality is delivered frequently in time-boxed releases. This
allows developers and customers to have these at their fingertips and start
leveraging updates in their projects sooner rather than later.

* Based on decades of experience: Not only do the specification's subject-matter
experts bring with them a vast wealth of experience, expertise, and knowledge,
but Eclipse MicroProfile also leverages market-tested and production-proven
capabilities in the Java EE APIs that it builds upon, offering maturity to
developers.

[16]


https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html

Introduction to Eclipse MicroProfile Chapter 1

e Familiarity with Enterprise Java: Eclipse MicroProfile builds upon familiar
Enterprise Java constructs, making it easy for Enterprise Java developers to
adopt.

¢ No retraining needed: Your existing Enterprise Java developers will find Eclipse
MicroProfile to be a natural progression of their expertise. There is little to no
learning curve. They will be able to leverage their skills.

¢ Interoperability: The different MicroProfile implementations are interoperable,
with each one providing users with the freedom to select one, or combine many,
MicroProfile implementations in an application.

e Multiple ways to use the APIs: Eclipse MicroProfile APIs provide easy-to-use
interfaces, such as CDI-based, programmatic, command-line, and file-based
(configuration-based) interfaces.

¢ A thorough set of artifacts: Each APl includes a Test Compatibility Kit (TCK),
Javadoc, PDF document for download, API Maven artifact coordinates, Git tags,
and downloads (specification and source code).

¢ Many other benefits that are particular to each API. These are discussed in each
Eclipse MicroProfile sub-project section throughout this book.

Summary

In this chapter, we have discussed the new trends in software development, consisting of
polyglot deployments using new approaches, such as microservices, containers, mobile,
and Internet-of-Things (IoT) running on-premises and in the cloud; and in hybrid or multi-
cloud environments. These trends required the evolution of Enterprise Java in the
microservices world, which is what MicroProfile addresses. The four forces that fuel the
digital economy, namely, cloud, mobile, IoT, and open source, have contributed to the need
for organizations to have multi-speed IT departments, which are necessary to maintain

and evolve their existing applications as well as to take advantage of new technological
trends to develop new applications that can help them to remain competitive.

Eclipse MicroProfile, a vendor-neutral specification founded by the community for the
community, is one of these new trends for Enterprise Java microservices. Lastly, Eclipse
MicroProfile brings rapid innovation to Enterprise Java by its development agility based on
lessons learned and decades of experience by the subject-matter experts who participate in
its sub-teams. This chapter has helped you to understand what an Enterprise Java
microservice is and what the rest of the book will cover.

[17]



Introduction to Eclipse MicroProfile Chapter 1

In the next chapter, we will go over the governance, that is, the lightweight process that
anybody in the community can follow to contribute to the Eclipse MicroProfile project.
Additionally, we will examine the contributions made to the project, namely, the Eclipse
MicroProfile Starter, which is a sample source code generator contribution.

Questions

1. What is an Enterprise Java microservice?
2. What are the four forces that fuel the digital economy?

3. Why are IT organizations having to develop and maintain applications at
different speeds? What is multi-speed IT?

4. Why are Java and Java EE still important to organizations?
5. What was one of the key reasons that caused MicroProfile to come into existence?

6. What are the APIs/specifications that are part of the MicroProfile
umbrella/platform release?

7. What release of MicroProfile introduced the first revolutionary changes?
8. Why is MicroProfile valuable to organizations?

[18]



Governance and Contributions

Eclipse MicroProfile is governed by community members. In other words, it is not
governed by a single vendor. In addition, it receives contributions from developers and
subject-matter experts across a spectrum of organizations, corporations, and individual
contributors. The project is characterized by its innovation, speed, and agility via light
processes and governance. The topics in this chapter will help you to understand the
governance of the MicroProfile project, and you will discover how you can contribute to the
MicroProfile project too.

The following topics will be covered in this chapter:

e How the Eclipse MicroProfile project is governed
¢ How the community collaborates and contributes to its constant innovation
e The Eclipse MicroProfile Starter project—an example source code generator

Current Eclipse MicroProfile governance

Eclipse MicroProfile is transparent in its operations and decision-making processes, which
are intended to be very lightweight. Governance focuses on creating, innovating, and
evolving specifications in a collaborative manner.

Eclipse MicroProfile, first and foremost, is an Eclipse project and it, therefore, follows
Eclipse processes. This includes committer approvals, project releases, intellectual property
safeguarding, license review processes, and more. However, the Eclipse Foundation is
flexible enough for projects such as MicroProfile to offer some additional lightweight
processes for multiple specifications to move forward in parallel with ways to communicate
across and align specifications.



Governance and Contributions Chapter 2

One of these lightweight processes is the Eclipse MicroProfile bi-weekly Hangout
meeting/call (whose meeting URL is https://eclipse.zoom.us/3/949859967, and whose
recordings can be found on the Eclipse MicroProfile YouTube channel at https://www.
youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w), which is open to anybody in the
community and serves as a forum where topics brought up by attendees are discussed and
decisions are made, from sub-project statuses and release contents to release dates and sub-
project creation approvals. It should be noted that MicroProfile is not a standards
organization, although it can seem that way. MicroProfile was created by the community
for the community, and it moves at the speed that the community determines as it
innovates in its different sub-projects. MicroProfile defines specifications that encourage
multiple implementations, much like a standards organization. However, MicroProfile
truly operates as a fast-evolving open source project whose source code is specifications.

The main means of community communication, discussion, and debate is the Eclipse
MicroProfile Google Group (https ://groups.google.com/forum/#! forum/microprofile).
You can use your favorite web browser to read, post, answer, or start forum messages for
any MicroProfile-related topic in the Google Group. You can also use the Group's email to
start new forum messages. Anybody can start new forum threads to discuss topics, such as
potential new functionality to be added to MicroProfile. After the community discusses a
new idea at length in the forum and/or the MicroProfile Hangout call, and it's been
determined that it is worth furthering the debate, the community decides to create a
working group for this new idea, and a lead or a group of leads, who are usually subject-
matter experts in the topic at hand, are designated to serve as its facilitators.

One important aspect to note is that the lead or leads of a working group (or sub-project for
that matter) do not single-handedly shape or determine the evolution of a specification or
what capabilities are included or not. They do not have the power of veto or a final say in
the decisions made with respect to their specification. By their sharing of ideas, expertise,
past experiences, analysis of existing technologies, and best practices, the working group
will come up with their best proposal possible. In addition, all unresolved issues need to be
discussed by the community and brought up in the bi-weekly Hangout meeting/call for
further debate, if needed. Through discussion, collaboration, and feedback from the
community, many points of view are analyzed, allowing the best option or options to
bubble up to the top. The working group will establish a recurring weekly or bi-weekly
meeting, which is entered in the MicroProfile Google Calendar (https://calendar.
google.com/calendar/embed?src=gbnbc373ga40n0tvbl188nkc3r4%40group.calendar.
google.com). This contains information of all MicroProfile Hangout calls, MicroProfile sub-
project calls, and MicroProfile release dates.

[20]


https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://eclipse.zoom.us/j/949859967
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://www.youtube.com/channel/UC_Uqc8MYFDoCItFIGheMD_w
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://groups.google.com/forum/#!forum/microprofile
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com
https://calendar.google.com/calendar/embed?src=gbnbc373ga40n0tvbl88nkc3r4%40group.calendar.google.com

Governance and Contributions Chapter 2

While anybody can attend these meetings, there's usually a core number of people that
serve as the subject-matter experts who participate in these calls. After a few meetings, the
working group decides whether or not the new functionality should be brought up to the
MicroProfile Hangout call to discuss its proposal to become a MicroProfile sub-project.

At the MicroProfile Hangout call, a sub-project proposal may be rejected or accepted. It
should be said that by the time the sub-project proposal is brought to the MicroProfile
Hangout call, most of the discussion of whether or not it should move forward will have
taken place already, so the decision taken at the call should really be of no surprise to the
sub-project working group. The rejection of a sub-project does not mean that it does not
fulfill a specific developmental need, but rather an affirmation that its goals are not a good
match to advance the MicroProfile specification, whose goal is the optimization of
Enterprise Java for a microservices architecture.

For example, if a sub-project proposal addresses a need that is unrelated to microservices,
then the chances are that the sub-project proposal will not move forward as a MicroProfile
sub-project. The acceptance of a sub-project means that it effectively addresses a need that
enriches the specification toward its goal of optimizing Enterprise Java for a microservices
architecture. It is at this moment that a sub-project becomes an official MicroProfile APL
Once the sub-project becomes a MicroProfile API, then a determination is made as to
whether it should be a standalone sub-project outside the umbrella or a sub-project
included in the umbrella MicroProfile releases. A high-level flowchart of this process is as
follows:

sub-project
outside
stop umbrella

Gather sub-project
; i te ye t of
community potential —> crea el :> parto
feedback spec? sandbox release? L:_renlzglea
open L develop A i
: bring idea . MicroProfile
newidea [—y forum ) potential
thread to Hangout spec API
i
bring
potential spec
spec to > accepted? . Stop
Hangout

From idea to MicroProfile sub-project flowchart

[21]



Governance and Contributions

Chapter 2

At the time of writing this book, these are the Eclipse MicroProfile APIs/sub-projects (with

the project leads listed):

MicroProfile API/Sub-project name Sub-project lead(s)

MicroProfile Project Leads John Clingan and Kevin Sutter
Config Emily Jiang and Mark Struberg
Fault Tolerance Emily Jiang

Health Check Antoine Sabot-Durand

JWT Propagation Scott Stark

Metrics Heiko Rupp

OpenAPI Arthur De Magalhaes

OpenTracing Pavol Loffay

Rest Client John D. Ament and Andy McCright

Eclipse MicroProfile follows a time-boxed rapid incremental release schedule, which is
public and is listed at the Eclipse Foundation MicroProfile Project page (https://
projects.eclipse.org/projects/technology.microprofile). Major Eclipse MicroProfile
releases, for example, from 1.x to 2.x, include major updates to MicroProfile APIs that may
introduce breaking changes. Minor releases, that is point releases, include small API
updates or new APIs that make the predetermined release date. Currently, the MicroProfile
community release windows are in February, June, and November of every year for minor
and/or major releases.

Sandbox approach to open contribution

The creation of a working group for a potential MicroProfile sub-project may also be
assigned a sandbox, which is another resource that the MicroProfile community offers to
try out new ideas. The sandbox repository, which is a GitHub repository located at https:/
/github.com/eclipse/microprofile-sandbox, is for incubating ideas and code examples
that will eventually turn into a separate repository for a new specification. Anybody can
open pull requests and use the sandbox for experimentation of new ideas and to share code
and documentation, which can be used as part of the discussion in the community Google
Group, the MicroProfile Hangout calls, or working group meetings. Keeping your pull
requests open will also allow discussion of your code and documentation within the
community. Potential sub-projects live under the sandbox directory named

proposals (https://github.com/eclipse/microprofile-sandbox/tree/master/
proposals).

[22]


https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://projects.eclipse.org/projects/technology.microprofile
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals

Governance and Contributions Chapter 2

If you need to accept and merge a pull request, you need to contact one of the MicroProfile
project committers (https://projects.eclipse.org/projects/technology.
microprofile/who) for guidance.

Likewise, if you feel that your idea has reached a level of maturity that deserves its own
separate repository, that is graduating out of the sandbox, then you need to contact one of
the MicroProfile project committers for guidance and/or reach them via the MicroProfile
mailing list: microprofile@googlegroups. com. These graduation requests are also
discussed at the MicroProfile Hangout call/meeting.

Umbrella releases versus projects outside the
umbrella

Eclipse MicroProfile is composed of a set of specifications, each with a specific focus. For
example, the Eclipse MicroProfile Config specification encompasses everything related to
configuring parameters for microservices. A version of a specification can be included as
part of an umbrella release of Eclipse MicroProfile or be released outside the umbrella. As a
concrete example, the latest umbrella release of Eclipse MicroProfile 2.2, which came out on
February 12, 2019, included the following specifications:

e Eclipse MicroProfile Open Tracing 1.3

e Eclipse MicroProfile Open API 1.1

e Eclipse MicroProfile Rest Client 1.2

e Eclipse MicroProfile Fault Tolerance 2.0
e Eclipse MicroProfile Config 1.3

e Eclipse MicroProfile Metrics 1.1

e Eclipse MicroProfile JWT Propagation 1.1
e Eclipse MicroProfile Health Check 1.0

e CDI2.0

JSON-P 1.1

e JAX-RS 2.1

e JSON-B 1.0

[23]


https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who
https://projects.eclipse.org/projects/technology.microprofile/who

Governance and Contributions Chapter 2

Eclipse MicroProfile, however, also has other specifications that have been released outside
the umbrella release. For example, Eclipse MicroProfile Reactive Streams Operators 1.0,
which we will cover in chapter 9, Reactive Programming and Future Developments, is a
specification that was recently released outside the umbrella. So, why does MicroProfile
allow specifications outside the umbrella? Well, the reason is that by releasing outside the
umbrella first, it gives the community and end users an opportunity to utilize and test the
new technology and, therefore, proving it in real applications before it can be considered
for inclusion in the umbrella.

MicroProfile Starter

MicroProfile Starter is a sample source code generator, whose goal is to aid developers to
quickly get started using and exploiting the capabilities of the community-driven open
source specification for Enterprise Java microservices, Eclipse MicroProfile, by generating
working sample code in a Maven project.

The idea of having MicroProfile Starter has been around since the creation of the project
back in mid-2016 and was publicly discussed at Devoxx BE 2016 (the week of November 7,
2016). In its first two weeks of being available, developers around the world have created
over 1,200 projects through the MicroProfile Starter project, which is a good and positive
indication of its adoption worldwide.

A quick tour of MicroProfile Starter

Let's take a quick tour of MicroProfile Starter:

1. When you go to the MicroProfile Starter "Beta" page, https://start.
microprofile.io/, you will see the following landing page:

[24]


https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/

Governance and Contributions

Chapter 2

MicroProfile Starter "Beta"

Generate MicroProfile Maven Project with Examples

groupld *

com.example

artifactld *

demo

MicroProfile Version *

Project Options

MicroProfile Server *

" DOWNLOAD |

Java SE Version

Java 8

Examples for specifications

You can accept the defaults for the Maven-related parameters (https://

maven.apache.org/guides/mini/guide-naming-conventions.

ntml), groupld and artifactld, or change them to your liking. The

groupld parameter uniquely identifies your project across all projects, and
artifactld is the name of the JAR file without the MicroProfile version
number. For this tour, accept all of the defaults.

2. Next, select MicroProfile Version from the drop-down list:

MicroProfile Server

Thorntail V2
Payara Micro
Open Liberty

KumuluzEE

*

[25]



https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html

Governance and Contributions Chapter 2

For this tour, select MicroProfile version MP 2.1. Notice that, depending on
the version of MicroProfile you select, the number of specifications listed in
the Example for specifications section will vary. This number depends on
how many APIs were included as part of each MicroProfile umbrella release.
To find out what APIs were included in each release, please refer to the

MicroProfile community presentation (https://docs.google.com/
presentation/d/1BYfVgnBIffh-QDIrPyromwc9YSwlibsawGUECSsrSQBO/

edit#slide=id.g4ef35057a0_6_205).

3. Then, select MicroProfile Server from the drop-down list:

MicroProfile Server *

Thorntail V2
Payara Micro
Open Liberty

KumuluzEE

For this tour, select Thorntail V2, which is the open source project that Red
Hat uses to implement the Eclipse MicroProfile specification.

4. Leave all the Examples for specifications checkboxes selected (that is, do not
uncheck any of the checkboxes):

Examples for specifications

D Config D Fault Tolerance

(] JwWT Auth (] Health Metrics

D Health Checks D OpenAPI

D OpenTracing D TypeSafe Rest Client

This will generate example working code for all of the APIs included in
MicroProfile version 2.1.

5. The last step in the samples source code generation process using MicroProfile
Starter is to click on the DOWNLOAD button, which will create a ZIP
archive. Ensure you save the demo. zip file to your local drive. Then, unzip
demo. zip in your local drive. The contents should look like this:

[26]


https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205
https://docs.google.com/presentation/d/1BYfVqnBIffh-QDIrPyromwc9YSwIbsawGUECSsrSQB0/edit#slide=id.g4ef35057a0_6_205

Governance and Contributions

Chapter 2

v demo
> [ target
¥ readme.md
pom.xml
v [l src
v main
» [ resources
v [l java
v [ com

4

4

v webapp
|@) index.html
» WEB-INF
v test
»> resources
v [ java
v com

4
£

v example
v [ demo
v metric

+ MetricController.java

v secure

+ ProtectedController.java

DemoRestApplication.java

v config

4+ ConfigTestController.java

v resilient

+ ResilienceController.java

v health

+ ServiceHealthCheck.java
HelloController.java

v example
v Bl demo

MPJWTToken.java

+ JWTClient.java

Notice that there's a readme .md file in the generated content. This file
contains instructions on how to compile and run the generated code, which
includes a sample web application that exercises the different capabilities of

Eclipse MicroProfile.

6. Change directory to wherever you unzipped the demo project. In my case, I had

itin my Downloads directory:

$ cd Downloads/demo

[27]




Governance and Contributions Chapter 2

7. Compile the generated sample code by entering the following command:
$ mvn clean package
8. Run the microservice:
$ java -jar target/demo-thorntail.jar
9. After a few seconds, you will see the following message:
$ INFO [org.wildfly.swarm] (main) WFSWARM99999: Thorntail is Ready
This indicates that the microservice is up and running.

10. Open your favorite web browser and point it to
http://localhost:8080/index.html.

This will open up the sample web application, as follows:

& C @ localhost:8080/index.html

MicroProfile
Hello JAX-RS endpoint

Config

Injected config values
Config values by lookup

Fault tolerance

Fallback after timeout

Health

Health status (with custom status ServiceHealthCheck)
Metrics

Timed endpoint
Metrics page

JWT Auth

Look at readme.md on how to test protected endpoint.
Open API

Open API Documentation

Open Tracing

Rest Client

[28]



Governance and Contributions Chapter 2

11.

12.

13.

14.

To see the capabilities of MicroProfile Config, click on Injected config values. A
window tab will open with the following display:

(& @ localhost:8080/data/config/injected

Config value as Injected by CDI Injected value

Likewise, if you click on Config values by lookup, another window tab will be
displayed as follows:

C  ® localhost:8080/data/config/lookup

Config value from ConfigProvider lookup value

The parameter value's injected value and lookup value that we saw previously
are defined in the . /demo/src/main/resources/META-
INF/microprofile-config.properties file, as shown here:

$ cat ./src/main/resources/META-INF/microprofile-
config.properties

injected.value=Injected wvalue

value=lookup value

Imagine that you need to use a different value for the value parameter between
development and system testing. You could do this by passing a parameter in the
command line when starting the microservice as follows (ensure to exit the
running application by pressing Ctrl + C on the Terminal window first):

$ java -jar target/demo-thorntail.jar -Dvalue=hola

Now, when you click on Config values by lookup, another window tab is
displayed:

C @ localhost:8080/data/config/lookup

Config value from ConfigProvider hola

Note that the source code executing this logic is located in the generated
./src/main/java/com/example/demo/config/ConfigTestControlle

r.java file.

[29]



Governance and Contributions Chapter 2

15. To see the capabilities of MicroProfile Fault Tolerance, click on Fallback after
timeout. A window tab will open with the following display:

C' @ localhost:8080/data/resilience

Fallback answer due to timeout

For more information on the MicroProfile Config API, please refer to its
documentation (https://github.com/eclipse/microprofile-config/
releases/download/1.3/microprofile-config-spec-1.3 .pdf).

The sample code is exercising the @Fallback annotation in combination
with @Timeout. Here's the sample code:

@Fallback (fallbackMethod = "fallback") // fallback handler
@Timeout (500)
QGET
public String checkTimeout () {
try A

Thread.sleep (700L);

} catch (InterruptedException e) {
//

;

return "Never from normal processing";

}
public String fallback () {
return "Fallback answer due to timeout";

}

The @Timeout annotation specifies that if the method takes longer than 500 milliseconds to
execute, a timeout exception should be thrown. This annotation can be used together with
@Fallback, which, in this case, invokes the fallback handler called fallback when the
timeout exception occurs. In the previously generated sample code, the timeout exception
will always happen because the method is executing—that is, sleeping for 700 milliseconds,
which is longer than 500 milliseconds.

Note that the source code executing this logic is located in the generated
./src/main/java/com/example/demo/resilient/ResilienceController. java file

[30]


https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf
https://github.com/eclipse/microprofile-config/releases/download/1.3/microprofile-config-spec-1.3.pdf

Governance and Contributions Chapter 2

For more information on the MicroProfile Fault Tolerance API, please

refer to its documentation (https://github.com/eclipse/microprofile-
opentracing/releases/download/1.2/microprofile-opentracing-spec—

1.2.pdf).

The MicroProfile community welcomes your feedback as well as collaboration or
contributions toward the continued development of the MicroProfile Starter project. To
give feedback, you need to click on the Give Feedback button in the top-right of the
MicroProfile Starter "Beta"(https://start.microprofile.io/) landing page and create an
issue.

The MicroProfile Starter project groups and prioritizes requested items and fixes in
milestones with the goal of releasing continuously. The MicroProfile Starter working group
meets on a regular basis and if you'd like to help the project with your development skills,
please send an email to microprofile@googlegroups.com or join the discussion on its
Gitter channel (https://gitter.im/eclipse/microprofile-starter). The project
information, including the location of its source code, can be found at https://wiki.

eclipse.org/MicroProfile/StarterPage.

Summary

In this chapter, we learned about the lightweight governance processes of the Eclipse
MicroProfile project, its rapid approach to innovation, and how sandboxes are used to
foster collaboration and encourage code development and documentation. We also learned
about its sub-projects, the leaders of these sub-projects, and how they can be released either
standalone or as part of an Eclipse MicroProfile umbrella release.

In addition, you learned about MicroProfile Starter, which is a Maven project generation
tool that provides code samples so that developers can get their MicroProfile applications
started quickly. Finally, we got a sneak-peek at how an application's properties can be
easily modified using Eclipse MicroProfile Config constructs, and how to use the @Timeout
and @Fallback annotations from the Eclipse MicroProfile Fault Tolerance specification.

In the next chapter, we will delve deeper into the Eclipse MicroProfile Config and Eclipse
MicroProfile Fault Tolerance specifications and provide code samples on how to use them.

[31]


https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://github.com/eclipse/microprofile-opentracing/releases/download/1.2/microprofile-opentracing-spec-1.2.pdf
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://start.microprofile.io/
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://gitter.im/eclipse/microprofile-starter
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage
https://wiki.eclipse.org/MicroProfile/StarterPage

Governance and Contributions Chapter 2

Questions

NSOk N

What are the main means of communication for the MicroProfile community?
What is the goal of the bi-weekly MicroProfile Hangout call?

What is the role of a sub-project (MicroProfile specification) lead/leads?

What is the process followed by a new MicroProfile specification proposal?
What is the release schedule that the MicroProfile project follows?

What is the goal of the MicroProfile sandbox?

What is the difference between projects released under the umbrella/platform
MicroProfile release and outside it?

What is MicroProfile Starter and what benefits does it provide?

[32]




Section 2: MicroProfile's
Current Capabilities

This section goes over the capabilities of the project and its sub-projects, along with code
examples.

This section contains the following chapters:

e Chapter 3, MicroProfile Config and Fault Tolerance

e Chapter 4, MicroProfile Health Check and JWT Propagation

e Chapter 5, MicroProfile Metrics and OpenTracing

e cChapter 6, MicroProfile OpenAPI and the Type-Safe REST Client



MicroProfile Config and Fault
Tolerance

In this chapter, we will start by introducing MicroProfile Config as it is the basis for the
configuration of other MicroProfile features, in addition to application-level configuration.
The MicroProfile Config specification provides a common way to retrieve configuration
coming from a variety of sources (properties files, system properties, environment
variables, databases, and so on).

The topics we will cover include the following:

¢ Reading configuration from your application
¢ Providing additional sources of configuration to your application
¢ Providing conversion from plain configuration into application-specific objects

Understanding Eclipse MicroProfile Config

Every application needs some external configuration to adapt its behavior to the runtime
platform it's running on. It can range from the HTTP endpoints that the application must
connect to, or the size of some internal structures.



MicroProfile Config and Fault Tolerance Chapter 3

These configuration parameters can also come from different sources:

e From the operating system or the container in a cloud-native environment
(through the use of environment variables)

¢ From the Java virtual machine (with system properties)
¢ From some external configuration files (such as the Java properties file)
e From other places (an LDAP server, database, key-value store, and so on)

On the one hand, these configuration parameters come from many different sources. On the
other hand, we want to consume them in the Java application in a simple way that does not
depend on the source of the configuration. The Eclipse MicroProfile Config specification
addresses this problem.

The MicroProfile Config API is split into two parts that tackle the two sides of the problem:

e The API defines the Config and @ConfigProperty types that are used by the
Java application to get the values of the configuration parameters.

e The API also defines a Service Provider Interface (SPI) to let other projects (or
the Java application itself) provide the sources of configuration parameters.

Implementations of MicroProfile Config must provide default
ConfigSource implementations that are always available to the application.

For most use cases, the application will mainly be interested in reading configuration from
the Config API, which we will cover in the next section.

Reading configuration from the MicroProfile
Config API

The MicroProfile Config specification defines two objects to read the value of configuration
parameters:

e The Config object to programmatically access the configuration values

e The @ConfigProperty annotation to inject the configuration values
using Contexts and Dependency Injection (CDI)

Let's discuss them in detail.

[35]



MicroProfile Config and Fault Tolerance Chapter 3

The Config object
The org.eclipse.microprofile.config.Config interface is the entry point to retrieve
configuration in a Java application.

There are two ways to get an instance of Config:

1. The first (and preferred) way is to use CDI to inject it into the code:

@Inject
private Config config;

2. The second way is to call the static method,
org.eclipse.microprofile.config.ConfigProvider#getConfig(), to

obtain an instance of Config:

Config config = ConfigProvider.getConfig();
The config interface provides two methods to retrieve properties:

® getValue (String propertyName, Class propertyType): This method
throws a runtime exception if the property is not present in the configuration.
This method must be used only for mandatory configuration (the application
would not be able to function properly in its absence).

® getOptionalValue (String propertyName, Class propertyType): This
method returns a java.util.Optional object thatis empty if the property is
not present in the configuration. This method is used for optional configuration.

Both methods will also throw exceptions if the property value, retrieved as st ring from
the configuration, cannot be converted into the expected Java type passed as the second
argument (converters are described in a later section).

In both methods, you need to specify the Java type you are expecting from the property.
For example, if the property corresponds to a URL, you can get its value as java.net .URL

directly:

URL myURL = config.getValue ("my.url", URL.class);

[36]




MicroProfile Config and Fault Tolerance Chapter 3

The config interface also defines methods to list config sources and all of the properties:

e Iterable<String>getPropertyNames () returns the names of the properties
from all of the sources of configuration provided by the Config object.

e Tterable<ConfigSource>getConfigSources () returns all of the sources of
configurations provided by the Config object.

The @ConfigProperty annotation

The @ConfigProperty annotation can be used to inject configuration values in Java fields
or method parameters using CDI, as shown:

@Inject
@ConfigProperty (name="my.url")
private URL myURL;

The @ConfigProperty annotation can have defaultValue, which is used to configure the
field if the configuration property is not found in the underlying config:

@Inject
@ConfigProperty (name="my.url", defaultValue="http://localhost/")
private URL myURL;

If defaultValue is not set and no property is found, the application will throw
DeploymentException as it cannot be properly configured.

It is possible to use Optional if a configuration property might not be present, as shown in
the following code block:

@Inject

@ConfigProperty (name="my.url")

private Optional<URL> someUrl; // will be set to Optional.empty if the
// property ‘my.url’ cannot be found

After reading the configuration, we need to provide source configuration sources, which
will be covered in the next section.

[371]



MicroProfile Config and Fault Tolerance Chapter 3

Providing sources of configuration

The source of a configuration is represented by the ConfigSource interface. You do not
need to implement this interface unless you want to provide a source of configurations that
are not available by the MicroProfile implementation you use in your application.

If a property is found in multiple config sources, Config will return the value from the
ConfigSource interface with the highest ordinal value.

Ordering ConfigSource is important as users can provide custom
ConfigSource interfaces in addition to the default ones provided by the MicroProfile
Config implementation.

Default ConfigSources

By default, a MicroProfile Config implementation must provide three sources of
configuration:

e System properties from the Java virtual machine (with an ordinal of 400)
¢ Environment variables (with an ordinal of 300)

e Properties stored in META-INF/microprofile-config.properties (with an
ordinal of 100)

The ordinal value of a config source determines the precedence of the
config source. In particular, if a property is defined both in the system
properties and the environment variables, the value will be taken from the
system properties (which has a higher ordinal than the environment
variables).

There are no restrictions on the names of properties. However, some operating systems can
impose some restrictions on the name of the environment variables (for example, " . " is not
allowed by most Unix shells). If you have a property that could be configured from the
environment variables, you have to name your property accordingly.

For example, the property name my_url can be used by an environment variable while
my .url cannot.

[38]



MicroProfile Config and Fault Tolerance Chapter 3

New in MicroProfile Config 1.3

MicroProfile Config 1.3 introduces a mapping rule from the config
property name to the environment variable. This rule searches three
environment variable variants for each property name:

e Exact match
e Replace any non-alphanumeric character with _

e Replace any non-alphanumeric character with _ and use
uppercase

This means that, in the Java application, we can have a property
named app.auth.url and use the APP_AUTH_URL environment variable
to configure it.

Let's move on to the other type of configuration source.

Custom ConfigSources implementations

It is possible to provide additional sources of configuration in your application that will be
automatically added by the MicroProfile Config implementation.

You need to define an implementation

of org.eclipse.microprofile.config.spi.ConfigSource and add a Java
ServiceLoader configuration for it, and put that file in your application archive as META-
INF/services/org.eclipse.microprofile.config.spi.ConfigSource. For your
reference, here is an example of the definition of an implementation of an environment
ConfigSource

package io.packt.sample.config;

import
import
import

import

public

java.io.Serializable;
java.util.Collections;
java.util.Map;

org.eclipse.microprofile.config.spi.ConfigSource;

class EnvConfigSource implements ConfigSource, Serializable {

EnvConfigSource () A

}

@Override
public Map<String, String> getProperties() {

[39]



MicroProfile Config and Fault Tolerance Chapter 3

return Collections.unmodifiableMap (System.getenv());

@Override
public int getOrdinal () {
return 300;

}
@Override
public String getValue (String name) {
if (name == null) {
return null;
}
// exact match
String value = System.getenv (name);
if (value != null) {
return value;
}
// replace non-alphanumeric characters by underscores
name = name.replaceAll ("["a-zA-Z0-9_1", "_");
value = System.getenv (name);
if (value != null) {
return value;
}
// replace non-alphanumeric characters by underscores and convert
// to uppercase
return System.getenv (name.toUpperCase());
}
@Override

public String getName () {
return "EnvConfigSource";

}

In addition to providing additional ConfigSource, the MicroProfile Config API allows
users to convert raw config property values into application-specific objects using
converters, as described in the next section.

[40]



MicroProfile Config and Fault Tolerance Chapter 3

Using converters for high-level configuration

MicroProfile Config will read Java St ring objects from its ConfigSource. However, it
provides facilities to convert these St ring objects into more specific types in your
application.

For example, the myUr1 field we described previously is a URL object. The corresponding
property, my .url, is read as a St ring object and then converted into a URL object before it
is injected.

If the application uses the Config object, the MicroProfile Config implementation will also
convert the String object into the type passed as the second argument of the getvalue

and getOptionalValue methods. This conversion can be done using different converter
types: built-in, automatic, and custom. We will talk about them in detail now.

Built-in converters

The MicroProfile Config implementation provides built-in converters for the primitive
types (boolean, int, long, byte, float, and double) and their corresponding Java types
(for example, Integer).

It also provides support for arrays in the property value using the ", " as the item
separator. If the ", " must be part of an item, it must be escaped with a backslash "\ ":

private String[] pets = config.getValue ("myPets", String[].class)

If the value of the myPets property is dog, cat, dog\\, cat, the elements of the array
stored in pets would be {"dog", "cat", "dog,cat"}.

Automatic converters

MicroProfile Config also defines automatic converters. If a converter is not known for a given
Java type, it will attempt to convert a St ring object into it using any one of the three

different approaches:

¢ The Java type has a public constructor with a String parameter.
e Ithasapublic static valueOf (String) method.
e [thasapublic static parse (String) method.

That's how the my .url property was converted from String into URL since the
java.net .URL type has the public URL (String) constructor.

[41]



MicroProfile Config and Fault Tolerance Chapter 3

Custom converters

If your application defines Java types that do not provide any of these three cases covered
by the automatic converters, MicroProfile Config can still provide conversion using custom
converters that extend the org.eclipse.microprofile.config.spi.Converter
interface defined in the following:

public interface Converter<T> {
/**

* Configure the string value to a specified type

* (@param value the string representation of a property value.

* @return the converted value or null

*

* @throws IllegalArgumentException if the value cannot be converted to
the specified type.
*/

T convert (String value);

You have to write an implementation of
org.eclipse.microprofile.config.spi.Converter, then add its name to the /META-
INF/services/org.eclipse.microprofile.config.spi.Converter file and put that
file in your application archive. For your reference, here is an example of the
implementation of a custom converter that supports a named number concept:

package io.packt.sample.config;
import org.eclipse.microprofile.config.spi.Converter;

public class NamedNumberConverter implements Converter<NamedNumber> {
/**
* Parses an assignment type of expression into a name and number value
* (@param value name=Number expression
* @return NamedNumber instance

*/

@Override

public NamedNumber convert (String value) {
String[] parts = value.split("="); // 1

return new NamedNumber (parts[0], parts[1l]);

package io.packt.sample.config;

public class NamedNumber {
private String name;
private Number number;

[42]



MicroProfile Config and Fault Tolerance Chapter 3

public NamedNumber (String name, Number number) {
this.name = name;
this.number = number;

}

The converter takes a string and splits it based on a comma separator to extract the name
and corresponding value to build the NamedNumber instance.

You would then specify a named number in your configuration, as shown here:

# microprofile-config.properties NamedNumber example
injected.namedNumber=jdoe, 2.0

The addition of NamedNumberConverter allows us to use the NamedNumber type as a
configuration type that can be injected. Here is an example that would match the
configuration setting shown previously:

@Inject
@ConfigProperty (name="injected.namedNumber")
NamedNumber configuredNumber;

With the base MicroProfile Config feature covered, let's move onto another feature,
MicroProfile Fault Tolerance.

Understanding Eclipse MicroProfile Fault
Tolerance

Fault Tolerance provides a collection of tools that prevent code from failing by making it
more resilient. Most of these tools are inspired by development good practices (such as
retry or fallback) or well-known development patterns (such as circuit breaker or
bulkhead).

Fault Tolerance is based on CDI and, more precisely, on the CDI interceptor
implementation. It also relies on the MicroProfile Config specification to allow external
configuration for Fault Tolerance policies.

The main idea of the specification is to decouple business logic from Fault Tolerance
boilerplate code. To achieve that, the specification defines interceptor-binding annotations
to apply Fault Tolerance policies on a method execution or on a class (in that case, all class
methods have the same policy).

[43]



MicroProfile Config and Fault Tolerance Chapter 3

Policies included in the Fault Tolerance specification are the following:

e Timeout: This is applied with the @Timeout annotation. It adds a timeout to the
current operation.

¢ Retry: This is applied with the @Retry annotation. It adds retry behavior and
allows its configuration on the current operation.

e Fallback: This is applied with the @Fallback annotation. It defines the code to
execute, should the current operation fail.

e Bulkhead: This is applied with the @Bulkhead annotation. It isolates failures in
the current operation to preserve the execution of other operations.

e Circuit Breaker: This is applied with the @CircuitBreaker annotation. It
provides an automatic fast failing execution to prevent overloading the system.

e Asynchronous: This is applied with the @Asynchronous annotation. It makes
the current operation asynchronous (that is, code will be invoked
asynchronously).

Applying one or more of these policies is as easy as adding the required annotations on the
method (or the class) for which you'd like to have these policies enabled. So, using Fault
Tolerance is rather simple. But this simplicity doesn't prevent flexibility, thanks to all of the
configuration parameters available for each policy.

Right now, the following vendors provide an implementation for the Fault Tolerance
specification:

Red Hat in Thorntail and Quarkus
IBM in Open Liberty
Payara in Payara Server

Apache Safeguard for Hammock and TomEE
KumuluzEE for KumuluzEE framework

All of these implementations support Fault Tolerance and hence support the same set of
features that are described in the next section.

MicroProfile Fault Tolerance in action

As we just discussed, the Fault Tolerance specification provides a set of annotations that
you have to apply on a class or method to enforce Fault Tolerance policies. That being said,
you have to keep in mind that these annotations are interceptors binding and hence are
only usable on CDI beans. So, be careful to define your class as CDI beans before applying
Fault Tolerance annotations on them or their methods.

[44]



MicroProfile Config and Fault Tolerance Chapter 3

In the following sections, you'll find usage examples for each Fault Tolerance annotation.

The @Asynchronous policy

Making an operation asynchronous is as simple as the following:

@Asynchronous
public Future<Connection> service() throws InterruptedException {
Connection conn = new Connection() {

{
Thread.sleep(1000);

}

@Override
public String getData() {
return "service DATA";

}
bi

return CompletableFuture.completedFuture (conn);

}

The only constraint is to have the @Asynchronous method return Future or
CompletionStage; otherwise, the implementation should throw an exception.

The @Retry policy

Should the operation fail, you can apply the retry policy to have the operation invoked
again. The @Retry annotation can be used on a class or method level like this:

@Retry (maxRetries = 5, maxDuration= 1000, retryOn = {IOException.class})
public void operationToRetry () A

}

In the previous example, the operation should be retried a maximum of five times only on
IOException. If the total duration of all retries lasts more than 1,000 ms, the operation will

be aborted.

[45]



MicroProfile Config and Fault Tolerance Chapter 3

The @Fallback policy

The @Fallback annotation can only be applied on a method; annotating a class will give an
unexpected result:

@Retry (maxRetries = 2)
@Fallback (StringFallbackHandler.class)
public String shouldFallback () A

}

The fallback method is called after the number of retries is reached. In the previous
example, the method will be retried twice in case of an error, and then the fallback will be
used to invoke another piece of code—in this case, the following
StringFallbackHandler class:

import javax.enterprise.context.ApplicationScoped;

import org.eclipse.microprofile.config.inject.ConfigProperty;
import org.eclipse.microprofile.faulttolerance.ExecutionContext;
import org.eclipse.microprofile.faulttolerance.FallbackHandler;

@ApplicationScoped
public class StringFallbackHandler implements FallbackHandler<String> {
@ConfigProperty (name="appl.requestFallbackReply", defaultValue =
"Unconfigured Default Reply")
private String replyString;

@Override
public String handle (ExecutionContext ec) {
return replyString;
}
}

Fallback code can be defined by a class implementing the FallbackHandler interface (see
the previous code) or by a method in the current bean. In the StringFallbackHandler
code, a MicroProfile Config property named app1l.requestFallbackReply is used to
externalize the application's fallback string value.

[46]



MicroProfile Config and Fault Tolerance Chapter 3

The @Timeout policy
The @Timeout annotation could be applied to a class or method to make sure that an

operation doesn't last forever:

@Timeout (200)
public void operationCouldTimeout () {

}

In the preceding example, the operation will be stopped should it last more than 200 ms.

The @CircuitBreaker policy

The @CircuitBreaker annotation can be applied to a class or method. The circuit breaker
pattern was introduced by Martin Fowler to protect the execution of an operation by
making it fail fast in case of a dysfunction:

@CircuitBreaker (requestVolumeThreshold = 4, failureRatio=0.75, delay =
1000)
public void operationCouldBeShortCircuited() {

}

In the previous example, the method applies the CircuitBreaker policy. The circuit will
be opened if three (4 x 0.75) failures occur among the rolling window of four consecutive
invocations. The circuit will stay open for 1,000 ms and then be back to half-open. After a
successful invocation, the circuit will be back to closed again.

The @Bulkhead policy

The @Bulkhead annotation can also be applied to a class or method to enforce the bulkhead
policy. This pattern isolates failures in the current operation to preserve the execution of
other operations. The implementation does this by limiting the number of concurrent
invocations on a given method:

@Bulkhead (4)
public void bulkheadedOperation () {

}

[47]



MicroProfile Config and Fault Tolerance Chapter 3

In the previous code, this method only supports four invocations at the same time. Should
more than four simultaneous requests come into the bulkheadedOperation method, the
system will hold the fifth and later requests until one of the four active invocations
completes. The bulkhead annotation can also be used with @Asynchronous to limit the
thread number in an asynchronous operation.

Tolerance with MicroProfile config

As we saw in the previous sections, Fault Tolerance policies are applied by using
annotations. For most use cases, this is enough, but for others, this approach may not be
satisfactory because configuration is done at the source code level.

That's the reason why the parameters of MicroProfile Fault Tolerance annotations can be
overridden using MicroProfile Config.

The annotation parameters can be overwritten via config properties using the following
naming convention: <classname>/<methodname>/<annotation>/<parameter>

To override maxDuration for @Ret ry on the doSomething method in the MyService
class, set the config property like this:

org.example.microservice.MyService/doSomething/Retry/maxDuration=3000

If the parameters for a particular annotation need to be configured with the same value for
a particular class, use the <classname>/<annotation>/<parameter> config property for
configuration.

For instance, use the following config property to override all maxRetries for @Retry
specified on the MyService class to 100:

org.example.microservice.MyService/Retry/maxRetries=100

Sometimes, the parameters need to be configured with the same value for the whole
microservice (that is, all occurrences of the annotation in the deployment).

In this circumstance, the <annotation>/<parameter> config property overrides the
corresponding parameter value for the specified annotation. For instance, to override all
maxRetries for all of @Retry to be 30, specify the following config property:

Retry/maxRetries=30

This brings us to the end of discussion on Fault Tolerance in MicroProfile.

[48]



MicroProfile Config and Fault Tolerance Chapter 3

Summary

In this chapter, we learned how to use MicroProfile Config to configure MicroProfile
applications and MicroProfile Fault Tolerance to make them more resilient.

In MicroProfile Config, the sources of the configuration can be many; some values come
from properties files and others from system properties or environment variables, but they
are all accessed consistently from the Java application. The values will likely differ
according to the deployment environment (for example, testing and production) but that is
transparent in the application code.

MicroProfile Fault Tolerance helps to prevent failure in applications by applying specific
policies in the code. It comes with default behavior but can be configured thanks to
MicroProfile Config.

The next chapter will show how MicroProfile applications can provide information
regarding their status (health) and how they can be secured thanks to MicroProfile JWT
propagation.

Questions

1. What are the default sources of configuration properties supported by
MicroProfile Config?

2. What can you do if you need to integrate another source of configuration
properties?

3. Are only the string type of properties supported?

4. Does injecting a configuration property into your code force you to provide a
value for that property?

5. Suppose you have complex property types. Is there a way to integrate them
into MicroProfile Config?

What happens when a Fault Tolerance annotation is applied to a class?
True or false: there are at least 10 different Fault Tolerance policies?
Does a @Retry policy require a retry on all failures?

O ©® N

Are we stuck with the Fault Tolerance annotation setting that is used in the
application code?

[49]



MicroProfile Config and Fault Tolerance Chapter 3

Further reading

Additional details for the MicroProfile Config feature can be found in the MicroProfile
Conlfig specification at https://github.com/eclipse/microprofile-config/
releases. Additional details for the MicroProfile Fault Tolerance feature can be found in

the MicroProfile Config specification at https://github.com/eclipse/microprofile-

config/releases.

[50]


https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-config/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases
https://github.com/eclipse/microprofile-fault-tolerance/releases

MicroProfile Health Check and
JWT Propagation

In this chapter, we will introduce the MicroProfile Health Check and JSON Web Token
(JWT) Propagation projects. The Health Check project is concerned with exposing the
application-defined health to the outside world, and JWT Propagation is concerned with
defining an interoperable security token and use of that token in an application. In this
chapter, you will learn the concerns that these specifications address, their constructs, and
how to use them in your application. The code snippets throughout this chapter are for
reference only. If you would like a working code version of this specification, please refer to
Chapter 8, A Working Eclipse MicroProfile Code Sample.

We will cover the following topics:

e What a health check is
¢ How MicroProfile Health Check exposes the health check endpoint and the
format of a query to that endpoint

How to write a MicroProfile Health Check for your application
The required format for the tokens in MicroProfile JWT Propagation
¢ How we can leverage MicroProfile JWT Propagation for security decisions



MicroProfile Health Check and JWT Propagation Chapter 4

Technical requirements

To build and run the samples in this chapter, you need Maven 3.5+ and a Java 8 JDK. The
code for this chapter can be found at https://github.com/PacktPublishing/Hands-On-
Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-

healthcheck and https://github.com/PacktPublishing/Hands-On-Enterprise-Java-
Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation for

the MicroProfile Health Check and MicroProfile Propagation JWT sections, respectively.

Understanding health checks and how
MicroProfile handles them

In cloud-native architectures, health checks are used to determine whether a computing
node is alive and ready to perform work. The concept of readiness describes the state when
containers start up or roll over (that is, redeployment). During this time, the cloud platform
needs to ensure that no network traffic is routed to that instance before it is ready to
perform work.

Liveness, on the other hand, describes the state of a running container; that is, can it still
respond to requests? If either the liveness or readiness states are seen as invalid, the
computing node will be discarded (terminated or shut down) and eventually replaced by
another, healthy, instance.

Health checks are an essential contract with the orchestration framework and scheduler of
the cloud platform. The check procedures are provided by the application developer and
the platform uses these to continuously ensure the availability of your application or
service.

MicroProfile Health Check 1.0 (MP-HC) supports a single health check endpoint that can be
utilized for either a liveness or readiness check. MicroProfile Health Check 2.0 plans to add
support for multiple endpoints to allow an application to define both liveness and
readiness probes.

The MP-HC specification details two elements: a protocol along with a response wire
format part and a Java API for defining the response content.

The architecture of the MP-HC feature is modeled as an application that consists of zero or
more health check procedures that are logically linked together with AND to derive the
overall health check status. A procedure represents an application-defined check of a
required condition that has a name, state, and, optionally, data about the check.

[52]


https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-healthcheck
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation
https://github.com/PacktPublishing/Hands-On-Enterprise-Java-Microservices-with-Eclipse-MicroProfile/tree/master/Chapter04-jwtpropagation

MicroProfile Health Check and JWT Propagation Chapter 4

The Health Check protocol and wire format

The MP-HC specification defines the requirement to support the HTTP GET requests
against a logical /health REST endpoint that may return any one of the following codes to
represent the endpoint's status:

e 200:Itis up and healthy.
e 500: It is unhealthy due to an unknown error.
e 503: It is down and not ready to respond to requests.

Note that many cloud environments simply look at the request return code as either success
or failure, so the differentiation between a 500 and 503 code may not be distinguishable.

The payload of a /health request must be a JSON object that matches the schema given in
the following (for more information on the JSON schema syntax see http://jsonschema.
net/#/).

Following is the JSON schema for MicroProfile Health Check responses:

{

"Sschema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {
"outcome": {
"type": "string"
}!
"checks": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string"
}!
"state": {
"type": "string"
}!
"data": {
"type": "object",
"properties": {
"key": {
"type": "string"
}!
"value": {
"type": "stringl|boolean|int"

}

[53]


http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/
http://jsonschema.net/#/

MicroProfile Health Check and JWT Propagation Chapter 4

t
t
s
"required": [
"name",
"state"
]
t
t
s
"required": [
"outcome",
"checks™"
]
t

So, an MP-HC response consists of a JSON object that contains a status property of the
string type and a checks property of the array of objects type. The checks array object
type consists of a required name and status string, along with an optional data object that
contains optional key and value pairs. In the next section, we will see how a microservice
specifies a health check response.

The Health Check Java API

Most of the plumbing is performed by the application framework that implements the MP-
HC specification. Your part is to decide how liveness or readiness are determined through
the health check procedures that your microservice defines using the MP-HC APIL

To do this, you need to implement a health check procedure by implementing one or more
instances of the HealthCheck interface using beans that are marked with a Health
annotation.

The HealthCheck interface is provided in the following code block:
package org.eclipse.microprofile.health;
@FunctionalInterface
public interface HealthCheck {

HealthCheckResponse call();
}

[54]



MicroProfile Health Check and JWT Propagation Chapter 4

The code for the Health annotation is provided in the following code block:

package org.eclipse.microprofile.health;

import
import
import
import

javax.inject.Qualifier;
java.lang.annotation.Documented;
java.lang.annotation.Retention;
java.lang.annotation.RetentionPolicy;

@Qualifier
@Documented
@Retention (RetentionPolicy.RUNTIME)

public
}

@interface Health {

An example HealthCheck implementation that represents the status of a hypothetical disk
space check is shown in the following example. Note that the check includes the current
free space as part of the response data. The HealthCheckResponse class supports a
builder interface to populate the response object.

import
import
import
import

@Health

Following is a hypothetical disk space He a lthCheck procedure implementation:

javax.enterprise.context.ApplicationScoped;
org.eclipse.microprofile.health.Health;
org.eclipse.microprofile.health.HealthCheck;
org.eclipse.microprofile.health.HealthCheckResponse;

@ApplicationScoped

public

class CheckDiskspace implements HealthCheck {

@Override
public HealthCheckResponse call() {
return HealthCheckResponse.named ("diskspace")

}

.withData ("free", "780mb")

-up ()
.build();

In this example, we created a health response that is named diskspace with a status of
up and custom data named free with a string value of 780mb.

Another health check example representing some service endpoint is shown in the

following.

[551]




MicroProfile Health Check and JWT Propagation Chapter 4

A hypothetical service HealthCheck procedure implementation is shown here:

package io.packt.hc.rest;
//ServiceCheck example

import
import
import
import

@Health

javax.enterprise.context.ApplicationScoped;
org.eclipse.microprofile.health.Health;
org.eclipse.microprofile.health.HealthCheck;
org.eclipse.microprofile.health.HealthCheckResponse;

@ApplicationScoped

public class ServiceCheck implements HealthCheck {
public HealthCheckResponse call() {
return HealthCheckResponse.named ("service-check")
.withData ("port", 12345)

.withData ("isSecure", true)

.withData ("hostname", "service.jboss.com")
.up ()

Jbuild() ;

}
}

In this example, we created a health response named service-check with a status of up
that includes the following additional data:

e A port item with an integer value of 12345

e An isSecure item with a Boolean value of t rue

¢ A hostname item with a string value of service. jboss.com

The CDI-managed health checks are discovered and registered automatically by the
application runtime. The runtime automatically exposes an HTTP endpoint, /health, used
by the cloud platform to poke into your application to determine its state. You can test this
by building the Chapter04-healthcheck application and running it. You will see the
following output:

Scotts—-iMacPro:hc starksm$ mvn package

[INFO]

Scanning for projects...

Resolving 144 out of 420 artifacts

[INFO]

Repackaging .war:

/Users/starksm/Dev/JBoss/Microprofile/PacktBook/Chapter04-
metricsandhc/hc/target/health-check.war

[INFO]

Repackaged .war:

[561]



MicroProfile Health Check and JWT Propagation Chapter 4

/Users/starksm/Dev/JBoss/Microprofile/PacktBook/Chapter04-
metricsandhc/hc/target/health-check.war

[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: 7.660 s

[INFO] Finished at: 2019-04-16T21:55:14-07:00

[INFO]

Scotts—iMacPro:hc starksm$ java —-jar target/health-check-thorntail.jar
2019-04-16 21:57:03,305 INFO [org.wildfly.swarm] (main) THORNO0O013:

Installed fraction: MicroProfile Fault Tolerance - STABLE
io.thorntail :microprofile—-fault-tolerance:2.4.0.Final

2019-04-16 21:57:07,449 INFO [org.jboss.as.server] (main) WFLYSRV001O0:
Deployed "health-check.war" (runtime-name : "health-check.war")

2019-04-16 21:57:07,453 INFO [org.wildfly.swarm] (main) THORN99999:
Thorntail is Ready

Once the server has started, test the health checks by querying the health endpoint:

Scotts—iMacPro:Microprofile starksm$ curl -s http://localhost:8080/health |

ja
{
"outcome": "UP",
"checks": [
{
"name": "service-check",
"state": "UP",
"data": {
"hostname": "service.jboss.com",
"port": 12345,
"isSecure": true

b

[571



MicroProfile Health Check and JWT Propagation Chapter 4

{

"name": "diskspace",
"state": "UP",
"data": {

"free": "780mb"

}
}
]
}

This shows the overall health to be UP. The overall status is the logical OR of all of the health
che<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>