
Interactive
Object-Oriented
Programming
in Java

Learn and Test Your Programming Skills
—
Second Edition
—
Vaskaran Sarcar
Foreword by Avirup Mullick

Interactive
Object-Oriented

Programming in Java
Learn and Test Your
Programming Skills

Second Edition

Vaskaran Sarcar

Foreword by Avirup Mullick

Interactive Object-Oriented Programming in Java

ISBN-13 (pbk): 978-1-4842-5403-5			 ISBN-13 (electronic): 978-1-4842-5404-2	
https://doi.org/10.1007/978-1-4842-5404-2

Copyright © 2020 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Mathew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email rights@apress.com or visit http://www.apress.com/rights-
permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5403-5. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vaskaran Sarcar
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-5404-2

Dear Reader,

You motivate me with your nice and loving comments,
you hurt me with your extremely critical comments, but in the

end you help me to become a better person and a better author.
So, this book is dedicated to you.

v

Table of Contents

Part I: Fundamentals of Object-Oriented Programming.................................. 1

Chapter 1: Object-Oriented Programming Concepts��� 3

Class and Objects�� 5

Encapsulation�� 6

Abstraction��� 6

Inheritance��� 7

Polymorphism�� 7

Q&A Session��� 8

Summary��� 9

Chapter 2: The Building Blocks: Class and Objects��� 11

Class�� 11

Object��� 11

Constructor�� 14

Demonstration 1��� 17

Q&A Session��� 19

About the Author���xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Preface���xxv

Who Is This Book For?���xxix

Guidelines for Using This Book��xxxi

Conventions Used in This Book���xxxiii

Foreword��xxxv

vi

Demonstration 2��� 19

Analysis�� 20

Demonstration 3��� 26

Demonstration 4��� 29

Demonstration 5��� 31

Passing Variable-Length Arguments to Methods��� 32

Demonstration 6��� 32

Analysis�� 33

Q&A Session��� 33

Summary��� 35

Chapter 3: Classes and Objects in Depth��� 37

Static Variables and Methods�� 37

Demonstration 1��� 38

Q&A Session��� 39

Access Control��� 39

Demonstration 2��� 40

Getter-Setter Methods��� 42

Demonstration 3��� 42

Q&A Session��� 43

Initialization Block�� 43

Demonstration 4��� 44

Q&A Session��� 45

Nested Class�� 47

Demonstration 5��� 47

Q&A Session��� 49

Copying an Object�� 49

Using Copy Constructors�� 49

Demonstration 6��� 50

Q&A Session��� 51

Wrapper Class�� 51

Demonstration 7��� 52

Table of Contents

vii

Garbage Collection��� 54

Q&A Session��� 55

Demonstration 8��� 57

Finalization��� 60

Demonstration 9��� 61

Summary��� 63

Chapter 4: The Concept of Inheritance�� 65

Types of Inheritance��� 65

Single Inheritance�� 65

Hierarchical Inheritance��� 66

Multi-level Inheritance��� 67

Multiple Inheritance�� 68

Demonstration 1��� 69

Q&A Session��� 70

Demonstration 2��� 70

Q&A Session��� 72

Demonstration 3��� 72

Q&A Session��� 74

Demonstration 4��� 75

Q&A Session��� 76

A Special Keyword: super�� 76

Demonstration 5��� 77

Demonstration 6��� 81

Q&A Session��� 83

Demonstration 7��� 84

Q&A Session��� 85

Demonstration 8��� 86

Q&A Session��� 87

Demonstration 9��� 88

Q&A Session��� 89

Summary��� 90

Table of Contents

viii

Chapter 5: Get Familiar with Polymorphism�� 91

Method Overloading��� 91

Demonstration 1��� 91

Q&A Session��� 93

Demonstration 2��� 95

Q&A Session��� 96

Demonstration 3��� 96

Q&A Session��� 97

Demonstration 4��� 97

Q&A Session��� 98

Demonstration 5��� 99

Method Overriding��� 101

Demonstration 6��� 102

Q&A Session��� 104

Demonstration 7��� 106

Runtime Polymorphism�� 108

Demonstration 8��� 109

Q&A Session��� 111

Demonstration 9��� 111

Q&A Session��� 114

Demonstration 10��� 115

Using the final Keyword��� 117

Blank final Variables��� 119

Q&A Session��� 120

Demonstration 11��� 120

Q&A Session��� 122

Demonstration 12��� 124

Q&A Session��� 126

Demonstration 13��� 127

Q&A Session��� 128

Demonstration 14��� 129

Table of Contents

ix

Covariant Return Type�� 130

Demonstration 15��� 130

Demonstration 16��� 133

Q&A Session��� 134

Use of Private Constructors��� 135

Q&A Session��� 135

Demonstration 17��� 136

Q&A Session��� 138

Summary��� 139

Chapter 6: Abstract Classes and Interfaces: The True Art in OOP������������������������� 141

Abstract Classes�� 141

Demonstration 1��� 142

Demonstration 2��� 143

Q&A Session��� 146

Interfaces��� 151

Demonstration 3��� 153

Q&A Session��� 154

Demonstration 4��� 155

Q&A Session��� 156

Demonstration 5��� 157

Q&A Session��� 158

Demonstration 6��� 158

Q&A Session��� 160

Demonstration 7��� 160

Q&A Session��� 163

Marker Interface�� 163

A Quick Tour with Annotations��� 164

Demonstration 8��� 165

Demonstration 9��� 169

Javadoc Snapshots�� 170

Q&A Session��� 171

Table of Contents

x

Default Methods in Interfaces�� 173

Demonstration 10��� 173

Q&A Session��� 175

Demonstration 11��� 176

Q&A Session��� 178

Demonstration 12��� 179

Summary��� 180

Chapter 7: Packages�� 183

Creating a Package�� 185

Demonstration 1��� 188

Key Notes About Packages in Java��� 192

Q&A Session��� 193

Demonstration 2��� 195

Q&A Session��� 196

Troubleshooting Common Errors in Command-line Environment�� 197

Summary��� 200

Chapter 8: Understanding Class Variables and Class Methods����������������������������� 201

Class Variables and Class Methods�� 202

Demonstration 1��� 202

Working with Nested Classes�� 203

Demonstration 2��� 203

Q&A Session��� 207

Initialization Blocks Versus Constructors��� 208

Demonstration 3��� 210

Method Hiding Versus Method Overriding�� 214

Demonstration 4��� 215

Q&A Session��� 217

Method Overloading��� 217

Demonstration 5��� 217

Q&A Session��� 220

Table of Contents

xi

Static Methods in Interfaces�� 220

Demonstration 6��� 221

Summary��� 223

Chapter 9: Quick Recap of OOP Principles��� 225

Q&A Session��� 226

Revisiting the Diamond Problem�� 229

Demonstration 1��� 230

Q&A Session��� 232

Summary��� 235

Part II: Get Familiar with Advanced Programming...................................... 237

Chapter 10: Managing Exceptions��� 239

Types of Mistakes�� 239

Definition of Exception��� 241

Demonstration 1��� 241

Key Points of the Exception-handling Mechanism��� 242

Demonstration 2��� 245

Q&A Session��� 247

Demonstration 3��� 247

Multiple catch Clauses��� 250

Q&A Session��� 253

Demonstration 4��� 254

Q&A Session��� 255

Throwing an Exception�� 255

Demonstration 5��� 256

Rethrowing an Exception��� 257

Demonstration 6��� 257

Use of throws Keyword�� 260

Demonstration 7��� 261

Demonstration 8��� 263

Table of Contents

xii

Checked Versus Unchecked Exceptions��� 265

Q&A Session��� 266

Discussion on Chained Exceptions�� 266

Demonstration 9��� 267

Creating a Custom Exception��� 272

Demonstration 10��� 273

Q&A Session��� 276

Demonstration 11��� 276

Q&A Session��� 277

Demonstration 12��� 278

Summary��� 280

Chapter 11: Thread Programming��� 281

Creating Threads�� 283

Extending the Thread Class�� 284

Demonstration 1��� 285

Implementing the Runnable Interface�� 288

Demonstration 2��� 288

Q&A Session��� 291

Demonstration 3��� 292

Case Study with Different Thread Class Methods�� 300

Demonstration 4��� 301

Q&A Session��� 303

Synchronization��� 305

Use of Synchronized Methods�� 306

Demonstration 5��� 307

Use of Synchronized Block��� 309

Demonstration 6��� 309

Deadlock�� 311

Types of Deadlock�� 311

Demonstration 7��� 312

Detecting Deadlocks in the System�� 314

Table of Contents

xiii

Interthread Communication��� 317

Demonstration 8��� 319

Lifecycle of a Thread�� 323

Q&A Session��� 325

Summary��� 327

Chapter 12: Generic Programming�� 329

Compare Generic Programs with Non-Generic Programs�� 329

Demonstration 1��� 329

Demonstration 2��� 331

Demonstration 3��� 335

Demonstration 4��� 337

Wildcard Types in Generic Programming��� 340

Upper-bound Wildcard�� 340

Demonstration 5��� 342

Lower-bound Wildcard�� 346

Demonstration 6��� 346

Unbounded Wildcard�� 349

Q&A Session��� 350

Demonstration 6A��� 354

Bounded Type Parameter��� 355

Demonstration 7��� 357

Demonstration 8��� 360

Q&A Session��� 361

Erasures��� 361

Demonstration 9��� 362

Raw Types�� 366

Demonstration 10��� 367

Q&A Session��� 368

Table of Contents

xiv

Type Inference Using Diamond Operator�� 369

Applying Inheritance�� 370

Demonstration 11��� 370

Bridge Method�� 372

Demonstration 12��� 373

Important Restrictions in Generic Programming�� 375

Don’t Instantiate Generic Types with Primitive Types��� 376

Your Generic Class Cannot Subclass Directly or Indirectly from Throwable������������������������� 376

You Cannot Overload a Method Where the Formal Parameter Types of Each
Overload Are Erased to the Same Raw Type��� 376

Static Field Type Parameter Is Not Allowed in Your Generic Class��������������������������������������� 377

You Cannot Instantiate the Type Parameters In Your Generic Class������������������������������������� 377

One Final Suggestion�� 378

Summary��� 378

Chapter 13: Database Programming��� 381

Database and DBMS�� 382

Types of DBMS��� 382

RDBMS��� 383

SQL��� 384

Connecting to a Database�� 385

Q&A Session��� 387

Talking to a Database in a Java Application��� 388

Important Terms��� 390

Creating a Database and Inserting Records��� 392

MySQL Command Prompt View�� 395

Demonstration 1��� 397

Demonstration 2��� 399

Demonstration 3��� 403

Q&A Session��� 408

Demonstration 4��� 410

Table of Contents

xv

Q&A Session��� 417

Demonstration 5��� 418

Summary��� 421

Chapter 14: Important Features in Java’s Enhancement Path������������������������������� 423

Try-with-resource from Java 7�� 423

Demonstration 1��� 424

Q&A Session��� 425

Implementing Functional Interface Methods Using Lambda Expressions from Java 8������������� 425

Demonstration 2��� 426

Q&A Session��� 427

Private Interface Method from Java 9�� 428

Demonstration 3��� 428

Q&A Session��� 430

Local Variable Type Inference from Java 10��� 432

Demonstration 4��� 432

Restrictions�� 433

New String Methods from Java 11�� 434

Demonstration 5��� 434

Q&A Session��� 435

New switch Expression in Java 12/13��� 437

Demonstration 6��� 437

Q&A Session��� 439

Summary��� 439

Part III: Explore Real-World Scenarios.. 441

Chapter 15: Introduction to Design Patterns��� 443

Key Points�� 444

Creational Patterns��� 445

Structural Patterns��� 446

Table of Contents

xvi

Behavioral Patterns�� 446

Class and Object Patterns�� 447

Q&A Session��� 447

Prototype Pattern��� 449

GoF Definition��� 449

Concept�� 449

Real-life Example��� 450

Coding Example�� 450

Illustration�� 451

Class Diagram�� 452

Package Explorer View��� 453

Implementation�� 453

Q&A Session��� 456

Shallow Copy Versus Deep Copy in Java�� 459

Bridge Pattern�� 465

GoF Definition��� 465

Concept�� 465

Real-life Example��� 465

Coding Example�� 466

Illustration�� 466

Class Diagram�� 469

Package Explorer View��� 469

Implementation�� 470

Q&A Session��� 475

Observer Pattern�� 477

GoF Definition��� 477

Concept�� 477

Real-life Example��� 481

Coding Example�� 481

Illustration�� 482

Table of Contents

xvii

Class Diagram�� 482

Package Explorer View��� 483

Implementation�� 484

Q&A Session��� 488

Summary��� 492

Chapter 16: Frequently Asked Questions��� 493

Appendix A: Test Your Skill in Language Fundamentals�� 501

SET 1�� �501

SET 2�� �503

SET 3�� �507

SET 4�� �509

SET 5�� �512

SET 6�� �513

SET 7�� �521

SET 8�� �528

SET 9�� �534

Appendix B: Getting Started with Java�� 537

Basic Terms�� 538

Installation��� 540

�Download JDK�� 540

�An Important License Update from Oracle��� 541

�Download Eclipse��� 542

�Naming Conventions�� 542

Appendix C: Installing MySQL and Testing SQL Commands���������������������������������� 545

Index�� 581

Table of Contents

xix

About the Author

Vaskaran Sarcar obtained his Master of Engineering

degree from Jadavpur University, Kolkata, India. He was a

national Gate Scholar and has more than twelve years of

experience in education and the IT industry. He worked

as senior software engineer, specialist, and team lead in

the R&D Hub at HP Inc. India until August 2019. He is

an alumnus of prestigious institutions in India, such as

Jadavpur University, Vidyasagar University, and Presidency

University (formerly Presidency College). He loves to

spend time with his kids and family members. Reading

and learning new things are his passions. Other books by

Vaskaran include the following:

•	 Java Design Patterns, Second Edition (Apress, 2018)

•	 Design Patterns in C# (Apress, 2018)

•	 Interactive C# (Apress, 2017)

•	 Interactive Object-Oriented Programming in Java (Apress, 2016)

•	 Java Design Patterns, First Edition (Apress, 2016)

•	 C# Basics: Test Your Skill (CreateSpace, 2015)

•	 Operating System: Computer Science Interview Series (CreateSpace, 2014)

xxi

About the Technical Reviewer

Yogesh Sharma is a full-stack engineer at Mphasis Pvt

Ltd where he primarily focuses on modernising existing

stacks with the help of containerisation, microservices and

prevalent DevOps disciplines. With his recently discovered

love for Infrastructure as Code and Adaptive Intelligence, he

enjoys travelling, voluntary services and watching sitcoms.

He would also like to take this opportunity to thank his wife,

Akanksha for supporting him in all his endeavors.  

xxiii

Acknowledgments

At first, I thank the Almighty. I sincerely believe that with his blessings only, I completed

this book. I also extend my deepest gratitude and thanks to the following:

Ratanlal Sarkar and Manikuntala Sarkar: My dear parents, with your blessings

only, could I complete this work.

Indrani, my wife, and Ambika, my daughter: Sweethearts, once again, without your

love I could not proceed at all. I know that we needed to limit many social gatherings and

invitations so I could complete this work on time, and each time I promised you that I

would take a long break and spend more time with you.

Sambaran, my brother: Thank you for your constant encouragement toward me.

Yogesh: You are technical advisor for this second edition. I know that whenever I was

in need, your support was there. Thank you one more time.

Shekhar and Anupam: My friends and technical advisors in the previous edition

of this book. Though this time you were not involved, I still acknowledge your support

and help in the development of Interactive Object-Oriented Programming in Java, First

Edition.

Avirup Mullick: I first met you in 1998. You were my college senior. A special thanks

to you for taking time to write a foreword for my book. From the moment experts like you

agreed to write for me, I got additional motivation to enhance the quality of my work.

Celestin: Thanks for giving me another opportunity to work with you and Apress.

April, Nirmal, Arockia Rajan, Ramraj, Chinnaparaj, and Vinoth: Thank you for

your exceptional support to beautify my work.

Lastly, I extend my deepest gratitude to my publisher, the editorial board members,

and everyone who directly or indirectly supported this book.

xxv

Preface

It is my privilege to present you with Interactive Object-Oriented Programming in Java:

Learn and Test Your Programming Skills (Second Edition).

If you are curious about what the most important and unique characteristics of

this book are, I would say that it is interactive and very simple. The goal was not to

demonstrate typical and tough programs using all the latest features of Java. On the

contrary, the true goal is to fuel your creativity by using the core constructs in Java. The

word core is more important than the latest when you learn a new technology. Whatever

is the latest today will be outdated tomorrow. But core concepts are evergreen.

This book focuses on the implementation of object-oriented programming concepts

using the most basic features of Java so that you don’t need to be familiar with advanced

Java topics. The examples are simple and straightforward. I believe that these examples

are written in such a way that even if you are familiar with another popular language,

such as C#, C++, and so on, you can still easily grasp the concepts in this book.

You’ll probably agree that when you travel an unknown path to a destination, it can

help if you get a loving and caring guide. Learning a new programming language through

a book is also a journey, a fact that was always on my mind as I wrote. So, in this book, I

did not explain a topic in only an informative way. Instead, I made this book interactive,

with one or more “Q&A Sessions” in each chapter. These sessions will not only assist

you in your learning process, but can also act as a “doubt-clearing session” because they

will feel like you are asking your guide some questions (or expressing your doubts) and

that you are receiving the answers from him in a simple one-to-one communication. In

addition to this, in most of the cases, you’ll get a full demonstration of a program with

output analysis so that you can get the maximum benefit.

In short, the aim of this book is to help you to get a feel of a Java classroom

environment. I have been involved in teaching since 2005. I have taken classes in both

engineering and non-engineering colleges. And, fortunately, most of my teaching

involvement was based on Java and its advanced topics. That is the true motivation

for why I wanted to introduce a book like this. Before you jump into the topics, let me

highlight a few points about the book, its chapters’ organization, and the intended

readers.

xxvi

The book has three major parts. The first nine chapters make up Part 1, in which you

will see the discussion and implementation of object-oriented concepts in Java. Part 2

consists of five more chapters (from Chapter 10 to Chapter 14). In Part 2, you will explore

something from “Advanced Java,” where you will learn about exception handling, multi-

thread programming, generic programming, and JDBC programming. In Chapter 14,

you will get to know about the feature evolution path, where you will experiment with

important features that come in different versions of Java. But I have picked only those

features that enhance what you will learn in Part 1 of the book, so that you can understand

how these upgraded features can make your programming life easier. Finally, in Part 3 of

the book, you will learn about some real-world implementation using three important

design patterns. Part 3 also consists of a chapter of FAQs, which is basically a subset of all

the Q&A Sessions in this book. It can provide a quick review of all the topics that you learn

in this book.

The target readers for this book are those who know the basic language constructs

in Java and how to compile or run a simple Java application. This book does not invest

time in topics that are easily available online, such as how to install Eclipse on your

system, or how to write a “Hello World” program in Java, or how can you use an if-else

statement or a while loop in your Java program and so forth. Instead, the book starts

with a discussion in object-oriented programming. So, I expect that before you enter into

Chapter 1, you will be familiar with simple Java programs and your coding environment

is ready. My discussion with you starts with the object-oriented concepts you can use

in Java. Here, I focus on the fundamental features of Java, and I also explain how these

concepts can be learned and used effectively.

But do not worry! To assist you with asking/thinking better questions in doubt-

clearing sessions, an entire section is added at the end of the book (Appendix A). This

appendix discusses some key concepts in Java and helps you evaluate your skills in the

language basics. You may need to come back to this section many times because it acts

as a reference. Even if you do not know all of these topics, gradually, upon repeated

practice, you will become familiar with them. So, if you are new to programming or if you

have some idea about other programming languages, this section can assist you a lot.

It can also help you prepare for a job interview or an examination by answering some

tricky questions that may seem very easy at the beginning.

I said earlier that in this book each chapter contains one or more Q&A Sessions,

which will give you a feel of learning in a classroom environment—where your teacher

will discuss some problems or topics, ask you questions, and allow you to ask counter

Preface

xxvii

questions. If you are dedicated to this subject and think deeply about the questions and

the corresponding answers, you will surely develop confidence in this language.

In a semester, you need to attend a certain number of lectures to complete the

fundamental topics, and you know that learning is a continuous process. So, this book

is not for those who want to learn Java in 24 hours or in 7 days. It is up to you only. I can

only say that the book is designed for you in such a way that upon its completion, you

will have developed an adequate knowledge of the topic, you will have learned the key

features of this powerful language and object-oriented programming, and you will have

learned how you should write programs in Java and, most important, how to go further.

I have taken care to provide codes that are compatible with all the latest versions

of Java. Also, it is not mandatory for you to learn Eclipse. You can simply run these

programs in your preferred IDE (integrated development environment). I have chosen

Eclipse because it is widely used to develop Java applications.

Please remember that as you learn about these concepts, try writing your own

code; only then will you master this area. You can always share your comments to truly

complete this book and enhance your future work.

You will be able to download all the source code of the book from the publisher’s

website. I have a plan to maintain the “Errata” and, if required, I can also make some

updates/announcements there. So, it is suggested that you visit those pages to receive

the corrections or updates, if any.

Lastly, I hope that this enhanced edition can provide more help to you and that you

will like the book.

Preface

xxix

Who Is This Book For?

In short, you can pick this book if the answer is “yes” to the following questions:

•	 Are you familiar with basic constructs in Java?

•	 Do you know how to set up your coding environment?

•	 Do you want to explore object-oriented programming step-by-step?

•	 Do you want to review your understanding of basic programming

skills in Java?

•	 Do you want to explore something from advanced Java (for

example, generic programming, JDBC Programming, multi-thread

programming, etc.) ?

•	 Are you interested to know about some real-world implementation

techniques?

Probably you shouldn’t pick this book if the answer is “yes” to any of the following

questions:

•	 Are you totally new to Java?

•	 Are you looking for all the advanced concepts in Java in depth?

•	 Are you interested in exploring only the latest features of Java?

•	 Do you dislike a book that has an emphasis on Q&A sessions?

•	 “I do not like Windows and Eclipse. I want to learn Java without

them.” Is this statement true for you?

xxxi

Guidelines for Using This Book

Here are some suggestions so you can use this book more effectively:

•	 If you are confident with the topics covered in Appendix A, you

can start with Chapter 1 of the book. I suggest you go through

the chapters sequentially. Some fundamental questions may be

discussed in the Q&A Session of a previous chapter, and I have not

repeated those in the later chapters.

•	 These programs are tested with Java 8 (update 172), and I have

used Eclipse IDE in a Windows 10 environment. When I started the

second edition of the book, Photon was the latest edition of Eclipse

(released June 27, 2018), Java 8 was the long-term support (LTS)

version, and Java 10 was the rapid-release version. Java 11 is the next

LTS version after Java 8 and was planned for September 2018. But

as it turned out, by the time I finished my work, Java 13 and Eclipse

Java 2019-09 had been released. But all these versions’ details should

not matter to you, because I have used the most basic constructs

of Java. So, I believe that these codes should execute smoothly in

the upcoming versions of Java/Eclipse as well. To experiment with

this, I tested some portions of these codes in different systems and

different environments (including online editors), and I always

received the expected output. With these experiments, I believe that

the results should not vary in other environments as well, but you

know the nature of software—they can misbehave and surprise you.

So, I recommend that if you want to see the exact same outputs that

are shown in the book, it will be better if you can mimic the same

environment.

•	 There is an exception for Chapter 14 codes. Some of them use the

latest Java features, and my Eclipse environment was not ready to

accommodate the changes. So, I executed some programs with the

latest features in a command-line environment. You can do the same.

xxxii

•	 In some examples, to draw class diagrams, ObjectAid Uml Explorer

is used in the Eclipse editor. It is a lightweight tool for Eclipse. At the

time of this writing, it is free if you want to draw the class diagrams,

but to draw the sequence diagrams, you will need to purchase a

license. The online link http://www.objectaid.com/home can give

you the details of these licenses and terms and conditions.

Guidelines for Using This Book

http://www.objectaid.com/home

xxxiii

Conventions Used in This Book

All programs in this book are organized under package statements like the following:

package java2e.chapter2;

class ClassEx1 {

 // Field initialization is optional.

 // Here myInt is initialized with the value 25.

 public int myInt = 25;

 // In the following case, it will be initialized with default //value 0.

}

public class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1. A class demo with 2

objects ***");

 ClassEx1 obA = new ClassEx1();

 ClassEx1 obB = new ClassEx1();

 System.out.println("obA.myInt = " + obA.myInt);

 System.out.println("obB.myInt = " + obB.myInt);

 }

}

It simply says that there is folder classed java2e, inside which is another folder

chapter2, and you are storing Demonstration1.java inside it. So, the Demonstration1.

class and ClassEx1.class files should be available there. You’ll learn about Java

packages in Chapter 7. Once you’re familiar with them, you’ll acknowledge that it is

always a better practice to organize your codes with packages.

But when you start learning the concepts, to compile and run the programs, the

package statements are NOT mandatory for you. So, initially you can play with all these

programs without the package statements. And, you may store your programs in your

preferred location, so, at your end, you may need to modify the package statements

when you use them.

xxxiv

All the outputs and codes of the book follow the same font and structure. To draw

your attention, in some places, I have made them bold like the following:

***Demonstration-17.A comparison study:Using a final class vs using a

private constructor***

Called the private constructor.

Setting the default the value x=10.

 Exit-private non-parameterized constructor.

Updating the default value of x.

 Exit-parameterised constructor.

 The parent.x=15

Called the private constructor.

Setting the default the value x=10.

 Exit-private non-parameterized constructor.

Updating the default value of x.

 Exit-parameterised constructor.

 The child.x=2

 The child.y=3

Conventions Used in This Book

xxxv

Foreword

It is an absolute honor and privilege to write this foreword for Vaskaran’s latest book,

Interactive Object-Oriented Programming in Java: Learn and Test Your Programming Skills.

I have known Vaskaran for many years now. From studying in the same institutions,

such as Presidency University (formerly Presidency College) and Vidyasagar University,

to working in the IT industry, we tread our own paths in our academic and professional

careers, but he always found a way to give back to the community. This is a unique trait,

and I admire him for that.

His passion for writing and his desire to share the knowledge he has acquired

through his years of experience in the industry are reflected in this book, where the

approach to learning is through clarifying theoretical concepts while testing one’s

programming skills. This practical approach will be invaluable to readers and will help

them in real-life programming situations in their exams, interviews, or jobs.

This book discusses the fundamental concepts of object-oriented programming

in depth, with examples in Java. It also covers some advance concepts, including

design patterns in Java. It is an easy read, and each concept has been handled with

precision: fundamentals have been clarified for in-depth knowledge building while

demonstrations and examples have kept it interesting. Each chapter is augmented with

a Q & A Session, which will be helpful in putting things in perspective or clearing one’s

doubts by understanding the pros and cons of each of these patterns. The “Test Your

Skill in Language Basics” section will help readers review their understanding of the

fundamentals of Java before advancing their expertise in the field.

The FAQ chapter at the end of the book is particularly helpful in refreshing one’s

knowledge and getting one in the mindset to crack those technical interviews with

confidence.

This book is a must-read for Java developers or aspiring Java developers, as it will most

certainly enhance one’s object-oriented programming skills in Java to a great extent. For

that matter, even developers from a non-Java background can benefit from the book.

I wish Vaskaran and this book all the success it deserves.

Avirup Mullick

Manager, Global Operations Center, Adobe Systems

PART I

Fundamentals of Object-
Oriented Programming

Chapter 1: Object-Oriented Programming Concepts

Chapter 2: The Building Blocks: Class and Objects

Chapter 3: Class and Objects in Depth

Chapter 4: The Concept of Inheritance

Chapter 5: Get Familiar with Polymorphism

Chapter 6: Abstract Class and Interface: The True Art in OOP

Chapter 7: Package

Chapter 8: Understanding Class Variables and Class Methods

Chapter 9: Quick Recap of OOP Principles

3
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_1

CHAPTER 1

Object-Oriented
Programming Concepts
Welcome to object-oriented programming (OOP). Before we start, let’s discuss some

fundamental questions and answers. For example, why do you need this kind of

programming? How can these concepts make your life easier? If you know the answers

to these questions, your learning path will be easy, and you will be able to relate to these

concepts in various ways. But, before you start, there are two warning messages for you.

•	 Do not lose your motivation if you cannot understand everything

after the first pass. In many cases, it may seem complicated, but

gradually it will be easier for you.

•	 Many developers criticize the concepts of OOP. But please remember

that each human mind tends to criticize new things. So, even if you

want to criticize these concepts, I suggest that you first understand

it properly, use the concepts in various applications, and then make

your own decision about whether to appreciate or criticize.

Now, let us begin the journey . . .

Computer programming started with binary code, and mechanical switches

were used to load the programs. It is easy to assume that a programmer’s life was

very challenging in those days. To make programmers’ lives easy, some high-level

programming languages were developed, and, in those languages, some simple English-

like instructions were used. But you should not forget the fact that a computer can

understand instructions only in a binary language. So, the compiler’s primary job was

to translate these English-like instructions into binaries, and eventually these high-level

languages gained in popularity.

4

Over a period of time, computer capacity and capabilities increased a lot. Then,

developers started developing complex applications. Unfortunately, none of the

programming languages that were available at that time was mature enough to handle

all of the applications effectively. Some of the primary concerns were as follows:

•	 How can I avoid duplicate efforts? Or, how can I reuse existing code?

•	 How can I control the use of global variables in a shared

environment?

•	 How can I debug the code when too much jumping is occurring

(for example, when you use the goto keyword in various places

in an application)?

•	 How can I make a new engineer’s life easier?

•	 How can I maintain a large code base in a better way?

To solve these problems, expert programmers started breaking the large problems

into smaller problems. The idea behind this philosophy was very simple: If you can

solve these smaller problems, eventually you can solve the big problem. So, they

started portioning the big problems into small chunks, and the concept of functions

(or procedures or subroutines) developed. Each function was dedicated to solve one

small problem. So, managing these functions and the interactions among them became

the key focus, and the concept of structured programming was created. Structured

programming was a big hit because managing small functions is easy, and you can

debug them easily. At the same time, developers also started limiting the use of global

variables, which were replaced with local variables in the functions (in most of the

cases).

Structured programming was popular for almost two decades. During this time,

the capacity of hardware increased significantly. So, developers wanted to solve more-

complex tasks, and, gradually, the limitations of structured programming became more

prominent; for example, consider the following cases:

•	 Suppose, in your application, you have used a particular data type

across multiple functions in an application. Later, you identified that

you need to change the data type. As a result, you need to implement

the changes across all functions across the application.

Chapter 1 Object-Oriented Programming Concepts

5

•	 It is difficult to model all real-world scenarios with the key

components of structured programming (i.e., data and functions).

In the real world, whenever you create a product, there are two areas

you need to focus on:

•	 Purpose. Why is the product needed?

•	 Behavior. How can the product make your life easier?

Then the idea of objects came into existence. Alan Curtis Kay is widely considered

one of the fathers of object-oriented programming, which he named, along with some

colleagues, at the Palo Alto Research Center (PARC), formerly known as Xerox PARC.

POINTS TO REMEMBER

The fundamental difference between structured programming and object-oriented

programming can be summarized as follows: In object-oriented programming, instead of
focusing on the operations on data, focus on the data itself.

OOP focuses on some key principles. I’ll cover them in detail in this book. In this

chapter, you will get a brief introduction to each of them. You may not understand all the

terms in the first read-through, so, it is recommended that you visit these topics again.

�Class and Objects
These are at the core of OOP. A class is the blueprint or template for its objects. Objects

are instances of a class. Each object has its own state, behavior, and identity. In simple

language, you can say that in structured programming, you segregate the problem into

small functions, and in OOP, you divide the problem into objects. You are familiar with

data types like int, double, float, and so forth. You know that these are built-in data

types or primitive data types because they are already defined in a computer language.

But when you create your own data type, let’s say, Student, you need to create a Student

class. Just as when you need to create an integer variable, you mention the int first,

similarly, when you need to create a Student object (e.g., john), you need to mention your

Student class first. So, when you’re familiar with OOP, you may say something like this: a

dog is an object from a Mammal class, your car is an object from a Vehicle class, and so on.

Chapter 1 Object-Oriented Programming Concepts

6

�Encapsulation
In object-oriented programming, you do not allow your data to flow freely inside the

system. Instead, you wrap the data and functions into a single unit (i.e., in a class). The

purpose of encapsulation is at least one of the following:

•	 Putting restrictions in place so that the components of an object

cannot be accessed directly

•	 Binding the data with methods that will act on that data (i.e., forming

a capsule)

In some OOP languages, the hiding of the information is not implemented by

default. So, they come up with an additional term called information hiding.

Later, you will see that data encapsulation is one of the key features in a class. If you

want to promote security, your data should not be visible to the outside world. Only

through the methods defined inside the class can you access these data. Therefore, you

can think of these methods as the interface between the objects’ data and the outside

world (i.e., your program).

In Java, you can implement encapsulation in various ways. For example, you can use

the access specifiers (or modifiers) and getter-setter methods in this context.

Note  You will learn about access specifiers and getter-setter methods in Chapter 3.

�Abstraction
The key purpose of abstraction is to show only the essential features and to hide

the background details of implementation. Abstraction is also very much related to

encapsulation, but the difference may be easily understood with a simple day-to-day

scenario.

When you press a button on your remote control to switch on the TV, you do not care

about the internal circuits of the TV or how the remote control controls the operation

of the TV. You simply know that different buttons on the remote control have different

functionalities, and as long as they work properly, you are happy. So, the user is isolated

from the complex implementation details, which are encapsulated within the remote

control (and TV). At the same time, the common operations that can be performed

Chapter 1 Object-Oriented Programming Concepts

7

through the remote control can be thought of as an abstraction. A manufacturer can

enhance this feature when the same remote can also perform on a different model or

product. For example, a DVD player’s remote control can also be used to control the

volume of a TV.

�Inheritance
Whenever we talk about reusability, we’ll generally refer to inheritance, which is a

process in which one object acquires the properties of another object. Consider this

example. Bus is one type of Vehicle because it fulfills the basic criteria of a Vehicle

that is used for transportation purposes. Similarly, Train is another type of Vehicle.

And even though a GoodsTrain and a PassengerTrain are different, we can say that

both inherit from the Train category (or class) because ultimately both of them fulfill

the basic criteria of a Train, which in turn is a Vehicle. So, you can simply say that

hierarchical classifications are supported with the concept of inheritance.

In the programming world, inheritance creates a new child class from an existing

parent class. This parent class is sometimes known by different names. For example, in

C#, you call this parent class the base class and in Java, you may refer to it as the super

class. So, in simple words, a parent class is placed one level up in that hierarchical

chain. Then you can add new functionalities (methods) or modify the super class

functionalities (later you will call it overriding the functionalities) into the child class.

You must remember that due to these modifications, the core architecture should

not be affected. In other words, if you derive Bus class from Vehicle class, and add/

modify the functionalities in Bus class, those modifications will not impact the original

functionalities that were described for the Vehicle class.

So, the key advantage is that you can avoid lots of duplicate code with this mechanism.

�Polymorphism
Polymorphism is generally associated with one name with many forms. Consider the

behavior of your pet dog. When it sees an unknown person, it is angry and starts barking

a lot. But when it sees you, it makes different noises and behaves differently. In the

coding world, you can also think of a common method, addition. With addition in the

context of two integers, you expect to get a sum of the integers. But for string operands,

you expect to get a concatenated string.

Chapter 1 Object-Oriented Programming Concepts

8

Polymorphism can be of two types:

•	 Compile-time polymorphism: The compiler can decide very early

which method to invoke in which situation once the program is

compiled. This is also known as static binding or early binding.

•	 Runtime polymorphism: The actual method calls are resolved at

runtime. At compile time, you cannot predict which method will be

invoked when the program runs (for example, the program may behave

differently with different inputs). Consider the following case: suppose

you want to generate a random number at the very first line when you

execute a program. If the generated number is an even number, you

will call a method, Method1(), which prints “Hello”; otherwise, you’ll

call a method whose name is the same but prints “Hi.” Now, you’ll agree

that after you execute the program, you can only see which method is

invoked (i.e., the compiler cannot resolve the call at compile time). In

a situation like this, you do not have any clue as to whether you will see

“Hello” or “Hi” prior to the program’s execution. Therefore, sometimes

it is also termed dynamic binding or late binding. In Chapter 5, you’ll

see a detailed discussion on polymorphism, and you will experience the

necessity of runtime polymorphism in detail.

�Q&A Session
1.1 What are the key features of object-oriented programming?

The following are the key features of object-oriented programming:

•	 Encapsulation

•	 Abstraction

•	 Inheritance

•	 Polymorphism

 1.2 How is an object different from a class?

Objects are made from a class. An object is an instance of a class, which is just a template

or a blueprint for your object. An object is a physical entity and can allocate memory in

the system, but class is a logical entity and does not allocate memory in the system.

Chapter 1 Object-Oriented Programming Concepts

9

 1.3 How is abstraction different from encapsulation?

Abstraction focuses on the noticeable behavior of an object, and encapsulation focuses

on the implementation part of that behavior. Encapsulation helps you to bundle your

data, and at the same time it can hide some information that you do not want to disclose

to the outside world.

1.4 What is the key advantage associated with the inheritance mechanism?

Reusing the existing code, you can save time and effort. At the same time, this

mechanism helps you to avoid duplicate codes in your application.

1.5 What are the characteristics of object-oriented programming?

Here are some important characteristics:

•	 Your focus is on data, not on functions. So, you divide your program

into objects, not functions.

•	 You do not allow data to flow freely. You use methods to access them.

•	 Your objects communicate through methods.

•	 The outside world should not access your data.

•	 Your application can adapt to new changes easily. At the same time, it

is easy to maintain.

�Summary
This chapter discussed the following topics:

•	 What is object-oriented programming?

•	 Why did it evolve?

•	 How is it different from structured programming?

•	 What are the key features of object-oriented programming?

Chapter 1 Object-Oriented Programming Concepts

11
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_2

CHAPTER 2

The Building Blocks:
Class and Objects
Object-oriented programming (OOP) techniques primarily depend on two concepts—

class and objects. In this chapter, we’ll discuss these topics in detail.

�Class
A class is a blueprint, template, or prototype. It can describe the behaviors of its objects

and is the foundation for how the objects are built or instantiated.

�Object
An object is an instance of a class.

If you are familiar with the game of football (or soccer, as it’s known in the United

States), you know the players who are participating in a game are selected for their skills

in various positions. In addition to these skills, they need to have a minimum level of

match fitness and some important athletic capabilities. So, when I say that Ronaldo is a

footballer (a.k.a. soccer player), you can assume that Ronaldo has these basic abilities as

well as some skills specific to football (even though Ronaldo is unknown to you).This is

why you can simply say that Ronaldo is an object of a Footballer class.

Note  It may appear to you that it is a chicken-or-the-egg type of dilemma. You
could argue that if I say, “X is playing like Ronaldo,” then in that case, Ronaldo is
acting like a class. However, in object-oriented design, you make things simple by
deciding who comes first, and you decide that guy is the class in your application.

12

Consider another footballer, Beckham. You can assume again that if Beckham is a

footballer, then Beckham must be excellent in many aspects of football. Also, he must

possess a minimum fitness level to participate in a game.

Now, let’s assume that Ronaldo and Beckham both are participating in the same

match. It’s not difficult to predict that although both Ronaldo and Beckham are

footballers, their playing styles and performances will be different from each other

in that match. In the same way, in the world of object-oriented programming, the

performance of objects can be different from each other, even though they belong to the

same class.

You can consider any domain. For example, you could say that your pet dogs or cats

are objects of the Animal class. Similarly, your favorite car could be considered an object

of the Vehicle class, your favorite novel could be considered an object of the Book class,

and so on.

In a real-world scenario, each of the objects must have two basic characteristics:

state and behavior. If you consider the objects—Ronaldo or Beckham from the

Footballer class—you may notice that they have states like “playing” or “non-playing.”

In the playing state, they can show different skills (or behaviors)—they can run, they can

kick, they can pass the ball, and so forth.

In a non-playing state, the behavior will also change. In this state, they can take

a much-needed nap, or they can eat their meals, or they can simply relax by doing

activities like reading a book, watching a movie, and so forth.

Similarly, a television in your home, at any moment, can be in either an “on” state or

an “off” state. It can display different channels if, and only if, it is in “switched on” mode.

It does not show anything if it is in “switched off” mode.

So, to begin with object-oriented programming, you can ask the following questions:

•	 What are the possible states of my objects?

•	 What are the different functions (behaviors) that they can perform in

those states?

Once you get the answers to these questions, you are ready to proceed. Software

objects follow the same pattern in any object-oriented program: their states are stored

in fields (variables), and their capabilities (behaviors) are described through different

methods (functions).

Chapter 2 The Building Blocks: Class and Objects

13

Let’s do some programming exercises now. You are about to start an exciting

journey. I will try to make things very simple. At the same time, I’ll ignore some typical

corner cases to make your journey smooth and easy.

You now understand that to create objects, you need to first decide in which class

they will belong; that is, in general, if you want to create objects, you need to create a

class first.

POINTS TO REMEMBER

•	 You start with the class, which is the architectural blueprint. A class defines the

structure and behavior of the objects. From a single blueprint, you can construct

multiple buildings. Similarly, from a single class, you can construct multiple

objects (or instances). (As said before, typical corner cases are ignored when I

make this statement. For example, a true singleton class cannot have multiple

instances).

•	 With a class, you create a new data type, and objects are used to hold the data

(fields) and methods. Object behavior can be exposed through these methods.

In Java, you create a class as follows:

class A

{

//This is a single-line comment.

//Here is some data, for example,

 int a;

//Here is a method, for example,

void someMethod()

 {

 //Some code

 }

}

Chapter 2 The Building Blocks: Class and Objects

14

You can see that to create a class, you need to use the class keyword. (The single-

line comments’ // are used for better readability.) The class body is enclosed with curly

braces—{ and }. The data or variables inside a class are termed instance variables. You

can have some methods in your class. Collectively, these data and methods are referred

to as class members.

Now, you have created a class called A. So, you can create an object from it. Let’s say

your object is obA, which can be created with the following statement:

A obA=new A();

You can split the preceding statement into the following two lines:

A obA;//Line-1

obA=new A();//Line-2

It is important to note that at the end of Line 1, obA is a reference. Up to this point,

no memory has been allocated, and obA contains null. But once the new operator comes

into the picture, the memory is allocated for it. So, at the end of Line 2, the new operator

allocates the memory for the physical object and assigns a reference to it to obA.

POINTS TO REMEMBER

A class is a logical entity. Once you instantiate a class, you create objects. These objects

occupy memory in your system. So, objects are physical entities. In the preceding code

snippet, the new operator is used to create an object of class A. It allocates memory to it and

returns an object of the class A, whose reference is stored in the variable obA.

�Constructor
If you look carefully, you will observe that after the new keyword, the class name is

followed by a parenthesis. You use this approach to construct an object. These are

constructors that are used to run initialization codes. Constructors can be both

parameterized and non-parameterized. So, you can pass different arguments to them. In

simple words, constructors can vary, with a different number of parameters or different

types of parameters. In the following example, class A has four different constructors.

Chapter 2 The Building Blocks: Class and Objects

15

class A

{

 public A()

 {

 System.out.println("Constructor with no parameter");

 }

 public A(int a)

 {

 System.out.println("Constructor with one integer parameter");

 }

 public A(int a,int b)

 {

 System.out.println("Constructor with two integer parameter");

 }

 public A(double a)

 {

 System.out.println("Constructor with one double parameter");

 }

 }

If you do not supply any constructor for your class, Java will supply a default one for you.

POINTS TO REMEMBER

The compiler supplies a no-argument default constructor if you do not include any constructor

for your class. This default constructor actually calls the no-argument constructor of the

superclass (if any). In this context, the compiler may complain if the superclass doesn’t have

any such constructor. If your class does not have any explicit superclass, then it has an implicit

superclass Object that has a no-argument constructor. You may not be familiar with all these

terms yet, but you will know about them shortly.

So, when you see something like the following, you can be sure that a parameterless

constructor will be used:

A obA=new A();

Chapter 2 The Building Blocks: Class and Objects

16

But to know whether it is a user-defined constructor or was provided by Java (in

other words, a default constructor), you need to examine the class body; for example, in

a class definition, if you have code like

class A

{

 A()

 {

 //some code

 }

}

you can conclude that you have used the user-defined parameterless constructor. So, in

this scenario, Java will not supply any default constructor on your behalf.

So far you understand that classes are simply the building blocks of your programs.

You encapsulate the variables (also known as fields) and methods inside a class to make

a single unit. These variables are called as instance variables because each instance of

this class contains its own copies of these variables. (Later, you’ll learn that fields can be

any implicit data type, different class objects, and so forth). Methods, on the other hand,

contain a block of code. This is nothing but a series of statements that perform specific

actions. Instance variables are generally accessed through methods. As said before,

collectively, these variables and methods are called class members.

Note  An instance is a unique copy of a class and is used to represent an object.
I have used these terms interchangeably.

Static variables will be discussed in Chapter 8.

In general, you can place different things inside your class declaration. For example,
you can put variables, methods, constructors, inner classes, initialization blocks, enums
(these are also internally implemented as classes), and so on inside your class body.
But, for simplicity, I have started the discussion with methods and fields, which are the
most common. You’ll see the other topics in their respective chapters in this book.

Fields and methods can be associated with different kinds of modifiers; for
example, public, private, protected, default, etc. You will be familiar with
modifiers shortly.

Chapter 2 The Building Blocks: Class and Objects

17

�Demonstration 1
Consider a simple example. Here, I have a class called ClassEx1 and have encapsulated

only one integer field, myInt, into it. I have also initialized the value 25 into that field.

So, you can predict that whenever I create an object of this class, that object will have an

integer named myInt in it, and the corresponding value will be 25.

For your ready reference, I have created two objects—obA and obB—from the class

ClassEx1. I have tested the values of the variable myInt inside the objects. In the output,

you can see that in both cases, I am getting the value 25.

Note A ll programs in this book are organized under package statements. You’ll
learn about Java packages in Chapter 7. To compile and run these programs, the
package statements are NOT mandatory for you. So, initially you can play with all
these programs without the package statement.

package java2e.chapter2;

class ClassEx1 {

 // Field initialization is optional.

 // Here myInt is initialized with the value 25.

 public int myInt = 25;

 // In the following case, it will be initialized with default value 0.

 // public int myInt;

}

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1. A class demo with 2

objects ***");

 ClassEx1 obA = new ClassEx1();

 ClassEx1 obB = new ClassEx1();

 System.out.println("obA.myInt = " + obA.myInt);

 System.out.println("obB.myInt = " + obB.myInt);

 }

}

Chapter 2 The Building Blocks: Class and Objects

18

Output:

***Demonstration-1.A class demo with 2 objects ***
obA.myInt = 25

obB.myInt = 25

Additional comments:

•	 As mentioned in the comment, it is not necessary to initialize the

myInt in this way. You are just starting up with a very simple example.

Field initialization is optional.

•	 If you do not supply any initialization for your field, it will take a

default value. I’ll cover those default values shortly.

•	 Suppose that in the preceding example, you did not initialize the

field. Then your class would look like this:

class ClassEx1 {

 public int myInt;

}

Still, you can instantiate your object and then supply your intended value, like in the

following:

ClassEx1 obA = new ClassEx1();

obA.myInt=25;//setting 25 into myInt of obA

You must remember these key points about constructors:

•	 Constructors are used to initialize objects.

•	 The class name and the corresponding constructor’s name(s) must

be the same.

•	 Constructors do not have any return types.

•	 There are two types of constructors: parameterless constructors

(sometimes referred to as constructors with no argument or

default constructor) and constructors with parameter(s) (known as

parameterized constructors).

•	 In general, the common tasks, like initialization of all the variables

inside a class, are achieved through constructors.

Chapter 2 The Building Blocks: Class and Objects

19

�Q&A Session
2.1 The constructors do not have any return type. With this statement, did you mean
that their return type is void?

No. You should not forget that even void is considered a return type.

2.2 I am little bit confused about the use of a user-defined parameterless constructor
versus a default constructor that is supplied by Java. Is there any key difference
between them?

Sometimes both may appear to be the same. But it can be helpful to remember that with

a user-defined constructor, you can have more control and flexibility. You can put in your

own logic prior to object creation.

�Demonstration 2
Consider the following example and analyze the output:

package java2e.chapter2;

class DefConsDemo

{

 public int myInt;

 public float myFloat;

 public double myDouble;

 public DefConsDemo()

 {

 System.out.println("I am initializing with my own choice.");

 myInt = 10;

 myFloat = 0.123456f;

 myDouble = 9.8765432;

 }

}

class DefaultConstructorCaseStudy {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.Comparison between user-

defined and Java-provided default constructors***\n");

 DefConsDemo ObDef = new DefConsDemo();

Chapter 2 The Building Blocks: Class and Objects

20

 System.out.println("myInt="+ ObDef.myInt);

 System.out.println("myFloat="+ ObDef.myFloat);

 System.out.println("myDouble="+ ObDef.myDouble);

 }

}

Output:

***Demonstration-2.Comparison between user-defined and Java-provided

default constructors***

I am initializing with my own choice.

myInt=10

myFloat=0.123456

myDouble=9.8765432

�Analysis
You can see that before I set the values to the variables, I printed one additional line

saying, “I am initializing with my own choice.”

But if you simply do not supply this parameterless constructor and want to use the

Java-provided default constructor, you need to comment out or remove the constructor

body in the preceding example. This time, you will get the following output:

***Demonstration-2.Comparison between user-defined and Java provided

default constructors***

myInt=0

myFloat=0.0

myDouble=0.0

You can see that each of these values is initialized with the corresponding default

values of that type.

Though you would not notice the default constructor in your source code, you can

decompile the .class, in which case you will notice the presence of Java compiler–

provided default constructor. Suppose you have compiled the following class:

Chapter 2 The Building Blocks: Class and Objects

21

class DefConsDemo

{

 public int myInt;

 public float myFloat;

 public double myDouble;

}

Now you can decompile the class file again to examine the working mechanism of

the Java-provided default constructor. You can decompile the class file in various ways

(also, there are various online tools available to serve this purpose). In this case, I have

used the javap command, which is available at C:\Program Files\Java\jdk1.8.0_172\

bin in my system. I set my CLASSPATH environment variable with this path and

decompiled the class file again using the javap command, like the following, to get the

following output:

C:\TestClass>javap DefConsDemo.class

Compiled from "DefaultConstructorCaseStudy.java"

class java2e.chapter2.DefConsDemo {

 public int myInt;

 public float myFloat;

 public double myDouble;

 java2e.chapter2.DefConsDemo();

}

You can notice the Java-provided default constructor present in the decompiled file.

Note  You may take note of another important point. You can use your own access
modifiers for user-defined constructors. So, if you provide your own parameterless
constructor, you can make it non-public. For a Java-provided default constructor, it
will have default visibility (package private).

2.3 I am seeing that the Java-provided default constructor is initializing the instance
variables with some default values. What are the default values for other types?

In general, the default values are zero or null. You can refer to Table 2-1.

Chapter 2 The Building Blocks: Class and Objects

22

2.4 It appears to me that you can also invoke some methods to initialize those
variables. Why do you need constructors?

If you think like this, then you must agree that to do that job, you need to call the method

explicitly; that is, in simple language, that your call will not be automatic. But with

constructors, you can perform automatic initialization each time you create objects.

2.5 Can you predict the output of the following?

package java2e.chapter2;

class ConEx2 {

 int i;

 public ConsEx2(int i) {

 this.i = i;

 }

 // public ConsEx2() { }

}

Table 2-1.  Datatypes with Default Values in Java

Data Type Default Values

byte, short, int 0

char ‘\u0000’

float 0.0f

double 0.0d

long 0L

String null

Any object null

boolean false

Chapter 2 The Building Blocks: Class and Objects

23

public class Quiz1 {

 public static void main(String[] args) {

 System.out.println("***Experiment with constructor***");

 ConEx2 ob = new ConEx2 ();

 //ConsEx2 ob = new ConsEx2(25);//Choice-3

 }

}

Output:

Compilation error: The constructor ConsEx2() is undefined

See the following Q&A for explanation. I’ll discuss the keyword this shortly.

2.6 You should get a default constructor from Java in this case. Why is the compiler
complaining about this code snippet?

You have learned that in Java, you can get a default parameterless constructor if, and

only if, you do not provide any constructor. But, in this example, you already have a

parameterized constructor. So, in this case, the compiler will not provide the default

parameterless constructor for you.

If you want to remove this compilation error, you have the following choices:

•	 You can define one more custom constructor, like this:

public ConsEx2() { }

•	 You can remove the custom constructor declaration (that you already

defined but have not used) from this program.

•	 You can supply the necessary integer argument inside your main()

method, like this:

ConsEx2 ob = new ConsEx2(25);

2.7 Can I say that a class is a custom type?

In general, the answer is yes. But at the same time, you need to remember that Java also

has many built-in classes (for example, Array, String, etc.). In our prior demonstrations,

you have seen the use of our own classes, which are nothing but custom classes.

Chapter 2 The Building Blocks: Class and Objects

24

2.8 Can you elaborate on the concept of reference?

Suppose you have a simple class like the following:

class ClassA

{

//An instance variable

 int a;

//An instance method, for example:

 void someMethod()

 {

 //Some code

 }

}

When you write ClassA obA=new ClassA(); an instance of ClassA will be created

in memory, and it creates a reference to that instance and stores the result inside the

obA variable. So, you can say objects in memory are referenced by an identifier called a

reference.

In Java, more broadly, you will use two different kinds of variables—one is primitive

and the other is an object reference. It is similar to a pointer or an address, but you do

not know (or care) about what resides inside your reference variable.

Simply, a reference provides a way to access an object. When you write

ClassA obA;

obA refers to null. But when you write

ClassA obA=new ClassA();

obA is initialized with an object of ClassA, and you say that obA is a reference to an

object of ClassA.

Then you use a dot operator on a reference variable to invoke something (say, a

method or variable) from your intended class, like the following:

obA.someMethod();

It should be noted that you can call a method without a reference. And you can do

that when you write something like the following:

new classA(). someMethod(); //Not a recommended practice

Chapter 2 The Building Blocks: Class and Objects

25

But as mentioned with the single-line comment, it is not a recommended practice

for you at this moment.

When you learn about memory management, you’ll learn that all objects reside in

a place called the heap and that there is a garbage collector that works on that heap.

A detailed discussion on this would be complicated at this moment. At this stage, you

may simply assume the following figures for a better understanding of object reference

variables. Notice the bold portions in each step.

Step 1:

ClassA obA= new ClassA();

JVM allocates a space for a reference variable obA of type ClassA.

Step 2:

ClassA obA= new ClassA();

JVM allocates a space for the object of type ClassA. Assume that it is something like

the following.

Chapter 2 The Building Blocks: Class and Objects

26

Step 3:

ClassA obA = new ClassA();

JVM connects the two (notice the = operator in bold).

2.9 These references are similar to C/C++ pointers. Is this correct?

Nope. Java is different from C/C++. It may appear that references are a special kind of

pointer. But you must note the key difference between these two. With a pointer, you can

point to any address (basically, it is a number slot in the memory). So, it is quite possible

that with a pointer, you will point to an invalid address, and then you may encounter

unwanted outcomes during runtime. A reference variables can point either to valid

addresses or to null. Also, you cannot do arithmetic on reference variables. It is also

important how you interpret the word “point.” For example, some developers prefer to

use the word “refer” instead of “point” in a similar context.

2.10 Can I have multiple reference variables that refer the same object in memory?

Yes. The following type of declaration is perfectly fine:

ConsEx2 ob1 = new ConsEx2(25);

ConsEx2 ob2=ob1;

�Demonstration 3
In the following example, I have created two objects of the same class, but the

instance variable (i) is initialized with different values. To do this job, I have used a

parameterized constructor that can accept one-integer argument.

Chapter 2 The Building Blocks: Class and Objects

27

package java2e.chapter2;

class ClassEx3

{

 public int i;

 public ClassEx3(int i)

 {

 this.i = i;

 }

}

class Demonstration3 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-3.A class demo with 2

objects ***");

 ClassEx3 obA = new ClassEx3(10);

 ClassEx3 obB = new ClassEx3(20);

 System.out.println("obA.i =" + obA.i);

 System.out.println("obB.i =" + obB.i);

 }

}

Output:

***Demonstration-3.A class demo with 2 objects ***
obA.i =10

obB.i =20

2.11 What is the purpose of the this keyword?

Sometimes you need to refer to the current object, and to do that, you use the this

keyword. In the preceding example, instead of using the this keyword, you could also

write something like the following to achieve the same result:

class ClassEx3 {

 int i;// instance variable

 ClassEx3(int myInteger)// myInteger is a local variable

 {

 i = myInteger;

 }

}

Chapter 2 The Building Blocks: Class and Objects

28

As per Java’s operator precedence table, the assignment operator (=) has associativity

that runs right to left. (Associativity tells the direction of an operator’s execution.) So, you

are familiar with code like a=25; where you are assigning 25 to a. But are you familiar

with code like 25=a;? No. The compiler will raise an issue.

In the preceding example, myInteger was your local variable (seen inside methods,

blocks, or constructors), and i was your instance variable (declared inside a class but

outside a method, block, or constructor).

So, instead of myInteger, if you use i, you need to tell the compiler about your

direction of assignment. It should not be confused with “which value is assigned where?”

Here, you are assigning the value of the local variable to the instance variable, and the

compiler should clearly understand your intention. With the statement this.i=i;, the

compiler clearly understands that the instance variable i should be initialized with the

value of the local variable i.

Also, consider this. Suppose, by mistake, you have written something like i=i; in the

preceding scenario. There will be confusion from the compiler’s point of view because

it will see that you are dealing with two local variables that are the same. (Although your

intention was different, and you meant that the i on the left side is the field and the other

one is the method parameter.) Now, if you create an object, obA for ClassA, try to see the

value of obA.i, with following code:

 ClassEx3 obA = new ClassEx3(20);

 System.out.println("obA.i =" + obA.i);

You will get obA.i=0 (the default value of an integer) in the output. So, your instance

variable cannot get your intended value of 20. The Eclipse IDE also raises a warning in

this case. See Figure 2-1.

Figure 2-1.  The warning message for the statement i=i; in the constructor body of
ClassEx3

Chapter 2 The Building Blocks: Class and Objects

29

POINT TO REMEMBER

If your local variable has the same name as the instance variable, the local variable will

hide the instance variable. In this type of scenario, the keyword this helps to resolve the

namespace collision because it helps to identify which one is a local variable (method

parameter) and which one is the instance variable (field). For your reference, the local variable

and instance variable are marked with commented lines in the Q&A 2.11 code segment.

�Demonstration 4
In the following demonstration, you will see the use of two different constructors. The

user-defined parameterless constructor is always initializing the instance variable i with

the value 5, but the parameterized constructor can initialize the instance variable with

any integer value that you supply.

package java2e.chapter2;

//Constructor overloading example

class ClassEx4 {

 int i;

 ClassEx4() {

 this.i = 5;

 }

 public ClassEx4(int i) {

 this.i = i;

 }

}

class Demonstration4 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4. A simple class with 2

different constructors ***");

 �System.out.println("*** It is also an example of constructor

overloading ***");

Chapter 2 The Building Blocks: Class and Objects

30

 ClassEx4 obA = new ClassEx4();

 ClassEx4 obB = new ClassEx4(75);

 System.out.println("obA.i =" + obA.i);

 System.out.println("obB.i =" + obB.i);

 }

}

Output:

***Demonstration-4. A simple class with 2 different constructors ***

*** It is also an example of constructor overloading ***
obA.i =5

obB.i =75

Additional comments:

•	 Earlier, you saw the same constructor get used to create different

objects that were initialized with different values. In this example,

a different constructor was used to create different objects that are

initialized with different values.

•	 Constructors’ names are same as their class names. Notice that the

class classEx4 has multiple constructors. So, it is an example of

constructor overloading. Later, you will learn the concept of method

overloading in detail, and you will become familiar with the fact that

in a class you can have multiple methods with the same name but

different parameter lists. (In other words, you can simply say that

method signatures are different.) For example, aMethod(int,double)

is different from aMethod(int) or aMethod(int,int) or

aMethod(double,int). That is, the methods may vary, with different

numbers of parameters, different types of parameters, or different

sequences of parameters.

•	 In Java, we could use this (5); instead of this.i=5; but other

languages may not support this kind of construct.

Chapter 2 The Building Blocks: Class and Objects

31

�Demonstration 5
A class can have either variables or methods or both. So, let’s consider another simple

program in which you have a class with one method only. This method is used to accept

two integer inputs, and in turn it will return the sum of those integers.

package java2e.chapter2;

class ClassEx5 {

 public int sum(int x, int y) {

 return x + y;

 }

}

class Demonstration5 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-5. A simple class with a

method returning an integer ***\n");

 ClassEx5 ob = new ClassEx5();

 int result = ob.sum(57, 63);

 System.out.println("Sum of 57 and 63 is : " + result);

 }

}

Output:

***Demonstration-5. A simple class with a method returning an integer ***

Sum of 57 and 63 is : 120

Additional comments:

•	 It is not necessary to have a class with only methods, instance

variables, or constructors. In real-life programming, your classes may

have all these elements together. But for ease of understanding, I

have demonstrated each case separately.

Chapter 2 The Building Blocks: Class and Objects

32

�Passing Variable-Length Arguments to Methods
You can pass a variable number of arguments in your method. This concept was

introduced in Java 5. It is often referred to as varargs (short name for variable-length

arguments). A method that can accept variable-length arguments is also termed a vararg

method (or, variable-arity method).

In Java, you need to put three dots/periods (...) (as shown in sum() method in

Demonstration 6) to be able to use a vararg method. Demonstration6 shows such an usage.

�Demonstration 6
Consider the following example.

package java2e.chapter2;

class ClassEx6 {

 // The following method supports variable-length arguments

 public int sum(int... vararg) {

 �System.out.println("You have passed " + vararg.length + "

arguments now.");

 int total = 0;

 for (int i : vararg) {

 total = total + i;

 }

 return total;

 }

}

class Demonstration6 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-6. Methods with variable-

length argument demo ***\n");

 ClassEx6 ob = new ClassEx6();

 int resultOfSummation = ob.sum(57, 63);

 System.out.println("Sum of 57 and 63 is : " + resultOfSummation);

 resultOfSummation = ob.sum(57, 63, 50);

 �System.out.println("Sum of 57, 63 and 70 is : " +

resultOfSummation);

Chapter 2 The Building Blocks: Class and Objects

33

 resultOfSummation = ob.sum(57, 63, 50, 70);

 �System.out.println("Sum of 57, 63, 50 and 70 is : " +

resultOfSummation);

 }

}

Output:

***Demonstration-6. Methods with variable-length argument demo ***

You have passed 2 arguments now.

Sum of 57 and 63 is : 120

You have passed 3 arguments now.

Sum of 57, 63 and 70 is : 170

You have passed 4 arguments now.

Sum of 57, 63, 50 and 70 is : 240

�Analysis
You can see that you can pass a variable number of integer arguments to the sum method

because it is a vararg method. Notice that the three periods are used in the following line

of code in the previous demonstration:

public int sum(int... vararg) {

�Q&A Session
2.12 Why do I need vararg methods?

They give you the flexibility to pass some default arguments to a method. As a result, you

are not bound to supply a certain number of arguments to invoke a particular method.

2.13 Can you give examples of some vararg methods in the Java library?

The methods printf() and format() are very common in this context. So, in the prior

demonstration, you could use the following code snippet:

//System.out.println("You have passed " + vararg.length + " arguments now.");

System.out.print(String.format("%s, you have passed %d arguments now.",

"Dear reader",vararg.length));

Chapter 2 The Building Blocks: Class and Objects

34

to get an output like the following:

*** Methods with variable-length argument demo ***

Dear reader, you have passed 2 arguments now.

Sum of 57 and 63 is : 120

Dear reader, you have passed 3 arguments now.

Sum of 57, 63 and 70 is : 170

Dear reader, you have passed 4 arguments now.

Sum of 57, 63, 50 and 70 is : 240

2.14 What are the alternatives to vararg methods?

In earlier days (prior to Java 5), developers had the two choices. Either they could put

the arguments inside an array and then pass the array to the methods, or they could use

the concept of overloading. The first approach was preferred if the argument list was big or

unknown prior to execution. You will learn the concept of overloading in more detail shortly.

2.15 In OOP, I see that code is always bundled inside objects. What are the benefits of
this type of design in real-world scenarios?

There are many advantages. Think of a real-world scenario; for example, consider your

laptop or your printer. You can reuse the parts of these devices in a similar model of

laptop or printer.

If any of the parts in your laptop malfunction, or, let’s say, if your print cartridge runs

out of ink, you can simply replace those parts. You do not need to replace the entire

laptop or the entire printer.

You likely also agree that you may not be interested in knowing the inner details of

how those parts actually function. If those parts are working fine and able to serve your

needs, you are simply happy.

In object-oriented programming, objects play the same role: they can be reused,

and they can be plugged in. At the same time, they can hide the implementation details.

For example, in Demonstration 5, when a client invokes the sum() method with two

integer arguments (57 and 63), he gets the sum of those integers. As an outside user, he

is unaware of the inner mechanisms of the sum() method. So, you can provide a level of

security by hiding information from the outside world.

Lastly, consider another point from the coding perspective. Let’s assume the

following scenario: you need to store employee information in your program. If you start

coding like this:

Chapter 2 The Building Blocks: Class and Objects

35

string empName= "emp1Name";

string deptName= "Comp.Sc.";

int empSalary= "10000";

Then for a second employee, you would write something like this:

string empName2= "emp2Name";

string deptName2= "Electrical";

int empSalary2= "20000";

And so on.

Can you really continue like this? The answer is no. To make it simple, it is always a

better idea to make an Employee class and process the information like this:

Employee emp1, emp2;

It is much cleaner and more readable, and, obviously, a better approach.

2.16 Does Java support destructors?

No. Java uses a garbage-collection mechanism to free memory. You’ll learn about this

shortly.

�Summary
This chapter discussed the following topics:

•	 The concepts of class, object, and reference

•	 The difference between an object and a reference

•	 The difference between a local variable and an instance variable

•	 The different types of constructors and their usage

•	 The differences between a user-defined parameterless constructor

and a Java-provided default constructor

•	 The use of this keyword

•	 How to pass variable-length arguments to a method

•	 The benefits of the object-oriented approach in real-world

programming

Chapter 2 The Building Blocks: Class and Objects

37
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_3

CHAPTER 3

Classes and Objects
in Depth
In this chapter, I’ll discuss some important topics that are closely related to classes and

objects. If you are absolutely new to object-oriented programming, to understand each

topic, you may need to come back to this chapter once you have finished Chapter 10.

�Static Variables and Methods
Up until now, you have seen that a class can have either variables or methods or both.

Collectively, these are called class members. These variables and methods are called

instance variables and instance methods because each time you instantiate a class, a

new copy of each is created. Once you create an object, you can use the dot operator (.)

to access these instance variables or methods (you have experienced this in Chapter 2

with different demonstrations).

But sometimes you may want a class member to be common to all of the class’s

objects. In this case, it makes sense to be able to access them using the class (instead

of using an object of the class). When you create such members, they are called class

variables or class methods. A class member is also known as a static member because in

Java, to create a class variable or a class method, you tag them with the static keyword

just like in the following:

 //static variables

 static double length=25.5, breadth=10.0;

 //static method

 public static double area() {

 return length * breadth;

 }

38

�Demonstration 1
Now, go through Demonstration 1. Notice that, this time, the class members are

accessed without creating any objects of the class Rectangle.

package java2e.chapter3;

class Rectangle {

 //static variables

 static double length=25.5, breadth=10.0;

 //static method

 public static double area() {

 return length * breadth;

 }

}

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1. Exploring class

variables and class methods.***\n");

 �System.out.println("Length of the Rectangle is :" +

Rectangle.length + " unit");

 �System.out.println("Breadth of the Rectangle is :" +

Rectangle.breadth + " unit");

 �System.out.println("Area of Rectangle is " + Rectangle.area()

+ " sq.unit");

 }

}

Output:

Demonstration-1. Exploring class variables and class methods.

Length of the Rectangle is :25.5 unit

Breadth of the Rectangle is :10.0 unit

Area of Rectangle is 255.0 sq.unit

You’ll see a detailed discussion of static members with different case studies in

Chapter 8.

Chapter 3 Classes and Objects in Depth

39

�Q&A Session
3.1 Can I have a static class?

Java does not allow you to create top-level static classes. The class that contains the static

class is termed an outer class. A non-static nested class is termed an inner class. You’ll

learn about them in Chapter 8.

�Access Control
You can provide controlled access to your classes, fields, and methods. When you learn

interfaces, you can apply the same idea to them. Actually, by using access control, you

can provide encapsulation too.

You implement access control using access modifiers in Java. In Chapter 7, you’ll see

a table that summarizes the access control in packages using these access modifiers. Java

defines the following access modifiers:

•	 public

•	 private

•	 protected

•	 default (it simply means you are not using any modifier)

The power of these modifiers will be better understood when you cover inheritance

and packages. You will learn inheritance in the next chapter, and you’ll learn about

packages in Chapter 7. To understand the upcoming discussion, comprehending

private and public will be sufficient.

When you attach a class member with the public modifier, you can access the

member from outside the code. On the contrary, when you use a private modifier, the

member can be accessed only by other members of the class.

Note T his is why the main() method is always public. It is called by the Java
runtime system, which is outside the code.

If you do not use any access modifier for a member, it can be accessed only within

the package (in simple words, a package is a mechanism by which to group several

classes. You’ll learn about them in Chapter 7).

Chapter 3 Classes and Objects in Depth

40

To understand the concept, let’s consider Demonstration 2. Here, you will see the

effect of using the public and private modifiers on fields and methods.

�Demonstration 2
In this demonstration, you have a class called Sample that has two instance

fields—pubInt and priInt. The Sample class has also two instance methods—

showPublicMethod() and showPrivateMethod(). You can refer to the supported

comments in following demonstration where pubInt and the showPublicMethod() are

public members, and the remaining two are private members.

Inside main(), you will instantiate a Sample class object. Now notice the commented

lines in the main() method:

// Compile-time error

// System.out.println(" The priInt="+ sampleOb.priInt);

// Compile-time error

// sampleOb.showPrivateMethod() ;

It says that when using the dot operator with sampleOb you cannot access the private

members of the Sample class inside the main() method. But the same approach works

for the public members of the Sample class:

package java2e.chapter3;

class Sample {

 // Public field

 public int pubInt = 1;

 // Public method

 public void showPublicMethod() {

 System.out.println("The showPublicMethod() is a public method.");

 }

 // Private field

 private int priInt = 2;

 // Private method

 private void showPrivateMethod() {

Chapter 3 Classes and Objects in Depth

41

 �System.out.println("The showPrivateMethod() is a private

method.");

 }

}

class Demonstration2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2. Introducing access

control using private and public modifiers.***\n");

 Sample sampleOb = new Sample();

 System.out.println("The pubInt=" + sampleOb.pubInt);// 1

 sampleOb.showPublicMethod();

 // Compile-time error

 // System.out.println(" The priInt="+ sampleOb.priInt);

 // Compile-time error

 // sampleOb.showPrivateMethod() ;

 }

}

Output:

***Demonstration-2. Introducing access control using private and public

modifiers.***

The pubInt=1

The showPublicMethod() is a public method.

If you uncomment the commented line, you will receive the compile-time errors

shown in Figure 3-1—one for the private field and one for the private method.

Figure 3-1.  An error snapshot from Eclipse IDE

Chapter 3 Classes and Objects in Depth

42

�Getter-Setter Methods
Experts always suggest you make your instance variables private unless there is a specific

reason to use other access modifiers. (Though only for simple demonstration purposes

in this book, in many examples you will see the use of public fields and methods only.)

Then the obvious question is—how does one access the private members of a class?

The answer is that you can access them using public getter-setter methods.

�Demonstration 3
In this demonstration, the Sample3 class has a private field called priInt. Notice the

other two public methods in Sample3. You can see that the getPriInt() method is

returning the value of priInt and the setPriInt() method can help you to set the value

for priInt. Since these two methods are defined in the same class that contains the

private variable, they can access the private field priInt in Sample3.

package java2e.chapter3;

class Sample3 {

 // Private field

 private int priInt;

 //Getter

 public int getPriInt() {

 return priInt; }

 //Setter

 public void setPriInt(int priInt) {

 this.priInt = priInt;

 }

}

class Demonstration3 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-3. Introducing Getter-

Setter method.***\n");

 Sample3 sampleOb=new Sample3();

 //Setting the value for the private field

 sampleOb.setPriInt(2);

Chapter 3 Classes and Objects in Depth

43

 //Getting the value from the private field.

 System.out.println("The priInt="+ sampleOb.getPriInt());

 }

}

Output

Demonstration-3. Introducing Getter-Setter method.

The priInt=2

Using Eclipse, you can easily generate getter-setter methods. For example, in this

case, you can right click on the private variable priInt ➤ Source ➤ Generate Getters and

Setters… to generate getter-setter methods for the private field.

�Q&A Session
3.2 What are the benefits of using a getter-setter method?

Here are some benefits of using getter-setter methods:

•	 You can provide controlled access to your data. Notice that now the

client code cannot access the private field priInt directly.

•	 You can make your class variable either read-only or write-only.

When you provide the getter method only, you can only get the value

of the private variable, so it becomes read-only. Similarly, when you

provide only the setter method, you make the variable write-only.

•	 The prior two points promote the security of the data.

�Initialization Block
You have already seen the use of constructors. You can get an alternative to constructors

when you use initialization blocks. An initialization block can be either static or non-

static. In the upcoming section, you’ll become familiar with non-static initialization

blocks, which are also known as instance initialization blocks (IIBs). Static initialization

blocks will be discussed in Chapter 8.

Chapter 3 Classes and Objects in Depth

44

Note A part from initialization blocks and constructors, you can also initialize
instance variables in final methods. A final method is a method that cannot be
overridden in the subclass. You will be familiar with them once you cover the
concepts of inheritance.

�Demonstration 4
As the name suggests, an instance initialization block is used to initialize the instance

variables. When you have both a constructor and an initialization block, you will see that

the initialization block is called before the constructor, as follows:

package java2e.chapter3;

class Sample4 {

 int a, b, c;

 // Initialization block-1

 {

 �System.out.println("Initialization block-1 is executed.

Setting a=1.");

 a = 1;

 }

 // Initialization block-2

 {

 �System.out.println("Initialization block-2 is executed.

Setting b=2;");

 b = 2;

 }

 // Constructor

 Sample4() {

 �System.out.println("User-defined parameterless constructor is

executed.Setting c=3.");

 c = 3;

 }

}

Chapter 3 Classes and Objects in Depth

45

class Demonstration4 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4.Use of instance

Initialization blocks.***\n");

 Sample4 sample4Object = new Sample4();

 System.out.println("The sample4Object.a=" + sample4Object.a);// 1

 System.out.println("The sample4Object.b=" + sample4Object.b);// 2

 System.out.println("The sample4Object.c=" + sample4Object.c);// 3

 }

}

Output:

Demonstration-4.Use of instance Initialization blocks.

Initialization block-1 is executed.Setting a=1.

Initialization block-2 is executed.Setting b=2;

User-defined Parameterless constructor is executed.Setting c=3.

The sample4Object.a=1

The sample4Object.b=2

The sample4Object.c=3

Notice that initialization blocks are executed in the order in which they appear in

your class.

�Q&A Session
3.3 I have constructors, so why would I want to use an initialization block?

If you have multiple constructors in your class, you can share common code between the

constructors.

3.4 Can I have multiple initialization blocks in the same class?

Yes. Demonstration 4 shows that you can place multiple instance initialization blocks

inside your class and they execute in the order in which you place them inside your class.

Chapter 3 Classes and Objects in Depth

46

3.5 Can I have static initialization blocks?

Yes. You’ll see a detailed discussion on them in Chapter 8.

3.6 Can you predict the output of the following program?

package java2e.chapter3;

class Test1 {

 int a;

 // Initialization block-1

 {

 System.out.println("Initialization block-1 is executed.");

 a = 1;

 }

 // Constructor

 Test1() {

 System.out.println("Constructor is executed.");

 a = 2;

 }

 // Initialization block-2

 {

 System.out.println("Initialization block-2 is executed.");

 a = 3;

 }

}

class Quiz1 {

 public static void main(String[] args) {

 �System.out.println("***Quiz1.Execution order of

Initialization block and Constructor***");

 System.out.println("The new Test1().a=" + new Test1().a);

 }

}

Chapter 3 Classes and Objects in Depth

47

Answer:

Quiz1.Execution order of Initialization block and Constructor
Initialization block-1 is executed.

Initialization block-2 is executed.

Constructor is executed.

The new Test1().a=2

Initialization blocks will be executed before the constructor regardless of their

appearance in the class.

�Nested Class
When you place one class inside another class, such a class is called a nested class. Java

supports both static nested classes and non-static nested classes. A non-static nested

class is often called an inner class. In this chapter, our focus will be on inner classes

only. In this context, you need to remember following points:

•	 The outer class is the one that contains the nested class.

•	 An inner class can have access to both the static and the non-static

members of the outer class.

Note I nitially, nested classes were not supported in Java 1.0, but in Java 1.1 they
were added.

�Demonstration 5
The following demonstration shows a simple use of a nested class. Here, I show two

different ways to invoke an inner class method. In the first case, I call the inner class

method through an outer class method. In the second case, it is called directly from

main() though an inner class object.

package java2e.chapter3;

class OuterClass {

 static int staticInt=1;

 int nonStaticInt=2;

Chapter 3 Classes and Objects in Depth

48

 // Inner class

 class InnerClass {

 void showInnerMethod() {

 System.out.println("Inside InnerClass.");

 System.out.println("The staticInt ="+staticInt);

 System.out.println("The nonStaticInt ="+nonStaticInt +"\n");

 }

 }

 // An outer class method that can invoke an inner class method

 void invokeInner() {

 InnerClass innerOb = new InnerClass();

 �System.out.println("**Invoking an inner class method from an

outer class method.**");

 //Calling the inner class method

 innerOb.showInnerMethod();

 }

}

class Demonstration5 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-5.Inner class

demonstration.***\n");

 OuterClass outer = new OuterClass();// Ok

 //Calling the inner class method through an outer class method

 �System.out.println("**Calling the inner class method through

an outer class object.**");

 outer.invokeInner();

 // InnerClass inner=new InnerClass();//Error

 OuterClass.InnerClass inner = outer.new InnerClass();// Ok

 //Invoking the inner class method through an inner class object.

 �System.out.println("Invoking the inner class method through an

inner class object.");

 inner.showInnerMethod();

 }

}

Chapter 3 Classes and Objects in Depth

49

Output:

Demonstration-5.Inner class demonstration.

Calling the inner class method through an outer class object.

Invoking an inner class method from an outer class method.
Inside InnerClass.

The staticInt =1

The nonStaticInt =2

Invoking the inner class method through an inner class object.

Inside InnerClass.

The staticInt =1

The nonStaticInt =2

�Q&A Session
3.7 Why are nested classes useful?

They can promote encapsulation with better security. The logical grouping of the classes

is easily maintainable too.

�Copying an Object
Sometimes you’ll be interested in copying an object. In a real-world application,

creating a new instance from scratch is a costly, time-consuming, and boring operation.

Sometimes the overall process is also complicated.

You can accomplish the task of copying in various ways. Serialization methods,

object cloning, copy constructors, and so forth are used in this context. But to implement

these concepts, you need to be familiar with advanced features.

Fortunately, Java supports cloning mechanisms, which you will learn in Chapter 15

when I discuss prototype design patterns.

In the upcoming discussion, I’ll discuss copy constructors only.

�Using Copy Constructors
The following demonstration shows how you can write your own copy constructor.

Chapter 3 Classes and Objects in Depth

50

�Demonstration 6
Look at the following program, which demonstrates such a usage:

package java2e.chapter3;

class Student

{

 int rollNo;

 String name;

 //Instance Constructor

 public Student(int rollNo, String name)

 {

 this.rollNo = rollNo;

 this.name = name;

 }

 //Copy Constructor

 public Student(Student student)

 {

 this.name = student.name;

 this.rollNo = student.rollNo;

 }

 public void displayDetails()

 {

 System.out.println(" Student name: " + name + ",Roll no: "+rollNo);

 }

}

class Demonstration6 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-6.User-defined copy

constructor example in Java***\n");

 Student student1 = new Student(1, "Bob");

 System.out.println(" The Student1 details is as follows:");

 student1.displayDetails();

 System.out.println("\n Copying student1 to student2 now");

Chapter 3 Classes and Objects in Depth

51

 //Invoking the user-defined copy constructor

 Student student2 = new Student (student1);

 System.out.println(" The details of Student2 is as follows:");

 student2.displayDetails();

 }

}

Output

Demonstration-6.User-defined copy constructor example in Java

 The Student1 details is as follows:

 Student name: Bob,Roll no: 1

 Copying student1 to student2 now

 The details of Student2 is as follows:

 Student name: Bob,Roll no: 1

�Q&A Session
3.8 Does Java support a default copy constructor?

No, you have to write your own copy constructor.

�Wrapper Class
In Chapter 12, you’ll become familiar with generic programming, which is an advanced

concept in Java. There, you’ll see the use of wrapper classes. In this section, you will get a

quick overview of wrapper classes.

In some special situations, you may need to convert a primitive type into an object.

For example, when you simply need to pass an object in a method parameter, this

conversion is useful. The same thing applies for generic programming. In this context,

you may remember that some collection classes like Vector can store only objects, but

not primitive types. Wrapper classes are used in those contexts (because these classes

“wrap” the primitives in the corresponding object types). In Java, the wrapper classes

are included in the java.lang package. Java provides wrapper classes for each of the

primitive types. Table 3-1 shows the wrapper classes corresponding to the primitive types.

Chapter 3 Classes and Objects in Depth

52

The following code segment shows a simple use case of the wrapper class. Here, a

primitive int myInt is converted to an Integer object intOb, and later on you bring

back the int from the Integer object:

int myInt1=1;

//Coverting primitive int to Integer object

Integer intOb=new Integer(i);

//Converting back from Integer Object to primitive int

int myInt2=intOb.intValue();

A similar conversion can be done from double to Double, long to Long, and so on

(and vice versa). But you have to use the appropriate method. For example, you used

intOb.intValue() for an int. Similarly, you can use doubleOb.doubleValue() for a

double and longOb.longValue() for a long, where doubleOb is a Double object and

longOb is a Long object, respectively.

�Demonstration 7
This demonstration shows some common use cases of wrapper classes. The program is

very simple, but you can refer to the associated comments for a better understanding.

package java2e.chapter3;

class Demonstration7 {

Table 3-1.  Wrapper Classes for Primitive Types

Primitive Type Wrapper class

boolean Boolean

int Integer

double Double

float Float

long Long

char Char

byte Byte

short Short

Chapter 3 Classes and Objects in Depth

53

 public static void main(String[] args) {

 �System.out.println("***Demonstration7.Exploring Wrapper

classes.***\n");

 int myInt1 = 1;

 // Coverting primitive int to Integer object

 Integer intOb = new Integer(myInt1);

 // Converting back from Integer Object to primitive int

 int myInt2 = intOb.intValue();

 System.out.println("The myInt2=" + myInt2);

 long myLong1 = 1234567890123L;

 // Coverting primitive long to Long object

 Long longOb = new Long(myLong1);

 // Converting back from Long Object to primitive long

 long myLong2 = longOb.longValue();

 System.out.println("The long2=" + myLong2);

 // Coverting primitive int to String object

 String myString1 = Integer.toString(myInt1);

 System.out.println("The myString=" + myString1);

 String myString2 = "5.7";

 // Converting a String object to primitive type

 Double doubleOb = Double.valueOf(myString2);

 double myDouble = doubleOb.doubleValue();

 System.out.println("The myDouble=" + myDouble);

 //Converting numeric String to primitive int

 int myInt3=Integer.parseInt("125");

 System.out.println("The myInt3=" + myInt3);

 �//Following line of code will cause runtime error

//(NumberFormatException)because you cannot convert "Hello" to

//an int

 //int myInt4=Integer.parseInt("Hello");

 //System.out.println("The myInt4=" + myInt4);

 }

}

Chapter 3 Classes and Objects in Depth

54

Output:

Demonstration7.Exploring Wrapper classes.

The myInt2=1

The long2=1234567890123

The myString=1

The myDouble=5.7

The myInt3=125

Note T he process of converting a primitive type into an object of the corresponding
wrapper class is termed autoboxing. For example, int to Integer, double to
Double, float to Float, etc. The reverse procedure is called unboxing. It is also
important to note that the constructors Interger(int) and Long(long) are
deprecated since java9. But to understand some legacy code these are important.

�Garbage Collection
Up until now, you have just been instantiating objects. But I have not discussed freeing

up memory by deleting those objects. If you are familiar with C++, you may know that in

C++ programmers need to use the delete keyword to free the memory occupied by an

object. If you do not free the memory properly, you’ll see the impact of a memory leak,

which can crash your application.

There is no such keyword in Java. JVM uses a background thread, commonly known

as the garbage collector, to detect unused objects and free up the memory occupied by

them. This technique is called garbage collection (GC).

Note D ifferent Java runtime systems can employ different approaches to
garbage collection, but, as mentioned before, you do not need to worry about it
while writing your application.

The biggest advantage of GC is that normally you do not need to worry about memory

leaks, because you can rely on the automatic garbage-collection technique. But in some

special cases, you may explicitly need to free up memory to avoid memory leaks, because

the garbage collector is for some reason unable to detect those special scenarios.

Chapter 3 Classes and Objects in Depth

https://www.geeksforgeeks.org/wrapper-classes-java/

55

The basic thing to remember is that when an object is unreachable from a root object

(a root object is a root in an object tree), the object is eligible for garbage collection. An

object can have multiple references to it. It is also important to understand that when

the reference count is zero, only the object will be garbage collected; this is a common

misunderstanding. Also, two objects can be garbage collected if there is a connection

between them. But if such a connection is further connected to a root object, those two

objects will not be garbage collected. Q&A 3.11 will show some highlights of root objects.

�Q&A Session
3.9 What is a memory leak?

In general, when a computer program runs over a long period of time but fails to release

memory resources that are no longer needed, you can feel the impact of memory leaks

(for example, machines become slow over time, or, in the worst case, they can crash).

With this information, it is apparent that “how fast it comes to our attention” depends on

the leaking rate of our application.

Consider a very simple example. Suppose that you have an online application

where users need to fill in some data and then click a ‘Submit’ button. Now, assume

that the developers of the application mistakenly forgot to deallocate some memory

that is no longer needed once a user presses the Submit button, and due to this

misjudgment, the application is leaking 512 bytes per click. You probably won’t notice

any performance degradation in some initial clicks. But what happens if thousands

of online users are using the application simultaneously? If 100,000 users press the

Submit button, you will eventually lose 48.8 MB of memory; 10,000,000 clicks leads to

the loss of 4.76 GB; and so on.

In short, even if your application or program is leaking a very small amount of

data per execution, you will see some kind of malfunctioning over a period of time; for

example, operations in the device might become so slow that you need to restart the

application often.

In an unmanaged language like C++, you need to deallocate the memory when the

intended job is done; otherwise, over a period of time, the impact of memory leaks will

be huge. Java’s garbage-collection mechanism rescues us from most of these cases. Still,

there are instances that you may need to handle with care; otherwise, you may notice the

impact of memory leaks.

Chapter 3 Classes and Objects in Depth

56

There are many tools available on the market to detect memory leaks. Still, many

organizations prefer to use their own memory-leak tool to detect and analyze leaks.

3.10 What do you mean by automatic garbage collection?

It is a process that investigates the heap memory and identifies which objects are in use

and which are not. Then, it deletes the unused object. In this context, you may notice the

following terms:

A referenced object: It means that the object is currently in use. In other words, in

your program, there is still a pointer to this object.

An unreferenced object: This object is no longer referenced by any part of the

program, so GC can reclaim the memory occupied by the unused object.

After these deletion operations, to improve performance, the compaction technique

can be used. (In very simple words, a compaction technique moves all free blocks of

memory to one contiguous location and all occupied block in a different location. As

a result, if needed, you can allocate a large block of memory which may not possible

when available memories are scattered or the memory pool is fragmented. After the

compaction, objects generally stay in the same area, so, accessing them also becomes

faster and easier.)

3.11 You used the term “root object” when discussing garbage collection. What does
it mean?

This may seem a little bit complicated at this stage. In simple words, you should just

know that objects are allocated on a heap area, which is managed by JVM. You can draw/

imagine a tree that connects all these objects. In general, you say an object is live if you

have a reference to it. Now, the question is—what is the first reference in the tree?

To answer this question, you need to know that an object tree can have one or more

roots. When your application can reach these roots, the entire tree is reachable. Consider

the following figure (Figure 3-2) to understand it better. From this figure, you can see that

reachable objects are those that can be reached only through a root object. Otherwise,

even if there is a link between the objects, those objects are treated as unreachable and

can be garbage collected.

Chapter 3 Classes and Objects in Depth

57

3.12 How can I mark an object as unreachable?

You make sure the object (which you want to mark eligible for garbage collection) does

not have any references that are still in the scope of your Java application. Commonly,

you set such a reference to null. You can also assign these references to point to some

other object, or you can allow them to go out of scope.

�Demonstration 8
Consider a simple case with the following program:

package java2e.chapter3;

class Student{

//Some code

}

class GarbageCollectionDemo {

 public static void main(String args[]) {

 Student student1, student2, student3;

 student1 = new Student();// Student#1

 student2 = new Student();// Student#2

Figure 3-2.  Root objects, reachable code, and unreachable code in an object tree

Chapter 3 Classes and Objects in Depth

58

 student3 = new Student();// Student #3

 student1 = null;//Case-1.

 student3 = student2;//Case-2

 student2 = null;//Case-2 Contd.

 }// End of main()

}

Notice that here you have created three Student class objects inside your main()

method. Now consider the following cases:

�Stage 1

Three objects and three reference variables are created.

student1 = new Student();// Student#1

student2 = new Student();// Student#2

student3 = new Student();// Student #3

See Figure 3-3.

Figure 3-3.  Memory allocation after Stage 1

�Stage 2

When you assign student1=null, the Student#1 object is now eligible for garbage

collection. See Figure 3-4.

Chapter 3 Classes and Objects in Depth

59

�Stage 3

When you write

student3=student2;

both student2 and student3 refer to Student#2. And the Student#3 object is now

eligible for garbage collection. See Figure 3-5.

Figure 3-4.  Memory allocation after Stage 2

Figure 3-5.  Memory allocation after Stage 3

Chapter 3 Classes and Objects in Depth

60

�Stage 4

In this stage, even if you write

student2=null;

Student#2 still has a reference (student3) to it. So, it is not eligible for garbage

collection yet.

In this case, the reference student3 can go out of scope at the end of main() only. But

you can make it null before the end of main() to make it eligible for garbage collection

much earlier.

�Finalization
Just before destroying an object and reclaiming the memory, the GC calls the finalize()

method. It is a protected method defined in the Object class. You’ll see this general form

of finalize() method :

protected void finalize() {

 //Some code

 }

It is suggested that you put your cleanup code (for example, closing a file, closing

a database connection, releasing any occupied non-Java resources, etc.) inside

this method. As a result, an object can perform some desired action just before it is

destroyed. This process is called finalization.
But the problem is that you never know when finalize() will be called. You only

know that the finalize() method will be called just before garbage collection. The

language specification (JLS11) tells us the following:

“Finalizers provide a chance to free up resources that cannot be freed auto-
matically by an automatic storage manager. In such situations, simply
reclaiming the memory used by an object would not guarantee that the
resources it held would be reclaimed. The Java programming language
does not specify how soon a finalizer will be invoked, except to say that it
will happen before the storage for the object is reused.”

So, you cannot always rely on finalize(), and you may implement other ways to release

the resources. Still, there is a workaround. You can make a request to the garbage collector

when you invoke System.gc(). It simply tells the GC that you want it to start its job.

Chapter 3 Classes and Objects in Depth

61

Note  System.gc() is equivalent to the call Runtime.getRuntime().gc()
because its definition is as follows:

public static void gc() {
Runtime.getRuntime().gc();
}

Now, go through the modified version of Demonstration 9 to get an idea of how can

you use the concept of finalization.

�Demonstration 9
You will learn about the protected keyword, the throws keyword, and exceptions later

in the book. To give you an idea about the garbage collection technique, the complete

implementation is presented here for your reference. The output of this demonstration

should be your key area of focus.

package java2e.chapter3;

class StudentDemo9 {

//Some code

 protected void finalize() {

 �System.out.println("Freeing memory. The object with hashcode "

+ hashCode() + " is collected.");

 }

}

class GarbageCollectionDemo {

 public static void main(String args[]) throws InterruptedException {

 �System.out.println("***Demonstration 9.Exploring Garbage

Collection.***\n");

 //Stage-1

 StudentDemo9 student1, student2, student3;

 student1 = new StudentDemo9();// Student#1

 �System.out.println("The student1.hashCode()=" + student1.

hashCode());

Chapter 3 Classes and Objects in Depth

62

 student2 = new StudentDemo9();// Student#2

 �System.out.println("The student2.hashCode()=" + student2.

hashCode());

 student3 = new StudentDemo9();// Student #3

 �System.out.println("The student3.hashCode()=" + student3.

hashCode());

 //Stage-2

 student1 = null;

 // Requesting JVM to run Garbage Collector

 System.out.println("Requesting GC-1");

 System.gc();

 Thread.sleep(3000);

 //Stage-3

 student3 = student2;

 // Requesting JVM to run Garbage Collector

 System.out.println("Requesting GC-2");

 System.gc();

 Thread.sleep(3000);

 //Stage-4

 student2 = null;

 // Requesting JVM to run Garbage Collector

 System.out.println("Requesting GC-3");

 System.gc();

 Thread.sleep(3000);

 student3 = null;

 // Requesting JVM to run Garbage Collector

 System.out.println("Requesting GC-4");

 System.gc();

 Thread.sleep(3000);

 }// End of main()

}

Here is a possible output from the modified demonstration. This output may vary

because you never know whether GC will respond to your request or not.

Chapter 3 Classes and Objects in Depth

63

Demonstration 9.Exploring Garbage Collection.

The student1.hashCode()=366712642

The student2.hashCode()=1829164700

The student3.hashCode()=2018699554

Requesting GC-1

Freeing memory. The object with hashcode 366712642 is collected.

Requesting GC-2

Freeing memory. The object with hashcode 2018699554 is collected.

Requesting GC-3

Requesting GC-4

Freeing memory. The object with hashcode 1829164700 is collected.

You can review the analysis section of Demonstration 9 for a better understanding.

The sleep() methods were not necessary in this demonstration but they are added to

allow garbage collector some time to finish its job.

�Summary
This chapter covered the following topics:

•	 A brief overview of static variables and methods

•	 An introductory discussion on access control using different

modifiers and getter-setter methods

•	 Use of initialization blocks

•	 A discussion on the nested class (with inner class)

•	 Use of copy constructor

•	 Shallow copy and deep copy

•	 Use of wrapper classes

•	 Garbage collection

•	 Memory leak

•	 Root objects in an object tree

•	 Finalization technique

Chapter 3 Classes and Objects in Depth

65
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_4

CHAPTER 4

The Concept of Inheritance
The main objective of inheritance is to promote reusability and eliminate redundancy in

code. It also demonstrates how a child class can obtain the features (or characteristics)

of its parent class. Since a parent class is placed at a higher level in the class hierarchy,

and a child class can derive from it. A child class is often referred to as a derived class or

subclass. A parent class is also referred to as a super class.

�Types of Inheritance
In general, you will deal with four types of inheritance. In Java, a class can inherit from

another class using the extends keyword. For your easy reference, I present you with a

summarized description for each type of inheritance.

�Single Inheritance
A child class is derived from one parent class. Here is a sample diagram (Figure 4-1) and

code for this type of inheritance.

Figure 4-1.  Single inheritance

66

Sample code:

 class Parent

 {

 //Your code...

 }

 class Child extends Parent

 {

 //Your code...

 }

�Hierarchical Inheritance
Multiple child classes can be derived from one parent class. Here is a sample diagram

(Figure 4-2) and code for this type of inheritance.

Figure 4-2.  Hierarchical inheritance

Sample code:

 class Parent

 {

 //Your code...

 }

 class Child1 extends Parent

 {

 //Your code...

 }

Chapter 4 The Concept of Inheritance

67

 class Child2 extends Parent

 {

 //Your code...

 }

�Multi-level Inheritance
The parent class can have a grandchild. Here is a sample diagram (Figure 4-3) and code

for this type of inheritance.

Figure 4-3.  Multi-level inheritance

Sample code:

 class Parent

 {

 //Your code...

 }

 class Child extends Parent

 {

 // Your code..

 }

Chapter 4 The Concept of Inheritance

68

 class Grandchild extends Child

 {

 // Your code...

 }

�Multiple Inheritance
A child can derive from multiple parents. But this type of inheritance is not supported in

Java through classes. You would need to learn about interfaces. Here is a sample diagram

(Figure 4-4) and code for this type of inheritance.

Figure 4-4.  Multiple inheritance

Sample code:

interface MyInterface1

{

 // Your code

}

interface MyInterface2

{

 //Your code

}

class MyClass implements MyInterface1,MyInterface2

{

//Some code

}

Chapter 4 The Concept of Inheritance

69

Note

1. Java does not support multiple inheritance (through classes); that is, a child
class cannot derive from more than one parent class. To deal with this type of
situation, you need to understand interfaces.

2.There is another type of inheritance known as hybrid inheritance. It is a
combination of two or more types of inheritances.

�Demonstration 1
Let’s start with a simple program on inheritance. In the following demonstration, you

have two classes—ParentClass and ChildClass. So, as their names suggest, ChildClass

is derived from the ParentClass using the extends keyword.

package java2e.chapter4;

class ParentClass {

 public void showParentMethod() {

 System.out.println("I am a Parent Class method.");

 }

}

class ChildClass extends ParentClass {

}

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.Testing

Inheritance.***");

 // Creating a ChildClass object

 ChildClass child1 = new ChildClass();

 // Invoking showParentMethod() through ChildClass object

 child1.showParentMethod();

 }

}

Chapter 4 The Concept of Inheritance

70

Output:

Demonstration-1.Testing Inheritance.
I am a Parent Class method.

Notice that you have invoked showParentMethod()through a child class object.

POINTS TO REMEMBER

•	 In Java, Object (in java.lang package) is the superclass for all classes.

All other classes directly or indirectly are an inheritor of that class.

•	 Apart from constructors (instance and static), all members are inherited. But due to

their accessibility restrictions, all the inherited members may not be accessible in

the child/derived class.

•	 The child class can add new members, but it cannot remove the definition of the

parent member. (Just as you can choose a new name for yourself but cannot

change the surname of your parents).

•	 The inheritance hierarchy is transitive; that is, if class C inherits from class B,

which in turn is derived from class A, then class C contains all the members from

class B and class A.

�Q&A Session
4.1 This means that private members are also inherited. Is this understanding correct?

Yes.

4.2 How can I examine the fact that private members are also inherited?

You can refer to the program and output shown in Demonstration 2.

�Demonstration 2
Consider the following:

package java2e.chapter4;

class A {

 private int a;

}

Chapter 4 The Concept of Inheritance

71

class B extends A {

}

class Demonstration2 {

 public static void main(String[] args) {

System.out.println("***Demonstration-2.Private members are also inherited***");

 B obB = new B();

 A obA = new A();

 �// This is a proof that a is also inherited. See the error

//message.

 System.out.println(obB.a);// Error:The field A.a is not visible

 �System.out.println(obB.b);// Error: b cannot be resolved or

//is not a field

 System.out.println(obA.a);// Error:The field A.a is not visible

 �System.out.println(obA.b);// Error: b cannot be resolved or

//is not a field

 }

}

Figure 4-5 is the output snapshot from the Eclipse editor.

Figure 4-5.  An output snapshot from the Eclipse editor

Chapter 4 The Concept of Inheritance

72

We have encountered two different types of errors:

•	 The field A.a is not visible. It indicates that the private member a

from class A is inherited in the child class B.

•	 You have done an experiment with a field b, which is not present in

this class hierarchy (i.e., the field is not present—neither in A nor in B).

When you try to access the field with a class A or class B object, you

encounter a different error—b cannot be resolved or is not a field.

Therefore, if a were absent in class B, you would get a similar error.

�Q&A Session
4.3 Why doesn’t Java support multiple inheritance through class?

The main reason is to avoid ambiguity. It can cause confusion in typical scenarios; for

example, let’s suppose that you have a method named show() in your parent class.

The parent class has multiple children, Child1 and Child2, which override the show()

method for their own purposes. The code may look like what’s shown in Demonstration 3.

�Demonstration 3
Try this out:

class Parent {

 public void show() {

 System.out.println("I am in Parent");

 }

}

class Child1 extends Parent {

 public void show() {

 System.out.println("I am in Child1");

 }

}

Chapter 4 The Concept of Inheritance

73

class Child2 extends Parent {

 public void show() {

 System.out.println("I am in Child2");

 }

}

Now let’s assume that your Grandchild class derives from both Child1 and Child2

but has not overridden the show() method. Figure 4-6 depicts the scenario.

Figure 4-6.  Diamond problem due to multiple inheritance through class in Java

So, now you have an ambiguity: from which class will GrandChild inherit/call

show()—Child1 or Child2? To avoid this type of ambiguity, Java does not support

multiple inheritance through classes. This problem has a famous name—the diamond
problem (the name is given due to the shape of the class inheritance diagram).

So, the Java compiler will always complain about the following code:

class GrandChild extends Child1,Child2// Error: Not supported in Java

{

 public void show() {

 System.out.println("I am in Grandchild");

 }

}

Chapter 4 The Concept of Inheritance

74

Note

1.The prior discussion is not limited to methods. When you create an object by
instantiating a class, that object inherits fields from the parent class (the super class).
Now, suppose your class has multiple super classes. You would encounter the same
problem if constructors from different parent classes made an attempt to instantiate
the same field, because you would need to decide their order of precedence. When
you learn about interfaces, you’ll learn that they do not contain fields. So, you do not
need to worry about this kind of problem that results from multiple inheritance of state.

2. You may need to take special care with default methods (introduced in Java 8) in
a similar context. You’ll see the discussion shortly.

�Q&A Session
4.4 It appears to me that programming languages do not support multiple
inheritance through classes. Is this understanding correct?

No. The decision is made by the designers of the programming language; for example,

C++ supports the concept of multiple inheritance through classes.

4.5 Why do C++ designers support the concept of multiple inheritance through
classes? It seems that the diamond problem can impact them too.

Here is my point of view: C++ designers probably wanted the feature to be included to make

the language rich. They supply you with the features but leave the proper usage to you.

On the other hand, Java designers wanted to avoid any unwanted outcomes resulting

from this kind of feature. You will learn that multiple inheritance can make your life

difficult in various situations; for example, when you need to maintain constructor

chaining, or when you need to involve casting (downcasting is always risky; you will see

this discussion in detail in Chapter 5, Q&A 5.14), etc. So, it appears to me that the Java

designers simply wanted to make the language simple and less error-prone.

4.6 Is there hybrid inheritance in Java?

Think carefully. Hybrid inheritance is a combination of two or more types of inheritance.

So, the answer to this question is “yes” if you are not trying to combine any type of

multiple inheritance through classes. But if you try to make a hybrid inheritance

Chapter 4 The Concept of Inheritance

75

with any type of multiple inheritance (through classes), the Java compiler will raise its

concern immediately.

4.7 Suppose you have a parent class and a child class. Can you guess in which order
constructors of the classes will be called?

You must remember that the constructor’s calls follow the path from the parent class to

the child class. Let’s test this with the following demonstration.

�Demonstration 4
Suppose you have a parent class, a child class, and a grandchild class. Let’s call them

Parent4, Child4, and Grandchild4, respectively. As the names suggest, the Child4 class

derives from Parent4, and Grandchild4 derives from the Child4 class. Now, create an

object of the Grandchild4 class. From the output of the following demonstration, you

can see that constructors are called in the order of their derivation.

package java2e.chapter4;

class Parent4 {

 Parent4() {

 System.out.println("Inside Parent Constructor.");

 }

}

class Child4 extends Parent4 {

 Child4() {

 System.out.println("Inside Child Constructor.");

 }

}

class Grandchild4 extends Child4 {

 Grandchild4() {

 System.out.println("Inside GrandChild Constructor.");

 }

}

Chapter 4 The Concept of Inheritance

76

class Demonstration4 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4. Testing constructor

calling sequence***");

 Grandchild4 grandChild = new Grandchild4();

 }

}

Output:

Demonstration-4. Testing constructor calling sequence
Inside Parent Constructor.

Inside Child Constructor.

Inside GrandChild Constructor.

�Q&A Session
4.8 Sometimes I am uncertain about which should be the parent class and which
should be the child class in an inheritance hierarchy. How can I tackle this kind of
situation?

You can try to remember some simple statements like the following: a football player is

an athlete, but the reverse is not necessarily true. Or a bus is a vehicle, but the reverse

is not necessarily true. This type of “is-a” test can help you to decide which should be

the parent; for example, from the prior statement, you can conclude that Vehicle is the

parent class and Bus is the child class.

You can also use this “is-a” test to determine in advance whether you can place a

class in the same inheritance hierarchy or not. So, when you see that a bus is not a bird,

you do not try to place them in the same inheritance hierarchy.

�A Special Keyword: super
In Java, there is a special keyword called super. It is used to access the members of a

parent class in an efficient way. Whenever a child class wants to refer to its immediate

parent, it can use the super keyword.

Let’s examine the different uses of the super keyword in the following examples.

Chapter 4 The Concept of Inheritance

77

�Demonstration 5
You can create a child class instance with the following line of code:

Child5 obB2 = new Child5(1, 2, 3);

The child class constructor can, in turn, call the parent class constructor using the

super keyword. Notice the bold line in the following block of code:

Child5(int a, int b, int c) {

 �//System.out.println("Before setting,c="+ this.c);

//Error:Constructor call must be the first statement in a

//constructor

 super(a, b);

 System.out.println("I am in child constructor.");

 System.out.println("Before setting,c="+ this.c);

 this.c = c;

 System.out.println("Now c="+ this.c);

 }

Other parts of the program are self-explanatory. Now, execute the program and then

go through the analysis section for a better understanding.

package java2e.chapter4;

class Parent5 {

 private int a;

 private int b;

 Parent5(int a, int b) {

 System.out.println("I am in parent constructor.");

 System.out.println("Before setting,a="+ this.a);

 System.out.println("Before setting, b="+ this.b);

 �System.out.println("Setting the values for instance variables

a and b.");

 this.a = a;

 this.b = b;

 System.out.println("Now a="+ this.a);

 System.out.println("Now b="+ this.b);

 }

Chapter 4 The Concept of Inheritance

78

 void parent5Method() {

 System.out.println("I am a parent method.");

 }

}

class Child5 extends Parent5 {

 private int c;

 Child5(int a, int b, int c) {

 �//System.out.println("Before setting,c="+ this.c);

//Error:Constructor call must be the first statement in a

//constructor

 super(a, b);

 System.out.println("I am in child constructor.");

 System.out.println("Before setting,c="+ this.c);

 this.c = c;

 System.out.println("Now c="+ this.c);

 }

 void child5Method() {

 System.out.println("I am a child method.");

 System.out.println("I am calling the parent method.");

 super.parent5Method();

 }

}

public class Demonstration5 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-5. The uses of the

'super' keyword Demo***");

 Child5 obB2 = new Child5(1, 2, 3);

 //System.out.println("a in ObB2=" + obB2.a);//Error:a is private

 //System.out.println("b in ObB2=" + obB2.b);//Error:b is private

 //System.out.println("c in ObB2=" + obB2.c);//Error:c is private

 obB2.child5Method();

 }

}

Chapter 4 The Concept of Inheritance

79

Output:

*** Demonstration-5. The uses of the 'super' keyword Demo***
I am in parent constructor.

Before setting,a=0

Before setting, b=0

Setting the values for instance variables a and b.

Now a=1

Now b=2

I am in child constructor.

Before setting,c=0

Now c=3

I am a child method.

I am calling the parent method.

I am a parent method.

You need to understand why it is necessary to use the keyword super. If you did not

use it in the preceding example, you may have to write code similar to this:

public Child(int a, int b, int c)

 {

 this.a = a;

 this.b = b;

 this.c = c;

 }

There are two major issues with this kind of approach. You are trying to write

repeated code to initialize the instance variables a and b. Also, in this case, you will

receive a compile-time error because both a and b are inaccessible due to their

protection level (note that they are private). With the use of the super keyword, you can

handle both scenarios efficiently. You may also notice that the parent class constructor

is invoked before the child class constructor. Ideally, your goal should be to always

maintain the proper constructor chaining.

Chapter 4 The Concept of Inheritance

80

POINTS TO REMEMBER

•	 Notice the commented line: //System.out.println("Before setting,

c="+ this.c);//Error:Constructor call must be the first statement in a
constructor. It is used to remind you that Java design guidelines say that invocation

of the super class constructor should be the first statement in the child (or derived)

class constructor. You can use either super() or super(parameter list) to

invoke the correct version of your super class constructor.

•	 The guideline also says: “If a constructor does not explicitly invoke a super class
constructor, the Java compiler automatically inserts a call to the no-argument
constructor of the super class. If the super class does not have a no-argument
constructor, you will get a compile-time error. Object does have such a
constructor, so if Object is the only super class, there is no problem.”

https://docs.oracle.com/javase/tutorial/java/IandI/super.html

•	 Notice the last two lines of the output. It demonstrates that you can invoke a

super class method from a derived class method using the super keyword.

Let’s examine another use of super in the following example. The keyword super

can be used in the context of a method, a constructor, or an instance variable. When you

consider only methods and instance variables, you can generalize the usage with the

following form:

super.member;

where member can be an instance variable or a method.

Sometimes a derived class can hide an instance variable that is originally defined in

a super class. In such a situation, super can allow you to access the instance variable in

the super class using an object of the derived class. So, in the following demonstration,

you can see the following line of code:

super.myInt = 12;

where myInt is an instance variable of the parent class.

Chapter 4 The Concept of Inheritance

https://docs.oracle.com/javase/tutorial/java/IandI/super.html

81

�Demonstration 6
In Demonstration 5, you saw that you can invoke a parent class method in the same

way. In Demonstration 6, you have a derived class (Child6) that is derived from the class

Parent6. Also, the Parent6 class has a method called parentClassMethod(). So, from the

child class, you can refer to the parent class method using the following code:

 super.parentClassMethod();

Both cases are demonstrated in the following example:

package java2e.chapter4;

class Parent6 {

 int myInt;

 Parent6() {

 myInt = 25;// some default value

 }

 public void parentClassMethod(){

 System.out.println("I am inside the parentClassMethod().");

 }

}

class Child6 extends Parent6 {

 int myInt;// this will hide myInt in Parent6

 Child6() {

 �System.out.println("Initially, the value of myInt in parent

class=" + super.myInt);

 �System.out.println("Setting the new value(12) of myInt in

parent class now.");

 super.myInt = 12;// Setting myInt in parent class

 �System.out.println("Setting the value (50) of myInt in child

class now.");

 myInt = 50;// Setting myInt in child class

 }

Chapter 4 The Concept of Inheritance

82

 void display() {

 �System.out.println("The value of myInt in parent class=" +

super.myInt);

 System.out.println("The value of myInt in child class=" + myInt);

 }

 void invokeParentMethod()

 {

 �System.out.println("Invoking the parent class method from the

child class.");

 super.parentClassMethod();

 }

}

class Demonstration6 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-6:The alternative use of

'super' keyword***\n");

 Child6 childObject = new Child6();

 childObject.display();

 childObject.invokeParentMethod();

 }

}

Output:

Demonstration-6:The alternative use of 'super' keyword

Initially, the value of myInt in parent class=25

Setting the new value(12) of myInt in parent class now.

Setting the value (50) of myInt in child class now.

The value of myInt in parent class=12

The value of myInt in child class=50

Invoking the parent class method from the child class.

I am inside the parentClassMethod().

Chapter 4 The Concept of Inheritance

83

POINTS TO REMEMBER

•	 As per the language specification (JLS 11): The forms using the keyword super

are valid only in an instance method, instance initializer, or constructor of a

class, or in the initializer of an instance variable of a class. Otherwise, you’ll see

compile-time errors.

•	 The java.lang.Object class is placed at the top of the class hierarchy.

All other classes are either direct or indirect descendants of it. Some useful

methods in the Object class include protected native Object clone()

{}, String toString(), public final native void notify(){},
public final native void notifyAll(){}, and public native int

hashCode(){}.

•	 You use the super keyword to refer to the objects of the immediate parent

class. But the Object class does not have any super class, so you cannot use

the super keyword in the declaration of an Object class.

•	 The super keyword is similar to the base keyword in C++ or C#. But you

need to remember the restriction that says that the invocation of a super class

constructor must be the first line in the subclass constructor.

�Q&A Session
4.9 Can you summarize the different uses of the superkeyword?

In Demonstrations 5 and 6, you have seen that the super keyword can be used in any of

the following situations:

•	 To invoke parent class constructors

•	 To access a parent class member that is a method or a data member.

4.10 Suppose there are methods that have a common name in both the parent class
and its child class. If you create a child class object and try to invoke the same-
named method, which one will be called?

You are trying to introduce the concept of method overriding here. You will see the

discussion shortly in this book (Chapter 5). But you have already learned that you can

refer to a parent class method using the keyword super. So, to answer your question,

consider the following program.

Chapter 4 The Concept of Inheritance

84

�Demonstration 7
Here, both the parent class (Parent7) and child class (Child7) have a method called

showMe(). I suggest you go through the program and its corresponding output. Then, go

through the analysis section for a better understanding.

package java2e.chapter4;

class Parent7 {

 public void showMe() {

 System.out.println("At present, I am inside the parent method.");

 }

}

class Child7 extends Parent7 {

 public void showMe() {

 System.out.println("I am inside the child method.");

 //System.out.println("Invoking the parent method now.");

 //super.showMe();

 }

}

public class Demonstration7 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-7.Testing the use of

super keyword.****");

 Child7 obChild = new Child7();

 obChild.showMe();

 }

}

Output:

Demonstration-7.Testing the use of super keyword.
I am inside the child method.

Here, your derived class (Child7) method hides its parent class (Parent7) method.

Chapter 4 The Concept of Inheritance

85

If you want to invoke the parent class method, you can create objects and invoke the

method like the following:

 Parent7 obParent = new Parent7();

 obParent.showMe();//Now Parent class method will be invoked.

Alternatively, you can uncomment the following lines (shown in bold) inside the

child class method to invoke the parent class method from a child class method:

//System.out.println("Invoking the parent method now.");

//super.showMe();

Now, if you compile and run the program, you will obtain the following output:

Demonstration-7:Testing the use of super keyword.
I am inside the child method.

Invoking the parent method now.

At present, I am inside the parent method.

�Q&A Session
4.11 I know that a subclass method can invoke a super class method. But how can a
super class method invoke a subclass method?

You cannot do that. You must remember that a super class is completed before its

subclass, so it has no idea about its subclass methods. It only announces something

(think about some contract/methods) that can be used by its children. It is only giving,

without any expectation of getting anything in return from its children.

If you look carefully, you will find that the “is-a” test is one-way (e.g., a bus is always

a vehicle, but the reverse is not necessarily true; so, there is no concept of backward

inheritance).

4.12 I realize that inside a subclass method, if I want to invoke a parent class method
and put code inside it, I can use the keyword super. Is this correct?

Yes.

Chapter 4 The Concept of Inheritance

86

4.13 In OOP, the inheritance mechanism helps us to reuse behavior. Is there any
other way to achieve this?

Yes. Although the concept of inheritance is used in many places, it is not always the best

solution. To understand it better, you need to understand the concept of design patterns.

A very common alternative to inheritance is to use composition, which is covered in

Chapter 9 in the book.

4.14 It appears to me that if a user already developed a method for an application,
other users in the system should always reuse the same method through the concept
of inheritance to avoid duplicate efforts. Is this understanding correct?

No. You should not generalize inheritance in this manner. It depends on the particular

application and use. Let’s assume that someone has already made a show() method to

describe the details of a Car class. Now, let’s say that you have also created a class called

Animal and need to describe the characteristics of an animal with a method. Suppose

that you believe that the name show() best suits your method. In this case, since you

already have a show() method in a class called Car, and if you think that you should

reuse the method for your Animal class, you would write something like this:

class Animal extends Car{...} .

Now, think for a moment. “Is this good design?” You must agree that there is no

relationship between a car and an animal. So, you should not relate them in the same

inheritance hierarchy.

4.15 How can I inherit a constructor or a destructor in Java?

In Java, constructors are not inherited. You should also remember that destructors are

absent in Java (though you can think of the finalize() method as a close approximation

to it).

�Demonstration 8
Consider the following code segment. It works fine. But look at the commented lines

closely. You can see that you need to be careful about a common mistake. For example,

you cannot replace Line-15 with Line-12 and Line-13 to compile the code. But, it may

appear that both approaches are doing the same thing.

Chapter 4 The Concept of Inheritance

87

package java2e.chapter4;

class Demo8A {

 public Demo8A(int x) {

 System.out.print(x);

 }

}

class Demo8B extends Demo8A {

 public Demo8B(int a, int b) {

 //Incorrect coding

 // int c = a + b;//Line-12

 // super(c); //error//Line-13

 // Correct coding

 super(a + b); // Line-15

 }

}

From the Java documentation, it appears to me that Java developers did not want

to break the constructor chaining. It looks like they felt that if you were allowed to put

statements like this before a super call, someone might misuse it; for example, they

could perform some invalid operations before the creation of the parent object itself.

�Q&A Session
4.16 Some documents say that this() should be the first statement. Now, you are
telling us super() should be the first statement. What will happen if you have both in
the same constructor?

Good question. You must notice that both are constructor calls. If you have a constructor

call, it must be the first statement. So, you cannot have both in the same constructor.

4.17 If that is the case, then it is a very restrictive design. Isn’t it?

The following program and output analysis can remove your doubt.

Chapter 4 The Concept of Inheritance

88

�Demonstration 9
So, let’s go through the following program and output.

package java2e.chapter4;

class Parent9 {

 int i;

 Parent9() {

 �System.out.println("Invoking parameterless constructor of

Parent class.");

 }

}

class Child9 extends Parent9 {

 int b;

 Child9() {

 // both this() and super() cannot be used together

 // super();

 this(2);

 System.out.println("Invoking parameterless constructor of Child9.");

 }

 Child9(int b) {

 this.b = b;

 �System.out.println("Inside Child9 constructor with one

parameter where b= " + b);

 }

}

class Demonstration9 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-9.A case study with this

and super keyword.***");

 Child9 obChild9 = new Child9();

 }

}

Chapter 4 The Concept of Inheritance

89

Output:

Demonstration-9.A case study with this and super keyword.
Invoking parameterless constructor of Parent class.

Inside Child9 constructor with one parameter where b= 2

Invoking parameterless constructor of Child9.

Now, enable the super statement and comment out the this() constructor like in

the following:

Child9() {

 // both this() and super() cannot be used together

 super();

 //this(2);

 System.out.println("Invoking parameterless constructor of Child9.");

 }

And run the program again. You’ll see the following output:

Demonstration-9.A case study with this and super keyword.
Invoking parameterless constructor of Parent class.

Invoking parameterless constructor of Child9.

Have you noticed the interesting thing? In this case, it does not matter whether

you make an explicit call to the parent class constructor through super() or not, as

the parent class constructor is always called. So, you can assume that if Java designers

allowed us to put super() and this() in the same constructor, you would likely end up

with multiple super calls in the calls of constructor chaining, which is obviously not a

good design.

�Q&A Session
4.18 To implement the concept of inheritance, I need to extend the class. Is this
understanding correct?

Yes. But you need to remember that you can use the concept by implementing an

interface also. Interfaces are discussed in Chapter 6 in this book.

Chapter 4 The Concept of Inheritance

90

�Summary
This chapter covered the following topics:

•	 The concept of inheritance

•	 The different types of inheritance

•	 Why multiple inheritance through class is not supported in Java

•	 The kind of hybrid inheritance allowed in Java

•	 The different uses of the super keyword

•	 The constructor calling sequence in an inheritance hierarchy

•	 How to call a parent class method if its child class also contains a

method with the same name

•	 How to put classes in an inheritance hierarchy

•	 The proper uses of the concept of inheritance

Chapter 4 The Concept of Inheritance

91
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_5

CHAPTER 5

Get Familiar with
Polymorphism
Let’s review what you have already learned about polymorphism. Polymorphism is

generally associated with one name with many forms; for example, if you have two

integer operands with the addition operation, you expect to get a sum of the integers, but

if the operands are two strings, you expect to get a concatenated string. I also mentioned

that polymorphism can be of two types: compile-time polymorphism and runtime

polymorphism.

Here, I’ll start our discussion with compile-time polymorphism.

In compile-time polymorphism, the compiler can bind the appropriate methods to

the respective objects at compile time because it has all the necessary information (for

example, method arguments) and knows which method to call much earlier once the

program is compiled. This is why it is also known as static binding or early binding. In

Java, compile-time polymorphism can be achieved with method overloading.

�Method Overloading
Let’s start with the following program and analyze the corresponding output.

�Demonstration 1
In this program, you have an Addition class, which contains three methods. Each of

these methods has the same name, sum(), but they can accept different arguments. In

Java, this kind of coding is allowed.

Now, compile and run the program and then analyze the output.

92

package java2e.chapter5;

class Addition {

 int sum(int x, int y) {

 return x + y;

 }

 double sum(double x, double y) {

 return x + y;

 }

 String sum(String s1, String s2) {

 return s1.concat(s2);

 }

}

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.Method overloading

example***");

 Addition additionOb = new Addition();

 int sumOfIntergers = additionOb.sum(10, 20);

 System.out.println("10 + 20 is :" + sumOfIntergers);

 double sumOfDoubles = additionOb.sum(10.5, 20.7);

 System.out.println("10.5 + 20.7 is :" + sumOfDoubles);

 String sumOfStrings = additionOb.sum("Smith", "Turner");

 System.out.println("'Smith'+ 'Turner' is :" + sumOfStrings);

 }

}

Output:

Demonstration-1.Method overloading example
10 + 20 is :30

10.5 + 20.7 is :31.2

'Smith'+ 'Turner' is :SmithTurner

Chapter 5 Get Familiar with Polymorphism

93

You can see that the methods have the same name, “sum,” but once executed they

are capable of doing different things.

When you do this kind of coding, you call it method overloading. In method

overloading, the method names are the same, but the method signatures are different.

In this context, Java language specification (11) says that “a class cannot have multiple

methods with the same signature and different primitive return types.”

POINTS TO REMEMBER

•	 In Java, method overloading can help you to achieve compile-time

polymorphism.

•	 In method overloading, the method parameters can vary with number, order, or

the types of parameter.

•	 This kind of coding is also known as static binding, early binding, static method

dispatch, or static polymorphism.

•	 In method overloading, a call to an overloading method is resolved at compile

time, rather than at execution time.

�Q&A Session
5.1 What is a method signature?

In general, a method name with the number, types, and order of the parameters makes

up its signature. Oracle Java documentation confirms the same, saying that two of the

components of a method declaration make up the method signature—the method's

name and the parameter types. See the following:

https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

So, the Java compiler can distinguish among methods with the same name but

different parameter lists; for example, for the Java compiler, the method double

add(int x, double y){} is different from the method double add(double x, int y)

{} or double add(int x, int y, int z).

Chapter 5 Get Familiar with Polymorphism

https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

94

5.2 Is the following code segment an example of method overloading?

 class Addition

 {

 public int sum(int x, int y)

 {

 return x + y;

 }

 public double sum(int x, int y, int z)

 {

 return x + y+ z;

 }

 }

Yes.

5.3 Is the following code segment an example of method overloading?

 class Addition

 {

 int sum(int x, int y)

 {

 return x + y;

 }

 double sum(int x, int y)

 {

 return x + y;

 }

 }

No. The compiler will not consider the primitive return type to differentiate these

methods. In other words, Java will not support primitive return type–based overloading.

Eclipse IDE will raise its concern with the error shown in Figure 5-1.

Figure 5-1.  An output snapshot with error message in the Eclipse editor

Chapter 5 Get Familiar with Polymorphism

95

When you learn about the covariant return type in Java, you’ll see that JVM (1.5 onward)

allows return type–based overloading, where a class can have two or more methods that

differ only by return type, but in that case the return type of an overriding method should

be a subtype of the overridden method’s return type. You’ll learn these terms shortly.

5.4 Can we have constructor overloading?

Definitely. You can think of constructors as a special kind of method with no return type.

�Demonstration 2
You can write the following program to demonstrate constructor overloading.

package java2e.chapter5;

class ConstructorOverloadEx {

 ConstructorOverloadEx() {

 System.out.println("Constructor cannot accept any argument.");

 }

 ConstructorOverloadEx(int a) {

 �System.out.println("Constructor can accept one integer

argument: " + a);

 }

 ConstructorOverloadEx(int a, double b) {

 �System.out.println("Constructor can accept one integer

argument: " + a + " and one double argument: " + b);

 }

}

public class Demonstration2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.Constructor

Overloading.***");

 ConstructorOverloadEx ob1 = new ConstructorOverloadEx();

 ConstructorOverloadEx ob2 = new ConstructorOverloadEx(2);

 ConstructorOverloadEx ob3 = new ConstructorOverloadEx(2, 3.7);

 }

}

Chapter 5 Get Familiar with Polymorphism

96

Output:

Demonstration-2.Constructor Overloading.
Constructor cannot accept any argument.

Constructor can accept one integer argument: 2

Constructor can accept one integer argument: 2 and one double argument: 3.7

�Q&A Session
5.5 It appears to me that Demonstration 2 also describes method overloading. What
is the difference between a constructor and a method?

I already talked about constructors in the discussion on classes (see Chapter 2). For

your reference, you can consider a constructor as a special kind of method that has the

same name as a class and no return type. But there are many other differences. You need

to remember the key job of a constructor, which is to initialize objects. You cannot call

them directly.

5.6 Can you compile the code in Demonstration 3?

�Demonstration 3
Here is the code:

class Test {

 public Test() {

 System.out.println("A Constructor with no argument");

 }

 public void Test() {

 System.out.println("This is a method.");

 }

}

Java allows this, but in the Eclipse editor you will notice the warning message "This

method has a constructor name." This feature may vary in different computer languages.

For example, a C# compiler will raise an error in a similar context, as shown in Figure 5-2.

Chapter 5 Get Familiar with Polymorphism

97

�Q&A Session
5.7 Can you overload the main() method?

Yes. Please review the following program and output, along with the analysis.

�Demonstration 4
In the following demonstration, you will notice the presence of three different

overloaded versions of the main() method.

package java2e.chapter5;

class Demonstration4 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4.Testing overloaded

main() methods.***");

 System.out.println("Inside standard main-main(String[] args).");

 // main("hello");

 // main(5,"hello");

 }

 public static void main(String arg1) {

 �System.out.println("Overloaded main() with one string

parameter is called.");

 }

 public static void main(int arg1, String arg2) {

 �System.out.println("Overloaded main() with one integer and one

string parameter is called.");

 }

}

Figure 5-2.  An output snapshot from the Visual Studio 2017 IDE

Chapter 5 Get Familiar with Polymorphism

98

Output:

Demonstration-4.Testing overloaded main() methods.
Inside standard main-main(String[] args).

As you can see, the preceding program is compiled successfully. When you run the

program, it will invoke the standard main() method. In addition, you can invoke other

overloaded methods from this standard main() method. For example, if you uncomment

the following two lines in the preceding program,

// main("hello");

// main(5,"hello");

you’ll receive the following output:

Demonstration-4.Testing overloaded main() methods.
Inside standard main-main(String[] args).

Overloaded main() with one string parameter is called.

Overloaded main() with one integer and one string parameter is called.

�Q&A Session
5.8 I am confused. Why am I getting a compilation error for the following program?

package chapter5.testcodes;

public class Test2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4.Testing overloaded

main() methods.***");

 System.out.println("Inside standard main-main(String[] args).");

 // main("hello");

 // main(5,"hello");

 }

 public static void main(String... args) {

 System.out.println("Inside String... args");

 }

}

Chapter 5 Get Familiar with Polymorphism

99

In this case, there is an ambiguity because the call can be translated by either of

these two methods. The Eclipse editor also points this out with error messages that say

you are using duplicate methods (see Figure 5-3).

Figure 5-3.  The output snapshot of the error messages in the Eclipse editor when
you use duplicate methods

5.9 Does Java support the concept of user-defined operator overloading?

No.

5.10 Will the code in the following demonstration compile?

�Demonstration 5
Here is the code:

package java2e.chapter5;

class Class5

{

 public void myMethod(int... a){

 System.out.println("Inside myMethod(int... a)");

 }

 public void myMethod(int a, int b){

 System.out.println("Inside myMethod(int a, int b)");

 }

 public void myMethod(boolean... b){

 System.out.println("Inside myMethod(boolean... a)");

 }

}

Chapter 5 Get Familiar with Polymorphism

100

class Demonstration5 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-5.Testing Method

overloading.***");

 Class5 ob5=new Class5();

 ob5.myMethod(1);

 ob5.myMethod(1,2);

 ob5.myMethod();

 }

}

No. The compiler is able to resolve both the calls ob5.myMethod(1) and ob5.

myMethod(1,2), but it is confused by ob5.myMethod(). This call can be translated by

either myMethod(int... a) or myMethod(boolean... a).

Because of this ambiguity, it raises a compile-time error (see Figure 5-4).

Figure 5-4.  A code snapshot with error message in the Eclipse editor resulting from
an ambiguous call

Chapter 5 Get Familiar with Polymorphism

101

If you remove myMethod(boolean... a){} from the preceding code, you’ll receive

the following output:

Demonstration-5.Testing Method overloading.
Inside myMethod(int... a)

Inside myMethod(int a, int b)

Inside myMethod(int... a)

Note Y ou may notice the syntactical difference in code segments between Q&A
5.8 and 5.10. In 5.8, you were dealing with Sting[] and String..., but in 5.10,
you were dealing with int... and boolean...

TIPS FOR GOOD PROGRAMMING PRACTICE

Try to be consistent with parameter names and their corresponding orders for overloaded

methods.

The following is an example of good design:

public void showMe(int a) {..}

public void showMe(int a, int b){...}

Notice that in the second line, the position of int a is the same as in the first line.

The following is not a recommended design:

public void showMe(int a) {..}

public void showMe(int x, int b){...}

Notice that in the second line, the code is started with int x instead of int a.

�Method Overriding
In some situations, your derived class may want to redefine or modify the behavior of the

parent class. Method overriding comes into the picture in such a scenario. Consider the

following program and the output. Then, go through each of the points carefully in the

analysis section.

Chapter 5 Get Familiar with Polymorphism

102

Here are the important points about the following program:

•	 You have two classes—ParentClass and ChildClass. As the name

suggests, ChildClass is a derived class that is derived from its parent,

ParentClass.

•	 A method named showMe() with the same signature and return type

is defined in both the ParentClass and the ChildClass. It simply

means the ChildClass wants to redefine the showMe() method that

is already present in the ParentClass, but it is ok with the other

method, doNotChangeMe().

•	 In the main() method, a child class object childOb is created. When

you invoke the method doNotChangeMe() through this object, it

calls the method that is defined in the ParentClass (following the

inheritance property). There is no magic.

•	 When you invoke the method showMe() through this object, it calls

the showMe() version defined in ChildClass; that is, the parent

method version is overridden. Hence, the scenario is known as

method overriding.

•	 The showMe() in the ParentClass is called the overridden method,
and the showMe() in the ChildClass is called the overriding method.

�Demonstration 6
Now, go through Demonstration 6.

package java2e.chapter5;

class ParentClass {

 // Overridden method

 public void showMe() {

 System.out.println("Inside ParentClass.showMe()");

 }

Chapter 5 Get Familiar with Polymorphism

103

 public void doNotChangeMe() {

 System.out.println("Inside ParentClass.doNotChangeMe().");

 }

}

class ChildClass extends ParentClass {

 // Overriding method

 public void showMe() {

 System.out.println("Inside ChildClass.showMe().");

 }

}

class Demonstration6 {

 public static void main(String[] args) {

 System.out.println("*** Method overriding demonstration.***");

 ChildClass childOb = new ChildClass();

 childOb.doNotChangeMe();

 childOb.showMe();//Will display the overridden method

 }

}

Output:

*** Method overriding demonstration.***
Inside ParentClass.doNotChangeMe().

Inside ChildClass.showMe().

You will notice that in this case the return types, signatures, and access-specifiers of

the parent class and child class methods are the same. In the preceding example, if you

change the accessibility from public to protected in the child class’s showMe(), as follows,

 //Error

 protected void showMe() {

 System.out.println("Inside ChildClass.showMe().");

 }

you will receive a compilation error that says Cannot reduce the visibility of the

inherited method from ParentClass (Figure 5-5).

Chapter 5 Get Familiar with Polymorphism

104

Note T here is a concept called covariant return type in Java. I’ll discuss this topic
later. Since it is a relatively advanced concept, it is suggested that you understand
the original concept first.

�Q&A Session
5.11 What are the key benefits of method overriding?

Method overriding can help you to implement runtime polymorphism. Also, if a parent

class has multiple child classes, each of the child classes can decide whether it wants to

use the method from the parent class or wants its own specific implementation.

5.12 In method overloading, return types did not matter. But here it matters. Is this
correct?

Yes. Here the child class method’s return type must be the same (or subclass type, which

will be discussed later) as the parent class method’s return type (or, simply, both types

must be compatible).

5.13 Can I compile the following code snippet?

class ParentClassQ2 {

 public void showMe() {

 System.out.println("I am in Parent class");

 }

}

class ChildClassQ2 extends ParentClassQ2 {

Figure 5-5.  An error message snapshot in the Eclipse editor when you reduce the
visibility of the inherited method

Chapter 5 Get Familiar with Polymorphism

105

 public int showMe() {

 System.out.println("I am in Child class");

 return 5;

 }

}

No. In this case, you basically tried to implement return type–based overloading,

but not overriding. Now ChildClassQ2 has two methods with the same name and same

signature, and only their return types are different. So, you will receive a compilation

error that says The return type is incompatible with ParentClassQ2.showMe(), as

shown in Figure 5-6.

Figure 5-6.  An error message snapshot in the Eclipse editor resulting from
incompatible return types

To overcome this, you can do some simple changes in the child class’s method, like

the following. (Here, you pass a dummy argument, which has no effect at all.)

//It will work

 public int showMe(int i)

 {

 System.out.println("I am in Child class.");

 return i;

 }

Now, you can use the methods from both the parent and the child classes. You can

refer to the following program with its output for reference:

package java2e.chapter5;

class ParentClassQ2 {

 public void showMe() {

 System.out.println("I am in Parent class.");

 }

}

Chapter 5 Get Familiar with Polymorphism

106

class ChildClassQ2 extends ParentClassQ2 {

 // Error

 /*
 public int showMe() {

 System.out.println("I am in Child class.");

 return 5;

 }

 */

 // It will work

 public int showMe(int i) {

 System.out.println("I am in Child class.");

 return i;

 }

}

public class Quiz2 {

 public static void main(String[] args) {

 �System.out.println("*** Method overriding demonstration.

Quiz2.***");

 ChildClassQ2 childOb = new ChildClassQ2();

 childOb.showMe();// I am in Parent class.

 childOb.showMe(5);// I am in Child class.

 }

}

Output:

*** Method overriding demonstration.Quiz2.***
I am in Parent class.

I am in Child class.

�Demonstration 7
Now, let’s test the concept of overloading and overriding in the same program. Consider

the following:

Chapter 5 Get Familiar with Polymorphism

107

package java2e.chapter5;

class ParentClass7 {

 public int showMe(int i) {

 System.out.println("I am in Parent class");

 return i;

 }

}

class ChildClass7 extends ParentClass {

 public int showMe(int i) {

 System.out.println("In Child.showMe(int i)");

 �System.out.println("I am overriding the parent method and

adding 5 to the argument.");

 return i + 5;// Must return an int

 }

 public void showMe() {

 System.out.println("In Child.showMe().I am overloaded here.");

 }

}

class Demonstration7 {

 public static void main(String[] args) {

 �System.out.println("*** Demonstration-7.Overloading with

Overriding Demo***\n");

 ChildClass7 childOb = new ChildClass7();

 int value = childOb.showMe(5);

 System.out.println("The value returned is : " + value);// 5+5=10

 childOb.showMe();

 }

}

Output:

*** Demonstration-7.Overloading with Overriding Demo***

In Child.showMe(int i)

Chapter 5 Get Familiar with Polymorphism

108

I am overriding the parent method and adding 5 to the argument.

The value returned is : 10

In Child.showMe().I am overloaded here.

The previous output is self-explanatory. From the output messages, you can easily

identify which method is overloaded and which one is overridden.

It is said that object-oriented programmers pass through three important stages. In

the first stage, they become familiar with non-object-oriented constructs/structures. In

this stage, they use decision statements, looping constructs, and so forth. In the second

stage, they start creating classes and objects, and use the inheritance mechanism. And

finally, in the third stage, they use polymorphism to achieve late binding and to make

their programs flexible. Till now, you have gone through the first two stages. Now, let’s

enter the third stage of expertise and learn how to implement polymorphism in Java

programs.

�Runtime Polymorphism
You already know that polymorphism is generally associated with one method name

that has multiple forms (or constructs). Method overloading is known for compile-time

polymorphism. But an important feature of Java is its ability to support the concept of

runtime polymorphism. It is also referred to as dynamic method dispatch. Here, the

call to an overridden method is resolved dynamically at runtime. In other words, you can

invoke the appropriate method based on the object to which you are referring.

In dynamic method dispatch, you have a parent class, which has at least one child

class. The child class contains an overridden method, and you use a parent class

reference to point to a child class object. In such a situation, the call to an overridden

method is determined at runtime.

In the following demonstration, there are two lines of code like the following:

Vehicle obVehicle = new Bus();

obVehicle.showMe();

where Vehicle is the parent class and Bus is the child class, and the Bus class contains an

overridden method, showMe(). So, in this demonstration, following the rule of dynamic

method dispatch, you can invoke this overridden method of the Bus class at runtime.

Chapter 5 Get Familiar with Polymorphism

109

�Demonstration 8
Go through the following demonstration and then analyze the output.

package java2e.chapter5;

class Vehicle {

 public void showMe() {

 System.out.println("Inside Vehicle.showMe()");

 }

}

class Bus extends Vehicle {

 public void showMe() {

 System.out.println("Inside Bus.showMe()");

 }

 public void busSpecificMethod() {

 System.out.println("Inside Bus.busSpecificMethod()");

 }

}

class Demonstration8 {

 public static void main(String[] args) {

 S�ystem.out.println("***Demonstration 8.Experimenting runtime

polymorphism.***\n");

 //Parent class reference is pointing to a child object

 Vehicle obVehicle = new Bus();// ok

 // Bus obBus = new Vehicle();//Compilation Error

 obVehicle.showMe();//Inside Bus.showMe()

 // obVehicle.busSpecificMethod();//Error

 //((Bus) obVehicle).busSpecificMethod();// Ok

 }

}

Chapter 5 Get Familiar with Polymorphism

110

Output:

Demonstration 8.Experimenting runtime polymorphism.

Inside Bus.showMe()

In the discussion of method overriding or runtime polymorphism, you may often

encounter the concept of casting. Casting can be further categorized into the following

two types:

•	 Upcasting

•	 Downcasting

Upcasting means casting to a super type (or parent type), and downcasting is the

reverse procedure. Let’s say, as in the previous demonstration, Vehicle is a parent class

and Bus is the class derived from Vehicle. In Java , you can treat a derived class object as

a parent class object. So, in this case, if you write the following lines:

Vehicle obVehicle ;

obVehicle= new Bus();// Upcasting

you are using upcasting. But if you use something like the following:

Bus obBus=(Bus)obVehicle;

you are using downcasting. Downcasting requires a type check, and it is risky.

Again, notice the two important lines of codes in the preceding program:

Vehicle obVehicle = new Bus();

obVehicle.showMe();

Here, you are pointing to a derived class object (a Bus object) through a parent class

reference (Vehicle reference), and then you are invoking the showMe() method. This

way of invoking is allowed, and you will not have any compilation issues; that is, a parent

class reference can point to a derived class object.

But you cannot use either of the following lines:

•	 obVehicle.busSpecificMethod();//Error

(Since the apparent type in the code is a Vehicle, but not a Bus).

To remove this error, you need to downcast, as follows:

((Bus) obVehicle).busSpecificMethod();// Ok

Chapter 5 Get Familiar with Polymorphism

111

•	 Bus obBus = new Vehicle();//Error

As mentioned, to remove this error, you may want to downcast, as follows:

Bus obBus=new Bus();

//May encounter with a runtime error:ClassCastException

obBus=(Bus)obVehicle;

But downcasting is risky because you may encounter a runtime exception

(mentioned with the comment). For example, in this case you will encounter a runtime

exception like the following:

Exception in thread "main" Inside Bus.showMe()

java.lang.ClassCastException: java2e.chapter5.Vehicle cannot be cast to

java2e.chapter5.Bus at java2e.chapter5.Demonstration8.main(Demonstration8.

java:33)

�Q&A Session
5.14 “Downcasting is risky.” Can you please elaborate?

If not implemented properly, downcasting can cause a ClassCastException. To

understand it clearly, let’s consider Demonstration 9.

�Demonstration 9
Add another class, Train, similar to Bus in the previous demonstration, and then put

some test code inside the main() method, like in the following:

package chapter5.testcodes;

class Vehicle {

 public void showMe() {

 System.out.println("Inside Vehicle.showMe()");

 }

}

class Bus extends Vehicle {

 public void showMe() {

 System.out.println("Inside Bus.showMe()");

 }

Chapter 5 Get Familiar with Polymorphism

112

 public void specificMethod() {

 System.out.println("Inside Bus.showMe()");

 }

}

class Train extends Vehicle {

 public void showMe() {

 System.out.println("Inside Train.showMe()");

 }

 public void specificMethod() {

 System.out.println("Inside Train.specificMethod()");

 }

}

class Test3 {

 public static void main(String[] args) {

 �System.out.println("***Test Demonstration.Demonstration-9.

Downcasting involves risk.***\n");

 //Upcasting

 Vehicle obVehicle=new Train();//ok

 obVehicle.showMe();//Output: Inside Vehicle.showMe()

 //obVehicle.specificMethod();//error

 //Creating two subtype(one Bus and one Train) object

 Bus obBus=new Bus();

 Train obTrain=new Train();

 //Downcasting example:Casting to a subtype

 //obBus=(Bus)obVehicle;//Run-time error:Train cannot be cast to Bus

 obTrain=(Train)obVehicle;//Ok, this time it is ok.

 obTrain.specificMethod();//also ok

 }

}

Chapter 5 Get Familiar with Polymorphism

113

Output:

Test Demonstration.Demonstration-9.Downcasting involves risk.

Inside Train.showMe()

Inside Train.specificMethod()

Notice the following segment of code, which is commented:

//obBus=(Bus)obVehicle;//Run-time error: Train cannot be cast to Bus

If you uncomment this line, you will not receive any compilation errors, but you will

encounter a runtime exception, as follows:

Test Demonstration.Demonstration-9.Downcasting involves risk.

Inside Train.showMe()

Exception in thread "main" java.lang.ClassCastException: chapter5.

testcodes.Train cannot be cast to chapter5.testcodes.Bus

 at chapter5.testcodes.Test3.main(Test3.java:41)

So, you may notice that obVehicle was intended to be used for a Train object,

but while downcasting you wanted to convert it into a Bus object, and hence you have

received this error. But if you downcast obVehicle to a Train object, there is no error,

and your code will work properly.

POINTS TO REMEMBER

•	 Through a parent class reference, you can refer to a child class object, but the

reverse is not true.

•	 An object reference can implicitly upcast to a super class reference and

explicitly downcast to a derived class reference. So, in simple terms, upcasting

means casting to a supertype, and downcasting is just the opposite; that is, in

downcasting, you try to cast to a derived type.

•	 Now, let’s do a quick check of how the concept is implemented in a similar

programming language; for example, C#. If you are familiar with the C#

language, you may notice the use of the keywords virtual and override in

the examples of method overriding. For example, here is a C# code snippet:

Chapter 5 Get Familiar with Polymorphism

114

class Vehicle

{

 public virtual void ShowMe()

 {

 Console.WriteLine("Inside Vehicle.ShowMe");

 }

 }

 class Bus : Vehicle

 {

 public override void ShowMe()

 {

 Console.WriteLine("Inside Bus.ShowMe");

 }

 public void BusSpecificMethod()

 {

 Console.WriteLine("Inside Bus.ShowMe");

 }

 }

•	 In C#, if you want to override a parent class method in the derived class, mark the

parent class method with ‘virtual’ keyword. But in C#, all methods are by default

non-virtual. In the derived class, by tagging a method with the keyword override,

you deliberately redefine the corresponding virtual method. So, in C#, you need

to tag the keyword override to avoid any unconscious overriding. C# also uses

another keyword, new, to mark a method as non-overriding. But, in Java, things are

straightforward because all methods are virtual by default.

�Q&A Session
5.15 I understand that a parent class reference can point to a child object, but the
reverse is not true. Why do we support this kind of design?

You can compare with some basic real-life facts. For example, you can say that all buses

are vehicles, but the reverse is not necessarily true, because there are other vehicles like

trains and ships that are definitely not buses.

Chapter 5 Get Familiar with Polymorphism

115

In the same manner, in programming terminology, all derived classes are of type

base classes, but the reverse is not true. For example, suppose you have a class called

Rectangle that is derived from another class called Shape. You can say that all rectangles

are shapes, but the reverse is not true.

You can always do an “is-a” test in an inheritance hierarchy to identify the direction

of inheritance, because the “is-a” test is always simple and straightforward.

5.16 You are saying that the call will be resolved at runtime for the following code:

 Vehicle obVehicle = new Bus();

 obVehicle.showMe();

But I can clearly see that a Bus object is pointed at by the parent class reference,
and the compiler could bind the method showMe() to the Bus object during early
binding (or compile-time binding). Why did it delay the process unnecessarily?

If you only consider the preceding code, this question may come to your mind. But let’s

assume that you have one more child class, Taxi, which is also inherited from the parent

class Vehicle. And at runtime, based on some situation, you need to invoke the showMe()

method either from Bus or from Taxi. Consider a case like the following: you are generating

a random number between 0 and 9. Then, you are checking whether the number is an even

number or an odd number. If it is an even number, you need to use a Bus object; otherwise,

you use a Taxi object to invoke the corresponding showMe() method.

�Demonstration 10
Now, go through the following demonstration. Since it is Demonstration 10, I have

marked the Vehicle class as Vehicle10, Bus class as Bus10, and Taxi class as Taxi10.

package java2e.chapter5;

import java.util.Random;

class Vehicle10 {

 public void showMe() {

 System.out.println("Inside Vehicle.showMe()");

 }

}

Chapter 5 Get Familiar with Polymorphism

116

class Bus10 extends Vehicle10 {

 public void showMe() {

 System.out.println("Inside Bus.showMe()");

 }

}

class Taxi10 extends Vehicle10 {

 public void showMe() {

 System.out.println("Inside Taxi.showMe()");

 }

}

class Demonstration10 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration 10.A case study with

runtime polymorphism ***\n");

 Vehicle10 obVehicle;

 int count = 0;

 Random random = new Random();

 // Considering 5 choices

 while (count < 5) {

 int tick = random.nextInt(10);//0 to 9

 if (tick % 2 == 0) {

 obVehicle = new Bus10();

 } else {

 obVehicle = new Taxi10();

 }

 obVehicle.showMe();// Output will be determined at runtime

 count++;

 }

 }

}

Chapter 5 Get Familiar with Polymorphism

117

Notice that the output may vary.

This is the first run:

***Demonstration 10.A case study with runtime polymorphism ***

Inside Bus.showMe()

Inside Taxi.showMe()

Inside Taxi.showMe()

Inside Bus.showMe()

Inside Taxi.showMe()

This is the second run:

***Demonstration 10.A case study with runtime polymorphism ***

Inside Taxi.showMe()

Inside Bus.showMe()

Inside Bus.showMe()

Inside Taxi.showMe()

Inside Bus.showMe()

And so on.

Now you can see why the compiler may need to delay the decision until runtime for

this kind of coding, and how you are achieving runtime polymorphism.

�Using the final Keyword
In some cases, you may want to prevent the inheritance process. For example, you may

want to put in a restriction such that a method in the parent class cannot be overridden

by a method of its child class. So, you make the parent class method final to preserve the

consistent state of the object. (Similarly, you can also make a “final” class if you want to

create an immutable class like the String class in Java.) You must remember that you

can prevent overriding in various ways. In the following section, you will see the use

of the final keyword only. It is very useful because the compiler itself will prevent the

process of overriding.

Chapter 5 Get Familiar with Polymorphism

118

Consider the following code:

final class ParentClassTest4

{

 public void showMe(){

 System.out.println("Inside Parent.showMe()");

 }

}

class ChildClassTest4 extends ParentClassTest4 //Error

{

 //Some code

}

You will receive a compilation error: The type ChildClassTest4 cannot subclass

the final class ParentClassTest4 (see Figure 5-7).

Figure 5-7.  The final keyword used to prevent inheritance

You can use it for methods also. For example, consider the following code snippet:

class ParentClassTest4 {

 final public void showMe() {

 System.out.println("Inside Parent.showMe()");

 }

}

class ChildClassTest4 extends ParentClassTest4 {

 public void showMe() { // error

 System.out.println("Inside Parent.showMe()");

 }

}

You will again receive a compilation error: Cannot override the final method

from ParentClassTest4 (see Figure 5-8).

Chapter 5 Get Familiar with Polymorphism

119

�Blank final Variables
You can apply final keyword to variables like the following:

final double PI=3.14;

If you do not initialize the final variable, you may receive a compilation error. For

example, consider the following code snippet:

class ParentClassTest4 {

 final int a=10;

 // final double PI=3.14;//ok

 final double PI;//error

}

For the preceding code snippet, you will receive a compilation error: The blank

final field PI may not have been initialized (see Figure 5-9).

Figure 5-9.  A compilation error snapshot in Eclipse IDE resulting from an
uninitialized blank final field

Figure 5-8.  Final keyword used to prevent method overriding

But you can opt to initialize final variables inside a constructor. And when you

do that kind of initialization (for those uninitialized final variables), you use the term

“blank final variables.” Consider the following code snippet:

class FinalDemo

{

 //Must be initialized inside a constructor

 final double PI;

 double area;

Chapter 5 Get Familiar with Polymorphism

120

 //final double PI=3.14;

 FinalDemo(){

 PI=3.14;

 }

}

In this case, the compiler will not raise any issues.

It is important to note that there is no keyword like const that is a reserved keyword

that simply has not been used yet. But you may notice the use of ‘const’ in other

languages like C++ or C#. Instead, in Java, to implement a similar concept, you can use

the final keyword. In this context, JLS11 says the following:

“A constant variable is a final variable of primitive type or type String that
is initialized with a constant expression (§15.28). Whether a variable is a
constant variable or not may have implications with respect to class initial-
ization (§12.4.1), binary compatibility (§13.1), reachability (§14.21), and
definite assignment (§16.1.1).”

�Q&A Session
5.17 If I have multiple constructors, do I need to initialize the final variables in each
of them?

Yes. Otherwise, you can call another constructor that can do that initialization for you.

The following demonstration can help you to understand the concept better. In this

demonstration, there are two constructors—FinalDemo(int radius) and FinalDemo().

If the parameterized constructor does not call a non-parameterized constructor prior to

area calculation, it needs to initialize the value for PI itself.

�Demonstration 11
In the following demonstration, the parameterized constructor FinalDemo(int radius)

first calls the non-parameterized constructor FinalDemo() to initialize the blank final

variable PI.

package java2e.chapter5;

class FinalDemo {

 // Must be initialized inside a constructor

Chapter 5 Get Familiar with Polymorphism

121

 final double PI;

 double area;

 FinalDemo() {

 PI = 3.14;

 }

 FinalDemo(int radius) {

 �// Invoking the no-argument constructor to initialize the

// final variable

 this();

 this.area = this.PI * radius * radius;

 }

}

class Demonstration11 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-11. Testing the behavior

of final keyword.***\n");

 FinalDemo fdemo = new FinalDemo(10);

 �System.out.println("Area of a circle with radious 10 unit is "

+ fdemo.area + " square unit.");

 }

}

Output:

Demonstration-11. Testing the behavior of final keyword.

Area of a circle with radious 10 unit is 314.0 square unit.

If you comment out the following line in the preceding example

FinalDemo(int radius) {

 // �Invoking the no-argument constructor to initialize the

final variable

 //this();

 this.area = this.PI * radius * radius;

 }

Chapter 5 Get Familiar with Polymorphism

122

you’ll encounter the same compilation error again: The blank final field PI may

not have been initialized (see Figure 5-10).

Figure 5-10.  A compilation error when the statement this(); is commented out
in Demonstration 11

Note Y ou can have both static blank final variables and instance blank variables.
The Java Language Specification(11) says that “a blank final class variable must
be definitely assigned by a static initializer of the class in which it is declared, or
a compile-time error occurs.” It also says “a blank final instance variable must
be definitely assigned and moreover not definitely unassigned at the end of every
constructor of the class in which it is declared, or a compile-time error occurs.”

�Q&A Session
5.18 Is constructor overriding allowed in Java?

No. Do not forget that overriding allows us to change the object’s behavior at runtime,

but constructors are used to initialize objects, and they cannot be inherited.

5.19 Why do I need to initialize final variables?

These act like constants throughout your program. If you do not initialize them at the

beginning, others can modify them in the future. By declaring final, you are preventing

the change at some later stage.

5.20 Suppose I want to have a variable (say, PI) that is accessible from all parts of my
code, but at the same time I want to prevent any accidental modification of it. How
can I achieve that?

Basically, you are trying to use the concept of global variable, which is not supported in

Java. But in such a case, you can declare a variable like the following:

public static final double PI=3.14;

Chapter 5 Get Familiar with Polymorphism

123

You’ll find out more about static in Chapter 8 of this book.

5.21 Will I receive any compilation errors as a result of the following code snippet?

class MyClassEx{

 final MyClassEx()//Error

 {

 System.out.println("I am a no argument constructor");

 }

}

Yes. Constructors cannot be final. So, in this case, you will receive a compilation

error, as in Figure 5-11.

Figure 5-11.  Compile-time error: constructors cannot be final

5.22 Why am I encountering compile-time errors when I try to use final keywords
with constructors?

Let’s think from a general point of view: the keyword final is used to prevent overriding,

but constructors cannot be overridden at all as per the language specification. JLS11

clearly says that “constructor declarations are not members. They are never inherited

and therefore are not subject to hiding or overriding.”

5.23 Can I override the main() method?

No. Static methods cannot be overridden, and a call to a static method is resolved at

compile time only. Also, it is important to note that you can hide a static method, but you

cannot override it.

5.24 “You can hide a static method, but you cannot override it”—what is meant by
this statement?

The two terms—method hiding and method overriding—are different. The distinction

between these two can be summarized as follows:

The version of the overridden instance method that gets invoked is the one
in the subclass. The version of the hidden static method that gets invoked
depends on whether it is invoked from the super class or the subclass.

Chapter 5 Get Familiar with Polymorphism

124

�Demonstration 12
Consider the following program and go through the output and analysis:

package java2e.chapter5;

class Vehicle12 {

 public static void showMe() {

 System.out.println("Vehicle.showMe()-inside the parent class.");

 }

 public void showInstanceMethod() {

 System.out.println("Vehicle.showInstanceMethod()");

 }

}

class Bus12 extends Vehicle12 {

 public static void showMe() { // hides Vehicle.showMe()

 System.out.println("Bus.showMe()-inside the child class.");

 }

 public void showInstanceMethod() {// overrides

 System.out.println("Bus.showInstanceMethod()");

 }

}

public class Demonstration12 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-12. Method hiding vs

method overriding***\n");

 Vehicle12.showMe();// Vehicle.showMe()-inside the parent class.

 Vehicle12 vehicle = new Bus12();

 // Warning:The following method should be accessed in a static way.

 vehicle.showMe();// Vehicle.showMe()-inside the parent class.

 vehicle.showInstanceMethod();// Bus.showInstanceMethod()

Chapter 5 Get Familiar with Polymorphism

125

 System.out.println("----------");

 Bus12.showMe();// Bus.showMe()-inside the child class.

 // Warning:The following method should be accessed in a static way.

 Bus12 bus = new Bus12();

 bus.showMe();// Bus.showMe()-inside the child class.

 bus.showInstanceMethod();// Bus.showInstanceMethod()

 }

}

Output:

Demonstration-12. Method hiding vs method overriding

Vehicle.showMe()-inside the parent class.

Vehicle.showMe()-inside the parent class.

Bus.showInstanceMethod()

Bus.showMe()-inside the child class.

Bus.showMe()-inside the child class.

Bus.showInstanceMethod()

The first line and last three lines of the output are obvious. Those were given for your

immediate reference. But notice the output for the following code:

vehicle.showMe();// Vehicle.showMe()-inside the parent class.

vehicle.showInstanceMethod();// Bus.showInstanceMethod()

Have you noticed the interesting behavior of the compiler? In the first case, it picked

the parent class method (which is a static method), but in the case of an instance

method, it picked the derived class method. This is because in the case of method

overriding, the JVM uses the actual class of the instance to pick the method, and the

decision is made at runtime.

But for the static method, the compiler considers only the declared type of reference

(and you can see vehicle is a parent class reference), and the decision of invoking the

particular method is decided at compile time only. So, you can say that method hiding is

in no way related to runtime polymorphism.

Chapter 5 Get Familiar with Polymorphism

126

POINTS TO REMEMBER

•	 Method hiding is associated with static methods and compile-time

polymorphism. Method overriding is associated with non-static methods and

runtime polymorphism.

•	 The hiding of methods and the hiding of fields may have some similarities or

dissimilarities, depending on the particular application or usage. You may refer

to the language specification for a detailed case-by-case study. For example, the

Java language specification says that if the class declares a field with a certain

name, then the declaration of that field is said to hide the accessible declarations

of fields with the same name in super classes and superinterfaces of the class.

In this respect, the hiding of fields differs from the hiding of methods, for there is

no distinction drawn between static and non-static fields in field hiding, whereas

a distinction is drawn between static and non-static methods in method hiding. A

hidden field can be accessed by using a qualified name if it is static, or by using

a field-access expression that contains the keyword super or a cast to a super

class type. In this respect, the hiding of fields is like the hiding of methods.

�Q&A Session
5.25 Can I make the main() method final?

In Eclipse 2019-03, Photon (or, in its previous versions, for example, Neon), if you try the

following program, you will not find any compile-time or runtime errors. But I do not see

any significant benefit to making this change to our conventional main():

package chapter5.testcodes;

//Case-1

class Test5 {

 public static final void main(String[] args) {

 System.out.println(" Making main() method final.");

 }

}

Output:

Making main() method final.

Chapter 5 Get Familiar with Polymorphism

127

But you need to remember the normal behavior of final. For example, the following

program will raise a compile-time error:

//Case-2

class Test5A {

 public static final void main(String[] args) {

 �System.out.println("In Parent-Test5A.Making main() method

final...");

 }

}

class Test5 extends Test5A {

 public static final void main(String[] args) {

 System.out.println(" In Child-Test5.Making main() method final...");

 }

}

The output is shown in Figure 5-12.

Figure 5-12.  Compile-time error due to improper use of final keyword in program

5.26 Can I override an overloaded method?

Yes, you can. Consider the following demonstration and corresponding output.

�Demonstration 13
Here is the code:

package java2e.chapter5;

class ParentOverloadedClass {

 public void showMe() {

 System.out.println("I am in Parent class");

 }

Chapter 5 Get Familiar with Polymorphism

128

 public void showMe(int x) {

 System.out.println("Overloaded method in Parent.Here x= " + x);

 }

}

class ChildOverridingClass extends ParentOverloadedClass {

 public void showMe() {

 System.out.println("Overriding method in Child class.");

 }

}

class Demonstration13 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-13.Method Overriding with

overloading Demo***\n");

 ChildOverridingClass childObject = new ChildOverridingClass();

 �childObject.showMe();//Will call the overriding method from

//derived class.

 �childObject.showMe(25);//Will call the overloaded method from

//parent class.

 }

}

Output:

Demonstration-13.Method Overriding with overloading Demo

Overriding method in Child class.

Overloaded method in Parent.Here x= 25

�Q&A Session
5.27 Give me some pointers so that I can easily distinguish between method
overloading and method overriding.

Chapter 5 Get Familiar with Polymorphism

129

The following points can help you to brush up on your knowledge:

•	 In method overloading, all methods may reside inside the same class

(you must notice the word may here, because you have already seen

an example [Demonstration13] where both method overloading and

method overriding were implemented and the concept of method

overloading spanned two classes—both the parent/super class

and its child/derived class). In method overriding, the inheritance

hierarchy of a parent class and a child class is involved, which means

that at least a parent class and its child class (i.e., minimum of two

classes) are involved.

•	 In method overloading, method signatures are different. In method

overriding, method signatures are the same (no need to consider

covariant return type at this point).

•	 You can achieve compile-time (static) polymorphism through

method overloading, and you can achieve runtime (dynamic)

polymorphism through method overriding.

5.28 Can you predict the output in Demonstration 14? Is there a compilation error?

�Demonstration 14
Here is the code:

package java2e.chapter5;

class QuizOnFinal {

 public void testMe() {

 System.out.println("I am in parent class");

 }

}

class Q4Child1 extends QuizOnFinal {

 @Override

 final public void testMe() {

 System.out.println("I am in child-1");

 }

}

Chapter 5 Get Familiar with Polymorphism

130

class Q4Child2 extends QuizOnFinal {

 @Override

 public void testMe() {

 System.out.println("I am in child-2");

 }

}

class Quiz4 {

 public static void main(String[] args) {

 System.out.println("***Quiz on final keyword usage***\n");

 Q4Child2 obClass2 = new Q4Child2();

 obClass2.testMe();

 }

}

The program will compile and run successfully. You will receive the following

output:

Quiz on final keyword usage

I am in child-2

You did not encounter any issues here because Q4Child2 is not a child class of

Q4Child1. It is also derived from the same parent class, QuizOnFinal, and so it has the

freedom to override the non-final method testMe() of the parent class.

�Covariant Return Type
�Demonstration 15
Consider the following program and output carefully. Then, go through the analysis

section for a detailed discussion.

package java2e.chapter5;

//Without using covariant return type

class ParentCov {

 int i;

Chapter 5 Get Familiar with Polymorphism

131

 int getMultipliedNumber(int x) {

 System.out.println("Inside Parent.");

 this.i = x;

 return i * 10;

 }

}

class ChildCov extends ParentCov {

 int getMultipliedNumber(int x) {

 // error:Return type is incompatible

 // double getMultipliedNumber(int x){

 System.out.println("Inside Child.");

 this.i = x;

 return i * 50;

 }

}

public class Demonstration15 {

 public static void main(String args[]) {

 �System.out.println("***Demonstration-15.Covariant return type

is NOT used here***\n");

 �System.out.println("***Only primitive(int) datetype is used in

this example.***");

 ParentCov pOb = new ParentCov();

 int result = pOb.getMultipliedNumber(10);

 System.out.println("Multiplied result=" + result);

 pOb = new ChildCov();

 result = pOb.getMultipliedNumber(10);

 System.out.println("Multiplied result=" + result);

 }

}

Chapter 5 Get Familiar with Polymorphism

132

Output:

Demonstration-15.Covariant return type is NOT used here

Only primitive(int) datetype is used in this example.
Inside Parent.

Multiplied result=100

Inside Child.

Multiplied result=500

You must notice the comments in this section:

int getMultipliedNumber(int x)

//error:Return type is incompatible

//double getMultipliedNumber(int x)

If you change the return type int to double like in the following:

// int getMultipliedNumber(int x)

//error:Return type is incompatible

double getMultipliedNumber(int x)

you’ll get a compilation error saying that the return type is incompatible (Figure 5-13).

Now, suppose you are dealing with methods that return “class names” as their return

types. In this case, you’ll not receive the same kind of error if you vary the return type in

the direction of the subclass.

Figure 5-13.  Compile-time error due to incompatible return types

Chapter 5 Get Familiar with Polymorphism

133

�Demonstration 16
Let’s go through the modified program.

package java2e.chapter5;

//Using covariant return types in this demonstration

class ParentCov2 {

 int i;

 ParentCov2 getMultipliedNumber(int x, int y) {

 System.out.println("Inside Parent class.");

 this.i = x * y;

 return this;

 }

}

class ChildCov2 extends ParentCov2 {

 // No compilation error this time

 ChildCov2 getMultipliedNumber(int x, int y) {

 System.out.println("Inside derived class.");

 this.i = x * y * 25;

 return this;

 }

}

public class Demonstration16 {

 public static void main(String args[]) {

 �System.out.println("***Demonstration-16.Testing the behavior

of the covariant return type***");

 ParentCov2 pOb = new ParentCov2();

 �System.out.println("Multiplied result is: " + pOb.

getMultipliedNumber(10, 2).i);

 pOb = new ChildCov2();

 �System.out.println("Now the multiplied result is:" + pOb.

getMultipliedNumber(10, 2).i);

 }

}

Chapter 5 Get Familiar with Polymorphism

134

Output:

Demonstration-16.Testing the behavior of the covariant return type
Inside Parent class.

Multiplied result is: 20

Inside derived class.

Now the multiplied result is:500

Notice the return type of the method:

ChildCov2 getMultipliedNumber(int x,int y)

You can see that this time, instead of ParentCov2, I have used ChildCov2 as the

return type, but the compiler did not complain about this (though it complained about

the primitive data types in Demonstration 15).

This is how you use the covariant return type in Java.

Note T he concept of covariant return type is useful when you override the
clone() method in Java.

�Q&A Session
5.29 Why did Java start supporting this concept?

The Java Oracle documentation says the following:

“Note that there may be more than one matching method in a class because
while the Java language forbids a class to declare multiple methods with
the same signature but different return types, the Java virtual machine does
not. This increased flexibility in the virtual machine can be used to imple-
ment various language features. For example, covariant returns can be
implemented with bridge methods; the bridge method and the method
being overridden would have the same signature but different return types.”

See https://docs.oracle.com/javase/8/docs/api/java/lang/Class.

html#getMethod-java.lang.String-java.lang.Class...-

Chapter 5 Get Familiar with Polymorphism

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getMethod-java.lang.String-java.lang.Class...-
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getMethod-java.lang.String-java.lang.Class...-

135

�Use of Private Constructors
Now, consider a case study with private constructors. If a class has only private

constructors, it cannot be subclassed. This concept can be used to implement a

singleton design pattern where you prevent unnecessary objects’ creation in the system

with the use of the new keyword; for example, the following code snippet will give you a

compilation error:

class ParentClass {

 private ParentClass() { }

 public void showMe() {

 System.out.println("Inside Parent.showMe()");

 }

}

class ChildClass extends ParentClass // Error

{

 // Some code

}

The output is shown in Figure 5-14.

Figure 5-14.  Preventing inheritance using a private constructor

�Q&A Session
5.30 To prevent inheritance, which process needs to be preferred: case 1 or case 2?

•	 Case 1:

class Demo17

 {

 private Demo17() { }

 }

Chapter 5 Get Familiar with Polymorphism

136

•	 Case 2:

final class Demo17Final

 {

 //some code..

 }

First of all, you need to be aware of your requirements. You should not generalize

any decision in advance. In Case 1, you can add some additional code, and then you can

easily derive a new class from that. But in Case 2, you cannot derive a child class from it.

�Demonstration 17
To better understand it, let’s add some code to Case 1 and follow the case study.

package java2e.chapter5;

class Demo17 {

 int x;

 private Demo17() {

 System.out.println("Called the private constructor.");

 System.out.println("Setting the default the value x=10.");

 this.x=10;//A default value

 System.out.println("\tExit-private non-parameterized constructor.");

 }

 public Demo17(int x) {

 this();

 System.out.println("Updating the default value of x.");

 this.x=x;

 System.out.println("\tExit-parameterized constructor.");

 }

}

final class Demo17Final {

 // some code..

}

Chapter 5 Get Familiar with Polymorphism

137

class Child17 extends Demo17 {

 int y;

 public Child17(int x, int y) {

 super(x);

 this.y = y;

 }

}

//class Child2 extends Demo17Final { }//Cannot derive from the final class

//'Demo17Final'

class Demonstration17 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-17.A comparison

study:Using a final class vs using a private constructor***");

 Demo17 parent = new Demo17(15);

 System.out.println("\tThe parent.x=" + parent.x);

 Child17 child = new Child17(2, 3);

 System.out.println("\tThe child.x=" + child.x);

 System.out.println("\tThe child.y=" + child.y);

 }

}

Here is the output. Notice the lines in bold.

***Demonstration-17.A comparison study:Using a final class vs using a

private constructor***
Called the private constructor.

Setting the default the value x=10.

 Exit-private non-parameterized constructor.

Updating the default value of x.

 Exit-parameterized constructor.

 The parent.x=15

Called the private constructor.

Setting the default the value x=10.

 Exit-private non-parameterized constructor.

Chapter 5 Get Familiar with Polymorphism

138

Updating the default value of x.

 Exit-parameterized constructor.

 The child.x=2

 The child.y=3

You can see that you can extend the class in Case 1. Now notice the commented line:

//class Child2 extends Demo17Final { }

If you uncomment this, you’ll get the compilation error: The type Child2 cannot

subclass the final class Demo17Final.

The key thing to remember is that if you use a private constructor only to prevent

inheritance, then you may not be following the right path, because the concept can be

used in a different context more effectively. The private constructors are commonly used

in classes that contain only static members. When you learn about design patterns, you

will know that you can use private constructors for a singleton design pattern to stop

additional instantiation. And in those cases the intent is different.

�Q&A Session
5.31 Why should I prefer writing polymorphic code?

Your code will be flexible, and it can adopt upcoming changes easily. You must agree that

if you implement only static binding, you are actually restricting runtime polymorphism.

5.32 How is inheritance related to polymorphism?

To implement polymorphism, you need to use inheritance, because in Java

polymorphism is type based, but to create type hierarchy, you need inheritance.

5.33 What is the key difference between inheritance and polymorphism?

Inheritance is used to reuse code, and it supports the parent–child relationship. But if the

child wants to redefine the existing parent class behavior, it can do so using the concept

of polymorphism.

5.34 Can I override a private method?

To override a method, it should be accessible or visible first. In Chapter 2, you saw that

private members are not accessible in the subclass. So, how could you override them?

Chapter 5 Get Familiar with Polymorphism

139

5.35 Based on the answer to the previous question, can I conclude that private
methods can be overridden inside an inner class?

Yes. In this case, since you can access them, overriding is possible. Here is a sample code

snippet for you:

class OuterClass2 {

 private void showOuter2() {

 System.out.println("Inside OuterClass");

 // showInner2();//Error

 }

 class InnerClass2 {

 void showInner2() {

 System.out.println("Inside InnerClass");

 �System.out.println("Calling an outer class method from

inner class");

 showOuter2();// Ok

 }

 // Overriding

 private void showOuter2() {

 System.out.println("Overiding showOuter2()");

 }

 }

}

�Summary
This chapter covered the following topics:

•	 Method overloading

•	 Method overriding

•	 How to identify if methods are overloaded or not

•	 How to overload constructors

•	 How to overload the main() method

Chapter 5 Get Familiar with Polymorphism

140

•	 How to achieve compile-time polymorphism and runtime

polymorphism

•	 Why late binding is necessary

•	 How to prevent inheritance with different techniques

•	 A brief comparison between method overloading and method

overriding

•	 A comparison study between using the final keyword in our

application versus using a private constructor in our application

•	 How to override a private method inside an inner class

•	 Seventeen complete program demonstrations and outputs to cover

these concepts in detail

Chapter 5 Get Familiar with Polymorphism

141
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_6

CHAPTER 6

Abstract Classes and
Interfaces: The True
Art in OOP
In the previous chapter, you learned that method overriding can help you to achieve

runtime polymorphism. In this chapter, you will further explore the concept with two

powerful techniques—abstract classes and interfaces. In addition to this, you will also

learn how interfaces can help you to implement the concept of multiple inheritance in

Java. Once you master these concepts, you can make your program super flexible. Let’s

start with abstract classes.

�Abstract Classes
Sometimes you start a work, but you may not complete it, and then you expect that

someone else will carry out the incomplete work. A real-life example can be seen in the

case of property purchases and remodeling a house. For example, you may notice that a

grandparent bought a property, and then parents constructed a house on that property,

and later a grandchild made the house bigger or redecorated the old house. The basic

idea is the same: you may want someone to continue and complete the incomplete

work. You give them freedom so that upon completion they can remodel the existing

architecture per their needs. The concept of an abstract class best suits in similar

scenarios in the programming world.

These are incomplete classes, and you cannot instantiate objects from them. The

derived class of an abstract class needs to complete the “incomplete portion” first. It can

also redefine the parent class method (by overriding).

142

In general, if a class contains at least one incomplete method (in programming

terms, one abstract method), the class itself is an abstract class. The term

abstract method tells you that the method has a declaration (or signature) but no

implementation. In other words, you can think of abstract members as virtual members

without a default implementation.

POINT TO REMEMBER

A class that contains at least one abstract method must be marked as an abstract class.

The subclass must finish the incomplete task; that is, a subclass needs to provide the

complete method body for the abstract method, but if it fails to provide that, the subclass

itself will be marked as another abstract class.

This kind of coding is very useful when a super class wants to define a generalized

form that will be shared by its subclasses. It simply passes the responsibility of filling in

the details to its subclasses.

Let’s start with a simple demonstration.

�Demonstration 1
In the following program, the class MyAbstractClass is an abstract class because it has

an abstract method, showMe().

MyConcreteClass is a derived class of MyAbstractClass and gives the complete

implementation of the method showMe(). So, MyConcreteClass is not abstract.

package java2e.chapter6;

abstract class MyAbstractClass {

 public abstract void showMe();

}

class MyConcreteClass extends MyAbstractClass {

 @Override

 public void showMe() {

 System.out.println("MyConcreteClass.showMe()");

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

143

 System.out.println("I am supplying the method body for showMe()");

 }

}

class Demonstration1 {

 public static void main(String Args[]) {

 �System.out.println("***Demonstration-1.Abstract class

example.***\n");

 // Error:Cannot instantiate from MyAbstractClass

 //MyAbstractClass abstractOb=new MyAbstractClass();

 MyConcreteClass concreteOb = new MyConcreteClass();

 concreteOb.showMe();

 }

}

Output:

Demonstration-1.Abstract class example.

MyConcreteClass.showMe()

I am supplying the method body for showMe()

It is important to note that an abstract class can also contain concrete methods.

The derived class may or may not override those methods. Let’s examine this in

Demonstration 2.

�Demonstration 2
In this program, the class AbstractClass is an abstract class because it has an

abstract method, showMe(). But this class also contains two concrete methods:

completeMethod1() and completeMethod2().

ConcreteClass is a derived class of AbstractClass and gives the complete

implementation of the method showMe(). So, ConcreteClass is not abstract. Following

the inheritance hierarchy, it has access to other parent methods—completeMethod1()

and completeMethod2(). But it modified the parent method completeMethod1() and

provides its own implementation.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

144

Lastly, you may notice the presence of the integer variable myInt in AbstractClass.

This field is accessed from the method showMe() in ConcreteClass.

package java2e.chapter6;

abstract class AbstractClass {

 protected int myInt = 25;

 public abstract void showMe();

 public void completeMethod1() {

 �System.out.println("I am from completeMethod1 in

MyAbstractClass and I am complete.");

 }

 public void completeMethod2() {

 �System.out.println("I'm the initial version of

completeMethod2() in MyAbstractClass.I am complete.");

 }

}

class ConcreteClass extends AbstractClass {

 @Override

 public void showMe() {

 System.out.println("ConcreteClass-showMe().I'm complete.");

 System.out.println("The value of myInt is:" + myInt);

 }

 @Override

 // It wants to override completeMethod1() in MyAbstractClass

 public void completeMethod1() {

 System.out.println("ConcreteClass-completeMethod1().");

 }

}

class Demonstration2 {

 public static void main(String Args[]) {

 �System.out.println("***Demonstration-2.Abstract classes can

have concrete methods and fields.***\n");

 ConcreteClass concreteOb = new ConcreteClass();

 concreteOb.showMe();

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

145

 // It will show that completeMethod1 is redefined in ConcreteClass.

 concreteOb.completeMethod1();

 // �It will show the details of completeMethod2 defined in

AbstractClass.

 concreteOb.completeMethod2();

 �System.out.println("\n**Invoking methods through parent class

reference now.**");

 AbstractClass abstractRef = new ConcreteClass();

 abstractRef.showMe();

 abstractRef.completeMethod1();

 abstractRef.completeMethod2();

 }

}

Output:

Demonstration-2.Abstract classes can have concrete methods and fields.

ConcreteClass-showMe().I'm complete.

The value of myInt is:25

ConcreteClass-completeMethod1().

I'm the initial version of completeMethod2() in MyAbstractClass.I am

complete.

Invoking methods through parent class reference now.

ConcreteClass-showMe().I'm complete.

The value of myInt is:25

ConcreteClass-completeMethod1().

I'm the initial version of completeMethod2() in MyAbstractClass.I am

complete.

In Chapter 5, you learned that a parent class reference can point to a child class

object. Following the same rule, you can use the abstract class reference to point to

the complete child class objects, and then you can invoke the associated methods.

Remember that you can get a significant benefit from this kind of coding.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

146

�Q&A Session
6.1 How can you implement the concept of runtime polymorphism here?

You saw it in the previous example. Note the following portion of code:

 System.out.println("\n*** Invoking methods through parent class

reference now.***");

 AbstractClass abstractRef = new ConcreteClass();

 abstractRef.showMe();

 abstractRef.completeMethod1();

 abstractRef.completeMethod2();

6.2 Can an abstract class contain fields?

Yes. In the previous example, you saw such a field; that is, myInt.

6.3 In the preceding example, the access modifier is protected. Is this mandatory?

No. You can use other types of modifiers also; for example, you can replace the

protected modifier with the public modifier. Later, you will learn that the presence of

different access modifiers in abstract classes can give you a better flexibility. It can also

make an abstract class different from an interface.

6.4 Suppose, in a class, I have more than ten methods, and out of those only one is an
abstract method. Do I need to mark the class with the keyword abstract?

Yes. If a class contains at least one abstract method, the class itself is abstract. You can

simply recognize the fact that an abstract keyword is used in a sense to represent

the incompleteness. So, if your class contains one incomplete method, the class is

incomplete, and hence it needs to be marked with the keyword abstract.

So, the simple formula is: whenever your class has at least one abstract method, the

class is an abstract class.

6.5 Now consider a reverse scenario. Suppose you have marked your class with the

abstract keyword but there is no abstract method in it, like the following:

abstract class AbstractClassQuiz1 {

 public void completeMethod1() {

 System.out.println("completeMethod-1");

 }

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

147

 public void completeMethod2() {

 System.out.println("completeMethod-2.");

 }

}

Can you compile this program segment?
Yes. It will compile, but you must remember that you cannot create an object for this

class. So, if you code like this:

AbstractClassQuiz1 absRef = new AbstractClassQuiz1 ();//Error

the compiler will raise its concern (see Figure 6-1).

Figure 6-1.  You cannot create an instance of an abstract class

Note  It is not necessary for an abstract class to have abstract methods only.

6.6 How can you create an object from an abstract class?

You cannot create objects from an abstract class.

6.7 It appears to me that an abstract class has virtually no use if it is not extended. Is
this correct?

Yes.

6.8 If a class extends an abstract class, it has to implement all the abstract methods.
Is this correct?

The simple formula is that if you want to create objects in a class, the class needs to be

completed; that is, it should not contain any abstract methods. So, if the child class cannot

provide implementation (i.e., complete method body) of all the abstract methods, it should

mark itself again with the keyword abstract, like in the following example:

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

148

abstract class AbstractClass

{

 public abstract void inCompleteMethod1();

 public abstract void inCompleteMethod2();

}

abstract class child1 extends AbstractClass

{

//Here our child class is implementing only one of the abstract methods.

//But it does not complete the other one.

//So, the class is abstract again.

 @Override

 public void inCompleteMethod1()

 {

 System.out.println("Implementing the inCompleteMethod1()");

 }

}

In this case, if you forget to use the keyword abstract, the compiler will raise an error

saying that ChildClass has not implemented InCompleteMethod2(), as shown in Figure 6-2.

Figure 6-2.  A concrete class cannot contain abstract methods

6.9 I can say that a concrete class is a class that is not abstract. Is this correct?

Yes.

6.10 Sometimes I am confused about the order of keywords; for example, in the
preceding case you are using:

 public abstract void inCompleteMethod1();

Is it following any specific order?
The method must have a return type, and it should be preceded by your method

name. So, if you can remember this concept, you will never write something like public

void abstract inCompleteMethod1();, which is incorrect in Java. In Eclipse, you will

get the error messages shown in Figure 6-3:

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

149

6.11 Can you mark a method with both the keywords abstract and final?

No. It is like if you say that you want to explore Java but will not go through any reference

material. Similarly, by declaring abstract, you want to share some common information

across the derived classes, and you agree that overriding is necessary for them; that is,

the inheritance chain needs to grow but at the same time, by declaring final, you want to

put an end marker to the derivational process, so that the inheritance chain cannot grow.

You are trying to implement two opposite concepts simultaneously.

6.12 Can you compile the following code?

class Test2 {

 // Constructors cannot be final/abstract/static

 abstract Test2() { //Error

 System.out.println("abstract constructor?Is it possible?");

 }

}

Answer:

No. You’ll encounter a compile-time error (Figure 6-4).

Figure 6-3.  An output snapshot with error message in the Eclipse editor

Figure 6-4.  Constructors cannot be abstract

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

150

6.13 Why can’t constructors be abstract?

You usually use the keyword abstract with a class to indicate that it is incomplete,

and the subclass will take responsibility for making it complete. However, you also

know that constructors cannot be overridden. Also, if you analyze the actual purpose

of constructors (i.e., to initialize objects), you must agree that since you cannot create

objects from abstract classes, this design suits here perfectly.

6.14 Can you predict the output of the following code segment?

package java2e.chapter6;

abstract class IncompleteClass {

 public abstract void showMe();

}

class CompleteClass extends IncompleteClass {

 private void showMe() {

 System.out.println("I am complete.");

 System.out.println("I supplied the method body for showMe().");

 }

}

class Quiz2 {

 public static void main(String[] args) {

 �System.out.println("***Quiz2: Experiment with access

specifiers***\n");

 IncompleteClass myRef = new CompleteClass();

 myRef.showMe();

 }

}

The output is a compile-time error, as shown in Figure 6-5.

Figure 6-5.  You cannot reduce the visibility of an inherited method

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

151

This error occurs because you cannot reduce the visibility in the derived class

method. So, in this case, you need to use the public access modifier instead of the

private access modifier in the CompleteClass. Then, you can get the following output:

Quiz2 : Experiment with access specifiers

I am complete.

I supplied the method body for showMe().

Java language specification (Java SE 11) says the following:

•	 The access modifier of an overriding or hiding method must provide

at least as much access as the overridden or hidden method itself, as

follows:

•	 If the overridden or hidden method is public, then the overriding

or hiding method must be public; otherwise, a compile-time error

occurs.

•	 If the overridden or hidden method is protected, then the

overriding or hiding method must be protected or public;

otherwise, a compile-time error occurs.

•	 If the overridden or hidden method has package access, then the

overriding or hiding method must not be private; otherwise, a

compile-time error occurs.

Also, think from another point of view. If you are allowed to compile the previous

code snippet, you may try to write something like the following:

IncompleteClass myRef = new CompleteClass();

myRef.showMe();

In this case, you are trying to invoke a private method from the derived class, which

would defeat the actual purpose of the private modifier.

�Interfaces
An interface is a special type in Java. An interface contains method signatures to define

some specifications. The subtypes need to follow those specifications. When you use an

interface, you may find many similarities with an abstract class.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

152

With the interface, you declare what you are trying to implement, but you are not

specifying how you are going to achieve that. An interface is similar to a class, with some

major differences. For example, all of the methods in an interface are declared without

a body (i.e., methods are actually abstract). Also, an interface may contain only final

fields. The keyword interface is used to declare an interface type; it is followed by the

interface name, like the following:

interface MyInterface{

//Some code

}

POINTS TO REMEMBER

•	 In simple terms, interfaces help us separate “what parts” from “how parts.”

•	 To declare them, you use the interface keyword.

•	 It is a reference type, where members can be classes, interfaces, constants, and

methods.

•	 Normally, interface methods do not have bodies (in other words, they are

abstract methods). You simply replace the body with a semicolon, like in the

following:

void someMethod();

•	 From Java 8 onward, you can prefix the word default before your intended

method signature and can provide a default implementation. I’ll discuss this later.

•	 A Java class cannot have more than one parent class (or super class), but it can

implement more than one interface. This way, it supports the concept of multiple

inheritance in Java.

•	 In general, when you define an interface, you follow syntax similar to that for a

class; for example:

interface MyInterface{..}

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

153

Note B asically, you may need to deal with any of these—simple interfaces,
nested interfaces, and annotation types. In this chapter, the discussion will start
with simple interfaces only.

You can support dynamic method resolution during runtime with the help of
interfaces. Once defined, a class can implement any number of interfaces.

�Demonstration 3
Let’s look at an interface in action:

package java2e.chapter6;

interface MyInterface {

 void implementMe();

}

class MyClass implements MyInterface {

 public void implementMe() {

 �System.out.println("MyClass is implementing the interface

method implementMe().");

 }

}

class Demonstration3 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-3.Exploring

Interfaces.***\n");

 MyClass myClassOb = new MyClass();

 myClassOb.implementMe();

 }

}

Output:

Demonstration-3.Exploring Interfaces.

MyClass is implementing the interface method implementMe().

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

154

�Q&A Session
6.15 If these methods are incomplete, then the class that is using the interface needs
to implement all the methods in the interface. Is this correct?

Exactly. If the class cannot implement all of them, it will announce its incompleteness by

marking itself abstract. The following example will help you better understand this.

Here, the interface MyInterface has two methods, show1() and show2(). But the

class MyClass is implementing only one. As a result, MyClass itself becomes an abstract

class.

interface MyInterface{

 void show1();

 void show2();

}

//MyClass becomes abstract. It has not implemented show2() of MyInterface

abstract class MyClass implements MyInterface

{

 @Override

 public void show1() {

 �System.out.println("MyClass is implementing the interface method

show1 ().");

 }

 // public abstract void show2();

}

A class needs to implement all the methods defined in the interface; otherwise, it will

be an abstract class.

If you forget to implement show2() and you do not mark your class with abstract,

keyword as follows:

class MyClass implements MyInterface

{

 @Override

 public void show1() {

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

155

 �System.out.println("MyClass is implementing the interface method

show1().");

 }

 // public abstract void show2();

}

You will notice the following compilation error in Eclipse (Figure 6-6).

Figure 6-6.  A class needs to implement all the methods defined in the interface;
otherwise, it is an abstract class

6.16 In the previous scenario, a subclass of MyClass can complete the task by
implementing only show2(). Is this correct?

Correct. Demonstration 4 depicts a complete implementation for you.

�Demonstration 4
In the following demonstration, the class MyClass implements only the show1() method

of MyInterface. Since it does not implement the other method, show2(), it becomes an

abstract class.

The class MySubClass is a derived class of MyClass. This class implements the

show2() method. As a result, following the inheritance hierarchy, an object of

MySubclass can invoke both methods—show1() and show2().

package chapter6.testcodes;

interface MyInterface{

 void show1();

 void show2();

}

//MyClass becomes abstract. It has not implemented show2() of MyInterface

//class MyClass implements MyInterface //error

abstract class MyClass implements MyInterface

{

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

156

 @Override

 public void show1() {

 �System.out.println("MyClass is implementing the interface method

show1().");

 }

 // public abstract void show2();

}

class MySubClass extends MyClass

{

 @Override

 public void show2() {

 �System.out.println("MySubClass is implementing the interface

method show2().");

 }

}

class Test4 {

 public static void main(String[] args) {

 System.out.println("***Test4.Exploring Interfaces.***\n");

 //MyClass myClassOb = new MyClass();//Error:MyClass is abstract now

 MyInterface myOb = new MySubClass();

 myOb.show1();

 myOb.show2();

 }

}

Output:

Test4.Exploring Interfaces.

MyClass is implementing the interface method show1().

MySubClass is implementing the interface method show2().

�Q&A Session
6.17 You said earlier that interfaces can help us implement the concept of multiple
inheritance. Can our class implement two or more interfaces?

Yes. The following demonstration shows you how to implement that.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

157

�Demonstration 5
In the following demonstration, the class MyClass5 implements the show5A() method of

MyInterface5A and show5B() method of MyInterface5B.

package java2e.chapter6;

interface MyInterface5A {

 void show5A();

}

interface MyInterface5B {

 void show5B();

}

When your class implements multiple interfaces, the interfaces’ names are separated

by commas, like in the following:

class MyClass5 implements MyInterface5A, MyInterface5B {

 @Override

 public void show5A() {

 System.out.println("Inside MyClass5,show5A() is completed.");

 }

 @Override

 public void show5B() {

 System.out.println("Inside MyClass5,show5B() is completed.");

 }

}

class Demonstration5 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-5.Implementation of

multiple interfaces.***\n");

 MyClass5 myClassOb = new MyClass5();

 myClassOb.show5A();

 myClassOb.show5B();

 }

}

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

158

Output:

Demonstration-5.Implementation of multiple interfaces.

Inside MyClass5,show5A() is completed.

Inside MyClass5,show5B() is completed.

�Q&A Session
6.18 In the preceding program, method names are different in the different
interfaces. But if both of the interfaces’ methods have the same name, how can you
implement them?

Good question. The class that is implementing the interfaces can supply a common

implementation. Demonstration6 provides you such an implementation.

�Demonstration 6
Let’s go through the following implementation and refer to the supporting comments to

aid in your understanding.

package java2e.chapter6;

//Note: Both of the interfaces have the same method name, "show()".

interface MyInterface6A {

 void show();

}

interface MyInterface6B {

 void show();

}

class MyClass6 implements MyInterface6A, MyInterface6B {

 @Override

 public void show() {

 System.out.println("MyClass6 is completing the show() method.");

 }

}

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

159

class Demonstration6 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-6.Exploring multiple

interfaces\n");

 // All the following ways of callings are fine.

 // Approach-1

 MyClass6 myClassOb = new MyClass6();

 System.out.print("Approach-1:");

 myClassOb.show();

 // Approach-2

 System.out.print("Approach-2:");

 MyInterface6A inter6A = myClassOb;

 inter6A.show();

 // Approach-3

 System.out.print("Approach-3:");

 MyInterface6B inter6B = myClassOb;

 inter6B.show();

 // Approach-4

 System.out.print("Approach-4:");

 ((MyInterface6A) myClassOb).show();

 // Approach-5

 System.out.print("Approach-5:");

 ((MyInterface6B) myClassOb).show();

 }

}

Output:

***Demonstration-6.Exploring multiple interfaces

Approach-1:MyClass6 is completing the show() method.

Approach-2:MyClass6 is completing the show() method.

Approach-3:MyClass6 is completing the show() method.

Approach-4:MyClass6 is completing the show() method.

Approach-5:MyClass6 is completing the show() method.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

160

Note  In C#, there is the concept of explicit interfaces, which can be used in a
similar situation. But till now, Java has not directly supported a similar mechanism.

Q&A Session
6.19 Can an interface inherit or implement another interface?

It can inherit but not implement (by definition). Consider the following example.

�Demonstration 7
There are three interfaces: Interface7A, Interface7B, and Interface7C. Interface7A

and Interface7B are both the parents of Interface7C. Each of these interfaces has

its own method. When the class MyClass7 implements Interface7C, it needs to

implement all the methods from its immediate parent interface (Interface7C) as well

as those from its grandparent interfaces (Interface7A, Interface7B).

package java2e.chapter6;

interface Interface7A {

 void showInterface7AMethod();

}

interface Interface7B {

 void showInterface7BMethod();

}

//Interface extending another interface

interface Interface7C extends Interface7A, Interface7B {

 void showInterface7CMethod();

}

class MyClass7 implements Interface7C {

 // Now MyClass7 needs to implement methods from Interface1,

 //Interface2, and Interface3

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

161

 @Override

 public void showInterface7AMethod() {

 �System.out.println("MyClass7 has implemented the

showInterface7AMethod() method.");

 }

 @Override

 public void showInterface7BMethod() {

 �System.out.println("The showInterface7BMethod() method is

implemented by MyClass7.");

 }

 @Override

 public void showInterface7CMethod() {

 �System.out.println("MyClass7 has completed the

showInterface7CMethod() method.");

 }

}

class Demonstration7 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-7.Interface can extend

other interfaces\n");

 //Creating a MyClass7 object

 MyClass7 myClassOb = new MyClass7();

 Interface7A inter7A = myClassOb;

 inter7A.showInterface7AMethod();

 Interface7B inter7B = myClassOb;

 inter7B.showInterface7BMethod();

 Interface7C inter7C = myClassOb;

 inter7C.showInterface7CMethod();

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

162

 //Calling directly through myClassOb.

 �System.out.println("\n**Now invoking the methods directly

through a MyClass object.**\n");

 myClassOb.showInterface7AMethod();

 myClassOb.showInterface7BMethod();

 myClassOb.showInterface7CMethod();

 }

}

Output:

***Demonstration-7.Interface can extend other interfaces

MyClass7 has implemented the showInterface7AMethod() method.

The showInterface7BMethod() method is implemented by MyClass7.

MyClass7 has completed the showInterface7CMethod() method.

Now invoking the methods directly through a MyClass object.

MyClass7 has implemented the showInterface7AMethod() method.

The showInterface7BMethod() method is implemented by MyClass7.

MyClass7 has completed the showInterface7CMethod() method.

When a class extends from another class and implements multiple interfaces, you

need to follow the following format, which says that extends needs to appear before

implements. If you reverse these, you will get a compile-time error.

class MyClass7B extends AnotherClass implements Interface7A,Interface7B{

 @Override

 public void showInterface7AMethod() {

 // Some code

 }

 @Override

 public void showInterface7BMethod() {

 // Some code

 }

}

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

163

POINTS TO REMEMBER

•	 An interface can extend multiple interfaces.

•	 A class cannot extend from multiple parent classes, but it can implement

multiple interfaces.

�Q&A Session
6.20 Can we extend from a class and implement an interface at the same time?

Yes. You can always extend from one class (provided it is not final or there are no

other similar constraints). In that case, you need to follow positional notations like the

following:

class ChildClass extends ParentClass implements Interface1,Interface2{...}

6.21 Is there any specific reason why the keyword extends comes before the keyword

implements in the previous scenario?

Here, you are just following the recommended Java coding rules. It is always a better

idea to point out errors (if any) as early as possible. Following this design, the compiler

knows about the parent class first and can point out any compilation errors in the parent

class. (Do you remember that parent class constructors are called before the derived

class constructors?) But if you are allowed to place the keyword extends in between the

implements, the compilation time may go up.

Also, in a case like this, you can extend only one parent class, but you can implement

any number of interfaces, so from the compiler’s point of view, it may want to be sure

about your class’s existing methods (or fields) before you implement new ones.

�Marker Interface
An empty interface is known as a marker interface or a tagging interface. Here is a

sample for you (note there is no method):

//Marker interface example

interface MyMarkerInterface{

}

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

164

Some key utilities of a marker interface are as follows:

•	 You can create a common parent. (When you have a common parent,

you can use a super type reference to point to subtype objects, and it

can help you to achieve runtime polymorphism).

•	 A class can claim membership in the set; for example, if your class

implements the Serializable interface, it becomes serializable. So,

your class actually becomes an interface type through polymorphism.

Even a class that implements a tagging interface need not define any

new method, because the interface itself does not have any methods.

Note T he java.lang.Cloneable and java.io.Serializable interfaces
are examples of marker interfaces in Java.

�A Quick Tour with Annotations
In the context of marker interfaces, you should also know about annotations. A detailed

discussion of annotations is out of the scope of this book, but in the following section,

you’ll get a quick overview that basically covers what an annotation is and how you can

use it effectively in your programs.

JDK5 introduced the concept of annotations. JLS 11 says that “an annotation is a

marker which associates information with a program construct but has no effect at

run time.” Annotations are more popular than marker interfaces. They do not have any

direct impact on the compiled program. An annotation simply provides some additional

information that can be used as an alternative to a marker interface. These annotations

can be useful to a compiler or your software tools to detect errors, suppress warning

messages, generate XML files, and so on. Some of this information can be used during

the program’s execution time. Initially, annotations were used for declaration purposes,

but JDK8 added more flexibility to annotation type use.

You’ll notice that an annotation starts with @. The simplest form of an annotation is

@MyAnnotation. For example, you have used the built-in annotation @Override in some

of the programs already. Here, the annotation name is Override. In its simplest form,

an annotation does not contain any elements, and in such cases it is called a marker
annotation. So, @Override is an example of a marker annotation. @Deprecated, @

SupressWarning, and @Override are pre-built annotations in java.lang.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

165

�Demonstration 8
To mark a deprecated method, you can use @Deprecated like in the following. To show you

the visual behavior in Eclipse, notice the struck-though interface method—oldMethod()—

in Figure 6-7.

Figure 6-7.  A snapshot for a deprecated method in the Eclipse IDE

Now, go through a sample demonstration that uses different annotations.

package java2e.chapter6;

interface AnnotationDemo {

 /**

 * @deprecated Please use the newMethod() instead of the oldMethod.

 */

 @Deprecated

 void oldMethod();

 void newMethod();

}

class MyClass8 implements AnnotationDemo {

 @Override

 public void oldMethod() {

 System.out.println("The oldMethod() is in action.");

 }

 @Override

 public void newMethod() {

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

166

 �System.out.println(" The recommendation is to use this updated

method-newMethod().");

 }

}

You can see the warning messages that result from the use of a deprecated method.

You can always change your IDE settings. For example, if you wish to get an error message,

choose the option “Error” instead of “Warning,” as shown in Figure 6-8. I have made some

additional changes to the default settings. All these changes are shown for your reference.

Figure 6-8.  A snapshot from Eclipse IDE to demonstrate the usage of a deprecated
method

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

167

Note  You can also use @Deprecated to mark a deprecated element in Javadoc.
As per the suggested guideline, this tag should be followed by a newline or a
space. You should also explain why you marked it as a deprecated element and
what the recommended alternative is.

Annotations can be applied to other annotations, and in that case they are called

meta-annotations. @Retention, @Documented, @Target, and @Inherited are examples of

meta-annotations that are defined in java.lang.Annotation.

In short, by using annotations you can add some metadata information to your

source code. To understand the use of an annotation clearly, let’s look at an example.

Let’s say you are a software developer who puts the following comments in every time

you write a method or a class:

//Author Sarcar V

//Current version: Revision number, say 1

But if you are familiar with annotations, you may start with something like the

following. In this case, I am supplying some default values, which is optional for you.

@interface SoftwareDetails{

 String author() default "Sarcar V";

 int currentVersion() default 1;

}

Notice that by default, the author is Sarcar V and currentVersion is 1. Once defined,

you can use this annotation in a method like the following:

@SoftwareDetails(author="Vaskaran", currentVersion=2)

public void myMethod2() {

 System.out.println("Method-2");

}

In this case, the author is Vaskaran and currentVersion is 2. Similarly, you can

apply the annotation to a class.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

168

Note T he application of annotations is not limited to declarations of classes
or methods. You can use them in fields or other program elements also. By
convention, each annotation appears on its own line.

There is a special case to consider. It is called single-member annotation. It has the

following characteristics:

•	 It has only one element.

•	 Since there is only one member, instead of specifying the name of the

member, you can simply name it as value(), like the following:

//A single-member annotation

@Documented

@interface MyReviewerDetails{

 //It is single-member annotation. By convention, you use

 //the name value().

 String value();//You need to supply a reviewer name.

}

Now you can use it in a method, like the following:

 @MyReviewerDetails("Joe")

 public void myMethod3() {

 �System.out.println("A single-member annotation is applied to

myMethod3()");

 }

Note N otice that in this case, you do not need to write @MyReviewerDetails
(value="Joe"); instead, you can simply supply the reviewer’s name as “Joe.” If
you choose any other name instead of value() in your single-member annotation,
you will not have this flexibility.

Now consider Demonstration 9, where different annotations are used in different

methods.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

169

�Demonstration 9
A custom annotation is also used in this demonstration. See the following:

package java2e.chapter6;

import java.lang.annotation.Documented;

//Marker Annotation

@interface MarkerAnnotation {

}

//User-Defined Annotation

@Documented

@interface MySoftwareDetails{

 String author();//You need to supply an author name.

 �int currentVersion() default 1;//You may supply a different version,

which is optional.

}

//A single-member user-defined annotation

@Documented

@interface MyReviewerDetails{

 //It is single-member annotation. By convention, you use the name value().

 String value();//You need to supply a reviewer name.

}

@MySoftwareDetails(author="Vaskaran Sarcar")

public class Demonstration9 {

 @MarkerAnnotation

 public void myMethod1() {

 System.out.println("A marker annotation is used in this method.");

 }

 @MySoftwareDetails(author="Sarcar V", currentVersion=2)

 public void myMethod2() {

 System.out.println("A custom annotation is used in myMethod2()");

 }

 @MyReviewerDetails(value = "Joe")

 public void myMethod3() {

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

170

 �System.out.println("A single-member annotation is applied to

myMethod3()");

 }

 // A method without annotations

 public void myMethod4() {

 System.out.println(" Method4() is used without annotations.");

 }

}

In Eclipse, you can select your project, and then inside the Project tab you get the option

“Generate Javadoc…” Using this option, I have generated Javadoc for the Demonstration9

class. A JavaDoc provides API documentation in HTML format from Java source file.

Let’s investigate some portions of the generated document to get an idea of how

annotations work.

�Javadoc Snapshots
Figure 6-9 shows a snapshot from the generated Javadoc.

Figure 6-9.  A Javadoc snapshot

In Figure 6-10, you can see that there is no information associated with myMethod4(),

because no annotation is applied to this method. But some additional information is

attached to the myMethod2() and myMethod3() methods, as well as to the Demonstration9

class. You may also notice the use of the @Documented annotation. It enables Javadoc to

include the annotation type information in the generated document.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

171

So, in this section, you have covered all three types of annotations; namely, marker

annotation, normal annotation, and single-member annotation.

�Q&A Session
6.22 How is an abstract class different from an interface?

•	 An abstract class can have concrete methods in it, but an interface

cannot. I’ll come to this point shortly. From Java 8 onward, you can

have a keyword called default. You can use this keyword in an

interface to provide some default implementation.

Figure 6-10.  A Javadoc snapshot

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

172

•	 An abstract class can have only one parent class (can extend from

another abstract class or concrete class), while an interface can have

multiple parent interfaces. An interface can extend from another

interface only.

•	 Members of an interface are by default public. An abstract class can

have other flavors; e.g., private, protected, etc.

•	 Variables in an interface are by default static final. An abstract class

can have non-final variables as well as final variables.

6.23 How can I decide whether I should use an abstract class or an interface?

I believe that if you want to have some sort of centralized or default behavior, an abstract

class is a better choice because you can provide some default implementation. On the

other hand, interface implementation starts from scratch. It indicates some rules about

what is to be done instead of how it is to be done. Also, interfaces are preferred when you

are trying to implement the concept of multiple inheritance.

But at the same time, you know that if you need to add a new method in an interface,

then you need to track down all the implementations of that interface and put the

concrete implementation for that method in all those places. An abstract class is ahead

here—you can add a new method in an abstract class with a default implementation and

our existing code can run smoothly.

So, now Java has taken special care of the last point: Java 8 introduced the use of the

default keyword. So, now you can add the word default before your intended method

signature and it can provide a default implementation. Interface methods are public by

default, so you do not need to mark it by the keyword public. The Oracle Java online

documentation (https://docs.oracle.com/javase/tutorial/java/IandI/abstract.

html) briefly summarizes the following points:

We should give preference to abstract classes for these scenarios:

•	 We want our code sharing done among multiple closely related classes.

•	 We expect that classes that extend our abstract class may have many

common methods or fields, or they may require non-public access

modifiers inside them.

•	 We want to use non-static or/and non-final fields, which enables us

to define methods that can access and modify the state of the object

to which they belong.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

173

On the other hand, we should give preference to interfaces for these scenarios:

•	 You expect that several unrelated classes are going to implement your

interface; e.g., comparable interfaces can be implemented by many

unrelated classes.

•	 We want to specify the behavior of a particular data type, but are not

concerned about the implementer.

•	 We want to use the concept of multiple inheritance of type in the

application.

�Default Methods in Interfaces
In versions prior to Java 8, an interface can contain only abstract methods; in

other words, the interface methods can have only declarations, not any body or

implementation. But from Java 8 onward, you can have a method with a body in an

interface, but the method must be preceded by the word default.

�Demonstration 10
So, in Demonstration 10 you will see that interface10 is an interface that contains two

methods—traditionalInterfaceMethod() and defaultMethod(). The first method is

a traditional interface method without a body, while the second one has a body but has

the method signature preceded by the default keyword.

MyClass10 implements this interface and provides the body for the

traditionalInterfaceMethod() method. The overriding method for defaultMethod()

in MyClass10 is commented to show you that you can still compile and run this program

successfully.

package java2e.chapter6;

interface Interface10 {

 // Traditional interface method without a body.

 void traditionalInterfaceMethod();

 // Java 8 onwards:

 // A default method in the interface.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

174

 // It can have a body.

 default void defaultMethod() {

 �System.out.println("It is a default implementation in the

interface- Interface10.");

 }

}

class MyClass10 implements Interface10 {

 @Override

 public void traditionalInterfaceMethod() {

 �System.out.println("MyClass10 is implementing the interface

method-traditionalInterfaceMethod()");

 }

 /*

 * @Override

 * public void defaultMethod() {

 * �System.out.println("MyClass10 is overriding the default interface

method.");

 * }

 */

}

class Demonstration10 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-10.Use of default methods

in Java***\n");

 Interface10 interfaceOb = new MyClass10();

 interfaceOb.traditionalInterfaceMethod();

 interfaceOb.defaultMethod();

 }

}

Output:

Demonstration-10.Use of default methods in Java

MyClass10 is implementing the interface method.

It is a default implementation in the interface- Interface10.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

175

You can see that MyClass10 has implemented only the

traditionalInterfaceMethod() method, but the program can still run without any

compile-time errors.

�Q&A Session
6.24 Can we override the default method in an interface?

Yes, you can. Uncomment the following portion of code from Demonstration 10:

 /*

 * @Override

 * public void defaultMethod() {

 * �System.out.println("MyClass10 is overriding the default interface

method.");

 * }

 */

Now, if you compile and run the program, you’ll receive the following output:

Demonstration-10.Use of default methods in Java

MyClass10 is implementing the interface method-traditionalInterfaceMethod()

MyClass10 is overriding the default interface method.

6.25 With the use of default methods, are we not going back to the diamond
problem?

No. Here is the trick: Java puts a restriction in saying that if a class is implementing from

multiple interfaces, where each interface has its own default implementation with the

same method name, the class needs to implement its own implementation for the same-

named method, otherwise you’ll receive a compilation error.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

176

�Demonstration 11
In this demonstration, each of the interfaces has a default method named

myDefaultMethod(). Now, Class11 implements both the interfaces—

DefaultInterface11A and DefaultInterface11B. So, to avoid the conflict, it must

provide its own implementation for myDefaultMethod(), otherwise you’ll receive the

following compile-time error:

"Duplicate default methods named myDefaultMethod with

the parameters () and () are inherited from the types

DefaultInterface11B and DefaultInterface11A"

package java2e.chapter6;

interface DefaultInterface11A {

 void show();

 default void myDefaultMethod() {

 �System.out.println("Default implementation for interface3 is

called.");

 }

}

interface DefaultInterface11B {

 void show();

 default void myDefaultMethod() {

 �System.out.println("Default implementation for interface4 is

called.");

 }

}

class Class11 implements DefaultInterface11A, DefaultInterface11B {

 public void show() {

 �System.out.println("Class11 is implementing the Interface

method-show().");

 }

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

177

 @Override

 public void myDefaultMethod() {

 System.out.println("Class11 needs to implement this method.");

 }

}

class Demonstration11 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-11.Avoiding diamond

problem when default methods are involved***\n");

 System.out.println("Using DefaultInterface11A reference:");

 DefaultInterface11A interfaceOb11A = new Class11();

 interfaceOb11A.show();

 interfaceOb11A.myDefaultMethod();

 System.out.println("----------------------");

 System.out.println("Using DefaultInterface11B reference:");

 DefaultInterface11B interfaceOb11B = new Class11();

 interfaceOb11B.show();

 interfaceOb11B.myDefaultMethod();

 }

}

Output:

***Demonstration-11.Avoiding diamond problem when default methods are

involved***

Using DefaultInterface11A reference:

Class11 is implementing the Interface method-show().

Class11 needs to implement this method.

Using DefaultInterface11B reference:

Class11 is implementing the Interface method-show().

Class11 needs to implement this method.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

178

�Q&A Session
6.26 It appears to me that the default methods in the interfaces are not used at all in
the prior program. Is there any way to call the default interface methods?

Definitely. You can modify the myDefaultMethod() for Class11 as follows:

 @Override

 public void myDefaultMethod() {

 System.out.println("Class11 needs to implement this method.");

 // Modified for Q&A 6.26

 // Calling default method of DefaultInterface11A

 DefaultInterface11A.super.myDefaultMethod();

 // Calling default method of DefaultInterface11B

 DefaultInterface11B.super.myDefaultMethod();

 }

If you compile and run the program again, you’ll receive this modified output. Notice

the bold lines in the following output.

***Demonstration-11.Avoiding diamond problem when default methods are

involved***

Using DefaultInterface11A reference:

Class11 is implementing the Interface method-show().

Class11 needs to implement this method.

Default implementation for interface3 is called.

Default implementation for interface4 is called.

Using DefaultInterface11B reference:

Class11 is implementing the Interface method-show().

Class11 needs to implement this method.

Default implementation for interface3 is called.

Default implementation for interface4 is called.

6.27 Can we make the interface final?

If you make the interface final, then who will implement the incomplete methods of that

interface? You must remember that before Java 8, static methods (we’ll discuss them later)

were not supported in interfaces. So, basically, there was no point to making an interface

final.

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

179

�Demonstration 12
Consider the following declaration:

final interface MyInterface

{

 void show();

}

Eclipse raises the compile-time error: Illegal modifier for the interface

MyInterface; only public & abstract are permitted (Figure 6-11). Here is a

snapshot from the Eclipse IDE.

Figure 6-11.  An interface cannot be final

6.28 Can I use the keyword abstract before the interface method?

There is no need to do that, because by default they are abstract. But the compiler will

not raise any issues here.

interface MyInterface

{

 //void show();

 //no need to mention abstract

 abstract void show();

}

6.29 Can I use constants inside interfaces?

Yes. They are by default public, static, and final. To test this, you can experiment with the

following code segment. Let’s save it with the name MyInter.java.

interface MyInter{

int myConstant = 10;

void myMethod();

}

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

180

First, you compile this code using javac. Once compiled, let us decompile it again

using javap. Here is the output for your immediate reference:

Compiled from "MyInter.java"

interface MyInter {

 public static final int myConstant;

 public abstract void myMethod();

}

So, you can omit these modifiers. It is important to note that there is a hot debate on

whether one should use constants in an interface or not. Each side has its own pros and

cons. Consider a simple case: if you allow a constant in an interface, all implementing

classes can have the value to use. But let’s consider a case where an implementing class

needs a totally different value than others, or perhaps it does not need the value at all.

In this case, this constant value in the interface is unnecessary (or misleading) for the

implementing class.

6.30 Can I inherit an interface from a class?

No. A class can have some implementations. So, if you allow an interface to inherit from

them, the interface may contain the implementations, which is against the core aim of

an interface.

6.31 Can you summarize the benefits of using interfaces?
Here are some important use cases of an interface:

•	 You can implement polymorphism

•	 You can implement the concept of multiple inheritance

•	 You can develop loosely coupled systems

•	 You can support parallel developments

�Summary
This chapter answered the following questions:

•	 What is an abstract class?

•	 How do you achieve runtime polymorphism with abstract classes?

•	 Why can’t constructors be abstract?

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

181

•	 What is an interface?

•	 How do you design an interface?

•	 What are the basic characteristics of an interface?

•	 How can you implement multiple interfaces?

•	 How do you deal with interfaces that have a method with the same

name?

•	 What are the different types of interfaces?

•	 What is a marker interface?

•	 What can you learn from a quick tour on annotations?

•	 How do you use default methods in Java and how can you avoid the

diamond problem when you use default methods in the context of

multiple inheritance?

•	 What is the difference between an abstract class and an interface?

•	 How can you decide whether you should use an abstract class or an

interface?

•	 What are the benefits of using an interface?

Chapter 6 Abstract Classes and Interfaces: The True Art in OOP

183
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_7

CHAPTER 7

Packages
Let’s consider a simple scenario. Can you use the same name for different classes in a

Java file? No. The compiler would raise an issue and would point toward this naming

collision. When you define a class, you need to follow unique naming conventions. In

real-world programming, class names should be somewhat meaningful, and there is the

possibility that different programmers will opt for class names that are not unique. Then

the obvious question is: how can you deal with such situations? Packages can rescue us

in these instances.

You can bundle your classes or interfaces inside your own packages. This approach

helps you to avoid naming conflicts. To simplify, two classes from two different packages

can have the same name. A package can also control the visibility of the package

elements. So, it is your choice as to whether you want your classes to be exposed to the

outside world.

Note  You can have two different classes with the same name in two different
packages, but in the same package you cannot have two classes with the same
name. JLS11 gives a nice example, saying that if there is a package named mouse
and a member type Button in that package (which then might be referred to as
mouse.Button), then there cannot be any package with the fully qualified name
mouse.Button or mouse.Button.Click.

In Java, directories are the physical representation of packages. Creating a package in

Eclipse is quite easy. You do not even have to worry about how the Java runtime will find

the proper packages or classes inside it. However, you may need to pay special attention

to the PATH and CLASSPATH environment variables. These variables play important role

before you write your first Java program in a command-line environment.

184

Before you proceed further, remember the following points:

•	 The package statement should be at the top of your source file. If you

do not explicitly define this statement, then all the classes/interfaces

etc. will be located in the current default package.

•	 By convention, the name of a package starts with lowercase letters;

for example, some of the built-in Java packages are java.lang, java.

awt, java.util, java.io, etc.

•	 A package can contain subpackages; for example, if you have a

package p, and q is a subpackage of p and contains a class, namely,

MyClass, then you can refer to MyClass with the fully qualified name

p.q.MyClass. So, the name of the package must follow the directory

structure.

•	 When one class refers to another class inside the same package, the

package statement need not be included. Otherwise, you may need

to use the fully qualified class name, like packagename.MyClass, or

you may need to use import statements.

•	 A complete package can be imported as follows:

import packagename.*;

•	 Or, if you want to import only a particular class—say, MyClass from a

package called mypack—use something like the following:

import mypack.MyClass;

•	 Every class in Java resides inside a package. Sometimes you may

see Java source files without any package declaration. It means that

those classes are inside a default or unnamed package. JLS 11 says

the following about unnamed packages: “An ordinary compilation

unit that has no package declaration is part of an unnamed package.

Unnamed packages are provided by the Java SE Platform principally

for convenience when developing small or temporary applications or

when just beginning development.”

Chapter 7 Packages

185

�Creating a Package
In this book, I am using Eclipse IDE. Creating a package in Eclipse is easy. Here are the

steps on how to create a package in Eclipse IDE.

	 1.	 Click File menu ➤ New ➤ Package (consider Figure 7-1).

Figure 7-1.  Step 1: How to create a Java package in Eclipse editor

	 2.	 Supply the required information and click Finish (consider

Figure 7-2).

Chapter 7 Packages

186

	 3.	 Now you can see the package in the Package Explorer view. For

example, it may look like Figure 7-3.

Figure 7-2.  Step 2: How to create a Java package in Eclipse editor

Chapter 7 Packages

187

Note T he newly created package is empty. But other packages in the snapshot
already have some classes inside them. Those packages were created earlier.

	 4.	 Now right-click on the package name ➤ New ➤ Class/Package to

put classes/subpackages/etc. inside the created package. Once

you put one or more classes inside the package, it may look similar

to the following. For example, in the following diagram, one class,

Demonstration1.java, is placed inside the package java2e.

chapter7. But the package java2e.chapter7.companya contains

two classes—GoaPackage.java and KeralaPackage.java.

Figure 7-3.  An empty Java package is created

Chapter 7 Packages

188

�Demonstration 1
Now, let us go through an example. Consider two travel companies, A and B. Company

A conducts tours for Goa and Kerala. Company B conducts tours for Goa and Andaman.

Any tourist can seek information from them for a particular tour package. As per the

naming, in the following example, company A is using the package java2e.chapter7.

companya and company B is using java2e.chapter7.companyb package. You can

consider Figure 7-4 to understand the overall structure.

Here, I have covered the following scenarios:

•	 Less-challenging situation: Only Company A conducts tours for

Kerala, and only Company B conducts tours for Andaman.

•	 More-challenging situation: Notice that both companies conduct

a Goa tour, and you need to get tariff information through the

respective GoaPackage.java class. Notice that both packages use the

same class name.

// GoaPackage.java [For Company A, in java2e.chapter7.companya package]

package java2e.chapter7.companya;

public class GoaPackage

{

 int basePrice=10000;

Figure 7-4.  Sample Package Explorer view of non-empty Java packages in
Eclipse editor

Chapter 7 Packages

189

 public void showPrice()

 {

 System.out.println("***Tariff for Goa tour in Company A***");

 �System.out.println("For two person , Goa tour package is

Rs."+ basePrice*2);

 �System.out.println("For four person , Goa tour package is

Rs."+ basePrice*4);

 System.out.println("**************");

 }

}

// KeralaPackage.java [For Company A, in java2e.chapter7.companya package]

package java2e.chapter7.companya;

public class KeralaPackage

{

 int basePrice=7000;

 public void showPrice()

 {

 �System.out.println("***Tariff for Kerala tour in Company

A***");

 �System.out.println("For two person , Kerala tour package is

Rs."+ basePrice*2);

 �System.out.println("For four person, Kerala tour package is

Rs."+ basePrice*4);

 System.out.println("**************");

 }

}

// AndamanPackage.java [For Company B, in java2e.chapter7.companyb package]

package java2e.chapter7.companyb;

public class AndamanPackage

{

 int basePrice=12000;

 public void showTariff()

 {

Chapter 7 Packages

190

 �System.out.println("***Tariff for Andaman tour in Company

B***");

 �System.out.println("In Company B:For two persons, Andaman

tour package is Rs."+ basePrice*2);

 �System.out.println("In Company B:For four persons, Andaman

tour package is Rs."+ basePrice*4);

 System.out.println("**************");

 }

}

// GoaPackage.java [For Company B, in java2e.chapter7.companyb package]

package java2e.chapter7.companyb;

public class GoaPackage {

 int basic_price = 15000;

 int serviceTax = 2000;

 public void showTariff() {

 int forTwoPerson = basic_price * 2 + serviceTax;

 int forFourPerson = basic_price * 4 + serviceTax;

 System.out.println("***Tariff for Goa tour in Company B***");

 �System.out.println("In Company B:For two persons , Goa tour

package is Rs." + forTwoPerson);

 �System.out.println("In Company B:For four persosn , Goa tour

package is Rs." + forFourPerson);

 System.out.println("****************");

 }

}

//Demonstration-1

package java2e.chapter7;

import java2e.chapter7.companya.*;

import java2e.chapter7.companyb.*;

/*import java2e.chapter7.companya.GoaPackage;

import java2e.chapter7.companya.KeralaPackage;

import java2e.chapter7.companyb.AndamanPackage;*/

Chapter 7 Packages

191

public class Demonstration1 {

 public static void main(String[] args) {

 System.out.println("***Demonstration-1.Exploring packages.***");

 //Only Company-a has KeralaPackage

 KeralaPackage companyAKeralaPackage=new KeralaPackage();

 companyAKeralaPackage.showPrice();

 //Only Company-b has AndamanPackage

 AndamanPackage companyBAndamanPackage=new AndamanPackage();

 companyBAndamanPackage.showTariff();

 //Company-a and company-b both have package tours for Goa.

 �java2e.chapter7.companya.GoaPackage companyAGoaPackage=new java2e.

chapter7.companya.GoaPackage();

 companyAGoaPackage.showPrice();

 �java2e.chapter7.companyb.GoaPackage companyBGoaPackage=new java2e.

chapter7.companyb.GoaPackage();

 companyBGoaPackage.showTariff();

 }

}

Output:

Demonstration-1.Exploring packages.

Tariff for Kerala tour in Company A

For two person , Kerala tour package is Rs.14000

For four person, Kerala tour package is Rs.28000

Tariff for Andaman tour in Company B

In Company B:For two persons, Andaman tour package is Rs.24000

In Company B:For four persons, Andaman tour package is Rs.48000

Tariff for Goa tour in Company A

For two person , Goa tour package is Rs.20000

For four person , Goa tour package is Rs.40000

Chapter 7 Packages

192

Tariff for Goa tour in Company B

In Company B:For two persons , Goa tour package is Rs.32000

In Company B:For four persosn , Goa tour package is Rs.62000

Have you noticed an interesting fact? Since the GoaPackage class is available in both

Java packages, you needed to use the fully qualified name inside the main() method to

refer to the intended class from the particular package. But you did not need to refer to

the fully qualified name for the other classes, KeralaPackage or AndamanPackage, since

those are classes with unique names.

This example also demonstrates the fact that you will not receive any compile-time

errors if you import full packages with star form, where the packages may contain a class

with the same name. But while accessing the class, you need to use the fully qualified

name of the class. For instance, you must write java2e.chapter7.companya.GoaPackage

because the GoaPackage class is available for both companies.

Note  I have kept the dead (commented) code to show you how to import a
particular class from a package instead of importing the whole package.

�Key Notes About Packages in Java
Here are some important points about packages:

•	 All classes in the java.lang package are imported by default. (Q&A

7.3 talks about import statements in detail.)

•	 If you want to rename your package, first rename the directory in

which your classes are stored.

•	 Package naming conventions should be followed carefully; for

example, if we use a statement like package a.b.c, we mean to say

that directory c is placed inside directory b, which is again placed in

inside directory a.

•	 You can remember the visibility control mechanism by referring to

Table 7.1.

Chapter 7 Packages

193

�Q&A Session
7.1 If every class stays in a package, then how could I use System.out.print() up to
now without importing any packages?

In Java, all classes in the java.lang package are imported by default. This is why you

were able to use System.out.println()—the System class also resides inside the default

java.lang package.

If you import a package, subpackages will not be imported by default. For example,

let’s say there is a subpackage, namely subpacka, in the package companya, and you have

following code:

package java2e.chapter7.companya.subpacka;

public class SubGoaPackage {

 int basePrice = 500;

 public void showPrice() {

 �System.out.println("**I am in SubGoaPackage.I need to update

myself**");

 }

}

Now, if you do not import this subpackage in Demonstration 1, the bold lines in the

following code segment will cause compile-time errors:

Table 7-1.  Access Protection Chart Using Packages

public protected private Default/No modifier

Same class Yes Yes Yes Yes

Subclass in same package Yes Yes No Yes

Non-subclass in same package Yes Yes No Yes

Subclass in different package Yes Yes No No

Non-subclass in different package

(outside world)

Yes No No No

Chapter 7 Packages

194

//Subpackages will not be imported by default.

//Need to import the package explicitly.

//import java2e.chapter7.companya.subpacka.*;

SubGoaPackage companyASubGoaPackage=new SubGoaPackage();

companyASubGoaPackage.showPrice();

Note  If you import a package, subpackages will not be imported by default.

7.2 Can you explain about the default access specifier?

You can always refer to Table 7-1 for your reference. From the table, it is obvious that if

you do not mention any specific access modifier, like public, private, etc., with regards

to a member, it will be considered to have a default modifier, and then your particular

member will be visible inside the same package only; in other words, all other classes

inside the package can see and use it.

By the same token, you can give visibility to outside classes with a restriction that

only those outside classes that are in the same inheritance hierarchy (i.e., subclass) can

see the intended member, in which case you can use the modifier protected. And if you

do not want to put any restrictions in place at all, simply use the public modifier, and to

provide maximum restriction, use the private modifier.

Note A default or no modifier is also known as a package-private modifier
because it provides visibility within the containing package only.

7.3 What is the purpose of import statements?

JLS11 says that “an import declaration allows a named type or a static member to be

referred to by a simple name that consists of a single identifier.” You bring all classes (or

packages) from a specified location to your intended location with the use of import

statements. Otherwise, you need to use the fully qualified name. For example, suppose

you have a class named MyClass with some methods (for simplicity, let’s say you

have used public modifiers only). This class is placed inside a package (or directory),

packageb, which, in turn, is placed inside another directory, packagea. Now, you want

to reuse those methods/class from a different location. So, as per the directory structure,

you need to refer to the class as packagea.packageb.Myclass. So, you can see that it

Chapter 7 Packages

195

becomes tedious and looks ugly to type the long dot-separated package name first for

the classes you need to use. So, in short, you can save a lot of typing and increase the

readability of our program by using import statements. Once imported, you can refer to a

class by its name only.

7.4 Then technically I can avoid import statements. Is this understanding correct?

Yes, but you have to pay a lot in terms of typing and readability in a real-life

programming situation. So, I do not recommend that practice.

7.5 Suppose I have used the same class name inside two packages. And then in some
other program, I have imported both packages. Will I face any compiler issues? Also,
how can I access a particular class?

First of all, there is no compiler issue. If you have same-named classes in two or more

packages, just use their fully qualified names to avoid the conflict. Refer to the program

in Demonstration 1. You can see that both of the packages have the class GoaPackage.

java, and I have used their fully qualified names inside the main() method.

7.6 In some examples, I see the import statement is the first statement. But you told
me that the package statement should be the first statement. I have both, which one
should come first?

You must remember that package statements should be the first statements. Then

import statements should be placed. See Demonstration 2.

�Demonstration 2
Consider the following program, which demonstrates the incorrect order of package and

import statements.

import java.util.Date;

package java2e.chapter7;//error

class Demonstration2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.Exploring the order of

package and import statements.***");

 Date currentTime = new Date();

 System.out.println(currentTime.toString());

 }

}

Chapter 7 Packages

196

The result is a compilation error (Figure 7-5).

Figure 7-5.  An output snapshot with error message in the Eclipse editor

Let’s change the order of the package and import statements, like the following:

package java2e.chapter7;//package statement should be the first statement

import java.util.Date;// ok

Now you will get the expected output:

Demonstration-2.Exploring the order of package and import statements.

Sat Mar 16 20:53:58 IST 2019

�Q&A Session
7.7 Why does Java use this kind of design, where package statements must be placed
before import statements?

My personal opinion is that you should always fix a location before you start writing

the code. For example, you may decide to create classes for your application. If the

classes already exist inside the same package (i.e., in same location), you can refer to it

immediately and you do not need an import statement. But if this is not the case, you

need to bring those classes into the intended location (and import takes its place). So,

it’s like first fixing a location in order to build a house. You never build a house and then

change the location. Likewise, if you look carefully, you will find that package naming

conventions follow the directory structure of the corresponding bytecode; i.e., your

intention is to fix a location first, and then you proceed.

7.8 How can I deal with multiple package statements in a source file?

You can have only one package statement in a source file.

Chapter 7 Packages

197

7.9 Sometimes I do not see any package statement at all in a source file. Will I face
any compiler issues for that?

No. It means that you are using the current default package.

7.10 I have some idea about the usage of packages. It’ll be helpful if you can
summarize the overall usefulness of the packages.

If you look carefully, you can see that packages cover following scenarios:

•	 They provide an organized structure, which is very useful for

understanding and debugging the program.

•	 You can avoid naming collisions by using package statements when

different packages contain classes with the same name.

•	 With different access modifiers inside packages, you can provide a

level of security that is very much required in the real-life software

development process.

•	 You can reuse the classes that are already written and used in a

package of other programs.

7.11 Name some built-in Java packages.

java.lang, java.util, java.io, and java.net are commonly used Java packages.

�Troubleshooting Common Errors in Command-line
Environment
In this book, Java programs are executed in Eclipse. It is a very user-friendly IDE. But

sometimes you may want to compile and run a Java program using only Notepad

and the command-line environment, but you may encounter some errors. Actually,

programming with packages and then compiling and running those programs using the

command line can be challenging. For example, suppose you put your class MyClass

inside a package, mypack.pkg. Then, you would need to place the source code file in the

subdirectory named pkg inside the directory mypack, which is in turn within the main

Java working directory. In addition to this, to compile or run the program, you should be

in the main directory, not in the subdirectory. I’ll show you this use case in detail at the

end of this section.

Chapter 7 Packages

198

To begin with, let’s analyze some fundamental errors in the command-line environment.

Suppose you have written the following program and saved it in C:\TestClass\Hello.java:

public class Hello {

 public static void main(String[] args) {

 System.out.println("***Hello Vaskaran***");

 }

}

When you compile it, you may encounter the following error:

C:\TestClass>javac Hello.java

'javac' is not recognized as an internal or external command,

operable program or batch file.

This kind of problem occurs when you do not set the environment variables

properly. You can set your PATH environment variable to remove this error, as follows:

C:\TestClass>set path="C:\Program Files\Java\jdk1.8.0_172\bin";

C:\TestClass>javac Hello.java

C:\TestClass>

But instead of setting this environment variable at the command prompt, it is

suggested that you edit your environment variables and add this. It will be a one-time

activity for you.

Sometimes you can compile the program but cannot run it. For example, during

execution, you may encounter a problem saying: Error: Could not find or load

main class XXX, where XXX is the class name. Here is a screenshot of such an event:

In my case, a quick fix for this problem was to set the following variables properly

(since I installed jdk1.8.0_172 in my system):

C:\TestClass>set class="C:\Program Files\Java\jdk1.8.0_172\bin";

C:\TestClass>set classpath="C:\Program Files\Java\jre1.8.0_172\lib\rt.jar";

Chapter 7 Packages

199

Now I can recompile and run the program again. This time, the program is executed

properly.

C:\TestClass>javac Hello.java

C:\TestClass>java Hello

Hello Vaskaran

But in some cases, for a similar error message, you may need to search for other

probable causes of failure. For example, let’s modify the program using a package

statement at the beginning, as follows:

package mypack;

public class Hello2 {

 public static void main(String[] args) {

 System.out.println("***Hello Vaskaran***");

 }

}

Let’s suppose you put this Hello2.java in C:\TestClass\mypack. Now, try to

compile and run the program as follows:

C:\TestClass\mypack>javac Hello2.java

C:\TestClass\mypack>java Hello2

Error: Could not find or load main class Hello2

You can see that this time the program is not running properly. Notice that you

are currently in mypack. As said before, in a case like this, you should be in the main

directory, not in the subdirectory. So, in this case, you need to go one level up and try the

following commands:

C:\TestClass\mypack>cd ..

C:\TestClass>java mypack.Hello2

Hello Vaskaran

In short, if you want to use simple command prompts and Notepad to run your Java

program, you need to set your PATH and CLASSPATH environment variables properly.

In addition to this, if you use a package statement, you should maintain the directory

structure properly, and you should run your program by following the correct directory

structure.

Chapter 7 Packages

200

�Summary
This chapter discussed the following topics:

•	 What is a package?

•	 How can you create packages in Eclipse IDE?

•	 How should import statements be used?

•	 What restrictions are associated with packages?

•	 How can you write simple programs to demonstrate packages in

Java?

•	 How can you avoid some command-line environment errors?

Chapter 7 Packages

201
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_8

CHAPTER 8

Understanding Class
Variables and Class
Methods
Sometimes developers do not want to operate through instances of a type. Instead, they

prefer to work on the type itself. The concept of class variables or class methods appears

in these scenarios. They are commonly known as static variables or static methods.

Let’s consider a case where you want a variable to be shared among all objects of a

class regardless of how many objects are created from the class. Other times, you may

also want to maintain a single copy to handle some specific scenarios; for example, when

you maintain a log file. In situations like these, you use the concept of class variables and

class methods.

In Java, a nested class itself can be static. When you prefix the keyword static to a

nested class, it is a nested static class; when it is tagged on a method, it is called a static

method; and when you associate it with a variable, it is known as a static variable.

Before you proceed further, you need to remember the following points:

•	 Java does not allow us to create a top-level static class. The class that

contains the static class is termed the outer class. A non-static nested

class is termed an inner class. For your easy reference, you should

remember the following:

class OuterClass//Cannot be static

{

 //some code may present

 class NestedClass // Can be either static or non-static

 {

202

 //some code may present

 }

}

•	 Java language specification (11) says that you cannot place an enum

type inside the body of an inner class. This is because a nested

enum type is implicitly static, and an inner class cannot have static

members except for constant variables.

�Class Variables and Class Methods
In Chapter 3, you got a very simple overview of static classes and methods. In this

chapter, you’ll explore it in more detail. To get the flow, let us begin with a simple

example that contains both static and non-static members. In this demonstration, notice

the supported comments, which simply inform you that static fields should be accessed

in a static way.

�Demonstration 1
In the following program, you have a class Rectangle, which has an area() method. The

method is tagged with the static keyword, so you can invoke the method as Rectangle.

area(). In this case, you do not need to create an object from the Rectangle class to

invoke the method.

package java2e.chapter8;

class Rectangle {

 //static members

 static double length=25.5, breadth=10.0;

 static String myStaticString="I am a static string";

 //Non-static members

 int myNonStaticInt=25;

 public static double area() {

 return length * breadth;

 }

}

Chapter 8 Understanding Class Variables and Class Methods

203

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.Exploring class

variables and class methods.***\n");

 �System.out.println("Area of Rectangle is " + Rectangle.area()

+ "sq. unit");

 �System.out.println("The myStaticString is : " +

Rectangle.myStaticString);

 Rectangle rectOb=new Rectangle();

 �System.out.println("The myNonStaticInt is : " + rectOb.

myNonStaticInt);

 �//Warning: The static field Rectangle.myStaticString should

//be accessed in a static way

 //�System.out.println("The myStaticString is : " + rectOb.

myStaticString);

 }

}

Output:

Demonstration-1.Exploring class variables and class methods.

Area of Rectangle is 255.0sq. unit

The myStaticString is : I am a static string

The myNonStaticInt is : 25

�Working with Nested Classes
Now, go through Demonstration 2 and then analyze the important characteristics of a

nested static class.

�Demonstration 2
This demonstration will also help you to notice the difference between a nested static

class and a non-static nested (or inner) class.

Chapter 8 Understanding Class Variables and Class Methods

204

Here are the important points to note in this demonstration.

•	 In this program, the top-level class Rectangle2 contains two nested

classes—StaticRectangle2 and InnerClass2. As per their names,

StaticRectangle2 is a static nested class and InnerClass2 is a non-

static nested class (or inner class).

•	 Notice how an inner class is instantiated. The inner class resides

inside the outer class, so you need to instantiate the outer class first.

I have instantiated it in a single line of code, but it can be divided

into the following two lines, which are shown in comments in the

demonstration code.

Rectangle2 rect2=new Rectangle2();

Rectangle2.InnerClass2 innerOb2=rect2.new InnerClass2();

•	 Inside staticDisplay(), if you uncomment the following line:

//System.out.println("The nonStaticOuterInt is :

" + nonStaticOuterInt);

	 you’ll encounter a compile-time error, as shown in Figure 8-1:

Cannot make a static reference to the non-static field

nonStaticOuterInt

Figure 8-1.  You cannot use a static reference to refer to a non-static field

So, it is important to note that only the static members of the outer class can be

accessed inside the static class. But an inner class can have access to both the static and

non-static members of the outer class (notice that the nonStaticDisplay() method does

not have any issue accessing the variables of the outer class).

package java2e.chapter8;

class Rectangle2 {

 static int staticOuterInt = 25;

 int nonStaticOuterInt = 125;

Chapter 8 Understanding Class Variables and Class Methods

205

 //Static class

 static class StaticRectangle2 {

 void staticDisplay(){

 System.out.println("Inside the static class.");

 �System.out.println("The staticOuterInt is : " +

staticOuterInt);

 //�System.out.println("The nonStaticOuterInt is : " +

nonStaticOuterInt);//error

 }

 }

 //Inner class

 class InnerClass2 {

 void nonStaticDisplay(){

 System.out.println("\nInside the inner class.");

 �System.out.println("The staticOuterInt is : " +

staticOuterInt);

 �System.out.println("The nonStaticOuterInt is : " +

nonStaticOuterInt);//ok

 }

 }

}

class Demonstration2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.Exploring class

variables and class methods.***\n");

 �Rectangle2.StaticRectangle2 nestedStaticOb=new Rectangle2.

StaticRectangle2();

 nestedStaticOb.staticDisplay();

 //Instantiating an inner class

 �//Inner class is contained in an outer class, so you need to

//instantiate the outer class first.

 Rectangle2.InnerClass2 innerOb=new Rectangle2().new InnerClass2();

 �//Or, use these multiple lines of codes to instantiate an

//inner class as follows:

Chapter 8 Understanding Class Variables and Class Methods

206

 /*Rectangle2 rect2=new Rectangle2();

 Rectangle2.InnerClass2 innerOb2=rect2.new InnerClass2();*/

 innerOb.nonStaticDisplay();

 }

}

Output:

Demonstration-2.Exploring class variables and class methods.

Inside the static class.

The staticOuterInt is : 25

Inside the inner class.

The staticOuterInt is : 25

The nonStaticOuterInt is : 125

POINTS TO REMEMBER

•	 In Java, a top-level static class is not allowed. A static class in Java is nested.

•	 A non-static nested class is often termed an inner class.

•	 Only the static members of the outer class can be accessed inside the nested

static class.

•	 To instantiate an inner class, you need to instantiate the outer class first.

•	 The keyword static is used to denote “singular thing that can be used

something like a global variable.” Some developers also believe that static

methods are faster than non-static methods. But, the key thing to remember is

that they are not part of any instance.

•	 You may notice that the main(String[] args) method is static. So, you call

this method without creating any instance of the class.

Chapter 8 Understanding Class Variables and Class Methods

207

�Q&A Session
8.1 In Demonstration 1, can I create an instance of the Rectangle class and then
invoke the area() method?

That is not a recommended practice. In Eclipse editor, you will encounter a warning

message for such an attempt. For example, if you uncomment the following line in that

demonstration:

//System.out.println("The myStaticString is : " + rectOb.myStaticString);

you will get the following warning message (also shown in Figure 8-2): The static

field Rectangle.myStaticString should be accessed in a static way.

Figure 8-2.  Warning message: The static field should be accessed in a static way.

8.2 Can I simulate the top-level static class behavior in Java?

As already said, in Java a top-level static class is not allowed. But you can simulate

something close if you follow the example that is already present in Java. For example,

notice that by using built-in Math class you can find the smaller of 12 and 15, as follows:

System.out.println(" Minimum of (12,15) is "+ java.lang.Math.min(12, 15));

In this case, the Math class is behaving like a top-level static class. If you open the

java.lang.Math class declaration in Eclipse editor, you will see Figure 8-3.

Figure 8-3.  A partial snapshot of the java.lang.Math class details in Eclipse editor

Chapter 8 Understanding Class Variables and Class Methods

208

So, you can make your class final, make the constructor private, and make other

members of the class static to simulate a behavior that is very close to a top-level

static class.

�Initialization Blocks Versus Constructors
In Java, constructors cannot be static. Instead, you can use initialization blocks, which

can be either static or non-static. Non-static initialization blocks are also called instance

blocks. In the upcoming demonstrations, you will experience both static and non-static

initialization blocks.

Static blocks have some important characteristics, as follows:

•	 A static block will be executed exactly once, and it comes into the

picture when the class is first loaded.

•	 A static block can perform some common operations at the

beginning of the execution flow. In general, they often initialize the

static variables.

•	 Inside a static block, you can refer only to static variables.

•	 The following code segment presents a sample illustration of a static

block inside a class. This code segment will be used in the upcoming

demonstration.

class Parent

{

 int intInstanceParent;

 static int intStaticParent, count;

 static void testMethod() {

 count++;

 System.out.println("Inside static testMethod(), count ="+ count);

 }

 //The static block

 static {

 System.out.println("Inside static block of Parent");

 //intInstanceParent=10;//error

 intStaticParent=10;//ok

Chapter 8 Understanding Class Variables and Class Methods

209

 testMethod();//ok

 �//System.out.println("intInstanceParent="+ intInstanceParent);

//error

 System.out.println("intStaticParent="+ intStaticParent);

 }

}

•	 An instance block can be executed multiple times. It executes prior to

the constructor each time you instantiate an object. Here is a sample

illustration of an instance block inside a class. This code segment will

also be used in the upcoming demonstration.

class Parent

{

 int intInstanceParent;

 static int intStaticParent, count;

 static void testMethod() {

 count++;

 System.out.println("Inside static testMethod(), count ="+ count);

 }

 //The instance block

 {

 System.out.println("\nInside instance block of parent");

 intInstanceParent++;

 intStaticParent++;

 System.out.println("intStaticParent changed to :"+ intStaticParent);

 �System.out.println("intInstanceParent changed to :"+

intInstanceParent);

 testMethod();//No compilation error

 }

}

•	 When you have all three—a static block, an instance block, and a

constructor—the static block will be executed first, then the instance

block will be executed, and then the constructors will follow.

Chapter 8 Understanding Class Variables and Class Methods

210

•	 In the output of Demonstration 3, you can confirm the execution flow

when a program has all of these (both kinds of initialization blocks

and the constructor).

Note T o understand Demonstration 3, you may need to revisit the prior points
repeatedly.

�Demonstration 3
In Demonstration 3, both a parent class and a child class are present. So, as expected,

when you instantiate an object, the parent class constructor will be invoked prior to the

child class constructor.

package java2e.chapter8;

class Parent

{

 int intInstanceParent;

 static int intStaticParent, count;

 static void testMethod() {

 count++;

 System.out.println("Inside static testMethod(), count ="+ count);

 }

 //The static block

 static {

 System.out.println("Inside static block of Parent");

 //intInstanceParent=10;//error

 intStaticParent=10;//ok

 testMethod();//ok

 //System.out.println("intInstanceParent="+ intInstanceParent);//error

 System.out.println("intStaticParent="+ intStaticParent);

 }

Chapter 8 Understanding Class Variables and Class Methods

211

 //The instance block

 {

 System.out.println("\nInside instance block of parent");

 intInstanceParent++;

 intStaticParent++;

 �System.out.println("intStaticParent changed to :"+

intStaticParent);

 �System.out.println("intInstanceParent changed to :"+

intInstanceParent);

 testMethod();//No compilation error

 }

 //The constructor

 public Parent()

 {

 System.out.println("\n Inside Parent() constructor");

 intInstanceParent++;

 intStaticParent++;

 System.out.println("intStaticParent changed to ="+ intStaticParent);

 �System.out.println("intInstanceParent changed to="+

intInstanceParent);

 }

 //�static constructor is not possible, only public, private, and

protected are allowed

 //static Parent(){}//error

}

class Child extends Parent

{

 //The static block

 static {

 System.out.println("\nInside static block of Child");

 //intInstanceParent=10;//error

 intStaticParent++;

 System.out.println("intStaticParent="+ intStaticParent);

 }

Chapter 8 Understanding Class Variables and Class Methods

212

 //The instance block

 {

 System.out.println("\nInside instance block of child");

 intInstanceParent++;

 intStaticParent++;

 �System.out.println("intStaticParent changed to :"+

intStaticParent);

 �System.out.println("intInstanceParent changed to :"+

intInstanceParent);

 }

 //The constructor

 public Child()

 {

 System.out.println("\nInside Child() constructor");

 intInstanceParent++;

 intStaticParent++;

 �System.out.println("intStaticParent changed to ="+

intStaticParent);

 �System.out.println("intInstanceParent changed to="+

intInstanceParent);

 }

}

public class Demonstration3 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-3.Exploring

initialization blocks***\n");

 Parent parentOb=new Child();

 System.out.println("--------------------");

 //Again instantiating an object.

 Parent parentOb2=new Child();

 }

}

Chapter 8 Understanding Class Variables and Class Methods

213

Output:

Demonstration-3.Exploring initialization blocks

Inside static block of Parent

Inside static testMethod(), count =1

intStaticParent =10

Inside static block of Child

intStaticParent =11

Inside instance block of parent

intStaticParent changed to :12

intInstanceParent changed to :1

Inside static testMethod(), count =2

Inside Parent() constructor

intStaticParent changed to =13

intInstanceParent changed to =2

Inside instance block of child

intStaticParent changed to :14

intInstanceParent changed to :3

Inside Child() constructor

intStaticParent changed to =15

intInstanceParent changed to =4

Inside instance block of parent

intStaticParent changed to :16

intInstanceParent changed to :1

Inside static testMethod(), count =3

Inside Parent() constructor

intStaticParent changed to =17

intInstanceParent changed to =2

Inside instance block of child

intStaticParent changed to :18

intInstanceParent changed to :3

Chapter 8 Understanding Class Variables and Class Methods

214

Inside Child() constructor

intStaticParent changed to =19

intInstanceParent changed to =4

From the demonstration, you can see the following points:

•	 Static blocks will be executed first.

•	 Prior to the constructor calls, initialization blocks will be executed.

This will happen each time you instantiate an object.

•	 You already know that a parent class constructor will be executed

prior to a child class constructor.

•	 Notice that intStaticParent kept its value and kept increasing when

you instantiated an object a second time. But the same thing did not

happen to intInstanceParent. It did not retain its last value when

you instantiated another object.

�Method Hiding Versus Method Overriding
In Chapter 5, Q&A 5.24, you saw a demonstration that differentiated hiding from overriding.

At that time, you were not familiar with the static keyword in detail. So, let’s revisit the

concept.

Method hiding is an important concept in Java. The JLS11 says this:

“If a class C declares or inherits a static method m, then m is said to hide any
method m', where the signature of m is a subsignature (§8.4.2) of the signa-
ture of m', in the superclasses and superinterfaces of C that would otherwise
be accessible (§6.6) to code in C. It is a compile-time error if a static method
hides an instance method.”

To explain the concept better, I’ll demonstrate another program to compare method

hiding with method overriding. To understand this program, you need to remember the

following: When a parent class and the derived class contain static methods with the same

signature, the parent class’s static method is hidden by the derived class’s static method.

For non-static methods, method calls are decided at runtime (which object you

are pointing to at that moment), and overriding plays its role. But in the case of static

methods, method calls are decided at compile time only, so it is not dependent on which

object you are pointing to at runtime. So, in Chapter 5, you noticed the line: “method

hiding is in no way related to runtime polymorphism.”

Chapter 8 Understanding Class Variables and Class Methods

215

�Demonstration 4
Now let’s analyze the following demonstration and output for better understanding:

package java2e.chapter8;

class Parent4 {

 static void staticMethod() {

 System.out.println("I am a static method in Parent4.");

 }

 void nonStaticMethod() {

 System.out.println("A non-static method in Parent4.");

 }

}

class Child4 extends Parent4 {

 static void staticMethod() {

 �System.out.println("Inside Child4 class, I am hiding the

parent class static method.");

 }

 void nonStaticMethod() {

 System.out.println("Overriding a non-static method in Parent4.");

 }

}

class Demonstration4 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4.Derived class method

hides the static method of the parent class***\n");

 Child4.staticMethod();// Hides the parent class method

 // Checking dynamic method dispatch

 Parent4 parent = new Child4();

 Parent4.staticMethod();//Invokes parent class method

 �System.out.println("xxx-Doing a bad practice.Invoking a static

method on instance.-xxx");

 parent.staticMethod();//Bad practice:Invokes parent class method

 parent.nonStaticMethod();// Invokes child class method

Chapter 8 Understanding Class Variables and Class Methods

216

 /* Bad practice:

 �Following code can also invoke the child class static method.

But you'll receive the warning message saying:

 �"staticMethod() from the type Child4 should be accessed in a

static way"*/

 //new Child4().staticMethod();

 }

}

Output:

***Demonstration-4.Derived class method hides the static method of the

parent class***

Inside Child4 class,I am hiding the parent class static method.

I am a static method in Parent4.

xxx-Doing a bad practice.Invoking a static method on instance.-xxx

I am a static method in Parent4.

Overriding a non-static method in Parent4.

Here, Child4.staticMethod() hides the parent class method. Also, you can

see that parent.nonStaticMethod() invokes the child class method, but parent.

staticMethod() invokes the parent class method, because, in case of method hiding, the

reference variable (which is of Parent type) matters and does not depend on the actual

calling object.

POINTS TO REMEMBER

•	 When a parent class and the derived class contain static methods with the same

signature, the subclass static method hides the parent class static method.

•	 In the case of method hiding, the invoked method version does not depend on

the invoking object; instead, it depends on the reference type.

•	 Invoking static methods with instances is not a recommended practice at all. It

is presented here only to demonstrate to you how method hiding differs from

method overriding.

Chapter 8 Understanding Class Variables and Class Methods

217

�Q&A Session
8.3 I understand that I cannot override static methods in Java by design. But what
may be the probable causes behind this design?

For static methods, method calls are decided at compile time only; that is, it is not

dependent on which object you are pointing to at runtime. But for non-static methods,

method calls can be decided at runtime (i.e., the actual object to which you are pointing

at that moment).

�Method Overloading
The following demonstration shows that you can overload static methods.

�Demonstration 5
In this program, the StaticDemo5 class contains a different, overloaded version of the

showMe() method.

package java2e.chapter8;

class StaticDemo5 {

 static void showMe() {

 System.out.println("Inside showMe().");

 }

 static void showMe(String s) {

 �System.out.println("Hi," + s +".You are inside showMe

(String s) now.");

 }

 static void showMe(int i) {

 �System.out.println("Inside showMe(int i),you have supplied the

argument " + i +".");

 }

}

class Demonstration5 {

 public static void main(String[] args) {

Chapter 8 Understanding Class Variables and Class Methods

218

 �System.out.println("***Demonstration-5.Static methods can be

overloaded***\n");

 StaticDemo5.showMe();

 StaticDemo5.showMe("John");

 StaticDemo5.showMe(25);

 }

}

Output:

Demonstration-5.Static methods can be overloaded

Inside showMe().

Hi, John.You are inside showMe(String s) now.

Inside showMe(int i),you have supplied the argument 25.

8.4 Can you compile the following code?

class Quiz1 {

 static void showMe() {

 System.out.println("Static method");

 }

 void showMe() {

 System.out.println("Non-static method");

 }

}

No. In this case, the compiler will raise the following error in Eclipse IDE: Duplicate

method showMe() in type Quiz1 (Figure 8-4).

Figure 8-4.  The presence of static keyword cannot ensure method overloading

Chapter 8 Understanding Class Variables and Class Methods

219

The concept of method overloading works fine if the method signatures are different.

In this case, the inclusion of a static keyword before a method name is not considered

a different signature. You can also explain this behavior from a different perspective. For

example, you know that Java allows you to call a static method through objects. Now, in

a case like this, if you have another non-static method with the same signature, the Java

compiler will be confused as to which one to call.

8.5 Can you compile the following code?

class Quiz2 {

 int i;

 static void showMe() {

 this.i = 7;

 System.out.println("Static method");

 }

}

No. In this case, the compiler will raise the error shown in Figure 8-5 in Eclipse IDE:

Figure 8-5.  The keyword this cannot be used in a static context

In this context, you can remember that the this keyword is used in the context of

the current object. But static methods can be called with the class name (and this is the

true intention of the keyword static). There is no need to create an object to call a class

method (or a static method).

Chapter 8 Understanding Class Variables and Class Methods

220

�Q&A Session
8.6 In C#, static constructors are allowed, but in Java they are not allowed. What is
the key advantage that a developer can achieve with static constructors?

Each programming language has its own pros and cons. The designers obviously can

have different thoughts behind a particular feature. In C#, a top-level static class is also

allowed with static constructors. They believe that this feature can be useful for writing

log entries. This feature can also be used to create wrapper classes for unmanaged code

(which is supported in C#).

�Static Methods in Interfaces
From Java 8 onward, you can add static methods to an interface. Here is a sample for you:

interface MyInterface {

 // The static interface method (Java 8 onward)

 static void staticMethod() {

 �System.out.println("\nStatic interface method in MyInterface

is called.");

 }

}

And similar to static methods in a class, you can invoke a static method in an

interface by adding the interface name after the period, like the following:

MyInterface.staticMethod();

It is important to note that if a class implements MyInterface, the implementing

class can have its own version of staticMethod(), but in that case, you cannot use the

@Override annotation. Consider the following code segment:

class ClassDemo8 implements MyInterface{

 //@Override <-Will cause Error

 public static void staticMethod() {

 �System.out.println("This is the static method of the

implementing class(ClassDemo8).");

 �System.out.println("You cannot override the static method in

MyInterface");

 }

Chapter 8 Understanding Class Variables and Class Methods

221

�Demonstration 6
You’ll finish this chapter with Demonstration 6, in which you will see a comparative

study of a traditional interface method, a default interface method, and a static interface

method.

package java2e.chapter8;

interface MyInterface {

 // The traditional interface method

 void traditionalInterfaceMethod();

 // The default interface method

 default void defaultInterfaceMethod() {

 �System.out.println("Default interface method in MyInterface is

called.");

 }

 // The static interface method (Java 8 onward)

 static void staticMethod() {

 �System.out.println("Static interface method in MyInterface is

called.");

 }

}

class ClassDemo8 implements MyInterface {

 @Override

 public void traditionalInterfaceMethod() {

 �System.out.println("Overriding the

traditionalInterfaceMethod() in ClassDemo8");

 }

 @Override

 public void defaultInterfaceMethod() {

 �System.out.println("Overriding the defaultInterfaceMethod() in

ClassDemo8");

 }

Chapter 8 Understanding Class Variables and Class Methods

222

 // @Override //Will cause Error

 public static void staticMethod() {

 �System.out.println("This is the static method of the

implementing class(ClassDemo8).");

 �System.out.println("You cannot override the static method in

MyInterface.");

 }

}

class Demonstration6 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-6.Exploring static

methods in an interface.***\n");

 System.out.println("Calling static interface method.");

 MyInterface.staticMethod();

 MyInterface inter = new ClassDemo8();

 �System.out.println("\nCalling the default interface method

from implementing class.");

 inter.defaultInterfaceMethod();

 �System.out.println("\nCalling the traditional interface method

from implementing class.");

 inter.traditionalInterfaceMethod();

 �System.out.println("\nCalling the static method from

implementing class.");

 ClassDemo8.staticMethod();

 �// Compile-time error: The static method of interface MyInterface

//can only be accesed as MyInterface.staticMethod();

 // inter.staticMethod();//error

 }

}

Output:

Demonstration-6.Exploring static methods in an interface.

Calling static interface method.

Static interface method in MyInterface is called.

Chapter 8 Understanding Class Variables and Class Methods

223

Calling the default interface method from implementing class.

Overriding the defaultInterfaceMethod() in ClassDemo8

Calling the traditional interface method from implementing class.

Overriding the traditionalInterfaceMethod() in ClassDemo8

Calling the static method from implementing class.

This is the static method of the implementing class(ClassDemo8).

You cannot override the static method in MyInterface.

The output is self-explanatory. Still, I want to draw your attention to the following points:

•	 You can apply @Override annotation to the default method in the

implementing class, but if you apply it to the static method, you will

receive a compile-time error.

•	 Notice that the following line

// inter.staticMethod();//error

will cause a compile-time error. (In this context, can you remember

that static methods in Java cannot be overridden?) So, you need to

invoke the static methods of an interface with interface name like the

following:

MyInterface.staticMethod();//ok

�Summary
This chapter covered the following:

•	 The concepts of static classes, methods, and variables

•	 Different types of initialization blocks and their usage

•	 Method hiding versus method overriding in Java revisited

•	 Static methods in an interface and how they are different from

traditional interface methods or default methods

•	 How these concepts can be implemented in Java and the restrictions

associated with them

Chapter 8 Understanding Class Variables and Class Methods

225
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_9

CHAPTER 9

Quick Recap of OOP
Principles
Welcome to the final chapter of Part I. So far, you have learned the fundamentals of

object-oriented programming with the basic building blocks in Java. Before you proceed

to Part II, let’s review the core principles that you have already covered in this book.

•	 Class and objects. Throughout the book, in almost every example, I

have used different types of classes and objects. The use of the static

keyword was little bit different, and you accessed the static fields

through the class names.

•	 Polymorphism. Both types of polymorphism were covered.

Compile-time polymorphism was covered through method

overloading, and runtime polymorphism was covered through

method overriding techniques. You have seen that dynamic method

dispatch is an important concept in Java.

•	 Abstraction. This feature was tested through abstract classes and

interfaces.

•	 Encapsulation. Each class with different access modifiers can be

considered in this category. But a better example can be a class with

a private member and a getter-setter. As per experts’ suggestions,

you should make your instance variables private and access them

through public getter-setter methods.

•	 Inheritance. You explored different types of inheritance in multiple

chapters.

226

•	 Message passing. Normally, a message for an object is to request

to invoke a method in the receiving object. In simple words,

message passing is just communication among different objects.

This feature is very common in a multi-threaded environment. But

you experimented with runtime polymorphisms, in which a super

class reference pointed to a subclass object, and this can also be

considered in this category. Multi-threading is discussed in Chapter

11 in the book.

•	 Dynamic binding. Runtime polymorphism through method

overriding examples can fall into this category.

�Q&A Session
9.1 Can you summarize the difference between abstraction and encapsulation?

The process of wrapping up the data and methods into a single entity is known as

encapsulation. Using this technique, you can prevent arbitrary and unsecured access

to your data. You can use different access modifiers to restrict direct access to your data.

But the use of getter and setter methods is a better example in this category. In case of

encapsulation, your entire code works like a capsule, so it is termed as an encapsulation.

In abstraction, you show the essential features but hide the detailed implementation

(or background details) from the user; for example, when you use a remote control to

switch on a television, the internal circuits of the device are not your concern. You are

OK with the device as long as your preferred channel appears properly on your television

once the button is pressed.

Note  Encapsulation focuses on the true implementation, that is, how you can
make an implementation, but abstraction focuses on what the implementation
can do for you. But these concepts are interrelated. So, for a nice abstraction, your
implementation should be properly encapsulated.

Chapter 9 Quick Recap of OOP Principles

227

Grady Booch, in his famous book Object-Oriented Analysis and Design with
Applications (Third Edition, Addison-Wesley), says the following: “Abstraction
focuses on the observable behavior of an object, whereas encapsulation focuses
on the implementation that gives rise to this behavior. Encapsulation is most
often achieved through information hiding (not just data hiding), which is the
process of hiding all the secrets of an object that do not contribute to its essential
characteristics.”

You can revisit the Chapter 1 for these definitions.

9.2 Which one is faster between these—compile-time polymorphism or runtime
polymorphism?

In general, if you resolve a call (for example, invocation of a method) early, it is faster.

This is why you can conclude that compile-time binding is faster than runtime binding

or polymorphism—because it is known in advance which method to call.

9.3 You told us earlier that inheritance might not always provide the best solution.
Can you please elaborate?

In some cases, composition can provide a better solution. But to understand

composition, you may need to know these concepts:

•	 Association

•	 Aggregation

Association can be one way or both ways. When you see this kind of UML diagram,

it means ClassA knows about ClassB, but the reverse is not true.

The following diagram indicates a two-way association because both classes know

each other.

Chapter 9 Quick Recap of OOP Principles

228

Consider an example. In a college, a student can learn from multiple teachers, and a

teacher can teach multiple students. There is no ownership in this kind of relationship.

So, when you represent them with classes and objects in programming, you can say that

both kinds of objects can be created and deleted independently.

Aggregation is a stronger type of association. The aggregation between a professor

and department can be represented as follows.

Let’s go deeper. Suppose that Professor X submits his resignation letter to his existing

organization to join a new organization. Although both Professor X and his former

institution can survive without each other, Professor X needs to associate himself with a

department in an institution. In this situation, you’d say that the department is the owner

of this relationship and the department has professors.

Similarly, you can say that a human body has hands, a car has seats, a bike has tires,

and so forth.

Note I n general, you say that a department has a professor. This is why an
association relationship is also known as “has-a” relationship. (You can note down
the key difference with inheritance here. Inheritance is associated with the “is-a”
relationship.

Composition is a stronger form of aggregation, and this time you have a filled

diamond in place.

A department in a college cannot exist without the college. The college only creates

or closes its departments. (You can argue that if there is no department at all, a college

cannot exist, but you do not need to complicate things by considering this type of corner

case.) In other words, the lifetime of a department entirely depends on its college.

Chapter 9 Quick Recap of OOP Principles

229

This is also known as a death relationship because if you destroy the college, all of its

departments are destroyed automatically. Similarly, you can say the hands (or legs, etc.)

of a human being cannot exist without the body.

�Revisiting the Diamond Problem
To show the power of aggregation/composition, let’s revisit the diamond problem that

was discussed in Chapter 4, and then analyze the following program. Let’s start with the

following code.

class Parent {

 public void show() {

 System.out.println("I am in Parent");

 }

}

class Child1 extends Parent {

 public void show() {

 System.out.println("I am in Child1");

 }

}

class Child2 extends Parent {

 public void show() {

 System.out.println("I am in Child2");

 }

}

Java does not allow you to write something like the following:

class GrandChild extends Child1,Child2// Error: Not supported in Java

{

 public void show() {

 System.out.println("I am in Grandchild");

 }

}

Chapter 9 Quick Recap of OOP Principles

230

�Demonstration 1
Now, let’s see how to handle this situation with aggregation (a lighter form of

composition). Consider the following code:

package java2e.chapter9;

class Parent {

 public void show() {

 System.out.println("I am in Parent");

 }

}

class Child1 extends Parent {

 @Override

 public void show() {

 System.out.println("I am in Child1");

 }

}

class Child2 extends Parent {

 @Override

 public void show() {

 System.out.println("I am in Child2");

 }

}

//Not supported in Java

/*

 * class GrandChild extends Child1,Child2// Error: Not supported in Java {

 * public void show() { System.out.println("I am in Grandchild"); } }

 */

class GrandChild {

 Child1 ch1 ;

 Child2 ch2 ;

 GrandChild() {

 ch1 = new Child1();

 ch2 = new Child2();

 }

Chapter 9 Quick Recap of OOP Principles

231

 public void showFromChild1() {

 ch1.show();

 }

 public void showFromChild2() {

 ch2.show();

 }

}

And here is code for Demonstration1.java which contains the main() method:

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.The concept of aggregation/

composition to handle the diamond Problem***\n");

 GrandChild gChild = new GrandChild();

 gChild.showFromChild1();

 gChild.showFromChild2();

 }

}

Output:

***Demonstration-1.The concept of aggregation/composition to handle the

diamond Problem***

I am in Child1

I am in Child2

You can see that both Class1 and Class2 have overridden their parent’s show()

method. And the Grandchild class doesn’t have its own show() method. Still, you can

invoke those class-specific methods through the Grandchild object.

The Grandchild class allows you to create the objects from both Class1 and Class2

inside its constructor body. In the prior example, though the Child1 and Child2 objects

can survive without the Grandchild objects, there are no individual objects from either

Class1 or Class2. So, in this implementation, if Grandchild objects are not present

in your application (let’s say, have been garbage collected), there will be no Class1 or

Class2 object that can reside inside the system. You can also place some restrictions on

users so that they are not able to create objects of Class1 and Class2 directly inside the

application; for simplicity, I have ignored that part.

Chapter 9 Quick Recap of OOP Principles

232

Note  You are aware of generalization, specialization, and realization. You have used
these concepts in your applications. When your class extends another class (i.e.,
inheritance), you use the concepts of generalization and specialization; for example,
a footballer (a.k.a. a soccer player) is a special kind (specialization) of athlete. Or, you
can say that both a footballer and a basketball player are athletes (generalization). And
when your class implements an interface, you use the concept of realization.

�Q&A Session
9.4 In Demonstration 1, inside the client code, I can instantiate a Child1 or Child2

object. For example, I can use the following line of code:

Child1 child1=new Child1();

And in such a case, a Child1 object can persist in my system without a GrandChild

object. Is this understanding correct?
Yes. You can say that this is an example of aggregation, or a lighter form of

composition. But you can always restrict the user to directly instantiating objects from

the Parent, Child1, or Child2 classes. For example, you can place these classes inside

a package and let your Grandchild class be the only public class inside that. Inside the

client code, one can create GrandChild objects only.

Consider the structure in Figure 9-1, which is the Package Explorer view for the

upcoming demonstration.

Figure 9-1.  Using composition to solve the diamond problem

Chapter 9 Quick Recap of OOP Principles

233

And the classes inside the package (java2e.chapter9.mypackage) are as follows (key

changes are shown in bold):

//Parent.java

package java2e.chapter9.mypackage;

class Parent {

 public void show() {

 System.out.println("I am in Parent");

 }

}

//Child1.java

package java2e.chapter9.mypackage;

class Child1 extends Parent {

 @Override

 public void show() {

 System.out.println("I am in Child1");

 }

}

//Child2.java

package java2e.chapter9.mypackage;

class Child2 extends Parent {

 @Override

 public void show() {

 System.out.println("I am in Child2");

 }

}

//GrandChild.java

package java2e.chapter9.mypackage;

public class GrandChild { //This class is public here

 Child1 ch1 ;

 Child2 ch2 ;

Chapter 9 Quick Recap of OOP Principles

234

 public GrandChild() {

 ch1 = new Child1();

 ch2 = new Child2();

 }

 public void showFromChild1() {

 ch1.show();

 }

 public void showFromChild2() {

 ch2.show();

 }

}

The client code may look like the following:

//Demonstration1.java

package java2e.chapter9;

import java2e.chapter9.mypackage.GrandChild;

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.The concept of

aggregation/composition to handle the diamond Problem***\n");

 //Child1 child1=new Child1();//Error: not visible to client

 //Child2 child1=new Child2();//Error: not visible to client

 GrandChild gChild = new GrandChild();

 gChild.showFromChild1();

 gChild.showFromChild2();

 }

}

Now, if you execute the program, you’ll receive the same output, but in this structure

you allow an outsider to create only a Grandchild object. So, in such a case, you provide

more restriction, and your application will not hold any object from Child1 or Child2 if

there is no GrandChild object.

Chapter 9 Quick Recap of OOP Principles

235

9.5 What are the challenges and drawbacks of OOP?

Many experts believe that, in general, the size of object-oriented programs is larger. Due

to the larger size, you may need more storage (but nowadays, these issues hardly matter).

Some developers find difficulties in the object-oriented programming style. They

may still prefer other approaches, such as structured programming, logic programming,

and so forth, so if they are forced to work in an OOP environment, life becomes tough for

them.

It is also true that you cannot efficiently solve every real-world problem in the object-

oriented style. There are always some problems that can be solved better with a different

approach; for example, a particular sudoku puzzle can be solved much more easily with

Prolog (a logic programming language) than with Java (an object-oriented programming

language).

Also, a common problem with the object-oriented style may arise when you need

to find bugs in an execution flow, particularly if, in your codebase, there are many small

methods (or functions) that call each other for a simple event. However, I personally like

object-oriented programming because I believe that its merits are greater than its demerits.

�Summary
This chapter included the following:

•	 A quick review of the core OOP principles in this book

•	 How to differentiate abstraction from encapsulation

•	 How to implement the concept of composition/aggregation in your

application

•	 The challenges and drawbacks associated with OOP

Chapter 9 Quick Recap of OOP Principles

PART II

Get Familiar with
Advanced Programming

Chapter 10: Managing Exceptions

Chapter 11: Thread Programming

Chapter 12: Generic Programming

Chapter 13: Database Programming

Chapter 14: Important Features in Java’s Enhancement Path

239
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_10

CHAPTER 10

Managing Exceptions
When you write code for your application, you expect that it will execute without any

problems. So, it is important to manage and detect all possible errors in your program.

Even so, sometimes you may encounter surprises during program execution. These

surprises may occur for various reasons, such as some careless mistake in the program,

implementation of incorrect logic, loopholes in the code paths of the program, and

so on. However, it is also true that many of the failures are beyond the control of

a programmer. Programmers often term these unwanted situations as exceptions.

Handling these exceptions is essential when you write any application.

�Types of Mistakes
Normally, you can broadly classify the mistakes (or errors) in a program into two

categories, as follows:

•	 Compile-time error

•	 Runtime error

Compile-time errors are detected by the Java compiler and are easy to detect. The

Java compiler acts as your friend to figure out the error details. For example, it may point

out a line number (where the error is encountered) and display a brief description of

the error. Once you correct it, you need to recompile it to check whether the updated

program is ready for execution. Sometimes, you may need to fix multiple errors, and, as

a result, multiple recompilations may be needed. The Java compiler will not generate the

class file if it finds these kinds of errors in your program.

240

Let’s consider some typographical errors in the following program:

package java2e.chapter10;

class IncorrectClass //{

 void SampleMethod() {

 System.out.println("Semicolon missing") //error

 }

}

Here, the Java compiler will display error messages. In Eclipse, you can see the error

description and the corresponding line numbers, as shown in Figure 10-1.

Figure 10-1.  Two typographical errors in Eclipse IDE

So, you can see that you missed the bracket { after the class definition and you forgot

to put a semicolon at the end of line number 5.

This type of error is common but sometimes hard to find with human eyes at the very

beginning. So, the Java compiler will rescue you in these situations.

On the other hand, runtime errors are challenging. In this case, you get a green

signal from the compiler, and on successful compilation you get the .class file, but your

program still produces wrong results and may terminate prematurely. Here are some

examples of runtime errors that can be caused by the following operations:

•	 Dividing an integer by 0

•	 Trying to access an array element that is out of bounds of an array

•	 Using a null object to invoke a method

•	 Trying to do invalid conversions, such as trying to convert an invalid

string to an integer

Intentionally in some places, I am using the term mistake instead of error. The reason

will be revealed to you shortly.

Chapter 10 Managing Exceptions

241

�Definition of Exception
You can define an exception as an event that breaks the normal execution or the

instruction flow of the program.

When exceptional situations arise, an exception object is created and thrown into the

method that created the exception. That method may or may not handle the exception. If

it cannot handle the exception, it will pass the responsibility to another method. (Similar

to our daily life, when a situation goes beyond our control, we seek advice from others.)

If there is no method to take responsibility for handling a particular exception, an error

dialog box appears (indicating an unhandled exception), and the execution of the

program stops.

POINTS TO REMEMBER

An exception-handling mechanism deals with runtime errors, and if they are not handled

properly, an application will produce unwanted output, and it may die prematurely. Therefore,

you should try to write applications that can detect and handle surprises in a graceful manner

and prevent the premature death of the application.

�Demonstration 1
Let’s begin with a simple example. The following program compiles successfully, but it

will raise an exception during runtime because in this program, the divisor (b) becomes

0 prior to the division operation. The application produces a runtime error because, in

this case, you are trying to divide 100 by 0.

package java2e.chapter10;

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.Exploring

Exceptions.***");

 int a = 100, b = 2, result;

 b -= 2;//b beomes 0

Chapter 10 Managing Exceptions

242

 result = a / b;

 System.out.println("The result of a/b is :" + result);

 }

}

Output:

Demonstration-1.Exploring Exceptions.

Exception in thread "main" java.lang.ArithmeticException: / by zero

at java2e.chapter10.Demonstration1.main(Demonstration1.java:9)

�Key Points of the Exception-handling Mechanism
Before you proceed further, I’ll highlight some key points of the exception-handling

mechanism. You may need to come back to these points repeatedly. It is suggested

that once you finish this chapter, you come back here to review your understanding of

exception handling in Java.

•	 An exceptional object is created when a runtime error occurs. So,

a Java exception is basically an object to describe an erroneous

situation.

•	 Any method in an application can raise surprises during the

application’s runtime. If such a situation occurs, in programming

terminology, you say that the method has thrown an exception.

•	 You use the following keywords to deal with Java exceptions: try,

catch, throw, throws, and finally.

•	 You try to guard against an exception with a try-catch block. The

code that may throw an exception is placed inside a try block, and

this exceptional situation is handled inside a catch block. But if there

is no exception raised in the try block, the catch blocks are bypassed

completely.

•	 You can associate multiple catch blocks with a try block. When a

particular catch block handles the sudden surprise (the exception),

you say that the catch block has caught the exception.

Chapter 10 Managing Exceptions

243

•	 The code in the finally block must execute. A finally block is

generally placed after a try block or a try-catch block. This block is

used to perform some housekeeping so that the application can be

gracefully closed. For example, if a file is already opened, you should

close it here, or if you already allocated some resources, those should

be released inside this block.

•	 When an exception is raised inside a try block, the control jumps to

the respective catch or finally block. The remaining part of the try

block will not execute.

•	 Exceptions follow the inheritance hierarchy. So, it is important to

remember the hierarchy, shown in Figure 10-2.

Figure 10-2.  Exception hierarchy

•	 You can see that both the Exception class and the Error class are

subclasses of the Throwable class, which in turn derives from Object

(in the java.lang package). By other exceptions, I mean classes like

IOException (already defined in Java), our own custom exception

classes (not defined in Java), and so on. So, you can simply say that in

Java, the Throwable class is the ultimate super class of all errors and

exceptions.

•	 Exceptions are broadly categorized into two types: checked and

unchecked. The runtime exception classes (RuntimeException

class and its subclasses) and error classes (Error class and its

subclasses) fall into the category of unchecked exceptions, and the

Chapter 10 Managing Exceptions

244

others remaining are called checked exceptions. You’ll see a detailed

discussion of each category shortly, and Q&A 10.8 will summarize the

details.

•	 This chapter primarily focuses on runtime exceptions. Errors, in

general, are caused by some catastrophic failures, like JVM being out

of memory, stack overflow, and so on. You can hardly do anything

with them. The Java runtime environment itself needs to take care of

these severe situations.

•	 When you create your custom exception classes, in general,

you’ll subclass from the Exception class. But it is not a rule. So, in

Demonstration 7, you’ll see that a custom exception class extends

from the Throwable class, and in Demonstration 8, you will notice

that a custom exception class inherits from the RuntimeException

class.

•	 You should order the catch blocks from most specific to most

general. Otherwise, you will encounter compile-time errors. For

example, suppose you have placed a catch block (say, catch block1)

that can handle a parent-class exception before a catch block (say

catch block2) that can handle only the derived-class exception.

From the compiler’s point of view, it is an example of unreachable

code, because in this case catch block1 is always capable of handling

the exceptions that catch block2 can handle. Therefore, control does

not need to reach catch block2 at all. You will examine this scenario

in an upcoming example.

•	 You can use any of these combinations: try-catch, try-catch-

finally, or try-finally.

•	 The Java runtime system can generate exceptions. At the same time,

you can also create your own exception class and throw your own

exception.

•	 If you do not handle exceptions, a default handler of the Java runtime

system will handle it on your behalf, and the program may die

prematurely.

Chapter 10 Managing Exceptions

245

POINTS TO REMEMBER

•	 In Java, the Throwable class is the ultimate super class of all errors and

exceptions.

•	 In an exception-handling mechanism, there is a key difference between Java and

C#. There is no concept of the throws keyword in C#. This is a hot topic of debate.

�Demonstration 2
Now, let’s see how you can handle the exception that was encountered in the previous

example.

package java2e.chapter10;

public class Demonstration2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.Exploring Exceptions-

Demonstration1 is modified.***");

 int a = 100, b = 2, result;

 b -= 2;// b beomes 0

 try {

 result = a / b;

 �System.out.println(" So, the result of a/b is : " +

result);

 } catch (Exception ex) {

 �System.out.println("Encountered an exception " +

ex.getMessage());

 System.out.print("Here is the stack trace:");

 ex.printStackTrace();

 } finally {

 �System.out.println("I am in finally. You cannot skip me!");

 }

 }

}

Chapter 10 Managing Exceptions

246

Output:

Demonstration-2.Exploring Exceptions-Demonstration1 is modified.

Encountered an exception / by zero

Here is the stack trace:java.lang.ArithmeticException: / by zero

I am in finally. You cannot skip me!

at java2e.chapter10.Demonstration2.main(Demonstration2.java:10)

You can confirm the following points from the output of the program:

•	 When an exception was raised inside a try block, the control jumped

to the respective catch block. The remaining part of the try block did

not execute. (Notice that you are not seeing the line "So, the result

of a/b is :" in the output.)

•	 The code in the finally block executed even though the program

encountered an exception. (Notice the line "I am in finally. You

cannot skip me!" in the output).

•	 To get the details of the exception, some built-in methods are already

defined in the java.lang.Throwable class. The getMessage(),

printStackTrace(), getCause(), etc. are some common examples

in this category. I have used two of them—getMessage() and

printStackTrace()—in this demonstration. For your immediate

reference, I am just picking a sample source code snapshot to get

details of the getMessage() method from Eclipse IDE, which is

shown in Figure 10-3.

Figure 10-3.  A sample source code snapshot from Eclipse IDE

Chapter 10 Managing Exceptions

247

�Q&A Session
10.1 I could easily put an if block like if(b==0) before the division operation to
avoid a 0 divisor, and in that case I could easily exclude the use of the try-catch

block. Is this understanding correct?

You are considering only this simple example, which is why it appears to you this way.

Yes, in this case, you can guard your code using your proposed method. However, think

of a case where the value of b is also computed at runtime (for example, you may pick

a random value from a specified range, and you cannot predict the value earlier). Also,

if you need to put guards like this in all probable cases, your code may look clumsy and

difficult to read. But if you like a defensive programming style, you may keep asking for a

valid input. So, at the end, it’s your choice as to how you want to design your software.

�Demonstration 3
Now, consider the following example, which examines how to handle multiple type

exceptions with multiple catch blocks. In the following program, the value of the integer

b can be 0, 1, or 2. This value is generated at random. So, you cannot predict the value.

Based on the generated value, you may encounter different types of exceptions. To

understand it better, you may need to visit the output and analysis section multiple

times.

package java2e.chapter10;

import java.util.Random;

public class Demonstration3 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-3.Handling multiple

Exceptions***");

 int a = 5;

 Random randomGenerator = new Random();

 // Will generate 0 to 2.

 int b = randomGenerator.nextInt(3);

 System.out.println("Current value of b is : " + b);

 int c = 0;

Chapter 10 Managing Exceptions

248

 try {

 / Case-1:if b=0,it will raise ArithmeticException*/

 c = a / b;

 System.out.println("c=" + c);

 int[] arr = new int[2];

 arr[0] = 0;

 arr[1] = c + 1;

 if (b % 2 == 0) {

 �/* Case-2: (b is not zero here) it will raise

ArrayIndexOutOfBoundsException*/

 arr[2] = c + 2;

 } else {

 Object myObject = null;

 // case-3: It raises NullPointerException

 int hashcode = myObject.hashCode();

 }

 } catch (ArithmeticException ex) {

 �System.out.println("Caught the ArithmeticException :" +

ex.getMessage());

 ex.printStackTrace();

 } catch (ArrayIndexOutOfBoundsException ex) {

 �System.out.println("Caught the

ArrayIndexOutOfBoundsException :" + ex.getMessage());

 ex.printStackTrace();

 } catch (Exception ex) {

 �System.out.println("Caught the Exception :" +

ex.getMessage());

 ex.printStackTrace();

 } finally {

 System.out.println("I am finally here");

 }

 }

}

Chapter 10 Managing Exceptions

249

Output:

When you compile and run the program, you may notice any of the following

outputs. I have shown all possible outputs in different runs. You may get a different order

because the value of b is generated at random.

Case 1:

Demonstration-3.Handling multiple Exceptions

Current value of b is : 1

c=5

Caught the Exception :null

I am finally here

java.lang.NullPointerException at java2e.chapter10.Demonstration3.

main(Demonstration3.java:27)

Case 2:

Demonstration-3.Handling multiple Exceptions

Current value of b is : 2

c=2

Caught the ArrayIndexOutOfBoundsException :2

I am finally herejava.lang.ArrayIndexOutOfBoundsException: 2

at java2e.chapter10.Demonstration3.main(Demonstration3.java:23)

Case 3:

Demonstration-3.Handling multiple Exceptions

Current value of b is : 0

Caught the ArithmeticException :/ by zero

I am finally here

java.lang.ArithmeticException: / by zero at java2e.chapter10.

Demonstration3.main(Demonstration3.java:16)

You can observe the following points from the output of the program:

•	 When an exception is raised, only one catch block is executed. For

example, if the block catch (ArithmeticException ex){..} can

handle the exception, the block catch (Exception ex){..} does not

need to handle the exception again.

Chapter 10 Managing Exceptions

250

•	 In the preceding program, all types of exceptions can be caught

inside the catch (Exception ex) block, and so this block must be

placed as the last catch block. For example, in this case:

•	 The ArithmeticException class derives from the

RuntimeException class, which in turn derives from the

Exception class.

•	 The ArrayIndexOutOfBoundsException class derives from the

IndexOutOfBoundsException class, which in turn derives from

the RuntimeException class, which in turn derives from the

Exception class.

Note I n Eclipse, you can hover your mouse pointer on the exception name and
then choose the option “Open Declaration” to reveal the inheritance hierarchy.

�Multiple catch Clauses
From Java 7 onward, you can use a different variation of the catch clause. Now a single

catch block can be used to catch multiple exception types. The following code snippet

shows how to use multiple catch clauses in a common block:

//Java 7 onward, you can write multiple catch clauses like the following

catch (ArithmeticException | ArrayIndexOutOfBoundsException ex)

{ System.out.println("Caught either ArithmeticException or

ArrayIndexOutOfBoundsException :" + ex.getMessage());

 ex.printStackTrace();

 }

10.2 Can you predict the output of the following?

package java2e.chapter10;

import java.util.Random;

Chapter 10 Managing Exceptions

251

public class Quiz1 {

 public static void main(String[] args) {

 �System.out.println("***Quiz1.It is about how to place the

catch clauses in the program.***");

 int a = 5;

 Random randomGenerator = new Random();

 // Will generate 0 to 2.

 int b = randomGenerator.nextInt(3);

 System.out.println("Current value of b is : " + b);

 int c = 0;

 try {

 //Here b=0,it will raise an ArithmeticException

 c = a / b;

 System.out.println("c=" + c);

 }

 //Incorrect placement of following catch clause

 catch (Exception ex) {

 �System.out.println("Caught the Exception :" +

ex.getMessage());

 ex.printStackTrace();

 }

 �//Java 7 onward, you can write multiple catch clauses like the

//following

 catch (ArithmeticException | ArrayIndexOutOfBoundsException ex) {

 �System.out.println("Caught either ArithmeticException or

ArrayIndexOutOfBoundsException :" + ex.getMessage());

 ex.printStackTrace();

 }

 //Correct placement of the catch clause

 /*catch (Exception ex) {

 �System.out.println("Caught the Exception :" +

ex.getMessage());

 ex.printStackTrace();

Chapter 10 Managing Exceptions

252

 }*/finally {

 System.out.println("I am finally here");

 }

 }

}

You’ll encounter a compile-time error: Unreachable catch block for

ArithmeticException. It is already handled in the catch block for

Exception, as shown in Figure 10-4.

Figure 10-4.  Unreachable catch block

Exceptions follow the inheritance hierarchy. Therefore, you need to place catch

blocks properly. It has already been mentioned that the ArithmeticException class

derives from the RuntimeException class, which in turn derives from the Exception

class. For your easy understanding, follow the associated comments in the program.

POINT TO REMEMBER

When you deal with multiple catch blocks, you need to place the more-specific exception

clause first. In other words, you should place the catch blocks from most specific to most

general.

It will be good to note that if you are familiar with C#, you may notice that it supports

some additional variations of catch clauses. For example, in C#, you may notice the

following variations of catch blocks:

catch ()

 {

 Console.WriteLine("Encountered an Exception");

 }

Chapter 10 Managing Exceptions

253

Or:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)

 {

 //some code

 }

�Q&A Session
10.3 Can I use try and finally only as follows?

try{

 //Some code

 }

finally{

 //Some code

}

Yes.

10.4 Then why do you need a catch block at all?

The catch block is used to handle the exception in some specified manner. At the same

time, you must note that the actual use of finally is different. It has been previously

mentioned that inside finally you should do housekeeping so that the application can

be gracefully closed. For example, if a file is already opened, you should close it, or, if you

already allocated some resources, those should be released inside this block (to prevent

memory leaks). In Chapter 14, you will learn to use a try-with-resource statement,

where by using the term “resource” we mean an object that must be closed after the

program finishes execution.

10.5 What will happen if I encounter an exception inside a finally block?

You should not forget the purpose of finally, which basically is to close files, release

occupied resources, etc. But if you put your erroneous logic in the finally block, you

may encounter an exception again. (The solution is the same—you can guard against a

probable exception in the finally block with a try-catch, try-finally, or try-catch-

finally block. In fact, prior to Java 6, you may notice such usage to close a resource.)

Chapter 10 Managing Exceptions

254

�Demonstration 4
Here is such an example for your ready reference. You can see that once you receive the

exception (when b becomes 0 in finally block), as usual, the subsequent lines inside the

finally block will not execute. For example, in the following case the line “I am at the

end of finally block” is not appearing in the output.

package java2e.chapter10;

import java.util.Random;

public class Demonstration4 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4.Incorrect way of

writing code inside the finally block***");

 try {

 System.out.println("I am inside the try block.");

 }

 finally {

 �System.out.println("I am at the beginning of finally

block.");

 int a = 5;

 Random randomGenerator = new Random();

 // Will generate 0 to 2.

 int b = randomGenerator.nextInt(3);//Can produce 0

 System.out.println("Current value of b is : " + b);

 int c = a / b;

 System.out.println("c=" + c);

 System.out.println("I am at the end of finally block.");

 }

 }

}

Here is the output when the value of b is 0:

***Demonstration-4.Incorrect way of writing code inside the finally

block***

I am inside the try block.

Chapter 10 Managing Exceptions

255

I am at the beginning of finally block.

Current value of b is : 0

Exception in thread "main" java.lang.ArithmeticException: / by zero

at java2e.chapter10.Demonstration4.main(Demonstration4.java:19)

It is also useful to note that if you kill or interrupt a thread, the finally block may

not execute, even though other threads can run and make the application as a whole

alive. You will learn about threads in Chapter 11.

�Q&A Session
10.6 Up until now, you have given examples like ArrayIndexOutOfBoundsException,
ArithmeticException, etc. How can I remember these names?

These are built-in exceptions in Java. All of these are already defined in the java.

lang package. Since this package is the default package, you’ll get all these exceptions

imported by default. Upon practice, you can remember their names. I personally take

help from Eclipse. Similar IDEs can help you with this as well.

In this context, you can notice what the exception is that your default handler is

throwing. From that report, you can get the name of the exception. For example, notice

the output of our Demonstration 1, which is as follows:

Demonstration-1.Exploring Exceptions.

Exception in thread "main" java.lang.ArithmeticException: / by zero

at java2e.chapter10.Demonstration1.main(Demonstration1.java:9)

From this output, you know that an ArithmeticException is raised.

�Throwing an Exception
Up until now, you have seen examples of handling exceptions thrown by the Java

runtime system. When you process Java statements, you may encounter such exceptions

due to the wrong logic, loopholes, and so forth. But there is an alternative way to raise

an exception—you also have the freedom to throw an exception explicitly by using the

throw keyword. This method is useful when you make your own application and want to

control the exceptional situation.

Chapter 10 Managing Exceptions

256

When you use the throw keyword, you need to follow the basic format, which is as

follows:

throw anObjectOfThrowable;

where anObjectOfThrowable must be an instance of the Throwable class or its subclass.

�Demonstration 5
Consider the following program and corresponding output:

package java2e.chapter10;

class DemoClass {

 void thowingException() {

 System.out.println("I always throw a NullPointerException");

 �throw new NullPointerException("Forcefully throwing a

NullPointerException");

 // System.out.println("I'll never print this line");

 }

}

class Demonstration5 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration5.The use of 'throw'

keyword***\n");

 DemoClass demo = new DemoClass();

 try {

 demo.thowingException();

 } catch (Exception e) {

 System.out.println(e.getMessage());

 e.printStackTrace();

 }

 }

}

Chapter 10 Managing Exceptions

257

Output:

Demonstration5.The use of 'throw' keyword

I always throw a NullPointerException

Forcefully throwing a NullPointerException

java.lang.NullPointerException: Forcefully throwing a

NullPointerException at java2e.chapter10.DemoClass.thowingException(D

emonstration5.java:6)

at java2e.chapter10.Demonstration5.main(Demonstration5.java:17)

�Rethrowing an Exception
Sometimes you need to rethrow an exception; for example, when you want to write a

log entry or when you want to send a new higher-level exception. When you rethrow

an exception from a catch block, it is rethrown to the next enclosing try block.

Demonstration 6 shows such an example.

Here is a sample format that you can use to rethrow an exception:

try{

 //some code

 }

catch(Exception ex){

 //some code, for example, you log the exception

 //Now rethrow it

 throw ex;

}

�Demonstration 6
Consider the following:

package java2e.chapter10;

class Demonstration6 {

 static int c;

Chapter 10 Managing Exceptions

258

 static void divide(int a, int b) {

 try {

 b--;

 c = a / b;

 // some code

 } catch (ArithmeticException ex) {

 //Log it now

 System.out.println("a= " + a + " b= " + b);//a=100,b=0

 �System.out.println("Caught an exception: " +

ex.getMessage());

 // Now rethrow it

 throw ex;// rethrowing the exception

 }

 }

 public static void main(String[] args) {

 �System.out.println("***Demonstration-6.Rethrowing an

exception.***");

 int a = 100, b = 1;

 try {

 divide(a,b);

 }

 catch (Exception ex) {

 �System.out.println("Recaught the exception inside main()

method.");

 System.out.println("a= " + a + " b= " + b);//a=100,b=1

 System.out.println("Here is the stackTrace :");

 ex.printStackTrace();

 }

 }

}

Chapter 10 Managing Exceptions

259

Output:

Demonstration-6.Rethrowing an exception.

a= 100 b= 0

Message: / by zero

Recaught the exception inside main() method.

a= 100 b= 1

Here is the stackTrace :

java.lang.ArithmeticException: / by zero

 at java2e.chapter10.Demonstration6.divide(Demonstration6.java:10)

 at java2e.chapter10.Demonstration6.main(Demonstration6.java:25)

You can see why logging some additional details before you rethrow an exception is

important. As soon as you encountered the exception, you logged it, and from that log

you discovered that the divisor (b) became 0 in the divide() method. If you do not use

the try-catch block inside the divide() method and you do not log the values of a and b

immediately, then you are dependent on the catch block inside the main() method only.

In a case like this, when you see the final log statements, you may wonder why you see

this exception even if the value of b is 1.

Note  You’ll learn to create and use your own exception shortly, and you may
combine the original exception with your custom exception message and then
rethrow it for better readability.

10.7 Can you compile the following code fragment?

package java2e.chapter10;

class TestClass {

 // some code

}

class Quiz2 {

 void raiseException() {

 System.out.println("I love to throw an exception");

 try {

 throw new TestClass();

Chapter 10 Managing Exceptions

260

 } catch (TestClass e) {

 //some code

 }

 }

}

You will get a compiler error—No exception of type TestClass can be thrown;

an exception type must be a subclass of Throwable—as shown in Figure 10-5.

Figure 10-5.  An exception type must be a subclass of Throwable

To remove the errors in the previous program, you can follow the compiler’s

suggestion. For example, in this case, if you just make the following change in the

previous code, the compiler will not complain:

class TestClass extends Throwable{

//remaining code as it is

�Use of throws Keyword
Java supports both the keywords throw and throws. You have already seen the use of the

throw keyword in Demonstrations 5 and 6. Before you use the throws keyword, you need

to remember the following points:

•	 A throws keyword will be needed to indicate all the exceptions that a

method can throw. Otherwise, you’ll encounter compile-time errors

(except for the next point).

•	 The previous rule is not applicable for Error or RuntimeException or

any of their subclasses.

•	 You must remember that checked exceptions must be included in a

method’s throws list.

The upcoming demonstrations will illustrate these points in detail.

Chapter 10 Managing Exceptions

261

Note  Q&A 10.8 can help you to differentiate the checked exceptions from
the unchecked exceptions. I suggest you go through Demonstration 7 and
Demonstration 8 before you enter into that discussion.

�Demonstration 7
Consider the following:

package java2e.chapter10;

class TestClassException extends Throwable {

 String str;

 TestClassException(String str) {

 this.str = str;

 }

 public String getMessage() {

 return str;

 }

}

class DemoClass7 {

 void raiseException() throws TestClassException {

 throw new TestClassException("A TestClassException is raised");

 }

}

class Demonstration7 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-7.The use of throws

keyword***\n");

 DemoClass7 demo = new DemoClass7();

 try {

 demo.raiseException();

 } catch (TestClassException e) {

Chapter 10 Managing Exceptions

262

 �System.out.println(e.getMessage());

// A TestClassException is //raised

 System.out.println("Here is the stacktrace:");

 e.printStackTrace();

 }

 }

}

Output:

Demonstration-7.The use of throws keyword

A TestClassException is raised

Here is the stacktrace:

java2e.chapter10.TestClassException: A TestClassException is raised at

java2e.chapter10.DemoClass7.raiseException(Demonstration7.java:17)at

java2e.chapter10.Demonstration7.main(Demonstration7.java:27)

Now, go through the following points:

•	 You can see that inside DemoClass7, the method raiseException()

is throwing an exception, but I have not used a try-catch block

around this code. Instead, I have added throws statements after the

method names, as follows:

void raiseException() throws TestClassException {

•	 It is used to confirm that this method has the capability of throwing

the exception of type TestClassException. The class has a

constructor to accept a String message, so you can provide a

meaningful message when you intend to throw such exceptions.

•	 If you ignore the throws clause and just use the following code in

Demonstration 7:

void raiseException(){

your program will not compile. It will raise the errors shown in Figure 10-6.

Chapter 10 Managing Exceptions

263

You may have to do the same for the main() method if you do not

surround the line of code demo.raiseException(); with a try-

catch block. So, in that case, your main() method also could be

like the following:

public static void main(String[] args) throws TestClassException {

//rest of the code

�Demonstration 8
Now, consider the following demonstration. In this program, notice that

TestClass8Exception derives from RuntimeException, and in this case I have not

included the custom exception in the raiseException() method’s throws list. But the

program still compiles.

package java2e.chapter10;

//The class derives from RuntimeException

class TestClass8Exception extends RuntimeException {

 String str;

 TestClass8Exception(String str) {

 this.str = str;

 }

 public String getMessage() {

 return str;

 }

}

Figure 10-6.  Compile-time error because TestClassException is not included in
raiseException()’s throws list

Chapter 10 Managing Exceptions

264

class DemoClass8 {

 // This time it will NOT raise compilation error

 void raiseException() {

 throw new TestClass8Exception("A TestClass8Exception is raised");

 }

}

class Demonstration8 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-8.The use of an

unchecked exception***\n");

 DemoClass8 demo = new DemoClass8();

 try {

 demo.raiseException();

 } catch (TestClass8Exception e) {

 �System.out.println(e.getMessage());

// A TestClassException is raised

 System.out.println("Here is the stacktrace:");

 e.printStackTrace();

 }

 }

}

Output:

Demonstration-8.The use of an unchecked exception

A TestClass8Exception is raised

Here is the stacktrace:

java2e.chapter10.TestClass8Exception: A TestClass8Exception is raised

at java2e.chapter10.DemoClass8.raiseException(Demonstration8.java:19)at

java2e.chapter10.Demonstration8.main(Demonstration8.java:28)

You can see that TestClass8Exception is derived from RuntimeException. So, it is

not a checked exception. This is why the compiler will not raise any errors when you do

not include this exception in the method’s throws list.

Chapter 10 Managing Exceptions

265

�Checked Versus Unchecked Exceptions
Now you understand the difference between checked and unchecked exceptions. I have

already mentioned that there are some kinds of exceptions where either a throws clause

needs to list all of the exceptions that a method can throw or you need to handle the

scenario with a try-catch block. Otherwise, you’ll encounter compile-time errors. This

is why these are called checked exceptions or compile-time exceptions. The remaining

exceptions are termed unchecked exceptions.

Note A s I mentioned before, to understand the difference between checked
exceptions and unchecked exceptions, you may need to visit Demonstration 7 and
Demonstration 8 again.

The following list includes some of the checked exceptions:

•	 ClassNotFoundException

•	 NoSuchMethodException

•	 NoSuchFieldException

•	 InstantiationException

•	 CloneNotSupportedException

•	 IllegalAccessException

•	 InterruptedException

Here are some unchecked exceptions:

•	 ArithmeticException

•	 ArrayIndexOutOfBoundsException

•	 IndexOutOfBoundsException

•	 SecurityException

•	 NullPointerException

Chapter 10 Managing Exceptions

266

POINT TO REMEMBER

If a method can throw a checked exception, then either the method should specify the

exception using the throws keyword or it needs to handle the exception itself using try-

catch block. Otherwise, you’ll encounter compile-time errors.

�Q&A Session
10.8 I understand that checked exceptions are subclasses of Exception. You are also
saying that unchecked exceptions are subclasses of RuntimeException. But from the
hierarchy, I am seeing that RuntimeException is also a direct subclass of Exception.
Then how they become unchecked exceptions?

Let’s see what JLS11 says about this. Under section 11.1.1, it says the following:

“The checked exception classes are all exception classes other than the
unchecked exception classes. That is, the checked exception classes are
Throwable and all its subclasses other than RuntimeException and its sub-
classes and Error and its subclasses.”

At the same time, it also says that “the unchecked exception classes are the run-time

exception classes and the error classes.”

Following these rules, the Java compiler can detect the RuntimeException clearly.

So, following the language specification, you can safely say that any exception that is a

subclass of the RuntimeException or Error class is not a checked exception.

�Discussion on Chained Exceptions
Sometimes you can receive an exception that may be caused by some other exception.

So, you may be interested to know the original cause. The concept of chained exceptions

comes into the picture in such a scenario.

Consider a very simple scenario of ArithmeticException, which you may receive

when you divide an integer by 0. Sometimes your application can compute or update the

divisor using various logic. So, when you receive this exception, the original cause may

be the result of an I/O that can ultimately make the divisor zero.

Chapter 10 Managing Exceptions

267

Chained exceptions can help us to know about such exceptional scenarios, and at

the same time they can point to the layer in which the actual error exists.

To allow chained exceptions, you have the following methods:

Throwable getCause() and

Throwable initCause(Throwable cause)

And the following constructors:

Throwable(Throwable cause)

Throwable(String msg, Throwable cause)

�Demonstration 9
Consider the following demonstration and output. Do not worry about some commented

portions. To make the program short and simple, these portions are ignored. You’ll learn

shortly that you can extend the chain once you uncomment these portions of code.

package java2e.chapter10;

class OuterException extends RuntimeException {

 String str = null;

 OuterException(String str) {

 this.str = str;

 }

 public String toString() {

 return str;

 }

}

class InnerException extends RuntimeException {

 String str = null;

 InnerException(String str) {

 this.str = str;

 }

Chapter 10 Managing Exceptions

268

 public String toString() {

 return str;

 }

}

//Indtroducing this class to increase the depth

/*

 class SubInnerException extends RuntimeException {

 String str = null; *

 SubInnerException(String str) {

this.str = str;

 }

 public String toString() {

return str;

}

}

 */

class Demo9Class {

 void raiseException() // throws clause not necessary now

 {

 �OuterException outer = new OuterException("An OuterException

is raised.");

 �InnerException inner = new InnerException("It is caused by an

InnerException.");

 �/*SubInnerException subInner = new SubInnerException("It is

again caused by an SubInnerException.");*/

 outer.initCause(inner);

 // inner.initCause(subInner);

 throw outer;

 }

}

class Demonstration9 {

 public static void main(String args[]) {

 �System.out.println("***Demonstration-9.A chained exception

demo***\n");

Chapter 10 Managing Exceptions

269

 Demo9Class demo = new Demo9Class();

 try {

 demo.raiseException();

 } catch (OuterException e) {

 System.out.println(e);

 �System.out.println("Here is the details:" + e.getCause());

 System.out.println("Here is the stack trace :");

 e.printStackTrace();

 }

 }

}

Output:

An OuterException is raised.

Here is the details:It is caused by an InnerException.

Here is the stack trace :

An OuterException is raised.at java2e.chapter10.Demo9Class.

raiseException(Demonstration9.java:41)at java2e.chapter10.Demonstration9.

main(Demonstration9.java:55)

Caused by: It is caused by an InnerException. at java2e.chapter10.

Demo9Class.raiseException(Demonstration9.java:42)

 ... 1 more

You can carry on to the depth you want. It is recommended that you do not make

a very long chain, because that can lead to a poor design. For simple demonstration

purposes, as said before, if you uncomment the commented portions of the code, you

will notice the following output:

Demonstration-9.A chained exception demo

An OuterException is raised.

Here is the details:It is caused by an InnerException.

Here is the stack trace :

An OuterException is raised.

 at java2e.chapter10.Demo9Class.raiseException(Demonstration9.java:46)

 at java2e.chapter10.Demonstration9.main(Demonstration9.java:60)

Caused by: It is caused by an InnerException.

Chapter 10 Managing Exceptions

270

 at java2e.chapter10.Demo9Class.raiseException(Demonstration9.java:47)

 ... 1 more

Caused by: It is again caused by an SubInnerException.

 at java2e.chapter10.Demo9Class.raiseException(Demonstration9.java:48)

 ... 1 more

10.9 Can you compile the following program?

package java2e.chapter10;

import java.util.Random;

class OuterQuiz3Exception extends Exception {

 String str = null;

 OuterQuiz3Exception(String str) {

 this.str = str;

 }

 public String toString() {

 return str;

 }

}

class InnerQuiz3Exception extends OuterQuiz3Exception {

 InnerQuiz3Exception(String str) {

 super(str);

 }

 public String toString() {

 return str;

 }

}

Chapter 10 Managing Exceptions

271

class Quiz3Class {

 �// InnerQuiz3Exception is not needed to include in the throws list

//because it is a subclass of OuterQuiz3Exception

 �void raiseException() throws OuterQuiz3Exception {

//throws clause is necessary now

 �OuterQuiz3Exception outer = new OuterQuiz3Exception("An

OuterQuiz3Exception is raised.");

 �InnerQuiz3Exception inner = new InnerQuiz3Exception("An

InnerQuiz3Exception is raised.");

 Random randomGenerator = new Random();

 // Will generate 0 to 1.

 int b = randomGenerator.nextInt(2);

 System.out.println("In this case, b="+ b);

 if (b == 0) {

 throw outer;

 } else

 throw inner;

 }

}

class Quiz3 {

 public static void main(String[] args) throws OuterQuiz3Exception {

 System.out.println("***Quiz3***\n");

 Quiz3Class demo = new Quiz3Class();

 try {

 demo.raiseException();

 } catch (OuterQuiz3Exception e) {

 System.out.println(e);

 System.out.println("Here is the stack trace :");

 e.printStackTrace();

 }

 }

}

Chapter 10 Managing Exceptions

272

Yes, the program will compile, and here is one possible output. (When b = 0).

Quiz3

In this case, b=0

An OuterQuiz3Exception is raised.

Here is the stack trace :

An OuterQuiz3Exception is raised.

at java2e.chapter10.Quiz3Class.raiseException(Quiz3.java:33)

at java2e.chapter10.Quiz3.main(Quiz3.java:52)

Here are some important points to note:

•	 The OuterQuiz3Exception class inherits from the Exception class.

So, it is a checked exception. Since you have not used a try-catch

block in the raiseException() method, the throws clause is

necessary for the raiseException() method now.

•	 You needed to list all the exceptions in the throws list that

the method can throw. But InnerQuiz3Exception is a

subclass of OuterQuiz3Exception. So, only the inclusion of

OuterQuiz3Exception in the throws list of the raiseException()

method was sufficient for you. But if you include

InnerQuiz3Exception also, there will be no compiler issue.

•	 I am generating a random number between 0 (inclusive) and 2

(exclusive), so output may vary when an InnerQuiz3Exception is

thrown (i.e., when b = 1).

�Creating a Custom Exception
You have already seen some common uses of Java’s built-in exceptions. These are very

handy, and, in most cases, they can serve your needs. But sometimes you may want to

define your own exception class to get messages that are more meaningful to you. So,

you may want to create your own exceptions to handle some specific situations in your

application.

Chapter 10 Managing Exceptions

273

Creating a custom exception is easy. But before you proceed further, you should

remember the following points:

•	 A common practice to create a user-defined exception class is to

extend from the Exception class. You have learned that Exception

is a subclass of the Throwable class. So, you can override or use the

methods defined in the Throwable classes.

•	 The Exception class does not have any method specific to it. But here

you’ll see different overloaded version of constructors; for example,

you will notice the presence of the following constructors. In the

discussion of chained exceptions, you got to know about two of them.

In the upcoming demonstration, you will see the use of another two:

public Exception() {}

public Exception(String message) {}

public Exception(String message, Throwable cause) {}

public Exception(Throwable cause) {}

protected Exception(String message, Throwable cause, boolean

enableSuppression, boolean writableStackTrace) {}

Following convention, it is suggested that when you create your own exception, the

class name should end with the word Exception.

�Demonstration 10
Let’s start. For simplicity, assume that you need to consider two integer inputs only. You

will display the sum of the integers if and only if the aggregate is less than or equal to 100.

If it is not less than 100, you’ll throw your custom exception.

package java2e.chapter10;

class SumGreaterThan100Exception extends Exception {

 SumGreaterThan100Exception() {

 System.out.println("Greater than 100.");

 }

Chapter 10 Managing Exceptions

274

 SumGreaterThan100Exception(String msg) {

 super(msg);

 }

}

interface DemoInterface {

 int sum(int x, int y) throws SumGreaterThan100Exception;

}

class Demo10Class implements DemoInterface {

 public int sum(int x, int y) throws SumGreaterThan100Exception {

 int sumofIntegers = x + y;

 if (sumofIntegers <= 100) {

 �System.out.println(" Here first number="+ x + " and

second Number="+y);

 return sumofIntegers;

 } else {

 �System.out.println(" Now first number="+ x + " and

second Number="+y);

 �throw new SumGreaterThan100Exception("Sum is greater

than 100.");

 //throw new SumGreaterThan100Exception();

 }

 }

}

class Demonstration10 {

 public static void main(String args[]) {

 �System.out.println("***Demonstration-10.Creating a custom

exception***\n");

 Demo10Class demo = new Demo10Class();

 try {

 int result = demo.sum(10, 50);// ok

 System.out.println("Sum of 10 and 50 is : " + result);

 �// Now the sum is greater than 100, so, it will raise

//the custom exception.

Chapter 10 Managing Exceptions

275

 result = demo.sum(50, 70);

 System.out.println("Sum of 50 and 70 is : " + result);

 } catch (SumGreaterThan100Exception e) {

 System.out.println("Caught the custom exception : " + e);

 e.printStackTrace();

 }

 }

}

Output:

Demonstration-10.Creating a custom exception

 Here first number=10 and second Number=50

Sum of 10 and 50 is : 60

 Now first number=50 and second Number=70

Caught the custom exception : java2e.chapter10.SumGreaterThan100Exception:

Sum is greater than 100.

java2e.chapter10.SumGreaterThan100Exception: Sum is greater than 100.

 at java2e.chapter10.Demo10Class.sum(Demonstration10.java:25)

 at java2e.chapter10.Demonstration10.main(Demonstration10.java:39)

You have used the parameterized constructor. If you want to use the default

constructor (which is commented here), there is a slightly different message.

Demonstration-10.Creating a custom exception

 Here first number=10 and second Number=50

Sum of 10 and 50 is : 60

 Now first number=50 and second Number=70

Greater than 100.

Caught the custom exception : java2e.chapter10.SumGreaterThan100Exception

java2e.chapter10.SumGreaterThan100Exception

 at java2e.chapter10.Demo10Class.sum(Demonstration10.java:26)

 at java2e.chapter10.Demonstration10.main(Demonstration10.java:39)

Chapter 10 Managing Exceptions

276

�Q&A Session
10.10 I understand that Java does not support pointers. But I am seeing that it
supports NullPointerException. I am confused.

You need to understand the scenario. When you perform some illegal operations (for

example, when you invoke a method incorrectly or try to access some fields incorrectly)

through a null object, you encounter this exception. This exception generally indicates

that you are treating a null object as an actual object, so your intended operation is

illegal. Yes, some developers believe that something like NullReferenceException could

be a better name for this type of exception.

At the same time, you also remember that Java designers believe that the use of

pointers is one of the primary sources of injecting bugs into the application. So, they do

not support any pointer datatypes.

10.11 It appears to me that I can suppress errors with exceptions. Am I right?

Yes. But it is never intended. Consider the following demonstration.

�Demonstration 11
In this example, when you get the value of b as 0 (which is randomly generated), instead

of reporting the true issue, you suppress the error by printing c=7, which is a total misuse

of this feature.

package java2e.chapter10;

import java.util.Random;

public class Demonstration11 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-11.Incorrect use of try-

catch block***\n");

 int a = 10;

 Random randomGenerator = new Random();

 // Will generate 0 to 2.

 int b = randomGenerator.nextInt(3);

 System.out.println("b=" + b);

 int c = 0;

Chapter 10 Managing Exceptions

277

 try {

 c = a / b;

 System.out.println("c=" + c);

 } catch (ArithmeticException ex) {

 // printing c=7, after catching the exception

 System.out.println("c=" + 7);

 }

 }

}

Here is one possible output. You will get this output when you encounter an

ArithmeticException and are using a try-catch block to suppress the true message,

which is incorrect.

Demonstration-11.Incorrect use of try-catch block

b=0

c=7

�Q&A Session
10.12 Should I make my custom exceptions checked (or unchecked)?

If you can do something to recover from an exception, make it a checked exception;

otherwise, make it unchecked. Based on your requirements, you can follow the approach

of Demonstration 7 or Demonstration 8 to make your custom exception checked or

unchecked.

10.13 You said earlier, “You may combine the original exception with your custom
exception message and then rethrow it for better readability.” Can you show me a
demonstration?

In the Java programming world, it’s very common to catch a built-in exception

and rethrow the same exception via a custom exception for better readability and

understanding. I discussed this regarding Demonstration 6.

Chapter 10 Managing Exceptions

278

�Demonstration 12
Let’s modify Demonstration 6 so that you can experience the same:

package java2e.chapter10;

//A custom exception

class InvalidIntegerInputException extends Exception {

 InvalidIntegerInputException(String msg,Throwable causeEx) {

 super(msg, causeEx);

 }

}

class Demonstration12 {

 static int c;

 static void divide(int a, int b) throws InvalidIntegerInputException{

 try {

 b--;

 c = a / b;

 // some code

 } catch (ArithmeticException ex) {

 //Log it now

 System.out.println("a= " + a + " b= " + b);//a=100,b=0

 System.out.println("Message: " + ex.getMessage());

 // Now rethrow it

 �throw new InvalidIntegerInputException(" The divisor

becomes zero", ex);

 }

 }

 public static void main(String[] args) {

 �System.out.println("***Demonstration-12.Rethrowing an

exception which is wrapped in a custom exception.***");

 �System.out.println("Actually, we are modifying the

demonstration-6.");

 int a = 100, b = 1;

Chapter 10 Managing Exceptions

279

 try {

 divide(a,b);

 }

 catch (Exception ex) {

 �System.out.println("Recaught the exception inside main()

method.");

 System.out.println("a= " + a + " b= " + b);//a=100,b=1

 System.out.println("Here is the stackTrace :");

 ex.printStackTrace();

 }

 }

}

Output:

***Demonstration-12.Rethrowing an exception which is wrapped in a custom

exception.***

Actually, we are modifying the demonstration-6.

a= 100 b= 0

Message: / by zero

Recaught the exception inside main() method.

a= 100 b= 1

Here is the stackTrace :

java2e.chapter10.InvalidIntegerInputException: The divisor becomes zero

 at java2e.chapter10.Demonstration12.divide(Demonstration12.java:23)

 at java2e.chapter10.Demonstration12.main(Demonstration12.java:32)

Caused by: java.lang.ArithmeticException: / by zero

 at java2e.chapter10.Demonstration12.divide(Demonstration12.java:16)

 ... 1 more

Notice the message “The divisor becomes zero” appeared in your output, which is

the actual cause of the ArithmeticException in this program.

Chapter 10 Managing Exceptions

280

�Summary
This chapter answered the following questions:

•	 What is an exception?

•	 How can you handle errors in our program?

•	 What are the common keywords used when we deal with exceptions

in Java?

•	 How should you place try, catch, and finally blocks in your

program, and what is their purpose?

•	 What are the different variations of the catch clause?

•	 How can you throw an exception?

•	 How can you rethrow an exception?

•	 How is throw different from throws?

•	 How can you classify exceptions? How are checked exceptions

different from unchecked exceptions?

•	 How can you make chained exceptions?

•	 How do you make a custom exception?

•	 How can you catch a built-in exception and combine it with a custom

exception?

Chapter 10 Managing Exceptions

281
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_11

CHAPTER 11

Thread Programming
The Java programs that you have seen so far have had a single sequential flow of control;

in other words, once the program starts executing, it goes through all statements

sequentially until the end. So, in a particular moment, there is only one statement under

execution.

A thread is similar to a program. It has a single flow of control. It also has a body

between the starting point and end point, and it executes the commands sequentially.

Each program has at least one thread.

Java supports the concept of multi-threading; that is, in Java you can have multiple

flows of control in a program. In those cases, each flow of control is called a thread, and

these threads can run in parallel. In a multi-threaded environment, each thread has a

unique flow of execution.

It’s a programming paradigm where a program is divided into multiple subprograms

(or parts) that can be implemented in parallel. But if the computer has only one

processor, how can it perform multiple things in parallel? In actuality, the processor

switches among these subprograms/parts very fast, so it appears to human eyes that all

of them are executing simultaneously.

Multi-threading can be considered a special case of multi-tasking. It is important

to note the difference between process-based multi-threading and thread-based

multi-threading. Let’s investigate what is stated in a theoretical operating system book.

Table 11-1 shows the key distinctions between a process and a thread.

282

So, a thread is simply a lightweight process, and context switching between threads

is inexpensive. Process-based multi-tasking is not under Java’s control, but Java can

manage thread-based multi-tasking. So, in this chapter, we’ll focus on thread-based

multi-tasking, and from this point onward, I’ll simply refer to it as multi-threading.

Managing a multi-thread environment can be challenging, but it’s a boon for

you because you can complete the task much faster and reduce the overall idle time

significantly. Consider some typical scenarios: in general, in an automated environment,

a computer’s inputs are much faster than a user’s keyboard inputs. Or, consider the case

when you transfer data over a network—the network transmission rate can be slower

than the receiving computer’s consumption rate. If you need to wait for each task to

finish before you start the next one, the overall idle time will be higher. So, a multi-

threading environment is always a better choice in cases like these. Java helps you to

model a multi-threaded environment efficiently.

Figure 11-1 demonstrates a multi-threaded program, where the main thread creates

two more threads—Thread A and Thread B—that run concurrently.

Table 11-1.  Comparison Between a Process and a Thread

Process Thread

1. Unit of allocation 1. Unit of execution

2. Architectural construct 2. Coding construct—does not affect architecture

3. Each process has one or more threads. 3. Each thread belongs to one process.

4. Inter-Process Communication (commonly

stated as IPC)—expensive due to context

switching

4. Inter-Thread Communication—cheap, can use

process memory, and may not need context switch

5. Secure—one process cannot corrupt

another process

5. Not secure—a thread can write in the memory

used by another thread

Chapter 11 Thread Programming

283

�Creating Threads
Threads can be created in the following ways:

•	 Extend the Thread class and override the run() method.

•	 Implement the Runnable interface. The Runnable interface has only

one method, called run(). So, when a concrete class implements this

Runnable interface, it must override the run() method.

So, you can guess that every thread must have a run() method. This method is

the heart of a thread, and you can implement the behavior of the thread in the run()

method’s body.

Figure 11-1.  In a multi-threaded program, a main thread creates two more
threads, and all of them run in parallel

Chapter 11 Thread Programming

284

AUTHOR’S NOTE

If you see the implementation of the java.lang.Thread class, you will notice the

following line:

public class Thread implements Runnable {//some code}

which means that the Thread class itself implements the Runnable interface.

�Extending the Thread Class
In Demonstration 1, there are two classes—ThreadOne and ThreadTwo. Each extends the

Thread class and overrides the run() method. But your job is not over yet. You need to

prepare the threads to be in a state such that the Java runtime scheduler can run them.

So, you create an object from each of these threads and invoke the start() method.

In Demonstration 1, you will notice the following lines of code for the ThreadOne

class and its object threadOne (notice the associated comments for your better

understanding):

//ThreadOne extends from a Thread class here

class ThreadOne extends Thread{

//An instance of ThreadOne

ThreadOne threadOne=new ThreadOne();

You’ll notice the similar lines of code for the ThreadTwo class and its object

threadTwo. Lastly, the following lines will invoke the run() method of the corresponding

threads:

threadOne.start();

threadTwo.start();

Chapter 11 Thread Programming

285

�Demonstration 1
Now, let’s go through Demonstration 1.

package java2e.chapter11;

//ThreadOne extends from the Thread class

class ThreadOne extends Thread {

 @Override

 public void run() {

 for (int i = 0; i < 10; i++) {

 System.out.println("ThreadOne prints ->" + i);

 }

 System.out.println("Exit-ThreadOne");

 }

}

//ThreadTwo extends from the Thread class

class ThreadTwo extends Thread {

 @Override

 public void run() {

 for (int i = 0; i < 10; i++) {

 System.out.println("ThreadTwo prints ->" + i);

 }

 System.out.println("Exit-ThreadTwo");

 }

}

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.Exploring multi-

threading by extending Thread class.***");

 //An instance of ThreadOne

 ThreadOne threadOne=new ThreadOne();

 //An instance of Threadtwo

 ThreadTwo threadTwo=new ThreadTwo();

Chapter 11 Thread Programming

286

 �//The following lines of code will invoke the run()

//method of the corrending threads.

 threadOne.start();

 threadTwo.start();

 }

}

This is the output from first run:

Demonstration-1.Exploring multi-threading by extending Thread class.

ThreadOne prints ->0

ThreadTwo prints ->0

ThreadOne prints ->1

ThreadTwo prints ->1

ThreadOne prints ->2

ThreadTwo prints ->2

ThreadOne prints ->3

ThreadTwo prints ->3

ThreadOne prints ->4

ThreadTwo prints ->4

ThreadOne prints ->5

ThreadTwo prints ->5

ThreadTwo prints ->6

ThreadTwo prints ->7

ThreadTwo prints ->8

ThreadTwo prints ->9

Exit-ThreadTwo

ThreadOne prints ->6

ThreadOne prints ->7

ThreadOne prints ->8

ThreadOne prints ->9

Exit-ThreadOne

Chapter 11 Thread Programming

287

This is the output from the second run:

Demonstration-1.Exploring multi-threading by extending Thread class.

ThreadOne prints ->0

ThreadTwo prints ->0

ThreadOne prints ->1

ThreadOne prints ->2

ThreadOne prints ->3

ThreadOne prints ->4

ThreadOne prints ->5

ThreadOne prints ->6

ThreadOne prints ->7

ThreadOne prints ->8

ThreadTwo prints ->1

ThreadTwo prints ->2

ThreadTwo prints ->3

ThreadOne prints ->9

ThreadTwo prints ->4

Exit-ThreadOne

ThreadTwo prints ->5

ThreadTwo prints ->6

ThreadTwo prints ->7

ThreadTwo prints ->8

ThreadTwo prints ->9

Exit-ThreadTwo

Notice that the output from the first run is different from that of the second run. Once

these threads start running concurrently, you cannot predict the order of their execution.

Each of them can run whenever it gets the processor. In this case, all of them have the

same priority, and so the Java scheduler allows them to share the processor on a FCFS

(first come first served) basis. Later, you will see that, if you wish, you can opt to prioritize

their order of execution by setting the priority.

Note  When you execute a Java program, one thread starts automatically. This
thread is called the main thread. So, the main() method in Demonstration 1
creates the main thread, which dies at the end of the main() method.

Chapter 11 Thread Programming

288

�Implementing the Runnable Interface
Let’s examine an alternative way to create threads. This time, I’ll implement the

Runnable interface to create threads. In this case, you need to go through the following

steps:

	 1.	 Declare a class that implements the Runnable interface. For

example:

class Thread2A implements Runnable{//some other code

	 2.	 Implement the run() method. See the following lines in

Demonstration 2:

class Thread2A implements Runnable {

 @Override

 public void run() {//some other code}

}

	 3.	 Create a Thread class object using the following Thread class

constructor:

public Thread(Runnable target) {}.

So, in Demonstration 2, you can see the following line inside main:

//Thread2A implements Runnable interface

Thread thread2A=new Thread(new Thread2A());

	 4.	 Call the start method of the thread, like the following:

thread2A.start();

�Demonstration 2
Here is the example:

package java2e.chapter11;

class Thread2A implements Runnable {

 @Override

 public void run() {

Chapter 11 Thread Programming

289

 for (int i = 0; i < 10; i++) {

 System.out.println("Thread2A prints ->" + i);

 }

 System.out.println("Exit-Thread2A");

 }

}

class Demonstration2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.Exploring multi-

threading by implementing Runnable Interface.***");

 //Thread2A implements Runnable interface

 Thread thread2A = new Thread(new Thread2A());

 thread2A.start();

 System.out.println("Exit from main thread");

 }

}

Here is one possible output:

***Demonstration-2.Exploring multi-threading by implementing Runnable

Interface.***

Exit from main thread

Thread2A prints ->0

Thread2A prints ->1

Thread2A prints ->2

Thread2A prints ->3

Thread2A prints ->4

Thread2A prints ->5

Thread2A prints ->6

Thread2A prints ->7

Thread2A prints ->8

Thread2A prints ->9

Exit-Thread2A

In Demonstration 2, the Thread2A class implements the Runnable interface, so

objects of Thread2A become the Runnable type. But the objects of Thread2A are NOT

threads.

Chapter 11 Thread Programming

290

So, modify your main() method as follows (notice the bold lines/words for your

reference):

class Demonstration2Modified {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.Exploring multi-

threading by implementing Runnable Interface.***");

 �Thread thread2A = new Thread(new Thread2A());// //Thread2A

implements Runnable interface

 thread2A.start();

 �/* Thread2A class implements the Runnable interface, so

 * objects of Thread2A become Runnable type.

 * But the objects of Thread2A are NOT threads.

 */

 System.out.println("Creating another object of Thread2A");

 Thread2A anotherObject=new Thread2A();

 anotherObject.run();

 System.out.println("Exit from main thread");

 }

}

You may notice a surprising output, like the following:

***Demonstration-2.Exploring multi-threading by implementing Runnable

Interface.***

Creating another object of Thread2A

Thread2A prints ->0

Thread2A prints ->0

Thread2A prints ->1

Thread2A prints ->1

Thread2A prints ->2

Thread2A prints ->3

Thread2A prints ->4

Thread2A prints ->5

Thread2A prints ->6

Thread2A prints ->7

Chapter 11 Thread Programming

291

Thread2A prints ->8

Thread2A prints ->2

Thread2A prints ->3

Thread2A prints ->4

Thread2A prints ->5

Thread2A prints ->6

Thread2A prints ->7

Thread2A prints ->8

Thread2A prints ->9

Exit-Thread2A

Exit from main thread

Thread2A prints ->9

Exit-Thread2A

In this case, though you have invoked the run() method, it is invoked in the same

thread. To run it in a new thread, you need to instantiate and start a new Thread object.

Note  When a class implements a Runnable interface, it deals with two
objects—one is the Runnable object, and the other is the Thread object. The
Runnable object contains the code that executes when the thread starts running.
So, during the execution of a Thread object, you can see the execution of the
run() method of the Runnable object.

�Q&A Session
11.1 What is the key advantage of using a multi-threaded environment over a single-
threaded environment?

In single-threaded environment, if the thread gets blocked, the entire program stops

executing, which is not the case in a multi-threaded environment. In addition to this, you

can reduce overall idle time via the efficient use of CPU. And later you’ll learn that you

can avoid polling in multi-threaded environments.

Chapter 11 Thread Programming

292

11.2 I have a dual-core (or multi-core) system. Can multi-threading still help me?

In earlier days, most computers had a single core, and in those systems concurrent

threads actually shared the CPU cycle; i.e., they could not run in parallel. But, by using

the concept of multi-threading, you could reduce the overall idle time by the efficient use

of CPU. And if you have multiple processors, you can run multiple threads concurrently.

As a result, you can further enhance the speed of your program.

11.3 What is context switching?

It enables you to store the state of the current thread (or process) so that you can resume

the execution from this point later.

11.4 Which approach should I use when I create threads? Should I extend the Thread

class, or should I implement the Runnable interface?

It depends on your choice and many other constraints. If your class extends the Thread

class, you cannot extend from any other class, because Java does not allow multiple

inheritance through class. When you implement the Runnable interface, you can extend

from another parent class.

On the other hand, the Runnable interface has only one method, run(), which is

also an abstract method (by interface definition). So, there is no fully built-in method

available for your immediate use. But the Thread class has many built-in methods, like

yield(), sleep(), getName(), setName(), etc. These methods can be used if your class

extends from the Thread class. Also, you can have different types of constructors when

you instantiate a Thread class.

�Demonstration 3
Now consider Demonstration 3. Before you proceed, here are some important points to

consider:

•	 This time I have created the thread using one of the overloaded

versions of the Thread class constructor. In this version, I can supply

the name of the thread during thread instantiation.

•	 I have also used some of the available methods from the Thread

class; for example, currentThread(), getName(), setName(),

getPriority(), and setPriority(). As said before, if you choose

to create the thread by implementing the Runnable interface, these

methods will not be available to you.

Chapter 11 Thread Programming

293

•	 The method setPriority(int newPriority) is used to set a priority

of the thread. Java defines following priorities:

//The minimum priority of a thread

 public final static int MIN_PRIORITY = 1;

//The default priority of a thread

 public final static int NORM_PRIORITY = 5;

//The maximum priority of a thread

 public final static int MAX_PRIORITY = 10;

Here is the full implementation:

package java2e.chapter11;

class Thread3A extends Thread {

 public Thread3A(String name) {

 super(name);

 }

 public void run() {

 for (int i = 0; i < 10; i++) {

 �System.out.println(this.getName() + " is executing and

prints : "+ i);

 }

 System.out.println("Exit-"+ this.getName());

 }

}

class Thread3B extends Thread {

 public Thread3B(String name) {

 super(name);

 }

 public void run() {

 for (int i = 0; i < 10; i++) {

 �System.out.println(this.getName() + " is executing.It is

printing : "+i);

 }

Chapter 11 Thread Programming

294

 System.out.println("Exit-"+ this.getName());

 }

}

class Demonstration3 {

 public static void main(String[] args) throws InterruptedException {

 �System.out.println("***Demonstration-3.Exploring

multithreading by extending Thread class.***");

 // Get reference to Main thread

 Thread mainThread = Thread.currentThread();

 // Get the details of the Main thread

 �System.out.println("Current thread: " + mainThread.getName() +

" and priority: " +mainThread.getPriority());

 Thread3A thread3A = new Thread3A("Thread3A");

 thread3A.setPriority(Thread.MIN_PRIORITY);//1

 Thread3B thread3B = new Thread3B("Thread3B");

 // Updating the name of the thread-ThreadDemo4

 thread3B.setName("ThreadDemonstration3B");

 thread3B.setPriority(Thread.MAX_PRIORITY);//10

 �System.out.println("Thread3A priority is " + thread3A.

getPriority());

 �System.out.println("ThreadDemonstration3B priority is " +

thread3B.getPriority());

 thread3A.start();

 thread3B.start();

 for (int i = 0; i <10; i++) {

 �System.out.println(mainThread.getName() + " is

executing and prints : "+ i);

 }

 System.out.println("Exit main()");

 }

}

Chapter 11 Thread Programming

295

Here is one possible output.

Demonstration-3.Exploring multi-threading by extending Thread class.

Current thread: main and priority: 5

Thread3A priority is 1

ThreadDemonstration3B priority is 10

main is executing and prints : 0

ThreadDemonstration3B is executing.It is printing : 0

main is executing and prints : 1

ThreadDemonstration3B is executing.It is printing : 1

main is executing and prints : 2

ThreadDemonstration3B is executing.It is printing : 2

Thread3A is executing and prints : 0

ThreadDemonstration3B is executing.It is printing : 3

main is executing and prints : 3

main is executing and prints : 4

main is executing and prints : 5

Thread3A is executing and prints : 1

ThreadDemonstration3B is executing.It is printing : 4

Thread3A is executing and prints : 2

main is executing and prints : 6

main is executing and prints : 7

main is executing and prints : 8

main is executing and prints : 9

Thread3A is executing and prints : 3

ThreadDemonstration3B is executing.It is printing : 5

Thread3A is executing and prints : 4

Exit main()

Thread3A is executing and prints : 5

ThreadDemonstration3B is executing.It is printing : 6

ThreadDemonstration3B is executing.It is printing : 7

ThreadDemonstration3B is executing.It is printing : 8

ThreadDemonstration3B is executing.It is printing : 9

Thread3A is executing and prints : 6

Chapter 11 Thread Programming

296

Exit-ThreadDemonstration3B

Thread3A is executing and prints : 7

Thread3A is executing and prints : 8

Thread3A is executing and prints : 9

Exit-Thread3A

Here is another possible output (executed in a different machine with a different

configuration).

Demonstration-3.Exploring multi-threading by extending Thread class.

Current thread: main and priority: 5

Thread3A priority is 1

ThreadDemonstration3B priority is 10

main is executing and prints : 0

ThreadDemonstration3B is executing.It is printing : 0

ThreadDemonstration3B is executing.It is printing : 1

ThreadDemonstration3B is executing.It is printing : 2

ThreadDemonstration3B is executing.It is printing : 3

ThreadDemonstration3B is executing.It is printing : 4

ThreadDemonstration3B is executing.It is printing : 5

ThreadDemonstration3B is executing.It is printing : 6

ThreadDemonstration3B is executing.It is printing : 7

ThreadDemonstration3B is executing.It is printing : 8

ThreadDemonstration3B is executing.It is printing : 9

Exit-ThreadDemonstration3B

main is executing and prints : 1

main is executing and prints : 2

main is executing and prints : 3

main is executing and prints : 4

main is executing and prints : 5

main is executing and prints : 6

main is executing and prints : 7

main is executing and prints : 8

main is executing and prints : 9

Chapter 11 Thread Programming

297

Exit main()

Thread3A is executing and prints : 0

Thread3A is executing and prints : 1

Thread3A is executing and prints : 2

Thread3A is executing and prints : 3

Thread3A is executing and prints : 4

Thread3A is executing and prints : 5

Thread3A is executing and prints : 6

Thread3A is executing and prints : 7

Thread3A is executing and prints : 8

Thread3A is executing and prints : 9

Exit-Thread3A

It may appear to you that the output from the second run is expected, but the output

from the first run is unexpected (because the main thread exited before the higher-

priority thread). But, again, this output may vary in this demonstration. In theory, the

higher-priority threads get more CPU time than the lower-priority threads, and they can

preempt the lower-priority threads. But in real life, it may depend on many other factors;

for example, the configuration of your system, how the operating system implements

the concept of multi-tasking, etc. Apart from these factors, the output can vary based on

what the thread is doing, how big the job is (for example, a small task can finish before it

is preempted by a higher-priority thread), and so on. So, you should not explicitly rely on

priorities. If a CPU is available, the lower-priority thread can also get a chance to run and

can finish early if it does a very little job. In general, threads run asynchronously; hence,

you see the random outputs.

The output in Figure 11-2 was generated when the previous program ran in a

system with a configuration as shown (notice that it’s a dual-core system; it has a sixth-

generation Intel® Core™ i5-6300 processor).

Chapter 11 Thread Programming

298

But the output varies when the program runs on a different machine, which is also a

dual-core system, but with a different configuration, like that in Figure 11-3 (notice that

it’s a dual-core system with eighth-generation Intel® Core™ i3 processor).

Figure 11-2.  Configuration details snapshot from a dual-core system with sixth-
generation Intel® Core™ i5-6300 processor

Chapter 11 Thread Programming

299

Note  In a multi-threaded Java program, you may notice the use of preemptive
scheduling where a higher-priority thread preempts a lower-priority thread. But you
have seen that the behavior is not always certain. The behavior also depends on
the underlying platform. In theory, two same-priority threads cannot preempt each
other, which can create issues in a non-preemptive environment. So, for equal
priority threads, it’s a good idea to release control based on some conditions (for
example, waiting for I/O operations, etc.) so that each thread can run and complete
its job.

Figure 11-3.  Configuration details snapshot from a different dual-core system
with eighth-generation Intel® Core™ i3 processor

Chapter 11 Thread Programming

300

�Case Study with Different Thread Class Methods
So far, you have seen the use of the following methods:

•	 run()

•	 start()

•	 setPriority(int number)

•	 getPriority()

•	 currentThread()

•	 getName()

•	 setName()

Let’s do a case study with a few more methods in the Thread class. In the following

demonstration, you will see the use of the following methods:

•	 sleep(long millis): This causes a specified thread to sleep. You

can use it when you want to cease a thread’s execution temporarily.

The argument is passed in milliseconds. This method can throw

InterruptedException or IllegalArgumentException (if you pass

negative milliseconds values or if the value is not in the range of

0–999999). So, you need to surround this method with a try/catch

block .

•	 yield(): This can be used when you want a thread (which is

currently using the processor) to give up its control to a different

thread (though the scheduler can ignore this request). This method

can be used for debugging purposes or for designing concurrency

control constructs. It is also helpful to reproduce a bug in the race

conditions.

•	 interrupt(): This method can be used to send an interrupt signal to

a thread.

Chapter 11 Thread Programming

301

�Demonstration 4
Consider the following demonstration and output, which is self-explanatory if you follow

the prior theories:

package java2e.chapter11;

class Thread4A extends Thread {

 public void run() {

 for (int i = 0; i < 5; i++) {

 System.out.println("Thread4A prints ->" + i);

 if (i == 2) {

 �System.out.println("Going to interrupt the

thread.");

 interrupt();// Interrupts this thread

 �System.out.println("Is Thread4A interrupted?"+thi

s.interrupted());

 }

 }

 System.out.println("Exit-Thread4A");

 }

}

 class Thread4B extends Thread {

 public void run(){

 for (int j = 0; j < 5; j++) {

 System.out.println("Thread4B prints ->" + j);

 if (j == 3) {

 try {

 �sleep(5000);//sleeps for 5000

milliseconds

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

Chapter 11 Thread Programming

302

 System.out.println("Exit-Thread4B");

 }

 }

 class Thread4C extends Thread {

 public void run() {

 for (int k = 0; k < 5; k++) {

 System.out.println("Thread4C prints ->" + k);

 if(k==4) {

 yield();

 }

 }

 System.out.println("Exit-Thread4C");

 }

 }

class Demonstration4 {

 public static void main(String[] args) throws InterruptedException {

 �System.out.println("***Demonstration-4.Exploring multi-

threading with yield(),sleep(), and interrupt() methods of the

Thread class.***");

 Thread4A thread4A=new Thread4A();

 Thread4B thread4B=new Thread4B();

 Thread4C thread4C=new Thread4C();

 thread4A.start();

 thread4B.start();

 thread4C.start();

 �System.out.println("Is Thread4A interrupted now?"+thread4A.int

errupted());

 Thread.sleep(1000);

 System.out.println("Exit-main()");

 }

}

Chapter 11 Thread Programming

303

Here is a possible output:

***Demonstration-4.Exploring multi-threading with yield(), sleep(), and

interrupt() methods of the Thread class.***

Is Thread4A interrupted now?false

Thread4C prints ->0

Thread4B prints ->0

Thread4B prints ->1

Thread4A prints ->0

Thread4B prints ->2

Thread4B prints ->3

Thread4C prints ->1

Thread4A prints ->1

Thread4C prints ->2

Thread4A prints ->2

Going to interrupt the thread.

Thread4C prints ->3

Is Thread4A interrupted?true

Thread4C prints ->4

Thread4A prints ->3

Exit-Thread4C

Thread4A prints ->4

Exit-Thread4A

Exit-main()

Thread4B prints ->4

Exit-Thread4B

�Q&A Session
11.5 In previous demonstrations, I saw that the main thread finishes before the
child threads. But in many cases, I want to avoid this. In such a case, how should I
proceed?

The sleep() method can help you, but it is not an ideal solution. The much better

solution is to use the join() method (which has different overloaded versions). Here, I

present an updated version of the main() method for Demonstration 4 (notice the bold

lines). Once you execute this, you will notice that main always finishes at the end.

Chapter 11 Thread Programming

304

 class Demonstration4 {

 public static void main(String[] args) throws InterruptedException {

 �System.out.println("***Demonstration-4.Exploring multi-

threading with yield(),sleep(), and interrupt() methods of the

Thread class.***");

 Thread4A thread4A = new Thread4A();

 Thread4B thread4B = new Thread4B();

 Thread4C thread4C = new Thread4C();

 thread4A.start();

 thread4B.start();

 thread4C.start();

 �System.out.println("Is Thread4A interrupted now?" +

thread4A.interrupted());

 Thread.currentThread().sleep(1000);

 //Modified program to show the use of join()

 //Waiting for the threads to complete before main //thread.

 thread4A.join();

 thread4B.join();

 thread4C.join();

 System.out.println("Exit-main()");

 }

}

Here is the modified output. Notice that Exit-main() comes at the end.

***Demonstration-4.Exploring multi-threading with yield(),sleep(), and

interrupt() methods of the Thread class.***

Thread4B prints ->0

Thread4C prints ->0

Thread4C prints ->1

Thread4C prints ->2

Thread4A prints ->0

Thread4A prints ->1

Is Thread4A interrupted now?false

Thread4A prints ->2

Chapter 11 Thread Programming

305

Going to interrupt the thread

Thread4C prints ->3

Thread4B prints ->1

Thread4B prints ->2

Thread4B prints ->3

Thread4C prints ->4

Is Thread4A interrupted?true

Thread4A prints ->3

Thread4A prints ->4

Exit-Thread4A

Exit-Thread4C

Thread4B prints ->4

Exit-Thread4B

Exit-main()

POINTS TO REMEMBER

There is another method called isAlive() that can be used to check whether the thread is

alive or dead. For example, the following code can be used inside main() to verify whether

the Thread4B object is alive or not:

//Testing whether Thread4B object is alive or not.

System.out.println(" Thread 4B is alive? "+ thread4B.isAlive());

�Synchronization
Sometimes multiple threads need to access some shared resources. Controlling such

situations is tricky; for example, consider a situation where one thread is trying to read

the data from a file and another thread is still writing or updating in the same file. If you

cannot control the situation efficiently, you may get surprising results. The concept of

synchronization is useful in similar situations. Java can help you to control the situation

with synchronization methods and statements.

Chapter 11 Thread Programming

306

�Use of Synchronized Methods
Let’s begin with synchronized methods. To understand the power of a synchronized

method, let’s start with a program where the concept is not implemented. In the

following demonstration, MyClass5A is a simple class with a method, display(). You

can prefix the keyword synchronized to a method as follows to make it a synchronized

method:

synchronized void display(){

 //some code

}

Because we’re starting with the non-synchronized version, I have commented the

synchronized portion of the code in the upcoming demonstration.

Let’s assume that inside display() there are some shared resources. For simplicity, I

have put in some simple statements to indicate the entry and exit of a thread. To see the

effect precisely, I have also put a simple sleep statement inside the method body. It can

help you switch the execution to another thread.

There is a thread class Thread5B that has following constructor:

public Thread5B(MyClass5A myObject, String name) {

 super(name);

 this.myClass5AObject = myObject;

}

So, to instantiate from the Thread5B class, you can pass a MyClass5A object and a

string as arguments. In the following program, I have created two instances from this

class, and to identify them clearly, I have passed the string arguments as Thread5B-1 and

Thread-5B-2.

Once you run the non-synchronized version of the program, you may notice the

following lines:

Thread5B-1 has entered and working in the shared location.

Thread5B-2 has entered and working in the shared location.

Thread5B-1 exits.

Thread5B-2 exits.

The output indicates that Thread5B-1 has entered the shared location first. But

before it finishes its execution, Thread5B-2 also enters into the shared location.

Chapter 11 Thread Programming

307

But if a thread is working in the shared location, you may want to restrict any other

thread from entering that location. So, this time, you uncomment the synchronized

version of display() and comment out the non-synchronized version of it. Now, if you

run the program, you will see that you have achieved your goal through the synchronized

method.

�Demonstration 5
Here is the code in full:

package java2e.chapter11;

class MyClass5A {

 //Synchronized version

 //synchronized void display() {

 //Non-synchronized version

 void display() {

 �System.out.print(Thread.currentThread().getName() + " has

entered and working in the shared location. \n");

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 �System.out.print(Thread.currentThread().getName() + " exits.\n");

 }

}

class Thread5B extends Thread {

 MyClass5A myClass5AObject;

 public Thread5B(MyClass5A myObject, String name) {

 super(name);

 this.myClass5AObject = myObject;

 }

Chapter 11 Thread Programming

308

 @Override

 public void run() {

 myClass5AObject.display();

 }

}

class Demonstration5 {

 public static void main(String[] args) throws InterruptedException {

 �System.out.println("***Demonstration-5.Exploring multi-

threading with synchronized method.***");

 MyClass5A myObject = new MyClass5A();

 Thread5B ob1 = new Thread5B(myObject, "Thread5B-1");

 Thread5B ob2 = new Thread5B(myObject, "Thread5B-2");

 ob1.start();

 ob2.start();

 }

}

Output without synchronized method:

***Demonstration-5.Exploring multi-threading with(and without)

synchronized method.***

Thread5B-1 has entered and working in the shared location.

Thread5B-2 has entered and working in the shared location.

Thread5B-1 exits.

Thread5B-2 exits.

With synchronized method:

***Demonstration-5.Exploring multi-threading with(and without)

synchronized method.***

Thread5B-1 has entered and working in the shared location.

Thread5B-1 exits.

Thread5B-2 has entered and working in the shared location.

Thread5B-2 exits.

Chapter 11 Thread Programming

309

�Use of Synchronized Block
In some situations, you won’t have synchronized methods that serve your purpose; for

example, suppose there is a class that uses third-party code, and you do not have direct

access to the codebase. You notice that in your multi-thread environment, there is a

method (which is not synchronized) in the class that can be used by multiple threads

simultaneously.

To deal with such scenarios, Java provides synchronized blocks. If you want

synchronized access to objects of a class you can use it.

Here is the general format of a synchronized block:

synchronized (theObjectReference) {

//Some code

}

�Demonstration 6
The following is an example of a synchronized block:

package java2e.chapter11;

class MyClass6A {

 //synchronized void display() {

 void display() {

 �System.out.print(Thread.currentThread().getName() + " has

entered and working in the shared location. \n");

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 �System.out.print(Thread.currentThread().getName() + " exits.\n");

 }

}

Chapter 11 Thread Programming

310

class Thread6B extends Thread {

 MyClass6A myClass6AObject;

 public Thread6B(MyClass6A myObject, String name) {

 super(name);

 this.myClass6AObject = myObject;

 }

 @Override

 public void run() {

 synchronized (myClass6AObject) {

 myClass6AObject.display();

 }

 }

}

class Demonstration6 {

 public static void main(String[] args) throws InterruptedException {

 �System.out.println("***Demonstration-6.Exploring multi-

threading with synchronized statements.***");

 MyClass6A myObject = new MyClass6A();

 Thread6B thread1 = new Thread6B(myObject, "Thread6B-1");

 Thread6B thread2 = new Thread6B(myObject, "Thread6B-2");

 thread1.start();

 thread2.start();

 }

}

Output:

***Demonstration-6.Exploring multi-threading with synchronized

statements.***

Thread6B-1 has entered and working in the shared location.

Thread6B-1 exits.

Thread6B-2 has entered and working in the shared location.

Thread6B-2 exits.

Chapter 11 Thread Programming

311

This time, the display() method is not synchronized, but I have used the

synchronized block in Thread6B’s run() method, and this thread invokes the display()

method of MyClass6A. You will notice that multiple threads cannot enter the shared

location simultaneously. Instead, each thread waits for the prior thread to finish its job in

the shared location.

�Deadlock
Deadlock is a situation or condition where at least two processes (or threads) are waiting

for each other to complete (or release control) so that each one can finish its job. This

may result in neither of them starting (and both going into a hanging state). You may

often hear about these real-life examples:

You can’t get a job without experience; you can’t get experience

without a job.

Or,

After a fight between two close friends, each of them expects the

other to apologize first.

Note  Without synchronization, you may notice unexpected outcomes (for
example, corrupted data), but with improper use of synchronization, you can
encounter a deadlock.

�Types of Deadlock
Let us quickly revisit the theoretical operating system. There are different types of

deadlock, for example:

•	 Resource deadlock: Suppose two processes, P1 and P2, are holding

resources R1 and R2, respectively. P1 is asking for the resource R2,

and P2 is asking for the resource R1, to complete their jobs. OS

generally has concerns about this type of deadlock.

Chapter 11 Thread Programming

312

•	 Synchronization deadlock: Suppose process P1 is waiting to perform

an action a1, but only after P2 completes the specific action a2, and P2

is waiting to complete action a2 until after P1 completes a1.

•	 Communication deadlock: Similar to preceding scenarios. You can

replace the concept of actions/resources with messages; i.e., two processes

are waiting to receive messages from each other to proceed further.

�Demonstration 7
In this chapter, you are focusing on the multi-threaded environment. So, I’ll discuss the

deadlock that can be caused by having multiple threads in your Java application.

package java2e.chapter11;

class SharedResource1 {

 static synchronized void startingPart() throws InterruptedException {

 �System.out.println(Thread.currentThread().getName() + ":

enters starting part-SharedResource1.");

 Thread.sleep(100);

 �System.out.println(Thread.currentThread().getName() + ":

Waiting to get endPart of SharedResource2.");

 SharedResource2.endPart();

 �System.out.println(Thread.currentThread().getName() + ": Exits

starting part-SharedResource1");

 }

 static synchronized void endPart() throws InterruptedException {

 �System.out.println(Thread.currentThread().getName() + ": Exits

SharedResource1.endingPart .");

 }

}

class SharedResource2 {

 static synchronized void startingPart() throws InterruptedException {

 �System.out.println(Thread.currentThread().getName() + ":

enters starting part of SharedResource2.");

 Thread.sleep(100);

Chapter 11 Thread Programming

313

 �System.out.println(Thread.currentThread().getName() + ":

Waiting to get endPart-SharedResource1.");

 SharedResource1.endPart();

 �System.out.println(Thread.currentThread().getName() + ": Exits

starting part of SharedResource2.");

 }

 static synchronized void endPart() throws InterruptedException {

 �System.out.println(Thread.currentThread().getName() + ": Exits

end part of SharedResource2.");

 }

}

class First extends Thread {

 public First(String name) {

 super(name);

 }

 public void run() {

 try {

 SharedResource1.startingPart();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

class Second extends Thread {

 public Second(String name) {

 super(name);

 }

 public void run() {

 try {

 SharedResource2.startingPart();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

Chapter 11 Thread Programming

314

class Deadlock {

 public static void main(String[] args) {

 �System.out.println("***Demonstration- Incorrect design leads

to deadlock.***\n");

 // An instance of ThreadOne

 First first = new First("FirstThread");

 // An instance of Threadtwo

 Second second = new Second("SecondThread");

 first.start();

 second.start();

 }

}

Output:

Demonstration- Incorrect design leads to deadlock.

FirstThread: enters starting part-SharedResource1.

SecondThread: enters starting part of SharedResource2.

SecondThread: Waiting to get endPart-SharedResource1.

FirstThread: Waiting to get endPart of SharedResource2.

�Detecting Deadlocks in the System
The examples of the book were tested in a Windows 10 system. Here, you can find the

process ID of the application and use the jstack command to investigate long-running

processes or deadlocks. For example, when you see that the program is NOT terminating

(as expected), you can find the process ID of the application and use the jstack

command to investigate. The steps are summarized here.

	 1.	 Open Task Manager using Ctrl+Alt+Delete.

	 2.	 Select Details tab to see the PID, like in Figure 11-4.

Chapter 11 Thread Programming

315

C:\Users\Vaskaran Sarcar>jstack 3476

Now you can get the deadlock details:

//Some additional information skipped here

Found one Java-level deadlock:

=============================

"SecondThread":

 �waiting to lock monitor 0x000000000288ac38 (object 0x00000000eb349b40, a

java.lang.Class),

 which is held by "FirstThread"

"FirstThread":

 �waiting to lock monitor 0x0000000002888198 (object 0x00000000eb39ba10, a

java.lang.Class),

 which is held by "SecondThread"

Java stack information for the threads just listed:

===

"SecondThread":

 at java2e.chapter11.SharedResource1.endPart(Deadlock.java:13)

 �- waiting to lock <0x00000000eb349b40> (a java.lang.Class for

java2e.chapter11.SharedResource1)

 at java2e.chapter11.SharedResource2.startingPart(Deadlock.java:22)

 �- locked <0x00000000eb39ba10> (a java.lang.Class for java2e.

chapter11.SharedResource2)

Figure 11-4.  Retrieving the details of the process javaw.exe in a Windows 10
system. Use jstack command with the process ID like in the following

Chapter 11 Thread Programming

316

 at java2e.chapter11.Second.run(Deadlock.java:49)

"FirstThread":

 at java2e.chapter11.SharedResource2.endPart(Deadlock.java:27)

 �- waiting to lock <0x00000000eb39ba10> (a java.lang.Class for

java2e.chapter11.SharedResource2)

 at java2e.chapter11.SharedResource1.startingPart(Deadlock.java:8)

 �- locked <0x00000000eb349b40> (a java.lang.Class for java2e.

chapter11.SharedResource1)

 at java2e.chapter11.First.run(Deadlock.java:37)

Found 1 deadlock.

Alternatively, you can use the Java Virtual Machine Process Status (JPS) tool to

identify the process ID you need to investigate further. Oracle Java documentation says

the following:

“The jps command lists the instrumented Java HotSpot VMs

on the target system. The command is limited to reporting

information on JVMs for which it has access permission.”

From the command line, if you type jps -help, you will see the following

information:

C:\Users\sarcarv>jps -help

usage: jps [-help]

 jps [-q] [-mlvV] [<hostid>]

Definitions:

 <hostid>: <hostname>[:<port>]

So, you can use the following command:

jps -l -m

As per the documentation,

•	 -m displays the arguments passed to the main() method. The output

may be null for embedded JVMs.

•	 -l displays the full package name for the application’s main class or

the full path name to the application’s JAR file.

Chapter 11 Thread Programming

317

If you want to explore other details, you can refer to the JDK11 documentation or you

can directly go to the following link:

https://docs.oracle.com/en/java/javase/11/tools/jps.html#GUID-6EB65B96-

F9DD-4356-B825-6146E9EEC81E

Here is a sample of using the jps command:

C:\Users\sarcarv>jps -l -m

19520 sun.tools.jps.Jps -l -m

22504

17420 java2e.chapter11.Demonstration7

Now you can use the jstack command with the process ID to investigate further, as

in the following:

C:\Users\sarcarv>jstack 17420

Note  The jps and jstack commands are experimental and unsupported
by Oracle.

�Interthread Communication
Polling is a mechanism that repeatedly checks some condition. Consider a classical

producer–consumer problem, where a producer can produce at a higher rate than

the consumer can consume (or vice versa). If the producer needs to check on the

consumer’s consumption status repeatedly, it will waste CPU cycles.

To avoid such problems in a multi-threaded environment, Java defines the following

methods in the Object class:

•	 wait(): It will cause the current thread to wait until another thread

calls the notify() or notifyAll() methods. There are overloaded

versions available for this method in which you can specify the time

to wait.

Chapter 11 Thread Programming

https://docs.oracle.com/en/java/javase/11/tools/jps.html#GUID-6EB65B96-F9DD-4356-B825-6146E9EEC81E
https://docs.oracle.com/en/java/javase/11/tools/jps.html#GUID-6EB65B96-F9DD-4356-B825-6146E9EEC81E

318

•	 notify(): It wakes up a single thread. The language documentation

says the following: “Wakes up a single thread that is waiting on this

object’s monitor. If any threads are waiting on this object, one of them

is chosen to be awakened. The choice is arbitrary and occurs at the

discretion of the implementation.” It also suggests that the thread that

is the actual owner of the object’s monitor should call this method.

•	 notifyAll(): This method wakes up all threads that called wait() on the

same object. The language documentation further says, “The awakened

threads will not be able to proceed until the current thread relinquishes

the lock on this object. The awakened threads will compete in the usual

manner with any other threads that might be actively competing to

synchronize on this object; for example, the awakened threads enjoy no

reliable privilege or disadvantage in being the next thread to lock this

object.” Like the notify() call, it also suggests that the thread that is the

actual owner of the object’s monitor should call this method.

Note  There is a term called spurious wakeup that indicates that a thread can
wake up without being notified, interrupted, or timing out. Though it is a rare
situation, Oracle recommends you guard the situation with a check that will verify
the condition that caused the thread to be woken. The thread should continue
waiting if the condition is not satisfied.

Implementing interthread communication is tough, and you may need to consider

many complicated scenarios. But for an easy understanding, let’s go through the

following demonstration, which has the following characteristics:

•	 In this example, there is a singleton class called SharedResource.

In simple words, a singleton class is a class from which you cannot

create multiple objects. Once an object is created from a singleton

class, you need to reuse that object instead of instantiating a new

object. There are different ways to create a Singleton class. In the

upcoming demonstration, I show a way to make such a construct. So,

you can guess that I am using a singleton class to restrict the number

of objects created from this class. At the same time, it will help me to

easily get a lock on the same object.

Chapter 11 Thread Programming

319

•	 Two synchronized methods—allowJob() and performJob()—are

placed in this singleton class. The performJob() will perform a

simple job that simply prints 0 to 9, and the allowJob() will wait

for the completion of the performJob(). For simplicity, I have set

a Boolean flag jobDone, which is by default set as false. Once any

thread completes the performJob(), it will set the flag to true.

•	 There are two threads—FirstThread and SecondThread.

FirstThread starts early and starts working in allowJob(), but since

it sees that the jobDone flag value is false, it releases control and

starts waiting for SecondThread to complete performJob().

�Demonstration 8
Here is the code:

package java2e.chapter11;

//A singleton class

class SharedResource {

 static boolean jobDone = false;

 �// We make the constructor private to prevent the use of "new"

 private SharedResource() {

 }

 private static SharedResource sharedInstance;

 public static synchronized SharedResource getInstance() {

 if (sharedInstance == null) {

 System.out.println("Creating the singleton Instance");

 sharedInstance = new SharedResource();

 } else {

 �System.out.println("I already created a SharedResource

instance.I'm using that.");

 }

 return sharedInstance;

 }

Chapter 11 Thread Programming

320

 synchronized void allowJob() {

 �System.out.println(Thread.currentThread().getName() + " enters

into allowJob().");

 �System.out.println("Checking whether a new job is allowed to

perform or not.");

 if (jobDone != true) {

 �System.out.println("Waiting for any existing/pending job

to complete (i.e.jobDone flag to be true).");

 try {

 �System.out.println("Releasing control in

allowJob().");

 wait();

 System.out.println("wait() performed.");

 } catch (Exception e) {

 }

 }

 System.out.println("Ready to allow new Job.");

 }

 synchronized void performJob() throws InterruptedException {

 �System.out.println(Thread.currentThread().getName() + " enters

into performJob()");

 System.out.println("A job is already in progress.");

 for (int i = 0; i < 10; i++) {

 �// Any arbitrary job can be performed.Here we are just

printing 0 to 9.

 System.out.print("\t" + i);

 Thread.sleep(100);

 }

 System.out.println(" ");

 System.out.println("Job completed. ");

 jobDone = true;

 notify();

 //notifyAll();

 }

}

Chapter 11 Thread Programming

321

//FirstThread class

class FirstThread extends Thread {

 public FirstThread(String name) {

 super(name);

 }

 @Override

 public void run() {

 SharedResource.getInstance().allowJob();

 // new SharedResource().allowJob();//error

 System.out.println("Exit-FirstThread.");

 }

}

//SecondThread class

class SecondThread extends Thread {

 public SecondThread(String name) {

 super(name);

 }

 @Override

 public void run() {

 try {

 SharedResource.getInstance().performJob();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // new SharedResource().performJob();//error

 System.out.println("Exit-SecondThread.");

 }

}

class InterThreadCommunication {

 public static void main(String args[]) throws InterruptedException {

 �System.out.println("***Demonstration 8. A simple demo on

Interthread Communication.***");

 FirstThread first = new FirstThread("FirstThread");

 first.start();

Chapter 11 Thread Programming

322

 // We want FirstThread to start executing first

 Thread.sleep(1000);

 SecondThread second = new SecondThread("SecondThread");

 second.start();

 }

}

Here is a possible output:

Demonstration 8. A simple demo on Interthread Communication.

Creating the singleton Instance

FirstThread enters into allowJob().

Checking whether a new job is allowed to perform or not.

Waiting for any existing/pending job to complete (i.e., jobDone flag to be

true).

Releasing control in allowJob().

I already created a SharedResource instance.I'm using that.

SecondThread enters into performJob()

A job is already in progress.

 0 1 2 3 4 5 6 7 8 9

Job completed.

Exit-SecondThread.

wait() performed.

Ready to allow new Job.

Exit-FirstThread.

You can see that I deliberately wanted to start FirstThread to execute early so that

you can see the working mechanisms of wait() and notify(). I draw your attention

to the singleton instance on which wait() was called. It is important to note that you

should always wake up the particular thread that called wait() on the same object.

If you want do not want to use the concept of singleton classes, just comment out the

private constructor, and inside main() you can use the following code:

final SharedResource c = new SharedResource();

 new Thread() {

 public void run() {

 c.allowJob();

 }

Chapter 11 Thread Programming

323

 }.start();

 new Thread() {

 public void run() {

 try {

 c.performJob();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }.start();

In this case, you do not need to create classes like FirstThread or SecondThread, and

the overall code size is reduced. Though you can create as many instances as you want

from the SharedResource class, you’ll probably agree with me that this code is not easily

readable, so I have used the same approach I used in previous demonstrations.

POINTS TO REMEMBER

You should use wait(), notify(), and notifyAll() from a synchronized context.

Otherwise, you may encounter java.lang.IllegalMonitorStateException. If these

methods are allowed for use in a non-synchronized context, there is a possibility that the

waiting thread will miss the notification from the notifying thread and wait forever.

�Lifecycle of a Thread
You have seen that a thread can be in various states, but at any particular moment, it can

be in just one particular state:

•	 In the Born state, it is just created, but the start() method is not yet

called.

•	 Once you invoke the start() method, it is in a Runnable state, but

the scheduler has yet to allow it to run.

•	 In the Running state, the scheduler allows it to execute.

Chapter 11 Thread Programming

324

•	 The thread can enter into a Non-Runnable or Blocked state when

methods like suspend(), wait(), sleep(), etc. are called. But it

can again go back to the Runnable state once resume() is called

or sleep() is over or methods like notify() and notifyAll() are

called.

•	 Finally, a thread is in Dead state once it finishes the execution of the

run() method.

Note  In Java 11, Oracle removed the deprecated stop() and destroy()
methods from the java.lang.Thread class. One of the key reasons to remove
the stop() method is if you call stop() externally, all monitors that were held by
the thread will be available immediately, which could raise an unsafe situation.

Let’s review the various states with Figure 11-5.

Chapter 11 Thread Programming

325

�Q&A Session
11.6 What is a thread pool?

A thread pool is another big topic that is not discussed in this chapter. But it is useful

to know that these are preinitialized threads that are contained in a collection. You

can decide the size of your thread pool. When you want to limit the number of thread

creations in your application, you may use this concept. It is helpful because in general, a

thread creation is a costly operation and the overall performance of your application can

be degraded if you create threads frequently.

Figure 11-5.  Lifecycle of a thread

Chapter 11 Thread Programming

326

11.7 In this chapter I have seen term “monitor” in several places. What does it mean?

In simple terms, you can assume that there is a shared area, but only one thread at a time

can enter into that area. Other threads need to wait for the exit of the current thread (the

thread currently active in this area) to get a chance to access this location.

In a multi-threaded environment, this mechanism can help you access shared

resources in a proper way. Java doesn’t have a Monitor class but supports the concept of

synchronization, which you explored already.

11.8 How is sleep() different from wait()?

The wait() method waits for a thread to complete and reach the dead state. In a

synchronization context, this method can help you to release the lock. This method is

defined in the Object class.

On the other hand, the sleep() method simply sleeps (ceases execution) for some

specified period of time. It does not do anything with lock. It is defined in the Thread

class.

11.9 Why should the wait() - notify() pair be used in a synchronized context?

First of all, you may encounter the exception called java.lang.

IllegalMonitorStateException. If these methods are allowed to be used in a non-

synchronized context, there is the possibility that the waiting thread will miss the

notification from the notifying thread and wait forever.

In Java, each object has a lock and two queues—one entry queue and one waiting

queue. If a thread calls an object’s method but the object lock is held with a different

thread, the calling thread will enter into the entry queue.

And when you call a wait() method, you force the thread to release control and

move into a blocked state. It is now placed in the waiting queue.

Now, consider the case where the notification comes from the notifying thread and

at the same time the blocking thread is moving to the waiting queue. In this case, the

waiting thread can miss the notification and wait forever.

11.10 What will happen if a thread invokes notify() (or notifyAll()) when there is
no thread in the waiting queue?

In this case, there is no impact for the call.

Chapter 11 Thread Programming

327

�Summary
This chapter discussed the following:

•	 What is a thread and how is it different from a process?

•	 How can you create threads?

•	 What is the lifecycle of a thread?

•	 What are the different approaches to creating threads in Java?

•	 What are different Thread class methods and their usage?

•	 What is the usage of wait(), notify(), and notifyAll() from the

Object class?

•	 What is synchronization and how can you implement the concept in

Java?

•	 What is a deadlock and how can you detect the deadlock in your

system?

•	 How do you experiment with a simple interthread communication

technique?

Chapter 11 Thread Programming

329
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_12

CHAPTER 12

Generic Programming
Generic programming is an important concept in Java. It was introduced in JDK 5, and

since then it has become an integral part of Java programming. The power of generic

programming is enormous. It will make your program type-safe and flexible. Generics are

often used with collections frameworks. So, once you are familiar with Java collections,

you will be better able to use generics. This chapter provides a brief overview of generics.

To help you understand the power of generics, I’ll start with a non-generic program

and then write a generic program. Later, we’ll do a comparative analysis to discover the

advantages of generic programming.

�Compare Generic Programs with Non-Generic
Programs
Let’s start with a non-generic program to start the analysis.

�Demonstration 1
Consider the following non-generic program and the output.

package java2e.chapter12;

class MyNonGenericClass {

 public int showInteger(int i) {

 return i;

 }

 public String showString(String s1) {

 return s1;

 }

}

330

class Demonstration1 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-1.A non-generic program

example***");

 MyNonGenericClass nonGenericOb = new MyNonGenericClass();

 �System.out.println("showInteger returns : " + nonGenericOb.

showInteger(25));

 �System.out.println("showString returns : " + nonGenericOb.

showString("A non-generic method is called."));

 }

}

Output:

Demonstration-1.A non-generic program example

showInteger returns : 25

showString returns : A non-generic method is called.

Now, consider a generic program. Before you start, go through the following points

about generic programming in Java:

•	 In generic programming, you are actually dealing with parameterized

types. You will often notice the use of generic classes, generic

interfaces, or generic methods in a generic program.

•	 Angle brackets <> are used to create generic types.

•	 In your generic program, you can define a class with placeholders for

the type of its methods, fields, parameters, etc. At a later stage, these

placeholders are replaced with the particular type.

•	 Prior to JDK5, there was no concept of generic programming in Java.

So, in earlier days, to make a generalized class, interface, or method,

programmers needed to consider the Object class. Since the Object

class is the ultimate super class, an object reference can refer to any

subtype object. So, casting was often required to get back the actual

type. As a result, type-safety was a big concern prior to the generics era.

Chapter 12 Generic Programming

331

•	 JLS11 says that “it is a compile-time error if a generic class is a direct

or indirect subclass of Throwable.” This restriction is important

because JVM’s catch mechanism is compatible only with non-generic

classes.

•	 Experts often suggest the use of generic programming instead of its

non-generic counterpart.

Let’s start with the following program.

�Demonstration 2
Go through the associated comments for a better understanding of the code.

package java2e.chapter12;

//A generic class

//T is a type parameter.It will be replaced by the real type when you

//initialize the actual object.

class MyGenericClass<T> {

// A generic method

// The following method's return type is T. It also accepts

// a T type argument.

 public T show(T value) {

 return value;

 }

}

public class Demonstration2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-2.A generic program

example***");

 // Creating a MyGenericClass<Integer> type object.

 �MyGenericClass<Integer> myGenericClassIntOb = new

MyGenericClass<Integer>();

 �System.out.println("The method show returns the integer

value : " + myGenericClassIntOb.show(100));

 // Creating a MyGenericClass<String> type object.

Chapter 12 Generic Programming

332

 �MyGenericClass<String> myGenericClassStringOb = new

MyGenericClass<String>();

 System.out.println("The method show returns the string value :

 �"+ myGenericClassStringOb.show("A generic method

is called."));

 // Creating a MyGenericClass<Double> type object.

 �MyGenericClass<Double> myGenericClassDoubleOb = new

MyGenericClass<Double>();

 �System.out.println("The method show returns the double value :

" + myGenericClassDoubleOb.show(100.5));

 }

}

Output:

 Demonstration-2.A generic program example

The method show returns the integer value : 100

The method show returns the string value : A generic method is called.

The method show returns the double value : 100.5

Let’s now do a comparative analysis of Demonstration 1 and Demonstration 2. You

have seen the following characteristics:

•	 For non-generic methods, you need to specify methods like

showInteger() and showString() to handle the particular data

type. But in the generic version, the method show() is sufficient. In

general, there are fewer lines of code in generic versions (i.e., code

size is smaller).

•	 Inside main() in Demonstration 1, you encounter a compile-time

error if you add the following line of code (also shown in Figure 12-1):

System.out.println("showDouble returns : " + nonGenericOb.

showDouble(15.9));

Chapter 12 Generic Programming

333

The error message is self-explanatory. You know that you did not define something

like the showDouble(double d) method for the type MyNonGenericClass. To avoid this

error, you may need to include an additional method in the class MyNonGenericClass, as

follows (notice the method showDouble() in bold):

class MyNonGenericClass {

 public int showInteger(int i) {

 return i;

 }

 public String showString(String s1) {

 return s1;

 }

 public double showDouble(double d) {

 return d;

 }

}

The code size of MyNonGenericClass is increased with this addition. You needed to

increase the code size because you needed to process a different data type, double.

Now, turn your attention to Demonstration 2, where you get the double data type

without modifying MyGenericClass. As a result, you can conclude that the generic

version is more flexible and may require fewer lines of code.

Apart from this, consider another useful scenario. Suppose, in Demonstration 2, in

the side main() method, you add one more line of code, like the following:

myGenericClassIntOb.show(125.7);//Error

You will receive a compile-time error now. This is because myGenericIntOb is of type

MyGenericClass<Integer>, so the compiler can check whether you are properly passing

an Integer argument in the show() method. In this way, you can promote type-safety in

your code through generic programming.

Figure 12-1.  A compile-time error in a non-generic program

Chapter 12 Generic Programming

334

You may also wonder why I am not writing something like the following:

System.out.println(myGenericClassIntOb.show(new Integer(100)));

// Also ok but no additional benefit

instead of

System.out.println(myGenericClassIntOb.show(100));

It is because Java can perform the autoboxing to encapsulate from an int to the

corresponding wrapper class Integer.

Note R emember, the process of converting a primitive type into an object of the
corresponding wrapper class is termed autoboxing. For example, int to Integer,
double to Double, float to Float etc. You learned about wrapper classes in
Chapter 3.

For a quick review, once again notice the following line of code in Demonstration 2:

MyGenericClass<Integer> myGenericClassIntOb = new

MyGenericClass<Integer>();

You need to use similar syntax when you write generic programs in corresponding

places. You can observe that the type Integer is specified within the angle brackets

after MyGenericClass, and Integer is the type argument that you are passing to the type

MyGenericClass. In a similar way, you use MyGenericClass with different types. In this

context, you must go through the upcoming statements carefully.

It is also important to note that you are passing the class type; i.e., an Integer

argument. But if you pass any primitive datatype, for example, an int, you’ll receive a

compile-time error. The following declaration is NOT legal in generic programming in Java:

// Primitive types are NOT allowed here.

// It must be a reference type.

MyGenericClass<int> myGenericClassIntOb2 = new MyGenericClass<int>();

In Eclipse, you will notice an error for this code (as shown in Figure 12-2): Syntax

error, insert “Dimensions” to complete ReferenceType. Here is a snapshot from

Eclipse IDE.

Chapter 12 Generic Programming

https://www.geeksforgeeks.org/wrapper-classes-java/

335

A wrapper class can hold primitive datatypes as objects. So, when you need to pass a

primitive datatype in a case like this, you first wrap it in the equivalent wrapper type and

proceed (as shown in Demonstration 2).

POINTS TO REMEMBER

It may appear that different versions of MyGenericClass truly exist. But the Java compiler

actually removes all this generic type information and performs the necessary cast to make

the code behave like this. This removal process is termed erasure. In actuality, there is only

one version of MyGenericClass that exists for Demonstration 2. You’ll learn about erasures

shortly.

�Demonstration 3
Consider the following program. This demonstration is presented to show how a generic

program can perform better than a non-generic program. It should be noted that in

this demonstration, I have used the legacy ArrayList (or you can say the non-generic

version of ArrayList), which is bad practice and is not recommended. It is presented

only for the purpose of comparison with a generic program.

package java2e.chapter12;

import java.util.ArrayList;

import java.util.List;

public class Demonstration3 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-3.A bad practice.Using a

lagacy ArrayList and encountering a runtime error.***");

Figure 12-2.  Syntax errors when you pass a primitive datatype instead of a
reference type

Chapter 12 Generic Programming

336

 �// BAD practice.Following line of code is using a legacy

//ArrayList

 List myList = new ArrayList();

 myList.add(10);

 myList.add(20);

 �myList.add("Invalid");// No compile-time error when you use

//legacy ArrayList

 // Printing the contents of the ArrayList

 System.out.println("Here is the contents of the ArrayList:");

 for (int i = 0; i < myList.size(); i++) {

 System.out.println(myList.get(i));

 }

 // Picking last element in the ArrayList

 int lastElement = (int) myList.get(myList.size() - 1);

 System.out.println("Adding 1 to last element and printing");

 System.out.println(++lastElement);// Run-time error

 }

}

The program will not raise any compile-time errors, but you will receive a runtime

error that says the following:

***Demonstration-3.A bad practice.Using a lagacy ArrayList and encountering

a runtime error.***

Here is the contents of the ArrayList:

10

20

Invalid

Exception in thread "main" java.lang.ClassCastException: java.lang.String

cannot be cast to java.lang.Integer

 at java2e.chapter12.Demonstration3.main(Demonstration3.java:21)

This is because the third element (i.e., myList [2] in the ArrayList) is not an

integer (it is a string). During compile time, you did not encounter any issues, because it

was stored as an object. So, you can see that type-safety is a major concern with a non-

generic program.

Chapter 12 Generic Programming

337

�Demonstration 4
One of the notable characteristics of this example is that you can see the use of lambda

expressions, which were introduced in Java 8. Since they are not mandatory for this

program, I have placed one in the commented block. I have included this because in

similar examples, you may notice the use of lambda expressions in different places.

Let’s quickly review what a lambda expression is and why it is important. One of the

main goals of using a lambda expression is that you can treat it as a function that need

not be a part of a class. Here is a sample code for a lambda expression:

(int a, int b) -> {return (a + b);}

It is a lambda expression that has two parameters and a return statement. It is

possible to use lambda expressions without a parameter. A lambda expression can exist

without a return statement too. For example, here is a lambda expression that does not

accept any parameters and doesn’t have any return statements:

() -> System.out.println("Lambda expression without a return statement");

Using a lambda expression, you can make your code compact and easily readable.

Java lambda expression is treated as a function, so the compiler does not create a .class

file for it.

Now, consider the updated program in Demonstration 4, where you use generic

programming. The key changes are shown in bold.

package java2e.chapter12;

import java.util.ArrayList;

import java.util.List;

public class Demonstration4 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-4.Use Generics to promote

type-safety and avoid runtime error***");

 ArrayList<Integer> myList = new ArrayList<Integer>();

 myList.add(10);

 myList.add(20);

 �// Compile time error when you use ArrayList<Integer>

//myList.add("Invalid");

Chapter 12 Generic Programming

338

 //Printing the contents of the ArrayList

 System.out.println("Here is the contents of the ArrayList:");

 for (int i = 0; i < myList.size(); i++) {

 System.out.println(myList.get(i));

 }

 /*

 for (int myInt : myList) { System.out.println(myInt); }

 �System.out.print("Printing the elements using lambda

expression:\n");

 //Or, use the enhanced for loop with lambda expression

 myList.forEach((myInt) -> System.out.println(myInt));

 */

 //Picking last element in the ArrayList.

 //No casting is required now.

 int lastElement=myList.get(myList.size()-1);

 �System.out.println("Adding 1 to last element and

printing");

 System.out.println(++lastElement);//No runtime error

 }

}

This time, you’ll catch the bug much earlier because it is caught at compile time

(Figure 12-3). You can see the compile-time error message, which clearly says that you

are using a String instead of an Integer.

Figure 12-3.  You can catch an error early in a generic program

In this case, since the error is caught during compile time, you do not need to

wait until runtime to get this error, which is always better. Once you comment out the

following line:

myList.add("Invalid");

Chapter 12 Generic Programming

339

you can receive the intended output, as follows:

***Demonstration-4.Use Generics to promote type-safety and avoid runtime

error***

Here is the contents of the ArrayList:

10

20

Adding 1 to last element and printing

21

By comparing Demonstration 3 and Demonstration 4, you can say the following:

•	 To avoid runtime errors, you should prefer the generic version of

code to the non-generic version.

•	 No casting is required now. Notice the following line of code:

int lastElement=myList.get(myList.size()-1);

•	 Lastly, you can see a commented block of code, which is presented

for reference purposes only. In different programs, you may notice

one of these variations of a for loop:

 /*

 for (int myInt : myList) { System.out.println(myInt); }

 �System.out.print("Printing the elements using lambda

expression:\n");

 // Or, use the enhanced for loop with lambda expression

 myList.forEach((myInt) -> System.out.println(myInt));

*/

•	 Since you are using the concept of generics, you can print the

elements of the ArrayList in a better way. In general, you’ll see

these versions of code when you traverse and print elements in an

ArrayList (or other collection objects).

So, you can surely conclude that the generic version of ArrayList is more flexible

and usable than the non-generic version of ArrayList. The same concept is applicable

for other collection objects and similar kinds of programming.

Chapter 12 Generic Programming

340

�Wildcard Types in Generic Programming
In upcoming discussions you’ll notice that sometimes you may need to put restrictions

on a particular type in generic programming. There are two common ways to implement

such constraints—one approach is to use wildcards, and another approach is to use

bounded type parameters. Here, I’ll start with wildcards.

In generic programming, a wildcard is represented with the question mark (?). It

denotes an unknown type. It can be used when you have partial knowledge about the

type parameter.

Wildcards can be bounded or unbounded. Bounded wildcards can be used to set

either an upper bound or a lower bound for a type argument. Let’s start the discussion

with an upper-bound wildcard

�Upper-bound Wildcard
To begin with, consider the following code segment. In this segment, Vehicle is the

super class, and it has two subclasses: Bus and Rocket. Each of these classes has a

constructBody() method to construct the particular instances. All of these classes also

maintain a counter to track how many instances of these types are created. Here is the

code segment:.

class Vehicle {

 static int basicVehicleCount;

 // Construct some basic structure of an individual vehicle

 public void constructBody() {

 basicVehicleCount++;

 �System.out.println("One basic structure is formed.No of basic

structure ="+ basicVehicleCount);

 }

}

Chapter 12 Generic Programming

341

class Bus extends Vehicle {

 static int busCount;

 @Override

 public void constructBody() {

 busCount++;

 �System.out.println("Bus completed.It can move on road now. The

bus count=" + busCount);

 }

}

class Rocket extends Vehicle {

 static int rocketCount;

 @Override

 public void constructBody() {

 rocketCount++;

 �System.out.println("Rocket constructed.It can move into space

now. The rocket count=" + rocketCount);

 }

}

Suppose you have stored these vehicles (Vehicle, Bus, or Rocket) in a collection—

say, in an ArrayList. Now you want to invoke the constructBody() method for each

instance in the ArrayList. So, you may start with code like the following:

//May NOT work in this case

 public static void constructBody(List<Vehicle> vehicleList) {

 System.out.println("\nHere is the vehicle list for you : ");

 vehicleList.forEach((vehicle) -> vehicle.constructBody());

 }

This segment of code can work when you have an ArrayList<Vehicle> type.

But interestingly, it will not work when you apply it to either the ArrayList<Bus> or

ArrayList<Rocket> types. From the compiler’s point of view, ArrayList<Bus> or

ArrayList<Rocket> are different from ArrayList<Vehicle>, though Vehicle is the

Chapter 12 Generic Programming

342

supertype of Bus and Rocket (you can refer to the “One Final Suggestion” section at the

end of the chapter). In this case, the compiler will suggest you introduce methods like

static void constructAllVehicles(ArrayList<Rocket> rockets){//some code}

or

static void constructAllVehicles(ArrayList<Bus> buses) {//some code}.

If you follow those suggestions, the compiler will further complain with different

errors, like those in Figure 12-4.

Figure 12-4.  Eclipse IDE snapshot of some compile-time errors in a generic
program

So, in short, you need to do something special to handle this situation. One possible

solution is to use the wildcard type, like the following (shown in bold).

// Construct all vehicles in the list

//public static void constructBody(List<Vehicle> vehicleList) {

public static void constructAllVehicles(List<? extends Vehicle>

vehicleList) {

 System.out.println("\nHere is the vehicle list for you : ");

 vehicleList.forEach((vehicle) -> vehicle.constructBody());

 }

Here is the full demonstration for you.

�Demonstration 5
In this demonstration, some portions are in bold to highlight important lines of code in

the program.

Chapter 12 Generic Programming

343

package java2e.chapter12;

import java.util.ArrayList;

import java.util.List;

class Vehicle {

 static int basicVehicleCount;

 // Construct some basic structure of an individual vehicle

 public void constructBody() {

 basicVehicleCount++;

 �System.out.println("One basic structure is formed.No of basic

structure ="+ basicVehicleCount);

 }

}

class Bus extends Vehicle {

 static int busCount;

 @Override

 public void constructBody() {

 busCount++;

 �System.out.println("Bus completed.It can move on road now. The

bus count=" + busCount);

 }

}

class Rocket extends Vehicle {

 static int rocketCount;

 @Override

 public void constructBody() {

 rocketCount++;

 �System.out.println("Rocket constructed.It can move into space

now. The rocket count=" + rocketCount);

 }

}

Chapter 12 Generic Programming

344

class Demonstration5 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-5.Use of Wildcard types

in generic programming.***");

 //One Vehicle object

 Vehicle vehicle1=new Vehicle();

 // Three Bus objects

 Bus bus1 = new Bus();

 Bus bus2 = new Bus();

 Bus bus3 = new Bus();

 // Two Rocket objects

 Rocket rocket1 = new Rocket();

 Rocket rocket2 = new Rocket();

 �// List of anytype of vehicles.Vehicle type or its subtypes

//can be added.

 ArrayList<Vehicle> vehicles = new ArrayList<Vehicle>();

 // Adding one vehicle,one bus and one rocket in the list

 vehicles.add(vehicle1);

 vehicles.add(bus1);//ok

 vehicles.add(rocket1);//ok

 constructAllVehicles(vehicles);// ok

 // List of specific vehicles(buses) only

 ArrayList<Bus> buses = new ArrayList<Bus>();

 // Adding three buses in the list

 buses.add(bus1);

 �//error: cannot add a rocket to a bus list

 �// buses.add(rocket1);

 buses.add(bus2);

 buses.add(bus3);

 // error if you do not use wildcard in the method

 constructAllVehicles(buses);

 // List of specific vehicles(rockets) only

 ArrayList<Rocket> rockets = new ArrayList<Rocket>();

Chapter 12 Generic Programming

345

 // Adding two rockets in the list

 rockets.add(rocket1);

 rockets.add(rocket2);

 �// error if you do not use wildcard in the method

 constructAllVehicles(rockets);

 }

 // Construct all vehicles in the list

 // public static void constructBody(List<Vehicle> vehicleList) {

 �public static void constructAllVehicles(List<? extends Vehicle>

vehicleList) {

 System.out.println("\nHere is the vehicle list for you : ");

 vehicleList.forEach((vehicle) -> vehicle.constructBody());

 }

}

Output:

Demonstration-5.Use of Wildcard types in generic programming.

Here is the vehicle list for you :

One basic structure is formed.No of basic structure =1

Bus completed.It can move on road now. The bus count=1

Rocket constructed.It can move into space now. The rocket count=1

Here is the vehicle list for you :

Bus completed.It can move on road now. The bus count=2

Bus completed.It can move on road now. The bus count=3

Bus completed.It can move on road now. The bus count=4

Here is the vehicle list for you :

Rocket constructed.It can move into space now. The rocket count=2

Rocket constructed.It can move into space now. The rocket count=3

You can see that List<Vehicle> is more restrictive than List<? extends

Vehicle>. Here, you are relaxing the restriction by using wildcards. As a result, the

constructAllVehicles(List<? extends Vehicle> vehicleList) can be applied with

both the ArrayList<Vehicle> and ArrayList<any subtype of Vehicle> (i.e., with

ArrayList<Bus> and ArrayList<Rocket> in this example). So, the ? extends Vehicle

Chapter 12 Generic Programming

346

syntax simply helps the compiler to match the type Vehicle or any subtype of Vehicle.

This is why we say that the extends clause sets an upper bound when you use it with a

wildcard.

POINTS TO REMEMBER

It should be noted that extends in this context is used in a general sense, which can mean

either extends in classes or implements in interfaces.

�Lower-bound Wildcard
You have just learned that when you use the expression <? extends Vehicle> in the

argument of a method, you can invoke the method for the Vehicle class or any of its

subclasses. So, the Vehicle class here acts as the upper bound. Similarly, you can set the

lower bound of a wildcard when you use the expression <? super Vehicle>. In this case,

the acceptable arguments are Vehicle and its super class. So, you can roughly interpret

the expression <? super T> as “either the class T or any super class of T.”

�Demonstration 6
Let’s consider the following example:

package chapter12.testcodes;

import java.util.ArrayList;

import java.util.List;

class Vehicle {

 // Construct some basic structure of an individual vehicle

 public void constructBody() {

 System.out.println("One basic structure is formed.");

 }

}

Chapter 12 Generic Programming

347

class Bus extends Vehicle {

 static int busCount;

 @Override

 public void constructBody() {

 busCount++;

 �System.out.println("Bus completed.It can move on road now. The

bus count=" + busCount);

 }

}

class Rocket extends Vehicle {

 static int rocketCount;

 @Override

 public void constructBody() {

 rocketCount++;

 �System.out.println("Rocket constructed.It can move into space

now. The rocket count=" + rocketCount);

 }

}

public class TestCodeDemonstration6 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-6.Use of lower-bound

wildcard types in generic programming.***");

 //Two Vehicle objects

 Vehicle vehicle1=new Vehicle();

 Vehicle vehicle2=new Vehicle();

 // Two Bus objects

 Bus bus1 = new Bus();

 Bus bus2 = new Bus();

 // Two Rocket objects

 Rocket rocket1 = new Rocket();

 Rocket rocket2 = new Rocket();

Chapter 12 Generic Programming

348

 // List of vehicles

 ArrayList<Vehicle> vehicles = new ArrayList<Vehicle>();

 // Adding two vehicles in the list

 vehicles.add(vehicle1);

 vehicles.add(vehicle2);

 // Adding two buses in the list

 vehicles.add(bus1);

 vehicles.add(bus2);

 constructAllVehicles(vehicles);//ok

 // List of rockets

 ArrayList<Rocket> rockets = new ArrayList<Rocket>();

 // Adding two rockets in the list

 rockets.add(rocket1);

 rockets.add(rocket2);

 �//constructAllVehicles(rockets);// Error: Not applicable for

//ArrayList<Rocket> when you use the lower bound wildcard

 }

 // Construct all vehicles in the list

 �public static void constructAllVehicles(List<? super Bus>

vehicleList) {

 System.out.println("\nHere is the vehicle list for you : ");

 //Compile-time error:Add cast to vehicle

 //vehicleList.forEach((vehicle) -> vehicle.constructBody());

 /*

 //Runtime error:Vehicle cannot be cast to Bus

 �//vehicleList.forEach((vehicle) -> ((Bus) vehicle).

constructBody());

 */

 �vehicleList.forEach((bus) -> ((Vehicle) bus).

constructBody());//Ok

 }

}

Chapter 12 Generic Programming

349

Output:

***Demonstration-6.Use of lower-bound wildcard types in generic

programming.***

Here is the vehicle list for you :

One basic structure is formed.

One basic structure is formed.

Bus completed.It can move on road now. The bus count=1

Bus completed.It can move on road now. The bus count=2

You can see that <? super Bus> in the method argument helps you to call the

method with ArrayList<Bus> and ArrayList<Vehicle> because Vehicle is the

supertype of Bus. But you cannot use the method when you use ArrayList<Rocket>,

because Rocket is not a supertype of Bus.

�Unbounded Wildcard
Wildcards can be unbounded. You can use the concept of unbounded wildcards when

you use just the wildcard character (?). Let’s modify the method constructAllVehicles()

in Demonstration 6 as follows:

 //The use of an unbounded wildcard

 public static void constructAllVehicles(List<?> vehicleList) {

 System.out.println("\nHere is the vehicle list for you : ");

 �vehicleList.forEach((anyVehicle) -> ((Vehicle) anyVehicle).

constructBody());//Ok

 }

Here, List<?> is used to denote a list of unknown types. You can also uncomment

the following code in Demonstration 6, as follows:

constructAllVehicles(rockets);// Error: Not applicable for

//ArrayList<Rocket> when you use the lower-bound wildcard

Chapter 12 Generic Programming

350

This time there is no compile-time error, and you will receive the following output:

***Demonstration-6.Use of lower-bound wildcard types in generic

programming.***

Here is the vehicle list for you :

One basic structure is formed.

One basic structure is formed.

Bus completed.It can move on road now. The bus count=1

Bus completed.It can move on road now. The bus count=2

Here is the vehicle list for you :

Rocket constructed.It can move into space now. The rocket count=1

Rocket constructed.It can move into space now. The rocket count=2

Notice the bold lines of the output. You can see that now Rocket objects can also

invoke the constructAllVehicles(List<?> vehicleList) method.

POINTS TO REMEMBER

You can use generic types, which can contain wildcards as parameter types, fields, or local

variables, but not as a type argument for generic methods’ invocation. They should not be

used for generic class instance creation or supertypes. You can refer to Demonstration 6A for a

better understanding.

�Q&A Session
12.1 Are List<?> and List<? extends Object> the same?

No. Let’s examine a case. Consider the following code segment:

class Vehicle1Test {

 @Override

 public String toString() {

 return "Vehicle1Test type.";

 }

}

Chapter 12 Generic Programming

351

class Sub1VehicleTest extends Vehicle1Test {

 @Override

 public String toString() {

 return "Sub1VehicleTest type.";

 }

}

Now, you can write a method that is something like the following:

public static void addElementsVersion2(List<Object> mylist) {

 mylist.add(new Vehicle1Test());// ok

 mylist.add(new Sub1VehicleTest());// ok

 mylist.add(null);// ok

 }

But notice the commented code in the following method:

public static void addElementsVersion1(List<?> mylist) {

 // mylist.add(new Vehicle1Test());// error

 // mylist.add(new Sub1VehicleTest());// error

 mylist.add(null);// ok

 }

In this example, you can add any object type or a subtype into List<Object>, but in

case of List<?>, you can only add null. Java language specification (Jls 11 @ section 4.7)

further tells us that List<?> is a reifiable type but List<? extends Object> is not.

12.2 What do you mean by reifiable types?

The type whose information is completely available during runtime is called a reifiable

type. (You will later learn that some type information is erased during compile time, so it

is possible that the complete type information is not available during runtime.)

According to the language specification, a type is reifiable if and only if one of the

following holds:

•	 It refers to a non-generic class or interface type declaration.

•	 It is a parameterized type in which all type arguments are unbounded

wildcards.

•	 It is a raw type.

Chapter 12 Generic Programming

352

•	 It is a primitive type.

•	 It is an array type whose element type is reifiable.

•	 It is a nested type where, for each type T separated by a ".", T itself is

reifiable.

12.3 Then what is the use of List<?>?

Sometimes you may just want to iterate through your collection. For example, consider

the following program and output:

package chapter12.testcodes;

import java.util.ArrayList;

import java.util.List;

class Vehicle1Test {

 @Override

 public String toString() {

 return "Vehicle1Test type.";

 }

}

class Sub1VehicleTest extends Vehicle1Test {

 @Override

 public String toString() {

 return "Sub1VehicleTest type.";

 }

}

class Test1 {

 public static void main(String[] args) {

 System.out.println("***A sample test.An use of List<?>***");

 Vehicle1Test vehicle1 = new Vehicle1Test();

 Vehicle1Test vehicle2 = new Sub1VehicleTest();

 List<Object> vehicles = new ArrayList<Object>();

 vehicles.add(vehicle1);// ok

Chapter 12 Generic Programming

353

 vehicles.add(vehicle2);// ok

 �printElements(vehicles);// ok.An example of use //List<?> in a

//method argument

 }

 public static void addElementsVersion1(List<?> mylist) {

 // mylist.add(new Vehicle1Test());// error

 // mylist.add(new Sub1VehicleTest());// error

 mylist.add(null);// ok

 }

 public static void addElementsVersion2(List<Object> mylist) {

 mylist.add(new Vehicle1Test());// ok

 mylist.add(new Sub1VehicleTest());// ok

 mylist.add(null);// ok

 }

 public static void printElements(List<?> mylist) {

 mylist.forEach(element -> System.out.println(element));

 }

}

Output:

A sample test.An use of List<?>

Vehicle1Test type.

Sub1VehicleTest type.

12.4 What is a raw type?

You will see a discussion of raw types in Demonstration 10.

12.5 Can you present some valid and invalid statements showing when you use
wildcards in your program?

Demonstration 6A can help you. Here, you can analyze different case studies.

Chapter 12 Generic Programming

354

�Demonstration 6A
Review the program and the supporting comments for your understanding.

package chapter12.testcodes;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

class Sample {

 //Case Study-1:Wildcards in fields

 List<?> myList; //valid

 //? aField; //Invalid

 //Case Study-2:Wildcards in method parameter

 //Syntax error for ?

 //Invalid

 �//public void invalidMethodWithWildCardParameter(? methodParameter) {

 //Some code

 // }

 //The following method is valid.

 �public void validMethodWithWildCardParameter(List<?> myParameter) {

 �System.out.println("The validMethodWithWildCardParameter

(List<?> myParameter) is a valid method.");

 }

 //Case Study-3:Wildcards in return type

 //Error: Return type for the method is missing

 // private ? methodWithWildCardReturnType() {//Invalid

 //return null;

 // }

}

//Case Study-4:Wildcards in supertype

//Error: A supertype may not specify any wild card

//public class SubList implements List<?>{ //Invalid

 //Some code

//}

Chapter 12 Generic Programming

355

class Test2 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration 6A.Some case study with

wildcards***");

 Sample sample=new Sample();

 //Case Study-5:Wildcards in local variable

 List<?> myList = Arrays.asList(12,27,39);//Valid

 System.out.println("Original list :" + myList);

 Collections.reverse(myList);

 System.out.println("Reversed List:"+myList);

 sample.validMethodWithWildCardParameter(myList);

 }

}

Here is the output from Demonstration 6A.

Demonstration 6A.Some case study with wildcards

Original list :[12, 27, 39]

Reversed List:[39, 27, 12]

The validMethodWithWildCardParameter(List<?> myParameter) is a valid

method.

�Bounded Type Parameter
You’ll learn shortly that wildcards cannot solve all your problems efficiently. There is

another option, called bounded type parameters. They help you to restrict the types that

you can use as the type arguments in parameterized types.

Let’s begin with a very simple use case. Assume that you are dealing with some

integers and doubles, and you want to make a generic class that should have a method to

calculate the sum of these values. You understand the following:

•	 You can create a method with the return type double to serve your

purpose.

•	 You are using generics, so you need to consider a wrapper class for

int and double. Integer is the wrapper for int, and Double is the

wrapper for double.

Chapter 12 Generic Programming

356

•	 Integer and Double are subclasses of the Number class, which

has methods like intValue(), longValue(), floatValue(),

doubleValue(), and byteValue(). Let’s see from Eclipse IDE what the

method doubleValue() does. Figure 12-5 is a snapshot from Eclipse.

Figure 12-5.  A snapshot of the doubleValue() method details from
Eclipse IDE

•	 Since doubleValue() is an abstract method, its concrete subclasses

must implement this method. Now, let’s check how the Integer class

implements the doubleValue() method. Here it is:

/**

 * Returns the value of this {@code Integer} as a {@code double}

 * after a widening primitive conversion.

 * @jls 5.1.2 Widening Primitive Conversions

 */

public double doubleValue() {

 return (double)value;

}

•	 Now, let’s also check how the Double class implements the

doubleValue() in the Number class:

/**

 * Returns the {@code double} value of this {@code Double} object.

 * @return the {@code double} value represented by this object

 */

public double doubleValue() {

 return value;

}

Chapter 12 Generic Programming

357

From these definitions, it is obvious that in your case, you can use the doubleValue()

method. Now you can write the following program.

�Demonstration 7
Let’s compile and run the program and then analyze the output.

package java2e.chapter12;

//A generic class

//T is a type parameter.It will be replaced by the real type when you

//initialize the actual object.

class GenericDemo7Class<T extends Number> {

 T firstNumber, secondNumber;

 GenericDemo7Class(T firstNumber, T secondNumber) {

 this.firstNumber = firstNumber;

 this.secondNumber = secondNumber;

 }

 // Always returning a double value

 public double displaySum() {

 //using the library method doubleValue()

 return firstNumber.doubleValue() + secondNumber.doubleValue();

 }

}

class Demonstration7 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-7.A typical use of

bounded type parameter.***\n");

 �GenericDemo7Class<Double> doubleOb = new

GenericDemo7Class<Double>(2.5, 5.7);

 System.out.println("2.5+5.7=" + doubleOb.displaySum());

 �GenericDemo7Class<Integer> intOb = new

GenericDemo7Class<Integer>(2, 7);

 System.out.println("2+7=" + intOb.displaySum());

Chapter 12 Generic Programming

358

 �//GenericDemo7Class<String> stringOb=new GenericDemo7Class<Str

ing>("hello","world!");

 �// Bound mismatch error if you use class GenericDemo7Class<T

extends Number>

 //System.out.println("2+7=" +stringOb.displaySum());

 }

 }

Output:

Demonstration-7.A typical use of bounded type parameter.

2.5+5.7=8.2

2+7=9.0

You can see that the program is compiled and run successfully. Now, consider the

following points:

•	 Let’s see what happens when you use <T> instead of <T extends

Number> in the prior demonstration, as follows:

//class GenericDemo7Class<T extends Number> {

class GenericDemo7Class<T> {

This time, you’ll encounter the compile-time error as follows (shown in Figure 12-6):

The method doubleValue() is undefined for the type T.

Figure 12-6.  The compile-time error says doubleValue() is undefined for the
type T

Chapter 12 Generic Programming

359

The compiler is raising this concern because in this case, it is not sure whether you

will use a true number or not. But when you use <T extends Number>, you are telling the

compiler that you will always pass a Number type, not any other types.

•	 You can see some commented lines in Demonstration 7. If you

uncomment the following line

GenericDemo7Class<String> stringOb = new GenericDemo7Class

<String>("hello","world!");

you’ll receive compile-time errors for bound mismatches. Figure 12-7 is the Eclipse

IDE snapshot for that.

So, you can see that when you use <T extends Number> instead of <T>, you cannot

pass anything other than the Number type.

POINTS TO REMEMBER

In generic programming, <T extends YourSuperClass> says that T can be replaced by

either YourSuperClass or any subclass of YourSuperClass. This approach helps you to

provide an inclusive upper bound. Using this approach, you are promoting type safety in your

program.

It should be noted that, like wildcards, extends in this context is used in a general sense,

which means it either extends the class or implements the interface.

You can use both the class type and the interface type as bounds. But there is an

important restriction. You may remember that in Java programming, your class can

extend from another class, and it can implement multiple interfaces. The same rule

applies here. At the same time, you also need to mention class type before the interface

Figure 12-7.  Bound mismatch errors

Chapter 12 Generic Programming

360

type(s). When you create a bound with a class type and the interface type(s), you use the

& operator, as follows:

<T extends ClassName & FirstInterfaceName & SecondInterfaceName>

Let’s assume you have the following code segment:

class Demo8AClass {

 //Some code

}

class Demo8BClass {

 //Some code

}

interface Interface8ADemo {

 //Some code

}

interface Interface8BDemo {

 //Some code

}

class ImplementorInterface8ADemo implements Interface8ADemo{

 //Some code

}

�Demonstration 8
For the prior code segment, Demonstration 8 presents some samples of valid and invalid

statements for your reference. Here invalid statements are marked with the comment //

Error and valid statements are marked with //Ok.

//class GenericDemo8Class<T extends Demo8AClass & Demo8BClass> {//Error

//class GenericDemo8Class<T extends Interface8ADemo & Demo8AClass &

Interface8BDemo> {//Error

//class GenericDemo8Class<T extends ImplementorInterface8ADemo &

Interface8ADemo & Interface8BDemo> {//Ok

Chapter 12 Generic Programming

361

class GenericDemo8Class<T extends Demo8AClass & Interface8ADemo &

Interface8BDemo> {//Ok

}

�Q&A Session
12.6 How do wildcards differ from bounded type parameters?

It depends on your implementation. In certain situations, bounded type parameters can

promote better readability and safety. It’ll be helpful to remember the syntax for them.

Any wildcard can have only one bound.

•	 For upper bound, you use: ? extends SuperType

•	 For lower bound, you use: ? super SubType

On the other hand, you can associate multiple bounds with a type parameter. So, you

have seen the following statements before.

When you create a bound with a class type and the interface type(s), you use the &

operator, as follows:

<T extends ClassName & FirstInterfaceName & SecondInterfaceName>

Demonstration 8 shows some of the usage of this.

�Erasures
Prior to Demonstration 3, I stated that it may appear that different versions of

MyGenericClass exist. But the Java compiler actually removes all this generic type

information and performs the necessary cast to make the code behave like this. This

removal process is termed erasure. So, in actuality, only one version of MyGenericClass

exists for Demonstration 2. You’ll go through a detailed discussion of this topic now.

In short, for a parameterized class, there is only one compiled class file. For example,

suppose you use ArrayList<Double>, ArrayList<Integer>, or ArrayList<String> in

your program. In this case, the type parameters help you to raise compile-time errors

if you try to store any unwanted type of object in your container. So, you promote type

safety at compile time. But though you use different type parameters in your generic data

structures, all these parameterized types use the same compiled class. It is because all

Chapter 12 Generic Programming

362

the type information is erased at runtime. The process is a little bit complex, but most of

the time you do not need to deal with them directly.

As per the Oracle Java documentation, type erasures can work in the following ways:

•	 All type parameters in generic types will be replaced with their

bounds. For an unbounded type, it will be replaced by Object. As

a result, the generated bytecode will contain the ordinary classes,

interfaces, and methods.

•	 To preserve type safety, type casts will be inserted.

•	 It can generate bridge methods to preserve polymorphism in

extended generic types.

So, here is the bottom line: Type erasure ensures that you will not create different
classes for different parameterized types in the compiled code.

�Demonstration 9
Let’s start with a simple case study. Here, I’ll compile the code and then decompile it.

To make it simple and straightforward, I am using the javac and javap commands,

respectively. I have decompiled this code in a different place in my machine, and this is

why I have intentionally removed the package statement in the following demonstration.

import java.util.List;

import java.util.ArrayList;

class Demonstration9 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-9.Examine the type

erasures.***");

 List<Integer> myIntList = new ArrayList<Integer>();

 myIntList.add(10);

 myIntList.add(20);

 //myIntList.add("Invalid");//error

 int firstNumber=myIntList.get(0);

 System.out.println("First number is :"+ firstNumber);

Chapter 12 Generic Programming

363

 int secondNumber=myIntList.get(1);

 System.out.println("Second number is :"+ secondNumber);

 List<String> myStrList = new ArrayList<String>();

 myStrList.add("Hello");

 myStrList.add(" world !");

 //myStrList.add(30);//error

 String firstString=myStrList.get(0);

 System.out.println("First String is :"+ firstString);

 String secondString=myStrList.get(1);

 System.out.println("Second String is :"+ secondString);

 }

}

Output:

Demonstration-9.Examine the type erasures.

First number is :10

Second number is :20

First String is :Hello

Second String is : world !

The output is straightforward and is not important in the upcoming analysis.

Let’s decompile the class file (that you got after the compilation process). Here are

the snapshots for your reference. It’s a big snap, so I am presenting it in three parts:

Figure 12-8, Figure 12-9, and Figure 12-10.

Chapter 12 Generic Programming

364

Figure 12-8.  Partial snapshot of the decompiled Demonstration9.class (Part I)

Chapter 12 Generic Programming

365

Figure 12-10.  Partial snapshot of the decompiled Demonstration9.class (Part III)

Figure 12-9.  Partial snapshot of the decompiled Demonstration9.class (Part II)

Chapter 12 Generic Programming

366

Here are the important points in these snapshots that I want to highlight:

•	 Both line number 8 and line number 118 ensure that, once compiled,

you get a non-parameterized version of ArrayList. So, when you run

your program, those types’ info will not be available.

•	 Notice how the type casts are added in line numbers 47, 86, 155, and

194. In lines 47 and 86, you can see the presence of Integer, and in

lines 155 and 194, you can see the presence of String.

�Raw Types
When you refer to a generic type without specifying the type parameter, you create a raw

type. For example, in Demonstration 2, we used the following line of code:

MyGenericClass<Double> myGenericClassDoubleOb = new

MyGenericClass<Double>();

But instead of this, if we write something like the following, we create a raw type of

MyGenericClass<T>:

// Creating a raw type of MyGenericClass<T>

MyGenericClass rawOb = new MyGenericClass();

So, MyGenericClass is a raw type of MyGenericClass<T>.

The raw types were used to support the legacy code in the pre-generic era. To

support backward compatibility, you can assign a parameterized type to a raw type, but

when you do the reverse, you will get a warning message like the following:

Type safety: The expression of type MyGenericClass needs unchecked

conversion to conform to MyGenericClass<Double>

This is because the compiler does not have sufficient information to ensure the type-

safety. Here are some code segments with supporting comments for your reference:

// Creating a MyGenericClass<Double> type object.

MyGenericClass<Double> doubleOb = new MyGenericClass<Double>();

// Creating a raw type of MyGenericClass<T>

MyGenericClass rawOb = new MyGenericClass();

Chapter 12 Generic Programming

367

// To support backward compatibility, you can assign a parameterized type

//to a raw type

rawOb = doubleOb;// Ok

// But if you assign a raw type to a parameterized type, there is a

//warning message.

doubleOb = rawOb;// Warning message

It is also important to note that when you use raw types with parameterized types,

you need to concentrate on casting, and you may compromise type safety. For example,

in the following code segment, notice that no casting is necessary for d1, but before you

use d2, you need to type-cast properly:

// Creating a MyGenericClass<Double> type object.

MyGenericClass<Double> doubleOb = new MyGenericClass<Double>();

double d1 = doubleOb.show(100.5);

// Creating a raw type of MyGenericClass<T>

MyGenericClass rawOb = new MyGenericClass();

doubleOb = rawOb;// Warning message

double d2 = (double) rawOb.show(200.5);// type casting is required

In general, you should try to avoid the use of raw types. Raw types can also create

runtime errors.

�Demonstration 10
Demonstration 10 is presented here to summarize the prior discussions:

package java2e.chapter12;

//class MyGenericClass<T> is defined in Demonstration2

class Demonstration10 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-10.Case study with raw

types.***");

 // Creating a MyGenericClass<Double> type object.

 �MyGenericClass<Double> doubleOb = new

MyGenericClass<Double>();

Chapter 12 Generic Programming

368

 double d1 = doubleOb.show(100.5);

 �System.out.println("The method show returns the double value :

" + d1);

 // Creating a raw type of MyGenericClass<T>

 MyGenericClass rawOb = new MyGenericClass();

 �// To support backward compatibility, you can assign a

parameterized type //to a raw type

 //rawOb = doubleOb;// Ok

 �// But if you assign a raw type to a parameterized type, there

//is a warning message

 doubleOb = rawOb;// Warning message

 �double d2 = (double) rawOb.show(200.5);// type casting is

//required

 System.out.println("The value in d2 is: " + d2);

 // No compile-time error but it'll cause runtime error

 //int i3 = (int) rawOb.show(200.5);

 //System.out.println("The value in i3 is: " + i3);

 }

}

Output:

Demonstration-10.Case study with raw types.

The method show returns the double value : 100.5

The value in d2 is: 200.5

�Q&A Session
12.7 Are interfaces raw types?

No. JLS11 confirms that a non-generic class or an interface is not a raw type.

12.8 “Raw types can also create runtime errors”—can you please elaborate?

Notice the following few lines in Demonstration 10. You will get runtime errors.

 // No compile-time error but it'll cause runtime error

 // int i3 = (int) rawOb.show(200.5);

 // System.out.println("The value in i3 is: " + i3);

Chapter 12 Generic Programming

369

If you uncomment the last two lines and compile the program, there is no error. But

when you run the program, you will get the following error messages:

Demonstration-10.Case study with raw types.

The method show returns the double value : 100.5

The value in d2 is: 200.5

Exception in thread "main" java.lang.ClassCastException: java.lang.Double

cannot be cast to java.lang.Integer

 at java2e.chapter12.Demonstration10.main(Demonstration10.java:23)

Note  JLS 11 says the following: “The use of raw types is allowed only as a
concession to compatibility of legacy code. The use of raw types in code written
after the introduction of generics into the Java programming language is strongly
discouraged. It is possible that future versions of the Java programming language
will disallow the use of raw types.”

�Type Inference Using Diamond Operator
You can make use of a pair of angle brackets (called the diamond operator) to replace the

type arguments that are required to invoke the generic class constructor as long as the

compiler can infer it properly. For example, if you append the following lines of code to

the prior demonstration, there is no warning message for you:

//JDK7 onwards, you can use a short syntax using diamond operator

MyGenericClass<Double> doubleOb2 = new MyGenericClass<>();

doubleOb=doubleOb2;//No warning message

But you can remember that, in demonstration 10, when you used the following line:

doubleOb = rawOb;

there was a warning message for you. So, you can use the diamond operator to type less (i.e.,

you can shorten long declaration statements), and you can also ensure that you are NOT

creating a raw type. Since JDK7, this functionality has been available in Java. Lastly, though

you can use this concept in method calls, Oracle suggests you primarily use the diamond

Chapter 12 Generic Programming

370

operator for variable declarations. Personally, I like full-syntax declarations for better

readability and understanding, and it allows me to execute my code properly prior to JDK7.

�Applying Inheritance
You can apply the concept of inheritance in your generic program; i.e., you can subtype

a generic class by extending it, or you can subtype an interface by implementing it. The

only restriction is that you should not vary the argument.

�Demonstration 11
For example, consider Demonstration 11 with output.

package java2e.chapter12;

//class MyGenericClass<T> is defined in Demonstration2

//Compile-time error

//class SubClass<V> extends MyGenericClass<T> {

//The following declaration is fine

class SubClass<T> extends MyGenericClass<T> {

 //Some code

}

class Demonstration11 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-11.Inheritance in Generic

Programming.***");

 SubClass<Integer> subInt = new SubClass<Integer>();

 �System.out.println("The method show returns the interger

value : " + subInt.show(200));

 }

}

Output:

Demonstration-11.Inheritance in Generic Programming.

The method show returns the interger value : 200

Chapter 12 Generic Programming

371

The previous output is obvious. But notice the commented line:

//class SubClass<V> extends MyGenericClass<T> {

If you use this line of code, you will receive a compile-time error. This is because, as

per the language construct, you should not vary the argument. Your subclass must pass

the type argument that is needed in its super class.

When you create a subtype, you can also add a subclass-specific method. For example,

in this modified example, SubClass introduces a new type parameter and a subclass-

specific method. Let’s go through the following program and its modified output.

package java2e.chapter12;

//class MyGenericClass<T> is defined in Demonstration2

//For modified program

class SubClass<T,V> extends MyGenericClass<T> {

 //Subclass-specific method

 public V subMethod(V value) {

 return value;

 }

}

class Demonstration11 {

 public static void main(String[] args) {

 �//System.out.println("***Demonstration-11.Inheritance in

Generic Programming.***");

 �System.out.println("***Demonstration-11 Modified.Inheritance

in Generic Programming.***");

 //For modified program

 �SubClass<Integer, String> subInt = new

SubClass<Integer,String>();

 �System.out.println("The method show returns the integer

value : " + subInt.show(200));

 �System.out.println("The subMethod returns : " + subInt.

subMethod("It is ok!"));

 }

}

Chapter 12 Generic Programming

372

Modified output:

Demonstration-11 Modified.Inheritance in Generic Programming.

The method show returns the integer value : 200

The subMethod returns : It is ok!

�Bridge Method
An interesting situation may occur where the complier needs to add a method to a class.

This method is called a bridge method. In general, you do not need to deal with this case

directly.

To understand the scenario, let’s go through the following code segment:

class GenericClass12<T> {

 public void show(T value) {

 System.out.println("Inside parent class.The value is:"+value);

 }

}

class SubClass12 extends GenericClass12<Integer> {

 @Override

 public void show(Integer value) {

 System.out.println("Inside Child Class.The value is:"+value);

 }

}

Have you noticed the important characteristics? Let’s analyze.

•	 The derived class Subclass12 extends from the Integer specific

version of GenericClass12; i.e., GenericClass12<Integer>.

•	 The derived class SubClass12 also overrides the parent method

show().

Chapter 12 Generic Programming

373

Though this type of coding is allowed, a problem may arise when type erasure comes

into play. Once type erasure performs its job, the expected form of the show() method in

GenericClass12 is as follows:

public void show(Object value){//other code..}

And the expected form of the show() method in SubClass12 is:

public void show()(Integer value){//other code}

So, after the type erasure’s action, the method signatures do not match. To handle

the situation and preserve polymorphism, the compiler generates a bridge method in

Subclass12, with the preceding signature that can call the Integer-specific version. So,

the new method show() will appear in the derived class (i.e., in SubClass12) as follows:

public void show(Object value) {

 show((Integer) value);

}

�Demonstration 12
Now, consider Demonstration 12 and its corresponding output. Then go through the

analysis (after the output section) to experience the presence of the generated bridge

method.

package java2e.chapter12;

class GenericClass12<T> {

 public void show(T value) {

 System.out.println("Inside parent class.The value is:"+value);

 }

}

class SubClass12 extends GenericClass12<Integer> {

 @Override

 public void show(Integer value) {

 System.out.println("Inside Child Class.The value is:"+value);

 }

}

Chapter 12 Generic Programming

374

class Demonstration12 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration-12.Bridge Method in

Generic Programming.***");

 // Creating a MyGenericClass<Integer> type object.

 �GenericClass12<Integer> parentOb = new

GenericClass12<Integer>();

 parentOb.show(100);

 // A SubClass12 object

 SubClass12 childOb = new SubClass12();

 childOb.show(300);

 //Object ob=(int)400;

 //childOb.show(ob);//Error

 //Using Polymorphism

 System.out.println("Using Ploymorphism :");

 parentOb=childOb;

 parentOb.show(500);

 }

}

Output:

Demonstration-12.Bridge Method in Generic Programming.

Inside parent class.The value is:100

Inside Child Class.The value is:300

Using Ploymorphism :

Inside Child Class.The value is:500

When I used the javap command, I could see that both methods were present

in SubClass12 like in Figure 12-11. (The precise output may vary based on your Java

version.)

Chapter 12 Generic Programming

375

12.9 Why is the bridge method needed?

You have already seen that after type erasure’s action, the method signatures in

the parent class and its child class did not match, and so it affects the concept of

polymorphism. To address these issues, the bridge method is useful.

In this context, notice the last few lines of code in Demonstration 12. This portion of

code demonstrates how the concept of polymorphism is preserved.

�Important Restrictions in Generic Programming
There are many restrictions associated with generic programming. You’ll become

familiar with them only upon practice. Let’s finish the chapter with a discussion of some

common restrictions.

Figure 12-11.  Snapshot of the decompiled SubClass12.class

Chapter 12 Generic Programming

376

�Don’t Instantiate Generic Types with Primitive Types
In Demonstration 2, you saw that the following declaration is NOT legal in generic

programming in Java. So, the following code segment

//Erroneous code segment-1

//Primitive types are NOT allowed here.It must be a reference type.

MyGenericClass<int> myGenericClassIntOb2 = new MyGenericClass<int>();

will raise a compile-time error: Syntax error, insert "Dimensions" to

complete ReferenceType.

�Your Generic Class Cannot Subclass Directly or Indirectly
from Throwable
JLS11 confirms that JVM’s catch mechanism is compatible with the non-generic classes

only. So, the following code segment

//Erroneous code segment-2

class CustomException<T> extends Throwable{ }

will raise a compile-time error: The generic class CustomException<T> may not

subclass java.lang.Throwable.

�You Cannot Overload a Method Where the Formal
Parameter Types of Each Overload Are Erased to the Same
Raw Type
The following code segments

//Erroneous code segment-3

class OverloadRestriction {

public void printMe(List<Integer> intList) {//Some code }

public void printMe(List<String> strList) {//Some code }

}

Chapter 12 Generic Programming

377

will raise two compile-time errors:

Erasure of method printMe(List<Integer>) is the same as another method in

type OverloadRestriction

and

Erasure of method printMe(List<String>) is the same as another method in

type OverloadRestriction

�Static Field Type Parameter Is Not Allowed in Your
Generic Class
The following code segments

//Erroneous code segment-4

class MyDevice<T> {

 private static T operatingSystem;// 4.1 Compile-time error

 // 4.2 Compile-time error

 /* public static T getOperatingSystem() {

 // some code

 }*/

}

will raise a compile-time error: Cannot make a static reference to the non-static

type T.

You get the same error if you try to use a static method, which is shown in

commented lines.

�You Cannot Instantiate the Type Parameters In Your
Generic Class
The following code segments

//Erroneous code segment-5

class GenericClass<T> {

 T genericObject;

 GenericClass() {

Chapter 12 Generic Programming

378

 //5.Compile-time error

 genericObject = new T();

 }

}

will raise a compile-time error: Cannot instantiate the type T.

�One Final Suggestion
In this chapter, you have gone through the fundamentals of generic programming. But

ultimate mastery will come upon repeated practice. Before I finish this chapter, I suggest

you take note that when you write your code you should pay special attention to the

subtype in generic programming.

Consider an example. Suppose there are two concrete types—TypeA and TypeB.

GenericClass<TypeA> is in no way related to GenericClass<TypeB> regardless

of whether TypeA and TypeB are related. Object is the common parent for both

GenericClass<TypeA> and GenericClass<TypeB>.

For example, you have used the Integer class several times in various examples. But

if you go through its original definition, you’ll see this:

public final class Integer extends Number implements Comparable<Integer> {

//some code

}

This basically says that the Integer class extends from the Number class. But

following the prior suggestion, you can conclude that there is no relationship between

GenericClass<Number> and GenericClass<Integer>.

�Summary
This chapter discussed the following:

•	 What is a generic program?

•	 Why are generics important in Java?

•	 What are the advantages of generic programming over non-generic

programming?

Chapter 12 Generic Programming

379

•	 How can you use wildcards in generic programming?

•	 What are the different types of wildcards and how do you use them?

•	 What is a bounded type parameter? How is it different from

wildcards?

•	 How can you use bounded type parameters in your generic program?

•	 What is an erasure and how does it work?

•	 What is a bridge method? How does it work?

•	 Why are bridge methods helpful?

•	 What is a raw type?

•	 How can you use the diamond operator and make the syntax short?

Chapter 12 Generic Programming

381
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_13

CHAPTER 13

Database Programming
Your Java application can talk to a database using JDBC, which is a Java standard API. It

provides you with the necessary interface to connect a relational database. In the context

of connecting a database with a Java application, expert programmers might prefer

alternatives like JPA, Hibernate, and so on. But this chapter is dedicated to JDBC because

it maintains its own significance and usefulness. To do exercises in JDBC programming,

you need to be familiar with the following concepts:

•	 What is a database, and how can it help you to store or organize the data?

•	 How can a database be connected?

•	 How can your Java application talk to the database? (Or, how can you

establish a connection to the database and then how can you insert ,

update, or delete a record in the database?)

You will shortly learn that your Java program will use the JDBC API, which supports

some JDBC drivers, to connect to a database. Figure 13-1 presents a simplified view of

the overall process whereby the application (your Java program) and the database are

connected through a JDBC driver.

Figure 13-1.  JDBC can connect a Java application and a database (for example,
MySQL)

382

So, let’s examine each of these parts in this chapter.

Note  If you are absolutely new to database programming, you may need to know
some key terms that are mentioned briefly in this chapter. So, it is recommended
that you visit these terms and definitions repeatedly for a better understanding.
Gradually, these terms will be clear to you, and you will be able to perform complex
database programming.

�Database and DBMS
A database is a collection of related files, usually called tables. A table is a collection

of related records. A record is a collection of related fields, and the smallest piece of

meaningful information in a file is called a field (or data item).

A database management system (DBMS) is a software package to manage these

data effectively. Oracle Database, SQL Server, MySQL, MS-Access, and so forth are some

commonly used DBMS packages.

�Types of DBMS
There are various types of DBMS; for example:)

•	 Hierarchical DBMS (HDBMS)

•	 Network DBMS (NDBMS)

•	 Relational DBMS (RDBMS)

•	 Object-oriented database (OODB)

•	 Distributed DBMS (DDBMS)

Chapter 13 Database Programming

383

Each of these has its own pros and cons. Selecting a database depends on your own

needs. Based upon your needs, instead of choosing an SQL data structure (which is

suitable for an RDBMS), you may prefer NoSQL (it is a non-relational structure and can

be suitable for a DDBMS).

In this chapter, you’ll see the usage of an RDBMS and simple SQL statements only.

�RDBMS
In RDBMS, data are stored in rows and columns, which is similar to tables. These tables

are termed relations. Rows of a table are referred to as tuples, and columns are referred

to as attributes.

Each row of a table contains a record. Each column contains fields. Consider the

table in Figure 13-2.

For your reference, I have marked all the records and attributes in Figure 13-2.

Figure 13-2.  A sample table in an RDBMS.

You can process different records of a relation based on some mathematical

formulation, which is termed relational algebra. Since the entire database can be

processed using these mathematical formulae, relational algebra is the theoretical

foundation for relational databases and SQL.

Chapter 13 Database Programming

384

Oracle Database, MySQL, Microsoft SQL Server, IBM DB2, and so on are common

examples of RDBMS. In this chapter, I have used MySQL to demonstrate the examples.

Note  In Appendix C, I have shown the installation steps of MySQL on a Win10
machine.

�SQL
The full name of SQL is Structured Query Language. It is a very popular and widely used

RDBMS language. It is an English-like language and is considered a fourth-generation

language. Create data, update data, read data, and delete data are the most common

operations with SQL. In Java, you will see the use of the java.sql package, which

contains the API to support database programming (usually with a relational database).

This API supports many operations, some of which are as follows:

•	 Establish a connection with the database via DriverManager facility.

DriverManager class and Driver interface are often used in this part

of programming.

•	 Talk to your database through SQL statements. You will often

use Connection interface, Statement, PreparedStatement, and

CallableStatement for this part of programming. You’ll see

the use of Statement in Demonstration 1 and Demonstration 2.

Demonstration 3 will show the use of PreparedStatement, and

Demonstration 4 will show the use of CallableStatement.

•	 Process the results obtained through different queries through the

ResultSet interface.

In this chapter, you will see the use of these basic operations when the Java program

interacts with the MySQL database.

Chapter 13 Database Programming

385

POINTS TO REMEMBER

•	 Java, C++, C, etc. are third-generation languages (3GL). In 3GLs, the focus is on

“How to solve a problem?”, but in 4GLs, the focus is on “What do you want?”

But some advanced 3GLs can combine some of the important aspects of 4GLs.

•	 It is important to note that SQL does not differentiate between uppercase and

lowercase character sets.

•	 JDBC is an SQL-level API. It allows you to construct and combine SQL

statements inside Java API calls.

Note T he simple SQL statements are used to demonstrate various programs
in this chapter. If you are absolutely new to SQL, it is recommended that you do
exercises with simple SQL statements in your preferred database to get a better
idea before you proceed further.

�Connecting to a Database
You can connect to a database through different drivers. These drivers are supported in

the JDBC API. A JDBC driver is a software component that stays on client machines to

help Java programs talk to the DBMS; i.e., it acts like an adapter. There are four different

types of JDBC drivers, as follows:

•	 Type-1 (or JDBC-ODBC bridge) driver: It converts JDBC method

calls into ODBC function calls. The ODBC bridge driver must be

installed on the client machine. Here, the JDBC driver can talk to a

third-party API that may not be written in Java. Also, Type-1 drivers

are not written in Java, so these are not portable. These drivers are

suitable only for local connections. Oracle stopped supporting these

drivers from Java 8 onward. They now recommend you use the JDBC

drivers that are available from specific vendors of the database.

Chapter 13 Database Programming

386

•	 Type-2 (or Native-API) driver: These drivers use client-side

libraries of the database so that they can convert JDBC method calls

into native calls of database API. It is a partially Java driver. Since both

the native driver and the client libraries stay on the local machine,

these drivers are not used for remote network connections. But they

can provide a better performance than type-1 drivers.

•	 Type-3 (or Network Protocol) driver: These are fully written in Java.

Here, the clients first communicate with a middleware application

server, which converts the JDBC calls into vendor-specific DBMS

calls, and then those calls are forwarded to the database server.

For these drivers, no client-side library needs to be installed on the

local machine, because the application server is capable of doing

the required jobs. A single type-3 driver can also be used to connect

multiple databases. But network support is essential for the client

machine, and the overall maintenance is costly because you may

need to provide database-specific coding in the middle tier.

•	 Type-4 (or, Thin) driver: These are also fully written in Java, but

they can provide the highest performance because they are provided

by the vendor itself. Here, no special software needs to be installed

either on the client machine or on the server machine. The only

major drawback is that, since it is provided by a specific vendor, it

is dependent on the particular database where the vendor can use

different protocols.

Note  In Demonstration 5, you will also see the use of a javax.sql.DataSource
object to establish a connection between your Java application and the database.
From JDBC2.0 onward, this is the recommended approach to connect a
datasource. Still I am discussing all of these to help you understand the legacy
codes. Also, I believe the learning of “Database Programming in Java” is
incomplete without these discussions.

Figure 13-3 demonstrates how three different types of databases can be connected

through the JDBC driver.

Chapter 13 Database Programming

387

You may have different JDBC drivers to connect to different databases. But as an end

user, you don’t need to worry about their implementation. At this moment, it is sufficient

for you to know that you need a JDBC driver to connect to a database.

�Q&A Session
13.1 How can I decide which driver is suitable for my application?

If you know that you need only one specific database, pick Type-4. If you need to access

multiple databases, choose Type-3. When you do not have either Type-3 or Type-4, you

can consider Type-2 drivers. Type-1 is in general not recommended to use, but you can

limit its use to testing purposes.

Figure 13-3.  Different types of databases can be connected through the JDBC
driver

Chapter 13 Database Programming

388

13.2 What are typical operations of the application server when any client uses
type-3 drivers?

Some typical operations include logging, load balancing, auditing, and so on.

�Talking to a Database in a Java Application
Now, you’ll see some demonstrations where Java applications will interact with a MySQL

database. You can follow a similar approach for other databases. You’ll see the use of the

Type-4 driver in the upcoming demonstrations.

When you connect to a database through a Java program, typically you may need to

consider the following steps:

	 1.	 Load your JDBC driver.

	 2.	 Create a connection object and connect to the database.

	 3.	 Exercise the SQL statements with your Java program.

	 4.	 Map the retrieved result and process it as per your needs.

Here, I assume that you have installed MySQL on your local computer. If it is not

installed yet, you can follow the link https://dev.mysql.com/downloads/installer/

to get the installer and relevant details. At the time of this writing, mysql-installer-

community-8.0.16.0 is the latest version. You can also refer to Appendix C, where I have

shown the installation steps of MySQL on a Win10 machine.

But installing the database is only the first step. To connect to the database using a

Java application you need a vendor-specific connector. I am using MySQL and JDBC. So,

I searched for the connector that is used for the JDBC driver in MySQL. At the time of this

writing, mysql-connector-java-8.0.16.zip is available at the following link https://

dev.mysql.com/downloads/connector/j/. I have chosen the platform-independent

version (Figure 13-4) and downloaded it in the local system.

Chapter 13 Database Programming

https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

389

Once you download and extract the zip file, you will get the mysql-connector-

java-8.0.16.jar file (the latest version at the time of this writing), which you need to

add in your Java build path in Eclipse (Project ➤ Properties ➤ Java Build Path ➤ Add
External JARs…). Once you add this external jar in Eclipse, you may get a screen similar

to that shown in Figure 13-5.

Figure 13-4.  Download MySql Connector/J 8.0.16 Platform Independent version
from https://dev.mysql.com/downloads/connector/j/

Chapter 13 Database Programming

https://dev.mysql.com/downloads/connector/j/

390

�Important Terms
Now, let’s go through some demonstrations. To understand the upcoming

demonstrations, you need to be familiar with the following classes, interfaces, and

methods:

DriverManager: This class manages a set of JDBC drivers. It matches the connection

request from a Java application with the proper databse driver. (It is important to

note that JDBC 2.0 provides an alternate way to connect to a datasource. The use of a

DataSource object is a recommended way to connect to a datasource.)

Driver: This is an interface to handle the communication with the database server.

Each driver must provide a class that will implement this interface. Each Driver class

should be small and standalone so that it can be loaded without vast supporting codes.

When a Driver class is loaded, you should create an instance of it and register it with

DriverManager. So, in Demonstration 1, you may notice the following line of code:

// for MySql database

Class.forName("com.mysql.cj.jdbc.Driver").newInstance();

Figure 13-5.  The mysql-connector-java-8.0.16.jar is added in Eclipse

Chapter 13 Database Programming

391

POINTS TO REMEMBER

•	 Similar to connecting with an Oracle database, you may notice the use of the

following code:

Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();

•	 To connect with a MS SQL Server, you may notice the use of the following code:

Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver").

newInstance();

Connection: This interface provides the methods with which to connect a

database. Your SQL statements execute, and results are returned within the context of

a connection. You can simply say that all the communication with the database passes

through the connection object.

getConnection(): This method attempts to make a connection to the given database

URL. Multiple overloaded versions are avaiable for this method. In Demonstration 1, you

will notice the following line of code:

DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root",

"admin");

That is, I’m using following overloaded version:

public static Connection getConnection(String url, String user, String

password) throws SQLException

where the user string indicates the database user name and the password string is that

user’s password.

Note T he string localhost is used because I have installed the MySQL
database in my local system and test is my local database name.

Statement: It is an interface. A Statement object is used to execute the static SQL

statement and returns the results for that. By default, only one ResultSet object per

Statement object can be opened in a particular moment.

Chapter 13 Database Programming

392

createStatement(): This method creates a Statement object to send SQL statements

to the database.

executeQuery(): This method is used to execute an SQL statement that returns a

single ResultSet object.

executeUpdate(): This method is used to execute an SQL statement that can be any

of the insert, update, or delete statements. You can also use DDL statements, which

return nothing. (You can refer to Q&A 13.10 in this context.)

Note T he executeQuery() or the executeUpdate() methods cannot be
called on a PreparedStatement or on a CallableStatement.

ResultSet: This is an interface that represents the result set of a database query. The

SQL statements that read data (using a database query) return the data in a result set.

The select statement is a standard way to select rows and view them in the result set.

In Demonstration 1, you will notice that you retrieve the query result once an SQL

statement is executed using a Statement object. It acts like an iterator so that you can

easily move through its data. In this context, it is useful to know that a ResultSet object

maintains a cursor to point at the current row in the result set.

SQLException: This class is used to describe various database access errors (or any

other errors that may occur in a database application).

�Creating a Database and Inserting Records
Demonstration 1 shows how you can connect to a MySQL database and how you can

retrieve the records from a table in the database.

Before that, you can familiar yourself with MySQL Workbench which is a graphical

tool and can be used when you work with MySQL servers and databases. Once installed,

you can get it in your startup menu, like in Figure 13-6.

Chapter 13 Database Programming

393

Before I start, I create a database test, and then I create a table employee in that

database. In the employee table, I insert three records only. Creating a database and

creating a table inside the database is very easy. You can skip the following section

contained in square brackets [] if you know these commands.

[For example, once you log in to your database sever:

•	 To create the database called test, you can use the following

command:

create database test;

•	 To create the table called employee, you can use the following

command:

create table employee(EmpId int(10),Name varchar(10),Age

int(10), Salary double);

Figure 13-6.  Once installed, MySQL Workbench 8.0 is available in the startup
menu

Chapter 13 Database Programming

394

It simply says the employee table has four columns: EmpId, Name, Age, and Salary.

The datatypes with sizes are also described here. The varchar datatype may seem new

to you. For now, simply know that it is used for those who can hold both letters and

numbers.

•	 To insert a record in your employee table, you can use the following

command:

insert into employee values (1,'Amit',25,1200.5);

Similarly, you can insert other records.

Another important point to note is that if you want to make a column unique and not

null, you can use it as a primary key. For example, if I want no duplicates in the EmpId

column and I want each record to include the information for EmpId, I’ll use the concept

of a primary key while creating the table, which is as follows:

create table employee(EmpId int(10) primary key,Name varchar(10),Age

int(10), Salary double);

Now, when you insert a record into the employee table, you need to supply the

information for EmpId. In short, by using a primary key, you can uniquely identify a

record.]

Figure 13-7 represents the MySQL Workbench view for that. From the figure, you can

see that the test database currently contains one table, employee, with three records. The

figure also presents the table schema for the employee table.

Chapter 13 Database Programming

395

But to understand the upcoming demonstrations, you need not be familiar with

MySQL Workbench in detail. Here, I have used this graphical tool to show you the

current database and the tables in it before you start programming with JDBC.

�MySQL Command Prompt View
Alternatively, you can use the MySQL command prompt. You can exercise the following

commands (shown in bold) from this command prompt. For your easy reference, I am

putting my comments or command details inside the square brackets [].

Enter password: *****

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 19

Server version: 8.0.16 MySQL Community Server - GPL

Figure 13-7.  The MySQL Workbench view for the employee table in the test
database

Chapter 13 Database Programming

396

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights

reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input

statement.

[To list all databases in your local MySQL server, use 'show databases'

command]

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| employee |

| information_schema |

| mysql |

| performance_schema |

| sakila |

| sys |

| test |

| world |

+--------------------+

8 rows in set (0.00 sec)

[To switch to a particular database, use the following command]

mysql> use test;

Database changed

[To display all the tables in your database, use the following command]

mysql> show tables;

+----------------+

| Tables_in_test |

+----------------+

| employee |

+----------------+

1 row in set (0.00 sec)

[To display all records in a table (in this case, 'employee'), use the

following command]

Chapter 13 Database Programming

397

mysql> select * from employee;

+-------+------+------+---------+

| EmpId | Name | Age | Salary |

+-------+------+------+---------+

| 1 | Amit | 25 | 1200.5 |

| 2 | Sam | 23 | 1000.25 |

| 3 | Bob | 30 | 1500 |

+-------+------+------+---------+

3 rows in set (0.00 sec)

mysql> desc employee;

+--------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+-------+

| EmpId | int(11) | NO | PRI | NULL | |

| Name | varchar(10) | YES | | NULL | |

| Age | int(3) | YES | | NULL | |

| Salary | double | YES | | NULL | |

+--------+-------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

mysql>

�Demonstration 1
I already said that Demonstration 1 shows how you can connect to a MySQL database

and how can you retrieve records from a table in the database. As noted earlier, I

created a database called test and then I created a table employee in that database.

Currently, the employee table contains three records, which were also shown prior to this

demonstration. To understand this example, you may need to revisit the descriptions of

important classes, interfaces, and methods that were covered earlier.

package java2e.chapter13;

import java.sql.*;

class Demonstration1 {

public static void main(String[] args) throws SQLException {

Chapter 13 Database Programming

398

 �System.out.println("***Demonstration-1.Connecting to the MySql

server.***");

 Connection connectionOb = null;

 try {

 // for MySql database

 �Class.forName("com.mysql.cj.jdbc.Driver").

newInstance();

 �connectionOb = DriverManager.getConnection("jdbc:mys

ql://localhost:3306/test", "root", "admin");

 Statement statementOb = connectionOb.createStatement();

 �ResultSet queryResult = statementOb.

executeQuery("select * from Employee");

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �System.out.print

ln("--");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") +

"\t\t"+ queryResult.getInt("Age") + "\t" +

queryResult.getDouble("Salary"));

 System.out.println();

 }

 } catch (SQLException ex) {

 System.out.println(ex.getMessage());

 }

 // To catch any other exception

 catch (Exception ex) {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 } finally {

 // Close the connection

 if (connectionOb != null) {

 connectionOb.close();

 }

Chapter 13 Database Programming

399

 }

 }

}

Output:

***Demonstration-1. Connecting to the MySql server. ***

 EmployeeId EmployeeName Age Salary

--

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500.0

�Demonstration 2
In Demonstration 2, I’ll update some records, then I’ll delete a record. Finally, I’ll update

the records in such a way that I can obtain the initial state of the table. For example,

you’ll see that though Amit’s age was updated from 25 to 35, at the end I have reset it

back to 25. Also, I have deleted the newly added record for John. Similarly, though I

made a change to Bob’s salary, at the end I have reset the value.

Another notable change in this demonstration is that, in this example, I have

used executeUpdate() to update a record. In Demonstration 1, you saw the use of the

executeQuery() method.

package java2e.chapter13;

import java.sql.*;

class Demonstration2 {

 public static void main(String[] args) throws SQLException {

 �System.out.println("***Demonstration-2.Connecting to the MySql

server.***");

 Connection connectionOb = null;

 try {

Chapter 13 Database Programming

400

 // for MySql database

 �Class.forName("com.mysql.cj.jdbc.Driver").

newInstance();

 �connectionOb = DriverManager.getConnection("jdbc:mys

ql://localhost:3306/test", "root", "admin");

 Statement statementOb = connectionOb.createStatement();

 System.out.println("Here is the initial table");

 �ResultSet queryResult = statementOb.

executeQuery("select * from Employee");

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �System.out.print

ln("--");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") +

"\t\t"

 �+ queryResult.getInt("Age") + "\t"

+ queryResult.getDouble("Salary"));

 System.out.println();

 }

 //Updating 2 records and inserting a new record.

 System.out.println("Updating Amit's age as 35.");

 �statementOb.executeUpdate("update Employee set Age=35

where name='Amit' ");

 System.out.println("Updating Bob's salary to 2000.25");

 �statementOb.executeUpdate("update Employee set

Salary=2000.25 where name='Bob' ");

 �System.out.println("Inserting a new record into the

Employee table\n");

 �statementOb.executeUpdate("insert into Employee

values(4,'John',27,975)");

 System.out.println("**Here is the updated table.**");

 �queryResult = statementOb.executeQuery("select * from

Employee");

Chapter 13 Database Programming

401

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �System.out.print

ln("--");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") +

"\t\t"

 �+ queryResult.getInt("Age") + "\t"

+ queryResult.getDouble("Salary"));

 System.out.println();

 }

 �//Deleting a record from the Employee table and setting

the initial values again in the Employee table.

 �System.out.println("\nDeleting the record of John from

the Employee table.");

 �statementOb.executeUpdate("delete from employee where

name='John' ");

 System.out.println("Updating Amit's age as 25 again.");

 �statementOb.executeUpdate("update Employee set Age=25

where name='Amit' ");

 �System.out.println("Updating Bob's salary to 1500.0

again.");

 �statementOb.executeUpdate("update Employee set

Salary=1500.0 where name='Bob' ");

 System.out.println("\n**Here is the updated table.**");

 �queryResult = statementOb.executeQuery("select * from

Employee");

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �System.out.print

ln("--");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") + "\t\t"

Chapter 13 Database Programming

402

 �+ queryResult.getInt("Age") + "\t"

+ queryResult.getDouble("Salary"));

 System.out.println();

 }

 } catch (SQLException ex) {

 System.out.println(ex.getMessage());

 }

 // To catch any other exception

 catch (Exception ex) {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 } finally {

 // Close the connection

 if (connectionOb != null) {

 connectionOb.close();

 }

 }

 }

}

Here is the output. The key changes are shown in bold letters.

Demonstration-2.Connecting to the MySql server.

Here is the initial table

 EmployeeId EmployeeName Age Salary

--

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500.0

Updating Amit's age as 35.

Updating Bob's salary to 2000.25

Inserting a new record into the Employee table

Chapter 13 Database Programming

403

Here is the updated table.

 EmployeeId EmployeeName Age Salary

--

1 Amit 35 1200.5

2 Sam 23 1000.25

3 Bob 30 2000.25

4 John 27 975.0

Deleting the record of John from the Employee table.

Updating Amit's age as 25 again.

Updating Bob's salary to 1500.0 again.

Here is the updated table.

 EmployeeId EmployeeName Age Salary

--

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500.0

Note T his program can be further improved if you use separate methods for
display records and update (or, insert) records and call those methods from your
main() method. You can follow the same for other demonstrations in this chapter.
I just focused on updating and inserting the records in this example and kept it
aligned with demonstration 1.

�Demonstration 3
This demonstration shows the use of the PreparedStatement object. PreparedStatement

is an interface that extends the Statement interface. The use of PreparedStatement can

provide you the following facilities:

•	 You can use parameterized SQL statements.

•	 You can reuse the statement with new values.

•	 You can provide batch processing and faster execution.

Chapter 13 Database Programming

404

In the following example, you will notice the use of the following lines:

PreparedStatement preparedStatementOb=null;

preparedStatementOb=connectionOb.prepareStatement("insert into Employee

values(?,?,?,?)");

You can see that a PreparedStatement object is created with four input

parameters. Notice the four question marks (?). These are the placeholders for your

inputs. You provide values to replace these question marks before you execute a

PreparedStatement object. You can supply values using the setter methods defined in

the PreparedStatement class. In the upcoming demonstration, you will supply a new

record (where employee name is “Ivan”) using the following statements:

preparedStatementOb.setInt(1,4);

preparedStatementOb.setString(2,"Ivan");

preparedStatementOb.setInt(3,27);

preparedStatementOb.setDouble(4,975.6);

It is important to note that the first argument of these setter methods specifies the

question mark placeholder. For example, the two setInt() calls specify the first and

third placeholders, respectively; setString() specifies the second placeholder; and

setDouble() specifies the fourth placeholder.

Finally, you will invoke the executeUpdate() method on the PreparedStatement

object as follows:

preparedStatementOb.executeUpdate();

Now, go through the following demonstration and its corresponding output:

package java2e.chapter13;

import java.sql.*;

public class Demonstration3 {

 public static void main(String[] args) throws SQLException {

 �System.out.println("***Demonstration-3.Use of

PreparedStatement.***");

 Connection connectionOb = null;

Chapter 13 Database Programming

405

 try {

 // for MySql database

 �Class.forName("com.mysql.cj.jdbc.Driver").

newInstance();

 �connectionOb = DriverManager.getConnection("jdbc:mys

ql://localhost:3306/test", "root", "admin");

 Statement statementOb = connectionOb.createStatement();

 System.out.println("Here is the initial table.");

 �ResultSet queryResult = statementOb.

executeQuery("select * from Employee");

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �System.out.print

ln("--");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") +

"\t\t"

 �+ queryResult.getInt("Age") + "\t"

+ queryResult.getDouble("Salary"));

 System.out.println();

 }

 //Inserting a new record in the table

 �System.out.println("\nInserting a new record into the

Employee table.");

 PreparedStatement preparedStatementOb=null;

 �preparedStatementOb=connectionOb.

prepareStatement("insert into Employee

values(?,?,?,?)");

 preparedStatementOb.setInt(1,4);

 preparedStatementOb.setString(2,"Ivan");

 preparedStatementOb.setInt(3,27);

 preparedStatementOb.setDouble(4,975.6);

 preparedStatementOb.executeUpdate();

 System.out.println("**Here is the updated table.**");

Chapter 13 Database Programming

406

 �queryResult = statementOb.executeQuery("select * from

Employee");

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �System.out.print

ln("--");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") + "\t\t"

 �+ queryResult.getInt("Age") + "\t"

+ queryResult.getDouble("Salary"));

 System.out.println();

 }

 �//Deleting a record from the Employee table and setting

the initial values again in the Employee table.

 �System.out.println("\nDeleting the record of Ivan from

the Employee table.");

 �statementOb.executeUpdate("delete from employee where

name='Ivan' ");

 �System.out.println("After the deletion of Ivan's

record, here is the updated table.**");

 �queryResult = statementOb.executeQuery("select * from

Employee");

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �System.out.print

ln("--");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") + "\t\t"

 �+ queryResult.getInt("Age") + "\t"

+ queryResult.getDouble("Salary"));

 System.out.println();

 }

Chapter 13 Database Programming

407

 } catch (SQLException ex) {

 System.out.println(ex.getMessage());

 }

 // To catch any other exception

 catch (Exception ex) {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 } finally {

 // Close the connection

 if (connectionOb != null) {

 connectionOb.close();

 }

 }

 }

}

Output:

Demonstration-3.Use of PreparedStatement.

Here is the initial table.

 EmployeeId EmployeeName Age Salary

--

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500.0

Inserting a new record into the Employee table.

Here is the updated table.

 EmployeeId EmployeeName Age Salary

--

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500.0

4 Ivan 27 975.6

Chapter 13 Database Programming

408

Deleting the record of Ivan from the Employee table.

After the deletion of Ivan's record, here is the updated table.**

 EmployeeId EmployeeName Age Salary

--

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500.0

�Q&A Session
13.3 Why is the use of PreparedStatement objects considered faster than using

Statement objects?

PreparedStatement objects can contain precompiled SQL statements. So, if you pass the

same query (with the same or different data) multiple times, DBMS can run the query

much faster. But, in the case of a Statement object, SQL needs to validate the query each

time you use it.

13.4 Is passing the parameters mandatory for PreparedStatement objects?

No. In Demonstration 3, you could simply use the following lines of code to get the same result:

//Parameters are not mandatory for PreparedStatement .

preparedStatementOb = connectionOb.preparedStatement("insert into Employee

values(4,'IvanS',27,975.6)");

Normally, you use PreparedStatement when your SQL query takes parameters.

The SQL statement that takes parameters can help you to execute the statement with

different values, which is very common in real-world scenarios. For simplicity and to

make the program shorter, I have not used command-line arguments or user-defined

inputs. But in practice, you can always pass the arguments using the command line,

which in turn will replace the question marks before your query is processed.

13.5 How is the executeQuery() method different from executeUpdate()?

The executeUpdate() method is associated with insert, update, or delete operations

or SQL statements that return nothing, such as DDL statements. This method does not

return any ResultSet object.

Chapter 13 Database Programming

409

On the other hand, executeQuery() executes an SQL statement that returns a

single ResultSet object. This method cannot be called on PreparedStatement or

CallableStatement (this will be discussed in the next demonstration).

13.6 What are the key advantages of using PreparedStatement?

Here are the key advantages of using PreparedStatement:

•	 You can pass parameterized SQL statements.

•	 You can reuse the statement with different values.

•	 You can provide batch processing.

•	 Since it supports precompiled SQL statements, you may enhance the

execution time.

13.7 What is batch processing? Can you give an example?

By “batch processing,” I mean that you can execute a bunch (or group or set) of queries.

The addBatch() and executeBatch() methods in the Statement interface can help you

in this area.

Let’s add the following lines to Demonstration 1:

statementOb.addBatch("insert into Employee values(4,'Ivan',27,975.6)");

statementOb.addBatch("insert into Employee values(5,'Jacklin',29,575.5)");

//Batch execution

statementOb.executeBatch();

Now, you can see that the records are inserted properly. Similarly, you can delete the

records as follows:

//Now deleting the records from the Employee table

//and resetting the original state of Employee table.

System.out.println("\nDeleting the record of Ivan and Jacklin from the

Employee table.");

statementOb.addBatch("delete from employee where name='Ivan' ");

statementOb.addBatch("delete from employee where name='Jacklin' ");

//Batch execution

statementOb.executeBatch();

Chapter 13 Database Programming

410

�Demonstration 4
This demonstration shows the use of the CallableStatement object. CallableStatement

is an interface that extends PreparedStatement, which in turn extends the Statement

interface. CallableInterface is used to execute stored procedures and functions in SQL.

Note T here are some significant differences between stored procedures and
functions. For example, in MySQL, a stored procedure can be used to return one or
multiple values or no value, whereas a function always returns single value. Also,
you can call a function directly with a SQL statement while you cannot do the same
for a procedure. A stored procedure can have IN, OUT, INOUT parameters but a
stored function can have only IN parameters by default. To make the example short
and simple, in Demonstration 4 you’ll see the use of a small function only.

Before you start, create a table called numbertable (in your test database) as in

Table 13-1.

You can see that the table has two attributes, FirstNumber and SecondNumber, and

each row of the table contains various double type values. Let’s say you want to calculate

the aggregate of the two double values of each row in the table; you can accomplish this

task using a function called total().

So, before you execute Demonstration 4, you may wish to complete the following

steps:

	 1.	 Create NumberTable and fill the table with necessary data.

	 2.	 You create a function total() that accepts two double type values

as parameters and returns the aggregate.

Table 13-1.  The numbertable Table

Created in the Database

FirstNumber SecondNumber

12.3 15.7

32.5 25.3

25.0 75.0

Chapter 13 Database Programming

411

You can complete Step 1 and Step 2 in various ways and in your preferred order.

In the following section, I give you the commands (with corresponding outputs) that I

used once I connected my database to complete these steps. The SQL statements are

shown in bold for a better readability. I am also putting the supporting comments inside

brackets [ ].

�Step 1

[Creating the NumberTable]

mysql> create table NumberTable(FirstNo Double, SecondNo Double);

Query OK, 0 rows affected (2.77 sec)

[Check the tables in the test database. This is optional for you.]

mysql> show tables;

+----------------+

| Tables_in_test |

+----------------+

| employee |

| numbertable |

+----------------+

2 rows in set (0.08 sec)

[Insert the data in the first row in the table.]

mysql> insert into numbertable values(12.3,15.7);

Query OK, 1 row affected (2.12 sec)

[Insert the data in the second row in the table.]

mysql> insert into numbertable values(32.3,25.3);

Query OK, 1 row affected (0.13 sec)

[Insert the data in the third row in the table.]

mysql> insert into numbertable values(25,75);

Query OK, 1 row affected (0.08 sec)

Chapter 13 Database Programming

412

[Check the current status of the table.]

mysql> select * from numbertable;

+---------+----------+

| FirstNo | SecondNo |

+---------+----------+

| 12.3 | 15.7 |

| 32.3 | 25.3 |

| 25 | 75 |

+---------+----------+

3 rows in set (0.08 sec)

�Step 2

Create the function called total: [A function is a stored program in which you can pass

parameters, and, in turn, it will return a value.]

mysql> create function total(firstNumber double, secondNumber double)

returns double deterministic return firstNumber + secondNumber;

Query OK, 0 rows affected (1.03 sec)

Note A s per the MySQL 8.0 reference manual: “A routine is considered
‘deterministic’ if it always produces the same result for the same input
parameters, and “’not deterministic’ otherwise. If neither DETERMINISTIC
nor NOT DETERMINISTIC is given in the routine definition, the default is NOT
DETERMINISTIC.”

So, if you miss the word deterministic in the previous query, you may encounter

following error:

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual

that corresponds to your MySQL server version for the right syntax to use

near 'sum(firstNumber double,secondNumber double)

returns double

return firstNumber+se' at line 1

Chapter 13 Database Programming

413

[Now I display the function details. This is optional for you.]

mysql> Select Routine_name as "Function Name", routine_Definition as

"Definition", Routine_Schema "Schema", Data_Type as "Types", Created

From Information_Schema.Routines Where Routine_Name='total' and Routine_

Type= 'FUNCTION';

Here is a snapshot from the MySQL 8.0 command-line client for better readability:

Now, let’s analyze the upcoming program. In the following example, you will notice

the following line of code:

CallableStatement callableStmt=connectionOb.prepareCall("{?= call

total(?,?)}");

You can see that a CallableStatement object is created by invoking the

prepareCall() method, and that the prepareCall() method accepts a String

parameter.

Note  Like many other methods, there are various overloaded versions of the
prepareCall() method. I have used the simplest one in this example.

Notice the three question marks. You know that these are used for method

parameters. These parameters are sequential in nature, and the first parameter starts

with 1.

The following lines will show the usage of these parameters:

callableStmt.setDouble(2,queryResult.getDouble("FirstNo"));

callableStmt.setDouble(3,queryResult.getDouble("SecondNo"));

Chapter 13 Database Programming

414

/*

Here, we have used the registerOutParameter() method of the

CallableStatement interface, which registers the OUT parameter in the

ordinal position in parameterIndex(first argument) to the JDBC type

sqlType(second argument). All OUT parameters must be registered before a

stored procedure is executed.

*/

callableStmt.registerOutParameter (1,Types.DOUBLE);

callableStmt.execute();

It indicates that there are two double type values, in positions 2 and 3. The question

mark in position 1 will be replaced with the function (the function name is total() in

this case) call, which accepts these double type values as parameters and returns the

aggregate (which is also a double type value). Now, go through the full implementation

and the corresponding output.

package java2e.chapter13;

import java.sql.*;

class Demonstration4 {

 public static void main(String[] args) throws SQLException {

 �System.out.println("***Demonstration-4.Using a Callable

Statement.***");

 Connection connectionOb = null;

 try {

 // for MySQL database

 �Class.forName("com.mysql.cj.jdbc.Driver").

newInstance();

 �connectionOb = DriverManager.getConnection("jdbc:mys

ql://localhost:3306/test", "root", "admin");

 Statement statementOb = connectionOb.createStatement();

 System.out.println("This is the original table.");

 �ResultSet queryResult = statementOb.

executeQuery("select * from NumberTable");

 System.out.println("FirstNumber \t" + "SecondNumber");

 System.out.println("--------------------------");

Chapter 13 Database Programming

415

 while (queryResult.next()) {

 �System.out.print(queryResult.

getDouble("FirstNo") + "\t\t" + queryResult.

getString("SecondNo"));

 System.out.println();

 }

 �System.out.println("\nCalling the total() function on

each record of the NumberTable.");

 //Using the Callable statement

 �CallableStatement callableStmt=connectionOb.

prepareCall("{?= call total(?,?)}");

 �queryResult = statementOb.executeQuery("select * from

NumberTable");

 �System.out.println("FirstNumber \t" + "SecondNumber\

t"+"Total");

 �System.out.print

ln("--------------------------------------");

 while (queryResult.next()) {

 �System.out.print(queryResult.

getDouble("FirstNo") + "\t\t" + queryResult.

getDouble("SecondNo")+ "\t\t");

 �callableStmt.setDouble(2,queryResult.

getDouble("FirstNo"));

 �callableStmt.setDouble(3,queryResult.

getDouble("SecondNo"));

 �/*Here, we have used the registerOutParameter

method of the CallableStatement interface, which

registers the OUT parameter in the ordinal

position in parameterIndex(first argument) to

the JDBC type sqlType(second argument). All OUT

parameters must be registered before a stored

procedure is executed.*/

 �callableStmt.registerOutParameter

(1,Types.DOUBLE);

 callableStmt.execute();

Chapter 13 Database Programming

416

 System.out.print(callableStmt.getDouble(1));

 System.out.println();

 }

 } catch (SQLException ex) {

 System.out.println(ex.getMessage());

 }

 // To catch any other exception

 catch (Exception ex) {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 } finally {

 // Close the connection

 if (connectionOb != null) {

 connectionOb.close();

 }

 }

 }

}

Output:

Demonstration-4.Using a Callable Statement.

This is the original table.

FirstNumber SecondNumber

12.3 15.7

32.5 25.3

25.0 75.0

Calling the total() function on each record of the NumberTable:

FirstNumber SecondNumber Total

12.3 15.7 28.0

32.5 25.3 57.8

25.0 75.0 100.0

Chapter 13 Database Programming

417

�Q&A Session
13.8 When should I prefer a Statement object over a PreparedStatement or a

CallableStatement?

You can remember the following points:

•	 If you want to execute simple SQL statements (for example, select *

from Table_name;”), use a Statement object.

•	 If you want to use precompiled statements, use PreparedStatement.

•	 If you want to use stored procedures (or functions), use

CallableStatement.

13.9 What is a stored procedure?

In simple words, if you want to repeat a sequence of tasks, you create a stored procedure.

A stored procedure is much like writing a method in Java. The steps to create a stored

procedure can vary across the databases.

In this chapter, I have used a simple function, total(), in Demonstration 4 to serve

our needs.

13.10 You have used the term DDL in the context of SQL in some places. What does it
mean?

SQL commands are commonly classified among the following:

•	 DDL (Data Definition Language) statements are used to create or

modify a database object’s structure. You use create, alter, drop,

and truncate statements in this context.

•	 DML (Data Manipulation Language) statements are used to

retrieve, insert, update, and delete records in a database. For

example, you use insert, update, delete, and select statements

in this context. Some engineers prefer to put select statements in a

separate category called DQL (Data Query Language).

•	 DCL (Data Control Language) statements can be used to create

various roles and permissions to control access to a database. For

example, you may use grant and revoke statements in this context.

Chapter 13 Database Programming

418

•	 TCL (Transaction Control Language) statements are used to

manage different transactions that occur in a database. For example,

you may use commit, rollback, etc. statements in this context.

Note A s said before, to understand each of these terms in detail, you may need
to exercise SQL statements on your own. In this chapter, our focus was not on
detailed coverage of SQL; the focus was on Java applications that can simply talk
to a database and perform some basic operations.

�Demonstration 5
This demonstration shows the use of a javax.sql.DataSource interface object to

connect to a datasource. It is a new addition to the JDBC 2.0 API and a preferred way to

connect to a datasource. Using a DataSource object can provide connection pooling and

distributed transactions. But since you are just starting your journey, we’ll focus on the

the connection part only.

In Demonstration 5, the getMySqlDataSource() method is used. In this method,

you create a MySqlDataSource object, set the database URL, and pass the user ID and

password to connect to the database. Once this information is set, you can use this

MySqlDataSource object to connect to the database.

You will understand the changes better if you compare Demonstration 5 with

Demonstration 1. To make things simple, only a small portion of code in Demonstration

1 has been changed, and there is no significant change in the output. But you must take

note of this new way of connecting to the database.

Before you proceed, I suggest you go through the following points.

POINTS TO REMEMBER

•	 A DataSource object is used for a particular DBMS (or some other datasource,

such as a file). If you need to use multiple datasources, you need to deploy a

separate DataSource object for each of them.

•	 The MysqlDataSource name has recently been changed from com.mysql.

jdbc.jdbc2.optional.MysqlDataSource to com.mysql.cj.jdbc.

MysqlDataSource.

Chapter 13 Database Programming

419

•	 The DataSource interface is available in the javax.sql package. It has

two overloaded methods: Connection getConnection() throws

SQLException and Connection getConnection(String username,

String password) throws SQLException. You can use either of them.

•	 The DataSource interface implementation may vary from vendor to vendor. This

is why, to connect to a MySQL database, I imported the com.mysql.cj.jdbc.

MysqlDataSource class to get the basic implementation of the DataSource

interface. If you wish to connect to a different database, say, Oracle, you may

need to import the oracle.jdbc.pool.OracleDataSource class.

So, when you compare with Demonstration 1, you see that this time you are NOT

using the static getConnection() method of the DriverManager class to connect to

the database called test. Instead, you are using the getConnection() method of a

MysqlDataSource object. I have kept the old code in commented lines so that you can

notice the key changes easily.

package java2e.chapter13;

import java.sql.*;

import javax.sql.DataSource;

/*

The name of the class that implements java.sql.Driver in MySQL Connector/J

has changed from com.mysql.jdbc.Driver to com.mysql.cj.jdbc.Driver. The old

class name has been deprecated. The names of these commonly used classes

and interfaces have also been changed. For example, com.mysql.jdbc.jdbc2.

optional is changed to com.mysql.cj.jdbc.MysqlDataSource

 */

import com.mysql.cj.jdbc.MysqlDataSource;

class Demonstration5 {

static DataSource getMysqlDataSource() throws SQLException {

 MysqlDataSource mysqlDataSourceOb = null;

 mysqlDataSourceOb = new MysqlDataSource();

 mysqlDataSourceOb.setUrl("jdbc:mysql://localhost:3306/test");

 mysqlDataSourceOb.setUser("root");// Set user id.

Chapter 13 Database Programming

420

 mysqlDataSourceOb.setPassword("admin");// Set //password

 return mysqlDataSourceOb;

 }

public static void main(String[] args) throws SQLException {

 �System.out.println("***Demonstration-5.Connecting to the MySql

server using a DataSource object.***");

 Connection connectionOb = null;

 try {

 // for MySql database

 �//Class.forName("com.mysql.cj.jdbc.Driver").

newInstance();

 // connectionOb =

 �// DriverManager.getConnection("jdbc:mysql://

localhost:3306/test", "root", "admin");

 �connectionOb = getMysqlDataSource().getConnection();

 /*

 �The following will also work if you do not supply

username , password in getMysqlDataSource()

 �//connectionOb=getMysqlDataSource().getConnection(

"root", "admin");

 */

 Statement statementOb = connectionOb.createStatement();

 �ResultSet queryResult = statementOb.

executeQuery("select * from Employee");

 �System.out.println(" EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 System.out.println("--------------------------------");

 while (queryResult.next()) {

 �System.out.print(queryResult.getString("EmpId")

+ "\t\t" + queryResult.getString("Name") + "\t\t"

 �+ queryResult.getInt("Age") + "\t"

+ queryResult.getDouble("Salary"));

 System.out.println();

 }

Chapter 13 Database Programming

421

 } catch (SQLException ex) {

 System.out.println(ex.getMessage());

 }

 // To catch any other exception

 catch (Exception ex) {

 System.out.println(ex.getMessage());

 ex.printStackTrace();

 } finally {

 // Close the connection

 if (connectionOb != null) {

 connectionOb.close();

 }

 }

 }

}

Here is the output:

***Demonstration-5.Connecting to the MySql server using a DataSource

object.***

 EmployeeId EmployeeName Age Salary

--

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500.0

�Summary
This chapter discussed the following topics:

•	 What is JDBC?

•	 What is a database?

•	 What is a DBMS? What are different types of DBMS?

•	 What is RDBMS?

•	 What is SQL?

Chapter 13 Database Programming

422

•	 How can a Java application talk to a database?

•	 How can you connect to MySQL?

•	 How do you use Statement, PreparedStatement, and

CallableStatement in your program?

•	 How can you invoke a small function using a Connection object?

•	 As per the new recommendation, how can you use a javax.sql.

DataSource interface object to connect to a datasource?

Chapter 13 Database Programming

423
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_14

CHAPTER 14

Important Features in
Java’s Enhancement Path
Welcome to Chapter 14. In this book, my focus has been on the fundamental concepts

of object-oriented programming in Java only. All programs were compiled in Java 8,

which was the baseline in this book. Like other popular languages, Java is continuously

growing, with new features added regularly. Though detailed coverage of these features

was out of the scope of this book, in this chapter, you will examine some features or

enhancements from various versions of Java. You get the most value out of a new

enhancement if you are familiar with the existing features. So, for this chapter, I have

picked only topics with which you are already familiar.

As a student, I first saw a Java book, which was based on Java 2, in my professor’s

hand a long time ago. But at the time of this writing, Java 13 has been released, and in the

upcoming days Java’s release train will be very fast. At present, Java is releasing new versions

every six months. As a result, you can expect to see a lot more changes in the near future.

But, as was said before, if you are familiar with the fundamental features and architecture,

you can adapt to changes easily. All you have learned from this book can help you.

One final comment: for the latest features, I have compiled and executed the

programs in the command-line environment. This is because my Eclipse environment

was not ready to accept the latest features. So, if your preferred IDE is not ready to

accommodate a latest feature, you can do the same thing I did. Now, let’s start.

�Try-with-resource from Java 7
The try-with-resource statement is a try statement in which you can declare one or

multiple resources. A resource is an object that should be closed when your program

finishes execution. But to use this feature, you have to choose an object that implements

the AutoCloseable interface in the java.lang package.

424

This is because the close() method of an AutoCloseable object is called

automatically once the control exits a try-with-resource block.

Here, I present a simple demonstration for you. In this demonstration, Resource1 is a

class that implements the AutoCloseable interface.

So, if you use this concept using the following block:

try(Resource1 resource1 = new Resource1()) {

 resource1.useResource();

 }

in the output you will notice that the close() method of Resource1 is called

automatically.

�Demonstration 1
Consider the following code:

package java2e.chapter14;

//Resource-1

class Resource1 implements AutoCloseable {

 public void useResource() {

 System.out.println("Using a Resource1 type.");

 }

 @Override

 public void close() throws Exception {

 System.out.println("Close Resource1 type now.");

 }

}

class TryWithResourceDemo {

 public static void main(String[] args) throws Exception {

 �System.out.println("***Demonstration 1.Try with Resource

demo.***\n");

 try(Resource1 resource1 = new Resource1()) {

 resource1.useResource();

 }

Chapter 14 Important Features in Java’s Enhancement Path

425

 catch(Exception e) {

 System.out.println(e);

 }

 }

}

Output

Demonstration-1.Try with Resource demo.

Using a Resource1 type.

Close Resource1 type now.

�Q&A Session
14.1 What is a resource?

A resource is an object. Once your program uses a resource, you should close it before

your program finishes execution.

14.2 Can I close multiple resources using this feature?

Yes. Here is a sample syntax for you, where two resources are used:

try(Resource1 resource1 = new Resource1();Resource2 resource2 = new

Resource2()) {

 //Some code

}

�Implementing Functional Interface Methods Using
Lambda Expressions from Java 8
In Java, a functional interface is an interface that has only one method. You can use a

lambda expression to provide an implementation for the interface method.

Note  In Chapter 12, prior to Demonstration 4, you got a quick overview of the
lambda expression and its usage. If needed, you can review it there.

Chapter 14 Important Features in Java’s Enhancement Path

426

But the notable change is that in this case, you do not need to define the method

again before you provide an implementation for it. So, you can save lots of typing.

�Demonstration 2
To help you understand this concept, I have provided a usual implementation before

using a lambda expression. Here, you will see how to use a lambda expression that

can have a return statement. Refer to the supporting comment lines for a better

understanding.

package java2e.chapter14;

@FunctionalInterface

interface MyFunctionalInterface {

 int addNumbers(int firstNumber, int secondNumber);

//error:You cannot declare multiple methods in a functional interface.

 //int addNumbers2(int firstNumber, int secondNumber);

}

//Usual implementation of an interface method

class Implementor implements MyFunctionalInterface{

 public int addNumbers(int firstNumber, int secondNumber) {

 �System.out.println("Implementing the interface method

'addNumbers' inside the Implementor class.");

 �System.out.println("Sum of "+ firstNumber + " and "

+secondNumber + " is : ");

 return firstNumber+ secondNumber;

 }

}

class LambdaExpressionDemo {

 public static void main(String[] args) {

 �System.out.println("***Demonstration 2. Lambda

expression.***\n");

 //Common way to use an interface method.

 MyFunctionalInterface impl1= new Implementor();

 System.out.println(impl1.addNumbers(1, 2));

Chapter 14 Important Features in Java’s Enhancement Path

427

 // Using lambda expression with a return statement.

 �System.out.println("Using Lambda expression with the return

statement now.");

 MyFunctionalInterface impl3 = (int a, int b) -> {

 return (a + b);

 };

 System.out.println("Sum of 50 and 100 is :");

 System.out.print(impl3.addNumbers(50,100));

 }

}

Output:

Demonstration 2. Lambda expression.

Implementing the interface method 'addNumbers' inside the Implementor class.

Sum of 1 and 2 is :

3

Using Lambda expression with the return statement now.

Sum of 50 and 100 is :

150

�Q&A Session
14.3 Is @FunctionalInterface mandatory in this program to show that it is a
functional interface?

No. But using the annotation in a case like this is a good practice that enhances

readability. Also, if you use this annotation, in the future, if anyone tries to add another

abstract method in the interface by mistake, the compiler can immediately raise an error.

Java Language Specification(11) says the following:

•	 A functional interface is an interface that has just one abstract

method (aside from the methods of Object) and thus represents a

single function contract. This “single” method may take the form

of multiple abstract methods, with override equivalent signatures

inherited from superinterfaces; in this case, the inherited methods

logically represent a single method.

Chapter 14 Important Features in Java’s Enhancement Path

428

•	 It facilitates early detection of inappropriate method declarations

appearing in or inherited by an interface that is meant to be functional.

•	 “[I]nstances of functional interfaces can be created with method

reference expressions and lambda expressions.”

�Private Interface Method from Java 9
Private interface methods were a new addition in Java 9. Prior to Java 7, interface

methods were straightforward—those were public abstract methods. Java 8 allows you

to add public static methods and public default methods. In Java 9 onward you can use

private static methods and private default methods in the interface.

�Demonstration 3
Let’s consider the following demonstration. Here, you have an interface called

MyInterface with four methods:

•	 The first one is a common interface method; it does not have a body,

and it is by default public and abstract.

•	 Then you have two default methods.

•	 Finally, you have the private non-static interface method, called

privateInterfaceMethod(). Notice that since the method is private,

you cannot call the method directly from main().

In this example, I am calling the private method through the default methods:

interface MyInterface{

 void commonInterfaceMethod();

 default void defaultInterfaceMethod1() {

 System.out.println("**Default non-static method1()**");

 //Doing the common task using the private interface method

 privateInterfaceMethod();

 }

Chapter 14 Important Features in Java’s Enhancement Path

429

 default void defaultInterfaceMethod2() {

 System.out.println("**Default non-static method2()**");

 //Doing the common task using the private interface method

 privateInterfaceMethod();

 }

 private void privateInterfaceMethod() {

 �System.out.println("**Private non-static method in

MyInterface**");

 �System.out.println("**I can do the common tasks of multiple

default methods.**");

 }

}

class MyInterfaceImplementor implements MyInterface{

 @Override

 public void commonInterfaceMethod() {

 �System.out.println("**Implementing the

commonInterfaceMethod().**");

 }

}

class PrivateInterfaceMethodFromJava9 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration 3.Private Interface Method

From Java 9.***\n");

 MyInterface interOb=new MyInterfaceImplementor();

 interOb.commonInterfaceMethod();

 interOb.defaultInterfaceMethod1();

 interOb.defaultInterfaceMethod2();

 }

}

Output:

Demonstration 3.Private Interface Method From Java 9.

Implementing the commonInterfaceMethod().

Default non-static method1()

Chapter 14 Important Features in Java’s Enhancement Path

430

Private non-static method in MyInterface

I can do the common tasks of multiple default methods.

Default non-static method2()

Private non-static method in MyInterface

I can do the common tasks of multiple default methods.

�Q&A Session
14.4 What is the use of a private interface method?

If you have multiple default methods in the interface and those interfaces are

performing a common task, you can place the common code in the private helper

method. Consider Demonstration 4 again. It shows how two default methods—

defaultInterfaceMethod1() and defaultInterfaceMethod2()—can accomplish a

common task using a private interface method.

14.5 If the sharing of code is the concern, I can make another default method and
share the common code in that method. Is this understanding correct?

You can do that, but that approach cannot be considered a better design than this. It is

better to use a private helper method than a public helper method. This approach can

promote better encapsulation and security.

14.6 Can a default method be private?

No. You will get a compile-time error if you use the following line of code:

default private void defaultPrivateInterfaceMethod() {

 //some code

}

The error will be as follows:

PrivateInterfaceMethodFromJava9.java:14: error: illegal combination of

modifiers: private and default

 default private void defaultPrivateInterfaceMethod() {//some code

 ^

1 error

Chapter 14 Important Features in Java’s Enhancement Path

431

14.7 Can I make a private interface method static?

Yes. For example, if you add the following two methods in the interface MyInterface:

public static void publicStaticInterfaceMethod() {

 System.out.println("**Public static method in MyInterface**");

 �System.out.println("**Invoking the private static method in

MyInterface now.**");

 }

 private static void privateStaticInterfaceMethod() {

 System.out.println("**Private static method in MyInterface**");

 }

and then invoke the publicStaticInterfaceMethod() method from main() like the

following:

MyInterface.publicStaticInterfaceMethod();

you will see the following lines in your output:

Public static method in MyInterface

Invoking the private static method in MyInterface now.

POINTS TO REMEMBER

•	 Private methods cannot be abstract.

•	 You cannot call a private non-static method from a private static method. If you

do, you will receive a compile-time error for the following segment of code:

private static void privateStaticInterfaceMethod2() {

System.out.println("**Private static method2 in MyInterface**");
//Compile-time error

//privateInterfaceMethod();

}

Chapter 14 Important Features in Java’s Enhancement Path

432

But the reverse is allowed; i.e., you can call a private static method from a non-static

private method in the interface. So, there is no compile-time error for this segment of

code:

private void privateInterfaceMethod2() {

System.out.println("**Private Non-static method2 in MyInterface**");
//NO Compile-time error

publicStaticInterfaceMethod();

}

�Local Variable Type Inference from Java 10
From Java 10 onward, you can declare a local variable without specifying its type.

Even if you do not declare the variable type, it can assume its type from what it is being

set to. For example, from Java 10 onward, you can write something like the following:

var myInt=10;

�Demonstration 4
The upcoming demonstration can show you a simple usage of var:

class LocalVariableTypeInterpretation {

 public static void main(String[] args) {

 �System.out.println("***Demonstration 4.Local Variable Type

Interpretation.***\n");

 int myInt1=1;//ok

 var myInt2=2;//Java10 onwards ok

 System.out.println("The value in myInt1 is :"+ myInt2);

 System.out.println("The myInt1 is of type:");

 //It will print java.lang.Integer

 System.out.println(((Object)myInt1).getClass().getName());

 System.out.println("The myInt2 is of type:");

 //It will also print java.lang.Integer

 System.out.println(((Object)myInt2).getClass().getName()); }

}

Chapter 14 Important Features in Java’s Enhancement Path

433

Output:

Demonstration 4.Local Variable Type Interpretation.

The value in myInt2 is :1

The myInt1 is of type:

java.lang.Integer

The myInt2 is of type:

java.lang.Integer

�Restrictions
Here are some important restrictions when you use var:

•	 You need to put both declaration and initialization together.

For example:

var myInt=1;//ok

But the following line will raise a compile-time error:

var myInt;//Error

myInt=1;

•	 You can use a variable name as var. The compiler will not complain

about the following declaration; that is, it is not treated like reserved

keywords in Java:

var var=12.5;//Till now , compiler allows it

•	 You can use var in the context of initializing local variables and for

loops, but you cannot use them in method parameters or return

types. For example, in the following code segment, both methods in

MyClass will raise compile-time errors:

//You can use 'var' in the context of initializing local variables

//and for loops but you cannot use them in method parameters

//or return type.

Chapter 14 Important Features in Java’s Enhancement Path

434

class MyClass {

 void myMethod1(var i) { // Compile-time error

 // some code

 }

 var myMethod2(int i) { //Compile-time error

 }

}

�New String Methods from Java 11
From Java 11 onward, you’ll get some new String class methods. In the following

example, you will see three of them—isBlank(), repeat(), and strip(). Let’s see their

definitions:

•	 isBlank(): This method will return the Boolean value true if the

string is empty or contains only white space codepoints; otherwise,

false.

•	 repeat(int n): Returns a string whose value is the concatenation of

this string repeated n number of times.

•	 strip(): This method returns a string with all leading and trailing

white space removed.

�Demonstration 5
Consider the following code:

class StringMethodsFromJava11 {

 public static void main(String[] args) {

 �System.out.println("***Demonstration 5.Some new String methods from

Java 11.***\n");

 String str1 = "A non-empty string.";

 System.out.println("The str1 is :"+ str1);

 �System.out.println(" 'The str1 is a blank string'-This

statement is "+ str1.isBlank());

Chapter 14 Important Features in Java’s Enhancement Path

435

 String str2 = "";

 System.out.println("The str2 is :"+ str2);

 �System.out.println(" 'The str2 is a blank string'-This

statement is "+ str2.isBlank());

 //Repeat the string

 System.out.println("\nRepeating 'str1' 3 times now.");

 System.out.println(str1.repeat(3));

 //Using strip() removing beginning and trailing whitespaces

 String str3 = " Hi, Readers! How are you? ";

 System.out.println("\nThe str3 is :"+ str3);

 �System.out.println("After strip() operation, str3 is :" +

str3.strip());

 }

}

Output:

Demonstration 5.Some new String methods from Java 11.

The str1 is :A non-empty string.

 'The str1 is a blank string'-This statement is false

The str2 is :

 'The str2 is a blank string'-This statement is true

Repeating 'str1' 3 times now.

A non-empty string.A non-empty string.A non-empty string.

The str3 is : Hi, Readers! How are you?

After strip() operation, str3 is :Hi, Readers! How are you?

�Q&A Session
14.8 How is isEmpty()different from isBlank()?

The definition of isEmpty() says that if and only if the string length is zero, it will return

true. The following block of code can illustrate the difference between these two

methods:

Chapter 14 Important Features in Java’s Enhancement Path

436

//isBlank vs isEmpty

String nonEmpty=" ";//a tab space

System.out.println("The nonEmpty.length()="+ nonEmpty.length());

System.out.println(nonEmpty.isBlank());//true

System.out.println(nonEmpty.isEmpty());//false

When you execute this block of code, you will get following output:

The nonEmpty.length()=1

true

false

Since the length of nonEmpty is not zero, isBlank() returns true, but isEmpty()

returns false.

14.9 How is strip() different from trim()?

strip() can detect Unicode whitespace. But trim() can remove the space that is

less than or equal to \u0020. To see the difference, you can examine a string like the

following:

//Medium Mathematical Space U+205F

String str1 = "\u205F \u205FThis is my test string with trailing

whitespace-END.\u205F \u205F";

Now if you call the trim() method and the strip() method on this string object, you

will notice the difference. For example, if you test with the following lines of code:

String trimmedString = str1.trim();

String strippedString = str1.strip();

System.out.printf("'%s'%n", trimmedString);

System.out.printf("'%s'%n", strippedString);

you will see that strip() can recognize the initial and trailing whitespaces of the string

and complete its job properly.

Chapter 14 Important Features in Java’s Enhancement Path

437

�New switch Expression in Java 12/13
The switch expression appeared in Java 12 and was further refined in Java 13. But it is a

preview language feature. Using this expression, an entire switch block can receive an

input value. You can use lambda-style syntax to implement this. Using this feature, you

implement a straightforward control flow that is free of “fall-through.”

Note  If you are not aware of a preview feature, you can refer to Q&A 14.1. And
you saw the use of a lambda expression in Demonstration 2 in this chapter.

�Demonstration 6
The following demonstration shows a simple use of this feature. For case 1 to case 5,

it will print a common message (Your version is between 1 and 5), for cases 6 to

12 it will print another common message (Your version is between 6 and 12). If

the version is 13, the example will show a different message (which is shown in the

output). The example also includes a default case to print about the default version. For

simplicity, the myVersion variable is “hard-coded” here. But you can always modify it to

accept a different version or consider the user’s input. My focus was on the main feature,

so I’m ignoring the other fancy parts.

class SwitchExpressionTest {

 public static void main(String[] args) {

 System.out.println("***Testing Switch expression in Java 13.***");

 System.out.println("Considering versions between 1 to 13.");

 int myVersion=13;//Your version.You can change here.

 testNewSwitchExpressionInJava13(myVersion);

}

public static void testNewSwitchExpressionInJava13(int version){

 switch (version) {

 case 1,2,3,4,5-> System.out.println(" Your version is between 1 and 5.");

 �case 6,7,8,9,10,11,12-> System.out.println("Your version is between 6

and 12");

Chapter 14 Important Features in Java’s Enhancement Path

438

 �case 13-> System.out.println("At present, 13 is the latest version. You

picked it.");

 �default -> System.out.println("You didn't pick between 1 and 13. Default

version is: 0");

 }

 }

}

Output:

Testing Switch expression in Java 13.

Considering versions between 1 and 13.

At present, 13 is the latest version. You picked it.

�Running the Code

In a command-line environment, if the path is not set, to avoid a lot of typing (to

mention the javac and java locations), you need to set the path. You can set it in your

environment variable, or you can set the path like the following.

Normally, Java13 will be installed in this path. If you use a different path, mention

that location only for the path variable. In Chapter 7, you saw how to troubleshoot some

common errors in a command-line environment.

C:\TestClass\chapter14>set path=C:\Program Files\Java\jdk-13\bin;

To compile the code in this demonstration, you need to use the –enable-preview

option. Here is a sample:

C:\TestClass\chapter14> javac --enable-preview -source 13

SwitchExpressionTest.java

Here is the immediate output:

Note: SwitchExpressionTest.java uses preview language features.

Note: Recompile with -Xlint:preview for details.

To run the program, you can try the following command, shown in bold:

C:\TestClass\chapter14>java --enable-preview SwitchExpressionTest

The output is already shown “” above.

Chapter 14 Important Features in Java’s Enhancement Path

439

�Q&A Session
14.10 Why do I need to pass the additional parameters with javac or java when I
compile or run this program?

This is still a preview feature. This simply means that, though the overall feature is

complete, the final decision to include it in a mainline JDK has yet to be decided. To

build confidence in a feature and to get maximum possible feedback, a feature can be

tagged like this.

When you use a preview feature, you need to unlock it when you compile the

program or run the program. This is why you used the -enable-preview option earlier to

compile and run the program in this example (Demonstration6).

�Summary
This chapter covered the following:

•	 Switch expression from Java12/13

•	 New String class methods from Java 11

•	 Local variable type inference from Java 10

•	 Private methods from Java 9

•	 Implementing functional interfaces with lambda expressions from Java 8

•	 Try-with resource-from Java 7

Chapter 14 Important Features in Java’s Enhancement Path

PART III

Explore Real-World
Scenarios

Chapter 15: Introduction to Design Patterns

Chapter 16: Frequently Asked Questions

443
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_15

CHAPTER 15

Introduction to Design
Patterns
Design patterns are used to find common solutions when you design your software. In

the initial period of software development, there was no standard to instruct software

developers on how to design their applications. In an organization, each team had

different mottos and followed their own style. When a new engineer joined an existing

team, learning the architecture of the current system was a gigantic task. Senior or

experienced members of the team would need to explain the current architecture

precisely. They also needed to answer some common questions, like what the

advantages of using the current design were, and why an alternative design was not

considered. The experienced developer also trained the new developer on how to reduce

future effort by simply reusing concepts already in place. Design patterns address this

kind of issue and provide a common platform for all developers. So, you can think of

them as the recorded experience of experts in the field. These patterns were meant to be

applied in object-oriented designs, with the intention of reuse.

In 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides published

the book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-

Wesley, 1994). In this book, they introduced the concept of design patterns in software

development. These authors became famous and are currently known as the Gang of

Four. I refer to them as the GoF throughout this chapter. The GoF described 23 patterns

that were recorded through the common experiences of software developers over a

period of time. Each pattern can have its own complexity, pros, and cons, but their

intents are different. Nowadays, when a developer joins a new team, they are expected to

know about these patterns.

444

The concept of a real-life design pattern originated from the building architect

Christopher Alexander. During his lifetime, he discovered that many of his problems

were similar in nature. So, he implemented similar solutions to those common

problems. He said:

Each pattern describes a problem, which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

The software engineering community started believing that though these patterns

were described for buildings and towns, the same concepts could be applied to patterns

in object-oriented design because, at their cores, patterns are solutions to common

problems. As a result, the original concepts of walls and doors in the construction

industry were substituted with instances of classes and interfaces in the software

industry.

Lastly, it is important to note that the GoF discussed the original concepts of

design patterns in the context of C++. But Sun Microsystems released its first public

implementation of Java 1.0 in 1995, and then it went through various changes. (You may

know that Oracle corporation acquired Sun Microsystems in 2010.) So, in 1995, Java was

totally new to the programming world. But it grew rapidly and secured its place among

the world’s top programming languages within a short period of time and remains

popular today. Remember, the concepts of design patterns are universal. So, if you can

exercise these fundamental concepts of design patterns with Java, your knowledge and

expertise will be enhanced, and you can announce yourself as a better programmer.

This is a Java book. This chapter focuses on the design patterns, but not on the latest

features of Java. In fact, I have deliberately chosen simple examples that can be version

independent so you can understand these concepts easily.

�Key Points
Before you start, let’s review some important points regarding design patterns:

•	 A design pattern describes a general reusable solution to a software

design problem. While developing a software, you may encounter

some common problems repeatedly. But you can always solve

Chapter 15 Introduction to Design Patterns

445

similar kinds of problems with similar kinds of solutions. Keeping this

principle in mind, you can attack a problem with an already tested

solution. At the same time, you should ensure the effectiveness of the

solution. Ideally, a solution should be tested over a long period of time.

•	 In general, a pattern provides you with a template that helps you to

solve a problem in many different situations. It should also help you

to get the best possible design much faster.

•	 In simple words, these patterns are descriptions of how to create

objects and classes and customize them to solve a general design

problem in a particular context.

•	 The GoF discussed 23 design patterns. Each of these patterns focuses

on a particular object-oriented design. Each pattern can also describe

the consequences and tradeoffs of use. The GoF categorized these 23

patterns based on their purposes, as shown next.

�Creational Patterns
These patterns abstract the instantiation process. You make the systems independent

from how their objects are composed, created, and represented. In these patterns, you

will have concerns like “Where should I place the new keyword in my application?”

This decision can determine the degree of coupling of your classes. The following five

patterns belong to this category:

•	 Singleton Pattern

•	 Prototype Pattern

•	 Factory Method Pattern

•	 Builder Pattern

•	 Abstract Factory Pattern

Chapter 15 Introduction to Design Patterns

446

�Structural Patterns
These patterns focus on how classes and objects can be composed to form a relatively

large structure. At core, you generally use inheritance or composition to group

different interfaces or implementations. You know that the choice of composition over

inheritance (and vice versa) can affect the flexibility of your software. The following

seven patterns fall into this category:

•	 Proxy Pattern

•	 Flyweight Pattern

•	 Composite Pattern

•	 Bridge Pattern

•	 Facade Pattern

•	 Decorator Pattern

•	 Adapter Pattern

�Behavioral Patterns
Here, you will concentrate on algorithms and the assignment of responsibilities among

objects. You also need to focus on the communication between them and how the

objects are interconnected. The following eleven patterns fall in this category.

•	 Observer Pattern

•	 Strategy Pattern

•	 Template Method Pattern

•	 Command Pattern

•	 Iterator Pattern

•	 Memento Pattern

•	 State Pattern

•	 Mediator Pattern

Chapter 15 Introduction to Design Patterns

447

•	 Chain of Responsibility Pattern

•	 Visitor Pattern

•	 Interpreter Pattern

�Class and Object Patterns
The GoF made another classification based on scope, namely whether the pattern

primary focuses on the class or its objects. You can guess that class patterns deal with

classes and subclasses. These patterns use inheritance mechanisms, so these are static

in nature and fixed at compile time. On the other hand, object patterns deal with objects

that can change at runtime. So, object patterns are dynamic.

In this chapter, I’ll pick one pattern from each category for this introductory

discussion on design patterns. Each pattern is divided into six parts: a definition (which

is basically termed as intent in the GoF’s book), a core concept, a real-world example,

a coding example, a sample program with output, and the Q&A Session section. As

mentioned before, I have chosen simple examples so that you can pick up the basic

ideas quickly. But you must think on it, keep reading and practicing, try to link with other

problems, and then keep coding. This process will help you to learn the subject quickly.

Note  You can refer to my other book, Java Design Patterns: A Hands-On
Experience with Real-World Examples (Second Edition), which is published by the
same publisher, to learn other design patterns in depth.

�Q&A Session
15.1 What are the differences between class patterns and object patterns?

Class patterns focus on static relationships, but object patterns focus on dynamic

relationships. As their name suggests, class patterns focus on classes and their

subclasses. Object patterns focus on the object’s relationships.

The GoF further differentiated them as shown in Table 15-1.

Chapter 15 Introduction to Design Patterns

448

15.2 Can I use multiple patterns in an application?

Yes. In real-world programming, this is common.

15.3 Are these patterns dependent on a particular programming language?

Programming languages can play an important role. But the basic ideas are the same.

Patterns are just like templates, and they will give you some idea in advance of how

you can solve a particular problem. In this book, I primarily focus on object-oriented

programming with Java. But let’s suppose, instead of any object-oriented programming

language, you have chosen some other language (for example, C) that is not object

oriented. In that case, you may need to think about the core object-oriented principles,

such as inheritance, polymorphism, encapsulation, abstraction, and so on, and how to

implement them. The choice of a particular language is always important because it may

have some specialized features that can make your life easier.

15.4 Should I consider common data structures like arrays and linked lists as
different design patterns?

The GoF clearly excludes those, saying that “they are not complex, domain-specific

designs for an entire application or subsystem.” They can be encoded in classes and

reused as is. So, they are not your concern in this chapter.

15.5 If no particular pattern is 100% suitable for my problem, how should I proceed?

It is obvious that you cannot solve an infinite number of problems with a finite number

of patterns. But there is the probability that someone else before you faced a similar

problem and found a solution. You can always use those recorded experiences. So, if you

Table 15-1.  Class Patterns vs Object Patterns

Class Patterns Object patterns

Creational Can defer object creation to its

subclasses

Can defer object creation to another object

Structural Focuses on the composition of

classes (primarily uses the concept of

inheritance)

Focuses on the different ways of

composition of objects

Behavioral Describes the algorithms and execution

flows

Describes how different objects can work

together and complete a task

Chapter 15 Introduction to Design Patterns

449

know these common patterns and their trade-offs, you can pick a close match. Lastly, no

one prevents you from using your own pattern for your own problem. But you have to

tackle the risk from all possible dimensions.

15.6 Do you have any general advice before I jump into the topics?

I always follow the footsteps my seniors and teachers who are experts in this field. Here

are some general suggestions from them:

•	 You should program to a supertype (abstract class/interface), not an

implementation.

•	 You should prefer composition over inheritance.

•	 You should try to make a loosely coupled system.

•	 You should segregate the code that is likely to vary from the rest of

your code.

•	 You should encapsulate the code that varies.

Let’s jump into design patterns now.

�Prototype Pattern
�GoF Definition
Specify the kinds of objects to create using a prototypical instance, and create new

objects by copying this prototype.

�Concept
In general, creating a new instance from scratch is a costly operation. Using the concept

of the prototype pattern, you can create a new instance by copying or cloning an existing

instance. This approach can save both time and money.

Chapter 15 Introduction to Design Patterns

450

�Real-life Example
Suppose you have a master copy of a valuable document. One day you find that you

need to incorporate some change into it. In this case, you can make a photocopy of the

original document and make the changes to see the impact.

Consider another example. Suppose a group of people suddenly decides to celebrate

the birthday of one of their friends, say, Ron. What will they do? They can go to a cake

shop and order a ready-made cake. To make it special, they may request the seller to

write something like “Happy Birthday to Ron.” From a seller point of view, he is not

making any new model. He already defined the model, and every day he produces many

cakes (which all look the same) by following the same process, and finally he makes it

special with some small changes.

�Coding Example
Let us assume that you have an application that is very stable. In the future, you may

want to update the application with some small modifications. You must start with

a copy of your original application, make the changes, and analyze further. Surely,

you don’t want to start from scratch, so as to save you time and money. In real-world

programming, when you add a new feature to your existing application, you may follow

the same strategy.

The following note gives you a clue about how you can use this pattern in your

application.

Note  In Java, you can consider the clone() method of the Object class as an
example of a Prototype pattern. This method can create and return a copy of an
existing object. (In this context, your class needs to be Cloneable.)

Chapter 15 Introduction to Design Patterns

451

Figure 15-1.  A sample prototype structure

�Illustration
Figure 15-1 illustrates a simple prototype structure, which I am going to follow in the

following implementation.

Here, BasicCar is the basic prototype. Nano and Ford are the concrete prototypes,

and they have implemented the clone() method defined in BasicCar. In this example, I

have created these cars with some base price (in Indian currency). Later, I have updated

the final price as per the model. PrototypePatternExample.java is the client in this

implementation.

Chapter 15 Introduction to Design Patterns

452

�Class Diagram
Figure 15-2 shows the class diagram for the illustration of the Prototype pattern.

Figure 15-2.  Class diagram

Chapter 15 Introduction to Design Patterns

453

�Package Explorer View
Figure 15-3 shows the high-level structure of the program.

�Implementation
package java2e.chapter15;

import java.util.Random;

//BasicCar class

abstract class BasicCar implements Cloneable {

 public String modelName;

 public int basePrice, onRoadPrice;

 public String getModelname() {

 return modelName;

 }

Figure 15-3.  Package Explorer view

Chapter 15 Introduction to Design Patterns

454

 public void setModelname(String modelname) {

 this.modelName = modelname;

 }

 public static int setAdditionalPrice() {

 int price = 0;

 Random r = new Random();

 �/* We will get an integer value in the range 0(inclusive) to

100000(exclusive) */

 int p = r.nextInt(100000);

 price = p;

 return price;

 }

 public BasicCar clone() throws CloneNotSupportedException {

 return (BasicCar) super.clone();

 }

}

//Nano class

class Nano extends BasicCar {

 public Nano(String m) {

 modelName = m;

 // Basic price for Nano

 basePrice = 200000;

 }

 @Override

 public BasicCar clone() throws CloneNotSupportedException {

 return (Nano) super.clone();

 }

}

//Ford class

class Ford extends BasicCar {

 public Ford(String m) {

 modelName = m;

Chapter 15 Introduction to Design Patterns

455

 // Basic price for Ford.

 basePrice = 500000;

 }

 @Override

 public BasicCar clone() throws CloneNotSupportedException {

 return (Ford) super.clone();

 }

}

class PrototypePatternDemo {

 �public static void main(String[] args) throws

CloneNotSupportedException {

 System.out.println("***Prototype Pattern Demo***\n");

 BasicCar nano = new Nano("Nano XT");

 BasicCar ford = new Ford("Ford Figo");

 BasicCar nanoClone,fordClone;

 // Making a copy of a Nano object

 nanoClone= nano.clone();

 �System.out.println("Nano's base price is: Rs."+nanoClone.

basePrice);

 //Making the change on the copied object.

 // Price will be more than 200000

 �nanoClone.onRoadPrice = nanoClone.basePrice +

BasicCar.setAdditionalPrice();

 �System.out.println("In India, the final price of a " +

nanoClone.modelName + " is Rs." + nanoClone.onRoadPrice);

 // Making a copy of a Ford object

 fordClone = ford.clone();

 �System.out.println("Ford's base price is: Rs."+fordClone.

basePrice);

 //Making the change on the copied object.

 // Price will be more than 500000

 �fordClone.onRoadPrice = fordClone.basePrice + BasicCar.setAddi

tionalPrice();

Chapter 15 Introduction to Design Patterns

456

 �System.out.println("In India, the final price of a " +

fordClone.modelName + " is Rs." + fordClone.onRoadPrice);

 }

}

Output:

Prototype Pattern Demo

Nano's base price is: Rs.200000

In India, the final price of a Nano XT is Rs.294803

Ford's base price is: Rs.500000

In India, the final price of a Ford Figo is Rs.595733

Note  You may notice a different price in your system, because I am generating
a random price in the setAdditionalPrice() method inside the BasicCar
class. But I have ensured that the NanoXT’s final price is more than Rs 200,000,
the Ford Figo’s final price is more than Rs 500,000, and the price of a Ford Figo will
be greater than that of a Nano XT.

�Q&A Session
15.7. What are the advantages of using Prototype design patterns?

Here are the key advantages:

•	 Creating a new instance from scratch is a costly operation. Prototype

patterns help you to create a new instance from an existing one. So, it

is less expensive.

•	 You may need to face some complicated or boring process if you start

from scratch. Instead, by using a Prototype pattern, you can focus on

upcoming features only.

•	 You can include or discard products at runtime.

Chapter 15 Introduction to Design Patterns

457

15.8. What are the challenges associated with using Prototype design patterns?

Here are the key challenges you may face when you use this pattern:

•	 You need to focus on the cloning or copying mechanism.

•	 Sometimes, creating a copy from an existing instance is not simple.

For example, implementing a cloning mechanism can be challenging

if the objects under consideration do not support copying/cloning

at all or if there are circular references. For example, in Java, a class

with the clone() method needs to implement the Cloneable marker

interface; otherwise, it will throw a CloneNotSupportedException.

•	 In our example, I have used the clone() method that performs a

shallow copy in Java. Following the convention, you obtained the

returned object by calling super.clone(). If you need to get a deep

copy that can be expensive.

15.9. Can you please explain different types of copying technique with examples?

You know that the Object (in the java.lang package) class is the super class for all

classes. This Object class has a method called clone(), which supports the cloning

operations. If you hover your mouse on the Clone() method in the Eclipse editor, you

will see the following syntax:

protected native Object clone() throws CloneNotSupportedException;

The method description also says that this method “creates and returns a copy of this

object. The precise meaning of ‘copy’ may depend on the class of the object.”

When you use cloning, you will come to know about two different techniques of cloning,

namely shallow copy and deep copy. Here is the key distinction between these two:

•	 Shallow copy is faster and less expensive. It is always better if your

target object has primitive fields only.

•	 Deep copy is expensive and slow. But it is useful if your target object

contains many fields that have references to other objects.

So, let’s understand the theories behind them. Shallow copy creates a new object

and then copies various field values from the original object to the new object. So, it is

also known as field-by-field copy. If the original object contains any references to other

objects as fields, then the references to those objects are copied into the new object (i.e.,

you do not create copies of those objects).

Chapter 15 Introduction to Design Patterns

458

Let us try to understand the mechanism with a simple diagram. Suppose you have

an object, X1, and it has a reference to another object, Y1. Further, assume that object Y1

has a reference to object Z1. Figure 15-4 demonstrates the same.

Figure 15-5.  After: shallow copy of the reference(s)

Figure 15-6.  After: deep copy of the reference

Figure 15-4.  Before: shallow copy of the reference(s)

Now, with a shallow copy of X1, a new object, say, X2, will be created that will also

have a reference to Y1. Figure 15-5 demonstrates the same.

But for a deep copy of X1, a new object, say, X3, will be created. X3 will have a

reference to new object Y3, which is actually a copy of Y1. Also, Y3, in turn, will have a

reference to another new object, Z3, which is a copy of Z1. Figure 15-6 demonstrates this.

Chapter 15 Introduction to Design Patterns

459

In the case of a deep copy, the new object is totally separated from the original one,

and any changes made in one object should not be reflected in the other one. In Java,

to create a deep copy, you may need to override the clone() method and then proceed.

Also, deep copy is expensive because you may need to create additional objects.

�Shallow Copy Versus Deep Copy in Java
You can make a clone (or copy) using the clone() method in Java, but you need to

implement the Cloneable interface because only the Java objects that implement this

Cloneable interface are eligible for cloning. The default version of clone() creates a

shallow copy. To create the deep copy, you need to override the clone() method.

Here are the key characteristics of the following program:

•	 In the following example, you have two classes: Employee and

EmpAddress.

•	 The Employee class has three fields: id, name, and EmpAddress. So,

you may notice that to form an Employee object, you need to pass

an EmpAddress object. So, you will notice the line of code as follows:

Employee emp=new Employee(1,"John",initialAddress);

•	 EmpAddress has only a field called address, which is a String datatype.

•	 In the client code (inside the main() method), you create a

cloned object empClone using the built-in clone() method in

Java. So, you will notice the line of code as follows: Employee

empClone=(Employee)emp.clone();

•	 Then you change the field values of the emp object.

•	 But now you see a side effect of this change because you notice

that the address of the empClone object also changed, which was

unwanted.

class EmpAddress implements Cloneable {

 String address;

 public EmpAddress(String address) {

 this.address = address;

 }

Chapter 15 Introduction to Design Patterns

460

 public String getAddress() {

 return address;

 }

 public void setAddress(String address) {

 this.address = address;

 }

 @Override

 public String toString() {

 return this.address;

 }

 @Override

 public Object clone() throws CloneNotSupportedException {

 // Shallow Copy

 return super.clone();

 }

}

class Employee implements Cloneable {

 int id;

 String name;

 EmpAddress empAddress;

 public Employee(int id, String name, EmpAddress empAddress) {

 this.id = id;

 this.name = name;

 this.empAddress = empAddress;

 }

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

Chapter 15 Introduction to Design Patterns

461

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public EmpAddress getAddress() {

 return this.empAddress;

 }

 public void setAddress(EmpAddress newAddress) {

 this.empAddress = newAddress;

 }

 @Override

 public String toString() {

 �return "EmpId=" + this.id + " EmpName=" + this.name + "

EmpAddressName=" + this.empAddress;

 }

 @Override

 public Object clone() throws CloneNotSupportedException {

 // Shallow Copy

 return super.clone();

 }

}

class CloningTechniques{

 �public static void main(String[] args) throws

CloneNotSupportedException {

 �System.out.println("***Shallow vs Deep Copy

Demonstration.***\n");

 �EmpAddress initialAddress = new EmpAddress("21, abc Road,

USA");

 Employee emp = new Employee(1, "John", initialAddress);

 System.out.println("The emp details is as follows:");

Chapter 15 Introduction to Design Patterns

462

 System.out.println(emp);

 Employee empClone = (Employee) emp.clone();

 System.out.println("The empClone details is as follows:");

 System.out.println(empClone);

 �System.out.println("\n Now changing the name, id and address

of the emp object ");

 emp.setId(10);

 emp.setName("Sam");

 emp.empAddress.setAddress("221, xyz Road, Canada");

 System.out.println("Now emp details is as follows:");

 System.out.println(emp);

 System.out.println("And empClone details is as follows:");

 System.out.println(empClone);

 }

}

Here is the output:

Shallow vs Deep Copy Demonstration.

The emp details is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

The empClone details is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

 Now changing the name, id and address of the emp object

Now emp details is as follows:

EmpId=10 EmpName=Sam EmpAddressName=221, xyz Road, Canada

And empClone details is as follows:

EmpId=1 EmpName=John EmpAddressName=221, xyz Road, Canada

Analysis:

Notice the last line of output. You can see an unwanted side-effect, because you

notice the address of the cloned object is modified due to the modification to the emp

object. This is because the original object and the cloned object both point to the same

address, and they are not totally disjointed. Figure 15-7 can depict the scenario better.

Chapter 15 Introduction to Design Patterns

463

Figure 15-7.  Shallow copy scenario in prior example

To implement a deep copy implementation, let’s modify the clone() method of the

Employee class as follows:

 @Override

 public Object clone() throws CloneNotSupportedException {

 // Shallow Copy

 // return super.clone();

 // For deep copy

 Employee employee = (Employee) super.clone();

 employee.empAddress = (EmpAddress) empAddress.clone();

 return employee;

}

Here is the modified output:

Shallow vs Deep Copy Demonstration.

The emp details is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

The empClone details is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

Chapter 15 Introduction to Design Patterns

464

 Now changing the name, id and address of the emp object

Now emp details is as follows:

EmpId=10 EmpName=Sam EmpAddressName=221, xyz Road, Canada

And empClone details is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

Analysis:

Notice the last line of output in this case. Here, you are not seeing the unwanted

side-effect. This is because the original object and the cloned object are totally different

and independent of each other. Figure 15-8 can depict the scenario better.

Figure 15-8.  Deep copy scenario in modified Demonstration

15.10 When should you choose shallow copy over deep copy (and vice versa)?

Shallow copy is faster and less expensive. It is always better if your target object has

primitive fields only.

Deep copy is expensive and slow. But it is useful if your target object contains many

fields that have references to other objects.

15.11 In Java, if I need to copy an object, I need to use the clone() method. Is this
understanding correct?

No, there are many alternatives. For example, you can use your own copy constructor.

Apart from this, you can use the concept of serialization.

Chapter 15 Introduction to Design Patterns

465

15.12 Does Java support a default copy constructor?

No, but you can define your own copy constructor. Chapter 3 demonstrates such an

example.

�Bridge Pattern
�GoF Definition
Decouple an abstraction from its implementation so that the two can vary

independently.

�Concept
This pattern is also known as the Handle/Body pattern. In this pattern, you will see

two different inheritance hierarchies—one for the abstraction layer and one for the

implementation layer. You connect these two hierarchies using a bridge. But the role of

the bridge is important. It connects them in such a way that these two hierarchies can

change without affecting each other.

From a coding perspective, you can use either an abstract class or an interface for

your abstraction and/or implementation, but when you implement the concept, the

abstraction will contain a reference to the implementor, and you use composition to

bridge the two hierarchies.

�Real-life Example
In a software product development company, the development team and the marketing

team each play a crucial role. The marketing team might do a market survey and gather

the customer requirements, which may vary depending on the nature of the customers.

The development team implements those requirements in their products to fulfill the

customers’ needs. Any change (say, in the operational strategy) in one team should

not have a direct impact on the other team. Also, in the future, when new requirements

come from a customer, that demand should not change how developers work in their

organization. In a case like this, you can think of the marketing team as playing the

role of the bridge between the clients of the product and the development team of the

software organization.

Chapter 15 Introduction to Design Patterns

466

�Coding Example
A GUI framework can use the Bridge pattern to separate abstractions from platform-

specific implementation. For example, it can separate a window abstraction from a

window implementation for Linux or macOS using this pattern.

Note  In Chapter 13, you learned about JDBC. It acts as a bridge between your
application and the database. For example, the java.sql.DriverManager class
and the java.sql.Driver interface can form a Bridge pattern, where the first
one plays the role of abstraction and the second one plays the role of implementor.
The concrete implementors can be com.mysql.cj.jdbc.Driver or oracle.
jdbc.driver.OracleDriver. (It is important to note that the class com.
mysql.jdbc.Driver is deprecated. You need to use the new class, com.mysql.
cj.jdbc.Driver.)

�Illustration
Suppose you are a remote-control maker and you need to make remote controls for

different electronic items. For simplicity, let us assume that you are presently getting

orders to make remote controls for televisions and DVDs. Let us also assume that your

remote control has two major functionalities—on and off.

Suppose you want to start with the design shown in Figure 15-9 or the one in

Figure 15-10.

Chapter 15 Introduction to Design Patterns

467

ElectronicItems

Television

On Off On Off

State DVD

Figure 15-9.  Approach 1

Figure 15-10.  Approach 2

Chapter 15 Introduction to Design Patterns

468

On further analysis, you discover that Approach 1 is truly messy and is difficult to

maintain.

At the beginning, Approach 2 looks cleaner, but if you want to include new states like

Sleep, Mute, and so forth, or if you want to include new electronic items like AC, you will

face new challenges because the elements are tightly coupled in this design approach.

But in a real-world scenario, this kind of enhancement is often required.

So, now you understand that you need to start with a loosely coupled system for

future enhancements so that either of these two hierarchies (electronics items and their

states) can grow independently. The Bridge pattern fits exactly in such a scenario.

Let us start from the most common class diagram of a Bridge pattern (see Figure 15-11).

The description of the terms are as follows:

•	 Abstraction: It defines the abstract interface and maintains the

Implementor reference. It is an abstract class in our example.

•	 RefinedAbstraction: It extends the interface defined by Abstraction.

It is a concrete class in our example.

•	 Implementor: It defines the interface for implementation classes. It is

an interface in our example.

•	 ConcreteImplementor: It is a concrete class in our example. It

implements the Implementor interface.

Abstraction

Refined Abstraction ConcreteImplementor

Implementor

Figure 15-11.  A classical Bridge pattern example

Chapter 15 Introduction to Design Patterns

469

I have followed a similar architecture in the following implementation. For your

ready reference, I have pointed out all the participants in the following implementation

with comments.

�Class Diagram
Figure 15-12 shows the class diagram.

�Package Explorer View
Figure 15-13 shows the high-level structure of the program.

Figure 15-12.  Class diagram

Chapter 15 Introduction to Design Patterns

470

�Implementation
These are the key characteristics of the following implementation:

•	 The abstract class ElectronicGoods plays the role of abstraction, and

the interface State plays the role of the implementor.

•	 The concrete implementors are the OnState class and the OffState

class. They have implemented the interface methods moveState()

and hardPressed() as per their requirement.

•	 The abstract class ElectronicGoods holds a reference of the

implementor State.

Figure 15-13.  Package Explorer view

Chapter 15 Introduction to Design Patterns

471

•	 The abstraction methods are delegating the implementation to the

implementor object. For example, notice that hardButtonPressed()

actually is a shorthand for state.hardPressed(), where state is the

implementor object.

•	 There are two refined abstractions: Television and DVD. The class is

happy with the methods it inherits from its parent. But the DVD class

wants to provide an additional feature. So, it implements a DVD-

specific method, doublePress(). The method doublePress() is

coded in terms of super class abstraction only.

package java2e.chapter15;

//Abstraction

abstract class ElectronicGoods

{

 //Composition - implementor

 protected State state;

 /*Alternative approach:

 �You can also pass an implementor (as input argument) inside a

constructor.

 */

 /*public ElectronicGoods(State state)

 {

 this.state = state;

 }*/

 public State getState()

 {

 return state;

 }

 public void setState(State state)

 {

 this.state = state;

 }

 /*Implementation specific:

 We are delegating the implementation to the Implementor object.

 */

Chapter 15 Introduction to Design Patterns

472

 public void moveToCurrentState()

 {

 System.out.print("The electronic item is functioning at : ");

 state.moveState();

 }

 public void hardButtonPressed()

 {

 state.hardPressed();

 }

}

//Refined Abstraction

//Television does not want to modify any super class method.

class Television extends ElectronicGoods

{

 /*public Television(State state)

 {

 super(state);

 }*/

}

/*DVD class also ok with the super class method.

In addition to this, it uses one additional method*/

class DVD extends ElectronicGoods

{

 /*public DVD(State state)

 {

 super(state);

 }*/

 �/* Notice that following DVD-specific method is coded with super

class methods but not with the implementor (State) method. So, this

approach will allow to vary the abstraction and implementation

independently.

 */

 public void doublePress() {

 hardButtonPressed();

Chapter 15 Introduction to Design Patterns

473

 hardButtonPressed();

 }

}

//Implementor

interface State

{

 void moveState();

 void hardPressed();

}

//A Concrete Implementor.

class OnState implements State

{

 @Override

 public void moveState()

 {

 System.out.print("On State\n");

 }

 @Override

 public void hardPressed()

 {

 �System.out.print("\tThe device is already On.Do not press the

button so hard.\n");

 }

}

//Another Concrete Implementor.

class OffState implements State

{

 @Override

 public void moveState()

 {

 System.out.print("Off State\n");

 }

Chapter 15 Introduction to Design Patterns

474

 @Override

 public void hardPressed()

 {

 �System.out.print("\tThe device is Offline now.Do not press the

off button again.\n");

 }

}

class BridgePatternDemo {

 public static void main(String[] args) {

 System.out.println("***Bridge Pattern Demo***\n");

 System.out.println("Dealing with a Television at present.");

 State presentState = new OnState();

 //ElectronicGoods eItem = new Television(presentState);

 ElectronicGoods eItem = new Television();

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 //hard press

 eItem.hardButtonPressed();

 //Verifying Off state of the Television now

 presentState = new OffState();

 //eItem = new Television(presentState);

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 System.out.println("");

 System.out.println("Dealing with a DVD now.");

 presentState = new OnState();

 //eItem = new DVD(presentState);

 eItem = new DVD();

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 presentState = new OffState();

 //eItem = new DVD(presentState);

Chapter 15 Introduction to Design Patterns

475

 eItem = new DVD();

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 //hard press-A DVD specific method

 //(new DVD(presentState)).doublePress();

 ((DVD)eItem).doublePress();

 �/*If you uncomment the following line of code, it will cause

error because a television object does not have this method.*/

 //(new Television(presentState)).doublePress();

 }

}

Output:

Bridge Pattern Demo

Dealing with a Television at present.

The electronic item is functioning at : On State

 The device is already On. Do not press the button so hard.

The electronic item is functioning at : Off State

Dealing with a DVD now.

The electronic item is functioning at : On State

The electronic item is functioning at : Off State

 The device is Offline now. Do not press the off button again.

 The device is Offline now. Do not press the off button again.

�Q&A Session
15.13 In this example, I see lots of dead code. Why are you keeping that?

Many engineers prefer constructors over getter/setter methods. You can see the

variations in different implementations. I am keeping those for your ready reference, and

you are free to use any of them.

Chapter 15 Introduction to Design Patterns

476

15.14 You could use simple subclassing instead of using this kind of design. Is this
understanding correct?

No. With simple subclassing, your implementations cannot vary dynamically. Though

it may appear that the implementations may behave differently with subclassing

techniques, in actuality, that kind of variation is already bound to the abstraction at

compile time.

15.15 I recently learned the State pattern, and I am seeing lots of similarities. Is this
understanding correct?

No. State patterns are not described in this book. They are described in detail in my other

book, Java Design Patterns, Second Edition (Apress, 2019). You can refer to that book if

you want. But if you are familiar with it, you will find that the State pattern falls into the

Behavioral Pattern category, and its intent is different. In this chapter, I have shown an

example where the electronic items can be in different states, but the key intent was to

represent the following:

•	 How can you avoid the tight coupling between the items and their

states?

•	 How can you maintain two different hierarchies, where both of them

can extend without impacting each other?

•	 How do you deal with multiple objects where implementations are

shared among themselves?

With this in mind, go through the comments that are attached to this

implementation for a better understanding. I also want to draw your attention to the

DVD-specific method doublePress(). Notice that it is constructed with super class

methods, which in turn delegate the implementation to the implementor object (a

state object, in this case). This approach will allow you to vary the abstraction and

implementation independently, which is the key objective of the Bridge pattern.

15.16 What are the key advantages of using a Bridge design pattern?

Here are the key advantages when you use this pattern:

•	 Implementations are not bound to the abstractions.

•	 Both the abstractions and the implementations can grow

independently.

Chapter 15 Introduction to Design Patterns

477

•	 Concrete classes independent from the interface implementor

classes—i.e., changes—in one of the hierarchies do not affect the

other hierarchy. So, you can also vary the interface and the concrete

implementations in different ways.

15.17 What are the challenges associated with this pattern?

Here are the key challenges when you use this pattern:

•	 The overall structure may become complex.

•	 Sometimes it is confused with the Adapter pattern. (You can

remember that the key purpose of an Adapter pattern is to deal with

incompatible interfaces only.)

15.18. Suppose I have only one state—either OnState or OffState. In this situation,
do I need to use the interface State?

No, it is not mandatory for you. The GoF classified the case of not using a State interface

as a degenerate case of the Bridge pattern.

15.19 In this example, an abstract class is used to represent an abstraction, and an
interface is used for an implementation. Is this mandatory?

No. You can also use an interface also for the abstraction layer. Basically, you use either

an abstract class or an interface for any of the abstractions or implementations. I have

just used this format for better readability.

�Observer Pattern
�GoF Definition
Defines a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.

�Concept
In this pattern, there are many observers (objects), which are observing a particular

subject (also an object). Observers register themselves to a subject to get the change

notification from the subject. If any observer loses interest in the subject it can unregister

Chapter 15 Introduction to Design Patterns

478

from the subject. Sometimes this model is also referred to as the Publish-Subscribe

model. The whole idea can be summarized as follows: Using this pattern, an object

(subject) can send notifications to multiple observers (a set of objects) at the same time.

You can visualize the scenarios with the following diagrams. Let’s assume there are

three different types of observers (let’s say observer1, observer2, and observer3) that

show interest in a subject.

	 1.	 Observers are requesting to a subject to get notifications (see

Figure 15-14).

Figure 15-14.  Step 1

	 2.	 Subject grants all the requests (i.e., connection established; see

Figure 15-15).

Chapter 15 Introduction to Design Patterns

479

	 3.	 Subject sends notifications to the registered observers (for

example, a typical event occurs in the subject and it wants to

notify its observers; see Figure 15-16).

Figure 15-16.  Step 3

Figure 15-15.  Step 2

Chapter 15 Introduction to Design Patterns

480

	 4.	 (Optional): Observer2 does not want to get further notifications.

So, it unregisters itself. See Figure 15-17.

Figure 15-18.  Step 5

Figure 15-17.  Step 4

	 5.	 From this point onward, only Observer1 and Observer3 will

receive notifications from the subject. See Figure 15-18.

Chapter 15 Introduction to Design Patterns

481

�Real-life Example
We can think about a celebrity who has many followers. Each of these followers wants to

get all the latest updates from the celebrity. When they lose interest, they simply do not

follow that celebrity. Here, you can treat each of these followers as an observer and the

celebrity as a subject.

�Coding Example
Consider a simple UI-based example where the UI is connected to a database. A user

can execute search queries through that UI, and, after searching the database, the result

is reflected in the UI. Here, you segregate the UI from the database in such a way that if

a change occurs in the database, the UI should be notified, and it can update its display

according to the change.

You can even simplify the preceding scenario. You can simply assume that you are

the person responsible for maintaining a particular database in your organization. So,

whenever there is a change made inside the database, most likely you want to get a

notification so that you can take an early action if it is required.

Note  You may use this pattern in an event-driven software. Modern
computer languages like Java and C# provide built-in support for handling
events and make your life easy. Java event listeners are observers only. These
observers can implement the Observer interface, which has an update()
method: void update(Observable o,Object arg). This method is
invoked whenever a change occurs in the observed object. You can call the
Observable object’s notifyObservers() method to notify the observers of
the changes. The addObserver(Observer o) can add an observer, and the
deleteObserver(Observer o) method can delete an observer. You can delete
all the observers using the deleteObservers() method. These are similar to the
register and unregister methods discussed earlier.

Chapter 15 Introduction to Design Patterns

482

�Illustration
Now, let us directly enter into our example. Here, I have created three observers and one

subject. The subject maintains a list for all of its registered users. Our observers want to

receive notifications when a flag value changes in the subject. With the output, you will

discover that these observers are getting the notifications when flag values are changed

to 5, 50, and 100, respectively. But one of them did not receive any notification when the

flag value changed to 50 because at that moment it was not a registered user. But later he

registered himself to get further notifications from the subject. At the end, all observers were

unregistered, so, none of them got notification when flag value changed to 500 in the subject.

In this implementation, the methods register(), unregister(), and

notifyRegisteredUsers() have their usual meanings. The register() method is used

to register an observer in the subject’s notification list; the unregister() method is used

to remove an observer from the subject’s notification list; and notifyRegisteredUsers()

is used to notify all the registered users when a typical event occurs in the subject.

�Class Diagram
Figure 15-19 shows the class diagram.

Figure 15-19.  Class diagram

Chapter 15 Introduction to Design Patterns

483

�Package Explorer View
Figure 15-20 shows the high-level structure of the program.

Figure 15-20.  Package Explorer view

Chapter 15 Introduction to Design Patterns

484

�Implementation
package java2e.chapter15;

import java.util.*;

interface Observer

{

 void update(int updatedValue);

}

class ObserverType1 implements Observer

{

 String nameOfObserver;

 public ObserverType1(String name)

 {

 this.nameOfObserver = name;

 }

 @Override

 public void update(int updatedValue)

 {

 �System.out.println(nameOfObserver+" has received an alert:

Updated myValue in Subject is: "+ updatedValue);

 }

}

class ObserverType2 implements Observer

{

 String nameOfObserver;

 public ObserverType2(String name)

 {

 this.nameOfObserver = name;

 }

 @Override

 public void update(int updatedValue)

 {

 �System.out.println(nameOfObserver+" has received an alert:

The current value of myValue in Subject is: "+ updatedValue);

 }

}

Chapter 15 Introduction to Design Patterns

485

interface SubjectInterface

{

 //Use it to register an observer

 void register(Observer anObserver);

 //Use it to unregister an observer

 void unregister(Observer anObserver);

 //Use it to unregister all observers

 void unregisterAll();

 //Use it to notify all registers users(i.e.observers)

 void notifyRegisteredUsers(int notifiedValue);

}

class Subject implements SubjectInterface

{

 private int flag;

 public int getFlag()

 {

 return flag;

 }

 public void setFlag(int flag)

 {

 this.flag = flag;

 //Flag value changed. So notify registered users/observers.

 notifyRegisteredUsers(flag);

 }

 List<Observer> observerList = new ArrayList<Observer>();

 @Override

 public void register(Observer anObserver) {

 observerList.add(anObserver);

 �System.out.println("Currently, observerList.size()="+

observerList.size());

 }

 @Override

 public void unregister(Observer anObserver) {

 observerList.remove(anObserver);

Chapter 15 Introduction to Design Patterns

486

 �System.out.println("Currently, observerList.size()="+

observerList.size());

 }

 @Override

 public void unregisterAll()

 {

 observerList.clear();

 //Or, use this

 //observerList.removeAll(observerList);

 �System.out.println("Currently, observerList.size()="+

observerList.size());

 }

 @Override

 public void notifyRegisteredUsers(int updatedValue)

 {

 for (Observer observer : observerList)

 observer.update(updatedValue);

 }

}

public class ObserverPatternDemo {

 public static void main(String[] args) {

 System.out.println(" ***Observer Pattern Demo***\n");

 �/*We have 3 observers- 2 of them are ObserverType1, 1 of them

is of ObserverType2 */

 Observer myObserver1 = new ObserverType1("Roy");

 Observer myObserver2 = new ObserverType1("Kevin");

 Observer myObserver3 = new ObserverType2("Bose");

 Subject subject = new Subject();

 //Registering the observers-Roy,Kevin,Bose

 System.out.println("+Registering Roy.+");

 subject.register(myObserver1);

 System.out.println("+Registering Kevin.+");

 subject.register(myObserver2);

 System.out.println("+Registering Bose.+");

 subject.register(myObserver3);

Chapter 15 Introduction to Design Patterns

487

 System.out.println(" Setting Flag = 5 ");

 subject.setFlag(5);

 //Unregistering an observer(Roy))

 System.out.println("-Unregistering Roy-");

 subject.unregister(myObserver1);

 �//No notification for Roy this time, as he is NOT a

//registered user now.

 System.out.println("\n Setting Flag = 50 ");

 subject.setFlag(50);

 //Roy is registering himself again

 System.out.println("+Registering Roy again.+");

 subject.register(myObserver1);

 System.out.println("\n Setting Flag = 100 ");

 subject.setFlag(100);

 System.out.println("Now unregistering all observers.");

 //Unregister all observers

 subject.unregisterAll();

 System.out.println("\n Setting Flag = 500 ");

 �//At this stage, no one will get the notification from the

//subject.

 subject.setFlag(500);

 }

}

Output:

Observer Pattern Demo

+Registering Roy.+

Currently, observerList.size()=1

+Registering Kevin.+

Currently, observerList.size()=2

+Registering Bose.+

Currently, observerList.size()=3

 Setting Flag = 5

Roy has received an alert: Updated myValue in Subject is: 5

Kevin has received an alert: Updated myValue in Subject is: 5

Chapter 15 Introduction to Design Patterns

488

Bose has received an alert: The current value of myValue in Subject is: 5

-Unregistering Roy-

Currently, observerList.size()=2

 Setting Flag = 50

Kevin has received an alert: Updated myValue in Subject is: 50

Bose has received an alert: The current value of myValue in Subject is: 50

+Registering Roy again.+

Currently, observerList.size()=3

 Setting Flag = 100

Kevin has received an alert: Updated myValue in Subject is: 100

Bose has received an alert: The current value of myValue in Subject is: 100

Roy has received an alert: Updated myValue in Subject is: 100

Now unregistering all observers.

Currently, observerList.size()=0.

 Setting Flag = 500

Notice that initially all three observers—Roy, Kevin, and Bose—registered

themselves to get the notification from the subject. So, in the initial phase, all of

them received notifications. But in between, Roy was not interested in getting further

notifications, so he unregistered himself. So, from this time onward, only Kevin and Bose

were receiving notifications (notice the case when I set the flag value to 50). But Roy

changed his mind and again registered himself to get notifications from the subject. So,

when I set the flag value to 100, all of them were getting notifications from the subject.

Finally, the subject does not want to send any notifications to anyone, so he clears the

observer’s (registered users) list. So, in the last case, when the flag value was set to 500,

no one received any notifications from the subject.

�Q&A Session
15.20 If I have only one observer, then I may not need to set up the interface. Is this
understanding correct?

Yes. But if you want to follow the pure object-oriented programming guidelines,

“Programming to the interface” is always considered as a better practice. In this case,

it mandates any future observer to have the update() method, which reduces the

Chapter 15 Introduction to Design Patterns

489

chance of bugs and allows a clean code to write and understand. So, you should prefer

interfaces (or abstract classes) instead of using a concrete class. Also, in general, you will

have multiple observers and you want them to implement the methods in a systematic

manner following the contract. So, you can benefit from this kind of design.

15.21 Can I have different types of observers in the same application?

Yes. Here, you have already seen three observers from two different classes. So, you

should not assume that for each observer you need a different class.

Consider a real-world scenario. When a company releases or updates new software,

both the business partners of the company and the customers who purchased the

software get notifications. In this case, the business partners and the customers are two

different types of observers.

15.22 Can I add or remove observers at runtime?

Yes. Notice that in our program, at the beginning, Roy was a registered user, and he was

getting notifications from the subject. After some time, he was not a registered user and

did not get notifications when the flag value was set to 50. But Roy was reregistered again

and got notifications when flag value was set to 100 in the subject.

15.23 It appears to me that there are similarities between the Observer pattern and
the Chain of Responsibility pattern. Is this understanding correct?

In an Observer pattern, all registered users get notifications at the same time, but in

the Chain of Responsibility pattern, objects in the chain are notified one by one, and

this process will continue until an object handles the notification fully. The following

diagrams (Figure 15-21 and Figure 15-22) summarize the difference.

Chapter 15 Introduction to Design Patterns

490

Figure 15-22.  The basic workflow of a Chain of Responsibility pattern

Figure 15-21.  The basic workflow of an Observer pattern

15.24 This model supports one-to-many relationships. Is this understanding
correct?

Yes. Since a subject can send notifications to multiple observers, you can say that this

kind of dependency is clearly depicting a one-to-many relationship.

15.25 I have seen that Java supports this pattern and there are some built-in
constructs to use. Then why are you writing your own code?

To change the ready-made constructs in your preferred way is not always easy. In many

cases, you cannot change the built-in functionalities at all. But I believe that when you

try to implement the concepts yourselves, you may have a better understanding that can

help you to use those ready-made constructs in a better way.

Chapter 15 Introduction to Design Patterns

491

Consider some typical scenarios:

•	 In Java, Observable is a concrete class and does not implement an

interface. So, you can’t create your own implementation that can

work with Java’s built-in Observer API .

•	 You need to remember that Java does not allow multiple inheritance.

So, when you have to extend the Observable class, you have to keep

in mind the restriction. So, it may limit the reuse potential.

•	 The signature of the setChanged() method in Observable is as follows:

protected void setChanged().

This means if you want to use it, you need to subclass the Observable class. This

violates one of the key design principles that basically says to prefer composition over

inheritance.

15.26 What are the key benefits of the Observer pattern?

Here are the key benefits:

•	 Subjects and their registered users (observers) make a loosely

coupled system. They do not need to know each other explicitly.

•	 No modification is required in a subject when you add or remove an

observer from its notification lists.

•	 You can add or remove observers at any time independently.

15.27 What are the key challenges associated with an Observer pattern?

Here are the key challenges:

•	 Undoubtedly memory leak is the greatest concern when you deal

with any event-based mechanism. An automatic garbage collector

may not always help you in this context. You can consider a case

when you forget to unregister some events.

•	 The order of notification is not always dependable.

•	 Java’s built-in support for the Observer pattern has some key

restrictions, which we discussed earlier (I suggest you revisit the

answer of Question 15.25 again), and one of them will force you to

prefer inheritance over composition. So, it clearly violates one of the

key design principles that always prefers the opposite.

Chapter 15 Introduction to Design Patterns

492

�Summary
This chapter discussed the following topics:

•	 Brief introduction to Gang of Four (GoF) design patterns

•	 Classification of GoF patterns and their usage

•	 Full implementation of Prototype Design pattern

•	 Full implementation of Bridge pattern

•	 Full implementation of Observer pattern

Chapter 15 Introduction to Design Patterns

493
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2_16

CHAPTER 16

Frequently Asked
Questions
It is time to test your understanding. Here, I have listed some important and frequently

asked questions, which are a very small subset of all the questions that have been

discussed in the Q&A Sessions and in different theoretical discussions across the book.

These questions can help you to review quickly. If there is any doubt, please go back to

the respective chapter to find the answer.

	 1.	 What is a class?

	 2.	 What is an object?

	 3.	 How do you differentiate between an object and a reference?

	 4.	 Can you implement multiple inheritance in Java?

	 5.	 Can you implement hybrid inheritance in Java?

	 6.	 How do you differentiate between an abstract class and an

interface?

	 7.	 How do you differentiate between method overloading and

method overriding?

	 8.	 How can you implement dynamic polymorphism in Java?

	 9.	 What is JVM?

	 10.	 How do you differentiate between JRE and JDK?

	 11.	 What is an inner class?

	 12.	 How can you create a static class in Java?

	 13.	 How can you implement abstraction and encapsulation in Java?

494

	 14.	 How do you differentiate between a static binding and a dynamic

binding in Java?

	 15.	 What is the use of super in Java?

	 16.	 What is/are the use/s of this in Java?

	 17.	 What is the use of default in Java?

	 18.	 Can you use an abstract class without an abstract method?

	 19.	 Can you inherit constructors?

	 20.	 What is the use of final in Java?

	 21.	 How do you differentiate between an instance method and a class

method (static method)?

	 22.	 Can you create a static block? What is its use?

	 23.	 What is a package? Why is it important?

	 24.	 What is the default package in Java?

	 25.	 Why would you use import statements?

	 26.	 Which statement should appear first—a package statement or an

import statement?

	 27.	 Can you have multiple package statements in a program?

	 28.	 “Package statement should always come on top”—is this true?

	 29.	 What is a default modifier?

	 30.	 Does Java support pointers?

	 31.	 What is an exception?

	 32.	 What is the super class of Exception?

	 33.	 What do you mean by checked exceptions?

	 34.	 What do you mean by unchecked exceptions?

	 35.	 How can you create your own exception?

	 36.	 What are some examples of an error condition?

	 37.	 What is the difference between throw and throws?

Chapter 16 Frequently Asked Questions

495

	 38.	 What will happen if you encounter an exception in a finally

block?

	 39.	 What is the drawback of handling exceptions?

	 40.	 What is the advantage of handling exceptions?

	 41.	 What do you mean by chained exceptions?

	 42.	 What are the key methods associated with chained exceptions?

	 43.	 What is garbage collection? How does it work in Java?

	 44.	 How can you make an object unreachable?

	 45.	 Can you explain garbage collection with a simple program?

	 46.	 What is finalization? Why is it important?

	 47.	 How can you remove memory leak in Java?

	 48.	 What is the purpose of a constructor?

	 49.	 What are the different types of constructors?

	 50.	 How can you use getter-setters in your application?

	 51.	 What is an initialization block?

	 52.	 What are the different types of initialization blocks? How do they

work?

	 53.	 What is a nested class?

	 54.	 What is an inner class? How is an inner class useful?

	 55.	 What is shallow copy? How is it different from deep copy?

	 56.	 What is a wrapper class? Why are wrapper classes important in

Java?

	 57.	 How can you differentiate between a user-defined no-argument

constructor and a default constructor in Java?

	 58.	 Can the use of a default method in the interfaces lead to the

diamond problem in Java?

	 59.	 Java does not support multiple inheritance through classes, but

C++ does. Do you treat it as an advantage or disadvantage of Java?

Chapter 16 Frequently Asked Questions

496

	 60.	 Can multiple variables reference the same object in memory?

	 61.	 What is the expected output if you use the following line of code?

System.out.print(anObject);

	 62.	 What is constructor chaining?

	 63.	 How can you pass a variable number of arguments inside a

method?

	 64.	 What is the difference between char in Java and char in C/C++?

	 65.	 What do you mean by automatic type conversion?

	 66.	 Do you treat Java as a purely object-oriented language? If not,

why?

	 67.	 Can a constructor be private?

	 68.	 Can a constructor be final or abstract or static?

	 69.	 Differentiate among final, finally, and finalize.

	 70.	 What is the difference between a default constructor and a no-

argument constructor?

	 71.	 Can you have both this() and super() in the same constructor?

If not, why?

	 72.	 Can you have backward inheritance?

	 73.	 In an inheritance hierarchy, how can you decide a parent class or

a child class?

	 74.	 What is a blank final variable? How can you use it in your

program?

	 75.	 Can you override an overloaded method?

	 76.	 If you make the main() method final, will you receive any

compile-time or runtime errors?

	 77.	 What are the advantages of a tagging interface?

	 78.	 Is there any alternative to marker interfaces?

Chapter 16 Frequently Asked Questions

497

	 79.	 Which one do you like—use of marker interfaces or use of marker

annotations? Why?

	 80.	 How can you implement the concept of generalization/

specialization in Java?

	 81.	 How can you implement the concept of realization in Java?

	 82.	 Is there any alternative to inheritance? What is that? When you

can use that concept?

	 83.	 Does Java support structures? If not, why?

	 84.	 What is the basic difference between String and StringBuffer?

	 85.	 How you can distinguish a Java applet from a Java application?

	 86.	 What is the difference between StringBuffer and

StringBuilder?

	 87.	 In which scenario do you prefer StringBuilder over

StringBuffer (and vice versa)?

	 88.	 What is a thread? How does it differ from a process?

	 89.	 What are the different ways to create a thread, and which one do

you prefer?

	 90.	 What are the benefits of multi-threading?

	 91.	 Can multi-threading improve performance in a multi-core

system?

	 92.	 Name some Thread class methods and mention their usages.

	 93.	 How is sleep() different from wait()?

	 94.	 What is synchronization?

	 95.	 How can you implement synchronization in your application?

	 96.	 What is a deadlock? How can you detect a deadlock in your

system?

	 97.	 What do you mean by interthread communication?

	 98.	 What is a thread pool?

Chapter 16 Frequently Asked Questions

498

	 99.	 How do you make a “Monitor” in your application?

	100.	 What do you mean by a generic program? How is it better than its

counterpart—a non-generic program?

	101.	 What is the use of wildcard types in a generic program?

	102.	 What do you mean by an upper bound and lower bound of a

wildcard type?

	103.	 What is an unbounded wildcard type?

	104.	 Are List<?> and List<Object> the same? If not, why?

	105.	 What is a reifiable type?

	106.	 What is a raw type?

	107.	 What is a bounded type parameter? How can you use it in your

application?

	108.	 How do wildcards differ from bounded type parameters?

	109.	 What is an erasure? How does it work?

	110.	 How can you use a diamond operator in your application?

	111.	 What is a bridge method?

	112.	 Can you mention some restrictions in generic programming?

	113.	 What do you mean by JDBC?

	114.	 How can you connect to a database?

	115.	 How can you pick your driver to connect a database?

	116.	 What is the use of Driver, DriverManager, Connection, and

Statement in a JDBC program?

	117.	 What is a ResultSet? Why is it useful in a JDBC program?

	118.	 Are PreparedStatements faster than Statements? If so, why?

	119.	 Is passing parameters to PreparedStatement objects mandatory?

	120.	 How can you implement batch processing?

	121.	 What are the advantages of using a PreparedStatement object?

Chapter 16 Frequently Asked Questions

499

	122.	 When can you use a CallableStatement object?

	123.	 When should you prefer a Statement object over a

PreparedStatement or a CallableStatement?

	124.	 What is a stored procedure?

	125.	 Can you use DDL, DML, and DCL statements in your Java

application?

	126.	 What is a resource? How can you use a try-with-resource

statement in your application?

	127.	 What is a functional interface? Why is it important?

	128.	 What is a lambda expression?

	129.	 How can you use lambda expressions to implement a functional

interface method?

	130.	 Can you use a private interface method?

	131.	 Can you make a default interface method private?

	132.	 Can you make a private interface method static?

	133.	 What do you mean by local variable type inference?

	134.	 How does the isEmpty() method differ from the isBlank()

method?

	135.	 How does the strip() method differ from the trim() method?

	136.	 What is a preview feature in Java? Can you give an example?

	137.	 What do you mean by design patterns? Why are they useful?

	138.	 Can you show some examples of design patterns?

Chapter 16 Frequently Asked Questions

501
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2

�APPENDIX A

Test Your Skill in
Language Fundamentals
Before you jump into object-oriented programming in Java, let’s review the language’s

fundamentals. This section is added to help you to better understand the discussions

in the book. You can learn the advanced topics easily if you know these core concepts.

In this appendix, you will see many code segments and I’m asking you to predict the

output. Still, I am keeping the supportive comments in many places for your easy

understanding.

�SET 1
1.1 What will be the output?

package java2e.appendixa.set1;

class Q1 {

 static public void main(String[] args) {

 System.out.println("Hello World.");

 }

}

Output:

Hello World.

Analysis:
You can see that you can change the order. Instead of public static void

main(...), you can write static public void main(...).

https://doi.org/10.1007/978-1-4842-5404-2

502

1.2 What will be the output if you pass some arguments through the command line
(e.g., java Q2 John Sam Bob)?

package java2e.appendixa.set1;

class Q2 {

 public static void main(String[] args) {

 System.out.println("*** Testing Command-line arguments ***");

 //java Q2 John Sam Bob

 System.out.println(args[0]);

 System.out.println(args[1]);

 System.out.println(args[2]);

 }

}

Output:

*** Testing Command-line arguments ***

John

Sam

Bob

Analysis:
When you use command-line arguments like the following:

java <your program name> a0 a1 a2 ...

values will be assigned in the String array args as args[0]=a0, args[1]=a1, args[2]=a2,

etc. Also note that you can choose any other name you want for your String array. For

example, the following code :

public static void main(String myStringArray[]){

//Some code

}

is perfectly fine. (If you do so, change the args with myStringArray in corresponding

places.)

Appendix A Test Your Skill in Language Fundamentals

503

For Eclipse users, you can enter arguments in the Arguments tab under Run

Configurations, like this:

SET 2
2.1 Can you predict the output of the following program?

package java2e.appendixa.set2;

class Q1 {

 public static void main(String[] args) {

 System.out.println("***Set2.Q1***");

 int a=5;//ok

 int b=07;//ok

 System.out.println("a="+a);

 System.out.println("b="+b);

 }

}

Appendix A Test Your Skill in Language Fundamentals

504

Output:

Set2.Q1

a=5

b=7

2.2 Can you predict the output of the following program?

package java2e.appendixa.set2;

class Q2 {

 public static void main(String[] args) {

 System.out.println("***Set2.Q2***");

 int a=5;//ok

 int b=07;//ok

 int c=09;//Error

 int d=010;//8 in octal

 System.out.println("a="+a);

 System.out.println("b="+b);

 System.out.println("c="+c);

 System.out.println("d="+d);//Will print 8

 }

}

Output:
You will receive a compile-time error: The literal 09 of type int is out of

range. Here is a snapshot from Eclipse IDE.

Appendix A Test Your Skill in Language Fundamentals

505

Analysis:
When you put a leading 0, Java treats it as an octal representation. So, in that case,

the range it can support is 0 to 7. In this example, you have crossed that boundary. To

print 8 using octal representation, you can code as follows:

int d=010;//ok. It will print 8

System.out.println("d="+d);

2.3 Can you predict the output of the following program?

package java2e.appendixa.set2;

class Q3 {

 public static void main(String[] args) {

 System.out.println("***Set2.Q3***");

 int c = 0x12;

 int d = 0x1E;

 int e = 0X1F;

 System.out.println("c=" + c);// 18

 System.out.println("d=" + d);// 30

 System.out.println("e=" + e);// 31

 }

}

Output:

Set2.Q3

c=18

d=30

e=31

Analysis:
When we prefix 0x or 0X, Java treats them as a hexadecimal integer literal

representation. So, in this case, the range it can support is 0 to 15. A to F is used to

represent the digits with values 10 to 15.

Appendix A Test Your Skill in Language Fundamentals

506

2.4 Can you predict the output of the following program?

package java2e.appendixa.set2;

class Q4 {

 public static void main(String[] args) {

 System.out.println("***Set2.Q4***");

 int a=5;

 double const=3.14;//Error

 System.out.println("const value is ="+const);//Error

 }

}

Output:
You will receive compile-time errors. Here is a snapshot from the Eclipse IDE.

Analysis:
You cannot use keywords as identifiers in your program. As per JLS11, “The

keywords const and goto are reserved, even though they are not currently used. This may

allow a Java compiler to produce better error messages if these C++ keywords incorrectly

appear in programs.”

Note I n JLS11, these are the 51 keywords that you cannot use as identifiers.
(See Table A-1.)

Appendix A Test Your Skill in Language Fundamentals

507

�SET 3
3.1 Can you predict the output of the following program?

package java2e.appendixa.set3;

class Q1 {

 public static void main(String[] args) {

 System.out.println("***Set3.Q1***");

 byte b1=127;//ok

 byte b2=128;//Error

 System.out.println("b1="+b1);

 System.out.println("b2="+b2);

 }

}

Output:
You will receive a compile-time error. Here is a snapshot from the Eclipse IDE.

Table A-1.  Keywords in Java

abstract assert boolean break byte case catch

char class const continue default do double

else enum extends final finally float for

if goto implements import instanceof int interface

long native new package private protected public

return short statics strictfp super switch synchronized

this throw throws transient try void volatile

while _(underscore)

Appendix A Test Your Skill in Language Fundamentals

508

Analysis:
Range of a byte is -128 to 127.

3.2 Can you predict the output of the following program?

package java2e.appendixa.set3;

class Q2 {

 public static void main(String[] args) {

 System.out.println("***Set3.Q2***");

 byte b1 = 127;// ok

 int i1 = b1;// ok

 System.out.println("b1=" + b1);

 System.out.println("i1=" + i1);

 }

}

Output:

Set3.Q2

b1=127

i1=127

Analysis:
The two types—int and byte—are compatible, and here you can place the byte

variable into an int variable. This is possible because the destination type is larger than

the source type. So, the compiler is okay with this conversion.

3.3 Can you predict the output of the following program?

package java2e.appendixa.set3;

class Q3 {

 public static void main(String[] args) {

 System.out.println("***Set3.Q3***");

 byte b1=127;

 int i1=b1;//ok: small to big

 b1=i1;//Error: big to small

 System.out.println("b1="+b1);

 System.out.println("i1="+i1);

 }

}

Appendix A Test Your Skill in Language Fundamentals

509

Output:
You will receive a compile-time error. Here is a snapshot from the Eclipse IDE.

Analysis:
Here, the destination type is smaller than the source type. So, the compiler is raising

the concern.

�SET 4
4.1 Can you predict the output of the following program?

package java2e.appendixa.set4;

class Q1 {

 public static void main(String[] args) {

 System.out.println("***Set4.Q1***");

 int i=2147483647;

 System.out.println("i="+i);

 int j=++i;

 System.out.println("Now i is="+i);

 System.out.println("j="+j);

 ++j;

 System.out.println("Now j is="+j);

 }

}

Output:

Set4.Q1

i=2147483647

Now i is=-2147483648

j=-2147483648

Now j is=-2147483647

Appendix A Test Your Skill in Language Fundamentals

510

Analysis:
The maximum value of an integer is 2,147,483,647, and the minimum value is

-2,147,483,648. Here, in j (with post-increment of i), you have crossed the maximum

limit of an integer.

4.2 Can you compile the following program?

package java2e.appendixa.set4;

class Q2 {

 public static void main(String[] args) {

 System.out.println("***Set4.Q2***");

 int i = 5;

 int j = i++;// j becomes 5, i becomes 6

 System.out.println("Now j=" + j);

 System.out.println("Now i=" + i);

 int k = ++j;// j and k both becomes 6

 System.out.println("Here j=" + j);

 System.out.println("Here k=" + k);

 }

}

Answer:
Yes. The program will compile and run successfully. Here is the output:

Set4.Q2

Now j=5

Now i=6

Here j=6

Here k=6

4.3 Can you compile the following program?

package java2e.appendixa.set4;

class Q3 {

 public static void main(String[] args) {

 System.out.println("***Set4.Q3***");

 int i = 260;

Appendix A Test Your Skill in Language Fundamentals

511

 byte b = (byte) i;

 System.out.println("b=" + b);

 }

}

Answer:
Yes. The program will compile and run successfully. Here is the output:

Set4.Q3

b=4

Analysis:
Here, you are trying to type-cast a larger variable (int) into a smaller variable (byte).

So, in this type of case, Java calculates the modulo of the larger variable by the range of

the smaller variable. Our byte range is -128 to 127. So, the final result would be 260 %

256; i.e., 4.

4.4 Can you compile the following program?

package java2e.appendixa.set4;

class Q4 {

 public static void main(String[] args) {

 System.out.println("***Set4.Q4***");

 int i=65550;

 short s=(short)i;

 System.out.println("s="+s);

 }

}

Answer:
Yes. The program will compile and run successfully. Here is the output:

Set4.Q4

s=14

Analysis:
See the prior explanation (for Q3 in Set 4). The range for the short datatype is -32768

to 32767; i.e., the total range it covers is 65536. So, in this case, the values of s will be

65550 % 65536=14.

Appendix A Test Your Skill in Language Fundamentals

512

4.5 What will be the output?

package java2e.appendixa.set4;

class Q5 {

 public static void main(String[] args) {

 System.out.println("***Set4.Q5***");

 char c1 = 65;

 char c2 = 'a' + 3;

 System.out.println("c1=" + c1);

 System.out.println("c2=" + c2);

 }

}

Output:

Set4.Q5

c1=A

c2=d

Analysis:
ASCII value of A is 65 and ASCII value of a is 97.

97+3=100, which is the ASCII value of d.

�SET 5
5.1 Why do you prefer double over float?

We use double for double precision, while float is for single precision. So, to maintain

the accuracy of a calculation, double is a better choice over float.

5.2 What is the difference between char in Java and char in C/C++?

In C/C++, char is an integer type (8-bit wide). But Java uses Unicode (UTF-16) to

represent them. In Java, char is of a 16-bit type.

5.3 What do you mean by Unicode?

Unicode defines a fully international character set that can be found in most of the

world’s human languages/writing systems. So, it is a unification of all those character

sets. This allows us to encode, represent, and handle texts in those languages in a

standard way.

Appendix A Test Your Skill in Language Fundamentals

513

5.4 What do you mean by automatic type conversion?

Two basic criteria must be followed for an automatic conversion:

•	 The destination type should be larger.

•	 The types must be compatible.

For example, the following conversion is automatic:

int i1=15;

double d=i1;//ok

System.out.println("d="+d);//15.0

But the following conversion is not allowed:

boolean b=true;

int i2=b;//error: Cannot convert from boolean to int

5.5 Why does Java not convert primitive types to objects?

Unnecessary overhead will be created due to these conversions, and it may lose efficiency.

5.6 Why do all Java primitive types have a fixed range?

To support portability, Java supports this concept.

5.7 What do we mean by the word portability?

In simple language, suppose you have developed an application in a machine. Now you

want to reuse it in other environment (for example, in a different hardware/software

platform or version or different operating system, etc.) without major rework (in ideal

scenario: no rework). If you can do that, you can claim that your application is portable.

We also remember that JVM and bytecode make Java portable.

�SET 6
6.1 What will be the output?

package java2e.appendixa.set6;

class Q1 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q1***");

 int x = 10;

Appendix A Test Your Skill in Language Fundamentals

514

 int result = ++x * 5;

 System.out.println(" The result is: " + result);

 }

}

Output:

Set6.Q1

 The result is : 55

Analysis:
The ++ operator has a higher precedence than the operator *. So, ++x operation will

be performed before the multiplication operation.

6.2 Can you predict the output of the following program?

package java2e.appendixa.set6;

class Q2 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q2***");

 int x=5;

 System.out.println(" ~x is : "+ ~x);

 }

}

Output:

Set6.Q2

 ~x is : -6

Analysis:
5 is represented by 0000 0101. ~5 will make it 1111 1010, which is for -6.

To understand it better, represent 6 in binary: 0000 0110. Now 2’s complement of it

(inverting all bits first and then adding a 1 to that) will make it 1111 1010.

Appendix A Test Your Skill in Language Fundamentals

515

6.3 Can you predict the output of the following program?

package java2e.appendixa.set6;

class Q3 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q3***");

 int x=21;

 int y=15;

 int z=x^y;

 System.out.println(" z is : "+ z);

 }

}

Output:

Set6.Q3

 z is : 26

Analysis:

•	 21 in binary is 0001 0101.

•	 15 in binary is 0000 1111.

XOR combines bits with the rule: if exactly one operand is 1, then the result is 1. So,

our result becomes 0001 1010; i.e., 26.

6.4 Can you predict the output of the following program?

package java2e.appendixa.set6;

class Q4 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q4***");

 int x=24;

 int y=11;

 int result= ++x * y--;

 System.out.println("Result is : "+ result);

 System.out.println("y is now : "+ y);

 }

}

Appendix A Test Your Skill in Language Fundamentals

516

Output:

Set6.Q4

Result is : 275

y now : 10

Analysis:
Pre-increment happened to x, but post-increment happened to y. So, prior to

multiplication, x becomes 25, but y remains at 11.

6.5 Predict the output of the following program:

package java2e.appendixa.set6;

class Q5 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q5***");

 int x=24;

 int y=11;

 int z=100;

 int result= ++x *--y %z;

 System.out.println(" Result is : "+ result);

 System.out.println(" y now : "+ y);

 }

}

Output:

Set6.Q5

 Result is : 50

 y now : 10

Analysis:
Pre-increment happened to x, and pre-decrement happened to y before the

multiplication operation, which results in 250. Finally, the modulo operation results in

50 (250%100=50).

Appendix A Test Your Skill in Language Fundamentals

517

6.6 Predict the output of the following program:

package java2e.appendixa.set6;

class Q6 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q6***");

 int x = 10;

 int y = 4;

 double result = ++y * x / y;

 System.out.println(" Result is : " + result);

 System.out.println(" y now : " + y);

 }

}

Output:

Set6.Q6

 Result is : 10.0

 y now : 5

Analysis:
You must notice that y incremented first (because ++ has a higher precedence than

* and /) and became 5. So, 5*10/5 becomes 10.0 because we are storing the result in a

double datatype.

6.7 Predict the output of the following program:

package java2e.appendixa.set6;

class Q7 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q7***");

 int a=7,b=12;

 System.out.println(a+b);//19

 System.out.println("a+b=" +a+b);//a+b=712

 System.out.println(a+b+"=a+b=" +a+b);//19=a+b=712

 }

}

Appendix A Test Your Skill in Language Fundamentals

518

Output:

Set6.Q7

19

a+b=712

19=a+b=712

Analysis:
You must note this behavior: once the string is encountered, we started seeing the

concatenation instead of addition. That’s why initially a and b are added and result in 19,

but after that it encountered a string '=a+b', so from now onward it will start with string

concatenation operations.

6.8 Differentiate between break vs continue, with an example

package java2e.appendixa.set6;

class Q8 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q8***");

 System.out.println("***break vs continue***");

 System.out.println("***Example : break***");

 for (int i = 0; i < 5; i++) {

 System.out.print("At entry, i is :" + i + "\t");

 if (i == 3)

 break;

 System.out.println("At Exit, i is :" + i);

 }

 System.out.println();

 System.out.print("***Example : continue***\n");

 for (int i = 0; i < 5; i++) {

 System.out.print("At entry, i is :" + i + "\t");

 if (i == 3)

 continue;

 System.out.println("At Exit, i is :" + i);

 }

 }

}

Appendix A Test Your Skill in Language Fundamentals

519

Output:
For a better visual, let’s consider the snapshot of the output from Eclipse IDE.

Analysis:
From the preceding code, you can see that once you encounter break (at i=3),

control comes out from the for loop block, but in case of continue, it just skips the

remaining portion for that iteration (i.e., it did not print an Exit statement for i=3) and

continues looping to the end.

Note  As per Oracle Java documentation, a “break can have two forms—labeled
and unlabeled. An unlabeled break statement can terminate the innermost for,
while, do-while, and switch statements, but a labeled break can terminate an outer
statement.” In case of a labeled break, the control flows to the statement that
immediately follows the labeled (terminated) statement.

6.9 Predict the output of the following program:

package java2e.appendixa.set6;

class Q9 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q9***");

 System.out.println("*** Conditional Operator Demo***");

Appendix A Test Your Skill in Language Fundamentals

520

 int a=10;

 int b=5;

 int c=a>b?a:b;

 System.out.println("Here c is : "+c);

 }

}

Output:

Set6.Q9

*** Conditional Operator Demo***

c is : 10

This is a very common use of the conditional operator. It simply says, if a>b, then c=a

else c=b. Since the condition :a >b is true here, c is taking the value of a which is 10. If

this condition becomes false, c will take the value of b which is 5 in this case.

6.10 What will be the output?

package java2e.appendixa.set6;

class Q10 {

 public static void main(String[] args) {

 System.out.println("***Set6.Q10***");

 System.out.println("*** ConditionalOperator.Demo-2***");

 int a=10;

 int b=5;

 //Error:Cannot convert from int to String

 String result=a<0?"Negative":a;

 System.out.println("result is : "+result);

 }

}

Output:
Compilation error. Here is a snapshot from Eclipse IDE:

Appendix A Test Your Skill in Language Fundamentals

521

Analysis:
You cannot put an integer inside a string. So, be careful of the following type of

comparison:

expression1? expression2: expression3

expression 2 and expression3 must be same.

For example, the following code segment can work for you:

 String str="hello";

 String result;

 result=str.equals("hello")?"Correct Match":"Doesn't match";

 System.out.println(result);

�SET 7
7.1 What is an array?

An array is a container object that can hold a fixed number of a particular type. If an

array can contain n number of elements, it is called an array of length n.

It is important to note that when you write something like int[] myIntArray; you

are declaring an array of int only, but after this declaration, when you write something

like the following:

myIntArray=new int[5];

or, if you simply write something like this:

myIntArray={ 0,1,2,3,4};

you allocate space for array elements.

7.2 Write a simple program to demonstrate an array and display the contents inside it.

package java2e.appendixa.set7;

class Q2 {

 public static void main(String[] args) {

 System.out.println("***Set7.Q2***");

 �System.out.println("Creating an integer array which can

contain 5 integers.");

Appendix A Test Your Skill in Language Fundamentals

522

 int[] myIntArray=new int[5];

 for(int i=0;i<5;i++)

 {

 myIntArray[i]=i;

 �System.out.println("Inserted "+ i +" in

myIntArray["+ i + "]");

 }

 System.out.println("Displaying the contents of the Array:");

 for(int i=0;i<5;i++)

 {

 System.out.print("\t"+myIntArray[i]);

 }

 }

}

Output:

Set7.Q2

Creating an integer array which can contain 5 integers.

Inserted 0 in myIntArray[0]

Inserted 1 in myIntArray[1]

Inserted 2 in myIntArray[2]

Inserted 3 in myIntArray[3]

Inserted 4 in myIntArray[4]

Displaying the contents of the Array:

 0 1 2 3 4

7.3 In the previous program, can I declare the array like the following?

int myIntArray[]=new int[5];

Yes. You can use either of these forms: int[] myArray or int myArray[].

7.4 How can you alter the size of an array ?

As per JLS11, “Once an array object is created, its length never changes. To make an

array variable refer to an array of different length, a reference to a different array must be

assigned to the variable.”

Appendix A Test Your Skill in Language Fundamentals

523

So, once you learn ArrayList, you know that ArrayList is a better choice in a case

like this. But there is a workaround. You can make an array of your desired size, and

then you can copy the elements from the old array to the new array using the copyOf()

method, as follows:

//Increasing the size of the array

int[] myBigArray=Arrays.copyOf(myIntArray,6);

//Putting a new value in newly added location

myBigArray[5]=6;

Note O nce you see the definition of the Arrays.copyOf() method, you’ll see
this:

public static int[] copyOf(int[] original, int newLength) {

 int[] copy = new int[newLength];

 System.arraycopy(original, 0, copy, 0,

 Math.min(original.length, newLength));

 return copy;

 }

This simply means that Arrays.copyOf() is actually using the System.
arraycopy() method to perform the job.

7.5 Can you shorten the code size in Q&A 7.2?

You can directly initialize the array like this:

int myIntArray[]={0,1,2,3,4}; //it is also ok

7.6 Can you compile the following code segment?

int[] myIntArray=new int[3];

myIntArray[0]=10;

myIntArray[2]=20;

myIntArray[3]="Thirty";

Answer:
No. You cannot put a string into an integer array. You will receive a compile-time

error saying Type mismatch: cannot convert from String to int.

Appendix A Test Your Skill in Language Fundamentals

524

7.7 Will the following code compile?

package java2e.appendixa.set7;

class Q7 {

 public static void main(String[] args) {

 System.out.println("***Set7.Q7***");

 int[] myIntArray=new int[3];

 myIntArray[0]=10;

 myIntArray[2]=20;

 System.out.println("Contents of Array:");

 //Runtime error will occur for the following block of code

 for(int i=0;i<5;i++)

 {

 System.out.println("\t"+myIntArray[i]);

 }

 }

}

Answer:
Yes. There is no compilation error, but you’ll encounter a runtime exception because

you are trying to access locations beyond the boundary (notice that the array size is 3

only). You’ll see the discussion on exceptions in Chapter 10 in this book.

Set7.Q7

Contents of Array:

 10

 0

 20

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3 at

java2e.appendixa.set7.Q7.main(Q7.java:14)

7.8 In the previous output, I can see MyIntArray[1] is printed as 0, but you have not
supplied 0 in it. Is this array initialized with default values?

Answer:
Yes. Default value for integers is 0.

Appendix A Test Your Skill in Language Fundamentals

525

7.9 Can you predict the output of the following program?

package java2e.appendixa.set7;

class A {

 int i;

 A(int i) {

 this.i = i;

 }

}

class Q9 {

 public static void main(String[] args) {

 System.out.println("***Set7.Q9***");

 A[] myArray = new A[5];

 myArray[0] = new A(10);

 myArray[2] = new A(25);

 System.out.println("Contents of Array:");

 for (int i = 0; i < 5; i++) {

 System.out.println(myArray[i]);

 }

 }

}

Output:

Set7.Q9

Contents of Array:

java2e.appendixa.set7.A@15db9742

null

java2e.appendixa.set7.A@6d06d69c

null

null

Analysis:
You can see that all object references are initialized to their default values; i.e., null.

Here, you did not provide values for indexes 1, 3, and 4. So, those locations are holding

null.

Appendix A Test Your Skill in Language Fundamentals

526

7.10 How can you modify the prior program to see the values stored inside the
objects?

Let us modify the body of the for loop, which is as follows:

for (int i = 0; i < 5; i++) {

//System.out.println(myArray[i]);//in Q9

//Modification for Q10 in Set 7

 if(myArray[i]!=null) {

 System.out.println("myArray["+ i+"] : "+myArray[i].i);

 }

}

Output:
Here is the modified output for the mentioned change:

Set7.Q9

Contents of Array:

myArray[0] : 10

myArray[2] : 25

Analysis:
Notice that you put in an extra guard to do a null check inside the for loop.

Otherwise, you’ll encounter a NullPointerException because some of the values inside

the array are null.

7.11 Can you write a simple array-handling program where you need to supply four
integers between 1 and 5 (no repetition is allowed)? Then, your program needs to
respond back to you saying which number you have not used.

package java2e.appendixa.set7;

import java.util.Scanner;

class Q11 {

 public static void main(String[] args) {

 System.out.println("***Set7.Q11***");

 �System.out.println("Type any 4 integers between 1 and 5 (no

repetition is allowed and do not provide null values).");

 int[] myStore = new int[5];

 int accumulatedSum = 0;// To sum up the numbers you have entered

Appendix A Test Your Skill in Language Fundamentals

527

 for (int i = 0; i < 4; i++) {

 Scanner in = new Scanner(System.in);

 int input = in.nextInt();

 myStore[i] = input;

 }

 System.out.println("You have entered:");

 for (int i = 0; i < 4; i++) {

 {

 �System.out.println("myStore[" + i + "] : " +

myStore[i]);

 accumulatedSum = accumulatedSum + myStore[i];

 }

 }

 �int expectedSum = 5 * (5 + 1) / 2;// Formula to calculate sum

//of 1 to 5 integers=n*(n+1)/2;

 int missingNumber = expectedSum - accumulatedSum;

 System.out.println("The missing number is : " + missingNumber);

 }

}

Output:

Set7.Q11

Type any 4 integers between 1 and 5 (no repetition is allowed and do not

provide null values).

2

4

5

1

You have entered:

myStore[0] : 2

myStore[1] : 4

myStore[2] : 5

myStore[3] : 1

The missing number is : 3

Appendix A Test Your Skill in Language Fundamentals

528

Analysis:
Sum of n numbers = n*(n+1)/2. Replace n with 5 for 5 integers to get the sum

of 5 numbers (expectedSum). Now you sum up the four numbers you have entered

through the keyboard (accumulatedSum). So, the difference between expectedSum and

accumulatedSum is the missing number in this case.

Note  For simplicity, null checking is omitted in this example. Also, we have
ignored the case where a user provides an unintended value by mistake.

�SET 8
8.1 Will the following code compile?

package java2e.appendixa.set8;

class Q1 {

 public static void main(String[] args) {

 System.out.println("***Set8.Q1***");

 int myNumber = 6;

 switch (myNumber) {

 case 1:

 System.out.println("one");

 break;

 default:

 System.out.println("Default");

 case 2:

 System.out.println("Two");

 break;

 }

 }

}

Appendix A Test Your Skill in Language Fundamentals

529

Answer:
Yes. We’ll get the following output:

Set8.Q1

Default

Two

Analysis:
You may note that you can put a default case anywhere in the switch block. And

also, if there is no break statement, control will continue to fall through until a break

statement is encountered or the end of the block is reached, whichever be the case.

8.2 Can you compile the following program?

package java2e.appendixa.set8;

class Q2 {

 public static void main(String[] args) {

 System.out.println("***Set8.Q2***");

 System.out.println("***Discussions on Switch ***");

 int myNumber = 6;

 switch (myNumber) {

 case 1:case 5:

 System.out.println("One or Five");

 break;

 default:

 System.out.println("Default");

 break;

 case 2:case 6:case 8:

 System.out.println("Two or Six or Eight");

 break;

 }

 }

}

Appendix A Test Your Skill in Language Fundamentals

530

Answer:
Yes. Here is the output when you run the program:

Set8.Q2

***Discussions on Switch ***

Two or Six or Eight

Analysis:
Multiple case labels are possible like this in a switch statement.

8.3 Can you compile the following program?

package java2e.appendixa.set8;

class Q3 {

 public static void main(String[] args) {

 System.out.println("***Set8.Q3***");

 System.out.println("***Discussions on Switch ***");

 char myChoice = 'e';

 switch (myChoice) {

 case 'b':

 System.out.println("b");

 break;

 default:

 System.out.println("Default");

 break;

 case 'a':

 System.out.println("a");

 break;

 }

 }

}

Answer:
Yes. Here is the output when you run the program:

Set8.Q3

***Discussions on Switch ***

Default

Appendix A Test Your Skill in Language Fundamentals

531

Analysis:
It is not necessary that, in the switch statement’s expression, we put integers only.

Other built-in data types like byte, short, char, and enums are also supported here. Java 7

or above can support String objects inside those expressions.

8.4 What will be the output when you compile the following program?

package java2e.appendixa.set8;

class Q4 {

 public static void main(String[] args) {

 System.out.println("***Set8.Q4***");

 System.out.println("***Discussions on Switch ***");

 boolean value = true;

 switch (value) // compile-time error

 {

 case true:

 System.out.println("true");

 break;

 case false:

 System.out.println("false");

 break;

 default:

 System.out.println("Default");

 break;

 }

 }

}

Answer:
You will receive a compile-time error: Cannot switch on a value of type

Boolean.Only convertible int values, strings or enum variables are

permitted. Here is a snapshot from the Eclipse IDE:

Appendix A Test Your Skill in Language Fundamentals

532

Analysis:
The output is self-explanatory: the Boolean variables cannot be used in such a way

with switch statements.

8.5 When should we prefer switch over if-else?

There is no universal rule. It depends on the situation or demands of your program. But

you may remember that if-else can test conditions or a range of values, while switch

works on an integer, enum, or String object.

8.6 Name the different types of iteration statements in Java.

•	 while loop

•	 do...while loop

•	 for loop

•	 for-each loop (From J2SE5)

8.7 Why do we need these statements?

To create loops. Alternatively, you could say that to execute a segment of code up to

some specified number of times repeatedly, you need these statements.

8.8 What is the key difference between a while loop and a do...while loop?

In case of do...while, the condition is checked at the end of the loop. So, even if the

condition is false, a do...while loop executes at least once.

Consider the following program. Note that I am checking whether the value of j is

less than 10 in the while part. Still, I’m able to print the statement in do{..}.

package java2e.appendixa.set8;

class Q8 {

 public static void main(String[] args) {

 System.out.println("***Set8.Q8***");

 System.out.println("***do...while Demo***");

 int j=10;

 do

 {

 System.out.println("j is now: " + j);

 j++;

Appendix A Test Your Skill in Language Fundamentals

533

 } while (j < 10);

 }

}

Output:
Here is the output when you run the program:

Set8.Q8

do...while Demo

j is now: 10

8.9 Can you compile the following program?

package java2e.appendixa.set8;

class Q9 {

 public static void main(String[] args) {

 System.out.println("***Set8.Q9***");

 int x=10;

 //compile-time error

 while(x){

 System.out.println("I am inside the loop");

 }

 }

}

Answer:
No, you will receive a compile-time error: Type mismatch: cannot convert from

int to Boolean. Here is a snapshot from Eclipse IDE:

Analysis:
In Java, boolean and int are not compatible. In the preceding case, we need to use a

Boolean variable inside the while loop.

Appendix A Test Your Skill in Language Fundamentals

534

�SET 9
9.1 Predict the output.

class Q1 {

 public static void main(String[] args) {

 System.out.println("***Set9.Q1***");

 System.out.println("***String vs StringBuffer***");

 String str1="Hello";

 str1.concat("World");

 System.out.println(str1);//Hello

 StringBuffer str2=new StringBuffer("Hello");

 str2.append("World");

 System.out.println(str2);//HelloWorld

 }

}

Output:

Set9.Q1

String vs StringBuffer

Hello

HelloWorld

Analysis:
String is immutable—i.e., cannot be modified—but StringBuffer is mutable. For

the String object, when you are concatenating “World,” a new object is actually created

inside memory. But for StringBuffer, the value of the object is modified. To see it

properly, you can do a simple test—check their hash codes. So, I have added some lines

of code to the previous program to analyze the output once again.

Once you execute the program, you’ll see that for the String object, you get different

hash codes, but for the StringBuffer object, you get the same hash code.

Appendix A Test Your Skill in Language Fundamentals

535

package java2e.appendixa.set9;

class Q1Modified {

 public static void main(String[] args) {

 �System.out.println("***Set9.Q1-Analyzing the Modified

Program***");

 System.out.println("***String vs StringBuffer***");

 String str1="Hello";

 str1.concat("World");

 System.out.println(str1);//Hello

 System.out.println("The str1.hashCode()="+ str1.hashCode());

 �System.out.println("The str1.concat(\"World\").hashCode()=

"+ str1.concat("World").hashCode());

 StringBuffer str2=new StringBuffer("Hello");

 str2.append("World");

 System.out.println(str2);//HelloWorld

 System.out.println("The str2.hashCode()="+str2.hashCode());

 �System.out.println("The str2.append(\"World\").hashCode()="+

str2.append("World").hashCode());

 }

}

Output:
Here is the output of the modified program:

Set9.Q1-Analyzing the Modified Program

String vs StringBuffer

Hello

The str1.hashCode()=69609650

The str1.concat("World").hashCode()=439329280

HelloWorld

The str2.hashCode()=366712642

The str2.append("World").hashCode()=366712642

The value of the hashcode() may differ in your system.

Appendix A Test Your Skill in Language Fundamentals

536

9.2 What is the fundamental difference between StringBuffer and StringBuilder?

StringBuffer is synchronized, so in a multi-threaded environment it is much preferred

over StringBuilder. You can learn about multi-threading and synchronization in

Chapter 11.

On the other hand, Java Oracle documentation says that if speed is the primary

concern and synchronization is not important, then StringBuilder is preferred over

StringBuffer.

9.3 What is the difference between applets and applications?

The easiest distinction is that an application contains the main() method and requires

JRE. In an applet, you’ll not see main(). An applet needs a browser (for example,

Chrome). An applet should be executed in a secured environment, whereas an

application does not need as much security as an applet. In this book, I have focused

only on applications.

Appendix A Test Your Skill in Language Fundamentals

537
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2

APPENDIX B

�Getting Started with Java
In 1990–91, Sun Microsystem decided to start a new closed-door project initiated by

Mike Sheridan and Patrick Naughton. The project was called “Green Project,” and it was

headed by James Gosling.

The project started with only a few members (some sources say it was initially a

thirteen-member team). The “Green Team” wanted to develop something new and

interesting, but their initial objective was different. They wanted to anticipate and plan

for the “next wave” in computing. After some initial discussions, they decided to focus on

consumer electronic devices, particularly for the digital cable television industry.

The concept was too advanced for the team at that time, but it was perfect for the

emerging internet.

The team members wanted a name that would be unique in nature and at the

same time reflect the essence of upcoming technologies. So, they picked up names like

“Dynamic,” “Revolutionary,” “Silk,” “Jolt,” “DNA,” and so forth.

Java was initially called Oak, after an oak tree that was visible from Gosling’s office.

But because of some legal problems, it was renamed to Java. Who first proposed the

name Java? Different sources say different things.

Some other sources say that Greentalk was the initial name, which became Oak, and

then finally it was renamed to Java. James Gosling later said that Java was one of the top

choices, along with Silk. But finally they selected Java.

Sun Microsystems released Java 1.0 in 1996. Java became open source on November

13, 2006. Sun finished the process by making all of Java’s core code available under free

software/open-source distribution terms (aside from a small portion of code to which

they did not hold the copyright) on May 8, 2007.

Later, Oracle Corporation purchased Sun Microsystems, and the acquisition process

was finished on January 27, 2010. At the time of this writing, Java 12 is the latest version,

which was released on March 19, 2019.

https://doi.org/10.1007/978-1-4842-5404-2

538

These qualities were the primary focus area for Java:

•	 Simple, object-oriented, and familiar programming style

•	 Robustness and security

•	 Architecture-neutral and portable

•	 High-performance capabilities

•	 Interpreted, threaded, and dynamic

�Basic Terms
When you learn Java, you will see some basic terms get used in different contexts. Let’s

review some of them.

JVM

–– It stands for Java Virtual Machine. When you compile the Java file,

you get a .class (not an .exe) file. This file contains Java byte code,

which is interpreted by JVM. JVM is responsible for loading, verifying,

and executing the code. We say that JVM is platform dependent

because it converts the bytecodes into the machine language for the

specific computer (or machine).

JRE

–– It stands for Java Runtime Environment. It contains the JVM, the

library files, and the other supporting files. To run a Java program, the

JRE must be installed in the system. So, you can simply say JRE=JVM+

some packages.

JDK

–– It stands for Java Development Kit. It provides the tool that you need

to develop Java programs and the JRE. This tool contains javac.exe,

java.exe, etc. When you launch a Java application, it will open the

JRE and load the class, and then, in turn, it will execute the main

method. So, you can conclude that JDK=JRE+ development tools. At

the time of this writing, the latest version of JDK is 12 (commonly

known as Java 12).

Appendix B Getting Started with Java

539

Bytecode

–– Bytecodes are the machine language of the JVM. They provide the

instruction set for a JVM. In simple words, it is a virtual machine

language in which Java code is compiled. JVM comes into the picture

because it stands between these bytecodes and your physical

machine.

Platform

–– We use the term platform to mean where the program will run. It can

be your machine, your fully developed OS, etc. When we say a lan-

guage is platform independent, we mean that the code of a program-

mer will not vary across different platforms.

Once you compile a Java program, you get the bytecodes. The bytecode format is

the same for every platform (Windows/Linux/Solaris/etc.). So, you need an interpreter

that will interpret these bytecodes and then produce the machine-specific codes. At this

stage, JVM comes into the picture. In Java, these bytecodes are interpreted by JVM, which

is available for all operating systems. So, to port the Java program into a new platform,

you need to port the Java interpreter. As a result, you can say that the pair—JVM and

bytecode—make Java portable.

Note T he bottom line is that the trio—JVM, JRE, and JDK—are platform
dependent (because of the OS dependence), but Java is platform independent.

You may remember this simple fact: any machine language is dependent on the

OS of the machine. So, if your program has a dependency on the machine-specific OS,

the program is not platform independent. Java is platform independent because once

the source code is compiled into standard bytecodes, those bytecodes are platform

independent. Because of this facility, Sun Microsystems created the slogan WORA (Write

Once, Run Anywhere) for Java. But the hard truth is true platform independence is a

theoretical concept because even after your best effort you may encounter with surprises

when you deal with a platform that is tightly constrained, for example, consider the case

of maximum length of a filename and similar constraints. But still we can say, Java is very

close to support the true platform independence.

Appendix B Getting Started with Java

540

IDE

–– It stands for Integrated Development Environment. A standard IDE

provides the facilities for software development. In general, these

IDEs are very smart—they provide us with an intelligent code-com-

pletion technique. If there is a typo in your code, they can also

highlight (or suggest) different kinds of possible fixes. An IDE should

have a source editor, a debugger, and the automation tools to build

the application. IDEs, in general, contain a compiler or an interpreter

(or both). Eclipse IDE contains both of these.

�Installation
Initially, to start coding, you may need the following things:

•	 JDK

•	 IDE

�Download JDK
To get the JDK, you can visit the official Oracle page:

https://www.oracle.com/technetwork/java/javase/downloads/index.html

Or, to download JDK, directly go here:

https://www.oracle.com/technetwork/java/javase/downloads/jdk12-

downloads-5295953.html

You may see the following contents in the page mentioned earlier.

Appendix B Getting Started with Java

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk12-downloads-5295953.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk12-downloads-5295953.html

541

Note I n this book, our focus is on looking at fundamental concepts in depth, not
on the latest features. Most of the programs in the book will run on Java 8 onward.
But it is recommended that you download the latest version based on your system
configuration (e.g., 32 bit/64 bit, Windows/Linux, etc.).

�An Important License Update from Oracle
Oracle’s new license is substantially different from its prior JDK licenses. The new license

still permits personal use and development at no cost, but it is recommended that you

go through the license agreement prior to installing the JDK. I offer a snapshot from the

official Oracle page about this recent change:

Appendix B Getting Started with Java

542

�Download Eclipse
To download the Eclipse IDE, visit here:

https://eclipse.org/downloads/

Note  Like in the previous case, at this time, the link is working fine, but it may be
altered in future.

As mentioned earlier, try to download the latest version based on your system

configuration. At the time of this writing, Eclipse IDE 2019-06 is the latest version. So,

you may notice the following segment when you want to download the Eclipse IDE for

your computer:

�Naming Conventions
Following the developer guidelines, these are the naming conventions that I’ll follow in

this book:

•	 Class—A class should start with an uppercase letter and should be a

noun; e.g., MyClass, String, etc.

Appendix B Getting Started with Java

https://eclipse.org/downloads/

543

•	 Interface—An interface should start with an uppercase letter and

should be an adjective; e.g., Runnable, Remote

•	 Method—A method should start with a lowercase letter and in most

cases, this is a verb; e.g., print(), draw(), run(), runQuickly(),

showMyMethod(), etc.

•	 Variable—A variable should start with lowercase letter;

e.g., myIntegerValue, myDoubleValue, myName, etc.

•	 Package—A package should be in all lowercase letters;

e.g., mypackage, java2e.chapter1, etc.

•	 Constant—A constant should be in uppercase letters;

e.g., MY_CONSTANT, etc.

�Final Comments

These conventions are recommended for coding practice only. In short, you should

choose some meaningful names that are easier to read and understand. If you are ever

confused, just open the original implementations in Java to get an idea. For example,

to get your desired output, in most of the applications you will use System.out.

println("Some message");.

Now, let’s open the declaration in Eclipse IDE, which shows the following:

 public void println(Object x) {

 String s = String.valueOf(x);

 synchronized (this) {

 print(s);

 newLine();

 }

 }

You can see that println(), newLine(), etc. are methods. x is a method parameter in

println(Object x).

Now, go through a containing class, which is as follows:

public class PrintStream extends FilterOutputStream

 implements Appendable, Closeable{..}

Appendix B Getting Started with Java

544

Here, you can see PrintStream is the class and Appendable is an interface.

Also, go through a package declaration:

package java.lang;

From all these constructs, you can see that both a class name and an interface name

start with uppercase letters, a method and its parameters start with lowercase letters,

and package names are all in lowercase letters.

Appendix B Getting Started with Java

545
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2

�APPENDIX C

Installing MySQL
and Testing SQL
Commands
Here I present you with step-by-step instructions on how to install MySQL on a Windows

10 Home operating system. The instructions were initially written for MySQL community

server 8.0.16, but at the time of this writing it has been upgraded to the version 8.0.17.

Ideally, these steps should not vary in upcoming versions, but there is no guarantee.

So, it is recommended that you always visit the official home page at https://dev.

mysql.com/downloads/mysql/ prior to installation. From this page, you can also get the

installer for other operating systems (for example, Debian Linux, Ubuntu Linux, Fedora,

macOS, Oracle Solaris, etc.).

Note  The installation steps for different operating systems are also available at
https://dev.mysql.com/doc/refman/8.0/en/installing.html.

Step 1: Download the latest MySQL Community server from the official site at

https://dev.mysql.com/downloads/mysql/. For me, it was 8.0.16, but now it has been

updated to 8.0.17. It is suggested that you always try to install the latest version.

You get the following screen.

https://doi.org/10.1007/978-1-4842-5404-2
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/downloads/mysql/

546

Select your operating system (Microsoft Windows) and click on Go to Download
Page. It will redirect you to the actual download page for Windows MySQL server.

Step 2: Now you will see two different installers. Choose the installer with the bigger size;

i.e., mysql-installer-community-[latest version].msi.

Appendix C Installing MySQL and Testing SQL Commands

547

Step 3: Now it asks for credentials. You can either log in or sign up. I opted for the

No thanks, just start my download option. It downloads the selected MySQL in the

local machine.

Step 4: Go to your Downloads folder and locate the mysql-installer-community file.

Double-click the installer. (Or you can right-click on that file and choose the Install

option.)

Appendix C Installing MySQL and Testing SQL Commands

548

Step 4.1: During the installation process, it may ask you for permission to change your

computer settings or firewall confirmation. Once you accept those, it will proceed, and it

may take some time to configure the installer.

Appendix C Installing MySQL and Testing SQL Commands

549

Step 5: Read the license agreement. To proceed further, you need to accept the license

terms. Then click Next.

Appendix C Installing MySQL and Testing SQL Commands

550

Step 6: Now, you’ll get various options. I have chosen the Developer Default to serve my

needs. Click on Next.

Appendix C Installing MySQL and Testing SQL Commands

551

Step 7: Now you will notice any failing requirements. It depends on the current

configuration of your system. Click Next.

Step 7.1: For example, before I installed Visual Studio 2019 on my system, I got the

following screen.

Appendix C Installing MySQL and Testing SQL Commands

552

Step 7.2: But once I installed Visual Studio Community 2019 on my system, I got the

following screen.

Appendix C Installing MySQL and Testing SQL Commands

553

Step 8: So, based on the current Windows configuration, it may prompt you that “One or

more product requirements have not been satisfied.” Click Yes and then Next.

Appendix C Installing MySQL and Testing SQL Commands

554

Step 9: Now, you may get a screen similar to the following screen. (As said before, it is

dependent on your current configuration.) Press Execute.

Appendix C Installing MySQL and Testing SQL Commands

555

Step 10: You will get a similar screen.

Appendix C Installing MySQL and Testing SQL Commands

556

Step 11: Once everything installed, you will see the following screen. Click Next.

Appendix C Installing MySQL and Testing SQL Commands

557

Step 12: Now MySQL suggests that you configure the server settings. Click Next.

Appendix C Installing MySQL and Testing SQL Commands

558

Step 13: I opted for the default settings (Standalone MySQL server/Classic MySQL
replication) because I’ll use it only for my development and I do not need a cluster.

Click Next.

Appendix C Installing MySQL and Testing SQL Commands

559

Step 14: Keep everything as default; i.e., I chose Development Computer. You can

choose other options as per your needs. Click Next.

Appendix C Installing MySQL and Testing SQL Commands

560

Step 15: Choose the default recommended method and click on Next.

Appendix C Installing MySQL and Testing SQL Commands

561

Step 16: Set the MySQL root user password and then click Next.

Appendix C Installing MySQL and Testing SQL Commands

562

Step 16.1: For now, I am not creating any new users. But you can always create a new

user and set the role. In that case, you need to click the Add User button to get a screen

like the following, and then you need to provide the required information.

Appendix C Installing MySQL and Testing SQL Commands

563

Step 17: I kept all the default settings. Click Next.

Have you noticed the service name MySQL80? Remember that I have used the

version 8.0.16.

Appendix C Installing MySQL and Testing SQL Commands

564

Step 18: Click Execute to apply the configurations from the previous step.

Appendix C Installing MySQL and Testing SQL Commands

565

Step 19: Upon execution, you may see a screen similar to the following.

Appendix C Installing MySQL and Testing SQL Commands

566

Step 20: Once everything is installed, you will see the following screen. Click Finish.

Appendix C Installing MySQL and Testing SQL Commands

567

Step 21: Now you will get the following screen. Click Next.

Appendix C Installing MySQL and Testing SQL Commands

568

Step 22: You do not need to set up the router information for now. Click Finish.

Appendix C Installing MySQL and Testing SQL Commands

569

Step 23: Notice that since you did not provide any settings, “Configuration not needed”

appeared for MySQL Router 8.0.16. Click Next.

Appendix C Installing MySQL and Testing SQL Commands

570

Step 24: Supply password for root user.

Appendix C Installing MySQL and Testing SQL Commands

571

Step 25: Press the Check button and then click Next.

Appendix C Installing MySQL and Testing SQL Commands

572

Step 26: The following screen will appear. Press Execute.

Appendix C Installing MySQL and Testing SQL Commands

573

Step 27: Once everything is applied, you will get the following screen. Click Finish.

Appendix C Installing MySQL and Testing SQL Commands

574

Step 28: The following screen will appear. Click Next.

Appendix C Installing MySQL and Testing SQL Commands

575

Step 29: Receive the Installation Complete message. Click Finish.

Appendix C Installing MySQL and Testing SQL Commands

576

Step 30 (optional): Both MySQL Workbench and the MySQL Shell prompt will open for

you, as these were selected in Step 29.

Let’s test the installation and execute simple SQL statements. Here are some sample

SQL queries/statements for your reference. These statements were exercised with a

MySQL database using the command prompt.

Enter password: ∗∗∗∗∗
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 8

Appendix C Installing MySQL and Testing SQL Commands

577

Server version: 8.0.16 MySQL Community Server - GPL

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input statement.

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sakila |

| sys |

| world |

+--------------------+

6 rows in set (0.30 sec)

mysql> create database test;

Query OK, 1 row affected (0.23 sec)

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sakila |

| sys |

| test |

| world |

+--------------------+

Appendix C Installing MySQL and Testing SQL Commands

578

7 rows in set (0.00 sec)

mysql> use test;

Database changed

mysql> create table employee(EmpId Integer primary key,Name Varchar(10),Age

Integer not null,Salary Double);

Query OK, 0 rows affected (1.06 sec)

mysql> insert into employee values(1,'Amit',25,1200.5);

Query OK, 1 row affected (0.31 sec)

mysql> insert into employee values(2,'Sam',23,1000.25);

Query OK, 1 row affected (0.22 sec)

mysql> insert into employee values(3,'Bob',30,1500);

Query OK, 1 row affected (0.14 sec)

mysql> select * from employee;

+-------+------+-----+---------+

| EmpId | Name | Age | Salary |

+-------+------+-----+---------+

| 1 | Amit | 25 | 1200.5 |

| 2 | Sam | 23 | 1000.25 |

| 3 | Bob | 30 | 1500 |

+-------+------+-----+---------+

3 rows in set (0.00 sec)

Here is a snapshot for a compact view:

Appendix C Installing MySQL and Testing SQL Commands

579

mysql> desc employee;

+--------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+-------+

| EmpId | int(11) | NO | PRI | NULL | |

| Name | varchar(10) | YES | | NULL | |

| Age | int(11) | NO | | NULL | |

| Salary | double | YES | | NULL | |

+--------+-------------+------+-----+---------+-------+

4 rows in set (0.17 sec)

Here is a snapshot for a compact view:

mysql> create function total(firstNumber double,secondNumber double)

returns double deterministic return firstNumber+secondNumber;

Query OK, 0 rows affected (1.03 sec)

mysql> create table NumberTable(FirstNo Double, SecondNo Double);

Query OK, 0 rows affected (2.77 sec)

mysql> show tables;

+----------------+

| Tables_in_test |

+----------------+

| employee |

| numbertable |

+----------------+

2 rows in set (0.08 sec)

Appendix C Installing MySQL and Testing SQL Commands

580

mysql> insert into numbertable values(12.3,15.7);

Query OK, 1 row affected (2.12 sec)

mysql> insert into numbertable values(32.3,25.3);

Query OK, 1 row affected (0.13 sec)

mysql> insert into numbertable values(25,75);

Query OK, 1 row affected (0.08 sec)

mysql> select * from numbertable;

+---------+----------+

| FirstNo | SecondNo |

+---------+----------+

| 12.3 | 15.7 |

| 32.3 | 25.3 |

| 25 | 75 |

+---------+----------+

3 rows in set (0.08 sec)

Appendix C Installing MySQL and Testing SQL Commands

581
© Vaskaran Sarcar 2020
V. Sarcar, Interactive Object-Oriented Programming in Java, https://doi.org/10.1007/978-1-4842-5404-2

Index

A
Abstract class

abstract method, 142, 143
access modifier, 151
compile-time error, 149, 150
create instance, 147
extends AbstractClass, 147
parent method, 143–145

Alan Curtis Kay, 5
Attributes, 383

B
Bridge method, 372
Bridge pattern, 465

abstraction, 468
advantages, 476
challenges, 477
class diagram, 469
code implementation, 466, 470, 475
concept, 465
ConcreteImplementor, 468
functionalities, 466
Implementor, 468
OnState/OffState, 477
over getter/setter methods, 475
package explorer view, 469
real-life example, 465
RefinedAbstraction, 468
subclassing techniques, 476

C
Characteristics, 372
Class patterns vs. object patterns, 448
Communication deadlock, 312

D
Database

batch processing, 409
CallableStatement object, 410
Connection interface, 391
createStatement() method, 392
definition, 382
double type values, 414
Driver interface, 390
DriverManager class, 390, 419
table employee creation, 397
executeQuery() method, 392, 399, 408
executeUpdate() method, 392, 399, 404
function creation, 412
getConnection() method, 391, 419
getMySqlDataSource() method, 418
in Java applications, 388
JDBC drivers, 381, 385, 387

JDBC-ODBC bridge driver, 385
native-API driver, 386
network protocol driver, 386
thin driver, 386

MySQL command prompt, 395
MySQL Workbench, 392, 394

https://doi.org/10.1007/978-1-4842-5404-2

582

NumberTable creation, 410, 411
prepareCall() method, 413
PreparedStatement objects, 403, 408
ResultSet object, 409
ResultSet interface, 392
SQLException class, 392
Statement interface, 391
total() function, 416
types, 382

Design patterns, 443
behavioral patterns, 446
bridge pattern, 465

abstraction, 468
advantages, 476
challenges, 477
class diagram, 469
code implementation,

 466, 470, 475
concept, 465
ConcreteImplementor, 468
functionalities, 466
implementor, 468
OnState/OffState, 477
over getter/setter methods, 475
package explorer view, 469
real-life example, 465
RefinedAbstraction, 468
subclassing techniques, 476

class and object patterns, 447
creational patterns, 445
observer pattern

add/remove observers, 489
benefits, 491
built-in functionalities, 490
chain of responsibility pattern, 489
challenges, 491
class diagram, 482

code implementation, 481, 484, 488
concept, 478
definition, 477
notifyRegisteredUsers()

method, 482
one-to-many relationship, 490
package explorer view, 483
real-life example, 481
register() method, 482
unregister() method, 482
update() method, 488

overview, 444
programming languages, 448
prototype pattern, 449

advantages, 456
challenges, 457
class diagram, 452
clone() method, 451, 464
code implementation, 450, 453
concept of, 449
copy constructor, 465
deep copy, 457, 458
package explorer view, 453
real-life example, 450
shallow copy, 457, 458
structure, 451

state patterns, 476
structural patterns, 446

Dynamic method dispatch, 108

E, F
Exceptions

chained exception, 269
checked exceptions, 243, 265
compile-time errors, 239
constructor, 267
custom exception, 272–275

Database (cont.)

Index

583

definition of, 241
exception-handling

mechanism, 242
finally blocks, 243
getMessage() method, 246
inheritance hierarchy, 243
interrupt thread, 254, 255
InvalidIntegerInputException()

method, 278, 279
multiple catch blocks, 242, 247–250
multiple catch clauses, 250–252
OuterException()

method, 267–269
printStackTrace() method, 246
raiseException() method, 263, 264
rethrow exception, 257–259
run-time errors, 239
throw keyword, 255–257
try-catch block, 242
typographical errors, 240
unchecked exceptions, 243, 265
unreachable catch block, 252
using ArithmeticException, 276
using throws keyword, 260–263

G
Generic programming, 329

angle brackets, 330
ArrayList, 335, 339
bounded type parameters, 355

class type, 360
compile and run, 357
compile-time error, 358
doubleValue() method, 356, 357
error and valid statements, 360
interface type, 360
mismatch errors, 359

bridge method, 372, 373, 375
characteristics, 332
code implementation, 331
diamond operator, 369
erasures, 362

decompiled class
file, 362, 363, 366

inheritance, 370
javap command, 374
JVM’s catch mechanism, 331
lambda expression, 337
myGenericIntOb, 333
vs. non-generic program, 329
NOT legal declaration, 334
object class, 330
parameterized types, 330
raw types, 366

interfaces, 368
runtime errors, 368

restrictions, 375
formal parameter, 376
integer class, 378
primitive types, 376
static field type, 377
throwable, 376
type parameters, 377

syntax errors, 335
wildcards

vs. bounded type parameters, 361
constructBody() method, 340
lists, 350, 352
lower-bound wildcard, 346, 349
raw types, 353
reifiable type, 351
unbounded wildcard., 349, 350
upper-bound wildcard.,

340, 342, 346
valid and invalid statements, 353

Index

584

H
Handle/Body pattern,

see Bridge pattern

I
Inheritance

constructor chaining, 79
Eclipse editor, 70–72
hierarchical inheritance, 66
multiple inheritance, 67, 68, 73
parentClassMethod(), 81, 82
showMe() method, 84, 85
showParentMethod(), 69, 70
single inheritance, 65
super keyword, 76–79
testing constructor, 75, 76
this() method, 88, 89

Interface
annotations

custom annotation, 169
deprecated method, 165, 166
Javadoc snapshot, 170, 171
marker annotation, 164
meta-annotations, 167
single-member

annotation, 168
defaultMethod(), 173
grandparentinterfaces, 160–162
implement interfaces,

158, 159, 176, 177
implementMe() method, 153
inheritance hierarchy, 155, 156
marker interface, 164
modifier interface

MyInterface, 179
multiple interfaces, 157, 158

MyInterface () method, 154
traditionalInterfaceMethod()

method, 173
uses, 180

Interthread Communication
notify() method, 318
notifyAll() method, 318
wait() method, 317

J, K, L
Java

++ operator, 514
abstract class (see Abstract class)
applet vs. applications, 536
array-handling program, 526
ASCII value, 512
automatic conversion, 513
binary value, 514
break vs. continue, 518, 519
Bytecode, 539
byte range, 508
class variables and class

methods, 202, 203
command-line arguments, 502
compile and run, 510
compile-time error, 504
concatenation operator, 518
conditional operator, 520
contents of, array, 524, 525
copyOf() method, 523
declare array, 521
double datatype, 517
do…while loop, 532
exceptions (see Exceptions)
for loop, 526
hexadecimal integer literal

representation, 505

Index

585

IDE, 540
increment operator, 516
installation

download JDK, 540
Eclipse IDE, 542
implementations, 543
naming convention, 542
Oracle JDK, 541

instance block, 209
integer array, 521
integer maximum limit, 510
interfaces (see Interfaces)
java.lang.Math class editor, 207
JDK, 538
JRE, 538
JVM, 538
keywords, 507
method hiding vs. method

overriding, 214–216
method overloading, 217–220
modulo variable, 511
myStringArray, 503
nested classes, 203–206
Oak, 537
parent class constructor, 210–214
platform, 539
quality, 538
short datatype, 511
static block, 208
static interface method, 221
staticMethod(), 220
StringBuilder vs. StringBuffer, 536
String vs. StringBuffer, 534
switch statement, 528–532
thread programming (see Thread

programming)
variables, 508
XOR operator, 515

Java features
command-line environment, 438
local variable type interface, 432
private interface methods, 428
new String class methods, 434
switch expression, 437
try-with-resource statement, 423

Java interfaces, functional interface, 425
Java Virtual Machine Process

Status (JPS), 316

M
Marker annotation, 164
MySQL installer

Add User button, 562
apply configuration, 564
check button, 571
configure, 557
configure type, 559
database, 576–580
developer default, 550
download page, 546
execute, 554
latest version, 546
license agreement, 549
mysql-installer-community file, 547
password, 570
process, 548
product configuration, 569
root user password, 561
Visual Studio Community 2019, 552

N
Non-generic program

compile-time error, 333
showDouble method, 333

Index

586

O
Object-oriented programming

(OOPs), 3, 37, 225
abstraction, 6, 225
access modifiers, 39
access object, 24
aggregation/composition, 228–231
assignment operator, 28
class and objects, 5, 11, 225
class methods, 37
class variables, 37
composition, 228
constructor overloading, 29, 30
constructors

class ClassEx1, 17, 18
class members, 16
datatypes, 21
default constructor, 19, 20
parameters, 14
user-defined constructor, 16

copy constructor, 49–51
create class, 13, 14
create objects, 11–14
dynamic binding, 226
encapsulation, 6, 225
finalize() method, 60–63
garbage collection

(GC), 25, 54–60
getPriInt method(), 42
information hiding, 6
inheritance (see Inheritance)
initialization blocks, 43–47
inner class method, 47–49
instance variable, 26
message passing, 226
nested class, 47
objects, 5
Package Explorer view, 232

polymorphism, 7, 225
compile-time polymorphism, 8
run-time polymorphism, 8

primitive data types, 5
reference variables, 25
setPriInt method(), 42
showPrivateMethod(), 40
showPublicMethod(), 40
static variables, 38, 39
this keyword, 27
UML diagram, 227
variable-length arguments, 32–35
wrapper classes, 51–54

Observer pattern
add or remove observers, 489
benefits, 491
built-in functionalities, 490
Chain of Responsibility pattern, 489
challenges, 491
class diagram, 482
code implementation, 481, 484, 488
concept, 478
definition, 477
notifyRegisteredUsers() method, 482
one-to-many relationship, 490
package explorer view, 483
real-life example, 481
register() method, 482
unregister() method, 482
update() method, 488

P, Q
Packages

access modifier, 194
access protection chart, 193
command prompt, 198
create Eclipse IDE, 185–188

Index

587

error message, 196
import statements, 194
java.lang package, 193
tour package, 188–192

Palo Alto Research Center (PARC), 5
Polymorphism

constructor overloading, 95, 96
covariant return type, 130–134
downcasting, 110–113
final keyword, 117–119
FinalDemo() method, 120
final variable, 119, 120
overload main() method, 97, 98
main() method, 126
method hiding vs. method

overriding, 124, 125, 127
method overloading, 91, 92, 99–101
method overriding, 101–106
overloading and overriding, 106–108
primitive return type, 94
private constructor, 135–139
runtime polymorphism,

109, 110, 115–117
testMe() method, 130
Upcasting, 110–113

Prototype pattern
advantages, 456
challenges, 457
class diagram, 452
clone() method, 451, 464
code implementation, 450, 453
concept of, 449
copy constructor, 465
deep copy, 457, 458
package explorer view, 453
real-life example, 450
shallow copy, 457, 458
structure, 451

R
RDBMS, 383
Record, 382
Relational algebra, 383
Resource deadlock, 311

S
Shallow copy vs. deep copy, 459, 462, 464
sleep() method, 63
Structured Query Language (SQL), 384

DCL (Data Control Language)
statements, 417

DDL (Data Definition Language)
statements, 417

DML (Data Manipulation Language)
statements, 417

TCL (Transaction Control Language)
statements, 418

Static binding, 91
Static methods, 201
Static variables, 201
Structured programming, 4
Synchronization

deadlock, 312
display() method, 306–309
synchronized block, 309–311

System.gc() method, 60

T, U, V
Table, 382
Thread programming

creation of, 283
deadlock, 311

command line, 316
process ID, 314
types of, 311–314

Index

588

extends thread class, 284–287
interrupt() method, 301–305
interthread communication, 317–323
lifecycle of, 323, 325
lower-priority thread, 297
multi-threading, 292–297
process of, 282
implement Runnable interface, 288–291
sleep() method, 300
synchronization, 305

display() method, 306–309
synchronized block, 309–311

yield() method, 300
Tuples, 383

W, X, Y, Z
Wildcard

lower-bound, 346, 349
unbounded, 349, 350
upper-bound, 340, 342, 346

Thread programming (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Who Is This Book For?
	Guidelines for Using This Book
	Foreword
	Part I: Fundamentals of Object-Oriented Programming
	Chapter 1: Object-Oriented Programming Concepts
	Class and Objects
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism
	Q&A Session
	Summary

	Chapter 2: The Building Blocks: Class and Objects
	Class
	Object
	Constructor
	Demonstration 1
	Q&A Session
	Demonstration 2
	Analysis
	Demonstration 3
	Demonstration 4
	Demonstration 5

	Passing Variable-Length Arguments to Methods
	Demonstration 6
	Analysis
	Q&A Session

	Summary

	Chapter 3: Classes and Objects in Depth
	Static Variables and Methods
	Demonstration 1
	Q&A Session

	Access Control
	Demonstration 2

	Getter-Setter Methods
	Demonstration 3
	Q&A Session

	Initialization Block
	Demonstration 4
	Q&A Session

	Nested Class
	Demonstration 5
	Q&A Session

	Copying an Object
	Using Copy Constructors
	Demonstration 6
	Q&A Session

	Wrapper Class
	Demonstration 7

	Garbage Collection
	Q&A Session
	Demonstration 8
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Finalization
	Demonstration 9

	Summary

	Chapter 4: The Concept of Inheritance
	Types of Inheritance
	Single Inheritance
	Hierarchical Inheritance
	Multi-level Inheritance
	Multiple Inheritance
	Demonstration 1
	Q&A Session
	Demonstration 2
	Q&A Session
	Demonstration 3
	Q&A Session
	Demonstration 4
	Q&A Session

	A Special Keyword: super
	Demonstration 5
	Demonstration 6
	Q&A Session
	Demonstration 7
	Q&A Session
	Demonstration 8
	Q&A Session
	Demonstration 9
	Q&A Session

	Summary

	Chapter 5: Get Familiar with Polymorphism
	Method Overloading
	Demonstration 1
	Q&A Session
	Demonstration 2
	Q&A Session
	Demonstration 3
	Q&A Session
	Demonstration 4
	Q&A Session
	Demonstration 5

	Method Overriding
	Demonstration 6
	Q&A Session
	Demonstration 7

	Runtime Polymorphism
	Demonstration 8
	Q&A Session
	Demonstration 9
	Q&A Session
	Demonstration 10

	Using the final Keyword
	Blank final Variables
	Q&A Session
	Demonstration 11
	Q&A Session
	Demonstration 12
	Q&A Session
	Demonstration 13
	Q&A Session
	Demonstration 14

	Covariant Return Type
	Demonstration 15
	Demonstration 16
	Q&A Session

	Use of Private Constructors
	Q&A Session
	Demonstration 17
	Q&A Session

	Summary

	Chapter 6: Abstract Classes and Interfaces: The True Art in OOP
	Abstract Classes
	Demonstration 1
	Demonstration 2
	Q&A Session

	Interfaces
	Demonstration 3
	Q&A Session
	Demonstration 4
	Q&A Session
	Demonstration 5
	Q&A Session
	Demonstration 6
	Q&A Session
	Demonstration 7
	Q&A Session

	Marker Interface
	A Quick Tour with Annotations
	Demonstration 8
	Demonstration 9
	Javadoc Snapshots
	Q&A Session

	Default Methods in Interfaces
	Demonstration 10
	Q&A Session
	Demonstration 11
	Q&A Session
	Demonstration 12

	Summary

	Chapter 7: Packages
	Creating a Package
	Demonstration 1
	Key Notes About Packages in Java
	Q&A Session
	Demonstration 2
	Q&A Session

	Troubleshooting Common Errors in Command-line Environment
	Summary

	Chapter 8: Understanding Class Variables and Class Methods
	Class Variables and Class Methods
	Demonstration 1

	Working with Nested Classes
	Demonstration 2
	Q&A Session

	Initialization Blocks Versus Constructors
	Demonstration 3

	Method Hiding Versus Method Overriding
	Demonstration 4
	Q&A Session

	Method Overloading
	Demonstration 5
	Q&A Session

	Static Methods in Interfaces
	Demonstration 6

	Summary

	Chapter 9: Quick Recap of OOP Principles
	Q&A Session
	Revisiting the Diamond Problem
	Demonstration 1

	Q&A Session
	Summary

	Part II: Get Familiar with Advanced Programming
	Chapter 10: Managing Exceptions
	Types of Mistakes
	Definition of Exception
	Demonstration 1
	Key Points of the Exception-handling Mechanism
	Demonstration 2
	Q&A Session
	Demonstration 3

	Multiple catch Clauses
	Q&A Session
	Demonstration 4
	Q&A Session

	Throwing an Exception
	Demonstration 5

	Rethrowing an Exception
	Demonstration 6

	Use of throws Keyword
	Demonstration 7
	Demonstration 8

	Checked Versus Unchecked Exceptions
	Q&A Session

	Discussion on Chained Exceptions
	Demonstration 9

	Creating a Custom Exception
	Demonstration 10
	Q&A Session
	Demonstration 11
	Q&A Session
	Demonstration 12

	Summary

	Chapter 11: Thread Programming
	Creating Threads
	Extending the Thread Class
	Demonstration 1

	Implementing the Runnable Interface
	Demonstration 2
	Q&A Session
	Demonstration 3

	Case Study with Different Thread Class Methods
	Demonstration 4
	Q&A Session

	Synchronization
	Use of Synchronized Methods
	Demonstration 5
	Use of Synchronized Block
	Demonstration 6

	Deadlock
	Types of Deadlock
	Demonstration 7
	Detecting Deadlocks in the System

	Interthread Communication
	Demonstration 8

	Lifecycle of a Thread
	Q&A Session

	Summary

	Chapter 12: Generic Programming
	Compare Generic Programs with Non-Generic Programs
	Demonstration 1
	Demonstration 2
	Demonstration 3
	Demonstration 4

	Wildcard Types in Generic Programming
	Upper-bound Wildcard
	Demonstration 5
	Lower-bound Wildcard
	Demonstration 6
	Unbounded Wildcard
	Q&A Session
	Demonstration 6A

	Bounded Type Parameter
	Demonstration 7
	Demonstration 8
	Q&A Session

	Erasures
	Demonstration 9

	Raw Types
	Demonstration 10
	Q&A Session

	Type Inference Using Diamond Operator
	Applying Inheritance
	Demonstration 11
	Bridge Method
	Demonstration 12

	Important Restrictions in Generic Programming
	Don’t Instantiate Generic Types with Primitive Types
	Your Generic Class Cannot Subclass Directly or Indirectly from Throwable
	You Cannot Overload a Method Where the Formal Parameter Types of Each Overload Are Erased to the Same Raw Type
	Static Field Type Parameter Is Not Allowed in Your Generic Class
	You Cannot Instantiate the Type Parameters In Your Generic Class
	One Final Suggestion

	Summary

	Chapter 13: Database Programming
	Database and DBMS
	Types of DBMS
	RDBMS
	SQL

	Connecting to a Database
	Q&A Session

	Talking to a Database in a Java Application
	Important Terms
	Creating a Database and Inserting Records
	MySQL Command Prompt View
	Demonstration 1
	Demonstration 2
	Demonstration 3
	Q&A Session
	Demonstration 4
	Step 1
	Step 2

	Q&A Session
	Demonstration 5

	Summary

	Chapter 14: Important Features in Java’s Enhancement Path
	Try-with-resource from Java 7
	Demonstration 1
	Q&A Session

	Implementing Functional Interface Methods Using Lambda Expressions from Java 8
	Demonstration 2
	Q&A Session

	Private Interface Method from Java 9
	Demonstration 3
	Q&A Session

	Local Variable Type Inference from Java 10
	Demonstration 4
	Restrictions

	New String Methods from Java 11
	Demonstration 5
	Q&A Session

	New switch Expression in Java 12/13
	Demonstration 6
	Running the Code

	Q&A Session

	Summary

	Part III: Explore Real-World Scenarios
	Chapter 15: Introduction to Design Patterns
	Key Points
	Creational Patterns
	Structural Patterns
	Behavioral Patterns
	Class and Object Patterns
	Q&A Session

	Prototype Pattern
	GoF Definition
	Concept
	Real-life Example
	Coding Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Q&A Session
	Shallow Copy Versus Deep Copy in Java

	Bridge Pattern
	GoF Definition
	Concept
	Real-life Example
	Coding Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Q&A Session

	Observer Pattern
	GoF Definition
	Concept
	Real-life Example
	Coding Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Q&A Session

	Summary

	Chapter 16: Frequently Asked Questions

	Appendix A: Test Your Skill in Language Fundamentals
	SET 1
	SET 2
	SET 3
	SET 4
	SET 5
	SET 6
	SET 7
	SET 8
	SET 9

	Appendix B: Getting Started with Java
	Basic Terms
	Installation
	Download JDK
	An Important License Update from Oracle
	Download Eclipse
	Naming Conventions
	Final Comments

	Appendix C: Installing MySQL and Testing SQL Commands
	Index

