
Java Design
Patterns

A Hands-On Experience with
Real-World Examples
—
Second Edition
—
Vaskaran Sarcar
Foreword by Sunil Sati

Java Design Patterns
A Hands-On Experience with

Real- World Examples

Second Edition

Vaskaran Sarcar
Foreword by Sunil Sati

Java Design Patterns: A Hands-On Experience with Real-World Examples

ISBN-13 (pbk): 978-1-4842-4077-9 ISBN-13 (electronic): 978-1-4842-4078-6
https://doi.org/10.1007/978-1-4842-4078-6

Library of Congress Control Number: 2018964945

Copyright © 2019 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4077-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vaskaran Sarcar
Bangalore, Karnataka, India

This book is dedicated to

Almighty God, my family, and the Gang of Four.

You are my inspiration.

v

About the Author ��xix

About the Technical Reviewers ��xxi

Acknowledgments ��xxiii

Foreword ���xxv

Introduction ���xxvii

Table of Contents

Part I: Gang of Four Patterns �� 1

Chapter 1: Singleton Pattern �� 3

GoF Definition �� 3

Concept ��� 3

Real-World Example �� 3

Computer-World Example ��� 4

Illustration ��� 4

Class Diagram ��� 4

Package Explorer View �� 5

Discussion ��� 5

Implementation ��� 6

Output �� 7

Q&A Session �� 7

Output �� 11

Eager Initialization �� 12

Bill Pugh’s Solution �� 14

Double-Checked Locking ��� 15

vi

Chapter 2: Prototype Pattern �� 19

GoF Definition �� 19

Concept ��� 19

Real-World Example �� 19

Computer-World Example ��� 20

Illustration ��� 20

Class Diagram ��� 20

Package Explorer View �� 22

Implementation ��� 23

Output �� 25

Q&A Session �� 26

Demonstration ��� 29

Output �� 31

Chapter 3: Builder Pattern �� 33

GoF Definition �� 33

Concept ��� 33

Real-World Example �� 34

Computer-World Example ��� 34

Illustration ��� 35

Class Diagram ��� 36

Package Explorer View �� 36

Implementation ��� 38

Output �� 42

Q&A Session �� 42

Modified Illustration ��� 46

Modified Package Explorer View ��� 46

Modified Implementation ��� 48

Modified Output ��� 52

Analysis ��� 53

Table of ConTenTs

vii

Chapter 4: Factory Method Pattern �� 55

GoF Definition �� 55

Concept ��� 55

Real-World Example �� 56

Computer-World Example ��� 56

Illustration ��� 57

Class Diagram ��� 57

Package Explorer View �� 58

Implementation ��� 58

Output �� 61

Modified Implementation ��� 61

Modified Output ��� 63

Analysis ��� 63

Q&A Session �� 63

Chapter 5: Abstract Factory Pattern ��� 67

GoF Definition �� 67

Concept ��� 67

Real-World Example �� 68

Computer-World Example ��� 68

Illustration ��� 68

Class Diagram ��� 70

Package Explorer View �� 71

Implementation ��� 72

Output �� 76

Q&A Session �� 76

Simple Factory Pattern Code Snippet �� 77

Factory Method Pattern Code Snippet ��� 78

Abstract Factory Pattern Code Snippet ��� 78

Conclusion ��� 79

Modified Illustration ��� 80

Table of ConTenTs

viii

Modified Implementation ��� 80

Modified Output ��� 85

Chapter 6: Proxy Pattern �� 87

GoF Definition �� 87

Concept ��� 87

Real-World Example �� 87

Computer-World Example ��� 88

Illustration ��� 88

Class Diagram ��� 88

Package Explorer View �� 89

Implementation ��� 90

Output �� 92

Q&A Session �� 92

Alternate Implementation �� 93

Output Without Lazy Instantiation �� 95

Analysis ��� 96

Output with Lazy Instantiation ��� 96

Analysis ��� 96

Modified Package Explorer View ��� 98

Modified Implementation ��� 99

Modified Output ��� 101

Chapter 7: Decorator Pattern �� 103

GoF Definition �� 103

Concept ��� 103

Real-World Example �� 103

Computer-World Example ��� 105

Illustration ��� 106

Class Diagram ��� 106

Package Explorer View �� 107

Implementation ��� 107

Table of ConTenTs

ix

Output �� 110

Q&A Session �� 111

Chapter 8: Adapter Pattern ��� 117

GoF Definition �� 117

Concept ��� 117

Real-World Example �� 117

Computer-World Example ��� 118

Illustration ��� 119

Class Diagram ��� 120

Package Explorer View �� 120

Implementation ��� 121

Output �� 123

Modified Illustration ��� 123

Modified Class Diagram �� 123

Key Characteristics of the Modified Implementation ��� 124

Modified Package Explorer View ��� 126

Modified Implementation ��� 127

Modified Output ��� 130

Types of Adapters �� 130

Q&A Session �� 132

Chapter 9: Facade Pattern �� 135

GoF Definition �� 135

Concept ��� 135

Real-World Example �� 135

Computer-World Example ��� 136

Illustration ��� 136

Class Diagram ��� 137

Package Explorer View �� 138

Table of ConTenTs

x

Implementation ��� 139

Output �� 143

Q&A Session �� 144

Chapter 10: Flyweight Pattern �� 147

GoF Definition ��� 147

Concept ��� 147

Real-World Example �� 148

Computer-World Example ��� 148

Illustration ��� 149

Class Diagram ��� 150

Package Explorer View �� 150

Implementation ��� 151

Output �� 157

Analysis ��� 159

Q&A Session �� 159

Chapter 11: Composite Pattern ��� 165

GoF Definition �� 165

Concept ��� 165

Real-World Example �� 166

Computer-World Example ��� 166

Illustration ��� 166

Class Diagram ��� 167

Package Explorer View �� 168

Implementation ��� 169

Output �� 174

Q&A Session �� 176

Chapter 12: Bridge Pattern ��� 179

GoF Definition �� 179

Concept ��� 179

Real-World Example �� 179

Table of ConTenTs

xi

Computer-World Example ��� 180

Illustration ��� 180

Class Diagram ��� 183

Package Explorer View �� 184

Key Characteristics �� 185

Implementation ��� 185

Output �� 189

Q&A Session �� 190

Chapter 13: Visitor Pattern ��� 193

GoF Definition �� 193

Concept ��� 193

Real-World Example �� 194

Computer-World Example ��� 194

Illustration ��� 194

Class Diagram ��� 195

Package Explorer View �� 196

Implementation ��� 196

Output �� 198

Modified Illustration ��� 198

Modified Class Diagram �� 204

Modified Package Explorer View ��� 204

Modified Implementation ��� 206

Modified Output ��� 212

Q&A Session �� 213

Chapter 14: Observer Pattern ��� 217

GoF Definition �� 217

Concept ��� 217

Real-World Example �� 220

Computer-World Example ��� 220

Illustration ��� 221

Table of ConTenTs

xii

Class Diagram ��� 222

Package Explorer View �� 222

Implementation ��� 224

Output �� 227

Analysis ��� 227

Q&A Session �� 227

Chapter 15: Strategy (Policy) Pattern ��� 233

GoF Definition �� 233

Concept ��� 233

Real-World Example �� 233

Computer world Example �� 234

Illustration ��� 234

Class Diagram ��� 235

Package Explorer View �� 235

Implementation ��� 237

Output �� 240

Q&A Session �� 240

Chapter 16: Template Method Pattern �� 251

GoF Definition �� 251

Concept ��� 251

Real-World Example �� 251

Computer-World Example ��� 252

Illustration ��� 252

Class Diagram ��� 252

Package Explorer View �� 253

Implementation ��� 254

Output �� 256

Q&A Session �� 256

Modified Implementation ��� 257

Modified Output ��� 260

Table of ConTenTs

xiii

Chapter 17: Command Pattern ��� 263

GoF Definition �� 263

Concept ��� 263

Real-World Example �� 263

Computer-World Example ��� 264

Illustration ��� 264

Class Diagram ��� 265

Package Explorer View �� 266

Implementation ��� 267

Output �� 270

Q&A Session �� 270

Modified Class Diagram �� 271

Modified Package Explorer View ��� 272

Modified Implementation ��� 274

Modified Output ��� 280

Chapter 18: Iterator Pattern ��� 285

GoF Definition �� 285

Concept ��� 285

Real-World Example �� 286

Computer-World Example ��� 287

Illustration ��� 287

Class Diagram ��� 288

Package Explorer View �� 290

First Implementation ��� 291

Output �� 293

Key Characteristics of the Second Implementation ��� 294

Second Implementation ��� 294

Output �� 296

Q&A Session �� 297

Third Implementation �� 299

Output �� 302

Table of ConTenTs

xiv

Chapter 19: Memento Pattern ��� 303

GoF Definition �� 303

Concept ��� 303

Real-World Example �� 303

Computer-World Example ��� 304

Illustration ��� 304

Class Diagram ��� 305

Package Explorer View �� 306

Implementation ��� 306

Output �� 309

Q&A Session �� 310

Modified Caretaker Class �� 311

Modified Output ��� 312

Analysis ��� 313

Shallow Copy vs� Deep Copy in Java ��� 321

Chapter 20: State Pattern ��� 329

GoF Definition �� 329

Concept ��� 329

Real-World Example �� 330

Computer-World Example ��� 330

Illustration ��� 330

Key Characteristics �� 332

Class Diagram ��� 332

Package Explorer View �� 334

Implementation ��� 335

Output �� 339

Q&A Session �� 340

Modified Package Explorer View ��� 343

Modified Implementation ��� 345

Modified Output ��� 350

Table of ConTenTs

xv

Chapter 21: Mediator Pattern ��� 353

GoF Definition �� 353

Concept ��� 353

Real-World Example �� 353

Computer-World Example ��� 354

Illustration ��� 355

Class Diagram ��� 356

Package Explorer View �� 357

Implementation ��� 359

Output �� 363

Analysis ��� 363

Modified Illustration ��� 363

Modified Class Diagram �� 365

Modified Package Explorer View ��� 366

Modified Implementation ��� 367

Modified Output ��� 372

Analysis ��� 373

Q&A Session �� 373

Chapter 22: Chain-of-Responsibility Pattern �� 377

GoF Definition �� 377

Concept ��� 377

Real-World Example �� 378

Computer-World Example ��� 378

Illustration ��� 379

Class Diagram ��� 380

Package Explorer View �� 381

Implementation ��� 382

Output �� 385

Q&A Session �� 386

Table of ConTenTs

xvi

Chapter 23: Interpreter Pattern �� 389

GoF Definition �� 389

Concept ��� 389

Real-World Example �� 391

Computer-World Example ��� 391

Illustration ��� 391

Class Diagram ��� 393

Package Explorer View �� 394

Implementation ��� 395

Output �� 399

Analysis ��� 400

Modified Illustration ��� 400

Modified Class Diagram �� 400

Modified Package Explorer View ��� 400

Modified Implementation ��� 401

Modified Output ��� 406

Analysis ��� 406

Q&A Session �� 407

Part II: Additional Design Patterns ��� 409

Chapter 24: Simple Factory Pattern ��� 411

Intent ��� 411

Concept ��� 411

Real-World Example �� 411

Computer-World example ��� 412

Illustration ��� 413

Class Diagram ��� 413

Package Explorer View �� 414

Implementation ��� 415

Output �� 417

Q&A Session �� 419

Table of ConTenTs

xvii

Chapter 25: Null Object Pattern �� 421

Concept ��� 421

A Faulty Program ��� 422

Output with Valid Inputs �� 424

Analysis with an Unwanted Input �� 424

Encountered Exception �� 425

Immediate Remedy �� 425

Analysis ��� 425

Real-World Example �� 426

Computer-World Example ��� 426

Illustration ��� 426

Class Diagram ��� 427

Package Explorer View �� 428

Implementation ��� 429

Output �� 432

Analysis ��� 433

Q&A Session �� 433

Chapter 26: MVC Pattern �� 437

Concept ��� 437

Key Points to Remember ��� 438

Variation 1 ��� 439

Variation 2 ��� 439

Variation 3 ��� 440

Real-World Example �� 440

Computer-World Example ��� 441

Illustration ��� 442

Class Diagram ��� 442

Package Explorer View �� 444

Implementation ��� 444

Output �� 452

Table of ConTenTs

xviii

Q&A Session �� 453

Modified Output ��� 455

Part III: Final Discussions on Design Patterns �� 459

Chapter 27: Criticisms of Design Patterns �� 461

Q&A Session �� 463

Chapter 28: AntiPatterns: Avoid the Common Mistakes ��������������������������������������� 467

What Is an Antipattern? ��� 467

Brief History of Antipatterns �� 468

Examples of Antipatterns �� 469

Types of Antipatterns �� 471

Q&A Session �� 471

Chapter 29: FAQs �� 475

Appendix A: A Brief Overview of GoF Design Patterns �� 481

Key Points ��� 482

A� Creational Patterns ��� 483

B� Structural Patterns �� 483

C� Behavioral Patterns ��� 484

Q&A Session �� 486

Appendix B: Winning Notes and the Road Ahead ��� 489

Appendix C: Bibliography ��� 491

Index ��� 493

Table of ConTenTs

xix

About the Author

Vaskaran Sarcar obtained his Master of Engineering degree

from Jadavpur University, Kolkata. Currently, he is senior

software engineer and team lead in the R&D Hub at HP Inc.

India. He was a national Gate Scholar and has more than

12 years of experience in education and the IT industry.

He is an alumnus of prestigious institutions in India, such

as Jadavpur University, Vidyasagar University, and

Presidency University (formerly Presidency College).

Reading and learning new things are his passions. You can connect with him at vaskaran

@rediffmail.com or find him on LinkedIn at www.linkedin.com/in/vaskaransarcar.

Other books by Vaskaran include the following:

• Design Patterns in C# (Apress, 2018)

• Interactive C# (Apress, 2017)

• Interactive Object-Oriented Programming in Java (Apress, 2016)

• Java Design Patterns (First Edition) (Apress, 2016)

• C# Basics: Test Your Skill (CreateSpace, 2015)

• Operating System: Computer Science Interview Series (CreateSpace, 2014)

xxi

About the Technical Reviewers

Shekhar Kumar Maravi is a system software engineer

whose main interests are programming languages,

algorithms, and data structures. He obtained his master’s

degree in computer science and engineering from the Indian

Institute of Technology, Bombay. After graduation, he joined

Hewlett-Packard’s R&D Hub in India to work on printer

firmware. Currently, he is a technical lead for automated

lab diagnostic device firmware and software at Siemens

Healthcare India. He can be reached by email at shekhar.maravi@gmail.com or via

LinkedIn at www.linkedin.com/in/shekharmaravi.

Ritesh Jha is passionate about large-scale distributed

systems. Currently, he is working as a senior development

engineer for the Supply Chain Technology Group at

Walmart Labs. Before Walmart, he worked at eBay and

Hewlett-Packard. He has a BE in computer science from

Jadavpur University, Kolkata. When he is not exploring new

technologies, he can be found exploring new places on his

bike. He can be reached by email at ritesh.jha@hotmail.com

or via LinkedIn at www.linkedin.com/in/riteshjha9/.

xxii

Ankit Khare is a senior software engineer with expertise

in software architecture and designing, programming

languages, algorithms, and data structure. After obtaining

a BE in computer science, he joined Hewlett-Packard’s

R&D Center in India in 2010, where he worked with various

laser-jet firmware teams. He is currently involved in future

machine vision development for print image diagnostic tools

involving ink-jet, large-format, and laser-jet printers. He can

be reached by email at akikhare@gmail.com or via LinkedIn

https://www.linkedin.com/in/khareankit/.

abouT The TeChniCal RevieweRs

xxiii

Acknowledgments

At first, I thank the Almighty. I sincerely believe that with His blessings only, I could

complete this book. I extend my deepest gratitude and thanks to

Ratanlal Sarkar and Manikuntala Sarkar. My dear parents, with your blessings only, I

could complete the work.

Indrani, my wife, and Ambika, my daughter. Sweethearts, once again, without your

love, I could not proceed at all. I know that we needed to limit many social gatherings

and invitations to complete this work on time and each time I promise you that I’ll take a

long break and spend more time with you.

Sambaran, my brother. Thank you for your constant encouragement toward me.

Shekhar, Ritesh, and Ankit. You are my friends and technical advisors. I know that

whenever I was in need, your supports were there. Thank you one more time.

Anupam. My friend and another technical advisor. Though this time, you were not

involve but still I acknowledge your support and help toward me in the development of

Java Design Patterns first edition.

Sunil Sati. My ex-colleague cum senior. A special thanks to you for investing your

time to write a foreword for my book. From the moment when experts like you agreed to

write for me, I got some additional motivation to enhance the quality of my work.

Celestin, thanks for giving me another opportunity to work with you and Apress.

Laura, Amrita, Nagarajan, Sivachandran, Pradapsankar and Vinoth thank you for

your exceptional support to beautify my work.

Lastly, I extend my deepest gratitude to my publisher, the editorial board members,

and everyone who directly or indirectly supported this book.

xxv

Foreword

“A problem well stated is a problem half solved.”

—Charles Kettering, inventor and engineer

To build on this concept, I must say that thinking about all possible scenarios and

coming out with a best possible option is the key to a robust and lasting solution. This

new second edition of Java Design Patterns will serve as a mentor and guide to engineers

and designers who are regularly challenged to come up with the best possible solution

in resource-constrained environments. This book explains in very clear terms the design

patterns, the alternatives, and the concept of antipatterns. The complete section on

antipatterns is very thought-provoking and helps us appreciate the utility of design in the

first place.

As in his previous books, Vaskaran has provided hands-on experience in

implementing design patterns. His innate way of getting engineers to think of an

alternative solution is very insightful. This book will serve as mentor and task master as

one traverses the chapters.

When I reflect on my interactions with Vaskaran while facing some complex

engineering issues in HPI, I find him to be a keen listener, deep thinker, and a person

who doesn’t rush for a solution. After analyzing all possible alternatives, he picks the

best one among the lot. In summary, this is what this book all about.

Sunil Sati

Senior Project Manager, BU Automotive Division, NXP Semiconductors

About Sunil Sati
Sunil Sati is an engineer with a major in electronics and communication from NIIT

Surathkal and EGMP from IIM-Bangalore. He has 23 years of experience in various roles

and capacities in process automation and semiconductor industries. Currently, he is

working as senior manager with NXP Semiconductors in the automotive division. He

was the brand ambassador in HPI for the Print Renaissance program. He loves to work

and build teams across geographic locations.

xxvii

Introduction

Welcome to your journey through Design Patterns in C#.

This is an introductory guide to the design patterns that you want to use in Java.

You probably know that the concept of design patterns became extremely popular with

the Gang of Four’s famous book Design Patterns: Elements of Reusable Object-Oriented

Software (Addison-Wesley, 1994). Most important, these concepts still apply in today’s

programming world. The book came out at the end of 1994, and it primarily focused on

C++.

But Sun Microsystems released its first public implementation Java 1.0 in 1995. So,

in 1995, Java was totally new to the programming world. But it grew rapidly, becoming

rich with features. It has now secured its rank in world’s top programming languages.

In today’s programming world, it is always in high demand. On the other hand, the

concepts of design patterns are universal. So, when you exercise these fundamental

concepts of design patterns with Java, you will be a better programmer and you’ll open

new opportunities for yourself.

In 2015, I wrote Design Patterns in C#: Computer Science Interview Series, and in

2016, I wrote Java Design Pattern : A tour with 23 Gang of Four Design Patterns in Java.

They are basically the companions to this book.

In those books, my core intention was to implement each of the 23 Gang of Four

(GoF) design patterns with C# and Java implementations. I wanted to present each

pattern with simple examples. One thing was always on my mind when writing Java

Design Patterns (First Edition): I wanted to use the most basic constructs of Java, so that

the code would be compatible with both the upcoming version and the legacy version of

Java. I have found this method helpful in the world of programming.

In the last two years, I got a lot of constructive feedback from my readers. This fully

revised and updated version is created keeping those feedback in mind. I also took the

opportunity to update the formatting and correct some typos in the previous version of

the book and add new content to this new edition.

This time, I wanted to focus on another important area; I call it the “doubt-clearing

sessions.” I knew that if I could add some more information such as alternative ways to

write these implementations, the pros and cons of these patterns, when to choose one

xxviii

approach over another, and so on, readers would find this book even more helpful. So,

in this enhanced version of the original, I have added a “Q&A Session” section to each

chapter that can help you learn about each pattern in more depth.

In the world of programming, there is no shortage of patterns, and each has its own

significance. So, in addition to the 23 GoF design patterns covered in Part I, I discuss

three design patterns that are equally important in today’s world of programming in Part

II. Finally, in Part III, I discuss the criticism of design patterns and give you an overview

of antipatterns, which are also important when you implement the concepts of design

patterns in your applications.

Before jumping into these topics, I want to highlight few more points.

• You are an intelligent person. You have chosen a subject that

can assist you throughout your career. If you are a developer/

programmer, you need these concepts. If you are an architect at a

software organization, you need these concepts. If you are a college

student, you need these concepts, not only to score high on exams

but to enter the corporate world. Even if you are a tester who needs to

take care of white-box testing or needs to know about the code paths

of a product, these concepts will help you a lot.

• I already mentioned that this book was written using the most basic

features of Java so that you do not need to be familiar with advanced

Java topics. These examples are simple and straightforward. I believe

that these examples are written in such a way that even if you are

familiar with another popular language, such as C#, C++, and so on,

you can still easily grasp the concepts in this book.

• There are many books about design patterns and related topics.

You may be wondering why I would want to write a new one about

the same topics. The simple answer is that I have found other

reference material to be scattered. Second, in most cases, many of

those examples are unnecessarily large and complex. I like simple

examples. I believe that anyone can grasp a new idea with simple

examples, and if the core concept is clear, you can easily move into

more advanced areas. I believe that this book scores high in this

context. The illustrated examples are simple. I wanted to keep this

book concise so that it motivates you to continue your journey of

learning.

inTRoduCTion

xxix

• Each chapter is divided into six parts: a definition (which is basically

called intent in Design Patterns: Elements of Reusable Object-Oriented

Software), a core concept, a real-world example, a computer/coding–

world example, a sample program with various output, and the Q&A

Session section. These Q&A Session sections help you learn about

each pattern in more depth.

• Please remember that you have just started on this journey. As you

learn about these concepts, try to write your own code; only then will

you master the area.

• You will be able to download all the source code in the book from the

publisher’s website. I plan to maintain the “Errata,” and if required, I

can also make update/announcements there. So, I suggest that you

visit those pages to receive any corrections or updates.

 Guidelines for Using This Book
Here are some suggestions for you to use the book more effectively.

• You should have a basic understanding of Java and you should

know how to create classes, interfaces, and so forth. It is helpful to

be familiar with common terms in object- oriented programming;

for example, encapsulation, abstraction, polymorphism, and

inheritance.

• I assume that you have some idea about the GoF design patterns. If

you are absolutely new to design patterns, I suggest you quickly go

through Appendix A. This appendix will help you become familiar

with the basic concepts of design patterns.

• If you are confident about the content in Appendix A, you can start

with any part of the book. But I suggest you go through the chapters

sequentially. The reason is that some fundamental design techniques

may be discussed in the “Q&A Session” section of a previous chapter,

and I did not repeat those techniques in the later chapters.

inTRoduCTion

xxx

• There is only one exception to the previous suggestion. There are

three factory patterns: simple factory, factory method, and abstract

factory. These three patterns are closely related, but the simple

factory pattern does not directly fall into the GoF design catalog,

so it appears in Part II of the book. So, I suggest that when you start

learning about these three factory patterns, you begin with the simple

factory pattern.

• These programs are tested with Java 8 (update 172). I used the Eclipse

editor in a Windows 10 environment. So, in the Eclipse Package

Explorer view, you may notice the string jdk1.8.0_172. At the time of

this writing, Photon is the latest edition of Eclipse (released in June

27, 2018), Java 8 is the long-term support (LTS) version, and Java 10

is the rapid release version. Java 11 is the next LTS version after Java 8

and planned for September 2018. But all of this version information

should not matter much because I used the most basic constructs

of Java. So, I believe that the code should execute smoothly in the

upcoming versions of Java/Eclipse as well.

• One of my reviewers tested the code in a Linux environment. So, I

believe that the results should not vary in other environments, but

you know the nature of software—it is naughty. So, I recommend

that if you want to see the same output, it is best if you can mimic the

same environment.

• To draw class diagrams, ObjectAid Uml Explorer is used in the

Eclipse editor. It is a lightweight tool for Eclipse. At the time of this

writing, it is free if you want to draw the class diagrams, but to draw

the sequence diagrams, you need to purchase a license. The website

at www.objectaid.com/home gives more information about licenses,

terms, and conditions.

Lastly, I hope that this enhanced edition provides more help to you.

inTRoduCTion

xxxi

Conventions Used in This Book

• All the output and code in the book follow the same font and

structure. To draw your attention, in some places, I made it bold, like

the following.

Mediator Pattern Demo

At present, registered employees are:

Amit

Sohel

Raghu

Communication starts among participants...

Amit posts: Hi Sohel, can we discuss the mediator pattern? Last

message posted at 2018-09-09T17:41:21.868

Sohel posts: Hi Amit, yup, we can discuss now. Last message posted

at 2018- 09-09T17:41:23.369

Raghu posts: Please get back to work quickly. Last message posted

at 2018- 09-09T17:41:24.870

An outsider named Jack trying to send some messages.

• In some cases, to present a cleaner class diagram and focus on the

important parts, the less important dependencies are not shown. For

example, consider the diagram presented in Chapter 18.

inTRoduCTion

xxxii

inTRoduCTion

xxxiii

 But if I need to show all the dependencies, it may look like the following.

You can see that the later one is much more complex and difficult to understand. For

the ObjectAid class diagrams in Eclipse, you can always show these dependencies by

selecting an element in the diagram, right-clicking and selecting Add ➤ Dependencies.

• I like to put curly braces on a new line. and I love to see a method

body like the following.

public void myFunction()

{

//Some code

}

Instead of the following:

public void myFunction(){

//Some code

}

I used the same format for most of the methods, except main() methods.

PART I

Gang of Four Patterns

3
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_1

CHAPTER 1

Singleton Pattern
This chapter covers the singleton pattern.

 GoF Definition
Ensure a class only has one instance, and provide a global point of access to it.

 Concept
A class cannot have multiple instances. Once created, the next time onward, you use

only the existing instance. This approach helps you restrict unnecessary object creations

in a centralized system. The approach also promotes easy maintenance.

 Real-World Example
Let’s assume that you are a member of a sports team, and your team is participating

in a tournament. Your team needs to play against multiple opponents throughout the

tournament. Before each of these matches, as per the rules of the game, the captains of

the two sides must do a coin toss. If your team does not have a captain, you need to elect

someone as a captain. Prior to each game and each coin toss, you may not repeat the

process of electing a captain if you already nominated a person as a captain for the team.

Basically, from every team member’s perspective, there should be only one captain of

the team.

4

 Computer-World Example
In some specific software systems, you may prefer to use only one file system for the

centralized management of resources. Also, this pattern can implement a caching

mechanism.

Note You notice a similar pattern when you consider the getRuntime() method
of the java.lang.Runtime class. It is implemented as an eager initialization of a
Singleton class. You’ll learn about eager initialization shortly.

 Illustration
These are the key characteristics in the following implementation.

• The constructor is private to prevent the use of a “new” operator.

• You’ll create an instance of the class, if you did not create any such

instance earlier; otherwise, you’ll simply reuse the existing one.

• To take care of thread safety, I use the “synchronized” keyword.

 Class Diagram
Figure 1-1 shows the class diagram for the illustration of the singleton pattern.

Figure 1-1. Class diagram

ChapteR 1 SIngleton patteRn

5

 Package Explorer View
Figure 1-2 shows the high-level structure of the program.

Figure 1-2. Package Explorer view

 Discussion
I have shown you a simple example to illustrate the concept of the singleton pattern.

Let’s review the notable characteristics with the following approach.

• The constructor is private, so you cannot instantiate the Singleton

class(Captain) outside. It helps us to refer the only instance that can

exist in the system, and at the same time, you restrict the additional

object creation of the Captain class.

• The private constructor also ensures that the Captain class cannot be

extended. So, subclasses cannot misuse the concept.

• I used the “synchronized” keyword. So, multiple threads cannot

involve in the instantiation process at the same time. I am forcing

each thread to wait its turn to get the method, so thread- safety is

ensured. But synchronization is a costly operation and once the

instance is created, it is an additional overhead. (I’ll discuss some

alternative methods in the upcoming sections, but each of them has

its own pros and cons).

ChapteR 1 SIngleton patteRn

6

 Implementation
Here’s the implementation.

package jdp2e.singleton.demo;

final class Captain

{

 private static Captain captain;

 //We make the constructor private to prevent the use of "new"

 private Captain() { }

 public static synchronized Captain getCaptain()

 {

 // Lazy initialization

 if (captain == null)

 {

 captain = new Captain();

 System.out.println("New captain is elected for your team.");

 }

 else

 {

 System.out.print("You already have a captain for your team.");

 System.out.println("Send him for the toss.");

 }

 return captain;

 }

}

// We cannot extend Captain class.The constructor is private in this case.

//class B extends Captain{}// error

public class SingletonPatternExample {

 public static void main(String[] args) {

 System.out.println("***Singleton Pattern Demo***\n");

 System.out.println("Trying to make a captain for your team:");

 //Constructor is private.We cannot use "new" here.

 //Captain c3 = new Captain();//error

ChapteR 1 SIngleton patteRn

7

 Captain captain1 = Captain.getCaptain();

 System.out.println("Trying to make another captain for your

team:");

 Captain captain2 = Captain.getCaptain();

 if (captain1 == captain2)

 {

 System.out.println("captain1 and captain2 are same instance.");

 }

 }

}

 Output
Here’s the output.

Singleton Pattern Demo

Trying to make a captain for your team:

New captain is elected for your team.

Trying to make another captain for your team:

You already have a captain for your team.Send him for the toss.

captain1 and captain2 are same instance.

 Q&A Session

 1. Why are you complicating the program? You could simply write
the Singleton class as follows.

class Captain

{

 private static Captain captain;

 //We make the constructor private to prevent the use of "new"

 private Captain() { }

ChapteR 1 SIngleton patteRn

8

 public static Captain getCaptain()

 {

 // Lazy initialization

 if (captain == null)

 {

 captain = new Captain();

 System.out.println("New captain is elected for

your team.");

 }

 else

 {

 System.out.print("You already have a captain for

your team.");

 System.out.println("Send him for the toss.");

 }

 return captain;

 }

}

Is this understanding correct?

It can work in a single threaded environment only but it cannot

be considered a thread-safe implementation in a multithreaded

environment. Consider the following case. Suppose, in a

multithreaded environment, two (or more) threads try to

evaluate this:

if (captain == null)

And if they see that the instance is not created yet, each of them

will try to create a new instance. As a result, you may end up with

multiple instances of the class.

 2. Why did you use the term lazy initialization in the code?

Because the singleton instance will not be created until the

getCaptain() method is called here.

ChapteR 1 SIngleton patteRn

9

 3. What do you mean by lazy initialization?

In simple terms, lazy initialization is a technique through which

you delay the object creation process. It says that you should

create an object only when it is required. This approach can be

helpful when you deal with expensive processes to create an

object.

 4. Why are you making the class final? You have a private
constructor that could prevent the inheritance. Is this correct?

Subclassing can be prevented in various ways. Yes, in this

example, since the constructor is already marked with the

“private” keyword, it was not needed. But if you make the Captain

class final, as shown in the example, that approach is considered

a better practice. It is effective when you consider a nested class.

For example, let’s modify the private constructor body to examine

the number of instances (of the Captain class) created. Let’s

further assume that in the preceding example, you have a non-

static nested class (called inner class in Java) like the following. (All

changes are shown in bold.)

//final class Captain

class Captain

{

 private static Captain captain;

 //We make the constructor private to prevent the use of "new"

 static int numberOfInstance=0;

 private Captain()

 {

 numberOfInstance++;

 System.out.println("Number of instances at this moment="+

numberOfInstance);

 }

 public static synchronized Captain getCaptain()

 {

ChapteR 1 SIngleton patteRn

10

 // Lazy initialization

 if (captain == null)

 {

 captain = new Captain();

 System.out.println("New captain is elected for your

team.");

 }

 else

 {

 System.out.print("You already have a captain for your

team.");

 System.out.println("Send him for the toss.");

 }

 return captain;

 }

 //A non-static nested class (inner class)

 public class CaptainDerived extends Captain

 {

 //Some code

 }

}

Now add an another line of code (shown in bold) inside the

main() method, as follows.

public class SingletonPatternExample {

 public static void main(String[] args) {

 System.out.println("***Singleton Pattern Demo***\n");

 System.out.println("Trying to make a captain for your

team:");

 //Constructor is private.We cannot use "new" here.

 //Captain c3 = new Captain();//error

 Captain captain1 = Captain.getCaptain();

 System.out.println("Trying to make another captain for your

team:");

 Captain captain2 = Captain.getCaptain();

ChapteR 1 SIngleton patteRn

11

 if (captain1 == captain2)

 {

 System.out.println("captain1 and captain2 are same

instance.");

 }

 Captain.CaptainDerived derived=captain1.new

CaptainDerived();

 }

}

Now notice the output.

 Output
Now, you can see that the program has violated the key objective, because I never

intended to create more than one instance.

Singleton Pattern Demo

Trying to make a captain for your team:

Number of instances at this moment=1

New captain is elected for your team.

Trying to make another captain for your team:

You already have a captain for your team.Send him for the toss.

captain1 and captain2 are same instance.

Number of instances at this moment=2

 5. Are there any alternative approaches for modelling singleton
design patterns?

There are many approaches. Each has its own pros and cons. You

have already have seen two of them. Let’s discuss some alternative

approaches.

ChapteR 1 SIngleton patteRn

12

 Eager Initialization
Here is a sample implementation of the eager initialization.

class Captain

{

 //Early initialization

 private static final Captain captain = new Captain();

 //We make the constructor private to prevent the use of "new"

 private Captain()

 {

 System.out.println("A captain is elected for your team.");

 }

 /* Global point of access.The method getCaptain() is a public static

method*/

 public static Captain getCaptain()

 {

 System.out.println("You have a captain for your team.");

 return captain;

 }

}

 Discussion

An eager initialization approach has the following pros and cons.

Pros

• It is straightforward and cleaner.

• It is the opposite of lazy initialization but still thread safe.

• It has a small lag time when the application is in execution mode

because everything is already loaded in memory.

Cons

• The application takes longer to start (compared to lazy initialization)

because everything needs to be loaded first. To examine the penalty,

let’s add a dummy method (shown in bold) in the Singleton class.

Notice that in the main method, I am invoking only this dummy

method. Now examine the output.

ChapteR 1 SIngleton patteRn

13

package jdp2e.singleton.questions_answers;

class Captain

{

 //Early initialization

 private static final Captain captain = new Captain();

 //We make the constructor private to prevent the use of "new"

 private Captain()

 {

 System.out.println("A captain is elected for your team.");

 }

 /* Global point of access.The method getCaptain() is a public static

method*/

 public static Captain getCaptain()

 {

 System.out.println("You have a captain for your team.");

 return captain;

 }

 public static void dummyMethod()

 {

 System.out.println("It is a dummy method");

 }

}

public class EagerInitializationExample {

 public static void main(String[] args) {

 System.out.println("***Singleton Pattern Demo With Eager

Initialization***\n");

 Captain.dummyMethod();

 /*System.out.println("Trying to make a captain for your team:");

 Captain captain1 = Captain.getCaptain();

 System.out.println("Trying to make another captain for your

team:");

 Captain captain2 = Captain.getCaptain();

ChapteR 1 SIngleton patteRn

14

 if (captain1 == captain2)

 {

 System.out.println("captain1 and captain2 are same

instance.");

 }*/

 }

}

 Output

Singleton Pattern Demo With Eager Initialization

A captain is elected for your team.

It is a dummy method

 Analysis

Notice that A captain is elected for your team still appears in the output, though you may

have no intention to deal with that.

So, in the preceding situation, an object of the Singleton class is always instantiated.

Also, prior to Java 5, there were many issues that dealt with Singleton classes.

 Bill Pugh’s Solution
Bill Pugh came up with a different approach using a static nested helper class.

package jdp2e.singleton.questions_answers;

class Captain1

{

 private Captain1() {

 System.out.println("A captain is elected for your team.");

 }

 //Bill Pugh solution

 private static class SingletonHelper{

 /*Nested class is referenced after getCaptain() is called*/

 private static final Captain1 captain = new Captain1();

 }

ChapteR 1 SIngleton patteRn

15

 public static Captain1 getCaptain()

 {

 return SingletonHelper.captain;

 }

 /*public static void dummyMethod()

 {

 System.out.println("It is a dummy method");

 } */

}

This method does not use a synchronization technique and eager initialization.

Notice that the SingletonHelper class comes into consideration only when someone

invokes the getCaptain() method. And this approach will not create any unwanted

output if you just call any dummyMethod() from main(), as with the previous case (to

examine the result, you need to uncomment the dummyMethod() body). It is also treated

one of the common and standard methods for implementing singletons in Java.

 Double-Checked Locking
There is another popular approach, which is called double-checked locking. If you

notice our synchronized implementation of the singleton pattern, you may find that

synchronization operations are costly in general and the approach is useful for some

initial threads that might break the singleton implementation. But in later phases, the

synchronization operations might create additional overhead. To avoid that problem,

you can use a synchronized block inside an if condition, as shown in the following

code, to ensure that no unwanted instance is created.

package jdp2e.singleton.questions_answers;

final class Captain2

{

 private static Captain2 captain;

 //We make the constructor private to prevent the use of "new"

 static int numberOfInstance=0;

 private Captain2() {

 numberOfInstance++;

ChapteR 1 SIngleton patteRn

16

 System.out.println("Number of instances at this moment="+

numberOfInstance);

 }

 public static Captain2 getCaptain(){

 if (captain == null) {

 synchronized (Captain2.class) {

 // Lazy initialization

 if (captain == null){

 captain = new Captain2();

 System.out.println("New captain is elected for your

team.");

 }

 else

 {

 System.out.print("You already have a captain for your

team.");

 System.out.println("Send him for the toss.");

 }

 }

 }

 return captain;

 }

}

If you are further interested in singleton patterns, read the article at www.

journaldev.com/1377/java-singleton-design-pattern-best-practices-examples.

 6. In short, if I need to create synchronized code, I can use the
synchronized keyword in Java. Is this correct?

Yes, JVM ensures this. Internally, it uses locks on a class or an

object to ensure that only one thread is accessing the data. In Java,

you can apply this keyword to a method or statements(or, block

of code). In this chapter, I have exercised it in both ways. (In the

initial implementation, you used the synchronized method, and

in double-checked locking, you saw the use of the other version).

ChapteR 1 SIngleton patteRn

17

 7. Why are multiple object creations a big concern?

• In real-world scenarios, object creations are treated as costly

operations.

• Sometimes you need to implement a centralized system for easy

maintenance, because it can help you provide a global access

mechanism.

 8. When should I consider singleton patterns?

Use of a pattern depends on particular use cases. But in general,

you can consider singleton patterns to implement a centralized

management system, to maintain a common log file, to maintain

thread pools in a multithreaded environment, to implement

caching mechanism or device drivers, and so forth.

 9. I have some concern about the eager initialization example.
Following the definition, it appears that it is not exactly eager
initialization. This class is loaded by the JVM only when it is
referenced by code during execution of the application. That
means this is also lazy initialization. Is this correct?

Yes, to some extent your observation is correct. There is a

debate on this discussion. In short, it is eager compared to the

previous approaches. You saw that when you called only the

dummyMethod(); still, you instantiated the singleton, though you

did not need it. So, in a context like this, it is eager but it is lazy in

the sense that the singleton instantiation will not occur until the

class is initialized. So, the degree of laziness is the key concern

here.

ChapteR 1 SIngleton patteRn

19
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_2

CHAPTER 2

Prototype Pattern
This chapter covers the prototype pattern.

 GoF Definition
Specify the kinds of objects to create using a prototypical instance, and create new

objects by copying this prototype.

 Concept
In general, creating a new instance from scratch is a costly operation. Using the

prototype pattern, you can create new instances by copying or cloning an instance of an

existing one. This approach saves both time and money in creating a new instance from

scratch.

 Real-World Example
Suppose we have a master copy of a valuable document. We need to incorporate some

changes to it to see the effect of the change. In such a case, we can make a photocopy of

the original document and edit the changes.

Consider another example. Suppose a group of people decide to celebrate the

birthday of their friend Ron. They go to a bakery and buy a cake. To make it special, they

request the seller to write, “Happy Birthday Ron” on the cake. From the seller’s point

of view, he is not making any new model. He already defined the model and produces

many cakes (which all look the same) every day by following the same process, and

finally makes each special with some small changes.

20

 Computer-World Example
Let’s assume that you have an application that is very stable. In the future, you may want

to update the application with some small modifications. So, you start with a copy of

your original application, make changes, and analyze further. Surely, to save your time

and money, you do not want to start from scratch.

Note Consider the Object.clone() method as an example of a prototype.

 Illustration
Figure 2-1 illustrates a simple prototype structure.

Figure 2-1. A sample prototype structure

Here, BasicCar is a basic prototype. Nano and Ford are the concrete prototypes that

have implemented the clone() method defined in BasicCar. In this example, we have

created a BasicCar class with a default price (in Indian currency). Later, we modify the

price per model. PrototypePatternExample.java is the client in this implementation.

 Class Diagram
Figure 2-2 shows a class diagram of the prototype pattern.

Chapter 2 prOtOtype pattern

21

Figure 2-2. Class diagram

Chapter 2 prOtOtype pattern

22

Figure 2-3. Package Explorer view

 Package Explorer View
Figure 2-3 shows the high-level structure of the program.

Chapter 2 prOtOtype pattern

23

 Implementation
Here’s the implementation.

//BasicCar.java

package jdp2e.prototype.demo;

import java.util.Random;

public abstract class BasicCar implements Cloneable

{

 public String modelName;

 public int basePrice,onRoadPrice;

 public String getModelname() {

 return modelName;

 }

 public void setModelname(String modelname) {

 this.modelName = modelname;

 }

 public static int setAdditionalPrice()

 {

 int price = 0;

 Random r = new Random();

 //We will get an integer value in the range 0 to 100000

 int p = r.nextInt(100000);

 price = p;

 return price;

 }

 public BasicCar clone() throws CloneNotSupportedException

 {

 return (BasicCar)super.clone();

 }

}

//Nano.java

package jdp2e.prototype.demo;

Chapter 2 prOtOtype pattern

24

class Nano extends BasicCar

{

 //A base price for Nano

 public int basePrice=100000;

 public Nano(String m)

 {

 modelName = m;

 }

 @Override

 public BasicCar clone() throws CloneNotSupportedException

 {

 return (Nano)super.clone();

 //return this.clone();

 }

}

//Ford.java

package jdp2e.prototype.demo;

class Ford extends BasicCar

{

 //A base price for Ford

 public int basePrice=100000;

 public Ford(String m)

 {

 modelName = m;

 }

 @Override

 public BasicCar clone() throws CloneNotSupportedException

 {

 return (Ford)super.clone();

 }

}

//Client

// PrototypePatternExample.java

Chapter 2 prOtOtype pattern

25

package jdp2e.prototype.demo;

public class PrototypePatternExample

{

 public static void main(String[] args) throws

CloneNotSupportedException

 {

 System.out.println("***Prototype Pattern Demo***\n");

 BasicCar nano = new Nano("Green Nano") ;

 nano.basePrice=100000;

 BasicCar ford = new Ford("Ford Yellow");

 ford.basePrice=500000;

 BasicCar bc1;

 //Nano

 bc1 =nano.clone();

 //Price will be more than 100000 for sure

 bc1.onRoadPrice = nano.basePrice+BasicCar.setAdditionalPrice();

 System.out.println("Car is: "+ bc1.modelName+" and it's price is

Rs."+bc1.onRoadPrice);

 //Ford

 bc1 =ford.clone();

 //Price will be more than 500000 for sure

 bc1.onRoadPrice = ford.basePrice+BasicCar.setAdditionalPrice();

 System.out.println("Car is: "+ bc1.modelName+" and it's price is

Rs."+bc1.onRoadPrice);

 }

}

 Output
Here’s the output.

Prototype Pattern Demo

Car is: Green Nano and it's price is Rs.123806

Car is: Ford Yellow and it's price is Rs.595460

Chapter 2 prOtOtype pattern

26

Note you can see a different price in your system because we are generating a
random price in the setadditionalprice() method inside the BasicCar class.
But I have assured that the price of the Ford will be greater than the nano.

 Q&A Session

 1. What are the advantages of using prototype design patterns?

• It is useful when creating an instance of a class is a complicated

(or boring) process. Instead, you can focus on other key activities.

• You can include or discard products at runtime.

• You can create new instances at a cheaper cost.

 2. What are the challenges associated with using prototype design
patterns?

• Each subclass needs to implement the cloning or copying

mechanism.

• Sometimes creating a copy from an existing instance is not

simple. For example, implementing a cloning mechanism can

be challenging if the objects under consideration do not support

copying/cloning or if there are circular references. For example,

in Java, a class with the clone() method needs to implement

the Cloneable marker interface; otherwise, it will throw a

CloneNotSupportedException.

• In this example, I have used the clone() method that performs

a shallow copy in Java. Following the convention, I obtained

the returned object by calling super.clone().(If you want to

learn more about this, put your cursor on the eclipse editor and

go through the instructions). If you need a deep copy for your

application, that can be expensive.

Chapter 2 prOtOtype pattern

27

 3. Can you please elaborate the difference between a shallow
copy and a deep copy?

A shallow copy creates a new object and then copies various field

values from the original object to the new object. So, it is also

known as a field-by-field copy. If the original object contains any

references to other objects as fields, then the references of those

objects are copied into the new object, (i.e., you do not create the

copies of those objects).

Let’s try to understand the mechanism with a simple diagram.

Suppose we have an object, X1, and it has a reference to another

object, Y1. Further assume that object Y1 has a reference to object Z1.

Figure 2-4. Before shallow copy of the reference/s

Now, with the shallow copy of X1, a new object, X2, is created; it

also has a reference to Y1.

Chapter 2 prOtOtype pattern

28

You have already seen the use of the clone() method in our

implementation. It performs a shallow copy.

For a deep copy of X1, a new object, X3, is created. X3 has a reference

to new object Y3, which is actually a copy of Y1. Also, Y3, in turn,

has a reference to another new object, Z3, which is a copy of Z1.

Figure 2-5. After the shallow copy of the reference

Figure 2-6. After the deep copy of the reference

In a deep copy, the new object is totally separated from the

original one. Any changes made in one object should not be

reflected on the other one. To create a deep copy in Java, you

may need to override the clone() method and then proceed.

Also, a deep copy is expensive because you need to create

Chapter 2 prOtOtype pattern

29

additional objects. A complete implementation of deep copy is

presented in the “Q&A Session” of Memento Pattern (Chapter 19)

in this book.

 4. When do you choose a shallow copy over a deep copy (and vice
versa)?

A shallow copy is faster and less expensive. It is always better if

your target object has the primitive fields only.

A deep copy is expensive and slow. But it is useful if your target

object contains many fields that have references to other objects.

 5. When I copy an object in Java, I need to use the clone() method.
Is this understanding correct?

No. There are alternatives available, and one of them is to use the

serialization mechanism. But you can always define your own

copy constructor and use it.

 6. Can you give a simple example that demonstrates a user-
defined copy constructor?

Java does not support a default copy constructor. You may need

to write your own. Consider the following program, which

demonstrates such a usage.

 Demonstration
Here’s the demonstration.

package jdp2e.prototype.questions_answers;

class Student

{

 int rollNo;

 String name;

 //Instance Constructor

Chapter 2 prOtOtype pattern

30

 public Student(int rollNo, String name)

 {

 this.rollNo = rollNo;

 this.name = name;

 }

 //Copy Constructor

 public Student(Student student)

 {

 this.name = student.name;

 this.rollNo = student.rollNo;

 }

 public void displayDetails()

 {

 System.out.println(" Student name: " + name + ",Roll no: "+rollNo);

 }

}

class UserDefinedCopyConstructorExample {

 public static void main(String[] args) {

 System.out.println("***User defined copy constructor example in

Java***\n");

 Student student1 = new Student(1, "John");

 System.out.println(" The details of Student1 is as follows:");

 student1.displayDetails();

 System.out.println("\n Copying student1 to student2 now");

 //Invoking the user-defined copy constructor

 Student student2 = new Student (student1);

 System.out.println(" The details of Student2 is as follows:");

 student2.displayDetails();

 }

}

Chapter 2 prOtOtype pattern

31

 Output
Here’s the output.

User defined copy constructor example in Java

 The details of Student1 is as follows:

 Student name: John,Roll no: 1

 Copying student1 to student2 now

 The details of Student2 is as follows:

 Student name: John,Roll no: 1

Chapter 2 prOtOtype pattern

33
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_3

CHAPTER 3

Builder Pattern
This chapter covers the builder pattern.

 GoF Definition
Separate the construction of a complex object from its representation so that the same

construction processes can create different representations.

 Concept
The builder pattern is useful for creating complex objects that have multiple parts.

The creational mechanism of an object should be independent of these parts. The

construction process does not care about how these parts are assembled. The same

construction process must allow us to create different representations of the objects.

The structure in Figure 3-1 is an example of the builder pattern. The structure is

adopted from the Gang of Four book, Design Patterns: Elements of Reusable Object-

Oriented Software (Addison-Wesley, 1995).

Figure 3-1. An example of the builder pattern

34

Product is the complex object that you want to create. ConcreteBuilder constructs

and assembles the parts of a product by implementing an abstract interface, Builder.

The ConcreteBuilder objects build the product’s internal representations and define the

creational process/assembling mechanisms. Builders can also provide methods to get

an object that is created and available for use (notice the getVehicle() method in the

Builder interface in the following implementation). Director is responsible for creating

the final object using the Builder interface. In other words, Director uses Builder and

controls the steps/sequence to build the final Product. Builders can also keep reference

of the products that they built, so that they can be used again.

 Real-World Example
To complete an order for a computer, different parts are assembled based on customer

preferences (e.g., one customer can opt for a 500 GB hard disk with an Intel processor,

and another customer can choose a 250 GB hard disk with an AMD processor). Consider

another example. Suppose that you intend to go on a tour with a travel company that

provides various packages for the same tour (for example, they can provide special

arrangements, a different kind of vehicle for the sightseeing, etc.). You can choose your

package based on your budget.

 Computer-World Example
The builder pattern can be used when we want to convert one text format to another text

format (e.g., RTF to ASCII text).

Note The Java.util.Calendar.Builder class is an example in this category, but it
is available in Java 8 and onward only. The java.lang.StringBuilder class is a close
example in this context. But you need to remember that the GoF definition says
that this pattern allows you to use the same construction process to make different
representations. In this context, this example does not fully qualify for this pattern.

ChapTer 3 BuIlder paTTern

35

 Illustration
In this example, we have the following participants: Builder, Car, MotorCycle, Product,

and Director. The first three are very straightforward; Car and MotorCycle are concrete

classes and they implement the Builder interface. Builder is used to create parts of the

Product object, where Product represents the complex object under construction.

Since Car and MotorCycle are the concrete implementations of the Builder interface,

they need to implement the methods that are declared in the Builder interface. That’s

why they needed to supply the body for the startUpOperations(), buildBody(),

insertWheels(), addHeadlights(), endOperations(), and getVehicle()methods.

The first five methods are straightforward; they are used to perform an operation at the

beginning (or end), build the body of the vehicle, insert the wheels, and add headlights.

getVehicle() returns the final product. In this case, Director is responsible for

constructing the final representation of these products using the Builder interface. (See

the structure defined by the GoF). Notice that Director is calling the same construct()

method to create different types of vehicles.

Now go through the code to see how different parts are assembled for this pattern.

ChapTer 3 BuIlder paTTern

36

 Class Diagram
Figure 3-2 shows the class diagram of the builder pattern.

Figure 3-2. Class diagram

 Package Explorer View
Figure 3-3 shows the high-level structure of the program.

ChapTer 3 BuIlder paTTern

37
Figure 3-3. Package Explorer view

ChapTer 3 BuIlder paTTern

38

 Implementation
Here’s the implementation.

package jdp2e.builder.demo;

import java.util.LinkedList;

//The common interface

interface Builder

{

 void startUpOperations();

 void buildBody();

 void insertWheels();

 void addHeadlights();

 void endOperations();

 /*The following method is used to retrieve the object that is

constructed.*/

 Product getVehicle();

}

//Car class

class Car implements Builder

{

 private String brandName;

 private Product product;

 public Car(String brand)

 {

 product = new Product();

 this.brandName = brand;

 }

 public void startUpOperations()

 {

 //Starting with brand name

 product.add(String.format("Car model is :%s",this.brandName));

 }

ChapTer 3 BuIlder paTTern

39

 public void buildBody()

 {

 product.add("This is a body of a Car");

 }

 public void insertWheels()

 {

 product.add("4 wheels are added");

 }

 public void addHeadlights()

 {

 product.add("2 Headlights are added");

 }

 public void endOperations()

 { //Nothing in this case

 }

 public Product getVehicle()

 {

 return product;

 }

}

//Motorcycle class

class MotorCycle implements Builder

{

 private String brandName;

 private Product product;

 public MotorCycle(String brand)

 {

 product = new Product();

 this.brandName = brand;

 }

 public void startUpOperations()

 { //Nothing in this case

 }

ChapTer 3 BuIlder paTTern

40

 public void buildBody()

 {

 product.add("This is a body of a Motorcycle");

 }

 public void insertWheels()

 {

 product.add("2 wheels are added");

 }

 public void addHeadlights()

 {

 product.add("1 Headlights are added");

 }

 public void endOperations()

 {

 //Finishing up with brand name

 product.add(String.format("Motorcycle model is :%s", this.

brandName));

 }

 public Product getVehicle()

 {

 return product;

 }

}

// Product class

class Product

{

 /* You can use any data structure that you prefer.

 I have used LinkedList<String> in this case.*/

 private LinkedList<String> parts;

 public Product()

 {

 parts = new LinkedList<String>();

 }

ChapTer 3 BuIlder paTTern

41

 public void add(String part)

 {

 //Adding parts

 parts.addLast(part);

 }

 public void showProduct()

 {

 System.out.println("\nProduct completed as below :");

 for (String part: parts)

 System.out.println(part);

 }

}

// Director class

class Director

{

 Builder builder;

 // Director knows how to use the builder and the sequence of steps.

 public void construct(Builder builder)

 {

 this.builder = builder;

 builder.startUpOperations();

 builder.buildBody();

 builder.insertWheels();

 builder.addHeadlights();

 builder.endOperations();

 }

}

public class BuilderPatternExample {

 public static void main(String[] args) {

 System.out.println("***Builder Pattern Demo***");

 Director director = new Director();

 Builder fordCar = new Car("Ford");

 Builder hondaMotorycle = new MotorCycle("Honda");

ChapTer 3 BuIlder paTTern

42

 // Making Car

 director.construct(fordCar);

 Product p1 = fordCar.getVehicle();

 p1.showProduct();

 //Making MotorCycle

 director.construct(hondaMotorycle);

 Product p2 = hondaMotorycle.getVehicle();

 p2.showProduct();

 }

}

 Output
Here’s the output.

Builder Pattern Demo

Product completed as below :

Car model is :Ford

This is a body of a Car

4 wheels are added

2 Headlights are added

Product completed as below :

This is a body of a Motorcycle

2 wheels are added

1 Headlights are added

Motorcycle model is :Honda

 Q&A Session

 1. What are the advantages of using a builder pattern?

• You can create a complex object, step by step, and vary the steps.

You promote encapsulation by hiding the details of the complex

construction process. The director can retrieve the final product

from the builder when the whole construction is over. In general,

ChapTer 3 BuIlder paTTern

43

at a high level, you seem to have only one method that makes the

complete product. Other internal methods only involve partial

creation. So, you have finer control over the construction process.

• Using this pattern, the same construction process can produce

different products.

• Since you can vary the construction steps, you can vary product’s

internal representation.

 2. What are the drawbacks/pitfalls associated with the builder
pattern?

• It is not suitable if you want to deal with mutable objects (which

can be modified later).

• You may need to duplicate some portion of the code. These

duplications may have significant impact in some context and

turn into an antipattern.

• A concrete builder is dedicated to a particular type of product.

So, to create different type of products, you may need to come up

with different concrete builders.

• The approach makes more sense if the structure is very complex.

 3. Can I use an abstract class instead of the interface in the
illustration of this pattern?

Yes. You can use an abstract class instead of an interface in this

example.

 4. How do I decide whether I should use an abstract class or an
interface in an application?

I believe that if you want to have some centralized or default

behavior, the abstract class is a better choice. In those cases, you

can provide some default implementation. On the other hand,

interface implementation starts from scratch. They indicate some

kind of rules/contracts on what is to be done (e.g., you must

implement the method) but they will not enforce the how part of

it. Also, interfaces are preferred when you are trying to implement

the concept of multiple inheritance.

ChapTer 3 BuIlder paTTern

44

But at the same time, if you need to add a new method in an

interface, then you need to track down all the implementations of

that interface and you need to put the concrete implementation

for that method in all of those places. You can add a new method

in an abstract class with a default implementation and the existing

code can run smoothly.

Java has taken special care with this last point. Java 8 introduced

the use of ‘default’ keyword in the interface. You can prefix the

default word before the intended method signature and provide a

default implementation. Interface methods are public by default,

so you do not need to mark it with the keyword public.

These summarized suggestions are from the Oracle Java

documentation at https://docs.oracle.com/javase/tutorial/

java/IandI/abstract.html.

You should prefer the abstract class in the following scenarios:

• You want to share code among multiple closely related classes.

• The classes that extend the abstract class can have many

common methods or fields, or they require non-public access

modifiers inside them.

• You want to use non-static or/and non-final fields, which

enables us to define methods that can access and modify the

state of the object to which they belong.

• On the other hand, you should prefer interfaces for these

scenarios:

• You expect that several unrelated classes are going to

implement your interface (e.g., comparable interface can be

implemented by many unrelated classes).

• You specify the behavior of a particular data type, but it does

not matter how the implementer implements that.

• You want to use the concept of multiple inheritance in your

application.

ChapTer 3 BuIlder paTTern

45

Note In my book Interactive Object-Oriented Programming in Java (apress,
2016), I discussed abstract classes, interfaces, and the use of the “default”
keyword with various examples and outputs. refer to that book for a detailed
discussion and analysis.

 5. I am seeing that in cars, model names are added in the
beginning, but for motorcycles, model names are added at the
end. Is it intentional?

Yes. It was used to demonstrate the fact that each of the concrete

builders can decide how they want to produce the final products.

They have this freedom.

 6. Why are you using a separate class for director? You could use
the client code to play the role of the director.

No one restricts you to do that. In the preceding implementation,

I wanted to separate this role from the client code in the

implementation. But in the upcoming/modified implementation,

I have used the client as a director.

 7. What do you mean by client code?

The class that contains the main() method is the client code. In

most parts of the book, client code means the same.

 8. You mentioned varying steps several times. Can you
demonstrate an implementation where the final product is
created with different variations and steps?

Good catch. You asked for a demonstration of the real power of

the builder pattern. So, let us consider another example.

ChapTer 3 BuIlder paTTern

46

 Modified Illustration
Here are the key characteristics of the modified implementation.

• In this modified implementation, I consider only cars as the final

products.

• I create custom cars that have the following attributes: a start-

up message (startUpMessage), a process completion message

(endOperationsMessage), the body material of the car (bodyType),

the number of wheels on the car (noOfWheels), and the number of

headlights (noOfHeadLights) on the car.

• The client code is playing the role of a director in this

implementation.

• I have renamed the builder interface as ModifiedBuilder. Apart from

the constructCar() and getConstructedCar() methods, each of the

methods in the interface has the ModifiedBuilder return type, which

helps us to apply method chaining mechanism in the client code.

 Modified Package Explorer View
Figure 3-4 shows the modified Package Explorer view.

ChapTer 3 BuIlder paTTern

47

Figure 3-4. Modified Package Explorer view

ChapTer 3 BuIlder paTTern

48

 Modified Implementation
Here is the modified implementation.

package jdp2e.builder.pattern;

//The common interface

interface ModifiedBuilder

{

 /*All these methods return type is ModifiedBuilder.

 * This will help us to apply method chaining*/

 ModifiedBuilder startUpOperations(String startUpMessage);

 ModifiedBuilder buildBody(String bodyType);

 ModifiedBuilder insertWheels(int noOfWheels);

 ModifiedBuilder addHeadlights(int noOfHeadLights);

 ModifiedBuilder endOperations(String endOperationsMessage);

 //Combine the parts and make the final product.

 ProductClass constructCar();

 //Optional method:To get the already constructed object

 ProductClass getConstructedCar();

}

//Car class

class CarBuilder implements ModifiedBuilder

{

 private String startUpMessage="Start building the product";//Default

//start-up message

 private String bodyType="Steel";//Default body

 private int noOfWheels=4;//Default number of wheels

 private int noOfHeadLights=2;//Default number of head lights

 //Default finish up message

private String endOperationsMessage="Product creation completed";

 ProductClass product;

 @Override

ChapTer 3 BuIlder paTTern

49

 public ModifiedBuilder startUpOperations(String startUpMessage)

 {

 this.startUpMessage=startUpMessage;

 return this;

 }

 @Override

 public ModifiedBuilder buildBody(String bodyType)

 {

 this.bodyType=bodyType;

 return this;

 }

 @Override

 public ModifiedBuilder insertWheels(int noOfWheels)

 {

 this.noOfWheels=noOfWheels;

 return this;

 }

 @Override

 public ModifiedBuilder addHeadlights(int noOfHeadLights)

 {

 this.noOfHeadLights=noOfHeadLights;

 return this;

 }

 @Override

 public ModifiedBuilder endOperations(String endOperationsMessage)

 { this.endOperationsMessage=endOperationsMessage;

 return this;

 }

 @Override

 public ProductClass constructCar() {

 product= new ProductClass(this.startUpMessage,this.

bodyType,this.noOfWheels,this.noOfHeadLights,this.

endOperationsMessage);

ChapTer 3 BuIlder paTTern

50

 return product;

 }

 @Override

 public ProductClass getConstructedCar()

 {

 return product;

 }

}

//Product class

final class ProductClass

{

 private String startUpMessage;

 private String bodyType;

 private int noOfWheels;

 private int noOfHeadLights;

 private String endOperationsMessage;

 public ProductClass(final String startUpMessage, String bodyType,

int noOfWheels, int noOfHeadLights,

 String endOperationsMessage) {

 this.startUpMessage = startUpMessage;

 this.bodyType = bodyType;

 this.noOfWheels = noOfWheels;

 this.noOfHeadLights = noOfHeadLights;

 this.endOperationsMessage = endOperationsMessage;

 }

 /*There is no setter methods used here to promote immutability.

 Since the attributes are private and there is no setter methods, the

keyword "final" is not needed to attach with the attributes.

 */

 @Override

 public String toString() {

 return "Product Completed as:\n startUpMessage=" +

startUpMessage + "\n bodyType=" + bodyType + "\n noOfWheels="

ChapTer 3 BuIlder paTTern

51

 + noOfWheels + "\n noOfHeadLights=" +

noOfHeadLights + "\n endOperationsMessage=" +

endOperationsMessage

 ;

 }

}

//Director class

public class BuilderPatternModifiedExample {

 public static void main(String[] args) {

 System.out.println("***Modified Builder Pattern Demo***");

 /*Making a custom car (through builder)

 Note the steps:

 Step1:Get a builder object with required parameters

 Step2:Setter like methods are used.They will set the

optional fields also.

 Step3:Invoke the constructCar() method to get the final car.

 */

 final ProductClass customCar1 = new CarBuilder().

addHeadlights(5)

 .insertWheels(5)

 .buildBody("Plastic")

 .constructCar();

 System.out.println(customCar1);

 System.out.println("--------------");

 /* Making another custom car (through builder) with a

different

 * sequence and steps.

 */

 ModifiedBuilder carBuilder2=new CarBuilder();

 final ProductClass customCar2 = carBuilder2.insertWheels(7)

 .addHeadlights(6)

 .startUpOperations("I am making my own car")

 .constructCar();

 System.out.println(customCar2);

ChapTer 3 BuIlder paTTern

52

 System.out.println("--------------");

 //Verifying the getConstructedCar() method

 final ProductClass customCar3=carBuilder2.getConstructedCar();

 System.out.println(customCar3);

 }

}

 Modified Output
Here’s the modified output. (Some of the lines are bold to draw your attention to notice

the differences in the output).

Modified Builder Pattern Demo

Product Completed as:

 startUpMessage=Start building the product

 bodyType=Plastic

 noOfWheels=5

 noOfHeadLights=5

 endOperationsMessage=Product creation completed

Product Completed as:

 startUpMessage=I am making my own car

 bodyType=Steel

 noOfWheels=7

 noOfHeadLights=6

 endOperationsMessage=Product creation completed

Product Completed as:

 startUpMessage=I am making my own car

 bodyType=Steel

 noOfWheels=7

 noOfHeadLights=6

 endOperationsMessage=Product creation completed

ChapTer 3 BuIlder paTTern

53

 Analysis
Note the following lines of code (from the preceding implementation) for the custom

cars creation in the client code.

System.out.println("***Modified Builder Pattern Demo***");

 /*Making a custom car (through builder)

 Note the steps:

 Step1:Get a builder object with required parameters

 Step2:Setter like methods are used.They will set the

optional fields also.

 Step3:Invoke the constructCar() method to get the final car.

 */

 final ProductClass customCar1 = new CarBuilder().

addHeadlights(5)

 .insertWheels(5)

 .buildBody("Plastic")

 .constructCar();

 System.out.println(customCar1);

 System.out.println("--------------");

 /* Making another custom car (through builder) with a

different

 * sequence and steps.

 */

 ModifiedBuilder carBuilder2=new CarBuilder();

 final ProductClass customCar2 = carBuilder2.insertWheels(7)

 .addHeadlights(6)

 .startUpOperations("I am making my own car")

 .constructCar();

 System.out.println(customCar2);

You are using a builder to create multiple objects by varying the builder attributes

between calls to the “build” methods; for example, in the first case, you are invoking

the addHeadLights(), insertWheels(), buildBody() methods, one by one, through

a builder object, and then you are getting the final car (customCar1). But in the

ChapTer 3 BuIlder paTTern

54

second case, when you create another car object (customCar2), you are invoking the

methods in a different sequence. When you are not invoking any method, the default

implementation is provided for you.

 9. I am seeing the use of final keywords in client codes. But you
have not used those for ProductClass attributes. What is the
reason for that?

In the client code, I used the final keywords to promote

immutability. But in the ProductClass class, the attributes are

already marked with private keywords and there are no setter

methods, so these are already immutable.

 10. What is the key benefit of immutable objects?

Once constructed, they can be safely shared, and most

importantly, they are thread safe, so you save lots in

synchronization costs in a multithreaded environment.

 11. When should I consider using a builder pattern?

If you need to make a complex object that involves various steps

in the construction process, and at the same time, the products

need to be immutable, the builder pattern is a good choice.

ChapTer 3 BuIlder paTTern

55
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_4

CHAPTER 4

Factory Method Pattern
This chapter covers the factory method pattern.

 GoF Definition
Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory method lets a class defer instantiation to subclasses.

POINTS TO REMEMBER

To understand this pattern, I suggest you go to Chapter 24, which covers the simple factory

pattern. The simple factory pattern does not fall directly into the Gang of Four design patterns,

so I put the discussion of that pattern in Part II of this book. The factory method pattern will

make more sense if you start with the simple factory pattern.

 Concept
Here you start your development with an abstract creator class (creator) that defines

the basic structure of the application. The subclasses that derive from this abstract class

perform the actual instantiation process. The concept will make sense to you when you

start thinking about the pattern using the following examples.

56

 Real-World Example
Consider a car manufacturing company that produces different models of a car and runs

its business well. Based on the model of the car, different parts are manufactured and

assembled.

The company should be prepared for changes where customers can opt for better

models in the near future. If the company needs to do a whole new setup for a new

model, which demands only a few new features, it can hugely impact its profit margin.

So, the company should set up the factory in such a way that it can produce parts for the

upcoming models also.

 Computer-World Example
Suppose that you are building an application that needs to support two different

databases, let’s say Oracle and SQL Server. So, whenever you insert a data into a

database, you create a SQL Server–specific connection (SqlServerConnection) or an

Oracle server–specific connection (OracleConnection) and then you can proceed.

If you put these codes into if-else (or switch) statements, you may need to repeat

a lot of code. This kind of code is not easily maintainable because whenever you

need to support a new type of connection, you need to reopen your code and place

the modifications. A factory method pattern focuses on solving similar problems in

application development.

Note Since the simple factory pattern is the simplest form of the factory method
pattern, you can consider the same examples here. So, the static getInstance()
method of the java.text.NumberFormat class is an example of this category. The
createURLStreamHandler(String protocol) of the java.net.URLStreamHandlerFactory
interface is another example in this category. You can pass ftp, http, and so forth as
different protocols and the method will return a URLStreamHandler for the specific
protocol.

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

57

 Illustration
I am continuing the discussion the simple factory pattern that is covered in Chapter 24.

So, I’ll try to improve the implementation. For simplicity, I have placed all classes in this

implementation in a single file. So, you do not need to create any separate folders for

the individual classes. I suggest that you refer to the associated comments for a better

understanding.

 Class Diagram
Figure 4-1 shows the class diagram of the factory method pattern.

Figure 4-1. Class diagram

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

58

 Package Explorer View
Figure 4-2 shows the high-level structure of the program.

Figure 4-2. Package Explorer view

 Implementation
Here’s the implementation.

package jdp2e.factorymethod.demo;

interface Animal

{

 void speak();

 void preferredAction();

}

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

59

class Dog implements Animal

{

 public void speak()

 {

 System.out.println("Dog says: Bow-Wow.");

 }

 public void preferredAction()

 {

 System.out.println("Dogs prefer barking...\n");

 }

}

class Tiger implements Animal

{

 public void speak()

 {

 System.out.println("Tiger says: Halum.");

 }

 public void preferredAction()

 {

 System.out.println("Tigers prefer hunting...\n");

 }

}

abstract class AnimalFactory

{

/*Remember that the GoF definition says "....Factory method lets a class

defer instantiation to subclasses."

In our case, the following method will create a Tiger or Dog but at this

point it does not know whether it will get a Dog or a Tiger. This decision

will be taken by the subclasses i.e. DogFactory or TigerFactory. So,in this

implementation, the following method is playing the role of a factory (of

creation)*/

 public abstract Animal createAnimal();

}

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

60

class DogFactory extends AnimalFactory

{

 public Animal createAnimal()

 {

 //Creating a Dog

 return new Dog();

 }

}

class TigerFactory extends AnimalFactory

{

 public Animal createAnimal()

 {

 //Creating a Tiger

 return new Tiger();

 }

}

class FactoryMethodPatternExample {

 public static void main(String[] args) {

 System.out.println("***Factory Pattern Demo***\n");

 // Creating a Tiger Factory

 AnimalFactory tigerFactory =new TigerFactory();

 // Creating a tiger using the Factory Method

 Animal aTiger = tigerFactory.createAnimal();

 aTiger.speak();

 aTiger.preferredAction();

 // Creating a DogFactory

 AnimalFactory dogFactory = new DogFactory();

 // Creating a dog using the Factory Method

 Animal aDog = dogFactory.createAnimal();

 aDog.speak();

 aDog.preferredAction();

 }

}

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

61

 Output
Here’s the output.

Factory Pattern Demo

Tiger says: Halum.

Tigers prefer hunting...

Dog says: Bow-Wow.

Dogs prefer barking...

 Modified Implementation
In this implementation, the AnimalFactory class is an abstract class. So, let us take

advantage of using an abstract class. Suppose that you want a subclass to follow a rule

that can be imposed from its parent (or base) class. So, I am testing such a scenario in the

following design.

The following are the key characteristics of the design.

• Only AnimalFactory is modified as follows (i.e., I am introducing a

new makeAnimal() method).

//Modifying the AnimalFactory class.

abstract class AnimalFactory

{

 public Animal makeAnimal()

 {

 System.out.println("I am inside makeAnimal() of AnimalFactory.You

cannot ignore my rules.");

 /*

 At this point, it doesn't know whether it will get a Dog or a

Tiger. It will be decided by the subclasses i.e.DogFactory or

TigerFactory.But it knows that it will Speak and it will have a

preferred way of Action.

 */

 Animal animal = createAnimal();

 animal.speak();

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

62

 animal.preferredAction();

 return animal;

 }

/*Remember that the GoF definition says "....Factory method lets a class

defer instantiation to subclasses."

In our case, the following method will create a Tiger or Dog but at this

point it does not know whether it will get a Dog or a Tiger.

This decision will be taken by the subclasses i.e. DogFactory or

TigerFactory. So,in this implementation, the following method is playing

the role of a factory (of creation)*/

 public abstract Animal createAnimal();

}

• Client code has adapted these changes:

class ModifiedFactoryMethodPatternExample {

 public static void main(String[] args) {

 System.out.println("***Modified Factory Pattern Demo***\n");

 // Creating a Tiger Factory

 AnimalFactory tigerFactory =new TigerFactory();

 // Creating a tiger using the Factory Method

 Animal aTiger = tigerFactory.makeAnimal();

 //aTiger.speak();

 //aTiger.preferredAction();

 // Creating a DogFactory

 AnimalFactory dogFactory = new DogFactory();

 // Creating a dog using the Factory Method

 Animal aDog = dogFactory.makeAnimal();

 //aDog.speak();

 //aDog.preferredAction();

 }

}

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

63

 Modified Output
Here’s the modified output.

Modified Factory Pattern Demo

I am inside makeAnimal() of AnimalFactory.You cannot ignore my rules.

Tiger says: Halum.

Tigers prefer hunting...

I am inside makeAnimal() of AnimalFactory.You cannot ignore my rules.

Dog says: Bow-Wow.

Dogs prefer barking...

 Analysis
In each case, you see the message (or warning) “…You cannot ignore my rules.”

 Q&A Session

 1. Why have you separated the CreateAnimal() method from
client code?

It is my true intention. I want the subclasses to create specialized

objects. If you look carefully, you will find that only this “creational

part” is varying across the products. I discuss this in detail in the

Q&A session on the simple factory pattern (see Chapter 24).

 2. What are the advantages of using a factory like this?

• You are separating code that can vary from the code that does not

vary (i.e., the advantages of using a simple factory pattern is still

present). This technique helps you easily maintain code.

• Your code is not tightly coupled; so, you can add new classes

like Lion, Beer, and so forth, at any time in the system without

modifying the existing architecture. So, you have followed the

“closed for modification but open for extension” principle.

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

64

 3. What are the challenges of using a factory like this?

If you need to deal with a large number of classes, then you may

encounter maintenance overhead.

 4. I see that the factory pattern is supporting two parallel
hierarchies. Is this correct?

Good catch. Yes, from the class diagram (see Figure 4-3), it is

evident that this pattern supports parallel class hierarchies.

So, in this example, AnimalFactory, DogFactory, and TigerFactory

are placed in one hierarchy, and Animal, Dog, and Tiger are

placed in another hierarchy. So, the creators and their creations/

products are two hierarchies running in parallel.

Figure 4-3. The two class hierarchies in our example

 5. I should always mark the factory method with an abstract
keyword so that subclasses can complete them. Is this correct?

No. You may be interested in a default factory method if the

creator has no subclasses. And in that case, you cannot mark the

factory method with the abstract keyword.

To show the real power of the factory method pattern, you may

need to follow a similar design, which is implemented here.

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

65

 6. It still appears to me that the factory method pattern is not
much different from simple factory. Is this correct?

If you look at the subclasses in the examples in both chapters, you

may find some similarities. But you should not forget the key aim

of the factory method pattern is that it is supplying the framework

through which different subclasses can make different products.

But in a simple factory, you cannot vary the products like you

can with the factory method pattern. Think of simple factory as a

one-time deal but most importantly, your creational part will not

be closed for modification. Whenever you want to add a new stuff,

you need to add an if/else block or a switch statement in the

factory class of your simple factory pattern.

In this context, remember the GoF definition: the factory

method lets a class defer instantiation to subclasses. So, in our

simple factory pattern demonstration, you used a concrete

class only (SimpleFactory). You did not need to override

the createAnimal() method and there was no subclass that

participated in the final decision/product making process. But

if you try to code to an abstract class (or interface), that is always

considered a good practice, and this mechanism provides you the

flexibility to put some common behaviors in the abstract class.

Note In the simple factory pattern, you simply segregate the instantiation logic
from client code. In this case, it knows about all the classes whose objects it can
create. on the other hand, when using a factory method pattern, you delegate the
object creation to subclasses. also, the factory method is not absolutely sure about
the product subclasses in advance.

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

66

 7. In the factory method pattern, I can simply use a subclassing
mechanism (i.e., using inheritance) and then implement the
factory method (that is defined in the parent class). Is this
correct?

The answer to this question is yes if you want to strictly follow

the GoF definitions. But it is important to note that in many

applications/implementations, there is no use of an abstract

class or interface; for example, in Java, an XML reader object is

used like this:

//Some code before…

XMLReader xmlReader1 = XMLReaderFactory.createXMLReader();

//Some code after

XMLReaderFactory is a final class in Java. So, you cannot inherit

from it.

But when you use SAXPaserFactory, as follows, you are using an

abstract class SAXParserFactory.

//some code before….

SAXParserFactory factory = SAXParserFactory.newInstance();

 SAXParser parser = factory.newSAXParser();

 XMLReader xmlReader2 = parser.getXMLReader();

//Some code after

CHaPTeR 4 FaCToRY MeTHod PaTTeRN

67
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_5

CHAPTER 5

Abstract Factory Pattern
This chapter covers the abstract factory pattern.

 GoF Definition
Provide an interface for creating families of related or dependent objects without

specifying their concrete classes.

Note To better understand this pattern, I suggest that you start at Chapter 24
(simple factory pattern) and then cover Chapter 4 (factory method pattern). The
simple factory pattern does not fall directly in the Gang of Four design patterns, so
the discussion on that pattern is placed in Part II of this book.

 Concept
This is basically a factory of factories that provides one level of higher abstraction

than the factory method pattern. This pattern helps us to interchange specific

implementations without changing the code that uses them, even at runtime.

This pattern provides a way to encapsulate a group of individual factories that have a

common theme. Here a class does not create the objects directly; instead, it delegates the

task to a factory object.

The simple factory method pattern creates a set of related objects. In a similar way,

since an abstract factory is basically a factory of factories, it returns factories that create a

set of related objects. (I discuss the differences in detail in the “Q&A Session” section.)

68

 Real-World Example
Suppose that we are decorating our room with two different tables: one made of wood

and one made of steel. For the wooden table, we need to visit to a carpenter, and for

the other table, we need to go to a metal shop. Both are table factories, so based on our

demand, we decide what kind of factory we need.

In this context, you may consider two different car manufacturing companies:

Honda and Ford. Honda makes models, such as CR-V, Jazz, Brio, and so forth. Ford

makes different models, such as Mustang, Figo, Aspire, and so forth. So, if you want to

purchase a Jazz, you must visit a Honda showroom, but if you prefer a Figo, you go to a

Ford showroom.

 Computer-World Example
To understand this pattern, I’ll extend the requirement in the factory method pattern.

In factory method pattern, we had two factories: one created dogs and the other created

tigers. But now, you want to categorize dogs and tigers further. You may choose a

domestic animal (dog or tiger) or a wild animal (dog or tiger) through these factories.

To fulfil that demand, I introduce two concrete factories: WildAnimalFactory and

PetAnimalFactory. The WildAnimalFactory is responsible for creating wild animals and

the PetAnimalFactory is responsible for creating domestic animals, or pets.

Note The newInstance() method of javax.xml.parsers.DocumentBuilderFactory
is an example of the abstract factory pattern in JDK. The newInstance() method
of javax.xml.transform.TransformerFactory is another such example in this context.
If you are familiar with C#, you may notice that ADO.NET has already implemented
similar concepts to establish a connection to a database.

 Illustration
Wikipedia describes a typical structure of the abstract factory pattern (https://

en.wikipedia.org/wiki/Abstract_factory_pattern), which is similar to what’s shown

in Figure 5-1.

ChAPTEr 5 ABsTrACT FACTOry PATTErN

69

I am going to follow a similar structure in our implementation. So, in the

following implementation, I used two concrete factories: WildAnimalFactory and

PetAnimalFactory. They are responsible for the creations of the concrete products, dogs

and tigers. WildAnimalFactory creates wild animals (wild dogs and wild tigers) and

PetAnimalFactory creates domesticated pet animals (pet dogs and pet tigers). For your

ready reference, the participants with their roles are summarized as follows.

• AnimalFactory: An interface that is treated as the abstract factory in

the following implementation.

• WildAnimalFactory: A concrete factory that implements

AnimalFactory interface. It creates wild dogs and wild tigers.

• PetAnimalFactory: Another concrete factory that implements the

AnimalFactory interface. It creates pet dogs and pet tigers.

• Tiger and Dog: Two interfaces that are treated as abstract products in

this example.

• PetTiger, PetDog, WildTiger, and WildDog: The concrete products in

the following implementation.

Figure 5-1. A typical example of an abstract factory pattern

ChAPTEr 5 ABsTrACT FACTOry PATTErN

70

Here the client code is looking for animals (dogs and tigers). A common usage of this

pattern is seen when we compose classes using the concrete instances of the abstract

factory. I have followed the same. Notice that the client class contains the composed

implementation of AnimalFactory. You can explore the construction process of both pet

and wild animals in the following implementation.

 Class Diagram
Figure 5-2 shows the class diagram.

Figure 5-2. Class diagram

ChAPTEr 5 ABsTrACT FACTOry PATTErN

71

 Package Explorer View
Figure 5-3 shows the high-level structure of the program.

Figure 5-3. Package Explorer view

ChAPTEr 5 ABsTrACT FACTOry PATTErN

72

 Implementation
Here’s the implementation.

package jdp2e.abstractfactory.demo;

interface Dog

{

 void speak();

 void preferredAction();

}

interface Tiger

{

 void speak();

 void preferredAction();

}

//Types of Dogs-wild dogs and pet dogs

class WildDog implements Dog

{

 @Override

 public void speak()

 {

 System.out.println("Wild Dog says loudly: Bow-Wow.");

 }

 @Override

 public void preferredAction()

 {

 System.out.println("Wild Dogs prefer to roam freely in

jungles.\n");

 }

}

class PetDog implements Dog

{

 @Override

 public void speak()

ChAPTEr 5 ABsTrACT FACTOry PATTErN

73

 {

 System.out.println("Pet Dog says softly: Bow-Wow.");

 }

 @Override

 public void preferredAction()

 {

 System.out.println("Pet Dogs prefer to stay at home.\n");

 }

}

//Types of Tigers-wild tigers and pet tigers

class WildTiger implements Tiger

{

 @Override

 public void speak()

 {

 System.out.println("Wild Tiger says loudly: Halum.");

 }

 @Override

 public void preferredAction()

 {

 System.out.println("Wild Tigers prefer hunting in jungles.\n");

 }

}

class PetTiger implements Tiger

{

 @Override

 public void speak()

 {

 System.out.println("Pet Tiger says softly: Halum.");

 }

ChAPTEr 5 ABsTrACT FACTOry PATTErN

74

 @Override

 public void preferredAction()

 {

 System.out.println("Pet Tigers play in the animal circus.\n");

 }

}

//Abstract Factory

interface AnimalFactory

{

 Dog createDog();

 Tiger createTiger();

}

//Concrete Factory-Wild Animal Factory

class WildAnimalFactory implements AnimalFactory

{

 @Override

 public Dog createDog()

 {

 return new WildDog();

 }

 @Override

 public Tiger createTiger()

 {

 return new WildTiger();

 }

}

//Concrete Factory-Pet Animal Factory

class PetAnimalFactory implements AnimalFactory

{

 @Override

 public Dog createDog()

 {

 return new PetDog();

 }

ChAPTEr 5 ABsTrACT FACTOry PATTErN

75

 @Override

 public Tiger createTiger()

 {

 return new PetTiger();

 }

}

//Client

class AbstractFactoryPatternExample {

 public static void main(String[] args) {

 AnimalFactory myAnimalFactory;

 Dog myDog;

 Tiger myTiger;

 System.out.println("***Abstract Factory Pattern Demo***\n");

 //Making a wild dog through WildAnimalFactory

 myAnimalFactory = new WildAnimalFactory();

 myDog = myAnimalFactory.createDog();

 myDog.speak();

 myDog.preferredAction();

 //Making a wild tiger through WildAnimalFactory

 myTiger = myAnimalFactory.createTiger();

 myTiger.speak();

 myTiger.preferredAction();

 System.out.println("******************");

 //Making a pet dog through PetAnimalFactory

 myAnimalFactory = new PetAnimalFactory();

 myDog = myAnimalFactory.createDog();

 myDog.speak();

 myDog.preferredAction();

 //Making a pet tiger through PetAnimalFactory

 myTiger = myAnimalFactory.createTiger();

 myTiger.speak();

 myTiger.preferredAction();

 }

}

ChAPTEr 5 ABsTrACT FACTOry PATTErN

76

 Output
Here’s the output.

Abstract Factory Pattern Demo

Wild Dog says loudly: Bow-Wow.

Wild Dogs prefer to roam freely in jungles.

Wild Tiger says loudly: Halum.

Wild Tigers prefer hunting in jungles.

Pet Dog says softly: Bow-Wow.

Pet Dogs prefer to stay at home.

Pet Tiger says softly: Halum.

Pet Tigers play in the animal circus.

 Q&A Session

 1. I am seeing that both the dog and the tiger interfaces
contain methods that have the same names (both interfaces
contain the speak() and the preferredAction() methods.
Is it mandatory?

No. You can use different names for your methods. Also, the

number of methods can be different in these interfaces. But I

covered a simple factory pattern and factory method pattern

in this book. You may be interested in the similarities or the

differences between them. So, I started with an example and

keep modifying it. This is why I kept both the speak() and

preferredAction() methods in this example. Notice that these

methods are used in both the simple factory pattern (see

Chapter 24) and the factory method pattern (see Chapter 4).

ChAPTEr 5 ABsTrACT FACTOry PATTErN

77

 2. What are the challenges of using an abstract factory like this?

• Any change in the abstract factory forces us to propagate

the modification of the concrete factories. If you follow the

design philosophy that says program to an interface, not to an

implementation, you need to prepare for this. This is one of the

key principles that developers always keep in mind. In most

scenarios, developers do not want to change their abstract

factories.

• The overall architecture may look complex. Also, debugging

becomes tricky in some scenarios.

 3. How can you distinguish a simple factory pattern from a
factory method pattern or an abstract factory pattern?

I discussed the differences between a simple factory pattern and

factory method pattern in the “Q&A Session” section of Chapter 4.

Let’s revise all three factories with the following diagrams.

 Simple Factory Pattern Code Snippet
Here’s the code snippet.

Animal preferredType=null;

SimpleFactory simpleFactory = new SimpleFactory();

// The code that will vary based on users preference.

preferredType = simpleFactory.createAnimal();

Figure 5-4 shows how to get animal objects in the Simple Factory pattern.

Figure 5-4. Simple factory pattern

ChAPTEr 5 ABsTrACT FACTOry PATTErN

78

 Factory Method Pattern Code Snippet
Here’s the code snippet.

// Creating a Tiger Factory

AnimalFactory tigerFactory =new TigerFactory();

// Creating a tiger using the Factory Method

Animal aTiger = tigerFactory.createAnimal();

//...Some code in between...

// Creating a DogFactory

AnimalFactory dogFactory = new DogFactory();

// Creating a dog using the Factory Method

Animal aDog = dogFactory.createAnimal();

Figure 5-5 shows how to get animal objects in the factory method pattern.

Figure 5-5. Factory method pattern

 Abstract Factory Pattern Code Snippet
Here’s the code snippet.

AnimalFactory myAnimalFactory;

Dog myDog;

Tiger myTiger;

System.out.println("***Abstract Factory Pattern Demo***\n");

//Making a wild dog through WildAnimalFactory

myAnimalFactory = new WildAnimalFactory();

myDog = myAnimalFactory.createDog();

ChAPTEr 5 ABsTrACT FACTOry PATTErN

79

//Making a wild tiger through WildAnimalFactory

myTiger = myAnimalFactory.createTiger();

//Making a pet dog through PetAnimalFactory

myAnimalFactory = new PetAnimalFactory();

myDog = myAnimalFactory.createDog();

//Making a pet tiger through PetAnimalFactory

myTiger = myAnimalFactory.createTiger();

myTiger.speak();

myTiger.preferredAction();

Figure 5-6 shows how to get animal objects in the abstract factory method pattern.

Figure 5-6. Abstract factory method pattern

 Conclusion
With simple factory, you can separate the code that varies from the rest of the code

(basically, you decouple the client codes). This approach helps you easily manage your

code. Another key advantage of this approach is that the client is unaware of how the

objects are created. So, it promotes both security and abstraction. But it can violate the

open-close principle.

ChAPTEr 5 ABsTrACT FACTOry PATTErN

80

You can overcome this drawback using the factory method pattern that allows subclasses to

decide how the instantiation process is completed. In other words, you delegate the objects

creation to the subclasses that implement the factory method to create objects.

The abstract factory is basically a factory of factories. It creates the family of related

objects but it does not depend on the concrete classes.

I tried to maintain simple examples that were close to each other. The factory method

promotes inheritance; their subclasses need to implement the factory method to create

objects. The abstract factory pattern promotes object composition, where you compose

classes using the concrete instances of an abstract factory.

Each of these factories promote loose coupling by reducing the dependencies on

concrete classes.

 4. In all of these factory examples, you avoid the use of
parameterized constructors. Was this intentional?

In many applications, you see the use of parameterised

constructors; many experts prefer this approach. But my focus

is purely on design, and so, I ignored the use of parameterised

constructors. But if you are a fan of parameterized constructors,

let’s modify the implementation slightly so that you can do the

same for the remaining parts.

 Modified Illustration
Let’s assume that you want your factories to initialize tigers with specified colors, and the

client can choose these colors.

Let’s modify the following pieces of code (changes are shown in bold).

 Modified Implementation
Here’s the modified implementation.

package jdp2e.abstractfactory.questions_answers;

interface Dog

{

 void speak();

 void preferredAction();

}

ChAPTEr 5 ABsTrACT FACTOry PATTErN

81

interface Tiger

{

 void speak();

 void preferredAction();

}

//Types of Dogs-wild dogs and pet dogs

class WildDog implements Dog

{

 @Override

 public void speak()

 {

 System.out.println("Wild Dog says loudly: Bow-Wow.");

 }

 @Override

 public void preferredAction()

 {

 System.out.println("Wild Dogs prefer to roam freely in

jungles.\n");

 }

}

class PetDog implements Dog

{

 @Override

 public void speak()

 {

 System.out.println("Pet Dog says softly: Bow-Wow.");

 }

 @Override

 public void preferredAction()

 {

 System.out.println("Pet Dogs prefer to stay at home.\n");

 }

}

ChAPTEr 5 ABsTrACT FACTOry PATTErN

82

//Types of Tigers-wild tigers and pet tigers

class WildTiger implements Tiger

{

 public WildTiger(String color)

 {

 System.out.println("A wild tiger with "+ color+ " is

created.");

 }

 @Override

 public void speak()

 {

 System.out.println("Wild Tiger says loudly: Halum.");

 }

 @Override

 public void preferredAction()

 {

 System.out.println("Wild Tigers prefer hunting in jungles.\n");

 }

}

class PetTiger implements Tiger

{

 public PetTiger(String color)

 {

 System.out.println("A pet tiger with "+ color+ " is created.");

 }

 @Override

 public void speak()

 {

 System.out.println("Pet Tiger says softly: Halum.");

 }

 @Override

 public void preferredAction()

ChAPTEr 5 ABsTrACT FACTOry PATTErN

83

 {

 System.out.println("Pet Tigers play in the animal circus.\n");

 }

}

//Abstract Factory

interface AnimalFactory

{

 Dog createDog();

 Tiger createTiger(String color);

}

//Concrete Factory-Wild Animal Factory

class WildAnimalFactory implements AnimalFactory

{

 @Override

 public Dog createDog()

 {

 return new WildDog();

 }

 @Override

 public Tiger createTiger(String color)

 {

 return new WildTiger(color);

 }

}

//Concrete Factory-Pet Animal Factory

class PetAnimalFactory implements AnimalFactory

{

 @Override

 public Dog createDog()

 {

 return new PetDog();

 }

 @Override

 public Tiger createTiger(String color)

ChAPTEr 5 ABsTrACT FACTOry PATTErN

84

 {

 return new PetTiger(color);

 }

}

//Client

class AbstractFactoryPatternModifiedExample {

 public static void main(String[] args) {

 AnimalFactory myAnimalFactory;

 Dog myDog;

 Tiger myTiger;

 System.out.println("***Abstract Factory Pattern Demo***\n");

 //Making a wild dog through WildAnimalFactory

 myAnimalFactory = new WildAnimalFactory();

 myDog = myAnimalFactory.createDog();

 myDog.speak();

 myDog.preferredAction();

 //Making a wild tiger through WildAnimalFactory

 //myTiger = myAnimalFactory.createTiger();

 myTiger = myAnimalFactory.createTiger("white and black stripes");

 myTiger.speak();

 myTiger.preferredAction();

 System.out.println("******************");

 //Making a pet dog through PetAnimalFactory

 myAnimalFactory = new PetAnimalFactory();

 myDog = myAnimalFactory.createDog();

 myDog.speak();

 myDog.preferredAction();

 //Making a pet tiger through PetAnimalFactory

 myTiger = myAnimalFactory.createTiger("golden and cinnamon

stripes");

 myTiger.speak();

 myTiger.preferredAction();

 }

}

ChAPTEr 5 ABsTrACT FACTOry PATTErN

85

 Modified Output
Here’s the modified output.

Abstract Factory Pattern Demo

Wild Dog says loudly: Bow-Wow.

Wild Dogs prefer to roam freely in jungles.

A wild tiger with white and black stripes is created.

Wild Tiger says loudly: Halum.

Wild Tigers prefer hunting in jungles.

Pet Dog says softly: Bow-Wow.

Pet Dogs prefer to stay at home.

A pet tiger with golden and cinnamon stripes is created.

Pet Tiger says softly: Halum.

Pet Tigers play in the animal circus.

ChAPTEr 5 ABsTrACT FACTOry PATTErN

87
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_6

CHAPTER 6

Proxy Pattern
This chapter covers the proxy pattern.

 GoF Definition
Provide a surrogate or placeholder for another object to control access to it.

 Concept
A proxy is basically a substitute for an intended object. Access to the original object is not

always possible due to many factors. For example, it is expensive to create, it is in need

of being secured, it resides in a remote location, and so forth. The proxy design pattern

helps us in similar contexts. When a client deals with a proxy object, it assumes that it

is talking to the actual object. So, in this pattern, you may want to use a class that can

perform as an interface to something else.

 Real-World Example
In a classroom, when a student is absent, his best friend may try to mimic his voice

during roll call to try to get attendance for his friend.

88

 Computer-World Example
In the programming world, to create multiple instances of a complex object (heavy

object) is costly . So, whenever you are in need, you can create multiple proxy

objects that point to the original object. This mechanism can also help save your

system/application memory. An ATM can implement this pattern to hold proxy objects

for bank information that may exist on a remote server.

Note In the java.lang.reflect package, you can have a Proxy class and an
InvocationHandler interface that supports a similar concept. The java.rmi.* package
also provides methods through which an object on one Java virtual machine can
invoke methods on an object that resides in a different Java virtual machine.

 Illustration
In the following program, I am calling the doSomework() method of the proxy object,

which in turn, calls the doSomework() method of an object of ConcreteSubject. When

clients see the output, they do not know that the proxy object does the trick.

 Class Diagram
Figure 6-1 shows the class diagram.

CHaPTer 6 Proxy PaTTern

89

 Package Explorer View
Figure 6-2 shows the high-level structure of the program.

Figure 6-1. Class diagram

CHaPTer 6 Proxy PaTTern

90

 Implementation
Here’s the implementation.

package jdp2e.proxy.demo;

// Abstract class Subject

abstract class Subject

{

 public abstract void doSomeWork();

}

// ConcreteSubject class

class ConcreteSubject extends Subject

{

 @Override

Figure 6-2. Package Explorer view

CHaPTer 6 Proxy PaTTern

91

 public void doSomeWork()

 {

 System.out.println("doSomeWork() inside ConcreteSubject is

invoked.");

 }

}

/**

 * Proxy Class: It will try to invoke the doSomeWork()

 * of a ConcreteSubject instance

 */

Class Proxy extends Subject

{

 static Subject cs;

 @Override

 public void doSomeWork()

 {

 System.out.println("Proxy call happening now...");

 //Lazy initialization:We'll not instantiate until the method is

//called

 if (cs == null)

 {

 cs = new ConcreteSubject();

 }

 cs.doSomeWork();

 }

}

/**

 * The client is talking to a ConcreteSubject instance

 * through a proxy method.

 */

CHaPTer 6 Proxy PaTTern

92

public class ProxyPatternExample {

 public static void main(String[] args) {

 System.out.println("***Proxy Pattern Demo***\n");

 Proxy px = new Proxy();

 px.doSomeWork();

 }

}

 Output
Here’s the output.

Proxy Pattern Demo

Proxy call happening now...

doSomeWork() inside ConcreteSubject is invoked.

 Q&A Session

 1. What are the different types of proxies?

These are the common types:

• Remote proxies. Hide the actual object that stays in a different

address space.

• Virtual proxies. Perform optimization techniques, such as the

creation of a heavy object on a demand basis.

• Protection proxies. Deal with different access rights.

• Smart reference. Performs additional housekeeping work when an

object is accessed by a client. A typical operation is counting the

number of references to the actual object at a particular moment.

CHaPTer 6 Proxy PaTTern

93

 2. You could create the ConcreteSubject instance in the proxy
class constructor, as follows.

class Proxy extends Subject

{

 static Subject cs;

 public Proxy()

 {

 //Instantiating inside the constructor

 cs = new ConcreteSubject();

 }

 @Override

 public void doSomeWork()

 {

 System.out.println("Proxy call happening now...");

 cs.doSomeWork();

 }

}

Is this correct?

Yes, you could do that. But if you follow this design, whenever you

instantiate a proxy object, you need to instantiate an object of the

ConcreteSubject class also. So, this process may end up creating

unnecessary objects. You can simply test this with the following

piece of code and the corresponding outputs.

 Alternate Implementation
Here’s the alternative implementation.

package jdp2e.proxy.questions_answers;

//Abstract class Subject

abstract class Subject

{

 public abstract void doSomeWork();

}

CHaPTer 6 Proxy PaTTern

94

//ConcreteSubject class

class ConcreteSubject extends Subject

{

 @Override

 public void doSomeWork()

 {

 System.out.println("doSomeWork() inside ConcreteSubject is

invoked");

 }

}

/**

 * Proxy Class

 * It will try to invoke the doSomeWork() of a ConcreteSubject instance *

 */

class Proxy extends Subject

{

 static Subject cs;

 static int count=0;//A counter to track the number of instances

 public Proxy()

 {

 //Instantiating inside the constructor

 cs = new ConcreteSubject();

 count ++;

 }

 @Override

 public void doSomeWork()

 {

 System.out.println("Proxy call happening now...");

 //Lazy initialization:We'll not instantiate until the method is

//called

 /*if (cs == null)

CHaPTer 6 Proxy PaTTern

95

 {

 cs = new ConcreteSubject();

 count ++;

 }*/

 cs.doSomeWork();

 }

}

/**

 * The client is talking to a ConcreteSubject instance

 * through a proxy method.

 */

public class ProxyPatternQuestionsAndAnswers {

 public static void main(String[] args) {

 System.out.println("***Proxy Pattern Demo without lazy

instantiation***\n");

 //System.out.println("***Proxy Pattern Demo with lazy

instantiation***\n");

 Proxy px = new Proxy();

 px.doSomeWork();

 //2nd proxy instance

 Proxy px2 = new Proxy();

 px2.doSomeWork();

 System.out.println("Instance Count="+Proxy.count);

 }

}

 Output Without Lazy Instantiation
Here’s the output.

Proxy Pattern Demo without lazy instantiation

Proxy call happening now...

doSomeWork() inside ConcreteSubject is invoked

CHaPTer 6 Proxy PaTTern

96

Proxy call happening now...

doSomeWork() inside ConcreteSubject is invoked

Instance Count=2

 Analysis
Notice that you have created two proxy instances.

Now, try our earlier approach with lazy instantiation. (Remove the proxy constructor and

uncomment the lazy instantiation stuffs).

 Output with Lazy Instantiation
Here’s the output.

Proxy Pattern Demo with lazy instantiation

Proxy call happening now...

doSomeWork() inside ConcreteSubject is invoked

Proxy call happening now...

doSomeWork() inside ConcreteSubject is invoked

Instance Count=1

 Analysis
Notice that you have created only one proxy instance this time.

 3. But in this lazy instantiation technique, you may create
unnecessary objects in a multithreaded application.
Is this correct?

Yes. In this book, I am presenting simple illustrations only, so

I have ignored that part. In the discussions on the singleton

pattern, I analyzed some alternative approaches to deal with

a multithreaded environment. You can always refer to those

discussions in situations like this. (For example, in this particular

scenario, you can implement a synchronization technique, or a

locking mechanism, or a smart proxy, and so forth to ensure that a

particular object is locked before you grant access to the object.)

CHaPTer 6 Proxy PaTTern

97

 4. Can you give an example of a remote proxy?

Suppose, you want to call a method of an object but the object is

running in a different address space (e.g., different locations or

different computers, etc.). How do you proceed? With the help

of remote proxies, you can call the method on the proxy object,

which in turn forwards the call to the actual object that is running

on the remote machine. This type of need can be realized through

well-known mechanisms like ASP.NET, CORBA, C#’s WCF

(version 3.0 onward), or Java’s RMI (Remote Method Invocation).

Figure 6-3 demonstrates a simple remote proxy structure.

Figure 6-3. A simple remote proxy diagram

 5. When can you use a virtual proxy?

It can be used to avoid multiple loadings of an extremely large

image.

 6. When can you use a protection proxy?

The security team in an organization can implement a protection

proxy to block Internet access to specific websites.

Consider the following example, which is basically a modified

version of the proxy pattern implementation described earlier.

For simplicity, let’s assume that at present, we have only three

registered users who can exercise the doSomeWork() proxy

method. Apart from them, if any other user (say, Robin) tries to

CHaPTer 6 Proxy PaTTern

98

invoke the method, the system will reject those attempts. You

must agree, when the system will reject this kind of unwanted

access; there is no point in making a proxy object. So, if you avoid

instantiating an object of ConcreteSubject in the Proxy class

constructor, you can easily avoid these kinds of additional objects

creation.

Now go through the modified implementation.

 Modified Package Explorer View
Figure 6-4 shows the modified high-level structure of the program.

Figure 6-4. Modified Package Explorer view

CHaPTer 6 Proxy PaTTern

99

 Modified Implementation
Here’s the modified implementation.

package jdp2e.proxy.modified.demo;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

//Abstract class Subject

abstract class Subject

{

 public abstract void doSomeWork();

}

//ConcreteSubject class

class ConcreteSubject extends Subject

{

 @Override

 public void doSomeWork()

 {

 System.out.println("doSomeWork() inside ConcreteSubject is

invoked.");

 }

}

/**

 * Proxy Class:It will try to invoke the doSomeWork()

 * of a ConcreteSubject instance

 */

class ModifiedProxy extends Subject

{

 static Subject cs;

 String currentUser;

 List<String> registeredUsers;

 //Or, simply create this mutable list in one step

CHaPTer 6 Proxy PaTTern

100

 /*List<String> registeredUsers=new ArrayList<String>(Arrays.asList(

"Admin","Rohit","Sam"));*/

 public ModifiedProxy(String currentUser)

 {

 //Registered users are Admin, Rohit and Sam only.

 registeredUsers = new ArrayList<String>();

 registeredUsers.add("Admin");

 registeredUsers.add("Rohit");

 registeredUsers.add("Sam");

 this.currentUser = currentUser;

 }

 @Override

 public void doSomeWork()

 {

 System.out.println("\n Proxy call happening now...");

 System.out.println(currentUser+" wants to invoke a proxy

method.");

 if (registeredUsers.contains(currentUser))

 {

 //Lazy initialization:We'll not instantiate until the

 //method is called

 if (cs == null)

 {

 cs = new ConcreteSubject();

 }

 //Allow the registered user to invoke the method

 cs.doSomeWork();

 }

 else

 {

 System.out.println("Sorry "+ currentUser+ " , you do

not have access rights.");

 }

 }

}

CHaPTer 6 Proxy PaTTern

101

/**

 * The client is talking to a ConcreteSubject instance

 * through a proxy method.

 */

public class ModifiedProxyPatternExample {

 public static void main(String[] args) {

 System.out.println("***Modified Proxy Pattern Demo***\n");

 //Admin is an authorized user

 ModifiedProxy px1 = new ModifiedProxy("Admin");

 px1.doSomeWork();

 //Robin is an unauthorized user

 ModifiedProxy px2 = new ModifiedProxy("Robin");

 px2.doSomeWork();

 }

}

 Modified Output
Here’s the modified output.

Modified Proxy Pattern Demo

Proxy call happening now...

Admin wants to invoke a proxy method.

doSomeWork() inside ConcreteSubject is invoked.

Proxy call happening now...

Robin wants to invoke a proxy method.

Sorry Robin, you do not have access rights.

CHaPTer 6 Proxy PaTTern

102

 7. Proxies act like decorators. Is this correct?

You can implement a protection proxy similar to decorators but

you should not forget the intent. Decorators focus on adding

responsibilities, but proxies focus on controlling the access to

an object. Proxies differ from each other with their types and

implementations. Also, in general, proxies work on the same

interface but decorators can work on extended interfaces. So, if

you can remember their purposes, in most cases, you can clearly

distinguish them from decorators.

 8. What are the cons associated with proxies?

If you are careful enough in your implementation, the pros are

much greater than the cons, but

• You can raise your concern about the response time. Since you

are not directly talking to the actual object, it is possible that the

response time through these proxies is longer.

• You need to maintain additional code for the proxies.

• A proxy can hide the actual responses from objects, which may

create confusion in special scenarios.

CHaPTer 6 Proxy PaTTern

103
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_7

CHAPTER 7

Decorator Pattern
This chapter covers the decorator pattern.

 GoF Definition
Attach additional responsibilities to an object dynamically. Decorators provide a flexible

alternative to subclassing for extending functionality.

 Concept
This pattern says that the class must be closed for modification but open for extension;

that is, a new functionality can be added without disturbing existing functionalities.

The concept is very useful when we want to add special functionalities to a specific

object instead of the whole class. In this pattern, we try to use the concept of object

composition instead of inheritance. So, when we master this technique, we can add new

responsibilities to an object without affecting the underlying classes.

 Real-World Example
Suppose you already own a house. Now you have decided to build an additional floor

on top of it. You may not want to change the architecture of the ground floor (or existing

floors), but you may want to change the design of the architecture for the newly added

floor without affecting the existing architecture.

104

Figure 7-1, Figure 7-2, and Figure 7-3 illustrate this concept.

Figure 7-1. Original house

Figure 7-2. Original house with a decorator (new structure is built on top of
original structure)

Chapter 7 DeCorator pattern

105

Note Case 3 is optional. You can use already a decorated object to enhance the
behavior in this way or you can create a new decorator object and put all the new
behavior in it.

 Computer-World Example
Suppose that in a GUI-based toolkit, we want to add some border properties. We can do

this with inheritance. But it cannot be treated as an ultimate solution because the user

cannot have absolute control over this creation from the beginning. So, the core choice is

static in this case.

Decorators comes into picture with a flexible approach. They promote the concept

of dynamic choices, for example, we can surround the component in another object. The

enclosing object is called a decorator. It must conform to the interface of the component

that it decorates. It forwards the requests to the component. It can perform additional

operations before or after the forwardings. An unlimited number of responsibilities can

be added with this concept.

Figure 7-3. Creating an additional decorator from an existing one (and painting
the house)

Chapter 7 DeCorator pattern

106

Note You can notice the use of the decorator pattern in the I/o streams
implementations in both .net Framework and Java. For example, the java.
io.BufferedoutputStream class can decorate any java.io.outputStream object.

 Illustration
Go through the following example. Here we never tried to modify the core makeHouse()

method. We have created two additional decorators: ConcreteDecoratorEx1 and

ConcreteDecoratorEx2 to serve our needs but we kept the original structure intact.

 Class Diagram
Figure 7-4 shows the class diagram for the illustration of the decorator pattern.

Figure 7-4. Class diagram

Chapter 7 DeCorator pattern

107

 Package Explorer View
Figure 7-5 shows the high-level structure of the program.

Figure 7-5. Package Explorer view

 Implementation
Here’s the implementation.

package jdp2e.decorator.demo;

abstract class Component

{

 public abstract void makeHouse();

}

class ConcreteComponent extends Component

{

Chapter 7 DeCorator pattern

108

 public void makeHouse()

 {

 System.out.println("Original House is complete. It is closed for

modification.");

 }

}

abstract class AbstractDecorator extends Component

{

 protected Component component ;

 public void setTheComponent(Component c)

 {

 component = c;

 }

 public void makeHouse()

 {

 if (component != null)

 {

 component.makeHouse();//Delegating the task

 }

 }

}

//A floor decorator

class FloorDecorator extends AbstractDecorator

{

 public void makeHouse()

 {

 super.makeHouse();

 //Decorating now.

 System.out.println("***Floor decorator is in action***");

 addFloor();

 /*You can put additional stuffs as per your need*/

 }

Chapter 7 DeCorator pattern

109

 private void addFloor()

 {

 System.out.println("I am making an additional floor on top

of it.");

 }

}

//A paint decorator

class PaintDecorator extends AbstractDecorator

{

 public void makeHouse()

 {

 super.makeHouse();

 //Decorating now.

 System.out.println("***Paint decorator is in action now***");

 paintTheHouse();

 //You can add additional stuffs as per your need

 }

 private void paintTheHouse()

 {

 System.out.println("Now I am painting the house.");

 }

}

public class DecoratorPatternExample {

 public static void main(String[] args) {

 System.out.println("***Decorator pattern Demo***\n");

 ConcreteComponent withoutDecorator = new ConcreteComponent();

 withoutDecorator.makeHouse();

 System.out.println("_________________");

 //Using a decorator to add floor

 System.out.println("Using a Floor decorator now.");

 FloorDecorator floorDecorator = new FloorDecorator();

 floorDecorator.setTheComponent(withoutDecorator);

Chapter 7 DeCorator pattern

110

 floorDecorator.makeHouse();

 System.out.println("_________________");

 //Using a decorator to add floor to original house and then

 //paint it.

 System.out.println("Using a Paint decorator now.");

 PaintDecorator paintDecorator = new PaintDecorator();

 //Adding results from floor decorator

 paintDecorator.setTheComponent(floorDecorator);

 paintDecorator.makeHouse();

 System.out.println("_________________");

 }

}

 Output
Here’s the output.

Decorator pattern Demo

Original House is complete. It is closed for modification.

Using a Floor decorator now.

Original House is complete. It is closed for modification.

Floor decorator is in action

I am making an additional floor on top of it.

Using a Paint decorator now.

Original House is complete. It is closed for modification.

Floor decorator is in action

I am making an additional floor on top of it.

Paint decorator is in action now

Now I am painting the house.

Chapter 7 DeCorator pattern

111

 Q&A Session

 1. Can you explain how composition is promoting a dynamic
behavior that inheritance cannot?

We know that when a derived class inherits from a parent class, it

inherits the behavior of the base class at that time only. Though

different subclasses can extend the base/parent class in different

ways, this type of binding is known in compile-time, so the

choice is static in nature. But the way that you used the concept

of composition in the example lets you experiment with dynamic

behavior.

When we design a parent class, we may not have enough visibility

about what kind of additional responsibilities our clients may want

in later phases. And our constraint is that we should not modify

the existing code frequently. In such a case, object composition

not only outclasses inheritances, it also ensures that we are not

introducing bugs to the existing architecture.

Lastly, in this context, you must remember one of the key design

principles: Classes should be open for extension but closed for

modification.

 2. What are the key advantages of using a decorator?

• The existing structure is untouched, so that you are not

introducing bugs there.

• New functionalities can be easily added to an existing object.

• You do not need to predict/implement all the supported

functionalities at the initial design phase. You can develop

incrementally (e.g., add decorator objects one by one to support

incremental needs). You must acknowledge the fact that if

you make a complex class first, and then you try to extend the

functionalities, it will be a tedious process.

Chapter 7 DeCorator pattern

112

 3. How is the overall design pattern different from inheritance?

You can add or remove responsibilities by simply attaching or

detaching decorators. But with a simple inheritance mechanism,

you need to create a new class for the new responsibilities. So, it is

possible that you may end up with a complex system.

Consider the example again. Suppose that you want to add a

new floor, paint the house, and do some extra work. To fulfill this

need, you start with decorator2 because it is already providing the

support to add a floor to the existing architecture, and then you

can paint it. So, you can add a simple wrapper to complete those

additional responsibilities.

But if you start with inheritance from the beginning, then you

may have multiple subclasses (e.g., one for adding a floor, one for

painting the house). Figure 7-6 shows hierarchical inheritance.

Figure 7-6. A hierarchical inheritance

If you need an additional painted floor with extra features, you

may end up with a design like the one shown in Figure 7-7.

Chapter 7 DeCorator pattern

113

Now you feel the heat of the diamond effect because in many

programming languages including Java, multiple parent classes

are not allowed.

In this context, even if you consider multilevel inheritance, you

discover that overall the inheritance mechanism is much more

challenging and time-consuming than the decorator pattern, and

it may promote duplicate code in your application. Lastly, you

must remember that inheritance mechanism is promoting only

compile-time binding (not the dynamic binding).

 4. Why can’t multilevel inheritance score higher in the previous
context?

Let’s assume that the Paint class is derived from Additional Floor,

which in turn is derived from the Core Architecture. Now if your

client wants to paint the house without creating an additional

floor, the decorator pattern surely outclasses the inheritance

mechanism because you can simply add a decorator to the

existing system that supports the paint only.

Figure 7-7. A class (Extra Features) needs to inherit from multiple base classes

Chapter 7 DeCorator pattern

114

 5. Why are you creating a class with a single responsibility? You
could make a subclass that can simply add a floor and then
paint. In that case, you end up with fewer subclasses. Is this
understanding correct?

If you are familiar with SOLID principles, you know that there

is a principle called single responsibility. The idea behind

this principle is that each class should have a responsibility

over a single part of the functionality in the software. The

decorator pattern is very much effective when you use the single

responsibility principle because you can simply add/remove

responsibilities dynamically.

 6. What are the disadvantages associated with this pattern?

I believe that if you are careful enough, there is no significant

disadvantage. But you must be aware of the fact that if you create

too many decorators in the system, it will be hard to maintain and

debug. So, in that case, it can create unnecessary confusion.

 7. In the example, there is no abstract method in the
AbstractDecorator class. How is this possible?

In Java, you can have an abstract class without any abstract

method in it, but the reverse is not true; that is, if a class contains

at least one abstract method, then the class itself is incomplete

and you are forced to mark it with the abstract keyword.

Let’s revisit the AbstractDecorator class in the comment shown

in bold.

abstract class AbstractDecorator extends Component

{

 protected Component component ;

 public void setTheComponent(Component c)

 {

 component = c;

 }

Chapter 7 DeCorator pattern

115

 public void makeHouse()

 {

 if (component != null)

 {

 component.makeHouse();//Delegating the task

 }

 }

}

You can see that I am delegating the task to a concrete decorator

because I want to use and instantiate the concrete decorators

only.

Also, in this example, you cannot simply instantiate an

AbstractDecorator instance because it is marked with the

abstract keyword.

The following line creates the Cannot instantiate the type

AbstractDecorator compilation error.

AbstractDecorator abstractDecorator = new AbstractDecorator();

 8. In your example, instead of using concrete decorators, you
could use the concept of polymorphism in the following way to
generate the same output.

System.out.println("Using a Floor decorator now.");

//FloorDecorator floorDecorator = new FloorDecorator();

AbstractDecorator floorDecorator = new FloorDecorator();

floorDecorator.setTheComponent(withoutDecorator);

floorDecorator.makeHouse();

//Using a decorator to add floor to original house and then paint

//it.

System.out.println("Using a Paint decorator now.");

Chapter 7 DeCorator pattern

116

//PaintDecorator paintDecorator = new PaintDecorator();

AbstractDecorator paintDecorator = new PaintDecorator();

//Adding results from decorator1

paintDecorator.setTheComponent(floorDecorator);

paintDecorator.makeHouse();

System.out.println("_________________");

Is this correct?

Yes.

 9. Is it mandatory to use decorators for dynamic binding only?

No. You can use both static and dynamic binding. But dynamic

binding is its strength, so I concentrated on it. You may notice that

the GoF definition also focused on dynamic binding only.

 10. You are using decorators to wrap your core architecture. Is this
correct?

Yes. The decorators are wrapper code to extend the core

functionalities of the application. But the core architecture is

untouched when you use them.

Chapter 7 DeCorator pattern

117
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_8

CHAPTER 8

Adapter Pattern
This chapter covers the adapter pattern.

 GoF Definition
Convert the interface of a class into another interface that clients expect. Adapter lets

classes work together that could not otherwise because of incompatible interfaces.

 Concept
The core concept is best described by the following examples.

 Real-World Example
A very common use of this pattern can be seen in an electrical outlet adapter/AC

power adapter in international travels. These adapters act as a middleman when an

electronic device (let’s say, a laptop) that accepts a US power supply can be plugged

into a European power outlet. Consider another example. Suppose that you need to

charge your mobile phone, but you see that the switchboard is not compatible with your

charger. In this case, you may need to use an adapter. Or, a translator who is translating

language for someone can be considered following this pattern in real life.

Now you can imagine a situation where you need to plug in an application into an

adapter (which is X-shaped in this example) to use the intended interface. Without using

this adapter, you cannot properly join the application and the interface.

118

Figure 8-1 shows the case before using an adapter.

Figure 8-1. Before using an adapter

Figure 8-2. After using an adapter

Figure 8-2 shows the case after using an adapter.

 Computer-World Example
Suppose that you have an application that can be broadly classified into two parts: user

interface (UI or front end) and database (back end). Through the user interface, clients

can pass a specific type of data or objects. Your database is compatible with those objects

and can store them smoothly. Over a period of time, you may feel that you need to

upgrade your software to make your clients happy. So, you may want to allow new type

of objects to pass through the UI. But in this case, the first resistance comes from your

Chapter 8 adapter pattern

119

database because it cannot store these new types of objects. In such a situation, you can

use an adapter that takes care of the conversion of the new objects to a compatible form

that your old database can accept.

Note In Java, you can consider the java.io.InputStreamreader class and the
java.io.OutputStreamWriter class as examples of object adapters. they adapt an
existing InputStream/OutputStream object to a reader/Writer interface. You will
learn about class adapters and object adapters shortly.

 Illustration
A simple use of this pattern is described in the following example.

In this example, you can easily calculate the area of a rectangle. If you notice the

Calculator class and its getArea() method, you understand that you need to supply a

rectangle object in the getArea() method to calculate the area of the rectangle. Now

suppose that you want to calculate the area of a triangle, but your constraint is that you

want to get the area of it through the getArea()method of the Calculator class. So how

can you achieve that?

To deal with this type of problem, I made CalculatorAdapter for the Triangle class

and passed a triangle in its getArea() method. In turn, the method treats the triangle

like a rectangle and calculates the area from the getArea() method of the Calculator

class.

Chapter 8 adapter pattern

120

 Class Diagram
Figure 8-3 shows the class diagram.

Figure 8-3. Class diagram

 Package Explorer View
Figure 8-4 shows the high-level structure of the program.

Chapter 8 adapter pattern

121

 Implementation
package jdp2e.adapter.demo;

class Rectangle

{

 public double length;

 public double width;

}

class Calculator

{

 public double getArea(Rectangle rect)

 {

 return rect.length * rect.width;

 }

}

Figure 8-4. Package Explorer view

Chapter 8 adapter pattern

122

class Triangle

{

 public double base;//base

 public double height;//height

 public Triangle(int b, int h)

 {

 this.base = b;

 this.height = h;

 }

}

class CalculatorAdapter

{

 public double getArea(Triangle triangle)

 {

 Calculator c = new Calculator();

 Rectangle rect = new Rectangle();

 //Area of Triangle=0.5*base*height

 rect.length = triangle.base;

 rect.width = 0.5 * triangle.height;

 return c.getArea(rect);

 }

}

class AdapterPatternExample {

 public static void main(String[] args) {

 System.out.println("***Adapter Pattern Demo***\n");

 CalculatorAdapter calculatorAdapter = new CalculatorAdapter();

 Triangle t = new Triangle(20,10);

 System.out.println("Area of Triangle is " + calculatorAdapter.

getArea(t) + " Square unit");

 }

}

Chapter 8 adapter pattern

123

 Output
Here’s the output.

Adapter Pattern Demo

Area of Triangle is 100.0 Square unit

 Modified Illustration
You have just seen a very simple example of the adapter design pattern. But if you

want to strictly follow object-oriented design principles, you may want to modify the

implementation because you have learned that instead of using concrete classes, you

should always prefer to use interfaces. So, keeping this key principle in mind, let’s modify

the implementation.

 Modified Class Diagram

Chapter 8 adapter pattern

124

 Key Characteristics of the Modified Implementation
The following are the key characteristics of the modified implementation.

• The Rectangle class is implementing RectInterface and the

calculateAreaOfRectangle() method helps calculate the area of a

rectangle object.

• The Triangle class implements TriInterface and the

calculateAreaOfTriangle() method helps calculate the area of a

triangle object.

• But the constraint is that you need to calculate the area of the triangle

using the RectInterface (or, you can simply say that your existing

system needs to adapt the triangle objects). To serve this purpose,

I introduced an adapter(TriangleAdapter), which interacts with the

RectInterface interface.

• Neither the rectangle nor the triangle code needs to change. You are

simply using the adapter because it implements the RectInterface

interface, and using a RectInterface method, you can easily compute

the area of a triangle. This is because I am overriding the interface

method to delegate to the corresponding method of the class

(Triangle) that I am adapting from.

• Notice that getArea(RectInterface) method does not know that

through TriangleAdapter, it is actually processing a Triangle object

instead of a Rectangle object.

• Notice another important fact and usage. Suppose that in a

specific case, you need to play with some rectangle objects

that have an area of 200 square units, but you do not have a

sufficient number of such objects. But you notice that you have

Chapter 8 adapter pattern

125

triangle objects whose area are 100 square units. So, using this

pattern, you can adapt some of those triangle objects. How?

Well, if you look carefully, you find that when using the adapter’s

calculateAreaOfRectangle() method, you are actually invoking

calculateAreaOfTriangle() of a Triangle object (i.e., you

are delegating the corresponding method of the class you are

adapting from). So, you can modify (override) the method body as

you need (e.g., in this case, you could multiply the triangle area by

2.0 to get an area of 200 square units (just like a rectangle object

with length 20 units and breadth 10 units).

This technique can help you in a scenario where you may need to

deal with objects that are not exactly same but are very similar. In

the last part of the client code, I have shown such a usage where

the application displays current objects in the system using an

enhanced for loop (which was introduced in Java 5.0).

Note In the context of the last point, you must agree that you should not make
an attempt to convert a circle to a rectangle (or similar type of conversion) to get
an area because they are totally different. But in this example, I am talking about
triangles and rectangles because they have some similarities and the areas can be
computed easily with minor changes.

Chapter 8 adapter pattern

126

Figure 8-5. Modified Package Explorer view

 Modified Package Explorer View
Figure 8-5 shows the structure of the modified program.

Chapter 8 adapter pattern

127

 Modified Implementation
This is the modified implementation.

package jdp2e.adapter.modified.demo;

import java.util.ArrayList;

import java.util.List;

interface RectInterface

{

 void aboutRectangle();

 double calculateAreaOfRectangle();

}

class Rectangle implements RectInterface

{

 public double length;

 public double width;

 public Rectangle(double length, double width)

 {

 this.length = length;

 this.width = width;

 }

 @Override

 public void aboutRectangle()

 {

 System.out.println("Rectangle object with length: "+ this.length +"

unit and width :" +this.width+ " unit.");

 }

 @Override

 public double calculateAreaOfRectangle()

 {

 return length * width;

 }

}

Chapter 8 adapter pattern

128

interface TriInterface

{

 void aboutTriangle();

 double calculateAreaOfTriangle();

}

class Triangle implements TriInterface

{

 public double base;//base

 public double height;//height

 public Triangle(double base, double height)

 {

 this.base = base;

 this.height = height;

 }

 @Override

 public void aboutTriangle() {

 System.out.println("Triangle object with base: "+ this.base +" unit

and height :" +this.height+ " unit.");

 }

 @Override

 public double calculateAreaOfTriangle() {

 return 0.5 * base * height;

 }

}

/*TriangleAdapter is implementing RectInterface.

 So, it needs to implement all the methods defined

in the target interface.*/

class TriangleAdapter implements RectInterface

{

 Triangle triangle;

 public TriangleAdapter(Triangle t)

 {

 this.triangle = t;

 }

Chapter 8 adapter pattern

129

 @Override

 public void aboutRectangle() {

 triangle.aboutTriangle();

 }

 @Override

 public double calculateAreaOfRectangle() {

 return triangle.calculateAreaOfTriangle();

 }

}

class ModifiedAdapterPatternExample {

 public static void main(String[] args) {

 System.out.println("***Adapter Pattern Modified Demo***\n");

 Rectangle rectangle = new Rectangle(20, 10);

 System.out.println("Area of Rectangle is : "+ rectangle.

calculateAreaOfRectangle()+" Square unit.");

 Triangle triangle = new Triangle(10,5);

 System.out.println("Area of Triangle is : "+triangle.

calculateAreaOfTriangle()+ " Square unit.");

 RectInterface adapter = new TriangleAdapter(triangle);

 //Passing a Triangle instead of a Rectangle

 System.out.println("Area of Triangle using the triangle adapter is

: "+getArea(adapter)+" Square unit.");

 //Some Additional code (Optional) to show the power of adapter

 //pattern

 List<RectInterface> rectangleObjects=new ArrayList<RectInterfa

ce>();

 rectangleObjects.add(rectangle);

 //rectangleObjects.add(triangle);//Error

 rectangleObjects.add(adapter);//Ok

 System.out.println("");

 System.out.println("*****Current objects in the system

are:******");

Chapter 8 adapter pattern

130

 for(RectInterface rectObjects:rectangleObjects)

 {

 rectObjects.aboutRectangle();

 }

 }

 /*getArea(RectInterface r) method does not know that through

TriangleAdapter, it is getting a Triangle object instead of a

Rectangle object*/

 static double getArea(RectInterface r)

 {

 return r.calculateAreaOfRectangle();

 }

}

 Modified Output
This is the modified output.

Adapter Pattern Modified Demo

Area of Rectangle is : 200.0 Square unit.

Area of Triangle is : 25.0 Square unit.

Area of Triangle using the triangle adapter is : 25.0 Square unit.

*****Current objects in the system are:******

Rectangle object with length: 20.0 unit and width :10.0 unit.

Triangle object with base: 10.0 unit and height :5.0 unit.

 Types of Adapters
GoF explains two types of adapters: class adapters and object adapters.

 Object Adapters

Object adapters adapt through object compositions, as shown in Figure 8-6. The adapter

discussed so far is an example of an object adapter.

Chapter 8 adapter pattern

131

In our example, TriangleAdapter is the adapter that implements the RectInterface

(Target interface). Triangle is the Adaptee interface. The adapter holds the adaptee

instance.

Note So, if you follow the body of the triangleadapter class, you can conclude
that to create an object adapter, you need to follow these general guidelines:

(1) Your class needs to implement the target interface (adapting to interface). If the
target is an abstract class, you need to extend it.

(2) Mention the class that you are adapting from in the constructor and store a
reference to it in an instance variable.

(3) Override the interface methods to delegate the corresponding methods of the
class you are adapting from.

 Class Adapters

Class adapters adapt through subclassing. They are the promoters of multiple

inheritance. But you know that in Java, multiple inheritance through classes is not

supported. (You need interfaces to implement the concept of multiple inheritance.)

Figure 8-7 shows the typical class diagram for class adapters, which support multiple

inheritance.

Figure 8-6. A typical object adapter

Chapter 8 adapter pattern

132

 Q&A Session

 1. How can you implement class adapter design patterns in Java?

You can subclass an existing class and implement the desired

interface. For example, if you want to use a class adapter instead

of an object adapter in the modified implementation, then you

can use the following code.

class TriangleClassAdapter extends Triangle implements

RectInterface

{

 public TriangleClassAdapter(double base, double height) {

 super(base, height);

 }

 @Override

 public void aboutRectangle()

 {

 aboutTriangle();

 }

 @Override

Figure 8-7. A typical class adapter

Chapter 8 adapter pattern

133

 public double calculateAreaOfRectangle()

 {

 return calculateAreaOfTriangle();

 }

}

But note that you cannot always apply this approach. For example,

consider when the Triangle class is a final class (so, you cannot

derive from it). Apart from this case , you will be blocked again when

you notice that you need to adapt a method that is not specified in

the interface. So, in cases like this, object adapters are useful.

 2. “Apart from this case, you will be blocked again when you
notice that you need to adapt a method that is not specified in
the interface.” What do you mean by this?

In the modified implementation, you have used the

aboutRectangle() and aboutTriangle() methods.These

methods are actually telling about the objects of the Rectangle

and Triangle classes. Now, say, instead of aboutTriangle() , there

is a method called aboutMe(), which is doing the same but there

is no such method in the RectInterface interface. Then it will be a

challenging task for you to adapt the aboutMe() method from the

Triangle class and write code similar to this:

for(RectInterface rectObjects:rectangleObjects)

{

 rectObjects.aboutMe();

}

 3. Which do you prefer—class adapters or object adapters?

In most cases, I prefer compositions over inheritance. Object

adapters use compositions and are more flexible. Also, in

many cases, you may not implement a true class adapter. (In

this context, you may go through the answers to the previous

questions again.)

Chapter 8 adapter pattern

134

 4. What are the drawbacks associated with this pattern?

I do not see any big challenges. I believe that you can make an

adapter’s job simple and straightforward, but you may need to

write some additional code. But the payoff is great—particularly

for those legacy systems that cannot be changed but you still need

to use them for their stability.

At the same time, experts suggest that you do not use different

types of validations or add a new behavior to the adapter. Ideally,

the job of an adaptar should be limited to only performing simple

interface translations.

Chapter 8 adapter pattern

135
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_9

CHAPTER 9

Facade Pattern
This chapter covers the facade pattern.

 GoF Definition
Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-

level interface that makes the subsystem easier to use.

 Concept
Facades make a client’s life easier. Suppose that there is a complex system where

multiple objects need to perform a series of tasks, and you need to interact with the

system. In a situation like this, facade can provide you a simplified interface that takes

care of everything (the creation of those objects, providing the correct sequence of tasks,

etc.). As a result, instead of interacting with multiple objects in a complicated way, you

just interact with a single object.

It is one of those patterns that supports loose coupling. Here you emphasize the

abstraction and hide the complex details by exposing a simple interface. As a result, the

code becomes clearer and more attractive.

 Real-World Example
Suppose that you are going to organize a birthday party, and you plan to invite 500

people. Nowadays, you can go to any party organizer and let them know the key

information—party type, the date and time, number of attendees, and so forth. The

organizer does the rest for you. You do not need to think about how the hall will be

136

decorated, whether attendees will get their food from a buffet table or be served by the

caterer, and so forth. So, you do not need to buy items from the store or decorate the

party hall yourself—you just pay the organizer and let them do the job properly.

 Computer-World Example
Think about a situation where you use a method from a library (in the context of a

programming language). You do not care how the method is implemented in the library.

You just call the method to experiment the easy usage of it.

Note You can use the concept of facade design pattern effectively to make
your JDBC application attractive. You can consider the java.net.URL class
as an example of a facade pattern implementation.Consider the shorthand
openStream() or getContent() methods in this class. The openStream() method
returns openConnection().getInputStream() and the getContent() method returns
openConnection.getContent().The getInputStream() and getContent() methods are
further defined in the URLConnection class.

 Illustration
In the following implementation, you create some robots, and later, you destroy those

objects. (The word “destroy” is not used in the context of garbage collection in this

example). Here you can construct or destroy a particular kind of robot by invoking

simple methods like constructMilanoRobot() and destroyMilanoRobot() of the

RobotFacade class.

From a client’s point of view, he/she needs to interact only with the facade (see

FacadePatternExample.java). RobotFacade is taking full responsibility in creating or

destroying a particular kind of robot. This facade is talking to each of the subsystems

(RobotHands, RobotBody, RobotColor) to fulfill the client’s request. The RobotBody

class includes two simple static methods that provide instructions prior to the creation

or destruction of a robot.

So, in this implementation, the clients do not need to worry about the creation of the

separate classes and the calling sequence of the methods.

ChapTeR 9 FaCaDe paTTeRn

137

 Class Diagram
Figure 9-1 shows the class diagram.

Figure 9-1. Class diagram

ChapTeR 9 FaCaDe paTTeRn

138

 Package Explorer View
Figure 9-2 shows the high-level structure of the program.

Figure 9-2. Package Explorer view

ChapTeR 9 FaCaDe paTTeRn

139

 Implementation
Here’s the implementation.

// RobotBody.java

package jdp2e.facade.demo;

public class RobotBody

{

 //Instruction manual -how to create a robot

 public static void createRobot()

 {

 System.out.println(" Refer the manual before creation of a

robot.");

 }

 //Method to create hands of a robot

 public void createHands()

 {

 System.out.println(" Hands manufactured.");

 }

 //Method to create remaining parts (other than hands) of a robot

 public void createRemainingParts()

 {

 System.out.println(" Remaining parts (other than hands) are

created.");

 }

 //Instruction manual -how to destroy a robot

 public static void destroyRobot()

 {

 System.out.println(" Refer the manual before destroying of a robot.");

 }

 //Method to destroy hands of a robot

 public void destroyHands()

 {

 System.out.println(" The robot's hands are destroyed.");

 }

ChapTeR 9 FaCaDe paTTeRn

140

 //Method to destroy remaining parts (other than hands) of a robot

 public void destroyRemainingParts()

 {

 System.out.println(" The robot's remaining parts are destroyed.");

 }

}

//RobotColor.java

package jdp2e.facade.demo;

public class RobotColor

{

 public void setDefaultColor()

 {

 System.out.println(" This is steel color robot.");

 }

 public void setGreenColor()

 {

 System.out.println(" This is a green color robot.");

 }

}

// RobotHands.java

package jdp2e.facade.demo;

public class RobotHands

{

 public void setMilanoHands()

 {

 System.out.println(" The robot will have EH1 Milano hands.");

 }

 public void setRobonautHands()

 {

 System.out.println(" The robot will have Robonaut hands.");

 }

ChapTeR 9 FaCaDe paTTeRn

141

 public void resetMilanoHands()

 {

 System.out.println(" EH1 Milano hands are about to be destroyed.");

 }

 public void resetRobonautHands()

 {

 System.out.println(" Robonaut hands are about to be destroyed.");

 }

}

// RobotFacade.java

package jdp2e.facade.demo;

public class RobotFacade

{

 RobotColor rColor;

 RobotHands rHands ;

 RobotBody rBody;

 public RobotFacade()

 {

 rColor = new RobotColor();

 rHands = new RobotHands();

 rBody = new RobotBody();

 }

 //Constructing a Milano Robot

 public void constructMilanoRobot()

 {

 RobotBody.createRobot();

 System.out.println("Creation of a Milano Robot Start.");

 rColor.setDefaultColor();

 rHands.setMilanoHands();

 rBody.createHands();

 rBody.createRemainingParts();

 System.out.println(" Milano Robot Creation End.");

 System.out.println();

 }

ChapTeR 9 FaCaDe paTTeRn

142

 //Constructing a Robonaut Robot

 public void constructRobonautRobot()

 {

 RobotBody.createRobot();

 System.out.println("Initiating the creational process of a Robonaut

Robot.");

 rColor.setGreenColor();

 rHands.setRobonautHands();

 rBody.createHands();

 rBody.createRemainingParts();

 System.out.println("A Robonaut Robot is created.");

 System.out.println();

 }

 //Destroying a Milano Robot

 public void destroyMilanoRobot()

 {

 RobotBody.destroyRobot();

 System.out.println(" Milano Robot's destruction process is

started.");

 rHands.resetMilanoHands();

 rBody.destroyHands();

 rBody.destroyRemainingParts();

 System.out.println(" Milano Robot's destruction process is over.");

 System.out.println();

 }

 //Destroying a Robonaut Robot

 public void destroyRobonautRobot()

 {

 RobotBody.destroyRobot();

 System.out.println(" Initiating a Robonaut Robot's destruction

process.");

 rHands.resetRobonautHands();

 rBody.destroyHands();

 rBody.destroyRemainingParts();

 System.out.println(" A Robonaut Robot is destroyed.");

ChapTeR 9 FaCaDe paTTeRn

143

 System.out.println();

 }

}

//Client code

//FacadePatternExample.java

package jdp2e.facade.demo;

public class FacadePatternExample {

 public static void main(String[] args) {

 System.out.println("***Facade Pattern Demo***\n");

 //Creating Robots

 RobotFacade milanoRobotFacade = new RobotFacade();

 milanoRobotFacade.constructMilanoRobot();

 RobotFacade robonautRobotFacade = new RobotFacade();

 robonautRobotFacade.constructRobonautRobot();

 //Destroying robots

 milanoRobotFacade.destroyMilanoRobot();

 robonautRobotFacade.destroyRobonautRobot();

 }

}

 Output
Here’s the output.

Facade Pattern Demo

 Refer the manual before creation of a robot.

Creation of a Milano Robot Start.

 This is steel color robot.

 The robot will have EH1 Milano hands.

 Hands manufactured.

 Remaining parts (other than hands) are created.

 Milano Robot Creation End.

ChapTeR 9 FaCaDe paTTeRn

144

 Refer the manual before creation of a robot.

Initiating the creational process of a Robonaut Robot.

 This is a green color robot.

 The robot will have Robonaut hands.

 Hands manufactured.

 Remaining parts (other than hands) are created.

A Robonaut Robot is created.

 Refer the manual before destroying of a robot.

 Milano Robot's destruction process is started.

 EH1 Milano hands are about to be destroyed.

 The robot's hands are destroyed.

 The robot's remaining parts are destroyed.

 Milano Robot's destruction process is over.

 Refer the manual before destroying of a robot.

 Initiating a Robonaut Robot's destruction process.

 Robonaut hands are about to be destroyed.

 The robot's hands are destroyed.

 The robot's remaining parts are destroyed.

 A Robonaut Robot is destroyed.

 Q&A Session

 1. What are key advantages of using a facade pattern?

• If a system consists of many subsystems, managing all those

subsystems becomes very tough and clients may find their

life difficult to communicate separately with each of these

subsystems. In this scenario, facade patterns are very much

handy. It provides a simple interface to clients. In simple words,

instead of presenting complex subsystems, you present one

simplified interface to clients. This approach also promotes weak

coupling by separating a client from the subsystems.

• It can also help you to reduce the number of objects that a client

needs to deal with.

ChapTeR 9 FaCaDe paTTeRn

145

 2. I see that the facade class is using compositions. Is this
intentional?

Yes. With this approach, you can easily access the methods in each

subsystem.

 3. It appears to me that facades do not restrict us to directly
connect with subsystems. Is this understanding correct?

Yes. A facade does not encapsulate the subsystem classes or

interfaces. It just provides a simple interface (or layer) to make

your life easier. You are free to expose any functionality of the

subsystem, but in those cases, your code may look dirty, and at the

same time, you lose all the benefits associated with this pattern.

 4. How is it different from adapter design pattern?

In the adapter pattern, you try to alter an interface so that the

clients do not feel the difference between the interfaces. The

facade pattern simplifies the interface. They present the client a

simple interface to interact with (instead of a complex subsystem).

 5. There should be only one facade for a complex subsystem. Is
this correct?

Not at all. You can create any number of facades for a particular

subsystem.

 6. Can I add more stuffs/logic with a facade?

Yes, you can.

 7. What are the challenges associated with a facade pattern?

• Subsystems are connected with the facade layer. So, you need

to take care of an additional layer of coding (i.e., your codebase

increases).

• When the internal structure of a subsystem changes, you need to

incorporate the changes in the facade layer also.

• Developers need to learn about this new layer, whereas some of

them may already be aware of how to use the subsystems/APIs

efficiently.

ChapTeR 9 FaCaDe paTTeRn

146

 8. How is it different from the mediator design pattern?

In a mediator pattern implementation, subsystems are aware of

the mediator. They talk to each other. But in a facade, subsystems

are not aware of the facade and the one-way communication is

provided from facade to the subsystem(s). (The mediator pattern

is discussed in Chapter 21 of this book).

 9. It appears to me that to implement a facade pattern, I have to
write lots of code. Is this understanding correct?

Not at all. It depends on the system and corresponding

functionalities. For example, in the preceding implementation, if

you consider only one type of robot (either Milano or Robonaut),

and if you do not want to provide the destruction mechanism

of robots, and if you want to ignore the instruction manuals

(two static methods in this example), your code size will drop

significantly. I have kept all of these for complete illustration

purposes.

ChapTeR 9 FaCaDe paTTeRn

147
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_10

CHAPTER 10

Flyweight Pattern
This chapter covers the flyweight pattern.

 GoF Definition
Use sharing to support large numbers of fine-grained objects efficiently.

 Concept
In their famous book Design Patterns: Elements of Reusable Object-Oriented Software

(Addison-Wesley, 1995), the Gang of Four (GoF) wrote about flyweights as follows:

A flyweight is a shared object that can be used in multiple contexts simulta-
neously. The flyweight acts as an independent object in each context—it’s
indistinguishable from an instance of the object that’s not shared. Flyweights
cannot make assumptions about the context in which they operate.

When you consider flyweight pattern, you need to remember following points:

• The pattern is useful when you need a large number of similar

objects that are unique in terms of only a few parameters and most of

the stuffs are common in general.

• A flyweight is an object. It tries to minimize memory usage by sharing

data as much as possible with other similar objects. Sharing objects

may allow their usage at fine granularities with minimum costs.

• Two common terms are used in this context: extrinsic and intrinsic.

An intrinsic state is stored/shared in the flyweight object, and it is

independent of flyweight’s context. On the other hand, an extrinsic

148

state varies with flyweight’s context, which is why they cannot be

shared. Client objects maintain the extrinsic state, and they need

to pass this to a flyweight. Note that, if required, clients can also

compute the extrinsic state on the fly when using flyweights.

• Experts suggest that while implementing this pattern, we should

make intrinsic states immutable.

 Real-World Example
Suppose that you have pen. You can replace different refills to write with different colors.

So, a pen without refills is considered as a flyweight with intrinsic data, and a pen with

refills is considered as extrinsic data.

Consider another example. Suppose that a company needs to print visiting cards

for its employees. So, where does the process start? The company can create a common

template with the company logo, address, and so forth (intrinsic), and later it adds each

employee’s particular contact information (extrinsic) on the cards.

 Computer-World Example
Suppose that you want to make a website where different users can compile and execute

the programs with their preferred computer languages, such as Java, C++, C#, and so forth.

If you need to set up a unique environment for each individual user within a short period

of time, your site will overload and the response time of the server will become so slow

that no one will be interested in using your site. So, instead of creating a new programming

environment for every user, you can make a common programming environment (which

supports different programming language with/without minor changes) among them. And

to check the existing/available programming environment and to make decisions whether

you need to create a new one or not, you can maintain a factory.

Consider another example. Suppose that in a computer game, you have large

number of participants whose core structures are same, but their appearances vary (e.g.,

different states, colors, weapons, etc.) Therefore, assume that if you need to create (or

store) all of these objects with all of these variations/states, the memory requirement

will be huge. So, instead of storing all of these objects, you can design your application

in such way that you create these instances with common properties (flyweights with

Chapter 10 Flyweight pattern

149

intrinsic state) and your client object maintains all of these variations (extrinsic states).

If you can successfully implement this concept, you can claim that you have followed the

flyweight design pattern in your application.

Another common use of this pattern is seen in the graphical representation of

characters in a word processor.

Note in Java, you may notice the use of this pattern when you use the wrapper
classes, such as java.lang.integer, java.lang.Short, java.lang.Byte, and java.lang.
Character, where the static method valueof() replicates a factory method. (it is
worth remembering that some of the wrapper classes, such as java.lang.Double
and java.lang.Float, do not follow this pattern.) the String pool is another example
of a flyweight.

 Illustration
In the following example, I used three different types of objects: small, large, and fixed-

size robots. These robots have two states: “robotTypeCreated” and “color”. The first one

can be shared among “similar” objects, so it is an intrinsic state. The second one (color)

is supplied by the client and it varies with the context. So, it is an extrinsic state in this

example.

For the fixed-size robots, it does not matter which color is supplied by the client. For

these robots, I am ignoring the extrinsic state, so you can conclude that these fixed-size

robots are representing unshared flyweights.

In this implementation, the robotFactory class caches these flyweights and provides

a method to get them.

Lastly, these objects are similar. So, once a particular robot is created, you do not

want to repeat the process from scratch. Instead, the next time onward, you will try to

use these flyweights to serve your needs. Now go through the code with the comments

for your ready reference.

Chapter 10 Flyweight pattern

150

 Class Diagram
Figure 10-1 shows the class diagram.

Figure 10-1. Class diagram

 Package Explorer View
Figure 10-2 shows the high-level structure of the program.

Chapter 10 Flyweight pattern

151

 Implementation
Here’s the implementation.

package jdp2e.flyweight.demo;

import java.util.Map;

import java.util.HashMap;

import java.util.Random;

Figure 10-2. Package Explorer view

Chapter 10 Flyweight pattern

152

interface Robot

{

 //Color comes from client.It is extrinsic.

 void showMe(String color);

}

//A shared flyweight implementation

class SmallRobot implements Robot

{

 /*

 * Intrinsic state.

 * It is not supplied by client.

 * So, it is independent of the flyweight’s context.

 * This can be shared across.

 * These data are often immutable.

 */

 private final String robotTypeCreated;

 public SmallRobot()

 {

 robotTypeCreated="A small robot created";

 System.out.print(robotTypeCreated);

 }

 @Override

 public void showMe(String color)

 {

 System.out.print(" with " +color + " color");

 }

}

//A shared flyweight implementation

class LargeRobot implements Robot

{

 /*

 * Intrinsic state.

 * It is not supplied by client.

 * So, it is independent of the flyweight’s context.

 * This can be shared across.

Chapter 10 Flyweight pattern

153

 * These data are often immutable.

 */

 private final String robotTypeCreated;

 public LargeRobot()

 {

 robotTypeCreated="A large robot created";

 System.out.print(robotTypeCreated);

 }

 @Override

 public void showMe(String color)

 {

 System.out.print(" with " + color + " color");

 }

}

//An unshared flyweight implementation

class FixedSizeRobot implements Robot

{

 /*

 * Intrinsic state.

 * It is not supplied by client.

 * So, it is independent of the flyweight’s context.

 * This can be shared acorss.

 */

 private final String robotTypeCreated;

 public FixedSizeRobot()

 {

 robotTypeCreated="A robot with a fixed size created";

 System.out.print(robotTypeCreated);

 }

 @Override

 //Ingoring the extrinsic state argument

 //Since it is an unshared flyweight

Chapter 10 Flyweight pattern

154

 public void showMe(String color)

 {

 System.out.print(" with " + " blue (default) color");

 }

}

class RobotFactory

{

 static Map<String, Robot> robotFactory = new HashMap<String, Robot>();

 public int totalObjectsCreated()

 {

 return robotFactory.size();

 }

 public static synchronized Robot getRobotFromFactory(String robotType)

throws Exception

 {

 Robot robotCategory = robotFactory.get(robotType);

 if(robotCategory==null)

 {

 switch (robotType)

 {

 case "small":

 System.out.println("We do not have Small Robot at present.

So we are creating a small robot now.") ;

 robotCategory = new SmallRobot();

 break;

 case "large":

 System.out.println("We do not have Large Robot at present.

So we are creating a large robot now.");

 robotCategory = new LargeRobot();

 break;

 case "fixed":

 System.out.println("We do not have fixed size at present.

So we are creating a fixed size robot now.");

Chapter 10 Flyweight pattern

155

 robotCategory = new FixedSizeRobot();

 break;

 default:

 throw new Exception(" Robot Factory can create only small

,large or fixed size robots");

 }

 robotFactory.put(robotType,robotCategory);

 }

 else

 {

 System.out.print("\n \t Using existing "+ robotType +" robot

and coloring it");

 }

 return robotCategory;

 }

}

public class FlyweightPatternExample {

 public static void main(String[] args) throws Exception {

 RobotFactory robotFactory = new RobotFactory();

 System.out.println("\n***Flyweight Pattern Example ***\n");

 Robot myRobot;

 //Here we are trying to get 3 Small type robots

 for (int i = 0; i < 3; i++)

 {

 myRobot = RobotFactory.getRobotFromFactory("small");

 /*

 Not required to add sleep().But it is included to

 increase the probability of getting a new random number

 to see the variations in the output.

 */

 Thread.sleep(1000);

 //The extrinsic property color is supplied by the client code.

 myRobot.showMe(getRandomColor());

 }

Chapter 10 Flyweight pattern

156

 int numOfDistinctRobots = robotFactory.totalObjectsCreated();

 System.out.println("\n Till now, total no of distinct robot objects

created: " + numOfDistinctRobots);

 //Here we are trying to get 5 Large type robots

 for (int i = 0; i < 5; i++)

 {

 myRobot = RobotFactory.getRobotFromFactory("large");

 /*

 Not required to add sleep().But it is included to

 increase the probability of getting a new random number

 to see the variations in the output.

 */

 Thread.sleep(1000);

 //The extrinsic property color is supplied by the client code.

 myRobot.showMe(getRandomColor());

 }

 numOfDistinctRobots = robotFactory.totalObjectsCreated();

 System.out.println("\n Till now, total no of distinct robot objects

created: " + numOfDistinctRobots);

 //Here we are trying to get 4 fixed sizerobots

 for (int i = 0; i < 4; i++)

 {

 myRobot = RobotFactory.getRobotFromFactory("fixed");

 /*

 Not required to add sleep().But it is included to

 increase the probability of getting a new random number

 to see the variations in the output.

 */

 Thread.sleep(1000);

 //The extrinsic property color is supplied by the client code.

 myRobot.showMe(getRandomColor());

 }

 numOfDistinctRobots = robotFactory.totalObjectsCreated();

Chapter 10 Flyweight pattern

157

 System.out.println("\n Till now, total no of distinct robot objects

created: " + numOfDistinctRobots);

 }

 static String getRandomColor()

 {

 Random r = new Random();

 /* I am simply checking the random number generated that can be

either an even number or an odd number. And based on that we are

choosing the color. For simplicity, I am using only two colors-red

and green

 */

 int random = r.nextInt();

 if (random % 2 == 0)

 {

 return "red";

 }

 else

 {

 return "green";

 }

 }

}

 Output
Here’s the first run output.

***Flyweight Pattern Example ***

We do not have Small Robot at present.So we are creating a small robot now.

A small robot created with green color

 Using existing small robot and coloring it with green color

 Using existing small robot and coloring it with red color

Chapter 10 Flyweight pattern

158

 Till now, total no of distinct robot objects created: 1

We do not have Large Robot at present.So we are creating a large robot now.

A large robot created with green color

 Using existing large robot and coloring it with red color

 Using existing large robot and coloring it with green color

 Using existing large robot and coloring it with green color

 Using existing large robot and coloring it with green color

 Till now, total no of distinct robot objects created: 2

We do not have fixed size at present.So we are creating a fixed size robot

now.

A robot with a fixed size created with blue (default) color

 Using existing fixed robot and coloring it with blue (default) color

 Using existing fixed robot and coloring it with blue (default) color

 Using existing fixed robot and coloring it with blue (default) color

 Till now, total no of distinct robot objects created: 3

Here’s the second run output.

***Flyweight Pattern Example ***

We do not have Small Robot at present.So we are creating a small robot now.

A small robot created with red color

 Using existing small robot and coloring it with green color

 Using existing small robot and coloring it with green color

 Till now, total no of distinct robot objects created: 1

We do not have Large Robot at present.So we are creating a large robot now.

A large robot created with red color

 Using existing large robot and coloring it with green color

 Using existing large robot and coloring it with green color

 Using existing large robot and coloring it with red color

 Using existing large robot and coloring it with green color

 Till now, total no of distinct robot objects created: 2

We do not have fixed size at present.So we are creating a fixed size robot

now.

A robot with a fixed size created with blue (default) color

 Using existing fixed robot and coloring it with blue (default) color

Chapter 10 Flyweight pattern

159

 Using existing fixed robot and coloring it with blue (default) color

 Using existing fixed robot and coloring it with blue (default) color

 Till now, total no of distinct robot objects created: 3

 Analysis
• The output varies because in this implementation, I am choosing

color at random.

• The fixed-size robot’s color never changes because the extrinsic state

(color) is ignored to represent an unshared flyweight.

• The client needed to play with 12 robots (3 small, 5 large, 4 fixed-size)

but these demands are served by only three distinct template objects

(one from each category) and these were configured on the fly.

 Q&A Session

 1. I notice some similarities between a singleton pattern and
a flyweight pattern. Can you highlight the key differences
between them?

The singleton pattern helps you maintain only one required object

in the system. In other words, once the required object is created,

you cannot create more. You need to reuse the existing object.

The flyweight pattern is generally concerned about a large

number of similar (which can be heavy) objects, because they

may occupy big blocks of memory. So, you try to create a smaller

set of template objects that can be configured on the fly to

complete the creation of the heavy objects. These smaller and

configurable objects are called flyweights. You can reuse them

in your application to appear that you have many large objects.

This approach helps you reduce the consumption of big chunks

of memory. Basically, flyweights make one look like many. This

is why the GoF tells us: A flyweight is a shared object that can be

Chapter 10 Flyweight pattern

160

used in multiple contexts simultaneously. The flyweight acts as an

independent object in each context — it’s indistinguishable from an

instance of the object that’s not shared.

Figure 10-3 visualizes the core concepts of the flyweight pattern

before using flyweights.

Figure 10-3. Before using flyweights

Figure 10-4. After using flyweights

Figure 10-4 shows the design after using flyweights.

Chapter 10 Flyweight pattern

161

In Figure 10-4, you can see that

• Heavy Object 1 = Flyweight Object (shared) + Configuration 1

(extrinsic and not shared)

• Heavy Object 2 = Flyweight Object(shared) + Configuration 2

(extrinsic and not shared)

By combining the intrinsic and extrinsic states, the flyweight

objects provide the complete functionality.

 2. Can you observe any impact due to multithreading?

If you are creating objects with new operators in a multithreaded

environment, you may end up with multiple unwanted objects

(similar to singleton patterns). The remedy is similar to the way

you handle multithreaded environment in a singleton pattern.

 3. What are the advantages of using flyweight design patterns?

• You can reduce memory consumptions of heavy objects that can

be controlled identically.

• You can reduce the total number of “complete but similar

objects” in the system.

• You can provide a centralized mechanism to control the states of

many “virtual” objects.

 4. What are the challenges associated with using flyweight design
patterns?

• In this pattern, you need to take the time to configure these

flyweights. The configuration time can impact the overall

performance of the application.

• To create flyweights, you extract a common template class from

the existing objects. This additional layer of programming can be

tricky and sometimes hard to debug and maintain.

• You can see that logical instances of a class cannot behave

differently from other instances.

Chapter 10 Flyweight pattern

162

• The flyweight pattern is often combined with singleton factory

implementation and to guard the singularity, additional cost is

required (e.g., you may opt for a synchronized method or double-

checked locking, but each of them are costly operations).

 5. Can I have non-shareable flyweight interface?

Yes. A flyweight interface does not enforce that it needs to always

be shareable. In some cases, you may have non-shareable

flyweights with concrete flyweight objects as children. In our

example, you saw the use of non-shareable flyweights using fixed-

size robots.

 6. Since intrinsic data of flyweights are the same, I can share
them. Is this correct?

Yes.

 7. How do clients handle the extrinsic data of these flyweights?

They need to pass the information (states) to the flyweights.

Clients either manage the data or compute them on the fly.

 8. Extrinsic data is not shareable. Is this correct?

Yes.

 9. You said that I should try to make intrinsic states immutable.
How can I achieve that?

Yes, for thread safety and security, experts suggest that you

implement that. In this case, it is already implemented. In Java,

you must remember that String objects are inherently immutable.

Also, you may notice that in the concrete flyweights (SmallRobot,

LargeRobot, FixedSizeRobot), there are no setter methods to set/

modify the value of robotTypeCreated. When you supply the data

only through a constructor and there are no setter methods, you

are following an approach that promotes immutability.

Chapter 10 Flyweight pattern

163

 10. You have tagged the final keyword with the intrinsic state
robotTypeCreated to achieve immutability. Is this correct?

You need to remember that final and immutability are not

synonymous. In the context of design patterns, the word

immutability generally means that once created, you cannot

change the state of the object. Although the keyword final can be

applied to a class, a method, or a field, the aim is different.

The final field can help you construct a thread-safe immutable

object without synchronization, and it provides safety in a

multithreaded environment. So, I used it in this example.

The concept is described in detail in the article at https://

docs.oracle.com/javase/specs/jls/se7/html/jls-17.

html#jls-17.5-110.

 11. The getRobotFromFactory() method is synchronized here to
provide thread safety. Is this understanding correct?

Exactly. In a single-threaded environment, it is not required.

 12. The getRobotFromFactory() method is static here. Is that
mandatory?

No. You can implement a non-static factory method also. You may

often notice the presence of a singleton factory with flyweight

pattern implementations.

 13. What is the role of “RobotFactory” in this implementation?

It caches flyweights and provides a method to get them. In this

example, there are many objects that can be shared. So, storing

them in a central place is always a good idea.

Chapter 10 Flyweight pattern

165
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_11

CHAPTER 11

Composite Pattern
This chapter covers the composite pattern.

 GoF Definition
Compose objects into tree structures to represent part-whole hierarchies. Composite

lets clients treat individual objects and compositions of objects uniformly.

 Concept
To help you understand this concept, I will start with an example. Consider a shop that

sells different kinds of dry fruits and nuts; let’s say cashews, dates, and walnuts. Each of

these items is associated with a certain price. Let’s assume that you can purchase any

of these individual items or you can purchase “gift packs” (or boxed items) that contain

different items. In this case, the cost of a packet is the sum of its component parts. The

composite pattern is useful in a similar situation, where you treat both the individual

parts and the combination of the parts in the same way so that you can process them

uniformly.

This pattern is useful to represent part-whole hierarchies of objects. In object-

oriented programming, a composite is an object with a composition of one-or-more

similar objects, where each of these objects has similar functionalities. (This is also

known as a “has-a” relationship among objects). The usage of this pattern is very

common in a tree-like data structure. If you can apply it properly, you do not need to

discriminate between a branch and the leaf-nodes. You can achieve two key goals with

this pattern.

166

• You can compose objects into a tree structure to represent a part-

whole hierarchy.

• You can access both the composite objects (branches) and the

individual objects (leaf-nodes) uniformly. As a result, you can

reduce the complexity of codes and at the same time, you make your

application less error prone.

 Real-World Example
You can also think of an organization that consists of many departments. In general, an

organization has many employees. Some of these employees are grouped together to

form a department, and those departments can be further grouped together to build the

final structure of the organization.

 Computer-World Example
Any tree data structure can follow this concept. Clients can treat the leaves of the tree and

the non-leaves (or branches of the tree) in the same way.

Note This pattern is commonly seen in various UI frameworks. In Java, the
generic Abstract Window Toolkit (AWT) container object is a component that
can contain other AWT components. For example, in java.awt.Container class
(which extends java.awt.Component) you can see various overloaded version of
add(Component comp) method. In JSF, UIViewRoot class acts like a composite
node and UIOutput acts like a leaf node. When you traverse a tree, you often use
the iterator design pattern, which is covered in Chapter 18.

 Illustration
In this example, I am representing a college organization. Let’s assume that there is a

principal and two heads of departments—one for computer science and engineering

(CSE) and one for mathematics (Maths). In the Maths department, there are two

ChApTeR 11 COmpOSITe pATTeRn

167

teachers (or professors/lecturers), and in the CSE department, there are three teachers

(or professors/lecturers). The tree structure for this organization is similar to Figure 11-1.

Figure 11-1. A sample college organization

Let’s also assume that at the end, one lecturer from the CSE department retires.

You’ll examine all of these cases in the following sections.

 Class Diagram
Figure 11-2 shows the class diagram.

ChApTeR 11 COmpOSITe pATTeRn

168

 Package Explorer View
Figure 11-3 shows the high-level structure of the program.

Figure 11-2. Class diagram

ChApTeR 11 COmpOSITe pATTeRn

169

 Implementation
Here is the implementation.

package jdp2e.composite.demo;

import java.util.ArrayList;

import java.util.List;

Figure 11-3. Package Explorer view

ChApTeR 11 COmpOSITe pATTeRn

170

interface IEmployee

{

 void printStructures();

 int getEmployeeCount();

}

class CompositeEmployee implements IEmployee

{

 //private static int employeeCount=0;

 private int employeeCount=0;

 private String name;

 private String dept;

 //The container for child objects

 private List<IEmployee> controls;

 //Constructor

 public CompositeEmployee(String name, String dept)

 {

 this.name = name;

 this.dept = dept;

 controls = new ArrayList<IEmployee>();

 }

 public void addEmployee(IEmployee e)

 {

 controls.add(e);

 }

 public void removeEmployee(IEmployee e)

 {

 controls.remove(e);

 }

 @Override

 public void printStructures()

 {

 System.out.println("\t" + this.name + " works in " + this.dept);

 for(IEmployee e: controls)

ChApTeR 11 COmpOSITe pATTeRn

171

 {

 e.printStructures();

 }

 }

 @Override

 public int getEmployeeCount()

 {

 employeeCount=controls.size();

 for(IEmployee e: controls)

 {

 employeeCount+=e.getEmployeeCount();

 }

 return employeeCount;

 }

}

class Employee implements IEmployee

{

 private String name;

 private String dept;

 private int employeeCount=0;

 //Constructor

 public Employee(String name, String dept)

 {

 this.name = name;

 this.dept = dept;

 }

 @Override

 public void printStructures()

 {

 System.out.println("\t\t"+this.name + " works in " + this.dept);

 }

 @Override

ChApTeR 11 COmpOSITe pATTeRn

172

 public int getEmployeeCount()

 {

 return employeeCount;//0

 }

}

class CompositePatternExample {

 /**Principal is on top of college.

 *HOD -Maths and Comp. Sc directly reports to him

 *Teachers of Computer Sc. directly reports to HOD-CSE

 *Teachers of Mathematics directly reports to HOD-Maths

 */

 public static void main(String[] args) {

 System.out.println("***Composite Pattern Demo ***");

 //2 teachers other than HOD works in Mathematics department

 Employee mathTeacher1 = new Employee("Math Teacher-1","Maths");

 Employee mathTeacher2 = new Employee("Math Teacher-2","Maths");

 //teachers other than HOD works in Computer Sc. Department

 Employee cseTeacher1 = new Employee("CSE Teacher-1", "Computer Sc.");

 Employee cseTeacher2 = new Employee("CSE Teacher-2", "Computer Sc.");

 Employee cseTeacher3 = new Employee("CSE Teacher-3", "Computer Sc.");

 //The College has 2 Head of Departments-One from Mathematics, One

//from Computer Sc.

 CompositeEmployee hodMaths = new CompositeEmployee("Mrs.S.Das(HOD-

Maths)","Maths");

 CompositeEmployee hodCompSc = new CompositeEmployee(

"Mr. V.Sarcar(HOD-CSE)", "Computer Sc.");

 //Principal of the college

 CompositeEmployee principal = new CompositeEmployee("Dr.S.Som

(Principal)","Planning-Supervising-Managing");

 //Teachers of Mathematics directly reports to HOD-Maths

 hodMaths.addEmployee(mathTeacher1);

 hodMaths.addEmployee(mathTeacher2);

ChApTeR 11 COmpOSITe pATTeRn

173

 //Teachers of Computer Sc. directly reports to HOD-CSE

 hodCompSc.addEmployee(cseTeacher1);

 hodCompSc.addEmployee(cseTeacher2);

 hodCompSc.addEmployee(cseTeacher3);

 /*Principal is on top of college.HOD -Maths and Comp. Sc directly

reports to him*/

 principal.addEmployee(hodMaths);

 principal.addEmployee(hodCompSc);

 /*Printing the leaf-nodes and branches in the same way i.e.

 in each case, we are calling PrintStructures() method

 */

 System.out.println("\n Testing the structure of a Principal

object");

 //Prints the complete structure

 principal.printStructures();

 System.out.println("At present Principal has control over "+

principal.getEmployeeCount()+ " number of employees.");

 System.out.println("\n Testing the structure of a HOD-CSE

object:");

 //Prints the details of Computer Sc, department

 hodCompSc.printStructures();

 System.out.println("At present HOD-CSE has control over "+

hodCompSc.getEmployeeCount()+ " number of employees.");

 System.out.println("\n Testing the structure of a HOD-Maths

object:");

 //Prints the details of Mathematics department

 hodMaths.printStructures();

 System.out.println("At present HOD-Maths has control over "+

hodMaths.getEmployeeCount()+ " number of employees.");

ChApTeR 11 COmpOSITe pATTeRn

174

 //Leaf node

 System.out.println("\n Testing the structure of a leaf node:");

 mathTeacher1.printStructures();

 System.out.println("At present Math Teacher-1 has control over "+

mathTeacher1.getEmployeeCount()+ " number of employees.");

 /*Suppose, one computer teacher is leaving now

 from the organization*/

 hodCompSc.removeEmployee(cseTeacher2);

 System.out.println("\n After CSE Teacher-2 resigned, the

organization has following members:");

 principal.printStructures();

 System.out.println("At present Principal has control over "+

principal.getEmployeeCount()+ " number of employees");

 System.out.println("At present HOD-CSE has control over "+

hodCompSc.getEmployeeCount()+ " number of employees");

 System.out.println("At present HOD-Maths has control over "+

hodMaths.getEmployeeCount()+ " number of employees");

 }

}

 Output
Here is the output. The key changes are shown in bold.

***Composite Pattern Demo ***

 Testing the structure of a Principal object

 Dr.S.Som(Principal) works in Planning-Supervising-Managing

 Mrs.S.Das(HOD-Maths) works in Maths

 Math Teacher-1 works in Maths

 Math Teacher-2 works in Maths

 Mr. V.Sarcar(HOD-CSE) works in Computer Sc.

 CSE Teacher-1 works in Computer Sc.

 CSE Teacher-2 works in Computer Sc.

 CSE Teacher-3 works in Computer Sc.

ChApTeR 11 COmpOSITe pATTeRn

175

At present Principal has control over 7 number of employees.

 Testing the structure of a HOD-CSE object:

 Mr. V.Sarcar(HOD-CSE) works in Computer Sc.

 CSE Teacher-1 works in Computer Sc.

 CSE Teacher-2 works in Computer Sc.

 CSE Teacher-3 works in Computer Sc.

At present HOD-CSE has control over 3 number of employees.

 Testing the structure of a HOD-Maths object:

 Mrs.S.Das(HOD-Maths) works in Maths

 Math Teacher-1 works in Maths

 Math Teacher-2 works in Maths

At present HOD-Maths has control over 2 number of employees.

 Testing the structure of a leaf node:

 Math Teacher-1 works in Maths

At present Math Teacher-1 has control over 0 number of employees.

 After CSE Teacher-2 resigned, the organization has following members:

 Dr.S.Som(Principal) works in Planning-Supervising-Managing

 Mrs.S.Das(HOD-Maths) works in Maths

 Math Teacher-1 works in Maths

 Math Teacher-2 works in Maths

 Mr. V.Sarcar(HOD-CSE) works in Computer Sc.

 CSE Teacher-1 works in Computer Sc.

 CSE Teacher-3 works in Computer Sc.

At present Principal has control over 6 number of employees

At present HOD-CSE has control over 2 number of employees

At present HOD-Maths has control over 2 number of employees

ChApTeR 11 COmpOSITe pATTeRn

176

 Q&A Session

 1. What are the advantages of using composite design patterns?

• In a tree-like structure, you can treat both the composite objects

(branches) and the individual objects (leaf-nodes) uniformly.

Notice that in this example, I have used two common methods:

printStructures() and getEmployeeCount() to print the

structure and get the employee count from both the composite

object structure (principal or HODs) and the single object

structure (i.e., leaf nodes like Math Teacher 1.)

• It is very common to implement a part-whole hierarchy using this

design pattern.

• You can easily add a new component to an existing architecture

or delete an existing component from your architecture.

 2. What are the challenges associated with using composite
design patterns?

• If you want to maintain the ordering of child nodes (e.g., if parse

trees are represented as components), you may need to use

additional efforts.

• If you are dealing with immutable objects, you cannot simply

delete those.

• You can easily add a new component but that kind of support can

cause maintenance overhead in the future. Sometimes, you want

to deal with a composite object that has special components.

This kind of constraint can cause additional development

costs because you may need to implement a dynamic checking

mechanism to support the concept.

 3. In this example, you have used list data structure. But I prefer
to use other data structures. Is this okay?

Absolutely. There is no universal rule. You are free to use your

preferred data structure. GoF confirmed that it is not necessary to

use any general-purpose data structure.

ChApTeR 11 COmpOSITe pATTeRn

177

 4. How can you connect the iterator design pattern to a composite
design pattern?

Go through our example once again. If you want to examine

composite object architecture, you may need to iterate over the

objects. In other words, if you want to do special activities with

branches, you may need to iterate over its leaf nodes and non-leaf

nodes. Iterator patterns are often used with composite patterns.

 5. In the interface of your implementation, you defined only two
methods: printStructures() and getEmployeeCount(). But
you are using other methods for the addition and removal of
objects in the Composite class (CompositeEmployee). Why
didn’t you put these methods in the interface?

Nice observation. GoF discussed this. Let’s look at what happens if

you put the addEmployee (…) and removeEmployee (…) methods

in the interface. The leaf nodes need to implement the addition

and removal operations. But will it be meaningful in this case? The

obvious answer is no. It may appear that you lose transparency,

but I believe that you have more safety because I have blocked

the meaningless operations in the leaf nodes. This is why the GoF

mentioned that this kind of decision involves a trade-off between

safety and transparency.

 6. I want to use an abstract class instead of an interface. Is this
allowed?

In most of the cases, the simple answer is yes. But you need to

understand the difference between an abstract class and an

interface. In a typical scenario, you find one of them more useful

than the other one. Since I am presenting only simple and easy to

understand examples, you may not see much difference between

the two. Particularly in this example, if I use the abstract class

instead of the interface, I may put a default implementation of

getEmployeeCount() in the abstract class definition. Although you

can still argue that with Java’s default keyword, you could achieve

the same, as in the following:

ChApTeR 11 COmpOSITe pATTeRn

178

interface IEmployee

{

 void printStructures();

 //int getEmployeeCount();

 default public int getEmployeeCount()

 {

 return 0;

 }

}

Note In the Q&A session of the builder pattern (see Chapter 3), I discussed how
to decide between an abstract class and an interface.

ChApTeR 11 COmpOSITe pATTeRn

179
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_12

CHAPTER 12

Bridge Pattern
This chapter covers the bridge pattern.

 GoF Definition
Decouple an abstraction from its implementation so that the two can vary

independently.

 Concept
This pattern is also known as the handle/body pattern, in which you separate an

implementation from its abstraction and build separate inheritance structures for them.

Finally, you connect them through a bridge.

You must note that the abstraction and the implementation can be represented

either through an interface or an abstract class, but the abstraction contains a reference

to its implementer. Normally, a child of an abstraction is called a refined abstraction and

a child of an implementation is called a concrete implementation.

This bridge interface makes the functionality of concrete classes independent from

the interface implementer classes. You can alter different kinds of classes structurally

without affecting each other.

 Real-World Example
In a software product development company, the development team and the marketing

team both play a crucial role. Marketing teams do market surveys and gather customers’

needs, which may vary depending on the nature of the customers. Development

teams implement those requirements in their products to fulfill the customers’ needs.

180

Any change (e.g., in the operational strategy) in one team should not have a direct

impact on the other team. Also, when new requirements come from the customer side,

it should not change the way that developers work in their organization. In a software

organization, the marketing team plays the role of the bridge between the clients and the

development team.

 Computer-World Example
GUI frameworks can use the bridge pattern to separate abstractions from platform-

specific implementation. For example, using this pattern, it can separate a window

abstraction from a window implementation for Linux or macOS.

Note In Java, you may notice the use of JDBC, which provides a bridge
between your application and a particular database. For example, the java.sql.
DriverManager class and the java.sql.Driver interface can form a bridge pattern
where the first one plays the role of abstraction and the second one plays the role
of implementor. The concrete implementors are com.mysql.jdbc.Driver or oracle.
jdbc.driver.OracleDriver, and so forth.

 Illustration
Suppose that you are a remote-control maker and you need to make remote controls

for different electronic items. For simplicity, let’s assume that you are presently getting

orders to make remote controls for televisions and DVD players. Let’s also assume that

your remote control has two major functionalities: on and off.

You may want to start with the design shown in Figure 12-1 or the one shown

in Figure 12- 2.

ChapTer 12 BrIDge paTTern

181

ElectronicItems

Television State

On Off On Off

DVD

Figure 12-1. Approach 1

ElectronicItems

Television

On Off On Off

DVD

Figure 12-2. Approach 2

On further analysis, you discover that Approach 1 is truly messy and difficult to

maintain.

At first, Approach 2 looks cleaner, but if you want to include new states, such as sleep,

mute, and so forth, or if you want to include new electronic items, such as AC, DVD, and

so on, you face new challenges because the elements are tightly coupled in this design

approach. But in a real-world scenario, this kind of enhancement is often required.

This is why, you need to start with a loosely coupled system for future enhancements

so that either of the two hierarchies (electronics items and their states) can grow

independently. The bridge pattern perfectly fits this scenario.

ChapTer 12 BrIDge paTTern

182

Let’s start with the most common bridge pattern class diagram (see Figure 12-3).

Figure 12-3. A classic bridge pattern

• Abstraction (an abstract class) defines the abstract interface and it

maintains the Implementor reference.

• RefinedAbstraction (a concrete class) extends the interface defined by

Abstraction.

• Implementor (an interface) defines the interface for implementation

classes.

• ConcreteImplementor (Concrete class) implements the Implementor

interface.

I followed a similar architecture in the following implementation. For your ready

reference, I have pointed out all the participants in the following implementation with

comments.

ChapTer 12 BrIDge paTTern

183

 Class Diagram
Figure 12-4 shows the class diagram.

Figure 12-4. Class diagram

ChapTer 12 BrIDge paTTern

184

 Package Explorer View
Figure 12-5 shows the high-level structure of the program.

Figure 12-5. Package Explorer view

ChapTer 12 BrIDge paTTern

185

 Key Characteristics
Here are the key characteristics of the following implementation.

• The ElectronicGoods abstract class plays the role of abstraction. The

State interface plays the role of the implementor.

• The concrete implementors are OnState class and OffState class. They

have implemented the moveState() and hardPressed()interface

methods as per their requirements.

• The ElectronicGoods abstract class holds a reference of the State

implementor.

• The abstraction methods are delegating the implementation to the

implementor object. For example, notice that hardButtonPressed()

is actually shorthand for state.hardPressed(), where state is the

implementor object.

• There are two refined abstractions: Television and DVD. The class is

happy with the methods that it inherits from its parent. But the DVD

class wants to provide an additional feature, so it implements a DVD-

specific method: doublePress(). The doublePress() method is coded

in terms of superclass abstraction only.

 Implementation
Here is the implementation.

package jdp2e.bridge.demo;

//Implementor

interface State

{

 void moveState();

 void hardPressed();

}

//A Concrete Implementor.

class OnState implements State

{

ChapTer 12 BrIDge paTTern

186

 @Override

 public void moveState()

 {

 System.out.print("On State\n");

 }

 @Override

 public void hardPressed()

 {

 System.out.print("\tThe device is already On.Do not press the

button so hard.\n");

 }

}

//Another Concrete Implementor.

class OffState implements State

{

 @Override

 public void moveState()

 {

 System.out.print("Off State\n");

 }

 @Override

 public void hardPressed()

 {

 System.out.print("\tThe device is Offline now.Do not press the off

button again.\n");

 }

}

//Abstraction

abstract class ElectronicGoods

{

 //Composition - implementor

 protected State state;

 /*Alternative approach:

ChapTer 12 BrIDge paTTern

187

 We can also pass an implementor (as input argument) inside a

constructor.

 */

 /*public ElectronicGoods(State state)

 {

 this.state = state;

 }*/

 public State getState()

 {

 return state;

 }

 public void setState(State state)

 {

 this.state = state;

 }

 /*Implementation specific:

 We are delegating the implementation to the Implementor object.

 */

 public void moveToCurrentState()

 {

 System.out.print("The electronic item is functioning at : ");

 state.moveState();

 }

 public void hardButtonPressed()

 {

 state.hardPressed();

 }

}

//Refined Abstraction

//Television does not want to modify any superclass method.

class Television extends ElectronicGoods

{

ChapTer 12 BrIDge paTTern

188

 /*public Television(State state)

 {

 super(state);

 }*/

}

/*DVD class also ok with the super class method.

In addition to this, it uses one additional method*/

class DVD extends ElectronicGoods

{

 /*public DVD(State state)

 {

 super(state);

 }*/

 /* Notice that following DVD specific method is coded with superclass

methods but not with the implementor (State) method.So, this approach

will allow to vary the abstraction and implementation independently.

 */

 public void doublePress() {

 hardButtonPressed();

 hardButtonPressed();

 }

}

public class BridgePatternDemo {

 public static void main(String[] args) {

 System.out.println("***Bridge Pattern Demo***");

 System.out.println("\n Dealing with a Television at present.");

 State presentState = new OnState();

 //ElectronicGoods eItem = new Television(presentState);

 ElectronicGoods eItem = new Television();

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 //hard press

 eItem.hardButtonPressed();

ChapTer 12 BrIDge paTTern

189

 //Verifying Off state of the Television now

 presentState = new OffState();

 //eItem = new Television(presentState);

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 System.out.println("\n Dealing with a DVD now.");

 presentState = new OnState();

 //eItem = new DVD(presentState);

 eItem = new DVD();

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 presentState = new OffState();

 //eItem = new DVD(presentState);

 eItem = new DVD();

 eItem.setState(presentState);

 eItem.moveToCurrentState();

 //hard press-A DVD specific method

 //(new DVD(presentState)).doublePress();

 ((DVD)eItem).doublePress();

 /*The following line of code will cause error because a television

object does not have this method.*/

 //(new Television(presentState)).doublePress();

 }

}

 Output
Here is the output.

Bridge Pattern Demo

 Dealing with a Television at present.

The electronic item is functioning at : On State

The device is already On.Do not press the button so hard.

The electronic item is functioning at : Off State

ChapTer 12 BrIDge paTTern

190

 Dealing with a DVD now.

The electronic item is functioning at : On State

The electronic item is functioning at : Off State

 The device is Offline now.Do not press the off button again.

 The device is Offline now.Do not press the off button again.

 Q&A Session

 1. This pattern looks similar to a state pattern. Is this correct?

No. The state pattern falls into the behavioral pattern and its intent is

different. In this chapter, you have seen an example where the electronic

items can be in different states, but the key intent was to show that

• How you can avoid tight coupling between the items and their

states.

• How you can maintain two different hierarchies and both of them

can extend without making an impact to each other.

In addition to these points, you are dealing with multiple objects

in which implementations are shared among themselves.

For a better understanding, go through the comments that are

attached with this implementation. I am also drawing your

attention to the DVD-specific doublePress() method. Notice that

it is constructed with superclass methods, which in turn delegate

the implementation to the implementor object (a state object in

this case). This approach allows you to vary the abstraction and

implementation independently, which is the key objective of the

bridge pattern.

 2. You could use simple subclassing instead of this kind of design.
Is this correct?

No. With simple subclassing, your implementations cannot vary

dynamically. It may appear that the implementations behave

differently with subclassing techniques, but actually, those kinds

of variations are already bound to the abstraction at compile time.

ChapTer 12 BrIDge paTTern

191

 3. In this example, I see lots of dead code. Why are you keeping
those?

Some developers prefer constructors over Getter/Setter methods.

You can see the variations in different implementations. I am

keeping those for your ready reference. You are free to use any of

them.

 4. What are key advantages of using a bridge design pattern?

• The implementations are not bound to the abstractions.

• Both the abstractions and the implementations can grow

independently.

• Concrete classes are independent from the interface implementer

classes (i.e., changes in one of these does not affect the other).

You can also vary the interface and the concrete implementations

in different ways.

 5. What are the challenges associated with this pattern?

• The overall structure may become complex.

• Sometimes it is confused with the adapter pattern. (The key

purpose of an adapter pattern is to deal with incompatible

interfaces only.)

 6. Suppose I have only one state; for example, either OnState or
OffState. In this case, do I need to use the State interface?

No, it is not mandatory. GoF classified this case as a degenerate

case of the bridge pattern.

 7. In this example, an abstract class is used to represent an
abstraction and an interface is used for an implementation.
Is it mandatory?

No. You can also use an interface for abstraction. Basically, you

can use either of an abstract class or an interface for any of the

abstractions or implementations. I simply used this format for

better readability.

ChapTer 12 BrIDge paTTern

193
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_13

CHAPTER 13

Visitor Pattern
This chapter covers the visitor pattern.

 GoF Definition
Represent an operation to be performed on the elements of an object structure. Visitor

lets you define a new operation without changing the classes of the elements on which it

operates.

 Concept
This pattern helps you add new operations on the objects without modifying the

corresponding classes, especially when your operations change very often. Ideally,

visitors define class-specific methods, which work with an object of that class to support

new functionalities. Here you separate an algorithm from an object structure, and you

add new operations using a new hierarchy. Therefore, this pattern can support the open/

close principle (extension is allowed but modification is disallowed for entities like class,

function, modules, etc.). The upcoming implementations will make the concept clearer

to you.

Note You can experience the true power of this design pattern when you
combine it with the composite pattern, as shown in the modified implementation
later in this chapter.

194

 Real-World Example
Think of a taxi-booking scenario. When the tax arrives and you get into it, the taxi driver

takes the control of the transportation. The taxi may take you to your destination through

a new route that you are not familiar with. So, you can explore the new route with the

help of the taxi driver. But you should use the visitor pattern carefully, otherwise, you

may encounter some problem. (For example, consider a case when your taxi driver alters

the destination unknowingly, and you face the trouble).

 Computer-World Example
This pattern is very useful when public APIs need to support plugging operations. Clients

can then perform their intended operations on a class (with the visiting class) without

modifying the source.

Note In Java, you may notice the use of this pattern when you use the abstract
class org.dom4j.VisitorSupport, which extends Object and implements the org.
dom4j.Visitor interface. Also, when you work with the javax.lang.model.element.
Element interface or javax.lang.model.element.ElementVisitor<R,P> (where R is
the return type of visitor’s method and P is the type of additional parameter to the
visitor’s method), you may notice the use of visitor design pattern.

 Illustration
Here our discussion will start with a simple example of the visitor design pattern. Let’s

assume that you have an inheritance hierarchy where a MyClass concrete class implements

the OriginalInterface interface. MyClass has an integer, myInt. When you create an instance

of MyClass, it is initialized with a value, 5. Now suppose, you want to update this initialized

value and display it. You can do it in two different ways: you can add a method inside

MyClass to do your job or use a visitor pattern, which I am about to explain.

In the following implementation, I am multiplying the existing value by 2 and

displaying this double value of myInt using the visitor design pattern. If I do not use this

pattern, I need to add an operation (or method) inside MyClass, which does the same.

ChAPtER 13 VISItOR PAttERn

195

But there is a problem with the later approach. If you want to further update the logic

(e.g., you want to triple myInt and display the value), you need to modify the operation

in MyClass. One drawback with this approach is that if there are many classes involved, it

will be tedious to implement this updated logic in all of them.

But in a visitor pattern, you can just update the visitor’s method. The advantage is

that you do not need to change the original classes. This approach helps you when your

operations change quite often.

So, let’s start with an example. Let’s assume that in this example, you want to double

the initial integer value in MyClass and manipulate it, but your constraint is that you

cannot change the original codes in the OriginalInterface hierarchy. So, you are using a

visitor pattern in this case.

To achieve the goal, in the following example, I am separating the functionality

implementations (i.e., algorithms) from the original class hierarchy.

 Class Diagram
Figure 13-1 shows the class diagram.

Figure 13-1. Class diagram

ChAPtER 13 VISItOR PAttERn

196

 Package Explorer View
Figure 13-2 shows the high-level structure of the program.

Figure 13-2. Package Explorer view

 Implementation
Here’s the implementation.

package jdp2e.visitor.demo;

interface OriginalInterface

{

 //The following method has a Visitor argument.

 void acceptVisitor(Visitor visitor);

}

ChAPtER 13 VISItOR PAttERn

197

class MyClass implements OriginalInterface

{

 //Here "myInt" is final.So, once initialized, it should not be changed.

 private final int myInt;

 public MyClass()

 {

 myInt=5;//Initial or default value

 }

 public int getMyInt()

 {

 return myInt;

 }

 @Override

 public void acceptVisitor(Visitor visitor)

 {

 visitor.visit(this);

 }

}

interface Visitor

{

 //The method to visit MyClass

 void visit(MyClass myClassObject);

}

class ConcreteVisitor implements Visitor

{

 @Override

 public void visit(MyClass myClassObject)

 {

 System.out.println("Current value of myInt="+ myClassObject.

getMyInt());

 System.out.println("Visitor will make it double and display it.");

 System.out.println("Current value of myInt="+ 2*myClassObject.

getMyInt());

ChAPtER 13 VISItOR PAttERn

198

 System.out.println("Exiting from Visitor.");

 }

}

public class VisitorPatternExample {

 public static void main(String[] args) {

 System.out.println("***Visitor Pattern Demo***\n");

 Visitor visitor = new ConcreteVisitor();

 MyClass myClass = new MyClass();

 myClass.acceptVisitor(visitor);

 }

}

 Output
Here’s the output.

Visitor Pattern Demo

Current value of myInt=5

Visitor will make it double and display it.

Current value of myInt=10

Exiting from Visitor.

 Modified Illustration
You have already seen a very simple example of the visitor design pattern. But you can

exercise the true power of this design pattern when you combine it with the composite

pattern (see Chapter 11). So, let’s examine a scenario where you need to combine both

the composite pattern and the visitor pattern.

ChAPtER 13 VISItOR PAttERn

199

 Key Characteristic of the Modified Example

Let’s revisit the example of our composite design pattern from Chapter 11. In that

example, there is a college with two different departments. Each of these departments

has one head of department (HOD) and multiple teachers (or professors/lecturers).

Each HOD reports to the principal of the college. Figure 13-3 shows the tree structure

that I discussed in that chapter.

Figure 13-3. Tree structure of a composite design example

Now suppose that the principal of the college wants to promote a few employees.

Let’s consider that teaching experience is the only criteria to promote someone. Ideally,

the criteria should vary among senior teachers and junior teachers. So, let’s assume

that for a junior teacher, the minimum criteria for promotion is 12 years and for senior

teachers, it is 15 years.

ChAPtER 13 VISItOR PAttERn

200

To accomplish this, you need to introduce a new field, yearsOfExperience. So,

when a visitor gathers the necessary information from the college, it shows the eligible

candidates for promotion.

The visitor is collecting the data from the original college structure without making

any modifications to it, and once the collection process is over, it analyses the data to

display the intended results. To understand this visually, you can follow the arrows in the

upcoming figures. The principal is at the top of the organization, so you can assume that

no promotion is required for that person.

 Step 1

Figure 13-4 shows step 1.

Figure 13-4. Step 1

 Step 2

Figure 13-5 shows step 2.

ChAPtER 13 VISItOR PAttERn

201

 Step 3

Figure 13-6 shows step 3.

Figure 13-5. Step 2

Figure 13-6. Step 3

ChAPtER 13 VISItOR PAttERn

202

 Step 4

Figure 13-7 shows step 4.

Figure 13-7. Step 4

 Step 5

Figure 13-8 shows step 5.

ChAPtER 13 VISItOR PAttERn

203

And so on…

In the following implementation, there are code blocks like the following.

@Override

public void acceptVisitor(Visitor visitor)

{

 visitor.visitTheElement(this);

}

From this structure, you can see two important things.

• Each time a visitor visits a particular object, the object invokes a

method on the visitor, passing itself as an argument. The visitor has

methods that are specific to a particular class.

• Objects of the concrete employee classes (CompositeEmployee,

SimpleEmployee) only implement the acceptVisitor(Visitor visitor)

method. These objects know about the specific method of the visitor

(which is passed as an argument here) that it should invoke.

So, let’s start.

Figure 13-8. Step 5

ChAPtER 13 VISItOR PAttERn

204

 Modified Class Diagram
Figure 13-9 shows the modified class diagram.

Figure 13-9. Modified class diagram

 Modified Package Explorer View
Figure 13-10 shows the high-level structure of the modified program.

ChAPtER 13 VISItOR PAttERn

205

Figure 13-10. Modified Package Explorer view

ChAPtER 13 VISItOR PAttERn

206

 Modified Implementation
Here’s the modified implementation.

package jdp2e.visitor.modified.demo;

import java.util.ArrayList;

import java.util.List;

interface Employee

{

 void printStructures();

 //The following method has a Visitor argument.

 void acceptVisitor(Visitor visitor);

}

//Employees who have Subordinates

class CompositeEmployee implements Employee

{

 private String name;

 private String dept;

 //New field for this example.

 //It is tagged with "final", so visitor cannot modify it.

 private final int yearsOfExperience;

 //The container for child objects

 private List<Employee> controls;

 // Constructor

 public CompositeEmployee(String name,String dept, int experience)

 {

 this.name = name;

 this.dept = dept;

 this.yearsOfExperience = experience;

 controls = new ArrayList<Employee>();

 }

 public void addEmployee(Employee e)

 {

 controls.add(e);

 }

ChAPtER 13 VISItOR PAttERn

207

 public void removeEmployee(Employee e)

 {

 controls.remove(e);

 }

 // Gets the name

 public String getName()

 {

 return name;

 }

 // Gets the department name

 public String getDept()

 {

 return dept;

 }

 // Gets the yrs. of experience

 public int getExperience()

 {

 return yearsOfExperience;

 }

 public List<Employee> getControls()

 {

 return this.controls;

 }

 @Override

 public void printStructures()

 {

 System.out.println("\t" + getName() + " works in " + getDept() + "

Experience :" + getExperience() + " years");

 for(Employee e: controls)

 {

 e.printStructures();

 }

 }

ChAPtER 13 VISItOR PAttERn

208

 @Override

 public void acceptVisitor(Visitor visitor)

 {

 visitor.visitTheElement(this);

 }

}

class SimpleEmployee implements Employee

{

 private String name;

 private String dept;

 //New field for this example

 private int yearsOfExperience;

 //Constructor

 public SimpleEmployee(String name, String dept, int experience)

 {

 this.name = name;

 this.dept = dept;

 this.yearsOfExperience = experience;

 }

 // Gets the name

 public String getName()

 {

 return name;

 }

 // Gets the department name

 public String getDept()

 {

 return this.dept;

 }

 // Gets the yrs. of experience

 public int getExperience()

 {

 return yearsOfExperience;

 }

ChAPtER 13 VISItOR PAttERn

209

 @Override

 public void printStructures()

 {

 System.out.println("\t\t" + getName() + " works in " + getDept() +

" Experience :" + getExperience() + " years");

 }

 @Override

 public void acceptVisitor(Visitor visitor)

 {

 visitor.visitTheElement(this);

 }

}

interface Visitor

{

 void visitTheElement(CompositeEmployee employees);

 void visitTheElement(SimpleEmployee employee);

}

class ConcreteVisitor implements Visitor

{

 @Override

 public void visitTheElement(CompositeEmployee employee)

 {

 //We'll promote them if experience is greater than 15 years

 boolean eligibleForPromotion = employee.getExperience() > 15 ?

true : false;

 System.out.println("\t\t" + employee.getName() + " from "

+ employee.getDept() + " is eligible for promotion? " +

eligibleForPromotion);

 }

 @Override

 public void visitTheElement(SimpleEmployee employee)

 {

 //We'll promote them if experience is greater than 12 years

 boolean eligibleForPromotion = employee.getExperience() > 12 ?

true : false;

ChAPtER 13 VISItOR PAttERn

210

 System.out.println("\t\t" + employee.getName() + " from "

+ employee.getDept() + " is eligible for promotion? " +

eligibleForPromotion);

 }

}

public class ModifiedVisitorPatternExample {

 public static void main(String[] args) {

 System.out.println("***Visitor Pattern combined with Composite

Pattern Demo***\n");

 /*2 teachers other than HOD works in

 Mathematics department*/

 SimpleEmployee mathTeacher1 = new SimpleEmployee("Math Teacher- 1",

"Maths",13);

 SimpleEmployee mathTeacher2 = new SimpleEmployee("Math Teacher- 2",

"Maths",6);

 /* 3 teachers other than HOD works in

 Computer Sc. department*/

 SimpleEmployee cseTeacher1 = new SimpleEmployee("CSE Teacher- 1",

"Computer Sc.",10);

 SimpleEmployee cseTeacher2 = new SimpleEmployee("CSE Teacher-2",

"Computer Sc.",13);

 SimpleEmployee cseTeacher3 = new SimpleEmployee("CSE Teacher-3",

"Computer Sc.",7);

 //The College has 2 Head of Departments-One from Mathematics, One

from Computer Sc.

 CompositeEmployee hodMaths = new CompositeEmployee("Mrs.S.Das(HOD-

Maths)","Maths",14);

 CompositeEmployee hodCompSc = new CompositeEmployee("Mr.

V.Sarcar(HOD-CSE)", "Computer Sc.",16);

 //Principal of the college

 CompositeEmployee principal = new CompositeEmployee("Dr.S.Som

(Principal)","Planning-Supervising-Managing",20);

ChAPtER 13 VISItOR PAttERn

211

 //Teachers of Mathematics directly reports to HOD-Maths

 hodMaths.addEmployee(mathTeacher1);

 hodMaths.addEmployee(mathTeacher2);

 //Teachers of Computer Sc. directly reports to HOD-CSE

 hodCompSc.addEmployee(cseTeacher1);

 hodCompSc.addEmployee(cseTeacher2);

 hodCompSc.addEmployee(cseTeacher3);

 /*Principal is on top of college.HOD -Maths and Comp. Sc directly

reports to him */

 principal.addEmployee(hodMaths);

 principal.addEmployee(hodCompSc);

 System.out.println("\n Testing the overall structure");

 //Prints the complete structure

 principal.printStructures();

 System.out.println("\n***Visitor starts visiting our composite

structure***\n");

 System.out.println("---The minimum criteria for promotion is as

follows ---");

 System.out.println("--Junior Teachers-12 years and Senior

teachers-15 years.--\n");

 Visitor myVisitor = new ConcreteVisitor();

 /*

 * At first, we are building a container for employees who will be

considered for promotion.

 Principal is holding the highest position.So, he is not considered

for promotion.

 */

 List<Employee> employeeContainer= new ArrayList<Employee>();

 //For employees who directly reports to Principal

 for (Employee e : principal.getControls())

 {

 employeeContainer.add(e);

 }

ChAPtER 13 VISItOR PAttERn

212

 //For employees who directly reports to HOD-Maths

 for (Employee e : hodMaths.getControls())

 {

 employeeContainer.add(e);

 }

 //For employees who directly reports to HOD-Comp.Sc

 for (Employee e : hodCompSc.getControls())

 {

 employeeContainer.add(e);

 }

 //Now visitor can traverse through the container.

 for (Employee e :employeeContainer)

 {

 e.acceptVisitor(myVisitor);

 }

 }

}

 Modified Output
Here’s the modified output.

Visitor Pattern combined with Composite Pattern Demo

 Testing the overall structure

 Dr.S.Som(Principal) works in Planning-Supervising-Managing Experience :20

years

 Mrs.S.Das(HOD-Maths) works in Maths Experience :14 years

 Math Teacher-1 works in Maths Experience :13 years

 Math Teacher-2 works in Maths Experience :6 years

 Mr. V.Sarcar(HOD-CSE) works in Computer Sc. Experience :16 years

 CSE Teacher-1 works in Computer Sc. Experience :10 years

 CSE Teacher-2 works in Computer Sc. Experience :13 years

 CSE Teacher-3 works in Computer Sc. Experience :7 years

Visitor starts visiting our composite structure

ChAPtER 13 VISItOR PAttERn

213

---The minimum criteria for promotion is as follows ---

--Junior Teachers-12 years and Senior teachers-15 years.--

 Mrs.S.Das(HOD-Maths) from Maths is eligible for promotion? false

 Mr. V.Sarcar(HOD-CSE) from Computer Sc. is eligible for promotion? true

 Math Teacher-1 from Maths is eligible for promotion? true

 Math Teacher-2 from Maths is eligible for promotion? false

 CSE Teacher-1 from Computer Sc. is eligible for promotion? false

 CSE Teacher-2 from Computer Sc. is eligible for promotion? true

 CSE Teacher-3 from Computer Sc. is eligible for promotion? false

 Q&A Session

 1. When should you consider implementing visitor design
patterns?

You need to add new operations to a set of objects without

changing their corresponding classes. It is one of the primary

aims to implement a visitor pattern. When the operations change

very often, this approach can be your savior. In this pattern,

encapsulation is not the primary concern.

If you need to change the logic of various operations, you can

simply do it through visitor implementation.

 2. Are there any drawbacks associated with this pattern?

• Encapsulation is not its key concern. So, you can break the power

of encapsulation by using visitors.

• If you need to frequently add new concrete classes to an existing

architecture, the visitor hierarchy becomes difficult to maintain.

For example, suppose you want to add another concrete class in

the original hierarchy now. Then in this case, you need to modify

visitor class hierarchy accordingly to fulfill the purpose.

ChAPtER 13 VISItOR PAttERn

214

 3. Why are you saying that a visitor class can violate the
encapsulation?

In our illustration, I have tested a very simple visitor design

pattern in which I show an updated integer value of myInt

through the visitor class. Also, in many cases, you may see that

the visitor needs to move around a composite structure to gather

information from them, and then it can modify that information.

So, when you provide this kind of support, you violate the core

aim of encapsulation.

 4. Why does this pattern compromise the encapsulation?

Here you perform some operations on a set of objects that can

be heterogeneous. But your constraint is that you cannot change

their corresponding classes. So, your visitor needs a way to access

the members of these objects. As a result, you need to expose the

information to the visitor.

 5. In the visitor interfaces of the modified implementation, you
are using the concept of method overloading (i.e., method
names are same). Is this mandatory?

No. In my book Design Patterns in C#, I used method names like

VisitCompositeElement() and VisitLeafNode() in a similar

context. Remember that these interface methods should target the

specific classes, such as SimpleEmployee or CompositeEmployee.

 6. Suppose that in the modified implementation, I add a concrete
subclass of Employee called UndefinedEmployee. How should
I proceed? Should I have another specific method in the visitor
interface?

Exactly. You need to define a new method that is specific to this

new class. So, your interface may look like the following.

ChAPtER 13 VISItOR PAttERn

215

interface Visitor

{

 void visitTheElement(CompositeEmployee employees);

 void visitTheElement(SimpleEmployee employee);

 void visitTheElement(UndefinedEmployee employee);

}

And later you need to implement this new method in the concrete

visitor class.

 7. Suppose that I need to support new operations in the existing
architecture. How should I proceed with the visitor pattern?

For each new operation, create a new visitor subclass and

implement the operation in it. Then, visit your existing structure

the way that was shown in the preceding examples.

 8. In the client code, you made a container of employees first,
and then it starts visiting. Is it mandatory to create such a
structure?

No. It just helps clients to visit smoothly in one shot. If you do not

create any such structure, you can always call it separately.

ChAPtER 13 VISItOR PAttERn

217
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_14

CHAPTER 14

Observer Pattern
This chapter covers the observer pattern.

 GoF Definition
Define a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.

 Concept
In this pattern, there are many observers (objects) that are observing a particular subject

(also an object). Observers register themselves to a subject to get a notification when

there is a change made inside that subject. When they lose interest of the subject, they

simply unregister from the subject. It is also referred to as the publish-subscribe pattern.

The whole idea can be summarized as follows: Using this pattern, an object (subject) can

send notifications to multiple observers (a set of objects) at the same time.

218

You can visualize the scenarios in the following diagrams.

Step 1. Observers are requesting a subject to get notifications (see Figure 14-1).

Figure 14-1. Step 1

Figure 14-2. Step 2

Step 2. The subject grants the requests and the connection is established (see

Figure 14-2).

Chapter 14 Observer pattern

219

Figure 14-3. Step 3

Figure 14-4. Step 4

Step 3. The subject sends notifications to the registered users (in case a typical event

occurs in the subject and it wants to notify others) (see Figure 14-3).

Step 4 (optional). Observer2 does not want to get further notification, so it

unregisters itself (see Figure 14-4).

Chapter 14 Observer pattern

220

Figure 14-5. Step 5

Step 5. Now onward, only Observer1 and Observer3 get notifications from the

subject (see Figure 14-5).

 Real-World Example
Think about a celebrity who has many followers on social media. Each of these followers

wants all the latest updates from their favorite celebrity. So, they follow the celebrity until

their interest wanes. When they lose interest, they simply do not follow that celebrity any

longer. You can think each of these fans or followers as an observer and the celebrity as a

subject.

 Computer-World Example
In the world of computer science, consider a simple UI-based example. Let’s assume that

this UI is connected to a database. A user can execute a query through that UI, and after

searching the database, the result is returned in the UI. Here you segregate the UI from

the database in such a way that if a change occurs in the database, the UI is notified, and

it updates its display according to the change.

Chapter 14 Observer pattern

221

To simplify this scenario, assume that you are the person responsible for maintaining

a particular database in your organization. Whenever there is a change made inside the

database, you want a notification so that you can take action if necessary.

Note In general, you see the presence of this pattern in event-driven software.
Modern languages like C#, Java, and so forth have built-in support for handling
events following this pattern. those constructs make your life easy.

In Java, you can see the use of event listeners. these listeners are observers
only. In Java, you have a ready-made class called Observable, which can have
multiple observers. these observers need to implement the Observer interface.
the Observer interface has an “update” method: void update(Observable o,Object
arg). this method is invoked whenever a change occurs in the observed object.
Your application needs to call the Observable object’s notifyObservers method
to notify about the change to the observers. the addObserver(Observer o) and
deleteObserver(Observer o) methods add or and delete an observer, similar to the
register and unregister methods discussed earlier. You can learn more from https://
docs.oracle.com/javase/8/docs/api/java/util/Observer.html and https://docs.oracle.
com/javase/8/docs/api/index.html?java/util/Observable.html.

If you are familiar with the .net Framework, you see that in C#, you have the
generic system.IObservable<t> and system.IObserver<t> interfaces, where the
generic type parameter provides notifications.

 Illustration
Let’s consider the following example and go through the post analysis of the output.

I have created three observers and one subject. The subject maintains a list for all its

registered users. Our observers want to receive notification when a flag value changes in

the subject. In the output, you discover that the observers are getting the notifications

when flag values are changed to 5, 50, and 100, respectively. But one of them did not

receive any notification when the flag value changed to 50, because at that moment, he

was not a registered user in subject. But in the end, he is getting notifications because he

registered himself again.

Chapter 14 Observer pattern

222

In this implementation, the register(), unregister(), and

notifyRegisteredUsers() methods have their typical meanings. The register()

method registers an observer in the subject’s notification list, the unregister() method

removes an observer from the subject’s notification list, and notifyRegisteredUsers()

notifies all the registered users when a typical event occurs in the subject.

 Class Diagram
Figure 14-6 shows the class diagram.

Figure 14-6. Class diagram

 Package Explorer View
Figure 14-7 shows high-level structure of the program.

Chapter 14 Observer pattern

223

Figure 14-7. Package Explorer view

Chapter 14 Observer pattern

224

 Implementation
Here is the implementation.

package jdp2e.observer.demo;

import java.util.*;

interface Observer

{

 void update(int updatedValue);

}

class ObserverType1 implements Observer

{

 String nameOfObserver;

 public ObserverType1(String name)

 {

 this.nameOfObserver = name;

 }

 @Override

 public void update(int updatedValue)

 {

 System.out.println(nameOfObserver+" has received an alert: Updated

myValue in Subject is: "+ updatedValue);

 }

}

class ObserverType2 implements Observer

{

 String nameOfObserver;

 public ObserverType2(String name)

 {

 this.nameOfObserver = name;

 }

 @Override

Chapter 14 Observer pattern

225

 public void update(int updatedValue)

 {

 System.out.println(nameOfObserver+" has received an alert: The

current value of myValue in Subject is: "+ updatedValue);

 }

}

interface SubjectInterface

{

 void register(Observer anObserver);

 void unregister(Observer anObserver);

 void notifyRegisteredUsers(int notifiedValue);

}

class Subject implements SubjectInterface

{

 private int flag;

 public int getFlag()

 {

 return flag;

 }

 public void setFlag(int flag)

 {

 this.flag = flag;

 //Flag value changed. So notify registered users/observers.

 notifyRegisteredUsers(flag);

 }

 List<Observer> observerList = new ArrayList<Observer>();

 @Override

 public void register(Observer anObserver) {

 observerList.add(anObserver);

 }

 @Override

 public void unregister(Observer anObserver) {

 observerList.remove(anObserver);

 }

Chapter 14 Observer pattern

226

 @Override

 public void notifyRegisteredUsers(int updatedValue)

 {

 for (Observer observer : observerList)

 observer.update(updatedValue);

 }

}

public class ObserverPatternExample {

 public static void main(String[] args) {

 System.out.println(" ***Observer Pattern Demo***\n");

 //We have 3 observers- 2 of them are ObserverType1, 1 of them is of

//ObserverType2

 Observer myObserver1 = new ObserverType1("Roy");

 Observer myObserver2 = new ObserverType1("Kevin");

 Observer myObserver3 = new ObserverType2("Bose");

 Subject subject = new Subject();

 //Registering the observers-Roy,Kevin,Bose

 subject.register(myObserver1);

 subject.register(myObserver2);

 subject.register(myObserver3);

 System.out.println(" Setting Flag = 5 ");

 subject.setFlag(5);

 //Unregistering an observer(Roy))

 subject.unregister(myObserver1);

 //No notification this time Roy. Since it is unregistered.

 System.out.println("\n Setting Flag = 50 ");

 subject.setFlag(50);

 //Roy is registering himself again

 subject.register(myObserver1);

 System.out.println("\n Setting Flag = 100 ");

 subject.setFlag(100);

 }

}

Chapter 14 Observer pattern

227

 Output
Here is the output.

Observer Pattern Demo

 Setting Flag = 5

Roy has received an alert: Updated myValue in Subject is: 5

Kevin has received an alert: Updated myValue in Subject is: 5

Bose has received an alert: The current value of myValue in Subject is: 5

 Setting Flag = 50

Kevin has received an alert: Updated myValue in Subject is: 50

Bose has received an alert: The current value of myValue in Subject is: 50

 Setting Flag = 100

Kevin has received an alert: Updated myValue in Subject is: 100

Bose has received an alert: The current value of myValue in Subject is: 100

Roy has received an alert: Updated myValue in Subject is: 100

 Analysis
Initially, all three observers—Roy, Kevin and Bose—registered for notifications from

the subject. So, in the initial phase, all of them received notifications. At some point,

Roy became disinterested in notifications, so he unregistered himself. So, from this time

onward, only Kevin and Bose received notifications (notice when I set the flag value to 50).

But Roy has changed his mind and he re-registered himself to get notifications from the

subject. So, in the final case, all of them received notifications from the subject.

 Q&A Session

 1. If I have only one observer, then I may not need to set up the
interface. Is this correct?

Yes. But if you want to follow the pure object-oriented

programming guidelines, programming to an interface/abstract

class is always considered a better practice. So, you should prefer

Chapter 14 Observer pattern

228

interfaces (or abstract classes) over concrete classes. Also, usually,

you have multiple observers, and you want them to implement the

methods in a systematic manner that follows the contract. You get

benefit from this kind of design.

 2. Can you have different types of observers in the same
application?

Yes. This is why I have played with three observers from two

different classes. But you should not feel that for each observer;

you need to create a different class.

Consider a real-world scenario. When a company releases or

updates new software, the company business partners and the

customers who purchased the software get notifications. In this

case, the business partners and the customers are two different

types of observers.

 3. Can I add or remove observers at runtime?

Yes. At the beginning our program, Roy registered to get

notifications; then he unregistered and later reregistered.

 4. It appears that there are similarities between the observer
pattern and the chain of responsibility pattern. Is this correct?

In an observer pattern, all registered users get notifications at the

same time, but in a chain of responsibility pattern, objects in the

chain are notified one by one, and this process continues until the

object fully handles the notification. Figure 14-8 and Figure 14-9

summarize the differences.

Chapter 14 Observer pattern

229

Figure 14-9. The basic workflow of a chain of responsibility pattern

Figure 14-8. The basic workflow of an observer pattern

Chapter 14 Observer pattern

230

 5. This model supports one-to-many relationships. Is this
correct?

Yes. Since a subject can send notifications to multiple observers,

this kind of dependency is clearly depicting a one-to-many

relationship.

 6. If you already have these ready-made constructs, why are you
writing your own code?

Changing the ready-made constructs to your preference is not

always easy. In many cases, you cannot change the built-in

functionalities at all. When you try to implement the concept

yourself, you may have a better understanding of how to use those

ready-made constructs.

Consider some typical scenarios.

• In Java, Observable is a concrete class. It does not implement

an interface. So, you can’t create your own implementation that

works with Java’s built-in Observer API.

• Java does not allow multiple inheritance. So, when you have

to extend the Observable class, you have to keep in mind the

restriction. This may limit the reuse potential.

• The signature of the setChanged method in an Observable is as

follows: protected void setChanged(). That means to use it,

you need to subclass Observable class. This violates one of the

key design principles, which basically says to prefer composition

over inheritance.

 7. What are the key benefits of the observer pattern?

• The subject and its registered users(observers) are making a

loosely coupled system. They do not need to know each other

explicitly.

• No modification is required in subjects when you add or remove

an observer from its notification lists.

• Also, you can independently add or remove observers at any

time.

Chapter 14 Observer pattern

231

 8. What are the key challenges associated with an observer
pattern?

• Undoubtedly, memory leak is the greatest concern when you

deal with any event-based mechanism. An automatic garbage

collector may not always help you in this context. You can

consider such a case where the deregister/unregister operations

are not performed properly.

• The order of notification is not dependable.

• Java’s built-in support for the observer pattern has some key

restrictions, which I discussed earlier. (Revisit the answer to

question 6 .) One of them forces you to prefer inheritance over

composition, so it clearly violates one of the key design principles

that prefers the opposite.

Chapter 14 Observer pattern

233
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_15

CHAPTER 15

Strategy (Policy) Pattern
This chapter covers the strategy pattern.

 GoF Definition
Define a family of algorithms, encapsulate each one, and make them interchangeable.

Strategy lets the algorithm vary independently from the clients that use it.

 Concept
Suppose there is an application where you have multiple algorithms and each of these

algorithms can perform a specific task. A client can dynamically pick any of these

algorithms to serve its current need.

The strategy pattern suggests that you implement these algorithms in separate

classes. When you encapsulate an algorithm in a separate class, you call it a strategy.

An object that uses the strategy object is often referred to as a context object. These

“algorithms” are also called behaviors in some applications.

 Real-World Example
Generally at the end of a soccer match, if team A is leading 1–0 over team B, instead of

attacking they become defensive to maintain the lead. On the other hand, team B goes

for an all-out attack to score the equalizer.

234

 Computer world Example
Suppose that you have a list of integers and you want to sort them. You do this by using

various algorithms; for example, Bubble Sort, Merge Sort, Quick Sort, Insertion Sort, and

so forth. So, you can have a sorting algorithm with many different variations. Now you

can implement each of these variations (algorithms) in separate classes and pass the

objects of these classes in client code to sort your integer list.

Note You can consider the java.util.Comparator interface in this context. You can
implement this interface and provide multiple implementations of comparators
with different algorithms to do various comparisons using the compare() method.
This comparison result can be further used in various sorting techniques. The
Comparator interface plays the role of a strategy interface in this context.

 Illustration
Before you proceed, let’s keep in mind the following points.

• The strategy pattern encourages you to use object composition

instead of subclassing. So, it suggests you do not override parent class

behaviors in different subclasses. Instead, you put these behaviors in

separate classes (called a strategy) that share a common interface.

• The client class only decides which algorithm to use; the context class

does not decide that.

• A context object contains reference variables for the strategy objects’

interface type. So, you can obtain different behaviors by changing the

strategy in the context.

In the following implementation, the Vehicle class is an abstract class that plays the

role of a context. Boat and Aeroplane are two concrete implementations of the Vehicle

class. You know that they are associated with different behaviors: one travels through

water and the other one travels through air.

These behaviors are placed in two concrete classes: AirTransport and

WaterTransport. These classes share a common interface, TransportMedium. So, these

ChapTer 15 STraTegY (poliCY) paTTern

235

concrete classes are playing the role of the strategy classes where different behaviors are

reflected through the transport() method implementations.

In the Vehicle class, there is a method called showTransportMedium(). Using this

method, I am delegating the task to the corresponding behavior class. So, once you pick

your strategy, the corresponding behavior can be invoked. Notice that in the Vehicle

class, there is a method called commonJob(),which is not supposed to vary in the future,

so its behavior is not treated as a volatile behavior.

 Class Diagram
Figure 15-1 shows the class diagram.

Figure 15-1. Class diagram

 Package Explorer View
Figure 15-2 shows the high-level structure of the program.

ChapTer 15 STraTegY (poliCY) paTTern

236

Figure 15-2. Package Explorer view

ChapTer 15 STraTegY (poliCY) paTTern

237

 Implementation
Here’s the implementation.

// Vehicle.java

package jdp2e.strategy.demo;

//Context class

public abstract class Vehicle

{

 /*A context object contains reference variable/s for the strategy

object/s interface type.*/

 TransportMedium transportMedium;

 public Vehicle()

 {

 }

 public void showTransportMedium()

 {

 //Delegate the task to the //corresponding behavior class.

 transportMedium.transport();

 }

 //The code that does not vary.

 public void commonJob()

 {

 System.out.println("We all can be used to transport");

 }

 public abstract void showMe();

}

ChapTer 15 STraTegY (poliCY) paTTern

238

// Boat.java

package jdp2e.strategy.demo;

public class Boat extends Vehicle

{

 public Boat()

 {

 transportMedium= new WaterTransport();

 }

 @Override

 public void showMe() {

 System.out.println("I am a boat.");

 }

}

// Aeroplane.java

package jdp2e.strategy.demo;

public class Aeroplane extends Vehicle

{

 public Aeroplane()

 {

 transportMedium= new AirTransport();

 }

 @Override

 public void showMe() {

 System.out.println("I am an aeroplane.");

 }

}

// TransportMedium.java

package jdp2e.strategy.demo;

public interface TransportMedium

{

 public void transport();

}

ChapTer 15 STraTegY (poliCY) paTTern

239

//WaterTransport.java

package jdp2e.strategy.demo;

//This class represents an algorithm/behavior.

public class WaterTransport implements TransportMedium

{

 @Override

 public void transport()

 {

 System.out.println("I am transporting in water.");

 }

}

//AirTransport.java

package jdp2e.strategy.demo;

//This class represents an algorithm/behavior.

public class AirTransport implements TransportMedium

{

 @Override

 public void transport()

 {

 System.out.println("I am transporting in air.");

 }

}

// StrategyPatternExample.java

package jdp2e.strategy.demo;

//Client code

public class StrategyPatternExample {

 public static void main(String[] args) {

 System.out.println("***Strategy Pattern Demo***");

 Vehicle vehicleContext=new Boat();

 vehicleContext.showMe();

 vehicleContext.showTransportMedium();

 System.out.println("________");

ChapTer 15 STraTegY (poliCY) paTTern

240

 vehicleContext=new Aeroplane();

 vehicleContext.showMe();

 vehicleContext.showTransportMedium();

 }

}

 Output
Here’s the output.

Strategy Pattern Demo

I am a boat.

I am transporting in water.

I am an aeroplane.

I am transporting in air.

 Q&A Session

 1. Why are you complicating the example by avoiding simple
subclassing of these behaviors?

In object-oriented programming, you may prefer to use the

concept of polymorphism so that your code can pick the intended

object (among different object types) at runtime, leaving your

code unchanged.

When you are familiar with design patterns, most often, you prefer

composition over inheritance.

Strategy patterns help you combine composition with

polymorphism. Let’s examine the reasons behind this.

It is assumed that you try to use the following guidelines in any

application you write:

ChapTer 15 STraTegY (poliCY) paTTern

241

• Separate the code that varies a lot from the part of code that does

not vary.

• Try to maintain the varying parts as freestanding as possible (for

easy maintenance).

• Try to reuse them as much as possible.

Following these guidelines, I have used composition to extract

and encapsulate the volatile/varying parts of the code, so that the

whole task can be handled easily, and you can reuse them.

But when you use inheritance, your parent class can provide a

default implementation, and then the derived class changes it

(Java calls it overriding it). The next derived class can further

modify the implementation, so you are basically spreading out the

tasks over different levels, which may cause severe maintenance

and extensibility issues in the future. Let’s examine such a case.

Let’s assume that your vehicle class has the following construct.

abstract class Vehicle

{

 //Default implementation

 public void showTransportMedium()

 {

 System.out.println("I am transporting in air.");

 }

 //The code that does not vary.

 public void commonJob()

 {

 System.out.println("We all can be used to transport");

 }

 public abstract void showMe();

}

ChapTer 15 STraTegY (poliCY) paTTern

242

So, make a concrete implementation of Vehicle, like this:

class Aeroplane extends Vehicle

{

 @Override

 public void showMe() {

 System.out.println("I am an aeroplane.");

 }

}

And use following lines of codes in client class.

Aeroplane aeroplane=new Aeroplane();

aeroplane.showMe();

aeroplane.showTransportMedium();

You will receive following output:

I am an aeroplane.

I am transporting in air.

So far, it looks good. Now suppose that you have introduced

another class, Boat, like in the following.

class Boat extends Vehicle

{

 @Override

 public void showMe() {

 System.out.println("I am a boat.");

 }

}

Use the following lines of codes in the client class (new lines are

shown in bold).

Aeroplane aeroplane=new Aeroplane();

aeroplane.showMe();

aeroplane.showTransportMedium();

ChapTer 15 STraTegY (poliCY) paTTern

243

Boat boat=new Boat();

boat.showMe();

boat.showTransportMedium();

You receive the following output.

I am an aeroplane.

I am transporting in air.

I am a boat.

I am transporting in air.

You can see that your boat is moving into the air now. To prevent

this ugly situation, you need to override it properly.

Now further assume that you need to introduce another class,

SpeedBoat, which can also transport through water at high speed.

You need to guard the situations like this:

class Boat extends Vehicle

{

 @Override

 public void showMe()

 {

 System.out.println("I am a boat.");

 }

 @Override

 public void showTransportMedium() {

 System.out.println("I am transporting in water.");

 }

}

class SpeedBoat extends Vehicle

{

 @Override

 public void showMe() {

 System.out.println("I am a speedboat.");

 }

ChapTer 15 STraTegY (poliCY) paTTern

244

 @Override

 public void showTransportMedium() {

 System.out.println("I am transporting in water with high

speed.");

 }

}

You can see that if you spread out the task that can vary

across different classes (and their subclasses), in the long run,

maintenance becomes very costly. You can experience a lot of

pain if you want to accommodate similar changes very often,

because you need to keep updating the showTransportMedium()

method in each case.

 2. If this is the case, you could create a separate interface,
TransportInterface, and place the showTransportMedium()
method in that interface. Now any class that wants to get
the method can implement that interface also. Is this
understanding correct?

Yes, you can do that. But this is what the code looks like:

abstract class Vehicle

{

 //The code that does not vary.

 public void commonJob()

 {

 System.out.println("We all can be used to transport");

 }

 public abstract void showMe();

}

interface TransportInterface

{

 void showTransportMedium();

}

ChapTer 15 STraTegY (poliCY) paTTern

245

class Aeroplane extends Vehicle implements TransportInterface

{

 @Override

 public void showMe() {

 System.out.println("I am an aeroplane.");

 }

 @Override

 public void showTransportMedium() {

 System.out.println("I am transporting in air.");

 }

}

class Boat extends Vehicle implements TransportInterface

{

 @Override

 public void showMe()

 {

 System.out.println("I am a boat.");

 }

 @Override

 public void showTransportMedium() {

 System.out.println("I am transporting in water.");

 }

}

You can see that each class and its subclasses may need to provide

its own implementations for the showTransportMedium() method.

So, you cannot reuse your code, which is as bad as inheritance in

this case.

ChapTer 15 STraTegY (poliCY) paTTern

246

 3. Can you modify the default behavior at runtime in your
implementation?

Yes, you can. Let’s introduce a special vehicle that can transport in

both water and air, as follows.

public class SpecialVehicle extends Vehicle

{

 public SpecialVehicle()

 {

 //Initialized with AirTransport

 transportMedium= new AirTransport();

 }

 @Override

 public void showMe()

 {

 System.out.println("I am a special vehicle who can

transport both in air and water.");

 }

}

And add a setter method in the Vehicle class(changes are shown

in bold).

//Context class

public abstract class Vehicle

{

 //A context object contains reference variable/s

 //for the strategy object/s interface type

 TransportMedium transportMedium;

 public Vehicle()

 {

 }

 public void showTransportMedium()

 {

 //Delegate the task to the corresponding behavior class.

 transportMedium.transport();

ChapTer 15 STraTegY (poliCY) paTTern

247

 }

 //The code that does not vary.

 public void commonJob()

 {

 System.out.println("We all can be used to transport");

 }

 public abstract void showMe();

 //Additional code to explain the answer of question no 3 in

 //the "Q&A session"

 public void setTransportMedium(TransportMedium

transportMedium)

 {

 this.transportMedium=transportMedium;

 }

}

To test this, add a few lines of code in the client class, as well.

//Client code

public class StrategyPatternExample {

 public static void main(String[] args) {

 System.out.println("***Strategy Pattern Demo***");

 Vehicle vehicleContext=new Boat();

 vehicleContext.showMe();

 vehicleContext.showTransportMedium();

 System.out.println("________");

 vehicleContext=new Aeroplane();

 vehicleContext.showMe();

 vehicleContext.showTransportMedium();

 System.out.println("________");

 //Additional code to explain the answer of question no

 //3 in the "Q&A session"

 vehicleContext=new SpecialVehicle();

ChapTer 15 STraTegY (poliCY) paTTern

248

 vehicleContext.showMe();

 vehicleContext.showTransportMedium();

 System.out.println("- - - - -");

 //Changing the behavior of Special vehicle

 vehicleContext.setTransportMedium(new WaterTransport());

 vehicleContext.showTransportMedium();

 }

}

Now if you execute this modified program, you get the following

output.

Strategy Pattern Demo

Strategy Pattern Demo

I am a boat.

I am transporting in water.

I am an aeroplane.

I am transporting in air.

I am a special vehicle who can transport both in air and water.

I am transporting in air.

- - - - -

I am transporting in water.

The initial behavior is modified dynamically in a later phase.

 4. Can you use an abstract class instead of an interface?

Yes. It is suitable in some cases where you may want to put

common behaviors in the abstract class. I discussed it in detail in

the “Q&A Session” section on the builder pattern.

 5. What are the key advantages of using a strategy design pattern?

• This pattern makes your classes independent from algorithms. Here, a

class delegates the algorithms to the strategy object (that encapsulates

the algorithm) dynamically at runtime. So, you can simply say that the

choice of the algorithm is not bound at compile time.

ChapTer 15 STraTegY (poliCY) paTTern

249

• Easier maintenance of your codebase.

• It is easily extendable. (Refer to the answers for questions 2 and

3 in this context.)

 6. What are key challenges associated with a strategy design
pattern?

• The addition of context classes causes more objects in our

application.

• Users of the application must be aware of different strategies;

otherwise, the output may surprise them. So, there exists a tight

coupling between the client code and the implementation of

different strategies.

• When you introduce a new behavior/algorithm, you may need to

change the client code also.

ChapTer 15 STraTegY (poliCY) paTTern

251
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_16

CHAPTER 16

Template Method Pattern
This chapter covers the Template Method pattern.

 GoF Definition
Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

Template method lets subclasses redefine certain steps of an algorithm without

changing the algorithm’s structure.

 Concept
In a template method, you define the minimum or essential structure of an algorithm.

Then you defer some responsibilities to the subclasses. The key intent is that you can

redefine certain steps of an algorithm, but those changes should not impact the basic

flow of the algorithm.

So, this design pattern is useful when you implement a multistep algorithm and you

want to allow customization through subclasses.

 Real-World Example
Suppose that you are ordering a pizza from a restaurant. For the chef, the basic

preparation of the pizza is the same; he includes some final toppings based on customer

choice. For example, you can opt for a veggie pizza or a non-veggie pizza. You can also

choose toppings like bacons, onions, extra cheese, mushrooms, and so forth. The chef

prepares the final product according to your preferences.

252

 Computer-World Example
Suppose that you are making a program to design engineering courses. Let’s assume that

the first semester is common for all streams. In subsequent semesters, you need to add

new papers/subjects to the application based on the course. You see a similar situation

in the upcoming illustration. Remember that this pattern makes sense when you want

to avoid duplicate codes in your application. At the same time, you may want to allow

subclasses to change some specific details of the base class workflow to provide varying

behaviors in the application.

Note The removeAll() method of java.util.AbstractSet is an example of the
template method pattern. Apart from this, there are many non-abstract methods
in java.util.AbstractMap and java.util.AbstractSet classes, which can also be
considered as the examples of the template method pattern.

 Illustration
In the following implementation, I assume that each engineering student needs to

complete the course of Mathematics and then Soft skills (This subject may deal with

communication skills, character traits, people management skills etc.) in their initial

semesters to obtain the degree. Later you will add special paper/s to these courses

(Computer Science or Electronics).

To serve the purpose, a method completeCourse() is defined in an abstract

class BasicEngineering. I have also marked the method final, so that subclasses of

BasicEngineering cannot override the completeCourse() method to alter the sequence of

course completion order.

Two other concrete classes- ComputerScience and Electronics are the

subclasses of BasicEngineering class and they are completing the abstract method

completeSpecialPaper() as per their needs.

 Class Diagram
Figure 16-1 shows the class diagram.

ChApTer 16 TeMplATe MeThod pATTern

253

 Package Explorer View
Figure 16-2 shows the high-level structure of the program.

Figure 16-1. Class diagram

ChApTer 16 TeMplATe MeThod pATTern

254

 Implementation
Here’s the implementation:

package jdp2e.templatemethod.demo;

abstract class BasicEngineering

{

 //Making the method final to prevent overriding.

 public final void completeCourse()

 {

 //The course needs to be completed in the following sequence

 //1.Math-2.SoftSkills-3.Special Paper

 //Common Papers:

 completeMath();

 completeSoftSkills();

 //Specialization Paper:

 completeSpecialPaper();

 }

Figure 16-2. Package Explorer View

ChApTer 16 TeMplATe MeThod pATTern

255

 private void completeMath()

 {

 System.out.println("1.Mathematics");

 }

 private void completeSoftSkills()

 {

 System.out.println("2.SoftSkills");

 }

 public abstract void completeSpecialPaper();

}

class ComputerScience extends BasicEngineering

{

 @Override

 public void completeSpecialPaper() {

 System.out.println("3.Object-Oriented Programming");

 }

}

class Electronics extends BasicEngineering

{

 @Override

 public void completeSpecialPaper()

 {

 System.out.println("3.Digital Logic and Circuit Theory");

 }

}

public class TemplateMethodPatternExample {

 public static void main(String[] args) {

 System.out.println("***Template Method Pattern Demo***\n");

 BasicEngineering preferrredCourse = new ComputerScience();

 System.out.println("Computer Sc. course will be completed in

following order:");

 preferrredCourse.completeCourse();

 System.out.println();

ChApTer 16 TeMplATe MeThod pATTern

256

 preferrredCourse = new Electronics();

 System.out.println("Electronics course will be completed in

following order:");

 preferrredCourse.completeCourse();

 }

}

 Output
Here’s the output:

Template Method Pattern Demo

Computer Sc. course will be completed in following order:

1.Mathematics

2.SoftSkills

3.Object-Oriented Programming

Electronics course will be completed in following order:

1.Mathematics

2.SoftSkills

3.Digital Logic and Circuit Theory

 Q&A Session

 1. In this pattern, I am seeing that subclasses can simply redefine
the methods as per their need. Is the understanding correct?

Yes.

 2. In the abstract class BasicEngineering, only one method is
abstract, other two methods are concrete methods. What is the
reason behind it?

It is a simple example with only 3 methods where I wanted the

subclasses to override only the completeSpecialPaper() method.

Other methods are common to both stream and they do not need

to be overridden by the subclasses.

ChApTer 16 TeMplATe MeThod pATTern

257

 3. Consider a situation like this: Suppose you want to add some
more methods in the BasicEngineering class but you want to
work on those methods if and only if, the child classes need
them otherwise you will ignore them. This type of situation is
very common in some PhD courses where some courses are
not mandatory for all candidates. For example, if a student
has certain qualifications, he/she may not need to attend the
lectures of those subjects. Can you design this kind of situation
with the Template Method Pattern?

Yes, we can. Basically, you may need to put a hook which is

nothing but a method that can help us to control the flow in an

algorithm.

To show an example of this kind of design, I am adding

one more method in BasicEngineering called is

AdditionalPapersNeeded(). Let us assume that Computer

science students need to complete this course, but Electronics

students can opt out this paper. Let’s go through the program and

output.

 Modified Implementation
Here’s the modified implementation. Key changes are shown in bold.

package jdp2e.templatemethod.questions_answers;

abstract class BasicEngineering

{

 //Making the method final to prevent overriding.

 public final void completeCourse()

 {

 //The course needs to be completed in the following sequence

 //1.Math-2.SoftSkills-3.Special Paper-4.Additional Papers(if any)

 //Common Papers:

 completeMath();

 completeSoftSkills();

ChApTer 16 TeMplATe MeThod pATTern

258

 //Specialization Paper:

 completeSpecialPaper();

 if (isAdditionalPapersNeeded())

 {

 completeAdditionalPapers();

 }

 }

 private void completeMath()

 {

 System.out.println("1.Mathematics");

 }

 private void completeSoftSkills()

 {

 System.out.println("2.SoftSkills");

 }

 public abstract void completeSpecialPaper();

 private void completeAdditionalPapers()

 {

 System.out.println("4.Additional Papers are needed for this

course.");

 }

 //By default, AdditionalPapers are needed for a course.

 boolean isAdditionalPapersNeeded()

 {

 return true;

 }

}

class ComputerScience extends BasicEngineering

{

 @Override

 public void completeSpecialPaper()

 {

 System.out.println("3.Object-Oriented Programming");

 }

ChApTer 16 TeMplATe MeThod pATTern

259

 //Additional papers are needed for ComputerScience

 //So, there is no change for the hook method.

}

class Electronics extends BasicEngineering

{

 @Override

 public void completeSpecialPaper()

 {

 System.out.println("3.Digital Logic and Circuit Theory");

 }

 //Overriding the hook method:

 //Indicating that AdditionalPapers are not needed for Electronics.

 @Override

 public boolean isAdditionalPapersNeeded()

 {

 return false;

 }

}

public class TemplateMethodPatternModifiedExample {

 public static void main(String[] args) {

 System.out.println("***Template Method Pattern Modified

Demo***\n");

 BasicEngineering preferrredCourse = new ComputerScience();

 System.out.println("Computer Sc. course will be completed in

following order:");

 preferrredCourse.completeCourse();

 System.out.println();

 preferrredCourse = new Electronics();

 System.out.println("Electronics course will be completed in

following order:");

 preferrredCourse.completeCourse();

 }

}

ChApTer 16 TeMplATe MeThod pATTern

260

 Modified Output
Here’s the modified output:

Template Method Pattern Modified Demo

Computer Sc. course will be completed in following order:

1.Mathematics

2.SoftSkills

3.Object-Oriented Programming

4.Additional Papers are needed for this course.

Electronics course will be completed in following order:

1.Mathematics

2.SoftSkills

3.Digital Logic and Circuit Theory

Note You may prefer an alternative approach. For example, you could make a
default method isAdditionalpapersneeded() in Basicengineering. Then you could
override the method in electronics class and then you could make the method body
empty. But this approach does not look better if you compare it to the previous
approach.

 4. Looks like this pattern is similar to Builder pattern.Is the
understanding correct ?

No. You should not forget the core intent;Template Method is

a behavioral design patterns, and Builder is a creational design

pattern. In Builder Patterns, the clients/customers are the boss-

they can control the order of the algorithm. On the other hand,

in Template Method pattern, you are the boss-you put your code

in a central location and you only provide the corresponding

behavior (For example, notice the completeCourse() method in

BasicEngineering and see how the course completion order is

defined there).So, you have absolute control over the flow of the

execution. You can also alter your template as per your need and

then other participants need to follow you.

ChApTer 16 TeMplATe MeThod pATTern

261

 5. What are the key advantages of using a template design
pattern?

• You can control the flow of the algorithms. Clients cannot

change them. (Notice that completeCourse() is marked with final

keyword in the abstract class BasicEngineering)

• Common operations are placed in a centralized location, for

example, in an abstract class. The subclasses can redefine only

the varying parts, so that, you can avoid redundant codes.

 6. What are key challenges associated with a template design
pattern?

• Client code cannot direct the sequence of steps (If you need that

approach, you may follow the Builder pattern).

• A subclass can override a method defined in the parent class (i.e.

hiding the original definition in parent class) which can go against

Liskov Substitution Principle that basically says: If S is a subtype

of T, then objects of type T can be replaced with objects of type

S. You can learn the details from the following link: https://

en.wikipedia.org/wiki/Liskov_substitution_principle

• More subclass means more scattered codes and difficult

maintenance.

 7. Looks like the subclasses can override other parent methods
also in the BasicEngineering. Is the understanding correct?

You can do this but ideally that should not be your intent. In this

pattern, you may not want to override all the parent methods

entirely to bring the radical changes in the subclasses. In this way,

it differs from simple polymorphism.

ChApTer 16 TeMplATe MeThod pATTern

263
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_17

CHAPTER 17

Command Pattern
This chapter covers the command pattern.

 GoF Definition
Encapsulate a request as an object, thereby letting you parameterize clients with

different requests, queues, or log requests, and supports undoable operations.

 Concept
Here you encapsulate a method invocation process. In general, four terms are

associated: invoker, client, command, and receiver. A command object can invoke a

method of the receiver in a way that is specific to that receiver’s class. The receiver then

starts processing the job. A command object is separately passed to the invoker object

to invoke the command. The client object holds the invoker object and the command

objects. The client only makes the decision—which commands to execute—and then it

passes the command to the invoker object (for that execution).

 Real-World Example
When you draw something with a pencil, you may need to undo (erase and redraw)

some parts to make it better.

264

 Computer-World Example
The real-world scenario for painting applies to Microsoft Paint. You can use the Menu or

Shortcut keys to perform the undo/redo operations in those contexts.

In general, you can observe this pattern in the menu system of an editor or IDE

(integrated development environment). So, if you want to make an application that

needs to support undos, multiple undos, or similar operations, then the command

pattern can be your savior.

Microsoft used this pattern in Windows Presentation Foundation (WPF). The online

source at https://visualstudiomagazine.com/articles/2012/04/10/command-

pattern- in-net.aspx describes it in detail: “The command pattern is well suited

for handling GUI interactions. It works so well that Microsoft has integrated it tightly

into the Windows Presentation Foundation (WPF) stack. The most important piece is

the ICommand interface from the System. Windows.Input namespace. Any class that

implements the ICommand interface can be used to handle a keyboard or mouse event

through the common WPF controls. This linking can be done either in XAML or in a

code-behind.”

Note When you implement the run() method of java.lang.Runnable interface , you
are basically using the command design pattern. Another interface, java.swing.
Action, also represents the command design pattern. It is important to note that the
implementation of undos varies and can be complex. The memento design pattern
also supports undo operations. You may need to use both of these design patterns
in your application to implement a complex undo operation.

 Illustration
Consider the following example. For an easy understanding, I am following similar class

names to the concept described earlier. You can refer to the associated comments for a

better understanding.

ChApTeR 17 CommAnd pATTeRn

265

 Class Diagram
Figure 17-1 shows the class diagram.

Figure 17-1. Class diagram

ChApTeR 17 CommAnd pATTeRn

266

Figure 17-2. Package Explorer view

 Package Explorer View
Figure 17-2 shows the high-level structure of the program.

ChApTeR 17 CommAnd pATTeRn

267

 Implementation
Here’s the implementation.

package jdp2e.command.demo;

interface Command

{

 //Typically this method does not take any argument.

 //Some of the reasons are:

 //1.We supply all the information when it is created.

 //2.Invoker may reside in different address space.etc.

 void executeCommand();

}

class MyUndoCommand implements Command

{

 private Receiver receiver;

 public MyUndoCommand(Receiver receiver)

 {

 this.receiver=receiver;

 }

 @Override

 public void executeCommand()

 {

 //Perform any optional task prior to UnDo

 receiver.doOptionalTaskPriorToUndo();

 //Call UnDo in receiver now

 receiver.performUndo();

 }

}

class MyRedoCommand implements Command

{

 private Receiver receiver;

 public MyRedoCommand(Receiver receiver)

 {

 this.receiver=receiver;

 }

ChApTeR 17 CommAnd pATTeRn

268

 @Override

 public void executeCommand()

 {

 //Perform any optional task prior to ReDo

 receiver.doOptionalTaskPriorToRedo();

 //Call ReDo in receiver now

 receiver.performRedo();

 }

}

//Receiver Class

class Receiver

{

 public void performUndo()

 {

 System.out.println("Performing an undo command in Receiver.");

 }

 public void performRedo()

 {

 System.out.println("Performing an redo command in Receiver.");

 }

 /*Optional method-If you want to perform

 any prior tasks before undo operations.*/

 public void doOptionalTaskPriorToUndo()

 {

 System.out.println("Executing -Optional Task/s prior to execute

undo command.");

 }

 /*Optional method-If you want to perform

 any prior tasks before redo operations*/

 public void doOptionalTaskPriorToRedo()

 {

 System.out.println("Executing -Optional Task/s prior to execute

redo command.");

 }

}

ChApTeR 17 CommAnd pATTeRn

269

//Invoker class

class Invoker

{

 Command commandToBePerformed;

 //Alternative approach:

 //You can also initialize the invoker with a command object

 /*public Invoker(Command command)

 {

 this.commandToBePerformed = command;

 }*/

 //Set the command

 public void setCommand(Command command)

 {

 this.commandToBePerformed = command;

 }

 //Invoke the command

 public void invokeCommand()

 {

 commandToBePerformed.executeCommand();

 }

}

//Client

public class CommandPatternExample {

 public static void main(String[] args) {

 System.out.println("***Command Pattern Demo***\n");

 /*Client holds both the Invoker and Command Objects*/

 Receiver intendedReceiver = new Receiver();

 MyUndoCommand undoCmd = new MyUndoCommand(intendedReceiver);

 //If you use parameterized constructor of Invoker

 //use the following line of code.

 //Invoker invoker = new Invoker(undoCmd);

 Invoker invoker = new Invoker();

 invoker.setCommand(undoCmd);

 invoker.invokeCommand();

ChApTeR 17 CommAnd pATTeRn

270

 MyRedoCommand redoCmd = new MyRedoCommand(intendedReceiver);

 invoker.setCommand(redoCmd);

 invoker.invokeCommand();

 }

}

 Output
Here’s the output.

Command Pattern Demo

Executing -Optional Task/s prior to execute undo command.

Performing an undo command in Receiver.

Executing -Optional Task/s prior to execute redo command.

Performing an redo command in Receiver.

 Q&A Session

 1. I have two questions. In this example, you are dealing with a
single receiver only. How can you deal with multiple receivers?
And the GoF definition says that this pattern supports undoable
operations. Can you show an example with a true undo
operation using this pattern?

Consider the following program. The key characteristics of this

program are as follows:

• Here you have two different receivers (Receiver1 and Receiver2).

Each of them implements the Receiver interface methods. Since I am

dealing with multiple receivers, I introduced a common interface,

Receiver.

ChApTeR 17 CommAnd pATTeRn

271

• In an undo operation, you generally want to reverse the last action or

operation. A typical undo operation may involve complex logic. But

in the upcoming implementation, I am presenting a simple example

that supports undo operations with the following assumptions.

• A Receiver1 object is initialized with the value 10 (the myNumber

instance variable is used for this purpose) and a Receiver2 object

is initialized with the “power off” status (the status instance

variable is used for this purpose). Any Receiver1 object can keep

adding 2 to an existing integer.

• I have put a checkmark on the value 10, so that when you

process an undo operation, if you notice that a Receiver1

object’s myNumber is 10, you will not go beyond (because you

started at 10).

• A Receiver2 object does different things. It can switch a machine

on or off. If the machine is already powered on, then by

requesting an undo operation, you can switch off the machine

and vice versa. But if your machine is already in switch on mode,

then a further “switch on” request is ignored.

 Modified Class Diagram
There are many participants and dependencies in the modified class diagram shown in

Figure 17-3. To illustrate the main design and keep the diagram neat and clean, I do not

show the client code dependencies.

ChApTeR 17 CommAnd pATTeRn

272

 Modified Package Explorer View
Figure 17-4 shows the modified Package Explorer view.

Figure 17-3. Modified class diagram

ChApTeR 17 CommAnd pATTeRn

273

Figure 17-4. Modified Package Explorer view

ChApTeR 17 CommAnd pATTeRn

274

 Modified Implementation
Here’s the modified implementation

package jdp2e.command.modified.demo;

/**

 *In general, an undo operation involves complex logic.

 But for simplicity, in this example,I assume that executeDo() can either

add 2 with a given integer or it can switch on a machine.

 Similarly, executeUnDo() can either subtract 2 from a given number() or,

 it will switch off a machine.But you cannot go beyond the initialized

value(i.e.10 in this case)*/

interface Command

{

 void executeDo();

 void executeUnDo();

}

class AdditionCommand implements Command

{

 private Receiver receiver;

 public AdditionCommand(Receiver receiver)

 {

 this.receiver = receiver;

 }

 @Override

 public void executeDo()

 {

 receiver.performDo();

 }

 @Override

 public void executeUnDo()

 {

 receiver.performUnDo();

 }

}

ChApTeR 17 CommAnd pATTeRn

275

class PowerCommand implements Command

{

 private Receiver receiver;

 public PowerCommand(Receiver receiver)

 {

 this.receiver = receiver;

 }

 @Override

 public void executeDo()

 {

 receiver.performDo();

 }

 @Override

 public void executeUnDo()

 {

 receiver.performUnDo();

 }

}

//To deal with multiple receivers , we are using interfaces here

interface Receiver

{

 //It will add 2 with a number or switch on the m/c

 void performDo();

 //It will subtract 2 from a number or switch off the m/c

 void performUnDo();

}

//Receiver Class

class Receiver1 implements Receiver

{

 private int myNumber;

 public int getMyNumber()

 {

 return myNumber;

 }

ChApTeR 17 CommAnd pATTeRn

276

 public void setMyNumber(int myNumber)

 {

 this.myNumber = myNumber;

 }

 public Receiver1()

 {

 myNumber = 10;

 System.out.println("Receiver1 initialized with " + myNumber);

 System.out.println("The objects of receiver1 cannot set beyond "+

myNumber);

 }

 @Override

 public void performDo()

 {

 System.out.println("Received an addition request.");

 int presentNumber = getMyNumber();

 setMyNumber(presentNumber + 2);

 System.out.println(presentNumber +" + 2 ="+ this.myNumber);

 }

 @Override

 public void performUnDo()

 {

 System.out.println("Received an undo addition request.");

 int presentNumber = this.myNumber;

 //We started with number 10.We'll not decrease further.

 if (presentNumber > 10)

 {

 setMyNumber(this.myNumber - 2);

 System.out.println(presentNumber +" - 2 ="+ this.myNumber);

 System.out.println("\t Undo request processed.");

 }

 else

 {

 System.out.println("Nothing more to undo...");

 }

ChApTeR 17 CommAnd pATTeRn

277

 }

}

//Receiver2 Class

class Receiver2 implements Receiver

{

 boolean status;

 public Receiver2()

 {

 System.out.println("Receiver2 initialized ");

 status=false;

 }

 @Override

 public void performDo()

 {

 System.out.println("Received a system power on request.");

 if(status==false)

 {

 System.out.println("System is starting up.");

 status=true;

 }

 else

 {

 System.out.println("System is already running.So, power on

request is ignored.");

 }

 }

 @Override

 public void performUnDo()

 {

 System.out.println("Received a undo request.");

 if(status==true)

 {

 System.out.println("System is currently powered on.");

ChApTeR 17 CommAnd pATTeRn

278

 status=false;

 System.out.println("\t Undo request processed.System is

switched off now.");

 }

 else

 {

 System.out.println("System is switched off at present.");

 status=true;

 System.out.println("\t Undo request processed.System is powered

on now.");

 }

 }

}

//Invoker class

class Invoker

{

 Command commandToBePerformed;

 public void setCommand(Command command)

 {

 this.commandToBePerformed = command;

 }

 public void executeCommand()

 {

 commandToBePerformed.executeDo();

 }

 public void undoCommand()

 {

 commandToBePerformed.executeUnDo();

 }

}

ChApTeR 17 CommAnd pATTeRn

279

//Client

public class ModifiedCommandPatternExample {

 public static void main(String[] args) {

 System.out.println("***Command Pattern Q&As***");

 System.out.println("***A simple demo with undo supported

operations***\n");

 //Client holds both the Invoker and Command Objects

 //Testing receiver -Receiver1

 System.out.println("-----Testing operations in Receiver1-----");

 Receiver intendedreceiver = new Receiver1();

 Command currentCmd = new AdditionCommand(intendedreceiver);

 Invoker invoker = new Invoker();

 invoker.setCommand(currentCmd);

 System.out.println("*Testing single do/undo operation*");

 invoker.executeCommand();

 invoker.undoCommand();

 System.out.println("_______");

 System.out.println("**Testing a series of do/undo operations**");

 //Executed the command 2 times

 invoker.executeCommand();

 //invoker.undoCommand();

 invoker.executeCommand();

 //Trying to undo 3 times

 invoker.undoCommand();

 invoker.undoCommand();

 invoker.undoCommand();

 System.out.println("\n-----Testing operations in Receiver2-----");

 intendedreceiver = new Receiver2();

 currentCmd = new PowerCommand(intendedreceiver);

 invoker.setCommand(currentCmd);

 System.out.println("*Testing single do/undo operation*");

 invoker.executeCommand();

 invoker.undoCommand();

ChApTeR 17 CommAnd pATTeRn

280

 System.out.println("_______");

 System.out.println("**Testing a series of do/undo operations**");

 //Executing the command 2 times

 invoker.executeCommand();

 invoker.executeCommand();

 //Trying to undo 3 times

 invoker.undoCommand();

 invoker.undoCommand();

 invoker.undoCommand();

 }

}

 Modified Output
Here’s the modified output.

Command Pattern Q&As

A simple demo with undo supported operations

-----Testing operations in Receiver1-----

Receiver1 initialized with 10

The objects of receiver1 cannot set beyond 10

Testing single do/undo operation

Received an addition request.

10 + 2 =12

Received an undo addition request.

12 - 2 =10

 Undo request processed.

Testing a series of do/undo operations

Received an addition request.

10 + 2 =12

Received an addition request.

12 + 2 =14

Received an undo addition request.

ChApTeR 17 CommAnd pATTeRn

281

14 - 2 =12

 Undo request processed.

Received an undo addition request.

12 - 2 =10

 Undo request processed.

Received an undo addition request.

Nothing more to undo...

-----Testing operations in Receiver2-----

Receiver2 initialized

Testing single do/undo operation

Received a system power on request.

System is starting up.

Received a undo request.

System is currently powered on.

 Undo request processed.System is switched off now.

Testing a series of do/undo operations

Received a system power on request.

System is starting up.

Received a system power on request.

System is already running.So, power on request is ignored.

Received a undo request.

System is currently powered on.

 Undo request processed.System is switched off now.

Received a undo request.

System is switched off at present.

 Undo request processed.System is powered on now.

Received a undo request.

System is currently powered on.

 Undo request processed.System is switched off now.

ChApTeR 17 CommAnd pATTeRn

282

 2. In this modified program, two receivers are doing different
things. Is this intentional?

Yes. It shows the power and flexibilities provided by the command

design pattern. You can see that performDo() in these receivers

actually performs different actions. For Receiver1, it is adding 2

with an existing integer, and for Receiver2, it is switching on

a machine. So, you may think that some other names like

addNumber() and powerOn() would be more appropriate for them.

But in this case, I needed to work with both the receivers and their

corresponding methods. So, I needed to use a common interface

and common names that could be used by both receivers.

So, if you need to work with two different receivers that have

different method names, you can replace them with a common

name, use a common interface, and through polymorphism, you

can invoke those methods easily.

 3. Why do you need the invoker?

Most of the time, programmers try to encapsulate data and

corresponding methods in object-oriented programming. But

if you look carefully, you find that in this pattern, you are trying

to encapsulate command objects. In other words, you are

implementing encapsulation from a different perspective.

This approach makes sense when you deal with a complex set of

commands.

Now let’s review the terms again. You create command objects

to shoot them to receivers and invoke some methods. But you

execute those commands through an invoker, which calls the

methods of the command object (e.g., executeCommand). But for

a simple case, this invoker class is not mandatory; for example,

consider a case in which a command object has only one method

to execute and you are trying to dispense with the invoker to

invoke the method. But the invokers may play an important role

when you want to keep track of multiple commands in a log file

(or in a queue).

ChApTeR 17 CommAnd pATTeRn

283

 4. Why are you interested in keeping track of these logs?

They are useful if you want to do the undo or redo operations.

 5. What are the key advantages associated with command
patterns?

• Requests for creation and the ultimate execution are decoupled.

Clients may not know how an invoker is performing the

operations.

• You can create macros (sequence of commands).

• New commands can be added without affecting the existing

system.

• Most importantly, you can support the undo/redo operations.

 6. What are the challenges associated with command patterns?

• To support more commands, you need to create more classes. So,

maintenance can be difficult as time goes on.

• How to handle errors or make a decision about what to do with

return values when an erroneous situation occurs becomes

tricky. A client may want to know about those. But here you

decouple the command with client codes, so these situations

are difficult to handle. The challenge becomes significant in a

multithreaded environment where the invoker is also running in

a different thread.

ChApTeR 17 CommAnd pATTeRn

285
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_18

CHAPTER 18

Iterator Pattern
This chapter covers the iterator pattern.

 GoF Definition
Provide a way to access the elements of an aggregate object sequentially without

exposing its underlying representation.

 Concept
Using iterators, a client object can traverse a container (or a collection of objects) to

access its elements without knowing how these data are stored internally. The concept is

very useful when you need to traverse different kinds of collection objects in a standard

and uniform way. The following are some important points about this pattern.

• It is often used to traverse the nodes of a tree-like structure. So, in

many scenarios, you may notice the use of iterator patterns with

composite patterns.

• The role of an iterator is not limited to traversing. This role can vary to

support various requirements.

• Clients cannot see the actual traversal mechanism. A client program

only uses the iterator methods that are public in nature.

• Figure 18-1 shows a sample diagram for an iterator pattern.

286

The participants are as follows:

• Iterator: An interface to access or traverse elements.

• ConcreteIterator: Implements the Iterator interface methods.

It can also keep track of the current position in the traversal of

the aggregate.

• Aggregate: Defines an interface that can create an Iterator object.

• ConcreteAggregate: Implements the Aggregate interface. It returns an

instance of ConcreteIterator.

 Real-World Example
Suppose there are two companies: company A and company B. Company A stores its

employee records (i.e., name, address, salary details, etc.) in a linked list data structure.

Company B stores its employee data in an array data structure. One day, the two

companies decide to merge to form a large organization. The iterator pattern is handy

in such a situation because the developers do not want to write code from scratch. They

can create a common interface so that they can access the data for both companies and

invoke the methods in a uniform way.

Figure 18-1. A sample diagram for an iterator pattern

Chapter 18 Iterator pattern

287

Consider another example. Suppose that your company has decided to promote

some employees based on their performances. So, all the managers get together and

set a common criterion for promotion. Then they iterate over the past records of each

employee to mark potential candidates for promotion.

Lastly, when you store songs in your preferred audio devices— an MP3 player or your

mobile devices, for example, you can iterate over them through various button press or

swipe movements. The basic idea is to provide you some mechanism to smoothly iterate

over your list.

 Computer-World Example
Similarly, let’s assume that, a college arts department is using an array data structure

to maintain its students’ records. The science department is using a linked list data

structure to keep their students’ records. The administrative department does not care

about the different data structures, they are simply interested in getting the data from

each of the departments and they want to access the data in a universal way.

Note the iterator classes in Java’s collection framework are iterator examples.
When you use the interfaces like java.util.Iterator or java.util.enumeration , you
basically use this pattern. the java.util.Scanner class also follows this pattern.
If you are familiar with C#, you may use C#’s own iterators that were introduced
in Visual Studio 2005.the foreach statement is frequently used in this context.

 Illustration
In this chapter, there are three different implementations of the iterator pattern. I’ll

start with an example that follows the core theory of this pattern. In the next example,

I’ll modify the example using Java’s built-in support of the iterator pattern. In the third

and final example, you use this pattern with a different data structure. In the first two

examples, I’ll simply use “String” data types but in the final example, I’ll use a complex

data type.

Chapter 18 Iterator pattern

288

Before you start, I suggest that you note the structure in the Package Explorer view

for your immediate reference.

In the first implementation, let’s assume that in a particular college, an arts

department student needs to study four papers (or subjects)—English, history,

geography, and psychology. The details of these papers are stored in an array data

structure. And your job is to print the curriculum using an iterator.

Let’s assume that your iterator currently supports four basic methods: first(),

next(), currentItem(), and hasNext().

• The first() method resets the pointer to the first element before you

start traversing a data structure.

• The next() method returns the next element in the container.

• The currentItem() method returns the current element of the

container that the iterator is pointing at a particular point of time.

• The hasNext() validates whether any next element is available for

further processing. So, it helps you determine whether you have

reached the end of your container.

 Class Diagram
Figure 18-2 shows the class diagram.

Chapter 18 Iterator pattern

289

Note Like many of the previous examples in this book, to present a clean class
diagram, I have shown only client code dependencies. For any objectaid class
diagrams shown in the eclipse editor, you can always see other dependencies
by selecting an element in the diagram, right-clicking it, and selecting add ➤
Dependencies.

Figure 18-2. Class diagram

Chapter 18 Iterator pattern

290

 Package Explorer View
Figure 18-3 shows the high-level structure of the program.

Figure 18-3. Package Explorer view

Chapter 18 Iterator pattern

291

 First Implementation
Here’s the first implementation.

package jdp2e.iterator.demo;

interface Subjects

{

 Iterator createIterator();

}

class Arts implements Subjects

{

 private String[] papers;

 public Arts()

 {

 papers = new String[] { "English","History",

"Geography","Psychology" };

 }

 public Iterator createIterator()

 {

 return new ArtsIterator(papers);

 }

}

interface Iterator

{

 void first();//Reset to first element

 String next();//To get the next element

 String currentItem();//To retrieve the current element

 boolean hasNext();//To check whether there is any next element or not.

}

class ArtsIterator implements Iterator

{

 private String[] papers;

 private int position;

 public ArtsIterator(String[] papers)

Chapter 18 Iterator pattern

292

 {

 this.papers = papers;

 position = 0;

 }

 @Override

 public void first()

 {

 position = 0;

 }

 @Override

 public String next()

 {

 //System.out.println("Currently pointing to: "+ this.

currentItem());

 return papers[position++];

 }

 @Override

 public String currentItem()

 {

 return papers[position];

 }

 @Override

 public boolean hasNext()

 {

 if(position >= papers.length)

 return false;

 return true;

 }

}

public class IteratorPatternExample {

 public static void main(String[] args) {

 System.out.println("***Iterator Pattern Demo***");

 Subjects artsSubjects = new Arts();

Chapter 18 Iterator pattern

293

 Iterator iteratorForArts = artsSubjects.createIterator();

 System.out.println("\n Arts subjects are as follows:");

 while (iteratorForArts.hasNext())

 {

 System.out.println(iteratorForArts.next());

 }

 //Moving back to first element

 iteratorForArts.first();

 System.out.println(" Currently pointing back to: "+

iteratorForArts.currentItem());

 }

}

 Output
Here’s the output.

Iterator Pattern Demo

 Arts subjects are as follows:

English

History

Geography

Psychology

 Currently pointing back to: English

Note If you want to see the current element that the iterator is pointing to, you
can uncomment the line in the next() method: // System.out.println("Currently
pointing to: "+ this.currentItem());

Now let’s modify the previous implementation using Java’s built-in Iterator interface.

Chapter 18 Iterator pattern

294

 Key Characteristics of the Second Implementation
I used Java’s built-in support for the iterator pattern. Note the inclusion of the following

line at the beginning of the program.

 import java.util.Iterator;

If you open the source code, you see that this interface has three methods:

hasNext(), next(), and remove(). But the remove() method has a default

implementation already. So, in the following example, I needed to override the

hasNext() and next() methods only.

Here you are using the Java’s Iterator interface, so there is no need to define your own

Iterator interface.

In this modified implementation, key changes are shown in bold.

 Second Implementation
Here’s the second implementation.

package jdp2e.iterator.modified.demo;

import java.util.Iterator;

interface Subjects

{

 //Iterator CreateIterator();

 ArtsIterator createIterator();

}

class Arts implements Subjects

{

 private String[] papers;

 public Arts()

 {

 papers = new String[] { "English","History",

"Geography","Psychology" };

 }

Chapter 18 Iterator pattern

295

 //public Iterator CreateIterator()

 public ArtsIterator createIterator()

 {

 return new ArtsIterator(papers);

 }

}

class ArtsIterator implements Iterator<String>

{

 private String[] papers;

 private int position;

 public ArtsIterator(String[] papers)

 {

 this.papers = papers;

 position = 0;

 }

 public void first()

 {

 position = 0;

 }

 public String currentItem()

 {

 return papers[position];

 }

 @Override

 public boolean hasNext()

 {

 if(position >= papers.length)

 return false;

 return true;

 }

Chapter 18 Iterator pattern

296

 @Override

 public String next()

 {

 return papers[position++];

 }

}

public class ModifiedIteratorPatternExample {

 public static void main(String[] args) {

 System.out.println("***Modified Iterator Pattern Demo.***");

 Subjects artsSubjects = new Arts();

 //Iterator IteratorForArts = artsSubjects.createIterator();

 ArtsIterator iteratorForArts = artsSubjects.createIterator();

 System.out.println("\nArts subjects are as follows:");

 while (iteratorForArts.hasNext())

 {

 System.out.println(iteratorForArts.next());

 }

 //Moving back to first element

 iteratorForArts.first();

 System.out.println("Currently pointing to: "+ iteratorForArts.

currentItem());

 }

}

 Output
Here’s the modified output.

Modified Iterator Pattern Demo.

Arts subjects are as follows:

English

History

Geography

Psychology

Currently pointing to: English

Chapter 18 Iterator pattern

297

 Q&A Session

 1. What is the use of an iterator pattern?

• You can traverse an object structure without knowing its

internal details. As a result, if you have a collection of different

subcollections (e.g., your container is mixed up with arrays, lists,

or linked lists, etc.), you can still traverse the overall collection

and deal with the elements in a universal way without knowing

the internal details or differences among them.

• You can traverse a collection in different ways. You can also

provide an implementation that supports multiple traversals

simultaneously.

 2. What are the key challenges associated with this pattern?

Ideally, during a traversal/iteration process, you should not

perform any accidental modification to the core architecture.

 3. But to deal with the challenge mentioned earlier, you could
make a backup and then proceed. Is this correct?

Making a backup and reexamining later is a costly operation.

 4. Throughout the discussion, you have talked about collections.
What is a collection?

It is a group of individual objects that are presented in a single

unit. You may often see the use of the interfaces like java.util.

Collection, java.util.Map, and so forth, in Java programs. These are

some common interfaces for Java’s collection classes, which were

introduced in JDK 1.2.

Prior to collections, you had choices like arrays, vectors, and so

forth, to store or manipulate a group of objects. But these classes

did not have a common interface; the way you needed to access

elements in an array were quite different from the way you needed

to access the elements of a vector. That is why it was difficult to

Chapter 18 Iterator pattern

298

write a common algorithm to access different elements from these

different implementations. Also, many of these methods were

final, so you could not extend them.

The collection framework was introduced to address these kinds

of difficulties. At the same time, they provided high-performance

implementations to make a programmer’s life easier.

 5. In the modified implementation, why am I not seeing the
@Override annotation for the first() and currentItem() methods?

These two methods are not present in the java.util.Iterator

interface. The built-in Iterator interface has the hasNext() and

next() methods. So, I used the @Override annotation for these

methods. There is another method, remove(), in this interface. It

has a default implementation. Since I have not used it, I did not

need to modify this method.

 6. In these implementations, I am seeing that you are only using
strings of arrays to store and manipulate data. Can you show an
iterator pattern implementation that uses a relatively complex
data type and a different data structure?

To make these examples simple and straightforward, I only used

strings and an array data structure. You can always choose your

preferred data structure and apply the same process when you

consider a complex data type. For example, consider the following

illustration (third implementation) with these key characteristics.

• Here I am using a relatively complex data type, Employee. Each

employee object has three things: a name, an identification

number (id), and the salary.

• Instead of an array, I used a different data structure, LinkedList,

in the following implementation. So, I need to include the

following line in this implementation.

import java.util.LinkedList;

• I have followed the same approach that I used in the previous

example.

Chapter 18 Iterator pattern

299

 Third Implementation
Here’s the third implementation.

package jdp2e.iterator.questions_answers;

import java.util.Iterator;

import java.util.LinkedList;

class Employee

{

 private String name;

 private int id;

 private double salary;

 public Employee(String name, int id, double salary)

 {

 this.name=name;

 this.id=id;

 this.salary=salary;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public double getSalary() {

 return salary;

 }

Chapter 18 Iterator pattern

300

 public void setSalary(double salary) {

 this.salary = salary;

 }

 @Override

 public String toString(){

 return "Employee Name: "+this.getName()+", ID: "+this.getId()+ "

and salary: "+this.getSalary()+"$";

 }

}

interface DataBase

{

 EmployeeIterator createIterator();

}

class EmployeeDatabase implements DataBase

{

 private LinkedList<Employee> employeeList;

 public EmployeeDatabase()

 {

 employeeList = new LinkedList<Employee>();

 employeeList.add(new Employee("Ron",1, 1000.25));

 employeeList.add(new Employee("Jack",2, 2000.5));

 employeeList.add(new Employee("Ambrose",3, 3000.75));

 employeeList.add(new Employee("Jian",4, 2550.0));

 employeeList.add(new Employee("Alex",5, 753.83));

 }

 public EmployeeIterator createIterator()

 {

 return new EmployeeIterator(employeeList);

 }

}

class EmployeeIterator implements Iterator<Employee>

{

 private LinkedList<Employee> employeeList;

 private int position;

Chapter 18 Iterator pattern

301

 public EmployeeIterator(LinkedList<Employee> employeeList)

 {

 this.employeeList= employeeList;

 position = 0;

 }

 //@Override

 public void first()

 {

 position = 0;

 }

 //@Override

 public Employee currentItem()

 {

 return employeeList.get(position);

 }

 @Override

 public Employee next()

 {

 return employeeList.get(position++);

 }

 @Override

 public boolean hasNext() {

 if(position >= employeeList.size())

 return false;

 return true;

 }

}

public class ModifiedIteratorPatternExample2 {

 public static void main(String[] args) {

 System.out.println("***Modified Iterator Pattern Demo.

Example-2.***");

 DataBase employeesList = new EmployeeDatabase();

Chapter 18 Iterator pattern

302

 EmployeeIterator iteratorForEmployee = employeesList.

createIterator();

 System.out.println("\n -----Employee details are as

follows-----\n");

 while (iteratorForEmployee.hasNext())

 {

 System.out.println(iteratorForEmployee.next());

 }

 }

}

 Output
Here’s the output from the third implementation.

Modified Iterator Pattern Demo.Example-2.

 -----Employee details are as follows-----

Employee Name: Ron, ID: 1 and salary: 1000.25$

Employee Name: Jack, ID: 2 and salary: 2000.5$

Employee Name: Ambrose, ID: 3 and salary: 3000.75$

Employee Name: Jian, ID: 4 and salary: 2550.0$

Employee Name: Alex, ID: 5 and salary: 753.83$

Note You may use two or more different data structures in an implementation to
demonstrate the power of this pattern. You have seen that across these different
implementations, I have used the first(), next(), hasnext(), and currentItem()
methods with different implementations that vary due to their internal data
structures.

Chapter 18 Iterator pattern

303
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_19

CHAPTER 19

Memento Pattern
This chapter covers the memento pattern.

 GoF Definition
Without violating encapsulation, capture and externalize an object’s internal state so that

the object can be restored to this state later.

 Concept
In your application, you may need to support “undo” operations. To achieve this, you

need to record the internal state of an object. So, you must save this state information in

a place that can be referred again to revert back the old state of the object. But in general,

objects encapsulate their states, and those states are inaccessible to the outer world.

So, if you expose the state information, then you violate encapsulation.

The dictionary meaning of memento is reminder (of past events). So, you can guess

that using this pattern, you can restore an object to its previous state, but it ensures that

you achieve your goal without violating the encapsulation.

 Real-World Example
A classic example in this category is noticed in a finite state machine. It is a mathematical

model, but one of its simple applications can be found in a turnstile. It has rotating arms,

which initially are locked. If you are allowed to pass through it (for example, when you

insert coins or when a security person allows you to go through a security check), the

locks are opened. Once you pass through, the turnstile returns to the locked state again.

304

 Computer-World Example
In a drawing application, you may need to revert back to a prior state.

Note You notice a similar pattern when you consider the JTextField class, which
extends the javax.swing.text.JTextComponent abstract class and provides an undo
support mechanism. Here javax.swing.undo.UndoManager can act as a caretaker,
an implementation of javax.swing.undo. UndoableEdit can act like a memento,
and an implementation of javax.swing.text.Document can act like an originator.
You will learn about the terms originator, caretaker, and memento shortly. Also,
java.io.Serializable is often called an example of a memento but although you can
serialize a memento object, it is not a mandatory requirement for the memento
design pattern.

 Illustration
Go through the code and follow the comments for your ready reference. In this example,

three objects are involved: a memento, an originator, and a caretaker. (These names are

very common, so I have kept the same naming convention in our implementation.)

The originator object has an internal state. A client can set a state in it. A memento

object may store as much or as little of the originator’s state, at the originator’s discretion.

When a caretaker wants to record the state of the originator, it requests the current state

from it. So, it first asks the originator for a memento object.

In the following example, the caretaker object confirms the save operation by

displaying a console message. Suppose that the client makes some changes and then

wants to revert back to the previous state. Since the originator object’s state is already

changed, to roll back to the previous state requires help from the caretaker object,

which saved the state earlier. The caretaker object returns the memento object (with

the previous state) to the originator. The memento object itself is an opaque object

(one which the caretaker is not allowed to make any change to, and ideally, only the

originator, who created the memento can access the memento’s internal state).

So, you can conclude that caretaker has a narrow view/interface to the memento

because it can only pass it to other objects. In contrast, the originator sees the wide

interface because it can access the data necessary to return to a previous state.

CHApTEr 19 MEMEnTo pATTErn

305

 Class Diagram
Figure 19-1 shows the class diagram.

Figure 19-1. Class diagram

CHApTEr 19 MEMEnTo pATTErn

306

 Package Explorer View
Figure 19-2 shows the high-level structure of the parts of the program.

Figure 19-2. Package Explorer view

 Implementation
Here is the implementation.

package jdp2e.memento.demo;

class Memento

{

 private int stateId;

 public Memento(int stateId)

 {

 this.stateId = stateId;

 }

CHApTEr 19 MEMEnTo pATTErn

307

 public int getStateId() {

 return stateId;

 }

 /*This class does not have the

 setter method.We need to use this class

 to get the state of the object only.*/

 /*public void setState(String state) {

 this.state = state;

 }*/

}

/*

The 'Originator' class

WikiPedia notes(for your reference):

Make an object (originator) itself responsible for:

1.Saving its internal state to a(memento) object and

2.Restoring to a previous state from a(memento) object.

3.Only the originator that created a memento is allowed to access it.

 */

class Originator

{

 private int stateId;

 public Originator()

 {

 this.stateId = 0;

 System.out.println(" Originator is created with state id :

"+ stateId);

 }

 public int getStateId()

 {

 return stateId;

 }

CHApTEr 19 MEMEnTo pATTErn

308

 public void setStateId(int stateId)

 {

 System.out.println(" Setting the state id of the originator to :

"+ stateId);

 this.stateId= stateId;

 }

 //Saving its internal state to a(memento) object

 public Memento saveMemento(int stateId)

 {

 System.out.println(" Saving originator's current state id. ");

 //Create memento with the current state and return it.

 return new Memento(stateId);

 }

 //Restoring to a previous state from a(memento) object.

 public void revertMemento(Memento previousMemento)

 {

 System.out.println(" Restoring to state id..."+ previousMemento.

getStateId());

 this.stateId = previousMemento.getStateId();

 System.out.println(" Current state id of originator : "+ stateId);

 }

}

/*

The 'Caretaker' class.

WikiPedia notes(for your reference):

1.A client (caretaker) can request a memento from the originator to save

the internal state of the originator and

2.Pass a memento back to the originator (to restore to a previous state)

This enables to save and restore the internal state of an originator

without violating its encapsulation.

 */

public class MementoPatternExample {

 public static void main(String[] args) {

 System.out.println("***Memento Pattern Demo***\n");

CHApTEr 19 MEMEnTo pATTErn

309

 //Originator is initialized with a state

 Originator originatorObject = new Originator();

 Memento mementoObject;

 originatorObject.setStateId(1);

 // A client (caretaker) can request a memento from the originator

 //to save the internal state of the originator

 mementoObject=originatorObject.saveMemento(originatorObject.

getStateId());

 System.out.println(" Snapshot #1: Originator's current state id is

saved in caretaker.");

 //A client (or caretaker) cannot set/modify the memento's state

 //mementoObject.setState("arbitratyState");//error

 //Changing the state id of Originator

 originatorObject.setStateId(2);

 mementoObject=originatorObject.saveMemento(originatorObject.

getStateId());

 System.out.println(" Snapshot #2: Originator's current state id is

saved in caretaker.");

 //Changing the state id of Originator again.

 originatorObject.setStateId(3);

 //Reverting back to previous state id.

 originatorObject.revertMemento(mementoObject);

 }

}

 Output
Here is the output.

Memento Pattern Demo

 Originator is created with state id : 0

 Setting the state id of the originator to : 1

 Saving originator's current state id.

 Snapshot #1: Originator's current state id is saved in caretaker.

CHApTEr 19 MEMEnTo pATTErn

310

 Setting the state id of the originator to : 2

 Saving originator's current state id.

 Snapshot #2: Originator's current state id is saved in caretaker.

 Setting the state id of the originator to : 3

 Restoring to state id...2

 Current state id of originator : 2

Note If you deal with a state that is a mutable reference type, you may need to
do a deep copy to store the state inside the Memento object.

 Q&A Session

 1. I can restore the previous snapshot/restore point. But in a real-
life scenario, I may have multiple restore points. How can you
implement that using this design pattern?

You can use an ArrayList in such a case. Consider the following

program.

The Originator class and Memento class are same as before, so I

am presenting the modified Caretaker class only. I am using the

following line of code in the upcoming implementation.

List<Memento> savedStateIds = new ArrayList<Memento>();

So, you need to include these two lines of code at the beginning.

import java.util.ArrayList;

import java.util.List;

CHApTEr 19 MEMEnTo pATTErn

311

 Modified Caretaker Class
This is the modified Caretaker class.

 /*

The modified 'Caretaker' class.

WikiPedia notes(for your reference):

1.A client (caretaker) can request a memento from the originator to save

the internal state of the originator and

2.Pass a memento back to the originator (to restore to a previous state)

This enables to save and restore the internal state of an originator

without violating its encapsulation.

 */

public class ModifiedMementoPatternExample {

 public static void main(String[] args) {

 System.out.println("***Modified Memento Pattern Demo***\n");

 List<Memento> savedStateIds = new ArrayList<Memento>();

 //Originator is initialized with a state

 Originator originatorObject = new Originator();

 Memento mementoObject;

 originatorObject.setStateId(1);

 mementoObject=originatorObject.saveMemento(originatorObject.

getStateId());

 savedStateIds.add(mementoObject);

 System.out.println(" Snapshot #1: Originator's current state id is

saved in caretaker.");

 //A client or caretaker cannot set/modify the memento's state

 //mementoObject.setState("arbitratyState");//error

 //Changing the state id of Originator

 originatorObject.setStateId(2);

 mementoObject=originatorObject.saveMemento(originatorObject.

getStateId());

 savedStateIds.add(mementoObject);

 System.out.println(" Snapshot #2: Originator's current state id is

saved in caretaker.");

CHApTEr 19 MEMEnTo pATTErn

312

 //Changing the state id of Originator

 originatorObject.setStateId(3);

 mementoObject=originatorObject.saveMemento(originatorObject.

getStateId());

 savedStateIds.add(mementoObject);

 System.out.println(" Snapshot #3: Originator's current state id is

saved in caretaker (client).");

 //Reverting back to previous state id.

 //originatorObject.revertMemento(mementoObject);

 //Reverting back to specific id -say, Snapshot #1)

 //originatorObject.revertMemento(savedStateIds.get(0));

 //Roll back everything...

 System.out.println("Started restoring process...");

 for (int i = savedStateIds.size(); i > 0; i--)

 {

 originatorObject.revertMemento(savedStateIds.get(i-1));

 }

 }

}

 Modified Output
Once you run this modified program, you get the following output.

Modified Memento Pattern Demo

 Originator is created with state id : 0

 Setting the state id of the originator to : 1

 Saving originator's current state id.

 Snapshot #1: Originator's current state id is saved in caretaker.

 Setting the state id of the originator to : 2

 Saving originator's current state id.

 Snapshot #2: Originator's current state id is saved in caretaker.

 Setting the state id of the originator to : 3

 Saving originator's current state id.

CHApTEr 19 MEMEnTo pATTErn

313

 Snapshot #3: Originator's current state id is saved in caretaker (client).

Started restoring process...

 Restoring to state id...3

 Current state id of originator : 3

 Restoring to state id...2

 Current state id of originator : 2

 Restoring to state id...1

 Current state id of originator : 1

 Analysis
In this modified program, you can see three different variations of “undo” operations.

• You can just go back to the previous restore point.

• You can go back to your specified restore point.

• You can revert back to all restore points.

To see cases 1 and 2, uncomment the lines in the previous implementation.

 2. In many applications, I notice that the memento class is
presented as an inner class of Originator. Why are you not
following that approach?

The memento design pattern can be implemented in many

different ways (for example, using package-private visibility or

using object serialization techniques). But in each case, if you

analyze the key aim, you find that once the memento instance is

created by an originator, no one else besides its creator is allowed

to access the internal state (this includes the caretaker/client).

A caretaker’s job is to store the memento instance (restore points

in our example) and supply them back when you are in need.

So, there is no harm if your memento class is public. You can just

block the public setter method for the memento. I believe that it is

sufficient enough.

CHApTEr 19 MEMEnTo pATTErn

314

 3. But you are still using the getter method getStateId(). Does it
not violate the encapsulation?

There is a lot of discussion and debate around this area—whether

you should use getter/setter or not, particularly when you

consider encapsulation. I believe that it depends on the amount

of strictness that you want to impose. For example, if you just

provide getter/setters for all fields without any reason, that is

surely a bad design. The same thing applies when you use all

the public fields inside the objects. But sometimes the accessor

methods are required and useful. In this book, my aim is to

encourage you learn design patterns with simple examples. If I

need to consider each and every minute detail such as this, you

may lose interest. So, in these examples, I show a simple way to

promote encapsulation using the memento pattern. But, if you

want to be stricter, you may prefer to implement the memento

class as an inner class of the originator and modify the initial

implementation, like in the following.

package jdp2e.memento.questions_answers;

/*

The 'Originator' class

WikiPedia notes(for your reference):

Make an object (originator) itself responsible for:

1.Saving its internal state to a(memento) object and

2.Restoring to a previous state from a(memento) object.

3.Only the originator that created a memento is allowed to access it.

 */

class Originator

{

 private int stateId;

 Memento myMemento;

 public Originator()

 {

 this.stateId = 0;

CHApTEr 19 MEMEnTo pATTErn

315

 System.out.println(" Originator is created with state id :

"+ stateId);

 }

 public int getStateId()

 {

 return stateId;

 }

 public void setStateId(int stateId)

 {

 System.out.println(" Setting the state id of the

originator to : "+ stateId);

 this.stateId= stateId;

 }

 //Saving its internal state to a(memento) object

 public Memento saveMemento()

 {

 System.out.println(" Saving originator's current state id. ");

 //Create memento with the current state and return it.

 return new Memento(this.stateId);

 }

 //Restoring to a previous state from a(memento) object.

 public void revertMemento(Memento previousMemento)

 {

 System.out.println(" Restoring to state id..."+

previousMemento.getStateId());

 this.stateId = previousMemento.getStateId();

 System.out.println(" Current state id of originator : "+

stateId);

 }

CHApTEr 19 MEMEnTo pATTErn

316

 //A memento class implemented as an inner class of Originator

 static class Memento

 {

 private int stateId;

 public Memento(int stateId)

 {

 this.stateId = stateId;

 }

 //Only outer class can access now

 public int getStateId() {

 return stateId;

 }

 /*This class does not have the

 setter method.We need to use this class

 to get the state of the object only.*/

 /*public void setState(String state) {

 this.state = state;

 }*/

 }

}

/*

The 'Caretaker' class.

WikiPedia notes(for your reference):

1.A client (caretaker) can request a memento from the originator

to save the internal state of the originator and

2.Pass a memento back to the originator (to restore to a previous

state)

This enables to save and restore the internal state of an

originator without violating its encapsulation.

 */

public class MementoAsInnerClassExample {

 public static void main(String[] args) {

 System.out.println("***Memento Pattern Demo***\n");

CHApTEr 19 MEMEnTo pATTErn

317

 //Originator is initialized with a state

 Originator originatorObject = new Originator();

 Originator.Memento mementoObject;

 originatorObject.setStateId(1);

 // A client (caretaker) can request a memento from the

originator

 //to save the internal state of the originator

 mementoObject=originatorObject.saveMemento();

 System.out.println(" Snapshot #1: Originator's current

state id is saved in caretaker.");

 //A client (or caretaker) cannot set/modify the memento's

state

 //Changing the state id of Originator

 originatorObject.setStateId(2);

 mementoObject=originatorObject.saveMemento();

 System.out.println(" Snapshot #2: Originator's current

state id is saved in caretaker.");

 //Changing the state id of Originator again.

 originatorObject.setStateId(3);

 //Reverting back to previous state id.

 originatorObject.revertMemento(mementoObject);

 }

}

 4. What are the key advantages of using a memento design
pattern?

• The biggest advantage is that you can always discard the

unwanted changes and restore it to an intended or stable state.

• You do not compromise the encapsulation associated with the

key objects that are participating in this model.

• Maintains high cohesion.

• Provides an easy recovery technique.

CHApTEr 19 MEMEnTo pATTErn

318

 5. What are key challenges associated with a memento design
pattern?

• A high number of mementos require more storage. At the same

time, they put additional burdens on a caretaker.

• The preceding point increases maintenance costs in parallel.

• You cannot ignore the time to save these states. The additional

time to save the states decreases the overall performance of the

system.

Note In a language like C# or Java, developers may prefer the serialization/
deserialization techniques instead of directly implementing a memento design
pattern. Both techniques have their own pros/cons. But you can also combine both
techniques in your application.

 6. In these implementations, if you make the originator’s state
public, then our clients also could directly access the states.
Is this correct?

Yes. But you should not try to break the encapsulation. Notice the

GoF definition that begins “without violating encapsulation…”

 7. In these implementations, the memento class does not have a
public setter method. What is the reason behind this?

Go through the answer of question 2 again. And read the

comment in the code that says, “Only the originator that created

a memento is allowed to access it.” So, if you do not provide a

public setter method for your memento class, the caretaker or

client cannot modify the memento instances that are created by

an originator.

CHApTEr 19 MEMEnTo pATTErn

319

 8. In these implementations, you could ignore the getter method
of the memento by using package-private visibility for stateId.
For example, you could code memento class like the following.

class Memento

{

 //private int stateId;

 int stateId;//←-Change is here

 public Memento(int stateId)

 {

 this.stateId = stateId;

 }

 public int getStateId() {

 return stateId;

 }

 /*This class does not have the

 setter method.We need to use this class

 to get the state of the object only.*/

 /*public void setState(String state) {

 this.state = state;

 }*/

}

And then you can use the following line.

 //System.out.println(" Restoring to state id..."+

previousMemento.getStateId());

 System.out.println(" Restoring to state id..."+

previousMemento.stateId);//←The change is shown in bold

Is this correct?

Yes. In many application, other classes (except originator) cannot

even read the memento’s state. When you use package- private

visibility, you do not need any accessor method. In other words,

you are simply using the default modifier in this case.

CHApTEr 19 MEMEnTo pATTErn

320

So, this kind of visibility is slightly more open than private

visibility and other classes in the same package can access a class

member. So, in this case, the intended classes need to be placed

inside the same package. At the same time, you need to accept

that all other classes inside the same package will have the direct

access to this state. So, you need to be careful enough when you

place the classes in your special package.

 9. I am confused. To support undo operations, which pattern
should I prefer—memento or command?

The GoF told us that these are related patterns. It primarily

depends on how you want to handle the situation. For example,

suppose that you are adding 10 to an integer. After this addition,

you want to undo the operation by doing the reverse operation

(i.e., 50 + 10 = 60, so to go back, you do 60 –10 = 50). In this type of

operation, we do not need to store the previous state.

But consider a situation where you need to store the state of

your objects prior to the operations. In this case, memento is

your savior. So, in a paint application, you can avoid the cost of

undoing a paint operation. You can store the list of objects prior

to executing the commands. This stored list can be treated as a

memento in this case. You can keep this list with the associated

commands. I suggest that you read the nice online article at www.

developer.com/design/article.php/3720566/Working- With-

Design-Patterns-Memento.htm.

So, an application can use both patterns to support undo

operations.

Finally, you must remember that storing a memento object is

mandatory in a memento pattern, so that you can roll back to a

previous state; but in a command pattern, it is not necessary to

store the commands. Once you execute a command, its job is

done. If you do not support “undo” operations, you may not be

interested in storing these commands at all.

CHApTEr 19 MEMEnTo pATTErn

321

 10. You talked about deep copy after the first implementation.
Why do I need that?

In Chapter 2 (the prototype pattern), I discussed shallow copy

and deep copy. You can refer to this discussion for your reference.

To answer your question, let’s analyze what is special about deep

copy with a simple example. Consider the following example.

 Shallow Copy vs. Deep Copy in Java
You clone with the clone() method in Java, but at the same time, you need to implement

the Cloneable interface (which is a marker interface) because the Java objects that

implement this Cloneable interface are only eligible for cloning. The default version

of clone()creates a shallow copy. To create the deep copy, you need to override the

clone() method.

 Key Characteristics of the Following Program

In the following example, you have two classes: Employee and EmpAddress.

• The Employee class has three fields: id, name, and EmpAddress. So,

you may notice that to form an Employee object, you need to pass an

EmpAddress object also. So, in the following example, you will notice

the line of code:

Employee emp=new Employee(1,"John",initialAddress);

• EmpAddress has only a field called address, which is a String

datatype.

• In the client code, you create an Employee object emp and then you

create another object, empClone, through cloning. So, you will notice

the line of code as follows:

Employee empClone=(Employee)emp.clone();

• Then you change the field values of the emp object. But as a side

effect of this change, the address of empClone object also changes,

but this is not wanted.

CHApTEr 19 MEMEnTo pATTErn

322

 Implementation

Here is the implementation.

package jdp2e.memento.questions_answers;

class EmpAddress implements Cloneable

{

 String address;

 public EmpAddress(String address)

 {

 this.address=address;

 }

 public String getAddress()

 {

 return address;

 }

 public void setAddress(String address)

 {

 this.address = address;

 }

 @Override

 public String toString()

 {

 return this.address;

 }

 @Override

 public Object clone() throws CloneNotSupportedException

 {

 //Shallow Copy

 return super.clone();

 }

}

class Employee implements Cloneable

{

 int id;

 String name;

CHApTEr 19 MEMEnTo pATTErn

323

 EmpAddress empAddress;

 public Employee(int id,String name,EmpAddress empAddress)

 {

 this.id=id;

 this.name=name;

 this.empAddress=empAddress;

 }

 public int getId()

 {

 return id;

 }

 public void setId(int id)

 {

 this.id = id;

 }

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

 public EmpAddress getAddress()

 {

 return this.empAddress;

 }

 public void setAddress(EmpAddress newAddress)

 {

 this.empAddress=newAddress;

 }

 @Override

 public String toString()

 {

CHApTEr 19 MEMEnTo pATTErn

324

 return "EmpId=" +this.id+ " EmpName="+ this.name+ "

EmpAddressName="+ this.empAddress;

 }

 @Override

 public Object clone() throws CloneNotSupportedException

 {

 //Shallow Copy

 return super.clone();

 }

}

public class ShallowVsDeepCopy {

 public static void main(String[] args) throws

CloneNotSupportedException {

 System.out.println("***Shallow vs Deep Copy Demo***\n");

 EmpAddress initialAddress=new EmpAddress("21, abc Road, USA");

 Employee emp=new Employee(1,"John",initialAddress);

 System.out.println("emp1 object is as follows:");

 System.out.println(emp);

 Employee empClone=(Employee)emp.clone();

 System.out.println("empClone object is as follows:");

 System.out.println(empClone);

 System.out.println("\n Now changing the name, id and address of the

emp object ");

 emp.setId(10);

 emp.setName("Sam");

 emp.empAddress.setAddress("221, xyz Road, Canada");

 System.out.println("Now emp1 object is as follows:");

 System.out.println(emp);

 System.out.println("And emp1Clone object is as follows:");

 System.out.println(empClone);

 }

}

CHApTEr 19 MEMEnTo pATTErn

325

 Output

Here is the output.

Shallow vs Deep Copy Demo

emp1 object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

empClone object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

 Now changing the name and id of emp object

Now emp1 object is as follows:

EmpId=10 EmpName=Sam EmpAddressName=221, xyz Road, Canada

And emp1Clone object is as follows:

EmpId=1 EmpName=John EmpAddressName=221, xyz Road, Canada

 Analysis

Notice the last line of the output. You see an unwanted side effect. The address of the

cloned object is modified due the modification to the emp object. This is because the

original object and the cloned object both point to the same address, and they are not

100% disjoined. Figure 19-3 depicts the scenario.

Figure 19-3. Shallow copy

CHApTEr 19 MEMEnTo pATTErn

326

So, now let’s experiment with a deep copy implementation. Let’s modify the clone

method of the Employee class as follows.

@Override

 public Object clone() throws CloneNotSupportedException

 {

 //Shallow Copy

 //return super.clone();

 //For deep copy

 Employee employee = (Employee) super.clone();

 employee.empAddress = (EmpAddress) empAddress.clone();

 return employee;

 }

 Modified Output

Here is the modified output.

Shallow vs Deep Copy Demo

emp1 object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

empClone object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

 Now changing the name, id and address of the emp object

Now emp1 object is as follows:

EmpId=10 EmpName=Sam EmpAddressName=221, xyz Road, Canada

And emp1Clone object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

 Analysis

Notice the last line of the output. Now you do not see the unwanted side effect due to the

modification to the emp object. This is because the original object and the cloned object

are totally different and independent of each other. Figure 19-4 depicts the scenario.

CHApTEr 19 MEMEnTo pATTErn

327

Figure 19-4. Deep copy

Note You saw the theoretical parts of a shallow copy and a deep copy in the
“Q&A Session” of Chapter 2.

CHApTEr 19 MEMEnTo pATTErn

329
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_20

CHAPTER 20

State Pattern
This chapter covers the state pattern.

 GoF Definition
Allow an object to alter its behavior when its internal state changes. The object will

appear to change its class.

 Concept
Suppose that you are dealing with a large-scale application where the codebase is rapidly

growing. As a result, the situation becomes complex and you may need to introduce lots

of if-else blocks/switch statements to guard the various conditions. The state pattern

fits in such a context. It allows your objects to behave differently based on the current

state, and you can define state-specific behaviors with different classes.

So, in this pattern, you start thinking in terms of possible states of your application,

and you segregate the code accordingly. Ideally, each of the states is independent of

other states. You keep track of these states, and your code responds as per the behavior

of the current state. For example, suppose that you are watching a television (TV)

program/show. If you press the mute button on the TV’s remote control, you notice a

state change in your TV. But you cannot notice any change if the TV is already turned off.

So, the basic idea is that if your code can track the current state of the application,

you can centralize the task, segregate your code, and respond accordingly.

330

 Real-World Example
Consider the scenario of a network connection—a TCP connection. An object can be in

various states; for example, a connection might already be established, the connection

might be closed, or the object already started listening through the connection. When

this connection receives a request from other objects, it responds as per its present state.

The functionalities of a traffic signal or a television (TV) can also be considered in

this category. For example, you can change channels if the TV is already in a switched-on

mode. It will not respond to the channel change requests if it is in a switched-off mode.

 Computer-World Example
Suppose that you have a job-processing system that can process a certain number of jobs

at a time. When a new job appears, either the system processes the job, or it signals that

the system is busy with the maximum number of jobs that it can process at one time.

In other words, the system sends a busy signal when its total number of job-processing

capabilities has been reached.

Note In the javax.faces.lifecycle package, there is class called Lifecycle. This
class has a method called execute(FacesContext context), in which you may notice
an implementation of the state design pattern. FacesServlet can invoke the execute
method of a LifeCycle and a LifeCycle object communicates with different phases
(states).

 Illustration
The following implementation models the functionalities of a television and its remote

control. Suppose that you have a remote control to support the operations of a TV. You

can simply assume that at any given time, the TV is in either of these three states: On,

Off, or Mute. Initially, the TV is in the Off state. When you press the On button on the

remote control, the TV goes into the On state. If you press the Mute button, it goes into

the Mute state.

ChapTer 20 STaTe paTTern

331

You can assume that if you press the Off button when the TV is already in the Off

state, or if you press the On button when the TV is already in the On state, or if you press

the Mute button when the TV is already in Mute mode, there is no state change for the TV.

The TV can go into the Off state from the On state if you press the Off button, or it

goes into a Mute state if you press the Mute button. Figure 20-1 shows the state diagram

that reflects all of these possible scenarios.

Figure 20-1. Different states of a TV

Note In this diagram, I have not marked any state as the final state, though in
this illustration, at the end, I am switching off the TV. To make the design simple,
I assume that if you press the Off button when the TV is already in the Off state, or
if you press the On button when the TV is already in On state, or if you press the
Mute button when the TV is already in Mute mode, there will be no state change to
the TV. But in the real-world, a remote control may work differently. For example, if
the TV is currently in the On state and you press the Mute button, the TV can go to
Mute mode, and then if press Mute button again, the TV may come back to the On
state again. So, you may need to put additional logic to support this behavior.

ChapTer 20 STaTe paTTern

332

 Key Characteristics
The key characteristics of the following implementations are as follows.

• For a state-specific behavior, you have separate classes. For example,

here you have classes like On, Off, and Mute.

• The TV class is the main class here (the word main does not mean

that it includes the main() method) and the client code only talks to

it. In design pattern terms, TV is the context class here.

• Operations defined in the TV class are delegating the behaviour to

the current state’s object implementation.

• PossibleState is the interface that defines the methods/operations

that are called when you own an object. On, Off, and Mute are

concrete states that implement this interface.

• States are triggering state transitions (one state to another state)

themselves.

 Class Diagram
Figure 20-2 shows the class diagram.

ChapTer 20 STaTe paTTern

333

Figure 20-2. Class diagram

ChapTer 20 STaTe paTTern

334

 Package Explorer View
Figure 20-3 shows the high-level structure of the program.

Figure 20-3. Package Explorer view

ChapTer 20 STaTe paTTern

335

 Implementation
Here’s the implementation.

package jdp2e.state.demo;

interface PossibleState

{

 void pressOnButton(TV context);

 void pressOffButton(TV context);

 void pressMuteButton(TV context);

}

//Off state

class Off implements PossibleState

{

 //User is pressing Off button when the TV is in Off state

 @Override

 public void pressOnButton(TV context)

 {

 System.out.println("You pressed On button. Going from Off to On

state.");

 context.setCurrentState(new On());

 System.out.println(context.getCurrentState().toString());

 }

 //TV is Off already, user is pressing Off button again

 @Override

 public void pressOffButton(TV context)

 {

 System.out.println("You pressed Off button. TV is already in Off

state.");

 }

 //User is pressing Mute button when the TV is in Off state

 @Override

 public void pressMuteButton(TV context)

 {

 System.out.println("You pressed Mute button.TV is already in Off

state, so Mute operation will not work.");

ChapTer 20 STaTe paTTern

336

 }

 public String toString()

 {

 return "\t**TV is switched off now.**";

 }

}

//On state

class On implements PossibleState

{

 //TV is On already, user is pressing On button again

 @Override

 public void pressOnButton(TV context)

 {

 System.out.println("You pressed On button. TV is already in On

state.");

 }

 //User is pressing Off button when the TV is in On state

 @Override

 public void pressOffButton(TV context)

 {

 System.out.println("You pressed Off button.Going from On to Off

state.");

 context.setCurrentState(new Off());

 System.out.println(context.getCurrentState().toString());

 }

 //User is pressing Mute button when the TV is in On state

 @Override

 public void pressMuteButton(TV context)

 {

 System.out.println("You pressed Mute button.Going from On to Mute

mode.");

 context.setCurrentState(new Mute());

 System.out.println(context.getCurrentState().toString());

 }

ChapTer 20 STaTe paTTern

337

 public String toString()

 {

 return "\t**TV is switched on now.**";

 }

}

//Mute state

class Mute implements PossibleState

{

 //User is pressing On button when the TV is in Mute mode

 @Override

 public void pressOnButton(TV context)

 {

 System.out.println("You pressed On button.Going from Mute mode to

On state.");

 context.setCurrentState(new On());

 System.out.println(context.getCurrentState().toString());

 }

 //User is pressing Off button when the TV is in Mute mode

 @Override

 public void pressOffButton(TV context)

 {

 System.out.println("You pressed Off button. Going from Mute mode to

Off state.");

 context.setCurrentState(new Off());

 System.out.println(context.getCurrentState().toString());

 }

 //TV is in mute mode already, user is pressing mute button again

 @Override

 public void pressMuteButton(TV context)

 {

 System.out.println("You pressed Mute button.TV is already in Mute

mode.");

 }

ChapTer 20 STaTe paTTern

338

 public String toString()

 {

 return "\t**TV is silent(mute) now**";

 }

}

class TV

{

 private PossibleState currentState;

 public TV()

 {

 //Initially TV is initialized with Off state

 this.setCurrentState(new Off());

 }

 public PossibleState getCurrentState()

 {

 return currentState;

 }

 public void setCurrentState(PossibleState currentState)

 {

 this.currentState = currentState;

 }

 public void pressOffButton()

 {

 currentState.pressOffButton(this);//Delegating the state

 }

 public void pressOnButton()

 {

 currentState.pressOnButton(this);//Delegating the state

 }

 public void pressMuteButton()

 {

 currentState.pressMuteButton(this);//Delegating the state

 }

}

ChapTer 20 STaTe paTTern

339

//Client

public class StatePatternExample {

 public static void main(String[] args) {

 System.out.println("***State Pattern Demo***\n");

 //Initially TV is Off.

 TV tv = new TV();

 System.out.println("User is pressing buttons in the following

sequence:");

 System.out.println("Off->Mute->On->On->Mute->Mute->Off\n");

 //TV is already in Off state.Again Off button is pressed.

 tv.pressOffButton();

 //TV is already in Off state.Again Mute button is pressed.

 tv.pressMuteButton();

 //Making the TV on

 tv.pressOnButton();

 //TV is already in On state.Again On button is pressed.

 tv.pressOnButton();

 //Putting the TV in Mute mode

 tv.pressMuteButton();

 //TV is already in Mute mode.Again Mute button is pressed.

 tv.pressMuteButton();

 //Making the TV off

 tv.pressOffButton();

 }

}

 Output
Here’s the output.

State Pattern Demo

User is pressing buttons in the following sequence:

Off->Mute->On->On->Mute->Mute->Off

You pressed Off button. TV is already in Off state.

ChapTer 20 STaTe paTTern

340

You pressed Mute button.TV is already in Off state, so Mute operation will

not work.

You pressed On button. Going from Off to On state.

 TV is switched on now.

You pressed On button. TV is already in On state.

You pressed Mute button.Going from On to Mute mode.

 TV is silent(mute) now

You pressed Mute button.TV is already in Mute mode.

You pressed Off button. Going from Mute mode to Off state.

 TV is switched off now.

 Q&A Session

 1. Can you elaborate how this pattern is useful with another real-
world scenario?

Psychologists repeatedly documented the fact that human beings

can perform their best when they are in a relaxed mode and they

are free of tension but in the reverse scenario, when their minds

are filled with tension, they cannot produce great results. That

is why psychologists always suggest that you should work in

relaxed mood. You can relate this simple philosophy with the TV

illustration. If the TV is on, it can entertain you; if it is off, it cannot.

Right? So, if you want to design similar kinds of behavior changes

of an object when it’s internal state changes, this pattern is useful.

Apart from this example, you can consider the scenario where a

customer buys an online ticket and in some later phase he/she

cancels it. The refund amount may vary with different conditions;

for example, the number of days before you can cancel the ticket.

ChapTer 20 STaTe paTTern

341

 2. In this example, you have considered only three states of a TV:
On, Off, or Mute. There are many other states, for example,
there may be a state that deals with connection issues or
display conditions. Why have you ignored those?

The straightforward answer is to represent simplicity. If the

number of states increases significantly in the system, then it

becomes difficult to maintain the system (and it is one of the

key challenges associated with this design pattern). But if you

understand this implementation, you can easily add any states

you want.

 3. I noticed that the GoF represented a similar structure for both
the state pattern and the strategy pattern in their famous book.
I am confused to see that.

Yes, the structures are similar, but you need to note that the intents

are different. Apart from this key distinction, you can simply think

like this: with a strategy pattern provides a better alternative to

subclassing. On the other hand, in a state design pattern, different

types of behaviors can be encapsulated in a state object and

the context is delegated to any of these states. When a context’s

internal states change, its behavior also changes.

State patterns can also help us avoid lots of if conditions in some

contexts. (Consider our example once again. If the TV is in the Off

state, it cannot go to the Mute state. From this state, it can move to

the On state only.) So, if you do not like state design pattern, you

may need to code like this for a On button press.

class TV

{

//Some code before

public void pressOnButton()

{

if(currentState==Off)

{

ChapTer 20 STaTe paTTern

342

System.out.println (" You pressed Onbutton. Going from Off to

OnState");

//Do some operations

}

if(currentState==On)

 {

 System.out.println (" You pressed On button. TV is already in

On state");

 }

//TV presently is in mute mode

else

 {

 System.out.println (" You pressed On button . Going from Mute

mode to On State");

 }

//Do some operations

}

Notice that you need to repeat these checks for different kinds

of button presses. (For example, for the pressOffButton() and

pressMuteButton() methods, you need to repeat these checks

and perform accordingly.)

If you do not think in terms of states, if your code base grows,

maintenance becomes difficult.

 4. How are you supporting the open-close principle in our
implementation?

Each of these TV states are closed for modification, but you can

add brand-new states to the TV class.

 5. What are the common characteristics between the strategy
pattern and the state pattern?

Both can promote composition and delegation.

ChapTer 20 STaTe paTTern

343

 6. It appears to me that these state objects are acting like
singletons. Is this correct?

Yes. Most times they act in this way.

 7. Can you avoid the use of “contexts” in the method parameters.
For example, can you avoid them in the following statements?

void pressOnButton(TV context);

....

If you do not want to use the context parameter like this, you may

need to modify the implementation. To give a quick overview,

I am presenting the modified Package Explorer view with a

modified implementation only.

One of the key changes in the following implementation can be

seen in the class TV. The TV() constructor is initialized with all

possible state objects, which are used for the change of states in

later phases. The getter methods are invoked for this purpose.

Consider the following implementation.

 Modified Package Explorer View
In this case, all three possible states have similar components. So, to keep the diagram

short, I am showing only one of them in the following Package Explorer view.

Figure 20-4 shows the modified high-level structure of the program.

ChapTer 20 STaTe paTTern

344

Figure 20-4. Modified Package Explorer View

ChapTer 20 STaTe paTTern

345

 Modified Implementation
Here is the modified implementation.

package jdp2e.state.modified.demo;

interface PossibleStates

{

 void pressOnButton();

 void pressOffButton();

 void pressMuteButton();

}

class Off implements PossibleStates

{

 TV tvContext;

 //Initially we'll start from Off state

 public Off(TV context)

 {

 //System.out.println(" TV is Off now.");

 this.tvContext = context;

 }

 //Users can press any of these buttons at this state-On, Off or Mute

 //TV is Off now, user is pressing On button

 @Override

 public void pressOnButton()

 {

 System.out.println(" You pressed On button. Going from Off to On

state");

 tvContext.setCurrentState(tvContext.getOnState());

 System.out.println(tvContext.getCurrentState().toString());

 }

 //TV is Off already, user is pressing Off button again

 @Override

ChapTer 20 STaTe paTTern

346

 public void pressOffButton()

 {

 System.out.println(" You pressed Off button. TV is already in Off

state");

 }

 //TV is Off now, user is pressing Mute button

 @Override

 public void pressMuteButton()

 {

 System.out.println(" You pressed Mute button.TV is already in Off

state, so Mute operation will not work.");

 }

 public String toString()

 {

 return "\t**TV is switched off now.**";

 }

}

class On implements PossibleStates

{

 TV tvContext;

 public On(TV context)

 {

 //System.out.println(" TV is On now.");

 this.tvContext = context;

 }

 //Users can press any of these buttons at this state-On, Off or Mute

 //TV is On already, user is pressing On button again

 @Override

 public void pressOnButton()

 {

 System.out.println("You pressed On button. TV is already in On

state.");

 }

 //TV is On now, user is pressing Off button

 @Override

ChapTer 20 STaTe paTTern

347

 public void pressOffButton()

 {

 System.out.println(" You pressed Off button.Going from On to Off

state.");

 tvContext.setCurrentState(tvContext.getOffState());

 System.out.println(tvContext.getCurrentState().toString());

 }

 //TV is On now, user is pressing Mute button

 @Override

 public void pressMuteButton()

 {

 System.out.println("You pressed Mute button.Going from On to Mute

mode.");

 tvContext.setCurrentState(tvContext.getMuteState());

 System.out.println(tvContext.getCurrentState().toString());

 }

 public String toString()

 {

 return "\t**TV is switched on now.**";

 }

}

class Mute implements PossibleStates

{

 TV tvContext;

 public Mute(TV context)

 {

 this.tvContext = context;

 }

 //Users can press any of these buttons at this state-On, Off or Mute

 //TV is in mute, user is pressing On button

 @Override

 public void pressOnButton()

 {

 System.out.println("You pressed On button.Going from Mute mode to

On state.");

ChapTer 20 STaTe paTTern

348

 tvContext.setCurrentState(tvContext.getOnState());

 System.out.println(tvContext.getCurrentState().toString());

 }

 //TV is in mute, user is pressing Off button

 @Override

 public void pressOffButton()

 {

 System.out.println("You pressed Off button. Going from Mute mode to

Off state.");

 tvContext.setCurrentState(tvContext.getOffState());

 System.out.println(tvContext.getCurrentState().toString());

 }

 //TV is in mute already, user is pressing mute button again

 @Override

 public void pressMuteButton()

 {

 System.out.println(" You pressed Mute button.TV is already in Mute

mode.");

 }

 public String toString()

 {

 return "\t**TV is silent(mute) now**";

 }

}

class TV

{

 private PossibleStates currentState;

 private PossibleStates onState;

 private PossibleStates offState;

 private PossibleStates muteState;

 public TV()

 {

 onState=new On(this);

 offState=new Off(this);

 muteState=new Mute(this);

 setCurrentState(offState);

ChapTer 20 STaTe paTTern

349

 }

 public PossibleStates getCurrentState()

 {

 return currentState;

 }

 public void setCurrentState(PossibleStates currentState)

 {

 this.currentState = currentState;

 }

 public void pressOffButton()

 {

 currentState.pressOffButton();

 }

 public void pressOnButton()

 {

 currentState.pressOnButton();

 }

 public void pressMuteButton()

 {

 currentState.pressMuteButton();

 }

 public PossibleStates getOnState()

 {

 return onState;

 }

 public PossibleStates getOffState()

 {

 return offState;

 }

 public PossibleStates getMuteState()

 {

 return muteState;

 }

}

ChapTer 20 STaTe paTTern

350

//Client

public class StatePatternAlternativeImplementation {

 public static void main(String[] args) {

 System.out.println("***State Pattern Alternative Implementation

Demo***\n");

 //Initially TV is Off.

 TV tv = new TV();

 System.out.println("User is pressing buttons in the following

sequence:");

 System.out.println("Off->Mute->On->On->Mute->Mute->Off\n");

 //TV is already in Off state.Again Off button is pressed.

 tv.pressOffButton();

 //TV is already in Off state.Again Mute button is pressed.

 tv.pressMuteButton();

 //Making the TV on

 tv.pressOnButton();

 //TV is already in On state.Again On button is pressed.

 tv.pressOnButton();

 //Putting the TV in Mute mode

 tv.pressMuteButton();

 //TV is already in Mute mode.Again Mute button is pressed.

 tv.pressMuteButton();

 //Making the TV off

 tv.pressOffButton();

 }

}

 Modified Output
Here is the output from the modified implementation.

 State Pattern Alternative Implementation Demo

User is pressing buttons in the following sequence:

Off->Mute->On->On->Mute->Mute->Off

ChapTer 20 STaTe paTTern

351

 You pressed Off button. TV is already in Off state

 You pressed Mute button.TV is already in Off state, so Mute operation will

not work.

 You pressed On button. Going from Off to On state

 TV is switched on now.

You pressed On button. TV is already in On state.

You pressed Mute button.Going from On to Mute mode.

 TV is silent(mute) now

 You pressed Mute button.TV is already in Mute mode.

You pressed Off button. Going from Mute mode to Off state.

 TV is switched off now.

 8. In these implementations, TV is a concrete class. Why are you
not programming to interface in this case?

I assume that the TV class is not going to change, and so I ignored

that part to reduce some code size of the program. But yes, you

can always start from an interface in which you can define the

contracts.

 9. What are the pros and cons of a state design pattern?

Pros

• You have already seen that following the open/close principle,

you can easily add new states and new behaviors. Also, a state

behavior can be extended without hassle. For example, in this

implementation, you can add a new state and a new behavior for

a TV class without changing the TV class itself.

• Reduces the use of if-else statements (i.e., conditional

complexity is reduced. (Refer to the answer in question 3).

ChapTer 20 STaTe paTTern

352

Cons

• The state pattern is also known as objects for states. So, you can

assume that more states need more codes, and the obvious side

effect is difficult maintenance for you.

 10. In the TV class constructor, you are initializing the TV with an
Off state. So, can both the states and the context class trigger
the state transitions?

Yes.

ChapTer 20 STaTe paTTern

353
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_21

CHAPTER 21

Mediator Pattern
This chapter covers the mediator pattern.

 GoF Definition
Define an object that encapsulates how a set of objects interact. Mediator promotes

loose coupling by keeping objects from referring to each other explicitly, and it lets you

vary their interaction independently.

 Concept
A mediator takes the responsibility of controlling and coordinating the interactions of a

specific group of objects that cannot refer to each other explicitly. So, you can imagine a

mediator as an intermediary through whom these objects talk to each other. This kind of

implementation helps reduce the number of interconnections among different objects.

As a result, you can promote loose coupling in the system.

So, in this design, object communications are encapsulated with a mediator

object so that they cannot communicate directly with each other and you reduce the

dependencies among them.

 Real-World Example
When a flight needs to take off, a series of verifications takes place. These kinds of

verifications conform that all components/parts (which are dependent on each other)

are in perfect condition.

354

Also consider when airplane pilots (approaching or departing the terminal area)

communicate with the towers. They do not explicitly communicate with other pilots from

different airlines. They only send their status to the tower. These towers also send the

signals to conform which airplane can take-off or land. You must note that these towers

do not control the whole flight. They only enforce constraints in the terminal areas.

 Computer-World Example
When a client processes a business application, the developer may need to put some

constraints on it. For example, a form in which a client needs to supply a user ID and

password to access their account. On the same form, the client must supply other

information, such as email, address, age, and so forth. Let’s assume that the developer

applied the constraints as follows.

Initially, the application checks whether the ID supplied by the user is valid or not. If it

is a valid user ID, then only the password field is enabled. After supplying these two fields,

the application form needs to check whether the email address was provided by the user.

Let’s further assume that after providing all of this information (a valid user ID, password,

a correctly formatted email, etc.), the Submit button is enabled. So, basically the Submit

button is enabled if the client supplies a valid user ID, password, email, and other

mandatory details in the correct order. The developer may also enforce that the user ID

must be an integer, so if the user mistakenly places any characters in that field, the Submit

button stays in disabled mode. The mediator pattern becomes handy in such a scenario.

So, when a program consists of many classes and the logic is distributed among them,

the code becomes harder to read and maintain. In those scenarios, if you want to bring new

changes in the system’s behavior, it can be difficult unless you use the mediator pattern.

Note The execute() method inside the java.util.concurrent.Executor interface
follows this pattern.

The javax.swing.ButtonGroup class is another example that supports this pattern.
This class has a method setSelected() that ensures that the user provides a new
selection.

The different overloaded versions of various schedule() methods of the java.util.
Timer class also can be considered to follow this pattern.

ChapTEr 21 MEdiaTor paTTErn

355

 Illustration
A common structure of the mediator pattern (which is basically adopted from the GoF’s

Design Patterns: Elements of Reusable Object-Oriented Software) is often described with

the diagram shown in Figure 21-1.

The participants are described as follows.

• Mediator: Defines the interface to provide the communication

among Colleague objects.

• ConcreteMediator: Maintains the list of the Colleague objects.

It implements the Mediator interface and coordinates the

communication among the Colleague objects.

• Colleague: Defines the interface for communication with other

Colleagues.

• ConcreteColleague1 and ConcreteColleague2: Implements the

Colleague interface. These objects communicate with each other

through the mediator.

In this chapter, I provide two implementations of this pattern. In the first

implementation, I replaced the word Colleague with Employee. Also, ConcreteColleague1

and ConcreteColleague2 are replaced with JuniorEmployee and SeniorEmployee,

respectively. Let’s assume that you have three employees: Amit, Sohel, and Raghu, where

Amit and Sohel are junior employees who report to their boss, Raghu, who is a senior

Figure 21-1. Mediator pattern example

ChapTEr 21 MEdiaTor paTTErn

356

employee. Raghu wants to smoothly coordinate things. Let’s further assume that they

can communicate with each other through a chat server.

In the following implementation, Mediator is an interface that has two methods:

register() and sendMessage(). The register() method registers an employee with the

mediator and sendMessage() posts messages to the server. The ConcreteMediator class

is the concrete implementation of the Mediator interface.

Employee is an abstract class and the JuniorEmployee and SeniorEmployee classes

are the concrete implementations of it. The sendMessage() method of the Employee

class is described as follows.

public void sendMessage(String msg) throws InterruptedException

{

 mediator.sendMessage(this, msg);

}

You can see that when an employee invokes the sendMessage() method, it is

invoking mediator’s sendMessage() method. So, the actual communication process is

conducted through the mediator.

In the client code, I introduced another person, Jack. But he did not register himself

with the mediator object. So, the mediator is not allowing him to post any messages to

this server.

Now go through the code and the corresponding output.

 Class Diagram
Figure 21-2 shows the class diagram.

ChapTEr 21 MEdiaTor paTTErn

357

 Package Explorer View
Figure 21-3 shows the high-level structure of the program.

Figure 21-2. Class diagram

ChapTEr 21 MEdiaTor paTTErn

358

Figure 21-3. Package Explorer view

ChapTEr 21 MEdiaTor paTTErn

359

 Implementation
Here’s the first implementation.

package jdp2e.mediator.demo;

import java.time.LocalDateTime;

import java.util.ArrayList;

import java.util.List;

interface Mediator

{

 void register(Employee employee);

 void sendMessage(Employee employee, String msg) throws

InterruptedException;

}

// ConcreteMediator

class ConcreteMediator implements Mediator

{

 List<Employee> participants = new ArrayList<Employee>();

 @Override

 public void register(Employee employee)

 {

 participants.add(employee);

 }

 public void displayRegisteredEmployees()

 {

 System.out.println("At present,registered employees are:");

 for (Employee employee: participants)

 {

 System.out.println(employee.getName());

 }

 }

 @Override

 public void sendMessage(Employee employee, String msg) throws

InterruptedException

 {

ChapTEr 21 MEdiaTor paTTErn

360

 if (participants.contains(employee))

 {

 System.out.println(employee.getName() +" posts:"+ msg+"Last

message posted at "+LocalDateTime.now());

 Thread.sleep(1000);

 }

 else

 {

 System.out.println("An outsider named "+ employee.getName()+"

is trying to send some messages.");

 }

 }

}

// The abstract class-Employee

abstract class Employee

{

 protected Mediator mediator;

 protected String name;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 // Constructor

 public Employee(Mediator mediator)

 {

 this.mediator = mediator;

 }

 public void sendMessage(String msg) throws InterruptedException

 {

 mediator.sendMessage(this, msg);

 }

 public abstract String employeeType();

}

ChapTEr 21 MEdiaTor paTTErn

361

// Junior Employee

class JuniorEmployee extends Employee

{

 public JuniorEmployee(Mediator mediator, String name)

 {

 super(mediator);

 this.name = name;

 }

 @Override

 public String employeeType()

 {

 return "JuniorEmployee";

 }

}

//Senior Employee

class SeniorEmployee extends Employee

{

 // Constructor

 public SeniorEmployee(Mediator mediator, String name)

 {

 super(mediator);

 this.name = name;

 }

 @Override

 public String employeeType()

 {

 return "SeniorEmployee";

 }

}

// Unknown participant.

class Unknown extends Employee

{

 // Constructor

 public Unknown(Mediator mediator, String name)

ChapTEr 21 MEdiaTor paTTErn

362

 {

 super(mediator);

 this.name = name;

 }

 @Override

 public String employeeType()

 {

 return "Outsider";

 }

}

public class MediatorPatternExample {

 public static void main(String[] args) throws InterruptedException {

 System.out.println("***Mediator Pattern Demo***\n");

 ConcreteMediator mediator = new ConcreteMediator();

 JuniorEmployee amit = new JuniorEmployee(mediator, "Amit");

 JuniorEmployee sohel = new JuniorEmployee(mediator, "Sohel");

 SeniorEmployee raghu = new SeniorEmployee(mediator, "Raghu");

 //Registering participants

 mediator.register(amit);

 mediator.register(sohel);

 mediator.register(raghu);

 //Displaying the participant's list

 mediator.displayRegisteredEmployees();

 System.out.println("Communication starts among participants...");

 amit.sendMessage("Hi Sohel,can we discuss the mediator pattern?");

 sohel.sendMessage("Hi Amit,yup, we can discuss now.");

 raghu.sendMessage("Please get back to work quickly.");

 //An outsider/unknown person tries to participate

 Unknown unknown = new Unknown(mediator, "Jack");

 unknown.sendMessage("Hello Guys..");

 }

}

ChapTEr 21 MEdiaTor paTTErn

363

 Output
Here’s the output.

Mediator Pattern Demo

At present,registered employees are:

Amit

Sohel

Raghu

Communication starts among participants...

Amit posts:Hi Sohel,can we discuss the mediator pattern?Last message posted

at 2018-09-09T17:41:21.868

Sohel posts:Hi Amit,yup, we can discuss now.Last message posted at 2018-09-

09T17:41:23.369

Raghu posts:Please get back to work quickly.Last message posted at 2018-09-

09T17:41:24.870

An outsider named Jack is trying to send some messages.

 Analysis
Note that only registered users can communicate with each other and successfully post

messages on the chat server. The mediator does not allow any outsiders into the system.

(Notice the last line of the output.)

 Modified Illustration
You have just seen a simple example of the mediator pattern. But you can make it better.

You identified the following points.

• The messages are only passing in one direction.

• When one participant posts a message, everyone can see the

message. So, there is no privacy.

ChapTEr 21 MEdiaTor paTTErn

364

• If an employee forgets to register himself, he is not allowed to send

a message. It is fine, but he should not be treated like an outsider.

In a normal scenario, an organization outsider should be treated

differently from an employee of the organization who forgets to

register himself on the server.

• The client code needed to register the participants to the mediator.

Though you may argue that it is not a drawback, you may opt for

a better approach. For example, you may register the participants

automatically to a mediator when you create an Employee object

inside the client code.

• You have not used the employeeType() method in client code.

So, keeping these points in mind, let’s modify the previous example. Here are some

key characteristics of the modified implementation.

• The JuniorEmployee and SeniorEmployee classes are replaced

with a single ConcreteEmployee class. It helps us easily identify

who belongs to the organization and who does not (in other words,

outsiders).

• In the modified implementation, each of these participants can

see who is posting messages, but it is not disclosed to whom it is

targeted or what the actual message is. So, there is privacy between

two participants, but this approach can help someone like Raghu to

coordinate things because he may interfere if he sees that employees

are chatting too much.

• In the client code, you create participants like the following.

Employee Amit = new ConcreteEmployee(mediator, "Amit", true);

The third argument (true/false) is used to determine whether a participant wants to

register himself or not to the mediator. He is treated accordingly when he tries to post

messages.

• The employeeType() method determines whether a participant is

from inside the organization or if he or she is an outsider. In this

context, you may also note that instead of using the following line

ChapTEr 21 MEdiaTor paTTErn

365

if(fromEmployee.employeeType()=="UnauthorizedUser")

you could directly use this line of code:

if(fromEmployee.getClass().getSimpleName().equals("UnauthorizedUser"))

I used the former one for better readability.

 Modified Class Diagram
Figure 21-4 shows the modified class diagram. To show the key changes and to present a

neat diagram, I do not show the client code dependencies in the following diagram.

Figure 21-4. Class diagram

ChapTEr 21 MEdiaTor paTTErn

366

 Modified Package Explorer View
Figure 21-5 shows the modified Package Explorer view.

Figure 21-5. Modified Package Explorer view

ChapTEr 21 MEdiaTor paTTErn

367

 Modified Implementation
Here is the modified implementation.

package jdp2e.mediator.modified.demo;

import java.time.LocalDateTime;

import java.util.ArrayList;

import java.util.List;

interface Mediator

{

 void register(Employee employee);

 void sendMessage(Employee fromEmployee, Employee toEmployee,String msg)

throws InterruptedException;

}

// ConcreteMediator

class ConcreteMediator implements Mediator

{

 List<Employee> participants = new ArrayList<Employee>();

 @Override

 public void register(Employee employee)

 {

 participants.add(employee);

 }

 public void displayRegisteredEmployees()

 {

 System.out.println("At present ,registered participants are:");

 for (Employee employee: participants)

 {

 System.out.println(employee.getName());

 }

 }

 @Override

 public void sendMessage(Employee fromEmployee,Employee

toEmployee,String msg) throws InterruptedException

 {

ChapTEr 21 MEdiaTor paTTErn

368

 /*if(fromEmployee.getClass().getSimpleName().

equals("UnauthorizedUser"))*/

 if(fromEmployee.employeeType()=="UnauthorizedUser")

 {

 System.out.println("[ALERT Everyone] An outsider named "+

fromEmployee.getName()+" trying to send some messages to "+

toEmployee.getName());

 fromEmployee.receive(fromEmployee, ",you are not allowed to

enter here.");

 }

 else if (participants.contains(fromEmployee))

 {

 System.out.println("-----"+fromEmployee.getName() +" posts some

message at: "+LocalDateTime.now()+"-----");

 Thread.sleep(1000);

 //No need to inform everyone or himself

 //Only let the target receiver know

 if(participants.contains(toEmployee))

 {

 toEmployee.receive(fromEmployee,msg);

 }

 //If target receipient does not exist

 else

 {

 System.out.println(fromEmployee.getName() +" , your target

recipient does not exist");

 }

 }

 //An outsider tries to send message.

 else

 {

 System.out.println("[ALERT] An unregistered employee named "+

fromEmployee.getName()+" trying to send some messages to "+

 toEmployee.getName());

ChapTEr 21 MEdiaTor paTTErn

369

 System.out.println(fromEmployee.getName()+", you need to

register yourself first.");

 }

 }

}

// Employee

abstract class Employee

{

 private Mediator mediator;

 protected String name;

 private boolean authorizedUser;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 // Constructor

 public Employee(Mediator mediator, String name, boolean authorizedUser)

 {

 this.mediator = mediator;

 this.name=name;

 this.authorizedUser=authorizedUser;

 if(authorizedUser)

 {

 mediator.register(this);

 }

 }

 //The following method name need not be same as the Mediator's method name

 public void send(Employee toFriend,String msg) throws

InterruptedException

 {

 mediator.sendMessage(this,toFriend, msg);

 }

ChapTEr 21 MEdiaTor paTTErn

370

 //public abstract void receive(Friend fromFriend,String message);

 public void receive(Employee fromFriend,String message)

 {

 System.out.println(this.name+" received a message : " + message +"

from an employee "+ fromFriend.getName() +".");

 }

 public abstract String employeeType();

}

//A concrete friend

class ConcreteEmployee extends Employee

{

 public ConcreteEmployee(Mediator mediator, String name,boolean

authorizedUser)

 {

 super(mediator,name, authorizedUser);

 }

 @Override

 public String employeeType()

 {

 return "ConcreteEmployee";

 }

}

//Unauthorized user

class UnauthorizedUser extends Employee

{

 public UnauthorizedUser(Mediator mediator, String name)

 {

 //The user is always treated an unauthorized user.So, the flag is

 //false always.

 super(mediator,name, false);

 }

 @Override

 public void receive(Employee fromEmployee,String message)

ChapTEr 21 MEdiaTor paTTErn

371

 {

 System.out.println(this.name + message);

 }

 @Override

 public String employeeType()

 {

 return "UnauthorizedUser";

 }

}

public class ModifiedMediatorPatternExample {

 public static void main(String[] args) throws InterruptedException {

 System.out.println("***Mediator Pattern Demo***\n");

 ConcreteMediator mediator = new ConcreteMediator();

 Employee Amit = new ConcreteEmployee(mediator, "Amit", true);

 Employee Sohel = new ConcreteEmployee(mediator, "Sohel",true);

 Employee Raghu = new ConcreteEmployee(mediator, "Raghu",true);

 //Unauthorized user

 Employee Jack = new ConcreteEmployee(mediator, "Jack",false);

 //Only two parameter needed to pass in the following case.

 Employee Divya = new UnauthorizedUser(mediator, "Divya");

 //Displaying the participant's list

 mediator.displayRegisteredEmployees();

 System.out.println("Communication starts among participants...");

 Amit.send(Sohel,"Hi Sohel,can we discuss the mediator pattern?");

 Sohel.send(Amit,"Hi Amit,Yup, we can discuss now.");

 //Boss is sending messages to each of them individually

 Raghu.send(Amit,"Please get back to work quickly.");

 Raghu.send(Sohel,"Please get back to work quickly.");

ChapTEr 21 MEdiaTor paTTErn

372

 //An unregistered employee(Jack) and an outsider(Divya) are also

 //trying to participate.

 Jack.send(Amit,"Hello Guys..");

 Divya.send(Raghu, "Hi Raghu");

 }

}

 Modified Output
Here is the modified output.

Mediator Pattern Demo

At present ,registered participants are:

Amit

Sohel

Raghu

Communication starts among participants...

-----Amit posts some message at: 2018-09-04T20:37:00.999-----

Sohel received a message : Hi Sohel,can we discuss the mediator pattern?

from an employee Amit.

-----Sohel posts some message at: 2018-09-04T20:37:01.999-----

Amit received a message : Hi Amit,Yup, we can discuss now. from an employee

Sohel.

-----Raghu posts some message at: 2018-09-04T20:37:03.002-----

Amit received a message : Please get back to work quickly. from an employee

Raghu.

-----Raghu posts some message at: 2018-09-04T20:37:04.016-----

Sohel received a message : Please get back to work quickly. from an

employee Raghu.

[ALERT] An unregistered employee named Jack trying to send some messages to

Amit

Jack, you need to register yourself first.

[ALERT Everyone] An outsider named Divya trying to send some messages to

Raghu

Divya,you are not allowed to enter here.

ChapTEr 21 MEdiaTor paTTErn

373

 Analysis
Notice that when the employee named Jack (who belongs to the organization) sends a

message without registering himself, the system prevents him from posting the message

but gives him a suggestion. But Divya, who is an organization outsider, is told that she is

not allowed to enter into the system. It also warns others.

 Q&A Session

 1. Why are you complicating the things? In the first example,
each of the participants could talk to each other directly and
you could bypass the use of mediator. Is this correct?

In this example, you have only three registered participants,

so it may appear that they can communicate with each other

directly. But you may need to consider a relatively complicated

scenario. For example, a participant can send a message to a

target participant only if the target participant is in online mode

(which is the common scenario for a chat server). So, with your

proposed architecture, if they try to communicate with each other,

each of them needs to maintain the status of all other participants

before sending a message. And if the number of participants keeps

growing, can you imagine the complexity of the system?

So, a mediator can certainly help you deal with a scenario like this.

Figure 21-6 and Figure 21-7 depict the scenario.

ChapTEr 21 MEdiaTor paTTErn

374

Case 2. Communication with a mediator.

Figure 21-6. Communication without using a mediator

Figure 21-7. Communication using a mediator

Case 1. Communication without a mediator.

Also, you can consider the modified implementation in this

context. In the modified implementation, you can see that the

mediator is maintaining the logic—who should be allowed to post

messages on the server and how he/she should be treated.

ChapTEr 21 MEdiaTor paTTErn

375

 2. What are advantages of using mediator patterns?

• You can reduce the complexity of objects’ communication in a

system.

• The pattern promotes loose coupling.

• It reduces number of subclasses in the system.

• You can replace “many-to-many” relationship with “one-to-

many” relationships, so it is much easier to read and understand.

(Consider our first illustration in this context). And as an obvious

effect, maintenance becomes easy.

• You can provide a centralized control through the mediator with

this pattern.

• In short, it is always our aim to remove tight coupling (among

objects) from our code and this pattern scores high in this context.

 3. What are the disadvantages of using mediator patterns?

• In some cases, implementing the proper encapsulation is tricky.

• The mediator object’s architecture may become complex if you

put too much logic inside it. An inappropriate use of the mediator

pattern may end up with a “God Class” antipattern. (You’ll learn

about antipatterns in Chapter 28).

• Sometimes maintaining the mediator becomes a big concern.

 4. If you need to add a new rule or logic, you can directly add it to
the mediator. Is this correct?

Yes.

 5. I am finding some similarities in the facade pattern and the
mediator pattern. Is this correct?

Yes. In his book Design Pattern for Dummies (Wiley Publishing,

2006), Steve Holzner mentions the similarity by describing the

mediator pattern as a multiplexed facade pattern. In mediator,

instead of working with an interface of a single object, you are

making a multiplexed interface among multiple objects to provide

smooth transitions.

ChapTEr 21 MEdiaTor paTTErn

376

 6. In this pattern, you are reducing the number of
interconnections among various objects. What key benefits
have you achieved due to this reduction?

More interconnections among objects can make a monolithic

system where the system’s behavior is difficult to change (the

system’s behavior is distributed among many objects). As a side

effect, you may need to create many subclasses to bring those

changes in the system.

 7. In the modified implementations, you are using Thread.
Sleep(1000). What is the reason for this?

You can ignore that. I used it to mimic a real-life scenario. I

assume that participants are posting messages after reading a

message properly and this activity takes a minimum of 1 second.

 8. In some applications, I have seen the use of a concrete
mediator only. Is this approach OK?

The mediator pattern does not restrict you to use only a concrete

mediator. But I like to follow the experts’ advice that says,

“programming to the supertype (abstract class/interface) is a better

approach,” and it can provide more flexibility in the long run.

 9. Can I simply say that if a class simply calls methods from
multiple objects, it is a mediator?

Not at all. The key purpose of a mediator is to simplify the

complex communications among objects in a system. I suggest

that you always keep in mind the GoF definition and the

corresponding concepts.

 10. In the first implementation, both send methods (mediator and
employees) are named sendMessage() but in the modified
implementation, they are different—one is send() and the
other is sendMessage(). Do I need to follow any specific
naming convention?

No. Both are fine. It’s your choice.

ChapTEr 21 MEdiaTor paTTErn

377
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_22

CHAPTER 22

Chain-of-Responsibility
Pattern
This chapter covers the chain-of-responsibility pattern.

 GoF Definition
Avoid coupling the sender of a request to its receiver by giving more than one object a

chance to handle the request. Chain the receiving objects and pass the request along the

chain until an object handles it.

 Concept
In this pattern, you form a chain of objects where each object in the chain handles a

particular kind of request. If an object cannot handle the request fully, it passes the

request to the next object in the chain. The same process may follow until the end of a

chain is reached. This kind of request handling mechanism gives you the flexibility to

add a new processing object (handler) at the end of the chain. Figure 22-1 depicts such a

chain with N number of handlers.

Figure 22-1. The concept of a chain-of-responsibility pattern

378

 Real-World Example
• Each organization employs customer care executives who receive

feedback or complaints directly from the customers. If the

employees cannot answer the customers’ issues properly, they

forward these issues/escalations to the appropriate departments

in the organization. These departments do not try to fix an issue

simultaneously. In the first phase of investigation, the department

that seems responsible analyzes the case, and if they believe that the

issue should be forwarded to another department, they do that.

• A similar scenario occurs when a patient visits a hospital. Doctors

from one department can refer a patient to a different department for

further diagnosis.

 Computer-World Example
Consider a software application (e.g., a printer) that can send emails and faxes. So,

customers can report faxing issues or email issues. Let’s assume that these issues

are handled by handlers. So, you introduce two different types of error handlers:

EmailErrorHandler and FaxErrorHandler. You can assume that EmailErrorHandler

handles email errors only; it cannot fix the fax errors. In a similar manner,

FaxErrorHandler handles fax errors and does not care about email errors.

So, you may form a chain like this: whenever the application finds an error, it

raises a ticket and forwards the error with a hope that one of the handlers will handle

it. Let’s assume that the request first comes to FaxErrorhandler. If this handler agrees

that the error is a fax issue, it handles it; otherwise, the handler forwards the issue to

EmailErrorHandler.

Note that the chain ends with EmailErrorHandler. But if you need to handle a

different type of issue—for example, authentication issues (which can occur due to

security vulnerabilities), you can make a handler called AuthenticationErrorHandler

and place it after EmailErrorHandler. Now if an EmailErrorHandler cannot fix the issue

completely, it forwards the issue to AuthenticationErrorHandler, and the chain ends

there.

Chapter 22 Chain-of-responsibility pattern

379

Note you are free to place these handlers in any order you choose in your
application.

So, the bottom line is that the processing chain may end in any of the following

scenarios.

• Any of these handlers could process the request completely and

control comes back.

• A handler cannot handle the request completely, so it passes the

request to the next handlers. This way, you reach the end of the

chain. So, the request is handled there. But if the request cannot be

processed there, you cannot pass it further. (You may need to take

special care for such a situation.)

You notice a similar mechanism when you are implementing an exception handling

mechanism with multiple catch blocks in your Java application. If an exception occurs

in a try block, the first catch block tries to handle it. If it cannot handle that type of

exception, the next catch block tries to handle it, and the same mechanism is followed

until the exception is handled properly by handlers (catch blocks). If the last catch block

in your application is unable to handle it, an exception is thrown outside of this chain.

Note in java.util.logging.logger, you can see a different overloaded version of
log() methods that supports a similar concept.

another built-in support can be seen in the dofilter (servletrequest request,
servletresponse response, filterChain chain) interface method in javax.servlet.filter.

 Illustration
Let’s consider the scenario that is discussed in the computer-world example. Let’s

further assume that in the following example, you can process both normal and

high- priority issues that may come from either the email or fax pillar.

Chapter 22 Chain-of-responsibility pattern

380

 Class Diagram
Figure 22-2 shows the class diagram.

Figure 22-2. Class diagram

Chapter 22 Chain-of-responsibility pattern

381

 Package Explorer View
Figure 22-3 shows the high-level structure of the program.

Figure 22-3. Package Explorer view

Chapter 22 Chain-of-responsibility pattern

382

 Implementation
Here’s the implementation.

package jdp2e.chainofresponsibility.demo;

enum MessagePriority

{

 NORMAL,

 HIGH

}

class Message

{

 public String text;

 public MessagePriority priority;

 public Message(String msg, MessagePriority p)

 {

 text = msg;

 this.priority = p;

 }

}

interface Receiver

{

 boolean handleMessage(Message message);

 void nextErrorHandler(Receiver nextReceiver);

}

class IssueRaiser

{

 public Receiver setFirstReceiver;

 public void setFirstErrorHandler(Receiver firstErrorHandler)

 {

 this.setFirstReceiver = firstErrorHandler;

 }

 public void raiseMessage(Message message)

 {

 if (setFirstReceiver != null)

Chapter 22 Chain-of-responsibility pattern

383

 setFirstReceiver.handleMessage(message);

 }

}

// FaxErrorHandler class

class FaxErrorHandler implements Receiver

{

 private Receiver nextReceiver;

 @Override

 public void nextErrorHandler(Receiver nextReceiver)

 {

 this.nextReceiver = nextReceiver;

 }

 @Override

 public boolean handleMessage(Message message)

 {

 if (message.text.contains("Fax"))

 {

 System.out.println(" FaxErrorHandler processed " +message.

priority +" priority issue :"+ message.text);

 return true;

 }

 else

 {

 if (nextReceiver != null)

 nextReceiver.handleMessage(message);

 }

 return false;

 }

}

// EmailErrorHandler class

class EmailErrorHandler implements Receiver

{

 private Receiver nextReceiver;

 @Override

 public void nextErrorHandler(Receiver nextReceiver)

Chapter 22 Chain-of-responsibility pattern

384

 {

 this.nextReceiver = nextReceiver;

 }

 @Override

 public boolean handleMessage(Message message)

 {

 if (message.text.contains("Email"))

 {

 System.out.println(" EmailErrorHandler processed "+message.

priority+ " priority issue: "+message.text);

 return true;

 }

 else

 {

 if (nextReceiver != null)

 nextReceiver.handleMessage(message);

 }

 return false;

 }

}

//Client code

public class ChainofResponsibilityPattern {

 public static void main(String[] args) {

 System.out.println("\n ***Chain of Responsibility Pattern

Demo***\n");

 /* Forming the chain as IssueRaiser->FaxErrorhandler->

EmailErrorHandler*/

 Receiver faxHandler, emailHandler;

 //Objects of the chains

 IssueRaiser issueRaiser = new IssueRaiser();

 faxHandler = new FaxErrorHandler();

 emailHandler = new EmailErrorHandler();

 //Making the chain

 //Starting point:IssueRaiser will raise issues and set the first

 //handler

Chapter 22 Chain-of-responsibility pattern

385

 issueRaiser.setFirstErrorHandler(faxHandler);

 //FaxErrorHandler will pass the error to EmailHandler if needed.

 faxHandler.nextErrorHandler(emailHandler);

 //EmailErrorHandler will be placed at the last position in the chain

 emailHandler.nextErrorHandler(null);

 Message m1 = new Message("Fax is going slow.",

MessagePriority.NORMAL);

 Message m2 = new Message("Emails are not reaching.",

MessagePriority.HIGH);

 Message m3 = new Message("In Email, CC field is disabled always.",

MessagePriority.NORMAL);

 Message m4 = new Message("Fax is not reaching destinations.",

MessagePriority.HIGH);

 issueRaiser.raiseMessage(m1);

 issueRaiser.raiseMessage(m2);

 issueRaiser.raiseMessage(m3);

 issueRaiser.raiseMessage(m4);

 }

}

 Output
Here’s the output.

Chain of Responsibility Pattern Demo

 FaxErrorHandler processed NORMAL priority issue :Fax is going slow.

 EmailErrorHandler processed HIGH priority issue: Emails are not reaching.

 EmailErrorHandler processed NORMAL priority issue: In Email, CC field is

disabled always.

 FaxErrorHandler processed HIGH priority issue :Fax is not reaching

destinations.

Chapter 22 Chain-of-responsibility pattern

386

 Q&A Session

 1. In the example, what is the purpose of message priorities?

Good catch. Actually, you could ignore them because, for

simplicity in the handlers, you are just searching for the words

email or fax. These priorities are added to beautify the code. But

instead of using separate handlers for email and fax, you could

make a different kind of chain that handles the messages based

on the priorities. In such a case, these priorities can be used more

effectively.

 2. What are the advantages of using a chain-of-responsibility
design pattern?

• You can have more than one object to handle a request. (Notice

that if a handler cannot handle the whole request, it may forward

the responsibility to the next handler in the chain).

• The nodes of the chain can be added or removed dynamically.

Also, you can shuffle the order. For example, if you notice that the

majority of issues are with email processing, then you may place

EmailErrorHandler as the first handler in the chain to save the

average processing time of the application.

• A handler does not need to know how the next handler in the

chain will handle the request. It focuses only on its own handling

mechanism.

• In this pattern, you are promoting loose coupling because it

decouples the senders (of requests) from the receivers.

 3. What are the challenges associated with using the chain-of-
responsibility design pattern?

• There is no guarantee that the request will be handled (fully or

partially) because you may reach the end of the chain; but it is

possible that you have not found any explicit receiver to handle

the request.

• Debugging may become tricky with this kind of design.

Chapter 22 Chain-of-responsibility pattern

387

 4. How can you handle the scenario where you have reached at
the end of chain, but the request is not handled at all?

One simple solution is to use try/catch (or try/finally or

try/catch/finally) blocks. You may put the handlers in these

constructs. You may notice that a try block can be associated with

multiple catch blocks also.

In the end, if no one can handle the request, you may raise an

exception with the appropriate messages and catch the exception

in your intended catch block to draw your attention (or handle it

in some different way).

The GoF talked about Smalltalk’s automatic forwarding

mechanism, doesNotUnderstand, in a similar context. If a message

cannot find a proper handler, it is caught in doesNotUnderstand

implementations that can be overridden to forward the message

in the object’s successor, log it in a file, and store it in a queue for

later processing, or you can simply perform any other intended

operations. But you must make a note that by default, this method

raises an exception that needs to be handled in a proper way.

 5. In short, if a handler cannot handle the request fully, it will
pass it to the next handler. Is this correct?

Yes.

 6. It appears that there are similarities between the observer
pattern and the chain-of-responsibility pattern. Is this correct?

In an observer pattern, all registered users get notifications in

parallel; but in a chain-of-responsibility pattern, objects in the

chain are notified, one by one, in a sequential manner. This

process continues until an object handles the notification fully

(or you reach the end of the chain). I show the comparisons in

diagrams in the “Q&A Session” in Chapter 14.

Chapter 22 Chain-of-responsibility pattern

389
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_23

CHAPTER 23

Interpreter Pattern
This chapter covers the interpreter pattern.

 GoF Definition
Given a language, define a representation for its grammar along with an interpreter that

uses the representation to interpret sentences in the language.

 Concept
To understand this pattern, you need to be familiar with some key terms, like sentences,

grammar, languages, and so forth. So, you may need to visit the topics of formal

languages in Automata, if you are not familiar with them.

Normally, this pattern deals with how to evaluate sentences in a language. So, you

first need to define a grammar to represent the language. Then the interpreter deals with

that grammar. This pattern is best if the grammar is simple.

Each class in this pattern may represent a rule in that language, and it should have a

method to interpret an expression. So, to handle a greater number of rules, you need to

create a greater number of classes. This is why an interpreter pattern should not be used

to handle complex grammar.

Let’s consider different arithmetic expressions in a calculator program. Though

these expressions are different, they are all constructed using some basic rules, which

are defined in the grammar of the language (of these arithmetic expressions). So, it is

best if you can interpret a generic combination of these rules rather than treat each

combination of rules as separate cases. An interpreter pattern can be used in such a

scenario.

A typical structure of this pattern is often described with a diagram similar to

Figure 23-1.

390

The terms are described as follows.

• AbstractExpression: Typically an interface with an interpret method.

You need to pass a context object to this method.

• TerminalExpression: Used for terminal expressions. A terminal

expression does not need other expressions to interpret. These are

basically leaf nodes (i.e., they do not have child nodes) in the data

structure.

• NonterminalExpression: Used for nonterminal expressions.

Also known as AlternationExpression, RepititionExpression, or

SequenceExpression. These are like composites that can contain

both the terminal and nonterminal expressions. When you call

interpret() method on this, you basically call it on all of its children.

• Context: Holds the global information that the interpreter needs.

• Client: Calls the interpret() method. It can optionally build a syntax

tree based on the rules of the language.

Figure 23-1. Structure of a typical interpreter pattern

Chapter 23 Interpreter pattern

391

Note an interpreter is used to process a language with simple rules or grammar.
Ideally, developers do not want to create their own languages. this is the reason
why they seldom use this pattern.

 Real-World Example
• A translator who translates a foreign language.

• Consider music notes as grammar, where musicians play the role of

interpreters.

 Computer-World Example
• Java compiler interprets the Java source code into byte code that is

understandable by JVM.

• In C#, the source code is converted to MSIL code that is interpreted

by CLR. Upon execution, this MSIL (intermediate code) is converted

to native code (binary executable code) by JIT compiler.

Note In Java, you may also notice the java.util.regex.pattern class that acts as
an interpreter. You can create an instance of this class by invoking the compile()
method and then you can use a Matcher instance to evaluate a sentence against
the grammar.

 Illustration
These are some important steps to implement this pattern.

• Step 1. Define the rules of the language for which you want to build

an interpreter.

• Step 2. Define an abstract class or an interface to represent an

expression. It should contain a method to interpret an expression.

Chapter 23 Interpreter pattern

392

• Step 2A. Identify terminal and nonterminal expressions. For

example, in the upcoming example, IndividualEmployee class is

a terminal expression class.

• Step2B. Create nonterminal expression classes. Each of them

calls interpret method on their children. For example, in the

upcoming example, OrExpression and AndExpression classes are

nonterminal expression classes.

• Step 3. Build the abstract syntax tree using these classes. You can

do this inside the client code or you can create a separate class to

accomplish the task.

• Step 4. A client now uses this tree to interpret a sentence.

• Step 5. Pass the context to the interpreter. It typically has the

sentences that are to be interpreted. An interpreter can do additional

tasks using this context.

In the upcoming program, I use the interpreter pattern as a rule validator. I am

instantiating different employees with their “years of experience” and current grades.

Note the following lines.

 Employee emp1 = new IndividualEmployee(5,"G1");

 Employee emp2 = new IndividualEmployee(10,"G2");

 Employee emp3 = new IndividualEmployee(15,"G3");

 Employee emp4 = new IndividualEmployee(20,"G4");

For simplicity, four employees with four different grades—G1,G2,G3, and G4—are

considered here.

Also note the context, as follows.

 //Minimum Criteria for promoton is:

 //The year of experience is minimum 10 yrs. and

 //Employee grade should be either G2 or G3

 Context context=new Context(10,"G2","G3");

Chapter 23 Interpreter pattern

393

So, you can assume that I want to validate some condition against the context, which

basically tells you that to be promoted, an employee should have a minimum of 10 years

of experience and he/she should be either from the G2 grade or the G3 grade. Once

these expressions are interpreted, you see the output in terms of a boolean value.

One important point to note is that this design pattern does not instruct you how

to build the syntax tree or how to parse the sentences. It gives you freedom on how to

proceed. So, to present a simple scenario, I used an EmployeeBuilder class with a

method called buildExpression() to accomplish my task.

 Class Diagram
Figure 23-2 shows the class diagram.

Figure 23-2. Class diagram

Chapter 23 Interpreter pattern

394

 Package Explorer View
Figure 23-3 shows the high-level structure of the program.

Figure 23-3. Package Explorer view

Chapter 23 Interpreter pattern

395

 Implementation
Here is the implementation.

package jdp2e.interpreter.demo;

import java.util.ArrayList;

import java.util.List;

interface Employee

{

 public boolean interpret(Context context);

}

class IndividualEmployee implements Employee

{

 private int yearOfExperience;

 private String currentGrade;

 public IndividualEmployee(int experience, String grade){

 this.yearOfExperience=experience;

 this.currentGrade=grade;

 }

 @Override

 public boolean interpret(Context context)

 {

 if(this.yearOfExperience>=context.getYearofExperience() && context.

getPermissibleGrades().contains(this.currentGrade))

 {

 return true;

 }

 return false;

 }

}

Chapter 23 Interpreter pattern

396

class OrExpression implements Employee

{

 private Employee emp1;

 private Employee emp2;

 public OrExpression(Employee emp1, Employee emp2)

 {

 this.emp1 = emp1;

 this.emp2 = emp2;

 }

 @Override

 public boolean interpret(Context context)

 {

 return emp1.interpret(context) || emp2.interpret(context);

 }

}

class AndExpression implements Employee

{

 private Employee emp1;

 private Employee emp2;

 public AndExpression(Employee emp1, Employee emp2)

 {

 this.emp1 = emp1;

 this.emp2 = emp2;

 }

 @Override

 public boolean interpret(Context context)

 {

 return emp1.interpret(context) && emp2.interpret(context);

 }

}

Chapter 23 Interpreter pattern

397

class NotExpression implements Employee

{

 private Employee emp;

 public NotExpression(Employee expr)

 {

 this.emp = expr;

 }

 @Override

 public boolean interpret(Context context)

 {

 return !emp.interpret(context);

 }

}

class Context

{

 private int yearofExperience;

 private List<String> permissibleGrades;

 public Context(int experience,String... allowedGrades)

 {

 this.yearofExperience=experience;

 this.permissibleGrades=new ArrayList<>();

 for(String grade:allowedGrades)

 {

 permissibleGrades.add(grade);

 }

 }

 public int getYearofExperience()

 {

 return yearofExperience;

 }

 public List<String> getPermissibleGrades()

 {

 return permissibleGrades;

 }

}

Chapter 23 Interpreter pattern

398

class EmployeeBuilder

{

 public Employee buildExpression(Employee emp1, String operator,

Employee emp2)

 {

 //Whatever the input,converting it to lowarcase

 switch(operator.toLowerCase())

 {

 case "or":

 return new OrExpression(emp1,emp2);

 case "and":

 return new AndExpression(emp1,emp2);

 case "not":

 return new NotExpression(emp1);

 default:

 System.out.println("Only AND,OR and NOT operators are allowed

at present");

 return null;

 }

 }

}

public class InterpreterPatternExample {

 public static void main(String[] args) {

 System.out.println("***Interpreter Pattern Demo***\n");

 //Minimum Criteria for promoton is:

 //The year of experience is minimum 10 yrs. and

 //Employee grade should be either G2 or G3

 Context context=new Context(10,"G2","G3");

 //Different employees with grades

 Employee emp1 = new IndividualEmployee(5,"G1");

 Employee emp2 = new IndividualEmployee(10,"G2");

 Employee emp3 = new IndividualEmployee(15,"G3");

 Employee emp4 = new IndividualEmployee(20,"G4");

 EmployeeBuilder builder=new EmployeeBuilder();

Chapter 23 Interpreter pattern

399

 System.out.println("emp1 is eligible for promotion. " + emp1.

interpret(context));

 System.out.println("emp2 is eligible for promotion. " + emp2.

interpret(context));

 System.out.println("emp3 is eligible for promotion. " + emp3.

interpret(context));

 System.out.println("emp4 is eligible for promotion. " + emp4.

interpret(context));

 System.out.println("Is either emp1 or emp3 is eligible

for promotion?" +builder.buildExpression(emp1,"Or",emp3).

interpret(context));

 System.out.println("Is both emp2 and emp4 are eligible for

promotion? ?" + builder.buildExpression(emp2,"And",emp4).

interpret(context));

 System.out.println("The statement 'emp3 is NOT eligible for

promotion' is true? " + builder.buildExpression(emp3, "Not",null).

interpret(context));

 //Invalid input expression

 //System.out.println("Is either emp1 or emp3 is eligible for

promotion?" +builder.buildExpression(emp1,"Wrong",emp3).

interpret(context));

 }

}

 Output
Here is the output.

Interpreter Pattern Demo

emp1 is eligible for promotion. false

emp2 is eligible for promotion. true

emp3 is eligible for promotion. true

emp4 is eligible for promotion. false

Is either emp1 or emp3 is eligible for promotion?true

Is both emp2 and emp4 are eligible for promotion? ?false

The statement 'emp3 is NOT eligible for promotion' is true? false

Chapter 23 Interpreter pattern

400

 Analysis
You can see that each of the composite expressions are invoking the interpret()

method on all of its children.

 Modified Illustration
You have just seen a simple example of the interpreter pattern. From this

implementation, it may appear to you that you have handled some easy and

straightforward expressions. So, lets handle some complex rules or expressions in the

modified implementation.

 Modified Class Diagram
In the modified implementation, the key changes are made only in the EmployeeBuilder

class. So, let’s have a quick look of the class diagram for this class only (see Figure 23-4).

Figure 23-4. Modified Class diagram for EmployeeBuilder class

 Modified Package Explorer View
In the modified implementation, the key changes are reflected only in the

EmployeeBuilder class. So, in this section I expanded this class only. Figure 23-5 shows

the modified Package Explorer view.

Chapter 23 Interpreter pattern

401

 Modified Implementation
Here is the modified implementation. Key changes are shown in bold.

package jdp2e.interpreter.modified.demo;

import java.util.ArrayList;

import java.util.List;

interface Employee

{

 public boolean interpret(Context context);

}

class IndividualEmployee implements Employee

{

 private int yearOfExperience;

 private String currentGrade;

 public IndividualEmployee(int experience, String grade){

 this.yearOfExperience=experience;

 this.currentGrade=grade;

 }

Figure 23-5. Modified Package Explorer View

Chapter 23 Interpreter pattern

402

 @Override

 public boolean interpret(Context context)

 {

 if(this.yearOfExperience>=context.getYearofExperience() && context.

getPermissibleGrades().contains(this.currentGrade))

 {

 return true;

 }

 return false;

 }

}

class OrExpression implements Employee

{

 private Employee emp1;

 private Employee emp2;

 public OrExpression(Employee emp1, Employee emp2)

 {

 this.emp1 = emp1;

 this.emp2 = emp2;

 }

 @Override

 public boolean interpret(Context context)

 {

 return emp1.interpret(context) || emp2.interpret(context);

 }

}

class AndExpression implements Employee

{

 private Employee emp1;

 private Employee emp2;

 public AndExpression(Employee emp1, Employee emp2)

 {

Chapter 23 Interpreter pattern

403

 this.emp1 = emp1;

 this.emp2 = emp2;

 }

 @Override

 public boolean interpret(Context context)

 {

 return emp1.interpret(context) && emp2.interpret(context);

 }

}

class NotExpression implements Employee

{

 private Employee emp;

 public NotExpression(Employee expr)

 {

 this.emp = expr;

 }

 @Override

 public boolean interpret(Context context)

 {

 return !emp.interpret(context);

 }

}

class Context

{

 private int yearofExperience;

 private List<String> permissibleGrades;

 public Context(int experience,String... allowedGrades)

 {

 this.yearofExperience=experience;

 this.permissibleGrades=new ArrayList<>();

 for(String grade:allowedGrades)

 {

 permissibleGrades.add(grade);

 }

Chapter 23 Interpreter pattern

404

 }

 public int getYearofExperience()

 {

 return yearofExperience;

 }

 public List<String> getPermissibleGrades()

 {

 return permissibleGrades;

 }

}

class EmployeeBuilder

{

 // Building the tree

 //Complex Rule-1: emp1 and (emp2 or (emp3 or emp4))

 public Employee buildTree(Employee emp1, Employee emp2,Employee

emp3,Employee emp4)

 {

 //emp3 or emp4

 Employee firstPhase=new OrExpression(emp3,emp4);

 //emp2 or (emp3 or emp4)

 Employee secondPhase=new OrExpression(emp2,firstPhase);

 //emp1 and (emp2 or (emp3 or emp4))

 Employee finalPhase=new AndExpression(emp1,secondPhase);

 return finalPhase;

 }

 //Complex Rule-2: emp1 or (emp2 and (not emp3))

 public Employee buildTreeBasedOnRule2(Employee emp1, Employee

emp2,Employee emp3)

 {

 //Not emp3

 Employee firstPhase=new NotExpression(emp3);

 //emp2 or (not emp3)

 Employee secondPhase=new AndExpression(emp2,firstPhase);

Chapter 23 Interpreter pattern

405

 //emp1 and (emp2 or (not emp3))

 Employee finalPhase=new OrExpression(emp1,secondPhase);

 return finalPhase;

 }

}

public class ModifiedInterpreterPatternExample {

 public static void main(String[] args) {

 System.out.println("***Modified Interpreter Pattern Demo***\n");

 //Minimum Criteria for promoton is:

 //The year of experience is minimum 10 yrs. and

 //Employee grade should be either G2 or G3

 Context context=new Context(10,"G2","G3");

 //Different Employees with grades

 Employee emp1 = new IndividualEmployee(5,"G1");

 Employee emp2 = new IndividualEmployee(10,"G2");

 Employee emp3 = new IndividualEmployee(15,"G3");

 Employee emp4 = new IndividualEmployee(20,"G4");

 EmployeeBuilder builder=new EmployeeBuilder();

 //Validating the 1st complex rule

 System.out.println("Is emp1 and any of emp2,emp3, emp4 is eligible

for promotion?" +builder.buildTree(emp1,emp2, emp3,emp4).

interpret(context));

 System.out.println("Is emp2 and any of emp1,emp3, emp4 is eligible

for promotion?" +builder.buildTree(emp2,emp1, emp3,emp4).

interpret(context));

 System.out.println("Is emp3 and any of emp1,emp2, emp3 is eligible

for promotion?" +builder.buildTree(emp3,emp1, emp2,emp4).

interpret(context));

Chapter 23 Interpreter pattern

406

 System.out.println("Is emp4 and any of emp1,emp2, emp3 is eligible

for promotion?" +builder.buildTree(emp4,emp1, emp2,emp3).

interpret(context));

 System.out.println("");

 //Validating the 2nd complex rule

 System.out.println("Is emp1 or (emp2 but not emp3) is eligible

for promotion?" +builder.buildTreeBasedOnRule2(emp1, emp2, emp3).

interpret(context));

 System.out.println("Is emp2 or (emp3 but not emp4) is eligible

for promotion?" +builder.buildTreeBasedOnRule2(emp2, emp3, emp4).

interpret(context));

 }

}

 Modified Output
Here is the modified output.

Modified Interpreter Pattern Demo

Is emp1 and any of emp2,emp3, emp4 is eligible for promotion?false

Is emp2 and any of emp1,emp3, emp4 is eligible for promotion?true

Is emp3 and any of emp1,emp2, emp4 is eligible for promotion?true

Is emp4 and any of emp1,emp2, emp3 is eligible for promotion?false

Is emp1 or (emp2 but not emp3) is eligible for promotion?false

Is emp2 or (emp3 but not emp4) is eligible for promotion?true

 Analysis
Now you have an idea of how to handle complex rules that follow the approach shown

by using an interpreter pattern.

Chapter 23 Interpreter pattern

407

 Q&A Session

 1. When should I use this pattern?

In daily programming, it is not needed very much. Though

in some rare situations, you may need to work with your own

programming language to define specific protocols. In a situation

like this, this pattern may become handy. But before you proceed,

you must ask yourself about the return on investment (ROI).

 2. What are the advantages of using an interpreter design
pattern?

• You are very much involved in the process of how to define

grammar for your language and how to represent and interpret

those sentences. You can change and extend your grammar also.

• You have full freedom over how to interpret these expressions.

 3. What are the challenges associated with using interpreter
design patterns?

I believe that the amount of work is the biggest concern. Also

maintaining complex grammar becomes tricky because you

may need to create (and maintain) separate classes to deal with

different rules.

Chapter 23 Interpreter pattern

PART II

Additional Design
Patterns

411
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_24

CHAPTER 24

Simple Factory Pattern
This chapter covers the simple factory pattern.

 Intent
Create an object without exposing the instantiation logic to the client.

 Concept
In object-oriented programming, a factory is a special kind of object that can create

other objects. A factory can be invoked in many ways, but most often, it uses a method

that can return objects with varying prototypes. Any subroutine that can help create

these new objects is considered a factory. The ultimate purpose of using a factory

method is to abstract the object creational mechanism (or process) from the consumers

of the application.

 Real-World Example
Consider a car manufacturing company that manufactures different models of a car.

They must have a factory with different production units. Some of these units can

produce the parts that are common to all models, while other units are dedicated to

produce the model-specific parts. When they make the final product, they assemble the

model-specific parts with the common parts. From a client’s point of view, a car is built

from a car factory; the client does not know how the car is built. But if you investigate

further, you see that based on the model of the car, a production unit of the factory varies

the parts. For example, a particular car model can support a manual gearbox only and

412

another model can support both the automatic and manual gearbox. So, based on the

model of the car, the car factory constructs the particular gearbox for the car.

Consider a simpler example. When a kid demands a toy from his/her parent, the

child does not know how the parent will fulfill the demand. The parent, in this case, is

considered a factory for their small child. Now think from the parent’s point of view. The

parent can make the toy himself/herself or purchase a toy from a shop to make their kid

happy.

 Computer-World example
The simple factory pattern is very common to software applications, but before we

proceed further, you must remember these points.

• A simple factory is not treated as a standard design pattern in the

GoF’s famous book, but the approach is common to any application

that you write where you want to separate the code that varies a lot

from the part of code that does not vary. It is assumed that you try to

follow this approach in any application you write.

• A simple factory is considered the simplest form of factory method

patterns (or abstract factory patterns). So, you can assume that any

application that follows either the factory method pattern or the

abstract factory pattern, also supports the concept of simple factory

pattern’s design goals.

Note The static getInstance()method of the java.text.NumberFormat class is an
example of this category.

Let’s follow the implementation in which I discuss this pattern in a common use

case.

ChapTer 24 SImple FaCTory paTTerN

413

 Illustration
The following are the important characteristics of the following implementation.

• In this example, there are two types of animals: dogs and tigers. The

object creational process depends on users’ input.

• I assume that each of them can speak and they prefer to perform

some actions.

• SimpleFactory is the factory class and simpleFactory (note that

the “s” is not in caps) is an object of the class. In the client code

(SimpleFactoryPatternExample class), you see the following line.

preferredType = simpleFactory.createAnimal();

This means that to get a preferredType object, you need to invoke the

createAnimal() method of the simpleFactory object. So, using this approach, you are

not directly using a “new” operator in the client code to get an object.

• I have separated the code that varies from the code that are least

likely to vary. This approach helps you remove tight coupling in the

system. (How? Follow the “Q&A Session” section.)

Note In some applications, you may notice a slight variation of this pattern where
use of parameterized constructors is suggested. So, in those applications, to get
a preferredType object, you may need to use a line of code similar to this line:
preferredType=simpleFactory.createanimal(“Tiger”).

 Class Diagram
Figure 24-1 shows a class diagram for the simple factory pattern.

ChapTer 24 SImple FaCTory paTTerN

414

 Package Explorer View
Figure 24-2 shows the high-level structure of the program.

Figure 24-1. Class diagram

ChapTer 24 SImple FaCTory paTTerN

415

 Implementation
Here’s the implementation.

package jdp2e.simplefactory.demo;

import java.util.Scanner;//Available Java5 onwards

interface Animal

{

 void speak();

 void preferredAction();

}

class Dog implements Animal

{

 public void speak()

 {

 System.out.println("Dog says: Bow-Wow.");

 }

Figure 24-2. Package Explorer view

ChapTer 24 SImple FaCTory paTTerN

416

 public void preferredAction()

 {

 System.out.println ("Dogs prefer barking...");

 }

}

class Tiger implements Animal

{

 public void speak()

 {

 System.out.println("Tiger says: Halum.");

 }

 public void preferredAction()

 {

 System.out.println("Tigers prefer hunting...");

 }

}

class SimpleFactory

{

 public Animal createAnimal()

 {

 Animal intendedAnimal=null;

 System.out.println("Enter your choice(0 for Dog, 1 for Tiger)");

 /* To suppress the warning message:Resource leak:'input' is never

closed. So,the following line is optional in this case*/

 @SuppressWarnings("resource")

 Scanner input=new Scanner(System.in);

 int choice=Integer.parseInt(input.nextLine());

 System.out.println("You have entered :"+ choice);

 switch (choice)

 {

 case 0:

 intendedAnimal = new Dog();

 break;

ChapTer 24 SImple FaCTory paTTerN

417

 case 1:

 intendedAnimal = new Tiger();

 break;

 default:

 System.out.println("You must enter either 0 or 1");

 //We'll throw a runtime exception for any other choices.

 throw new IllegalArgumentException(" Your choice tries to

create an unknown Animal");

 }

 return intendedAnimal;

 }

}

//A client is interested to get an animal who can speak and perform an

//action.

class SimpleFactoryPatternExample

{

 public static void main(String[] args) {

 System.out.println("*** Simple Factory Pattern Demo***\n");

 Animal preferredType=null;

 SimpleFactory simpleFactory = new SimpleFactory();

 // The code that will vary based on users preference.

 preferredType = simpleFactory.createAnimal();

 //The codes that do not change frequently.

 //These animals can speak and prefer to do some specific actions.

 preferredType.speak();

 preferredType.preferredAction();

 }

}

 Output
Here’s the output.

ChapTer 24 SImple FaCTory paTTerN

418

 Case1. User input:0

*** Simple Factory Pattern Demo***

Enter your choice(0 for Dog, 1 for Tiger)

0

You have entered :0

Dog says: Bow-Wow.

Dogs prefer barking...

 Case2. User input:1

*** Simple Factory Pattern Demo***

Enter your choice(0 for Dog, 1 for Tiger)

1

You have entered :1

Tiger says: Halum.

Tigers prefer hunting...

 Case3. An unwanted user input:2

*** Simple Factory Pattern Demo***

Enter your choice(0 for Dog, 1 for Tiger)

2

You have entered :2

You must enter either 0 or 1Exception in thread "main"

java.lang.IllegalArgumentException: Your choice tries to create an unknown

Animal

 at jdp2e.simplefactory.demo.SimpleFactory.createAnimal(SimpleFactoryPat

ternExample.java:54)

 at jdp2e.simplefactory.demo.SimpleFactoryPatternExample.main(SimpleFact

oryPatternExample.java:68)

ChapTer 24 SImple FaCTory paTTerN

419

 Q&A Session

 1. In this example, the clients are delegating the objects’ creation
through the SimpleFactory. But instead, they could directly
create the objects with the “new” operator. Is this correct?

No. These are the key reasons behind the preceding design.

• An important object-oriented design principle is to separate the

part of your code that is most likely to change from the rest.

• In this case, only “the objects creational part” varies. I assume

that these animals must speak and perform actions, and I do

not need to vary that portion of code inside the client. So, in the

future, if you need to modify the creational process, you need to

change only the createAnimal() method of SimpleFactory class.

This client code is unaffected due to those modifications.

• “How are you creating objects?” is hidden in the client code. This

kind of abstraction promotes security.

• This approach can help you avoid lots of if/else blocks (or

switch statements) inside the client code because they make your

code look clumsy.

 2. What are the challenges associated with this pattern?

• Deciding which object to instantiate becomes complex over time.

In those cases, you should prefer the factory method pattern.

• If you want to add a new animal or delete an existing one, you

need to modify the createAnimal() method of the factory class.

This approach clearly violates the open-closed principle (which

basically says that your code should be open for extension but

closed for modification) of SOLID principles.

Note SolID principles were promoted by robert C. martin. you can learn about
them at https://en.wikipedia.org/wiki/SOLID.

ChapTer 24 SImple FaCTory paTTerN

420

 3. I learned that programming with an abstract class or
interface is always a better practice. So, to make a better
implementation, you could write something like this:

abstract class ISimpleFactory

{

 public abstract IAnimal createAnimal() throws IOException;

}

class SimpleFactory extends ISimpleFactory

{

 //rest of the code

}

Is this correct?

Yes. Programming with the abstract class or an interface is always

a better practice. This approach can prevent you from future

changes because any newly added classes can simply implement

the interface and settle down in the architecture through

polymorphism. But if you solely depend on concrete classes, you

need to change your code when you want to integrate a new class

in the architecture, and in such a case, you violate the rule that

says that your code should be closed for modifications.

So, your understanding is correct. You could use such a construct

to make it a better program. But ultimately, you learn the factory

method pattern (see Chapter 4), where you need to defer the

instantiation process to subclasses. So, you are advised to write

programs with an abstract class or an interface in such a case.

 4. Can you make the factory class (SimpleFactory) static?

No. In Java, you are not allowed to tag the word static with a

top-level class. In other words, by design, the compiler always

complains about the top-level static classes in Java.

ChapTer 24 SImple FaCTory paTTerN

421
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_25

CHAPTER 25

Null Object Pattern
Wikipedia says, “In object-oriented computer programming, a null object is an object

with no referenced value or with defined neutral (null) behavior. The null object design

pattern describes the uses of such objects and their behavior (or lack thereof). It was first

published in the Pattern Languages of Program Design book series.” The Hillside Group

sponsors Pattern Languages of Programs (PLoP) annual conferences.

The pattern can implement a “do-nothing” relationship or it can provide a default

behavior when an application encounter with a null object instead of a real object.

In simple words, the core aim is to make a better solution by avoiding “null objects

check” or “null collaborations check” through if blocks. Using this pattern, you try to

encapsulate the absence of an object by providing a default behavior that does nothing.

 Concept
The notable characteristic of this pattern is that you do not need to do anything (or store

nothing) when you invoke an operation on a null object. Consider the following program

and the corresponding output. Let’s try to understand the problems associated with

the following program segment, analyze the probable solutions and at the end of this

chapter, you see a better implementation that uses this design pattern.

In the following implementation, let’s assume that you have two types of vehicles:

bus and train. A client can opt for a bus or a train object through different input, like “a”

or “b”. Let’s further assume that the application considers these two as the valid input

only.

422

 A Faulty Program
Here is a faulty program.

package jdp2e.nullobject.context.demo;

import java.util.Scanner;

interface Vehicle

{

 void travel();

}

class Bus implements Vehicle

{

 public static int busCount = 0;

 public Bus()

 {

 busCount++;

 }

 @Override

 public void travel()

 {

 System.out.println("Let us travel with a bus");

 }

}

class Train implements Vehicle

{

 public static int trainCount = 0;

 public Train()

 {

 trainCount++;

 }

 @Override

 public void travel()

 {

 System.out.println("Let us travel with a train");

 }

}

Chapter 25 Null ObjeCt patterN

423

public class NeedForNullObjectPattern {

 public static void main(String[] args) {

 System.out.println("***Need for Null Object Pattern Demo***\n");

 String input = null;

 int totalObjects = 0;

 while (true)

 {

 System.out.println("Enter your choice(Type 'a' for Bus, 'b'

for Train) ");

 Scanner scanner=new Scanner(System.in);

 input = scanner.nextLine();

 Vehicle vehicle = null;

 switch (input.toLowerCase())

 {

 case "a":

 vehicle = new Bus();

 break;

 case "b":

 vehicle = new Train();

 break;

 }

 totalObjects = Bus.busCount + Train.trainCount;

 vehicle.travel();

 System.out.println("Total number of objects created in the

system is : "+ totalObjects);

 }

 }

}

Chapter 25 Null ObjeCt patterN

424

 Output with Valid Inputs
Need for Null Object Pattern Demo

Enter your choice(Type 'a' for Bus, 'b' for Train)

a

Let us travel with a bus

Total number of objects created in the system is : 1

Enter your choice(Type 'a' for Bus, 'b' for Train)

b

Let us travel with a train

Total number of objects created in the system is : 2

Enter your choice(Type 'a' for Bus, 'b' for Train)

b

Let us travel with a train

Total number of objects created in the system is : 3

Enter your choice(Type 'a' for Bus, 'b' for Train)

 Analysis with an Unwanted Input
Let’s assume that by mistake, the user has supplied a different character ‘d’ now as

shown below:

Need for Null Object Pattern Demo

Enter your choice(Type 'a' for Bus, 'b' for Train)

a

Let us travel with a bus

Total number of objects created in the system is : 1

Enter your choice(Type 'a' for Bus, 'b' for Train)

b

Let us travel with a train

Total number of objects created in the system is : 2

Enter your choice(Type 'a' for Bus, 'b' for Train)

b

Chapter 25 Null ObjeCt patterN

425

Let us travel with a train

Total number of objects created in the system is : 3

Enter your choice(Type 'a' for Bus, 'b' for Train)

d

 Encountered Exception
This time, you receive the System.NullPointerException runtime exception.

Enter your choice(Type 'a' for Bus, 'b' for Train)

d

Exception in thread "main" java.lang.NullPointerException

 at jdp2e.nullobject.context.demo.NeedForNullObjectPattern.

main(NeedForNullObjectPattern.java:61)

 Immediate Remedy
The immediate remedy that may come in your mind is to do a null check before you

invoke the operation as follows:

//A immediate remedy

if(vehicle !=null)

{

 vehicle.travel();

}

 Analysis
The prior solution works in this case. But think of an enterprise application. If you need

to do null checks for each possible scenario, you may need to have a larger number of if

conditions to evaluate each time you proceed, and this approach makes your code dirty.

At the same time, you may notice the side effects of a difficult maintenance also. The

concept of null object pattern is useful in similar cases.

Chapter 25 Null ObjeCt patterN

426

 Real-World Example
Let’s consider a real-life scenario with a washing machine. A washing machine can wash

properly if the door is closed and there is a smooth water supply without any internal

leakage. But suppose, in one occasion, you forget to close the door or stopped the water

supply in between. The washing machine should not damage itself in those situations.

It can beep some alarm to draw your attention and indicate that there is no water at

present or the door is still open.

 Computer-World Example
Assume that in a client server architecture, the server does some kinds of processing

based on the client input. The server should be intelligent enough, so that it does not

initiate any calculation unnecessarily. Prior processing the input, it may want to do a

cross verification to ensure whether it needs to start the process at all or it should ignore

an invalid input. You may notice the use of the command pattern with a null object

pattern in such a case.

Basically, in an enterprise application, you can avoid a large number of null checks

and if/else blocks using this design pattern. The following implementation can give

you a nice overview about this pattern.

Note In java, you may have seen the use of various adapter classes in java.
awt.event package. these classes can be thought closer to null object pattern.
For example, consider the MouseMotionadapter class. It is an abstract class
but contains methods with empty bodies like mouseDragged(Mouseevent e){ },
mouseMoved(Mouseevent e){ }. but since the adapter class is tagged with abstract
keyword, you cannot directly create objects of the class.

 Illustration
As before, in the following implementation, let’s assume that you have two types of

vehicles: bus and train. A client can opt for a bus or a train through different input: “a”

or “b”. If by mistake, the user supplies any invalid data (i.e., any input other than “a”

Chapter 25 Null ObjeCt patterN

427

or “b” in this case), he cannot travel at all. The application ignores an invalid input by

doing nothing using a NullVehicle object. In the following example, I’ll not create these

NullVehicle objects repeatedly. Once it is created, I’ll simply reuse that object.

 Class Diagram
Figure 25-1 shows the class diagram. (The concept is implemented with a singleton

pattern, so that, you can avoid unnecessary object creations).

Figure 25-1. Class diagram

Chapter 25 Null ObjeCt patterN

428

 Package Explorer View
Figure 25-2 shows the high-level structure of the program.

Figure 25-2. Package Explorer view

Chapter 25 Null ObjeCt patterN

429

 Implementation
Here’s the implementation.

package jdp2e.nullobject.demo;

import java.util.Scanner;

interface Vehicle

{

 void travel();

}

class Bus implements Vehicle

{

 public static int busCount = 0;

 public Bus()

 {

 busCount++;

 }

 @Override

 public void travel()

 {

 System.out.println("Let us travel with a bus");

 }

}

class Train implements Vehicle

{

 public static int trainCount = 0;

 public Train()

 {

 trainCount++;

 }

 @Override

 public void travel()

 {

 System.out.println("Let us travel with a train");

 }

}

Chapter 25 Null ObjeCt patterN

430

class NullVehicle implements Vehicle

{

 //Early initialization

 private static NullVehicle instance = new NullVehicle();

 public static int nullVehicleCount;

 //Making constructor private to prevent the use of "new"

 private NullVehicle()

 {

 nullVehicleCount++;

 System.out.println(" A null vehicle object created.Currently null

vehicle count is : "+nullVehicleCount);

 }

 // Global point of access.

 public static NullVehicle getInstance()

 {

 //System.out.println("We already have an instance now. Use it.");

 return instance;

 }

 @Override

 public void travel()

 {

 //Do Nothing

 }

}

public class NullObjectPatternExample {

 public static void main(String[] args) {

 System.out.println("***Null Object Pattern Demo***\n");

 String input = "dummyInput";

 int totalObjects = 0;

 Scanner scanner;

 while(!input.toLowerCase().contains("exit"))

 {

 System.out.println("Enter your choice(Type 'a' for Bus, 'b'

for Train.Type 'exit' to close the application.) ");

 scanner=new Scanner(System.in);

Chapter 25 Null ObjeCt patterN

431

 if(scanner.hasNextLine())

 {

 input = scanner.nextLine();

 }

 Vehicle vehicle = null;

 switch (input.toLowerCase())

 {

 case "a":

 vehicle = new Bus();

 break;

 case "b":

 vehicle = new Train();

 break;

 case "exit":

 System.out.println("Closing the application");

 vehicle = NullVehicle.getInstance();

 break;

 default:

 System.out.println("Invalid input");

 vehicle = NullVehicle.getInstance();

 }

 totalObjects = Bus.busCount + Train.trainCount+NullVehicle.null

VehicleCount;

 //A immediate remedy

 //if(vehicle !=null)

 //{

 vehicle.travel();

 //}

 System.out.println("Total number of objects created in the

system is : "+ totalObjects);

 }

 }

}

Chapter 25 Null ObjeCt patterN

432

 Output
Here’s the output.

Null Object Pattern Demo

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to close the

application.)

a

 A null vehicle object created.Currently null vehicle count is : 1

Let us travel with a bus

Total number of objects created in the system is : 2

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to close the

application.)

b

Let us travel with a train

Total number of objects created in the system is : 3

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to close the

application.)

c

Invalid input

Total number of objects created in the system is : 3

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to close the

application.)

dfh

Invalid input

Total number of objects created in the system is : 3

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to close the

application.)

exit

Closing the application

Total number of objects created in the system is : 3

Chapter 25 Null ObjeCt patterN

433

 Analysis
• Invalid input and their effects are shown in bold.

• Apart from the initial case, notice that object count has not increased

due to null vehicle objects or invalid input.

• I did not perform any null check this time (notice the commented

line in the following segment of code).

//A immediate remedy

 //if(vehicle !=null)

 //{

 vehicle.travel();

 //}

• This time program execution is not interrupted due to the invalid

user input.

 Q&A Session

 1. At the beginning, I see that an additional object is created. Is it
intentional?

To save memory, I followed a singleton design pattern mechanism

that supports early initialization in the structure of the NullVehicle

class. I do not want to create a NullVehicle object for each invalid

input. It is very likely that the application may need to deal with a

larger number of invalid input. If you do not guard this situation,

a large number of NullVehicle objects reside in the system (which

are basically useless) and those occupy more memory. As a result,

you may notice some typical side effects (for example, the system

becomes slow, etc.).

Chapter 25 Null ObjeCt patterN

434

 2. To implement a simple null object pattern, I can ignore
different object counters(that used in the prior example) and
reduce lots of code. Is this correct?

Yes. Ideally, consider the following code segment.

//Another context

List<Vehicle> vehicleList=new ArrayList<Vehicle>();

vehicleList.add(new Bus());

vehicleList.add(new Train());

vehicleList.add(null);

for(Vehicle vehicle : vehicleList)

 {

 vehicle.travel();

 }

You cannot loop through this code because you encounter the

java.lang.NullPointerException.

Note a class like the following.

class NullVehicle implements Vehicle

{

 @Override

 public void travel()

 {

 //Do nothing

 }

}

And you code like this:

//Another context discussed in Q&A session

List<Vehicle> vehicleList=new ArrayList<Vehicle>();

vehicleList.add(new Bus());

vehicleList.add(new Train());

//vehicleList.add(null);

vehicleList.add(new NullVehicle());

Chapter 25 Null ObjeCt patterN

435

for(Vehicle vehicle : vehicleList)

{

 vehicle.travel();

}

This time you can loop through smoothly. So, remember that the

following structure prior to implementing a null object pattern

(see Figure 25-3).

Figure 25-3. The basic structure of a null object pattern

 3. When should I use this pattern?

• The pattern is useful if you do not want to encounter with a

NullPointerException in Java in some typical scenarios.

(For example, if by mistake, you try to invoke a method of a null

object.)

• You can ignore lots of “null checks” in your code.

• Absence of these null checks make your code cleaner and easily

maintainable.

Chapter 25 Null ObjeCt patterN

436

 4. What are the challenges associated with null object patterns?

• In some cases, you may want to get closure to the root cause

of failure. So, if you throw a NullPointerException that makes

more sense to you, you can always handle those exceptions in a

try/catch or in a try/catch/finally block and update the log

information accordingly.

• The null object pattern basically helps us to implement a default

behavior when you unconsciously want to deal with an object

that is not present at all. But this approach may not suite every

possible object in a system.

• Incorrect implementation of a null object pattern can suppress

true bags that may appear as normal in your program execution.

• Creating a proper null object in every possible scenario may not

be easy. In some classes, this may cause a change that influences

the class methods.

 5. Null objects work like proxies. Is this correct?

No. In general, proxies act on real objects at some point of time

and they may also provide some behavior. But a null object should

not do any such thing.

 6. The null object pattern is always associated with
NullPointerException. Is this correct?

The concept is same, but the exception name can be different or

language specific. For example, in Java, you are using it to guard

java.lang.NullPointerException but in a language like C#, you may

use this pattern to guard System.NullReferenceException.

Chapter 25 Null ObjeCt patterN

437
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_26

CHAPTER 26

MVC Pattern
Model-View-Controller (MVC) is an architectural pattern.

The use of this pattern is commonly seen in web applications or when we develop

powerful user interfaces. But it is important to note that Trygve Reenskaug first

described MVC in 1979 in a paper titled, “Applications Programming in Smalltalk-

80TM: How to Use Model-View-Controller,” which was before the World Wide Web era.

At that time, there was no concept of web applications. But modern-day applications

can be seen as an adaptation of that original concept. It is important to note that some

developers believe that it is not a true design pattern, instead, they prefer to call it “MVC

architecture.”

Here you separate the user interface logic from the business logic and decouple

the major components in such a way that they can be reused efficiently. This

approach also promotes parallel development. One of the best rubrics for MVC is

“We need SMART models, THIN controllers, and DUMB views.” (http://wiki.c2.com/

?ModelViewController)

 Concept
From this introduction, it is apparent that the pattern consists of the three major

components: Model, View, and Controller. Controller is placed between View and

Model in such a way that Model and View can communicate to each other only

through Controller. Here you separate the mechanism of how data is displayed from

the mechanism of how the data is manipulated. Figure 26-1 shows a typical MVC

architecture.

438

 Key Points to Remember
The following are brief descriptions of the key components in this pattern.

• View represents the output. It is a presentation layer. Think of it as a user

interface/GUI. You can design it with various technologies. For example,

in a .NET application, you can use HTML, CSS, WPF, and so forth, and

for a Java application, you can use AWT, Swing, JSF, JavaFX, and so forth.

• Model is the brain of your application. It manages the data and the

business logic. It knows how to store and manage (or manipulate) the

data, and how to handle the requests that come from controller. But this

component is separated from the View component. A typical example is

a database, a file system, or similar kinds of storage. It can be designed

with JavaBeans, Oracle, SQL Server, DB2, Hadoop, MySQL, and so forth.

• Controller is the intermediary that accepts users input from the

View component and passes the request to the model. When it gets

a response from the model, it passes the data to the view. It can be

designed with C#.NET, ASP.NET, VB.NET, Core Java, JSP, servlets,

PHP, Ruby, Python, and so forth.

There are various implementations of this architecture in different applications.

Some of them are as follows:

• You can have multiple views.

• Views can pass runtime values (e.g., using JavaScript) to controllers.

• Your controller can validate the user’s input.

Figure 26-1. A typical MVC architecture

Chapter 26 MVC pattern

439

• Your controller can receive input in various ways. For example, it can

get input from a web request via a URL, or you can pass the input by

pressing a Submit button on a form.

• In some applications, Model components can update the View

component.

Basically, you need to use this pattern to support your own needs. Figure 26-2,

Figure 26-3, and Figure 26-4 show some of the known variations of an MVC architecture.

 Variation 1

Figure 26-2. A typical MVC framework

 Variation 2

Figure 26-3. A MVC framework with multiple views

Chapter 26 MVC pattern

440

 Variation 3

Figure 26-4. An MVC pattern implemented with an observer pattern/ event-
based mechanism

My favorite description of MVC comes from Connelly Barnes, who states, “An easy way

to understand MVC: the model is the data, the view is the window on the screen, and the

controller is the glue between the two.” (http://wiki.c2.com/?ModelViewController)

 Real-World Example
Let’s revisit our template method pattern’s real-life example. But this time you interpret

it differently. I said that in a restaurant, based on customer input, a chef can vary the

taste and make the final products. The customers do not place their orders directly to

the chef. The customers see the menu card (view), may consult with the waiter/waitress,

and place their order. The waiter/waitress passes the order slip to the chef, who gathers

the required materials from the restaurant’s kitchen (similar to storehouses/computer

databases). Once prepared, the waiter/waitress carries the plate to the customer’s table.

So, you can consider the role of the waiter/waitress as the controller, and the chef with

their kitchen as the model (and the food preparation materials as data).

Chapter 26 MVC pattern

441

 Computer-World Example
Many web programming frameworks uses the concept of MVC framework. Some of the

typical example include Django, Ruby on Rails, ASP.NET, and so forth. For example, a

typical ASP.NET MVC project has the structure shown in Figure 26-5.

Figure 26-5. A typical MVC structure in a ASP.NET project

But it should be noted that different technologies can follow different structure and

so, it is not necessary to get a folder structure with the strict naming convention like

this. In the Java world, in a MVC architecture, you may notice the use of Java servlets as

controllers and JavaBeans as models, whereas JSPs create different views.

Chapter 26 MVC pattern

442

 Illustration
Most of the time, you want to use the concept of MVC with technologies that can give

you built-in support and that can do a lot of ground work for you. In that case, you may

need to learn new terminologies. In Java applications, you may want to use Swing or

JavaFX, and so forth, for a better GUI.

Throughout this book, I used a console window to show output from different design

pattern implementations. So, let’s continue to use the console window as a view in the

upcoming implementation because the focus here is on the MVC structure, not new

technologies.

For simplicity and to match our theory, I divided the upcoming implementation into

three basic parts: Model, View, and Controller. Once you look at the Package Explorer

view, you see that separate packages are created to accomplish this task. Here are some

important points.

• In this application, the requirement is very simple. There are

employees who need to register themselves in an application/

system. Initially, the application starts with three different registered

employees: Amit, Jon, and Sam. At any time, you should be able to

see the enrolled employees in the system.

• You can add a new employee or delete an employee from the

registered employees list.

• A simple check is added in the Employee class to ensure that you are

not adding an employee repeatedly in the application.

• To delete an employee from the registered list, you need to pass the

employee ID in the client code, but the application will do nothing if

an employee ID is not found in the registered list.

Now go through the implementation and consider the comments for your immediate

reference.

 Class Diagram
Figure 26-6 shows the class diagram. I omitted the client code dependencies to

emphasize the core architecture.

Chapter 26 MVC pattern

443

Fi
gu

re
 2

6-
6.

 C
la

ss
 d

ia
gr

am

Chapter 26 MVC pattern

444

 Implementation
Here is the implementation.

//Employee.java

package jdp2e.mvc.model;

//The key "data" in this application

public class Employee

{

 private String empName;

 private String empId;

Figure 26-7. Package Explorer view

 Package Explorer View
Figure 26-7 shows the high-level structure of the program.

Chapter 26 MVC pattern

445

 public String getEmpName() {

 return empName;

 }

 public String getEmpId() {

 return empId;

 }

 public Employee(String empName, String empId)

 {

 this.empName=empName;

 this.empId=empId;

 }

 @Override

 public String toString()

 {

 return empName + "'s employee id is: "+ empId ;

 }

 @Override

 //To check uniqueness.

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof Employee)) return false;

 Employee empObject = (Employee) o;

 if (!empName.equals(empObject.empName)) return false;

 //cannot use the following for an int

 if (!empId.equals(empObject.empId)) return false;

 return true;

 }

}

Chapter 26 MVC pattern

446

//Model.java

package jdp2e.mvc.model;

import java.util.List;

//Model interface

public interface Model

{

 List<Employee> getEnrolledEmployeeDetailsFromModel();

 void addEmployeeToModel(Employee employeee);

 void removeEmployeeFromModel(String employeeId);

}

//EmployeeModel.java

package jdp2e.mvc.model;

import java.util.ArrayList;

import java.util.List;

import java.util.ListIterator;

//EmployeeModel class

public class EmployeeModel implements Model

{

 List<Employee> enrolledEmployees;

 public EmployeeModel()

 {

 //Adding 3 employees at the beginning.

 enrolledEmployees = new ArrayList<Employee>();

 enrolledEmployees.add(new Employee("Amit","E1"));

 enrolledEmployees.add(new Employee("John","E2"));

 enrolledEmployees.add(new Employee("Sam","E3"));

 }

 public List<Employee> getEnrolledEmployeeDetailsFromModel()

 {

 return enrolledEmployees;

 }

Chapter 26 MVC pattern

447

 //Adding an employee to the model(student list)

 @Override

 public void addEmployeeToModel(Employee employee)

 {

 System.out.println("\nTrying to add an employee to the registered

list.");

 if(!enrolledEmployees.contains(employee))

 {

 enrolledEmployees.add(employee);

 System.out.println(employee+" [added recently.]");

 }

 else

 {

 System.out.println(employee+" is already added in the

system.");

 }

 }

 //Removing an employee from model(student list)

 @Override

 public void removeEmployeeFromModel(String employeeId)

 {

 boolean flag=false;

 ListIterator<Employee> employeeIterator=enrolledEmployees.

listIterator();

 System.out.println("\nTrying to remove an employee from the

registered list.");

 while(employeeIterator.hasNext())

 {

 Employee removableEmployee=((Employee)employeeIterator.next());

 if(removableEmployee.getEmpId().equals(employeeId))

 {

 //To avoid ConcurrentModificationException,try to

 //remember to invoke remove() on the iterator but not on

 //the list.

 employeeIterator.remove();

Chapter 26 MVC pattern

448

 System.out.println("Employee " + removableEmployee.

getEmpName()+ " with id "+ employeeId+" is removed now.");

 flag=true;

 }

 }

 if(flag==false)

 {

 System.out.println("###Employee Id " + employeeId +" Not

found.###");

 }

 }

}

//View.java

package jdp2e.mvc.view;

import java.util.List;

import jdp2e.mvc.model.Employee;

public interface View

{

 void showEnrolledEmployees(List<Employee> enrolledEmployees);

}

//ConsoleView.java

package jdp2e.mvc.view;

import java.util.List;

import jdp2e.mvc.model.Employee;

//ConsoleView class

public class ConsoleView implements View

{

 @Override

 public void showEnrolledEmployees(List<Employee> enrolledEmployees)

Chapter 26 MVC pattern

449

 {

 System.out.println("\n ***This is a console view of currently

enrolled employees.*** ");

 for(Employee employee : enrolledEmployees)

 {

 System.out.println(employee);

 }

 System.out.println("---------------------");

 }

}

//Controller.java

package jdp2e.mvc.controller;

import jdp2e.mvc.model.Employee;

//Controller

public interface Controller

{

 void displayEnrolledEmployees();

 void addEmployee(Employee employee);

 void removeEmployee(String employeeId);

}

//EmployeeController.java

package jdp2e.mvc.controller;

import java.util.List;

import jdp2e.mvc.model.*;

import jdp2e.mvc.view.*;

public class EmployeeController implements Controller

{

 private Model model;

 private View view;

Chapter 26 MVC pattern

450

 public EmployeeController(Model model, View view)

 {

 this.model = model;

 this.view = view;

 }

 @Override

 public void displayEnrolledEmployees()

 {

 //Get data from Model

 List<Employee> enrolledEmployees = model.

getEnrolledEmployeeDetailsFromModel();

 //Connect to View

 view.showEnrolledEmployees(enrolledEmployees);

 }

 //Sending a request to model to add an employee to the list.

 @Override

 public void addEmployee(Employee employee)

 {

 model.addEmployeeToModel(employee);

 }

 //Sending a request to model to remove an employee from the list.

 @Override

 public void removeEmployee(String employeeId)

 {

 model.removeEmployeeFromModel(employeeId);

 }

}

//Client code
//MVCArchitectureExample.java

package jdp2e.mvc.demo;

import jdp2e.mvc.model.*;

import jdp2e.mvc.view.*;

import jdp2e.mvc.controller.*;

Chapter 26 MVC pattern

451

public class MVCArchitectureExample {

 public static void main(String[] args) {

 System.out.println("***MVC architecture Demo***\n");

 //Model

 Model model = new EmployeeModel();

 //View

 View view = new ConsoleView();

 //Controller

 Controller controller = new EmployeeController(model, view);

 controller.displayEnrolledEmployees();

 //Add an employee

 controller.addEmployee(new Employee("Kevin","E4"));

 controller.displayEnrolledEmployees();

 //Remove an existing employee using the employee id.

 controller.removeEmployee("E2");

 controller.displayEnrolledEmployees();

 //Cannot remove an employee who does not belong to the list.

 controller.removeEmployee("E5");

 controller.displayEnrolledEmployees();

 //Avoiding duplicate entry

 controller.addEmployee(new Employee("Kevin","E4"));

 }

}

Chapter 26 MVC pattern

452

 Output
Here is the output.

MVC architecture Demo

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

John's employee id is: E2

Sam's employee id is: E3

Trying to add an employee to the registered list.

Kevin's employee id is: E4 [added recently.]

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

John's employee id is: E2

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to remove an employee from the registered list.

Employee John with id E2 is removed now.

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to remove an employee from the registered list.

###Employee Id E5 Not found.###

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to add an employee to the registered list.

Kevin's employee id is: E4 is already added in the system.

Chapter 26 MVC pattern

453

 Q&A Session

 1. Suppose you have a programmer, a DBA, and a graphic
designer. Can you guess their roles in a MVC architecture?

The graphic designer designs the view layer. The DBA makes the

model and programmer works to make an intelligent controller.

 2. What are the key advantages of using MVC design patterns?

• “High cohesion and low coupling” is the slogan of MVC. Tight

coupling between model and view is easily removed in this

pattern. So, it can be easily extendable and reusable.

• It supports parallel development.

• You can also provide multiple runtime views.

 3. What are the challenges associated with MVC patterns?

• Requires highly skilled personnel.

• It may not be suitable for a tiny application.

• Developers need to be familiar with multiple languages/

platforms/technologies.

• Multiartifact consistency is a big concern because you are

separating the overall project into three different parts.

 4. Can you provide multiple views in this implementation?

Sure. Let’s add a new view called “Mobile view” in the application.

Let’s add this class inside the jdp2e.mvc.view package as follows.

package jdp2e.mvc.view;

import java.util.List;

import jdp2e.mvc.model.Employee;

//This class is added to discuss a question in "Q&A Session"

//MobileView class

Chapter 26 MVC pattern

454

public class MobileView implements View

{

 @Override

 public void showEnrolledEmployees(List<Employee>

enrolledEmployees)

 {

 System.out.println("\n ***This is a mobile view of

currently enrolled employees.*** ");

 System.out.println("Employee Id"+ "\t"+ " Employee Name");

 System.out.println("______________________");

 for(Employee employee : enrolledEmployees)

 {

 System.out.println(employee.getEmpId() + "\t"+

employee.getEmpName());

 }

 System.out.println("---------------------");

 }

}

The modified Package Explorer view is similar to Figure 26-8.

Chapter 26 MVC pattern

455

Add the following segment of code at the end of your client code.

//This segment is addeed to discuss a question in "Q&A Session"

view = new MobileView();

controller = new EmployeeController(model, view);

controller.displayEnrolledEmployees();

Now if you run the application, you see the modified output.

 Modified Output
Here is the modified output. The last part of your output shows the effect of your new

changes. These changes are shown in bold.

MVC architecture Demo

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

Figure 26-8. Modified Package Explorer view

Chapter 26 MVC pattern

456

John's employee id is: E2

Sam's employee id is: E3

Trying to add an employee to the registered list.

Kevin's employee id is: E4 [added recently.]

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

John's employee id is: E2

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to remove an employee from the registered list.

Employee John with id E2 is removed now.

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to remove an employee from the registered list.

###Employee Id E5 Not found.###

 This is a console view of currently enrolled employees.

Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to add an employee to the registered list.

Kevin's employee id is: E4 is already added in the system.

Chapter 26 MVC pattern

457

 This is a mobile view of currently enrolled employees.

Employee Id Employee Name

E1 Amit

E3 Sam

E4 Kevin

Chapter 26 MVC pattern

PART III

Final Discussions on
Design Patterns

461
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_27

CHAPTER 27

Criticisms of Design
Patterns
In this chapter, I present some of the criticisms of design patterns. Reading about the

criticisms can offer real value. If you think critically about patterns before you design

your software, you can predict your “return on investment” to some degree. Design

patterns basically help you benefit from another people’s experience. This is often called

experience reuse. You learn how they solved challenges, how they tried to adapt new

behaviors in their systems, and so on. A pattern may not perfectly fit into your work,

but if you concentrate on the best practices as well as the problems of a pattern at the

beginning, you are more likely to make a better application.

The following are some of the criticisms of patterns.

• Christopher Alexander considered the domain that did not change a

lot over the years (compared to software industry). On the contrary,

software industry is always changing and the changes in software

development are much faster than any other domain. So, you cannot

start from the domain (of buildings and towns) that Christopher

Alexander considered.

• The way you write program in today’s world is different and the

facilities that you have nowadays are much more compared to old

days of programming. So, when you extract patterns based on some

old practices, you basically show additional respect to them.

• Many of the patterns are close to each other. And there are always

pros and cons associated with each of the patterns (I discussed about

them in the “Q&A Sessions” at the end of each chapter.)The pitfall in

one case can be a real virtue in a different case.

462

• The pattern that is giving you the satisfactory results today, can be a

big burden to you in the near future due to the “continuous changes”

in the software industry.

• It is very unlikely that an infinite number of requirements can be well

designed with a finite number of design patterns.

• Designing a software is basically an art. And there is no definition or

criteria for best art.

• Design patterns give you the idea but not the implementations (like

libraries or frameworks). Each human mind is unique. So, each

engineer may have his/her own preferences for implementing a

similar concept, and that can create chaos in a team.

• Consider a simple example. Patterns encourage people to code to

a super type (abstract class/ interface). But for a simple application

where you know that there are no upcoming changes, or the

application is created for a demo purposes only, this rule may not

make much sense.

• In a similar way, in some small applications, you may find that

enforcing the rules of design patterns are increasing your code size

and maintenance costs.

• Erasing the old and adapting the new is not always easy. For example,

when you first learned about inheritance, you were excited. You

probably wanted to use it in many ways and were seeing only the

benefits from the concept. But later when you started experimenting

with design patterns, you started learning that in many cases,

compositions are preferred over inheritance. This shifting of gears is

not easy.

• Design patterns are based on some of the key principles, and one of

them is to identify the code that may vary and then separate it from

rest of the code. It sounds very good from theoretical perspective.

But in real world implementations, who guarantees you that your

judgment is perfect? Software industry always changes, and it needs

to adapt with new requirements/demands.

Chapter 27 CritiCisms of Design patterns

463

• Many patterns are already integrated with modern day languages.

Instead of implementing the pattern from the scratch, you can use

the built-in support in the language constructs. For example, you may

notice that each of the patterns has JDK implementations in some

context.

• Inappropriate use of patterns can lead to antipatterns (e.g., an

inappropriate use of mediator pattern can lead to a “God Class”

antipattern). I give a brief overview of antipatterns in Chapter 28.

• Many people believe that the concepts of design patterns simply

indicate that a programming language may need additional features.

So, patterns have less significance with the increasing capabilities of

modern-day programming languages. Wikipedia says that computer

scientist Peter Norvig believes that 16 out of the 23 patterns in the

GoF’s design patterns are simplified or eliminated via direct language

support in Lisp or Dylan. You can see some similar thoughts at

https://en.wikipedia.org/wiki/Software_design_pattern.

• At the end, design patterns basically help you to get benefit from

others experience. You are getting their thoughts, you come to

know how they encountered the challenges, how they tried to adapt

new behaviors in their systems, and so forth. But you start with the

assumption that a beginner or relatively less-experienced person

cannot solve a problem better than his/her seniors. In some specific

occasions, a relatively less experienced person can have a better

vision than his seniors, and he can prove himself more effective in

the future.

 Q&A Session

 1. Is there a catalog for these patterns?

I started with the GoF’s 23 design patterns and then discussed

three more patterns in this book. The GoF’s catalog is considered

the most fundamental pattern catalog.

Chapter 27 CritiCisms of Design patterns

464

But there are definitely many other catalogs that focus on

particular domains.

The Portland Patterns Repository and The Hillside Group’s

website are well-known in this context. You can get valuable

insights and thoughts from these resources at http://wiki.

c2.com/?WelcomeVisitors and https://hillside.net/

patterns/patterns-catalog.

The Hillside Group’s website also notes its various conferences

and workshops.

Note at the time of writing, the UrLs in the book worked fine but some of these
links and the policies to access the links may change in the future.

 2. Why are you not covering other patterns?

These are my personal beliefs:

• Computer science keeps growing, and you keep getting new

patterns.

• If you are not familiar with the fundamental patterns, you cannot

evaluate the true needs of the remaining or upcoming patterns.

For example, if you know MVC well, you can see how it is

different than Model-View-Presenter (MVP) and understand why

MVP is needed.

• The book is already fat. The detailed discussion of each pattern

would need many more pages, which would make the size of the

book too big to digest.

So, in this book, I focused on fundamental patterns that are

still relevant in today’s programming world.

Chapter 27 CritiCisms of Design patterns

465

 3. I often see the term “force” with the description of design
patterns. What does it mean?

It is the criteria based on which developers justify their

developments. Broadly, your target and current constraints are

two important parts of your force. Therefore, when you develop

your application, you can justify your development with these

parts.

 4. In various forums, I have seen people fighting about the
pattern definition and say something like, “A pattern is a
proven solution to a problem in a context.” What does it mean?

This is a simple and easy-to-remember definition of what a

pattern is. But simply breaking it down into three parts (problem,

context, and solution) is not enough.

As an example, suppose you are visiting to Airport and you are in

a hurry. Suddenly, you discover that you have left your boarding

pass at home. Let’s analyze the situation:

Problem: You need to reach airport on time.

Context: Left the boarding pass at home.

The Solution that may come to mind: Turn back, go at a high

speed and rush toward home to get the boarding pass.

This solution may work one time, but can you apply the same

procedure repeatedly? You know the answer. It is not an intelligent

solution because it depends on how much time you have to collect

the pass from home and go back to the airport. It also depends on

the current traffic on the road and many other factors. So, even

if you can get the success for one time, you may want to prepare

yourself for a better solution for a similar situation in future.

So, try to understand the meaning, intent, context, and so on, to

understand a pattern clearly.

Chapter 27 CritiCisms of Design patterns

466

 5. Sometimes I am confused to see similar UML diagrams
for two different patterns. Also, I am further confused with
the classification of the patterns in many cases. How can I
overcome this?

This is perfectly natural. The more you read and analyze the

implementations and the more you try to understand the intent

behind the designs, the distinctions among them will be clearer to

you.

 6. When should I consider writing a new pattern?

Writing a new pattern is not easy. You need to study a lot and

evaluate the available patterns before you put your effort. But

if you do not find any existing pattern to serve your domain-

specific need, you may need to write your own pattern. It would

be very good if your solution passes the “rule of three” (which

basically says that to get the tag “pattern,” a solution needs to

be successfully applied in a real-world solution at least three

times). Once you have done this, you can let others know about it,

participate in discussion forums and take feedbacks from others.

This activity can help both you and the development community.

Chapter 27 CritiCisms of Design patterns

467
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_28

CHAPTER 28

AntiPatterns: Avoid
the Common Mistakes
The discussion of design patterns cannot be completed without antipatterns. This

chapter briefly overviews antipatterns. Let’s start.

 What Is an Antipattern?
In real-world application development, you may follow approaches that are very

attractive at first, but in the long run, they cause problems. For example, you try to do a

quick fix to meet a delivery deadline, but if you are not aware of the potential pitfalls, you

may pay a big price.

Antipatterns alert you about common mistakes that lead to a bad solution. Knowing

them helps you take precautionary measures. The proverb “prevention is better than

cure” very much fits in this context.

Note Antipatterns alert you to common mistakes by describing how attractive
approaches can make your life difficult in future. At the same time, they suggest
alternate solutions that may seem tough or ugly at the beginning but ultimately
help you build a better solution. In short, antipatterns identify problems with
established practices and they can map general situations to a specific class of
highly productive solutions. They can also provide better plans to reverse some bad
practices and make healthy solutions.

468

 Brief History of Antipatterns
The original idea of design patterns came from building architect Christopher

Alexander. He shared his ideas for the construction of buildings within well-planned

towns. Gradually, these concepts entered into software development and they gained

popularity through the leading-edge software developers like Ward Cunningham and

Kent Beck. In 1994, the idea of design patterns entered mainstream object-oriented

software development through an industry conference on design patterns, known as

Pattern Languages of Program Design (PLoP). It was hosted by the Hillside Group. Jim

Coplien’s paper “A Development Process Generative Pattern Language” is a famous

one in this context. And with the launch of the classic text Design Patterns: Elements

of Reusable Object−Oriented Software by the Gang of Four, design patterns became

extremely popular.

Undoubtedly, these great design patterns helped (and are still helping) programmers

to develop the high-quality software. But people started noticing the negative impacts

also. A common example is that many developers wanted to show their expertise

without the true evaluation or the consequences of these patterns in their specific

domains. As an obvious side effect, patterns were implanted in the wrong context, which

produced low-quality software, and ultimately caused big penalties to the developers

and their companies.

So, the software industry needed to focus on the negative consequences of these

mistakes, and eventually, the idea of antipatterns evolved. Many experts started

contributing to this field, but the first well-formed model came through Michael Akroyd’s

presentation, “AntiPatterns: Vaccinations against Object Misuse.” It was the antithesis of

the GoF’s design patterns.

The term antipattern became popular with the authors (Brown, Malveau,

McCormickIII, Mowbray) in their book AntiPatterns: Refactoring Software, Architectures,

and Projects in Crisis (Wiley, 1998). Later, Scott Thomas joined their group. They said,

Because AntiPatterns have had so many contributors, it would be unfair to
assign the original idea for AntiPatterns to a single source. Rather,
AntiPatterns are a natural step in complementing the work of the design
pattern movement and extending the design pattern model.

ChApTer 28 AnTIpATTerns: AvoId The Common mIsTAkes

469

 Examples of Antipatterns
The following are some examples of the antipatterns and the concepts/mindsets behind

them.

• Over Use of Patterns: Developers may try to use patterns at any cost,

regardless of whether it is appropriate or not.

• God Class: A big object that tries to control almost everything with

many unrelated methods. An inappropriate use of the mediator

pattern may end up with this antipattern.

• Not Invented Here: I am a big company and I want to build everything

from scratch. Although there is already a library available that

was developed by a smaller company, I’ll not use that. I will make

everything of my own and once it is developed, I’ll use my brand

value to announce, “Hey Guys. The ultimate library is launched for

you.”

• Zero Means Null: A common example includes developers who think

that no one wants to be at latitude zero, longitude zero. Another

common variation is when a programmer uses :1, 999 or anything

like that to represent an inappropriate integer value. Another

erroneous use case is observed when a user treats “09/09/9999” as

a null date in an application. So, in these cases, if the user needs to

have the numbers :1,999 or the date “09/09/9999”, he is unable to get

them.

• Golden Hammer: Mr. X believes that technology T is always best. So,

if he needs to develop a new system (that demands new learning), he

still prefers T, even if it is inappropriate. He thinks, “I do not need to

learn any more technology if I can somehow manage it with T.”

• Management by Numbers: The greater the number of commits,

the greater the number of lines of code, or the greater the number

of defects fixed are the signs of a great developer. Bill Gates said,

“Measuring programming progress by lines of code is like measuring

aircraft building progress by weight.”

ChApTer 28 AnTIpATTerns: AvoId The Common mIsTAkes

470

• Shoot the Messenger: You are already under pressure and the program

deadline is approaching. There is a smart tester who always finds

typical defects that are hard to fix. So, at this stage, you do not want to

involve him because he will find more defects and the deadline may

be missed.

• Swiss Army Knife: Demand a product that can serve the customer’s

every need. Or make a drug that cures all illnesses. Or design software

that serves a wide range of customers with varying needs. It does not

matter how complex the interface is.

• Copy and Paste Programming: I need to solve a problem but I already

have a piece of code to deal with a similar situation. So, I can copy the

old code that is currently working and start modifying it if necessary.

But when you start from an existing copy, you essentially inherit all

the potential bugs associated with it. Also, if the original code needs

to be modified in the future, you need to implement the modification

in multiple places. This approach also violates the Don’t Repeat

Yourself (DRY) principle.

• Architects Don’t Code: I am an architect. My time is valuable. I’ll

only show paths or give a great lecture on coding. There are enough

implementers who should implement my idea. Architects Play Golf is

a sister of this antipattern.

• Hide and Hover: Do not expose all edits or delete links until he/she

hovers the element.

• Disguised Links and Ads: Earn revenue when users click a link or an

advertisement, but they cannot get what they want.

Note nowadays, you can learn about various antipatterns from different
websites/sources. For example, a Wikipedia page talks about various antipatterns
(see https://en.wikipedia.org/wiki/Antipattern). You can also get a
detailed list of the antipattern catalog at http://wiki.c2.com/?AntiPatter
nsCatalog to learn more. You may also notice that the concept of antipatterns is
not limited to object-oriented programming.

ChApTer 28 AnTIpATTerns: AvoId The Common mIsTAkes

471

 Types of Antipatterns
Antipatterns can belong in more than one category. Even a typical antipattern can

belong in more than one category.

The following are some common classifications.

• Architectural antipatterns: The Swiss Army Knife antipattern is an

example in this category.

• Development antipatterns: The God Class and Over Use of Patterns

are examples in this category.

• Management antipatterns: The Shoot the Messenger antipattern falls

in this category.

• Organizational antipatterns: Architects Don’t Code and Architects

Play Golf are examples in this category.

• User Interface antipatterns: Examples include Disguised Links and

Ads.

Note disguised Links and Ads are also called as dark patterns.

 Q&A Session

 1. How are antipatterns related to design patterns?

With design patterns, you reuse the experiences of others who

came before you. When you start blindly using those concepts

for the sake of use only, you fall into the traps of reuse of recurring

solutions. This can lead you to a bad situation. And then you learn

that your return on investment keeps decreasing but maintenance

costs keep increasing. The apparently easy and standard solutions

(or patterns) may cause more problems for you in the future.

ChApTer 28 AnTIpATTerns: AvoId The Common mIsTAkes

472

 2. A design pattern may turn into an antipattern. Is this correct?

Yes. If you apply a design pattern in the wrong context, that can

cause more trouble than the problem it solves. Eventually it will

turn into an antipattern. So, understanding the nature and context

of the problem is very important.

 3. Antipatterns are related to software developers only. Is this
correct?

No. The usefulness of an antipattern is not limited to developers;

it may be applicable to others also; for example, antipatterns are

useful to managers and technical architects also.

 4. Even if you do not get much benefit from antipatterns now,
they can help you adapt new features easily with fewer
maintenance costs in future. Is this correct?

Yes.

 5. What are the probable causes of antipatterns?

It can come from various sources/mindsets. The following are a

few common examples.

• “We need to deliver the product as soon as possible.”

• “We do not need to analyze the impact right now.”

• “I am an expert of reuse. I know design patterns very well.”

• “We will use the latest technologies and features to impress our

customers. We do not need to care about legacy systems.”

• “More complicated code will reflect my expertise on the subject.”

 6. Discuss some symptoms of antipatterns.

In object-oriented programming, the most common symptom is

your system cannot easily adapt a new feature. Also, maintenance

costs are keep increasing. You may also notice that you have

lost the power of key object-oriented features like inheritance,

polymorphism, and so forth.

ChApTer 28 AnTIpATTerns: AvoId The Common mIsTAkes

473

Apart from these, you may notice some/all of the following

symptoms.

• Use of global variables

• Code duplication

• Limited/no reuse of code

• One big class (God Class)

• A large number of parameterless methods, etc.

 7. What is the remedy if you detect an antipattern?

You may need to follow a refactored and better solution.

For example, the following are some solutions for avoiding

antipatterns.

Golden Hammer: You may try to educate Mr. X through proper

training.

Zero Means Null: You can use an additional boolean variable to

indicate the null value properly.

Management by Numbers: Numbers are good if you use them

wisely. You cannot judge the ability of a programmer by the

number of defects he/she fixes per week. The quality is also

important. A typical example includes fixing a simple UI layout is

much easy compared to fix a critical memory leak in the system.

Consider another example. “More number of tests are passing”

does not indicate that your system is more stable unless the tests

exercise different code paths/branches.

Shoot the Messenger: Welcome the tester and involve him

immediately. He can find typical defects early, and you can avoid

last-moment surprises.

Copy and Paste Programming: Instead for searching a quick

solution, you can refactor your code. You can also make a

common place to maintain the frequently used methods to avoid

duplicates and provide easier maintenance.

ChApTer 28 AnTIpATTerns: AvoId The Common mIsTAkes

474

Architects Don’t Code: Involve architects in parts of the

implementation phase. This can help both the organization and

the architects. This activity can give them a clearer picture about

the true functionalities of the product.

 8. What do you mean by refactoring?

In the coding world, the term refactoring means improving the

design of existing code without changing the external behavior of

the system/application. This process helps you get more readable

code. At the same time, the code should be more adaptable to

new requirements (or change requests) and they should be more

maintainable.

ChApTer 28 AnTIpATTerns: AvoId The Common mIsTAkes

475
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_29

CHAPTER 29

FAQs
This chapter is a subset of the “Q&A Session” sections in all the chapters in this book.

Many of these questions were not discussed in certain chapters because the related

patterns were not yet covered. So, it is highly recommended that in addition to the

following Q&As, you go through all the “Q&A Session” sections in the book for a better

understanding of all the patterns.

 1. Which design pattern do you like the most?

It depends on many factors, such as the context, situation,

demand, constraints, and so on. If you know about all the

patterns, you have more options to choose from.

 2. Why should developers use design patterns?

They are reusable solutions for software design problems that

appear repeatedly in real-world software development.

 3. What is the difference between the command and the memento
patterns?

All actions are stored for the command pattern, but the memento

pattern saves the state only on request. Additionally, the

command pattern has undo and redo operations for every action,

but the memento pattern does not need that.

 4. What is the difference between the facade pattern and the
builder pattern?

The aim of the facade pattern is to make a specific portion of code

easier to use. It abstracts details away from the developer.

476

The builder pattern separates the construction of an object from

its representation. In Chapter 3, the director is calling the same

construct() method to create different types of vehicles. In

other words, you can use the same construction process to create

multiple types.

 5. What is the difference between the builder pattern and the
strategy pattern? They have similar UML representations.

You need to understand intent first. The builder pattern falls

into the category of creational patterns, and the strategy pattern

falls into the category of behavioral patterns. Their areas of

focus are different. With the builder pattern, you can use the

same construction process to create multiple types, and with the

strategy pattern, you have the freedom to select an algorithm at

runtime.

 6. What is the difference between the command pattern and the
interpreter pattern?

In the command pattern, the commands are basically objects. In

the interpreter pattern, the commands are sentences. Sometimes

the interpreter pattern may look convenient, but you must keep in

mind the cost of building an interpreter.

 7. What is the difference between the chain-of-responsibility
pattern and the observer pattern?

In observer patterns, all registered users are notified/get request

(for the change in subject) in parallel, but in the chain-of-

responsibility pattern, you may not reach the end of chain, so

all users need not handle the same scenario. The request can be

processed much earlier by a user who is placed at the beginning of

the chain.

 8. What is the difference between the chain-of-responsibility
pattern and the decorator pattern?

They are not same at all but you may feel that they are similar in

the structures. Similar to the previous differences, in the chain-

of- responsibility pattern, only one class handles the request, but

Chapter 29 FaQs

477

in the decorator pattern, all classes handle the request. You must

remember that decorators are effective in the context of adding

and removing responsibilities only, and if you can combine the

decorator pattern with the single responsibility principle, you can

add/remove a single responsibility at runtime.

 9. What is the difference between the mediator pattern and the
observer pattern?

The GoF says, “These are competing patterns. The difference

between them is that Observer distributes communication by

introducing observer and subject objects, whereas a mediator

object encapsulates the communication between other objects.”

I suggest you consider the mediator pattern example in Chapter

21. In this example, two workers are always getting messages from

their boss. It doesn’t matter whether they like those messages. But

if they are simple observers, then they should have the option to

unregister their boss’s control of them, effectively saying “I do not

want to see messages from the boss/Raghu.”

The GoF also found that you may face fewer challenges when

you make reusable observers and subjects compared to

when you make reusable mediators. But regarding the flow of

communication, the mediator pattern scores higher than the

observer pattern.

 10. Which do you prefer—a singleton class or a static class?

The first thing to remember is that Java does not support a top-

level static class. You can create objects of a singleton class, which

is not possible with a static class. So, the concepts of inheritance

and polymorphism can be implemented with a singleton class.

Now let’s consider a language that supports a full-phased static

class(like C#). In that case, some developers believe that mocking

a static class (e.g., consider unit testing scenarios) in a real-world

application is challenging.

Chapter 29 FaQs

478

 11. How can you distinguish between proxies and adapters?

Proxies work on similar interfaces as their subjects but adapters

work on different interfaces (to the objects they adapt).

 12. How are proxies different from decorators?

There are different types of proxies, and they vary by their

implementations. So, it may appear that some implementations

are close to decorators. For example, a protection proxy might

be implemented like a decorator. But you must remember that

decorators focus on adding responsibilities, while proxies focus on

controlling the access to an object.

 13. How are mediators different from facades?

In general, both simplify a complex system. In a mediator pattern,

a two-way connection exists between a mediator and the internal

subsystems, whereas in a facade pattern, you provide a one-way

connection (the subsystems do not know about the facades).

 14. Is there any relation between flyweight patterns and state
patterns?

The GoF says that the flyweight pattern can help you to decide

when and how to share the state objects.

 15. What are the similarities among simple factory, factory
method, and abstract factory design patterns?

All of them encapsulate object creation. They suggest you code

to the abstraction (interface) but not to the concrete classes.

Each of these factories promotes loose coupling by reducing the

dependencies on concrete classes.

 16. What are the differences among simple factory, factory method
and abstract factory design patterns?

This is an important question that you may face in various job

interviews. I suggest you clearly understand it. So, refer to the

answer of question 3 in the “Q&A Session” section in Chapter 5.

Chapter 29 FaQs

479

 17. How can you distinguish the singleton pattern from the factory
method pattern?

The singleton pattern ensures that you get a unique instance each

time. It also restricts the creation of additional instances.

But the factory method pattern does not say that you will get a

unique instance only. Most often, this pattern is used to create

as many instances as you want, and these instances are not

necessarily unique. These newly typed instances may implement a

common base class. (Do you remember that the factory method lets

a class defer instantiation to subclasses from the GoF definition ?)

 18. How can you distinguish the builder pattern from the prototype
pattern?

In the prototype pattern, you are using the cloning/ copying

mechanism. So, at the end, you may want to override the original

implementation (note the word @override in our implementation

of the Ford class and Nano class). But changing the legacy (or

original) code is not always easy.

Apart from this point, when you are using cloning mechanisms,

you do not need to think about the constructors with different

parameters.

But the use of constructors with different parameters is very

common in a builder pattern implementation.

 19. How can you distinguish the visitor pattern from the strategy
pattern?

In a strategy pattern, each subclass uses different algorithms to

solve a common problem. But in a visitor design pattern, each

visitor subclass may provide different functionalities.

 20. How are null objects different from proxies?

In general, proxies act on real objects at some point and they may

also provide behaviors. But a null object does not do any such

operation.

Chapter 29 FaQs

480

 21. How can you distinguish the interpreter pattern from the
visitor pattern?

In an interpreter pattern, you represent simple grammar as

an object structure, but in a visitor pattern, you define specific

operations that you want to use on an object structure. In addition

to this, an interpreter has direct access to the properties that are

needed, but in a visitor pattern, you need special functionalities

(similar to an observer) to access them.

 22. How can you distinguish the flyweight pattern from the object
pool pattern?

I did not discuss the object pool pattern in this book. But if you

already know about the object pool pattern, you notice that in the

flyweight pattern, flyweights have intrinsic and extrinsic states. So,

if a flyweight has both states, the states are divided and the client

needs to pass some part of the state to it. Also in general, the client

does not change the intrinsic state because it is shared.

The object pool pattern does not store any part of state outside; all

state information is stored/encapsulated inside the pooled object.

Also, clients can change the state of a pooled object.

 23. How are libraries (or frameworks) similar/different from
design patterns?

They are not design patterns. They provide the implementations

that you can use directly in your application. But they can use the

concept of the patterns in those implementations.

Chapter 29 FaQs

481
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

APPENDIX A

 A Brief Overview of GoF
Design Patterns
We all have unique thought processes. So, in the early days of software development,

engineers faced a common problem—there was no standard to instruct them how to

design their applications. Each team followed their own style, and when a new member

(experienced or unexperienced) joined an existing team, understanding the architecture

was a gigantic task. Senior or experienced members of the team would need to explain

the advantages of the existing architecture and why alternative designs were not

considered.

The experienced developer also knows how to reduce future efforts by simply

reusing the concepts already in place. Design patterns address this kind of issue and

provide a common platform for all developers. You can think of them as the recorded

experience of experts in the field. Patterns were intended to be applied in object-

oriented designs with the intention of reuse.

In 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides published

the book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-

Wesley). In this book, they introduced the concept of design patterns in software

development. These authors became known as the Gang of Four. I refer to them as the

“GoF” throughout this book. The GoF described 23 patterns that were developed by the

common experiences of software developers over a period of time. Nowadays, when a

new member joins a development team, the developer is expected to know about the

design patterns, and then the developer learns about the existing architecture. This

approach allows a developer to actively participate in the development process within a

short period of time.

482

The first concept of a real-life design pattern came from the building architect

Christopher Alexander. During his lifetime, he discovered that many of the problems

he faced were similar in nature. So, he tried to address those issues with similar types of

solutions.

Each pattern describes a problem, which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

—Christopher Alexander

The software engineering community started believing that although these patterns were

described for buildings and towns, the same concepts could be applied to patterns in

object-oriented design. They felt that we could substitute the original concepts of walls

and doors with objects and interfaces. The common thing in both fields is that, at their

cores, patterns are solutions to common problems.

Lastly, it is important to note that the GoF discussed the original concepts of

design patterns in the context of C++. But Sun Microsystems released its first public

implementation of Java 1.0 in 1995, and then it went through various changes. In 1995, Java

was totally new to the programming world. But it grew rapidly and secured its rank in the

world’s top programming languages within a short period of time, and in today’s market,

it is always in high demand. (You may know that later Oracle Corporation acquired Sun

Microsystems and the acquisition process was finished on January 27, 2010.)

On the other hand, the concepts of design patterns are universal. So, when you

exercise the fundamental concepts of design patterns with Java, you will be a better

programmer, and you’ll remake yourself in the programming community.

 Key Points
• A design pattern describes a general reusable solution to software

design problems. While developing software, you may encounter

these problems frequently. The basic idea is that you can solve similar

kinds of problems with similar kinds of solutions. And these solutions

were tested over a long period of time.

Appendix A A Brief Overview Of GOf desiGn pAtterns

483

• Patterns provide a template of how to solve a problem. They can be

used in many different situations. At the same time, they help you get

the best possible design much faster.

• Patterns are descriptions of how to create objects and classes, and

customize them to solve a general design problem in a particular

context.

• The GoF discussed 23 design patterns. Each of these patterns focuses

on a particular object-oriented design. Each pattern can also describe

the consequences and trade-offs of use. The GoF categorized these 23

patterns based on their purposes, as shown in the following sections.

 A. Creational Patterns
Creational patterns abstract the instantiation process. You make the systems

independent from the way that their objects are composed, created and represented. In

these patterns, you are concerned about “Where should I place the “new” keyword in my

application?” This decision can determine the degree of coupling in your classes. The

following five patterns belong in this category.

• Singleton pattern

• Prototype pattern

• Factory method pattern

• Builder pattern

• Abstract factory pattern

 B. Structural Patterns
Structural patterns focus on how classes and objects can be composed to form a

relatively large structure. They generally use inheritance or composition to group

different interfaces or implementations. Your choice of composition over inheritance

(and vice versa) can affect the flexibility of your software. The following seven patterns

fall into this category.

Appendix A A Brief Overview Of GOf desiGn pAtterns

484

• Proxy pattern

• Flyweight pattern

• Composite pattern

• Bridge pattern

• Facade pattern

• Decorator pattern

• Adapter pattern

 C. Behavioral Patterns
Behavioral patterns concentrate on algorithms and the assignment of responsibilities

among objects. They focus on communication between them and how objects are

interconnected. The following 11 patterns fall into this category.

• Observer pattern

• Strategy pattern

• Template method pattern

• Command pattern

• Iterator pattern

• Memento pattern

• State pattern

• Mediator pattern

• Chain of Responsibility pattern

• Visitor pattern

• Interpreter pattern

The GoF made another classification based on scope, namely whether the pattern

primary focuses on the classes or its objects. Class patterns deal with classes and

subclasses. They use inheritance mechanisms, so they are static and fixed at compile

time. Object patterns deal with objects that can change at runtime. So, object patterns

are dynamic.

Appendix A A Brief Overview Of GOf desiGn pAtterns

485

For a quick reference, you can refer to the following table, which was introduced by

the GoF.

Note in this book, each chapter is self-contained. You can start with any pattern
you like, following the guidelines given at the beginning of the book. i have chosen
simple examples so that you can pick up basic ideas quickly. But you must keep
reading and practice. try to link problems and then keep coding. this process
helps you master the subject quickly.

Appendix A A Brief Overview Of GOf desiGn pAtterns

486

 Q&A Session

 1. What are the differences between class patterns and object
patterns?

In general, class patterns focus on static relationship but object

patterns can focus on dynamic relationships. As name suggests,

class patterns focus on classes and its subclasses and object

patterns focus on the objects relationships.

As per GoF, these patterns can be further differentiated in Table A-1.

 2. Can I combine two or more patterns in an application?

Yes. In real-world scenarios, this type of activity is common.

 3. Do these patterns depend on a particular programming
language?

Programming languages can play an important role. But the basic

ideas are same, patterns are just like templates and they give you

some idea in advance of how you can solve a particular problem.

In this book, I primarily focused on object-oriented programming

with the concept of reuse. But instead of any object-oriented

programming language, suppose you have chosen some other

language like C. In that case, you may need to think about the core

object-oriented principles such as inheritance, polymorphism,

Table A-1. Class Patterns vs Object Patterns

Class Patterns Object Patterns

Creational defers object creation to its

subclasses.

defers object creation to another

object.

Structural focuses on the composition

of classes (primarily uses the

concept of inheritance).

focuses on the different ways of

composition of objects.

Behavioral describes the algorithms and

execution flows.

describes how different objects can

work together and complete a task.

Appendix A A Brief Overview Of GOf desiGn pAtterns

487

encapsulation, abstraction, and so on, and how to implement

them. So, the choice of a particular language is always important

because it may have specialized features that can make your life

easier.

 4. Should I consider common data structures like arrays and
linked lists as design patterns?

The GoF clearly excludes those saying that they are not complex,

domain-specific designs for an entire application or subsystem.

They can be encoded in classes and reused as is. So, they are not

your concern in this book.

 5. If no particular pattern is 100% suitable for my problem, how
should I proceed?

An infinite number of problems cannot be solved with a finite

number of patterns, for sure. But if you know these common

patterns and their trade-offs, you can pick a close match. No one

prevents you from using your own pattern for your own problem,

but you have to tackle the risk.

 6. Do you suggest any general advice before I jump into the
topics?

I always follow the footsteps of my seniors and teachers who are

experts in this field. And the following are general suggestions

from them.

• Program to a supertype(Abstract class/Interface), not an

implementation.

• Prefer composition over inheritance.

• Try to make a loosely coupled system.

• Segregate the code that is likely to vary from the rest of your code.

• Encapsulate what varies.

Appendix A A Brief Overview Of GOf desiGn pAtterns

488

 7. How can I use this book effectively?

This book focuses on commonly used design patterns. Most

likely, you face them very often in your everyday life. But the

world is always changing, and new patterns are keep evolving.

To understand the necessity of a new pattern, you may also need

to understand why an old/existing pattern is not enough to fulfil

the requirement. You may consider this book as an attempt to

make a solid foundation with design patterns, so that, you can

move smoothly in your professional life and you can adapt the

upcoming changes easily.

Appendix A A Brief Overview Of GOf desiGn pAtterns

489
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

APPENDIX B

 Winning Notes
and the Road Ahead
Congratulations. You have reached the end of the journey. Anyone can start a

journey but only few can complete it with care. So, you are among the minority who

possess the extraordinary capability to cover the distance successfully. I believe that

you have enjoyed your learning experience and this experience can help you learn

and experiment further. If you continue to think about the discussions, examples,

implementations, and the Q&A sessions from the book, you will have more clarity

and you will be confident about what you learned, and you can remake yourself in the

programming world.

Truly, an in-depth discussion of any particular design pattern would require many

more pages, and the size of the book would be too gigantic to digest.

So, what is next? You should not forget the basic principle: learning is a continuous

process. This book encourages you to learn the core concepts so that you can continue

learning in more depth.

I believe that learning and thinking on your own is not enough. So, I suggest you

participate in open forums and join discussion groups to get more clarity on this subject.

This process will not only help you, it will help others also.

I have a request. You can always point out areas for improvement in this book, but at

the same time, please let me know what you liked about it. In general, it is always easy to

criticize but an artistic view and open mind is required to discover the true efforts that

are associated with any kind of work.

Thank you and happy coding!

491
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

APPENDIX C

 Bibliography
This appendix lists some useful resources.

The following are helpful books.

• Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.

• Freeman, Eric. Head First Design Patterns. O’Reilly, 2016.

• Bevis, Tony. Java Design Pattern Essentials. Ability First, 2012.

• Brown, William J., and Raphael Malveau. Anti-Patterns: Refactoring

Software, Architectures and Projects in Crisis. Wiley, 1998.

• Sarcar, Vaskaran. Design Patterns in C#. Apress, 2018.

The following are helpful online resources/websites.

• https://en.wikipedia.org/wiki/Design_pattern

• https://sourcemaking.com/design_patterns

• www.tutorialspoint.com/design_pattern

• www.dotnetexamples.com

• https://java.dzone.com

• http://wiki.c2.com/?AntiPatternsCatalog

• https://hillside.net

• www.youtube.com/watch?v=ffQZIGTTM48&list=PL8C53D99ABAD3F4C8

492

• www.dofactory.com

• www.c-sharpcorner.com

• www.dotnet-tricks.com

• www.codeproject.com

Appendix C BiBliogrAphy

493
© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

Index

A
AbstractDecorator class, 114–116
AbstractExpression, 390
Abstract factory pattern

class diagram, 70
code snippet, 78–79
computer-world example, 68
concept, 67
GoF definition, 67
implementation, 72–75, 80
Package Explorer view, 71
real-world example, 68
structure, 68

Abstract Window Toolkit (AWT), 166
Adapter pattern

aboutMe() method, 133
aboutRectangle() method, 133
aboutTriangle() method, 133
challenges, 134
class adapters, 131–132
class diagram, 120

modified, 123
computer-world, 118
core concept, 117
electrical outlet/AC power adapter, 117
getArea() method, 119
GoF definition, 117
implementation, 121–122

mobile phone, 117
modified implementation,

127–128, 130
key characteristics, 124

modified output, 130
object, 130–131
object-oriented design principles, 123
output, 123
Package Explorer view

high-level structure, 120–121
modified program, 126

addHeadLights() methods, 35, 53
addNumber(), 282
AnimalFactory class, 61–63
Antipattern

causes, 472
defined, 467
examples, 469–470
history, 468
remedy, 473–474
symptoms, 472–473
types, 471

Architectural antipatterns, 471
AuthenticationErrorHandler, 378

B
Behavioral patterns, 484–485
Bill pugh’s solution, 14–15

494

Bridge pattern
abstract class, 191
advantages, 191
challenges, 191
characteristics, 185
class diagram, 182–183
computer-world example, 180
concept, 179
GoF definition, 179
implementation, 185–188
output, 189
Package Explorer view, 184
real-world example, 179–181

buildBody() methods, 35, 53
Builder pattern, 476

abstract class, 43–44
advantages, 42
characteristics, 46
class diagram, 36
computer-world example, 34
concept, 33
construction process, 33
drawbacks/pitfalls, 43
GoF definition, 33
implementation, 38–41, 48
output, 42
Package Explorer view, 36–37, 46–47
real-world example, 34
structure, 33

buildExpression() method, 393

C
Caching mechanism, 17
calculateAreaOfRectangle() method, 124
calculateAreaOfTriangle()

method, 124, 125
Caretaker class, 311–312

Catch block, 387
Centralized management system, 17
Chain-of-responsibility pattern, 476

class diagram, 380
computer-world example, 378
concept, 377
GoF definition, 377
implementation, 382–385
output, 385
Package Explorer view, 381
real-world example, 378

class adapters, 131–132
class patterns, 486
clone() method, 20, 26, 321
Command pattern, 475–476

characteristics, 270
class diagram, 265, 271
computer-world example, 264
concept, 263
GoF definition, 263
implementation, 267–269, 274
output, 270, 280–281
Package Explorer view, 266, 272–273
real-world example, 263

completeCourse() method, 252, 260
completeSpecialPaper() method, 256
Composite pattern

advantages, 176
challenges, 176
class diagram, 167–168
computer-world example, 166
concept, 165
GoF definition, 165
implementation, 169–173
output, 174–175
Package Explorer view, 169
real-world example, 166
usage, 165

Index

495

ConcreteAggregate, 286
ConcreteBuilder, 34
Concrete implementation, 179
ConcreteIterator, 286
ConcreteSubject class, 93
construct() method, 35, 476
constructCar() methods, 46
constructMilanoRobot() method, 136
createAnimal() method, 63, 65, 413, 419
Creational patterns, 483
currentItem() method, 288

D
Data structures, 176
Decorator pattern

advantages, 111
class diagram, 106
computer-world example, 105
concept, 103
disadvantages, 114
GoF definition, 103
implementation, 107–110
inheritance, 112
Package Explorer view, 107
real-world example, 103–105

Deep copy, 28
Default behavior, 246
Design patterns, criticisms, 461–463
destroyMilanoRobot() method, 136
Development antipatterns, 471
doSomework() method, 88
Double-checked locking, 15–16, 162
doublePress() method, 185, 190
dummyMethod(), 15, 17
Dynamic behavior, 111
Dynamic binding, 116
Dynamic checking mechanism, 176

E
EmailErrorHandler, 378
Encapsulation, 42, 67, 213
endOperations() methods, 35
execute() method, 354
Experience reuse, 461
Extrinsic state, 149

F
Facade pattern, 475

access, 145
advantages, 144
challenges, 145
class diagram, 137
concept, 135
differences, mediator design pattern, 146
GoF definition, 135
implementation, 139–141, 143
interfaces, 145
key information,

party organizer, 135–136
output, 143–144
Package Explorer view, 138
programming language, 136

Factory method pattern, 479
abstract creator class, 55
class diagram, 57
code snippet, 78
computer-world example, 56
concept, 55
GoF definition, 55
implementation, 58–60
output, 61
Package Explorer view, 58
parallel class hierarchies, 64
real-world example, 56

Index

496

FaxErrorHandler, 378
Finite state machine, 303
first() method, 288
Flyweight pattern, 478

advantages, 161
challenges, 161
class diagram, 150
computer-world example, 148–149
concept, 147–148
core concepts, visualizes, 160
GoF definition, 147
implementation, 151–155, 157
output, 157–158
Package Explorer view, 151
real-world example, 148

G
getArea() method, 119
getArea(RectInterface) method, 124
getCaptain() method, 8, 15
getConstructedCar() methods, 46
getEmployeeCount() methods, 176–177
getRobotFromFactory() method, 163
getRuntime() method, 4
GetVehicle() method, 35
GoF design patterns

behavioral patterns, 484–485
creational patterns, 483
object-oriented design, 483
reusable solution, 482
structural patterns, 483–484

GUI frameworks, 180

H
Handle/body pattern, 179
hasNext() method, 288

I
Inheritance

hierarchy, 112
multilevel, 113
multiple base classes, 113

insertWheels() methods, 35, 53
Instantiation process, 5
interpret() method, 390
Interpreter pattern, 480

class diagram, 393, 400
computer-world

example, 391
concept, 389
GoF definition, 389
implementation, 395, 401
output, 399, 406
Package Explorer view, 394, 401
real-world example, 391
structure, 390

Intrinsic state, 147
Invocation process, 263
isAdditionalPapersNeeded(), 257
Iterator pattern

class diagram, 288–289
computer-world

example, 287
concept, 285
diagram, 286
GoF definition, 285
implementation, 291–294, 299
output, 293, 296, 302
Package Explorer view, 290
real-world example, 286–287

J, K
java.awt.event package, 426

Index

497

L
Lazy initialization, 9
Lazy instantiation technique, 96

M
main() method, 10, 45
MakeHouse() method, 106
Management antipatterns, 471
Mediator pattern

advantages, 375
analysis, 363
class diagram, 356–357
communication, 374
computer-world example, 354
concept, 353
definition, 353
implementation, 359–362
modified illustration (see Modified

illustration, mediator pattern)
output, 363
Package Explorer view, 357–358
participants, 355
real-world example, 353–354
structure, 355

Memento pattern
challenges, 318
class diagram, 305
computer-world example, 304
concept, 303
GoF definition, 303
implementation, 306–309
output, 309
Package Explorer view, 306
real-world example, 303

Model-View-Controller (MVC) pattern
advantages, 453
architecture, 438

ASP.NET project, 441
challenges, 453
class diagram, 442–443
concept, 437
controller, 438
description, 440
implementation, 438, 444–446, 448–451
key components, 438
model, 438
Modified Package Explorer

view, 454–455
multiple views, 439
observer pattern/event-based

mechanism, 440
output, 452
Package Explorer view, 442, 444
real-life example, 440
variations, 439
view, 438

Model-View-Presenter (MVP), 464
ModifiedBuilder return type, 46
Modified Illustration,

mediator pattern, 363–364
analysis, 373
class diagram, 365
implementation, 367, 369, 371–372
output, 372
Package Explorer view, 366

MouseMotionAdapter class, 426
MSIL code, 391
Multiple inheritance, 43
Multithreaded environment, 8, 54, 161

N
next() method, 288
non-static nested class, 9
NonterminalExpression, 390

Index

498

notifyRegisteredUsers() methods, 222
Null Object pattern

analysis, 425, 433
characteristic, 421
class diagram, 427
client server architecture, 426
demo, 424
exception, 425
faulty program, 422–423
implementation, 429–431
output, 432
Package Explorer view, 428
real-life scenario, 426
remedy, 425
unwanted input, 424

NullVehicle object, 427

O
Object adapters, 130–131, 133
Object-oriented programming, 165, 240
Object patterns, 486
Object pool pattern, 480
Observer pattern, 476

class diagram, 222
computer-world example, 220
concept, 217–220
GoF definition, 217
implementation, 224, 226
output, 227
Package Explorer view, 223
real-world example, 220
workflow, 229–230

one-time deal, 65
open/close principle, 193
Oracle Java documentation, 44
Oracle server–specific connection, 56
Organizational antipatterns, 471

P, Q
Parameterized constructors, 80
Pattern Languages of Program Design

(PLoP), 468
PetAnimalFactory, 69
Polymorphism, 261, 282
Portland patterns repository, 464
preferredAction() methods, 76
printStructures() methods, 176–177
Private constructor, 5
ProductClass attributes, 54
Programming languages, 486
Protection proxies, 92, 97
Prototype pattern, 479

advantages, 26
challenges, 26
class diagram, 20
computer-world example, 20
concept, 19
field-by-field copy (see Shallow copy)
GoF definition, 19
implementation, 23–24
output, 25, 31
Package Explorer view, 22
real-world example, 19
structure, 20
user-defined copy constructor, 29–30

Proxy pattern
class diagram, 88–89
computer-world example, 88
concept, 87
GoF definition, 87
implementation, 90–91, 93–94, 99–101
output, 92, 95
Package Explorer view, 89–90, 98
real-world example, 87

Public setter method, 318
Publish-subscribe pattern, 217

Index

499

R
Ready-made constructs, 230
RectInterface, 124
Refactoring, 474
Refined abstraction, 179
register() method, 222, 356
Remote-control maker, 180
Remote proxies, 92, 97
RobotFacade class, 136
RobotFactory class, 149, 163

S
SAXParserFactory, 66
sendMessage() method, 356
setAdditionalPrice() method, 26
setChanged method, 230
Setter method, 246
Shallow copy, 27

vs. deep copy, 321
implementation, 322–323, 325
output, 326

showTransportMedium()
method, 235, 244

Simple factory pattern
characteristics, 413
class diagram, 413–414
code snippet, 77
computer-world example, 412
concept, 411
GoF definition, 411
implementation, 415–417
output, 417–418
package explorer view, 415
real-world example, 411–412

Single responsibility, 114
Singleton class, 477

Singleton pattern, 427, 479
characteristics, 5
class diagram, 4
computer-world example, 4
concept, 3
eager initialization, 12
GoF definition, 3
implementation, 6–7
object creations, 17
output, 7, 14
Package Explorer view, 5
real-world example, 3

Smart reference, 92
Software engineering

community, 482
SOLID principles, 114
SQL Server–specific connection, 56
startUpOperations() method, 35
State pattern

characteristics, 332
class diagram, 332–333
computer-world example, 330
concept, 329
GoF definition, 329
implementation, 335–338, 345
output, 339, 350
Package Explorer view, 334, 344
real-world example, 330

Static class, 477
Strategy pattern, 479

advantages, 248
class diagram, 235
computer-world example, 234
concept, 233
class Boat extends Vehicle, 242–243
GoF definition, 233
implementation, 237, 239

Index

500

output, 240
Package Explorer view, 236
real-world example, 233
vehicle class, 241

Structural patterns, 483–484
Sun Microsystems, 482
Synchronized method, 162

T
TCP connection, 330
Television (TV), 329

functionalities, 330
states, 331

Template method pattern
advantages, 261
class diagram, 252–253
computer-world example, 252
concept, 251
GoF definition, 251
implementation, 254–255, 257–259
output, 256, 260
Package Explorer view, 254
real-world example, 251

TerminalExpression, 390
transport() method, 235
TV() constructor, 343

U
Unshared flyweights, 149
User interface (UI)

adapter, 118
antipatterns, 471

V
Vehicle class, 234
Virtual proxies, 92, 97
VisitCompositeElement() method, 214
VisitLeafNode() method, 214
Visitor pattern

class diagram, 195, 204
computer-world example, 194
concept, 193
GoF definition, 193
implementation, 196–197, 206–211
output, 198, 212
Package Explorer view, 196, 205
real-world example, 194
tree structure, 199–203

W, X, Y, Z
WildAnimalFactory, 69
Windows Presentation

Foundation (WPF), 264

Strategy pattern (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Part I: Gang of Four Patterns
	Chapter 1: Singleton Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Discussion
	Implementation
	Output

	Q&A Session
	Output
	Eager Initialization
	Discussion
	Output
	Analysis

	Bill Pugh?s Solution
	Double-Checked Locking

	Chapter 2: Prototype Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Demonstration
	Output

	Chapter 3: Builder Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Illustration
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Analysis

	Chapter 4: Factory Method Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Modified Implementation
	Modified Output
	Analysis

	Q&A Session

	Chapter 5: Abstract Factory Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Simple Factory Pattern Code Snippet
	Factory Method Pattern Code Snippet
	Abstract Factory Pattern Code Snippet
	Conclusion
	Modified Illustration
	Modified Implementation
	Modified Output

	Chapter 6: Proxy Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Alternate Implementation
	Output Without Lazy Instantiation
	Analysis
	Output with?Lazy Instantiation
	Analysis
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Chapter 7: Decorator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 8: Adapter Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Modified Illustration
	Modified Class Diagram
	Key Characteristics of?the?Modified Implementation
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Types of?Adapters
	Object Adapters
	Class Adapters

	Q&A Session

	Chapter 9: Facade Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 10: Flyweight Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis

	Q&A Session

	Chapter 11: Composite Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 12: Bridge Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Key Characteristics
	Implementation
	Output

	Q&A Session

	Chapter 13: Visitor Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Modified Illustration
	Key Characteristic of?the?Modified Example
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Q&A Session

	Chapter 14: Observer Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis

	Q&A Session

	Chapter 15: Strategy (Policy) Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer world Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 16: Template Method Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Implementation
	Modified Output

	Chapter 17: Command Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Chapter 18: Iterator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	First Implementation
	Output
	Key Characteristics of?the?Second Implementation
	Second Implementation
	Output

	Q&A Session
	Third Implementation
	Output

	Chapter 19: Memento Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Caretaker Class
	Modified Output
	Analysis
	Shallow Copy vs. Deep Copy in?Java
	Key Characteristics of?the?Following Program
	Implementation
	Output
	Analysis
	Modified Output
	Analysis

	Chapter 20: State Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Key Characteristics
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Chapter 21: Mediator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis
	Modified Illustration
	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Analysis

	Q&A Session

	Chapter 22: Chain-of-Responsibility Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 23: Interpreter Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis
	Modified Illustration
	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Analysis

	Q&A Session

	Part II: Additional Design Patterns
	Chapter 24: Simple Factory Pattern
	Intent
	Concept
	Real-World Example
	Computer-World example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Case1. User input:0
	Case2. User input:1
	Case3. An?unwanted user input:2

	Q&A Session

	Chapter 25: Null Object Pattern
	Concept
	A Faulty Program
	Output with?Valid Inputs
	Analysis with?an?Unwanted Input
	Encountered Exception
	Immediate Remedy
	Analysis

	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis

	Q&A Session

	Chapter 26: MVC Pattern
	Concept
	Key Points to?Remember
	Variation 1
	Variation 2
	Variation 3

	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Output

	Part III: Final Discussions on Design Patterns
	Chapter 27: Criticisms of?Design Patterns
	Q&A Session

	Chapter 28: AntiPatterns: Avoid the?Common Mistakes
	What Is an?Antipattern?
	Brief History of?Antipatterns
	Examples of?Antipatterns
	Types of?Antipatterns
	Q&A Session

	Chapter 29: FAQs

	Appendix A: A Brief Overview of GoF Design Patterns
	Key Points
	A.?Creational Patterns
	B.?Structural Patterns
	C.?Behavioral Patterns
	Q&A Session

	Appendix B: Winning Notes and the Road Ahead
	Appendix C: Bibliography
	Index

