
Beginning
Azure Functions

Building Scalable and Serverless Apps
—
Rahul Sawhney

Beginning Azure
Functions

Building Scalable and
Serverless Apps

Rahul Sawhney

Beginning Azure Functions: Building Scalable and Serverless Apps

ISBN-13 (pbk): 978-1-4842-4443-2		 ISBN-13 (electronic): 978-1-4842-4444-9
https://doi.org/10.1007/978-1-4842-4444-9

Copyright © 2019 by Rahul Sawhney

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4443-2.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Rahul Sawhney
Hyderabad, India

https://doi.org/10.1007/978-1-4842-4444-9

This book is dedicated to my parents, Ashwani Kumar
Sawhney and Neha Sawhney. Without their sacrifices,

I wouldn’t have achieved what I have in life.

Also, I would like to dedicate this book to my wife,
Kulpreet, for always standing by my side and

supporting me during hard times.

v

Table of Contents

Chapter 1: Introduction to Azure Functions���1

Overview of Serverless Computing��2

Overview of Azure Functions���3

Azure Functions vs. Azure WebJobs��4

Azure Functions Pricing Plan���5

Consumption Plan��5

App Service Plan��6

Chapter 2: Creating Functions in Azure Functions��������������������������������7

Creating an Azure Function Using Azure Portal��7

Creating an Account on Azure Portal or Logging into Azure Portal�������������������8

Creating Your First Function App Using Azure Portal��8

Creating Your First Function in the Function App���13

Creating an Azure Function Using Visual Studio Code���16

Creating Your First Function App Using Visual Studio Code����������������������������17

Creating Your First Function in the Function App���19

File Hierarchy, Configuration, and Settings in Azure Functions����������������������������22

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

vi

Chapter 3: Understanding Azure Functions Triggers and Bindings�����25

Overview of Triggers and Bindings��25

Azure Functions 2.0 Changes��28

Installing Extensions Using the Azure Functions Core Tools���������������������������29

Installing Extensions Using the Azure Functions Visual Studio Tools�������������29

Creating a Blob Storage–Triggered Function���30

Creating a Blob-Triggered Function Using C#���31

Blob-Triggered Function Using Node.js��41

Running the Example���51

Chapter 4: Serverless APIs Using Azure Functions�����������������������������53

Monolithic Architecture vs. Microservice Architecture��54

Converting Monolithic Applications to Highly Scalable APIs Using Azure
Functions���56

Creating an HTTP-Triggered Function with SQL Server Interaction���������������������59

Creating a SQL Server Instance with Sample Data��59

Creating an HTTP-Triggered Function Using C#���62

Creating an HTTP-Triggered OData API for SQL Server Using
Azure Functions��74

Overview of Proxies in Azure Functions���81

Creating a Proxy Using Visual Studio Code���82

Creating a Proxy Using Azure Portal���85

Chapter 5: Azure Durable Functions��87

Overview of Durable Functions��87

Types of Functions��88

Durable Function Patterns��89

Table of ContentsTable of Contents

vii

Bindings for Durable Functions��97

Activity Triggers��97

Orchestration Triggers��99

Orchestration Client��101

Performance and Scaling of Durable Functions���103

History Table���103

Instance Table���103

Internal Queue Triggers��104

Orchestrator Scale-Out���105

Orchestrator Function Replay���107

Performance Targets��108

Creating Durable Functions Using Azure Portal���109

Creating a Durable Function���109

Disaster Recovery and Geodistribution of Durable Functions����������������������������120

Chapter 6: Deploying Functions to Azure��123

Deploying Functions Using Continuous Deployment��123

Setting Up a Code Repository for Continuous Deployment��������������������������124

Setting Up an Azure DevOps Account���125

Setting Up Continuous Deployment for Azure Functions������������������������������129

Deploying Azure Functions Using ARM Templates���136

Deploying a Function App on the Consumption Plan������������������������������������138

Deploying a Function App on the App Service Plan��������������������������������������144

Chapter 7: Getting Functions Production-Ready�������������������������������155

Using Built-in Logging��155

Using Application Insights to Monitor Azure Functions��������������������������������������156

Application Insights Settings for Azure Functions��156

Integrate Application Insights During New Azure Function Creation������������157

Table of ContentsTable of Contents

viii

Manually Connecting Application Insights to Azure Functions���������������������159

Disabling Built-in Logging��162

Configuring Categories and Log Levels��162

Securing Azure Functions��164

Configuring CORS on Azure Functions���169

Index��173

Table of ContentsTable of Contents

ix

About the Author

Rahul Sawhney works as a software developer

with Microsoft, India, and has more than five

years of experience delivering cloud solutions

using technologies such as .NET Core, Azure

Functions, microservices, AngularJS, Web API,

Azure AD, Azure Storage, ARM templates, App

Service, Traffic Manager, and more.

He is a Microsoft Certified Azure

Developer and Architect. He loves learning

new technologies and is passionate about

Microsoft technologies. In his free time, he

loves playing table tennis, watching movies,

and reading books.

You can reach Rahul at rahulsawhney2206@gmail.com or

www.linkedin.com/in/rahul-sawhney-2206.

http://www.linkedin.com/in/rahul-sawhney-2206

xi

About the Technical Reviewer

Vidya Vrat Agarwal is a software architect,

author, blogger, Microsoft MVP, C# Corner

MVP, speaker, and mentor. He is a TOGAF

Certified Architect and a Certified Scrum

Master (CSM). Currently working as a

principal architect at T-Mobile in the United

States, he started working on Microsoft .NET

with its first beta release. He is passionate

about people, process, and technology, and

he loves to contribute to the .NET community.

He lives in Redmond, Washington, with his

wife Rupali; two daughters, Pearly and Arshika; and a puppy girl, Angel.

He blogs at www.MyPassionFor.Net and can be reached by e-mail

(vidya_mct@yahoo.com) or on Twitter (@dotnetauthor).  

http://www.mypassionfor.net/

xiii

Acknowledgments

I must start by thanking my girlfriend and now wife, Kulpreet, for always

being there and supporting me during my struggling days and for always

believing in me. I could not have written this book without her support and

motivation.

My heartfelt thanks to Manas Mayank and Kidar Garg who introduced

me to Microsoft Azure. They constantly mentored and guided me during

my early days of learning cloud technologies. They helped me a lot by

giving me complex work, and they always trusted in me. They not only

changed my thought process but instilled a growth mind-set in me by

encouraging me to try new technologies during this journey.

I am highly indebted to my younger brother, Sanjay, and my childhood

friends, Saurabh Trivedi and Gajendra Raikwar, because they always

trusted in my abilities and pushed me to work hard.

I would also like to thank my managers at Microsoft (Subhavya

Sharma, Anil Emmadi, Manish Sanga, and Jaydeep Baliram Sawant) for

always encouraging me to try new things and supporting and guiding me.

They helped me shape my career as well as guided me on the right path.

I would also like to thank my colleagues at Microsoft, (Rishabh Verma,

Mohit Garg, Subhendu De, Prashant Jain, Mehul Gardi, Binay Prasad,

Sanyam Seth, Archit Shukla, Harshit Agarwal, Abhishek Somani, Sidharth

Mittal, and Dinesh Kumar Reddy) for their zeal to learn new technologies.

Each one of you has taught me something about new technologies, and the

culture you create of learning and sharing is what makes work effortless.

Thanks to the team at Apress (Smriti Srivastava, Shrikant

Vishwakarma, and Matthew Moodie) for giving me this wonderful

opportunity and making this a memorable journey. Thanks to Vidya Vrat

xiv

and Matthew Moodie for providing their valuable technical reviews, which

has helped me to improve the book.

Lastly, I would like to thank all the readers of this book. Please feel free

to share your valuable feedback about this book, which will help me to

deliver better content in the future. I look forward to all your feedback and

suggestions.

AcknowledgmentsAcknowledgments

xv

Introduction

Get ready to create highly scalable apps and monitor functions in

production using Azure Functions 2.0!

The book starts by taking you through the basics of serverless

technology and Azure Functions and then covers the different pricing

plans of Azure Functions. After that, you will dive into how to use Azure

Functions as a serverless API. Then, you will learn about the Durable

Functions model and about disaster recovery and georeplication.

Moving on, you will encounter lots of practical recipes with hands-

on steps for creating different types of functions in Azure Functions

using Azure Portal and Visual Studio Code. Finally, I will discuss DevOps

strategy as well as how to deploy Azure Functions and get Azure Functions

production-ready.

By the end of this book, you will have all the skills needed to work

with Azure Functions, including creating durable functions, deploying

functions, and making them production-ready by using telemetry and

authentication/authorization.

�What This Book Covers
Chapter 1 goes through the basics of serverless computing and talks

about Azure Functions. It compares Azure Functions to WebJobs so you

understand the difference between them. I also talk about the different

pricing plans of Azure Functions.

In Chapter 2, you will create first Function using Azure Portal and then

using Visual Studio Code. I will also talk about the Azure Functions file

hierarchy, configuration, and settings.

xvi

In Chapter 3, you’ll learn about triggers and bindings. I will also

discuss changes to Azure Functions 2.0 bindings. You will create Blob

Storage–triggered Azure Functions.

Chapter 4 will go through the differences between monolithic

applications vs. microservices. Then, I will talk about how you can convert

a monolithic application to microservices using Azure Functions. You will

create some functions and then learn about proxies.

In Chapter 5, you will start with overview of the Durable Functions

pattern and bindings. You’ll also learn about performance and scaling in

a durable function. You will create your first durable function and learn

about disaster recovery and geo-replication.

In Chapter 6, you will look at deploying functions to Azure, first using a

CI/CD pipeline and then using ARM templates.

In Chapter 7, you will look at the built-in logging capabilities of Azure

Functions. Then, you will look at Application Insights and how it can be

used to monitor Azure Functions. Then, I will talk about securing Azure

Functions using Azure Active Directory and how to configure cross-origin

site scripting (CORS) in Azure Functions.

Let’s get started!

IntroductionIntroduction

1© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_1

CHAPTER 1

Introduction to Azure
Functions
In the software industry, we are now in an era where everything we

develop is oriented toward the cloud. To help developers achieve more

productivity, cloud platforms such as Microsoft Azure, Amazon Web

Services, Google Cloud Platform, and so on, implement a concept known

as serverless computing. With serverless computing, companies and

developers can concentrate on developing products rather than worrying

about the maintenance and administration of the server.

Azure Functions is one such product for serverless computing.

Before going into Azure Functions, I’ll talk about serverless computing

and what it means.

In this chapter, I will cover the following topics:

•	 Overview of serverless computing

•	 Overview of Azure Functions

•	 Azure Functions vs. Azure WebJobs

•	 Azure Functions pricing options

2

�Overview of Serverless Computing
Serverless computing is also known as function as a service (FaaS) and is one

of the current buzzwords of the tech industry. Serverless computing does

not mean your code runs without a server; it means you don’t have to take

care of the server maintenance, including patching, upgrading, and so on.

The servers will be managed by a cloud service provider such as Amazon,

Microsoft, Google, and so on, and you have to take care of managing your

code/application. With serverless computing, you pay only for the time your

code runs or executes. Also, the cloud service provider takes care of scaling

and load balancing, which is a win-win situation for both the cloud service

provider and you because you can dedicate the majority of your time to

doing what’s most important: developing the code/application. The cloud

service provider maintains and owns the server and bills you for the use of it.

Serverless computing is a paradigm shift in computing. Deploying

applications or code used to take months with physical machines. With

serverless computing, deploying takes just a millisecond. This has changed

the IT world drastically.

Now, what is Azure Functions?

Chapter 1 Introduction to Azure Functions

3

�Overview of Azure Functions
With Azure Functions, you can start writing your application code

without worrying about the application architecture and infrastructure

required to run the application. Azure Functions also provides the

capability to scale as needed. So, if the load is high, you can expect Azure

Functions to scale and cater to the high load. Also, with Azure Functions

you pay only for the time your code runs, so if the load on the application

is low, you pay less.

Here are some important features of Azure Functions:

•	 Browser-based interface: You can write and test

your code directly in the interface without using any

integrated development environment (IDE).

•	 Programming languages: Azure Functions supports

many languages such as C#, JavaScript, F#, Java,

Python, TypeScript, PHP, Batch, Bash, PowerShell, and

a few other experimental languages.

•	 Seamless integration with third-party apps: Azure

Functions integrates seamlessly with third-party apps

such as Facebook, Google, Twitter, Twilio, and other

Azure services like CosmosDB, Azure Storage, Azure

Service Bus, and more. You can also integrate existing

apps using triggers and events.

•	 Continuous deployment: Azure Functions supports

continuous deployment through Azure DevOps (VSTS),

GitHub, Xcode, Eclipse, and IntelliJ IDEA.

As you can see, Azure Functions possesses some unique capabilities

that not only enhance your productivity but provide lots of different

options for developers to choose from. Still, I have heard developers

getting confused about when to use Azure Functions and when to use

Chapter 1 Introduction to Azure Functions

4

Azure WebJobs. The primary reason for this confusion is that developers

have traditionally reduced the load on the application by doing extensive

and time-consuming computations in Azure WebJobs.

In the next section, you will learn about the differences between Azure

Functions and Azure WebJobs and in which scenario you should use each

of them.

�Azure Functions vs. Azure WebJobs
Azure Functions and Azure WebJobs are both code-first integration

services that were designed for developers. Both support features such as

authentication, Application Insights, and source control integration.

Azure Functions has the following features that Azure WebJobs

does not:

•	 Serverless app model with auto scaling

•	 Development and testing in the browser

•	 Azure Logic Apps integration

•	 Pay-per-use pricing model

•	 Many triggers in version 2.0 such as Queue, Event Grid,

HTTP, Timer, and so on

For most scenarios, Azure Functions is the best choice because it

offers many programming languages, many pricing options, and greater

developer productivity. However, the following are two scenarios where

you should use WebJobs instead:

•	 You have an App Service environment where you want

to run some code snippet and maintain the same

DevOps pipeline and environment.

Chapter 1 Introduction to Azure Functions

5

•	 You want to customize JobHost behavior in the host.

json file such as having a custom retry policy for Azure

Storage.

Azure WebJobs runs under the Azure App Service model, whereas

for Azure Functions you have different pricing models that give you more

control over pricing. You’ll learn about pricing next.

�Azure Functions Pricing Plan
Azure Functions supports two pricing plans.

•	 Consumption Plan

•	 App Service Plan

Let’s look in detail at both plans.

�Consumption Plan
With Azure Functions’ Consumption Plan, you pay only when your code

is executing. This helps you save significantly over the App Service Plan or

when using a virtual machine. For example, if you have a weekly newsletter

for your web site, instead of using WebJobs, you can use Azure Functions

and save an enormous amount of money.

The metric used for calculating price in Azure Functions is gigabyte-

second (GB-s). This metric calculates the memory usage and total

execution time for billing. It is billed based on per-second resource

executions and consumptions.

In the Consumption Plan, you are granted 1 million requests and

400,000 GB-s of resource consumption for free per month per subscription

across all Azure Functions apps in that subscription.

Chapter 1 Introduction to Azure Functions

6

�App Service Plan
Azure Functions’ App Service Plan utilizes the same App Service Plan

used for hosting a web site, the Web API, and so on. With the App Service

Plan for Azure Functions, instead of paying for the duration when a

function is executing, you pay for the reserved resources of the underlying

virtual machine (VM). This makes the App Service Plan costlier than the

Consumption Plan.

Why do some companies use the App Service Plan? The reason is that

in the Consumption Plan, functions have a time limit of five minutes, so

if your Azure Functions code runs for more than five minutes in a single

execution, it will be timed out, whereas there is no time limitation for

Azure Functions in the App Service Plan. So, in the App Service Plan, Azure

Functions is as good as WebJobs.

Also, when you are billed on the App Service Plan, it is easier to

maintain the monthly quotas of your company because all the resources

are under the same App Service Plan.

However, if you have a piece of code that is resource hungry, then

having it on the same App Service Plan as the rest of your company would

actually make your other applications vulnerable because Azure Functions

would be using the same shared resource and thus would make the other

applications run slowly.

With this we have now come to the end of Chapter 1 and we now have

basic understanding of Serverless, Azure Function and App Pricing. Let’s now

move to Chapter 2 where we will build onto the learnings of this chapter.

Chapter 1 Introduction to Azure Functions

7© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_2

CHAPTER 2

Creating Functions
in Azure Functions
In this chapter, you will start using Azure Functions. Microsoft has recently

released Azure Functions version 2.0, so I will be using Azure Functions 2.0

throughout the book’s examples.

In this chapter, I will cover the following topics:

•	 Creating functions using Azure Portal

•	 Creating functions using Visual Studio Code

•	 Checking out the file hierarchy, configuration, and

settings of Azure Functions

Let’s look at both ways you can create functions with Azure Functions.

�Creating an Azure Function Using
Azure Portal
In this section, you will create your first function using Azure Portal.

Here you will be creating a “Hello, world” application completely using

Azure Portal.

8

�Creating an Account on Azure Portal or Logging
into Azure Portal
First you need to log into Azure Portal. You can go to http://portal.

azure.com to sign in. If you don’t have an Azure subscription or you are

first-time Azure user, you can get an Azure account for free for 12 months.

Visit https://azure.microsoft.com/en-us/free/ to get started on Azure.

�Creating Your First Function App Using Azure
Portal
Once you have completed the sign-up/sign-in process, you will be taken to

the Azure Portal Dashboard. Now you can create a function app.

	 1.	 On the Dashboard, click “Create a resource” in the

left panel. In the menu that opens, click Compute

and then Function App, as shown in Figure 2-1.

Chapter 2 Creating Functions in Azure Functions

http://portal.azure.com
http://portal.azure.com
https://azure.microsoft.com/en-us/free/

9

	 2.	 Once you have clicked Function App, you will be

asked to provide certain details such as the app

name, resource group, OS, hosting plan, and so on.

Refer to Figure 2-2 to fill in these settings.

•	 App Name: This is the name of the function app.

The app name in this example is building-azure-

function, so the URI will be building-azure-

function.azurewebistes.net.

Figure 2-1.  Creating Function App resource

Chapter 2 Creating Functions in Azure Functions

http://building-azure-function.azurewebistes.net
http://building-azure-function.azurewebistes.net

10

•	 Subscription: This is the subscription under which

the function app will be created. An Azure account

can have multiple subscriptions that are used for

maintenance and billing purposes.

•	 Resource Group: You can create a new resource

group or use an existing one. In Figure 2-2, I am

creating a new resource group named building-

azure-function. A resource group is like a

container that holds the resources required to run

that solution.

•	 Hosting Plan: By default, Consumption Plan is

selected, but you can choose App Service Plan. To

better use Azure Functions and get a lower cost, go

for the Consumption Plan.

•	 Location: Always try to choose the nearest location

to where you expect the majority of the traffic to

come for your function app.

•	 Storage: Every function app requires storage.

You can either create new Azure storage or select

existing storage. In Figure 2-2, I am creating new

Azure storage.

Chapter 2 Creating Functions in Azure Functions

11

Figure 2-2.  Create Function App

Chapter 2 Creating Functions in Azure Functions

12

	 3.	 Click the Create button to provision the new

function.

	 4.	 You can check the status of your function by clicking

the bell icon at the top, as shown in Figure 2-3.

	 5.	 Once the deployment is completed, your first Azure

Functions app, called building-azure-function, is

ready and has been deployed, and you can now start

coding for it. To go to the function app you created

in the previous steps, please refer to Figure 2-4.

Figure 2-3.  Checking the status

Figure 2-4.  Select the Resource Group you created

Chapter 2 Creating Functions in Azure Functions

13

�Creating Your First Function in the Function App
Your function app is ready and deployed, but it is not usable yet because

you don’t have any function inside the function app. A function is the core

piece of the function app where you code your logic.

	 1.	 To create your first function, click building-azure-

function, as shown earlier in Figure 2-4. Then

click the building-azure-function app service, as

shown in Figure 2-5.

Figure 2-5.  Opening the app service

	 2.	 Click the + icon beside Functions and select

“in-portal,” as shown in Figure 2-6.

Chapter 2 Creating Functions in Azure Functions

14

	 3.	 Click the Continue button at the bottom, click

Webhook + API, and click Create, as shown in

Figure 2-7.

Figure 2-6.  Choose Development Environment as “In-Portal”

Figure 2-7.  Clicking Webhook + API and then Create

Chapter 2 Creating Functions in Azure Functions

15

	 4.	 Your first HTTP-triggered function will be created.

As you can see in Figure 2-8, it comes with some

basic code. This code should be good enough for

you to test your function. So, click Save.

	 5.	 Once the function is saved, click Run and then click

Get Function URL, as shown in Figure 2-8.

Figure 2-8.  Running your Azure Function

	 6.	 A pop-up will open. Copy the URL shown in the

pop-up, and at the end of the URL add a query

parameter like &name={name}, such as https://

building-azure-function.azurewebsites.net/

api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/

1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser.

Paste this URL in the address bar of a browser like

Edge or Chrome and click Enter. You will see a

message on the screen saying “Hello, {name},” as

shown in Figure 2-9.

Chapter 2 Creating Functions in Azure Functions

https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser
https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser
https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser
https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser

16

	 7.	 When your function runs, the trace information

is written to logs. To see the output of the trace,

go back to Azure Portal and click the arrow at the

bottom, as shown in Figure 2-10.

Figure 2-9.  Viewing the function in the browser

Figure 2-10.  Trace log

With this you have created your first running Azure Functions app.

Now, let’s create the same thing in Visual Studio Code.

�Creating an Azure Function Using Visual
Studio Code
In this section, I will take you through the steps for creating functions using

Visual Studio Code, which is a popular IDE.

Chapter 2 Creating Functions in Azure Functions

17

In this section, you will learn how to create functions using the Azure

Functions extension for Visual Studio Code and publish the same function

as earlier to Azure using Visual Studio Code.

These are the prerequisites:

	 1.	 Install Visual Studio Code from https://code.

visualstudio.com/.

	 2.	 Install .NET Core 2.1 for Windows from https://

www.microsoft.com/net/download.

	 3.	 Install Node.js, which consists of NPM, from

https://docs.npmjs.com/getting-started/

installing-node#osx-or-windows. Install the

8.5+ version.

	 4.	 Install the Core Packages tool by running npm

install -g azure-functions-core-tools in the

Visual Studio Code terminal. (To open Terminal,

go to the Terminal menu at the top and select New

Terminal. Once the terminal opens, paste in the

code and hit Enter.)

Once you are done with these steps, you are ready to create your first

function app using Visual Studio Code.

�Creating Your First Function App Using Visual
Studio Code
Follow these steps:

	 1.	 You need to install the Azure Functions extension in

Visual Studio Code. To do that, go to Extensions in

Visual Studio Code and search for Azure Functions.

Then click Install. Refer to Figure 2-11 to understand

the steps.

Chapter 2 Creating Functions in Azure Functions

https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://docs.npmjs.com/getting-started/installing-node#osx-or-windows
https://docs.npmjs.com/getting-started/installing-node#osx-or-windows

18

	 2.	 Once the installation is complete, click the Reload to

Activate button or restart Visual Studio Code for the

new extension to appear in Visual Studio Code.

	 3.	 Click the Azure logo in the vertical menu and then

click the folder icon. Select Folder or Create New

Folder for the project. Then, select the language

you want to code your function in, as shown in

Figure 2-12.

Figure 2-11.  Installing the extension

Figure 2-12.  Selecting a language

Chapter 2 Creating Functions in Azure Functions

19

	 4.	 Select how you would like to open the function app,

as shown in Figure 2-13.

�Creating Your First Function in the Function App
In the previous section, you created your first function app, but a function

app without any function is of no use. In this section, you will create your

first function.

	 1.	 Click the file icon in the vertical menu, and you will

see the function app created but with no function.

So, click the Azure logo in the vertical menu and

click Function. Then select the current project, as

shown in Figure 2-14.

Figure 2-13.  Setting how you would like to open your project

Figure 2-14.  Selecting the current project

	 2.	 Select the HTTP Trigger function template and

provide a name for the template. Select Anonymous

for the Authorization Type field, as shown in

Figure 2-15.

Chapter 2 Creating Functions in Azure Functions

20

	 3.	 You will see that the index.js file has been loaded.

Press Ctrl+F5 to start the function. Once the

function is running (as shown in Figure 2-16), you

will get a URL in green. Copy the URL and append

?name={name} to it (replacing {name} with the actual

name), and it will show “Hello, {name}.”

Figure 2-15.  Selecting the type of trigger

Figure 2-16.  Copying the URL

Chapter 2 Creating Functions in Azure Functions

21

	 4.	 Click the Azure logo in the vertical menu and click

Sign in to Azure. Then click Deploy to Azure and

select the subscription, as shown in Figure 2-17.

	 5.	 Select Create New Function App in Azure, as shown

in Figure 2-18. Then provide a unique name for the

function app and press Enter, as shown in Figure 2-19.

Figure 2-17.  Selecting a subscription

Figure 2-18.  Creating a new function app

Figure 2-19.  Naming the app

Chapter 2 Creating Functions in Azure Functions

22

	 6.	 This will start creating a new Azure Functions

function app in the selected subscription. You

can check it out in the left menu, as shown in

Figure 2-20.

You have now created two functions, one in Azure Portal directly using

C# and another in Visual Studio Code using JavaScript. Let’s now look at

the settings and hierarchy of Azure Functions.

�File Hierarchy, Configuration, and Settings
in Azure Functions
It’s time to go back to the explorer in Visual Studio Code and take a look at

the file hierarchy of Azure Functions. It is important as a developer for you

to know which files reside where in Azure Functions. Figure 2-21 shows the

file hierarchy.

Figure 2-20.  Checking on the creation process

Chapter 2 Creating Functions in Azure Functions

23

Figure 2-21.  File hierarchy

Note that the function host will throw an exception if the host.json file

is missing the "version": "2.0" property. Also, version requires a string

for the value, so "version": 2.0 will not work.

All the application-level extensions such as CosmosDB, HTTP Trigger,

Queues, and so on, reside under the extensions object and not in the root

of the json object, as shown in Figure 2-22.

Chapter 2 Creating Functions in Azure Functions

24

In this chapter, you created your first function app and function. Also,

you learned about the Azure Functions file hierarchy, configuration, and

settings.

All the logging-level settings for Azure Functions reside under the

logging object, as shown in Figure 2-23.

Figure 2-22.  Application-level extensions

Figure 2-23.  Logging-level extensions

Chapter 2 Creating Functions in Azure Functions

25© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_3

CHAPTER 3

Understanding Azure
Functions Triggers
and Bindings
This chapter covers the following topics:

•	 Overview of triggers and bindings

•	 Azure Functions 2.0’s changes to bindings

•	 Creating a Blob Storage–triggered function

�Overview of Triggers and Bindings
Azure Functions is like WebJobs and the Web API in that it needs to be

invoked either by using Scheduler or by calling endpoints. In the case

of Azure Functions, a trigger is what invokes a function to run. A trigger

defines how a function is invoked, and each function in Azure Functions

must have only one trigger. Triggers usually have associated data, which is

nothing but the payload that triggers the function.

26

Different types of triggers are available.

•	 BlobTrigger: This trigger gets fired when a new blob

or a blob update is detected. The blob contents are

provided as input to the function.

•	 QueueTrigger: This trigger gets fired when a new

message arrives in the Azure storage queue.

•	 EventHubTrigger: This trigger gets fired when any

event is delivered to the Azure Event Hub service.

•	 TimerTrigger: This trigger is called on a scheduled

basis. You can set the time to execute the function using

this trigger.

•	 HTTPTrigger: This trigger gets fired when the HTTP

request comes. In Chapter 2, you created an HTTP-

triggered function using Visual Studio Code.

•	 Service Bus Trigger: This trigger gets fired when a new

message comes in to an Azure Service Bus topic or

queue.

•	 Generic Webhook: This trigger gets fired when a

webhook HTTP request comes from any service that

supports webhooks.

•	 GitHub Webhook: This trigger gets fired when any

event such as Create Branch, Delete Branch, Issue

Comment, or Commit Comment occurs in your GitHub

repository.

Let’s now discuss bindings in Azure Functions. Azure Functions

bindings are a declarative way of connecting another resource to a

function. Bindings can be connected as input bindings, output bindings, or

both. Data from these bindings is provided to the function as parameters.

Chapter 3 Understanding Azure Functions Triggers and Bindings

27

Azure Functions 2.0 has the following bindings:

•	 Blob Storage

•	 Cosmos DB

•	 Event Grid

•	 Event Hubs

•	 HTTP & Webhooks

•	 Microsoft Graph Events

•	 Microsoft Graph Excel tables

•	 Microsoft Graph Outlook e-mail

•	 Microsoft Graph OneDrive files

•	 Microsoft Graph Auth Tokens

•	 Queue Storage

•	 Table Storage

•	 Service Bus

•	 Timer

•	 Webhooks

•	 SendGrid

•	 SignalR

•	 Twilio

Bindings are optional in Azure Functions, and you can have multiple

input and output bindings. In Azure Functions 2.0, all the bindings must

be registered except HTTP and Timer.

Chapter 3 Understanding Azure Functions Triggers and Bindings

28

Azure Functions triggers and bindings are configured in the

functions.json file, and they help you avoid putting hard-coded values in

the code.

Note  You can find all the supported bindings in Azure Functions 2.0
by visiting https://docs.microsoft.com/en-us/azure/
azure-functions/functions-triggers-bindings#
supported-bindings.

�Azure Functions 2.0 Changes
Azure Functions 2.0 now supports .NET Core 2.x, which means Azure

Functions 2.0 supports cross-platform development. That means Azure

Functions 2.0 now runs in more environments than just Mac and Linux

machines. Developers can develop functions on all major platforms

including Windows, Linux, and Mac.

Azure Functions 2.0 also supports non-.NET languages by using the

language worker model and now supports both Node 8 and Node 10.

Azure Functions 2.0 is faster and more performant than 1.0 as it now runs

on a modern language runtime.

In the Azure Functions 2.0 runtime, a new binding model was

introduced by Microsoft in which the bindings are no longer referenced by

the runtime by default except the few core bindings like HTTP and Timer.

With this new model, the runtime is decoupled from the extensions,

which provides additional flexibility and reduces the load by loading

only the extensions referenced in the function app. This also means that

the runtime now has no knowledge of the extensions, so they must be

registered before use.

Chapter 3 Understanding Azure Functions Triggers and Bindings

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings

29

Extensions are now distributed as NuGet packages, and the registration

of these extensions is done by installing the required NuGet package of the

extension.

�Installing Extensions Using the Azure Functions
Core Tools
With Azure Functions 2.0, the Azure Functions Core Tools (CLI) has

also been enhanced to support the new extension model. With 2.0,

a new extension context has been added to allow you to manage the

extensions.

•	 func extension install: With this command func
extension install you can install an extension and

register it to the function.

•	 func extension sync: This command func extension
sync allows you to install or uninstall the extensions

that are referenced in a function.

The following is the example of installing an extension:

func extension install –package Microsoft.Azure.WebJobs.

Extensions.Storage –version 3.0.1

This command installs the Blob extension to Azure Functions 2.0,

which will allow you to configure your function for a blob trigger.

�Installing Extensions Using the Azure Functions
Visual Studio Tools
With Visual Studio Code, you will be referencing the extensions package

directly from the project. So, Visual Studio Code handles the installation of

the extensions, but you still need to register the extensions.

Chapter 3 Understanding Azure Functions Triggers and Bindings

30

Extension registration is handled by a custom build task added

by the NuGet package called Microsoft.Azure.WebJobs.Script.

ExtensionsMetadataGenerator, which needs to be explicitly

referenced for now. In a future release, this will be part of the SDK or

Visual Studio Tools.

The following are the steps that you need to perform to use the Blob

extension:

	 1.	 Add a reference to the Microsoft.Azure.WebJobs.

Extensions.Storage NuGet package.

	 2.	 Add a reference to Microsoft.Azure.WebJobs.

Script.ExtensionsMetadataGenerator.

	 3.	 Build the project.

Note  With any of the installation steps mentioned, if you install and
register the extension, a metadata file named extensions.json will
be generated in the bin folder inside the function’s app root folder.
Only the extensions registered in this file will be used by the runtime.

�Creating a Blob Storage–Triggered Function
In this section, you will learn how to create a Blob Storage–triggered

function using both C# and Node.js. I will take you through the process

one by one. You will be using Visual Studio Code to create the function. To

set up the system to create a function, you can check Chapter 2’s “Creating

an Azure Function Using Visual Studio Code” section.

In this function, you will try to resize the image once it is uploaded on

the blob by using a Blob trigger in Azure Functions.

Let’s start by first creating a function using C#.

Chapter 3 Understanding Azure Functions Triggers and Bindings

31

�Creating a Blob-Triggered Function Using C#
Set up the machine as mentioned in Chapter 2. Once the machine is set

up, open Visual Studio Code, go to the Extensions section, and install the

C# extension. Make sure your Azure Functions extension version is 0.16.0.

Once this is done, go to the Azure Function menu and add a new function

with the following steps:

	 1.	 Open Visual Studio Code and then click the Azure

logo in the left menu, as shown in Figure 3-1.

Figure 3-1.  Clicking the Azure logo

	 2.	 Click the folder icon and create a new folder, as

shown in Figure 3-2.

Chapter 3 Understanding Azure Functions Triggers and Bindings

32

	 3.	 Once a new folder is created, select the language in

which you want to code your function. In this case,

I am selecting C#, as shown in Figure 3-3.

Figure 3-2.  Creating a new folder

Figure 3-3.  Selecting the language

Chapter 3 Understanding Azure Functions Triggers and Bindings

33

	 4.	 Select the template for the function. In this case,

select BlobTrigger as the template, as shown in

Figure 3-4.

	 5.	 Provide the name of the function. By default, it will

become BlobTriggerCSharp. You can leave it as is,

or you can type any name you want, as shown in

Figure 3-5.

Figure 3-4.  Selecting BlobTrigger

Chapter 3 Understanding Azure Functions Triggers and Bindings

34

	 6.	 Provide the namespace. By default it will be

Company.Function. For this demo, set it as

AzureFunctionV2Book.Function, as shown in

Figure 3-6.

Figure 3-5.  Naming the function

Figure 3-6.  Providing the namespace

Chapter 3 Understanding Azure Functions Triggers and Bindings

35

	 7.	 Click “Create new local app setting,” as shown in

Figure 3-7.

	 8.	 The screen will ask you to sign in to Azure, as shown

in Figure 3-8, or it will show you the subscriptions if

you are already signed in. Select “Sign in to Azure”

if you already have account or select “Create a free

Azure Account” if you don’t have one.

Figure 3-7.  Creating a new local app setting

Chapter 3 Understanding Azure Functions Triggers and Bindings

36

	 9.	 Once you have selected “Sign in to Azure,” it will

take you to your browser to sign in. Then, it will load

all the subscriptions that you have in Visual Studio

Code. Select the subscription, as shown in Figure 3-9.

Figure 3-8.  Signing in

Figure 3-9.  Selecting the subscription

Chapter 3 Understanding Azure Functions Triggers and Bindings

37

	 10.	 You can select the Azure Storage account that

already exists, or you can create a new storage

account. In this case, you will select the existing one,

as shown in Figure 3-10.

	 11.	 Once the storage account is set up, provide a name

for the blob trigger. This is the path that the trigger

will monitor. By default, it shows as samples-

workitems. For this function, you are setting it to

function-v2-book, as shown in Figure 3-11.

Figure 3-10.  Selecting an existing storage

Chapter 3 Understanding Azure Functions Triggers and Bindings

38

	 12.	 Click “Add to workspace,” and your function will be

ready, as shown in Figure 3-12.

Figure 3-11.  Setting it to function-v2-book

Figure 3-12.  Adding to the workspace

	 13.	 Your function is all set up, as shown in Figure 3-13.

Chapter 3 Understanding Azure Functions Triggers and Bindings

39

	 14.	 Now you need to add a package named SixLabors.

ImageSharp to the project. To do that, type dotnet

add package SixLabors.ImageSharp -v 1.0.0-

beta0006 in the Terminal, and it will install the

package.

	 15.	 Once the package is installed, paste the following

code into the .cs file:

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Logging;

using Microsoft.WindowsAzure.Storage.Blob;

using SixLabors.ImageSharp;

using SixLabors.ImageSharp.Formats.Png;

using SixLabors.ImageSharp.PixelFormats;

using SixLabors.ImageSharp.Processing;

Figure 3-13.  Completed function

Chapter 3 Understanding Azure Functions Triggers and Bindings

40

namespace AzureFunctionv2Book.Function

{

 public static class BlobTriggerCSharp

 {

 [FunctionName("BlobTriggerCSharp")]

 �public static async Task Run([BlobTrigger

("image-blob/{name}", Connection = "AzureWeb

JobsStorage")]Stream myBlob, string name,

[Blob("output-blob/{name}", FileAccess.

ReadWrite, Connection = "AzureWebJobsStorage")]

CloudBlockBlob outputBlob, ILogger log)

 {

 �log.LogInformation($"C# Blob trigger

function Processed blob\n Name:{name} \n

Size: {myBlob.Length} Bytes");

 var width = 100;

 var height = 200;

 var encoder = new PngEncoder();

 using (var output = new MemoryStream())

 �using (Image<Rgba32> image = Image.Load

(myBlob))

 {

 �image.Mutate(x => x.Resize(width,

height));

 image.Save(output, encoder) ;

 output.Position = 0;

 �await outputBlob.UploadFromStream

Async(output);

 }

 }

 }

}

Chapter 3 Understanding Azure Functions Triggers and Bindings

41

	 16.	 In the top menu, click Debug and then click Start

Without Debugging to get the function up and

running. Now, go to Azure Storage and create two

containers named image-blob and output-blob.

If you have never created a container before, go to

the following link to see how to create containers:

https://docs.microsoft.com/en-us/azure/

storage/blobs/storage-quickstart-blobs-portal.

Once the container is created, upload the blob

as shown in the previous link in the image-blob

container. Now you will see the function getting

triggered, and once the function runs, the resized

image will appear in output-blob, as shown in

Figure 3-14.

Figure 3-14.  Resized image

With this you have created a blob-triggered function using C#. Now,

let’s look at creating a blob-triggered function using Node.js.

�Blob-Triggered Function Using Node.js
Let’s try to implement the same functionality of image resizing using

Node.js.

Chapter 3 Understanding Azure Functions Triggers and Bindings

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

42

	 1.	 Set up the machine for Node.js by installing the

latest version of Node.js. Once that is done, restart

Visual Studio Code and go to the function. The

first two steps are the same as what you did while

creating a blob-triggered function using C#. So, you

will start from step 3.

	 2.	 Select JavaScript as the language, as shown in

Figure 3-15.

Figure 3-15.  Selecting the language

	 3.	 Now, select the template Azure Blob Storage Trigger,

as shown in Figure 3-16.

Chapter 3 Understanding Azure Functions Triggers and Bindings

43

	 4.	 Provide the function name. By default, it will be

BlobTrigger. For this function, set the function

name to BlobTriggerJs, as shown in Figure 3-17.

Figure 3-16.  Selecting the template

Figure 3-17.  Naming the function

Chapter 3 Understanding Azure Functions Triggers and Bindings

44

	 5.	 Click “Create new local app setting,” as shown in

Figure 3-18.

	 6.	 Since you have already connected to Azure in the

previous section, you should now directly see all the

subscriptions available in Azure. Select the Azure

subscription under which you want to create this

function, as shown in Figure 3-19.

Figure 3-18.  Creating a new local app setting

Chapter 3 Understanding Azure Functions Triggers and Bindings

45

	 7.	 Select the Azure Storage account that you want this

function to connect with, as shown in Figure 3-20.

Figure 3-19.  Selecting a subscription

Figure 3-20.  Selecting the Azure Storage account

Chapter 3 Understanding Azure Functions Triggers and Bindings

46

	 8.	 After selecting the app setting name, the function

will ask you to provide the name of the blob that will

trigger this function. Provide the name of your blob,

as shown in Figure 3-21.

	 9.	 Select “Add to workspace,” as shown in Figure 3-22.

Figure 3-21.  Naming your blob

Figure 3-22.  Adding to the workspace

Chapter 3 Understanding Azure Functions Triggers and Bindings

47

	 10.	 Your function is ready. Click the file icon, and you will

see all the function files, as shown in Figure 3-23.

	 11.	 To resize the image, you need to add a few NuGet

packages. The packages that you need to install are

azure-storage, urijs, stream, jimp, and async. You

can install these packages using npm i <package

name>.

	 12.	 Once the packages are installed, copy the following

code and paste it in:

var storage = require('azure-storage');

var URI = require('urijs');

const stream = require('stream');

const Jimp = require('jimp');

var async = require('async');

Figure 3-23.  Function files

Chapter 3 Understanding Azure Functions Triggers and Bindings

48

module.exports = async function (context, myBlob) {

 �context.log("JavaScript blob trigger function

processed blob \n Name:", context.bindingData.name,

"\n Blob Size:", myBlob.length, "Bytes");

 �var blobService = storage.createBlobService

(process.env.AzureWebJobsStorage);

 var blockBlobName = context.bindingData.name;

 const widthInPixels = 60;

 const heightInPixels = 60;

 const blobContainerName = 'output-blob';

 async.series(

 [

 function (callback) {

 blobService.createContainerIfNotExists(

 blobContainerName,

 null,

 (err, result) => {

 callback(err, result)

 })

 },

 function (callback) {

 �var readBlobName = generateSasToken

('input-blob', blockBlobName, null)

 �Jimp.read(readBlobName.uri).then

((thumbnail) => {

 �thumbnail.resize(widthInPixels,

heightInPixels);

 �thumbnail.getBuffer(Jimp.MIME_PNG, (err,

buffer) => {

Chapter 3 Understanding Azure Functions Triggers and Bindings

49

 const readStream = stream.PassThrough();

 readStream.end(buffer) ;

 �blobService.createBlockBlobFromStream

(blobContainerName, blockBlobName,

readStream, buffer.length, null,

(err, blobResult) => {

 callback(err, blobResult);

 });

 });

 });

 }

],

 function (err, result) {

 if (err) {

 callback(err, null);

 } else {

 callback(null, result);

 }

 }

);

};

function generateSasToken(container, blobName,

permissions) {

 var connString = process.env.AzureWebJobsStorage;

 �var blobService = azure.createBlobService

(connString);

 // Create a SAS token that expires in an hour

 // �Set start time to five minutes ago to avoid

clock skew.

Chapter 3 Understanding Azure Functions Triggers and Bindings

50

 var startDate = new Date();

 startDate.setMinutes(startDate.getMinutes() - 5);

 var expiryDate = new Date(startDate);

 expiryDate.setMinutes(startDate.getMinutes() + 60);

 �permissions = permissions || storage.BlobUtilities.

SharedAccessPermissions.READ;

 var sharedAccessPolicy = {

 AccessPolicy: {

 Permissions: permissions,

 Start: startDate,

 Expiry: expiryDate

 }

 };

 �var sasToken = blobService.generateSharedAccessSign

ature(container, blobName, sharedAccessPolicy);

 return {

 token: sasToken,

 �uri: blobService.getUrl(container, blobName,

sasToken, true)

 };

 }

	 13.	 Once you run the code and upload the image, you

should see the image getting resized.

Chapter 3 Understanding Azure Functions Triggers and Bindings

51

�Running the Example
With these examples, you created two blob-triggered functions running on

the 2.0 framework, one with C# and another one with JavaScript/Node.js.

The main thing to note here is that the file host.json is important. It stores

the version of the function and lets the framework know on what version

you are running your function.

{

 "version": "2.0"

}

Now you understand the concept of Azure triggers and bindings, and

you have created a blob-triggered function. In the next chapter, you will

look at creating serverless APIs using Azure Functions.

Chapter 3 Understanding Azure Functions Triggers and Bindings

53© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_4

CHAPTER 4

Serverless APIs Using
Azure Functions
Before you start creating APIs with Azure Functions, it is imperative for you

to understand where Azure Functions as a serverless API will fit into the

current system architecture that you are planning to use for building your

product or applications.

Traditionally, applications were based on a monolithic architecture

because developers wanted all the APIs to be a single deployable unit.

Setting up an individual API for the business case was a mammoth

task, so with the advent of cloud computing and the agile process, the

monolithic approach became less desirable. Developers started looking

at microservice architecture because cloud giants such as Microsoft,

Amazon, and Google made microservices easy.

In this chapter, I will cover the following topics:

•	 Monolithic architecture vs. microservice architecture

•	 Converting monolithic applications to highly scalable

APIs using Azure Functions

•	 Creating an HTTP-triggered function

•	 Overview of proxies in Azure Functions

54

Let’s look in detail at the monolithic and microservice architectures in

the next section and try to understand which architecture to use in specific

circumstances and where Azure Functions fits in.

�Monolithic Architecture vs. Microservice
Architecture
The monolithic approach used to be one of the most popular approaches

to building applications, where the complete application resides in one

codebase consisting of client-side applications, server-side applications,

and database code.

But with time, these monolithic applications become complex and

difficult to maintain, and compared to the agile development model,

monolithic applications are vulnerable to bugs and deployment issues. For

example, if there is a bug in the client-side code, you still have to deploy all

the code after fixing the bug since everything resides in one codebase. This

includes the server-side code, which can create issues if the server-side

code was not tested properly.

Also, with most applications now moving to the cloud, monolithic

architecture makes it difficult (and more expensive) for applications to

scale. In addition, DevOps becomes slow and complex, and the time to

deploy features, bugs, hotfixes, and so on, keeps increasing. This is where

the microservice architecture comes to the rescue.

The microservice architecture is the idea of breaking this complex

monolithic application into small and independent applications.

With a microservice architecture, it becomes easy and less expensive

to deploy and scale individual applications and makes DevOps less

time-consuming. If you further break down microservices, it is called

nano services.

Chapter 4 Serverless APIs Using Azure Functions

55

The benefits of microservices are as follows:

•	 The small and independent codebase is easy to

understand and maintain.

•	 Onboarding new developers becomes easy.

•	 On the cloud, each application can be scaled

individually based on their consumption.

•	 Multiple teams can work in parallel on different

microservices.

•	 The language barrier can be avoided as each

microservice can be written in a different coding

language based on which language best suits the

business scenario. This practice of writing code in

multiple languages to capture additional functionality

and efficiency that is not available in a single language

is known as polyglot programming.

But, with the benefits, there are also trade-offs when using

microservices.

•	 Writing test cases becomes difficult for each individual

application.

•	 Communication within the APIs can become slow if

not developed properly.

•	 If DevOps is not properly set up, deployment can

become messy and can create a lot of issues (but

if done properly, it becomes easy to maintain). A

complete enterprise application can have more than

10 to 12 microservices, so it is imperative for you to

have a stable CI/CD pipeline for each; otherwise,

deploying these microservices can end up being your

biggest blocker.

Chapter 4 Serverless APIs Using Azure Functions

56

Figure 4-1 illustrates the differences between a monolithic architecture

and a microservice architecture.

�Converting Monolithic Applications
to Highly Scalable APIs Using Azure
Functions
Let’s now look at converting a monolithic e-commerce web site to

microservices. A basic e-commerce web site comes with a client interface,

a customer profile, product details, checkout and payment functions, and

inventory management.

By looking at these, you can easily see that each is an individual

business scenario and can be converted to a microservices architecture.

You would have the following microservices:

•	 Customer service, which will include customer details,

orders, and so on

•	 Product service

Figure 4-1.  Monolithic architecture vs. microservice architecture

Chapter 4 Serverless APIs Using Azure Functions

57

•	 Payment and checkout service

•	 Inventory management service

You can expose each of these services as an API that can be easily

consumed by your front-end user interface.

Now, let’s see how microservices will help you in scaling the

application with a minimum cost. Let say you have a sale coming up and

your estimate is that you will have double the amount of traffic on the web

site during this time.

After some analysis, you find that the product service and the

payment and checkout services will have the most load, and there

won’t be much change in load on the customer and inventory

management service. With microservices, you can scale out only those

two services (product and payment and checkout) and leave the other

services as is, whereas if you had a monolithic application, you would

have to scale out the complete application, and that would increase

your application costs a lot.

Since now you are aware why you would want to convert a monolithic

application to microservices, let’s understand how Azure Functions can

help you achieve that in a simpler and more cost-efficient way.

Azure Functions allows you to write and deploy small pieces of code.

With the help of Azure Functions, you can divide the microservices

into small parts and write a function that performs a specific task.

For example, the customer service microservice would have different

activities such as Update Profile, View My Orders, Cashback Amount,

Card Details, and so on. You could write each one of them as a separate

function, and on days where you have a big sale, you can scale up the

individual functions.

With Azure Functions, the infrastructure maintenance is taken care of

by the cloud service provider, and you won’t have to worry about scaling

up, upgrading the software, and so on. This in a way reduces the load on

the team and helps them concentrate on the business scenario.

Chapter 4 Serverless APIs Using Azure Functions

58

Azure Functions provides you with a free grant of 400,000 GB-s

of execution time and 1 million total executions per month, which

should be enough to run a medium-sized application on Azure

Functions at no cost.

With Azure Functions, each function is completely isolated, so if a bug

or issue is fixed in one function, you do not have to deploy the complete

microservice or application. This is where Azure Functions also makes

DevOps a lot easier.

As you can see in Figure 4-2, you can actually create functions for

each of the microservices discussed earlier, and you can expose them as

REST APIs.

To expose functions as REST APIs, you have to create HTTP-

triggered functions so that you can use them. HTTP-triggered functions

start working like any other API where you call an endpoint and it

returns you the result. Let’s create an HTTP-triggered function in the

next section.

Figure 4-2.  Isolated functions

Chapter 4 Serverless APIs Using Azure Functions

59

Creating an HTTP-Triggered Function with
SQL Server Interaction
Before you start creating the HTTP-triggered function in this section, let’s

first create the Azure SQL Server database with AdventureWorks content so

that you can fetch and modify the data using the HTTP-triggered function.

�Creating a SQL Server Instance with Sample
Data
Let’s get started.

	 1.	 Log in to Azure Portal and click “Create a resource.”

Select Databases from the vertical pane and then

select SQL Database, as shown in Figure 4-3.

Figure 4-3.  Selecting SQL Database

	 2.	 Provide the necessary details and set “Select source”

to Sample (AdventureWorksLT). Create a server if

it does not exist and then click Create to create the

database with the content, as shown in Figure 4-4.

Chapter 4 Serverless APIs Using Azure Functions

60

	 3.	 It will take some time for SQL Server and the

database to be ready. Once it is ready, you will see it

under the resource group you selected, as shown in

Figure 4-5.

Figure 4-4.  Creating the database

Figure 4-5.  Database created

Chapter 4 Serverless APIs Using Azure Functions

61

	 4.	 In the left panel, click “Query editor,” provide your

password to connect, and click OK, as shown in

Figure 4-6.

	 5.	 Once you have successfully logged in, you will see

the Query Editor. In the left menu, click Tables, and

you will see the tables being created, as shown in

Figure 4-7.

Figure 4-6.  Connecting to the database

Chapter 4 Serverless APIs Using Azure Functions

62

	 6.	 You can query the tables in a similar way as you do

in SQL Server Management Studio.

Your database has been created with some initial data. Let’s now create

an HTTP-triggered function for it.

�Creating an HTTP-Triggered Function Using C#
Now it’s time to code.

	 1.	 In Chapter 3, you set up your machine to run Azure

Functions using Visual Studio Code. If you have not

set that up yet, please follow the steps in Chapter 3.

	 2.	 Go to Visual Studio Code and click the Azure icon

(make sure that your Azure Functions extension

version is 0.16.0) in the menu and then click New

Folder. For this function, set the folder name to

HTTP-Triggered-Function and then click Select, as

shown in Figure 4-8.

Figure 4-7.  Tables being created

Chapter 4 Serverless APIs Using Azure Functions

63

	 3.	 After clicking Select, you can select a language to be

used for Azure Functions. Select C# as the language

for this example, as shown in Figure 4-9.

Figure 4-8.  Naming the function

Figure 4-9.  Selecting the language

Chapter 4 Serverless APIs Using Azure Functions

64

	 4.	 Select HttpTrigger as the template for the function,

as shown in Figure 4-10.

	 5.	 Provide a name for the function. By default, it is

HttpTriggerCSharp. For this function, I am using the

default value, as shown in Figure 4-11.

Figure 4-10.  Selecting the HttpTrigger template

Figure 4-11.  Naming the function

Chapter 4 Serverless APIs Using Azure Functions

65

	 6.	 Provide the namespace of the function. By default,

it is Company.Function, but for this function you will

set it to AzureFunctionBook.Function, as shown in

Figure 4-12.

	 7.	 Set the access rights for this function. You will see

three options: Anonymous, Function, and Admin.

These different access rights determines what keys

are required to invoke the function.

-Anonymous: This means no API key is required.

-Function: This is the default setting if nothing is

selected. This means a function-specific API key is

required.

- Admin: This means a master key is required.

For this function, use Anonymous as the access

right, as shown in Figure 4-13.

Figure 4-12.  Providing the namespace

Chapter 4 Serverless APIs Using Azure Functions

66

	 8.	 Let’s add the SqlClient package to the solution. To

do this, go to the Terminal, and in the top menu,

select New Terminal. Type dotnet add package

System.Data.SqlClient --version 4.5.1 and

press Enter. This will install the required package

to your solution. To verify, go to the .csproj file,

and you will see the package added, as shown in

Figure 4-14.

Figure 4-13.  Setting the access rights

Chapter 4 Serverless APIs Using Azure Functions

67

Fi
gu

re
 4

-1
4.

 P
ac

ka
ge

 a
dd

ed

Chapter 4 Serverless APIs Using Azure Functions

68

	 9.	 Now everything is set up. You will follow a code

structure similar to what you would follow in normal

projects. Create two folders, named Helper and

Models. In Models, create the file CustomerModel.

cs, and in Helper create the file SqlClientHelper.

cs. You will use them for your function, as shown in

Figure 4-15.

Figure 4-15.  Folders created

Chapter 4 Serverless APIs Using Azure Functions

69

	 10.	 Click the CustomerModel.cs file and paste the

following code:

namespace Company.Function.Models

{

 public class CustomerModel

 {

 public int CustomerID { get; set; }

 public int NameStyle { get; set; }

 public string Title { get; set; }

 public string FirstName { get; set; }

 public string MiddleName { get; set; }

 public string LastName { get; set; }

 public string CompanyName { get; set; }

 }

}

	 11.	 Click the SqlClientHelper.cs file and paste the

following code. The following code will make a call

to the SQL Server database and get the customer

details from the SalesLT.Customer table.

using System;

using System.Data;

using System.Data.SqlClient;

using Company.Function.Models;

namespace Company.Function.Helper

{

 public static class SqlClientHelper

Chapter 4 Serverless APIs Using Azure Functions

70

 {

 �public static CustomerModel GetData(int

customerId)

 {

 �var connection = Environment.GetEnvironment

Variable("coonectionString");

 �CustomerModel customer = new

CustomerModel();

 �using (SqlConnection conn = new

SqlConnection(connection))

 {

 �var text = "SELECT CustomerID,

NameStyle, FirstName, MiddleName,

LastName, CompanyName FROM SalesLT.

Customer where CustomerID=" +

customerId;

 �SqlCommand cmd = new SqlCommand

(text, conn);

 // �cmd.Parameters.AddWithValue

("@CustomerId", customerId);

 conn.Open();

 �using (SqlDataReader reader = cmd.

ExecuteReader(CommandBehavior.

SingleRow))

 {

 �while (reader.Read() && reader.

HasRows)

 {

 �customer.CustomerID = Convert.

ToInt32(reader["CustomerID"].

ToString());

Chapter 4 Serverless APIs Using Azure Functions

71

 �customer.FirstName = reader

["FirstName"].ToString();

 �customer.MiddleName = reader

["MiddleName"].ToString();

 �customer.LastName =

reader["LastName"].ToString();

 �customer.CompanyName = reader

["CompanyName"].ToString();

 }

 conn.Close();

 }

 }

 return customer;

 }

 }

}

	 12.	 Go to the main file HttpTriggerCSharp.cs and

paste the following code. The following code is

the function that will be triggered when you call

it. It is first trying to get the CustomerId value from

the query and convert it to Int. Then, it calls the

SQLClientHelper.GetData method by passing the

CustomerId value and returning the result.

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

Chapter 4 Serverless APIs Using Azure Functions

72

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

using Company.Function.Helper;

namespace Company.Function

{

 public static class HttpTriggerCSharp

 {

 [FunctionName("HttpTriggerCSharp")]

 public static async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous,

"get", "post", Route = null)] HttpRequest

req, ILogger log)

 {

 �log.LogInformation("C# HTTP trigger

function processed a request.");

 �int customerId = Convert.ToInt32(req.Query

["customerId"]);

 �return (ActionResult) new OkObjectResult

(SqlClientHelper.GetData(customerId));

 }

 }

}

If you look at the code that you have, you’ll see

you have created a basic customer profile function

where you will get customer details based on

CustomerID.

Chapter 4 Serverless APIs Using Azure Functions

73

	 13.	 Select Debug in the top menu and click Start

Debugging. You will see the function compiling in

the Terminal, and once the function is compiled,

you will see the local URL of the function, as shown

in Figure 4-16.

	 14.	 Copy this URL, append ?customerId=1 to it, and hit

Enter. You will get the output shown in Figure 4-17.

Figure 4-16.  Local URL

Figure 4-17.  Output

Now you understand how you can create an HTTP-triggered API using

Azure Functions. In the next section, you will look at how you can use

Azure Functions as an OData API to access SQL Server.

Chapter 4 Serverless APIs Using Azure Functions

74

�Creating an HTTP-Triggered OData API for SQL
Server Using Azure Functions
Before you start creating functions, you should first understand what

OData is. OData stands for Open Data Protocol and defines a set of best

practices for consuming and building web APIs.

Note  For more information about OData, you can visit the official
page at https://www.odata.org/.

To create a function, follow steps 1 to 6 in the previous section. The

only change here is that instead of C# as the language, you will be using

JavaScript as the language for the function.

	 1.	 Once the function is created, install the following

npm packages:

•	 Azure-odata-sql

•	 Async

•	 Tedious

•	 Tedious-connection-pool

	 2.	 To install the packages, open Terminal and type the

following, which will install the package for you:

npm install <package name>

	 3.	 Once the packages are installed, create a file named

functions.js and paste the following code. It

basically connects to the SQL Server database, runs

the query, and returns the data. In the following

code, you are first creating the pool of SQL

Chapter 4 Serverless APIs Using Azure Functions

https://www.odata.org/

75

connections using poolConfig. Then, you write the

getSqlResults method, which fetches the records

from the table.

// TEDIOUS

var ConnectionPool = require('tedious-connection-

pool');

var Connection = require('tedious').Connection;

var Request = require('tedious').Request;

var TYPES = require('tedious').TYPES;

// Pool Connection Config

var poolConfig = {

 min: 1,

 max: 10,

 log: true

};

//Connection Config

var config = {

 userName: process.env.databaseUser,

 password: process.env.databasePassword,

 server: process.env.databaseUrl,

 options: {

 database: process.env.databaseName,

 encrypt: true,

 requestTimeout: 0,

 }

};

//create the pool

var pool = new ConnectionPool(poolConfig, config);

Chapter 4 Serverless APIs Using Azure Functions

76

pool.on('error', function (err) {

 console.error(err);

});

function getSqlResult(sqlObject, callback) {

 var result = []

 pool.acquire(function (err, connection) {

 if (err) {

 callback(err, null);

 }

 �var request = new Request(sqlObject.sql,

function (err, data) {

 if (err) {

 callback(err, null);

 }

 console.log(data);

 connection.release();

 callback(null, result);

 });

 sqlObject.parameters.forEach(element => {

 �request.addParameter(`${element.name}`,

TYPES.NVarChar, `${element.value}`);

 });

 request.on('row', (columns) => {

 var rowdata = new Object();

 columns.forEach((column) => {

 �rowdata[column.metadata.colName] =

column.value;

 });

Chapter 4 Serverless APIs Using Azure Functions

77

 result.push(rowdata);

 });

 connection.execSql(request);

 });

}

module.exports = {

 getSqlResult: getSqlResult,

}

	 4.	 Go to the main file index.js and paste the following

code. In the following code, you are first configuring

the table and schema that will be used in this OData

API. Then you are fetching the pageSize, filters,

selection, ordering, and so on, from the query

parameters. Once you get all this, you prepare the

query and call azureOdata.format to convert this to

a proper SQL query.

var azureOdata = require('azure-odata-sql');

var async = require('async');

var tableConfig = {

 name: 'Customer',

 schema: 'SalesLT',

 flavor: 'mssql',

};

var defaultPageSize = 30;

module.exports = function(context, req) {

 var module = require('./functions');

Chapter 4 Serverless APIs Using Azure Functions

78

 �var pageSizeToUse = req.query !== null && req.

query.$pageSize !== null && typeof req.query.

$pageSize !== "undefined" ? req.query.$pageSize :

defaultPageSize

 var getSqlResult = module.getSqlResult;

 var query = {

 table: 'Customer',

 �filters: req.query !== null &&

req.query.$filter !== null && typeof

req.query.$filter !== "undefined" ?

req.query.$filter : ",

 inlineCount: "allpages",

 resultLimit: pageSizeToUse,

 �skip: req.query !== null && req.query.$page !==

null && typeof req.query.$page !== "undefined"

? pageSizeToUse ∗ (req.query.$page -1): ",
 take: pageSizeToUse,

 �selections: req.query !== null && req.query.

$select !== null && typeof req.query.$select

!== "undefined" ? req.query.$select : ",

 �ordering: req.query !== null && req.query.

$orderby !== null && typeof req.query.$orderby

!== "undefined" ? req.query.$orderby :

'CustomerID',

 };

 �var statement = azureOdata.format(query,

tableConfig);

 var calls = [];

 var data = [];

 async.series([

 function (callback) {

 getSqlResult(statement[0], (err, result) => {

Chapter 4 Serverless APIs Using Azure Functions

79

 if (err)

 throw err;

 data.push(result);

 callback(err, result);

 });

 },

 function (callback) {

 getSqlResult(statement[1], (err, result) => {

 if (err)

 throw err;

 data.push(result);

 callback(err, result);

 });

 }

],

 function (err, result) {

 if (err) {

 console.log(err);

 } else {

 var count = result[0].length;

 context.res = {

 status: 200,

 body: {

 // �'@odata.context': req.protocol

+ '://' + req.get('host') + '/

api/$metadata#Product',

 'value': result[0],

 'total': result[1][0].count,

 'count': count,

Chapter 4 Serverless APIs Using Azure Functions

80

 �'page': req.query !== null && req.

query.$page !== null ? req.query.

$page : 1

 },

 headers: {

 �'Content-Type': 'application/

json'

 }

 };

 }

 context.done();

 });

}

	 5.	 You first prepared the query inside var query

= {}. Now, you will convert this into a SQL-

understandable query by calling azureOdata.

format(query, tableConfig). Once the query is

converted to a SQL query, you will pass this to the

function you wrote in functions.js, which will run

the SQL statements and return the data.

	 6.	 Run Azure Functions by going to the top menu and

clicking Debug and then Start Debugging. Once the

function starts, you will make an HTTP call.

http://localhost:7071/products?$filter=CustomerID

eq 1&$select=CustomerID,FirstName,LastName

If you look at this URL, you will see two query

parameters. One is $filter, which gets converted

to a WHERE clause, and one is $select, which gets

converted to a SELECT statement.

Chapter 4 Serverless APIs Using Azure Functions

81

Once you run the previous query, you will get the

result shown in Figure 4-18.

With this you have created two HTTP-triggered functions; one is a

normal HTTP-triggered function with C# and another one is an advanced

HTTP-triggered function using OData with NodeJs.

Let’s look at proxies in the next section.

�Overview of Proxies in Azure Functions
Proxies are one of the most important features of Azure Functions. With

the help of proxies, you can divide a large API into small functions, but for

the end customer, it still shows as a single API with one endpoint.

This not only simplifies the use of the API by other customers but

also reduces the burden on the customers to call individual APIs with

different URLs.

The following are features of an Azure Functions proxy:

•	 You can modify request and response queries using

variables.

•	 You can modify request and response queries by

referencing application settings.

•	 You can troubleshoot an Azure Functions proxy.

Now let’s try to create a proxy from Azure Portal.

Figure 4-18.  Output of query

Chapter 4 Serverless APIs Using Azure Functions

82

�Creating a Proxy Using Visual Studio Code
Let’s get started.

	 1.	 Go to the previous OData function and click the

vertical menu. You will see a file named proxies.

json, as shown in Figure 4-19.

Figure 4-19.  Listing of files

Chapter 4 Serverless APIs Using Azure Functions

83

	 2.	 Click the proxies.json file and paste the following

code. Internally you are calling the same functions,

but you can expose different URLs to the customer

so no one is aware of the exact function app name

and location. You can change the backendUri value

to call another function.

{

{

 "$schema": "http://json.schemastore.org/proxies",

 "proxies": {

 "proxy1": {

 "matchCondition": {

 "methods": [

 "GET"

],

 "route": "/api/customer"

 },

 �"backendUri": "http://localhost:7071/api/Http

TriggerOData"

 }

 }

}

	 3.	 Run Azure Functions, and in the Terminal you

will see that Azure Functions is now providing two

endpoints, as shown in Figure 4-20.

Chapter 4 Serverless APIs Using Azure Functions

84

	 4.	 Let’s hit the proxy from the browser and check the

output. The output is shown in Figure 4-21.

Figure 4-20.  Two endpoints

Figure 4-21.  Output of proxy

As you can see, your proxy is working fine, and the output is the same

as you got in the previous section. So, that’s how you can create a proxy by

using Visual Studio Code. Let’s look at how you can do the same thing from

Azure Portal.

Chapter 4 Serverless APIs Using Azure Functions

85

�Creating a Proxy Using Azure Portal
Here is the process:

	 1.	 Go to Azure Portal and click Function Apps, as

shown in Figure 4-22.

Figure 4-22.  Selecting Function Apps

Chapter 4 Serverless APIs Using Azure Functions

86

This is how you create a proxy from Azure Portal. This brings us to

the end of the chapter. In the next chapter, you will look at the Durable

Functions extension and how you can use durable functions for long-

running tasks.

	 2.	 Select the function app and click Proxies, as shown

in Figure 4-23.

	 3.	 Click + near the Proxies tab and provide details for

the proxy. In the back-end URL, provide the URL of

the function where you want the request to navigate

to, as shown in Figure 4-24.

Figure 4-24.  URL of function

Figure 4-23.  Clicking Proxies

Chapter 4 Serverless APIs Using Azure Functions

87© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_5

CHAPTER 5

Azure Durable
Functions
In this chapter, I will cover the following topics:

•	 Overview of the Durable Functions extension

•	 Bindings for the Durable Functions extension

•	 Performance and scale of durable functions

•	 Creating durable functions using Azure Portal

•	 Disaster recovery and geodistribution of durable

functions

�Overview of Durable Functions
Durable Functions is an extension to Azure Functions that allows you

to write stateful functions in a serverless environment by managing

checkpoints, state, and restarts for you.

Durable Functions uses a new type of function called an orchestrator

function, which lets you define the stateful workflows in code and allows

you to call other functions both synchronously and asynchronously.

The main use case of Durable Functions is to simplify stateful

coordination problems in the serverless world.

88

�Types of Functions
The Durable Functions extension allows the stateful orchestration of

functions. Each function is made up of combination of different functions.

Each of these functions plays a different role in orchestration, as shown in

Figure 5-1.

There are basically three types of functions.

•	 Client functions: These types of functions are the

entry point for creating an instance of a durable

function. They are triggered functions that create

a new instance of an orchestration process. Client

functions can be triggered by any available trigger

in Azure Functions. Also, client functions have an

orchestration binding that allows them to manage

durable orchestrations.

•	 Orchestrator functions: These are the heart of

durable functions and describe the order in which

actions are executed. An orchestrator function must

be triggered by an orchestration trigger (a client

function with orchestration binding). Each instance

of an orchestrator has an instance identifier that can

be autogenerated or user-generated and is used to

manage instances of orchestration.

Figure 5-1.  The three types of function

Chapter 5 Azure Durable Functions

89

•	 Activity functions: These are the basic unit of work in

Durable Functions orchestration and are the functions

and tasks that are being orchestrated or ordered in

the process. For example, you can create a durable

function for order cancellation to handle canceling

the shipment, updating the inventory, and refunding

the payment. Each of these tasks will be an activity

function, and the output of one function can be used

as the input of another. An activity function must be

triggered by an activity trigger.

�Durable Function Patterns
The Durable Functions extension basically caters to five application

patterns.

•	 Function Chaining

•	 Fan-Out/Fan-In

•	 Async HTTP APIs

•	 Monitoring

•	 Human Interaction

�Function Chaining

Function Chaining is a pattern where you execute functions in a sequential

order. Also, you use Function Chaining when the output of one function

has to be used as the input of another function.

Let’s see an example of e-commerce order processing. First, a

customer orders a product, and after that, internally you process the order

and notify the dealer. Once the dealer confirms that the product is ready to

Chapter 5 Azure Durable Functions

90

be shipped, you notify the delivery service to pick up the order and ship it.

Once the product is shipped, you notify the customer. This whole process

can be done using Function Chaining, as shown in Figure 5-2.

The following simple code will call the Function Chaining pattern

using C#:

public static async Task<object>

Run(DurableOrchestrationContext context)

{

 try

 {

 �var orderProcessedResult = await context.CallActivity

Async<object>("ProcessOrder");

 �var dealerNotificationResult = await context.CallActivity

Async<object>("NotifyDealer", orderProcessedResult);

 �var deliveryServiceResult = await context.CallActivity

Async<object>("NotifyDeliveryService", dealer

NotificationResult);

 return �await context.CallActivityAsync<object>("Notify

Customer", deliveryServiceResult);

 }

 catch (Exception ex)

 {

Figure 5-2.  Function Chaining example

Chapter 5 Azure Durable Functions

91

 // �This will be the 5th function which will rollback

all the operations before the function which caused

the error

 �await context.CallActivityAsync<object>("Rollback", null);

 context.log("Error cannot be processed");

 }

}

�Fan-Out/Fan-In

The Fan-Out/Fan-In pattern refers to executing multiple functions

in parallel and then waiting for all of them to execute. Usually some

aggregation work is done on the result returned by multiple functions.

With normal functions in Azure Functions, fanning out can be done

by publishing multiple messages to the queue. But the fanning in part is

complicated because you have to keep track of when the message is picked

up and processed and store the result. This is a difficult task to achieve in

Azure Functions, but the Durable Functions extension handles this pattern

quite easily.

Let’s look at an example where you have replenished the stock and

want to notify all the customers who selected “notify me once the product

is available,” as shown in Figure 5-3.

Figure 5-3.  Fan-Out/Fan-In example

Chapter 5 Azure Durable Functions

92

This first function updates or replenishes the stock, i.e., products.

Then you call the F2 function for each product that was out of stock and

call multiple functions. One function will send an e-mail, the other one

will send an SMS message to the customer, and one will stack the product

based on the user interest shown as per the “notify me once the product is

available” selection. Once you get a response from all three functions, you

call the UpdateStatus function, which will update the notification status

corresponding to each user who opted for notification.

public static async Task Run (Durableorchestrationcontext ctx)

{

var parallelTasks = new List<Task<int>>();

object []workBatch = await ctx.CallFunctionAsync<object[]>

("StockUpdate");

for (int i = 0; i < workBatch.Length; i++)

{

Task<int> task = ctx.CallFunctionAsync <int> ("F2", workBatch [i]);

parallelTasks.Add (task);

}

await Task.WhenAll(parallelTasks);

//aggregate result of all tasks and send result to UpdateStatus

int sum = parallelTasks.Sum(t=> t.Result);

await ctx.CallFunctionAsync ("UpdateStatus", sum);

}

�Async HTTP APIs

The Async HTTP APIs pattern takes care of the problem of keeping the

state of long-running processes with the external clients. The common way

to implement this pattern is to trigger the long-running job with the HTTP

client and then redirect the external client to another page, which keeps on

polling the state of the long-running job.

Chapter 5 Azure Durable Functions

93

The Durable Functions extension provides you with a built-in

capability that simplifies the code you will write for interacting with

long-running processes. Since the Durable Functions runtime manages

the state, you don’t have to implement your own state-tracking

mechanism.

Let’s look at an example of a food-ordering app. You order your food,

and the app takes you to a page where you track the status of the order. The

first state is whether the order is accepted by the restaurant. Once the order

is accepted, it starts showing you the time it will take for the order to be

prepared by the restaurant, and then once the order is ready and picked up

by the delivery person, it shows you a map with the location of the delivery

person. You can implement this with the help of Durable Functions, as

shown in Figure 5-4.

Figure 5-4.  Async example

As you can see in Figure 5-4, the OrderFood function will act as an

HTTP API that will be called once the end user clicks Order Food. The

OrderFood function will check for the validity of the order and will call the

OrderProcess function. This function will keep on updating the status of

the order.

You will redirect the end user to the order-tracking page, which will

poll the GetStatus function and will show the order status.

Chapter 5 Azure Durable Functions

94

The following is the demo code depicting the creation of an

orchestrator function for OrderProcess. The following code is part of the

HTTP-triggered OrderFood function.

public static async Task<HttpResponseMessage> Run(

 HttpRequestMessage req,

 DurableOrchestrationClient starter,

 ILogger log)

{

 // Function name comes from the request URL.

 // Function input comes from the request content.

 �dynamic eventData = await req.Content.ReadAsAsync

<object>();

 �string instanceId = await starter.StartNewAsync("Order

Process", eventData);

 �log.LogInformation($"Started orchestration with ID =

'{instanceId}'.");

 return starter.CreateCheckStatusResponse(req, instanceId);

}

�Monitoring

The Monitoring pattern is used when you need polling until a condition

is met. Normally a regular timer trigger (a timer trigger lets you run a

function on a specified schedule) can be used for scenarios such as a

cleanup job, but the problem with this is that the time interval is static, so

managing the lifetime of the instances becomes complex.

The Durable Functions runtime, on the other hand, comes with

flexible intervals and lifetime management of tasks. It allows you to create

multiple monitor processes from a single orchestration. See Figure 5-5.

Chapter 5 Azure Durable Functions

95

�Human Interaction

Usually you will automate processes that require no human

intervention because people are not as highly available and responsive

as cloud services. But, in certain scenarios that require approval,

human intervention is required, so the automated processes must

account for that.

Automated processes generally do this by using timers and

compensation logic. Let’s look at a “leave approval” workflow as an

example. In this case, an employee applies for a leave. The notification

goes to the manager to approve it. Here you can have two scenarios. One

is if the manager does not approve it within 48 hours, the leave will be

automatically approved. The other scenario is if the manager does not

approve it within 48 hours, then it is escalated to the manager’s manager.

See Figure 5-6.

Figure 5-5.  Monitoring example

Chapter 5 Azure Durable Functions

96

Here is the example code:

public static async Task Run(DurableOrchestrationContext context)

{

 await context.CallActivityAsync("SubmitLeaveRequest");

 using (var timeoutCts = new CancellationTokenSource())

 {

 �DateTime dueTime = context.CurrentUtcDateTime.

AddHours(48);

 �Task durableTimeout = context.CreateTimer(dueTime,

timeoutCts.Token);

 �Task<bool> approveLeaveEvent = context.WaitFor

ExternalEvent<bool>("ApproveLeaveEvent");

 �if (approveLeaveEvent == await Task.WhenAny(approve

LeaveEvent, durableTimeout))

 {

 timeoutCts.Cancel();

 �await context.CallActivityAsync("ProcessLeave

Approval", approveLeaveEvent.Result);

 }

Figure 5-6.  Human Interaction pattern example

Chapter 5 Azure Durable Functions

97

 else

 {

 �await context.CallActivityAsync

("EscalateEvent");

 }

 }

}

�Bindings for Durable Functions
The Durable Functions extension introduces two new trigger bindings that

control the execution of orchestrator and activity durable functions. The

Durable Functions extension also introduces one output binding that acts

as a trigger for the Durable Functions runtime.

�Activity Triggers
An activity trigger enables you to author functions that are called by

orchestrator functions. Activity functions are like any other normal

function. The only difference is that you will have ActivityTrigger, which

is triggered from the orchestrator function.

Internally, the following activity trigger binding keeps polling a series

of queues in the default storage account of the function app. The queues

are internal implementations of the extension, so that’s why they are not

part of the orchestrator trigger binding.

Chapter 5 Azure Durable Functions

98

The activity trigger is defined by the following JSON object in the

bindings array:

{

 "name": "Input parameter name",

 "activity": "<Optional parameter. Name of the activity",

 "type": "activityTrigger",

 "direction": "in"

}

Here is the trigger behavior:

•	 Threading: An activity trigger is like any other function

in Azure Functions that you code and has no limitation

on threading or I/O.

•	 Message visibility: The messages are dequeued and

kept invisible for a configurable amount of time.

As long as the function app is running and is in a

healthy state, the visibility of the messages is renewed

automatically.

•	 Return values: The return values are JSON serialized

and are persisted in the Azure Storage orchestration

history table.

The following is the basic code for an activity trigger:

[FunctionName("City_Travel")]

public static string Run([ActivityTrigger] string cityName,

TraceWriter log)

{

 log.Info($"I am travelling to {cityName}.");

 return $"I am travelling to {cityName}!";

}

Chapter 5 Azure Durable Functions

99

�Orchestration Triggers
As the name suggests, an orchestration trigger enables you to author

orchestrator functions. The trigger allows you to start new instances of

orchestrator functions and also allows you to resume existing instances of

orchestrator functions that are awaiting a task.

Behind the scenes, the following orchestrator trigger binding keeps

polling a series of queues in the default storage account of the function

app. The queues are internal implementations of the extension, so that’s

why they are not part of the orchestrator trigger binding.

The orchestrator trigger is defined by the following JSON object in the

bindings array:

{

 "name": "Input parameter name",

 �"orchestration": "Optional parameter - Name of

orchestration",

 "type": "orchestrationTrigger",

 "direction": "in"

}

Here is the trigger behavior:

•	 Single threading: For all orchestrator functions

running on a single host instance, a single dispatcher

thread is used. For this reason, the orchestrator

function code should not perform any I/O. Also, this

thread should not do any async work except when

awaiting on Durable Functions–specific task types.

JavaScript orchestrator functions should never be

declared async.

Chapter 5 Azure Durable Functions

100

•	 Message visibility: The messages are dequeued and

kept invisible for a configurable amount of time.

As long as the function app is running and is in a

healthy state, the visibility of the messages is renewed

automatically. Orchestration triggers do not support

poison message handling.

•	 Return values: The orchestrator return values are

JSON serialized and are persisted in the Azure Storage

orchestration history table.

The following is the basic code for an orchestrator trigger:

[FunctionName("Orchestrator_City")]

public static async Task<List<string>> Run(

[OrchestrationTrigger] DurableOrchestrationContext context)

{

 var outputs = new List<string>();

 �outputs.Add(await context.CallActivityAsync<string>

("City_Travel", "Hyderabad"));

 �outputs.Add(await context.CallActivityAsync<string>

("City_Travel", "New York"));

 �outputs.Add(await context.CallActivityAsync<string>

("City_Travel", "Delhi"));

 // returns

 // "I am travelling to Hyderabad"

 // "I am travelling to New York"

 // "I am travelling to Delhi"

 return outputs;

}

Chapter 5 Azure Durable Functions

101

As you can see, the previous orchestrator function is calling the activity

function City_Travel and is passing the name of the city to it. From the

way it is written, it looks like the orchestrator function is calling the City_

Travel activity function directly, but actually it is sending a message to a

work-item queue. The activity function City_Travel polls the queue, and

as soon as it receives the message in the queue, it executes the logic.

Once the activity function completes the logic execution, it sends the

response message to the control queue that the orchestrator function is

polling. As the orchestrator function Orchestrator_City receives the

message via OrchestrationTrigger, it shows the response. This is the

behavior of the durable function.

Once you start the durable function, it creates four control queues and

one workitems queue, as shown in Figure 5-7.

It also creates two Azure Storage tables, named

DurableFunctionsHubHistory and DurableFunctionsHubInstances.

�Orchestration Client
The orchestrator client is responsible for starting/stopping the orchestrator

function. It is also used to query the status, send events, and purge

instances of the history of the orchestrator function.

Figure 5-7.  Durable function queues

Chapter 5 Azure Durable Functions

102

The orchestrator client binding actually allows you to write functions

in Azure Functions that interact with orchestrator functions.

The orchestrator client trigger is defined by the following JSON object

in the bindings array:

{

 "name": "Name of Input Parameter",

 "taskHub": "Optional Parameter. name of the task hub",

 �"connectionName": "Optional Parameter. Name of the

connection string in the app settings",

 "type": "orchestrationClient",

 "direction": "in"

}

The following is the basic code for the orchestration client:

[FunctionName("OrchestrationClient_Start")]

public static async Task<HttpResponseMessage> HttpStart(

[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")]

HttpRequestMessage req,

[OrchestrationClient]DurableOrchestrationClient starter,

TraceWriter log)

{

 �string instanceId = await starter.StartNewAsync

("Orchestrator_City", null);

 �log.Info($"Running orchestration with ID =

'{instanceId}'.");

 �return starter.CreateCheckStatusResponse

(req, instanceId);

}

Chapter 5 Azure Durable Functions

103

�Performance and Scaling of Durable
Functions
The Durable Functions extension has unique scaling characteristics that

need to be understood to be able to scale and improve performance. To

understand the scaling behavior, you have to first understand some of the

underlying details of the Azure Storage provider.

�History Table
The history table contains the history events for all the orchestration

instances running within a task hub. The name of the table is in the format

TaskHubNameHistory. The partition key of this table is derived from

the instance ID of the orchestration function. Since the instance ID is

generated randomly, it ensures optimal distribution of internal partitions

in an Azure Storage table. As the orchestrator function instances run, new

rows are added to this table.

When an orchestration instance runs, first the appropriate rows of

the history table are loaded into the memory. These history events are

then replayed in the orchestrator function to get back to the previous

checkpoint state. This is influenced by the Event Sourcing pattern.

�Instance Table
This table contains the statuses of all the orchestrations running within

a task hub. The orchestration function instance ID is the partition key

of this table, and the row key is a fixed constant. There is one row per

orchestration function instance.

This table is consistent with the content of the history table. This table

is used by the GetStatusAsync (.NET) API and the getStatus (JavaScript)

API. Also, it is used by the HTTP status query API.

Chapter 5 Azure Durable Functions

104

Using a separate table to efficiently satisfy the instance query operation

in this way is influenced by the Command and Query Responsibility

Segregation (CQRS) pattern.

�Internal Queue Triggers
Activity functions and orchestrator functions are both triggered by the

queues in the task hub of the Azure Functions app. This provides an

“at-least-once” delivery guarantee of messages. There are two types of

queues in Durable Functions.

•	 Control queue: In Durable Functions, there are

multiple queues per task hub. Control queues are more

sophisticated than work-item queues because control

queues trigger the stateful orchestrator functions.

Orchestrator messages are load balanced across the

control queue. In a single poll, a message can dequeue

as many as 32 messages, and if all those messages

belong to a single orchestrator, they are processed as a

batch.

•	 Work-item queue: Per task hub there is one work-item

queue in Durable Functions. This queue behaves like a

normal queue. This queue triggers the stateless activity

functions by dequeueing a single message at a time.

When a durable function scales out to multiple VMs,

each VM competes to acquire work from the work-item

queue.

Since you now have an understanding of the underlying mechanism,

let’s look at how to scale durable functions.

Chapter 5 Azure Durable Functions

105

�Orchestrator Scale-Out
Stateless functions like activity functions can be scaled out easily by adding

more VMs, but stateful functions like orchestrator functions are partitioned

across one or more queues for them to scale out. By default, a task hub

can have at most 16 partitions, and by default the partition count is 4. The

number of control queues is defined in the host.json file for a function

running on the 2.0 runtime, as shown here:

{

"extensions": {

 "durableTask": {

 "partitionCount": 2

 }

 }

}

When you scale out the orchestrator function to multiple instances,

each instance acquires a lock on one of the control queues, and this

way it ensures that each orchestration instance runs on a single host

instance at a time. In the previous example, a task hub will have two

control queues, so an orchestration instance can be load balanced

across as many as five VMs. Additional VMs can be added to increase

the capacity of activity functions. Generally, orchestration functions are

intended to be lightweight, so they should not require more computing

power. It is therefore advisable to create not more than two to five

control queues.

Figure 5-8 depicts how Azure Functions behaves in a scaled-out

manner.

Chapter 5 Azure Durable Functions

106

As you can see in Figure 5-8, all instances compete for the work

from the work-item queue, but only two instances at a time can acquire

messages from the control queue, and each instance locks the single

control queue.

�Autoscaling

Durable Functions supports autoscaling via the scale controller. The

scale controller monitors the rate of events and decides whether

to scale in or scale out. In the case of Durable Functions, the scale

controller monitors the latency of each queue by issuing a peek

command. If the message latencies are higher than the threshold, then

the scale controller will keep adding the instances until it reaches the

partition count.

In the case of work-item queues, the scale controller will keep

adding the VM instances if the message latencies exceed the threshold

irrespective of the partition count. The maximum number of instances it

can add is 200.

Figure 5-8.  Azure Functions behavior when scaling out

Chapter 5 Azure Durable Functions

107

�Concurrency Throttling

Azure Functions allows you to run multiple functions concurrently within

a single app instance. The concurrency increases the parallel execution

and reduces the number of “cold starts.” But you should also be mindful of

the fact that high concurrency results in high per-VM memory usage.

Orchestrator and activity functions both support concurrency, and

their limits can be set in host.json. The setting for an activity function

is maxConcurrentActivityFunctions and for an orchestrator function is

maxConcurrentOrchestratorFunctions.

{

 "extensions": {

 "durableTask": {

 "maxConcurrentActivityFunctions": 20,

 "maxConcurrentOrchestratorFunctions": 20

 }

 }

}

By default the number of activity and orchestrator function executions

is capped at ten times the number of cores on the VM.

�Orchestrator Function Replay
As you know, orchestrator functions are stateful functions, and they replay

to the checkpoint using the contents of the history table. The orchestrator

function code is replayed every time a batch of messages is dequeued from

the control queue by default.

Durable Functions provides an ability to decrease the aggressive

behavior of the replay by using extended sessions. When you enable

extended sessions, the function instances are held in memory

for that time, and you can process message without a full replay.

Chapter 5 Azure Durable Functions

108

Enabling extended sessions reduces the I/O against the Azure Storage

table and thus increases the throughput. You can enable extended

sessions by setting extendedSessionsEnabled to true. To control

how long you will keep the idle session in the memory, you use the

extendedSessionIdleTimeoutInSeconds setting in host.json, as

shown here:

{

 "extensions": {

 "durableTask": {

 "extendedSessionsEnabled": true,

 "extendedSessionIdleTimeoutInSeconds": 30

 }

 }

}

But there are always two sides of a coin. So, when enabling extended

session to increase throughput, there is a downside as well.

•	 It can increase function app memory usage.

•	 It can decrease throughput if there are many

concurrent, short-lived orchestrator functions.

�Performance Targets
If you are planning to use durable functions in a production

application, you should consider the performance requirements early

in the process because they will define the pattern you should use for

your functions.

Table 5-1 shows the maximum throughput for various scenarios.

Chapter 5 Azure Durable Functions

109

Table 5-1.  Maximum Throughput

Scenario Maximum Throughput

Sequential activity execution 5 activities per second, per instance

Parallel activity execution (fan-out) 100 activities per second, per instance

Parallel response processing (fan-in) 150 responses per second, per

instance

External event processing 50 events per second, per instance

�Creating Durable Functions Using Azure
Portal
Now that you understand what a durable function is, let’s create one.

�Creating a Durable Function
Follow these steps:

	 1.	 Open Azure Portal and click “Create a resource.”

Select Compute and then Function App, as shown in

Figure 5-9.

Chapter 5 Azure Durable Functions

110

Figure 5-9.  Starting a durable function

	 2.	 Provide the details shown in Figure 5-10 and

click Create.

Chapter 5 Azure Durable Functions

111

Figure 5-10.  App details

Chapter 5 Azure Durable Functions

112

	 3.	 Once the deployment succeeds, go to the resource

and select the durable-func-new-book function, as

shown in Figure 5-11.

	 4.	 Expand the function’s app and click the + icon.

Then, click the “In-portal” environment and

continue, as shown in Figure 5-12.

Figure 5-11.  Selecting the function

Chapter 5 Azure Durable Functions

113

Figure 5-12.  Selecting the environment and continue, as shown in
Figure 5-12.

	 5.	 Click “More templates” and click “Finish and view

templates and continue, as shown in Figure 5-12.,”

as shown in Figure 5-13.

Figure 5-13.  Choosing more templates

Chapter 5 Azure Durable Functions

114

	 6.	 In the search field, type durable and select the

“Durable Functions HTTP starter” template, as

shown in Figure 5-14.

	 7.	 Click Install to install the Durable Functions

extension, as shown in Figure 5-15.

Figure 5-14.  Selecting the starter template

Figure 5-15.  Starting the installation

Chapter 5 Azure Durable Functions

115

	 8.	 Name the orchestrator client function

OrchestrationClient_Start. Paste the following

code and click Save:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"

#r "Microsoft.Azure.WebJobs.Extensions.Http"

#r "Newtonsoft.Json"

 using System.Net.Http;

 using System.Threading.Tasks;

 using Microsoft.Azure.WebJobs;

 using Microsoft.Azure.WebJobs.Extensions.Http;

 using Microsoft.Azure.WebJobs.Host;

 using Microsoft.Extensions.Logging;

[FunctionName("OrchestrationClient_Start")]

public static async Task<HttpResponseMessage> Run(

 �[HttpTrigger(AuthorizationLevel.Anonymous,

"get", "post")]HttpRequestMessage req,

 �[OrchestrationClient]DurableOrchestration

Client starter, ILogger log)

 {

 �string instanceId = await starter.StartNew

Async("Orchestrator_City", null);

 �log.LogInformation($"Running orchestration

with ID = '{instanceId}'.");

 �return starter.CreateCheckStatus

Response(req, instanceId);

 }

Chapter 5 Azure Durable Functions

116

	 9.	 Click the + icon again and type durable. Select

“Durable Functions orchestrator,” as shown in

Figure 5-16.

	 10.	 Name the function Orchestrator_City and paste

the following code:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"

 [FunctionName("Orchestrator_City")]

 public static async Task<List<string>> Run(

 �[OrchestrationTrigger] DurableOrche

strationContext context)

 {

 var outputs = new List<string>();

 �outputs.Add(await context.CallActivity

Async<string>("City_Travel", "Hyderabad"));

Figure 5-16.  Selecting the orchestrator

Chapter 5 Azure Durable Functions

117

 �outputs.Add(await context.CallActivity

Async<string>("City_Travel", "New York"));

 �outputs.Add(await context.CallActivity

Async<string>("City_Travel", "Delhi"));

 // returns

 // "I am travelling to Hyderabad"

 // "I am travelling to New York"

 // "I am travelling to Delhi"

 return outputs;

 }

	 11.	 Click the + icon again and type durable. Select

“Durable Functions activity,” as shown in Figure 5-17.

Figure 5-17.  Selecting the activity

Chapter 5 Azure Durable Functions

118

	 12.	 Name the function City_Travel and paste the

following code:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"

[FunctionName("City_Travel")]

 �public static string Run([ActivityTrigger]

string cityName, ILogger log)

 {

 �log.LogInformation($"I am travelling to

{cityName}.");

 return $"I am travelling to {cityName}!";

 }

	 13.	 Click the function name and then click “Platform

features.” Once you are on the Platform features tab,

select App Service Editor, as shown in Figure 5-18.

Figure 5-18.  Selecting the App Service Editor

Chapter 5 Azure Durable Functions

119

	 14.	 The App Service Editor will open in a new tab. Now,

select the host.json file and copy and paste the

following code in it:

{

 "version": "2.0",

 "logging": {

 "fileLoggingMode": "always",

 "logLevel": {

 "default": "Information",

 "Host.Results": "Information",

 "Function": "Information",

 "Host.Aggregator": "Trace"

 }

 }

}

	 15.	 There’s no need to save the file. It autosaves, as

shown in Figure 5-19.

Figure 5-19.  The code

Chapter 5 Azure Durable Functions

120

	 16.	 Now, go back to the function app and go to the

OrchestrationClient_Start function. Click Get

Function Url and copy the URL. The URL will be in

the format of https://function-hhtp-instance/

api/orchestrators/{functionName}?code=#code.

Replace {functionName} with the name of the

orchestration HTTP trigger, which in this case is

OrchestrationClient_Start. Now your URL is

all set. Paste the URL in the browser and press

Enter, and you should see the result, as shown in

Figure 5-20.

�Disaster Recovery and Geodistribution
of Durable Functions
Since you have deployed your Azure durable function and are wanting

to use it in production, you should now look at how you can make it

production-ready.

Whenever you want a solution to run on a cloud service provider such

as Microsoft, Amazon, Google, and so on, you should specifically plan

for disaster recovery and make sure your application is running in case

there is any disaster and the region in which application is running in goes

down.

Also, you should take care of the data that is going to be stored to make

this application run successfully is properly georeplicated.

Figure 5-20.  Results

Chapter 5 Azure Durable Functions

121

To enable disaster recovery for durable functions, you should first

make sure that your durable function is stateless. Once you have done that,

you can enable disaster recovery by leveraging another Microsoft service

called Traffic Manager.

You can configure Azure Functions as an app service in Traffic

Manager and use any routing strategy.

For geodistribution, you should always consider keeping a copy of the

data in multiple regions. All the Azure data storage services such as Azure

Storage, Azure Cosmos DB, and Azure SQL provide georeplication of data

across Azure data centers. You can enable these georeplication services to

make sure that your data is available in multiple regions. This will help you

make your function available quickly in the case of a disaster.

In conclusion, this chapter covered how durable functions work and

the patterns you’ll use with the Durable Functions extension. Also, in this

chapter, you created your first durable function running in Azure. You now

understand how to manage your functions in the case of a disaster.

In the next chapter, you will look at deploying functions to Azure

using a CI/CD pipeline and at how to configure the functions for Azure

Functions.

Chapter 5 Azure Durable Functions

123© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_6

CHAPTER 6

Deploying Functions
to Azure
In this chapter, I will cover following topics:

•	 Deploying functions to Azure using continuous

deployment

•	 Deploying functions to Azure using ARM templates

This chapter will walk you through the ways to deploy functions

to Azure. By the end of this chapter, you should be able to deploy your

functions in two different ways.

�Deploying Functions Using Continuous
Deployment
Azure Functions integrates seamlessly with continuous integration/

continuous deployment (CI/CD) and the Azure pipeline, which allows

you to continuously deploy your functions to production. Continuous

deployment makes it easier to deploy code bits in a project where

multiple people are working and when changes in the code repository

are frequent.

124

Using App Service continuous integration, you can easily deploy a

function app. Azure Functions integrates seamlessly with the following

deployment sources:

•	 Azure DevOps (a.k.a. VSTS)

•	 OneDrive

•	 GitHub

•	 Dropbox

•	 Bitbucket

•	 Git local repository

•	 External repositories such as Mercurial and Git

Continuous deployment is configured on a per-function app basis, and

once the continuous deployment is enabled, the access to the function app

is set to read-only in Azure Portal.

�Setting Up a Code Repository for Continuous
Deployment
Before you set up continuous deployment for your function app, you

should arrange your source code properly. The name of the directory is the

name of the function app. The host.json file resides in the parent or top

folder. Each subfolder in the function app consists of separate functions.

A bin folder contains library files and packages required by the function to

run, as shown in Figure 6-1.

Chapter 6 Deploying Functions to Azure

125

All the functions in the function app should have the same

language worker.

Now that your code repository is ready, let’s set up your function for

continuous deployment.

�Setting Up an Azure DevOps Account
Before you can set up continuous deployment for your Azure function, you

need to set up your Azure DevOps account so that you can connect it to the

Azure Functions service.

Set up your Azure DevOps account by following these steps:

	 1.	 Go to Azure Portal (https://ms.portal.azure.com/)

and click Services. Then search for azure devops and

select “Azure DevOps organizations,” as shown in

Figure 6-2.

Figure 6-1.  Project organization

Chapter 6 Deploying Functions to Azure

https://ms.portal.azure.com/

126

	 2.	 You should see the list of organizations, as shown in

Figure 6-3.

	 3.	 Once you click the organization, a blade should

open on the right side, as shown in Figure 6-4. Select

“Set up billing” in the menu.

Figure 6-2.  Finding Azure DevOps organizations

Figure 6-3.  Organizations list

Chapter 6 Deploying Functions to Azure

127

Fi
gu

re
 6

-4
. 

Se
tt

in
g

u
p

bi
lli

n
g

Chapter 6 Deploying Functions to Azure

128

	 4.	 A vertical blade will open with the available Azure

subscriptions. Select a suitable one and click Link,

as shown in Figure 6-5.

	 5.	 Once you get a notification that the subscription is

linked, you are good to go, as shown in Figure 6-6.

Figure 6-5.  Linking to an Azure subscription

Chapter 6 Deploying Functions to Azure

129

�Setting Up Continuous Deployment for Azure
Functions
You have linked your Azure DevOps organization with an Azure

subscription, so you can now set up continuous development for Azure

Functions.

	 1.	 Go to Azure Portal and select all the resources

and functions you want to set up for continuous

deployment, as shown in Figure 6-7.

Figure 6-6.  Success

Figure 6-7.  Choosing the functions

Chapter 6 Deploying Functions to Azure

130

	 2.	 Once a function loads, click “Platform features” in

the top menu, as shown in Figure 6-8.

	 3.	 In “Platform features,” you will see the Code

Deployment section. Select Deployment Center, as

shown in Figure 6-9.

Figure 6-8.  Selecting platform features

Chapter 6 Deploying Functions to Azure

131

	 4.	 Now you will see lot of options such as Azure Repos,

GitHub, Bitbucket, and so on. For this, select Azure

Repos and click Next, as shown in Figure 6-10.

Figure 6-9.  Choosing Deployment Center

Figure 6-10.  Choosing Azure Repos

Chapter 6 Deploying Functions to Azure

132

	 5.	 Select Azure Pipelines because it is the preferred

way to configure continuous deployment. It is still in

preview but is good enough to use. Once you have

selected Azure Pipelines, as shown in Figure 6-11,

click Continue.

	 6.	 Select the Azure DevOps configuration that you

configured and provide details such as the project

name, repository, and branch. Then click Continue,

as shown in Figure 6-12.

Figure 6-11.  Choosing Azure Pipelines

Chapter 6 Deploying Functions to Azure

133

	 7.	 Set up a deployment slot, which is just a staging

area. A staging slot is where you can deploy your

app and test it, and if everything looks good, you

can just swap the staging slot with the production

slot without any downtime. This will help you in

two ways.

•	 The app can be thoroughly tested before being

released to production.

•	 If the new deployment after the slot swap

misbehaves in production or has a bug, you

have your last working code already available

in the staging slot, so you can swap it back to

production.

	 8.	 Provide the details, as shown in Figure 6-13, and

click Continue.

Figure 6-12.  Adding the Azure DevOps configuration

Chapter 6 Deploying Functions to Azure

134

	 9.	 Check the summary and click Finish, and your

continuous deployment is now ready and set up, as

shown in Figure 6-14.

Figure 6-13.  Setting up the deployment slot

Figure 6-14.  CD now ready

Chapter 6 Deploying Functions to Azure

135

	 10.	 Click Build Pipeline, as shown in Figure 6-14. Click

the link, and you will be taken to the build pipeline

of your function, as shown in Figure 6-15.

	 11.	 To check the release pipeline, click the Release

Pipeline link, as shown in Figure 6-14. You will

be taken to the release pipeline of the function in

Visual Studio Team Service (VSTS), as shown in

Figure 6-16.

Figure 6-15.  Build pipeline

Chapter 6 Deploying Functions to Azure

136

�Deploying Azure Functions Using ARM
Templates
One of the most popular ways of deploying anything on Azure has

been Azure Resource Manager (ARM) templates. Functions can also

be deployed using ARM templates. In this section, you will look at the

required parameters and resources that will enable you to deploy functions

with ARM templates.

Basically, you need the following resources to start deploying functions

using ARM templates:

•	 Azure Storage account

•	 Hosting plan

•	 Function app

Let’s set up these using ARM templates.

Figure 6-16.  Release pipeline

Chapter 6 Deploying Functions to Azure

137

For any deployment on Azure, you require an Azure Storage

account, which is the case here. ARM templates will basically first copy

the zip file to an Azure Storage blob and then use that zip file to deploy

the required resource.

The following code snippet will create an Azure Storage account using

an ARM template:

{

 "type": "Microsoft.Storage/storageAccounts",

 "name": "[variables('storageAccountName')]",

 "apiVersion": "2016-12-01",

 "location": "[parameters('location')]",

 "kind": "Storage",

 "sku": {

 "name": "[parameters('storageAccountType')]"

 }

}

This code is looking for the storageAccountType parameter, which can

be set up in the parameters section in the ARM template, as shown here:

"storageAccountType": {

 "type": "string",

 "defaultValue": "Standard_LRS",

 �"allowedValues": ["Standard_LRS", "Standard_GRS",

"Standard_RAGRS"],

 "metadata": {

 "description": "Storage Account type"

 }

}

The Azure Storage account is set up, so let’s look at setting up the

hosting plan. Here you have two types of hosting plans: the Consumption

Plan and the App Service Plan. Let’s first look at the Consumption Plan.

Chapter 6 Deploying Functions to Azure

138

�Deploying a Function App on the
Consumption Plan
The Consumption Plan allows you to make the best use of Azure

Functions. The Consumption Plan dynamically allocates compute power

when your code is running. It scales out to handle extra load and then

returns to normal when the load lessens. So, if Azure Functions is not

running, you are not paying anything for idle VMs. Also, you don’t have to

worry about peak load in advance because the Consumption Plan will take

care of it.

The Consumption Plan is a special type of serverfarm resource,

and in ARM templates you specify it by setting the Dynamic value for the

computeMode and sku properties.

{

 "type": "Microsoft.Web/serverfarms",

 "apiVersion": "2015-04-01",

 "name": "[variables('hostingPlanName')]",

 "location": "[parameters('location')]",

 "properties": {

 "name": "[variables('hostingPlanName')]",

 "computeMode": "Dynamic",

 "sku": "Dynamic"

 }

}

In addition, two more settings, WEBSITE_

CONTENTAZUREFILECONNECTIONSTRING and WEBSITE_CONTENTSHARE,

are required by the Consumption Plan. These properties configure the

storage account and file path where the function app and configuration

are stored.

Chapter 6 Deploying Functions to Azure

139

"properties": {

 �"serverFarmId": "[resourceId('Microsoft.Web/

serverfarms', variables('hostingPlanName'))]",

 "siteConfig": {

 "appSettings": [

 {

 �"name": "WEBSITE_CONTENTAZUREFILE

CONNECTIONSTRING",

 �"value": "[concat('DefaultEndpointsProtocol=

https;AccountName=', variables('storageAccount

Name'), ';AccountKey=', listKeys(variables('storage

Accountid'),'2015-05-01-preview').key1)]"

 },

 {

 "name": "WEBSITE_CONTENTSHARE",

 "value": "[toLower(variables('functionAppName'))]"

 }

]

 }

}

The complete ARM template to deploy Azure Functions on the

Consumption Plan is as follows:

{

 �"$schema": "https://schema.management.azure.com/schemas/

2015-01-01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "appName": {

 "type": "string",

Chapter 6 Deploying Functions to Azure

140

 "metadata": {

 "description": "Function App Name"

 }

 },

 "storageAccountType": {

 "type": "string",

 "defaultValue": "Standard_LRS",

 �"allowedValues": ["Standard_LRS", "Standard_GRS",

"Standard_RAGRS"],

 "metadata": {

 "description": "Storage Account type"

 }

 },

 "location": {

 "type": "string",

 "defaultValue": "[resourceGroup().location]",

 "metadata": {

 "description": "Location for all resources."

 }

 },

 "runtime": {

 "type": "string",

 "defaultValue": "node",

 "allowedValues": ["node", "dotnet", "java"],

 "metadata": {

 �"description": "The language worker runtime to load in

the function app."

 }

 }

 },

Chapter 6 Deploying Functions to Azure

141

 "variables": {

 "functionAppName": "[parameters('appName')]",

 "hostingPlanName": "[parameters('appName')]",

 "applicationInsightsName": "[parameters('appName')]",

 �"storageAccountName": "[concat(uniquestring(resource

Group().id), 'azfunctions')]",

 �"storageAccountid": "[concat(resourceGroup().id,'/providers/',

'Microsoft.Storage/storageAccounts/', variables('storage

AccountName'))]",

 "functionWorkerRuntime": "[parameters('runtime')]"

 },

 "resources": [

 {

 "type": "Microsoft.Storage/storageAccounts",

 "name": "[variables('storageAccountName')]",

 "apiVersion": "2016-12-01",

 "location": "[parameters('location')]",

 "kind": "Storage",

 "sku": {

 "name": "[parameters('storageAccountType')]"

 }

 },

 {

 "type": "Microsoft.Web/serverfarms",

 "apiVersion": "2015-04-01",

 "name": "[variables('hostingPlanName')]",

 "location": "[parameters('location')]",

 "properties": {

 "name": "[variables('hostingPlanName')]",

 "computeMode": "Dynamic",

 "sku": "Dynamic"

 }

 },

Chapter 6 Deploying Functions to Azure

142

 {

 "apiVersion": "2015-08-01",

 "type": "Microsoft.Web/sites",

 "name": "[variables('functionAppName')]",

 "location": "[parameters('location')]",

 "kind": "functionapp",

 "dependsOn": [

 �"[resourceId('Microsoft.Web/serverfarms', variables

('hostingPlanName'))]",

 �"[resourceId('Microsoft.Storage/storageAccounts',

variables('storageAccountName'))]"

],

 "properties": {

 �"serverFarmId": "[resourceId('Microsoft.Web/

serverfarms', variables('hostingPlanName'))]",

 "siteConfig": {

 "appSettings": [

 {

 "name": "AzureWebJobsDashboard",

 �"value": "[concat('DefaultEndpointsProtocol=

https;AccountName=', variables('storageAccount

Name'), ';AccountKey=', listKeys(variables

('storageAccountid'),'2015-05-01-preview').key1)]"

 },

 {

 "name": "AzureWebJobsStorage",

 �"value": "[concat('DefaultEndpointsProtocol=

https;AccountName=', variables('storageAccount

Name'), ';AccountKey=', listKeys(variables

('storageAccountid'),'2015-05-01-preview').key1)]"

 },

Chapter 6 Deploying Functions to Azure

143

 {

 �"name": "WEBSITE_CONTENTAZUREFILE

CONNECTIONSTRING",

 �"value": "[concat('DefaultEndpointsProtocol=

https;AccountName=', variables('storageAccount

Name'), ';AccountKey=', listKeys(variables

('storageAccountid'),'2015-05-01-preview').key1)]"

 },

 {

 "name": "WEBSITE_CONTENTSHARE",

 "value": "[toLower(variables('functionAppName'))]"

 },

 {

 "name": "FUNCTIONS_EXTENSION_VERSION",

 "value": "~2"

 },

 {

 "name": "WEBSITE_NODE_DEFAULT_VERSION",

 "value": "8.11.1"

 },

 {

 "name": "APPINSIGHTS_INSTRUMENTATIONKEY",

 �"value": "[reference(resourceId('microsoft.

insights/components/', variables('application

InsightsName')), '2015-05-01').InstrumentationKey]"

 },

 {

 "name": "FUNCTIONS_WORKER_RUNTIME",

 "value": "[variables('functionWorkerRuntime')]"

 }

]

 }

Chapter 6 Deploying Functions to Azure

144

 }

 },

 {

 "apiVersion": "2018-05-01-preview",

 "name": "[variables('applicationInsightsName')]",

 "type": "microsoft.insights/components",

 "location": "East US",

 "tags": {

 �"[concat('hidden-link:', resourceGroup().id, '/

providers/Microsoft.Web/sites/', variables('application

InsightsName'))]": "Resource"

 },

 "properties": {

 "ApplicationId": "[variables('applicationInsightsName')]",

 "Request_Source": "IbizaWebAppExtensionCreate"

 }

 }

]

}

�Deploying a Function App on the App
Service Plan
With this plan, Azure Function runs on dedicated VMs similar to web apps.

You can set up the App Service Plan in an ARM template as follows:

{

 "type": "Microsoft.Web/serverfarms",

 "apiVersion": "2016-09-01",

 "name": "[variables('hostingPlanName')]",

 "location": "[parameters('location')]",

 "properties": {

Chapter 6 Deploying Functions to Azure

145

 "name": "[variables('hostingPlanName')]",

 "sku": "[parameters('sku')]",

 "workerSize": "[parameters('workerSize')]",

 "hostingEnvironment": "",

 "numberOfWorkers": 1

 }

}

Here, workerSize is the size of the VM, which is small (0), medium

(1), or large (2). You can set up the worker size in the ARM template in the

parameters section, as shown here:

"workerSize": {

 "type": "string",

 "allowedValues": [

 "0",

 "1",

 "2"

],

 "defaultValue": "0",

 "metadata": {

 "description": "The instance size of the hosting plan"

 }

}

The complete ARM template for Azure Functions is shown here:

{

 �"$schema": "https://schema.management.azure.com/

schemas/2015-01-01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "appName": {

 "type": "string",

Chapter 6 Deploying Functions to Azure

146

 "metadata": {

 "description": "Function App name"

 }

 },

 "sku": {

 "type": "string",

 "allowedValues": [

 "Free",

 "Shared",

 "Basic",

 "Standard"

],

 "defaultValue": "Standard",

 "metadata": {

 "description": "The pricing tier for the hosting plan."

 }

 },

 "workerSize": {

 "type": "string",

 "allowedValues": [

 "0",

 "1",

 "2"

],

 "defaultValue": "0",

 "metadata": {

 "description": "The instance size of the hosting plan"

 }

 },

 "storageAccountType": {

 "type": "string",

 "defaultValue": "Standard_LRS",

Chapter 6 Deploying Functions to Azure

147

 "allowedValues": [

 "Standard_LRS",

 "Standard_GRS",

 "Standard_RAGRS"

],

 "metadata": {

 "description": "Storage Account type"

 }

 },

 "location": {

 "type": "string",

 "defaultValue": "[resourceGroup().location]",

 "metadata": {

 "description": "Location for all resources."

 }

 }

 },

 "variables": {

 "functionAppName": "[parameters('appName')]",

 "hostingPlanName": "[parameters('appName')]",

 �"storageAccountName": "[concat(uniquestring(resource

Group().id), 'functions')]"

 },

 "resources": [

 {

 "type": "Microsoft.Storage/storageAccounts",

 "name": "[variables('storageAccountName')]",

 "apiVersion": "2018-02-01",

 "location": "[parameters('location')]",

 "kind": "Storage",

Chapter 6 Deploying Functions to Azure

148

 "sku": {

 "name": "[parameters('storageAccountType')]"

 }

 },

 {

 "type": "Microsoft.Web/serverfarms",

 "apiVersion": "2016-09-01",

 "name": "[variables('hostingPlanName')]",

 "location": "[parameters('location')]",

 "properties": {

 "name": "[variables('hostingPlanName')]",

 "sku": "[parameters('sku')]",

 "workerSize": "[parameters('workerSize')]",

 "hostingEnvironment": "",

 "numberOfWorkers": 1

 }

 },

 {

 "apiVersion": "2016-08-01",

 "type": "Microsoft.Web/sites",

 "name": "[variables('functionAppName')]",

 "location": "[parameters('location')]",

 "kind": "functionapp",

 "properties": {

 "name": "[variables('functionAppName')]",

 �"serverFarmId": "[resourceId('Microsoft.Web/

serverfarms', variables('hostingPlanName'))]",

 "hostingEnvironment": "",

 "clientAffinityEnabled": false,

 "siteConfig": {

 "alwaysOn": true

 }

 },

Chapter 6 Deploying Functions to Azure

149

 "dependsOn": [

 �"[resourceId('Microsoft.Web/serverfarms', variables

('hostingPlanName'))]",

 �"[resourceId('Microsoft.Storage/storageAccounts',

variables('storageAccountName'))]"

],

 "resources": [

 {

 "apiVersion": "2016-08-01",

 "name": "appsettings",

 "type": "config",

 "dependsOn": [

 �"[resourceId('Microsoft.Web/sites', variables

('functionAppName'))]",

 �"[resourceId('Microsoft.Storage/storageAccounts',

variables('storageAccountName'))]"

],

 "properties": {

 �"AzureWebJobsStorage": "[concat('DefaultEndpoints

Protocol=https;AccountName=',variables('storage

AccountName'),';AccountKey=',listkeys(resourceId

('Microsoft.Storage/storageAccounts', variables

('storageAccountName')), '2015-05-01-preview').

key1,';')]",

 �"AzureWebJobsDashboard": "[concat('DefaultEndpoints

Protocol=https;AccountName=',variables('storage

AccountName'),';AccountKey=',listkeys(resourceId

('Microsoft.Storage/storageAccounts', variables

('storageAccountName')), '2015-05-01-preview').

key1,';')]",

Chapter 6 Deploying Functions to Azure

150

 "FUNCTIONS_EXTENSION_VERSION": "~1"

 }

 }

]

 }

]

}

Once the function is deployed using the CI/CD pipeline and you have

set up the staging slot, the function will be deployed to the staging slot.

To go to the staging slot, follow these steps:

	 1.	 Go to Azure Portal and click Function Apps in the

menu, as shown in Figure 6-17.

	 2.	 Select the function for which you created the CI/CD

pipeline. I have created a pipeline for durable-

func-new-book, as shown in Figure 6-18.

Figure 6-17.  Selecting Function Apps

Chapter 6 Deploying Functions to Azure

151

	 3.	 Click “Platform features” and select Deployment

Center, as shown in Figure 6-19.

	 4.	 Once you are in the Deployment Center, click the

slot, as shown in Figure 6-20.

Figure 6-19.  Selecting Deployment Center

Figure 6-18.  Pipeline

Chapter 6 Deploying Functions to Azure

152

	 5.	 Once you are in the slot, you will see the URL of

the staging slot and the Swap option, as shown in

Figure 6-21. Now, you can test your function in the

staging slot. Once you are satisfied that things are

running fine, you can swap the slot.

	 6.	 To swap the slot, click the Swap button, as

highlighted in Figure 6-21. When you click Swap, the

vertical screen will open with option to swap. Once

you are satisfied with the values, click Swap again, as

shown in Figure 6-22.

Figure 6-21.  Testing

Figure 6-20.  Selecting the slot

Chapter 6 Deploying Functions to Azure

153

You can get the Azure Quick Start template at https://azure.

microsoft.com/en-us/resources/templates/ or from GitHub at

https://github.com/Azure/azure-quickstart-templates/.

You have now configured the CI/CD pipeline of your function, so your

function app is all set for production. In the next chapter, you will look at

what’s required to make functions production-ready.

Figure 6-22.  Clicking Swap

Chapter 6 Deploying Functions to Azure

https://azure.microsoft.com/en-us/resources/templates/
https://azure.microsoft.com/en-us/resources/templates/
https://github.com/Azure/azure-quickstart-templates/

155© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_7

CHAPTER 7

Getting Functions
Production-Ready
In this chapter, I will cover following topics:

•	 Using built-in logging

•	 Using Application Insights to monitor functions

•	 Securing functions

•	 Configuring CORS in Azure Functions

�Using Built-in Logging
The first thing that comes to mind when talking about monitoring

functions is error logging. You’ll want to log errors in Azure Functions so

that you know what went wrong and can fix it.

By default, Azure Functions comes with a logger instance that logs

errors to Azure File Storage. The logger is passed to the function along with

the invocation, as shown in Figure 7-1.

Figure 7-1.  The logger is passed to the function

156

As you can see in Figure 7-1, an instance of ILogger is passed as an

argument to the function invocation. You can use the extension method

from Microsoft.Extensions.Logging to log events. The events that are

exposed are LogDebug, LogInformation, LogError, LogWarning, and

LogCritical.

For a JavaScript function, it looks like Figure 7-2.

The context passed in Figure 7-2 has a log function, and you can use it

to log at different levels. The log function has similar levels, such as Trace,

Debug, Information, Warning, Error, and Critical.

The host and function logs of Azure Functions is kept in /LogFiles/

Application/Functions.

�Using Application Insights to Monitor Azure
Functions
Azure Functions offers built-in integration with Application Insights. Using

Application Insights, you can monitor Azure Functions easily because

Application Insights not only provides error details but also provides

details such as server requests, timer functions, and much more.

�Application Insights Settings for Azure Functions
To connect Azure Functions to Application Insights, Azure Functions

needs to know the Application Insights instrumentation key. The key

APPINSIGHTS_INSTRUMENTATIONKEY must be set in the app settings of Azure

Functions.

Figure 7-2.  The JavaScript function

Chapter 7 Getting Functions Production-Ready

157

You can integrate Application Insights with Azure Functions in two

ways.

•	 Automatically integrating during new function creation

•	 Manually connecting to the existing Application

Insights service

�Integrate Application Insights During New Azure
Function Creation
Let’s see how this is done.

	 1.	 Go to Azure Portal and click “Create a resource.”

Then, click Compute and click Function App, as

shown in Figure 7-3.

Figure 7-3.  Starting the function app

	 2.	 A blade will open. Scroll down and click Application

Insights, as shown in Figure 7-4.

Chapter 7 Getting Functions Production-Ready

158

	 3.	 Once you click it, the Application Insights setup will

open. Click Enable, select “Create new resource” or

“Select existing resource,” and set up Application

Insights, as shown in Figure 7-5.

Figure 7-4.  Finding Application Insights

Figure 7-5.  Setting up Application Insights

Chapter 7 Getting Functions Production-Ready

159

	 4.	 Provide the proper details such as the resource

name and location and click Apply. Your new

function is now integrated with Application Insights.

�Manually Connecting Application Insights
to Azure Functions
Let’s do it manually now. Follow these steps:

	 1.	 Go to Azure Portal, click “Create a resource,” and

search for Application Insights. Then click Create, as

shown in Figure 7-6.

Figure 7-6.  Starting the manual process

Chapter 7 Getting Functions Production-Ready

160

	 2.	 Once you are on the Application Insights creation

page, provide details such as the name, application

type, resource group, and location, as shown in

Figure 7-7. Click Create.

	 3.	 Once Application Insights is ready, go to the

Dashboard and copy the integration key, as shown

in Figure 7-8.

Figure 7-7.  Application Insights properties

Chapter 7 Getting Functions Production-Ready

161

	 4.	 Go to Azure Functions and select “Platform

features” and then Application Settings. Click

Add New Setting and add APPINSIGHTS_

INSTRUMENTATIONKEY. See Figure 7-9.

Figure 7-8.  Locating the instrumentation key

Figure 7-9.  Adding the key

Chapter 7 Getting Functions Production-Ready

162

The Azure Functions app is integrated with Application Insights, and

you can create custom telemetry events and other metrics in your Azure

app function.

�Disabling Built-in Logging
Because you have enabled Application Insights for your Azure Functions

app, it is imperative to disable the built-in logging of Azure Functions that

uses Azure Storage. The built-in logging is good for light-weight workloads

such as testing in lower environments but is not intended for use in

production. The reason for discouraging the use of built-in logging is that if

the workload is high, then the logs might be incomplete because of Azure

Storage’s throttling.

To disable the built-in logging, you need to delete the

AzureWebJobsDashboard setting from the app settings. Just make sure that

this key is not being used in any applications.

�Configuring Categories and Log Levels
Application Insights is like a plug-and-play service for Azure Functions,

but if you use the default configuration, it can result in high-volume data,

and you will end up hitting your data cap for Application Insights.

To avoid that, you can customize the configuration and send only the

logs you require. To do that, you need to first understand the categories of

logs in Azure Functions.

•	 The function runtime creates logs with a category that

begins with Host.

•	 The “Function started,” “function executed,” and “function

completed” logs have the category Host.Executor.

•	 The logs that you write in your function have the

category “Function”.

Chapter 7 Getting Functions Production-Ready

163

You can configure which log level to go to Application Insights for the

previous categories in the host.json file.

{

 "logging": {

 "fileLoggingMode": "always",

 "logLevel": {

 "default": "Information",

 "Host.Results": "Error",

 "Function": "Error",

 "Host.Aggregator": "Trace"

 }

 }

}

In the previous settings, you are setting the following:

•	 For the categories Host.Results and Function, you

will send logs with a log level of Error or higher to

Application Insights.

•	 For the category Host.Aggregator, you will send logs

with level Trace or Verbose and higher.

•	 For all other logs, you will send logs with a log level of

Information or higher.

So, now you are done, and your function is ready to be monitored

properly in production. Let’s see it in action in Figure 7-10.

Chapter 7 Getting Functions Production-Ready

164

Monitoring functions in production is a necessity. This enables you

to monitor load, errors, and requests, and also lets you debug issues in

production.

�Securing Azure Functions
To make your functions production-ready, you have to secure them so

that unauthorized access can be reduced. In today’s world, securing

your functions should be one of the most important tasks as there are

lot of data breaches, and any data breach reduces people’s trust of the

company and its web sites. So, it is paramount for you to secure Azure

Functions.

Figure 7-10.  Function in action

Chapter 7 Getting Functions Production-Ready

165

The good thing about Azure Functions is it provides you with an easy-

to-use configuration to secure your functions. Let’s go back to the HTTP-

triggered function you created in this book. Let’s copy the function URL, as

shown in Figure 7-11.

Now, copy this URL to a browser and add &name={provideYourName},

replacing YourName with any name, as shown in Figure 7-12.

Figure 7-11.  Copying the function

Figure 7-12.  Replacing YourName

As you can see, anyone who has your URL can access the function.

Since this is a basic function that does not interact with your database, it’s

OK. But consider a function like the OData API function that you created

in Chapter 4. Now, if your endpoint is not secured (i.e., it does not require

any authentication/authorization), then you are actually inviting hackers

to easily get your data.

Chapter 7 Getting Functions Production-Ready

166

To avoid this, you need to make sure that only authenticated users can

access your function. Let’s enable authentication/authorization for your

function using Active Directory.

	 1.	 Go to the function that you want to secure and

click “Platform features” and then Authentication/

Authorization, as shown in Figure 7-13.

Figure 7-13.  Clicking Authentication/Authorization

	 2.	 Set App Service Authentication to On and then

set the “Action to take when request is not

authenticated” drop-down to “Log in with Azure

Active Directory,” as shown in Figure 7-14.

Chapter 7 Getting Functions Production-Ready

167

	 3.	 In the Authentication Providers section, click

Azure Active Directory and set Management

Mode to Express. Then select Create New AD App.

Provide the name of the Active Directory and

click OK. This will create the AD app and enable

authentication/authorization for this function, as

shown in Figure 7-15.

Figure 7-14.  Setting “Action to take when request is not
authenticated”

Chapter 7 Getting Functions Production-Ready

168

	 4.	 Let’s try to hit the same URL that you did in

Figure 7-12. You will see that now it asks you

to log in before showing the result, as shown in

Figure 7-16.

Figure 7-15.  Creating the AD app ID

Chapter 7 Getting Functions Production-Ready

169

You have now secured your function, and only the users who are in

your AD application will be able to access this function.

�Configuring CORS on Azure Functions
In most cases where you want to use a function as an API, you will be

running Azure Functions and your UI or service that will call Azure

Functions in different domains.

If that’s the case, you will have to enable cross-origin site scripting

(CORS) for your function so that you can access it from different domains.

To do that, let’s follow these steps:

	 1.	 Let’s go back to the function and click “Platform

features.” Then select CORS within the API section,

as shown in Figure 7-17.

Figure 7-16.  Requesting a login

Chapter 7 Getting Functions Production-Ready

170

	 2.	 Select Enable Access-Control-Allow-Credentials,

as shown in Figure 7-18. Let’s say you have

an application running locally on http://

localhost:5000 and you want to access this

function from this application. In Allowed Origins,

set this URL and click Save, as shown in Figure 7-18.

Figure 7-17.  Selecting CORS

Figure 7-18.  Setting the URL

Chapter 7 Getting Functions Production-Ready

171

With this you have enabled CORS on Azure Functions, and your

function can now be accessed from all the domains that you have provided

in Allowed Origins. To enable all the URLs, set it to *.

With this, you have come to the end of the book. I hope this book is

just the beginning of your learning about the Azure Functions service. The

more you dig into it, the more you will learn about Azure Functions.

Chapter 7 Getting Functions Production-Ready

173© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9

Index

A
Activity function, 89, 97, 104
Activity trigger, 97

message visibility, 98
return values, 98
threading, 98

Application insights
built-in logging, 162
categories and log levels,

configuration, 162–164
connection, 156, 157
integration, 157–159
manual connection, 159

adding key, 161
instrumentation key, 161
properties, 160

Async HTTP APIs pattern, 92–94
Azure DevOps account

bill, setup, 127
link, subscription, 128
organizations, 126

Azure functions
application-level

extensions, 24
app service plan, 6
vs. Azure WebJobs, 4–5
consumption plan, 5

features, 3
file hierarchy, 23
logging-level

extensions, 24
Azure Functions 2.0

core tools, 29
NuGet packages, 29, 30
Visual Studio

Code, 29, 30
Azure resource manager

(ARM) templates
app service plan, 144

Azure functions, 145–150
CI/CD pipeline, 150
deployment center, 151
function apps,

selection, 150
swap, 153
testing, 152

consumption plan
deploy Azure

functions, 139–144
serverfarm resource, 138

resources, 136
storage account, 137
workerSize, 145

Azure WebJobs, 4, 5

https://doi.org/10.1007/978-1-4842-4444-9

174

B
Bindings, 26, 27
Blob storage–triggered function, 30

host.json, 51
using C#

Azure logo, 31
BlobTrigger, selection, 33
.cs file, 39, 40
folder, creation, 32
function-v2-book, 38
language, selection, 32
local app setting, 35
namespace, 34
naming function, 34
resized image, 41
sign in, Azure, 36
storage, selection, 37
subscription, selection, 36

using Node.js
Azure storage account, 45
blob naming, 46
code, 49, 50
function files, 47
language, selection, 42
naming function, 43
subscription, selection, 45
template, selection, 43
workspace, addition, 46

Built-in logging, 155, 156

C
Client function, 88
Cloud computing, 53

Command and query
responsibility segregation
(CQRS) pattern, 104

Continuous deployment, 3, 123
Continuous integration/continuous

deployment (CI/CD)
adding configuration, 133
Azure DevOps account, 125–129
code repository, 124, 125
continuous deployment,

setup, 129
center, selection, 131
function, choosing, 129
platform features,

selection, 130
repos, selection, 131

pipelines, 132, 135
slot, setup, 134
sources, 124
VSTS, 136

Control queue, 104
Cross-origin site scripting

(CORS), 169
enable access-control-allow-

credentials, 170
URL setting, 170

CustomerModel.cs file, 69

D
Deploying functions

ARM templates (see Azure
resource manager (ARM)
templates)

INDEX

175

continuous deployment (see
Continuous integration/
continuous deployment
(CI/CD))

Durable functions
activity function, 89
client function, 88
control queue, 104
creation, Azure Portal

activity, select, 117
app details, 110, 111
App Service

Editor, 118, 119
create resource, 109
durable-func-new-book

function, 112
”In-portal”

environment, 112, 113
installation, 114
OrchestrationClient_Start

function, 120
Orchestrator_City

function, 116, 117
orchestrator client

function, 115
selecting orchestrator, 116
templates, 113–114

disaster recovery and
geodistribution, 120, 121

monitoring, 94, 95
orchestration client, 101, 102
orchestrator function, 87, 88
performance

targets, 108, 109

stateful orchestration, 88
use case, 87
work-item queue, 104

Dynamic value, 138

E
EventHubTrigger, 26

F
Fan-Out/Fan-In pattern, 91, 92
File hierarchy, 23
Function app

Azure Portal
account creation, 8
function creation, 13, 15, 16
item, 9–11
name and settings, 11
status checking, 12

Visual Studio code
checking, 22
copying URL, 20
creation, 21
extension

installation, 18
function creation, 19
language selection, 18
naming, 21
project selection, 19
subscription, 21
trigger selection, 20

Function as a service (FaaS), 2
Function chaining, 89–91

Index

176

G
Gigabyte-second (GB-s), 5
GitHub Webhook, 26

H
History table, 103
host.json file, 105, 124, 163
HTTP-triggered function

C#
folders creation, 68, 69, 71, 73
language selection, 63
local URL, 73
namespace, 65
naming function, 63, 64
SqlClient package, 66, 67
template selection, 64

OData API (see Open data
protocol (OData))

SQL server creation, 59–62
Human interaction, 95–97

I
Instance table, 103, 104
Integrated development

environment (IDE), 3
Internal queue triggers, 104
Inventory management service, 57
Isolated functions, 58

J, K, L
JSON object, 98, 99, 102

M
Microservice architecture, 54

vs. monolithic architecture, 54–56
Monitoring functions, 164
Monolithic applications, 56–58
Monolithic approach, 53, 54

N
Nano services, 54

O
Open data protocol (OData), 74

getSqlResults method, 75
npm packages, 74
query parameters, 80
SQL query, 77

Orchestration trigger, 99–101
message visibility, 100
return values, 100
single threading, 99

Orchestrator function, 87, 88, 107
Orchestrator function

replay, 107, 108
Orchestrator scale-out

autoscaling, 106
concurrency throttling, 107

P, Q
Polyglot programming, 55
Proxy

azure portal, 85, 86
visual studio code, 82–84

INDEX

177

R
Routing strategy, 121

S
Seamless integration, 3
Securing Azure functions

AD app ID, creation, 168
app service authentication, 167
authentication/authorization, 166
copying, function URL, 165
HTTP-triggered function, 165

Serverless computing, 1, 2
Service bus trigger, 26
SQL server management studio, 62
storageAccountType parameter, 137

T, U
Timers and compensation

logic, 95
Traffic Manager, 121
Trigger, 25, 26

V
Virtual machine (VM), 6
Visual Studio Team Service

(VSTS), 135

W, X, Y, Z
Work-item queue, 104

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Azure Functions
	Overview of Serverless Computing
	Overview of Azure Functions
	Azure Functions vs. Azure WebJobs
	Azure Functions Pricing Plan
	Consumption Plan
	App Service Plan

	Chapter 2: Creating Functions in Azure Functions
	Creating an Azure Function Using Azure Portal
	Creating an Account on Azure Portal or Logging into Azure Portal
	Creating Your First Function App Using Azure Portal
	Creating Your First Function in the Function App

	Creating an Azure Function Using Visual Studio Code
	Creating Your First Function App Using Visual Studio Code
	Creating Your First Function in the Function App

	File Hierarchy, Configuration, and Settings in Azure Functions

	Chapter 3: Understanding Azure Functions Triggers and Bindings
	Overview of Triggers and Bindings
	Azure Functions 2.0 Changes
	Installing Extensions Using the Azure Functions Core Tools
	Installing Extensions Using the Azure Functions Visual Studio Tools

	Creating a Blob Storage–Triggered Function
	Creating a Blob-Triggered Function Using C#
	Blob-Triggered Function Using Node.js

	Running the Example

	Chapter 4: Serverless APIs Using Azure Functions
	Monolithic Architecture vs. Microservice Architecture
	Converting Monolithic Applications to Highly Scalable APIs Using Azure Functions
	Creating an HTTP-Triggered Function with SQL Server Interaction
	Creating a SQL Server Instance with Sample Data
	Creating an HTTP-Triggered Function Using C#
	Creating an HTTP-Triggered OData API for SQL Server Using Azure Functions

	Overview of Proxies in Azure Functions
	Creating a Proxy Using Visual Studio Code
	Creating a Proxy Using Azure Portal

	Chapter 5: Azure Durable Functions
	Overview of Durable Functions
	Types of Functions
	Durable Function Patterns
	Function Chaining
	Fan-Out/Fan-In
	Async HTTP APIs
	Monitoring
	Human Interaction

	Bindings for Durable Functions
	Activity Triggers
	Orchestration Triggers
	Orchestration Client

	Performance and Scaling of Durable Functions
	History Table
	Instance Table
	Internal Queue Triggers
	Orchestrator Scale-Out
	Autoscaling
	Concurrency Throttling

	Orchestrator Function Replay
	Performance Targets

	Creating Durable Functions Using Azure Portal
	Creating a Durable Function

	Disaster Recovery and Geodistribution of Durable Functions

	Chapter 6: Deploying Functions to Azure
	Deploying Functions Using Continuous Deployment
	Setting Up a Code Repository for Continuous Deployment
	Setting Up an Azure DevOps Account
	Setting Up Continuous Deployment for Azure Functions

	Deploying Azure Functions Using ARM Templates
	Deploying a Function App on the Consumption Plan
	Deploying a Function App on the App Service Plan

	Chapter 7: Getting Functions Production-Ready
	Using Built-in Logging
	Using Application Insights to Monitor Azure Functions
	Application Insights Settings for Azure Functions
	Integrate Application Insights During New Azure Function Creation
	Manually Connecting Application Insights to Azure Functions
	Disabling Built-in Logging
	Configuring Categories and Log Levels

	Securing Azure Functions
	Configuring CORS on Azure Functions

	Index

