Beginning
Azure Functions

Building Scalable and Serverless Apps
Rahul Sawhney

Apress’

Beginning Azure
Functions

Building Scalable and
Serverless Apps

Rahul Sawhney

Apress’

Beginning Azure Functions: Building Scalable and Serverless Apps

Rahul Sawhney
Hyderabad, India

ISBN-13 (pbk): 978-1-4842-4443-2 ISBN-13 (electronic): 978-1-4842-4444-9
https://doi.org/10.1007/978-1-4842-4444-9

Copyright © 2019 by Rahul Sawhney

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Matthew Moodie

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4443-2.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4444-9

This book is dedicated to my parents, Ashwani Kumar
Sawhney and Neha Sawhney. Without their sacrifices,
Twouldn’t have achieved what I have in life.

Also, I would like to dedicate this book to my wife,
Kulpreet, for always standing by my side and
supporting me during hard times.

Table of Contents

About the AUthOrccccviissemmnmmssssnnmmsssssn s aa s nans ix
About the Technical REVIEWETccuusssmsmmsssssnssmsssssssnsssssssnnssssssnnnsssssnns xi
Acknowledgments.......cccccuusssssmmnmnmmmesssssssssssnsssessssssssssssnnnssesssssssnnnnnns Xiii
Introductionccccvnisemmmmnsssnnnmmsssssanmmsssssnnnessssnsnsessnnnnsssssnnnnenssnnnnnnnssn XV
Chapter 1: Introduction to Azure Functions.........ccceiuerinssssssssssnnnssesssnes 1
Overview of Serverless COMPULING.......ccvcvverrevererieniese s seesesessens 2
Overview of AZure FUNCLIONScccovvevneninescnnse e ses e sessenens 3
Azure Functions vs. Azure WebJobs ..o 4
Azure Functions Pricing Plancocooneenrese e 5
ConsUMPLION PlaN........cccciirr e 5

APP SErVICE PIANcoeirirerer s 6
Chapter 2: Creating Functions in Azure Functionsoccceeemnnnrsssssnns 7
Creating an Azure Function Using Azure Portal.........c.cccoreernnenennenensscsensesenseens 7
Creating an Account on Azure Portal or Logging into Azure Portal.................. 8
Creating Your First Function App Using Azure Portal............ccccoovvnininnninicnnens 8
Creating Your First Function in the Function Appccccvvivncncninncnicnnen 13
Creating an Azure Function Using Visual Studio Codeccoovrrnrererenerrnsennne 16
Creating Your First Function App Using Visual Studio Code.........c..coceeurvernene. 17
Creating Your First Function in the Function Appccccvvvvvrininvcsnienen, 19

File Hierarchy, Configuration, and Settings in Azure Functions..........cccecveviernene 22

TABLE OF CONTENTS

Chapter 3: Understanding Azure Functions Triggers and Bindings....25

Overview of Triggers and Bindingsc.cccovvvnrenrnnerniennesess s sesesesenns 25
Azure Functions 2.0 Changes ..o ses s sssssssesse s 28
Installing Extensions Using the Azure Functions Core Tools.........c.ccceeereereenne 29
Installing Extensions Using the Azure Functions Visual Studio Tools 29
Creating a Blob Storage—Triggered FUNCLIONccccccvvenneserescrn e 30
Creating a Blob-Triggered Function Using Ci...........cccoevrinnenrnncnenenennenes 31
Blob-Triggered Function USing NOUE.JSc.ccoerrererensmrerenerenerenseresenessesenennes 41
Running the EXamPIec.cceveverenmrnersesese e s sens 51
Chapter 4: Serverless APIs Using Azure FUNCHIONScoussnnnsssnnsssnns 53
Monolithic Architecture vs. Microservice ArchiteCtureccoovveneseneresncnnaes 54
Converting Monolithic Applications to Highly Scalable APIs Using Azure
FUNCLIONS ...t e 56
Creating an HTTP-Triggered Function with SQL Server Interaction..................... 59
Creating a SQL Server Instance with Sample Datacccocvcvvrieviiniennne 59
Creating an HTTP-Triggered Function Using C#cccccvvvnvninicnnsensennen 62
Creating an HTTP-Triggered OData API for SQL Server Using
AZUE FUNCHIONS..... oo 74
Overview of Proxies in Azure FUNCLIONS.........ccocveeemrerernnerenenesese s 81
Creating a Proxy Using Visual Studio Code...........ceourrrrerersenmrencrnsenesenesennes 82
Creating a Proxy Using Azure Portalcccovvenrenernscnensenesesesessesese e 85
Chapter 5: Azure Durable FUnctions..........ccocuussmmmmmnsssssnnmssssssnsssssssnnns 87
Overview of Durable FUNCHONS........c.cccvnevnesnnse e 87
TyPEes Of FUNCHIONS......c.cooceeieernc s 88
Durable Function Patterns.........ccovvernnesnesennssesssessssess s sessnns 89

TABLE OF CONTENTS

Bindings for Durable FUNCTIONS........c.ccccrininnn e e 97
D0 1) T T o[£ 97
Orchestration THQQEISeverrrrererererrerserere s s s se s ssesessessessesassessessees 99
Orchestration Client...........ccoovrmnnns s 101

Performance and Scaling of Durable FUNCHiONS..........ccccvvvverevensenienenensensensenns 103
o [ES (0] T -1 103
INSEANCE TADIE.......ceeeer s 103
Internal QUEUE THPGEIScovverirerirrrerr e 104
Orchestrator SCale-0Ut...........cocvvererererre s 105
Orchestrator FUNCLION REPIAYcccvvevrerereererierereser s ses e ssessesessessesaesnes 107
Performance Targets ... s ses 108

Creating Durable Functions Using Azure Portalccccvvenrnncrnsenenenennnne 109
Creating a Durable FUNCLION.........cccccvrvvncnrns e 109

Disaster Recovery and Geodistribution of Durable Functions.........c..cccccveunene. 120

Chapter 6: Deploying Functions to AZUreusseeeessmnnsssssssssssssnsnnnas 123

Deploying Functions Using Continuous Deployment...........ccovvvnvninnieniennenn 123
Setting Up a Code Repository for Continuous Deployment.............ccccvvennene. 124
Setting Up an Azure DevOps ACCOUNT........cccvcrrerennsnsene s sessesees 125
Setting Up Continuous Deployment for Azure Functions...........ccccvevvervenenne. 129

Deploying Azure Functions Using ARM Templatesccccvveriervrerverierensensensens 136
Deploying a Function App on the Consumption Plan............cccveerievnieniennens 138
Deploying a Function App on the App Service Plan.........ccccocveevinienniniennens 144

Chapter 7: Getting Functions Production-Readyc.ccssseeensessnnnens 199

Using Built-in LOGUING......ccccvvvririniinnie s sse s sessesssssnesaesseas 155
Using Application Insights to Monitor Azure Functions........c..cccccovvniennceniennenn 156
Application Insights Settings for Azure FUNCLiONS........c.cocoeeeeerererenesesenenens 156
Integrate Application Insights During New Azure Function Creation............ 157

vii

TABLE OF CONTENTS

Manually Connecting Application Insights to Azure Functions...........ccceu.n. 159
Disabling Built-in LOGQINgc.ccvevreririnin e niersesseesesessessse e ssesssessessessens 162
Configuring Categories and Log LEVEIScccvvereverrerierenensensesessesessessenaes 162
Securing Azure FUNCHIONS ... s 164
Configuring CORS on Azure FUNGLIONScccoevvninennnnsne e 169
INA@X..ueeeiiienssssnnssssnnsssssnsssssnsssssnsssssnnssssnnssssnnsnssnnnnssnnnnssnnsnssnnnnssnnnnnnns 173

viii

About the Author

Rahul Sawhney works as a software developer
with Microsoft, India, and has more than five
years of experience delivering cloud solutions
using technologies such as .NET Core, Azure
Functions, microservices, Angular]S, Web API,
Azure AD, Azure Storage, ARM templates, App
Service, Traffic Manager, and more.

He is a Microsoft Certified Azure
Developer and Architect. He loves learning
new technologies and is passionate about

Microsoft technologies. In his free time, he
loves playing table tennis, watching movies,
and reading books.

You can reach Rahul at rahulsawhney2206@gmail.com or
www.linkedin.com/in/rahul-sawhney-2206.

ix

http://www.linkedin.com/in/rahul-sawhney-2206

About the Technical Reviewer

Vidya Vrat Agarwal is a software architect,
author, blogger, Microsoft MVP, C# Corner
MVP, speaker, and mentor. He is a TOGAF
Certified Architect and a Certified Scrum
Master (CSM). Currently working as a
principal architect at T-Mobile in the United
States, he started working on Microsoft .NET
with its first beta release. He is passionate
about people, process, and technology, and
he loves to contribute to the .NET community.

He lives in Redmond, Washington, with his
wife Rupali; two daughters, Pearly and Arshika; and a puppy girl, Angel.
He blogs atwww.MyPassionFor.Net and can be reached by e-mail
(vidya mct@yahoo.com) or on Twitter (@dotnetauthor).

http://www.mypassionfor.net/

Acknowledgments

I must start by thanking my girlfriend and now wife, Kulpreet, for always
being there and supporting me during my struggling days and for always
believing in me. I could not have written this book without her support and
motivation.

My heartfelt thanks to Manas Mayank and Kidar Garg who introduced
me to Microsoft Azure. They constantly mentored and guided me during
my early days of learning cloud technologies. They helped me a lot by
giving me complex work, and they always trusted in me. They not only
changed my thought process but instilled a growth mind-set in me by
encouraging me to try new technologies during this journey.

I am highly indebted to my younger brother, Sanjay, and my childhood
friends, Saurabh Trivedi and Gajendra Raikwar, because they always
trusted in my abilities and pushed me to work hard.

Iwould also like to thank my managers at Microsoft (Subhavya
Sharma, Anil Emmadi, Manish Sanga, and Jaydeep Baliram Sawant) for
always encouraging me to try new things and supporting and guiding me.
They helped me shape my career as well as guided me on the right path.

I would also like to thank my colleagues at Microsoft, (Rishabh Verma,
Mohit Garg, Subhendu De, Prashant Jain, Mehul Gardi, Binay Prasad,
Sanyam Seth, Archit Shukla, Harshit Agarwal, Abhishek Somani, Sidharth
Mittal, and Dinesh Kumar Reddy) for their zeal to learn new technologies.
Each one of you has taught me something about new technologies, and the
culture you create of learning and sharing is what makes work effortless.

Thanks to the team at Apress (Smriti Srivastava, Shrikant
Vishwakarma, and Matthew Moodie) for giving me this wonderful
opportunity and making this a memorable journey. Thanks to Vidya Vrat

xiii

ACKNOWLEDGMENTS

and Matthew Moodie for providing their valuable technical reviews, which
has helped me to improve the book.

Lastly, I would like to thank all the readers of this book. Please feel free
to share your valuable feedback about this book, which will help me to
deliver better content in the future. I look forward to all your feedback and
suggestions.

Xiv

Introduction

Get ready to create highly scalable apps and monitor functions in
production using Azure Functions 2.0!

The book starts by taking you through the basics of serverless
technology and Azure Functions and then covers the different pricing
plans of Azure Functions. After that, you will dive into how to use Azure
Functions as a serverless API. Then, you will learn about the Durable
Functions model and about disaster recovery and georeplication.

Moving on, you will encounter lots of practical recipes with hands-
on steps for creating different types of functions in Azure Functions
using Azure Portal and Visual Studio Code. Finally, I will discuss DevOps
strategy as well as how to deploy Azure Functions and get Azure Functions
production-ready.

By the end of this book, you will have all the skills needed to work
with Azure Functions, including creating durable functions, deploying
functions, and making them production-ready by using telemetry and
authentication/authorization.

What This Book Covers

Chapter 1 goes through the basics of serverless computing and talks
about Azure Functions. It compares Azure Functions to WebJobs so you
understand the difference between them. I also talk about the different
pricing plans of Azure Functions.

In Chapter 2, you will create first Function using Azure Portal and then
using Visual Studio Code. I will also talk about the Azure Functions file
hierarchy, configuration, and settings.

INTRODUCTION

In Chapter 3, you'll learn about triggers and bindings. I will also
discuss changes to Azure Functions 2.0 bindings. You will create Blob
Storage-triggered Azure Functions.

Chapter 4 will go through the differences between monolithic
applications vs. microservices. Then, I will talk about how you can convert
a monolithic application to microservices using Azure Functions. You will
create some functions and then learn about proxies.

In Chapter 5, you will start with overview of the Durable Functions
pattern and bindings. You'll also learn about performance and scaling in
a durable function. You will create your first durable function and learn
about disaster recovery and geo-replication.

In Chapter 6, you will look at deploying functions to Azure, first using a
CI/CD pipeline and then using ARM templates.

In Chapter 7, you will look at the built-in logging capabilities of Azure
Functions. Then, you will look at Application Insights and how it can be
used to monitor Azure Functions. Then, I will talk about securing Azure
Functions using Azure Active Directory and how to configure cross-origin
site scripting (CORS) in Azure Functions.

Let’s get started!

CHAPTER 1

Introduction to Azure
Functions

In the software industry, we are now in an era where everything we
develop is oriented toward the cloud. To help developers achieve more
productivity, cloud platforms such as Microsoft Azure, Amazon Web
Services, Google Cloud Platform, and so on, implement a concept known
as serverless computing. With serverless computing, companies and
developers can concentrate on developing products rather than worrying
about the maintenance and administration of the server.

Azure Functions is one such product for serverless computing.
Before going into Azure Functions, I'll talk about serverless computing
and what it means.

In this chapter, I will cover the following topics:

e Overview of serverless computing
e Overview of Azure Functions
e Azure Functions vs. Azure WebJobs

o Azure Functions pricing options

© Rahul Sawhney 2019
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_1

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Overview of Serverless Computing

Serverless computing is also known as function as a service (FaaS) and is one
of the current buzzwords of the tech industry. Serverless computing does
not mean your code runs without a server; it means you don’t have to take
care of the server maintenance, including patching, upgrading, and so on.
The servers will be managed by a cloud service provider such as Amazon,
Microsoft, Google, and so on, and you have to take care of managing your
code/application. With serverless computing, you pay only for the time your
code runs or executes. Also, the cloud service provider takes care of scaling
and load balancing, which is a win-win situation for both the cloud service
provider and you because you can dedicate the majority of your time to
doing what’s most important: developing the code/application. The cloud
service provider maintains and owns the server and bills you for the use of it.

Serverless computing is a paradigm shift in computing. Deploying
applications or code used to take months with physical machines. With
serverless computing, deploying takes just a millisecond. This has changed
the IT world drastically.

Now, what is Azure Functions?

Servedess

Containerization
Unit of seale: Applicatic

Virtual Machines
i of scake. Machin

Physical Machines

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Overview of Azure Functions

With Azure Functions, you can start writing your application code

without worrying about the application architecture and infrastructure

required to run the application. Azure Functions also provides the

capability to scale as needed. So, if the load is high, you can expect Azure

Functions to scale and cater to the high load. Also, with Azure Functions

you pay only for the time your code runs, so if the load on the application

is low, you pay less.

Here are some important features of Azure Functions:

Browser-based interface: You can write and test
your code directly in the interface without using any
integrated development environment (IDE).

Programming languages: Azure Functions supports
many languages such as C#, JavaScript, F#, Java,
Python, TypeScript, PHP, Batch, Bash, PowerShell, and
a few other experimental languages.

Seamless integration with third-party apps: Azure
Functions integrates seamlessly with third-party apps
such as Facebook, Google, Twitter, Twilio, and other
Azure services like CosmosDB, Azure Storage, Azure
Service Bus, and more. You can also integrate existing
apps using triggers and events.

Continuous deployment: Azure Functions supports
continuous deployment through Azure DevOps (VSTS),
GitHub, Xcode, Eclipse, and Intelli] IDEA.

As you can see, Azure Functions possesses some unique capabilities

that not only enhance your productivity but provide lots of different

options for developers to choose from. Still, I have heard developers

getting confused about when to use Azure Functions and when to use

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

Azure WebJobs. The primary reason for this confusion is that developers
have traditionally reduced the load on the application by doing extensive
and time-consuming computations in Azure WebJobs.

In the next section, you will learn about the differences between Azure
Functions and Azure WebJobs and in which scenario you should use each
of them.

Azure Functions vs. Azure WebJobs

Azure Functions and Azure WebJobs are both code-first integration
services that were designed for developers. Both support features such as
authentication, Application Insights, and source control integration.

Azure Functions has the following features that Azure WebJobs
does not:

e Serverless app model with auto scaling
e Development and testing in the browser
e Azure Logic Apps integration

o Pay-per-use pricing model

e Many triggers in version 2.0 such as Queue, Event Grid,
HTTP, Timer, and so on

For most scenarios, Azure Functions is the best choice because it
offers many programming languages, many pricing options, and greater
developer productivity. However, the following are two scenarios where
you should use WebJobs instead:

e You have an App Service environment where you want
to run some code snippet and maintain the same

DevOps pipeline and environment.

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

¢ You want to customize JobHost behavior in the host.
json file such as having a custom retry policy for Azure
Storage.

Azure WebJobs runs under the Azure App Service model, whereas
for Azure Functions you have different pricing models that give you more
control over pricing. You'll learn about pricing next.

Azure Functions Pricing Plan

Azure Functions supports two pricing plans.
e Consumption Plan
e App Service Plan

Let’s look in detail at both plans.

Consumption Plan

With Azure Functions’ Consumption Plan, you pay only when your code

is executing. This helps you save significantly over the App Service Plan or
when using a virtual machine. For example, if you have a weekly newsletter
for your web site, instead of using WebJobs, you can use Azure Functions
and save an enormous amount of money.

The metric used for calculating price in Azure Functions is gigabyte-
second (GB-s). This metric calculates the memory usage and total
execution time for billing. It is billed based on per-second resource
executions and consumptions.

In the Consumption Plan, you are granted 1 million requests and
400,000 GB-s of resource consumption for free per month per subscription
across all Azure Functions apps in that subscription.

CHAPTER 1 INTRODUCTION TO AZURE FUNCTIONS

App Service Plan

Azure Functions’ App Service Plan utilizes the same App Service Plan
used for hosting a web site, the Web API, and so on. With the App Service
Plan for Azure Functions, instead of paying for the duration when a
function is executing, you pay for the reserved resources of the underlying
virtual machine (VM). This makes the App Service Plan costlier than the
Consumption Plan.

Why do some companies use the App Service Plan? The reason is that
in the Consumption Plan, functions have a time limit of five minutes, so
if your Azure Functions code runs for more than five minutes in a single
execution, it will be timed out, whereas there is no time limitation for
Azure Functions in the App Service Plan. So, in the App Service Plan, Azure
Functions is as good as WebJobs.

Also, when you are billed on the App Service Plan, it is easier to
maintain the monthly quotas of your company because all the resources
are under the same App Service Plan.

However, if you have a piece of code that is resource hungry, then
having it on the same App Service Plan as the rest of your company would
actually make your other applications vulnerable because Azure Functions
would be using the same shared resource and thus would make the other
applications run slowly.

With this we have now come to the end of Chapter 1 and we now have
basic understanding of Serverless, Azure Function and App Pricing. Let’s now
move to Chapter 2 where we will build onto the learnings of this chapter.

CHAPTER 2

Creating Functions
In Azure Functions

In this chapter, you will start using Azure Functions. Microsoft has recently
released Azure Functions version 2.0, so I will be using Azure Functions 2.0
throughout the book’s examples.

In this chapter, I will cover the following topics:

o Creating functions using Azure Portal
o Creating functions using Visual Studio Code

e Checking out the file hierarchy, configuration, and
settings of Azure Functions

Let’s look at both ways you can create functions with Azure Functions.

Creating an Azure Function Using
Azure Portal

In this section, you will create your first function using Azure Portal.
Here you will be creating a “Hello, world” application completely using

Azure Portal.

© Rahul Sawhney 2019 7
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_2

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Creating an Account on Azure Portal or Logging
into Azure Portal

First you need to log into Azure Portal. You can go to http://portal.
azure.comto sign in. If you don’t have an Azure subscription or you are

first-time Azure user, you can get an Azure account for free for 12 months.
Visit https://azure.microsoft.com/en-us/free/ to get started on Azure.

Creating Your First Function App Using Azure
Portal

Once you have completed the sign-up/sign-in process, you will be taken to
the Azure Portal Dashboard. Now you can create a function app.

1. On the Dashboard, click “Create a resource” in the
left panel. In the menu that opens, click Compute
and then Function App, as shown in Figure 2-1.

http://portal.azure.com
http://portal.azure.com
https://azure.microsoft.com/en-us/free/

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Microsoft Azure Report a bug l 2 Search resources, services, an

Home * New
|- Create a resource New 0o x
I
All services
* FAVORITES | A
1= Dashb . .
(el e Azure Marketplace Seeall Featured See all
B8 Al resources
. Get started Windows Server 2016 Datacenter
a# Resource groups L Quickstart tutorial
& App Seni Recently created
& App Services
e e I Compute I Red Hat Enterprise Linux 7.2
o RIS R & et Quickstart tutorial
— Networking
= SOL databases
& Storage Ubuntu Server 18.04 LTS
Web @ Learn more
tual machines
Mobile .
& Load balancers SQL Server 2017 Enterprise
Containers Windows Server 2016
B8 Storage accounts Datab Learn more
atabases
> Virtual networks Analytics Reserved VM Instances
¢, Azure Active Directory Al + Machine Learni % Quickstart tutorial
+ Machine Leamning
Monitor . R
(e Internet of Things Service Fabric Cluster
@ Advisor , Quickstart tutorial
Integraticn
B Security Cent I
o e Security Web App for Containers
(® Cost Management + Billing Identity ';' Quickstart tutorial

E Help + support

Developer tools
Management Tools
Software as a service (Saas)

Blockchain

%

\

Function App

Quickstart tutorial

Figure 2-1. Creating Function App resource

Batch Service
Quickstart tutorial

2. Once you have clicked Function App, you will be

asked to provide certain details such as the app

name, resource group, OS, hosting plan, and so on.

Refer to Figure 2-2 to fill in these settings.

e App Name: This is the name of the function app.

The app name in this example is building-azure-

function, so the URI will be building-azure-
function.azurewebistes.net.

http://building-azure-function.azurewebistes.net
http://building-azure-function.azurewebistes.net

CHAPTER 2

10

CREATING FUNCTIONS IN AZURE FUNCTIONS

Subscription: This is the subscription under which
the function app will be created. An Azure account
can have multiple subscriptions that are used for
maintenance and billing purposes.

Resource Group: You can create a new resource
group or use an existing one. In Figure 2-2, I am
creating a new resource group named building-
azure-function. A resource group is like a
container that holds the resources required to run
that solution.

Hosting Plan: By default, Consumption Plan is
selected, but you can choose App Service Plan. To
better use Azure Functions and get a lower cost, go
for the Consumption Plan.

Location: Always try to choose the nearest location
to where you expect the majority of the traffic to
come for your function app.

Storage: Every function app requires storage.
You can either create new Azure storage or select
existing storage. In Figure 2-2, I am creating new
Azure storage.

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Function App 0O X
Create

* App name

| building-azure-function "l

.azurewebsites.net
* Subscription

| Visual Studio Enterprise v |

* Resource Group @
(®) Create new () Use existing

| building-azure-function v'}

05

Windows Linux

* Hosting Plan @

I Consumption Plan v l
* Location
| Central US v

* Runtime Stack

| .NET v |

* Storage @

(® Create new () Use existing

| buildingazurefube6? v/
Application Insights >

building-azure-function

Automation options

Figure 2-2. Create Function App

11

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS
3. Click the Create button to provision the new
function.

4. You can check the status of your function by clicking
the bell icon at the top, as shown in Figure 2-3.

=)

>. Iy puemm ©

Notifications

More events in the activity log =

mm= Deployment in progress...

Figure 2-3. Checking the status

5. Once the deployment is completed, your first Azure
Functions app, called building-azure-function, is
ready and has been deployed, and you can now start
coding for it. To go to the function app you created
in the previous steps, please refer to Figure 2-4.

e
Resorce geoups

ok EEedtcoloes Dadma | #

‘Subscrighons: 1518 pebcnd - Dot v 8 ubocapeion? Eioen

Figure 2-4. Select the Resource Group you created

12

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Creating Your First Function in the Function App

Your function app is ready and deployed, but it is not usable yet because
you don’t have any function inside the function app. A function is the core

piece of the function app where you code your logic.

1. To create your first function, click building-azure-
function, as shown earlier in Figure 2-4. Then
click the building-azure-function app service, as

shown in Figure 2-5.

2\ Boteares grevpt § buikiag e Ancin

Fesource groups © X [#) building-azure-function

Figure 2-5. Opening the app service

2. Click the + icon beside Functions and select

“in-portal,” as shown in Figure 2-6.

13

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

e g e 3 ikl dta Ao
il arure-function

LR re——— =

Figure 2-6. Choose Development Environment as “In-Portal”

3. Click the Continue button at the bottom, click
Webhook + API, and click Create, as shown in
Figure 2-7.

i+ g e b §

building-azure-furction-2

T T

Figure 2-7. Clicking Webhook + API and then Create

14

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

4. Your first HTTP-triggered function will be created.
As you can see in Figure 2-8, it comes with some
basic code. This code should be good enough for
you to test your function. So, click Save.

5. Once the function is saved, click Run and then click
Get Function URL, as shown in Figure 2-8.

building-azure-function-2 - HitpTrigger! Ed

— “E

P (Betlonmatultnes Dectfectmarult(sHalls .
o nes SacRecuestObies Sl s RS string or in the request body"y; | HITP

pT:
ey
Manage

F h
¥
-]
& Menin =

i

logs Console e

Figure 2-8. Running your Azure Function

6. A pop-up will open. Copy the URL shown in the
pop-up, and at the end of the URL add a query
parameter like 8name={name}, such as https://
building-azure-function.azurewebsites.net/
api/HttpTriggeri?code=LYXZApwCTtfGjzYOcuGSEc/
1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser.
Paste this URL in the address bar of a browser like
Edge or Chrome and click Enter. You will see a
message on the screen saying “Hello, {name},” as
shown in Figure 2-9.

15

https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser
https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser
https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser
https://building-azure-function.azurewebsites.net/api/HttpTrigger1?code=LYXZApwCTtfGjzYOcuGSEc/1SGgEaFFq9Bp6AX6z8ZKfPEU34Dazdw==&name=TestUser

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Figure 2-9. Viewing the function in the browser

7. When your function runs, the trace information

is written to logs. To see the output of the trace,

go back to Azure Portal and click the arrow at the

bottom, as shown in Figure 2-10.

2018-10-21T18:28:58 No new trace in

2018-10-21T18:29:49.548 [Information]

pregrammatically called via the hest

2018-10-21T18:29:49.567 [Information]
2018-10-21T18:29:49.624 [Information]

53d2463caabe)

& Reconnect O Copy logs MPause @ Clear o Expand

the past 1 min(s).

Executing 'Functions.HttpTriggerl' (Reason="This function was

APIs.', Id=FEb665c2-6ela-4d30-bbcl-53d2463caabe)

C# HTTP trigger function processed a request.

Executed 'Functions.HttpTriggerl’ (Succeeded, Id=FGbG6E5c2-Gela-4d90-bbcl-

programmatically called via the host

c2f745348adf)

2018-10-21T18:30:08.974 [Information]

2018-10-21T18:30:08.974 [Information]
2018-10-21T18:30:08.981 [Information]

Executing "Functions.HttpTriggerl' (Reason="'This function was

APIs.', Id=703c8d57-32bb-4e20-adBl-c2f745348adf)

C# HTTP trigger function processed a request.

Executed 'Functions.HttpTriggerl' (Succeeded, Id=703c8d57-32bb-4e20-addl-

2018-10-217T18:30:57.220 [Information]

nranrammatricallv rallad via rhe hasr

Figure 2-10. Trace log

Executing 'Functions.HEEpIriggerl’ (Reason= This Tunction was
apTes ' TAdmahrrodR3-aSfR-487a-RE4A-RINIIPRARNANY

With this you have created your first running Azure Functions app.

Now, let’s create the same thing in Visual Studio Code.

Creating an Azure Function Using Visual

Studio Code

In this section, I will take you through the steps for creating functions using

Visual Studio Code, which is a popular IDE.

16

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

In this section, you will learn how to create functions using the Azure

Functions extension for Visual Studio Code and publish the same function

as earlier to Azure using Visual Studio Code.

These are the prerequisites:

1.

Install Visual Studio Code from https://code.
visualstudio.com/.

Install .NET Core 2.1 for Windows from https://
www.microsoft.com/net/download.

Install Node.js, which consists of NPM, from
https://docs.npmjs.com/getting-started/
installing-node#osx-or-windows. Install the
8.5+ version.

Install the Core Packages tool by running npm
install -g azure-functions-core-tools in the
Visual Studio Code terminal. (To open Terminal,
go to the Terminal menu at the top and select New
Terminal. Once the terminal opens, paste in the
code and hit Enter.)

Once you are done with these steps, you are ready to create your first

function app using Visual Studio Code.

Creating Your First Function App Using Visual
Studio Code

Follow these steps:

1.

You need to install the Azure Functions extension in
Visual Studio Code. To do that, go to Extensions in
Visual Studio Code and search for Azure Functions.
Then click Install. Refer to Figure 2-11 to understand
the steps.

17

https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://docs.npmjs.com/getting-started/installing-node#osx-or-windows
https://docs.npmjs.com/getting-started/installing-node#osx-or-windows

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Code (Preview)

™
®
7

Figure 2-11. Installing the extension

2. Once the installation is complete, click the Reload to
Activate button or restart Visual Studio Code for the
new extension to appear in Visual Studio Code.

3. Click the Azure logo in the vertical menu and then
click the folder icon. Select Folder or Create New
Folder for the project. Then, select the language
you want to code your function in, as shown in
Figure 2-12.

) Welcorme - Visual Studia Code [Administrator
[Go Debug Tasks Hely

Visual Studio Code

Editir ed

Figure 2-12. Selecting a language

18

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

4. Select how you would like to open the function app,

as shown in Figure 2-13.

Figure 2-13. Setting how you would like to open your project

Creating Your First Function in the Function App

In the previous section, you created your first function app, but a function
app without any function is of no use. In this section, you will create your
first function.

1. Click the file icon in the vertical menu, and you will
see the function app created but with no function.
So, click the Azure logo in the vertical menu and
click Function. Then select the current project, as
shown in Figure 2-14.

udio Code

Figure 2-14. Selecting the current project

2. Selectthe HTTP Trigger function template and
provide a name for the template. Select Anonymous
for the Authorization Type field, as shown in
Figure 2-15.

19

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Welcome

Figure 2-15. Selecting the type of trigger

3. You will see that the index. js file has been loaded.
Press Ctrl+F5 to start the function. Once the
function is running (as shown in Figure 2-16), you
will get a URL in green. Copy the URL and append
?name={name} to it (replacing {name} with the actual
name), and it will show “Hello, {name}.

Figure 2-16. Copying the URL

20

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

4. Click the Azure logo in the vertical menu and click
Sign in to Azure. Then click Deploy to Azure and

select the subscription, as shown in Figure 2-17.

Visual Studio Enterprise I

Figure 2-17. Selecting a subscription

5. Select Create New Function App in Azure, as shown
in Figure 2-18. Then provide a unique name for the
function app and press Enter, as shown in Figure 2-19.

+ Create New Function App in Azure
blob-storage-triggered-func-nodejs
building-azure-function
durable-func-new-book

odata-function

Figure 2-18. Creating a new function app

Create new Function App in Azure (1/1)

building-azure-func-22

Enter a globally unique name for the new function app. (Press ‘Enter’ to confirm or ‘Escape’ to

cancel)

Figure 2-19. Naming the app

21

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

6. This will start creating a new Azure Functions
function app in the selected subscription. You
can check it out in the left menu, as shown in
Figure 2-20.

4 % Visual Studio Enterprise

Creating building-azure-function-22...
b % blob-storage-triggered-func-nodejs
4 % building-azure-function

» == Application Settings

» Deployments

= Functions

i= Proxies
b &> durable-func-new-book

» <% odata-function

Figure 2-20. Checking on the creation process

You have now created two functions, one in Azure Portal directly using
C# and another in Visual Studio Code using JavaScript. Let’s now look at
the settings and hierarchy of Azure Functions.

File Hierarchy, Configuration, and Settings
in Azure Functions

It's time to go back to the explorer in Visual Studio Code and take a look at
the file hierarchy of Azure Functions. It is important as a developer for you
to know which files reside where in Azure Functions. Figure 2-21 shows the
file hierarchy.

22

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

Figure 2-21. File hierarchy

Note that the function host will throw an exception if the host. json file
is missing the "version": "2.0" property. Also, version requires a string
for the value, so "version": 2.0 will not work.

All the application-level extensions such as CosmosDB, HTTP Trigger,
Queues, and so on, reside under the extensions object and not in the root
of the json object, as shown in Figure 2-22.

23

CHAPTER 2 CREATING FUNCTIONS IN AZURE FUNCTIONS

"extensions": [

"cosmosDB": {

"connectionMode": "Gateway",
"protocol™: "Https",
"leaseOptions": {

"leasePrefix": "prefix1i"
}

}s

"sendGrid": {

"from": “"Azure Functions <samples@functions.com>"

})

"http": {

"routePrefix": "api",
"maxConcurrentRequests”: 5,
"maxOutstandingRequests”: 3@

}s

"queues": {

"visibilityTimeout": "@@:80:18",
"maxDequeueCount™: 3

})

"eventHubs": {
"batchCheckpointFrequency™: 5,
"eventProcessorOptions": {

"maxBatchSize": 256,
"prefetchCount”: 512

}

b

Figure 2-22. Application-level extensions

All the logging-level settings for Azure Functions reside under the
logging object, as shown in Figure 2-23.

"logging": {
"fileLoggingMode": "debugOnly"

)

Figure 2-23. Logging-level extensions

In this chapter, you created your first function app and function. Also,
you learned about the Azure Functions file hierarchy, configuration, and
settings.

24

CHAPTER 3

Understanding Azure
Functions Triggers
and Bindings

This chapter covers the following topics:
e Overview of triggers and bindings
e Azure Functions 2.0’s changes to bindings

o Creating a Blob Storage-triggered function

Overview of Triggers and Bindings

Azure Functions is like WebJobs and the Web API in that it needs to be
invoked either by using Scheduler or by calling endpoints. In the case

of Azure Functions, a trigger is what invokes a function to run. A trigger
defines how a function is invoked, and each function in Azure Functions
must have only one trigger. Triggers usually have associated data, which is
nothing but the payload that triggers the function.

© Rahul Sawhney 2019 25
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_3

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Different types of triggers are available.

o BlobTrigger: This trigger gets fired when a new blob
or a blob update is detected. The blob contents are
provided as input to the function.

e QueueTrigger: This trigger gets fired when a new
message arrives in the Azure storage queue.

o EventHubTrigger: This trigger gets fired when any
event is delivered to the Azure Event Hub service.

o TimerTrigger: This trigger is called on a scheduled
basis. You can set the time to execute the function using
this trigger.

o HTTPTrigger: This trigger gets fired when the HTTP
request comes. In Chapter 2, you created an HTTP-
triggered function using Visual Studio Code.

o Service Bus Trigger: This trigger gets fired when a new
message comes in to an Azure Service Bus topic or
queue.

» Generic Webhook: This trigger gets fired when a
webhook HTTP request comes from any service that
supports webhooks.

e GitHub Webhook: This trigger gets fired when any
event such as Create Branch, Delete Branch, Issue
Comment, or Commit Comment occurs in your GitHub

repository.

Let’s now discuss bindings in Azure Functions. Azure Functions
bindings are a declarative way of connecting another resource to a
function. Bindings can be connected as input bindings, output bindings, or
both. Data from these bindings is provided to the function as parameters.

26

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Azure Functions 2.0 has the following bindings:

Blob Storage

Cosmos DB

Event Grid

Event Hubs

HTTP & Webhooks

Microsoft Graph Events
Microsoft Graph Excel tables
Microsoft Graph Outlook e-mail
Microsoft Graph OneDrive files
Microsoft Graph Auth Tokens
Queue Storage

Table Storage

Service Bus

Timer

Webhooks

SendGrid

SignalR

Twilio

Bindings are optional in Azure Functions, and you can have multiple

input and output bindings. In Azure Functions 2.0, all the bindings must

be registered except HTTP and Timer.

27

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Azure Functions triggers and bindings are configured in the
functions. json file, and they help you avoid putting hard-coded values in
the code.

Note You can find all the supported bindings in Azure Functions 2.0
by visiting https://docs.microsoft.com/en-us/azure/
azure-functions/functions-triggers-bindings#
supported-bindings.

Azure Functions 2.0 Changes

Azure Functions 2.0 now supports .NET Core 2.x, which means Azure
Functions 2.0 supports cross-platform development. That means Azure
Functions 2.0 now runs in more environments than just Mac and Linux
machines. Developers can develop functions on all major platforms
including Windows, Linux, and Mac.

Azure Functions 2.0 also supports non-.NET languages by using the
language worker model and now supports both Node 8 and Node 10.
Azure Functions 2.0 is faster and more performant than 1.0 as it now runs
on a modern language runtime.

In the Azure Functions 2.0 runtime, a new binding model was
introduced by Microsoft in which the bindings are no longer referenced by
the runtime by default except the few core bindings like HTTP and Timer.

With this new model, the runtime is decoupled from the extensions,
which provides additional flexibility and reduces the load by loading
only the extensions referenced in the function app. This also means that
the runtime now has no knowledge of the extensions, so they must be
registered before use.

28

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings#supported-bindings

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Extensions are now distributed as NuGet packages, and the registration
of these extensions is done by installing the required NuGet package of the
extension.

Installing Extensions Using the Azure Functions
Core Tools

With Azure Functions 2.0, the Azure Functions Core Tools (CLI) has
also been enhanced to support the new extension model. With 2.0,
a new extension context has been added to allow you to manage the

extensions.

o func extension install: With this command func
extension install you can install an extension and
register it to the function.

o func extension sync: This command func extension
sync allows you to install or uninstall the extensions
that are referenced in a function.

The following is the example of installing an extension:

func extension install -package Microsoft.Azure.WebJobs.
Extensions.Storage -version 3.0.1

This command installs the Blob extension to Azure Functions 2.0,
which will allow you to configure your function for a blob trigger.

Installing Extensions Using the Azure Functions
Visual Studio Tools

With Visual Studio Code, you will be referencing the extensions package
directly from the project. So, Visual Studio Code handles the installation of
the extensions, but you still need to register the extensions.

29

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Extension registration is handled by a custom build task added
by the NuGet package called Microsoft.Azure.WebJobs.Script.
ExtensionsMetadataGenerator, which needs to be explicitly
referenced for now. In a future release, this will be part of the SDK or
Visual Studio Tools.

The following are the steps that you need to perform to use the Blob

extension:

1. Add areference to the Microsoft.Azure.WebJobs.
Extensions.Storage NuGet package.

2. Add areference to Microsoft.Azure.WebJobs.
Script.ExtensionsMetadataGenerator.

3. Build the project.

Note With any of the installation steps mentioned, if you install and
register the extension, a metadata file named extensions. json will
be generated in the bin folder inside the function’s app root folder.
Only the extensions registered in this file will be used by the runtime.

Creating a Blob Storage-Triggered Function

In this section, you will learn how to create a Blob Storage-triggered
function using both C# and Node.js. I will take you through the process
one by one. You will be using Visual Studio Code to create the function. To
set up the system to create a function, you can check Chapter 2’s “Creating
an Azure Function Using Visual Studio Code” section.

In this function, you will try to resize the image once it is uploaded on
the blob by using a Blob trigger in Azure Functions.

Let’s start by first creating a function using C#.

30

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Creating a Blob-Triggered Function Using C#

Set up the machine as mentioned in Chapter 2. Once the machine is set
up, open Visual Studio Code, go to the Extensions section, and install the
C# extension. Make sure your Azure Functions extension version is 0.16.0.
Once this is done, go to the Azure Function menu and add a new function

with the following steps:

1. Open Visual Studio Code and then click the Azure
logo in the left menu, as shown in Figure 3-1.

Figure 3-1. Clicking the Azure logo

2. Click the folder icon and create a new folder, as

shown in Figure 3-2.

31

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Figure 3-2. Creating a new folder

3. Once a new folder is created, select the language in
which you want to code your function. In this case,
I am selecting C#, as shown in Figure 3-3.

Figure 3-3. Selecting the language

32

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

4. Select the template for the function. In this case,
select BlobTrigger as the template, as shown in

Figure 3-4.

Figure 3-4. Selecting BlobTrigger

5. Provide the name of the function. By default, it will
become BlobTriggerCSharp. You can leave it as is,
or you can type any name you want, as shown in
Figure 3-5.

33

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Figure 3-5. Naming the function

6. Provide the namespace. By default it will be
Company . Function. For this demo, set it as
AzureFunctionV2Book.Function, as shown in
Figure 3-6.

Figure 3-6. Providing the namespace

34

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

7. Click “Create new local app setting,” as shown in
Figure 3-7.

Visual Studio Code

Figure 3-7. Creating a new local app setting

8. The screen will ask you to sign in to Azure, as shown
in Figure 3-8, or it will show you the subscriptions if
you are already signed in. Select “Sign in to Azure”
if you already have account or select “Create a free
Azure Account” if you don’t have one.

35

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Studio Code

Figure 3-8. Signingin

9. Onceyou have selected “Sign in to Azure,” it will
take you to your browser to sign in. Then, it will load
all the subscriptions that you have in Visual Studio
Code. Select the subscription, as shown in Figure 3-9.

Figure 3-9. Selecting the subscription

36

10.

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

You can select the Azure Storage account that
already exists, or you can create a new storage
account. In this case, you will select the existing one,

as shown in Figure 3-10.

Figure 3-10. Selecting an existing storage

11.

Once the storage account is set up, provide a name
for the blob trigger. This is the path that the trigger
will monitor. By default, it shows as samples-
workitems. For this function, you are setting it to
function-v2-book, as shown in Figure 3-11.

37

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Studio Code

Figure 3-11. Setting it to function-v2-book

12. Click “Add to workspace,” and your function will be
ready, as shown in Figure 3-12.

dio Lode

Figure 3-12. Adding to the workspace

13. Your function is all set up, as shown in Figure 3-13.

38

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Figure 3-13. Completed function

14.

15.

Now you need to add a package named SixLabors.
ImageSharp to the project. To do that, type dotnet
add package SixLabors.ImageSharp -v 1.0.0-
beta0006 in the Terminal, and it will install the
package.

Once the package is installed, paste the following
code into the .cs file:

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Host;
using Microsoft.Extensions.Llogging;
using Microsoft.WindowsAzure.Storage.Blob;
using SixLabors.ImageSharp;

using SixLabors.ImageSharp.Formats.Png;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;

39

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

namespace AzureFunctionv2Book.Function

{
public static class BlobTriggerCSharp
{
[FunctionName("BlobTriggerCSharp")]
public static async Task Run([BlobTrigger
("image-blob/{name}", Connection = "AzureWeb
JobsStorage")]Stream myBlob, string name,
[Blob("output-blob/{name}", FileAccess.
ReadWrite, Connection = "AzureWebJobsStorage")]
CloudBlockBlob outputBlob, ILogger log)
{
log.LogInformation($"C# Blob trigger
function Processed blob\n Name:{name} \n
Size: {myBlob.Length} Bytes");
var width = 100;
var height = 200;
var encoder = new PngEncoder();
using (var output = new MemoryStream())
using (Image<Rgba32> image = Image.Load
(myBlob))
{
image.Mutate(x => x.Resize(width,
height));
image.Save(output, encoder) ;
output.Position = 0;
await outputBlob.UploadFromStream
Async(output);
}
}
}
}

40

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

16. In the top menu, click Debug and then click Start
Without Debugging to get the function up and
running. Now, go to Azure Storage and create two
containers named image-blob and output-blob.

If you have never created a container before, go to

the following link to see how to create containers:
https://docs.microsoft.com/en-us/azure/
storage/blobs/storage-quickstart-blobs-portal.

Once the container is created, upload the blob

as shown in the previous link in the image-blob
container. Now you will see the function getting
triggered, and once the function runs, the resized
image will appear in output-blob, as shown in
Figure 3-14.

& =~ T | Active blobs (default) ¥ | image-blob

Mame ~ | Access Tier Access Tier Last Modified Last Medified Blob Type Content Type Size Status

[resultPNG 11/22/2018, 3:42:38 PM Block Blob image/png 174.2 KB | Active
€& > v T Active blobs (default) ¥ |] cutput-blob
Access Tier Access Tier Last Modified Last Madified Blob Type Content Type Size Status
[resultPNG 11/22/2018, 4:06:57 PM Block Blob application/octet-stream Active
o . .
Figure 3-14. Resized image

With this you have created a blob-triggered function using C#. Now,
let’s look at creating a blob-triggered function using Node.js.

Blob-Triggered Function Using Node.js

Let’s try to implement the same functionality of image resizing using
Node.js.

41

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

1. Setup the machine for Node.js by installing the
latest version of Node.js. Once that is done, restart
Visual Studio Code and go to the function. The
first two steps are the same as what you did while
creating a blob-triggered function using C#. So, you
will start from step 3.

2. Select JavaScript as the language, as shown in
Figure 3-15.

Figure 3-15. Selecting the language

3. Now, select the template Azure Blob Storage Trigger,
as shown in Figure 3-16.

42

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Figure 3-16. Selecting the template

4. Provide the function name. By default, it will be
BlobTrigger. For this function, set the function
name to BlobTriggerJs, as shown in Figure 3-17.

Visual Stu

Figure 3-17. Naming the function

43

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

5. Click “Create new local app setting,” as shown in
Figure 3-18.

Visual Studio Code

Figure 3-18. Creating a new local app setting

6. Since you have already connected to Azure in the
previous section, you should now directly see all the
subscriptions available in Azure. Select the Azure
subscription under which you want to create this
function, as shown in Figure 3-19.

44

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Figure 3-19. Selecting a subscription

7. Select the Azure Storage account that you want this
function to connect with, as shown in Figure 3-20.

Figure 3-20. Selecting the Azure Storage account

45

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

8. After selecting the app setting name, the function
will ask you to provide the name of the blob that will
trigger this function. Provide the name of your blob,
as shown in Figure 3-21.

Studio Code

Figure 3-21. Naming your blob

9. Select “Add to workspace,” as shown in Figure 3-22.

Figure 3-22. Adding to the workspace

46

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

10. Your function is ready. Click the file icon, and you will

see all the function files, as shown in Figure 3-23.

Figure 3-23. Function files

11.

12.

To resize the image, you need to add a few NuGet
packages. The packages that you need to install are
azure-storage, urijs, stream, jimp, and async. You
can install these packages using npm i <package
name>.

Once the packages are installed, copy the following
code and paste it in:

var storage = require('azure-storage');
var URI = require('urijs');

const stream = require('stream');

const Jimp = require('jimp');

var async = require(‘async');

47

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

module.exports = async function (context, myBlob) {
context.log("JavaScript blob trigger function
processed blob \n Name:", context.bindingData.name,
"\n Blob Size:", myBlob.length, "Bytes");

var blobService = storage.createBlobService
(process.env.AzurelWlebJobsStorage);
var blockBlobName = context.bindingData.name;
const widthInPixels = 60;
const heightInPixels = 60;
const blobContainerName = ‘output-blob';
async.series(
[
function (callback) {
blobService.createContainerIfNotExists(
blobContainerName,
null,
(err, result) => {
callback(err, result)
1)

b
function (callback) {

var readBlobName = generateSasToken
("input-blob', blockBlobName, null)
Jimp.read(readBlobName.uri).then
((thumbnail) => {

thumbnail.resize(widthInPixels,
heightInPixels);

thumbnail.getBuffer(Jimp.MIME_PNG, (err,
buffer) => {

48

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

const readStream = stream.PassThrough();
readStream.end(buffer) ;

blobService.createBlockBlobFromStream
(blobContainerName, blockBlobName,
readStream, buffer.length, null,
(err, blobResult) => {

callback(err, blobResult);

};
};
1
}
1,

function (err, result) {
if (err) {
callback(err, null);
} else {
callback(null, result);

}
}
);
};

function generateSasToken(container, blobName,
permissions) {
var connString = process.env.AzureWebJobsStorage;
var blobService = azure.createBlobService
(connString);

// Create a SAS token that expires in an hour
// Set start time to five minutes ago to avoid
clock skew.

49

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

var startDate = new Date();
startDate.setMinutes(startDate.getMinutes() - 5);
var expiryDate = new Date(startDate);
expiryDate.setMinutes(startDate.getMinutes() + 60);

permissions = permissions || storage.BlobUtilities.
SharedAccessPermissions.READ;

var sharedAccessPolicy = {
AccessPolicy: {
Permissions: permissions,
Start: startDate,
Expiry: expiryDate

};

var sasToken = blobService.generateSharedAccessSign
ature(container, blobName, sharedAccessPolicy);

return {
token: sasToken,
uri: blobService.getUrl(container, blobName,
sasToken, true)
};
}

13. Once you run the code and upload the image, you
should see the image getting resized.

50

CHAPTER 3 UNDERSTANDING AZURE FUNCTIONS TRIGGERS AND BINDINGS

Running the Example

With these examples, you created two blob-triggered functions running on
the 2.0 framework, one with C# and another one with JavaScript/Node.js.
The main thing to note here is that the file host. json is important. It stores
the version of the function and lets the framework know on what version

you are running your function.

{

"version": "2.0"

Now you understand the concept of Azure triggers and bindings, and
you have created a blob-triggered function. In the next chapter, you will
look at creating serverless APIs using Azure Functions.

51

CHAPTER 4

Serverless APls Using
Azure Functions

Before you start creating APIs with Azure Functions, it is imperative for you
to understand where Azure Functions as a serverless API will fit into the
current system architecture that you are planning to use for building your
product or applications.

Traditionally, applications were based on a monolithic architecture
because developers wanted all the APIs to be a single deployable unit.
Setting up an individual API for the business case was a mammoth
task, so with the advent of cloud computing and the agile process, the
monolithic approach became less desirable. Developers started looking
at microservice architecture because cloud giants such as Microsoft,
Amazon, and Google made microservices easy.

In this chapter, I will cover the following topics:

¢ Monolithic architecture vs. microservice architecture

o Converting monolithic applications to highly scalable
APIs using Azure Functions

o Creating an HTTP-triggered function

e Overview of proxies in Azure Functions

© Rahul Sawhney 2019 53
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_4

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Let’s look in detail at the monolithic and microservice architectures in
the next section and try to understand which architecture to use in specific
circumstances and where Azure Functions fits in.

Monolithic Architecture vs. Microservice
Architecture

The monolithic approach used to be one of the most popular approaches
to building applications, where the complete application resides in one
codebase consisting of client-side applications, server-side applications,
and database code.

But with time, these monolithic applications become complex and
difficult to maintain, and compared to the agile development model,
monolithic applications are vulnerable to bugs and deployment issues. For
example, if there is a bug in the client-side code, you still have to deploy all
the code after fixing the bug since everything resides in one codebase. This
includes the server-side code, which can create issues if the server-side
code was not tested properly.

Also, with most applications now moving to the cloud, monolithic
architecture makes it difficult (and more expensive) for applications to
scale. In addition, DevOps becomes slow and complex, and the time to
deploy features, bugs, hotfixes, and so on, keeps increasing. This is where
the microservice architecture comes to the rescue.

The microservice architecture is the idea of breaking this complex
monolithic application into small and independent applications.

With a microservice architecture, it becomes easy and less expensive
to deploy and scale individual applications and makes DevOps less
time-consuming. If you further break down microservices, it is called

nano services.

54

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

The benefits of microservices are as follows:

The small and independent codebase is easy to
understand and maintain.

Onboarding new developers becomes easy.

On the cloud, each application can be scaled
individually based on their consumption.

Multiple teams can work in parallel on different

microservices.

The language barrier can be avoided as each
microservice can be written in a different coding
language based on which language best suits the
business scenario. This practice of writing code in
multiple languages to capture additional functionality
and efficiency that is not available in a single language
is known as polyglot programming.

But, with the benefits, there are also trade-offs when using

microservices.

Writing test cases becomes difficult for each individual
application.

Communication within the APIs can become slow if
not developed properly.

If DevOps is not properly set up, deployment can
become messy and can create a lot of issues (but

if done properly, it becomes easy to maintain). A
complete enterprise application can have more than
10 to 12 microservices, so it is imperative for you to
have a stable CI/CD pipeline for each; otherwise,
deploying these microservices can end up being your
biggest blocker.

55

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Figure 4-1 illustrates the differences between a monolithic architecture
and a microservice architecture.

Data
Access
Layer

Monolithic Architecture Microservice Architecture

Figure 4-1. Monolithic architecture vs. microservice architecture

Converting Monolithic Applications
to Highly Scalable APIs Using Azure
Functions

Let’s now look at converting a monolithic e-commerce web site to
microservices. A basic e-commerce web site comes with a client interface,
a customer profile, product details, checkout and payment functions, and
inventory management.

By looking at these, you can easily see that each is an individual
business scenario and can be converted to a microservices architecture.

You would have the following microservices:

e Customer service, which will include customer details,
orders, and so on

e Product service

56

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

o Payment and checkout service
o Inventory management service

You can expose each of these services as an API that can be easily
consumed by your front-end user interface.

Now, let’s see how microservices will help you in scaling the
application with a minimum cost. Let say you have a sale coming up and
your estimate is that you will have double the amount of traffic on the web
site during this time.

After some analysis, you find that the product service and the
payment and checkout services will have the most load, and there
won’t be much change in load on the customer and inventory
management service. With microservices, you can scale out only those
two services (product and payment and checkout) and leave the other
services as is, whereas if you had a monolithic application, you would
have to scale out the complete application, and that would increase
your application costs a lot.

Since now you are aware why you would want to convert a monolithic
application to microservices, let’s understand how Azure Functions can
help you achieve that in a simpler and more cost-efficient way.

Azure Functions allows you to write and deploy small pieces of code.
With the help of Azure Functions, you can divide the microservices
into small parts and write a function that performs a specific task.

For example, the customer service microservice would have different
activities such as Update Profile, View My Orders, Cashback Amount,
Card Details, and so on. You could write each one of them as a separate
function, and on days where you have a big sale, you can scale up the
individual functions.

With Azure Functions, the infrastructure maintenance is taken care of
by the cloud service provider, and you won’t have to worry about scaling
up, upgrading the software, and so on. This in a way reduces the load on
the team and helps them concentrate on the business scenario.

57

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Azure Functions provides you with a free grant of 400,000 GB-s
of execution time and 1 million total executions per month, which
should be enough to run a medium-sized application on Azure
Functions at no cost.

With Azure Functions, each function is completely isolated, so if a bug
or issue is fixed in one function, you do not have to deploy the complete
microservice or application. This is where Azure Functions also makes
DevOps a lot easier.

As you can see in Figure 4-2, you can actually create functions for
each of the microservices discussed earlier, and you can expose them as
REST APIs.

Deployment and management isolation

orders,azurewebsites.net

Figure 4-2. Isolated functions

To expose functions as REST APIs, you have to create HTTP-
triggered functions so that you can use them. HTTP-triggered functions
start working like any other API where you call an endpoint and it
returns you the result. Let’s create an HTTP-triggered function in the

next section.

58

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Creating an HTTP-Triggered Function with
SQL Server Interaction

Before you start creating the HTTP-triggered function in this section, let’s
first create the Azure SQL Server database with AdventureWorks content so
that you can fetch and modify the data using the HTTP-triggered function.

Creating a SQL Server Instance with Sample
Data

Let’s get started.

1. Login to Azure Portal and click “Create a resource.”
Select Databases from the vertical pane and then

select SQL Database, as shown in Figure 4-3.

Figure 4-3. Selecting SQL Database

2. Provide the necessary details and set “Select source”
to Sample (AdventureWorksLT). Create a server if
it does not exist and then click Create to create the
database with the content, as shown in Figure 4-4.

59

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Cusnioand + s + 520 Databane
501 Dotabase

Sandase 5210 DYLE, 15068

Figure 4-4. Creating the database

3. Itwill take some time for SQL Server and the
database to be ready. Once it is ready, you will see it
under the resource group you selected, as shown in
Figure 4-5.

Bl i+ tecance g @ anee-fearmos book

Rescurce groups © & % (@) azure-function-book # %

adi 52 Canickives = Mare =]t A == v B Doleewnrepon Dlbnh FMon | # e
Febar by nere . . & Lusscripion Brammees
bt Stor bt S8 0 S008 B 1 IO 2 Seccended
pren B rasaisy
Ry i e covc e
np
[by e T =] [Wiirias <) [peeg
i - o= »
-t

@ Howsren coute 53 sever ComnalUs
o Cepbames 0 ez Coralis

P p—— =T
= Prosrten B0 Servcn Comulls
[y Ao Sewicn, P Coal s

B Biganic sertogs

W iinor scsrerancaters

Tt o et

3 Newrnppert coquest

Figure 4-5. Database created

60

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

4. Inthe left panel, click “Query editor,” provide your
password to connect, and click OK, as shown in
Figure 4-6.

Dathoserd 3 Resourcs gros 3 snwe fonction book + websts! - Duery editor (renet

website! - Query editor (preview) »
+ F oo v 4 W ferdack

B Omovien

B actvtyieg

o

2 Claguosk sed eohe protheme

i Gk stant

soL

@ Codligue Welcome 1o SCL Database Quary Edlter

secarity
B Advances Thrwae Protection
Fi iwdtng

Dmame Cata Masking

O Twugerert dats erangtion

Figure 4-6. Connecting to the database

5. Once you have successfully logged in, you will see
the Query Editor. In the left menu, click Tables, and
you will see the tables being created, as shown in
Figure 4-7.

61

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Augn B FHowoery T oprgey L W Fredliach

Cumry 1 3¢

8 Canien m wezaite [aure-Aunc-tes])

¥ ke B Camiclion

. 1
g g it e peicess
For bl cepabityplease apen S50F

Figure 4-7. Tables being created

6. You can query the tables in a similar way as you do
in SQL Server Management Studio.

Your database has been created with some initial data. Let’s now create
an HTTP-triggered function for it.

Creating an HTTP-Triggered Function Using C#

Now it’s time to code.

1. In Chapter 3, you set up your machine to run Azure
Functions using Visual Studio Code. If you have not
set that up yet, please follow the steps in Chapter 3.

2. Go to Visual Studio Code and click the Azure icon
(make sure that your Azure Functions extension
version is 0.16.0) in the menu and then click New
Folder. For this function, set the folder name to
HTTP-Triggered-Function and then click Select, as
shown in Figure 4-8.

62

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Figure 4-8. Naming the function

3. After clicking Select, you can select a language to be
used for Azure Functions. Select C# as the language
for this example, as shown in Figure 4-9.

Figure 4-9. Selecting the language

63

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

4. Select HttpTrigger as the template for the function,

as shown in Figure 4-10.

Figure 4-10. Selecting the HttpTrigger template

5. Provide a name for the function. By default, it is
HttpTriggerCSharp. For this function, I am using the
default value, as shown in Figure 4-11.

Figure 4-11. Naming the function

64

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

6. Provide the namespace of the function. By default,
itis Company.Function, but for this function you will
set it to AzureFunctionBook.Function, as shown in
Figure 4-12.

Visual Studio Code

Figure 4-12. Providing the namespace

7. Set the access rights for this function. You will see
three options: Anonymous, Function, and Admin.
These different access rights determines what keys
are required to invoke the function.

-Anonymous: This means no API key is required.

-Function: This is the default setting if nothing is
selected. This means a function-specific API key is
required.

- Admin: This means a master key is required.

For this function, use Anonymous as the access
right, as shown in Figure 4-13.

65

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

udio Code

Figure 4-13. Setting the access rights

8. Let’s add the SqlClient package to the solution. To
do this, go to the Terminal, and in the top menu,
select New Terminal. Type dotnet add package
System.Data.SqlClient --version 4.5.1and
press Enter. This will install the required package
to your solution. To verify, go to the .csproj file,
and you will see the package added, as shown in
Figure 4-14.

66

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

W @ W N oeun ek Ee

pappv a3vyIvd BI-F 24N

ogin-pasabifu) an g 0OV0O L

LN 4

e

67

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

9. Now everything is set up. You will follow a code
structure similar to what you would follow in normal
projects. Create two folders, named Helper and
Models. In Models, create the file CustomerModel.
cs, and in Helper create the file SqlClientHelper.
c¢s. You will use them for your function, as shown in
Figure 4-15.

4 OPEN EDITORS

x Functioninvoker.cs

{}
4 HTTP-TRIGGERED-FUNCTION

Figure 4-15. Folders created

68

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

10. Click the CustomerModel.cs file and paste the

11.

following code:

namespace Company.Function.Models

{

public class CustomerModel

{
public int CustomerID { get; set; }

public int NameStyle { get; set; }
public string Title { get; set; }
public string FirstName { get; set; }
public string MiddleName { get; set; }
public string LastName { get; set; }

public string CompanyName { get; set; }

Click the SqlClientHelper.cs file and paste the
following code. The following code will make a call
to the SQL Server database and get the customer
details from the SalesLT.Customer table.

using System;

using System.Data;

using System.Data.SqlClient;
using Company.Function.Models;

namespace Company.Function.Helper

{
public static class SqlClientHelper

69

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

70

{

public static CustomerModel GetData(int
customerId)

{

var connection = Environment.GetEnvironment
Variable("coonectionString");
CustomerModel customer = new
CustomerModel();
using (SqlConnection conn = new
SqlConnection(connection))
{
var text = "SELECT CustomerID,
NameStyle, FirstName, MiddleName,
LastName, CompanyName FROM SalesLT.
Customer where CustomerID=" +
customerlId;
SqlCommand cmd = new SqlCommand
(text, conn);
// cmd.Parameters.AddWithValue
("@CustomerId", customerId);

conn.Open();
using (SqlDataReader reader = cmd.
ExecuteReader (CommandBehavior.

SingleRow))

{
while (reader.Read() && reader.
HasRows)
{

customer.CustomerID = Convert.
ToInt32(reader["CustomerID"].
ToString());

12.

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

customer.FirstName = reader
["FirstName"].ToString();
customer.MiddleName = reader
["MiddleName"].ToString();
customer.LastName =

reader["LastName"].ToString();
customer.CompanyName = reader
["CompanyName"].ToString();

}

conn.Close();

}

return customer;

Go to the main file HttpTriggerCSharp.cs and
paste the following code. The following code is
the function that will be triggered when you call

it. It is first trying to get the CustomerId value from
the query and convert it to Int. Then, it calls the
SQLClientHelper.GetData method by passing the
CustomerId value and returning the result.

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

71

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

72

using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.logging;
using Newtonsoft.Json;

using Company.Function.Helper;

namespace Company.Function

{
public static class HttpTriggerCSharp

{
[FunctionName("HttpTriggerCSharp")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous,
"get", "post", Route = null)] HttpRequest
req, IlLogger log)

log.LogInformation("C# HTTP trigger
function processed a request.");

int customerId = Convert.ToInt32(req.Query
["customerId"]);

return (ActionResult) new OkObjectResult
(SqlClientHelper.GetData(customerId));

If you look at the code that you have, you'll see
you have created a basic customer profile function
where you will get customer details based on
CustomerID.

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

13. Select Debug in the top menu and click Start
Debugging. You will see the function compiling in
the Terminal, and once the function is compiled,
you will see the local URL of the function, as shown

in Figure 4-16.

Figure 4-16. Local URL

14. Copy this URL, append ?customerId=1 to it, and hit
Enter. You will get the output shown in Figure 4-17.

Figure 4-17. Output

Now you understand how you can create an HTTP-triggered API using
Azure Functions. In the next section, you will look at how you can use
Azure Functions as an OData API to access SQL Server.

73

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Creating an HTTP-Triggered OData API for SQL
Server Using Azure Functions

Before you start creating functions, you should first understand what
OData is. OData stands for Open Data Protocol and defines a set of best
practices for consuming and building web APIs.

Note For more information about OData, you can visit the official
page at https://www.odata.org/.

To create a function, follow steps 1 to 6 in the previous section. The
only change here is that instead of C# as the language, you will be using
JavaScript as the language for the function.

1. Once the function is created, install the following
npm packages:

o Azure-odata-sql

e Async

o Tedious

e Tedious-connection-pool

2. To install the packages, open Terminal and type the
following, which will install the package for you:

npm install <package name>

3. Once the packages are installed, create a file named
functions. js and paste the following code. It
basically connects to the SQL Server database, runs
the query, and returns the data. In the following
code, you are first creating the pool of SQL

74

https://www.odata.org/

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

connections using poolConfig. Then, you write the
getSqlResults method, which fetches the records
from the table.

// TEDIOUS

var ConnectionPool = require('tedious-connection-
pool’);

var Connection = require('tedious').Connection;
var Request = require('tedious').Request;

var TYPES = require('tedious').TYPES;

// Pool Connection Config
var poolConfig = {

min: 1,
max: 10,
log: true

};

//Connection Config
var config = {
userName: process.env.databaseUser,
password: process.env.databasePassword,
server: process.env.databaseUrl,
options: {
database: process.env.databaseName,
encrypt: true,
requestTimeout: 0,

};

//create the pool
var pool = new ConnectionPool(poolConfig, config);

75

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

pool.on('error', function (err) {
console.error(err);

};

function getSqlResult(sqlObject, callback) {
var result = []
pool.acquire(function (err, connection) {
if (err) {
callback(err, null);
}

var request = new Request(sqlObject.sql,
function (err, data) {
if (err) {
callback(err, null);
}

console.log(data);
connection.release();
callback(null, result);

1

sqlObject.parameters.forEach(element => {
request.addParameter (" ${element.name}",
TYPES.NVarChar, “${element.value}");

1

request.on('row', (columns) => {
var rowdata = new Object();
columns.forEach((column) => {
rowdata[column.metadata.colName] =
column.value;

};

76

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

result.push(rowdata);

1

connection.execSql(request);

};
}

module.exports = {
getSqlResult: getSqlResult,

Go to the main file index. js and paste the following
code. In the following code, you are first configuring
the table and schema that will be used in this OData
API. Then you are fetching the pageSize, filters,
selection, ordering, and so on, from the query
parameters. Once you get all this, you prepare the
query and call azureOdata. format to convert this to
a proper SQL query.

var azureOdata = require('azure-odata-sql');
var async = require('async');

var tableConfig = {
name: 'Customer’,
schema: 'SaleslT',
flavor: 'mssql’,

}s
var defaultPageSize = 30;

module.exports = function(context, req) {

var module = require('./functions');

77

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

78

var pageSizeToUse = req.query !== null && req.
query.$pageSize !== null && typeof req.query.
$pageSize !== "undefined" ? req.query.$pageSize :
defaultPageSize

var getSqlResult = module.getSqlResult;

var query = {

};

table: 'Customer',

filters: req.query !== null &&
req.query.$filter !== null && typeof
req.query.$filter !== "undefined" ?
req.query.$filter : ",

inlineCount: "allpages",

resultLimit: pageSizeToUse,

skip: req.query !== null 8& req.query.$page !==
null && typeof req.query.$page !== "undefined"
? pageSizeToUse = (req.query.$page -1): ",
take: pageSizeToUse,

selections: req.query !== null && req.query.
$select !== null && typeof req.query.$select
I== "undefined" ? req.query.$select : ",
ordering: req.query !== null && req.query.
$orderby !== null && typeof req.query.$orderby
I== "undefined" ? req.query.$orderby :
"CustomerID',

var statement = azureOdata.format(query,
tableConfig);

var calls = [];

var data = [];

async.series([

function (callback) {
getSqlResult(statement[0], (err, result) => {

1,

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

if (err)
throw err;

data.push(result);
callback(err, result);
IOF

b
function (callback) {

getSqlResult(statement[1], (err, result) => {
if (err)
throw err;

data.push(result);
callback(err, result);

D;
}
function (err, result) {
if (err) {
console.log(err);
} else {

var count = result[0].length;
context.res = {
status: 200,
body: {
// '@odata.context': req.protocol
+ '://" + req.get('host') + '/
api/$metadata#Product’,
'value': result[o],
"total': result[1][0].count,
"count': count,

79

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

'page': req.query !== null 8& req.
query.$page !== null ? req.query.

$page : 1
}J
headers: {
"Content-Type': 'application/
json'
}
};
}
context.done();

1

5. You first prepared the query inside var query
= {}. Now, you will convert this into a SQL-
understandable query by calling azureOdata.
format(query, tableConfig). Once the query is
converted to a SQL query, you will pass this to the
function you wrote in functions. js, which will run
the SQL statements and return the data.

6. Run Azure Functions by going to the top menu and
clicking Debug and then Start Debugging. Once the
function starts, you will make an HTTP call.

http://localhost:7071/products?$filter=CustomerID
eq 18&$select=CustomerID,FirstName, LastName

If you look at this URL, you will see two query
parameters. One is $filter, which gets converted
to a WHERE clause, and one is $select, which gets
converted to a SELECT statement.

80

6.

C C[localhost: 707 1/produc

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Once you run the previous query, you will get the

result shown in Figure 4-18.

ts?$filter=CustomerlD%20eq %2018 $select=CustomerlD, FirstName,LastName|

{

“value":

[

{
“CustomerID": 1,
“FirstName": "Orlando”,
“LastName": "Gee"

]

"total": 1,

“count"”:

1

}

Figure 4-18. Output of query

With this you have created two HTTP-triggered functions; one is a
normal HTTP-triggered function with C# and another one is an advanced
HTTP-triggered function using OData with Node]Js.

Let’s look at proxies in the next section.

Overview of Proxies in Azure Functions

Proxies are one of the most important features of Azure Functions. With
the help of proxies, you can divide a large API into small functions, but for
the end customer, it still shows as a single API with one endpoint.

This not only simplifies the use of the API by other customers but
also reduces the burden on the customers to call individual APIs with
different URLs.

The following are features of an Azure Functions proxy:

e You can modify request and response queries using
variables.

¢ You can modify request and response queries by
referencing application settings.

e You can troubleshoot an Azure Functions proxy.

Now let’s try to create a proxy from Azure Portal.

81

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Creating a Proxy Using Visual Studio Code

Let’s get started.

1. Go to the previous OData function and click the
vertical menu. You will see a file named proxies.
json, as shown in Figure 4-19.

4 OPEN EDITORS

T

b OUTLINE

Figure 4-19. Listing of files

82

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Click the proxies.json file and paste the following
code. Internally you are calling the same functions,
but you can expose different URLs to the customer
so no one is aware of the exact function app name
and location. You can change the backendUri value
to call another function.

{
{

"$schema”: "http://json.schemastore.org/proxies”,
"proxies": {
"proxy1": {
"matchCondition": {
"methods": [
"GET"
]J

"route": "/api/customer”
}s
"backendUri": "http://localhost:7071/api/Http
TriggerOData"

}
}
}

Run Azure Functions, and in the Terminal you
will see that Azure Functions is now providing two
endpoints, as shown in Figure 4-20.

83

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Figure 4-20. Two endpoints

4. Let’s hit the proxy from the browser and check the
output. The output is shown in Figure 4-21.

€ (&) q ocalhost 1 f t f tN I

“value™: [
{
"CustomerID": 1,
"FirstName™: "Orlando”)
“LastName": "Gee'
}
).
“total®: 1,
“count®: 1

Figure 4-21. Output of proxy

As you can see, your proxy is working fine, and the output is the same
as you got in the previous section. So, that’s how you can create a proxy by
using Visual Studio Code. Let’s look at how you can do the same thing from
Azure Portal.

84

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

Creating a Proxy Using Azure Portal

Here is the process:

1. Goto Azure Portal and click Function Apps, as
shown in Figure 4-22.

Create a resource
Home
Dashboard
All services
FAVORITES
%% All resources
w#/ Resource groups
@ App Services
¥ Function Apps
- SQL databases
& Azure Cosmos DB
B virtual machines
Q.‘ Load balancers
= Storage accounts
= Virtual networks
0 Azure Active Directory
e Monitor
@ Advisor

@ Security Center

o Cost Management + Billing

ﬂ Help + support

Figure 4-22. Selecting Function Apps

85

CHAPTER 4 SERVERLESS APIS USING AZURE FUNCTIONS

2. Select the function app and click Proxies, as shown
in Figure 4-23.

Fome 3 odata-dunciion
odata-function
B Cadwsbancion” * Ouenden Flatiom features

Vel Stako Eeterpeise. [E) semer * [+ % 1 e
5= Funcion Seps

e
w <7 odata-femctice. T menng

Figure 4-23. Clicking Proxies

3. Click + near the Proxies tab and provide details for
the proxy. In the back-end URL, provide the URL of
the function where you want the request to navigate
to, as shown in Figure 4-24.

IR i oIS TAnE

Figure 4-24. URL of function

This is how you create a proxy from Azure Portal. This brings us to
the end of the chapter. In the next chapter, you will look at the Durable
Functions extension and how you can use durable functions for long-
running tasks.

86

CHAPTER 5

Azure Durable
Functions

In this chapter, I will cover the following topics:
e Overview of the Durable Functions extension
o Bindings for the Durable Functions extension
e Performance and scale of durable functions
o Creating durable functions using Azure Portal

o Disaster recovery and geodistribution of durable
functions

Overview of Durable Functions

Durable Functions is an extension to Azure Functions that allows you
to write stateful functions in a serverless environment by managing
checkpoints, state, and restarts for you.

Durable Functions uses a new type of function called an orchestrator
function, which lets you define the stateful workflows in code and allows
you to call other functions both synchronously and asynchronously.

The main use case of Durable Functions is to simplify stateful
coordination problems in the serverless world.

© Rahul Sawhney 2019 87
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_5

CHAPTER 5 AZURE DURABLE FUNCTIONS

Types of Functions

The Durable Functions extension allows the stateful orchestration of
functions. Each function is made up of combination of different functions.
Each of these functions plays a different role in orchestration, as shown in
Figure 5-1.

o = 7o =)

Client Orchestrator Activity

Figure 5-1. The three types of function

There are basically three types of functions.

e Client functions: These types of functions are the
entry point for creating an instance of a durable
function. They are triggered functions that create
a new instance of an orchestration process. Client
functions can be triggered by any available trigger
in Azure Functions. Also, client functions have an
orchestration binding that allows them to manage
durable orchestrations.

e Orchestrator functions: These are the heart of
durable functions and describe the order in which
actions are executed. An orchestrator function must
be triggered by an orchestration trigger (a client
function with orchestration binding). Each instance
of an orchestrator has an instance identifier that can
be autogenerated or user-generated and is used to
manage instances of orchestration.

88

CHAPTER 5 AZURE DURABLE FUNCTIONS

Activity functions: These are the basic unit of work in
Durable Functions orchestration and are the functions
and tasks that are being orchestrated or ordered in

the process. For example, you can create a durable
function for order cancellation to handle canceling
the shipment, updating the inventory, and refunding
the payment. Each of these tasks will be an activity
function, and the output of one function can be used
as the input of another. An activity function must be
triggered by an activity trigger.

Durable Function Patterns

The Durable Functions extension basically caters to five application

patterns.

Function Chaining
Fan-Out/Fan-In
Async HTTP APIs
Monitoring

Human Interaction

Function Chaining

Function Chaining is a pattern where you execute functions in a sequential

order. Also, you use Function Chaining when the output of one function

has to be used as the input of another function.

Let’s see an example of e-commerce order processing. First, a

customer orders a product, and after that, internally you process the order

and notify the dealer. Once the dealer confirms that the product is ready to

89

CHAPTER 5 AZURE DURABLE FUNCTIONS

be shipped, you notify the delivery service to pick up the order and ship it.
Once the product is shipped, you notify the customer. This whole process
can be done using Function Chaining, as shown in Figure 5-2.

] X2 X X

ProcessOrder NotifyDealer NotifyDeliveryService NotifyCustomer

Figure 5-2. Function Chaining example

The following simple code will call the Function Chaining pattern
using C#:

public static async Task<object>
Run(DurableOrchestrationContext context)
{
try
{
var orderProcessedResult = await context.CallActivity
Async<object>("ProcessOrder");
var dealerNotificationResult = await context.CallActivity
Async<object>("NotifyDealer", orderProcessedResult);
var deliveryServiceResult = await context.CallActivity
Async<object>("NotifyDeliveryService", dealer
NotificationResult);
return await context.CallActivityAsync<object>("Notify
Customer”, deliveryServiceResult);

}

catch (Exception ex)

{

90

CHAPTER 5 AZURE DURABLE FUNCTIONS

// This will be the 5th function which will rollback
all the operations before the function which caused
the error

await context.CallActivityAsync<object>("Rollback"”, null);

context.log("Error cannot be processed");

}
Fan-Out/Fan-In

The Fan-Out/Fan-In pattern refers to executing multiple functions
in parallel and then waiting for all of them to execute. Usually some
aggregation work is done on the result returned by multiple functions.
With normal functions in Azure Functions, fanning out can be done
by publishing multiple messages to the queue. But the fanning in part is
complicated because you have to keep track of when the message is picked
up and processed and store the result. This is a difficult task to achieve in
Azure Functions, but the Durable Functions extension handles this pattern
quite easily.
Let’s look at an example where you have replenished the stock and
want to notify all the customers who selected “notify me once the product
is available,” as shown in Figure 5-3.

— <7D =
< >"i->< >->i->(>
StockUpdate ‘_’ < > J UpdateStatus

2

Figure 5-3. Fan-Out/Fan-In example

91

CHAPTER 5 AZURE DURABLE FUNCTIONS

This first function updates or replenishes the stock, i.e., products.
Then you call the F2 function for each product that was out of stock and
call multiple functions. One function will send an e-mail, the other one
will send an SMS message to the customer, and one will stack the product
based on the user interest shown as per the “notify me once the product is
available” selection. Once you get a response from all three functions, you
call the UpdateStatus function, which will update the notification status
corresponding to each user who opted for notification.

public static async Task Run (Durableorchestrationcontext ctx)

{

var parallelTasks = new List<Task<int>>();

object []workBatch = await ctx.CallFunctionAsync<object[]>
("StockUpdate");

for (int i = 0; i < workBatch.Length; i++)

{

Task<int> task = ctx.CallFunctionAsync <int> ("F2", workBatch [i]);
parallelTasks.Add (task);

}

await Task.WhenAll(parallelTasks);

//aggregate result of all tasks and send result to UpdateStatus
int sum = parallelTasks.Sum(t=> t.Result);

await ctx.CallFunctionAsync ("UpdateStatus”, sum);

}
Async HTTP APIs

The Async HTTP APIs pattern takes care of the problem of keeping the
state of long-running processes with the external clients. The common way
to implement this pattern is to trigger the long-running job with the HTTP
client and then redirect the external client to another page, which keeps on
polling the state of the long-running job.

92

CHAPTER 5 AZURE DURABLE FUNCTIONS

The Durable Functions extension provides you with a built-in
capability that simplifies the code you will write for interacting with
long-running processes. Since the Durable Functions runtime manages
the state, you don’t have to implement your own state-tracking
mechanism.

Let’s look at an example of a food-ordering app. You order your food,
and the app takes you to a page where you track the status of the order. The
first state is whether the order is accepted by the restaurant. Once the order
is accepted, it starts showing you the time it will take for the order to be
prepared by the restaurant, and then once the order is ready and picked up
by the delivery person, it shows you a map with the location of the delivery
person. You can implement this with the help of Durable Functions, as

shown in Figure 5-4.

<5 == <5

OrderFood OrderProcess

g

= 7l
GetStatus

Figure 5-4. Async example

Asyou can see in Figure 5-4, the OrderFood function will act as an
HTTP API that will be called once the end user clicks Order Food. The
OrderFood function will check for the validity of the order and will call the
OrderProcess function. This function will keep on updating the status of
the order.

You will redirect the end user to the order-tracking page, which will
poll the GetStatus function and will show the order status.

93

CHAPTER 5 AZURE DURABLE FUNCTIONS

The following is the demo code depicting the creation of an
orchestrator function for OrderProcess. The following code is part of the
HTTP-triggered OrderFood function.

public static async Task<HttpResponseMessage> Run(
HttpRequestMessage req,
DurableOrchestrationClient starter,
ILogger log)

// Function name comes from the request URL.

// Function input comes from the request content.
dynamic eventData = await req.Content.ReadAsAsync
<object>();

string instanceld = await starter.StartNewAsync("Order
Process", eventData);

log.LogInformation($"Started orchestration with ID =
'{instanceld}'.");

return starter.CreateCheckStatusResponse(req, instanceld);

}

Monitoring

The Monitoring pattern is used when you need polling until a condition
is met. Normally a regular timer trigger (a timer trigger lets you run a
function on a specified schedule) can be used for scenarios such as a
cleanup job, but the problem with this is that the time interval is static, so
managing the lifetime of the instances becomes complex.

The Durable Functions runtime, on the other hand, comes with
flexible intervals and lifetime management of tasks. It allows you to create
multiple monitor processes from a single orchestration. See Figure 5-5.

94

CHAPTER 5 AZURE DURABLE FUNCTIONS

<> &=

Figure 5-5. Monitoring example

Human Interaction

Usually you will automate processes that require no human
intervention because people are not as highly available and responsive
as cloud services. But, in certain scenarios that require approval,
human intervention is required, so the automated processes must
account for that.

Automated processes generally do this by using timers and
compensation logic. Let’s look at a “leave approval” workflow as an
example. In this case, an employee applies for a leave. The notification
goes to the manager to approve it. Here you can have two scenarios. One
is if the manager does not approve it within 48 hours, the leave will be
automatically approved. The other scenario is if the manager does not
approve it within 48 hours, then it is escalated to the manager’s manager.
See Figure 5-6.

95

CHAPTER 5 AZURE DURABLE FUNCTIONS

<

Approve Leave

P> =
Request for Leave N < >

Escalate

Figure 5-6. Human Interaction pattern example

Here is the example code:

public static async Task Run(DurableOrchestrationContext context)
{
await context.CallActivityAsync("SubmitLeaveRequest");
using (var timeoutCts = new CancellationTokenSource())
{
DateTime dueTime = context.CurrentUtcDateTime.
AddHours(48);
Task durableTimeout = context.CreateTimer(dueTime,
timeoutCts.Token);
Task<bool> approveleaveEvent = context.WaitFor
ExternalEvent<bool>("ApproveleaveEvent");
if (approveleaveEvent == await Task.WhenAny(approve
LeaveEvent, durableTimeout))

{
timeoutCts.Cancel();
await context.CallActivityAsync("ProcessLeave
Approval", approveleaveEvent.Result);

}

96

CHAPTER 5 AZURE DURABLE FUNCTIONS

else

{
await context.CallActivityAsync
("EscalateEvent");

}

Bindings for Durable Functions

The Durable Functions extension introduces two new trigger bindings that
control the execution of orchestrator and activity durable functions. The
Durable Functions extension also introduces one output binding that acts
as a trigger for the Durable Functions runtime.

Activity Triggers

An activity trigger enables you to author functions that are called by
orchestrator functions. Activity functions are like any other normal
function. The only difference is that you will have ActivityTrigger, which
is triggered from the orchestrator function.

Internally, the following activity trigger binding keeps polling a series
of queues in the default storage account of the function app. The queues
are internal implementations of the extension, so that’s why they are not
part of the orchestrator trigger binding.

97

CHAPTER 5 AZURE DURABLE FUNCTIONS

The activity trigger is defined by the following JSON object in the

bindings array:

{

"name": "Input parameter name",
"activity": "<Optional parameter. Name of the activity",
"type": "activityTrigger",

"direction": "in

Here is the trigger behavior:

o Threading: An activity trigger is like any other function
in Azure Functions that you code and has no limitation
on threading or I/0.

e Message visibility: The messages are dequeued and
kept invisible for a configurable amount of time.
As long as the function app is running and is in a
healthy state, the visibility of the messages is renewed
automatically.

¢ Return values: The return values are JSON serialized
and are persisted in the Azure Storage orchestration
history table.

The following is the basic code for an activity trigger:

[FunctionName("City Travel")]
public static string Run([ActivityTrigger] string cityName,

Tracelriter log)

{

98

log.Info($"I am travelling to {cityName}.");
return $"I am travelling to {cityName}!";

CHAPTER 5 AZURE DURABLE FUNCTIONS

Orchestration Triggers

As the name suggests, an orchestration trigger enables you to author
orchestrator functions. The trigger allows you to start new instances of
orchestrator functions and also allows you to resume existing instances of
orchestrator functions that are awaiting a task.

Behind the scenes, the following orchestrator trigger binding keeps
polling a series of queues in the default storage account of the function
app. The queues are internal implementations of the extension, so that’s
why they are not part of the orchestrator trigger binding.

The orchestrator trigger is defined by the following JSON object in the
bindings array:

{
"name": "Input parameter name",
"orchestration": "Optional parameter - Name of
orchestration”,
"type": "orchestrationTrigger",
"direction": "in"

}

Here is the trigger behavior:

o Single threading: For all orchestrator functions
running on a single host instance, a single dispatcher
thread is used. For this reason, the orchestrator
function code should not perform any I/0. Also, this
thread should not do any async work except when
awaiting on Durable Functions-specific task types.
JavaScript orchestrator functions should never be
declared async.

99

CHAPTER 5 AZURE DURABLE FUNCTIONS

e Message visibility: The messages are dequeued and
kept invisible for a configurable amount of time.
As long as the function app is running and is in a
healthy state, the visibility of the messages is renewed
automatically. Orchestration triggers do not support
poison message handling.

e Return values: The orchestrator return values are
JSON serialized and are persisted in the Azure Storage
orchestration history table.

The following is the basic code for an orchestrator trigger:

[FunctionName("Orchestrator City")]
public static async Task<List<string>> Run(
[OrchestrationTrigger] DurableOrchestrationContext context)

{

var outputs = new List<string>();

outputs.Add(await context.CallActivityAsync<string>
("City Travel", "Hyderabad"));

outputs.Add(await context.CallActivityAsync<string>
("City Travel", "New York"));

outputs.Add(await context.CallActivityAsync<string>
("City_Travel", "Delhi"));

// returns

// "I am travelling to Hyderabad"
// "I am travelling to New York"
// "1 am travelling to Delhi"

return outputs;

100

CHAPTER 5 AZURE DURABLE FUNCTIONS

As you can see, the previous orchestrator function is calling the activity
function City Travel and is passing the name of the city to it. From the
way it is written, it looks like the orchestrator function is calling the City
Travel activity function directly, but actually it is sending a message to a
work-item queue. The activity function City_Travel polls the queue, and
as soon as it receives the message in the queue, it executes the logic.

Once the activity function completes the logic execution, it sends the
response message to the control queue that the orchestrator function is
polling. As the orchestrator function Orchestrator City receives the
message via OrchestrationTrigger, it shows the response. This is the
behavior of the durable function.

Once you start the durable function, it creates four control queues and
one workitems queue, as shown in Figure 5-7.

4 [I1] Queues
M durablefunctionshub-control-00
[durablefunctionshub-control-01
M durablefunctionshub-control-02
@ durablefunctionshub-control-03

[0 durablefunctionshub-workitems

Figure 5-7. Durable function queues

It also creates two Azure Storage tables, named
DurableFunctionsHubHistory and DurableFunctionsHubInstances.

Orchestration Client

The orchestrator client is responsible for starting/stopping the orchestrator
function. It is also used to query the status, send events, and purge
instances of the history of the orchestrator function.

101

CHAPTER 5 AZURE DURABLE FUNCTIONS

The orchestrator client binding actually allows you to write functions
in Azure Functions that interact with orchestrator functions.

The orchestrator client trigger is defined by the following JSON object
in the bindings array:

{
"name": "Name of Input Parameter",
"taskHub": "Optional Parameter. name of the task hub",
"connectionName": "Optional Parameter. Name of the
connection string in the app settings",
"type": "orchestrationClient",

"direction": "in

The following is the basic code for the orchestration client:

[FunctionName("OrchestrationClient Start")]

public static async Task<HttpResponseMessage> HttpStart(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")]
HttpRequestMessage req,
[OrchestrationClient]DurableOrchestrationClient starter,
TraceWriter log)

{
string instanceld = await starter.StartNewAsync
("Orchestrator City", null);
log.Info($"Running orchestration with ID =
"{instanceld}'.");
return starter.CreateCheckStatusResponse
(req, instanceld);

}

102

CHAPTER 5 AZURE DURABLE FUNCTIONS

Performance and Scaling of Durable
Functions

The Durable Functions extension has unique scaling characteristics that
need to be understood to be able to scale and improve performance. To
understand the scaling behavior, you have to first understand some of the
underlying details of the Azure Storage provider.

History Table

The history table contains the history events for all the orchestration
instances running within a task hub. The name of the table is in the format
TaskHubNameHistory. The partition key of this table is derived from

the instance ID of the orchestration function. Since the instance ID is
generated randomly, it ensures optimal distribution of internal partitions
in an Azure Storage table. As the orchestrator function instances run, new
rows are added to this table.

When an orchestration instance runs, first the appropriate rows of
the history table are loaded into the memory. These history events are
then replayed in the orchestrator function to get back to the previous
checkpoint state. This is influenced by the Event Sourcing pattern.

Instance Table

This table contains the statuses of all the orchestrations running within
a task hub. The orchestration function instance ID is the partition key
of this table, and the row key is a fixed constant. There is one row per
orchestration function instance.

This table is consistent with the content of the history table. This table
is used by the GetStatusAsync (.NET) API and the getStatus (JavaScript)
API. Also, it is used by the HTTP status query API.

103

CHAPTER 5 AZURE DURABLE FUNCTIONS

Using a separate table to efficiently satisfy the instance query operation
in this way is influenced by the Command and Query Responsibility
Segregation (CQRS) pattern.

Internal Queue Triggers

Activity functions and orchestrator functions are both triggered by the
queues in the task hub of the Azure Functions app. This provides an
“at-least-once” delivery guarantee of messages. There are two types of
queues in Durable Functions.

¢ Control queue: In Durable Functions, there are
multiple queues per task hub. Control queues are more
sophisticated than work-item queues because control
queues trigger the stateful orchestrator functions.
Orchestrator messages are load balanced across the
control queue. In a single poll, a message can dequeue
as many as 32 messages, and if all those messages

belong to a single orchestrator, they are processed as a
batch.

e Work-item queue: Per task hub there is one work-item
queue in Durable Functions. This queue behaves like a
normal queue. This queue triggers the stateless activity
functions by dequeueing a single message at a time.
When a durable function scales out to multiple VMs,
each VM competes to acquire work from the work-item
queue.

Since you now have an understanding of the underlying mechanism,
let’s look at how to scale durable functions.

104

CHAPTER 5 AZURE DURABLE FUNCTIONS

Orchestrator Scale-0ut

Stateless functions like activity functions can be scaled out easily by adding
more VMs, but stateful functions like orchestrator functions are partitioned
across one or more queues for them to scale out. By default, a task hub

can have at most 16 partitions, and by default the partition count is 4. The
number of control queues is defined in the host. json file for a function
running on the 2.0 runtime, as shown here:

{

"extensions": {
"durableTask": {
"partitionCount”: 2

When you scale out the orchestrator function to multiple instances,
each instance acquires a lock on one of the control queues, and this
way it ensures that each orchestration instance runs on a single host
instance at a time. In the previous example, a task hub will have two
control queues, so an orchestration instance can be load balanced
across as many as five VMs. Additional VMs can be added to increase
the capacity of activity functions. Generally, orchestration functions are
intended to be lightweight, so they should not require more computing
power. It is therefore advisable to create not more than two to five
control queues.

Figure 5-8 depicts how Azure Functions behaves in a scaled-out

manner.

105

CHAPTER 5 AZURE DURABLE FUNCTIONS

Instances Table

Control Queue(s) i Work Item Queue
Triggers crchastrator Triggers sctivity function esecution
function execution
i- Worker
. Stateful /Partitioned
History Table . Stateless

Figure 5-8. Azure Functions behavior when scaling out

Asyou can see in Figure 5-8, all instances compete for the work
from the work-item queue, but only two instances at a time can acquire
messages from the control queue, and each instance locks the single
control queue.

Autoscaling

Durable Functions supports autoscaling via the scale controller. The
scale controller monitors the rate of events and decides whether

to scale in or scale out. In the case of Durable Functions, the scale
controller monitors the latency of each queue by issuing a peek
command. If the message latencies are higher than the threshold, then
the scale controller will keep adding the instances until it reaches the
partition count.

In the case of work-item queues, the scale controller will keep
adding the VM instances if the message latencies exceed the threshold
irrespective of the partition count. The maximum number of instances it
can add is 200.

106

CHAPTER 5 AZURE DURABLE FUNCTIONS

Concurrency Throttling

Azure Functions allows you to run multiple functions concurrently within
a single app instance. The concurrency increases the parallel execution
and reduces the number of “cold starts.” But you should also be mindful of
the fact that high concurrency results in high per-VM memory usage.
Orchestrator and activity functions both support concurrency, and
their limits can be set in host. json. The setting for an activity function
ismaxConcurrentActivityFunctions and for an orchestrator function is
maxConcurrentOrchestratorFunctions.

{
"extensions": {

"durableTask": {
"maxConcurrentActivityFunctions": 20,
"maxConcurrentOrchestratorFunctions": 20

}

}
}

By default the number of activity and orchestrator function executions
is capped at ten times the number of cores on the VM.

Orchestrator Function Replay

As you know, orchestrator functions are stateful functions, and they replay
to the checkpoint using the contents of the history table. The orchestrator
function code is replayed every time a batch of messages is dequeued from
the control queue by default.

Durable Functions provides an ability to decrease the aggressive
behavior of the replay by using extended sessions. When you enable
extended sessions, the function instances are held in memory

for that time, and you can process message without a full replay.

107

CHAPTER 5 AZURE DURABLE FUNCTIONS

Enabling extended sessions reduces the I/0 against the Azure Storage
table and thus increases the throughput. You can enable extended
sessions by setting extendedSessionsEnabled to true. To control

how long you will keep the idle session in the memory, you use the
extendedSessionIdleTimeoutInSeconds setting in host.json, as
shown here:

{
"extensions": {
"durableTask": {
"extendedSessionsEnabled": true,
"extendedSessionIdleTimeoutInSeconds": 30
}
}
}

But there are always two sides of a coin. So, when enabling extended
session to increase throughput, there is a downside as well.

o Itcanincrease function app memory usage.

e It can decrease throughput if there are many
concurrent, short-lived orchestrator functions.

Performance Targets

If you are planning to use durable functions in a production
application, you should consider the performance requirements early
in the process because they will define the pattern you should use for
your functions.

Table 5-1 shows the maximum throughput for various scenarios.

108

CHAPTER 5 AZURE DURABLE FUNCTIONS

Table 5-1. Maximum Throughput

Scenario Maximum Throughput
Sequential activity execution 5 activities per second, per instance
Parallel activity execution (fan-out) 100 activities per second, per instance

Parallel response processing (fan-in) 150 responses per second, per
instance

External event processing 50 events per second, per instance

Creating Durable Functions Using Azure
Portal

Now that you understand what a durable function is, let’s create one.

Creating a Durable Function

Follow these steps:

1. Open Azure Portal and click “Create a resource.”
Select Compute and then Function App, as shown in
Figure 5-9.

109

CHAPTER 5 AZURE DURABLE FUNCTIONS

Create a resource
Home
Dashboard
All services
FAVORITES
All resources
Resource groups
App Services
Function Apps
S0L databases
& Azure Cosmos DB
Virtual machines
Q‘ Load balancers
BB storage accounts
2 Virtual networks
Q' Azure Active Directory
@ Monitor
@ Advisor

@ Security Center

(© Cost Management + Billing

= Help + support

Dashboard > New

New

ST Bl

Recently created

I Compute l

Networking

Storage

Web

Mobile

Containers

Databases

Analytics

Al + Machine Learning
Internet of Things
Integration

Security

Identity

Developer Tools
Management Tools
Software as a Service (5aas)

Blockchain

Figure 5-9. Starting a durable function

L T

Quickstart tutorial

Red Hat Enterprise Linux 7.2
Quickstart tutorial

Ubuntu Server 18.04 LTS

Learn more

SQL Server 2017 Enterprise
Windows Server 2016

Learn more

SUSE Linux Enterprise Server
software purchase
Learn more

Service Fabric Cluster

Quickstart tutorial

Web App for Containers
Quickstart tutorial

Function App

Cuiickstart tutorial

JEES D> ¢

Batch Service
Quickstart tutorial

Cloud service
Learn more

2. Provide the details shown in Figure 5-10 and

click Create.

110

CHAPTER 5 AZURE DURABLE FUNCTIONS

Dashboard > New > Function App

Function App a >
Create

* App name

| durable-func-new-hook v‘l

.azurewebsites.net

* Subscription

| Visual Studio Enterprise v |

* Resource Group @
O Create new @ Use existing

azure-function-book v

* 0S

UUTI GG Linux (Preview)

* Hosting Plan @

‘ Consumption Plan Y ‘
* Location
‘ Central US v ‘

* Runtime Stack
| NET v |

* Storage @
@ Create new O Use existing

durablefuncnewbad75 \/‘
Application Insights >
Disabled

I IAutomatfon options

Figure 5-10. App details

111

CHAPTER 5 AZURE DURABLE FUNCTIONS

3. Once the deployment succeeds, go to the resource
and select the durable-func-new-book function, as
shown in Figure 5-11.

[f] ?zuflejfl:ln:lion-bock # X
T——— * oeadd SZEditestumes B Delete resource group (U Refresh =D Mowe | # fsgnmge @ Dol L Exoniocsy
© oo g]
B Activity log Subseription ID
= _ Sheael bc-adT-4498.2a64-5003 1841 360
i Access contred [LAM)
& g
Events 2

Settings fer by nam: All types v | [Allocsions ~ | [Mo grouping
i Quickstart Titems [Show hidden types @
@ Resource costs [wame L LoCATION
g Deployments [, seure func test L server Cenal US

? Policie B website] (azure-func-test/websiteT) SO dstabase Central LS
= Properties 5 blobstoragetrigs2T Storage account Central US
& Lok ¥ blob-storage-triggered - func-nadejs App Service Contral L%

B autemation soript B, centralUsPlan App Service plan Contral LS

Morlioring = dursblofuncnawbad7s Storage account Central LS

P Insights (paeviewd <% durable-func-new-book Anp Serdce Central US

B Merts
il Metrics

Ditgrostic settings

@ Advisor recommendations

Figure 5-11. Selecting the function

4. Expand the function’s app and click the + icon.
Then, click the “In-portal” environment and
continue, as shown in Figure 5-12.

112

CHAPTER 5 AZURE DURABLE FUNCTIONS

B et o
e

A baticns wing o lertn
svte arvt W Abure burchions Lere
s

E [e——

Ee Lreb e T
o

Figure 5-12. Selecting the environment and continue, as shown in

Figure 5-12.

5. Click “More templates” and click “Finish and view
templates and continue, as shown in Figure 5-12.”

as shown in Figure 5-13.

dlurable-func-new-book
S durable-Fon-new- boox” ®
el Shates B e
£ o appe

w o dunsbledunenen-hock 3 B

+

Figure 5-13.

E Wabhook « AF1 (@8] Timer n ore remplazes..
Abeticn hat il b s whenevse A erction that vl e 3 4 Vit ol templatis svslache s Wi
[— weited ehucuin oo a9

Choosing more templates

-

113

CHAPTER 5 AZURE DURABLE FUNCTIONS

6. Inthe search field, type durable and select the
“Durable Functions HTTP starter” template, as

shown in Figure 5-14.

durable-func-new-book
5 dusable-func:naw-book™
Choose a template below or go to the quickstart

Vaual Studio Enterprise.

II 5 sunsbid

= Functicn Apps

w < durable-func-new-book

= F s
Tii= st + H Durablz Functions HTTP starter

A function that will irgges whenssss i secehes a0 HTTP
UL L2 Enbeute B SrebaRIrNT unglien.

b = prees

b 3 Shots (preview)

E Durable Functions activity

8 function that wdl be run whenever an Activity i callad by
b ovchagwer fnetion

E Durable Functions archestrator

A archenteator frction that Invekes sctivty Smctions 11 3

seqmnce

Figure 5-14. Selecting the starter template

Serverless Community Library

Mot Tading what yu've kaking for? Check out the Aare
Sarvarless Community Library!

7. Click Install to install the Durable Functions

extension, as shown in Figure 5-15.

Choose a template below argo t

Shots previen)

Figure 5-15. Starting the installation

114

n Durabie Furctions HTT starter

Extensions not Installed

This lemelace raguaves th fellowing extsrgsani.
Micrruct A Webkiobt Futancent Duils S

CHAPTER 5 AZURE DURABLE FUNCTIONS

8. Name the orchestrator client function
OrchestrationClient_Start. Paste the following
code and click Save:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
#ir "Microsoft.Azure.WebJobs.Extensions.Http"
#r "Newtonsoft.Json"

using System.Net.Http;

using System.Threading.Tasks;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Azure.WebJobs.Host;

using Microsoft.Extensions.Llogging;

[FunctionName("OrchestrationClient Start")]

public static async Task<HttpResponseMessage> Run(
[HttpTrigger (AuthorizationLevel.Anonymous,
"get", "post")]HttpRequestMessage req,
[OrchestrationClient]DurableOrchestration
Client starter, ILogger log)

string instanceld = await starter.StartNew
Async("Orchestrator City", null);
log.LogInformation($"Running orchestration
with ID = '{instanceld}'.");

return starter.CreateCheckStatus
Response(req, instanceld);

115

CHAPTER 5 AZURE DURABLE FUNCTIONS

9. Click the +icon again and type durable. Select
“Durable Functions orchestrator,” as shown in

Figure 5-16.

Choose a template below or go to the quickstart

‘] Scenater | an

[P amasd

| [B e conmmny vty
S —

i crehacteitar Suncion St ke actiy fenctions s Bt nchng what yeaste
hess Comemsviy Liwan

sepae,

Figure 5-16. Selecting the orchestrator

10. Name the function Orchestrator City and paste
the following code:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"

[FunctionName("Orchestrator City")]

public static async Task<List<string>> Run(
[OrchestrationTrigger] DurableOrche
strationContext context)

var outputs = new List<string>();

outputs.Add(await context.CallActivity
Async<string>("City Travel", "Hyderabad"));

116

CHAPTER 5 AZURE DURABLE FUNCTIONS

outputs.Add(await context.CallActivity
Async<string>("City Travel”, "New York"));
outputs.Add(await context.CallActivity
Async<string>("City Travel", "Delhi"));

// returns

// "I am travelling to Hyderabad"
// "I am travelling to New York"
// "I am travelling to Delhi"

return outputs;

11. Click the +icon again and type durable. Select
“Durable Functions activity,” as shown in Figure 5-17.

durable-func-new-book
2 “dumatie et bk’ .
Choose a template below or go to the quickstart
Vvl Shdic [erprie
£ Funstion Apps £ dwae w Soeais | a1
w ol dhorsble-func o bosck
™ = Fundtions | ﬂ uweasle Fumsbens HTTP starter
b f Onchetraticlient Stast
A funrion that il rgeger whasesa 1 caloss a8 HTTS
. Quchestrator City Tequent 12 enecue on archesistr Lanction.
% integrate
£ Manag
€, Maninor
= Proces
= shot [previen
Dwable Functions orchestrator
hn crchesturios Ruecion thet v haration:
seuanc

Figure 5-17. Selecting the activity

Steverless Camtrrurity Ubssryt

117

CHAPTER 5 AZURE DURABLE FUNCTIONS

12. Name the function City Travel and paste the
following code:

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"

[FunctionName("City Travel")]

public static string Run([ActivityTrigger]
string cityName, ILogger log)

{
log.LogInformation($"I am travelling to
{cityName}.");
return $"I am travelling to {cityName}!";
}

13. Click the function name and then click “Platform
features.” Once you are on the Platform features tab,
select App Service Editor, as shown in Figure 5-18.

MY Progeties
&8

I Al settings

Coce Duployment

48 Deploymert Center = Meonoring

Development tooks

i Logic Apps = I8 Procass explorer
[Conscle iCME f PowerShell) = 5 Metrics

B Autceration script

Figure 5-18. Selecting the App Service Editor

118

CHAPTER 5 AZURE DURABLE FUNCTIONS

14. The App Service Editor will open in a new tab. Now,
select the host. json file and copy and paste the
following code in it:

{
"version": "2.0",
"logging": {
"filelLoggingMode": "always",
"loglevel": {
"default": "Information",
"Host.Results": "Information",
"Function": "Information",
"Host.Aggregator": "Trace"
}
}
}

15. There’s no need to save the file. It autosaves, as
shown in Figure 5-19.

Figure 5-19. The code

119

CHAPTER 5 AZURE DURABLE FUNCTIONS

16. Now, go back to the function app and go to the
OrchestrationClient_Start function. Click Get
Function Url and copy the URL. The URL will be in
the format of https://function-hhtp-instance/
api/orchestrators/{functionName}?code=#code.
Replace {functionName} with the name of the
orchestration HTTP trigger, which in this case is
OrchestrationClient_Start. Now your URL is
all set. Paste the URL in the browser and press
Enter, and you should see the result, as shown in
Figure 5-20.

Figure 5-20. Results

Disaster Recovery and Geodistribution
of Durable Functions

Since you have deployed your Azure durable function and are wanting
to use it in production, you should now look at how you can make it
production-ready.

Whenever you want a solution to run on a cloud service provider such
as Microsoft, Amazon, Google, and so on, you should specifically plan
for disaster recovery and make sure your application is running in case
there is any disaster and the region in which application is running in goes
down.

Also, you should take care of the data that is going to be stored to make
this application run successfully is properly georeplicated.

120

CHAPTER 5 AZURE DURABLE FUNCTIONS

To enable disaster recovery for durable functions, you should first
make sure that your durable function is stateless. Once you have done that,
you can enable disaster recovery by leveraging another Microsoft service
called Traffic Manager.

You can configure Azure Functions as an app service in Traffic
Manager and use any routing strategy.

For geodistribution, you should always consider keeping a copy of the
data in multiple regions. All the Azure data storage services such as Azure
Storage, Azure Cosmos DB, and Azure SQL provide georeplication of data
across Azure data centers. You can enable these georeplication services to
make sure that your data is available in multiple regions. This will help you
make your function available quickly in the case of a disaster.

In conclusion, this chapter covered how durable functions work and
the patterns you'll use with the Durable Functions extension. Also, in this
chapter, you created your first durable function running in Azure. You now
understand how to manage your functions in the case of a disaster.

In the next chapter, you will look at deploying functions to Azure
using a CI/CD pipeline and at how to configure the functions for Azure
Functions.

121

CHAPTER 6

Deploying Functions
to Azure

In this chapter, I will cover following topics:

o Deploying functions to Azure using continuous
deployment

« Deploying functions to Azure using ARM templates

This chapter will walk you through the ways to deploy functions
to Azure. By the end of this chapter, you should be able to deploy your
functions in two different ways.

Deploying Functions Using Continuous
Deployment

Azure Functions integrates seamlessly with continuous integration/
continuous deployment (CI/CD) and the Azure pipeline, which allows
you to continuously deploy your functions to production. Continuous
deployment makes it easier to deploy code bits in a project where
multiple people are working and when changes in the code repository
are frequent.

© Rahul Sawhney 2019 123
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_6

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

Using App Service continuous integration, you can easily deploy a

function app. Azure Functions integrates seamlessly with the following

deployment sources:

Azure DevOps (a.k.a. VSTS)
OneDrive

GitHub

Dropbox

Bitbucket

Git local repository

External repositories such as Mercurial and Git

Continuous deployment is configured on a per-function app basis, and

once the continuous deployment is enabled, the access to the function app

is set to read-only in Azure Portal.

Setting Up a Code Repository for Continuous
Deployment

Before you set up continuous deployment for your function app, you

should arrange your source code properly. The name of the directory is the

name of the function app. The host. json file resides in the parent or top

folder. Each subfolder in the function app consists of separate functions.

A bin folder contains library files and packages required by the function to

run, as shown in Figure 6-1.

124

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

node modules

4 NutritionServiceBusQueueTrigger

Figure 6-1. Project organization

All the functions in the function app should have the same
language worker.

Now that your code repository is ready, let’s set up your function for
continuous deployment.

Setting Up an Azure DevOps Account

Before you can set up continuous deployment for your Azure function, you
need to set up your Azure DevOps account so that you can connect it to the
Azure Functions service.

Set up your Azure DevOps account by following these steps:

1. Goto Azure Portal (https://ms.portal.azure.com/)
and click Services. Then search for azure devops and
select “Azure DevOps organizations,” as shown in
Figure 6-2.

125

https://ms.portal.azure.com/

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

*

) Atwee Deelxn crganizatiors.

Figure 6-2. Finding Azure DevOps organizations

2. You should see the list of organizations, as shown in
Figure 6-3.

T o p———
Azure DevOps ceganizations

Figure 6-3. Organizations list

3. Once you click the organization, a blade should
open on the right side, as shown in Figure 6-4. Select
“Set up billing” in the menu.

126

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

N Y

Beaisan pOT) pIORG-EROD T

3unadyy Suny

EET

wanden ||

= B Y

FEFOY DI RSIN 7

awy Baeas g

Kseyzanp @ o pRIBULDD 10N
Rogang

e Uz oeang
SN BRI EReS

wonean
s dnaif sancsa

o b

Buyp dn s 3

a
zZzinyes o
cage { ZEnY

S0P PUD TANARS SHONOTM YIS o

Sunnq dn Sunzas p-9 2ansny

son woos waw zzren [
ouon uwes s sy [

AN IO | SniWIS | VEEG

» ~opezivebio sdonag aunzy

auebio sdoasg ATy ¢ AwWop

127

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

4. Avertical blade will open with the available Azure
subscriptions. Select a suitable one and click Link,
as shown in Figure 6-5.

Link your organization

Link your Azure DevOps Services organization to an Azure subscription

Visual Studio Enterprise

Link

Figure 6-5. Linking to an Azure subscription

5. Once you get a notification that the subscription is
linked, you are good to go, as shown in Figure 6-6.

128

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

e L X
Notifications

More events in the activity log = Dismiss all -

o Success! Finished linking your organization

_]inked to Visual Studio Enterprise

a few seconds ago
Figure 6-6. Success

Setting Up Continuous Deployment for Azure
Functions

You have linked your Azure DevOps organization with an Azure
subscription, so you can now set up continuous development for Azure
Functions.

1. Go to Azure Portal and select all the resources
and functions you want to set up for continuous
deployment, as shown in Figure 6-7.

e —

AN resources & K

ot B Uraken | # B cuet 4 Dpotiacor | W Rsdace 0 Peine et S Lo i

Subuarption - e . e mcernon
s Sucks Dowpia -

Figure 6-7. Choosing the functions

129

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

2. Once a function loads, click “Platform features” in
the top menu, as shown in Figure 6-8.

Mome Ml ressuces + durakle-nc-new-baak

durable-func-new-book

3= Funowen Agps

1 suma
w o garatle s aanbook T ¥ & punang
» Ehncion 0 F | sty Subncripticn D Loes
Loading .. SrbaeNo-adaT- 5004 SO0 Certral T

Configured features

Figure 6-8. Selecting platform features

3. In “Platform features,” you will see the Code

Deployment section. Select Deployment Center, as
shown in Figure 6-9.

130

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

Home © AR esorcet > Suribit-ndmew.bock
durable-func-new-book
ey

oo i X Ovarcinvt Faform foprures. 8 Ceployment Corter %
Vil Stube Erterp ot
P semh
3= Furebon Appa
- dmsblalunc nowback 3 B SRSty Nenndany ™
» £ Functiors + Ll £ aFdebation =
KR cons
b F Gy Temel
b Crehesmrationclion Staet 2 o
b Crchestrator Cay Foye - = EPTE
b I Fresies 23
: 2 &
b 1= Shots fprmden)
TG
Mossures managemst
K Diogrrcas i vehvt prblens
[
28 Aot cerars! I
i
[T

B ausomation sospr

Figure 6-9. Choosing Deployment Center

4. Now you will see lot of options such as Azure Repos,
GitHub, Bitbucket, and so on. For this, select Azure
Repos and click Next, as shown in Figure 6-10.

Horme 3 Al escuices © drable-Aunc.new bt
durable-func-new-book
———

£ dastde-hrcemacbieot” *® veniew Plathersn fewturas 4 Deployment Canter %
Vieun Sele Exmpnne @ o o
1= Fusston Agps

- souRca conTRca uan FovoIn conaizuan

- o0 sl e new koo 2 B

w I Functions +
» £ T] v hepos B - & sas
b f OrehostrationChent_Staet

Coniure coisuns Cordgus cotiruow Configuee conivuis

b f Orchestmaton Oty
» 1S Proces

b ES sl (provensy

Figure 6-10.

intogration whhan Asure Repa
et o At Dievion Senices
Diaeraanly bncone, ad VETE)

integraticn: nith a Gbub reoe.

ietegrarion with a Bitbucket
repe.

Sk htharized Bt Antherzed
B -« PN orccrire Gropba
i T clou fokcer
st hatherited ot dntheeried

Bl o

[l

Choosing Azure Repos

131

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

5. Select Azure Pipelines because it is the preferred
way to configure continuous deployment. It is still in
preview but is good enough to use. Once you have
selected Azure Pipelines, as shown in Figure 6-11,
click Continue.

Figure 6-11. Choosing Azure Pipelines

6. Select the Azure DevOps configuration that you
configured and provide details such as the project
name, repository, and branch. Then click Continue,
as shown in Figure 6-12.

132

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

» i resources > duratie-fngrewshook

durable-func-new-book L

5D Bl furs rorwe bock” x Dvwnden Blarfam feane 4 Ceplyment Center % =

T ()

Figure 6-12. Adding the Azure DevOps configuration

7. Setup a deployment slot, which is just a staging
area. A staging slot is where you can deploy your
app and test it, and if everything looks good, you
can just swap the staging slot with the production
slot without any downtime. This will help you in
two ways.

e The app can be thoroughly tested before being
released to production.

o Ifthe new deployment after the slot swap
misbehaves in production or has a bug, you
have your last working code already available
in the staging slot, so you can swap it back to
production.

8. Provide the details, as shown in Figure 6-13, and
click Continue.

133

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

_dura.hll-fllnc‘lww-beuk E
[TV p—— *® Oveniew Platform fewtures i Daployment Canter % *
PR (V] o o ©® o
T e
+ oo —
b f OrchestrationChens Start -
b £ Onehestmator Gty iz e -]
)
Figure 6-13. Setting up the deployment slot
9. Check the summary and click Finish, and your
continuous deployment is now ready and set up, as
shown in Figure 6-14.
o
O dr bl o mew-sack™ = Ly Releh Y Gre g Dbowwr P Eie JB Deploymen Crecentisls
PP Mg T
R =TS e R
’.;' Oltl.nlrnlm_ﬁ'.‘r Tunsdar, Agril . 2013
=h— | L iy ey At e |

Ermaied rwae vt
L

Figure 6-14. CD now ready

134

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

10. Click Build Pipeline, as shown in Figure 6-14. Click
the link, and you will be taken to the build pipeline
of your function, as shown in Figure 6-15.

F earch sl gatings
L = r durable-func-new-book - €1 L - o |

History daabres

.i boutmsse P e R |

B Fropect settogs

Figure 6-15. Build pipeline

11. To check the release pipeline, click the Release
Pipeline link, as shown in Figure 6-14. You will
be taken to the release pipeline of the function in
Visual Studio Team Service (VSTS), as shown in
Figure 6-16.

135

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

) ssure Devips N oo ock [Pk P seah
B refacsiontesk + T durable-furc-new-book - CO ¢ Release-1 +

Bl ownien ﬂ Varisbdes Histery # Deplay O mefvesh # Edn e

B seares
B oo

W

. seages

Conmnugu degloyment Production
& D o @ Farud Sy y—

W Tk g E; o

A
B o

W Comphance

Frpleyment groxn

B Project iwsing

Figure 6-16. Release pipeline

Deploying Azure Functions Using ARM
Templates

One of the most popular ways of deploying anything on Azure has
been Azure Resource Manager (ARM) templates. Functions can also
be deployed using ARM templates. In this section, you will look at the
required parameters and resources that will enable you to deploy functions
with ARM templates.

Basically, you need the following resources to start deploying functions
using ARM templates:

e Azure Storage account
o Hosting plan
e Function app

Let’s set up these using ARM templates.

136

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

For any deployment on Azure, you require an Azure Storage
account, which is the case here. ARM templates will basically first copy
the zip file to an Azure Storage blob and then use that zip file to deploy
the required resource.

The following code snippet will create an Azure Storage account using
an ARM template:

{

“type": "Microsoft.Storage/storageAccounts”,
"name": "[variables('storageAccountName')]",
"apiVersion": "2016-12-01",
"location": "[parameters('location')]",
"kind": "Storage",
"sku": {

"name": "[parameters('storageAccountType')]"

}

This code is looking for the storageAccountType parameter, which can
be set up in the parameters section in the ARM template, as shown here:

"storageAccountType": {
"type": "string",
"defaultValue": "Standard LRS",
"allowedValues": ["Standard LRS", "Standard GRS",
"Standard RAGRS"],
"metadata": {
"description”: "Storage Account type"

}

The Azure Storage account is set up, so let’s look at setting up the
hosting plan. Here you have two types of hosting plans: the Consumption
Plan and the App Service Plan. Let’s first look at the Consumption Plan.

137

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

Deploying a Function App on the
Consumption Plan

The Consumption Plan allows you to make the best use of Azure
Functions. The Consumption Plan dynamically allocates compute power
when your code is running. It scales out to handle extra load and then
returns to normal when the load lessens. So, if Azure Functions is not
running, you are not paying anything for idle VMs. Also, you don’t have to
worry about peak load in advance because the Consumption Plan will take
care of it.

The Consumption Plan is a special type of serverfarm resource,
and in ARM templates you specify it by setting the Dynamic value for the
computeMode and sku properties.

{

“type": "Microsoft.Web/serverfarms”,
"apiVersion": "2015-04-01",
"name": "[variables('hostingPlanName')]",
"location": "[parameters('location')]",
"properties": {
"name": "[variables('hostingPlanName')]",
"computeMode": "Dynamic",

sku": "Dynamic"

In addition, two more settings, WEBSITE _
CONTENTAZUREFILECONNECTIONSTRING and WEBSITE_CONTENTSHARE,
are required by the Consumption Plan. These properties configure the
storage account and file path where the function app and configuration
are stored.

138

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"properties": {

"serverFarmId": "[resourceId('Microsoft.Web/

serverfarms', variables('hostingPlanName'))]",

"siteConfig": {

"appSettings": [
{

"name": "WEBSITE_CONTENTAZUREFILE
CONNECTIONSTRING",
"value": "[concat('DefaultEndpointsProtocol=
https;AccountName=", variables('storageAccount
Name'), ';AccountKey=', listKeys(variables('storage
Accountid'), '2015-05-01-preview").key1)]"

}J
{

"name": "WEBSITE_CONTENTSHARE",

"value": "[toLower(variables('functionAppName'))]"
}

]
}

The complete ARM template to deploy Azure Functions on the
Consumption Plan is as follows:

{

"$schema”: "https://schema.management.azure.com/schemas/
2015-01-01/deploymentTemplate.json#",

"contentVersion": "1.0.0.0",
"parameters”: {
"appName": {

"type": "string",

139

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"metadata": {
"description”: "Function App Name"

}

1
"storageAccountType": {

"type": "string",
"defaultValue": "Standard LRS",
"allowedValues": ["Standard LRS", "Standard GRS",
"Standard RAGRS"],
"metadata": {
"description"”: "Storage Account type"

}
1

"location": {
"type": "string",

"defaultValue": "[resourceGroup().location]",
"metadata": {
"description": "Location for all resources."
}
})

"runtime": {
"type": "string",
"defaultValue": "node",
"allowedValues": ["node", "dotnet", "java"],
"metadata": {

"description": "The language worker runtime to load

the function app."

}
}
1

140

in

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"variables": {
"functionAppName": "[parameters(‘appName')]",
"hostingPlanName": "[parameters(‘appName')]",
"applicationInsightsName": "[parameters('appName')]",
"storageAccountName": "[concat(uniquestring(resource
Group().id), 'azfunctions')]",

"storageAccountid": "[concat(resourceGroup().id,'/providers/’,
'Microsoft.Storage/storageAccounts/", variables('storage
AccountName'))]",

"functionWorkerRuntime": "[parameters('runtime')]"

1

"resources": [
{
"type": "Microsoft.Storage/storageAccounts”,
"name": "[variables('storageAccountName')]",
"apiVersion": "2016-12-01",
"location": "[parameters('location')]",
"kind": "Storage",
"sku": {
"name": "[parameters('storageAccountType')]"

}

"type": "Microsoft.Web/serverfarms",
"apiVersion": "2015-04-01",
"name": "[variables('hostingPlanName')]",
"location": "[parameters('location')]",
"properties": {
"name": "[variables('hostingPlanName')]",
"computeMode": "Dynamic",

sku": "Dynamic"

1
141

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

{

"apiVersion": "2015-08-01",

"type": "Microsoft.Web/sites",

"name": "[variables('functionAppName')]",

"location": "[parameters('location')]",

"kind": "functionapp”,

"dependsOn": [
"[resourceld('Microsoft.Web/serverfarms', variables
("hostingPlanName'))]",
"[resourceld('Microsoft.Storage/storageAccounts’,
variables('storageAccountName'))]"

1,

"properties": {

"serverFarmId": "[resourceld('Microsoft.Web/
serverfarms', variables('hostingPlanName'))]",
"siteConfig": {
"appSettings": [
{
"name": "AzureWebJobsDashboard",
"value": "[concat('DefaultEndpointsProtocol=
https;AccountName=", variables('storageAccount
Name'), ';AccountKey=', listKeys(variables
('storageAccountid'), '2015-05-01-preview').key1)]"
})
{

"name": "AzureWebJobsStorage",

"value": "[concat('DefaultEndpointsProtocol=
https;AccountName=", variables('storageAccount
Name'), ';AccountKey=', listKeys(variables
('storageAccountid'), '2015-05-01-preview').key1)]"

1

142

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"name": "WEBSITE_CONTENTAZUREFILE
CONNECTIONSTRING",

"value": "[concat('DefaultEndpointsProtocol=
https;AccountName=", variables('storageAccount
Name'), ';AccountKey=', listKeys(variables
('storageAccountid'), '2015-05-01-preview').key1)]"

}s

{
"name": "WEBSITE_CONTENTSHARE",
"value": "[toLower(variables('functionAppName'))]"
})
{
"name": "FUNCTIONS EXTENSION VERSION",
"value": "~2"
}J
{
"name": "WEBSITE_NODE DEFAULT VERSION",
"value": "8.11.1"
}J
{

"name": "APPINSIGHTS INSTRUMENTATIONKEY",

"value": "[reference(resourceld('microsoft.

insights/components/', variables('application

InsightsName')), '2015-05-01").InstrumentationKey]"
}J

{
"name": "FUNCTIONS WORKER RUNTIME",

"value": "[variables('functionWorkerRuntime')]"
}
]
}

143

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

}
b
{

"apiVersion": "2018-05-01-preview",

"name": "[variables('applicationInsightsName')]",
“type": "microsoft.insights/components”,
"location": "East US",
"tags": {
"[concat('hidden-link:", resourceGroup().id, '/
providers/Microsoft.Web/sites/"', variables('application
InsightsName'))]": "Resource"
}s
"properties": {
"ApplicationId": "[variables('applicationInsightsName')]",
"Request Source": "IbizaWebAppExtensionCreate"
}
}
]
}

Deploying a Function App on the App
Service Plan

With this plan, Azure Function runs on dedicated VMs similar to web apps.
You can set up the App Service Plan in an ARM template as follows:

“type": "Microsoft.Web/serverfarms”,
"apiVersion": "2016-09-01",

"name": "[variables('hostingPlanName')]",
"location": "[parameters('location')]",

"properties": {

144

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"name": "[variables('hostingPlanName')]",
"sku": "[parameters('sku')]",
"workerSize": "[parameters('workerSize')]",

"hostingEnvironment": "",

"numberOfWorkers": 1

Here, workerSize is the size of the VM, which is small (0), medium
(1), or large (2). You can set up the worker size in the ARM template in the
parameters section, as shown here:

"workerSize": {
"type": "string",
"allowedValues": [

"o",
"
nom
1,
"defaultValue": "0",
"metadata": {
"description”: "The instance size of the hosting plan”
}
}
The complete ARM template for Azure Functions is shown here:
{

"$schema”: "https://schema.management.azure.com/
schemas/2015-01-01/deploymentTemplate. json#",
"contentVersion": "1.0.0.0",
"parameters": {
"appName": {
"type": "string",

145

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"metadata": {
"description”: "Function App name"
}
})
"sku": {

"type": "string",
"allowedValues": [
"Free",
"Shared",
"Basic",
"Standard"
1,
"defaultValue": "Standard",
"metadata": {
"description”: "The pricing tier for the hosting plan.”

}
1

"workerSize": {
"type": "string",
"allowedValues": [

"o"
nqn
nom
1,
"defaultValue": "0",
"metadata": {
"description”: "The instance size of the hosting plan"
}
})

"storageAccountType": {
"type": "string",
"defaultValue": "Standard LRS",

146

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"allowedValues": [
"Standard LRS",
"Standard GRS",
"Standard RAGRS"
1,
"metadata": {
"description": "Storage Account type"
}
}J

"location": {
"type": "string",

"defaultValue": "[resourceGroup().location]",
"metadata": {
"description”: "Location for all resources."
}
}
}s
"variables": {
“functionAppName": "[parameters(‘appName')]",
"hostingPlanName": "[parameters('appName')]",
"storageAccountName": "[concat(uniquestring(resource
Group().id), 'functions')]"
})
"resources": [
{

"type": "Microsoft.Storage/storageAccounts”,
"name": "[variables('storageAccountName')]",
"apiVersion": "2018-02-01",

"location": "[parameters('location')]",

"kind": "Storage",

147

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

sku": {

"name": "[parameters('storageAccountType')]"

}
1
{

“type": "Microsoft.Web/serverfarms”,

"apiVersion": "2016-09-01",

"name": "[variables('hostingPlanName')]",

"location": "[parameters('location')]",

"properties": {
"name": "[variables('hostingPlanName')]",
"sku": "[parameters('sku')]",
"workerSize": "[parameters('workerSize')]",
"hostingEnvironment": ""
"numberOflWorkers": 1

)

"apiVersion": "2016-08-01",
"type": "Microsoft.Web/sites",
"name": "[variables('functionAppName')]",
"location": "[parameters('location')]",
"kind": "functionapp”,
"properties": {
"name": "[variables('functionAppName')]",
"serverFarmId": "[resourceld('Microsoft.Web/
serverfarms', variables('hostingPlanName'))]",
"hostingEnvironment": "",
"clientAffinityEnabled": false,
"siteConfig": {
"alwaysOn": true
}
}’

148

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"dependsOn": [
"[resourceld('Microsoft.Web/serverfarms', variables
("hostingPlanName'))]",
"[resourceld('Microsoft.Storage/storageAccounts’,

variables('storageAccountName"))]

1

"resources": [
{

"apiVersion": "2016-08-01",

"name": "appsettings",

"type": "config",

"dependsOn": [
"[resourceld('Microsoft.Web/sites', variables
("functionAppName'))]",
"[resourceld('Microsoft.Storage/storageAccounts’,
variables('storageAccountName'))]"

]J

"properties": {
"AzurelWebJobsStorage": "[concat('DefaultEndpoints
Protocol=https;AccountName=",variables('storage
AccountName'), ' ;AccountKey=",listkeys(resourceld
("Microsoft.Storage/storageAccounts', variables
('storageAccountName')), '2015-05-01-preview').
key1,';')1",
"AzurelWebJobsDashboard": "[concat('DefaultEndpoints
Protocol=https;AccountName=",variables('storage
AccountName'), ' ;AccountKey=",listkeys(resourceld
('Microsoft.Storage/storageAccounts', variables
('storageAccountName')), '2015-05-01-preview').

key1,';")1",

149

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

"FUNCTIONS EXTENSION VERSION": "~1"

Once the function is deployed using the CI/CD pipeline and you have
set up the staging slot, the function will be deployed to the staging slot.
To go to the staging slot, follow these steps:

1. Go to Azure Portal and click Function Apps in the

menu, as shown in Figure 6-17.

Figure 6-17. Selecting Function Apps

2. Select the function for which you created the CI/CD
pipeline. I have created a pipeline for durable-
func-new-book, as shown in Figure 6-18.

150

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

Heme + Funeion Aogs
Function Apps

< Function Apps
el Susko Erimpive

[—
Locsioy Ml loowons

= Gious M e g Mo greaping
= Function fops @
¥ o blob-storage-trkagered- A AT 8 SO GACUF AN
et L Vi St Evererse e —— Comalts
[— Euldeg anre hrcton [——
Vi S Energesn b enesnciod West U5
B et duraiie Back
[— [——— Conts |
¥ o eddata fustion
[— adwahincian P—

Figure 6-18. Pipeline

3. Click “Platform features” and select Deployment
Center, as shown in Figure 6-19.

e s cutibled e bock
durable-func-new-hook .

B dnbiesreb X Gneien *

il St Erterzeie .

EEaw s

w o duwable fncnawbock T B
B =L +
¥ i Feies

¥ I siots erevie

Figure 6-19. Selecting Deployment Center

4. Once you are in the Deployment Center, click the
slot, as shown in Figure 6-20.

151

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

Figure 6-20. Selecting the slot

5. Once you are in the slot, you will see the URL of
the staging slot and the Swap option, as shown in
Figure 6-21. Now, you can test your function in the
staging slot. Once you are satisfied that things are
running fine, you can swap the slot.

Hormp 3 darabie-fonc-nem-iook 3 bat-itaging (durabls-fanc-re ook /iet-iging)

"\'/__‘ "‘d“’d bde-f

kS aging]
" Bacerh foring * [Dovewse W ome U Resit B Deete b Cetoublhgreble) Reset pusiin pratie
2 . +ang S

g
[P —

O Securky

Besleyment
e
5, Deploymen Cenve
Sattngs
1B Camtguation Hintp o » DataIn P Diets Ot P

= Applcation pettings (Classic)

Aathentcation [Authosiati
® Acplcetion sights i

enlity " amen e
B Cotomdomais s i |

Cprr— i |r\

Figure 6-21. Testing

6. To swap the slot, click the Swap button, as
highlighted in Figure 6-21. When you click Swap, the
vertical screen will open with option to swap. Once
you are satisfied with the values, click Swap again, as
shown in Figure 6-22.

152

CHAPTER 6 DEPLOYING FUNCTIONS TO AZURE

+ Chnable- s e ook 5 est-ATageg (st hec. s ok -GG Swap X
ble-f bock i

< taging]
 sours ® Dyt GEIEED
Y © Pamee Sump %smp Dmene 0 osee L Gepusiunpoe 03 Repi] | drsbefmern bosow i 5] nsbteorc-nm ock
e Rescuste o khange : ansefunciion-book (S

 umring
vty log

+ Centrol U5 <
i —_— f
= I r e T st ef e lpumstion s o P sourcn arnd g et sl the ey
X Disgrose and sche posiems ags lehangel - ——
0 Seeurity

Hitn S ' Data in P

Figure 6-22. Clicking Swap

You can get the Azure Quick Start template at https://azure.
microsoft.com/en-us/resources/templates/ or from GitHub at
https://github.com/Azure/azure-quickstart-templates/.

You have now configured the CI/CD pipeline of your function, so your
function app is all set for production. In the next chapter, you will look at
what’s required to make functions production-ready.

153

https://azure.microsoft.com/en-us/resources/templates/
https://azure.microsoft.com/en-us/resources/templates/
https://github.com/Azure/azure-quickstart-templates/

CHAPTER 7

Getting Functions
Production-Ready

In this chapter, I will cover following topics:
e Using built-in logging
e Using Application Insights to monitor functions
e Securing functions

o Configuring CORS in Azure Functions

Using Built-in Logging

The first thing that comes to mind when talking about monitoring
functions is error logging. You'll want to log errors in Azure Functions so
that you know what went wrong and can fix it.

By default, Azure Functions comes with a logger instance that logs
errors to Azure File Storage. The logger is passed to the function along with
the invocation, as shown in Figure 7-1.

[FunctionName("HttpTriggerCSharp")]

public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", “"post", Route = null)] HttpRequest req,
ILogger log)h

Figure 7-1. The logger is passed to the function

© Rahul Sawhney 2019 155
R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9_7

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

Asyou can see in Figure 7-1, an instance of ILogger is passed as an
argument to the function invocation. You can use the extension method
from Microsoft.Extensions.Logging to log events. The events that are
exposed are LogDebug, LogInformation, LogError, Logharning, and
LogCritical.

For a JavaScript function, it looks like Figure 7-2.

msodules.exports = async function (comtext, mySled) {
atext.Jog(JavascrIpt b trigger *u processed blob \n Nase ", context.bindingData.nase, “\n Blob Size:", mySlob.len

Figure 7-2. The JavaScript function

The context passed in Figure 7-2 has a log function, and you can use it
to log at different levels. The log function has similar levels, such as Trace,
Debug, Information, Warning, Error, and Critical.

The host and function logs of Azure Functions is keptin /LogFiles/
Application/Functions.

Using Application Insights to Monitor Azure
Functions

Azure Functions offers built-in integration with Application Insights. Using
Application Insights, you can monitor Azure Functions easily because
Application Insights not only provides error details but also provides
details such as server requests, timer functions, and much more.

Application Insights Settings for Azure Functions

To connect Azure Functions to Application Insights, Azure Functions
needs to know the Application Insights instrumentation key. The key
APPINSIGHTS_ INSTRUMENTATIONKEY must be setin the app settings of Azure
Functions.

156

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

You can integrate Application Insights with Azure Functions in two
ways.

e Automatically integrating during new function creation

e Manually connecting to the existing Application
Insights service

Integrate Application Insights During New Azure
Function Creation

Let’s see how this is done.

1. Go to Azure Portal and click “Create a resource”

Then, click Compute and click Function App, as
shown in Figure 7-3.

Figure 7-3. Starting the function app

2. Ablade will open. Scroll down and click Application
Insights, as shown in Figure 7-4.

157

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

Function App

Figure 7-4. Finding Application Insights

3. Once you click it, the Application Insights setup will
open. Click Enable, select “Create new resource” or
“Select existing resource,” and set up Application

Insights, as shown in Figure 7-5.

Application Insights

Application Insights site extensions

Collect sppikeation morisnring dita uing Appiication Incghar £t axsantion

Uik 1o an Application nsights retcurce

e ape will be cznmeced
etttz oy mill be sdded Thit wll repemeite sy i i o

Hame. Rescerce Group Roscation

@ ccan-lunction adwgdunciion (it

Figure 7-5. Setting up Application Insights

158

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

4. Provide the proper details such as the resource
name and location and click Apply. Your new
function is now integrated with Application Insights.

Manually Connecting Application Insights
to Azure Functions

Let’s do it manually now. Follow these steps:

1. Go to Azure Portal, click “Create a resource,” and
search for Application Insights. Then click Create, as

shown in Figure 7-6.

Figure 7-6. Starting the manual process

159

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

2. Once you are on the Application Insights creation
page, provide details such as the name, application
type, resource group, and location, as shown in
Figure 7-7. Click Create.

Application Insights

tame

[
apa

* Bevouce Giowp &
@ Crose v () Use wiving

St Centrsi LS

Figure 7-7. Application Insights properties

3. Once Application Insights is ready, go to the
Dashboard and copy the integration key, as shown
in Figure 7-8.

160

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

% o Application Dasnboard o Getting staned L, Search B Anabtics W Monitor resousce growp) Refresh *++ Mare

5 N | Starting Agri 1. 2019, e ation from Smart i will e sent by bt ta the Mostoring Contiibutar and Macitoring Reade: roles. For
T Overview Instructions on how to prepare for this change, chick hera.
W Activity log Fespurce aroup (change) Insirumentation Key
0451365 1784 TEb-aatl-240d2 2edbasd
sl Access control (LAM]) G
Location
‘ bgs East US
K Diagnoss and solve problenms BHBsoltboR o)
— Suisseription ID
IVt ShdasTic-acaT-478-aafd- 500318414360
= Application map Tags {change)
& Click here 10 add tags
& Smart Detection N
4 Live Metrics Stream
i Metrics Shew data for last: [50 motes [JRIRORIN 6hous | tahours | 1doy | idms | idus | sodem |
P sesich
& wailability Failed requests » Server responss time >
s Failures 100 10004
& Perfoimance £]
. Servers 8 foms
B Erowser » i
20ms
[+] Tmuhl«lmmg g:.idn (pee. TR s
H Workbooks ,Mwﬁ:; PRI) g - .-\,v:‘ra:m-_- 1o A 1
odyz-henckon odata-fancion
Usage 0
o Users 2
Figure 7-8. Locating the instrumentation key
. u
4. Go to Azure Functions and select “Platform
”

features” and then Application Settings. Click

Add New Setting and add APPINSIGHTS _

INSTRUMENTATIONKEY. See Figure 7-9.

APPSETTING HAME VAL SLOT SETTING DELITE
AzureWWeblcbsStorage Higden value. Click to edit. x
datalireNane Hidkfen vofue, Click to wfit k3
catabesePassweed Hidden volue. Click £ edit. o *
catanetelind Fidden volue, Click fo et x
datatieseliser Hicifen volie. Click to edit O *
seﬂu-:cm:s,r.dm Higden value, Click to dir. k3
FUNCTIONS_EXTENSION_VERSION Ficdden volue, Clack fo edit. ®
FUNCTIONS_WORIER_RUNTIME Higden vafue. Click to adir. k3
tablefame Hiden value, Click b3 adit. x
WERSITE CONTENTAZURERLECONNECTIONSTRING Higkden volue, Cliok to edit. o x
WEBSITE CONTENTSHARE Higden volue, Click £ edit. O »
WERSITE NOODE_DEFAULT VERSION Higden value, Click b edit. x

I APFINSIGHTS_INSTRUMENTATIONCEY Fidkfen wolume, Click to edit x I
= B v st

Figure 7-9. Adding the key

161

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

The Azure Functions app is integrated with Application Insights, and
you can create custom telemetry events and other metrics in your Azure
app function.

Disabling Built-in Logging

Because you have enabled Application Insights for your Azure Functions
app, itis imperative to disable the built-in logging of Azure Functions that
uses Azure Storage. The built-in logging is good for light-weight workloads
such as testing in lower environments but is not intended for use in
production. The reason for discouraging the use of built-in logging is that if
the workload is high, then the logs might be incomplete because of Azure
Storage’s throttling.

To disable the built-in logging, you need to delete the
AzureWebJobsDashboard setting from the app settings. Just make sure that
this key is not being used in any applications.

Configuring Categories and Log Levels

Application Insights is like a plug-and-play service for Azure Functions,
but if you use the default configuration, it can result in high-volume data,
and you will end up hitting your data cap for Application Insights.

To avoid that, you can customize the configuration and send only the
logs you require. To do that, you need to first understand the categories of
logs in Azure Functions.

e The function runtime creates logs with a category that
begins with Host.

¢ The “Function started,” “function executed,” and “function
completed” logs have the category Host . Executor.

e The logs that you write in your function have the
category “Function”.

162

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

You can configure which log level to go to Application Insights for the
previous categories in the host. json file.

{
"logging": {
"fileLoggingMode": "always",
"loglevel": {
"default": "Information",
"Host.Results": "Error",
"Function": "Error",
"Host.Aggregator": "Trace"
}
}
}

In the previous settings, you are setting the following:

e For the categories Host.Results and Function, you
will send logs with a log level of Error or higher to
Application Insights.

o For the category Host.Aggregator, you will send logs
with level Trace or Verbose and higher.

o For all other logs, you will send logs with a log level of
Information or higher.

So, now you are done, and your function is ready to be monitored
properly in production. Let’s see it in action in Figure 7-10.

163

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

Http Sxx 9 Data In }? Data Out ﬁ

4.8BKE J |I
| \"'.

& - _.f! I_JLA'_

10

Hp Server Er Sum) Dt In {Sum] Data Out

i Sumi
Quralie-func-new- bookBect-2aging dlra:i';-‘\.m--m-bmwbc::-:'aqrq d.'.et“k‘-?\n-n;h‘-bﬂchﬁ:-f)ﬂm
0 427 5572

Requests ﬁ Average Response Time S?

45

T EFEAfRR

e

Figure 7-10. Function in action

Monitoring functions in production is a necessity. This enables you
to monitor load, errors, and requests, and also lets you debug issues in
production.

Securing Azure Functions

To make your functions production-ready, you have to secure them so
that unauthorized access can be reduced. In today’s world, securing
your functions should be one of the most important tasks as there are
lot of data breaches, and any data breach reduces people’s trust of the
company and its web sites. So, it is paramount for you to secure Azure
Functions.

164

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

The good thing about Azure Functions is it provides you with an easy-
to-use configuration to secure your functions. Let’s go back to the HTTP-
triggered function you created in this book. Let’s copy the function URL, as

shown in Figure 7-11.

Body & swalt new reg. body tH

null
Sontesult)sew ShosjectResult(s Helle, {name}"]
Dadtequestobiectiesult(*Flease pass o name on the query string or dn the request bod”l;

Figure 7-11. Copying the function

Now, copy this URL to a browser and add &name={provideYourName},
replacing YourName with any name, as shown in Figure 7-12.

O tepestuiiaganeekemer . ® | +
3 O | & it gy oo s LA TGV OGUGSE/ 1559 BEZAPEU A accha=Eineme=Rabul | *

Figure 7-12. Replacing YourName

As you can see, anyone who has your URL can access the function.
Since this is a basic function that does not interact with your database, it’s
OK. But consider a function like the OData API function that you created
in Chapter 4. Now, if your endpoint is not secured (i.e., it does not require
any authentication/authorization), then you are actually inviting hackers

to easily get your data.

165

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

To avoid this, you need to make sure that only authenticated users can
access your function. Let’s enable authentication/authorization for your

function using Active Directory.

1. Go to the function that you want to secure and
click “Platform features” and then Authentication/
Authorization, as shown in Figure 7-13.

building-azure-function

Figure 7-13. Clicking Authentication/Authorization

2. Set App Service Authentication to On and then
set the “Action to take when request is not
authenticated” drop-down to “Log in with Azure
Active Directory,” as shown in Figure 7-14.

166

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

Home » bulding-arure-tenciion > Authentication ¢ Asthorization

Authentication / Authorization

Feme X Disead

Authentication / Autherization

o Bk your MET vevtion ek ks "4 5 o i el masae sipeling e 5 041 10 iegrated”

Log inwith Anure dutive Divecioey

Authentication Frovders

& agure actvs Dirciony >
Mot Configured

[e 5
Hot Confgured

B ceoge »
Mot Configured

I Foieter 5
Hot Confgured

B wiierniat »
Mot Configured
Advanced Settngs
——

Figure 7-14. Setting “Action to take when request is not
authenticated”

3. Inthe Authentication Providers section, click
Azure Active Directory and set Management
Mode to Express. Then select Create New AD App.
Provide the name of the Active Directory and
click OK. This will create the AD app and enable
authentication/authorization for this function, as

shown in Figure 7-15.

167

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

Azure Active Directory Settings O X

@ Active Directory Authentication

These settings allow users to sign in with Azure Active Directory. Click here to learn
more. Learn more

Management mode @ ’ Off Advanced |

Express mode allows user to create an AD Application or select an existing AD
application in your current Active Directory.

Current Active Directory

| Microsoft
Management mode NEEETCHNEPINNIE Select Existing AD App | I

* Create App
| building-azure-function

Grant Common Data Services Permissions Off

Figure 7-15. Creating the AD app ID

168

4. Let’s try to hit the same URL that you did in
Figure 7-12. You will see that now it asks you
to log in before showing the result, as shown in
Figure 7-16.

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

BT Microsoft

Sign in

Figure 7-16. Requesting a login

You have now secured your function, and only the users who are in
your AD application will be able to access this function.

Configuring CORS on Azure Functions

In most cases where you want to use a function as an API, you will be
running Azure Functions and your UI or service that will call Azure
Functions in different domains.
If that’s the case, you will have to enable cross-origin site scripting
(CORS) for your function so that you can access it from different domains.
To do that, let’s follow these steps:

1. Let’s go back to the function and click “Platform
features.” Then select CORS within the API section,
as shown in Figure 7-17.

169

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

Home 3 bulding-anare-fustion

building-azure-function

£ Buibling azere banstiae” x

Visal S0 Ervarprne

Besturee massgrment

X Suagacns imd schgrithame

I uternation penpt

Figure 7-17. Selecting CORS

2. Select Enable Access-Control-Allow-Credentials,
as shown in Figure 7-18. Let’s say you have
an application running locally on http://
localhost:5000 and you want to access this
function from this application. In Allowed Origins,
set this URL and click Save, as shown in Figure 7-18.

Harme + brakfing-asure-fusction

building-azure-function

3 ik atwe buncion” x Ovversien Platform beatures

— -,
[T — = C_?D coRS
oy ——— =
= puncticn Appe
Lreas-Ungin Resource Sharing (L0 alows knvaScpt code.
- o ukgng.arwe-unction T B Senarad fotteg. - browser. ' ¥
» Backa. Spucily the ceiging that sheuld be
w IS Fusctions + e fey i gin calk (for example: nitg,jexaen 345, T
Meons alfom all e ™" and remave all cther crigins fom the fnt
- f HoipTeigeent I . et allimses it o ciomain or alter LD
He Lr:
@ A Serce lan
B stegs P o e ptan Foequest Credentials
24 - (] st Acomss-Controlidaw-Credencials O
Code Deployment >
o Allawed Dnging
B Coeplayment Ceris i utn »
hetpr:ffhunesions azene.com
Dsuriopment teais Scxzures mansgomart
HepibnSomtagnganacon
U Logic Appa = K Diognase andl 1ok prabiema
Hetgn b e e e
et [~
[v ol Aevess contcl DA l herpiincabnst SO0
7 Agp Servies Edtar L s
I r— Bess
L St Esiersion [Te———

Figure 7-18. Setting the URL

170

CHAPTER 7 GETTING FUNCTIONS PRODUCTION-READY

With this you have enabled CORS on Azure Functions, and your
function can now be accessed from all the domains that you have provided
in Allowed Origins. To enable all the URLSs, set it to *.

With this, you have come to the end of the book. I hope this book is
just the beginning of your learning about the Azure Functions service. The
more you dig into it, the more you will learn about Azure Functions.

171

Index

A

Activity function, 89, 97, 104
Activity trigger, 97
message visibility, 98
return values, 98
threading, 98
Application insights
built-in logging, 162
categories and log levels,
configuration, 162-164
connection, 156, 157
integration, 157-159
manual connection, 159
adding key, 161
instrumentation key, 161
properties, 160
Async HTTP APIs pattern, 92-94
Azure DevOps account
bill, setup, 127
link, subscription, 128
organizations, 126
Azure functions
application-level
extensions, 24
app service plan, 6
vs. Azure WebJobs, 4-5
consumption plan, 5

© Rahul Sawhney 2019

features, 3
file hierarchy, 23
logging-level
extensions, 24
Azure Functions 2.0
core tools, 29
NuGet packages, 29, 30
Visual Studio
Code, 29, 30
Azure resource manager
(ARM) templates
app service plan, 144
Azure functions, 145-150
CI/CD pipeline, 150
deployment center, 151
function apps,
selection, 150
swap, 153
testing, 152
consumption plan
deploy Azure
functions, 139-144
serverfarm resource, 138
resources, 136
storage account, 137
workerSize, 145
Azure WebJobs, 4, 5

R. Sawhney, Beginning Azure Functions, https://doi.org/10.1007/978-1-4842-4444-9

https://doi.org/10.1007/978-1-4842-4444-9

INDEX

B

Bindings, 26, 27
Blob storage-triggered function, 30
host.json, 51
using C#
Azure logo, 31
BlobTrigger, selection, 33
.cs file, 39, 40
folder, creation, 32
function-v2-book, 38
language, selection, 32
local app setting, 35
namespace, 34
naming function, 34
resized image, 41
sign in, Azure, 36
storage, selection, 37
subscription, selection, 36
using Node.js
Azure storage account, 45
blob naming, 46
code, 49, 50
function files, 47
language, selection, 42
naming function, 43
subscription, selection, 45
template, selection, 43
workspace, addition, 46
Built-in logging, 155, 156

C

Client function, 88
Cloud computing, 53

174

Command and query
responsibility segregation
(CQRS) pattern, 104

Continuous deployment, 3, 123

Continuous integration/continuous
deployment (CI/CD)

adding configuration, 133
Azure DevOps account, 125-129
code repository, 124, 125
continuous deployment,
setup, 129
center, selection, 131
function, choosing, 129
platform features,
selection, 130
repos, selection, 131
pipelines, 132, 135
slot, setup, 134
sources, 124
VSTS, 136

Control queue, 104

Cross-origin site scripting
(CORS), 169

enable access-control-allow-
credentials, 170
URL setting, 170
CustomerModel.cs file, 69

D
Deploying functions
ARM templates (see Azure
resource manager (ARM)
templates)

continuous deployment (see
Continuous integration/
continuous deployment
(CI/CD))
Durable functions
activity function, 89
client function, 88
control queue, 104
creation, Azure Portal
activity, select, 117
app details, 110, 111
App Service
Editor, 118,119
create resource, 109
durable-func-new-book
function, 112
"In-portal”
environment, 112, 113
installation, 114
OrchestrationClient_Start
function, 120
Orchestrator_City
function, 116, 117
orchestrator client
function, 115
selecting orchestrator, 116
templates, 113-114
disaster recovery and
geodistribution, 120, 121
monitoring, 94, 95
orchestration client, 101, 102
orchestrator function, 87, 88
performance
targets, 108, 109

stateful orchestration, 88

use case, 87
work-item queue, 104
Dynamic value, 138

E

EventHubTrigger, 26

F

INDEX

Fan-Out/Fan-In pattern, 91, 92

File hierarchy, 23
Function app
Azure Portal
account creation, 8

function creation, 13, 15, 16

item, 9-11

name and settings, 11

status checking, 12
Visual Studio code
checking, 22
copying URL, 20
creation, 21
extension
installation, 18
function creation, 19

language selection, 18

naming, 21

project selection, 19
subscription, 21
trigger selection, 20

Function as a service (FaaS), 2

Function chaining, 89-91

175

INDEX

G M
Gigabyte-second (GB-s), 5 Microservice architecture, 54
GitHub Webhook, 26 vs. monolithic architecture, 54-56

Monitoring functions, 164
Monolithic applications, 56-58
Monolithic approach, 53, 54

H

History table, 103

host.json file, 105, 124, 163 N
HTTP-triggered function
C# Nano services, 54
folders creation, 68, 69, 71, 73
language selection, 63 (0
local URL, 73 Open data protocol (OData), 74
namespace, 65 getSqlResults method, 75

naming function, 63, 64 npm packages, 74
SqlClient package, 66, 67 query parameters, 80
template selection, 64 SQL query, 77
OData API (see Open data
protocol (OData))
SQL server creation, 59-62
Human interaction, 95-97

Orchestration trigger, 99-101

message visibility, 100

return values, 100

single threading, 99
Orchestrator function, 87, 88, 107
| Orchestrator function

replay, 107, 108

Orchestrator scale-out

autoscaling, 106

concurrency throttling, 107

Instance table, 103, 104
Integrated development
environment (IDE), 3
Internal queue triggers, 104
Inventory management service, 57
Isolated functions, 58 P’ Q
Polyglot programming, 55

Proxy
J; K; L azure portal, 85, 86
JSON object, 98, 99, 102 visual studio code, 82-84

176

R

Routing strategy, 121

S

Seamless integration, 3
Securing Azure functions
AD app ID, creation, 168
app service authentication, 167
authentication/authorization, 166
copying, function URL, 165
HTTP-triggered function, 165
Serverless computing, 1, 2
Service bus trigger, 26
SQL server management studio, 62
storageAccountType parameter, 137

INDEX

T, U

Timers and compensation
logic, 95

Traffic Manager, 121

Trigger, 25, 26

\'

Virtual machine (VM), 6
Visual Studio Team Service
(VSTS), 135

W XY,Z

Work-item queue, 104

177

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Azure Functions
	Overview of Serverless Computing
	Overview of Azure Functions
	Azure Functions vs. Azure WebJobs
	Azure Functions Pricing Plan
	Consumption Plan
	App Service Plan

	Chapter 2: Creating Functions in Azure Functions
	Creating an Azure Function Using Azure Portal
	Creating an Account on Azure Portal or Logging into Azure Portal
	Creating Your First Function App Using Azure Portal
	Creating Your First Function in the Function App

	Creating an Azure Function Using Visual Studio Code
	Creating Your First Function App Using Visual Studio Code
	Creating Your First Function in the Function App

	File Hierarchy, Configuration, and Settings in Azure Functions

	Chapter 3: Understanding Azure Functions Triggers and Bindings
	Overview of Triggers and Bindings
	Azure Functions 2.0 Changes
	Installing Extensions Using the Azure Functions Core Tools
	Installing Extensions Using the Azure Functions Visual Studio Tools

	Creating a Blob Storage–Triggered Function
	Creating a Blob-Triggered Function Using C#
	Blob-Triggered Function Using Node.js

	Running the Example

	Chapter 4: Serverless APIs Using Azure Functions
	Monolithic Architecture vs. Microservice Architecture
	Converting Monolithic Applications to Highly Scalable APIs Using Azure Functions
	Creating an HTTP-Triggered Function with SQL Server Interaction
	Creating a SQL Server Instance with Sample Data
	Creating an HTTP-Triggered Function Using C#
	Creating an HTTP-Triggered OData API for SQL Server Using Azure Functions

	Overview of Proxies in Azure Functions
	Creating a Proxy Using Visual Studio Code
	Creating a Proxy Using Azure Portal

	Chapter 5: Azure Durable Functions
	Overview of Durable Functions
	Types of Functions
	Durable Function Patterns
	Function Chaining
	Fan-Out/Fan-In
	Async HTTP APIs
	Monitoring
	Human Interaction

	Bindings for Durable Functions
	Activity Triggers
	Orchestration Triggers
	Orchestration Client

	Performance and Scaling of Durable Functions
	History Table
	Instance Table
	Internal Queue Triggers
	Orchestrator Scale-Out
	Autoscaling
	Concurrency Throttling

	Orchestrator Function Replay
	Performance Targets

	Creating Durable Functions Using Azure Portal
	Creating a Durable Function

	Disaster Recovery and Geodistribution of Durable Functions

	Chapter 6: Deploying Functions to Azure
	Deploying Functions Using Continuous Deployment
	Setting Up a Code Repository for Continuous Deployment
	Setting Up an Azure DevOps Account
	Setting Up Continuous Deployment for Azure Functions

	Deploying Azure Functions Using ARM Templates
	Deploying a Function App on the Consumption Plan
	Deploying a Function App on the App Service Plan

	Chapter 7: Getting Functions Production-Ready
	Using Built-in Logging
	Using Application Insights to Monitor Azure Functions
	Application Insights Settings for Azure Functions
	Integrate Application Insights During New Azure Function Creation
	Manually Connecting Application Insights to Azure Functions
	Disabling Built-in Logging
	Configuring Categories and Log Levels

	Securing Azure Functions
	Configuring CORS on Azure Functions

	Index

