
Building
Microservices
Applications on
Microsoft Azure

Designing, Developing, Deploying,
and Monitoring
—
Harsh Chawla
Hemant Kathuria

Building
Microservices

Applications on
Microsoft Azure
Designing, Developing,

Deploying, and Monitoring

Harsh Chawla
Hemant Kathuria

Building Microservices Applications on Microsoft Azure: Designing,

Developing, Deploying, and Monitoring

ISBN-13 (pbk): 978-1-4842-4827-0 ISBN-13 (electronic): 978-1-4842-4828-7
https://doi.org/10.1007/978-1-4842-4828-7

Copyright © 2019 by Harsh Chawla and Hemant Kathuria

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4827-0.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Harsh Chawla
Gurugram, India

Hemant Kathuria
New Delhi, India

https://doi.org/10.1007/978-1-4842-4828-7

Dedicated to my son Saahir, my wife Dharna and
my parents

—Harsh Chawla

Dedicated to my brother who is the guiding force in
my life and career, to my parents who are

always there for me!

—Hemant Kathuria

v

About the Authors ��xi

About the Technical Reviewer ���xiii

Acknowledgments ���xv

Introduction ��xvii

Table of Contents

Chapter 1: Evolution of Microservices Architecture �����������������������������1

Key Evaluation Parameters ���2

Scalability ��3

Agility ���3

Resilience ��3

Manageability ��4

Monolithic Architecture ���4

Scalability ��6

Agility ���7

Resilience ��8

Manageability ��9

Microservices Architecture ���10

Scalability ��12

Agility ���13

Resilience ��14

Manageability ��15

Comparison Summary ��15

vi

Challenges of Microservices ���17

Database Redesign ��17

Interservice Communication ��18

Higher Initial Expense ��19

Deployment Complexities ��19

Monitoring ���19

Versioning ��19

Summary���20

Chapter 2: Implementing Microservices ��21

Client-to-Microservices Communication ��22

API Gateway���22

The API Gateway Pattern on Azure ��28

Interservice Communication ���29

Data Considerations ��31

Common Database Techniques and Patterns Indexed Views ������������������������32

Data Warehouse for Reporting Needs��33

Security ���33

Monitoring ���34

Microservices Hosting Platform Options ���34

Using Virtual Machines ��35

Using a Container ��36

Azure Service Fabric ���39

Azure Kubernetes Service ���40

Docker Swarm and Compose ��40

Mesos DC/OS ���41

Summary���41

Table of ConTenTsTable of ConTenTs

vii

Chapter 3: Azure Service Fabric ���43

What Is Service Fabric? ��43

Core Concepts ���44

Service Fabric Application Model ��45

Scale by Increasing or Decreasing Stateless Service Instances �������������������46

Scale by Adding or Removing Named Services Instances ����������������������������47

Supported Programming Models ��48

Containers ���48

Reliable Services ���49

Guest Executable ���53

ASP�NET Core ���54

Reliable Actors ���54

Service Fabric Clusters ���54

Naming Service ���55

Image Store Service ��55

Failover Manager Service ��55

Repair Manager Service ��55

Cluster on Azure ��55

Standalone Cluster or Any Cloud Provider ���56

Develop and Deploy Applications on Service Fabric ���56

Develop an ASP�NET Core Stateless Web App ��57

Develop a Spring Boot Application ��84

Summary���109

Chapter 4: Monitoring Azure Service Fabric Clusters ����������������������111

Azure Application Insights ���112

Resource Manager Template ��112

Application Monitoring ��112

Table of ConTenTsTable of ConTenTs

viii

Adding Application Monitoring to a Stateless Service
Using Application Insights ���113

Cluster Monitoring ���140

Infrastructure Monitoring ��146

Summary���150

Chapter 5: Azure Kubernetes Service ���151

Introduction to Kubernetes ���151

Kubernetes Cluster Architecture ��152

Kubernetes Master ��153

Kubernetes Nodes ���154

Kubernetes Node Pools ���155

Pods ���155

Deployment ���155

Namespaces ��157

What Is Azure Kubernetes Service? ��157

AKS Development Tools ��158

Set up AKS and Development Tools for Labs ���159

Create an Azure Kubernetes Service Cluster ���159

Enable Azure Dev Spaces on an AKS Cluster ���161

Configure Visual Studio to Work with an Azure Kubernetes Service Cluster ����� 161

Configure Visual Studio Code to Work with an Azure
Kubernetes Service Cluster ���163

Deploy Application on AKS ��166

Develop ASP�NET Core Web App and Deploy on AKS������������������������������������166

Create an ASP�NET Core Web API ���166

Develop Node�js Using Visual Studio Code and Deploy It on AKS ����������������170

Create a Node�js API ��170

Summary���177

Table of ConTenTsTable of ConTenTs

ix

Chapter 6: Monitoring Azure Kubernetes Service ����������������������������179

Monitoring ���179

Azure Monitor and Log Analytics���180

Create an AKS Cluster from the Portal ���180

Create an AKS Cluster with Azure CLI ��182

Monitoring AKS Clusters ���183

Monitor from AKS ��184

Monitoring a Multi-Cluster from Azure Monitor ���188

Native Kubernetes Dashboard ��189

Prometheus and Grafana ��190

Summary���191

Chapter 7: Securing Microservices ��193

Authentication in Microservices ���193

Implementing Security Using an API Gateway Pattern ��������������������������������������195

Azure API Management ���195

Ocelot ��197

Hands-on Lab: Creating an Application Gateway Using Ocelot and
Securing APIs with Azure AD ���198

Setting up a Development Environment ��198

Azure AD Application Registrations ���199

Develop an API Gateway, Back-end Service, and Client Application ������������202

Summary���223

Chapter 8: Database Design for Microservices ��������������������������������225

Data Stores ���225

RDBMS ��226

NoSQL ��227

Monolithic Approach ���229

Table of ConTenTsTable of ConTenTs

x

Microservices Approach ��230

Two-Phase Commit��231

Eventual Consistency���233

Harnessing Cloud Computing ��233

Infrastructure as a Service (IaaS) ��234

Platform as a Service (PaaS) ���235

Database Options on Microsoft Azure ���236

RDBMS Databases ���236

Azure SQL DB ��237

SQL Managed Instance ��238

NoSQL Databases ��240

Overcoming Application Development Challenges ��241

Challenge 1 ��242

Challenge 2 ��242

Challenge 3 ��243

Challenge 4 ��244

Summary���244

Chapter 9: Building Microservices Applications on Azure Stack �����245

Azure Stack ���246

Services Available in Azure Stack ��246

Azure Stack Deployment Modes ��247

Offering IaaS ���248

PaaS On-Premises Simplified ���249

SaaS on Azure Stack ���251

Summary���255

Index ���257

Table of ConTenTsTable of ConTenTs

xi

About the Authors

Harsh Chawla has been part of Microsoft

for last 11 years and has done various roles -

currently, a Solutions Sales Professional with

Microsoft GSMO. He has been working with

large IT enterprises as a strategist to optimize

their solutions using Microsoft technologies

on both private and public cloud. He is an

active community speaker and blogger on data

platform technologies.

Hemant Kathuria is a consultant with

Microsoft Consulting Services. He is assisting

top Indian IT companies and customers in

defining and adopting cloud and mobile

strategies. He is an advocate of Microsoft

Azure and a frequent speaker at various public

platforms such as Microsoft Ignite, TechReady,

Tech-Ed, Azure Conference, and Future

Decoded.

xiii

About the Technical Reviewer

Devendra G. Asane is currently working as a

Cloud, BigData and Microservices Architect

with Persistent Systems. Prior to this he has

worked with Microsoft.

Devendra lives with wife Seema and son

Teerthank in Pune, India.

xv

Harsh Chawla – I’d like to thank my wife and our families who always

supported me and believed in me. Writing this book has been an enriching

journey. I am eternally grateful to all my mentors especially Narinder

Khullar, Pranab Mazumdar and Ashutosh Vishwakarma for their selfless

support and inspiration. Lastly, thanks to the entire Apress team for their

support to complete this book on time.

Hemant Kathuria – Thanks to entire Apress team especially Matthew,

Shrikanth and Smriti, for helping us complete this book on time. A special

thanks to Varun Karulkar for his contribution to this book.

Acknowledgments

xvii

In the era of digital disruption, every organization is going through a major

transformation. Every organization is rushing towards building businesses

online. Business applications are becoming mission critical and any

downtime can cause huge business impact. There is a critical need to build

highly agile, scalable and resilient applications. Therefore, microservices

architecture has gained huge momentum over the past few years.

This book covers the need and the key evaluation parameters of

microservices architecture. It covers the scenarios where microservices

architecture is preferred over the monolithic architecture, based on the

learning from large-scale enterprise deployments.

The book covers practical scenarios and labs to gain hands on

experience. There is an in-depth focus on the critical components for

building, managing and orchestrating the microservices applications.

You will learn the following:

• Need, Evolution and Key Evaluation parameters for

Microservices Architecture

• Understand the scenarios where microservices

architecture is preferred over monolithic architecture

• Architecture patterns to build agile, scalable and

resilient microservices applications

• Develop and Deploy Microservices using Azure Service

Fabric and Azure Kubernetes Service (AKS)

Introduction

xviii

• Secure microservices using Gateway Pattern

• Deployment options for Microservices on Azure stack

• Database patterns to handle complexities introduced

by Microservices

InTroduCTIonInTroduCTIon

1© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_1

CHAPTER 1

Evolution of
Microservices
Architecture
This is an era of digital transformation. Easy access to the Internet has

empowered people and organizations to achieve more from sitting

anywhere in the world. There was a time when every company was rushing

for a web presence, and Internet adoption was picking up speed. Today,

the Internet is in every pocket: you can access the Internet anywhere

through cell phones, laptops, tablets, or PCs. This has brought a radical

change to every industry. Today, every organization wants to do business

online—whether retail, finance, entertainment, gaming, or so forth.

With the Internet in every pocket, the user base is increasing

exponentially. A million downloads of an application or millions of views

of a video within a single day are very common. Companies are running

successfully in different geographic locations, and there is fierce competition

to maintain market share. It’s important to be highly performant and handle

unpredictable user loads without interruption of service.

When millions of users are accessing a mobile application or website,

even a small unhandled exception can have a cascading effect. It can

bring down an entire application and cause a company to lose millions

2

of dollars. Therefore, every tiny detail in the application architecture is

important. Application architectures have transformed drastically in the

last ten years. Earlier, choices in technology were limited, and user load

was limited as well. Application architects designed applications based

on a monolithic three-tier architecture. As user loads and choices in

technology increased, companies found monolithic applications difficult

to scale and less agile at adopting new changes. Therefore, service-

oriented architecture—and later, microservices architecture—started

getting traction in the market.

This chapter covers the concepts of monolithic architecture and

microservices architecture. In the coming chapters, we will delve into

the technology and infrastructure details to host microservices–based

applications on Microsoft Azure Cloud.

 Key Evaluation Parameters
This section covers basic information about both monolithic and

microservices architecture. Based on our experience, we consider four

basic parameters essential to designing an application architecture. We

will evaluate both monolithic and microservices architecture against these

parameters.

• Scalability

• Agility

• Resilience

• Manageability

Chapter 1 evolution of MiCroserviCes arChiteCture

3

 Scalability
Scalability is the capacity of an application to embrace changing user

demand. It’s divided into two categories.

• Horizontal. When the number of instances of a service

or a server-like app/web tier are increased by adding

more compute servers, it’s called horizontal scaling

(scale out). It’s more applicable to stateless services,

where there is no need to persist any state.

• Vertical. When the hardware capacity on the machine

is increased by adding more compute (CPU/memory),

it’s called vertical scaling (scale up). It’s more

applicable to stateful services like databases, where

data consistency must be maintained.

 Agility
The flexibility of a system to embrace new changes in business functions

or technology—with minimal or no interruption in the service—is called

agility. For example, if there is a need to add another module in an HRMS

application using a different technology, the system should have the

flexibility to embrace this change with limited or no interruption to the

entire application.

 Resilience
Resilience is the ability to handle failure without interruption of service to

the end user.

Chapter 1 evolution of MiCroserviCes arChiteCture

4

The following are important aspects of resilience.

• High availability. There are two major aspects to

consider here.

 – The ability of the application to process end user

requests without major downtime by maintaining

that multiple instances of the same application are

up and running.

 – The ability to provide limited/business-critical

functionality in case of a failure at the infrastructure

level or in a module of an application.

• Disaster recovery. The ability of the application to

process user requests during the disruption caused by a

disaster affecting the entire infrastructure

 Manageability
It’s important to understand how development operations will be

managed and how easy it is to onboard new developers. This includes

managing the code base of an application, change management, and the

deployment process with minimal or no human intervention; for example,

implementing continuous integration (CI) and continuous deployment/

delivery (CD) pipelines for efficient DevOps is an important aspect to

consider.

 Monolithic Architecture
Monolithic architecture is the conventional way to design an application.

In monolithic architecture, the entire logic of an application is inside a

single assembly or multiple assemblies deployed as a single unit. With a

monolithic architecture, an application’s modules are tightly coupled and

Chapter 1 evolution of MiCroserviCes arChiteCture

5

are highly interdependent. Although an application can interact with other

services, the core of the application runs within its own process, and the

complete application is deployed as a single unit.

The application architecture is mainly divided into three tiers:

presentation, business, and data access. These tiers allow functionality to

be reused throughout the application.

• The presentation tier (user interface) is the application

interface for user access. This layer allows users to

perform data entry and manipulation operations.

• The business tier is the backbone of a monolithic

application and contains the business logic, validation,

and calculations related to the data.

• The data tier encapsulates connectivity and

persistence details to access the back-end data source

from higher-level components, such as the business

layer. Layers also make it much easier to replace the

functionality within the application. For example, an

application team might decide to move a database from

MySQL to SQL Server for persistence. In this case, the

data tier will be impacted because changes are needed

in the data tier only.

Let’s take the example of an application for an HR management system

(HRMS), as depicted in Figure 1-1. There are various modules, such as

employee payroll, timesheets, performance management, and benefits

information. In a typical monolithic architecture, all of these modules

reside in a single code base hosted as a single package on web, application,

and database servers.

Chapter 1 evolution of MiCroserviCes arChiteCture

6

Let’s evaluate the monolithic architecture based on key, defined

parameters.

 Scalability
Monolithic applications consist of three tiers: presentation, business, and

data. Scalability can be applied at each tier.

• Presentation tier/application tier. These layers of an

application can be designed to take the benefits of both

horizontal and vertical scaling. For horizontal scaling,

this layer can be designed as stateless. If it’s required

One Database

Payroll Benefits

User Interface

Time
Sheet

Business Layer

Payroll Benefits
Time
Sheet

Database Layer

Data Access Components

Monolithic Approach

Figure 1-1. HRMS application

Chapter 1 evolution of MiCroserviCes arChiteCture

7

to design stateful services, horizontal scaling can be

achieved by introducing a caching service; otherwise,

vertical scaling can be achieved by increasing the

compute power at the infrastructure level.

• Data tier. On the data tier, a hosted database stores all

the data pertaining to the application. Either RDMS or

NoSQL-type databases can be used to store the data.

Based on the capabilities of the chosen database’s

technologies and business requirements, the data tier

can either scale vertically or horizontally.

By design, an important factor to note about monolithic applications is

that the solution scales as a group. Let’s take an HRMS application as an

example; even if you want to scale up the payroll module of the application

during month/year end, the entire application has to scale up as a group.

 Agility
Agility is an application’s ability to embrace change in terms of technology

or functionality.

• Functionality changes. For monolithic applications,

making any change in the code needs extensive unit,

stress, and integration testing efforts. Since there is a

higher interdependence within the code, any major

change requires testing the entire application. Even

though there are options to perform automated unit

testing and stress testing, any change needs lots of

due diligence before rolling it out to production. With

the adoption of the agile methodology for application

development, application change cycles are frequent.

Project teams create smaller sprints, and testing

Chapter 1 evolution of MiCroserviCes arChiteCture

8

efforts are required for each sprint to support product

rollouts every day/week/month. Managing monolithic

applications to support changes at shorter intervals

brings a lot of operational overhead.

• Technology change. For monolithic applications,

making any technology-related changes or allowing

multiple technologies in a solution is very difficult.

Architects prefer to adopt polyglot architecture and

need the freedom to choose different technologies

based on business and functional needs. For example,

a data tier document store (NoSQL DB) may be

the preferred choice for maintaining catalogs for a

shopping website, and an RDMS DB may be preferred

for maintaining transactions-related data. Similarly, on

the front end, the technology choice may be ASP.NET

or Angular, and the API layer may be Python or

PHP. This type of flexibility is difficult to achieve with

monolithic applications.

 Resilience
Monolithic applications are highly interdependent and hosted as a single

code base; therefore, resilience is difficult to achieve and must be carefully

designed.

Table 1-1 is a quick reference on the number of minutes that an

application can be down, based on SLA to support.

Chapter 1 evolution of MiCroserviCes arChiteCture

9

With a higher SLA requirement, there is a greater need to have an

automated mechanism to detect and respond to failure. Since a monolithic

application is deployed as a single code, disruption at any level can bring

down the entire application.

Let’s use the example of the HRMS application. If the application’s

database server fails (and since the database is shared by all the

application’s services), it can bring the entire application down. Even if

high availability is in place, there will be a disruption for all the modules.

Managing checks at each level of a large application becomes cumbersome.

 Manageability
Manageability defines how efficiently and easily an application can be

monitored and maintained to keep a system performant, secure, and

running smoothly.

• Code maintainability. Large monolithic code bases

make it difficult to onboard new developers because

the code becomes very complex over time. This results

in a slow feedback loop with large test suites, and it

becomes cumbersome for the developers to run the full

test suite locally before checking the code.

Table 1-1. Duration That an Application Can Be Down

SLA Downtime/Week Downtime/Month Downtime/Year

99% 1.68 hours 7.2 hours 3.65 days

99.9% 10.1 minutes 43.2 minutes 8.76 hours

99.95% 5 minutes 21.6 minutes 4.38 hours

99.99% 1.01 minutes 4.32 minutes 52.56 minutes

99.999% 6 seconds 25.9 seconds 5.26 minutes

Chapter 1 evolution of MiCroserviCes arChiteCture

10

• Monitoring. It’s much easier to monitor the code with a

single code base.

 Microservices Architecture
Microservices is an approach in which an application is divided into

smaller sets of loosely coupled services. The purpose of a microservice is to

implement a specific business functionality, and it can be easily developed

and deployed independently. The microservices approach is preferred for

distributed, large, and complex mission-critical applications.

Here are few principles that are essential to designing microservices.

• A microservice implements a specific business

functionality.

• A microservice manages its own data and does not

share databases/data models with other microservices.

• A microservice has its own code base, but there can be

common components shared across different services.

• A microservice is deployed independently.

• Cross-cutting concerns like authentication should be

offloaded to the gateway.

Figure 1-2 depicts the basic differences between monolithic

architecture and microservices architecture.

Chapter 1 evolution of MiCroserviCes arChiteCture

11

The small size of the service allows it to be developed and maintained

by focused teams, which results in higher agility. Also, since each service is

independent, you can easily adopt a polyglot architecture by making use of

different programming languages/technologies to develop a service.

After the functionality is divided into multiple smaller services,

interservice communication happens with well-defined interfaces using

protocols like HTTP/HTTPs, WebSockets, and so forth. The most common

adopted protocol is HTTP/HTTPs. In some scenarios, message queues

like Azure Storage Queues and Azure Service Bus are used for higher

performance and scalability.

Microservices offer many capabilities but a careful examination should

be performed when designing the boundary of a microservice. It raises

many new challenges related to distributed application development.

• Disparate data models

• Interprocess communication

Monolithic Approach Microservices Approach

One Database

User Interface Microservice

Business Layer

Database Layer

Database

Microservice UI

Microservice

Business
Layer

Database
Layer

Database

Microservice

Business
Layer

Database
Layer

Database

Microservice

Business
Layer

Database
Layer

Figure 1-2. Monolithic approach vs. microservices approach

Chapter 1 evolution of MiCroserviCes arChiteCture

12

• Data consistency

• Information monitoring from multiple microservices

Performance is a key parameter for the success of any system,

but interprocess communication is a costly affair. After deciding the

boundaries of the services, optimization techniques like caching and

queuing should be adopted for optimized interservice communication.

Although the microservices approach is popular for server-side

applications like ASP.NET Web API, many application architects adopt

this approach for front-end functionality as well. The pattern can be well

adopted by using technologies like Node.js, Java Spring Boot, and so forth,

but the primary focus of this book is on .NET–based technologies like ASP.

NET Web API on Microsoft Azure Cloud.

Let’s evaluate the microservices architecture per the four key

parameters.

 Scalability
One of the major advantages of adopting the microservices approach

is that it allows each service to scale independently as needed. Let’s

reference the HRMS application; a performance module will be heavily

utilized during the last week of every quarter as the employees need to

enter their performance goals.

Let’s say that performance services have been designed as an

independent microservice; as a result, it can scale up seamlessly in the last

week of every quarter. Moreover, this approach can optimize the utilization

of hardware resources by making resources available for other services

during lean periods of the performance module. Many orchestrators also

allow autoscaling based on resource needs; for example, you can trigger

the scale up if the service is using more than two cores on average.

Chapter 1 evolution of MiCroserviCes arChiteCture

13

Scalability has a big advantage over monolithic architecture since most

of the functionality is hosted within a few processes, and scaling requires

cloning the complete app on multiple servers. Although cloud providers

like Azure offer great support for scaling monolithic apps by using services

like the Azure App Service, the microservice approach is more efficient

because it deploys and scales each service independently across multiple

servers.

 Agility
Each microservice is an independent subsystem, and communication

among these subsystems happens over common protocols. This

simplifies functionality changes, and it’s much easier to choose different

technologies for development.

 Functionality Changes

Since the entire application is divided into multiple independent services,

adding any change to a service doesn’t impact the entire solution. This

allows you to support quick bug fixes and shorter life-cycle releases. The

microservice approach really compliments the agile style of software

development.

With monolithic applications, a bug found in one part of an application

can block the entire release process. As a result, new features may be

delayed due to a bug fix that is pending to be integrated, tested, and

published.

Adding a new module is much simpler and can be easily done without

interrupting the existing application.

Chapter 1 evolution of MiCroserviCes arChiteCture

14

 Technology Change

As per the design of microservices architecture, coding a service module

can be done in a completely different programming language. Let’s say

there are two services in an HRMS application.

• Employee performance service

• Employee demographic service

These services communicate based on well-defined exposed interfaces

and common communication protocols; therefore, each service can

be developed in a different technology—one in .NET and one in Java.

Although it may involve certain complications, a cautious approach can be

adopted to avoid vendor lock-in and harness the best technology stack to

build the application.

 Resilience
Since each microservice is an independent subsystem and has its own

database, the unavailability of one service does not impact another

service. Also, the system can be made available during a service’s

deployment/updates. This is one of the major advantages over monolithic

applications—any updates to a monolithic application make the entire

system unavailable, which requires longer downtimes.

In most scenarios, microservices are managed by orchestrators that

make sure that the microservices are resilient to failures and able to restart

on another machine to maintain availability. If there is a failure during the

deployment of microservices, orchestrators can be configured to continue

to the newer version, or rollback to a previous version to maintain a

consistent state.

Chapter 1 evolution of MiCroserviCes arChiteCture

15

 Manageability
The manageability of microservices is covered in this section.

 Code Maintainability

Since each microservice is an independent subsystem and focused on

one specific business functionality, it is easy for development teams

to understand functionality. This really helps when onboarding new

developers during the later stages of a project. Also, microservices

compliment the agile methodology, where application development

efforts are divided across teams that are smaller and work more

independently.

 Monitoring

Monitoring multiple microservices is more difficult because a correlation

is required across services communication.

 Comparison Summary
Table 1-2 is a summary of monolithic architecture and microservices

architecture, based on the key parameters defined.

Chapter 1 evolution of MiCroserviCes arChiteCture

16

Table 1-2. Comparison Summary

Key Parameter Monolithic Application Microservices

Scalability the application scales as

a group.

allows each service to scale

independently based on the need of

the resources.

Agility Making any change in

the code and functionality

needs extensive testing

as the modules are tightly

coupled and are deployed

as single unit.

entire application is divided into

multiple independent services, adding

any change to a service doesn’t

impact entire application. this allows

supporting quick bug fixes and

shorter life-cycle releases.

Resilience the application is highly

interdependent and hosted

as a single code base.

therefore, resilience

is difficult to achieve

and must be carefully

designed.

the entire application is divided into

multiple independent services and has

its own database; the unavailability of

one service does not impact another

service. also, it makes easy to make

the system available during the

deployment/updates of a service.

Manageability Code maintainability is

difficult because large

code bases make it

difficult to onboard new

developers.

Monitoring is easy because

it’s a single code base.

Code maintainability is easy because

multiple independent services allow

development teams to understand the

functionality quickly.

Monitoring is a challenge because

a correlation needs to be managed

across multiple services.

Chapter 1 evolution of MiCroserviCes arChiteCture

17

 Challenges of Microservices
Microservices is a highly adopted architecture and the most popular

approach for designing large-scale, complex systems. However, there

are certain areas that need to be looked at carefully and mitigated before

finalizing the microservices approach for your application.

 Database Redesign
Even though microservices is a popular approach, enterprises find it difficult

to re-architect their databases and schemas. One of the fundamental

principles of microservices is that a service should own its data. It should

not depend upon a large, shared, central repository. If a service relies upon

a system of record—like mainframes, SAP systems, and others, then the

design of microservices do not adhere to the definition. The following are

the most common challenges faced when designing a database.

• Sharing or making the master database records

available across microservices databases.

• Maintaining foreign keys and data consistency when

the master records are available in a common database.

• Making data available to reports that need data from

multiple microservice databases.

• Allowing searches that need data from multiple

microservice databases.

• If the creation of a record requires multiple

microservices calls, making sure that the database is

consistent, because both calls cannot execute in a single

database transaction. Atomic transactions between

multiple microservices are usually a challenge, and

business requirements must accept eventual consistency

between multiple microservices as a solution.

Chapter 1 evolution of MiCroserviCes arChiteCture

18

 Interservice Communication
Interservice communication is one of the most common challenges faced

when using the microservices approach. There are a few challenges under

this category, which are highlighted as follows.

• Microservices communicate via well-defined

interfaces and protocols like HTTP/HTTPs, which

adds to the latency of the system when a business

operation requires multiple microservice calls. Due

to the involvement of multiple microservices for

the completion of a single business operation, this

makes testing difficult and increases the testing team’s

overhead.

• Another challenge that crops up is whether the client

application should invoke multiple microservices, or a

gateway/facade service should be introduced to invoke

child microservices.

• A client invoking multiple microservices can be a

challenge when the client is on a mobile network. Due

to the limited bandwidth, invoking multiple services

for the completion of a single business operation is not

efficient.

• Security is another important aspect of the

microservices architecture. It’s critical to decide

whether each microservice should be responsible

for its own security, or if a gateway/façade service

should be introduced to maintain the security of child

services.

Chapter 1 evolution of MiCroserviCes arChiteCture

19

 Higher Initial Expense
Since each service runs its own process and maintains its own database

and schema, initial expenses can be much higher. Each service needs

separate compute and storage, which increases the footprint of the

application. Therefore, containers are highly adopted in microservices

architectures. A container is much smaller than a virtual machine, and it

can help optimize costs.

 Deployment Complexities
One of the major advantages of a microservices approach is that you can

scale up a service based on the load; however, the deployment becomes

complex and increases complexity of IT operations. There are many

orchestrators—like Azure Service Fabric (it has many more features than

an orchestrator) and Azure Kubernetes Service (AKS)—to ease out the

deployment efforts. However, learning how to manage these orchestrators

will be an added responsibility for a team.

 Monitoring
Monitoring multiple microservices is lot harder than a monolithic

application. Monitoring business operations that span across multiple

services needs a lot of correlations to identify the issues. Platforms like

Azure Service Fabric have good, built-in health indicators to monitor

services. Proper planning and design are required for it to work seamlessly.

 Versioning
Versioning is the most critical part of any application. Releasing a new

version of a service should not break the other dependent services. This

factor should be carefully planned to support backward and forward

Chapter 1 evolution of MiCroserviCes arChiteCture

20

compatibility. Moreover, if a failure occurs, there should be a provision to

automatically rollback to the previous version. All such issues can be easily

solved with orchestrators like Azure Service Fabric or Azure Kubernetes

Service.

 Summary
When designing a solution, the most important question is how to

architect the solution. In this chapter, we shared enough information

to help you understand the benefits of Micro Services Architecture over

Monolithic Applications. Since the focus of this book is microservices, we

focus on how a microservices architecture can be implemented and how

the power of cloud computing (i.e., Microsoft Azure) can be harnessed to

build a cost-effective and highly robust application.

Chapter 1 evolution of MiCroserviCes arChiteCture

21© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_2

CHAPTER 2

Implementing
Microservices
Microservices is a preferred way of architecting large-scale and mission-

critical applications. It offers many advantages, such as using multiple

technologies in the same solution; for example, NoSQL is preferred for

building shopping website catalogs, and RDMS can manage transactions

in the back end. Similarly, one service can be developed in ASP.NET

and another in Java. In the past, application developers had to work in

single development language, and developers specializing in a different

technology had to be trained to make them relevant to the project.

Microservices offers the freedom to use the best technology for a project

and to pick experts from various technologies.

While the microservices architecture has lots of advantages in terms

of scalability, resilience, agility, and manageability, it brings challenges as

well. Let’s delve deeper into the critical factors to consider when building a

microservices ecosystem.

• Client-to-microservices communication

• Interservice communication

• Data considerations

• Security

22

• Monitoring

• Hosting-platform options

• Choice of Orchestrator

• Orchestrator

 Client-to-Microservices Communication
One of the challenges of the microservices architecture is client- to-

microservices communication. In a microservices approach, an application

is divided into smaller sets of loosely coupled services, and the boundaries

of microservices are defined based on a decoupled applications domain

model, data, and context. The real challenge is how to retrieve data for a

business scenario that involves invoking multiple microservices. An API

gateway is one of the popular solutions for handling this challenge.

 API Gateway
In a microservices architecture, each microservice exposes a set of fine-

grained endpoints. Typically, due to the nature of client applications,

data needed by a client involves the aggregation of data from different

microservices. Since a screen in a client application may require data

from multiple microservices, a client application can connect to multiple

microservices individually, which may lead to certain issues.

• If a client app is a server-side web application like

ASP.NET MVC, the communication to multiple

microservices can be efficient. With mobile and SPA

clients, chatty communication to multiple microservices

can cause overhead due to network connectivity and the

performance of the mobile devices.

Chapter 2 ImplementIng mICroservICes

23

• Due to the nature of client applications, the data needs

of clients can be very different; for example, a desktop-

based version of an employee information page may

show more than the mobile-based version.

• Each microservice is responsible for cross-cutting

concerns like authentication, authorization, logging,

and throttling, which are major overhead from a design

and development perspective.

When looking at these challenges, it can become a nightmare for an

architect to manage a client application invoking multiple microservices.

One of the best possible solutions to this problem is to implement an API

gateway solution.

At a higher level, an API gateway is an entry point service for a group

of microservices. It is very similar to the facade pattern in object-oriented

design. This pattern reduces chattiness between the client and the services.

It is important to highlight that having a single custom API gateway

service can be a risk if not implemented correctly. The gateway

service grows and evolves based on the requirements of the client

apps. Eventually, it can lead to a scenario very similar to a monolithic

application. Hence, it is recommended to split the API gateway between

service categories; for example, one per client app, form factor type, and so

forth. API gateways should never act as a single aggregator for all internal

microservices. It should be segregated based on business boundaries.

API gateways can provide different functions and features, which can

be grouped into the following design patterns.

 Gateway Aggregation

As depicted in Figure 2-1, this pattern reduces chattiness between the

client and the services. The gateway services become the entry point. They

receive client requests and hand over these requests to the various back-

end microservices. The gateway also aggregates and combines the results

Chapter 2 ImplementIng mICroservICes

24

and sends them back to the requesting client. This pattern performs well

when a client needs to interact with multiple services for a single business

scenario and data aggregation is needed from multiple services. It also

helps in scenarios where the client is operating on a high-latency network,

such as mobile phones.

The following considerations should be applied when implementing

this pattern.

• A gateway service should be located near the back-end

microservices to reduce network latency. A gateway

service should not interact with services located across

data centers.

• A gateway should not become a bottleneck. It should

have the ability to scale on its own to support the

application load.

Client Application

Gateway

Service 1 Service 2 Service 3

Response Aggregation

Gateway Aggregation

Figure 2-1. Gateway aggregation

Chapter 2 ImplementIng mICroservICes

25

• Scenarios in which one of the services times out and

partial data is returned to the client application should

be handled carefully.

• Performance testing should be done to make sure

that the gateway service is not introducing significant

delays.

• Distributed tracing should be enabled with the help of

correlation IDs to enable monitoring in case of failure

and for diagnosis.

 Gateway Routing

As depicted in Figure 2-2, this pattern is very similar to gateway

aggregation, where, primarily, the gateway only routes the requests to

multiple services using a single endpoint. This pattern is useful when

you wish to expose multiple services on a single endpoint and route to

the appropriate service based on the client request. In a scenario where a

service is discontinued or merged with another service, the client can work

seamlessly without an update as the intelligence of routing is handled by

the gateway and changes are required only at the gateway level.

In an enterprise scenario, one use case for gateway routing is to

expose on-premise APIs to the outer world on the Internet. In a scenario

where you have to expose an API to a partner, for a vendor that is not

connected to a corporate network, an API gateway can expose a public

endpoint with the required security and can internally route the traffic to

on-premise APIs.

Azure Application Gateway is a popular managed load-balancing

service that can implement a gateway routing pattern.

To support this pattern, layer 7 routing is used by the gateway to route

the request to the appropriate service. Since gateways introduce a layer of

abstraction, a deployment and service update can be easily handled. It also

Chapter 2 ImplementIng mICroservICes

26

allows supporting multiple versions of a service by introducing a new route

or by routing the traffic internally to an older or a newer service endpoint

without affecting the client.

The following considerations should be made while implementing this

pattern.

• The gateway service should be located near the back-

end microservices to reduce network latency. The

gateway service should never interact with services

located across data centers.

• A gateway should never become a bottleneck. It should

have the ability to scale on its own to support the

application load.

Client Application

Gateway

Service 1 Service 2 Service 3

Layer 7 Routing

Gateway Routing

Figure 2-2. Gateway routing

Chapter 2 ImplementIng mICroservICes

27

• Performance testing should be done to make sure

that the gateway service is not introducing significant

delays.

• A gateway route should support layer 7 routing. It can

be based on the IP, port, header, or URL.

 Gateway Offloading

As depicted in Figure 2-3, the gateway offloading pattern helps offload

the cross-cutting concerns from individual microservices to the gateway

service. It simplifies the implementation of each microservice as it

consolidates cross-cutting concerns into one tier. With the help of

offloading, specialized features can be implemented by a specialized

team and at one common tier. As a result, it can be utilized by every

microservice.

Client Application

Service 1 Service 2 Service 3

Gateway Offloading

SSL Offloading

Security Throttling Logging Caching

Layer 7 Routing

Gateway

Figure 2-3. Gateway offloading

Chapter 2 ImplementIng mICroservICes

28

Most of the common cross-cutting concerns that can be effectively

handled by the API gateway are

• Authentication and authorization

• Logging

• Throttling

• Service discovery

• SSL offloading

• Response caching

• Retry

• Load balancing

The following considerations should be made while implementing this

pattern.

• API gateways can introduce a single point of failure.

• The scaling of an API gateway is important; otherwise,

it can become a bottleneck.

• If a team plans to implement the gateway on its

own, instead of with specialized services like Azure

API Gateway and APIM, it may require specialized

resources, which can significantly increase

development effort.

 The API Gateway Pattern on Azure
There are many available API gateway implementations, such as Kong and

Mulesoft, and each offers a different subset of features. Since the focus of

this book is on Azure, we will explain the options available on Azure.

Chapter 2 ImplementIng mICroservICes

29

• Azure Application Gateway. Application Gateway is a

managed load-balancing service that performs layer 7

routing and SSL termination. It also provides a web

application firewall (WAF).

• Azure API Management. API Management offers

publishing APIs to external and internal customers. It

provides features such as rate limiting, IP white listing,

and authentication using Azure Active Directory

or other identity providers. Since API Management

doesn’t perform any load balancing, it should be used

in conjunction with a load balancer such as Application

Gateway or a reverse proxy.

 Interservice Communication
With monolithic applications, a component can easily invoke another

component as they are running in the same process. Also, the language-

level constructs (like new classname()) can be used to invoke methods on

another component. One of the challenges with microservices architecture

is handling interservice communication as the in-process calls change to

remote procedure calls.

Also, if a microservice is invoking another microservice heavily, it

defeats the basic principal of microservices. A fundamental principal of the

microservices architecture is that each microservice is autonomous and

available to the client, even if the other services are down or unhealthy.

There are multiple solutions to this problem. One solution is to

carefully decide the boundary of each microservice. This allows the

microservice to be isolated, autonomous, and independent of other

microservices. Communication between the internal microservices should

be minimal.

Chapter 2 ImplementIng mICroservICes

30

If communication is required, asynchronous communication should

take priority over synchronous communication because it reduces

coupling between services. It also increases responsiveness and multiple

subscribers can subscribe to the same event. In asynchronous messaging,

a microservice communicates with another microservice by exchanging

messages asynchronously. If a return response is expected, it comes as a

different message and the client assumes that the reply will not be received

immediately, or there may not be a response at all.

Asynchronous messaging and event-driven communication are critical

when propagating changes across multiple microservices, and they are

required to achieve eventual consistency, as depicted in Figure 2-4.

Asynchronous messages are usually based on asynchronous protocols

like AMQP. Message brokers are generally preferred for these kinds of

communications (e.g., RabbitMQ, NServiceBus, MassTransit) or a scalable

service bus in the cloud, like Azure Service Bus.

If there is a need to query real-time data (e.g., to update the UI),

generally, request/response communication with HTTP and REST is

used to support these kinds of scenarios. In this kind of pattern, the client

assumes that the response will arrive in a short time. If synchronous

Client
Application

HTTP
Request / Response

Async Messages

HTTP

Request / R
esponse

HTTP
Request / Response

API Gateway

Asynchronous Communication to achieve eventual consistency

Payroll Microservice

Employee Microservice

Figure 2-4. Asynchronous communication to achieve eventual
consistency

Chapter 2 ImplementIng mICroservICes

31

communication is required between services, you can take advantage of

binary format communication mechanisms (e.g., Service Fabric remoting

or WCF using TCP and a binary format). You can also take advantage of

caching using the cache-aside pattern. You should be careful of adopting

this pattern because having HTTP dependencies between microservices

makes them non-autonomous and performance is impacted as soon as

one of the services in the chain does not perform well. This architecture

can be easily designed and developed by using technologies such as

ASP.NET Core Web API, as depicted in Figure 2-5.

 Data Considerations
A basic principle of microservices is that each service should manage

its own data. Each service should be responsible for its own data store,

and other services should not access it directly. This prevents coupling

between services and allows the services to scale based on load

needs. This principle also allows the services to use different database

technologies, if required.

Due to the distributed approach of managing data, there are certain

challenges that occur, like redundancy of data across data stores. One of

the major challenges is propagating the updates across services, because it

is not possible to spawn a database transaction across multiple services.

Client
Application

HTTP
Request / Response

Http Request / Response Communication

HTTP

Request / R
esponse

HTTP
Request / Response

API Gateway

Payroll Microservice

Employee Microservice

Figure 2-5. HTTP request / response communication

Chapter 2 ImplementIng mICroservICes

32

There are multiple solutions to this problem. One solution is to

embrace eventual consistency wherever possible; we should clearly

distinguish use cases where ACID transactions are required and where

eventual consistency is acceptable. In scenarios where strong consistency

is required, one service should represent the source of truth for a given

entity. In scenarios where transactions are needed, patterns such as

compensating transactions can be used to keep data consistent across

several services.

Finally, a good solution for this problem is to use eventual consistency

between microservices through event-driven communication. In this

architecture style, a service publishes an event when there are changes

to its public models or entities. Interested services can subscribe to these

events. For example, another service could use the events to construct a

materialized view of the data that is more suitable for querying.

 Common Database Techniques and Patterns
Indexed Views
Let’s say that we have an HRMS system client application that needs

to display employee’s personal information along with payroll details,

and there are two microservices involved (i.e., employee and payroll

services). As per the basic principal, each microservice owns its data and

the application reads and writes the data only via well-defined interfaces.

Since employee information will be needed on almost all the screens of

the client application, a denormalized read-only table can be created to be

used only for queries. Since the view is created in advance, and it contains

denormalized data, it supports efficient querying. An important point to

note is that the data in the indexed view is completely disposable because

it can be entirely rebuilt from the source databases.

Another classic use case that can be efficiently handled by this

approach is replicating the master data that is required by almost all the

Chapter 2 ImplementIng mICroservICes

33

microservices. Having an HTTP call across the services or across the

database joins can be an inefficient approach from the performance

and dependency perspective; hence, indexed views effectively solve this

problem.

Here are a few ideal reasons for using this technique.

• Indexed views significantly improve query performance

for reporting and display needs.

• In cases where the source data is available in

normalized form and require complex queries, having

an indexed view removes complexity while reading the

data.

• It allows access to data based on privacy needs.

• It effectively supports disconnected scenarios, in which

the source database is not always available.

Please note that this technique can be inefficient if changes to the

source database are frequent and source data accuracy is a priority.

 Data Warehouse for Reporting Needs
To support complex reports and queries that don’t require real-time data,

a common approach is to export data into large databases. That central

database system can be a big data–based system, like Hadoop, a data

warehouse, or even a single SQL database only used for reports.

An in-depth discussion of this subject is in Chapter 8.

 Security
Since a microservices application is distributed in multiple services, client

authentication and authorization becomes challenging.

Chapter 2 ImplementIng mICroservICes

34

A commonly suggested practice for handling security centrally is to use

an API gateway. In this approach, the individual microservices cannot be

reached directly, and traffic is redirected to an individual API via a gateway

once a successful authentication is performed.

On Microsoft Azure, the API gateway service is readily available and

provides features like authentication, IP filtering, and SSL termination, and

helps avoid exposing microservice endpoints directly.

Ocelot develops a custom API gateway. It is an open source, simple,

lightweight, .NET core–based API gateway that can be deployed for

microservices. For authorization, Azure Active Directory helps manage

role-based access for the microservices’ resources.

 Monitoring
Monitoring is an important aspect in understanding how microservices

are performing in a deployed environment.

On Microsoft Azure, services like Application Insights and Azure

Monitor are used for monitoring, logging and alerting on both Azure and

on-premise resources. Azure Monitor helps you draw insights on API

access patterns and identify the root cause of any performance issues. It

can also work in conjunction with Application Insights to draw insights on

the application’s performance.

 Microservices Hosting Platform Options
An important area of discussion is whether to host microservices on virtual

machines or on containers. Both options can be implemented on-premise

and on cloud platforms like Microsoft Azure. On Azure, the management

of an underlying infrastructure becomes very easy because there are

specialized services available, such as Azure Serve Fabric and Azure

Kubernetes Service (AKS). Using containers to implement microservices

Chapter 2 ImplementIng mICroservICes

35

is the most preferred option, and it’s important to understand the various

reasons behind it. In this section, we explain both hosting platform

options.

 Using Virtual Machines
A virtual machine is an operating system installation on the virtualization

layer of the physical host, as depicted in Figure 2-6. It helps to optimize the

hardware utilization by enabling the physical host to provide an isolated

environment for each application. The caveat is that for every virtual

machine, an entire OS must be installed separately.

Therefore, every virtual machine needs to boot up and load OS files

into its memory. This mechanism dissipates lots of compute resources on

the host operating system.

Figure 2-6. Virtual machine hosting

Chapter 2 ImplementIng mICroservICes

36

 Using a Container
Containers are like virtual machines. They offer a way to wrap an

application into its own isolated box using namespace isolation. In this

technique, the host OS creates a namespace for all the resources (e.g.,

disk, memory, running process, etc.) to make the environment look as if

dedicated for the container.

Containers differ from virtual machines in a few ways.

• Virtual machines have a complete OS installation on

the virtualization layer of the physical host. It takes

time to start up because it must boot the entire OS and

map OS files in the memory. Containers share the same

kernel, so there is no need to boot the OS and map files

to the memory (see Figure 2-7). Therefore, a container

footprint is small compared to virtual machines, and

they boot up in a much shorter time.

Starting with Windows 2016, there is an option to

host containers in Hyper-V mode, which separates

the kernel of a container from the host OS. It can

Figure 2-7. Containers sharing OS files and libraries

Chapter 2 ImplementIng mICroservICes

37

be used for highly sensitive applications or for

multitenant environments. Start-up efficiency

reduces when compared to containers that use

namespace isolation, however.

• Since containers make the environment and resource

consumption consistent, it becomes convenient for

developers to run the same application on different

systems without change in experience. With virtual

machines, however, applications can perform

differently in different environments.

Microservices segregate an entire solution into multiple services;

agility, scalability, and optimum resource utilization are the most important

factors. Since containers perform much better than VMs for such scenarios,

they are an enterprise’s first choice for a deployment platform.

Let’s look at the basic components of a container ecosystem.

• Container image

• Container registry

• Container

 Container Image

A container image is like a software installer file that contains both the

OS layer and the application layer, with all the dependencies to run the

application (e.g., Windows Nano Server, SQL Server). A container image

can be used numerous times to install an application.

 Container Registry

The container registry is the repository for the container images that can

be made accessible to the entire organization. Any authorized user in an

organization can push or pull images from this repository. It can be created

Chapter 2 ImplementIng mICroservICes

38

as either public or private, depending on the requirements. Microsoft

Container Registry is a public registry that hosts images for public

download. Azure Container Registry is used for maintaining a private

registry.

The command to download an image from a public repository is

docker pull mcr.microsoft.com/mssql/server:2017-latest

Let’s break down this command.

• mcr.microsoft.com/mssql/server:2017-latest is the

container image.

• mcr.microsoft.com/mssql/server is the container

registry.

• 2017-latest is the tag.

• docker pull – docker is the command line to pull an

image from the registry.

The local repository looks like the following.

 Container

The container is an instance of a container image. Multiple container

instances can be spun from a single container image. If a SQL Server

container is spun from the image of the local repository, it will create an

instance of SQL Server on an Ubuntu server. The experience is like a virtual

machine, where you can get in the OS layer, run commands, and work with

SQL Server from both inside and outside of the containers.

Choice of Orchestrators play a key role in managing a large number

of containers or virtual machines. High availability, scalability, and

Chapter 2 ImplementIng mICroservICes

http://mcr.microsoft.com/mssql/server:2017-latest
http://mcr.microsoft.com/mssql/server

39

application agility are the most critical factors that orchestrators are

expected to cover. The following are the most important functionalities

that an orchestrator should cover.

• Clustering of resources. This feature makes groups of

VMs or physical machines look like a single resource.

All the resources are provided from a single group.

This helps optimize resource utilization, and even

management becomes easy.

• Orchestration. This feature helps make all the

components work together as a unit. Running

containers, their scalability, load balancing during a

heavy load, and high availability during failures are

ensured by this functionality.

• Management. Managing networking, storage, and

services come under management functionalities of the

orchestration tools.

Here are a few of the orchestration solutions available on the market.

• Azure Service Fabric

• Azure Kubernetes Service

• Docker Swarm and Compose

• Mesos DC/OS

Let’s look at an overview of these solutions.

 Azure Service Fabric
Azure Service Fabric is an orchestration tool that can be deployed both

on-premises and on Microsoft Azure. This Microsoft solution manages

multiple services on Azure. Applications are deployed in the form of

Chapter 2 ImplementIng mICroservICes

40

services on Azure Service Fabric. Every service (stateless or stateful) has

three components.

• Code

• Configuration

• Data

A Service Fabric cluster is built on a bunch of physical or virtual

machines called nodes. There are various services (e.g., failover manager

services, repair manager services, naming services, etc.) to manage high

availability, health, and service identification for Azure Service Fabric.

Apart from containers, services can be run as guest executables and

reliable services by using the native Service Fabric SDK.

 Azure Kubernetes Service
Kubernetes is an orchestration tool that can be deployed both on-premise

and on Microsoft Azure. On Azure, it’s a managed service named Azure

Kubernetes Service. On AKS, pods run a single or a group of containers.

Services are the labels that point to multiple pods. Kubernetes has a cluster

master and cluster nodes to manage a container ecosystem.

 Docker Swarm and Compose
Docker Swarm is the clustering tool for Docker; it can be deployed both

on-premise and on Microsoft Azure. Each node in the cluster runs as

swarm agent, and one of the nodes run a swarm manager. A swarm

manager is responsible for orchestrating and managing the containers on

the available container’s host. Filters can be configured on Docker Swarm

to control the hosting of containers. Docker Compose is a command-based

utility to configure an application’s services. With a single command, an

entire application can be up and running on the swarm cluster.

Chapter 2 ImplementIng mICroservICes

41

 Mesos DC/OS
The Apache Mesos orchestration solution is designed to handle a large

number of hosts to support diverse workloads. It can be run both on-

premise and on Microsoft Azure. This setup has a Mesos master to

orchestrate the tasks, and agent nodes to perform the tasks. Frameworks

coordinates with the master and schedules tasks on agent nodes.

 Summary
In this chapter, we explained how to overcome the challenges introduced

by adopting the microservices architecture. We listed some of the

platform-hosting options for microservices. In the coming chapters, we

discuss these options in more detail.

Chapter 2 ImplementIng mICroservICes

43© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_3

CHAPTER 3

Azure Service Fabric
In the previous chapters, you learned about the evolution of microservices,

the advantages and challenges of the microservices architecture. We also

described various options for implementing microservices in Azure. In this

chapter, we will explain Azure Service Fabric’s offerings.

Although Service Fabric is a vast subject and needs a complete book

explaining its concepts, fundamentals, and various flavors. In this chapter,

we cover the fundamentals and real-life experiences that you should be

aware of. Hands-on examples give you a better idea of how easy it is to

adopt Service Fabric for implementing a microservices architecture.

 What Is Service Fabric?
Azure Service Fabric is a distributed systems platform that allows you to

run, manage, and scale applications in a cluster of nodes, using any OS

and any cloud.

The Service Fabric SDK allows you to implement service communication,

scale, and service discovery patterns effectively. The SDK is available for .NET

and Java developers. Please note that it’s not mandatory to use SDK. You can

develop an application in any programming language, and you can deploy

over Service Fabric using guest executables and containers.

Service Fabric can be deployed on the platform of your choice

(i.e., Windows or Linux) and can be deployed on-premise, on Azure or

AWS, or on any other cloud platform.

44

In Service Fabric, an application is a collection of multiple services,

and each service has a defined function to perform. A service is

represented by three components: code (binaries and executables),

configuration, and data (static data to be consumed by service). Each

component is versioned and can be upgraded independently. This is one

of the significant advantages of Service Fabric—in a deployment failure,

you can easily roll back to any previous version of the service.

Also note that if even a simple change to an application’s configuration

is made, a deployment and version upgrade are required. In our

experience, this is initially a problem for deployment teams because most

of enterprises have stringent deployment processes, but it really helps in

the event of a deployment failures because you can roll back to any of the

previous versions by using a single command.

Deployment processes can be streamlined by adopting services like

Azure DevOps.

Service Fabric also supports autoscaling. The autoscale feature allows

Service Fabric to dynamically scale your services based on indicators like

load, resources usage, and so forth.

Note If the Service Fabric clusters are not running in Azure, the
process of scaling is different, and you must manually change
the number of nodes in the cluster, which is followed by a cluster
configuration upgrade.

 Core Concepts
In this section, we explain core Service Fabric concepts, such as the

application model, scaling techniques, supported programming models,

and types of Service Fabric clusters. Also, we cover certain hands-on labs

to make sure that you get real-life exposure, so that you are not limited to

theoretical knowledge.

ChApter 3 Azure ServICe FAbrIC

45

 Service Fabric Application Model
In Service Fabric, an application is a collection of services in which each

service and application is defined using a manifest file.

Each service in an application is represented by a service package,

and the package has three components (code, configuration, and data),

as depicted in Figure 3-1. The code component contains the actual

executables, binaries of the service, or pointers to the container images in

container repositories such as ACR and Docker Hub. The configuration

component contains the configuration entries required by the service; it’s

very similar to web.config in ASP.NET applications, and if needed, you can

have multiple configuration files. The data component contains static data

to be consumed by the service. Service Fabric is not very particular about

the data format; it can be JSON, XML files, and so forth.

Please note that each component is versioned and can be upgraded

independently. Also, the service package is always deployed as a group,

which means that if you want to make two containers run together on the

same node, you can include two code packages (pointing to the respective

containers) in the same service package.

Service Fabric – Application Model

Application

Service

Code Config Data

Service

Code Config Data

Service

Code Config Data

Figure 3-1. Service Fabric application model

ChApter 3 Azure ServICe FAbrIC

46

While deploying an application on Service Fabric, an Application Type

gets created to represent an application and a Service Type gets created

to represent each service in a Service Fabric cluster. Also, on successful

deployment an instance of Application Type and Service type gets created.

You can have many instances of an Application type to support different

version of the same application and can have multiple instances of service

type to support higher load and high availability.

In my experience, I have noticed stateless services are widely used

and the following techniques are mostly used to support scale and higher

availability.

 Scale by Increasing or Decreasing Stateless
Service Instances
When creating a service instance, you can specify the instance count,

which defines the number of Service Fabric cluster nodes in which your

service is hosted. The following command specifies the count to two,

which means that the service is hosted on only two nodes, even if the

number of nodes in the Service Fabric is greater than two (see Figure 3-2).

sfctl service create –-name fabric:/a/s1 –-stateless –instance-

count 2

fabric:/a/s1

Node 1

Service Fabric Cluster

fabric:/a/s1

Node 2 Node 3

Code Package 1.1.0

Config Package 1.1.5

Service Package 2.5.1

Figure 3-2. Service Fabric cluster: two nodes utilized

ChApter 3 Azure ServICe FAbrIC

47

Service Fabric also allows you to update the instance count. You

can set the count to –1 to instruct Service Fabric to run the service on all

available nodes, as depicted in Figure 3-3. If new nodes are added to the

cluster, Service Fabric makes sure that your service is hosted on the newly

added nodes too.

sfctl service update –-service-id a/s1 –-stateless –instance-

count -1

 Scale by Adding or Removing Named Services
Instances
In scenarios where the node capacity is underutilized, you can instruct

Service Fabric to scale up by creating another named service instance and

deploy the exact same code package on all the available nodes, but with

different unique names (see Figure 3-4).

sfctl service update –-service-id a/s2 –-stateless –instance-

count -1

fabric:/a/s1

Node 1

Service Fabric Cluster

fabric:/a/s1 fabric:/a/s1

Node 2 Node 3

Code Package 1.1.0

Config Package 1.1.5

Service Package 2.5.1

Figure 3-3. Service Fabric cluster: all nodes utilized

ChApter 3 Azure ServICe FAbrIC

48

 Supported Programming Models
Service Fabric supports the programming models shown in Figure 3-5.

 Containers
One of the programming models offered by Service Fabric allows you

to orchestrate and deploy applications using both Windows and Linux

containers. Service Fabric supports the deployment of docker containers

on Linux and Windows server containers (including Hyper-V isolation) on

Windows Server 2016.

Service Fabric has the capability to pull the container images from

container repositories like Docker HUB and Azure Container Registry.

Deploying an application as a container does not require any changes

to your application and has no Service Fabric SDK dependency.

fabric:/a/s1

Node 1

Service Fabric Cluster

fabric:/a/s1 fabric:/a/s1

fabric:/a/s2 fabric:/a/s2 fabric:/a/s2

Node 2 Node 3

Code Package 1.1.0

Config Package 1.1.5

Service Package 2.5.1

Figure 3-4. Service Fabric cluster: named service instances

ASP.NET CORE RELIABLE ACTORS GUEST EXECUTABLES
(ANY CODE)

CONTAINERS
(ANY CODE)

RELIABLE SERVICES

.NET

.NET

Service Fabric Programming Models

Figure 3-5. Service Fabric cluster: supported programming
models

ChApter 3 Azure ServICe FAbrIC

49

Although you can deploy your services using multiple programming

models (guest executables, stateless or stateful services), there are certain

scenarios where containers are more suitable.

 Monolithic Applications

If a monolithic application is developed using ASP.NET web forms and has

dependency on technologies like IIS, you can package these applications

as container images and deploy on Service Fabric for effective scaling and

deployment management.

In this mode, you have no dependency on Service Fabric SDKs; you

can deploy an application as it is. An application can also be developed in

any programming language.

 Application Isolation

If a complete or higher level of isolation from other applications running

on the same host is required, containers are a very viable option because

they provide isolation effectively. Also, Windows Containers Hyper-V

mode takes isolation to a different level because the base OS kernel is not

shared between containers.

Service Fabric also provides resource governance capabilities to

restrict the resources that can be used by a service on a host.

 Reliable Services
Reliable services allow you to write services using the Service Fabric SDK

framework. It is a lightweight framework that allows Service Fabric to

manage the life cycle of your services. It also allows the services to interact

with the Service Fabric runtime. With SDK, you benefit from features such

as notifications on code or configuration changes, and communicating

with other services.

ChApter 3 Azure ServICe FAbrIC

50

Please note that both C# developers and Java developers can develop

reliable services using the Service Fabric SDK for Linux.

Note At the time of writing this book, if you plan to use Java SDK,
then you need to use a Mac or Linux developer machine.

Reliable services can be stateless or stateful. In stateful services, the

state is persisted using reliable collections.

 Stateful Reliable Service

A stateful reliable service allows you to store data within the service itself.

Service Fabric makes sure that the state is highly available and persistent.

There is no need to store the state in external storage. Stateful services uses

reliable collections, which falls under the Microsoft.ServiceFabric.Data.

Collections namespace. Reliable collections are very similar to collections

in the System.Collection namespace, but with the following differences.

• Data is not only persisted into the memory, it’s also

persisted to disks to face large-scale outages.

• It supports transactions.

• State changes are replicated using replicas to support

high availability.

• Reliable collection APIs are asynchronous to make sure

that threads are not blocked.

Although, you have the choice of using other technologies (e.g., Redis

Cache or Azure Table service to store the state externally), reliable

collections make all the reads local, which results in high throughput and

low latency.

ChApter 3 Azure ServICe FAbrIC

51

These are the collections available under the Microsoft.ServiceFabric.

Data.Collections namespace:

• Reliable dictionary

• Reliable queue

• Reliable concurrent queue

Each stateful service has a state associated with it. High availability

is achieved with the help of replicas. Each replica is a running instance

of the service code. The replica also has a state. The r/w operations are

performed on one replica, which is called a primary replica. Changes to

the state are replicated from the primary replica to other replicas, called

active secondary replicas. In a primary replica failure, Service Fabric makes

one of the active secondary replicas the primary replica.

To support high scalability, stateful reliable services use partitioning.

A partition is a set of replicas responsible for a portion of the complete

state of the service.

Let’s say that you have a five-node cluster with five partitions, and each

partition has three replicas (as depicted in Figure 3-6). In this case, Service

Fabric will distribute the replicas across the nodes, and each node will end

up having two primary replicas per node.

ChApter 3 Azure ServICe FAbrIC

52

Service Fabric provides three types of partitioning schemes: ranged

partitioning (UniformInt64Partition), named partitioning, and singleton

partitioning. In ranged partitioning, the number of partitions and an

integer range is specified for a partition with the help of a low key and a

high key. By default, a Visual Studio template uses range partitioning as a

default, and it is the most useful and common one.

For information on transaction and lock modes, backup, and restore,

you can refer to the online documentation.

 Stateless Reliable Service

Stateless reliable services do not maintain any state across the service

calls. It is a familiar paradigm in web development in which you have a

service layer that receives a request and connects to an external data store

(e.g., Azure SQL , Azure Storage, or Document DB) to return the response.

5 Node Cluster with 10 Partition

P P

S S

S S

Node 2

P P

S S

S S

Node 5

P P

S S

S S

Node 4

P P

S S

S S

Node 3

P P

S S

S S

Node 1

Figure 3-6. Service Fabric: five-node cluster

ChApter 3 Azure ServICe FAbrIC

53

Since there is no state maintained by the service, it does not require any

persistence or synchronization.

 Guest Executable
Service Fabric runs any type of code developed in any language

(e.g., Node.js, Java, C++, etc.). Service Fabric considers guest executables to

be a stateless service. If an application is self-contained, you can run it as

a guest executable on the Service Fabric platform. Running an application

as a guest executable allows the application to use the Service Fabric REST

API to call the Service Fabric naming service to find other services in the

cluster.

The following subsections discuss the significant benefits of hosting

applications as guest executables.

 Scalability and High Availability

Service Fabric allows you to dynamically scale your services based on

indicators like load, resources usage, and so forth. It makes sure that the

instances of your application are running, and in the event of any failure,

reports the same on the Service Fabric dashboard.

 Health Monitoring

With Service Fabric dashboards, you can determine the health of an

application. It provides diagnostics information in the event of a failure.

 Application Deployment

You can deploy the applications with no downtimes. You can benefit from

features like automatic rollbacks in the event of a deployment failure.

ChApter 3 Azure ServICe FAbrIC

54

 Optimizing Hardware

This allows you to run multiple guest executables in the same cluster; hence,

you are not required to maintain a set of hardware for each application.

 ASP.NET Core
ASP.NET Core is a new, open source, cross-platform framework for

building modern, cloud-based, Internet-connected, applications, such

as web apps, IoT apps, and mobile back ends. ASP.NET Core–based

applications can be hosted as guest executables or as a reliable service, in

which it takes advantage of the Service Fabric runtime.

 Reliable Actors
The reliable actor framework is based on reliable services. It implements

the actor design pattern.

 Service Fabric Clusters
Service Fabric helps you deploy your microservices on a cluster, which

is a set of virtual or physical machines that are interconnected through

a network. Each machine inside the cluster is called a node. A cluster

can consist of thousands of nodes, depending on resource needs of

your application. Each node in a cluster has a Windows service called

FabricHost.exe, which makes sure that the other two executables (Fabric.

exe and FabricGateway.exe) are always running on the cluster nodes.

Service Fabric cluster can be created using virtual machines or physical

machines running on Windows or Linux. The Service Fabric cluster can

run on-premise, on Azure, or on any cloud (e.g., AWS). You need to have at

least five nodes to run a Service Fabric cluster for production workloads.

ChApter 3 Azure ServICe FAbrIC

55

Service Fabric has the following system services to provide the

platform capabilities.

 Naming Service
A naming service resolves the service name to a location. Since

applications in a cluster can move from one node to another, a naming

service provides the actual port and IP address of the machine where the

service is running.

 Image Store Service
When performing a deployment, the application packages are uploaded to

an image store, and then an application type is registered for the uploaded

application package.

 Failover Manager Service
As the name suggests, the failover manager service is responsible for the

high availability and consistency of services. It orchestrates application

and cluster upgrades.

 Repair Manager Service
The repair manager service is an optional service to perform repair actions

on silver and gold durability Azure Service Fabric clusters.

 Cluster on Azure
A Service Fabric cluster on Azure can be created via the Azure portal or by

using a resource template. Using the Azure portal user interface, a Service

Fabric cluster can be easily created. Since the cluster and its components

ChApter 3 Azure ServICe FAbrIC

56

are like any other resource manager resource, you can easily track access,

cost, and billing.

There are two major advantages of hosting a Service Fabric cluster on

Azure.

• It comes with autoscaling functionality.

• It supports installation of Service Fabric clusters on

Linux machines.

 Standalone Cluster or Any Cloud Provider
Deployment on-premise or on any cloud provider is very similar. Service

Fabric clusters can be created using the Windows Server 2012 R2 and

Windows Server 2016 operating systems. Standalone clusters are useful in

scenarios where you can’t have your applications hosted on the cloud due

to regulatory or compliance constraints.

Note At the time of writing this book, Linux is not supported for
standalone clusters. Linux can be used on one box for development
purposes.

 Develop and Deploy Applications on
Service Fabric
So far in this chapter, we have discussed Service Fabric and its

programming models, and learned that it can be installed on the cloud or

on-premise. Now let’s create a few samples to better understand how you

actually develop and deploy applications on Service Fabric. We will cover

two samples here.

ChApter 3 Azure ServICe FAbrIC

57

• Scenario 1. Demonstrate developing an ASP.NET Core

stateless web app communicating with an ASP.NET

Core stateful API.

• Scenario 2. Demonstrate developing a Java Spring Boot

application using Visual Studio Code and deploy it on

Service Fabric as a guest executable or as a container.

 Develop an ASP.NET Core Stateless Web App
We will develop a simple ASP.NET MVC–based application to manage

employees. The ASP.NET MVC front end interacts with the ASP.NET

API to perform CRUD operations. Internally, the Web API uses reliable

collections to store employee data.

 Setting up the Development Environment

Let’s get started.

 1. Install Visual Studio 2017.

 2. Install the Microsoft Azure Service Fabric SDK.

 3. Make sure that the Service Fabric local cluster is in

a running state. Ensure this by browsing http://

localhost:19080/Explorer/index.html#/ or by

right-clicking the Service Fabric icon in the system

tray, as shown in Figure 3-7.

ChApter 3 Azure ServICe FAbrIC

58

 Create a ASP.NET Core Web API Using Reliable
Collections

Here are the steps.

 1. Launch Visual Studio 2017 as an administrator.

 2. Create a project by selecting File ➤ New ➤ Project.

 3. In the New Project dialog, choose Cloud ➤ Service

Fabric Application.

 4. Name the Service Fabric application Employee

(as depicted in Figure 3- 8) and click OK.

Figure 3-7. Service Fabric status

ChApter 3 Azure ServICe FAbrIC

59

 5. Choose Stateful ASP.NET Core, as depicted in Figure 3-9.

Figure 3-8. New Service Fabric application

Figure 3-9. New Stateful ASP.NET Core API

ChApter 3 Azure ServICe FAbrIC

60

 6. You see a screen that looks like Figure 3-10.

Click OK.

 7. Right-click the Controller folder in the

EmployeeDataAPI project and select Add

➤ New Controller, as shown in Figure 3-11.

Select API Controller and name the controller

EmployeeController.

Figure 3-10. Choose API using (ASP.NET Core 2.1)

ChApter 3 Azure ServICe FAbrIC

61

 8. Make sure that the NuGet packages shown in

Figure 3-12 are installed.

Figure 3-11. New API controller

Figure 3-12. NuGet Packages

ChApter 3 Azure ServICe FAbrIC

62

 9. Replace the file content with the following and

compile the changes.

using Microsoft.AspNetCore.Mvc;

using Microsoft.ServiceFabric.Data;

using Microsoft.ServiceFabric.Data.Collections;

using System.Collections.Generic;

using System.Threading;

using System.Threading.Tasks;

namespace EmployeeDataAPI.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class EmployeeController : ControllerBase

 {

 private readonly IReliableStateManager stateManager;

 public EmployeeController(IReliableStateManager

stateManager)

 {

 this.stateManager = stateManager;

 }

 [HttpGet]

 public async Task<ActionResult<List<Employee>>> GetAll()

 {

 CancellationToken ct = new CancellationToken();

 IReliableDictionary<string, Employee> employees =

await this.stateManager.GetOrAddAsync<IReliable

Dictionary<string, Employee>>("employees");

ChApter 3 Azure ServICe FAbrIC

63

 List<Employee> employeesList = new

List<Employee>();

 using (ITransaction tx = this.stateManager.

CreateTransaction())

 {

 Microsoft.ServiceFabric.Data.IAsyncEnumerable

<KeyValuePair<string, Employee>> list = await

 employees.CreateEnumerableAsync(tx);

 Microsoft.ServiceFabric.Data.IAsyncEnumerator

<KeyValuePair<string, Employee>> enumerator =

list.GetAsyncEnumerator();

 while (await enumerator.MoveNextAsync(ct))

 {

 employeesList.Add(enumerator.Current.Value);

 }

 }

 return new ObjectResult(employeesList);

 }

 [HttpGet("{id}")]

 public async Task<ActionResult<Employee>>

GetEmployee(string id)

 {

 IReliableDictionary<string, Employee> employees =

await this.stateManager.GetOrAddAsync<IReliable

Dictionary<string, Employee>>("employees");

 Employee employee = null;

ChApter 3 Azure ServICe FAbrIC

64

 using (ITransaction tx = this.stateManager.

CreateTransaction())

 {

 ConditionalValue<Employee> currentEmployee =

await employees.TryGetValueAsync(tx, id);

 if (currentEmployee.HasValue)

 {

 employee = currentEmployee.Value;

 }

 }

 return new OkObjectResult(employee);

 }

 [HttpPost]

 public async Task<ActionResult> Post(Employee employee)

 {

 IReliableDictionary<string, Employee> employees =

await this.stateManager.GetOrAddAsync<IReliable

Dictionary<string,Employee>>("employees");

 using (ITransaction tx = this.stateManager.

CreateTransaction())

 {

 ConditionalValue<Employee> currentEmployee =

await employees.TryGetValueAsync(tx, employee.

Id.ToString());

 if (currentEmployee.HasValue)

 {

 await employees.SetAsync(tx, employee.

Id.ToString(), employee);

ChApter 3 Azure ServICe FAbrIC

65

 }else

 {

 await employees.AddAsync(tx, employee.

Id.ToString(), employee);

 }

 await tx.CommitAsync();

 }

 return new OkResult();

 }

 [HttpDelete("{id}")]

 public async Task<ActionResult> Delete(string id)

 {

 IReliableDictionary<string, Employee> employees =

await this.stateManager.GetOrAddAsync<IReliable

Dictionary<string, Employee>>("employees");

 using (ITransaction tx = this.stateManager.

CreateTransaction())

 {

 if (await employees.ContainsKeyAsync(tx, id))

 {

 await employees.TryRemoveAsync(tx, id);

 await tx.CommitAsync();

 return new OkResult();

 }

 else

 {

 return new NotFoundResult();

 }

ChApter 3 Azure ServICe FAbrIC

66

 }

 }

 }

 public class Employee

 {

 public string Name { get; set; }

 public string Mobile { get; set; }

 public long Id { get; set; }

 public string Designation { get; set; }

 }

}

Service Fabric provides a reliable collection in the form of reliable

queues and a reliable dictionary. By using these classes, Service Fabric

makes sure that the state is partitioned, replicated, and transacted within a

partition.

Also, all the operations in a reliable dictionary object require an

ITransaction object. By default, the Visual Studio template uses

range partitioning; you can see the details in ApplicationManifest.xml,

which resides in the ApplicationPackageRoot folder of the Employee

project.

By default, the partition count is set to 1. The replica count is set to 3,

which means a copy of the service code and data will be deployed on three

nodes. Only one copy is active, called the primary, and the other two are

inactive and used only in case of failure.

ChApter 3 Azure ServICe FAbrIC

67

Here is a snippet from ApplicationManifest.xml for your reference.

<Parameter Name="EmployeeDataAPI_PartitionCount"

DefaultValue="1" />

<Parameter Name="EmployeeDataAPI_TargetReplicaSetSize"

DefaultValue="3" />

<Service Name="EmployeeDataAPI" ServicePackageActivationMode=

"ExclusiveProcess">

 <StatefulService ServiceTypeName="EmployeeDataAPIType"

TargetReplicaSetSize="[EmployeeDataAPI_

TargetReplicaSetSize]" MinReplicaSetSize="[EmployeeData

API_MinReplicaSetSize]">

 <UniformInt64Partition PartitionCount="[EmployeeData

API_PartitionCount]" LowKey="-9223372036854775808"

HighKey="9223372036854775807" />

 </StatefulService>

 </Service>

 Create an ASP.NET Web App Communicating
with a Web API Using Proxy

Now we will create an ASP.NET-based web app that captures employee

information and invokes EmployeeDataAPI using Service Fabric’s reverse

proxy.

 1. Right-click the Services node under the Employee

project and select New Service Fabric Service, as

shown in Figure 3-13.

ChApter 3 Azure ServICe FAbrIC

68

 2. In New Service Fabric Service, choose Stateless

ASP.NET Core and name it EmployeeWeb.

 3. In New ASP.NET Core Web Application, choose Web

Application (Model-View-Controller) and click OK.

 4. Create a class called EmployeeModel in the Models

folder and add the following code.

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.Linq;

using System.Threading.Tasks;

namespace EmployeeWeb.Models

{

 public class EmployeeViewModel

 {

 public Employee Employee { get; set; }

 public List<Employee> EmployeeList { get; set; }

 }

Figure 3-13. New Service Fabric service

ChApter 3 Azure ServICe FAbrIC

69

 public class Employee

 {

 [Required]

 public string Name { get; set; }

 [Required]

 public string Mobile { get; set; }

 public long Id { get; set; }

 [Required]

 public string Designation { get; set; }

 }

}

 5. Replace the Index.cshtml content, which resides in

the Views/Home folder, with the following content.

@model EmployeeViewModel

@{

 ViewData["Title"] = "Sample Employee Interface";

}

<div>

 <div class="container-fluid">

 <div class="row">

 <div class="col-xs-8 col-xs-offset-2 text-center">

 <h2>Sample Employee Interface</h2>

 </div>

 </div>

 <div class="row">

 <div class="col-xs-8 col-xs-offset-2">

 <form asp-action="Create" class="col-xs-12

center-block">

ChApter 3 Azure ServICe FAbrIC

70

 <div class="col-xs-6 form-group">

 <div class="form-group">

 <label asp-for="Employee.Name"

class="control-label"></label>

 <input asp-for="Employee.Name"

maxlength="100" class="form-

control" />

 <span asp-validation-for="Employee.

Name" class="text-danger">

 </div>

 <div class="form-group">

 <label asp-for="Employee.

Designation" class="control-label">

</label>

 <input asp-for="Employee.

Designation" maxlength="100"

class="form-control" />

 <span asp-validation-for="Employee.

Designation" class="text-danger">

 </div>

 <div class="form-group">

 <label asp-for="Employee.Mobile"

class="control-label"></label>

 <input asp-for="Employee.Mobile"

maxlength="10" class=

"form-control" />

 <span asp-validation-for="Employee.

Mobile" class="text-danger">

 </div>

ChApter 3 Azure ServICe FAbrIC

71

 <div class="form-group">

 <input type="submit" value="Create"

class="btn btn-default" />

 </div>

 </div>

 </form>

 </div>

 </div>

 <hr />

 <div class="row">

 <div class="col-xs-8 col-xs-offset-2">

 @foreach (var item in Model.EmployeeList)

 {

 <div class="row">

 <div class="col-xs-2">

 @Html.DisplayFor(modelItem =>

item.Id)

 </div>

 <div class="col-xs-2">

 @Html.DisplayFor(modelItem =>

item.Name)

 </div>

 <div class="col-xs-2">

 @Html.DisplayFor(modelItem =>

item.Designation)

 </div>

 <div class="col-xs-2">

 @Html.DisplayFor(modelItem =>

item.Mobile)

 </div>

ChApter 3 Azure ServICe FAbrIC

72

 <div class="col-xs-2">

 <a asp-action="Delete" asp-route-

id="@item.Id">Delete

 </div>

 </div>

 }

 </div>

 </div>

 </div>

</div>

 6. Replace the HomeController content with the

following content.

using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using EmployeeWeb.Models;

using System.Net.Http;

using System.Fabric;

using EmployeeWeb.Proxy;

namespace EmployeeWeb.Controllers

{

 /// <summary>

 /// Employee Management Controller

 /// </summary>

 public class HomeController : Controller

 {

 private ServiceContext _serviceContext = null;

ChApter 3 Azure ServICe FAbrIC

73

 private readonly HttpClient _httpClient;

 private readonly FabricClient _fabricClient;

 private static long EmployeeId = 0;

 public HomeController(HttpClient httpClient,

StatelessServiceContext context, FabricClient

fabricClient)

 {

 this._fabricClient = fabricClient;

 this._httpClient = httpClient;

 this._serviceContext = context;

 }

 /// <summary>

 /// Loads the employee list

 /// </summary>

 /// <returns></returns>

 public async Task<IActionResult> Index()

 {

 EmployeeDataAPIProxy employeeProxy = new

EmployeeDataAPIProxy(this._serviceContext,

this._httpClient, this._fabricClient);

 List<Employee> employees = await employeeProxy.

GetEmployees();

 EmployeeViewModel viewModel = new

EmployeeViewModel();

 viewModel.EmployeeList = employees;

 return View(viewModel);

 }

ChApter 3 Azure ServICe FAbrIC

74

 /// <summary>

 /// Responsible for creating Employee

 /// </summary>

 /// <param name="employeeViewModel"></param>

 /// <returns></returns>

 [HttpPost]

 [ValidateAntiForgeryToken]

 public async Task<IActionResult>

Create(EmployeeViewModel employeeViewModel)

 {

 EmployeeDataAPIProxy employeeProxy = new

EmployeeDataAPIProxy(this._serviceContext,

this._httpClient, this._fabricClient); ;

 if (ModelState.IsValid)

 {

 //Not for production at all.

 EmployeeId = EmployeeId + 1;

 employeeViewModel.Employee.Id = EmployeeId;

 await employeeProxy.CreateEmployee(employeeView

Model.Employee);

 }

 List<Employee> employees = await employeeProxy.

GetEmployees();

 employeeViewModel.EmployeeList = employees;

 return View("Index",employeeViewModel);

 }

 /// <summary>

 /// Delete

ChApter 3 Azure ServICe FAbrIC

75

 /// </summary>

 /// <param name="id"></param>

 /// <returns></returns>

 [HttpGet, ActionName("Delete")]

 public async Task<IActionResult> Delete(long? id)

 {

 EmployeeViewModel viewModel = new

EmployeeViewModel();

 EmployeeDataAPIProxy employeeProxy = new

EmployeeDataAPIProxy(this._serviceContext,

this._httpClient, this._fabricClient);

 if (id != null)

 {

 await employeeProxy.DeleteEmployee(id.Value);

 }

 List<Employee> employees = await employeeProxy.

GetEmployees();

 viewModel.EmployeeList = employees;

 return View("Index", viewModel);

 }

 }

}

 7. Create a new folder called Proxy in the

EmployeeWeb project. Add a new file called

EmployeeDataAPIProxy.cs.

ChApter 3 Azure ServICe FAbrIC

76

This code is responsible for invoking the EmployeeDataAPI. Since

EmployeeDataAPI is a stateful service with one partition and three

replicas, we use reverse proxy to find out the active replica. The reverse

proxy is configured by default to use port 19081. You can confirm the port

by looking at the HttpApplicationGatewayEndpoint port in your local

cluster manifest.

Also, since it’s a sample application, we used a running sequence

number as a partition key while invoking the stateful service. Please add

the following code to EmployeeDataAPIProxy.cs.

using EmployeeWeb.Models;

using Newtonsoft.Json;

using System;

using System.Collections.Generic;

using System.Fabric;

using System.Fabric.Query;

using System.Linq;

using System.Net.Http;

using System.Net.Http.Headers;

using System.Threading.Tasks;

namespace EmployeeWeb.Proxy

{

 /// <summary>

 /// Proxy class to handle the complexity of dealing with

reliable service

 /// </summary>

 public class EmployeeDataAPIProxy

 {

 private ServiceContext _context = null;

 private readonly HttpClient _httpClient;

 private readonly FabricClient _fabricClient;

ChApter 3 Azure ServICe FAbrIC

77

 public EmployeeDataAPIProxy(ServiceContext context,

HttpClient httpClient,FabricClient fabricClient)

 {

 _context = context;

 _httpClient = httpClient;

 _fabricClient = fabricClient;

 }

 /// <summary>

 /// Returns the list of employees from all the

partitions. In our sample we have only 1 partition

 /// Also, we are making use of proxy to determine the

right partition to connect to.

 /// Please refer this link for more details. https://

docs.microsoft.com/en-us/azure/service-fabric/service-

fabric- reverseproxy

 /// </summary>

 /// <returns></returns>

 public async Task<List<Employee>> GetEmployees()

 {

 Uri serviceName = EmployeeWeb.

GetEmployeeDataServiceName(_context);

 Uri proxyAddress = this.

GetProxyAddress(serviceName);

 ServicePartitionList partitions = await

_fabricClient.QueryManager.GetPartitionListAsync

(serviceName);

 List<Employee> employees = new List<Employee>();

ChApter 3 Azure ServICe FAbrIC

78

 foreach (Partition partition in partitions)

 {

 string proxyUrl =

 $"{proxyAddress}/api/Employee?Partition

Key={((Int64RangePartitionInformation)

partition.PartitionInformation).LowKey}&

PartitionKind=Int64Range";

 using (HttpResponseMessage response = await

_httpClient.GetAsync(proxyUrl))

 {

 if (response.StatusCode != System.Net.

HttpStatusCode.OK)

 {

 continue;

 }

 employees.AddRange(JsonConvert.Deserialize

Object<List<Employee>>(await response.

Content.ReadAsStringAsync()));

 }

 }

 return employees;

 }

 /// <summary>

 /// Creates an Employee

 /// </summary>

 /// <param name="employee"></param>

 /// <returns></returns>

ChApter 3 Azure ServICe FAbrIC

79

 public async Task CreateEmployee(Employee employee)

 {

 Uri serviceName = EmployeeWeb.

GetEmployeeDataServiceName(_context);

 Uri proxyAddress = this.

GetProxyAddress(serviceName);

 long partitionKey = employee.Id;

 string proxyUrl = $"{proxyAddress}/api/Employee?

PartitionKey={partitionKey}&PartitionKind=Int64Range";

 await this._httpClient.PostAsJsonAsync<Employee>

(proxyUrl, employee);

 }

 /// <summary>

 /// Deletes an Employee

 /// </summary>

 /// <param name="employee"></param>

 /// <returns></returns>

 public async Task DeleteEmployee(long employeeId)

 {

 Uri serviceName = EmployeeWeb.

GetEmployeeDataServiceName(_context);

 Uri proxyAddress = this.GetProxyAddress(serviceName);

 long partitionKey = employeeId;

 string proxyUrl = $"{proxyAddress}/api/Employee/

{employeeId}?PartitionKey={partitionKey}&Partition

Kind=Int64Range";

 await this._httpClient.DeleteAsync(proxyUrl);

 }

ChApter 3 Azure ServICe FAbrIC

80

 /// <summary>

 /// Constructs a reverse proxy URL for a given service.

 /// To find the reverse proxy port used in

your local development cluster, view the

HttpApplicationGatewayEndpoint element in the local

Service Fabric cluster manifest:

 /// Open a browser window and navigate to http://

localhost:19080 to open the Service Fabric Explorer

tool.

 /// Select Cluster -> Manifest.

 /// Make a note of the HttpApplicationGatewayEndpoint

element port.By default this should be 19081. If

it is not 19081, you will need to change the port

in the GetProxyAddress method of the following

VotesController.cs code.

 /// </summary>

 /// <param name="serviceName"></param>

 /// <returns></returns>

 private Uri GetProxyAddress(Uri serviceName)

 {

 return new Uri($"http://localhost:19081

{serviceName.AbsolutePath}");

 }

 }

}

 8. Replace the CreateServiceInstanceListeners()

function with the following code in EmployeeWeb.cs.

ChApter 3 Azure ServICe FAbrIC

81

/// <summary>

 /// Optional override to create listeners (like tcp,

http) for this service instance.

 /// </summary>

 /// <returns>The collection of listeners.</returns>

 protected override IEnumerable<ServiceInstanceListener>

CreateServiceInstanceListeners()

 {

 return new ServiceInstanceListener[]

 {

 new ServiceInstanceListener(serviceContext =>

 new KestrelCommunicationListener(service

Context, "ServiceEndpoint", (url, listener) =>

 {

 ServiceEventSource.Current.

ServiceMessage(serviceContext,

$"Starting Kestrel on {url}");

 return new WebHostBuilder()

 .UseKestrel()

 .ConfigureServices(

 services => services

 .AddSingleton

<HttpClient>(new

HttpClient())

// Add this line to

default template code

 .AddSingleton

<FabricClient>(new

FabricClient())

//Add this line to

default template code

ChApter 3 Azure ServICe FAbrIC

82

 .AddSingleton<State

lessServiceContext>

(serviceContext))

 .UseContentRoot(Directory.

GetCurrentDirectory())

 .UseStartup<Startup>()

 .UseServiceFabricIntegration

(listener, ServiceFabric

IntegrationOptions.None)

 .UseUrls(url)

 .Build();

 }))

 };

 }

 9. Add the following private function to EmployeeWeb.cs.

internal static Uri GetEmployeeDataServiceName(ServiceContext

context)

 {

 return new Uri($"{context.CodePackageActivation

Context.ApplicationName}/EmployeeDataAPI");

 }

 10. Make sure that the following namespaces are

present in EmployeeWeb.cs at the top of the class

file.

using System;

using System.Collections.Generic;

using System.Fabric;

using System.IO;

using Microsoft.AspNetCore.Hosting;

ChApter 3 Azure ServICe FAbrIC

83

using Microsoft.Extensions.DependencyInjection;

using Microsoft.ServiceFabric.Services.Communication.

AspNetCore;

using Microsoft.ServiceFabric.Services.Communication.Runtime;

using Microsoft.ServiceFabric.Services.Runtime;

using System.Net.Http;

 Debugging the Application

By executing all the steps in the previous section, your development is

complete. The following steps debug the application to create an employee

record in the Service Fabric reliable collection that utilizes the developed

web interface and data API.

 1. Right-click the Employee project and set the

Application URL to “http://localhost:19080/

Explorer”. By default, Service Fabric Explorer runs

on 19080. This ensures the successful deployment

of the service to a local cluster. It launches Service

Fabric Explorer.

 2. Make sure that the Employee project is set at

start up.

 3. Click F5. This deploys your Service Fabric

application to the local development cluster.

 4. In Service Fabric Explorer, click Application.

Click fabric://Employee, fabric://Employee/

EmployeWeb, Partition ID, and Node ID. Copy the

value of the endpoint. (In our case, EmployeeWeb is

hosted at http://localhost:8780.)

ChApter 3 Azure ServICe FAbrIC

84

 5. You can also get the EmployeeWeb port number

from ServiceManifest.xml.

<Endpoints>

<!-- This endpoint is used by the communication listener to

obtain the port on which to listen. Please note that if your

service is partitioned, this port is shared with replicas of

different partitions that are placed in your code. -->

<Endpoint Protocol="http" Name="ServiceEndpoint" Type="Input"

Port="8780" />

</Endpoints>

 6. Browse the http://localhost:8780/ URL to view

the web interface. Enter employee information

and click Create to create an employee record. The

actual data is saved by the Employee Data API in

the Service Fabric’s reliable collection, instead of an

external database like Azure SQL.

 Develop a Spring Boot Application
In the previous example, we developed ASP.NET-based reliable services

and deployed it to a local Service Fabric cluster. In this example, we

showcase that it is possible to host a non-Microsoft stack application to a

Service Fabric cluster. We will not create a reliable service; instead, we will

host a Java Spring Boot–based API as a guest executable and as a container.

We will use VS Code to develop a simple Spring Boot application.

ChApter 3 Azure ServICe FAbrIC

85

 Setting up the Development Environment

Let’s set up the development environment.

 1. Install Visual Studio 2017.

 2. Install the Microsoft Azure Service Fabric SDK.

 3. Install Visual Studio Code.

 a. Install Spring Boot Extensions Pack.

 b. Install Java Extensions Pack.

 c. Install Maven for Java.

 4. Make sure that the Service Fabric Local cluster is in

a running state.

 5. Install Docker Desktop.

 6. Access the Azure container registry.

 Develop a Spring Boot API

Now it’s time to get started on the application.

 1. Launch Visual Studio Code as an administrator.

 2. Press Ctrl+Shift+P to open the command palette.

 3. Enter spring in the command palette, as shown in

Figure 3-14, and choose Spring Initializr: Generate a

Maven Project.

ChApter 3 Azure ServICe FAbrIC

86

 4. Choose Java for Specify Project Language.

 5. Enter com.microservices in the input group ID for

your project.

 6. Enter employeespringservice in the input artifact

ID for your project.

 7. Choose the latest Spring boot version (at the time of

writing it was 2.1.2).

 8. Choose the following dependencies.

 a. DevTools

 b. Lombok

 c. Web

 d. Actuator

 9. Choose the path where you want to save the

solution.

 10. Right-click the EMPLOYEESPRINGSERVICE folder

under src ➤ main ➤ java ➤ com ➤ microservices,

as shown in Figure 3-15, and click Add File.

Figure 3-14. Visual Studio Code command palette

ChApter 3 Azure ServICe FAbrIC

87

Figure 3-15. Add a new file

ChApter 3 Azure ServICe FAbrIC

88

 11. Name the file Employee.Java and add the following

code. (This is the definition of the employee object;

we kept it simple by having only three properties to

represent an employee.)

package com.microservices.employeespringservice;

import lombok.AllArgsConstructor;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.Setter;

/*** Employee ***/

@Getter

@Setter

@EqualsAndHashCode

@AllArgsConstructor

public class Employee {

 private String firstName;

 private String lastName;

 private String ipAddress;

}

 12. Now let’s create an employee service that returns

an employee’s information. Right-click the

employeespringservice folder and add a file named

EmployeeService.java. Add the following code to it.

package com.microservices.employeespringservice;

import java.net.InetAddress;

import java.net.UnknownHostException;

import org.springframework.stereotype.Service;

ChApter 3 Azure ServICe FAbrIC

89

/**

 * EmployeeService

 */

@Service

public class EmployeeService {

 public Employee GetEmployee(String firstName, String

lastName){

 String ipAddress;

 try {

 ipAddress = InetAddress.getLocalHost().

getHostAddress().toString();

 } catch (UnknownHostException e) {

 ipAddress = e.getMessage();

 }

 Employee employee = new Employee(firstName,

lastName,ipAddress);

 return employee;

 }

}

 13. Now let’s create an employee controller that invokes

the employee service to return the details of an

employee. Right-click the employeespringservice

folder and add a file named EmployeeController.
java. Add the following code to it.

ChApter 3 Azure ServICe FAbrIC

90

package com.microservices.employeespringservice;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.ResponseBody;

/**

 * EmployeeController

 */

@Controller

public class EmployeeController {

 @Autowired

 private EmployeeService employeeService;

 @GetMapping("/")

 @ResponseBody

 public Employee getEmployee(){

 return employeeService.GetEmployee("Spring","Boot");

 }

}

Now you are ready for a simple REST-based service that returns

employee information. Visual Studio Code has some cool features to run

Spring Boot applications, and we are going to use the same.

 1. Open DemoApplication.java and once you open

the file, you see the option to run or debug the

application, as shown in Figure 3-16. Please

note that this may take time as Visual Studio

automatically downloads the dependencies.

ChApter 3 Azure ServICe FAbrIC

91

 2. Click Run and open the Controller class. You see

the URL where your controller service is hosted, as

shown in Figure 3-17.

Figure 3-16. Debug Application

ChApter 3 Azure ServICe FAbrIC

92

 3. Click the URL and you see the output shown in

Figure 3-18 in your default browser.

Figure 3-17. Application URL

Figure 3-18. Application output

ChApter 3 Azure ServICe FAbrIC

93

Now you have a simple Spring Boot-based REST API, and you have

generated a JAR file. We will now deploy it to Service Fabric as a guest

executable. To deploy, we will use Visual Studio 2017.

Figure 3-19. Generate JAR file

 4. Right-click employeespringservice under Maven

Projects. Click package, as shown in Figure 3-19.

This generates the JAR file.

ChApter 3 Azure ServICe FAbrIC

94

 Deploy a Spring Boot Service as a Guest Executable

After executing all the steps in the previous section, your development is

complete. Please follow the steps in this section to deploy the developed

Spring Boot application as a guest executable. This shows that it is possible

to host a non-Microsoft stack application on a Service Fabric cluster by

using a guest executable programming model. Service Fabric considers

guest executables a stateless service.

 1. Launch Visual Studio 2017 as an administrator.

 1. Click File ➤ New Project ➤ Select Cloud ➤ Service

Fabric Application.

 2. Name the application employeespringasguest, as

shown in Figure 3- 20.

Figure 3-20. Create Service Fabric application

ChApter 3 Azure ServICe FAbrIC

95

 3. In New Service Fabric Service, select the following

(as shown in Figure 3-21).

 a. Service Name: employeeguestservice

 b. Code Package Folder: Point to the target folder in which

Visual Studio Code generated the JAR file for the Spring Boot

service.

 c. Code Package Behavior: Copy folder contents to folder

 d. Working Folder: CodeBase

 4. Delete the selected files shown in Figure 3-22 from

the Code folder.

Figure 3-21. New Service Fabric Service

ChApter 3 Azure ServICe FAbrIC

96

 5. We also need to upload the runtime to run the

JAR. Generally, it resides in the JDK installation

folder (C:\ java-1.8.0-openjdk-1.8.0.191-1.b12.

redhat.windows.x86_64). Paste it in the Code folder,

as shown in Figure 3-23.

Figure 3-22. Delete files

ChApter 3 Azure ServICe FAbrIC

97

 6. Open ServiceManisfest.xml and set the following values.

<EntryPoint>

 <ExeHost>

 <Program>jre\bin\java.exe</Program>

 <Arguments>-jar ..\..\employeespringservice-0.0.1-

SNAPSHOT.jar</Arguments>

 <WorkingFolder>CodeBase</WorkingFolder>

 <!-- Uncomment to log console output (both stdout and

stderr) to one of the

 service's working directories. -->

 <!-- <ConsoleRedirection FileRetentionCount="5"

FileMaxSizeInKb="2048"/> -->

 </ExeHost>

 </EntryPoint>

 </CodePackage>

Figure 3-23. Adding Java runtime

ChApter 3 Azure ServICe FAbrIC

98

<Resources>

 <Endpoints>

 <!-- This endpoint is used by the communication listener

to obtain the port on which to

 listen. Please note that if your service is

partitioned, this port is shared with

 replicas of different partitions that are placed in

your code. -->

 <Endpoint Name="employeeguestserviceTypeEndpoint"

Protocol="http" Port="8080" Type="Input" />

 </Endpoints>

 </Resources>

 7. Make sure that the local Service Fabric cluster is up

and running. Click F5. Browse the Service Fabric

dashboard, as shown in Figure 3-24. The default

URL is http://localhost:19080/Explorer/index.

html. You see that your service is deployed.

Figure 3-24. Service Fabric dashboard

ChApter 3 Azure ServICe FAbrIC

99

 8. Browse http://localhost:8080 to access your

service. In servicemanifest.xml, we specified the

service port as 8080; you can browse the same on

8080, as shown in Figure 3-25.

 Deploy a Spring Boot Service as a Container

So far, we have deployed the service as a guest executable in Service Fabric.

Now we will follow the steps to deploy the Spring service as a container

in Service Fabric. This explains that in addition to creating stateful and

stateless services, Service Fabric also orchestrates containers like any other

orchestrator, even if the application wasn’t developed on a Microsoft stack.

 1. Open Visual Studio Code. Open the folder where

employeespringservice exists. Open the Docker file.

 2. Make sure that the name of the JAR file is correct.

Figure 3-25. Application output

ChApter 3 Azure ServICe FAbrIC

100

 4. Create the Azure Container Registry resource in the

Azure portal. Enable the admin user, as shown in

Figure 3-27.

Figure 3-26. Switch to Windows containers

 3. Select Switch to Windows container… in Docker

Desktop, as shown in Figure 3-26.

ChApter 3 Azure ServICe FAbrIC

101

 5. Open the command prompt in Administrative Mode

and browse to the directory where the Docker file

exists.

 6. Fire the following command, including the period at

the end. (This may take time because it downloads

the Window Server core image from the Docker hub,

as shown in Figure 3-28.)

docker build -t employeespringservice/v1 .

Figure 3-27. Azure Key Vault

ChApter 3 Azure ServICe FAbrIC

102

Now the container image is available locally. You have to push the

image to Azure Container Registry.

 1. Log in to Azure Container Registry using the

admin username and password. Use the following

command (also see Figure 3-29).

docker login youracr.azurecr.io -u yourusername -p yourpassword

Figure 3-28. Docker build output

ChApter 3 Azure ServICe FAbrIC

103

Figure 3-29. Docker login

 2. Fire the following commands to upload the image to

ACR (as shown in Figure 3-30).

docker tag employeespringservice/v1 youracr.azurecr.io/book/

employeespringservice/v1

docker push myservicefabric.azurecr.io/book/

employeespringservice/v1

ChApter 3 Azure ServICe FAbrIC

104

 3. Log in to the Azure portal and check if you can see

your image in Repositories, as shown in Figure 3-31.

Figure 3-30. Docker push

Figure 3-31. Azure Container Registry

ChApter 3 Azure ServICe FAbrIC

105

Figure 3-32. Create Service Fabric application

Since the container image is ready and uploaded in Azure Container

Registry, let’s create a Service Fabric project to deploy the container to the

local Service Fabric cluster.

 1. Launch Visual Studio 2017 as an administrator.

 2. Click File ➤ New Project ➤ Select Cloud ➤ Service

Fabric Application.

 3. Name the application employeespringascontainer,

as shown in Figure 3-32.

 4. In New Service Fabric Service, select the following.

 a. Service Name: employeecontainerservice

 b. Image Name: youracr.azurecr.io/book/

employeespringservice/v1

ChApter 3 Azure ServICe FAbrIC

106

 c. User Name: Your username in the Azure Container Registry

 d. Host Port: 8090

 e. Container Port: 8080

 5. Once the solution is created, open the

ApplicationManifest.xml. Specify the right password

for the admin user (see Figure 3-33). (Since this

is a sample, we kept the password unencrypted;

for real-word applications you have to encrypt the

password.)

Now we are ready to build and deploy the container to the local Service

Fabric cluster. Since we have given the user information to download

the image from Azure Container Registry, Visual Studio downloads and

deploys the container to the local Service Fabric cluster.

Figure 3-33. Application manifest

ChApter 3 Azure ServICe FAbrIC

107

Figure 3-34. Publish

 1. Right-click the Service Fabric project and publish, as

shown in Figure 3- 34.

 2. Select the local cluster profile to publish to the local

Service Fabric cluster, as shown in Figure 3-35. To

deploy to Azure, select the cloud profile. Make sure

that the Service Fabric cluster is up and ready in

your subscription.

ChApter 3 Azure ServICe FAbrIC

108

 3. Browse the Service Fabric dashboard. The default URL

is http://localhost:19080/Explorer/index.html.

Your service is deployed, as shown in Figure 3-36.

Figure 3-36. Service Fabric dashboard

Figure 3-35. Publish to local Service Fabric cluster

ChApter 3 Azure ServICe FAbrIC

109

 4. Browse to http://localhost:8090/ to access your

service. You get the response shown in Figure 3-37,

which is served from the container run by Service

Fabric.

 Summary
Service Fabric is not just a Microsoft orchestrator to host containers for

microservices. In addition to host containers, it also allows to develop

reliable services by using the Service Fabric SDK. SDK allows you to

implement service communication, scale, and service discovery patterns

effectively. The SDK is available for .NET and Java developers, and the

cluster can be deployed on-premise or on the cloud.

Please note that it’s not mandatory to use the Service Fabric SDK. You

can develop an application in any programming language, and you can

deploy it using guest executables and containers. You can deploy Service

Fabric on any cloud, such as Azure, AWS, or Google.

Figure 3-37. Application output

ChApter 3 Azure ServICe FAbrIC

111© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_4

CHAPTER 4

Monitoring Azure
Service Fabric
Clusters
In the previous chapter, you learned the core concepts of Service

Fabric, such as the application model, application scaling, supported

programming models, and clusters. Service Fabric very effectively

streamlines an application, cluster deployment, and the scaling of

applications. In this chapter, you discover how you can effectively monitor

a Service Fabric cluster and the applications deployed on it. We will create

an ASP.NET Core-based application to demonstrate how easy it is to add

application monitoring, and use Application Insights to troubleshoot

issues in database calls and remote HTTP calls.

In an enterprise application, most performance issues happen in an

inefficient database and remote HTTP calls. If an application does not have

efficient monitoring and logging built in, it becomes very difficult to solve

performance issues. Our sample app demonstrates how to monitor key

performance issues.

Before we discuss monitoring, however, the following sections are brief

descriptions of some of the technologies mentioned in this chapter.

112

 Azure Application Insights
Application Insights is an extensible application performance

management (APM) service for web developers on multiple platforms.

It monitors live web applications and automatically detects performance

anomalies. It also includes powerful analytics tools to help you diagnose

issues and to understand what users do with your app.

 Resource Manager Template
The Azure Resource Manager template allows you to deploy, monitor, and

manage solution resources as a group on Azure.

We cover Service Fabric monitoring in the following three areas.

• Application monitoring

• Cluster monitoring

• Infrastructure monitoring

 Application Monitoring
Application monitoring shows the usage of your application’s features and

components, which helps determine their impact on the users. Application

monitoring also reports debug and exception logs, which are essential for

diagnosing and resolving an issue once the application is deployed. It is

the responsibility of developers to add appropriate monitoring.

You can use any popular instrumentation framework to add

application monitoring, but some of the popular options are Application

Insights SDK, Event Source, and ASP.NET Core Logging Framework.

Application Insights is recommended.

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

113

 Adding Application Monitoring to a Stateless
Service Using Application Insights
We will develop a simple ASP.NET MVC–based API to manage employees.

In this example, we will store the employee data in an Azure SQL database

instead of a reliable collection so that we can demonstrate how to monitor

query information in Azure Application Insights. To demonstrate the

monitoring of a REST API call, we are making a call to the Translator

Text API in Azure to transliterate the first name of an employee in Hindi

(Devanagari) script. You can replace the call with any other REST call,

as the idea here is to demonstrate the monitoring of remote calls in

Azure Application Insights. In your Azure subscription, you can create a

Translator Text API using the Free tier to execute this sample.

Note the Microsoft translator api is an iSo and hipaa-compliant
neural machine translation (nMt) service that developers can easily
integrate into their applications, websites, tools, or any solution
requiring multilanguage support, such as company websites,
e-commerce sites, customer support applications, messaging
applications, internal communication, and more.

 Setting up the Development Environment

Let’s set up.

 1. Install Visual Studio 2017.

 2. Install the Microsoft Azure Service Fabric SDK.

 3. Create the Translator Text API in your Azure

subscription and make a note of the access key.

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

114

 4. Create an empty Azure SQL Database and keep the

connection string with SQL Authentication handy.

 5. Make sure that the Service Fabric local cluster on

Windows is in a running state.

 6. Make sure that the Service Fabric Azure cluster on

Windows is in a running state.

 Create an ASP.NET Core Web API

Now let’s start the API.

 1. Launch Visual Studio 2017 as an administrator.

 2. Create a project by selecting File ➤ New ➤ Project.

 3. In the New Project dialog, choose Cloud ➤ Service

Fabric Application.

 4. Name the Service Fabric application EmployeeApp

(as seen in Figure 4-1) and click OK.

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

115

 5. Name the stateless ASP.NET Core service Employee.
Stateless.Api (as seen in Figure 4-2) and click OK.

Figure 4-1. Create Service Fabric application

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

116

 6. Choose the API and click OK. Make sure that

ASP.NET Core 2.2 is selected, as shown in Figure 4-3.

Figure 4-2. Stateless ASP.NET Core

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

117

 7. Right-click the employee.stateless.api project

and select Add ➤ Connected Service, as seen in

Figure 4-4.

Figure 4-3. API with ASP.NET Core 2.2

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

118

 8. Choose Monitoring with Application Insights, as

seen in Figure 4-5.

Figure 4-4. Add connected service

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

119

 9. Click Get Started, as seen in Figure 4-6.

Figure 4-5. Monitoring with Application Insights

Figure 4-6. Get started

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

120

 10. Choose the right Azure subscription and

Application Insights resource. Once done, click

Register, as seen in Figure 4-7.

It takes a few minutes to create the Application Insights resource in

your Azure subscription. During the registration process, you see the

screen shown in Figure 4-8.

Figure 4-7. Choose Azure subscription

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

121

 11. Once the Application Insights configuration is

complete, you see the status as 100%. If you see the

Add SDK button (as shown in Figure 4-9), click it to

achieve 100% status, as seen in Figure 4-10.

Figure 4-8. Registration process

Figure 4-9. Add SDK

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

122

 12. To confirm the Application Insights configuration,

check the instrumentation key in appsettings.json.

 13. Right-click the employee.stateless.api project to add

dependencies for the following NuGet packages.

 a. Microsoft.EntityFrameworkCore.SqlServer

 b. Microsoft.ApplicationInsights.ServiceFabric.Native

 c. Microsoft.ApplicationInsights.AspNetCore

You are done with the configuration. Now let’s add

EmployeeController, which is responsible for performing CRUD

operations on Azure SQL Database.

Figure 4-10. Application Insights SDK installation complete

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

123

 1. Right-click the employee.stateless.api project and

add a folder called Models. Add the following

classes from the sources folder.

 a. AppSettings.cs

 b. Employee.cs

 c. SampleContext.cs

 d. TranslationResponse.cs

 2. Right-click the employee.stateless.api project and

add a file named DbInitializer.cs. Replace that

content with the following content.

using employee.stateless.api.Models;

namespace employee.stateless.api

{

 /// <summary>

 /// Class to initialize database

 /// </summary>

 public class DbInitializer

 {

 private SampleContext _context = null;

 public DbInitializer(SampleContext context)

 {

 _context = context;

 }

 public void Initialize()

 {

 _context.Database.EnsureCreated();

 }

 }

}

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

124

 3. Open Api.cs and replace the contents of the

CreateServiceInstanceListeners method with the

following content.

return new ServiceInstanceListener[]

 {

 new ServiceInstanceListener(serviceContext =>

 new KestrelCommunicationListener(service

Context, "ServiceEndpoint", (url, listener) =>

 {

 ServiceEventSource.Current.

ServiceMessage(serviceContext,

$"Starting Kestrel on {url}");

 return new WebHostBuilder()

 .UseKestrel()

 //Add the below code to

read appsettings.json

 .ConfigureAppConfiguration(

(builderContext, config) =>

 {

 config.AddJsonFile

("appsettings.json",

optional: false,

reloadOnChange:

true);

 })

 .ConfigureServices(

 services => services

 .AddSingleton

<StatelessService

Context>(service

Context)

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

125

 //Make sure the

below line exists

for application

insights

integration

 .AddSingleton

<ITelemetry

Initializer>

((serviceProvider)

=> FabricTelemetry

Initializer

Extension.

CreateFabric

Telemetry

Initializer

(serviceContext)))

 .UseContentRoot(Directory.

GetCurrentDirectory())

 .UseStartup<Startup>()

 .UseApplicationInsights()

 .UseServiceFabricIntegration

(listener, ServiceFabric

IntegrationOptions.None)

 .UseUrls(url)

 .Build();

 }))

 };

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

126

Make sure that you have the following namespaces

imported on top of the Api.cs file.

using System.Collections.Generic;

using System.Fabric;

using System.IO;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.ServiceFabric.Services.Communication.

AspNetCore;

using Microsoft.ServiceFabric.Services.Communication.Runtime;

using Microsoft.ServiceFabric.Services.Runtime;

using Microsoft.Extensions.Configuration;

using Microsoft.ApplicationInsights.Extensibility;

using Microsoft.ApplicationInsights.ServiceFabric;

 4. Open Startup.cs and replace the contents of the

ConfigureServices method with the following

content.

services.AddDbContext<SampleContext>(options =>

//registring the use of SQL server

 options.UseSqlServer(Configuration.GetConnection

String("DefaultConnection")));

 services.AddSingleton<DbInitializer>();

 services.AddHttpClient();

 services.Configure<AppSettings>(Configuration.

GetSection("AppSettings"));

 var serviceProvider = services.BuildServiceProvider();

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

127

 var dbInitializer = serviceProvider.GetRequiredService

<DbInitializer>();

 dbInitializer.Initialize();

 services.AddMvc().SetCompatibilityVersion(CompatibilityVersion.

Version_2_2);

 5. Right-click the controller folder in the employee.

stateless.api project and add a controller called

EmployeeController.cs. Replace that content with

the following content.

using System.Collections.Generic;

using System.Linq;

using System.Net.Http;

using System.Text;

using System.Threading.Tasks;

using employee.stateless.api.Models;

using Microsoft.AspNetCore.Mvc;

using Microsoft.EntityFrameworkCore;

using Microsoft.Extensions.Options;

using Newtonsoft.Json;

using Newtonsoft.Json.Linq;

namespace employee.stateless.api.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class EmployeeController : ControllerBase

 {

 /// <summary>

 /// Context

 /// </summary>

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

128

 private SampleContext _context = null;

 private HttpClient _httpClient = null;

 private AppSettings _appSettings = null;

 /// <summary>

 /// Employee Controller

 /// </summary>

 /// <param name="context"></param>

 public EmployeeController(SampleContext

context, IHttpClientFactory httpClientFactory,

IOptionsMonitor<AppSettings> appSettings)

 {

 _context = context;

 _appSettings = appSettings.CurrentValue;

 _httpClient = httpClientFactory.CreateClient();

 }

 /// <summary>

 /// Returns all the employees

 /// </summary>

 /// <returns></returns>

 [HttpGet]

 public async Task<ActionResult<List<Employee>>>

GetAll()

 {

 List<Employee> employeeList = await _context.

Employees.ToListAsync<Employee>();

 return new OkObjectResult(employeeList);

 }

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

129

 /// <summary>

 /// Returns an employee based on id

 /// </summary>

 /// <param name="id"></param>

 /// <returns></returns>

 [HttpGet("{id}")]

 public async Task<ActionResult<Employee>>

GetEmployee(int id)

 {

 Employee employee = await _context.Employees.

Where(e => e.Id.Equals(id)).FirstOrDefaultAsync();

 return new OkObjectResult(employee);

 }

 /// <summary>

 /// Creates an emaployee

 /// </summary>

 /// <param name="employee"></param>

 /// <returns></returns>

 [HttpPost]

 public async Task<ActionResult> Post(Employee employee)

 {

 employee.NativeLanguageName = await

GetTranslatedText(employee.FirstName);

 await _context.Employees.AddAsync(employee);

 await _context.SaveChangesAsync();

 return new OkResult();

 }

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

130

 /// <summary>

 /// Deletes the employee based on id

 /// </summary>

 /// <param name="id"></param>

 /// <returns></returns>

 [HttpDelete("{id}")]

 public async Task<ActionResult> Delete(int id)

 {

 Employee employee = await _context.Employees.

Where(e => e.Id.Equals(id)).FirstOrDefaultAsync();

 if (employee == null)

 {

 return new NotFoundResult();

 }else

 {

 _context.Employees.Remove(employee);

 await _context.SaveChangesAsync();

 return new OkResult();

 }

 }

 /// <summary>

 /// Gets the name in hindi

 /// </summary>

 /// <param name="name"></param>

 /// <returns></returns>

 private async Task<string> GetTranslatedText(string

name)

 {

 System.Object[] body = new System.Object[] { new {

Text = name } };

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

131

 var requestBody = JsonConvert.SerializeObject(body);

 StringContent content = new StringContent

(requestBody, Encoding.UTF8, "application/json");

 _httpClient.DefaultRequestHeaders.Add("Ocp-Apim-

Subscription-Key", _appSettings.AccessKey);

 var result = await _httpClient.PostAsync

($"{_appSettings.TranslationApiUrl}/translate?api-

version=3.0&to=hi", content);

 result.EnsureSuccessStatusCode();

 string translatedJson = await result.Content.

ReadAsStringAsync();

 TranslationResponse response = Newtonsoft.Json.

JsonConvert.DeserializeObject<TranslationResponse>

(JArray.Parse(translatedJson)[0].ToString());

 return response.translations[0].text;

 }

 }

}

 6. Open AppSettings.json and make sure that the

content looks similar to your connection strings.

{

 "ConnectionStrings": {

 "DefaultConnection": "Server=<<YOUR_SERVER>>;Database=

<<YOUR_DATABASE>>;User ID=<<USER_ID>>;Password=<<PASSWORD>>

;Trusted_Connection=False;Encrypt=True;MultipleActiveResult

Sets=True;"

 },

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

132

 "AppSettings": {

 "TranslationApiUrl": "https://api.cognitive.

microsofttranslator.com",

 "AccessKey": "<<YOUR ACCESS KEY TO TRANSLATION API>>"

 },

 "Logging": {

 "LogLevel": {

 "Default": "Warning"

 }

 },

 "AllowedHosts": "*",

 "ApplicationInsights": {

 "InstrumentationKey": "<<YOUR INSTRUMENTATION KEY OF YOUR

APP INSIGHTS RESOURCE>>"

 }

}

 7. Run the application against your local Service

Fabric cluster to perform a simple test. Since it is

an API, you can test it using tools like Postman or

Fiddler. Figure 4-11 is a sample API call from Fiddler.

Execute the API multiple times so that you can easily

monitor the traffic in Application Insights. Now let’s

deploy the application on a Service Fabric cluster.

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

133

 8. Make sure that you install the .pfx certificate on your

desktop (it was created along with the Service Fabric

cluster on Azure). You can download the certificate

from the Azure portal, as seen in Figure 4-12. This

is required to publish your app on an Azure Service

Fabric cluster.

Figure 4-11. Sample Fiddler call

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

134

Fi
gu

re
 4

-1
2.

 D
ow

n
lo

ad
 c

er
ti

fi
ca

te

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

135

 9. Make sure that the port of your service is open in the

load balancer for the Azure Service Fabric cluster, as

seen in Figure 4-13. You can find your service port

in ServiceManifest.xml in the employee.stateless.api

project.

<Endpoint Protocol="http" Name="ServiceEndpoint" Type="Input"

Port="80" />

Figure 4-13. Service port configuration

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

136

 10. Right-click the EmployeeApp project and choose

Publish. Select Cloud.xml in the target profile, as

seen in Figure 4-14. Make sure to specify the right

certificate thumbprint, store location, and store

name.

 11. Make a few calls to the Post Employee API hosted on

the Azure Service Fabric cluster, as seen in Figure 4-15.

Figure 4-14. Publish to Azure

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

137

At the time of creating an employee record, we are inserting a record

in Azure SQL and invoking the Azure Translator Text API. Let’s look at how

informative Azure Application Insights is.

 1. Log in to the Azure portal, select the Application

Insights resource, and click Search, as seen in

Figure 4-16.

Figure 4-16. Application Insights view

Figure 4-15. Fiddler call to post employee API

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

138

 2. Click Click here to see all data in the last 24 hours,

as seen in Figure 4- 17. Please note that it may take

a few minutes before you can monitor the traffic on

the Azure portal.

 3. Once you see the requests, click Grouped results, as

seen in Figure 4- 18.

It automatically recognizes the remote calls to the database and the

Translator Text API. You can click further to see information like SQL

query, time taken by query, Service Fabric node details, and so forth, as

seen in Figure 4-19.

Figure 4-18. Grouped results

Figure 4-17. Last 24 hours details

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

139

Figure 4-19. SQL query details

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

140

It should be very clear how easily you can monitor a Service Fabric

application by using Application Insights. It automatically detects remote

SQL and HTTP dependencies, which is a great feature for optimizing

application performance.

 Cluster Monitoring
One of the salient features of an Azure Service Fabric cluster is making

applications resilient to hardware failures. For example, if Service Fabric

system services are having issues in deploying workloads, or services are

not able to enforce placement rules, Service Fabric provides diagnostic

logs to monitor these scenarios. Service Fabric exposes various structured

platform events for efficient diagnosis.

On Azure, for windows clusters, it’s suggested to use Diagnostic Agents

and Azure Monitor Logs. Azure Monitor Logs is also suggested for Linux

workloads, but with a different configuration.

 Diagnostic Agents

The Windows Azure Diagnostic extension allows you to collect all the logs

from all the cluster nodes to a central location. The central location can

be Azure Storage, and it can send the logs to Azure Application Insights or

Event Hubs.

Diagnostic agents can be deployed through the Azure portal when

creating a Service Fabric cluster. You can also use the Resource Manager

template to add a diagnostic agent to an existing Service Fabric cluster, if it

was not added when creating the cluster. Figure 4-20 shows the diagnostics

options when creating a Service Fabric cluster.

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

141

 Azure Monitor Logs

Microsoft recommends using Azure Monitor Logs to monitor cluster-level

events in a Service Fabric cluster. To use this option, the diagnostic logs for

the Service Fabric cluster must be enabled.

Setting up Azure Monitor Logs is done through Azure Resource

Manager, PowerShell, or Azure Marketplace. Here we follow the Azure

Marketplace route because it’s user-friendly and easy to understand.

 1. Select New in the left navigation menu of the Azure

portal.

 2. Search for Service Fabric Analytics. Select the

resource that appears.

 3. Select Create, as seen in Figure 4-21.

Figure 4-20. Configure diagnostics agent

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

142

Figure 4-21. Create Service Fabric analytics

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

143

 1. Create a new Log Analytics workspace, as seen in

Figure 4-22. Once it is created, you need to connect

it to your Azure Service Fabric cluster.

 2. Go to the resource group in which you created

the Service Fabric analytics solution. Select

ServiceFabric<nameOfWorkspace> and go to its

Overview page.

 3. Select Storage Account Logs under the Workspace

Data Sources option.

 4. Click Add, as seen in Figure 4-23.

Figure 4-22. Create log analytics

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

144

 5. Choose the storage account created with the Service

Fabric cluster. The default name for the Service

Fabric cluster storage account starts with sfdg.

 6. Select Service Fabric Events as the data type.

 7. Make sure that the source is set to

WADServiceFabric*EventTable, as seen in Figure 4-24.

Figure 4-23. Add storage account logs

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

145

Once done, on the Overview page, you see a summary of Service Fabric

events. Please note that it may take 10 to 15 minutes for data to appear in

this view, as seen in Figure 4-25.

 8. Click the Service Fabric tile to see more reported

information about the cluster events, as seen in

Figure 4-26.

Figure 4-24. WADServiceFabric*EventTable

Figure 4-25. Overview of Service Fabric events

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

146

 Infrastructure Monitoring
Azure Monitor Logs is recommended for monitoring infrastructure

parameters such as CPU utilization, .NET performance counters, and

Service Fabric performance counters (e.g., the number of exceptions from

a reliable service).

To get the infrastructure logs, you are required to add a Log Analytics

agent as a virtual machine scale set extension to the Azure Service Fabric

cluster.

Follow these steps to do this.

 1. Go to the resource group in which you created

the Service Fabric Analytics solution. Select

ServiceFabric<nameOfWorkspace> and go to its

Overview page. Select Log Analytics Workspace and

click Advanced Settings under Settings.

Figure 4-26. Cluster event details

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

147

 2. Select Windows Servers. Make a note of the

workspace ID and primary key, as seen in

Figure 4-27.

 3. Open the Cloud Shell from the Azure portal to

run the command in the next step. The option is

available in the top-right corner of the Azure portal,

as seen in Figure 4-28.

Figure 4-27. Windows Server details

Figure 4-28. Cloud shell

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

148

 4. Execute the following command to add the

monitoring agent.

az vmss extension set --name MicrosoftMonitoringAgent

--publisher Microsoft.EnterpriseCloud.Monitoring --resource-

group <nameOfResourceGroup> --vmss-name <nameOfNodeType>

--settings "{'workspaceId':'<Log AnalyticsworkspaceId>'}"

--protected-settings "{'workspaceKey':'<Log

AnalyticsworkspaceKey>'}"

 5. Replace the workspace ID and workspace key

collected from the previous step. nameOfNodeType

is the name of the virtual machine scale set resource

that was automatically created with your Service

Fabric cluster. This command takes about 15

minutes to add the log analytics agents on all the

scale set nodes.

 6. Go to the resource group in which you created

the Service Fabric Analytics solution. Select

ServiceFabric<nameOfWorkspace> and go to its

Overview page. Select Log Analytics Workspace and

click Advanced Settings under Settings.

 7. Choose Data and Windows Performance Counters.

Click Add the selected performance counters. (For

the purpose of this sample exercise, we selected the

default performance counters, but you can choose

custom performance counters in the real-world

applications, as seen in Figure 4-29.)

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

149

 8. Click Save.

 9. Go to the resource group in which you created

the Service Fabric Analytics solution. Select

ServiceFabric<nameOfWorkspace> and go to its

Overview page. Click the tile for the Summary of

Service Fabric events.

 10. You see data for the selected performance counters,

like disk usage (MB). Click the chart to get more

information, as seen in Figure 4-30. Please note that

it takes time to reflect data in this section.

Figure 4-30. Disk usage details

Figure 4-29. Windows performance counters

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

150

 Summary
In this chapter, you learned how to monitor a Service Fabric cluster and

the applications deployed on it. We covered application monitoring,

cluster monitoring, and infrastructure monitoring. Application Insights is

a very effective approach to monitoring deployed applications because it

effectively monitors remote HTTP and database calls with no additional

effort. We also covered how you can use Diagnostic Agents and Azure

Monitor Logs to monitor a Service Fabric cluster and infrastructure.

Chapter 4 Monitoring azure ServiCe FabriC CluSterS

151© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_5

CHAPTER 5

Azure Kubernetes
Service
Previous chapters discussed the benefits and various challenges of

microservices applications. By now, it’s quite clear that orchestrators

are the backbone of the microservices ecosystem. We also discussed

Azure Service Fabric and the various options to deploy microservices

applications. Azure Kubernetes Service (AKS) is a vast subject; however,

we will cover the fundamental details required to deploy microservices

applications. There are practical scenarios along with hands-on code to

give you a fair idea of how easy it is to adopt AKS.

 Introduction to Kubernetes
Before we get into AKS, let’s go over some of the Kubernetes platform’s

background. Kubernetes (a.k.a. K8s) is an extensible, open source

container orchestration system for automating application deployment,

scaling, and management. It aims to provide a “platform for automating

deployment, scaling, and operations of application containers across

clusters of hosts.” It works with a range of container tools, including

Docker, and has a large, rapidly growing ecosystem.

As an open platform, Kubernetes allows you to build applications with

your preferred programming language and operating system. It can be

152

seamlessly integrated with continuous integration and continuous delivery

(CI/CD) to schedule and deploy releases. Adoption of this platform is

growing rapidly, and many cloud providers offer the Kubernetes platform

on IaaS and PaaS. AKS is Microsoft’s PaaS service for Kubernetes.

Let’s now discuss Kubernetes’ architecture and important components.

 Kubernetes Cluster Architecture
Kubernetes follows a master-slave architecture. As shown in Figure 5-1, it’s

divided into two parts.

• Master. The main controlling unit of the cluster,

it provides the core services and orchestration of

application workloads.

• Node. The worker nodes, or minions, within the cluster

that are responsible for running application workloads.

User
Interface

Command
Line Interface

API

kube-controller-
manager

kube-apiserver

etcd

kube-scheduler

cloud-controller-
manager

Kubernetes
Master

Kube-proxy

Kubelet

Container runtime

Node 1

Kube-proxy

Kubelet

Container runtime

Node 2

Kube-proxy

Kubelet

Container runtime

Node 3

Image Registry

Figure 5-1. AKS architecture

Chapter 5 azure Kubernetes serviCe

153

 Kubernetes Master
In Kubernetes, the master is the main controlling unit for the cluster.

It manages all the workloads and directs communication across the

system. Figure 5-1 shows that the K8s master includes the following core

Kubernetes components.

• kube-controller-manager. The controller manager

oversees the collection of smaller controllers.

Controllers perform actions such as replicating pods

and handling node operations, such as maintaining the

correct number of nodes, maintaining high availability,

and so forth. It moves pods to other nodes if any

underlying node fails.

• cloud-controller-manager. The controller manager

enables the cloud provider to integrate with

Kubernetes. Kubernetes has plugins for cloud providers

to integrate and customize the platform. AKS uses this

component to build a PaaS service on Azure.

• kube-apiserver. The API server exposes underlying

Kubernetes APIs to interact with management tools,

such as kubectl or the Kubernetes dashboard.

• etcd. A key/value pair database that maintains the

state of the Kubernetes cluster and configuration. It is a

highly available key/value store within Kubernetes.

• kube-scheduler. The scheduler is responsible for

allocating the compute and storage required to create

and scale containerized applications. The scheduler

determines which nodes can accommodate the

workload, and runs it on them.

Chapter 5 azure Kubernetes serviCe

154

Interaction with the cluster master is facilitated by the Kubernetes APIs

or dashboard, or CLI-based kubectl.

 Kubernetes Nodes
Kubernetes nodes run your applications and supporting services within

the Kubernetes cluster by running the following components and

container runtime (as shown in Figure 5-1).

• The kubelet is the Kubernetes agent that runs on each

node in the cluster and processes the orchestration

requests from the cluster master. It ensures that the

containers described in the configuration are up and

running.

• kube-proxy manages networking operations on

each node. This includes routing network traffic and

managing IP addresses for services and pods.

• The container runtime is responsible for running

the containers on the Kubernetes cluster. It allows

containerized applications to run and interact with

resources, such as virtual networks and storage.

There are multiple container runtimes supported on

Kubernetes (e.g., Docker, rklet, etc.).

A Kubernetes cluster can have multiple nodes, and each node

translates into an Azure virtual machine and hosts the services. Depending

on your application’s resource needs, you can choose the VM size to make

sure that you have enough CPU, memory, and storage.

Chapter 5 azure Kubernetes serviCe

155

Note in aKs, the vM images are based on ubuntu Linux. if you need
to support any other Os, you can leverage aks-engine (tooling to
quickly bootstrap Kubernetes clusters on azure) and set up your own
Kubernetes cluster.

 Kubernetes Node Pools
A Kubernetes cluster allows you to group nodes with the same

configuration into node pools. A cluster can have more than one node

pool. When creating a cluster in Azure, a default pool is automatically

created for you.

 Pods
A pod is a logical resource that represents the container hosting the

instance of your application. Although, it is supported to run multiples

containers in a pod, we haven’t faced many scenarios where it was needed.

When creating a pod, you can specify the required resource limits,

and kube-scheduler tries to run the pod on the node where the required

resources are available.

At runtime, pods are scaled by creating replica sets, and it makes sure

that the required number of pods are always running in a Kubernetes

deployment.

 Deployment
A deployment in a Kubernetes cluster is managed by a Kubernetes

deployment controller, which internally uses kube-scheduler. To define

a Kubernetes deployment, a manifest file is maintained in YAML format.

Chapter 5 azure Kubernetes serviCe

156

With the help of replica sets, the required number of pods are always

running in a Kubernetes deployment. The manifest file mentions the

required number of replicas. The manifest file also includes the container

image, ports that need to be opened in the container, attached storage, and

so forth.

The following is a sample YAML file.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx0-deployment

 labels:

 app: nginx0-deployment

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx0

 template:

 metadata:

 labels:

 app: nginx0

 spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

If the application deployed on a cluster are stateless, the deployment

controller runs an instance of an application on any of the available nodes.

If the deployed applications are stateful, Kubernetes uses the following

resources.

Chapter 5 azure Kubernetes serviCe

157

 StatefulSets

A StatefulSet maintains the sticky identity of the pods. It is used if the

application needs persistence storage, unique network identifiers, and

ordered deployment and scaling. The application in YAML is defined using

kind: StatefulSet.

 DemonSets

If a pod needs to run on all the available nodes, DaemonSet makes

sure that all nodes are running a copy of a pod. The pods scheduled by

DaemonSet are started before the pods that are scheduled by deployment

or StatefulSet controllers. The application in YAML is defined using kind:

DaemonSet.

 Namespaces
A namespace allows you to logically divide a Kubernetes cluster between

multiple users to control creating and managing the resources. It is needed

in an environment where users are from multiple teams and a cluster

is shared between them. Namespaces provide scope for names (i.e., a

resource name should be unique within a namespace). You should not use

namespaces for a cluster with few or limited users.

 What Is Azure Kubernetes Service?
AKS is a managed Kubernetes service on the Microsoft Azure platform.

Since it’s a managed service, Azure manages all the ongoing Kubernetes

operations and maintains the platform by upgrading and scaling resources

on demand. It eases the hosting and management of a Kubernetes

environment and enables the end user to deploy containerized

applications without spending time setting up Kubernetes clusters.

Chapter 5 azure Kubernetes serviCe

158

In short, Kubernetes masters are managed by Azure and end users manage

the agent nodes.

The following are the key advantages of using AKS and explains how

the power of the cloud reinforces the capabilities of Kubernetes.

• Access to Azure enterprise-class features, including

identity management, integrated monitoring, and

networking.

• Reduces complexity for end users by offloading

operational overhead to the Azure platform.

• Azure automatically handles Kubernetes cluster

monitoring and maintenance.

• The platform can be quickly built or destroyed, as

needed.

While there are a lot of advantages for using AKS, there are also

limitations; for example, Windows containers are not supported (as of the

time of writing this book). Moreover, applications can be deployed as only

containers, unlike with Service Fabric, where there are more options, such

as stateless/stateful services, and so forth.

Let’s now move to configuring AKS and building a containerized

application. These practical labs will give you a lot of clarity on how the

platform can be utilized. We’ll start with the basics of setting up the IDE.

 AKS Development Tools
Developing a Kubernetes application can be challenging. You need Docker

and Kubernetes configuration files. You need to figure out how to test your

application locally and to interact with other dependent services. You

might need to handle developing and testing on multiple services at once

and with a team of developers.

Chapter 5 azure Kubernetes serviCe

159

Azure Dev Spaces helps you develop, deploy, and debug Kubernetes

applications directly in AKS. Azure Dev Spaces also allows a team to share

a dev space. Sharing a dev space across a team allows individual team

members to develop in isolation without having to replicate or mock up

dependencies or other applications in the cluster.

Azure Dev Spaces creates and uses a configuration file for deploying,

running, and debugging your Kubernetes applications in AKS. This

configuration file resides within your application’s code and can be added

to your version control system.

 Set up AKS and Development Tools for Labs
So far in this chapter, we have covered Azure Kubernetes Service and

programming tools, and you learned how to install it on the cloud. Now

let’s create a few samples to better understand how to develop and deploy

applications. First, let’s create an AKS cluster instance on Azure.

 Create an Azure Kubernetes Service Cluster
Please follow the steps covered in this section to configure an AKS cluster.

This setup is used to deploy a containerized application on this platform.

 1. Sign in to the Azure portal.

 2. Select + Create a resource ➤ Kubernetes Service.

 3. Enter the subscription, resource group, Kubernetes

cluster name, region, Kubernetes version, and DNS

name prefix, as shown in Figure 5- 2.

Chapter 5 azure Kubernetes serviCe

160

 4. Click Review + create.

 5. Click Create.

Figure 5-2. Set up AKS cluster

Chapter 5 azure Kubernetes serviCe

161

This creates the different resources that are needed to support the AKS

service (e.g., virtual machines for the agent pool, networking stuff, and

Kubernetes service).

 Enable Azure Dev Spaces on an AKS Cluster
Navigate to your AKS cluster in the Azure portal and click Dev Spaces.

Select Yes for Enable Dev Spaces and click Save, as shown in Figure 5-3.

 Configure Visual Studio to Work with an Azure
Kubernetes Service Cluster
In the preceding sections, an AKS cluster and dev spaces were set up

successfully. Now, let’s set up extension for Kubernetes in Visual Studio.

 1. Open Visual Studio 2017 ➤ Tools ➤ Extensions and

Updates.

 2. Search for Kubernetes Tools, as shown in Figure 5-4.

Figure 5-3. Enable Dev Spaces on AKS

Chapter 5 azure Kubernetes serviCe

162

 3. Click the download button, which queues the

installer.

 4. Close Visual Studio 2017 so that the installer is

launched to modify the extensions, as shown in

Figure 5-5.

 5. Create an ASP.NET Core web application (Model-

View-Controller) with .NET Core 2.0.

 6. Once the extension is installed, you should see

Azure Dev Spaces in the menu, as shown in

Figure 5-6.

Figure 5-4. Install Kubernetes extensions for Visual Studio

Figure 5-5. Install Kubernetes extension

Chapter 5 azure Kubernetes serviCe

163

Now you are good to go ahead with the lab.

 Configure Visual Studio Code to Work
with an Azure Kubernetes Service Cluster
Once Azure Dev Spaces is installed, let’s configure the Visual Studio Code

as well. It’s a new product that is lightweight and available for Linux or

Mac users. It’s primarily for front-end developers; it is not for managing

an entire project/debugging/integration with source control and so forth.

Let’s install Kubernetes extensions in Visual Studio Code.

 1. Open a browser and enter https://marketplace.

visualstudio.com/VSCode.

 2. Click the Search button and enter Azure Dev
Spaces (see Figure 5-7).

Figure 5-6. Azure Dev Spaces

Chapter 5 azure Kubernetes serviCe

https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode

164

 3. Click the Install button to install, which opens a

confirmation dialog.

 4. Once you confirm by clicking the Allow button,

the extensions installation windows open in Visual

Studio Code.

 5. Click install on the bottom right as shown in

Figure 5-8 and this extension would be installed.

Figure 5-7. Azure Dev Spaces for Visual Studio Code

Chapter 5 azure Kubernetes serviCe

165

 6. Install Azure CLI from https://docs.microsoft.

com/en-us/cli/azure/install-azure-

cli?view=azure-cli-latest.

 7. Once Azure CLI is installed, run the following Azure

CLI command (see Figure 5-9), which installs the

AZDS utility in the background. First, you have to

log in with the az login command.

Figure 5-8. Install Dev Spaces

Figure 5-9. Install AZDS utility

Chapter 5 azure Kubernetes serviCe

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

166

We are done installing AZDS, Azure CLI, and extensions in Visual

Studio Code.

 Deploy Application on AKS
The development tools Visual Studio and Visual Studio Code are set up

for application development. Let’s deploy two very simple applications as

follows.

• Demonstrate developing the ASP.NET Core web app

and deploy it on AKS.

• Demonstrate developing Node.js using Visual Studio

Code and deploy it on AKS.

 Develop ASP.NET Core Web App and Deploy
on AKS
In this section, we create an ASP.Net Core web API in Visual Studio. It will

deploy a web API container on AKS.

 Create an ASP.NET Core Web API
Let’s create a web API.

 1. Launch Visual Studio as an administrator.

 2. Create a project with File ➤ New ➤ Project.

 3. In the New Project dialog, choose Cloud ➤

Container Application for Kubernetes.

 4. Name the Kubernetes application Employee and

click OK, as shown in Figure 5-10.

Chapter 5 azure Kubernetes serviCe

167

 5. Choose the API from the next dialog box and

click OK.

 6. Once the project is created, there is a confirmation

box to make it a publicly accessible endpoint.

Click Yes.

 7. Make sure that Azure Dev Spaces is selected in the

menu, as shown in Figure 5-11.

Figure 5-10. Create a container application

Chapter 5 azure Kubernetes serviCe

168

 8. Change line number 16 (for customizing the strings)

to {"Azure", "Kubernetes", "Service") in

ValuesController.cs (as shown in Figure 5-12).

 9. Hit F5 to run the application.

Azure Dev Spaces confirms the Microsoft account, subscription and

cluster information, as shown in Figure 5-13.

Figure 5-11. Select Azure Dev Spaces

Figure 5-12. Change the output string

Chapter 5 azure Kubernetes serviCe

169

 10. Hit OK. This deploys your application to AKS on

Azure.

 11. Check Output from Azure Dev Spaces(as shown in

Figure 5-14), which mainly regards the creation of a

container from the Docker file and hosting it on AKS

with a public endpoint.

Figure 5-13. Azure Dev Spaces credentials confirmation page

Chapter 5 azure Kubernetes serviCe

170

In a browser or cURL command, you can see the output from a public

endpoint.

 Develop Node.js Using Visual Studio Code
and Deploy It on AKS
Let’s deploy a Node.js application in Visual Studio Code.

 Create a Node.js API
Follow these steps to create a Node.js API application.

 1. In Windows Explorer, create a project folder named

myApp in your preferred folder.

 2. Launch Visual Studio Code as an administrator.

Figure 5-14. Azure Dev Spaces output

Chapter 5 azure Kubernetes serviCe

171

 3. Open the project folder with the File ➤ Open Folder

menu.

 4. Create a new file by selecting File ➤ New File. Name

the file server.js and add the following code to it.

var express = require('express');

var app = express();

app.use(express.static(__dirname + '/public'));

app.get('/', function (req, res) {

 res.sendFile(__dirname + '/public/index.html');

});

app.get('/api', function (req, res) {

 res.send('Hello from webfrontend');

});

var port = process.env.PORT || 80;

var server = app.listen(port, function () {

 console.log('Listening on port ' + port);

});

process.on("SIGINT", () => {

 process.exit(130 /* 128 + SIGINT */);

});

process.on("SIGTERM", () => {

 console.log("Terminating...");

 server.close();

});

Chapter 5 azure Kubernetes serviCe

172

 5. Create a new file by selecting File ➤ New File. Name

the file package.json and add the following code to it.

{

 "name": "webfrontend",

 "version": "0.1.0",

 "devDependencies": {

 "nodemon": "^1.18.10"

 },

 "dependencies": {

 "express": "^4.16.2",

 "request": "2.83.0"

 },

 "main": "server.js",

 "scripts": {

 "start": "node server.js"

 }

}

 6. From Windows Explorer within the myApp folder,

create another folder and name it public.

 7. Create a new file in the public folder by selecting

File ➤ New File. Name the file index.html and add

the following code to it.

<!doctype html>

<html ng-app="myApp">

<head>

 <script src="https://ajax.googleapis.com/ajax/libs/

angularjs/1.5.3/angular.min.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/

libs/angular.js/1.5.3/angular-route.js"></script>

Chapter 5 azure Kubernetes serviCe

173

 <script src="app.js"></script>

 <link rel="stylesheet" href="app.css">

 <link href="https://maxcdn.bootstrapcdn.

com/bootstrap/3.3.6/css/bootstrap.min.css"

rel="stylesheet" integrity="sha384-1q8mTJOASx8j1Au

+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7"

crossorigin="anonymous">

 <!-- Uncomment the next line -->

 <!-- <meta name="viewport" content="width=device-

width, initial-scale=1"> -->

</head>

<body style="margin-left:10px; margin-right:10px;">

 <div ng-controller="MainController">

 <h2>Server Says</h2>

 <div class="row">

 <div class="col-xs-8 col-md-10">

 <div ng-repeat="message in messages

track by $index">

 {{message}}</

span>

 </div>

 </div>

 <div class="col-xs-4 col-md-2">

 <button class="btn btn-primary"

ng- click="sayHelloToServer()">Say It

Again</button>

 </div>

 </div>

 </div>

</body>

</html>

Chapter 5 azure Kubernetes serviCe

174

 8. Create a new file in the public folder by selecting

File ➤ New File. Name the file app.js and add the

following code to it.

var app = angular.module('myApp', ['ngRoute']);

app.controller('MainController', function($scope, $http) {

 $scope.messages = [];

 $scope.sayHelloToServer = function() {

 $http.get("/api?_=" + Date.now()).

then(function(response) {

 $scope.messages.push(response.data);

 });

 };

 $scope.sayHelloToServer();

});

 9. Finally, create a new file in public folder by selecting

File ➤ New File. Name the file app.css and add the

following code to it.

.message {

 font-family: Courier New, Courier, monospace;

 font-weight: bold;

}

Note this project can also be created with the express application
if you have installed node.js and npm with the following commands.

Chapter 5 azure Kubernetes serviCe

175

 1. Install the Express Generator by running the

following from a terminal.

npm install -g express-generator

 2. Scaffold a new Express application called

myExpressApp by running the following.

express myExpressApp

 3. Open a new Express application by opening a folder

in Visual Studio Code.

 4. Open the Command Palette in Visual Studio Code.

 5. Click View and then Command Palette, or press

Ctrl+Shift+P.

 6. Enter Azure Dev Spaces and click Azure Dev Spaces.

 7. Prepare the configuration files for Azure Dev Spaces

(as shown in Figure 5-15).

 8. Click the Debug icon on the left, and then click

Launch Server (AZDS) (as shown in Figure 5-16).

Figure 5-15. Prepare Azure Dev Space Environment

Chapter 5 azure Kubernetes serviCe

176

The Debug console shows the log output.

> Executing task: C:\Program Files\Microsoft SDKs\Azure\Azure

Dev Spaces CLI (Preview)\azds.exe up --port=50521:9229 --await-

exec --keep-alive <

Synchronizing files...4s

Using dev space 'new01' with target 'kuber01'

Installing Helm chart...2s

Waiting for container image build...29s

Building container image...

Step 1/8 : FROM node:lts

Step 2/8 : ENV PORT 80

Step 3/8 : EXPOSE 80

Step 4/8 : WORKDIR /app

Step 5/8 : COPY package.json .

Step 6/8 : RUN npm install

Step 7/8 : COPY . .

Step 8/8 : CMD ["npm", "start"]

Built container image in 45s

Waiting for container...52s

Service 'myapp' port 80 (http) is available via port forwarding

at http://localhost:50764

Terminal will be reused by tasks, press any key to close it.

Figure 5-16. Select AZDS in the debugger

Chapter 5 azure Kubernetes serviCe

177

 Summary
In this chapter, we covered the most important parts of AKS, including

its functionalities and benefits. AKS eases managing a microservices

ecosystem. It takes away the burden of setting up, configuring, managing,

and monitoring a Kubernetes cluster. Developers can simply run their

containerized applications on agent nodes and harness the power of

autoscaling, high availability, and so forth, by using AKS.

Chapter 5 azure Kubernetes serviCe

179© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_6

CHAPTER 6

Monitoring Azure
Kubernetes Service
Chapter 5 was an in-depth discussion of Azure Kubernetes Service and

its core concepts, including masters, agent nodes, application scaling,

supported programming models and the tools available to work with

Visual Studio and so forth. AKS is a managed service that provides native

capabilities to monitor an entire infrastructure. In this chapter, we will

explore the various options to monitor the AKS ecosystem.

 Monitoring
The dictionary meaning of monitoring is to observe and check the progress

or quality of something over a period of time. It’s an important part of an

administrator’s job to ensure that the services are up and running. AKS has

four important components that should be monitored.

• Clusters

• Nodes

• Controllers

• Containers

180

Logging the monitoring data is important for drawing performance

trends over a period of months or years. Since AKS is a managed service,

the monitoring components can be enabled with just a click, which saves

days of effort in setting up monitoring. The following are features and tools

used with AKS.

• Azure Monitor and Log Analytics

• Native Kubernetes Monitoring Dashboard

• Prometheus and Grafana

 Azure Monitor and Log Analytics
Azure Monitor is a feature designed to monitor the performance of AKS

clusters. It captures the performance data for

• Clusters

• Nodes

• Controllers

• Containers

Azure monitoring must be enabled manually to log all the information

into a log analytics workspace. Log Analytics is the service in which all

performance data can be logged. Let’s see how this service is enabled

while creating an AKS cluster.

 Create an AKS Cluster from the Portal
Let’s get started.

 1. Sign in to the Azure portal.

 2. Select Create a resource ➤ Kubernetes Service.

Chapter 6 Monitoring azure Kubernetes serviCe

181

 3. Enter the subscription resource group, Kubernetes

cluster name, region, Kubernetes version, and DNS

name prefix (as shown in Figure 6-1).

Figure 6-1. Creating an AKS cluster on Azure portal

Chapter 6 Monitoring azure Kubernetes serviCe

182

 4. Click Yes (as shown in Figure 6-2) to enable this

option to set up Azure Monitor and Log Analytics for

an AKS cluster.

 5. Click Review + create.

 6. Click Create.

 Create an AKS Cluster with Azure CLI
Enable the option using Azure CLI.

 1. Select the Cloud Shell button on the menu in the

upper-right corner of the Azure portal.

 2. Run the following command to create a resource group

named myResourceGroup in the East US location.

az group create --name myResourceGroup --location

eastus

Figure 6-2. Enable container monitoring

Chapter 6 Monitoring azure Kubernetes serviCe

183

 3. Once the resource group is created, running the

following command creates an AKS cluster named

myAKSCluster with one node.

az aks create \

 --resource-group myResourceGroup \

 --name myAKSCluster \

 --node-count 1 \

 --enable-addons monitoring \

 --generate-ssh-keys

Notice that we are enabling Azure Monitor for containers while

creating using the –enabled-addons monitoring parameter.

 Monitoring AKS Clusters
When the cluster is created either in the portal or in Azure CLI, go to the

portal and type Kubernetes in the search box (as shown in Figure 6-3).

Click the Kubernetes service that you have created.

There are two ways to monitor the AKS clusters: one is directly from an

AKS cluster and other is to monitor all AKS clusters in the subscription.

Figure 6-3. Search AKS cluster

Chapter 6 Monitoring azure Kubernetes serviCe

184

 Monitor from AKS
There are three monitoring options in AKS.

• Insights

• Metrics

• Logs

If the container monitoring option is not enabled, click Insights.

The screen will look like the one shown in Figure 6-4.

Click Enable. Four AKS components can be monitored from the AKS

cluster, as shown in Figure 6-5.

• Cluster

• Nodes

Figure 6-4. Enable container monitoring

Chapter 6 Monitoring azure Kubernetes serviCe

185

• Controllers

• Containers

The performance chart displays four performance metrics, which are

self-explanatory.

• Node CPU utilization

• Node memory utilization

• Node count

• Activity pod count

Figure 6-5. AKS monitoring dashboard

Chapter 6 Monitoring azure Kubernetes serviCe

186

The Nodes tab is shown in Figure 6-6.

Controllers can be monitored, as shown in Figure 6-7.

Figure 6-6. Monitoring nodes in the AKS monitoring dashboard

Figure 6-7. Monitoring controllers in the AKS monitoring dashboard

Chapter 6 Monitoring azure Kubernetes serviCe

187

Similarly, containers can be monitored, as shown in Figure 6-8. In the

Containers section, container logs and container live logs can be explored.

Click View container live logs, as shown in Figure 6-8.

Figure 6-9 shows the container’s performance data table from the log

analytics workspace and live logging generated by the container engine to

further assist in troubleshooting issues in real time.

Figure 6-8. Monitoring containers in AKS monitoring dashboard

Chapter 6 Monitoring azure Kubernetes serviCe

188

 Monitoring a Multi-Cluster from Azure Monitor
To view the health status of all deployed AKS clusters, select Monitor from

the left-hand pane in the Azure portal. Under the Insights section, select

Containers (as shown in Figure 6-10).

Figure 6-9. Log analytics workspace

Chapter 6 Monitoring azure Kubernetes serviCe

189

From the list of clusters, select the cluster name to view the same

monitoring information that was seen directly from AKS.

 Native Kubernetes Dashboard
Kubernetes provides a dashboard as well. This dashboard offers

comprehensive monitoring information. To open this dashboard, follow

this process.

 1. Select the Cloud Shell button on the menu in the

upper-right corner of the Azure portal.

Figure 6-10. Monitoring multiple AKS cluster

Chapter 6 Monitoring azure Kubernetes serviCe

190

 2. Run the following command to open the Kubernetes

native dashboard.

az aks browse --resource-group myResourceGroup --name

myAKSCluster

 3. Open the following URL in a web browser.

127.0.0.1:8001/#!/overview?namespace=from

 4. The dashboard looks like the screen shown in

Figure 6-11.

It has all the components related to the Kubernetes ecosystem.

 Prometheus and Grafana
Prometheus is an open source tool for monitoring and alerting. It captures

comprehensive information about monitoring and can be connected to

Grafana, another open source tool, for building dashboards. These are

Figure 6-11. Kubernetes dashboard

Chapter 6 Monitoring azure Kubernetes serviCe

191

among the most commonly used tools to monitor Kubernetes. Therefore,

it’s worth mentioning these tools in this chapter. They connect seamlessly

with AKS clusters. Figure 6-12 shows a Grafana dashboard.

 Summary
In this chapter, you learned about various options for monitoring the

AKS ecosystem. There are Azure, on-premise, and open source options

that an administrator can choose from, depending on requirements.

Azure Monitor and Log Analytics and the native Kubernetes dashboard

are the easiest options to leverage. Prometheus and Grafana are popular

monitoring/alerting and dashboarding tools, respectively.

Figure 6-12. Grafana dashboard

Chapter 6 Monitoring azure Kubernetes serviCe

193© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_7

CHAPTER 7

Securing
Microservices
By the time you reach this chapter, you have a fair understanding of

the microservices architecture and the common patterns used while

implementing microservices, such as gateway aggregation, gateway

routing, and gateway offloading. One of the most important aspects of

implementing microservices is handling security. In an enterprise world,

security is of utmost importance; various measures and audit processes

are followed to make sure that data is secure and that services are not

accessible to unauthorized users.

Although we briefly covered cross-cutting concerns in previous

chapters, in this chapter, you will specifically learn about the various

patterns and techniques available to secure your microservices. We will

focus on how to integrate microservices with the leading identity provider,

Azure Active Directory, which is almost a default choice for security

implementation in an enterprise.

 Authentication in Microservices
Authentication is the process of verifying a user’s identity and making

sure that only trusted users and clients can access the microservice.

A commonly suggested practice in handling security is to use an API

194

gateway, as depicted in Figure 7-1. In this approach, the individual

microservices cannot be reached directly and the traffic is redirected

to individual APIs via a gateway once a successful authentication is

performed.

Please note that in addition to authentication, an API gateway can also

perform the following functionalities.

• Authorization

• Throttling

• Logging

• Response caching

• Service discovery

• IP whitelisting

In a scenario where services are exposed directly and without the

intervention of an API gateway, a common technique is to use a dedicated

security token service (STS). STS authenticates a user and then allows

the user or client to access the API with the help of security cookies or an

issued token, as depicted in Figure 7-2.

Client
Application

HTTP Request

Sign-In

Centralized Authentication at API Gateway Level

Backend

Request

with User In
fo

Request
with User Info

API Gateway

Payroll Microservice

Employee Microservice

Figure 7-1. Security at API gateway level

Chapter 7 SeCuring MiCroServiCeS

195

 Implementing Security Using an API
Gateway Pattern
While you can always develop a custom API gateway, here are two popular

viable options that can be explored before implementing a custom API

gateway.

 Azure API Management
Azure API management is a fully managed service that allows customers to

publish, monitor, transform, and secure APIs. With very little effort, it acts

as a “front door” to your back-end APIs and provides functionalities like

authentication and throttling.

Azure API management secures back-end APIs by using client

certificates, tokens, IP filtering, and so forth.

Azure API management has a policies concept; you can use the

following policies to secure your back end.

Client
Application

Sign-In

Security Token

Authentication by STS and token validation at each microservice

Backend

Azure Active Directory /
Any other Identity Provider

Payroll Microservice

Employee Microservice
Request with Security Token

Request with Security Token

Figure 7-2. Authentication by STS

Chapter 7 SeCuring MiCroServiCeS

196

 Basic Authentication Policy

A basic authentication policy allows you to authenticate with a back-end

system using basic authentication.

<authentication-basic username="testuser" password=

"testpassword" />

 Client Certificate Authentication Policy

A client certificate authentication policy allows you to authenticate with

a back-end system by using a client certificate. The certificate first needs

to be uploaded in API management, and then it can be identified by

thumbprint in the authentication policy. The following sample policy

allows you check if the request to the back-end API has the desired

certificate thumbprint value or not.

<choose>

 <when condition="@(context.Request.Certificate == null

|| !context.Deployment.Certificates.Any(c => c.Value.

Thumbprint == context.Request.Certificate.Thumbprint))" >

 <return-response>

 <set-status code="403" reason="Invalid client

certificate" />

 </return-response>

 </when>

</choose>

 JWT Validation Policy

If the back end is configured to be secured by JWT bearer tokens, Azure

API management can preauthorize requests by using a validation JWT

policy. An inbound policy can be added to validate the expiry and

audience, and by signing the key of the passed token.

Chapter 7 SeCuring MiCroServiCeS

197

The following is an example token validation policy, which validates

tokens issued by Azure Active Directory.

<validate-jwt header-name="Authorization" failed-validation-

httpcode="401" failed-validation-error-message="Unauthorized.

Access token is missing or invalid.">

 <openid-config url="https://login.microsoftonline.com/

contoso.onmicrosoft.com/.well-known/openid-configuration" />

 <audiences>

 <audience>25eef6e4-c905-4a07-8eb4-0d08d5df8b3f

</audience>

 </audiences>

 <required-claims>

 <claim name="id" match="all">

 <value>insert claim here</value>

 </claim>

 </required-claims>

</validate-jwt>

 Ocelot
Ocelot is an open source, simple, lightweight, .NET Core–based API

gateway that can be deployed along with your microservices. Ocelot is

designed to work only with ASP.NET Core; basically, it is middleware that

can be applied in a specific order. Ocelot is installed in an ASP.NET core

project by adding Ocelot’s NuGet package. Ocelot has many capabilities,

but the following are the most popular.

• Routing

• Request aggregation

• Authentication/authorization

Chapter 7 SeCuring MiCroServiCeS

198

• Rate limiting

• Caching

• Logging

 Hands-on Lab: Creating an Application
Gateway Using Ocelot and Securing APIs
with Azure AD
In this exercise, we will build an API gateway using Ocelot, which makes

sure that the back-end API is protected by Azure AD OAuth Bearer

Authentication. This exercise has three projects.

• HRClientApp. A desktop-based client app that allows

the user to log in against Azure AD and then invokes

the back-end employee service via APIGateway.

• APIGateway. An API gateway built using Ocelot and

ASP.NET Core.

• EmployeeService. This represents the back-end API.

 Setting up a Development Environment
Let’s set up.

 1. Install Visual Studio 2017.

 2. Access the Azure portal to create application

registrations.

Chapter 7 SeCuring MiCroServiCeS

199

 Azure AD Application Registrations
Register an app in Azure AD to represent the back-end API.

 1. Browse portal.azure.com and go to Azure Active

Directory.

 2. Click App Registrations (Preview).

 3. Click New Registration.

 4. Enter EmployeeServiceApi as the name and choose

Accounts in Organizational Directory Only.

 5. Click Register.

 6. Click Expose an API in the left navigation bar.

 7. Click Add a Scope and set an Application ID URI, as

shown in Figure 7- 3.

 8. Enter allowaccess as the scope name.

 9. Enter allowaccess as the admin consent display

name.

 10. Enter allow access as the admin consent

description.

Figure 7-3. Set Application ID URI

Chapter 7 SeCuring MiCroServiCeS

http://portal.azure.com

200

 11. Make a note of the Application ID/Client ID and

Tenant ID; this will be needed in upcoming steps.

 12. Take note of the complete scope name, as shown in

Figure 7-4.

Register an app in Azure AD representing the client app.

 1. Browse portal.azure.com and go to Azure Active

Directory.

 2. Click App Registrations (Preview).

 3. Click New Registration.

 4. Enter HRClientApp as the name and choose

Accounts in Organizational Directory Only.

 5. Click Register.

 6. Once complete, click API Permissions in the left

navigation bar.

 7. Click Add Permission.

 8. Click API My Organization Uses.

Figure 7-4. Expose an API

Chapter 7 SeCuring MiCroServiCeS

http://portal.azure.com

201

 9. Search for EmployeeServiceAPI, as shown in

Figure 7-5.

 10. Choose Delegated Permission, allowaccess scope,

and click Add Permissions.

 11. Click Authentication in the left navigation bar and

add a redirect URI, as shown in Figure 7-6.

Figure 7-5. Assign delegated permission

Figure 7-6. Assign redirect URI

 12. Note the Application ID/Client ID, Tenant ID, and

redirect URI; this will be needed later.

Chapter 7 SeCuring MiCroServiCeS

202

 Develop an API Gateway, Back-end Service,
and Client Application
In this section, we develop the back-end employee service. The user

request will be routed from the gateway to the employee service. In a real-

world application, you need to make sure that your infrastructure design

does not allow direct access to back-end APIs. Only the gateway endpoints

should be accessible to end users or client applications.

 Setting up an Employee Service

Let’s get started.

 1. Launch Visual Studio 2017 as an administrator.

 2. Create a project with File ➤ New ➤ Project.

 3. Name the application Employee.Api, as shown in

Figure 7-7.

Chapter 7 SeCuring MiCroServiCeS

203

 4. Click OK.

 5. Choose the API and click OK. Select ASP.NET

Core 2.2, as shown in Figure 7-8.

Figure 7-7. Create employee API

Chapter 7 SeCuring MiCroServiCeS

204

 6. The default template adds the values controller.

Keep it as it is; do not secure this controller. (We

will use this controller to showcase the differences

between secured and unsecured controller.)

 7. Right-click the Controllers folder and add an empty

class. Insert the following code. (We are keeping the

controller very simple to showcase how to secure

the controller against Azure AD and via the Ocelot

API gateway.)

using Microsoft.AspNetCore.Authorization;

using Microsoft.AspNetCore.Mvc;

using System.Collections.Generic;

Figure 7-8. Choose API template

Chapter 7 SeCuring MiCroServiCeS

205

namespace Employee.Api.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 [Authorize]

 public class EmployeeController : ControllerBase

 {

 // GET api/values

 [HttpGet]

 public ActionResult<IEnumerable<string>> Get()

 {

 return new string[] { "Employee1", "Employee2" };

 }

 }

}

The Authorize attribute makes sure that the API can be accessed by an

authenticated user or application only.

Now we will set up the Azure AD bearer token security for the project.

Although the API gateway will perform the first level of authentication

for us and will route the traffic only if the user is authenticated, we will

need the bearer token middleware to create the user identity based on the

passed token.

 1. Right-click Dependencies under the project. Add

the reference Microsoft.AspNetCore.Authentication.

JwtBearer NuGet package.

 2. Right-click the project and add a class name,

AzureADOptions. This is required to represent a

section in appsettings.json. Add the following code

in the newly added class.

Chapter 7 SeCuring MiCroServiCeS

206

 public class AzureADOptions

 {

 public string Instance { get; set; }

 public string Domain { get; set; }

 public string TenantId { get; set; }

 public string ClientId { get; set; }

 }

 3. Open appsettings.json and add the section for Azure

AD configuration.

"AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "TenantId": "<<Tenant Id of Your Azure Ad>>",

 "ClientId": "<<Application / Client Id of Employee

Service>>"

 }

 4. Open StartUp.cs and add the following code.

using Microsoft.AspNetCore.Authentication.JwtBearer;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

namespace Employee.Api

{

 public class Startup

 {

Chapter 7 SeCuring MiCroServiCeS

207

 public Startup(IConfiguration configuration)

 {

 Configuration = configuration;

 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this

method to add services to the container.

 public void ConfigureServices(IServiceCollection

services)

 {

 AzureADOptions azureADoptions = new

AzureADOptions();

 //"AzureAd" is the name of section in AppSettings.

Config

 Configuration.Bind("AzureAd", azureADoptions);

 // Make sure the Name "AzureAdAuthenticationScheme"

is same in Ocelot.json

 services.AddAuthentication(options =>

 {

 options.DefaultAuthenticateScheme =

JwtBearerDefaults.AuthenticationScheme;

 options.DefaultChallengeScheme =

JwtBearerDefaults.AuthenticationScheme; }

)

 .AddJwtBearer(x =>

 {

 x.Authority = $"{azureADoptions.Instance}

/{azureADoptions.TenantId}";

 x.RequireHttpsMetadata = false;

Chapter 7 SeCuring MiCroServiCeS

208

 x.TokenValidationParameters = new

Microsoft.IdentityModel.Tokens.

TokenValidationParameters()

 {

 ValidAudience = azureADoptions.ClientId

 };

 });

 services.AddMvc().SetCompatibilityVersion

(CompatibilityVersion.Version_2_2);

 }

 // This method gets called by the runtime. Use this

method to configure the HTTP request pipeline.

 public void Configure(IApplicationBuilder app,

IHostingEnvironment env)

 {

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseAuthentication();

 app.UseMvc();

 }

 }

}

In this code, you are reading the Azure AD configuration from

appSettings.json and setting up the bearer token authentication.

If you run the Employee.Api project now, you will be able to browse the

API from the values controller, but you will get 401-unauthorized for the

API from EmployeeController.

Chapter 7 SeCuring MiCroServiCeS

209

 Setting up an API Gateway

The following steps create an API gateway using Ocelot.

 1. Right-click the solution and choose Add ➤ New

Project. Select ASP.NET Core Application.

 2. In the New Project dialog, choose Web ➤ ASP.NET

Core Web Application, as shown in Figure 7-9.

 3. Name the project Custom.Gateway. Click OK.

 4. Select Empty. Choose ASP.NET Core 2.2 and click

OK, as shown in Figure 7-10.

Figure 7-9. ASP.NET Core web application

Chapter 7 SeCuring MiCroServiCeS

210

 5. Right-click Dependencies and add a reference for

the following NuGet packages.

 a. Microsoft.AspNetCore.Authentication.JwtBearer

 b. Ocelot

 6. Right-click the project and add a class name,

AzureADOptions. This is required to represent a

section in appsettings.json. Add the following code

in the newly added class.

 public class AzureADOptions

 {

 public string Instance { get; set; }

 public string Domain { get; set; }

Figure 7-10. Choose template

Chapter 7 SeCuring MiCroServiCeS

211

 public string TenantId { get; set; }

 public string ClientId { get; set; }

 }

 7. Open appsettings.json and add the section for Azure

AD configuration.

"AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "TenantId": "<<Tenant Id of Your Azure Ad>>",

 "ClientId": "<<Application / Client Id of Employee Service>>"

 }

 8. Open Program.cs and replace the content of the

CreateWebHostBuilder method with the following

content. (Here we are referring to a new file called

ocelot.json, which we will create and configure in

next step.)

public static IWebHostBuilder CreateWebHostBuilder(string[]

args) =>

 WebHost.CreateDefaultBuilder(args)

 .ConfigureAppConfiguration((hostingContext,

config)=>{

 config

 .SetBasePath(hostingContext.

HostingEnvironment.ContentRootPath)

 .AddJsonFile("appsettings.json", true,

true)

 .AddJsonFile($"appsettings.

{hostingContext.HostingEnvironment.

EnvironmentName}.json", true, true)

Chapter 7 SeCuring MiCroServiCeS

212

 .AddJsonFile("ocelot.json")

 .AddEnvironmentVariables();

 })

 .UseStartup<Startup>();

 9. Right-click the project and add a JSON file called

ocelot.json. Add the following content to the newly

created file. (Ocelot documentation is at https://

ocelot.readthedocs.io/en/latest/.)

{

 "ReRoutes": [

 {

 "DownstreamPathTemplate": "/api/employee",

 "DownstreamScheme": "http",

 "DownstreamHostAndPorts": [

 {

 "Host": "localhost",

 "Port": 62550

 }

],

 "UpstreamPathTemplate": "/employee",

 "UpstreamHttpMethod": ["Get"],

 "AuthenticationOptions": {

 "AuthenticationProviderKey":

"AzureAdAuthenticationScheme",

 "AllowedScopes": []

 }

 },

 {

 "DownstreamPathTemplate": "/api/values",

 "DownstreamScheme": "http",

Chapter 7 SeCuring MiCroServiCeS

https://ocelot.readthedocs.io/en/latest/
https://ocelot.readthedocs.io/en/latest/

213

 "DownstreamHostAndPorts": [

 {

 "Host": "localhost",

 "Port": 62550

 }

],

 "UpstreamPathTemplate": "/value",

 "UpstreamHttpMethod": ["Get"]

 }

],

 "GlobalConfiguration": {

 "BaseUrl": "http://localhost:62420"

 }

}

In this configuration, we are routing all the /employee route traffic

to the downstream service at /api/employee route, and /value to /api/

values. Please make sure that you change the port values as per your

environment. 62550 is the port on which the employee API is running.

62420 is the gateway project port.

Also, note that we specified AzureAdAuthenticationScheme as the

authentication option for the employee route. Ocelot will execute the

middleware associated with this scheme.

Now let’s configure the scheme in Startup.cs. Open Startup.cs and add

the following content.

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.DependencyInjection;

using Ocelot.DependencyInjection;

using Ocelot.Middleware;

using Microsoft.Extensions.Configuration;

Chapter 7 SeCuring MiCroServiCeS

214

namespace Custom.Gateway

{

 public class Startup

 {

 public Startup(IConfiguration configuration)

 {

 Configuration = configuration;

 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime. Use this

method to add services to the container.

 // For more information on how to configure your

application, visit https://go.microsoft.com/

fwlink/?LinkID=398940

 public void ConfigureServices(IServiceCollection

services)

 {

 AzureADOptions options = new AzureADOptions();

 //"AzureAd" is the name of section in AppSettings.

Config

 Configuration.Bind("AzureAd", options);

 // Make sure the Name "AzureAdAuthenticationScheme"

is same in Ocelot.json

 services.AddAuthentication()

 .AddJwtBearer("AzureAdAuthenticationScheme", x =>

 {

 x.Authority = $"{options.Instance}/{options.

TenantId}";

 x.RequireHttpsMetadata = false;

Chapter 7 SeCuring MiCroServiCeS

215

 x.TokenValidationParameters = new

Microsoft.IdentityModel.Tokens.

TokenValidationParameters()

 {

 //keep on adding the valid client ids of

backend apis here.

 //If gateway has to support new services

in future, add the client id of each

backend api

 ValidAudiences = new[] { options.

ClientId}

 };

 });

 services.AddOcelot();

 }

 // This method gets called by the runtime. Use this

method to configure the HTTP request pipeline.

 public void Configure(IApplicationBuilder app,

IHostingEnvironment env)

 {

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseAuthentication();

 app.UseOcelot();

 }

 }

}

Chapter 7 SeCuring MiCroServiCeS

216

The added code is very much like the employee service, with a few

differences. We added the Ocelot reference, and at the same time, we used

the Audiences property instead of the Audience property.

Since it is a gateway and receives traffic that needs to be routed

to multiple back-end services, we have to list the client IDs of all the

supported back-end services. In this case, we have only one client ID

available, hence adding only the same.

Now you can run both projects to browse the following URLs.

• http://localhost:<<gatewayport>>/employee

returns 401 because it is secured against AAD.

• http://localhost:<<gatewayport>>/value returns

200 because it is an unsecured endpoint.

 Setting up a WPF-based Client Application

Now that the back-end API and gateway host is up and running, we will

create a client application where the user will perform the login, and the

client application will invoke the API based on the token generated after

login.

 1. Right-click the solution, choose Add ➤ New Project,

and select Windows Desktop.

 2. Choose WPF App (.NET Framework). Name the

application Custom.Client, as shown in Figure 7-11.

Chapter 7 SeCuring MiCroServiCeS

217

In this sample application, you will add two buttons: one to invoke

employee service and one to invoke values service. Please make sure that

you configure the APIGateway URLs, and not the direct service.

 1. Right-click References and add the reference for the

Microsoft.Identity.Client NuGet package.

 2. Open MainWindow.Xaml and add the following

code inside the Grid tag.

<Button Content="Invoke Employee API"

HorizontalAlignment="Left" Margin="71,60,0,0"

VerticalAlignment="Top" Width="667" Height="87"

Click="OnEmployeeClick"/>

<Button Content="Invoke Values API" HorizontalAlignment="Left"

Margin="71,186,0,0" VerticalAlignment="Top" Width="667"

Height="75" Click="OnValuesClick"/>

Figure 7-11. Choose application type

Chapter 7 SeCuring MiCroServiCeS

218

 3. Open MainWindow.Xaml.cs and add the following code.

public partial class MainWindow : Window

 {

 public PublicClientApplication _publicClientApp = null;

 //sample api scope : fccaa2fa-fe79-42fa-b8d5-

e0ac6061ae99/allowaccess

 private string _apiScope = "API SCOPE VALUE FROM First

Step";

 private string _apiGatewayEmployeeUrl =

"http://localhost:<<your gateway port>>/employee";

 private string _apiGatewayValuesUrl =

"http://localhost:<<your gateway port>>/value";

 public MainWindow()

 {

 InitializeComponent();

 string clientId = "Client id of <<HRClientApp>>

application";

 string tenantId = "<<Your Tenant Id>>";

 //sample redirect uri: hrclient://auth

 string redirectUri = "Redirect Uri of

<<HRClientApp>>";

 _publicClientApp = new PublicClientApplication(

clientId, $"https://login.microsoftonline.com/

{tenantId}");

 _publicClientApp.RedirectUri = redirectUri;

 }

Chapter 7 SeCuring MiCroServiCeS

219

 /// <summary>

 /// Invokes Employees API Via API Gateway

 /// </summary>

 /// <param name="sender"></param>

 /// <param name="e"></param>

 private async void OnEmployeeClick(object sender,

RoutedEventArgs e)

 {

 var authResult = await _publicClientApp.

AcquireTokenAsync(new string[] { _apiScope

}).ConfigureAwait(false);

 var employeResult = await GetHttpContentWithToken

(_apiGatewayEmployeeUrl, authResult.AccessToken);

 MessageBox.Show($"Employee Result : {employeResult}");

 }

 /// <summary>

 /// Invokes Values API Via API Gateway

 /// </summary>

 /// <param name="sender"></param>

 /// <param name="e"></param>

 private async void OnValuesClick(object sender,

RoutedEventArgs e)

 {

 var valueResult = await GetHttpContentWithToken(_

apiGatewayValuesUrl, string.Empty);

 MessageBox.Show($"Value Result : {valueResult}");

 }

Chapter 7 SeCuring MiCroServiCeS

220

 /// <summary>

 /// Makes an Http Call to API Gateway

 /// </summary>

 /// <param name="url"></param>

 /// <param name="token"></param>

 /// <returns></returns>

 public async Task<string> GetHttpContentWithToken

(string url, string token)

 {

 var httpClient = new System.Net.Http.HttpClient();

 System.Net.Http.HttpResponseMessage response;

 try

 {

 var request = new System.Net.Http.HttpRequest

Message(System.Net.Http.HttpMethod.Get, url);

 if (!string.IsNullOrEmpty(token))

 {

 //Add the token in Authorization header

 request.Headers.Authorization = new System.

Net.Http.Headers.AuthenticationHeaderValue

("Bearer", token);

 }

 response = await httpClient.SendAsync(request);

 response.EnsureSuccessStatusCode();

 var content = await response.Content.

ReadAsStringAsync();

 return content;

 }

Chapter 7 SeCuring MiCroServiCeS

221

 catch (Exception ex)

 {

 return ex.ToString();

 }

 }

 }

In this code, we utilized MSAL.NET to generate the bearer token and

passed the same. MSAL.NET supports caching for optimized performance.

Please visit https://github.com/AzureAD/microsoft-authentication-

library-for-dotnet for online help.

 1. Right-click the solution and click Set Startup

Projects.

 2. Select Start for all three projects, as shown in

Figure 7-12.

Figure 7-12. Setting start up projects

Chapter 7 SeCuring MiCroServiCeS

https://github.com/AzureAD/microsoft-authentication-library-for-dotnet
https://github.com/AzureAD/microsoft-authentication-library-for-dotnet

222

 3. Click Invoke Employee API to launch the login

screen from Azure Active Directory. Choose or enter

the details of a valid user from your Azure Active

Directory, as shown in Figure 7-13.

 4. On successful login, you see the screen shown in

Figure 7-14. Click Invoke Employee API.

Figure 7-13. Choose Azure identity

Chapter 7 SeCuring MiCroServiCeS

223

 Summary
In this chapter, you learned how to use an API gateway to implement

security at the gateway level, instead of implementing it at an individual

service. Although you can develop a custom API gateway, there are

popular options available, like Azure API Management and Ocelot, which

should be considered before developing a custom one.

Figure 7-14. Invoke Employee API

Chapter 7 SeCuring MiCroServiCeS

225© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_8

CHAPTER 8

Database Design
for Microservices
In this chapter, we will discuss the various critical factors of designing

a database for microservices applications. As per the narrative of the

microservices architecture, each microservice should have its own

databases. Segregation based on data access helps fit the best technology

to handle respective business problems. This means that a single

application can use different database technologies, which is a concept

called polyglot persistence. Let’s look at important factors to consider when

building a microservices application, as well as how the power of the

Microsoft Azure platform can be harnessed to build highly scalable, agile,

and resilient solutions.

 Data Stores
Before starting the discussion on monolithic and microservices data

architecture, it’s important to understand the types of data stores available

today. There are two major categories of data stores.

• RDBMS (Relational Database Management System)

• NoSQL (Not-only SQL)

226

 RDBMS
RDBMS uses the ACID principle to run database operations. ACID

principles are described as follows.

• Atomicity. All the changes in a transaction are either

committed or rolled back.

• Consistency. All the data in a database is consistent all

the time; none of the constraints will ever be violated.

• Isolation. Transaction data that is not yet committed

can’t be accessed outside of the transaction.

• Durability. Committed data, once saved on the

database, is available even after the failure or restart of

the database server.

Data consistency is natively built into RDBMS database solutions, and

it’s much easier to manage transactions with these solutions. However,

scalability is the biggest challenge in RDBMS technologies.

• An RDBMS is designed to scale up/scale vertically

(i.e., more compute can be added to the server rather

than adding more servers). There are options to scale

horizontally or scale out, but issues of write conflicts

make it less scalable.

• An RDBMS is schema bound, and any change to the

design needs a change in the schema. Therefore,

an RDBMS can manage structured data very

efficiently. However, there are limitations in handling

semistructured or unstructured data.

• An RDBMS can be a big hassle for applications that

change frequently; for example, shopping websites

have multiple products with different features. In an

Chapter 8 Database Design for MiCroserviCes

227

RDBMS, each feature acts as a column in a table, and

that table has columns pertaining to all the features

across products. Adding a product with new features

means more columns need to be added to the table.

• An RDBMS fits better for applications in which data

consistency and availability are highly critical (e.g.,

financial applications). However, for applications

where data consistency requirements are relaxed and

scalability is critical, NoSQL DB systems are a better fit.

 NoSQL
NoSQL technology is based on distributed data stores that follow the

CAP theorem to run database operations. The CAP theorem has three

components.

• Consistency. Every read must receive the most recent

write (i.e., every client reading data from the DB store

should see the same data or an error).

There are two extremes of consistency levels in CAP

(i.e., strict (pessimistic) and eventual (optimistic));

however, there are some NoSQL DB stores that offer

more consistency choices for flexibility.

• Strong (strict). All the reads are the most recent

committed writes.

• Eventual. There is no guarantee that reads are from

the most committed writes; however, changes are

eventually committed on all the replicas.

Chapter 8 Database Design for MiCroserviCes

228

• Availability. Every request must receive a response

without the guarantee of it being the most recent write.

• Partition tolerance. The system must continue to

work during network failures between components.

The system will continue to function even if one of the

nodes fails.

The CAP theorem states that any distributed application can achieve

any two functionalities, but not three, at the same time (see Figure 8-1).

Depending on the nature of the application, you can choose an

intersection of two functionalities (i.e., consistency and partition

tolerance, consistency and availability, or availability and partition

tolerance). NoSQL technologies follow either availability and partition

tolerance (e.g., Cassandra and riak) or partition tolerance and consistency

(e.g., Hbase and MongoDB).

CP

AP

CA Consistency

Availability
Partition
Tolerance

Figure 8-1. CAP theorem

Chapter 8 Database Design for MiCroserviCes

229

Alternative to ACID is BASE, which is followed by NoSQL data stores.

BASE prefers availability over consistency; it is described as follows.

• Basically Available: The system appears to be available

most of the time.

• Soft state: The version of data may not be consistent all

the time.

• Eventual consistency: Writes across services are done

over a period of time.

According to Dr. Eric Brewer, there is a continuum between ACID and

BASE, and one can be closer to any end. Today’s advanced applications are

a careful mixture of both ACID and BASE solutions.

 Monolithic Approach
Monolithic applications are the most preferred approach for small/

medium–scale applications today. Monolithic applications use a single

data store—either RDBMS or NoSQL.

Since RDBMS technology is well known and there is an adequate

talent pool in the market, it is the first choice for the enterprises. This

technology is relevant for only structured data, however. Applications like

IOT, e-commerce, and social networking generate a lot of semistructured

or unstructured data, which are classic use cases for NoSQL. A monolithic

application doesn’t have the flexibility to use both technologies in a single

application. That’s where the microservices architecture plays a key role

and offers the flexibility to use polyglot persistence.

Chapter 8 Database Design for MiCroserviCes

230

No matter which DB store is used, there are critical questions for an

architect.

• How critical is the data?

• Do you prefer consistency over scalability, or scalability

over availability?

• What type of data is it?

• Is the data structured, or semistructured, or

unstructured?

For applications used in banking or finance, where data consistency

and high availability is the utmost priority, RDBMS is the first choice.

However, for applications like social networking, blogging, and gaming,

where data availability and scalability is utmost priority, NoSQL fits best.

 Microservices Approach
The microservices architecture approach suggests segregating an

application into smaller and loosely coupled independent modules. This

provides the flexibility to choose multiple database technologies for a

single application. Both NoSQL and RDBMS technologies can be used in

their respective strength areas. RDBMS is suggested for the modules where

transactional consistency is critical and structured data is stored. However,

NoSQL is suggested for modules where schema changes are frequent,

maintaining transactional consistency is secondary, and semistructured or

unstructured data is stored.

With the flexibility of choice, there are certain sets of challenges.

• Maintaining consistency for transactions spanning

across microservices databases.

• Sharing, or making the master database records

available across microservices databases.

Chapter 8 Database Design for MiCroserviCes

231

• Making data available to reports that need data from

multiple microservices databases.

• Allowing effective searches that get data from multiple

microservices databases.

A microservices application’s most critical challenge is the efficiency

of transferring changes across the microservices. There are two possible

approaches for this.

• Two-phase commit

• Eventual consistency

 Two-Phase Commit
The two-phase commit approach is familiar to enterprises working with

RDBMSs like SQL Server, MySQL, PostgreSQL, and Oracle. (NoSQL

technologies don’t natively support such transactions.)

Two-phase commit uses ACID principles to manage the transactions.

As the name suggests, there are two phases.

• Prepare phase. A mediator called a transaction

program manager helps complete transactions

successfully. In the prepare phase, each program

involved starts the transaction in their own database

servers. Based on the status (successful or failed), the

response is sent to the TP manager, which prepares the

commit/rollback phase.

• Commit/rollback phase. In this phase, the TP

manager instructs the programs to either commit

or roll back. If the changes in the transactions were

successful in all the participating programs, the

TP manager instructs to commit the transactions;

otherwise, it instructs a rollback.

Chapter 8 Database Design for MiCroserviCes

232

In on-premises scenarios, the Microsoft Distributed Transaction

Coordinator (MSDTC) on Windows Server environments is used. Even

though MSDTC is not available on PaaS database services in Azure,

distributed transactions are still achievable in Azure SQL DB managed

instances.

There are certain limitations in two-phase commit transactions that

make it a less feasible option for microservice applications.

• Since a two-phase commit between RDBMS and

NoSQL technologies is not natively available, and

building a new framework would be a huge effort,

architects are restricted on the choice of technology for

an RDBMS.

• Scalability is a concern because transactions can be

blocked or may need more resources on the

participating database instances. In the event of

blocking, there may be a delay in the commit or

rollback. This situation must be carefully handled in the

application because it can make the entire operation

halt or have long waits.

• If the transaction spans across multiple microservices,

the performance of the DB operations can be highly

inconsistent during peak loads.

• It’s recommended to use the API layer for any database

operations of a microservices application.

If a transaction spans across multiple services, it’s important to

make the changes to all the services asynchronously. If the changes are

synchronous, it brings the entire operation to a halt until the transaction is

completed. These delays are unaffordable for the majority of applications;

therefore, eventual consistency is most suitable for such transactions.

Chapter 8 Database Design for MiCroserviCes

233

 Eventual Consistency
Eventual consistency is the recommended way to manage transactions for

any distributed application. It follows BASE principles, which states that

data is replicated across microservices over time, and that this operation is

asynchronous in nature.

Let’s discuss the following to better understand.

• How do we maintain the consistency of critical

finance data?

• Can Microservices applications work for applications

that need high consistency?

The important point to remember is that microservices applications

provide the option to use the best technology to handle the business

problem. In a Human Resource Management System, RDBMS can manage

finance data, where ACID principles can be used to ensure consistency.

However, to store employee information like name, address, and other

attributes, a document store like Cosmos DB can be used. Maintaining

strict consistency is not possible in microservices applications due to

disparate data stores. Therefore, eventual consistency is recommended to

update the changes efficiently across services.

Since communication is asynchronous, and data technologies can be

disparate with different syntax and semantics, to make replication feasible,

queuing technologies like RabbitMQ, NServiceBus, and MassTransit, or

even a scalable bus in cloud, are used.

 Harnessing Cloud Computing
It’s important to understand the various database options available on

Microsoft Azure to reinforce the microservices ecosystem. As you know,

this is the era of cloud computing, and the focus of organizations has

shifted from on-premises data centers to cloud computing. Companies

Chapter 8 Database Design for MiCroserviCes

234

like Microsoft, Amazon, Google, and Alibaba have greatly invested in cloud

platforms. Microsoft Azure has various database options on IaaS and PaaS,

which can build highly scalable and resilient applications.

Figure 8-2 illustrates the following ways to host a database service on

Microsoft Azure.

• Infrastructure as a Service. A database instance on a

virtual machine

• Platform as a Service. Managed instances and Azure

SQL DB

 Infrastructure as a Service (IaaS)
IaaS is typically managed in the same way as your own private data

center. SQL Server—or any RDBMS or NoSQL database instances—can

be installed on a virtual machine (VM). Configuration, backups, high

availability, and disaster recovery must be done by administrators.

APPLICATIONS

DATA

RUNTIME

MIDDLEWARE

O/S

VIRTUALIZATION

SERVERS

STORAGE

NETWORKING

Yo
u

m
an

ag
e

Traditional
on-premises

APPLICATIONS

DATA

RUNTIME

MIDDLEWARE

O/S

VIRTUALIZATION

SERVERS

STORAGE

NETWORKING

Yo
u

m
an

ag
e

M
an

ag
ed

 b
y

ve
nd

or

Infrastructure
(as a Service)

APPLICATIONS

DATA

RUNTIME

MIDDLEWARE

O/S

VIRTUALIZATION

SERVERS

STORAGE

NETWORKING

Yo
u

m
an

ag
e

M
an

ag
ed

 b
y

ve
nd

or

Platform
(as a Service)

Figure 8-2. Deployment models on Microsoft Azure

Chapter 8 Database Design for MiCroserviCes

235

In Figure 8-2, the end user needs to manage everything above the

virtualization layer. Virtual machines are backed by uptime SLAs (service-

level agreements). Based on the criticalness of the application and

acceptable downtime, VMs need to be configured (see Table 8-1).

In regards to a SQL Server instance’s high availability, virtual machines

should be in the availability set. An availability set is the logical grouping

of virtual machines allocated in an Azure data center; it ensures high

availability of resources in the event of hardware or software failure in the

same data center. To improve the uptime, SQL server AlwaysOn availability

sets can be configured. it can replicate the data in both synchrous and

asynchronous fashion. It’s the native SQL server option for HADR.

 Platform as a Service (PaaS)
With PaaS, the entire infrastructure is managed by cloud service providers.

As shown in Figure 8-2, administrators need to manage their applications

and data; therefore, managing resources becomes convenient for

administrators. Let’s take an example of Azure SQL DB; the entire OS

layer and SQL Server layer, including version upgrades, are managed by

Microsoft. End users need to manage the databases, respective application

schemas, and T-SQL code. That’s why it’s also called Database as a Service.

Azure SQL Database and managed instances for SQL Server, PostgreSQL,

MySQL, and MariaDB are PaaS options on Microsoft Azure. With Azure SQL

Table 8-1. SLAs of VMs (subject to change)

Deployment Type SLA Downtime
per week

Downtime
per Month

Downtime
per Year

single vM 99.90% 10.1 minutes 43.2 minutes 8.76 hours

vM in availability set 99.95% 5 minutes 21.6 minutes 4.38 hours

vM in availability Zone 99.99% 1.01 minutes 4.32 minutes 52.56 minutes

Chapter 8 Database Design for MiCroserviCes

236

DB, there are few limitations in terms of functionalities, like cross-database

transactions, CLR, collation changes, backups/restore, SQL Server agents,

database mail, and so forth. Due to these limitations, on-prem database

migration to Azure need changes at the application and functionality level.

To give more flexibility to the end user, Microsoft launched

managed instances options for SQL Server, MariaDB, PostgreSQL, and

MySQL. Managed instances have a surface area that is nearly 100%

compatible to on-prem SQL Server, and yet it’s a PaaS service. Migration

to these instances is seamless, and there is no major change required for

applications. We discuss both options in detail in the coming sections of

this chapter.

 Database Options on Microsoft Azure
Let’s discuss some of the database options on Microsoft Azure that can be

harnessed for microservices applications.

• RDBMS databases

• NoSQL databases

 RDBMS Databases
For IaaS, any database software can be installed on VMs in Azure, and

it can be managed by the DBA. Most of the prevalent solutions today

are supported on Azure IaaS. However, PaaS services for databases are

available in two options.

• Database throughput unit (DTU)–based purchasing

model

• vCORE-based purchasing model

Chapter 8 Database Design for MiCroserviCes

237

Azure SQL database follows a DTU purchasing model; however, SQL

managed instances follow vCORE-based purchasing models. Let’s briefly

discuss Azure SQL DB and a SQL Server managed instance.

Note DtU is the blend of CpU, memory, and io resources to support
database workloads. as a conventional approach, we are used to
thinking in terms of memory, CpU, and io.

 Azure SQL DB
This is the first database PaaS service on Microsoft Azure. The resource

allocation is done based on the DTU. Understanding the DTU requirement

can be tricky when planning a database deployment. Autoscaling of

resources can be helpful when the compute is undersized. The flexibility to

autoscale helps to optimize resources. DBAs can start with lesser resources

and scale up or down based on user demand.

Table 8-2 describes the resource allocation per the DB tier.

Table 8-2. Comparison of Basic, Standard, and Premium SQL

Databases

Basic Standard Premium

target workload Development and

production

Development and

production

Development and

production

Uptime sLa 99.99% 99.99% 99.99%

backup retention 7 days 35 days 35 days

CpU Low Low, Medium, high Medium, high

(continued)

Chapter 8 Database Design for MiCroserviCes

238

When autoscaling to higher tiers, minimal interruption in service

may occur because autoscaling causes the creation of new compute

instances for a database, followed by switch routing of connections to

the new compute instance. Moreover, there is an option of elastic pool

where there can be group databases on a single Azure SQL DB instance.

This option is used for SaaS applications, where a database resource

can be allocated to each customer. Since multiple databases share a

pool of resources, the usage can be highly optimized when the load is

unpredictable for each customer. If one customer is using less compute,

and another customer is using more, there is a balance to manage within

the allocated resources; otherwise, every customer database will be

equally sized, which may end up causing resource overprovisioning.

 SQL Managed Instance
SQL Managed Instance is a database PaaS service that has nearly 100% of

the surface area of a SQL Server instance. Unlike Azure SQL DB, migration

Basic Standard Premium

io throughput

(approximate)

2.5 iops per DtU 2.5 iops per DtU 48 iops per DtU

io latency

(approximate)

5 ms (read), 10 ms

(write)

5 ms (read), 10 ms

(write)

2 ms (read/write)

Columnstore indexing n/a s3 and above supported

in-memory oLtp n/a n/a supported

Maximum storage size 2 gb 1 tb 4 tb

Maximum DtUs 5 3000 4000

These values may change; refer to MSDN for the latest information.

Table 8-2. (continued)

Chapter 8 Database Design for MiCroserviCes

239

to a managed SQL instance is done without making any application code

changes. It falls under the vCORE-based purchasing model. There are two

tiers for this service.

• General purpose

• Business critical

For an Azure SQL database, autoscaling is based on DTUs; however, for

managed instances compute, storage and IO resources can independently

scale. Managed instances are available for the following relational data

stores as well.

• MariaDB

• PostgreSQL

• MySQL

There are three tiers for these database services. A resources

comparison is shown in Table 8-3.

• Basic. This is used for small-scale applications.

• General Purpose. This is used for applications that

need balanced compute and memory with scalable I/O

throughput.

• Memory Optimized. This is used for applications that

need in-memory performance for faster transaction

processing.

Chapter 8 Database Design for MiCroserviCes

240

These values may change; refer to MSDN for the latest information.

 NoSQL Databases
Microsoft Azure has a PaaS solution called Cosmos DB that supports all

four types of NoSQL data.

• MongoDB document store

• Cassandra column family store

• Gremlin graph store

• Table key/value pair

The ARS (atoms, records, sequence) model maps to different data models

very easily. It’s a globally distributed and multimodel database service that

can scale elastically or independently across Azure geographic regions. A

request unit (RU) is the unit of throughput on Cosmos DB; each operation

(e.g., read/write/store) procedure has a deterministic RU value. Another

Cosmos DB advantage is the range of programming models that it offers.

• MongoDB

• Cassandra

Basic

Compute generation

vCores

Memory per vCore

Storage size

Storage type

Database backup retention
period

Gen 5

1, 2

2 GB

5 GB to 1 TB

Azure Standard
Storage

7 to 35 days

General Purpose

Gen 5

2, 4, 8, 16, 32

5 GB

5 GB to 4 TB

Azure Premium
Storage

7 to 35 days

Memory Optimized

Gen 5

2, 4, 8, 16

10 GB

5 GB to 4 TB

Azure Premium
Storage

7 to 35 days

Table 8-3. Comparison of Database Tiers

Chapter 8 Database Design for MiCroserviCes

241

• Gremlin

• Table

• SQL

It’s very easy for a programmer to work with Cosmos DB because

there’s just a change in the connection string (with minimal code changes)

to migrate your old application. You can choose any programming model

from the preceding list to build your application on Cosmos DB.

 Overcoming Application Development
Challenges
By now, you should have clarity on the database services available on

Microsoft Azure. Let’s discuss how enterprises are harnessing these

capabilities to overcome challenges during building a microservices

application. Many enterprises use the capabilities of both the monolithic

and the microservices architecture. Since data is the most critical and

complex part of architecture, enterprises choose to modularize the web and

app tiers and maintain a monolithic database centrally. By maintaining the

data centrally, the following challenges are resolved by default.

• The ACID principles for transactions spanning across a

microservices database.

• Sharing, or making the master database records

available across microservices databases.

• Making data available to reports that need data from

multiple microservices databases.

• Making an effective search that gets data from multiple

microservices databases.

Chapter 8 Database Design for MiCroserviCes

242

This approach can work very well for small and medium-sized

applications. If the application is large and mission critical, the

microservices architecture is recommended.

Let’s revisit all the major challenges for a microservices application

(in terms of databases) to better understand how Microsoft Azure can help

you overcome these challenges.

 Challenge 1
Maintain consistency in transactions spanning across microservices

databases.

 Resolution

The data changes that span across microservices should be asynchronous.

Eventual consistency should be followed to transfer the changes.

In a failed operation, rolling back data changes to all the databases

may be needed. It’s not easy to roll back across distributed data stores;

compensating transactions are the way to manage such operations.

 Challenge 2
Share or make the master database records available across microservices

databases.

 Resolution

One service must maintain the master data, and then replicate the data

and changes to other databases asynchronously.

Chapter 8 Database Design for MiCroserviCes

243

 Challenge 3
Make data available to reports that need data from multiple microservices

databases.

 Resolution

First, command and query resource segregation (CQRS) must be

implemented. CQRS is an architecture pattern to make applications

more scalable. It is recommended to write application code to separate

command and query requests.

• Command (create, update, delete)

• Query (read)

This segregation offers the flexibility to choose from different data

sources. Queries can be easily routed to the caching layer or read-only

copy of the database. In Azure SQL DB, read-only connections can be

routed to a secondary replica if an active sync replication is configured.

Commands (i.e., write operations) can be routed to the primary database.

This helps to reduce the load on the primary replica and the issue of

resource crunch or blocking on the primary database, due to read queries.

If microservices database reports are slow due to data size, a data

warehouse solution should be implemented. In Microsoft Azure, a solution

called Azure SQL Data Warehouse manages structured data well. For

unstructured data, or a mix of both structured and unstructured data, a

solution called Azure Databricks can be used. All reporting or read-only

queries can be routed to separate data warehousing systems.

If the data set is small, and there were no major changes on the

source databases, even indexed views in SQL Server can help solve

this challenge.

Chapter 8 Database Design for MiCroserviCes

244

 Challenge 4
Allow effective searches that get data from multiple microservices

databases.

 Resolution

This challenge should be handled at the application layer through API

composition or through a caching layer.

 Summary
This chapter discussed the various design patterns to manage data for

microservices applications. There is a lot of conceptual information

that is helpful in understanding the rationale behind choosing specific

technologies. All the major options on Microsoft Azure can reinforce

the impact of microservices applications with advanced cloud platform

functionalities.

Chapter 8 Database Design for MiCroserviCes

245© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7_9

CHAPTER 9

Building
Microservices
Applications on
Azure Stack
If we look back at how the data centers of organizations have evolved over

the years, we realize a trend. Technological advancements in computing

hardware and software are aimed at maximizing the use of the resources

available. Today, we talk about hyperscale, with organizations adopting

public cloud platforms to deliver all sorts of computing resources and

cutting-edge technology platforms like IoT, blockchain, and machine

learning services, and so forth. This enables organizations to shift their

focus from operating and maintaining their data centers to addressing

their business challenges using a public cloud.

It’s important to realize that the cloud isn’t just a location; it’s a

model that can be implemented in multiple ways. Although public cloud

platforms have a lot to offer, there are still a lot of scenarios in which

organizations can’t afford to run certain workloads in the public cloud and

wish to run these specific workloads within their premises. Reasons for

this may include mission-critical workloads that are disconnected from the

246

Internet, or complying with the country’s/organization’s data residency

regulations.

By embracing a hybrid cloud strategy, an organization can seamlessly

manage on-premise and public cloud workloads through a single

interface. You can run different workloads on-premise and use the public

cloud when needed. In this chapter, we discuss a hybrid cloud solution

called Microsoft Azure Stack and how it can be utilized for microservices

applications.

 Azure Stack
Azure Stack is Microsoft’s implementation of this robust definition of the

cloud in a hybrid mode. It’s an extension of Azure that empowers your

data center to provide a subset of Azure services. Microsoft has built this

integrated solution with hardware OEMs (e.g., HPE, Dell, Lenovo, and

Cisco) by putting Azure layer on top of it. This box can connect to your

local infrastructure easily. It gives you the flexibility to build an application

on Azure Stack and extend it to the Azure cloud when needed.

 Services Available in Azure Stack
Azure Stack offers various services for your local data centers; however, in

context to Microservices application, it can offer

• Infrastructure as a Service (IaaS)

• Virtual machines

• Storage

• Network

Chapter 9 Building MiCroserviCes appliCations on azure staCk

247

• Platform as a Service (PaaS)

• Azure App Services

• Azure Functions

• Container orchestrators: Azure Service Fabric and

Azure Kubernetes Services

• Databases: SQL Server and MySQL

If services are not available natively in Azure Stack, there is an option

to leverage Azure Marketplace to bring the solution to the box. It saves

months/years of efforts to build such capabilities on-premises from

scratch and makes these services natively available on Azure Stack.

Here’s a cursory list of the inherent benefits a hybrid cloud

implementation brings to the table.

• Enhances developers’ productivity by giving them

access to advanced and agile development platforms of

their choice in their own data centers.

• Gives organizations the flexibility to rebalance their

workloads as their requirements change by easily

moving applications and data at will between Azure

Stack and Azure.

• Enables enterprises to create their own private clouds

with access to cutting-edge cloud services, while

keeping their code and data within the bounds of their

own firewalls.

 Azure Stack Deployment Modes
The deployment mode is Azure Stack’s most critical factor because it

decides to set of features available to be offered from Azure Stack. There

are two modes of Azure Stack deployment.

Chapter 9 Building MiCroserviCes appliCations on azure staCk

248

• Connected. Connected to the Azure public cloud

through the Internet or MPLS

• Disconnected. Disconnected from the Azure public

cloud

The true power of Azure Stack can be harnessed in a connected

scenario because the capability to move a workload from Azure Stack

to Azure, or vice versa, can be achieved natively. Identity management,

registration, syndication, and patching can be easily managed by

connecting directly to an Azure subscription over the Internet; however,

for a disconnected Azure Stack setup, the hybrid scenario of moving the

workload from Azure Stack to Azure (or vice versa) is not available, and all

the basic functions must be manually done.

Now it’s time to discover how various services on IaaS/PaaS/SaaS can

be offered from this platform.

 Offering IaaS
The most fundamental demand of all cloud tenants is to have highly

available, configurable, and scalable IaaS offerings. Azure Stack delivers

IaaS offerings with a user experience identical to that on Azure. Let’s

consider the example scenario shown in Figure 9-1, with two tenants using

Azure Stack’s IaaS offerings for different applications.

Tenant A has deployed a web application that is running on three VMs

that rely on a load balancer to expose its public IP, and then distributes app

user requests between the three VMs. For storage, tenant A has deployed

a VM that runs SQL Server (or any other database system). Apart from

this web application, tenant A has also deployed a dev/test environment

running on a different virtual network that is isolated from the production

environment. Tenant B has simply deployed a SharePoint farm running in

three VMs connected by a virtual network.

Chapter 9 Building MiCroserviCes appliCations on azure staCk

249

Since they are different tenants, neither consumer can access the

cloud resources used by the other. The Azure Resource Manager (ARM)

plays a key role in ensuring a consistent experience between Azure Stack

and Azure by delivering identical REST APIs. ARM lets you realize the

true potential of a hybrid cloud deployment by letting users automate

the mechanics of their deployment and easily move workloads between

Azure Stack and Azure. To showcase how a hybrid model is relatable to

enterprise data centers today, let’s revise the Figure 9-1 example. Tenant

A may find moving the dev/test environment to Azure more prudent

since it frees up resources if there is a hike in demand in the production

environment. Tenant B can leverage ARM templates to automate compute

scaling; for example, as the database content increases.

 PaaS On-Premises Simplified
In a world where newer technologies that incorporate things like artificial

intelligence, machine learning, and natural language processing are

disrupting industries, it is more prudent for enterprises to channel a lot

of their resources into innovation and development. Although IaaS and

Figure 9-1. IaaS scenario

Chapter 9 Building MiCroserviCes appliCations on azure staCk

250

virtualized hardware are important, PaaS offers the perfect playground to

innovate and deploy applications faster because you don’t have to concern

yourself with the virtualized hardware that the application runs on.

Let’s visit the example shown in Figure 9-2 to see how building and

deploying the same application is much simpler using PaaS. Tenant A

had to explicitly create, configure, and manage VMs and define virtual

networks and load balancers for the production and testing environments.

If tenant A used PaaS offerings, the same traditional web application could

be deployed using Azure App Service. Tenant A only needs to provide the

application code and then let Azure App Service automatically deploy it

across the necessary compute and networking infrastructures.

Figure 9-2. PaaS scenario

Tenant B can deploy the SharePoint farm using Service Fabric, where

the architecture of the application is based on microservices instead of

an n-tier model. Service Fabric, like App Service, handles the underlying

infrastructure by hosting the application automatically, and managing the

microservices deployed.

Azure Stack offers PaaS services like these out of the box, providing an

easier way to fulfil a cloud platform’s real goal, which is to support and run

applications.

Chapter 9 Building MiCroserviCes appliCations on azure staCk

251

Another powerful example of a PaaS offering is in an IoT scenario

where there’s a need for low-latency communication between a device

and the code controlling it. Services like IoT Hub let you create and run

the control code locally and manage communication with the device. The

emergence of PaaS offerings also makes it easier to use the arrays of other

managed services, like Active Directory, blobs, tables, storage options, and

so forth.

The best part is that the out-of-the-box PaaS offerings available on

Azure Stack are just the tip of the iceberg. Access to Marketplace lets

you download a plethora of other PaaS features delivered by third-party

vendors such as DataStax, Cassandra, and Barracuda, as well as open

source offerings from Linux distributions like Red Hat, Canonical, and so

forth.

 SaaS on Azure Stack
A huge challenge for software companies that create SaaS (Software as

a Service) applications is that they have customers that demand on-

premises versions. Azure Stack can let you build and deploy an application

both on-premises and on Azure, which eliminates the problem of

building different versions of the application to be run on-premises and

on the cloud. SaaS applications need to be highly scalable, reliable, and

easy to update because it makes sense to create SaaS applications using

microservices and Service Fabric on Azure, along with an ARM template

to automate the deployment of the application. So, if there is a demand for

an on-premises version of the application, you can seamlessly move the

software and the ARM template to Service Fabric running on Azure Stack.

While we understand the value proposition of Azure Stack, it’s

important to also understand how microservices applications are deployed

on this solution. Taking reference from Chapters 1 and 2, microservices

applications need the following components.

Chapter 9 Building MiCroserviCes appliCations on azure staCk

252

• Orchestrators

• Containers

• Stateful/stateless services and guest executables

• API gateway

• Databases

• Security

• Monitoring

Let’s get into the details of the how Azure Stack is set up to be ready for

the infrastructure deployment. There are three major steps to set up the

Azure Stack.

 1. Azure Stack registration. When the Azure Stack

box is set up, the first step is to register with your

Azure subscription to enable the inflow of services

to Azure Stack. The Azure Stack portal is shown in

Figure 9-3. The portal may change as new updates

are released.

Figure 9-3. Azure Stack portal

Chapter 9 Building MiCroserviCes appliCations on azure staCk

253

 2. Marketplace syndication. After registration, the

next step is Azure Marketplace syndication, which

brings IaaS and PaaS images to Azure Stack. In

connected mode, this is seamless; however, in

disconnected mode, all the required images are first

downloaded to the Internet-connected machine

and then moved to Azure Stack. During Marketplace

integration, Windows Server (with containers) can

be downloaded to build a container ecosystem.

 3. ADFS integration. To integrate Azure Stack with

your data center, you could either connect it with

Azure Active Directory or use Active Directory

Federation Services (ADFS) to connect on-premise

AD to Azure Stack. Post integration, role-based

access can be implemented and multiple users/

roles can be accessed or modified.

Now, Azure Stack is ready for use. Let’s briefly discuss how a

microservices ecosystem can be built on Azure Stack.

• Orchestrators. Two orchestrators are natively available

on Azure Stack: Service Fabric and Azure Kubernetes

Services (AKS). Other orchestrators, like OpenShift,

Docker Swarm, and Mesos DC/OS can be configured

on Azure Stack virtual machines. Both Service Fabric

and AKS are currently under preview and will be

generally available on Azure Stack as per the timelines

by Microsoft product teams.

• Containers. Containers are the first options for hosting

microservices applications. It can be easily built on the

Azure Stack environment using IaaS, or you can directly

build container images in Visual Studio to deploy it on

AKS or Service Fabric clusters on Azure Stack.

Chapter 9 Building MiCroserviCes appliCations on azure staCk

254

• Stateful/stateless services and guest executables.

Apart from containers, the Service Fabric orchestrator

offers two other ways to build microservices workloads:

stateful/stateless services and guest executables.

Service Fabric is natively available on Azure Stack, and

there is no change in the experience with Azure public

cloud. It is convenient for a developer to build, test,

and deploy microservices application efficiently. This is

covered in Chapter 9.

• API Gateway. There is no native API management

available on Azure Stack; however, an open source

API management called Ocelot can be configured on

Azure Stack virtual machines. Configuration is shared

in Chapter 7.

• Databases. Azure Stack offers SQL Server and MySQL

resource providers DB PaaS services. Other databases,

like PostgreSQL, Oracle, MongoDB, and so forth, can

be deployed on Azure Stack virtual machines.

• Security. Security can be offloaded to an API gateway

solution, which can perform the following tasks:

• Authentication and authorization

• Throttling

• Logging

• Response caching

• Service discovery

• IP whitelisting

Chapter 9 Building MiCroserviCes appliCations on azure staCk

255

If needed, Azure Active Directory or ADFS can

be utilized to implement role-based access for

applications.

• Monitoring. There is no native solution on Azure Stack

for monitoring; however, Azure Application Insights

can be used, or a solution from Azure Marketplace

can be implemented to manage monitoring for

microservices applications.

 Summary
To conclude this chapter, let’s look at what Azure Stack means for an

application designed with a microservices-oriented architecture deployed

over clusters of containers. Such applications running on Azure Stack

could help organizations take advantage of the low latency and meeting of

compliance requirements by running relevant services of their application

hosted on-premises.

At the same time, the application can leverage more

compute- intensive services, such as machine learning models using the

public cloud’s ample resources, while leaving plenty of capacity to increase

the number of instances running on-premises. Azure Stack and a hybrid

cloud strategy give organizations access to a plethora of PaaS offerings

that can be deployed on-premises and on Azure, seamlessly accelerating

organizations to become cloud-ready on their own terms.

Azure Stack is a solution that can be leveraged to implement all

three forms of cloud computing (IaaS, PaaS, and SaaS), which gives

organizations the cloud in a box.

Chapter 9 Building MiCroserviCes appliCations on azure staCk

257© Harsh Chawla and Hemant Kathuria 2019
H. Chawla and H. Kathuria, Building Microservices Applications on Microsoft Azure,
https://doi.org/10.1007/978-1-4842-4828-7

Index

A
ACID transactions, 32
Active Directory Federation

Services (ADFS), 253
Active secondary replicas, 51
Agile methodology, 7, 15
Agility, 3, 7–8
AKS clusters, monitoring

dashboard, 185–187
enable components, 184
multi-cluster, 188, 189
options, 184
performance metrics, 185

AMQP protocol, 30
API gateway, 198

aggregation, 23–25
Azure pattern, 28
entry point, 23
offloading, 27, 28
routing, 25, 26
single custom, 23

Application architecture, 5
Application Insights, 112

registration process, 121
SDK installation, 122
view, 137

Application monitoring
Application Insights, 113
ASP.NET Core (see ASP.NET

Core creation)
Application performance

management (APM)
service, 112

ASP.NET Core
debug the application, 83, 84
EmployeeDataAPI, 76–79,

81, 82
reliable collections, 58–63, 65–67
reverse proxy, 67–69, 71, 73, 74,

76–79, 81, 82
Service Fabric status, 58
setting up development

environment, 57, 58
stateless, 116

ASP.NET Core creation
Application

Insights, 118–119, 137
ASP.NET Core 2.2, 117
Azure subscription, 120
EmployeeController, 123–132
grouped results, 138
registration, 121
SDK, 121–122

https://doi.org/10.1007/978-1-4842-4828-7

258

Service Fabric application, 115
Service port, 135
Visual Studio 2017, 114

ASP.NET Core 2.2, 117
ASP.NET Core Web API, 31, 58,

114, 166
ASP.NET MVC, 22
ASP.NET Web API, 12
Asynchronous communication, 30
Azure AD, app registration, 199–201
Azure AD OAuth Bearer

Authentication, 198
Azure API management, 29

basic authentication policy, 196
client certificate authentication

policy, 196
JWT validation policy, 197

Azure application gateway, 29
Azure App Service, 250
Azure Key Vault, 101
Azure Kubernetes

Service (AKS), 19, 34, 40
advantages, 158
architecture, 152
cluster creation using Azure

CLI, 182, 183
cluster creation using Azure

portal, 180–182
cluster monitoring (see AKS

clusters, monitoring)
components, 179
dashboard, 190

deploy application
ASP.NET Core

web API, 166–169
Node.js API, 170, 172,

174–176
deployment

(see Deployment, AKS)
development tools

cluster creation, 159, 160
Dev Spaces, 161
Visual Studio, 161, 162
Visual Studio Code, 163–165

features and tools, 180
master, 153–154
namespace, 157
node pool, 155
nodes, 154
pod, 155

Azure monitoring, 180
Azure Monitor Logs,

creation, 143
Azure Resource Manager (ARM),

112, 141, 249
Azure Service Fabric, 39–40

autoscaling, 44
components, 44
concepts (see Core concepts)
dashboard, 98, 108
definition of, 43
Fabric cluster (see Service

Fabric cluster)
models (see Programming

models)

ASP.NET Core creation (cont.)

INDEX

259

Azure Stack
API gateway, 254
benefits, 247
containers, 253
databases, 254
deployment mode, 247, 248
guest executables, 254
monitoring, 255
orchestrators, 253
security, 254
services, 246, 247
stateful/stateless services, 254

Azure subscription, 120

B
Back-end employee service

API template, 204
API gateway

creation, 209
ASP.NET Core, 209, 210, 212
employee service, 202, 203,

205–208
Startup.cs, 213, 215

MSAL.NET, 221, 222
URLs, 216
WPF-based client

application, 216–220

C
CAP theorem, 228
Challenges, microservices

database redesign, 17
deployment complexities, 19

initial expenses, 19
interservice communication, 18
monitoring, 19
versioning, 19

Cloud-controller-manager, 153
Cluster monitoring

Azure Monitor Logs, 141–145
diagnostic agents, 140, 141

Command and query resource
segregation (CQRS), 243

Core concepts
application model, 45–46
scaling techniques, 46–48

D
Database design

challenges, 241–243
CQRS, 243
harnessing cloud computing

IaaS, 234, 235
Microsoft Azure, 233, 234
Paas, 235

microservices architecture
approach

eventual consistency, 233
two-phase commit, 231–232

on Microsoft Azure
NoSQL, 240
RDBMS, 236
SQL DB, 237, 238
SQL Managed

Instance, 238–239
Monolithic approach, 229–230

Index

260

NoSQL
CAP theorem, 228–229
components, 227

RDBMS, 226
Database redesign, 17
Data considerations

database techniques and
patterns, 32, 33

data warehouse, 33
event-driven

communication, 32
Deployment, AKS

DaemonSet, 157
StatefulSet, 157
YAML file, 156

Digital transformation, 1
Docker login, 103
Docker push, 104
Docker Swarm, 40

E
EmployeeDataAPIProxy.cs, 76
EmployeeService, 198

F
Fabric.exe, 54
FabricGateway.exe, 54
FabricHost.exe, 54
Fiddler call, 133, 137

G
Grafana, 190, 191

H
Hosting platform options

container
image, 37
registry, 37
vs. virtual machines, 36

HRClientApp, 198
HR management system (HRMS),

5, 6, 9, 12
HTTP/HTTPs protocol, 11

I, J
Infrastructure as a Service (IaaS),

234, 235, 248, 249
Infrastructure monitoring, 146–149
Interservice communication, 18,

29–31

K
Kube-apiserver, 153
Kube-controller-manager, 153
Kube-scheduler, 153

L
Log analytics, 180, 188

M
Manageability, 4
Mesos DC/OS, 41
Microservices architecture

Database design (cont.)

INDEX

261

approach, 230
code maintainability, 15
comparison, monolithic, 15, 16
functionality changes, 13
monitoring, 15
vs. monolithic architecture, 10
orchestrators, 14
principles, 10
scalability, 12, 13
technology changes, 14

Microservices,
authentication, 193–195

Microsoft.ServiceFabric.Data.
Collections, 51

Monolithic approach, 229
Monolithic architecture

agility, 7–8
data tier, 7
manageability, 9–10
presentation

tier/application tier, 6
resilience, 8, 9

N
Node, 54
Not-only SQL (NoSQL), 225

O
Ocelot, 197–198
Orchestrators

AKS, 40
Azure Service Fabric, 39

clustering resources, 39
Docker Swarm, 40
management, 39
Mesos DC/OS, 41
orchestration, 39

P, Q
Platform as a Service (PaaS), 235,

249–250
Polyglot architecture, 11
Primary replica, 51
Programming models

ASP.NET Core, 54
containers, 48–49
guest executables, 53–54
reliable actor, 54
reliable service

stateful, 50–52
stateless, 52, 53

Prometheus, 190

R
Relational Database Management

System (RDBMS), 225–227
Resilience, 3, 4

S, T, U, V, W, X, Y, Z
Scalability, 3
Security, 33
Security token

service (STS), 194

Index

262

Service Fabric cluster
advantages, 56
on Azure, 55
cloud provider, 56
failover manager service, 55
image store service, 55
naming service, 55
repair manager service, 55

Software as a Service (SaaS)
ADFS integration, 253

Azure stack, 251–252
marketplace syndication, 253

Spring Boot application
deploy as a container, 99–102,

104–107
deploy as guest executable, 94–99
develop API, 85–93
setting up the development

environment, 85
Visual Studio code, 86

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Evolution of Microservices Architecture
	Key Evaluation Parameters
	Scalability
	Agility
	Resilience
	Manageability

	Monolithic Architecture
	Scalability
	Agility
	Resilience
	Manageability

	Microservices Architecture
	Scalability
	Agility
	Functionality Changes
	Technology Change

	Resilience
	Manageability
	Code Maintainability
	Monitoring

	Comparison Summary
	Challenges of Microservices
	Database Redesign
	Interservice Communication
	Higher Initial Expense
	Deployment Complexities
	Monitoring
	Versioning

	Summary

	Chapter 2: Implementing Microservices
	Client-to-Microservices Communication
	API Gateway
	Gateway Aggregation
	Gateway Routing
	Gateway Offloading

	The API Gateway Pattern on Azure

	Interservice Communication
	Data Considerations
	Common Database Techniques and Patterns Indexed Views
	Data Warehouse for Reporting Needs

	Security
	Monitoring
	Microservices Hosting Platform Options
	Using Virtual Machines
	Using a Container
	Container Image
	Container Registry
	Container

	Azure Service Fabric
	Azure Kubernetes Service
	Docker Swarm and Compose
	Mesos DC/OS

	Summary

	Chapter 3: Azure Service Fabric
	What Is Service Fabric?
	Core Concepts
	Service Fabric Application Model
	Scale by Increasing or Decreasing Stateless Service Instances
	Scale by Adding or Removing Named Services Instances

	Supported Programming Models
	Containers
	Monolithic Applications
	Application Isolation

	Reliable Services
	Stateful Reliable Service
	Stateless Reliable Service

	Guest Executable
	Scalability and High Availability
	Health Monitoring
	Application Deployment
	Optimizing Hardware

	ASP.NET Core
	Reliable Actors

	Service Fabric Clusters
	Naming Service
	Image Store Service
	Failover Manager Service
	Repair Manager Service
	Cluster on Azure
	Standalone Cluster or Any Cloud Provider

	Develop and Deploy Applications on Service Fabric
	Develop an ASP.NET Core Stateless Web App
	Setting up the Development Environment
	Create a ASP.NET Core Web API Using Reliable Collections
	Create an ASP.NET Web App Communicating with a Web API Using Proxy
	Debugging the Application

	Develop a Spring Boot Application
	Setting up the Development Environment
	Develop a Spring Boot API
	Deploy a Spring Boot Service as a Guest Executable
	Deploy a Spring Boot Service as a Container

	Summary

	Chapter 4: Monitoring Azure Service Fabric Clusters
	Azure Application Insights
	Resource Manager Template
	Application Monitoring
	Adding Application Monitoring to a Stateless Service Using Application Insights
	Setting up the Development Environment
	Create an ASP.NET Core Web API

	Cluster Monitoring
	Diagnostic Agents
	Azure Monitor Logs

	Infrastructure Monitoring

	Summary

	Chapter 5: Azure Kubernetes Service
	Introduction to Kubernetes
	Kubernetes Cluster Architecture
	Kubernetes Master
	Kubernetes Nodes
	Kubernetes Node Pools
	Pods
	Deployment
	StatefulSets
	DemonSets

	Namespaces

	What Is Azure Kubernetes Service?
	AKS Development Tools
	Set up AKS and Development Tools for Labs
	Create an Azure Kubernetes Service Cluster
	Enable Azure Dev Spaces on an AKS Cluster
	Configure Visual Studio to Work with an Azure Kubernetes Service Cluster
	Configure Visual Studio Code to Work with an Azure Kubernetes Service Cluster

	Deploy Application on AKS
	Develop ASP.NET Core Web App and Deploy on AKS
	Create an ASP.NET Core Web API
	Develop Node.js Using Visual Studio Code and Deploy It on AKS
	Create a Node.js API

	Summary

	Chapter 6: Monitoring Azure Kubernetes Service
	Monitoring
	Azure Monitor and Log Analytics
	Create an AKS Cluster from the Portal
	Create an AKS Cluster with Azure CLI

	Monitoring AKS Clusters
	Monitor from AKS
	Monitoring a Multi-Cluster from Azure Monitor

	Native Kubernetes Dashboard
	Prometheus and Grafana
	Summary

	Chapter 7: Securing Microservices
	Authentication in Microservices
	Implementing Security Using an API Gateway Pattern
	Azure API Management
	Basic Authentication Policy
	Client Certificate Authentication Policy
	JWT Validation Policy

	Ocelot

	Hands-on Lab: Creating an Application Gateway Using Ocelot and Securing APIs with Azure AD
	Setting up a Development Environment
	Azure AD Application Registrations
	Develop an API Gateway, Back-end Service, and Client Application
	Setting up an Employee Service
	Setting up an API Gateway
	Setting up a WPF-based Client Application

	Summary

	Chapter 8: Database Design for Microservices
	Data Stores
	RDBMS
	NoSQL

	Monolithic Approach
	Microservices Approach
	Two-Phase Commit
	Eventual Consistency

	Harnessing Cloud Computing
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)

	Database Options on Microsoft Azure
	RDBMS Databases
	Azure SQL DB
	SQL Managed Instance
	NoSQL Databases

	Overcoming Application Development Challenges
	Challenge 1
	Resolution

	Challenge 2
	Resolution

	Challenge 3
	Resolution

	Challenge 4
	Resolution

	Summary

	Chapter 9: Building Microservices Applications on Azure Stack
	Azure Stack
	Services Available in Azure Stack
	Azure Stack Deployment Modes

	Offering IaaS
	PaaS On-Premises Simplified
	SaaS on Azure Stack
	Summary

	Index

